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i 

 

“Essentially, all life depends upon the soil. There can be no life without soil and no soil 

without life; they have evolved together.” 

- Charles Kellogg, 1938 
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Abstract 

A legacy of tillage can increase soil uniformity in former agricultural sites. Within plant 

communities, niche-based species sorting may occur among distinct soil patches (microsites), 

increasing coexistence and diversity, and the interfaces between microsites (microedges) also 

may provide unique microsites for increased diversity. However, the influence of soil 

homogenization and microedges on ecosystem processes and plant responses to stress have 

not been examined. My PhD thesis assessed if adding microsites and microedges containing 

sand, woodchips or altered topography (pits and mounds) increased plant species diversity, 

aboveground productivity, plant litter decomposition and nitrogen retention (15N tracer) and 

buffered plant responses to soil freezing in the first three years of a tallgrass prairie 

restoration on former cropland (2015-2017). Soil freezing was investigated by conducting 

snow removal during the 2015-2016 and 2016-2017 winters and monitoring the effects in 

subsequent growing seasons. Homogenization decreased diversity in flat topsoil plots relative 

to topographically heterogeneous plots with pits and in the sand treatment, but increased 

diversity in the woodchip treatment. Homogenization reduced aboveground productivity and 

plant 15N retention for the woodchip treatment and increased the rate of litter decomposition.  

Variation in diversity and ecosystem responses were associated with effects on plant 

production, suggesting that the influence of soil homogenization may occur indirectly as a 

result of effects on plant productivity. Elevated levels of plant cover and 15N retention along 

microedges occurred, indicating microedges may act as unique microsites and small scale 

ecological transition zones. Soil homogenization increased the sensitivity of total plant cover 

to soil freezing in the sand treatment and this effect appeared to be driven by greater severity 

of soil freezing in sand versus topsoil microsites in the heterogeneous treatment. Overall, my 

results indicate that there is a significant relationship between soil homogenization, plant 

diversity, ecosystem responses and stress during ecological succession. Human addition of 

microsites and microedges could be used to benefit plant community diversity and stability in 

the context of ecological restoration. 
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Chapter 1  

1 General Introduction1 

1.1 Soil heterogeneity and plant species diversity 

A universal property of soils is that they are extremely variable over time and space. Soil 

heterogeneity is driven by variation among microsites, which are patches of soil with 

contrasting composition compared to their surrounding conditions (e.g. nutrient 

concentrations, topography, texture) (Killham 1994). Poorly developed soils are 

characterized by high spatial heterogeneity, because they often overlie bedrock with 

irregular structure, which results in high variability in soil depth across space (Lundholm 

and Larson 2003). Heterogeneity can be ‘environmentally-induced’ by geological 

processes such as weathering and soil formation (Ricklefs 1977) and heterogeneity can be 

increased by plants through biotic processes such as colonization, root activity, and 

decomposition, a process referred to as ‘plant-induced heterogeneity’ (Gibson 1988, 

Jackson and Caldwell 1993).   

Other than the very early stages of pedogenesis, which involve parent material, and 

possible later geologic processes such as deposition, the remaining pedogenic processes 

result from interactions with living organisms and non-living material in the soil 

(Hinsinger 2013). For example, in acid tropical soils in arid environments, calcium builds 

up at the root surfaces of higher plants. Plants synthesize and discharge oxalate crystals, 

which prevents internal calcium toxicity, leading to the production of calcrete deposits in 

soil (Cailleau et al. 2004, 2005). Plants have profound effects on numerous pedogenic 

processes and dramatically influence several soil parameters, such as pH and clay mineral 

composition via biological nutrient metabolism (Neumann and Römheld 2012). Soil 

particles consist of organo-mineral complexes, where organic matter binds to minerals 

                                                

1
 Some of the content in this chapter was published and is presented here under the terms of the Creative 

Commons Attribution License. Appendix C: Permission to reproduce published material provides further 

details. Citation: Stover, H.J. and H.A.L. Henry. 2018. Soil homogenization and microedges: Perspectives 

on soil-based drivers of plant diversity and ecosystem processes. Ecosphere. doi: 10.1002/ecs2.2289. 
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via cationic bridges (Powlson et al. 2013). Therefore, it can be difficult to distinguish 

between environmental or plant induced heterogeneity (if any distinctions can really be 

made at all).  

Plants are an important source of biodiversity, providing vital resources to associate 

species in ecological communities, as well as goods and services critical to society. 

However, it is currently estimated that one-fifth of the world’s botanical species are at 

risk of becoming extinct in the wild (Pimm and Raven 2017).  Understanding the factors 

that control plant species diversity has been a central goal of plant community ecology, 

and in the context of global declines in biological diversity it has become increasingly 

important to refine this knowledge. Environmental heterogeneity has long been 

recognized as an important driver of plant species diversity (Levin 1974, Ricklefs 1977, 

Chesson 2000, Stein et al. 2014). Ecological niche theory suggests that a greater number 

of species can coexist, resulting in increased diversity, in an ecosystem where there is 

greater environmental heterogeneity (Tilman and Pacala 1993, Laliberté et al. 2013). At 

the spatial scale of within plant communities, niche based sorting may occur among 

distinct microsites, roughly the size of an individual rooting zone or the root zone 

occupied by a small population of a plant species (Day et al. 2003). These patches (i.e. 

centimetres to metres) are often referred to as microsites by plant ecologists, and they 

differ from the much smaller scale microsites (i.e. nanometres to micrometres) typically 

defined by soil scientists.  

A large body of research has focused on understanding the influence of heterogeneity in 

soil and other environmental variables on plant species diversity at the scale of within 

plant communities (Lundholm 2009). While environmental heterogeneity-plant species 

diversity relationships are well supported by theoretical work and the majority of 

observational research, it has been more difficult to successfully demonstrate this 

relationship experimentally, particularly in soil heterogeneity studies involving nutrient 

manipulation (Reynolds and Haubensak 2009, Eilts et al. 2011, Tamme et al. 2016). The 

few experimental studies that have demonstrated increased local scale plant diversity 

with increased soil heterogeneity have involved the manipulation of vertical layers of soil 

profiles to create distinct microsites within the upper layer of soil (i.e. replacing patches 
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of topsoil with patches of lower strata) (Fitter 1982, Williams and Houseman 2014), 

manipulation of topography in wetland soil (Vivian-Smith 1997) and heterogeneity in 

disturbance (Wilson and Tilman 2002, Questad and Foster 2008). However, when other 

soil parameters, such as soil depth to bedrock, physical texture and chemical properties 

have been altered, negative or null effects on diversity have been observed (Grime et al. 

1987, Baer et al. 2004). A better understanding of the mechanisms underlying such 

discrepancies is essential for clarifying the relationship between plant diversity and soil 

heterogeneity.   

Williams and Houseman (2014) proposed that while positive correlations between soil 

heterogeneity and plant diversity are often attributed to plant-induced soil heterogeneity, 

neutral processes may instead be the dominant factor (i.e. plant-derived heterogeneity 

may be detectable, but it does not contribute significantly to the species diversity 

patterns).  However, the results of experiments on this topic appear to suggest that plant-

induced heterogeneity promotes coexistence in a manner consistent with niche theory and 

invasibility criteria (Hendriks et al. 2015, Burns et al. 2017).  The balance between niche 

and neutral processes likely depends upon the extent of soil heterogeneity present, and 

neutral processes can dominate when soil heterogeneity at the local scale is low 

(Williams and Houseman 2014). There are of course many other theories, in addition to 

niche theory and neutral processes, that have been used to explain plant species 

coexistence and increased diversity (e.g. pest pressure, allogenic disturbance), but most 

include at least some component of spatial or temporal variability in plant growth 

conditions (Wilson 2011). 

1.2 Microedges 

Causes for ecological variability in the relationship between heterogeneity and diversity 

may be linked to belowground, small scale processes. For example, microfragmentation 

(i.e. increased patchiness with increased heterogeneity), was recently discussed as a 

mechanism whereby increased heterogeneity can decrease diversity as a result of 

increased fragmentation at a small scale (Tamme et al. 2010, Laanisto et al. 2013).  

However, research on soil heterogeneity typically has examined its impact as a 



   

4 

 

summative effect of the component microsites in a plant community without considering 

the interfaces between them.  These microsite edges or ‘microedges’ may act as small 

scale ecological transition zones, analogous to the ecotone concept (Clements 1905), but 

at a smaller scale (the centimetre to metre scale) than is typically considered for plants 

(i.e. the ecotone concept is typically only considered in the context of adjacent plant 

communities).  Microedges may provide additional niche spaces for increased plant 

diversity by offering a transitioning blend of the neighboring patches, or by functioning 

as interfaces with properties distinct from the neighboring patches. Microedges are also 

analogous to the transition zones between soil horizons described by soil scientists. 

Vertical strata found within soil profiles do not have distinct boundaries, but zones of 

overlap between the upper and lower layer, and are named as distinct sublayers in the soil 

taxonomy hierarchy (Weil and Brady 2016).  These two concepts can be combined; most 

research on soil heterogeneity has examined its impact in two dimensions, either 

vertically or horizontally, but Liu et al. (2017) demonstrated that soil heterogeneity 

should be examined in three dimensions. 

1.2.1 Microedges and ecosystem properties 

Non-additive interactions among patches along microedges also may apply to ecosystem 

processes. For example, decomposition rates along microedges may be greater than the 

sum of neighboring patches; such a response would be analogous to the results of litter 

mixture experiments, where the presence of litter from multiple plant species experiences 

faster decomposition than the litter from the component species in isolation (Gartner and 

Cardon 2004). These non-additive responses can result from complementarity among 

microsites (i.e. soil microbial activity limited by a given nutrient in one microsite may be 

increased by the higher availability of that nutrient in a neighboring microsite, and vice 

versa).  Small scale processes occurring on a microedge therefore are analogous to larger 

scale processes that have been observed to be driven by complementarity, such as hot 

spots and hot moments of elemental cycling at the interface between wetland and upslope 

areas (McClain et al. 2003).  
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With respect to soil hydrology and physical properties, there may be important 

implications of microsites and microedges for soil water movement; the resulting 

variation in moisture conditions can influence plant community composition and 

structure. Water movement can be impaired in stratified soils, as can occur with the 

stratification or layering of microsites in a heterogeneous soil. As water moves between 

strata or layers (i.e. microsites), it slows down when it reaches the edge of the next 

distinct layer due to changes in soil composition, especially changes in pore size (Miller 

and Gardner 1962). The latter results in a longer duration of dry conditions in the 

adjacent microsite, and a longer duration of wet conditions at the microedge, as water 

builds up at the boundary. Microedge properties also may be analogous to soil particle 

size relationships. If soil volume is held constant, as soil microsites decrease in size, their 

frequency increases and microedge surface area increases. Similar relationships are 

present for soil particles at smaller spatial scales (i.e. millimetres to nanometres), with 

colloids, the smallest of soil particles (< 2 μm), exhibiting an extremely high surface area 

to volume ratio, and imparting unique properties on the colloid particle, such as 

electrostatic charge for holding nutrients and water (Jones 2012). 

1.3 Soil homogenization 

Experiments that have explored the relationship between plant diversity and soil 

heterogeneity have focused predominately on the addition of increased soil heterogeneity 

to natural soils, above that of the background level of heterogeneity.  However, such an 

approach does not address the full range of environmentally-relevant soil heterogeneity 

scenarios, because it does not include fully-homogenized treatments (but see Brandt et al. 

2014).  In addition, knowledge is lacking regarding the role of disturbance in the study of 

heterogeneity-diversity relationships.  While disturbance often is viewed as an 

undesirable artefact of soil heterogeneity experiments (Lundholm 2009), soil often 

becomes more homogeneous and uniform specifically as a result of continuous 

disturbance from activities such as tillage (Anderson and Coleman 1985, Elliott 1986). 

Resource extraction, agricultural operations and other land uses have modified and 

disrupted the natural soil profile to the extent that an anthropogenic soil order has been 

proposed (Naeth et al. 2012). The homogenization of soil properties within a site caused 
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by disturbance could result in loss of microsites from the ecosystem, decreasing 

opportunities for plant species coexistence. Thus, soil homogenization via disturbance 

may be a significant factor limiting the recovery of plant species diversity and 

composition in early successional environments (Grime 1979, Baer et al. 2004).  

Soil homogenization is a subset of variation in soil heterogeneity; it is the process of soil 

becoming more homogeneous or uniform across space as a result of continuous mixing 

from activities such as tillage, erosion, compaction, and displacement (Anderson and 

Coleman 1985, Elliott 1986).  The potential impacts of soil homogenization from legacies 

of tillage in row crop agriculture deserve specific attention, because cropland under 

tillage represents a significant proportion of land use worldwide (Vitousek et al. 1997). 

For example, approximately 40 % of Earth’s land area is in agricultural use (Foley et al. 

2005). The number of old fields – former croplands abandoned from agricultural land use 

– has dramatically increased over the past century to about 200 million hectares globally 

(Cramer et al. 2008). Tillage or disturbances with similar effects represent a unique type 

of soil homogenization, because over time the subsoil layer becomes heavily compacted 

(e.g. hardpan formation), preventing root penetration. This process effectively eliminates 

the ability of vertical strata to act as microsites. 

Chronic disturbance can homogenize the spatial distribution of soil properties (Robertson 

et al. 1988, 1993, Röver and Kaiser 1997, Celik 2005), which can lead to decreases in 

plant diversity and changes in community structure and composition (Grime 1979, Coffin 

et al. 1996). The addition of environmental (soil) heterogeneity to previously cultivated 

sites has been attempted as a strategy to increase plant diversity with mixed success 

(Williams and Houseman 2014, Baer et al. 2016). In recovering grasslands subject to soil 

mixing, increased heterogeneity in microtopography and soil chemical and physical 

properties was associated with increased plant species diversity, and more so in older 

sites (Deák et al. 2015, Conradi et al. 2016). Soil homogenization also has several non-

anthropogenic causes such as pedoturbation, the vertical mixing of the soil profile caused 

by soil-dwelling animals or geological processes (churning clays, cryoturbation, and 

bioturbation), that occur on a wide variety of spatial scales (Weil and Brady 2016). Other 
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natural causes of soil homogenization can include erosion on steep slopes and sites with 

weak soil strength (high silt, low organic matter) that experience heavy precipitation.   

1.3.1 Soil homogenization and ecosystem properties 

Variation in plant species diversity is frequently associated with variation in ecosystem 

properties and processes such as nutrient cycling, decomposition and primary production 

(Tilman 1999, Hooper et al. 2012). It follows that soil heterogeneity can alter ecosystem 

processes indirectly via its effects on plant species and compositional diversity (e.g. 

Cardinale et al. 2000, Maestre et al. 2006, Tylianakis et al. 2008) and plant functional 

traits (García-Palacios et al. 2011, 2013). With respect to soil homogenization, the 

resulting reduction in plant species diversity could decrease facilitative interactions and 

niche partitioning among species (decreased overyielding), decreasing nutrient retention 

and productivity, both above and belowground (Tilman 1999, McKane et al. 2002, 

Griffin et al. 2009). In addition, loss of functional groups of species due to a reduction in 

diversity could reduce the complexity of leaf chemistry and phenology, lowering the rate 

of decomposition (Hector et al. 2000, Zak et al. 2003).  

Soil heterogeneity also may influence nutrient cycling directly, as evidenced by the 

results of split pot experiments, where plant nutrient acquisition differs among 

individuals grown with homogenous nutrient availability and those grown with the same 

amount of nutrients available, but distributed heterogeneously (Fitter et al. 2000, Henry 

and Jefferies 2002, 2003a, 2003b, Holzapfel and Alpert 2003). Beyond the level of plant-

soil interactions, animals may potentially interact with soil microsites to alter ecosystem 

processes.  For example, burrowing mammals and nesting birds can show preferential 

activity in soil microsites with unique topographical or soil structure properties, and 

altered local disturbance patterns and nutrient deposition (from animal waste) resulting 

from this activity could alter nutrient cycling locally. 

1.3.2 Soil homogenization and plant community responses to 
stress 

In addition to plant community diversity and ecosystem function, soil homogenization 

may also influence plant community responses to stress. Increased plant species richness 
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was associated with maintenance of productivity levels during drought (Tilman and 

Downing 1994) as with a greater number of species present there is a greater likelihood 

of having more productive species to replace those lost due to drought (Tilman 1999). 

Therefore, decreases in plant species diversity due to soil homogenization could 

indirectly influence the maintenance of productivity and other functions in response to 

drought and other stresses.  

Soil homogenization may also influence plant community stability to stress directly by 

reducing the number of ‘safe sites’ or ‘microrefugia’ found in more heterogeneous 

environments. Fridley et al. (2011) demonstrated in a local plant community that 

microrefugia to climate warming can be provided by microsites differing in soil depth. 

Plant species were lost from shallow microsites that experienced warming treatments, 

while the deep microsites gained species from shallow microsites. Dryland plant 

communities also showed resistance to a nine-year drought due to temporal and spatial 

heterogeneity (Tielbörger et al. 2014). Microtopographic variation and variability in 

aspect along mountain sides result in a range of temperatures deviant from atmospheric 

conditions, providing potential microrefugia to alpine species from climate warming 

(Scherrer and Körner 2010). Variability in microtopographic relief can also have a strong 

influence on plant diversity and community composition by increasing variability of soil 

moisture (Vivian-Smith 1997, Økland et al. 2008). In a pot experiment, in response to 

elevated CO2, aboveground productivity in soils with nutrient homogeneity increased 

while that of heterogeneous soils remained constant (Maestre et al. 2005). Under 

heterogeneous conditions of nutrient supply, the influence of CO2 (Maestre et al. 2005) 

and precipitation (Xi et al. 2015) were non-additive, and instead plants responded more 

strongly and consistently to the effects of soil nutrient heterogeneity despite changes in 

CO2 and precipitation. These findings indicate that soil heterogeneity could buffer plant 

community responses to stress. 

Evidence from pot experiments suggests increases in nutrient availability, CO2 and the 

presence of earthworms can facilitate or inhibit the influence of soil nutrient 

heterogeneity on plant productivity (Maestre and Reynolds 2006a, 2006b, 2007, Maestre 

et al. 2007, García-Palacios et al. 2014). Maestre and Reynolds (2007) found greenhouse 
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plant assemblages had greater biomass under heterogeneous nutrient supply and the 

effect was more pronounced as nutrient levels increased and at lower moisture 

conditions. Environmental context has important implications for the effect of soil 

heterogeneity, as indicated by evidence of facilitative and suppressed effects along 

moisture, CO2, and nutrient gradients (García-Palacios et al. 2012). The explanation for 

such outcomes is not well understood, but in theory it could occur due to differences in 

plant community composition between homogeneous and heterogeneous treatments prior 

to environmental change or due to differences in conditions experienced in homogeneous 

and heterogeneous treatments during the environmental change.  

Despite what is known about interactions between soil heterogeneity and environmental 

changes/stresses, no sources of heterogeneity have been directly tested or manipulated 

other than soil nutrient heterogeneity. Studies of soil nutrient heterogeneity restricted to 

artificial mesocosms tend to favour fewer large, dominant species with similar functional 

traits (Gazol et al. 2013, Price et al. 2014, Xi et al. 2015, Tamme et al. 2016). 

Furthermore, no field studies have confirmed trends found in pot experiments by direct 

manipulation of levels of heterogeneity and stress in a natural ecosystem (but see Arnone 

1997). 

1.4 Study system 

1.4.1 Tallgrass prairie restoration: A relevant system for 
investigating soil homogenization 

Ecological restoration is used as a practice of reinstating valuable habitat for species at 

risk of extinction and managing an ecosystem so that its species, populations and 

functions are self-sustaining (Choi et al. 2008). Tallgrass prairie was once a dominant 

grassland ecosystem in the North American plains and has been reduced to small 

fragments on the landscape (Sampson and Knopf 1994). Tallgrass prairies are maintained 

in a treeless state by regular fire cycles and dominated by C4 bunchgrasses and a diversity 

of other graminoids, legumes and forbs (Rodger 1998). Tallgrass prairie restoration is 

helping to recover this important ecosystem but would benefit from knowledge gained 

from ecological investigations. One of the most effective ways of studying something is 
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to take it apart and reassemble it, so ecological restoration provides a valuable 

opportunity to enhance the scientific study of ecology (Jordan et al. 1990). Grasslands are 

ideal study systems for ecological experiments on soil systems because, after 

belowground treatments are implemented, herbaceous plant communities can be 

established in a relatively short term (< 1 year) period. 

1.4.2 Soil freezing 

Frost exposure is a source of plant stress that is expected to increase in some temperate 

regions due to climate warming (Groffman et al. 2001, Hardy et al. 2001, Henry 2007, 

2008) because of reductions in snow cover (Kapnick and Delworth 2013). During winter, 

the snowpack has an insulating effect and in the absence of snow cover an increase in soil 

freezing and freeze-thaw cycles occur (Henry 2008), which damages overwintering plant 

tissues and negatively impacts plant growth in subsequent growing seasons 

(Vankoughnett and Henry 2014).  Differences in soil characteristics among microsites in 

heterogeneous soils may lead to variability in intensity of soil freezing; for example, 

wetter soils are known to have more severe freezing effects (Oztas and Fayetorbay 2003, 

Wu et al. 2017). Given that soil freezing is predicted to increase in the coming decades in 

northern temperate regions, it is important to understand how this will impact early 

successional ecosystems also affected by soil homogenization. 

1.5 Thesis overview 

For my PhD, I investigated the legacy effects of soil homogenization from cropland 

tillage on plant species diversity and community composition in a restored tallgrass 

prairie.  I also examined how soil homogenization affects productivity, nitrogen retention, 

decomposition and plant responses to soil freezing. The connections among soil 

homogenization, plant diversity, ecosystem properties and stress that I initially set out to 

explore in my thesis are summarized in Fig. 1.1 which is found after my objectives and 

hypotheses below. I used a former agricultural field that was last cultivated in 2014 to 

conduct two experiments. For these experiments, patches of sand and woodchips were 

added to the soil to construct heterogeneous plots, whereas the same materials were 

added and then tilled and mixed into the surrounding area to construct homogenized 



   

11 

 

plots. For the first experiment I also added patches with microtopographic relief (i.e. pits 

and mounds) for heterogeneous plots and compared them with flat plots that were tilled 

(homogeneous plots). For the second experiment, I exposed both homogeneous and 

heterogeneous plots to stress (increased soil freezing via snow removal) and compared 

them to homogeneous and heterogeneous plots not exposed to stress (i.e. no snow 

removal, ambient conditions). 

1.5.1 Objectives 

My PhD thesis had the following objectives: 

Objective 1) Explore the effects of soil homogenization on plant community composition 

and species diversity during early ecosystem succession in a tallgrass prairie restoration 

and explore plant diversity and species composition along microedges (microsite edges), 

which represent the interfaces between adjacent soil patches in heterogeneous soil, 

Objective 2) Investigate the influence of soil homogenization on productivity, 

decomposition and nitrogen retention and patterns of these properties along microedges 

in heterogeneous soils, and 

Objective 3) Research the relationship between soil homogenization and soil freezing by 

exploring the responses of plant community composition, diversity and productivity to 

soil freezing in homogeneous and heterogeneous soils. 

1.5.2 Hypotheses 

Chapter 2: Soil homogenization in a tallgrass prairie restoration: Toward resolved 

understanding of the relationship between soil heterogeneity and plant species diversity 

(Experiment 1a)  

Hypotheses: (1) I hypothesized that soil homogenization decreases plant species diversity 

and alters community composition by reducing the availability of distinct patches of soil, 

which would otherwise provide unique ecological niches and thereby increase 

coexistence and diversity and (2) Microedges act as small scale ecological transition 

zones, analogous to ecotones, but at a smaller scale (the centimetre to metre scale) than is 
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typically considered for plants (i.e. the ecotone concept is typically only considered in the 

context of adjacent plant communities) and provide additional niche spaces for increased 

plant diversity by offering a transitioning blend of the neighboring patches, or by 

functioning as interfaces with properties distinct from the neighboring patches. 

Chapter 3: Soil homogenization modifies productivity, nitrogen retention and 

decomposition during grassland restoration (Experiment 1b) 

Hypotheses: (1) In addition to direct loss of substrate heterogeneity, homogenization is 

expected to decrease plant species and functional group diversity and reduce 

complementarity in resource use.  Therefore, I hypothesized that soil homogenization 

decreases productivity, nitrogen retention and plant litter decomposition. (2) Based on the 

assumption that complementarity occurs between adjacent microsites, microedges exhibit 

ecosystem function (i.e. productivity, nitrogen retention and plant litter decomposition) 

that is not a simple additive effect of the adjacent microsites. 

Chapter 4: Interactions between soil heterogeneity and soil freezing: Implications for the 

diversity and relative abundances of grassland species (Experiment 2) 

Hypothesis: Based on the assumptions that soil heterogeneity would increase plant 

species diversity and availability of microrefugia, I hypothesized that soil heterogeneity 

would buffer the effects of soil freezing, such that freezing effects on overall plant 

abundance in heterogeneous substrates would be less severe than in homogeneous 

substrates. 
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Figure 1.1 Preliminary conceptual model linking the associations among soil 

homogenization, stress (soil freezing), plant diversity (i.e. species diversity, functional 

diversity and community composition) and ecosystem properties (e.g. nitrogen retention, 

decomposition, productivity). Homogenization, the process of soil becoming more 

spatially uniform, decreases diversity and ecosystem properties due to a lack of diverse 

microsites and microedges. Homogenization also can decrease ecosystem properties 

indirectly by decreasing plant diversity. Stress decreases plant productivity. The effect of 

stress is lessened with increased diversity since stress tolerant species are more likely to 

be available to compensate for more stress sensitive species. Homogenization increases 

the effects of stress by reducing the number of safe sites or microrefugia and by 

decreasing plant diversity. Plant diversity also can decrease homogeneity by increasing 

‘plant induced’ heterogeneity. 
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1.5.3 Thesis organization 

My PhD thesis is organized in integrated article format with three data chapters or 

manuscripts. Chapter 1: General introduction provides an overview of the thesis, 

including the context for the research and pertinent literature. Chapter 2: Soil 

homogenization in a tallgrass prairie restoration: Toward resolved understanding of the 

relationship between soil heterogeneity and plant species diversity (Experiment 1a) 

addresses Objective 1. Chapter 3: Soil homogenization modifies productivity, nitrogen 

retention and decomposition during grassland restoration (Experiment 1b) addresses 

Objective 2. Chapter 4: Interactions between soil heterogeneity and soil freezing: 

Implications for the diversity and relative abundances of grassland species (Experiment 

2) addresses Objective 3. Chapter 5: General discussion, concludes the thesis with a 

synthesis of the results from each chapter and concluding remarks, including future 

research directions. 
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Chapter 2  

2 Soil homogenization in a tallgrass prairie restoration: 
Toward resolved understanding of the relationship 
between soil heterogeneity and plant species diversity 

2.1 Introduction 

In grassland restoration projects, a diverse range of plant species is typically sown to 

maximize species diversity (Smith et al. 2010).  However, grassland restoration is often 

conducted on former cropland (Kucharik et al. 2006), where soils are typically more 

homogeneous as a result of a legacy of tillage, erosion, compaction and mixing 

(Anderson and Coleman 1985, Elliott 1986). Niche theory suggests that plant species can 

best coexist in an ecosystem where there are distinct niches available in the soil for plant 

species to colonize and differentially dominate, resulting in increased diversity (Tilman 

and Pacala 1993). Loss of soil heterogeneity caused by decades of tillage from crop 

cultivation therefore could be an important factor that limits plant species and community 

diversity during subsequent restoration. However, soil homogenization has not been 

examined explicitly in investigations of soil heterogeneity-plant relationships other than 

serving as a control treatment (Brandt et al. 2014, Stover and Henry 2018). 

In observational studies of undisturbed ecosystems, sites containing numerous soil 

patches (microsites) with differing characteristics (e.g. soil depth, moisture, 

microtopography, nutrient concentrations) have been positively correlated with plant 

diversity (Lundholm 2009). However, despite theoretical and observational support, 

experimental manipulation of soil heterogeneity has produced inconsistent results, with a 

range of positive, negative or null effects of soil heterogeneity on plant diversity (as 

reviewed by Williams and Houseman 2014). Increased within-site plant diversity with 

increased soil heterogeneity has been demonstrated by studies that have created distinct 

microsites by replacing patches of topsoil with patches of subsoil (Fitter 1982, Williams 

and Houseman 2014), variation in microtopography (i.e. pits and mounds) in wetland 

soils (Vivian-Smith 1997) or disturbance as a source of heterogeneity (Wilson and 

Tilman 2002, Questad and Foster 2008). However, experimental manipulation of 
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heterogeneity in soil depth to bedrock, soil texture and nutrient manipulation have 

resulted in negative or null effects on plant diversity (Grime et al. 1987, Baer et al. 2004). 

The vast number of different heterogeneity sources available to be tested likely 

contributes to variability in heterogeneity-diversity relationships, because each source 

(e.g. topography, soil texture, temperature, etc.) has its own unique effects on plant 

communities. 

The variability in experimental results observed also is likely due to the influence of 

factors such as plant size, microsite size, competition and productivity. Diversity is likely 

greatest when microsites are, at minimum, the size of individual plant rooting zones or 

plants may easily overcome resource differences (Day et al. 2003). In terms of 

competition, highly productive and competitive species may exploit soil nutrient 

heterogeneity and dominate a community, decreasing diversity, regardless of the extent 

of heterogeneity present (Stevens and Carson 2002, Eilts et al. 2011, Stromberg et al. 

2011, Baer et al. 2016, Tamme et al. 2016). Liu et al. (2017) found no effect of 

heterogeneity on species richness when inferior competitors for nitrogen were pooled 

with superior competitors, but positive effects when only superior competitors were 

considered. Increasing plant density, or number of individuals, can increase diversity due 

to stochastic/neutral effects, and this may be the dominant mechanism explaining 

diversity patterns in homogeneous environments (Williams and Houseman 2014, Walker 

and Lundholm 2018).  

Variability across temporal and spatial scales and environmental conditions can influence 

soil heterogeneity-diversity relationships, which are typically tested in short-term (< 1 

year) experiments. However, soil heterogeneity may be more common in late-

successional, mature ecosystems (Williams and Houseman 2014) and would therefore 

benefit from longer term study (but see Baer et al. 2016). Temporal variation in terms of 

phenological variability among seasons has not been examined. Moreover, the strength of 

association between heterogeneity and diversity may be weaker at fine spatial scales 

within plant communities compared to the landscape level (Gazol et al. 2013). 

Environmental context has important implications for the effect of soil heterogeneity, as 

indicated by evidence of facilitative and suppressed effects along moisture, CO2, and 
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nutrient gradients (García-Palacios et al. 2012). Further understanding of the factors 

which cause variability in heterogeneity-diversity relationships is required for better 

prediction and exploitation of this relationship as a conservation tool. 

Research on soil heterogeneity has traditionally considered its impact as a summative 

effect of microsites within plant communities, without considering the edges between 

them.  These microsite edges (microedges) may have unique properties, providing an 

additional form of niche space and increasing plant diversity (Stover and Henry 2018). 

Microedges also may have properties intermediate between the two neighboring patches, 

acting as small scale ecological transition zones, analogous to the ecotone concept 

(Clements 1905), but at a much smaller spatial scale (the centimetre to metre scale) than 

ecotones (i.e. ecotones describe the transition between adjacent plant communities). 

However, few (if any) studies to date have examined the influence of microedges on 

plant communities. 

My objective was to investigate the influence of soil homogenization on plant species 

diversity and community composition during early ecosystem succession at the beginning 

of a tallgrass prairie restoration on former cropland.  I also examined plant species 

diversity and composition along microedges. Two different sources of substrate 

heterogeneity – sand and woodchips – were added to the topsoil layer of a former 

agricultural field and compared to homogeneous treatments where the same materials 

were added but distributed homogeneously.  Microtopographic heterogeneity was 

investigated by comparing pits and mounds with flat soils. Total canopy cover and 

density (number of individuals) were characterized in the early growing season and late 

summer and at two different spatial scales, and precipitation patterns were documented, 

with the goal of furthering understanding of variability in heterogeneity-plant 

relationships. Based on the assumption that the availability of distinct soil microsites 

provides unique ecological niches, and thereby increases coexistence and diversity, I 

hypothesized (1) soil homogenization would decrease plant species diversity and alter 

community composition and (2) microedges would exhibit properties unique from their 

adjacent patches, providing additional niche spaces for increased plant diversity. 
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2.2 Methods 

2.2.1 Research site 

The study was conducted in a four hectare tallgrass prairie restoration site located in a 

former agricultural field at the Environmental Sciences Western field station near 

Ilderton, Ontario, Canada (43o04’29’’N, 81o20’18’’W). The local area has London Clay 

Loam soils with well to imperfectly drained silt loam and loam glacial till (Hagerty and 

Kingston 1992), mean annual precipitation 1012 mm and air temperature 7.9 oC, with 

mean January low -5.6 oC and July high 20.8 oC for 1981-2010 (Environment and 

Climate Change Canada 2018). Prior to the experiment and restoration, the field was used 

for cash cropping under annual rotations of soybean, corn, winter wheat and red clover 

(cover crop). 

2.2.2 Experimental design and treatments 

Soil treatment plots were set up in May 2015, prior to the prairie restoration. The 

experimental area was divided into 28 blocks. Plots within blocks were 100 cm × 50 cm 

and surrounded by a 2 m wide buffer zone (Fig. 2.1). Plots were prepared manually with 

shovels and a 100 cm × 50 cm plastic frame, with plastic buckets used to mix the soil 

components. For the substrate heterogeneity treatments, heterogeneous plots were 

constructed consisting of two halves: 1) a 50 × 50 cm area and 15 cm deep soil patch 

containing either a 4:1 mix of sand and topsoil (sand patch) or a 2:1 mix of sugar maple 

woodchips and topsoil (woodchip patch) and 2) a 50 × 50 cm patch of topsoil with no 

modification other than being mixed with a shovel down to 15 cm depth to match the 

disturbance effect in the other half of the plot.  The edge in the middle of each plot, 

between the two patches, was defined as the microedge. The specific ratios of sand and 

woodchips to topsoil were determined in preliminary greenhouse experiments to produce 

highly contrasting rates of germination and growth among species compared to topsoil.  

Sand was obtained from a local quarry in London, Ontario and woodchips were collected 

from sugar maple trees cut down on the field site property and stored outside in a 

stockpile for one year prior to the experiment. The topsoil blended to make the sand- and 

woodchip-enriched patches was collected from each plot when the top 0-15 cm of topsoil 
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was removed to construct the patch.  To explore the effects of homogenization, 

corresponding plots were prepared as described above, but then mixed with a shovel 

down to 15 cm depth across the entire 100 cm × 50 cm plot area.  

To explore the effects of microtopographic homogenization, three types of plots were 

constructed using topsoil.  The first consisted of a 50 × 50 cm × 15 cm deep pit located 

next to a level, 50 × 50 cm patch of background topsoil mixed with a shovel down to 15 

cm depth. The pits were dug to 30 cm depth and backfilled with 15 cm of topsoil to 

maintain the appropriate soil depth profile. The second type of plot consisted of a 50 × 50 

× 20 cm high mound located next to a level, 50 × 50 cm patch of background topsoil, 

with 15 cm of subsoil placed below the mound to maintain the soil depth profile. I 

examined the effect of topographic homogenization by comparing the pit and mound 

plots to level topsoil plots mixed with a shovel down to 15 cm depth. The seven different 

plot types in total were replicated once within each of 18 blocks (Fig. 2.1). In connection 

with a different experiment, 20 additional sand and woodchip homogeneous and 

heterogeneous plots each were replicated within an added set of blocks, giving n=38 for 

the substrate heterogeneity treatments, although the substrate treatments were reduced to 

n=28 in the final two years of the study. Note, none of the Chapter 2 and Chapter 3 plots 

received snow removal (only Chapter 4 plots). 
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Figure 2.1 Experimental design. Plots were used as replicates of the seven different 

treatments (displayed left). The upper right depicts a cross section of a pit and mound. 

Plots were randomly assigned to 28 blocks.  
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2.2.3 Planting 

Following plot establishment, in late May 2015, glyphosate was sprayed over the entire 

experimental area to kill the resident vegetation. In June 2015, plot seeding took place at 

the same time that the entire restoration site was being planted with a tractor, with the 

research blocks seeded separately by hand.  The tallgrass prairie species were seeded 

evenly over each plot, with each plot receiving the same amount of seed per species. 

Seeding was repeated a second time in May 2016 to increase the available species pool, 

and a total of 34 forbs and 14 graminoids were seeded (Appendix Table A.1). Species 

were chosen to represent a diversity of native tallgrass prairie plant functional types (e.g. 

C4 and C3 grasses, leguminous and non-leguminous forbs) and the amount of seed 

planted per species was determined based on standard rates used in restoration (Smith et 

al. 2010). Seed of each species was counted out in early April 2015 and mixed with dry 

sand (grasses and forbs) and moist potting soil (forbs requiring moist stratification) in 

separate bags for each plot and stored at 4 °C. Each bag (seed mix) was diluted and 

thoroughly mixed in a bucket with an equal volume of potting soil (4 L) as a filler to 

increase volume, to allow the seed mix for each plot to be scattered evenly over the entire 

plot surface. After seeding, each plot was watered with one full watering can (2 L) and 

covered with a biodegradable erosion control blanket to prevent soil and seed movement. 

The buffer area around the plots was seeded with a subset of prairie species using the 

same methods discussed above to provide consistent background vegetation (Table A.1).  

Seeds were obtained by wild collection from local sites in southern Ontario or by 

purchase of regionally similar ecotypes from Ernst Conservation Seeds (Meadville, PA, 

USA). Percent viable seed was determined either by using certificates obtained at the 

time of purchase (which listed percent germination) or, for wild collected seed, by 

sowing a pre-determined amount of seed on potting soil-filled trays in a greenhouse, 

counting emerging seedlings for 14 days, and dividing the number of emerging seedlings 

by the number sown and multiplying by 100 to calculate percent emergence (Table A.1). 

All seeds sown were produced and collected within two years of planting and kept in cold 

dry storage at 4 °C until sowing. 
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2.2.4 Soil properties 

I assessed the properties of the sand, woodchips and topsoil used to create the 

homogeneous and heterogeneous treatment plots. Topsoil was sampled by taking a 2 cm 

diameter by 15 cm deep soil core from a random location within each block just outside 

the study plots. Sand and woodchips samples were collected randomly from the 

stockpiles on site. Sand-topsoil and woodchip-topsoil mixtures were prepared for analysis 

using the same ratios as present in the experimental plots. Soil pH was measured by 

mixing 10 g of soil from each sample with deionized water in a 1:2 ratio to create a 

slurry, and analyzing the slurry with a pH meter.  Extractable NH4
+ and NO3

- were 

measured by extracting 7 g of each soil sample in 35 ml of KCl for 1 h on a shaker, 

filtering through pre-leached cellulose filter paper, then analyzing the filtrate 

colourimetrically (NH4
+-N: EPA method 353.2; NO3

--N: EPA method 350.1) using a 

SmartChem 140 discrete auto-analyzer (Westco Scientific Instruments, Brookfield, CT).  

Percent sand, silt and clay were determined for a 20 g subsample using a graduated 

cylinder, and soil organic matter as loss on ignition following drying of 1 g of the sample 

in a muffle furnace at 500 °C for 24 h.  Total carbon and nitrogen data were obtained 

from soil mass spectrometry analyses performed on soil cores taken from experimental 

plots (Chapter 3). Soil properties are described in Table A.2 and Table A.3. 

2.2.5 Vegetation sampling 

Vegetation in all plots was surveyed twice per growing season in late spring and late 

summer (June-July and September-October) during 2015–2017 to coincide 

approximately with the timing of peak biomass for the different plant species. Plots were 

sampled for plant species diversity and community composition by overlaying three 25 × 

25 cm (0.0625 m2) sampling quadrats over the plots. One quadrat was placed in the 

center of each of the two 50 × 50 cm halves of each plot, and a third quadrat was placed 

along the edge, between the two halves, in the center of the plot (Fig. 2.2). Homogeneous 

plots also had three quadrats placed in the same positions to equalize sampling effort. 

Percent canopy cover of each individual plant species rooted in each quadrat, and ground 

cover (bare ground, moss, vegetation, litter, rock), was visually estimated. The number of 
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individual plants of each species also was counted to give an estimate of species density. 

Nomenclature followed Voss and Reznicek (2012). 
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Figure 2.2 Vegetation sampling design. Within each plot three microplots (quadrats) 

were placed, each 25 × 25 cm (0.0625 m2). Individual plant species cover and density 

were measured within each quadrat.  
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2.2.6 Meteorological conditions 

Mean daily temperature, total monthly precipitation and long-term climate normals for 

the time period of the study were obtained from the Environment and Climate Change 

Canada National Climate Data and Information Archive (Environment and Climate 

Change Canada 2018). In addition, at the Environmental Sciences Western field station, 

the water level on a rain gauge was recorded by Research Technician C. Rasenberg after 

each rainfall during April 1 to October 31 from 1988 to 2017 to provide a local estimate 

of total monthly precipitation over time.  

Mean monthly temperatures from April to October 2015–2017 were typical of the long-

term average (Table A.4). However, precipitation from April to October 2015–2017 was 

approximately 20 % less than long-term climate normals (Table A.4). The second year 

(2016) was drier than long term normals during April to June (the early growing season), 

when plants require the most moisture to establish, whereas 2017 was drier than the 

climate normals later in the growing season from July to September (Table A.4). During 

these dry spells, precipitation was at least 50 % lower than the long term normals or 

lower. 

2.2.7 Data analyses 

The Shannon index of species diversity and species richness were calculated in R using 

dplyr, vegan and rich (Rossi 2011, Oksanen et al. 2016, Wickham and Francois 2016). 

Total canopy cover was calculated by summing the individual species cover values. 

Species cover data also were pooled into the following vegetation categories for analysis: 

native (seeded) vs. adventive (non-seeded), with both subdivided into graminoids, 

leguminous forbs and non-leguminous forbs.  All response variables (Shannon index, 

richness, functional group cover categories and total cover and density) were calculated 

for each quadrat (subplot) (Fig. 2.2). The effects of homogenization on the response 

variables were then analyzed using a linear mixed model with block and plot nested 

within block as random effects and soil treatment (the seven levels of woodchips, sand, 

topography heterogeneous and homogeneous), year (2015, 2016, 2017) and season (early 

summer versus late summer) as fixed effects. Quadrat was nested within plot in the error 
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term and response variables were averaged over the three 0.0625 m2 sampling quadrats to 

estimate soil treatment effects. The model quantified the means of responses at the patch 

level (0.0625 m2). In addition to the above, for Shannon index and species richness, I ran 

the same model a second time, but instead of taking individual quadrat values, I modelled 

the means of diversity responses at the whole plot scale by pooling quadrat data for 

species occurrences/abundances for each plot (0.0625 m2 × 3 = 0.1875 m2). This follow-

up analysis provided a second spatial scale of observation for the data.  An additional 

linear mixed model also was used to test for significant differences among subplots and 

microedges (i.e. the same model described above was used except ‘soil treatment’ was 

replaced with the fixed effect ‘subplot’ consisting of the levels microedge, topsoil patch 

and microsite – sand, woodchips, pit or mound).  

For each response variable having significant soil treatment effects, within each 

heterogeneity source (sand vs woodchips vs topography), an a-priori contrast (assessed 

with a t-test) was used to compare heterogeneous to the homogeneous mean; the same 

approach was also used to compare means among the microedge and the two adjacent 

patches. A log10(y+1) transformation was used for cases when residuals did not meet 

assumptions of normality or homogeneity of variance. For response variables with 

residuals that could not be transformed to meet assumptions Friedman’s test and 

Wilcoxon rank sum tests were used. Statistical analyses were conducted with R v. 3.3.3 

(R Core Team 2017). For all statistical tests alpha was 0.05 but marginally significant 

differences at p < 0.1 were also considered biologically important and reported. 

2.3 Results 

2.3.1 Plant species richness and Shannon diversity index 

Soil homogenization significantly altered species richness and Shannon index, and these 

effects varied over time and among the different sources of heterogeneity. There was a 

significant year by treatment interaction for species richness (p < 0.0001, F12,3077 = 8.8) 

and Shannon index (p < 0.0001, F12,3067 = 16.3). For the woodchip treatment, soil 

homogenization increased richness in the second (p = 0.010, t506 = -2.6) and third year (p 

< 0.0001, t506 = -4.87), and it increased Shannon index in all years (year 1: p = 0.001, t378 
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= -3.3; year two: p = 0.015, t492 = -2.44; year three: p < 0.001, t492 = -4.4) (Fig. 2.3a-b). 

Within the woodchip heterogeneous plots, the microedge species richness and diversity 

ranged among years from being intermediate between topsoil and woodchip patches to 

more similar to the topsoil patches (Table 2.1).  For the sand treatment, soil 

homogenization decreased species diversity in the first year (p = 0.070, t378 = 1.82) and 

richness in the final year (p = 0.085, t506 = 1.73) (Fig. 2.3a-b). In the sand heterogeneous 

plots, the sand patches had greatest diversity and richness in all three years, and there was 

no significant difference between the topsoil patches and microedges (Table 2.1).  

For the microtopography treatments, Shannon index and richness in the pit plots were 

lower than the flat plots in year one (p = 0.007, t378 = 2.71 and p = 0.035, t385 = 2.12, 

respectively), whereas Shannon index was higher in the pit plots than in the flat plots in 

the second year (p = 0.01, t389 = -2.57) and third year (p = 0.068, t389 = -1.83) (Fig. 2.3a-

b). Shannon index and richness were equivalent among subplots for the pit treatment 

(Table 2.1). Mound plot Shannon index and richness were not significantly different from 

those of flat plots (Fig. 2.3a-b), although in year one the microedges in the mound plots 

had lower diversity than the adjacent patches (Table 2.1).  

When the models for Shannon index and species richness were run a second time to 

characterize species diversity at the whole plot scale (0.1875 m2), the same effects as 

mentioned above were observed for the sand treatment, but were more significant (Fig. 

A.1). The diversity trends for pit plots and woodchip plots were non-apparent and 

weaker, respectively (Fig. A.1). Mound plot Shannon index was marginally significantly 

greater than flat plots in the first year (Fig. A.1). 
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Table 2.1 Mean species richness and Shannon index (standard error) in microsites present in heterogeneous plots. 

     Species richness        Shannon index 

  2015 2016 2017 2015 2016 2017 

Woodchips Topsoil 3.2 (0.2)a 8.0 (0.3)a 8.0 (0.4)a 0.67 (0.06)a 1.26 (0.06)a 1.40 (0.06)a 

 Microedge 1.8 (0.2)b 6.4 (0.3)b 7.5 (0.3)a 0.40 (0.05)b 1.19 (0.06)ab 1.33 (0.06)a  

 2:1 

Woodchips 

topsoil patch 

0.9 (0.1)c 4.8 (0.3)c 5.7 (0.3)b 0.12 (0.03)c 1.10 (0.07)b 1.18 (0.07)b 

Sand Topsoil 4.2 (0.3)a 8.5 (0.3)a 8.8 (0.4)a 0.93 (0.06)a 1.48 (0.05)a 1.51 (0.05)a 

 Microedge 4.6 (0.3)a 9.0 (0.4)a 8.8 (0.4)a 1.05 (0.07)a 1.50 (0.06)a 1.49 (0.05)a 

 4:1 Sand 

topsoil patch 
6.5 (0.3)b  11.0 (0.3)b 10.2 (0.4)b 1.48 (0.06)b 1.71 (0.04)b 1.69 (0.04)b 

Pit Topsoil 3.9 (0.4)a 8.3 (0.4) 9.5 (0.4)a  0.89 (0.10)a 1.41 (0.05) 1.60 (0.05) 

 Microedge 2.4 (0.3)b 8.3 (0.5) 8.3 (0.4)b  0.54 (0.08)b 1.48 (0.05) 1.52 (0.07) 

 Pit 2.1 (0.3)b 8.3 (0.4) 8.5 (0.4)b  0.48 (0.09)b 1.53 (0.06) 1.58 (0.06) 

Mound Topsoil 4.7 (0.4)a 8.7 (0.4)a 9.2 (0.5)  1.08 (0.08)a 1.42 (0.06) 1.55 (0.05) 

 Microedge 3.6 (0.4)b 7.8 (0.4)b 9.1 (0.4)   0.77 (0.10)b  1.33 (0.07)  1.61 (0.05) 

 Mound 3.4 (0.4)b 7.2 (0.5)b 8.9 (0.5)   0.89 (0.09)ab  1.30 (0.08)  1.48 (0.06) 

Within year and heterogeneity source, means with different letters are significantly different (p < 0.05). 
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Figure 2.3 Mean species diversity over three years (1 = year 1, 2015; 2 = year 2, 2016; 3 = year 

3, 2017) in the three different sources of heterogeneity studied. Part A is species richness and B 

is Shannon index for mean microplot diversity (spatial scale 0.0625 m2). Within year and 

heterogeneity source, heterogeneous treatments followed by * (p < 0.05), ** (p < 0.01) and *** 

(p < 0.001) are significantly different from the homogeneous treatment and + are marginally 

significantly different (p < 0.1). 
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2.3.2 Total canopy cover and density 

Total canopy cover and density were significantly affected by soil homogenization but the 

effects varied over time and among heterogeneity sources. A significant year by treatment 

interaction for total canopy cover (p < 0.0001, F12,3081 = 6.3) and density (p < 0.0001, F12,3071 = 

23.5) occurred. For total canopy cover, there was a marginally significant decrease with 

homogenization for the woodchip treatment (p = 0.09, t551 = 1.7) (Fig. 2.4a). Within the 

woodchip heterogeneous plots, the cover of the microedges was intermediate between the 

adjacent patches (Table 2.2). For the sand treatment, homogenization decreased total canopy 

cover in the third year (p = 0.02, t677 = 2.3) (Fig. 2.4a). Within the sand heterogeneous plots, the 

sand patches had greater cover than the microedges and topsoil patches in the third year (Table 

2.2). Flat plots had greater total canopy cover than the pit plots in all three years (e.g. year two p 

< 0.001, t565 = 4.69) (Fig. 2.4a). Within pit plots, the pits and microedges had lower total canopy 

cover than the flat topsoil patches in all years (Table 2.2). Flat homogeneous plots had greater 

cover than the mound plots in years one (p = 0.098, t551 = 1.7) and two (p = 0.02, t551 = 2.4) (Fig. 

2.4a). Within mound plots, the mounds and edges had lower total canopy cover than the flat 

patches in all three years (Table 2.2). 

Soil homogenization increased plant density in the woodchip treatment in all three years (p < 

0.001, t545 = -4.4) (Fig. 2.4b). For the woodchip heterogeneous plots, the woodchip patches had 

lower density than the topsoil patches in the second and third year (Table 2.2). Woodchip 

microedges were most similar to the woodchip patches in year two and to the topsoil patches in 

year three (Table 2.2). There were no significant effects of homogenization on density in the 

sand plots (Fig. 2.4b).  The flat plots had greater density than the pit plots in year one, (p = 

0.001, t431 = 3.2) and lower density in the second year (p < 0.001, t443 = -6.37) (Fig. 2.4b). Within 

pit heterogeneous plots, pits had the greatest density in years two and three, and the microedges 

had lower density than the flat patches and pits in the second year (Table 2.2). There were no 

significant differences in density between the mound and flat plots (Fig. 2.4b). 
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Table 2.2 Mean total canopy cover and density (standard error) in microsites present in heterogeneous plots. 

 Total canopy cover Density 

  2015 2016 2017 2015 2016 2017 

Woodchips Topsoil  28.2 (4.0) a  82.8 (7.1) a  87.6 (5.9) a 5.2 (0.4)   67.1 (6.3) a 39.3 (2.8) a 

 Microedge  14.7 (2.6) b   44.6 (5.1) b  65.0 (5.5) b 3.3 (0.3)   45.9 (4.8) b 40.9 (3.4) a 

 2:1 

Woodchips 

topsoil patch 

 3.6 (1.4) c  17.9 (3.3) c  32.8 (3.7) c  1.9 (0.2)  40.6 (4.7) b  24.6 (2.4) b 

Sand Topsoil  25.3 (3.2)   72.0 (6.0)  96.5 (6.7) a  7.3 (0.6)  69.5 (7.6) a  43.2 (3.0)  

 Microedge  24.8 (2.9)   72.0 (6.2)   91.8 (5.7) a  7.8 (0.5)  61.0 (4.2) a 41.5 (2.7)  

 4:1 Sand 

topsoil patch 
 26.2 (3.8)    83.6 (6.2)  146.0 (7.6) b  13.0 (0.7)   82.2 (9.0) b 48.3 (2.2)  

Pit Topsoil  29.1 (5.6) a  76.9 (7.7) a  112.3 (9.0) a 5.5 (0.8) 104.6 (16.7) a 48.5 (4.7) ab 

 Microedge  21.3 (4.4) ab   50.4 (7.1) b  71.2 (7.2) b  1.8 (0.4)  73.6 (9.4) b  39.3 (3.5) a 

 Pit 15.8 (4.0) b 47.2 (5.0) b  63.1 (6.0) b   1.6 (0.5)  159.1 (18.8) c 60.8 (4.8) b 

Mound Topsoil 33.4 (5.3) a  91.2 (8.0) a  100.5 (6.7) a  7.1 (1.0)   54.7 (6.1)  44.2 (3.5) 

 Microedge  26.7 (4.9) ab  67.2 (8.4) b   83.9 (8.8) b   4.0 (0.6)   54.6 (7.4) 44.6 (2.6) 

 Mound  17.5 (3.8) b  57.1 (7.2) b  86.1 (7.4) ab    4.4 (0.7)    68.4 (11.4)   53.0 (5.9) 

Within year and heterogeneity source, microsites with different letters are significantly different (p < 0.05).
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Figure 2.4 Mean plant abundance over three years (1 = year 1, 2015; 2 = year 2, 2016; 3 

= year 3, 2017) in the three different sources of heterogeneity studied. Part A is total 

canopy cover (%) and B is density (number of individuals) for mean microplot 

abundance (spatial scale 0.0625 m2). Error bars are standard error. Density was 

backtransformed from the log scale. Standard error in the positive direction is shown. 

Within year and heterogeneity source, heterogeneous treatments followed by * (p < 0.05), 

** (p < 0.01) and *** (p < 0.001) are significantly different from the homogeneous 

treatment and + are marginally significantly different (p < 0.1).  
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2.3.3 Functional group cover 

For seeded grass cover there was a significant year by treatment interaction (p < 0.0001, 

F12,3067 = 3.3). Seeded grass cover was reduced by soil homogenization in the sand 

treatment in the second year, but this effect was only marginally significant (p = 0.08, t404 

= 1.8) (Fig. 2.5a). There was no effect of homogenization on seeded grass cover in 

woodchip plots, where there was low seeded grass cover (below 10 %) in all study years 

(Fig. 2.5a). Soil homogenization increased seeded grass cover in flat plots relative to pits 

in the second (p = 0.01, t311 = 2.6) and third year (p = 0.04, t311 = 2) and there was a 

marginally significant effect in mounds compared to flat plots in the third year (p = 

0.088, t302 = 1.7) (Fig. 2.5a).  

There was a significant year × season × treatment interaction for seeded forbs (p = 0.025, 

F12,2980 = 1.95). During the early part of the growing season, homogenization increased 

cover in the woodchip treatment in the third year (p = 0.01, t812 = -2.5) (Fig. 2.5b), but the 

effect weakened later in the growing season (p = 0.09, t812 = -1.7) (Fig. 2.5c). There were 

no significant effects of homogenization on seeded forb cover for sand plots (Fig. 2.5b-c). 

Homogenization significantly increased seeded forb cover in flat plots relative to pit and 

mound plots by the late growing season in the first (pit: p < 0.0001, t591 = 5.7, mound: p = 

0.0028, t591 = 3) and second year (pit: p < 0.0001, t611 = 4.3, mound: p = 0.019, t591 = 

2.35) (Fig. 2.5c). However, in the third year, seeded forb cover was similar, with the 

exception of pit plots early in the growing season (p = 0.05, t611 = 1.96) (Fig. 2.5b). 

Mound and woodchip microedges had seeded grass and forb cover intermediate between 

their neighboring microsites (Table A.5). Seeded legume cover was low throughout the 

three years (mean 2.2 %, standard deviation 2.6 %) and few significant differences were 

found.  

Adventive (non-seeded) grass cover was greatest in the second year and very minimal 

(below 2 %) in the third year (year-season combinations were analyzed with Friedman’s 

tests). In the woodchips treatment, adventive grass cover increased with soil 

homogenization in the early growing season of the second year (p = 0.07, FR = 3.2) and 

in the third year in the late growing season (p = 0.03, FR = 4.5) (Fig. 2.5d-e). Mound plots 
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had triple the amount of adventive grasses in the first year than flat plots, which resulted 

in a marginally significant trend in both seasons (e.g. late season: p = 0.058, FR = 3.6) 

(Fig. 2.5d-e). Pit heterogeneous plots had more adventive grass cover than flat plots in 

the second (late growing season: p = 0.046, FR = 4) and third year (early growing season: 

p = 0.0075, FR = 7.1), although the trend weakened by the third year in the late growing 

season (p = 0.6, FR = 0.3) (Fig. 2.5d-e).  

There was a significant year by treatment interaction for adventive forbs (p < 0.000001, 

F12,3078 = 8.9). Homogenization reduced cover in the first year in the woodchip treatment 

(p = 0.075, t376 = 1.8) but by the third year homogenization increased adventive forb 

cover (p = 0.0017, t495 = -3.16) (Fig. 2.5f). Adventive forb cover was greater in pit plots 

relative to flat plots every year, and most significantly in the second year (p = 0.03, t387 = 

-2.17) (Fig. 2.5f). Adventive legume cover was very low throughout the three years 

(mean 1.6 %, standard deviation 1.6 %) and few significant differences were found. 

A list of all plant species found in the research plots and their mean cover in each 

treatment is provided in Tables A.6-A.11.  
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Figure 2.5 Mean functional group cover over three years (1 = year 1, 2015; 2 = year 2, 

2016; 3 = year 3, 2017) in the three different sources of heterogeneity studied. Numbers 

were back-transformed from the log scale log10(y+1), standard error in the positive 

direction is shown.  Within each year and heterogeneity source, heterogeneous treatments 

followed by * are significantly different from the homogeneous treatment (p < 0.05) and 

+ are marginally significantly different (p < 0.1).  
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2.4 Discussion 

This study provides evidence that soil homogenization alters plant species diversity and 

community composition. In the sand and topographic heterogeneity treatments, soil 

homogenization decreased species diversity. Functional group cover and diversity 

differed among the topsoil, microedge and sand, woodchip, pit and mound microsites. 

Therefore, the microsites in this study likely contributed to diversity patterns by 

functioning as unique niches and facilitating species sorting due to their unique 

properties, which supports the importance of microtopographic heterogeneity in 

influencing plant species composition and diversity patterns in early succession and 

restoration (Biederman and Whisenant 2011, Deák et al. 2015, Naeth et al. 2018). Soil 

heterogeneity derived from disturbance (Wilson and Tilman 2002, Questad and Foster 

2008), vertical soil horizons (Fitter 1982, Williams and Houseman 2014), and 

microtopography (Vivian-Smith 1997) was experimentally shown to increase plant 

diversity, and I demonstrated that heterogeneity in soil particle size also can have a 

positive influence on plant species diversity. This result contrasts that of greenhouse 

experiments that used crushed rock to create soil heterogeneity and observed a null effect 

on plant diversity and productivity (Grime et al. 1987, Xue et al. 2016).  

Microedges exhibited properties unique from their adjacent patches, indicating they may 

provide additional niche space for increased plant diversity. For example, low plant 

density was observed along pit microedges and low plant diversity along mound 

microedges. Microedges also had vegetation and soil properties that were intermediate 

between adjacent patches (e.g. canopy cover for the heterogenous woodchip plots), 

suggesting they may function as small-scale ecotones. However, I did not observe 

increased species diversity along microedges in this study. Few studies have considered 

the role of microedges (Stover and Henry 2018); however, a common theme is the 

recognition of larger scale ecological processes analogous to small scale processes. For 

example, microfragmentation (i.e. increased patchiness with increased heterogeneity), 

may be a mechanism whereby increased heterogeneity can decrease diversity by 

increasing fragmentation at a small scale (Tamme et al. 2010, Laanisto et al. 2013).  
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The combination of null, negative and positive effects of soil heterogeneity on plant 

species diversity that occurred in this study may help clarify understanding of the 

variability observed in heterogeneity-diversity relationships. This variability can be 

explained, in part, by the wide variety of sources of heterogeneity (e.g. topography, soil 

texture, temperature, etc.), with each having its own unique characteristics. However, 

there are important commonalities among studies that will lead to better prediction of 

heterogeneity-diversity relationships. Patterns in plant size or productivity were 

associated with diversity patterns in this study, with the least productive treatments (as 

measured by total canopy cover) with the greatest plant density often having the greatest 

plant diversity. This observation suggests that heterogeneity or homogeneity treatments 

that result in a large number of small plants will likely also have high diversity. Density-

driven diversity effects are often attributed to stochastic/neutral processes, and thought to 

be an independent diversity mechanism that should be controlled for in heterogeneity-

diversity studies (Williams and Houseman 2014, Walker and Lundholm 2018). However, 

my results suggest that varying levels of soil heterogeneity can significantly influence 

plant size and density, and could be an additional mechanism explaining how 

heterogeneity influences diversity. Similarly, microhabitat heterogeneity in a limestone 

alvar pavement increased seedling density and richness in early establishment, and 

increased density associated with increased richness was attributed to a ‘diversity model’ 

for community assembly (Tilman 1994, Richardson et al. 2012). Collectively, these 

results indicate there may be a potential role of diversity-productivity relationships (e.g. 

Fraser et al. 2015) in influencing heterogeneity-diversity relationships. 

Contrary to my hypothesis, homogenization increased diversity in the woodchip 

treatment. Woodchip microsites within the heterogeneous plots had lower levels of 

available nitrogen, which can reduce plant diversity (e.g. as with the heterogeneous 

conditions of reduced nitrogen supply created by sawdust addition by Baer et al. 2004). 

The latter contrasted with the topsoil microsites within the woodchip heterogeneous plots, 

which were dominated by large tallgrass prairie grasses and forbs; both scenarios 

corresponded with low plant density and low diversity. When plant size exceeds 

microsite size, diversity may decrease because plants can easily forage and compete for 
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resources among different patches (Lundholm 2009, Stover and Henry 2018). The 

homogeneous woodchip plots may have supported greater diversity due to a ‘goldilocks’ 

effect, because the even spatial distribution of the woodchips may have had a beneficial 

effect on seed germination by reducing water loss, moderating soil surface temperatures 

and reducing erosion (Naeth et al. 2018). 

In addition to plant growth patterns, interactions between environmental conditions and 

soil heterogeneity appeared to be influential in this study. Soil homogenization decreased 

diversity in the sand and microtopography plots, but in the second year, when an early 

growing season drought occurred, this effect was suppressed in the sand plots and 

enhanced in the pit plots. The sand plots may have been more sensitive to drought, with a 

lower water holding capacity compared to clays and silts, while the pits would have had 

the greatest capacity to retain soil moisture. The pits may have functioned as small scale 

refugia with elevated soil moisture during drought. Such effects have been demonstrated 

previously in climate warming experiments featuring microsites with variation in soil 

depth (Fridley et al. 2011).  Similarly, Maestre and Reynolds (2007) found that increases 

in productivity in response to soil nutrient heterogeneity were the most pronounced as 

nutrient levels increased and at low soil moisture. Therefore, environmental conditions, 

especially soil moisture, are likely highly important in explaining variability in 

heterogeneity-diversity relationships.  

Baer et al. (2016) proposed that environmental heterogeneity may be less important than 

direct manipulation of processes that reduce dominance in increasing plant diversity 

during community assembly. However, my results and others suggest that heterogeneity 

plays a direct role in influencing dominance/competition reducing processes, along with 

stress reducing processes, that can ultimately increase plant species diversity (Richardson 

et al. 2012). Given the importance of species interactions in heterogeneity-diversity 

experiments, it is surprising that ‘plant-induced heterogeneity’ has not been investigated 

more deliberately alongside ‘environmentally-induced’ heterogeneity, particularly 

because many recent studies have confirmed the importance of plant-soil feedbacks in 

promoting coexistence (e.g. Wubs and Bezemer 2018). 
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My results confirm that heterogeneity can drive diversity patterns at spatial scales of less 

than 1 m2 (Lundholm 2009, Bergholz et al. 2017). However, heterogeneity-diversity 

relationships may be weak at fine spatial scales, especially with respect to soil nutrient 

heterogeneity, which often unintentionally favours competitive dominance of a few 

species (Gazol et al. 2013). Differences in diversity patterns were observed at very small 

changes in spatial scale in this study (between the plot 0.1875 m2 and subplot 0.0625 m2 

scale), highlighting the sensitivity of heterogeneity-diversity relationship to changes in 

spatial scale, even at resolutions of less than 1 m2.  Diversity and functional group cover 

also varied temporally during the dynamic stages of early succession, and varied 

phenologically between the early and late growing seasons. Therefore, seasonal and 

temporal variation should be further considered in future studies. Although plant 

communities were monitored for three growing seasons, my study only took place during 

early succession, so additional long term (> 5 year) studies are needed. Indeed, most 

experimental studies report the results of heterogeneity diversity relationships during the 

first 1–3 years of plant establishment. Positive relationships observed may be a short-

lived ‘honeymoon effect’ whereby the introduction of propagules overcomes dispersal 

limitation (Baer et al. 2016). However, events during early succession can have a lasting 

influence on plant communities in the long term (Houseman and Gross 2011), and only 

future long term studies can resolve whether positive relationships between heterogeneity 

and diversity observed are transient or more permanent features of plant communities and 

why. 

Soil homogenization has not been considered explicitly in experimental investigations of 

heterogeneity-plant relationships to date, but my study showed it may represent an 

important outcome of disturbance that should be further researched.  My results 

demonstrated that adding contrasting microsites at the 0.5 m spatial scale may facilitate 

increased plant species diversity, which is meaningful in the context of ecological 

grassland restoration. Few (if any) studies have considered microedges to date, so further 

research on microedges is required to determine their role in both promoting increased 

plant diversity and functioning as small scale ecotones. Variability in heterogeneity-plant 

relationships may be influenced by interactions with plant growth patterns and 
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environmental conditions. Overall, my results build upon a framework that is being 

developed across experimental studies for understanding variability in heterogeneity-

diversity relationships, which will hopefully lead to better prediction and utilization of 

this ecological phenomenon as a conservation tool. 
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Chapter 3  

3 Soil homogenization modifies productivity, nitrogen 
retention and decomposition during grassland 
restoration 

3.1 Introduction 

In North America, less than one percent of native tallgrass prairie remains, largely due to 

conversion to agriculture (Sampson and Knopf 1994). Ecological restoration of tallgrass 

prairie and other native grassland ecosystems is occurring worldwide, with the goal of 

restoring ecosystem functions and biodiversity (Neill et al. 2015, Horrocks et al. 2016). 

For example, productivity, nitrogen retention and decomposition are important 

components of ecosystem function since they can regulate species composition and 

carbon storage (de Vries and Bardgett 2016, Zirbel et al. 2017). However, restoration of 

former cropland must address a legacy of soil disturbance (Krause et al. 2016). In 

particular, soil homogenization from decades of tillage (mixing of the upper topsoil) 

leads to more uniform habitat and soil properties in agricultural fields (Anderson and 

Coleman 1985, Elliott 1986).  Greenhouse experiments on temperate grassland 

mesocosms have demonstrated that heterogeneous soil nutrient supply increases above 

and belowground productivity, nitrogen use efficiency and nitrogen uptake via root 

proliferation into nutrient patches (Maestre et al. 2005, 2006, 2007, Maestre and 

Reynolds 2006a, 2006b, 2007a, 2007b, Liu et al. 2017). While field experiments in 

restored grasslands have been used to examine the relationship between soil 

heterogeneity and plant species diversity (Richardson et al. 2012, Williams and 

Houseman 2014, Baer et al. 2016), they have not examined the influence of soil 

heterogeneity (or homogenization) on ecosystem responses (García-Palacios et al. 2012).  

The question therefore arises as to how soil homogenization may alter the ecosystem 

functioning of restored grassland ecosystems on former agricultural land. 

Soil homogenization could directly decrease ecosystem functioning because of loss of 

substrate diversity and heterogeneity (i.e. a decrease in frequency and spatial variability 

of distinct soil patches, otherwise known as microsites). Variability in soil moisture 
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derived from microtopographic heterogeneity (hummocks and hollows) and variability in 

soil depth to bedrock can drive increased rates of productivity, nitrogen retention and 

decomposition in specific microsites that lead to overall greater rates than those observed 

in a more uniform soil. For example, decomposition rates may increase with increasing 

soil moisture (Zirbel et al. 2017).  The interface between two microsites, microsite edges 

or ‘microedges’, may exhibit increased ecosystem function by possessing a blend of 

limiting resources from each neighboring microsite (Stover and Henry 2018). For 

example, soil microbial activity limited by a nutrient in one patch may be increased by 

the higher availability of that nutrient in the neighboring patch, and vice versa. 

Complementarity along microedges could be analogous to landscape level processes such 

as elemental cycling at wetland-upland transition zones (McClain et al. 2003). Increases 

in decomposition may occur along microedges analogously to litter mixture experiments 

where the presence of litter from several species decomposes faster than single species 

litter (Gartner and Cardon 2004). However, research is required to confirm if loss of 

microsites and microedges via homogenization decreases ecosystem function.  

Loss of soil patches (soil homogenization) also could decrease productivity, ecosystem 

nitrogen retention and decomposition indirectly as a result of decreased plant species 

diversity. Niche theory suggests that a larger number of species can coexist in an 

ecosystem where there is a greater number of distinct niches available for species to 

colonize and differentially dominate (Tilman and Pacala 1993). Environmental 

heterogeneity therefore can increase species diversity (Stein et al. 2014) and increased 

species diversity can in turn benefit ecosystem function (Hooper et al. 2005).  

Heterogeneity can improve ecosystem function by providing diverse niches for 

complementarity in resource use to occur (Tylianakis et al. 2008). Conversely, reduced 

plant diversity could decrease the variability of rooting depths, rooting phenology and 

forms of nitrogen uptake in the community, decreasing nitrogen retention (McKane et al. 

2002). Similarly, the rate of decomposition can decrease with reduced species diversity, 

because the litter pool lacks structural and chemical diversity, as observed in litter 

mixture experiments where the litter of individual species decomposes slower than that of 

multiple species (Gartner and Cardon 2004). 
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Plant compositional diversity rather than species diversity may benefit ecosystem 

function in the context of soil heterogeneity.  For example, in pot experiments, 

manipulation of plant species diversity did not facilitate an increase in productivity in 

response to increased soil nutrient heterogeneity, but the presence of specific plant 

functional groups did (Maestre et al. 2006).  Likewise, while carbon, phosphorus and 

nitrogen cycling (measured via beta-glucosidase and acid phosphatase enzyme activity, 

and in situ N availability) were not influenced directly by soil nutrient heterogeneity 

(García-Palacios et al. 2011), specific plant functional groups and traits had large effects 

on the cycling of these nutrients in response to nutrient heterogeneity (García-Palacios et 

al. 2013).  

I investigated the influence of soil homogenization on productivity, nitrogen retention 

and decomposition in a grassland restoration field experiment conducted in a former 

agricultural field.  I also investigated levels of productivity, decomposition and nitrogen 

retention along microedges (the edges between patches in heterogeneous treatments). 

Patches of sand and woodchips were added to the soil to construct heterogeneous plots, 

whereas the same materials were added then mixed into the surrounding area to construct 

homogenized plots. Patches with microtopographic relief (i.e. pits and mounds) also were 

used to create heterogeneous plots and compared with flat plots that were tilled 

(homogeneous plots). In addition to direct loss of substrate heterogeneity, 

homogenization was expected to decrease plant species and functional group diversity 

and reduce complementarity in resource use.  Therefore, I hypothesized that soil 

homogenization decreases productivity, nitrogen retention and plant litter decomposition. 

Due to complementarity between adjacent microsites, I hypothesized microedges exhibit 

ecosystem function (i.e. productivity, nitrogen retention and plant litter decomposition) 

that is not a simple additive effect of the adjacent microsites. 

3.2 Methods 

3.2.1 Study site 

I conducted this study at the Environmental Sciences Western Field Station, located near 

Ilderton, Ontario, Canada (43o04’29’’N, 81o20’18’’W).  The site had a mean air 
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temperature of 7.9 oC and annual precipitation of 1012 mm (1981-2010 Canadian 

Climate Normals), and the soil was characterized as London clay loam with a mean pH of 

7.5 (Hagerty and Kingston 1992, Environment and Climate Change Canada 2018). The 

region was rural, and the 4 ha research site was situated in a field formerly used for cash 

cropping under rotations of corn, soybean and winter wheat for decades until 2014. 

3.2.2 Experimental design 

In May 2015, 18 experimental blocks were established. Each block contained 

homogeneous and heterogeneous treatment plots that were 50 × 100 cm and spaced 2 m 

apart. Heterogeneous plots were divided into two distinct halves: a 50 × 50 cm and 15 cm 

deep patch of tilled topsoil (mixed to a depth of 15 cm with shovels) and an adjacent 50 × 

50 cm patch to provide either topographic heterogeneity (i.e. a pit or a mound) or 

substrate heterogeneity (i.e. a topsoil patch enriched with sand or a topsoil patch enriched 

with woodchips).  The edge between the two in the center of the plot was the microedge 

investigated in this study. Therefore, heterogeneous plots had three distinct sampling 

areas (microsites): a topsoil patch, a microedge and a distinct microsite (sand, woodchips, 

pit or mound). The pits were 15 cm in depth and the mounds were 20 cm in height (the 

pits were underlain with 15 cm of topsoil and mounds with subsoil to make their 

substrate equivalent to the other side of the plot).  The sand-topsoil patches were a 4:1 

mixture of sand and topsoil, and the woodchip-topsoil patches were a 2:1 mixture of 

woodchips and topsoil.  For each heterogeneous plot in a block, there was a 

corresponding homogenous plot: the topographically heterogeneous plots were compared 

to a flat, tilled topsoil plot, and the sand and woodchip patch plots were compared to plots 

with the corresponding ratios of topsoil, sand or woodchips tilled and mixed thoroughly 

across the entire 50 × 100 cm plot area. After the plots were installed, in early June 2015, 

an equal amount of tallgrass prairie grass and forb seeds were planted on each plot. The 

areas outside of the plots were planted separately with the same tallgrass prairie species. 

See Chapter 2 for further details, including figures for the experimental design, soil 

characteristics of microsites (e.g. pH, nutrients) and plant species and quantities of seed 

planted. 
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3.2.3 Productivity and diversity 

Aboveground shoots rooted in the heterogeneous plots were harvested by overlaying 

three sampling quadrats (25 × 25 cm), with one in the center of each distinct patch and 

one on the center of the edge between the patches. Aboveground shoots were harvested 

from homogeneous plots using the same quadrats and positioning. Shoots were sorted 

into three functional group categories: grass, non-leguminous forb (forb) and leguminous 

forb (legume). Samples were dried at 50 oC until their mass became constant 

(approximately 4 days) and weighed. The total mass of aboveground shoots (grasses, 

forbs and legumes) was used to estimate aboveground productivity. The relative 

abundance of grasses, forbs and legumes was used to estimate functional group diversity. 

See Chapter 2 for information on plant species diversity in each of the treatments. 

3.2.4 Nitrogen retention 

Growing season (over summer) nitrogen retention was assessed by applying a 15N tracer 

solution (15NH4
15NO3 at a rate of 0.054 g 15N m-2) evenly over each plot on 24 June, 

2016. During November 2016, one soil core (2 cm diameter and 20 cm depth) was 

collected from the center of each homogeneous plot, and three were collected from 

heterogeneous plots: one in the center of each distinct patch, and one in the center of the 

edge between the two patches. Aboveground shoots and soil cores were sampled from 

outside the research blocks to provide a set of non-enriched control samples to establish 

the natural background level of 15N at the site.  

Soil samples were dried at 50 oC until their mass became constant (approximately 4 days) 

and weighed. The grass, forb and legume aboveground biomass samples were bulked into 

a single sample for 15N analyses. Soil and biomass samples were ground and weighed 

into tin capsules (4 ± 0.5 mg subsamples for plant material and 40 ± 3 mg for soil). Soils 

were ground using a mortar and pestle and plant samples were ground using a ball mill 

(SPEX Sample Prep Model 2000 Geno/Grinder, Metuchen, New Jersey, US).  The 

capsules were sent to the University of California Davis Stable Isotope Facility, where 

15N and total N (atom%15N and atom%N) were measured with a PDZ Europa ANCA-

GSL elemental analyzer interfaced to a PDZ Europa 20-20 isotope ratio mass 
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spectrometer (Sercon Ltd., Cheshire, UK). The atom%15N natural abundance was 

estimated from control samples (0.367012 for plant and 0.36858 % for soil) and 

subtracted from enriched samples to determine atom% excess 15N (de Vries et al. 2012):  

(1) atom% excess 15N = atom%15N enriched – atom%15N natural abundance 

Percent sample excess 15N was then calculated as follows: 

(2) % sample excess 15N = (atom% excess 15N / 100) × % sample total N 

The % sample excess 15N was then expressed as an amount (mass) of excess 15N per unit 

area: 

(3) 15N aboveground pool (g/m2) = (% sample excess 15N / 100) × total aboveground 

biomass (g/m2) 

(4) 15N belowground pool (g/m2) = (% sample excess 15N / 100) × mass of soil (g/m2) 

Percent 15N retained was then calculated using the 15N tracer application rate (0.054 

g15N/m2) as follows: 

(5) % 15N retention = (0.054 g15N/m2  – 15N pool g/m2) / 0.054 g15N/m2 × 100 

Over summer nitrogen retention was estimated by calculating the percent of 15N tracer 

added that was retained over the 2016 growing season (% 15N retention) in aboveground 

and belowground pools. 

3.2.5 Decomposition 

A decomposition experiment was initiated in the plots in fall 2015. Donor litter was 

collected from a similar nearby tallgrass prairie restoration site as sufficient litter was not 

yet available at the recently planted research site, on 3 November, 2015. Big Bluestem 

(Andropogon gerardii Vitman) tussock leaf litter was collected from several plants over a 

100 m2 area to a total of approximately 500 g (dry weight). The litter was collected on a 

hot, dry, sunny day and spread thinly to air dry for one week. Big Bluestem litter was 

chosen because it is a dominant species in tallgrass prairie, and it provided a uniform 
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source of litter. Decomposition was assessed using 10 × 5 cm litterbags constructed using 

fiberglass window screen mesh sealed with hot glue (mesh hole size: 1 mm to balance 

exclusion of soil fauna against sample loss).  Three hundred milligrams of litter were 

weighed and placed in each litter bag. Litter bags were positioned on the soil surface of 

the plots the week of 23 November 2015. Homogeneous plots had one litter bag in the 

center and heterogeneous plots had three litter bags (one in the center of each distinct 

patch and one on the center of the edge between the patches). In fall 2016 (one year after 

placement), the litter bags were collected, oven-dried and reweighed. The final mass of 

the dry litter (mass remaining) was used to calculate percent mass loss: initial mass – 

final mass / initial mass × 100. Prior to drying and reweighing, the litter bags were gently 

rinsed with distilled water to clean off soil and debris. 

3.2.6 Statistical analyses 

For the response variables, the three measurements collected for each heterogeneous plot 

were averaged to compare with the measurements from the homogeneous plots. Within 

each heterogeneous treatment, mean levels of each response variable were compared 

among the topsoil patch, microedge and microsite (sand, woodchips, pit or mound). Data 

for each source of heterogeneity (topography, sand and woodchips) were analyzed using 

a linear mixed model with block as a random effect and soil treatment as a fixed effect. A 

log10(y+1) transformation was used for cases when residuals did not meet assumptions of 

normality or homogeneity of variance. Statistical analyses were conducted with R v. 3.3.3 

(R Core Team 2017). 

3.3 Results 

3.3.1 Productivity 

Total aboveground biomass and the biomass of individual plant functional groups 

significantly varied between homogeneous and heterogeneous plots, but the effect 

depended upon the type of heterogeneity (topography versus sand versus woodchips). In 

the woodchip treatment, soil homogenization significantly decreased total aboveground 

biomass and forb biomass each by approximately 50 % (p = 0.028, t34 = 2.3 and p = 0.3, 
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t34 = 0.98, respectively) (Fig. 3.1). The topsoil and microedge in woodchip heterogeneous 

plots had significantly greater biomass than the woodchip microsite (Table 3.1). Forb 

productivity was greater along woodchip microedges relative to the neighboring topsoil 

and woodchip patches (Table 3.1) and greater than the average of the two (p = 0.097, t34 

= -1.71). 

In the topography treatment flat topsoil had 50 and 30 % more total aboveground biomass 

and 75 and 50 % more forb biomass compared to pit and mound plots, respectively (total 

p = 0.0006, t50 = 3.65 and p = 0.05, t50 = 1.98, respectively and forb p = 0.001, t50 = 3.49 

and p = 0.06, t50 = 1.92, respectively) (Fig. 3.1a-b). Pit and mound microsites had less 

than half the biomass of the topsoil patches present in topographically heterogeneous 

plots (Table 3.1). Within the mound heterogeneous plots, forb productivity was greater 

along microedges relative to topsoil and mounds (Table 3.1) and greater than the average 

of the two (p = 0.067, t34 = -1.9). 

Soil homogenization decreased grass biomass in the sand treatment by 50 % (p = 0.057, 

t17 = 2.04) (Fig. 3.1c) and homogenization of the sand plots increased mean total and forb 

aboveground biomass by about 10 % (p = 0.6, t34 = -0.56 and p = 0.5, t17 = -0.62, 

respectively) (Fig. 3.1 a-b). Topsoil microsites in sand heterogeneous plots had greatest 

grass biomass but were not significantly different from microedge and sand patches 

(Table 3.1). There were no treatment effects on legume biomass. Legume biomass was 

extremely low (mostly zero) in all samples. 
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Table 3.1 Mean aboveground biomass (g) (standard error) in microsites present in heterogeneous plots. 

  Total aboveground 

biomass 

Forb aboveground 

biomass 

Grass aboveground 

biomass 

Woodchips Topsoil 17.4 (5.0) a 6.3 (3.4) a 4.1 (1.5) a 

 Microedge 12.7 (5.3) a 7.0 (3.9) a 2.4 (0.9) a 

 2:1 Woodchips topsoil 

patch 

1.8 (0.8) b 1.0 (0.6) b 0.5 (0.2) b 

Sand Topsoil 27.5 (8.5) 9.2 (5.1) 7.6 (3.0)  

 Microedge 21.1 (6.0) 9.8 (4.5) 4.8 (1.8)  

 4:1 Sand topsoil patch 24.6 (4.8) 12.9 (4.8) 5.3 (1.4)  

Topography     

Pit Topsoil 19.8 (4.2) a 9.2 (3.1) a 6.5 (1.7) a 

 Microedge 9.3 (4.2) b 3.9 (2.5) ab 3.5 (1.0) b 

 Pit 7.2 (2.3) b 3.0 (1.4) b 2.9 (0.8) b 

Mound Topsoil 21.3 (3.5) a 10.3 (3.3) ab 4.9 (1.7) a 

 Microedge 20.1 (8.9) a 14.2 (7.6) a 2.0 (0.8) b 

 Mound 9.3 (2.8) b 4.0 (1.9) b 2.6 (0.8) b 

All numbers were back-transformed from the log scale log10(y+1), standard error in the positive direction is shown.  

Within each source of heterogeneity, microsites with different letters are significantly different (p < 0.05). 
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Figure 3.1 Total (a), forb (b) and grass (c) aboveground biomass (g). Means were back-

transformed from the log scale log10(y+1) and standard error in the positive direction is 

shown. Within each source of heterogeneity, heterogeneous treatments followed by * (p < 

0.05), ** (p < 0.01) and *** (p < 0.001) are significantly different from the homogeneous 

treatment and + are marginally significantly different (p < 0.1).  
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3.3.2 Nitrogen retention 

Soil homogenization altered nitrogen retention but the effect varied based on the source 

of homogenization and between aboveground and belowground. Aboveground nitrogen 

retention significantly decreased by approximately 50 % with homogenization for the 

woodchip treatment (p = 0.047, t22 = 2.1) (Fig. 3.2a). As with productivity, topsoil and 

microedges in woodchip heterogeneous plots had significantly greater retention 

compared to woodchip patches (Table 3.2). Woodchip microedges had similar retention 

to topsoil patches alone, but greater retention than the average of woodchip and topsoil 

patches (p = 0.072, t33 = -1.86) (Table 3.2). Aboveground nitrogen retention increased by 

approximately 50 % with homogenization for the topography treatment (pit p = 0.01, t50 

= -2.5 and mound p = 0.07, t50 = -1.9, respectively) (Fig. 3.2a). Belowground nitrogen 

retention was approximately double the aboveground retention overall but there were few 

significant treatment effects (Fig. 3.2b). Belowground nitrogen retention decreased in flat 

homogeneous plots by 40 % compared to the mound topography treatment (p = 0.036, t30 

= 2.2) (Fig. 3.2b). Neither aboveground or belowground retention was significantly 

different among microsites present within pit and mound heterogeneous plots (Table 3.2). 

Belowground total nitrogen decreased by approximately 20 % with homogenization for 

the sand treatment (p = 0.01, t17 = 3) (Table 3.3). Belowground total nitrogen was greatest 

in the topsoil patch in the sand heterogeneous plots, and the microedge was intermediate 

between the sand and topsoil patches (Table 3.2). Soil homogenization increased 

belowground total nitrogen by approximately 8 % for the topography treatment (pit 

compared to flat topsoil, p = 0.002, t33 = -3.5) (Table 3.3). Belowground total nitrogen 

was lowest in the pits within the heterogeneous plots, and the microedge was 

intermediate between the pit and topsoil patches (Table 3.2). Belowground total nitrogen 

was lowest along the mound microedges (Table 3.2). 
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Table 3.2 Mean N retention and total N (standard error) in microsites present in heterogeneous plots. 

  N Retention (%) Total N (%) 

  Aboveground  Belowground  Aboveground  Belowground  

Woodchips Topsoil 3.17 (0.98)a 18.50 (2.89) 0.73 (0.07)a 0.19 (0.01) 

 Microedge 3.01 (1.22)a 11.30 (1.82) 0.77 (0.07)ab 0.18 (0.01) 

 2:1 Woodchips topsoil patch 0.49 (0.20)b 12.49 (3.12) 1.04 (0.15)b 0.19 (0.01) 

Sand Topsoil 3.63 (0.82) 13.45 (3.33) 0.60 (0.05)a 0.19 (0.01)a 

 Microedge  3.32 (0.66) 13.79 (2.19) 0.74 (0.07)ab 0.15 (0.01)b 

 4:1 Sand topsoil patch  4.56 (0.82) 19.89 (3.65) 0.77 (0.07)b 0.08 (0.01)c 

Topography      

Pit Topsoil 4.02 (0.82) 19.52 (2.67) 0.75 (0.08) 0.20 (0.01)a 

 Microedge 2.96 (1.19) 15.02 (2.26) 0.86 (0.11) 0.18 (0.01)b 

 Pit 1.93 (0.50) 17.24 (2.05) 1.01 (0.20) 0.14 (0.01)c 

Mound Topsoil 3.59 (0.75) 20.88 (2.67) 0.86 (0.08) 0.20 (0.01)a 

 Microedge 3.86 (1.20)  15.22 (3.28) 0.81 (0.09) 0.18 (0.01)b 

 Mound 2.20 (0.59)  14.49 (2.30) 0.80 (0.11) 0.19 (0.01)a 

Numbers were back-transformed from the log scale log10(y+1), standard error in the positive direction is shown.  

Within each source of heterogeneity, microsites with different letters are significantly different (p < 0.05). 
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Table 3.3 Mean percent aboveground and belowground total nitrogen (standard error) (n = 18). 

  Aboveground total N (%) Belowground total N (%) 

Woodchips Heterogeneous 0.88 (0.07) 0.19 (0.01) 

 Homogeneous 0.90 (0.08) 0.19 (0.01) 

Sand Heterogeneous 0.72 (0.04) 0.14 (0.01)* 

 Homogeneous 0.75 (0.05) 0.12 (0.01) 

Topography Pit  0.89 (0.45)  0.18 (0.01)*  

 Mound 0.85 (0.14)  0.19 (0.01)  

 Flat topsoil 

(homogeneous) 

0.73 (0.15) 0.20 (0.01)  

Numbers in bold were back-transformed from the log scale log10(y+1), standard error in the positive direction is shown.  

Within each source of heterogeneity, the heterogeneous treatment followed by * is significantly different (p < 0.05) from the 

homogeneous treatment.
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Figure 3.2 Percent 15N retained (over summer / growing season nitrogen retention) in a) 

aboveground and b) belowground pools. Means were back-transformed from the log scale 

log10(y+1) and standard error in the positive direction is shown. Within each source of 

heterogeneity, heterogeneous treatments followed by * (p < 0.05) are significantly different from the 

homogeneous treatment and + are marginally significantly different (p < 0.1). 
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3.3.3 Decomposition 

Homogenization significantly increased mass loss by 8 % in the woodchip treatment (p = 0.026, t24 

= 2.37) (Fig. 3.3). Mass loss was similar (averaging around 35 %) among topsoil, microedge and 

woodchip patches in woodchip heterogeneous plots (Table 3.4). No other significant treatment 

effects on mass loss were observed. However, within sand heterogeneous plots, mass loss was 

significantly lower in sand patches compared to topsoil patches (Table 3.4). 
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Table 3.4 Mean percent mass loss (standard error) in microsites present in heterogeneous plots. 

  Mass Loss (%) 

Woodchips Topsoil 38.96 (3.13) 

 Microedge 34.56 (3.08) 

 2:1 Woodchips topsoil patch 33.44 (4.93) 

Sand Topsoil 40.15 (2.02) a 

 Microedge 35.68 (3.31) ab 

 4:1 Sand topsoil patch 29.68 (4.04) b 

Topography   

Pit Topsoil 36.46 (6.21) 

 Microedge 26.88 (9.92) 

 Pit 27.26 (11.88) 

Mound Topsoil 41.36 (3.22) 

 Microedge 43.73 (4.54) 

 Mound 45.31 (3.41) 

Numbers in bold were back-transformed from the log scale log10(y+1), standard error in the positive 

direction is shown.  

Within each source of heterogeneity, microsites with different letters are significantly different (p < 

0.05). 
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Figure 3.3 Mean percent mass loss in litter bags for decomposition experiment. Initial mass was 0.3 

g and percentage mass loss after 12 months is presented. Higher mass loss infers greater 

decomposition rate. Error bars are standard error. Within each source of heterogeneity, 

heterogeneous treatments followed by * are significantly different from the homogeneous treatment 

(p < 0.05). 
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3.4 Discussion 

I tested the hypothesis that soil homogenization decreases plant functional group diversity and 

substrate diversity, which decreases productivity, nitrogen retention and decomposition. I also 

hypothesized that microedges contribute to increased ecosystem function in heterogeneous soils due 

to complementarity between adjacent microsites. To my knowledge, these hypotheses have not been 

tested with multiple, diverse sources of heterogeneity and in a grassland restoration field experiment 

in the context of soil homogenization from agricultural disturbance. My results showed ecosystem 

responses varied based on the source of heterogeneity.  Homogenization decreased productivity 

when woodchips were used to create heterogeneity, increased productivity for microtopographic 

heterogeneity and resulted in no overall change in productivity in the sand treatment. Productivity 

and other ecosystem responses were associated with differences among individual microsites and 

edges, confirming substrate heterogeneity contributes to changes in ecosystem function. Decreased 

productivity has important implications for ecological succession as it creates gaps in the canopy for 

future species to colonize, which could facilitate greater biodiversity over time. In other studies, 

productivity also has varied depending on the type of heterogeneity studied, and increased 

productivity with increasing soil nutrient heterogeneity generally leads to greater plant nitrogen 

uptake (Maestre et al. 2005, 2006, 2007, Maestre and Reynolds 2006b, 2007a).  

Greater abundance of forbs with greater overall productivity was associated with increased 

aboveground N retention in this study. Homogenization, via reduction in productivity, decreased 

aboveground N retention in the woodchips treatment. Heterogeneous woodchip plots had a patch of 

topsoil that was associated with increased aboveground productivity, since homogeneous woodchip 

plots had woodchips spread throughout, suppressing plant growth. The exact opposite occurred in 

the topography treatment where flat topsoil plots (homogenization) led to increased aboveground 

biomass compared to the suppressed growth in pit and mounds. Pits were also associated with lower 

belowground nitrogen compared to flat topsoil, which may be due to suppressed root growth in the 

wetter conditions. Microedges in the woodchip and mound heterogeneous treatments exhibited 

greater forb productivity and aboveground N retention than the average of their neighboring 

patches, suggesting microedges may be an important mechanism whereby soil heterogeneity 

increases ecosystem function. There was also an inverse relationship between aboveground and 
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belowground nitrogen retention with double the belowground retention overall, which is logical 

given the greater capacity for soil storage of nitrogen. Decreased belowground retention may be 

related to increased plant uptake and allocation to aboveground tissues.  

Changes in functional group diversity (the relative abundances of grasses, forbs and legumes) 

caused by soil homogenization was a stronger predictor of changes in aboveground productivity and 

nitrogen retention than changes in plant species diversity (Chapter 2). In 2016, the year productivity, 

nitrogen retention and decomposition were measured, plant species diversity was greater in pit and 

mound plots than flat topsoil, lower in woodchip heterogeneous than homogeneous and there was 

no difference in the sand treatment (Chapter 2). In no case was there a clear link between species 

diversity and function, agreeing with other studies that suggest functional group diversity is a 

greater predictor of function (Maestre et al. 2006, de Vries and Bardgett 2016). Under conditions of 

heterogeneity in the sand treatment, the abundance of grasses increased with increased belowground 

nitrogen. Grasses are recognized as having dense root systems and are resource conservative species 

in prairie with greater N retention in more mature ecosystems (Phoenix et al. 2008, Suding et al. 

2008). The greater belowground nitrogen retention in sand heterogeneous supports the functional 

diversity hypothesis (Johnson et al. 1996) and suggests that heterogeneous conditions in the sand 

treatment promoted increased diversity of plant functional groups (a more balanced community of 

grasses and forbs compared to the forb dominated homogenized plots). Increased abundance of 

grasses increased complementarity in terms of belowground sequestration of N from dense grass 

roots and aboveground capture via “top-heavy” forbs. However, my findings for aboveground N 

retention suggest the dominant and most productive functional group (forbs) predicted the outcome, 

in line with the mass ratio hypothesis that dominant plant species control ecosystem processes 

(Grime 1998). The relative abundance of forbs, grasses and legumes in herbaceous grassland 

communities has variable but significant influences on N retention (de Vries and Bardgett 2016). 

While results vary widely among studies, a common theme, as we observed for aboveground N 

retention, may be that the functional group with greatest productivity is associated with increased 

plant N retention (Maestre and Reynolds 2006a). 

In the mound heterogeneous plots, belowground nitrogen retention was significantly greater than in 

the flat topsoil plots and forbs were greatest along mound edges and grasses in topsoil patches. 
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Thus, heterogeneous conditions in the mound treatment increased functional group diversity, which 

could have increased complementarity in belowground N sequestration. Topographic heterogeneity 

can promote the development of temporal and spatial vegetation variability in grassland restoration 

(Biederman and Whisenant 2011). Mounds also can increase forb abundance during grassland 

restoration, and although the effect may be short lived, it may occur due to increased water 

infiltration rate (Grant et al. 1980, Naeth et al. 2018). Mounding also has been demonstrated to 

affect nutrient cycling (Hough-Snee et al. 2011), and the elevated temperatures on mounds can 

increase decomposition and nutrient availability (Walker and del Moral 2003, Bruland and 

Richardson 2005), which may explain the greater belowground N retention in my study. 

Contrary to my hypothesis, Big Bluestem litter mass loss significantly increased with 

homogenization in the woodchip treatment, although in heterogeneous plots with mounds mass loss 

was greater compared to homogeneous flat topsoil. The contrasting outcomes from the different 

sources of heterogeneity highlight the importance of testing more than one type of heterogeneity. 

Overall, a lower rate of decomposition was observed in plots with greater aboveground productivity. 

This may be related to a sheltering effect where more vegetative cover sheltered litterbags from 

degradation from sunlight, weathering, exposure to herbivores, etc. Field observations also 

suggested macrofauna were more abundant in plots with topographic heterogeneity. For example, 

several ant colonies were observed on mounds which may explain a complementarity-driven 

mechanism for greater decomposition in topographically heterogeneous plots compared to flat 

topsoil. Heterogeneous habitat conditions were previously shown to facilitate increased invertebrate 

species diversity and increased ecosystem function (Griffin et al. 2009). Field studies have found 

greater decomposition often occurs in areas with greater soil moisture (Zirbel et al. 2017) but the 

relationship between vegetative cover and decomposition is interesting and worth further research. 

3.4.1 Conclusions 

Changes in nitrogen retention, aboveground productivity and decomposition associated with soil 

homogenization were evaluated in a grassland restoration field experiment on former cropland 

beginning from time zero in secondary succession. To our knowledge, this is the first field 

experiment on the relationship between soil heterogeneity and ecosystem functioning, presenting 

important evidence that builds upon previous work in more controlled greenhouse settings (Maestre 
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et al. 2006). To build upon this work, more field experiments are required which also manipulate 

levels of plant species diversity and investigate the role of plant functional traits using the response 

effect trait framework (García-Palacios et al. 2012, 2013). Belowground root systems should also be 

further assessed to provide more explanation in terms of the mechanisms involved in these 

responses (Liu et al. 2017). The ecosystem functional responses investigated were likely interrelated 

as treatments with higher aboveground productivity tended to have a lower decomposition rate, 

belowground nitrogen retention and greater aboveground nitrogen retention. Plant communities are 

clearly closely involved in these ecosystem processes. The productivity and composition of the plant 

communities were significantly altered by soil homogenization, which had important consequences 

at the ecosystem level. The results of this study suggest addition of contrasting soil patches to 

restoration sites will aid in restoring multiple ecosystem functions while establishing structural 

diversity and biodiversity. Clearly, if no action is taken, direct planting of former cropland to 

restoration will result in more uniform functioning and plant community composition across 

restoration sites. Therefore, homogenization as a potential outcome of disturbance should be 

addressed during ecological restoration. 
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Chapter 4  

4 Interactions between soil heterogeneity and soil freezing: 
Implications for the diversity and relative abundances of 
grassland species 

4.1 Introduction 

Environmental heterogeneity is a ubiquitous feature of ecosystems at almost all temporal and spatial 

scales (Stein et al. 2014). Soil spatial heterogeneity occurs in the form of microsites, which are 

patches of soil with distinct features compared to their surroundings (e.g. soil depth to bedrock, 

hummocks, hollows, litter, rock, etc.) (Killham 1994). Microedges, the edges between soil patches, 

also may function as distinct microsites, with unique hydrological and biogeochemical properties 

that are not simply an additive combination of their adjacent patches (Stover and Henry 2018).  

Stress is defined as any external constraint that limits the rate of dry matter production in vegetation 

(Grime 1979). Microsites can provide refugia from stressful conditions within plant communities 

(e.g. for seedling establishment) and this has long been recognized as a mechanism whereby 

increased patchiness can increase species richness (Grubb 1977).  Microsites are recognized as 

important plant refugia in high stress environments such as limestone pavements and green roofs 

(Richardson et al. 2012, Heim and Lundholm 2014, Walker and Lundholm 2018). In the context of 

climate warming, microrefugia can be provided by microsites differing in soil depth, with deep 

microsites gaining species lost from shallow microsites (Fridley et al. 2011). Similarly, dryland 

plant communities showed resistance to a nine-year drought due to spatial heterogeneity (Tielbörger 

et al. 2014), and microtopographic variation and variability in aspect along mountain sides can 

result in a range of temperatures, providing potential microrefugia for alpine species stressed by 

climate warming (Scherrer and Körner 2010).  

Soil heterogeneity also promotes coexistence/diversity by providing distinct plant niches (Laliberté 

et al. 2013).  Increased plant species diversity can in turn minimize reductions in  plant productivity 

that result from stress (e.g. as demonstrated by Tilman and Downing (1994) for grassland responses 

to drought).  Specifically, with more species present, there is an increased likelihood of having at 

least some species remaining productive to compensate for those lost or suppressed during periods 
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of stress (Tilman 1999). However, the ability for microsites to function as microrefugia, or, for 

increased plant diversity derived from heterogeneous soils to buffer the effects of stress, have rarely 

if at all been tested in a field experiment where heterogeneity and stress are both manipulated. 

Interactions between soil heterogeneity and stress also have important implications for studies of the 

effects of soil heterogeneity on plant productivity and diversity (i.e. not only does soil heterogeneity 

affect stress responses, but stress affects plant responses to soil heterogeneity).  For example, 

evidence from pot experiments suggests that variation in nutrient or CO2 availability can augment or 

subdue the influence of soil heterogeneity on plant productivity (Maestre and Reynolds 2006a, 

2006b, 2007a, Maestre et al. 2007).  Furthermore, Maestre and Reynolds (2007a) observed that 

greenhouse plant assemblages had increased biomass under heterogeneous nutrient supply, and this 

effect was most pronounced under low moisture conditions. Theoretical modelling suggests that the 

relationship between soil heterogeneity and plant species diversity varies along environmental 

gradients (Yang et al. 2015), and variation in the effects of soil heterogeneity on plant productivity 

have been observed along moisture, CO2 and nutrient gradients (García-Palacios et al. 2012).  

Nevertheless, for studies of the interactive effects of soil heterogeneity and environmental stress on 

plant productivity, there has been a bias towards the study of variation in soil nutrient availability, as 

opposed to variation in substrate, and with some exceptions (e.g. Arnone 1997), these interactions 

have not been examined experimentally in the field.  

Soil freezing is a source of plant stress that is expected to increase in some temperate regions over 

the next century due to reductions in snow cover caused by climate change (Groffman et al. 2001, 

Hardy et al. 2001, Henry 2007, 2008, Kapnick and Delworth 2013). The snowpack has an insulating 

effect, and in its absence, increases in soil freezing and soil freeze-thaw cycles can occur (Henry 

2008), which can damage overwintering plant tissues and reduce plant growth in subsequent 

growing seasons (Vankoughnett and Henry 2014). Snow removal thus is employed in field 

experiments to increase soil freezing.  Variation in soil characteristics among microsites in 

heterogeneous soils could lead to variability in the severity of soil freezing; for example, freezing 

effects can be particularly severe in wet soils, and can vary depending on soil texture (Oztas and 

Fayetorbay 2003, Wu et al. 2017). Therefore, increased soil heterogeneity may increase the 

frequency of microsites that function as refugia from severe frost effects, and if increased soil 
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heterogeneity begets increased species diversity, this may increase the pool of frost tolerant species 

in the community.  

I used a field experiment in a recently restored tallgrass prairie on former cropland to examine the 

effects of soil heterogeneity, stress (soil freezing implemented via snow removal) and their 

interactions on plant abundance (percent cover, density) and species diversity. Patches of topsoil 

supplemented with sand or woodchips were used to construct heterogeneous plots, and the same 

materials were added in equal quantities then mixed to construct homogenized plots. Based on the 

assumptions that soil heterogeneity would increase plant species diversity and availability of 

microrefugia, I hypothesized that soil heterogeneity would buffer the effects of soil freezing, such 

that freezing effects on overall plant abundance in heterogeneous substrates would be less severe 

than in homogeneous substrates. 

4.2 Methods 

4.2.1 Field site and experimental design 

This study took place at Environmental Sciences Western Field Station (ESW) near Ilderton, 

Ontario, Canada.  ESW is located in a rural region with London clay loam soils, a mean annual 

precipitation of 1012 mm and a mean annual air temperature of 7.9 °C (Hagerty and Kingston 1992, 

Environment and Climate Change Canada 2018). A 4 ha prairie research site was established in a 

former crop field in May 2015, and 10 experimental blocks were marked out in this area. Each 

block contained eight 50 × 100 cm plots spaced 2 m apart (Fig. 4.1). Four of these plots contained 

added sand and four contained added woodchips, and for each substrate type there were both 

homogeneous and heterogeneous plots, half of which experienced snow removal and half of which 

experienced ambient snow cover (Fig. 4.1).  

The heterogeneous plots were divided into two halves consisting of a 50 × 50 cm and 15 cm deep 

patch of topsoil (mixed to 15 cm with a shovel) and a 50 × 50 cm patch enriched with sand (4:1 

sand:topsoil) or woodchips (2:1 woodchips:topsoil).  The edge in the center of each plot between the 

two patches, was defined as the microedge (Chapter 2). To create homogeneous plots, the same 

heterogeneous plots were installed and then mixed thoroughly across the entire 50 × 100 cm plot 

area (Fig. 4.1). In early June 2015, after plot installation, equal amounts of tallgrass prairie grass and 
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forb seeds were planted in each plot. Areas outside of the plots were seeded with a separate mixture 

of seed from the same species. See Chapter 2 for further details, including figures for the 

experimental design, soil characteristics of microsites (e.g. pH, nutrients) and plant species and 

quantities of seed planted. 

The plots were prepared for snow removal in autumn by covering the ground with a white plastic 

mesh (1 × 1 cm mesh size; Winter Wrap, Quest Plastics Ltd., Mississauga, ON, Canada) to prevent 

soil, plant and litter damage during snow removal. During the winters of 2015-2016 and 2016-2017, 

snow removal was performed opportunistically during periods of snowfall when the air temperature 

dropped to a minimum of -10 oC. Snow was removed with a shovel, stopping at approximately 2 cm 

depth to avoid soil disturbance. Snow removal ceased several weeks before spring melt to minimize 

snow removal effects on soil moisture over summer. Soil moisture was measured in the spring in 

each plot using a Thetaprobe (Delta-T Devices, UK) and these measurements confirmed there was 

no significant difference in soil moisture between the snow removal and ambient snow plots in 

either the second (p = 0.4, t89 = -0.8) or third (p = 0.7, t89 = -0.4) growing season after winter snow 

removal. 
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Figure 4.1 Experimental design. Plots were used as replicates of the eight different treatments. Plots 

were randomly assigned to 10 blocks.  
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4.2.2 Meteorological conditions 

Soil temperature probes (LogTag TRIX-8, MicroDAQ, NH, USA) programmed for hourly sampling 

were buried at 5 cm depth at six of the snow removal plots and six ambient snow plots to determine 

snow removal effects on soil temperature (Fig. B.1). Meteorological data were obtained from the 

Environment and Climate Change Canada National Climate Data and Information Archive 

(Environment and Climate Change Canada 2018). Growing season mean daily temperature, total 

monthly precipitation and long-term climate normals for the time period of the study are provided in 

Table A.1. Mean monthly snowfall and temperature for the 2015-2016 and 2016-2017 winters, as 

well as long term averages, are provided in Table B.1. The two winters when snow removal was 

conducted (2015-2016 and 2016-2017) were warmer and experienced less snowfall than the climate 

normal (Table B.1). Despite these mild conditions, in both winters soil temperature probes indicated 

the snow removal plots experienced episodes of reduced minimum daily temperatures and increased 

freeze-thaw cycling relative to the ambient snow plots (Fig. B.1). 

4.2.3 Vegetation sampling 

Vegetation was monitored over three growing seasons (2015–2017) following plot establishment. 

The plots were surveyed in late spring and summer (June-July and September-October) each year to 

correspond with peak biomass for the different plant species. Three 25 × 25 cm (0.0625 m2) 

sampling quadrats were overlaid on each plot in the center of each patch and along the microedge 

between the two patches (Fig. 4.1). The same number and position of quadrats was used in the 

homogeneous plots to provide a consistent and even sampling effort. Within each quadrat all plant 

species were identified and a visual estimate of individual species percent canopy cover, percent 

ground cover (bare ground, moss, vegetation, litter, rock) and density (number of individuals) was 

made. Nomenclature followed Voss and Reznicek (2012). 

4.2.4 Statistical analyses 

Treatment effects on total canopy cover, native (seeded) and adventive (non-seeded) graminoids, 

leguminous and non-leguminous forbs, total plant density (number of individuals), Shannon index 

and species richness were assessed. Total canopy cover was calculated by summing the individual 

species cover values for each quadrat. Shannon index of species diversity and species richness were 
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calculated in R using dplyr, vegan and rich (Rossi 2011, Oksanen et al. 2016, Wickham and 

Francois 2016). Responses were analysed at the spatial scale of the sampling quadrats: 0.0625 m2. 

Data for each source of heterogeneity (sand and woodchips) were analyzed using a linear mixed 

model with block, and plot nested within block, as random effects, and soil freezing (no snow 

removal versus snow removal), soil treatment (heterogeneous versus homogeneous), year (2015, 

2016, 2017) and season (early summer versus late summer) as fixed effects. An additional linear 

mixed model (the same as the model described above) was used for sand heterogeneous and 

woodchips heterogeneous treatments separately to assess differences among patches in the 

heterogeneous plots, except the ‘soil treatment’ was replaced with the fixed effect ‘subplot,’ which 

consisted of the levels topsoil patch, microedge, and sand or woodchips patch. To investigate 

interactions among soil treatment, soil freezing and year, data were divided into subsets based on 

one of the factors of the interaction and then analyzed with the linear mixed model above. An a-

priori contrast (assessed with a t-test) was used to compare the heterogeneous plot mean to the 

homogeneous mean (or snow removal to no snow removal) within years; the same approach was 

also used to compare means among subplots. A log10(y+1) transformation was used for residuals 

that did not meet assumptions of normality or homogeneity of variance. Friedman’s tests and 

Wilcoxon rank sum tests were used for cases when transformation could not be used. All statistical 

analyses were conducted with R v. 3.3.3 (R Core Team 2017). For all statistical tests an alpha of 

0.05 was used. However, marginally significant differences at p < 0.1 were also considered 

biologically important and reported. 

4.3 Results 

4.3.1 Total canopy cover and density 

For several response variables, significant interactions among soil freezing, heterogeneity and year 

were detected (Table B.2). For total canopy cover, there were no significant effects of snow removal 

or soil heterogeneity for the woodchip treatment (Fig. 4.2a). However, for the sand treatment, snow 

removal decreased total cover in the homogeneous plots in the second (p = 0.03, t58 = 2.2) and third 

year (p = 0.02, t58 = 2.5) (Fig. 4.2b), and in the snow removal plots, soil heterogeneity increased 

total cover in the second (p = 0.006, t69 = 2.8) and third year (p = 0.009, t69 = 2.7) (Fig. 2b). Within 
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the sand heterogeneous plots, snow removal increased total cover in the topsoil patches in the 

second year (p = 0.008, t23 = -2.9) (Table 4.1).  

For the woodchip treatment, soil heterogeneity decreased plant density in all three years (p = 

0.0002, t38 = -4), but there was no snow removal effect or interaction between soil heterogeneity, 

soil freezing or year (Fig. 4.2c). For the sand treatment, snow removal increased plant density in the 

homogeneous plots in the second year (p = 0.007, t15 = -3.1) (Fig. 4.2d) and plant density was also 

greater than heterogeneous snow removal plots in the second year (p = 0.002, t15 = -3.7) (Fig. 4.2d). 
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Table 4.1 Mean total percent canopy cover (standard error) in sand heterogeneous microsites with 

and without snow removal. 

 Topsoil patch Microedge Sand patch 

2015     

No snow removal 15.0 (4.0) 28.2 (7.5) 31.1 (8.1) 

Snow removal 27.4 (6.5) 27.3 (5.6) 27.6 (10.5) 

2016     

No snow removal 66.6 (9.2) 85.1 (12.4) 100.0 (10.1) 

Snow removal 109.5 (14.3)* 99.7 (12.1) 79.1 (9.5) 

2017    

No snow removal 77.8 (10.1) 78.5 (10.0) 161.5 (7.5) 

Snow removal 98.1 (11.8) 88.0 (7.8) 138.4 (14.6) 

Within microsite type, means followed by * (p < 0.05) are significantly different from the control 

treatment (no snow removal). 

2015 was the pre-snow removal year and 2016 and 2017 represent the growing seasons after one 

and two winters of snow removal, respectively. 
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Figure 4.2 Total percent canopy cover (a) and (b), density (total number of individuals) (c) and (d) 

in woodchips (a) and (c) and sand (b) and (d) soil heterogeneity treatments. Means were back-

transformed from the log scale log10(y+1) and standard error in the positive direction is shown. 

Significant differences between means are indicated by * (p < 0.05) according to t-tests of a-priori 

contrasts. 2015 was the pre-snow removal year and 2016 and 2017 represent the growing seasons 

after one and two winters of snow removal, respectively. 
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4.3.2 Plant community composition 

The cover of native seeded grasses and non-leguminous forbs followed the same trends and were 

therefore summed into a single category. Seeded native legume cover was extremely low throughout 

the study in both sand and woodchip plots (overall mean 0.2 %, std error 0.06 %), and therefore did 

not contribute meaningfully to the analysis. For the woodchip treatment, snow removal decreased 

cover of native grasses and forbs in the heterogeneous plots in the second year (p = 0.0156, t50 = 

2.5) (Fig. 4.3a), and heterogeneous had lower cover than homogeneous snow removal plots in the 

second (p = 0.0004, t45 = -3.85) and third year (p = 0.0057, t45 = -2.91) (Fig. 4.3a). Within the 

woodchip heterogeneous plots, snow removal decreased native cover in the topsoil patches and  

microedges (Table B.3). For the sand treatment, snow removal decreased native grass and forb 

cover in the homogeneous plots in the second and third year (p = 0.05, t20 = 2.1) (Fig. 4.3b), and 

homogeneous had lower cover than heterogeneous snow removal plots in the second and third year 

(p = 0.02, t18 = 2.6) (Fig. 4.3b). Within the sand heterogeneous plots, snow removal increased native 

cover in the topsoil patches in the second year (Table B.3).  

For adventive grasses, snow removal increased cover in the heterogeneous woodchip plots in the 

late growing season of the second year (p = 0.02, FR = 5.4) (Fig. 4.4a) and heterogeneous had 

greater cover than homogeneous snow removal plots in the late growing season of the third year (p 

= 0.01, FR = 6.4) (Fig. 4.4a). Within the woodchip heterogeneous plots, snow removal increased 

adventive grass cover in the topsoil microsites and microedges in the second and third year (Table 

B.4). Snow removal decreased adventive grass cover in sand heterogeneous plots in the late growing 

season of the second year (p = 0.096, FR = 2.8) (Fig. 4.4b), which corresponded with a decrease in 

adventive grass cover with snow removal in microedges at the same time (Table B.4). 

For adventive forbs, there was a marginally significant decrease in cover following snow removal in 

the homogeneous woodchip plots in the early growing seasons of the second and third year (p = 

0.058, FR = 3.6) (Fig. 4.4c). In the ambient snow woodchip plots, homogeneous had greater 

adventive forb cover than heterogeneous during the late growing season of the second year (p = 

0.058, FR = 3.6) (Fig. 4.4d). For the sand treatment, snow removal decreased adventive forb cover in 

the homogeneous plots late in the growing season of the third year (p = 0.025, FR = 5) (Fig. 4.4e), 

and in the ambient snow plots, homogeneous plots had greater cover than heterogeneous plots at this 
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time (p = 0.03, FR = 4.5) (Fig. 4.4e). Despite the overall differences observed at the plot level, no 

significant differences in adventive forb cover among microsites were found for either the woodchip 

or sand treatment (Table B.5). For adventive legumes, cover was very low overall (mean 1.2 %, std 

error 0.2 %) and no significant treatment effects were observed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

87 

 

 

Figure 4.3 Mean total native seeded forb and grass cover (%) in woodchip (a) and sand (b) 

treatments. Within years, significant differences between means are indicated by * (p < 0.05) and + 

are marginally significantly different (p < 0.1) according to t-tests of a-priori contrasts. Means were 

back-transformed from the log scale log10(y+1) and standard error in the positive direction is shown. 

2015 was the pre-snow removal year and 2016 and 2017 represent the growing seasons after one 

and two winters of snow removal, respectively. 
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Figure 4.4 Mean adventive (non-seeded) grass (a-b) and forb cover (c-e) in woodchip (a, c-d) and 

sand (b, e) treatments. Other than panel C, all means are late growing season. Within years, 

significant differences between means are indicated by * (p < 0.05) and + are marginally 

significantly different (p < 0.1) according to t-tests of a-priori contrasts. 
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4.3.3 Species richness and Shannon index of species diversity 

For the woodchip treatment, soil heterogeneity decreased the Shannon index in all three years (p = 

0.0008, t30 = -3.7), but there was no significant snow removal effect or interaction between soil 

heterogeneity, soil freezing or year (Fig. 4.5a). However, soil heterogeneity significantly decreased 

species richness in the snow removal plots in the second (p = 0.0002, t24 = -4.4) and third year (p = 

0.0002, t24 = -4.5) (Fig. 4.5b). Within the woodchip heterogeneous plots, in the second year, snow 

removal significantly decreased species richness in topsoil microsites (Table B.6). For the sand 

treatment, there were no significant effects of soil heterogeneity or snow removal on species 

richness or the Shannon index. 
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Figure 4.5 Shannon index (a) and species richness (b) in homogeneous and heterogeneous 

woodchip treatments. Significant differences between means are indicated by *** (p < 0.001) 

according to t-tests of a-priori contrasts. For Shannon index (a), there was no significant year × soil 

treatment × soil freezing interaction, only a significant main effect of soil treatment.  
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4.4 Discussion 

Consistent with my hypothesis, soil heterogeneity buffered the effects of soil freezing, such that 

freezing effects on total cover, native forb and grass cover, and plant density were not evident at the 

plot scale in the heterogeneous sand treatment. Because heterogeneity did not increase diversity in 

the sand treatment, diversity was not likely involved in this buffering effect. Instead, cover 

increased in topsoil microsites with snow removal, suggesting that the topsoil microsites within the 

heterogeneous sand plots could have functioned as microrefugia to soil freezing.  However, snow 

removal decreased native cover and species richness in the topsoil microsites and microedges within 

the heterogeneous woodchip plots, which suggests the ability for topsoil microsites to function as 

microrefugia is dependent upon neighboring conditions. The isolated topsoil patch in the 

heterogeneous woodchip plots neighbored a sparsely vegetated woodchip microsite, whereas there 

was continuous cover in the heterogeneous sand plots. Thus, the decreased cover in response to soil 

freezing in the topsoil and edge microsites within the heterogeneous woodchip plots may have been 

due to reduced vegetation cover in the woodchip patch, which would reduce snow accumulation and 

insulation in the plot area.  

Conversely, soil heterogeneity increased the sensitivity of native cover to freezing in the woodchip 

plots. Thus, depending on the source of heterogeneity and plant response examined, soil 

heterogeneity either suppressed or exacerbated soil freezing effects. The increased species diversity 

in the homogeneous woodchip plots may have been associated with the maintenance of native 

species cover during soil freezing. In the heterogeneous woodchip plots, there was no net change in 

total cover, because adventive grasses compensated for the decrease in native cover. Therefore, both 

plant species diversity and functional group diversity resulting from varying levels of soil 

heterogeneity may buffer responses to stress.  

Naturally occurring microrefugia can help maintain species diversity and composition in plant 

communities affected by stress (Scherrer and Körner 2010, Fridley et al. 2011, Tielbörger et al. 

2014). In my study, the maintenance of cover in the homogeneous woodchip plots suggested 

woodchips may have ameliorated soil freezing effects, but decreases in cover observed in the 

homogeneous sand plots suggested that sand may have intensified the effects of soil freezing. 

Therefore, while some microsites indeed functioned as safe sites with respect to soil freezing 
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damage, others functioned as traps. In addition, edges between distinct soil zones can exhibit 

prolonged wet and dry periods due to the contrast in soil pore sizes (Stover and Henry 2018). The 

potential for relatively wet conditions along woodchip microedges may have contributed to more 

severe freezing effects, which could explain the observed decreases in cover. Coarse textured and 

wet soils are typically most susceptible to physical disruption caused by soil freezing (Oztas and 

Fayetorbay 2003), which could affect belowground plant tissues detrimentally. In contrast, the 

addition of woodchips to topsoil can have beneficial effects, such as moderating soil surface 

temperatures and reducing water loss and erosion (Naeth et al. 2018), which could have increased 

the buffering capacity to freezing damage.  

Different plant functional groups (native seeded, and adventive forbs and grasses) also differed in 

their responses to freezing among microsites. For example, adventive forbs were most abundant 

under ambient snow cover, and most susceptible to soil freezing in the homogeneous substrates.  In 

the woodchip plots, soil freezing decreased adventive forb cover and increased species richness in 

the homogeneity treatment compared to the heterogeneity treatment, and it is possible that this 

increase in species richness resulted from release from competition with adventive forbs (namely 

the invasive Canada thistle, Cirsium arvense L.). Moving forward, studies of interactions between 

heterogeneity and stress could benefit not only from more explicit testing of these species 

interactions, but from the inclusion of plant functional trait and functional diversity data to better 

understand the mechanisms involved (García-Palacios et al. 2013). Leguminous forbs may be 

particularly sensitive to soil freezing (Joseph and Henry 2008, Henry et al. 2018), but they 

established at extremely low abundance in my study, despite being introduced by broadcast seeding, 

so more deliberate efforts would be needed in future studies to examine the freezing responses of 

this functional group.  

My results demonstrated that soil heterogeneity interacts with soil freezing in a substrate dependent 

manner to either suppress or exacerbate stress responses. However, this interaction also means that 

stress can influence plant responses to heterogeneity, which is an important caveat in the context of 

studies of soil heterogeneity effects on plant communities. For example, in both the woodchip and 

sand plots, adventive forb cover differed between the homogeneity and heterogeneity treatments 

under ambient snow cover, but this effect was not significant when soil freezing was increased via 
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snow removal. Likewise, the change in total cover, density and native cover in the homogeneous 

sand plots in response to soil freezing led to a soil heterogeneity effect that was otherwise absent in 

the ambient snow plots. Soil freezing also facilitated greater species richness in the homogeneous 

woodchip plots compared to heterogeneous woodchip plots. These results are consistent with 

greenhouse experiments, where stress has either augmented or subdued the influence of soil nutrient 

heterogeneity on plant productivity (Maestre and Reynolds 2006a, 2006b, 2007b, Maestre et al. 

2007, Xi et al. 2015). Therefore, there is strong generality across diverse stresses (e.g. frost, 

drought, warming), microsites (e.g. soil nutrients, texture, depth) and systems (e.g. greenhouse, 

field) that stress can modulate the effects of heterogeneity. 

Overall, my results demonstrated significant interactions between soil heterogeneity and soil 

freezing for plant community responses in a field experiment. The majority of research on stress in 

the context of topics such as global change has not taken environmental heterogeneity into account 

(García-Palacios et al. 2012). Likewise, studies of heterogeneity-plant relationships often do not 

consider the potentially confounding influence of stress or environmental extremes (Yang et al. 

2015). Beyond providing a more thorough understanding of the ecological processes associated with 

interactions between heterogeneity and stress, my results have broader ramifications for plant 

communities establishing on homogenized soils. Approximately 40 % of Earth’s land area is in 

agricultural use, and old fields (abandoned cropland) cover over 200 million hectares (Foley et al. 

2005, Cramer et al. 2008). The legacy of soil mixing due to the tillage of crop fields can increase 

soil homogenization (Anderson and Coleman 1985, Elliott 1986) which could reduce microrefugia 

available to plants during stressful periods, resulting in detrimental effects on plant species diversity 

and community stability. Furthermore, global change is increasing the frequency and intensity of 

stressful events in ecological communities (Barnosky et al. 2011, IPCC 2014). The deliberate 

addition of microsites could provide microrefugia to plant communities succeeding into former 

agricultural land and thus could be a useful management tool in ecological restoration. However, 

design of microsites for a particular system may need to be considered carefully based on the 

species present and potential stresses, given that the interactions demonstrated in the current study 

were substrate dependent.  In addition, the effects observed occurred in the context of early 

community assembly and secondary succession, and it remains to be demonstrated how these effects 

may persist over the longer term. 
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Chapter 5  

5 General discussion 

5.1 Summary: Interconnections among soil homogenization, plant 
species diversity, ecosystem function and stress  

The overall goal of my thesis was to examine relationships among soil homogenization, plant 

diversity, ecosystem properties and stress during ecological succession. I used a newly restored 

tallgrass prairie on former cropland as a study system and conducted field experiments during the 

first three growing seasons after establishment of the restoration. I investigated soil homogenization 

by comparing plant cover, plant species diversity, aboveground productivity, plant litter 

decomposition and nitrogen retention (15N tracer) between homogeneous and heterogeneous 

treatment plots. I also compared treatment plots exposed to soil freezing, implemented via snow 

removal in winter, to plots which received ambient snow cover. Findings presented in Chapter 2 

suggest heterogeneity-diversity relationships are dependent upon plant productivity, spatial scale 

and environmental conditions, such as drought. Chapters 2 and 3 showed elevated and intermediate 

levels of plant cover and 15N retention along microedges, indicating microedges may act as unique 

microsites and small scale ecological transition zones. Chapter 3 further suggested the importance of 

productivity responses to soil homogenization in influencing ecosystem level responses of 15N 

retention and plant litter decomposition to homogenization. Chapter 4 showed loss of microrefugia 

via soil homogenization could have detrimental effects on plant production during periods of stress 

and that multiple interactions can occur between stress and soil heterogeneity. All responses to soil 

homogenization examined were substrate dependent (i.e. sand versus woodchips versus 

microtopography). Overall, these experiments provided insight into interactions among soil 

heterogeneity (or homogenization), plant species diversity, ecosystem function and environmental 

stresses.  

The microsites facilitated the establishment of different plant functional groups and varying levels 

of severity of soil freezing, which influenced species diversity, ecosystem function and community-

level freezing effects.  My findings demonstrated, in the restored tallgrass prairie ecosystem at large, 

a strong interconnectedness of soil heterogeneity (or homogenization), plant community diversity, 
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ecosystem function and stress. The relationship between soil heterogeneity, ecosystem function and 

stress has been recognized theoretically and examined observationally and in pot experiments 

(Maestre et al. 2006, García-Palacios et al. 2011), but my results represent one of the first field 

experiments of this nature. 

A final conceptual figure is presented in Fig. 5.1 which builds upon the preliminary figure in the 

introduction (Fig. 1.1). Fig. 1.1 includes the preliminary hypotheses at the outset of the thesis and 

Fig. 5.1 includes a summary of the key thesis results. 
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Figure 5.1 Final conceptual model linking the associations among soil homogenization, stress, plant 

diversity and ecosystem properties (e.g. nitrogen retention, decomposition, productivity). 

Homogenization alters diversity and ecosystem properties compared to heterogeneous substrates 

with distinct microsites and microedges. Homogenization effects are substrate dependent and may 

be positive, negative or neutral. Homogenization effects on productivity influence other ecosystem 

properties and species diversity with an inverse relationship between productivity and species 

diversity. Homogenization can negatively affect plant functional diversity, which can decrease 

ecosystem properties like nitrogen retention. Stress negatively influences productivity but increased 

diversity resulting from homogenization (or heterogeneity) may lessen this effect and should be 

further researched. Stress and homogenization interact and can modify the effects of one another on 

plant community responses like productivity. Plant diversity decreases homogeneity by increasing 

‘plant induced’ heterogeneity. Although substrate, stress, productivity and spatial scale (patch size) 

were identified as important predictors of variability in homogenization relationships, the overall 

knowledge gap to be addressed in the system is refining prediction of the direction of effects. 



   

101 

 

5.2 A central role for productivity in heterogeneity 
relationships? 

Beyond niche effects, an important finding of my thesis was a potentially central role of 

productivity responses to soil homogenization in indirectly influencing the responses of plant 

species diversity, nitrogen retention and plant litter decomposition to soil homogenization. 

Productivity could be a central factor linking diversity and ecosystem functional responses to soil 

homogenization in ecosystems (Fig. 5.1). The plant species diversity differences between the 

homogeneous and heterogeneous treatments were related to total plant cover and density, suggesting 

the effects of heterogeneity on plant size influenced the resulting diversity patterns. Soil nutrient 

heterogeneity is believed to have a negative influence on diversity at fine spatial scales, because it 

favors the growth of more productive, competitive species (Gazol et al. 2013, Price et al. 2014, Baer 

et al. 2016, Tamme et al. 2016). Whichever treatment, homogeneous or heterogeneous, that results 

in increased plant density, could have greater diversity because of sampling effects and 

stochastic/neutral processes (i.e. with more individuals comes a greater probability of more species) 

(Williams and Houseman 2014, Walker and Lundholm 2018).  

Underlying productivity differences between homogeneous and heterogeneous treatments extended 

to ecosystem level effects; as with increased aboveground productivity, increased aboveground 15N 

retention and decreased mass loss occurred. It has long been recognized that soil heterogeneity can 

modify net primary productivity (Maestre et al. 2006), but my results suggest potential for this 

relationship to play an indirect role in the subsequent development of diversity and other ecosystem 

responses (Fig. 5.1). It was previously recognized that plant compositional diversity, rather than 

species diversity, may benefit ecosystem function in the context of soil heterogeneity (Maestre et al. 

2006).  Carbon, phosphorus and nitrogen cycling (measured via beta-glucosidase and acid 

phosphatase enzyme activity, and in situ N availability) were not influenced directly by soil nutrient 

heterogeneity (García-Palacios et al. 2011), but specific plant functional groups and traits had large 

effects on the cycling of these nutrients in response to nutrient heterogeneity (García-Palacios et al. 

2013).  
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5.3 The importance of environmental stresses in 
heterogeneity relationships 

My thesis is one of the first long term field investigations of the potential interactive effects of soil 

homogenization and environmental stress and probably the first to directly manipulate a source of 

heterogeneity (but see Arnone 1997). Some of the results suggest heterogeneous microsites offer 

microrefugia to plant communities during periods of stress (Chapter 4). Soil homogenization could 

result in the loss of microrefugia and increased sensitivity of plant communities during stressful 

periods. Soil homogenization effects on plant species diversity also could indirectly influence 

sensitivity of plant communities to stress, with an inverse relationship between sensitivity and 

diversity. Although there was no significant effect of soil homogenization or soil freezing on 

diversity in the sand treatment, soil homogenization significantly increased plant species diversity in 

the woodchip treatment. The increased species diversity in woodchip homogeneous plots may have 

been associated with the maintenance of native forb and grass cover in homogeneous plots during 

soil freezing. In Chapter 2, at the same site and with the same heterogeneity treatments, species 

diversity was greater in sand heterogeneous than homogeneous. This was possibly because the 

effect was more detectable due to a larger sample size (n=28) and because there was a greater pool 

of species (in Chapter 4, only one seeding took place in 2015). Chapter 2 also showed plant species 

diversity was greater in topographically heterogeneous plots with pits compared to flat soils during 

drought. My results demonstrate that the creation of soil microsites which function to increase 

species diversity and provide refuge from stressful conditions could be used as a management tool. I 

also demonstrated that stress can affect plant responses to soil heterogeneity, such that 

environmental extremes lead to augmented or subdued differences between plant communities in 

homogeneous versus heterogeneous environments. The importance of interactions between stress 

and environmental heterogeneity cannot be ignored because of the ubiquitous nature of the two. 

5.4 The significance of microedges in heterogeneous soils for 
plant species diversity and ecosystem function 

Just as heterogeneity-diversity relationships occur at both small and landscape-level spatial scales, 

several ecological processes also may have spatial analogues. At the spatial scale of within plant 

communities, research on soil heterogeneity has traditionally considered its impact as a summative 
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effect of microsites, without considering the edges between them (Stover and Henry 2018).  Prior to 

my PhD research, few (if any) studies had examined the influence of microedges on plant 

communities or ecosystem processes. However, microedges may be analogous to the zones of 

overlap between vertical strata found within soil profiles, recognized as distinct sublayers in the soil 

taxonomy hierarchy (Weil and Brady 2016). Diversity, plant cover, soil properties and ecosystem 

responses varied along microedges over time and among heterogeneity sources but in several cases 

exhibited levels of responses that were intermediate, lower or elevated compared to their adjacent 

patches. Therefore, my results suggest microedges may function as ‘microecotones’ and provide 

unique ecological niches that could contribute to increased plant diversity. My results also suggest 

microedges exhibit ecosystem function that is not a simple additive effect of the adjacent microsites, 

which could occur due to complementarity between neighboring microsites. Experimental research 

on soil heterogeneity that takes microedges into account could identify more specific mechanisms 

involved in soil heterogeneity-plant diversity and ecosystem function relationships. 

5.5 Methodological considerations and future research 

In terms of community composition, in Chapter 2, the abundances of specific species among 

treatments are provided in the Appendix (Tables A.6-A.11). Preliminary analyses showed species 

abundances were redundant at the level of plant functional groups (native seeded and adventive 

forbs and grasses). In other words, relative abundances of species within functional groups did not 

vary greatly among treatments. Differences in plant functional group abundances among microsites 

and treatments were explored in detail in Chapter 2 using a linear mixed model, in which changes in 

community composition and functional group affinities for microsites and homogeneous and 

heterogeneous treatments at the level of plant functional groups is described.  

The experimental treatments resulted in uniform replication of microsites that were discrete patches. 

This was necessary in order to statistically replicate the treatments and draw conclusions about the 

effects of homogenization. In reality, microsites are much more variable in size, shape and 

composition across space in ecosystems and may be continuous gradients rather than the discrete 

patches employed in the experimental design. 
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Although plant communities were monitored for three growing seasons in my thesis, my research 

took place during early succession, so the permanence and significance of the trends observed in the 

long term (> 5 years) needs to be investigated. Further research on microedges is required to 

determine their role in both promoting increased plant diversity and in creating unique interfaces for 

driving ecosystem processes. To build upon this work, more field experiments are required that also 

manipulate levels of plant species diversity and investigate the role of plant functional traits using 

the response effect trait framework (García-Palacios et al. 2012, 2013). Belowground root systems 

and three-dimensional heterogeneity should be further assessed to provide more explanation in 

terms of the mechanisms involved in the observed responses (Liu et al. 2017a, Liu et al. 2017b). 

Future research should consider experiments that more directly control productivity levels to better 

understand the role of productivity in influencing diversity and ecosystem responses to 

heterogeneity. In addition to field study and experimentation, modelling and theoretical 

development is needed in parallel to provide a clearer framework for interpreting the complexity of 

trends observed. It is still unclear how species should be selected for heterogeneity experiments, and 

how the number and type of species influences resulting investigations (but see Conradi et al. 2016, 

Liu et al. 2017b). In addition to including multiple diverse sources of heterogeneity within a single 

investigation, future researchers also may want to consider integrating the study of ‘plant-induced’ 

and ‘environmentally-induced’ heterogeneity. Overall, future research should continue to build upon 

the current framework of understanding variability in heterogeneity-plant relationships. 

5.6 Implications for ecological restoration 

My results clearly illustrate that habitat heterogeneity, created by the addition of diverse soil 

microsites, has the potential to aid efforts to increase biodiversity during ecological restoration. 

Microsites which promote the growth of specific plant species also can be used to facilitate the 

establishment of target species. Furthermore, microsites were not only beneficial for diversity, but 

also for ecosystem function, and buffered plant communities from drought and soil freezing. The 

pits, mounds and woodchip patches had sparse growth initially, and this ‘delayed succession’ may 

lead to alternate successional trajectories and facilitate establishment of later successional species. 

The 4:1 sand-topsoil microsites within the sand heterogeneity plots supported consistently high 

plant diversity throughout the study, and they were dominated by seeded native tallgrass prairie 
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forbs, unlike the topsoil patches, which supported a higher proportion of seeded prairie grasses.  

Seed source/ecotypes specific to soil types (i.e. clay topsoil and sandy soils) were sensitive to the 

microsites used, indicating that soil microsites should be designed in restoration that are compatible 

with the ecotypes of planted species. Many of the sown species important to conservation, such as 

native legumes, did not establish or were at extremely low abundance. Many vulnerable native flora 

have been restricted to marginal habitat on sandy soils, limiting their ability to establish on richer 

soils. Therefore, organizations which secure natural lands for conservation must target a greater 

diversity of soil habitat types so the ranges of these species can be further extended when restoration 

land becomes available. 

5.7 Concluding remarks 

Soil homogenization has not been explicitly considered in experimental investigations of 

heterogeneity-plant relationships to date, but my PhD research demonstrated that it may represent an 

important outcome of disturbance.  My research is one of the first initiatives to test if soil 

homogenization influences productivity, nitrogen retention, decomposition and response to soil 

freezing, thereby addressing the greater implications beyond plant community and diversity effects. 

Overall, my results indicate that there is a significant relationship between soil homogenization, 

plant diversity, ecosystem responses and stress during ecological succession. Human addition of 

microsites and microedges could be used to benefit plant community stability and diversity in the 

context of ecological restoration. Finally, my thesis is important in terms of understanding the lack 

of clarity surrounding variability in heterogeneity-plant relationships, and it contributes to a 

promising framework that has been developing across studies, which will ultimately lead to better 

implementation of microsites as a valuable management tool. 
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Year planted: 2015 

Vernacular Name (Source*) 
Life 

Form* 

Seed 

(No.) 

per 

plot 

Seed 

(g) per 

outer 

block 

area 

 Year planted: 2016 

Vernacular Name (Source) 

Life 

Form 

Seed 

(No.) 

per 

plot 

Viable 

seed 

(%) Species Name 

Viable 

seed 

(%) Species Name 

Ceanothus americanus New Jersey Tea (W) s 10  8 Ceanothus americanus New Jersey Tea (W) s 60 8 

Andropogon gerardii Big Bluestem (C) g 60 11 95 Bouteloua curtipendula Side-oats Gramma (W) g 60 18 

Bouteloua curtipendula Side-oats Gramma (W) g 28  18 Carex vulpinoidea Fox sedge (C) g 30 87 

Elymus canadensis Canada Wild Rye (W) g 28  0 Elymus hystrix Bottlebrush grass (C) g 60 97 

Elymus trachycaulus Slender Wheatgrass (W) g 28  26 Elymus virginicus Virginia Wild Rye (W) g 60 17 

Schizachyrium scoparium Little Bluestem (C) g 67 10 62 Juncus tenuis Path rush (C) g 60 96 

Sorghastrum nutans Indian Grass (C) g 67 10 6 Leersia oryzoides Rice-cut grass (C) g 60 53 

Asclepias tuberosa Butterflyweed (W) f 19  47 Scirpus atrovirens Black-fruited bulrush (C) g 60 93 

Desmodium canadense Showy Ticktrefoil (W) f 10  30 Scirpus pendulus Lined Rush (W) g 60 1 

Heliopsis helianthoides Sweet Oxeye (W) f 6 2.5 13 Spartina pectinata Prairie Chordgrass (C) g 60 95 

Lespedeza capitata Round-headed Bushclover (C) f 5  91 Achillea millefolium Common Yarrow (C) f 20 85 

Liatris cylandracea Dwarf Blazing-star (W) f 10  22 Agalinus tenuifolia Slender-leaved Agalinus (W) f 60 1 

Lupinus perennis Wild Lupine (W) f 10  25 Asclepias incarnata Swamp milkweed (C) f 60 91 

Monarda fistulosa Wild Bergamot (C) f 11  95 Asclepias syriaca Common milkweed (C) f 60 98 

Oenothera biennis Evening Primrose (W) f 6 1.5 NA Asclepias tuberosa Butterflyweed (C) f 60 95 

Penstemon digitalis Foxglove Beardtongue (W) f 12  5 Desmodium canadense Showy Ticktrefoil (W) f 60 30 

Pycnanthemum virginianum Virginia Mountain-mint (W) f 19  28 Doellingeria umbellata Flat topped Aster (C) f 60 90 

Ratibida pinnata Grey-headed Coneflower (W) f 10  9 Euthamia graminifolia Grass-leaved goldenrod (C) f 30 90 

Silphium laciniatum Compass-plant (W) f 19  70 Eutrochium maculatum Joe-Pye Weed (W) f 60 13 

Solidago juncea Early Goldenrod (W) f 12 2 2 Gentiana andrewsii Bottle Gentian (W) f 60 1 

Solidago nemoralis Grey Goldenrod (W) f 12 2 2 Gnaphalium obtusifolium Sweet Everlasting (W) f 60 18 

Solidago rigida Stiff Goldenrod (W) f 10  0.5 Helianthus giganteus Tall Sunflower (C) f 60 96 

Symphyotrichum laeve Smooth Blue Aster (C) f 40  42 Heliopsis helianthoides Sweet Oxeye (C) f 30 91 

Symphyotrichum novae-angliae New England Aster (W) f 10 2 1 Lespedeza capitata Round-headed Bushclover (C) f 60 96 

Verbena hastata Blue Vervain (W) f 10  6 Liatris spicata Dense Blazing Star (W) f 60 68 

Verbena stricta Hoary Vervain (W) f 10  18 Lobelia siphilitica Great Lobelia (W) f 60 25 

Verbesina alternifolia Wingstem (W) f 10  11 Lupinus perennis Wild Lupine (W) f 30 25 

Vernonia missurica Prairie Ironweed (W) f 10  3 Ratibida pinnata Grey-headed Coneflower (C) f 60 97 

      Rudbeckia hirta Black-eyed Susan (C) f 60 97 

    
  Sisyrinchium montanum Blue-eyed grass (W) f 60 0 

    
  Verbesina alternifolia Wingstem (C) f 60 81 

Source: W = wild collected, C = commercial; Life form: f = forb, g = graminoid, s = shrub 

NA: seed for this species could not be tested 

Table A.1 Plant species seeded in research plots. 



   

110 

 

Table A.2 Mean soil properties (standard error) of substrates used to create homogeneous and heterogeneous treatments. 

 Woodchips 

(pure 

substrate) 

Sand 

(pure 

substrate) 

Topsoil  

(pure 

substrate) 

Woodchip-

topsoil 2:1 

(heterogeneous 

microsite) 

Woodchip-

topsoil 1:2 

(homogeneous)  

Sand:topsoil 

4:1 

(heterogeneous 

microsite) 

Sand:topsoil 

2:3 

(homogeneous) 

Soil organic 

matter (%) 

- 2.2 (0.1) 7.3 (0.2) - - - - 

Sand (%) - 90 (1) 34 (1) - - - - 

Silt (%) - 7 (2) 51 (1) - - - - 

Clay (%) - 3 (1) 12 (1) - - - - 

N-NO3 µg G 

dry soil-1 

0.43 (0.06) 0.64 (0.09) 7.04 (0.11) - - - - 

N-NH3 µg G 

dry soil-1 

0.75 (0.26) 0.25 (0.15) 0.07 (0.15) - - - - 

pH 6.60 (0.20) 8.50 (0.02) 7.60 (0.10) 6.90 (0.10) 7.10 (0.04) 8.00 (0.06) 7.80 (0.03) 
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Table A.3 Mean soil total carbon and nitrogen (standard error) in homogeneous and 

heterogeneous treatments and microsites present in heterogeneous plots.  

  Total Carbon (%) Total Nitrogen (%) 

Woodchips Heterogeneous 2.97 (0.23) 0.19 (0.01) 

 Homogeneous 3.44 (0.29) 0.20 (0.01) 

Heterogeneous 

microsites 

Topsoil 
2.68 (0.21)a 0.19 (0.01) 

 Microedge 2.9 (0.24)ab 0.18 (0.01) 

 2:1 Woodchips 

topsoil patch 
3.33 (0.33)b 0.19 (0.01) 

Sand Heterogeneous 3.48 (0.14) 0.15 (0.01)* 

 Homogeneous 3.81 (0.26) 0.12 (0.01) 

Heterogeneous 

microsites 

Topsoil 
2.73 (0.14)a 0.20 (0.01)a 

 Microedge 3.27 (0.22)a 0.17 (0.02)b 

 4:1 Sand topsoil 

patch 
4.63 (0.23)b 0.09 (0.01)c 

Topography Pit 2.59 (0.21) 0.18 (0.01)*  

 Mound 2.81 (0.13) 0.20 (0.01)  

 Homogeneous flat 

topsoil 
2.91 (0.25) 

0.19 (0.01)  

Heterogeneous 

microsites 

 
  

Pit Topsoil 2.69 (0.14) 0.20 (0.01)a 

 Microedge 2.65 (0.20) 0.19 (0.02)a 

 Pit 2.44 (0.31) 0.15 (0.01)b 

Mound Topsoil 2.84 (0.12) 0.21 (0.01)a 

 Microedge 2.90 (0.18) 0.19 (0.01)b 

 Mound 2.68 (0.13) 0.20 (0.01)ab 

Numbers were back-transformed from the log scale log10(y+1), standard error in the positive 

direction is shown.  

Within heterogeneity source, heterogeneous treatments followed by * are significantly different 

from the homogeneous treatment (p < 0.05). 

For heterogeneous microsites, within heterogeneity source, microsites with different letters are 

significantly different (p < 0.05). 
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Table A.4 Growing season (April-October) precipitation, temperature and long-term climate 

normals in the study area during the period research was conducted. 

 

                          Environment Canada 

                          Weather Station1  

Environmental Sciences 

Western Field Station site 

records 

Year Month 

Mean 

Temperature 

(oC) 

Total Monthly 

Precipitation (mm) 

Total Monthly 

Precipitation (mm) 

2015 April 6.7 64.9 100.6 

 May 15.7 60.2 70.5 

 June 17.7 173.1 182.5 

 July 19.9 61.8 64.5 

 August 19.2 34.6 80.5 

 September 18.5 63.0 56.0 

 October 9.6 77.4 141.5 

   2015 Total: 535.0 2015 Total: 696.1 

2016 April 5.0 48.6 65.3 

 May 14.1 31.1 50.0 

 June 18.0 63.1 30.3 

 July 21.4 91.1 98.5 

 August 22.0 170.4 153.5 

 September 18.0 70.3 44.5 

 October 11.0 50.1 54.5 

   2016 Total: 524.7 2016 Total: 496.6 

2017 April 9.5 113.0 119.5 

 May 12.0 133.4 84.0 

 June 18.7 67.6 98.5 

 July 20.5 49.6 30.0 

 August 18.6 42.4 44.0 

 September 17.4 32.0 41.5 

 October 12.2 84.9 57.0 

   2017 Total: 522.9 2017 Total: 474.5 

Long 

Term 

Normals2  

April 7.3 81.2 1988–2017 

May 13.9 92.0 Mean: 658.1 

June 19.0 85.1 Standard deviation: 206.2 

 July 21.2 89.8 Minimum: 383.5 

 August 20.1 97.6 Maximum: 1179.5 

 September 16.1 104.4  

 October 9.9 77.6  

   Total: 627.7  
12015–2017 London, Ontario 43°02'00.000" N, 81°09'00.000" W, elevation 278 m.            
21981– 2010 Ilderton Bear Creek, Ontario, 43°03' N, 81°26' W, elevation 267 m.
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Table A.5 Mean functional group percent cover (standard error) for microsites present in heterogeneous plots. 
 Woodchips Topography (Pit) Topography (Mound) 

 Topsoil Microedge 2:1 Woodchips 

Topsoil 

Topsoil Microedge Pit Topsoil Microedge Mound 

Seeded Grasses           

2016 5.4 (1.1) a 2.4 (0.6) b 0.2 (0.1) c 5.1 (1.4) a 3.8 (0.9) a 1.3 (0.3) b 7.7 (1.6) a 2.5 (0.6) b 3.7 (1.0) b 

2017 11.2 (2.2) a 6.8 (1.5) b 1.7 (0.3) c 14.9 (3.9) a 7.8 (1.9) b 8.2 (1.9) b 15.9 (3.0) a 6.9 (1.7) b 10.6 (2.6) c 

Seeded Forbs          

Early Season          

2017 24.3 (7.1) a 12.0 (3.7) b 3.4 (1.1) c 39.5 (10.8) a 15.2 (6.3) b 8.2 (3.3) b 43.0 (8.7) a 31.1 (10.2) ab 17.7 (6.7) b 

Late Season          

2015 12.2 (4.1) a 3.4 (1.4) b 0.5 (0.2) c 9.7 (4.1) a 4.6 (2.9) b 2.2 (1.1) b 18.4 (6.9) a 15.7 (6.9) a 4.0 (2.3) b 

2016 30.5 (10.3) a 7.7 (3.2) b 2.4 (0.8) c 39.2 (14.8) a 11.7 (5.9) b 8.0 (2.9) b 48.1 (13.8) a 34.6 (13.7) a 11.4 (6.1) b 

2017 23.0 (7.2) a 25.0 (6.7) a 8.5 (2.4) b 63.2 (10.2) a 38.3 (7.9) a 13.9 (4.4) b 50.8 (16.2) 41.8 (14.6) 31.5 (8.4) 

Adventive 

Grasses 

         

Early Season          

2015 1.2 (1.1) 0.3 (0.2) 0 (0) 0.1 (0.1) 0 (0) 0.6 (0.5) 1.8 (0.8) a 1.2 (0.6) ab 0.1 (0.1) b 

2016 2.0 (0.4) 1.6 (0.3) 1.6 (0.4) 3.1 (0.8) ab 2.4 (0.7) a 5.0 (1.1) b 1.7 (0.6) 1.6 (0.3) 2.5 (0.7) 

2017 0.6 (0.1) a 1.1 (0.2) b 0.9 (0.2) ab 0.9 (0.2) a 1.0 (0.3) a 1.9 (0.3) b 0.8 (0.2) ab 0.7 (0.8) b 1.2 (0.2) a 

Late Season          

2015 4.0 (2.4) 1.0 (0.7) 0.1 (0.1) 0.8 (0.6) 0 (0) 2.2 (1.5) 4.5 (2.1) 4.2 (2.6) 1.2 (0.7) 

2016 5.2 (1.1) 3.8 (1.0) 3.3 (0.7) 10.8 (3.8) ab 5.8 (1.6) a 14.6 (3.3) b 4.4 (1.2) 4.7 (1.2) 8.1 (2.4) 

2017 1.1 (0.3) 1.2 (0.3) 0.7 (0.2) 0.8 (0.3) 0.5 (0.8) 1.6 (0.6) 0.5 (0.2) 0.4 (0.2) 1.3 (0.3) 

Adventive Forbs          

2015 0.7 (0.2) 0.4 (0.2) 0.4 (0.1) 2.0 (0.8) 1.1 (0.5) 1.7 (0.7) 1.7 (0.6) a 0.4 (0.2) b 1.1 (0.4) a 

2016 4.8 (0.8) a 4.9 (0.8) a 2.6 (0.6) b 3.8 (1.0) a 6.5 (1.3) a 11.4 (2.0) b 4.9 (1.2) 3.7 (0.7) 5.3 (1.3) 

2017 7.0 (1.4) 6.0 (0.9) 7.1 (1.2) 4.8 (1.3) a 7.1 (1.4) a 16.6 (3.3) b 4.6 (1.3) a 3.6 (0.9) a 9.1 (2.1) b 

Numbers were back-transformed from the log scale log10(y+1), standard error in the positive direction is shown. Within year, season 

and heterogeneity source, means followed by different letters are significantly different (p < 0.05). Only significant treatment years 

and seasons are presented.  
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Table A.6 Mean percent cover (2015–2017) of native seeded grasses found in research plots. Species with ‘x’ have mean percent 

cover of less than 0.1 % and greater than 0 %. 

Botanical name Vernacular name 

WC  

het 

WC 

homog 

Sand 

het 

Sand 

homog Pit Mound 

Flat 

soil 

Andropogon gerardii Big bluestem 0.9 0.9 3.2 2.8 2.3 2.0 1.7 

Bouteloua curtipendula Side-oats gramma 0 0 x 0 0 x 0 

Elymus canadensis Canada wild rye 0 0 0 x 0 0.2 0 

Elymus hystrix Bottlebrush grass 0 x 0 0 x x x 

Elymus trachycaulis Slender wheatgrass 2.3 1.5 3.7 2.9 2.1 3.1 2.6 

Elymus virginicus Virginia wild rye 0.2 0.3 0.2 0.2 0.5 0.4 0.3 

Schizachyrium scoparium Little bluestem 0.2 0.5 1.3 1.3 0.6 0.7 1.1 

Sorghastrum nutans Indian grass 3.8 2.3 5.8 4.8 3.4 3.6 6.3 

WC=woodchips, het=heterogeneous, homog=homogeneous 
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Table A.7 Mean percent cover (2015–2017) of native seeded leguminous forbs found in research plots. Species with ‘x’ have mean 

percent cover of less than 0.1 % and greater than 0 %. 

Botanical name Vernacular name 

WC 

het 

WC 

homog 

Sand 

het 

Sand 

homog Pit Mound 

Flat 

soil 

Desmodium canadense Showy ticktrefoil 0.4 0.6 0.6 0.6 0.5 1.2 1.1 

Lespedeza capitata Round-headed bushclover 0 0 0 0 x 0 0 

Lupinus perennis Wild lupine x x x x x x x 

WC=woodchips, het=heterogeneous, homog=homogeneous 
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Table A.8 Mean percent cover (2015–2017) of native seeded non-leguminous forbs found in research plots. Species with ‘x’ have 

mean percent cover of less than 0.1 % and greater than 0 %. 

Botanical name Vernacular name 

WC 

het 

WC 

homog Sand het 

Sand 

homog Pit Mound Flat soil 

Achillea millefolium Common yarrow 0 x x x x x x 

Agalinus tenuifolia Slender false foxglove x 0.3 0.2 0.2 0.2 0.3 0.4 

Asclepias incarnata Swamp milkweed x 0 x x x 0 0 

Asclepias syriaca Common milkweed 0 0 x x 0 0 0 

Asclepias tuberosa Butterflyweed x x x x x x x 

Ceanothus americanus New Jersey tea x x x x 0 x x 

Euthamia graminifolia 

Grass-leaved 

goldenrod 0 x 0 0 0 0 0.2 

Gentiana andrewsii Bottle gentian 0 x 0 0 0 0 0 

Heliathus giganteus Tall sunflower 0 x x x x x 0 

Heliopsis helianthoides Sweet oxeye x x x 0.1 x x x 

Liatris cylandracea Dwarf blazing-star 0 0 x x 0 0 0 

Liatris spicata Dense blazing-star x x x x x 0 0 

Lobelia siphilitica Great blue lobelia 0 0 0 0 x 0 0 

Monarda fistulosa Wild bergamot 0.4 0.2 0.9 0.7 1.2 1.9 1.5 

Oenothera biennis Evening primrose 1.3 1.5 2.1 4.0 1.2 2.6 4.5 

Penstemon digitalis Foxglove beardtongue 0.2 0.3 0.1 0.2 0.2 0.3 0.1 

Pycnanthemum 

virginianum 

Virginia mountain-

mint 0.5 1.1 2.6 2.2 1.5 1.1 2.6 

Ratibida pinnata 

Grey-headed 

Coneflower 0.3 0.3 0.8 0.5 0.2 0.2 0.2 

Rudbeckia hirta Brown eyed Susan 0.4 0.3 0.1 0.2 0.2 0.5 0.3 

Rudbeckia laciniata Cutleaf coneflower 0 0 0 x 0 0 0 

Silphium laciniatum Compass-plant 7.6 9.7 13.4 12.0 10.5 9.7 11.5 

Sisyrinchium montanum Blue-eyed grass 0 x 0 x 0 x 0 

WC=woodchips, het=heterogeneous, homog=homogeneous 
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Table A.8, con’d Mean percent cover (2015–2017) of native seeded non-leguminous forbs found in research plots. Species with ‘x’ 

have mean percent cover of less than 0.1 % and greater than 0 %. 

Botanical name Vernacular name 

WC 

het 

WC 

homog Sand het 

Sand 

homog Pit Mound Flat soil 

Solidago juncea Early goldenrod 4.8 0.4 10.4 5.8 3.5 5.0 6.8 

Solidago nemoralis Grey goldenrod 0.3 0.8 2.6 4.5 2.3 3.2 1.7 

Solidago rigida Stiff goldenrod 0 0 0.3 0.2 0 0.3 x 

Symphyotrichum laeve Smooth blue aster x x 1.6 2.2 0.4 0.9 0.2 

Symphyotrichum novae-

angliae New England aster 1.5 1.8 3.2 4.9 1.5 3.2 3.5 

Verbena hastata Blue vervain 5.1 3.1 5.4 5.2 3.7 7.3 9.9 

Verbena stricta Hoary vervain 1.0 0.1 0.6 0.5 1.1 0.6 1.4 

Verbesina alternifolia Wingstem 0.1 x 0.4 0.6 0.3 1.8 0.3 

Vernonia missurica Prairie ironweed x x 0.4 0.3 x 0.1 1.0 

WC=woodchips, het=heterogeneous, homog=homogeneous 
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Table A.9 Mean percent cover (2015–2017) of adventive non-seeded graminoids found in research plots. Species with ‘x’ have mean 

percent cover of less than 0.1 % and greater than 0 %. 

Botanical name Vernacular name WC het WC homog Sand het Sand homog Pit Mound Flat soil 

Cyperus esculentus Yellow nutsedge x 0 0 x x x 0 

Digitaria sanguinalis Hairy crabgrass x x 0 0 0 0 0 

Panicum capillare Witch grass x x 0.2 x x x x 

Poa compressa Canada bluejoint 0 0 0 0 0 0 x 

Setaria viridis Green foxtail 1.6 3.1 2.0 2.3 2.8 2.2 1.1 

WC=woodchips, het=heterogeneous, homog=homogeneous 
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Table A.10 Mean percent cover (2015–2017) of adventive non-seeded leguminous forbs found in research plots. Species with ‘x’ 

have mean percent cover of less than 0.1 % and greater than 0 %. 

Botanical name Vernacular name WC het WC homog Sand het Sand homog Pit Mound Flat soil 

Medicago lupulina Black medic 1.0 2.5 0.8 1.2 1.5 1.1 1.7 

Melilotus alba White sweet clover 0 0 0 0 0 0 0 

Melilotus sp. Sweet clover 0 0 0 0 0 0 0 

Trifolium pratense Red clover x x x 0.3 0.3 0.2 0.2 

Trifolium repens White clover 0 x 0 0 x 0 0 

WC=woodchips, het=heterogeneous, homog=homogeneous 
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Table A.11 Mean percent cover (2015–2017) of adventive non-seeded forbs found in research plots. Species with ‘x’ have mean 

percent cover of less than 0.1 % and greater than 0 %. 

Botanical name Vernacular name 

WC 

het 

WC 

homog 

Sand 

het 

Sand 

homog Pit Mound 

Flat 

soil 

Amaranthus retroflexus Redroot pigweed x x 0.2 0.2 0 0.4 0.3 

Ambrosia artemisiifolia Common ragweed x 0.1 x 0.3 x 0 0 

Anagallis arvensis Scarlet pimpernel 0.3 0.1 0.2 0.6 1.3 x 0.4 

Cerastium arvense  Field chickweed  x x x x 0 0 x 

Chenopodium album Lamb's quarters 0.2 0.2 x 0.3 0.3 0.1 0.2 

Cirsium arvense Canada thistle 2.4 3.2 2.3 2.2 2.6 2.4 3.3 

Cirsium vulgare Bull thistle 0 0 x 0 0 0 x 

Convolvulus arvensis Field bindweed 0 0 0 0 x 0 0 

Conyza canadensis Horseweed 0.1 x 0.1 x 0.2 0.2 x 

Cornus stolonifera Red osier dogwood 0 x 0 0 0 0 0 

Daucus carota Wild carrot 0.2 0.4 x 0.4 0.3 x 0.4 

Epilobium ciliatum Fringed willowherb x x x 0.1 x x x 

Epilobium sp. Willowherb 0 x x x x x 0 

Erigeron annuus Annual fleabane 0.5 0.6 0.4 0.1 0.5 0.6 0.4 

Erigeron pulchellus Robin's Plantain 0 0 0 0 x 0.1 0 

Fragaria virginiana Meadow strawberry 0 x x 0 x x x 

Holosteum umbellatum Jagged chickweed 0 0 0 0 0 0 x 

Hypericum perforatum  Common St. Johnswort 0 0 0 x 0 0 0 

Oxalis dillenii 

Slender yellow 

woodsorrel x x x x x x x 

Plantago lanceolata Narrow-leaved plantain 0 0 0 x 0 0 0 

Plantago major Common plantain 0.4 0.5 0.6 0.7 1.5 0.6 0.5 

Polygonum sp. Knotweed 0 0 x x 0 0 0 

Senecio vulgaris Common groundsel 0.1 x x x 0.2 0.1 x 

Solidago altissima Late goldenrod 0 0 x 0 0 0 0 

WC=woodchips, het=heterogeneous, homog=homogeneous 
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Table A.11, con’d Mean percent cover (2015–2017) of adventive non-seeded forbs found in research plots. Species with ‘x’ have 

mean percent cover of less than 0.1 % and greater than 0 %. 

Botanical name Vernacular name 

WC 

het 

WC 

homog 

Sand 

het 

Sand 

homog Pit Mound 

Flat 

soil 

Solidago canadensis Canada goldenrod 0.7 0.6 0.8 0.5 0.5 0.2 2.0 

Solanum carolinense Horse nettle 0.5 0 x x x 0.9 0 

Solanum nigrum Black nightshade 0 0 x 0 0 0 0 

Sonchus arvensis Perennial sow thistle x x 0.3 0.1 0.1 x x 

Sonchus asper Prickly sow thistle 0.2 x 0.2 0.3 0.5 0.3 x 

Sonchus oleraceus Common sow thistle 1.4 1.3 1.2 0.7 1.0 1.1 0.5 

Symphyotrichum 

lanceolatum Tall panicled aster 0.3 0.6 0.2 0.2 1.0 0.1 0.6 

Taraxacum officinale Danelion 0.6 1.0 0.4 0.5 1.2 0.7 0.3 

Vitis riparia Riverbank Grape 0 0 x 0 0 0 0 

Verbascum thapsus Common Mullein 0 0 0 x 0 0 0 

Veronica arvensis Corn speedwell 0 0 0 0 0 x 0 

WC=woodchips, het=heterogeneous, homog=homogeneous 
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Figure A.1 Mean species diversity over three years (1 = year 1, 2015; 2 = year 2, 2016; 3 = year 3, 

2017) in the three different sources of heterogeneity studied. Parts A and C are species richness, B 

and D are Shannon index, A and B are mean microplot diversity (spatial scale 0.0625 m2) and C and 

D are plot diversity (0.1875 m2). Error bars are standard error. Within year and heterogeneity source, 

heterogeneous treatments followed by * (p < 0.05), ** (p < 0.01) and *** (p < 0.001) are significantly 

different from the homogeneous treatment and + are marginally significantly different (p < 0.1). 
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Appendix B: Chapter 4 Supplementary data 
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Table B.1 Winter (December-March) precipitation, temperature and long-term climate normals 

in the study area during the period research was conducted. 

Winter Month 

Mean Temperature1 

(oC) 

Total Rainfall 

(mm) 

Total Snow 

(mm) 

2015-2016 December 3.3 60.9 9.0 

 January -4.4 32.3 42.5 

 February -2.7 41.4 58.5 

 March 3.5 138.0 18.5 

2016-2017 December -2.6 36.4 64.0 

 January -2.0 62.4 41.6 

 February 0.1 84.0 22.0 

 March 0.2 58.5 26.0 

Long Term 

Normals2  

December -2.6 44.5 45.4 

January -5.6 28.7 45.6 

February -4.4 30.6 32.0 

 March 0.4 41.8 22.7 
12015-2017 London International Airport, London, Ontario, 43°01'59.000" N, 81°09'04.000" W, 

278 m. 21981– 2010 Ilderton Bear Creek, Ontario, 43°03' N, 81°26' W, 267 m.  
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Table B.2 Interactions detected among soil freezing, heterogeneity and year for the plant 

responses examined1. 

Treatment Response Interaction p F d.f. 

Sand Total cover heterogeneity × freezing × year 0.094 1.8 671 

  heterogeneity × freezing 0.045 4.3 36 

Sand Density heterogeneity × freezing × year 0.0063 5.1 680 

Sand Native cover heterogeneity × freezing 0.049 4.1 40 

Woodchips Native cover heterogeneity × freezing 0.009 7.5 36 

Woodchips Species 

richness 

heterogeneity × freezing 0.047 4.3 30 

  heterogeneity × year 0.001 6.96 680 
1Adventive forb and grass cover were analyzed non-parametrically and a heterogeneity × 

freezing × year interaction was confirmed for both responses in both sand and woodchip 

treatments visually with graphical plots. 
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Table B.3 Mean percent cover (standard error) of native seeded grasses and forbs in sand and woodchip heterogeneous microsites 

with and without snow removal. 

 Topsoil patch Microedge Woodchips patch Topsoil patch Microedge Sand patch 

2015        

No snow removal 12.8 (5.3) 2.9 (1.3) 0.6 (0.2) 11.2 (3.7) 20.0 (6.4) 23.8 (7.6) 

Snow removal 4.1 (1.9)* 1.8 (1.0) 0.4 (0.2) 24.7 (6.4) 21.1 (5.1) 20.3 (6.0) 

2016        

No snow removal 68.0 (13.8) 12.0 (5.9) 2.3 (0.9) 51.0 (10.0) 65.2 (11.7) 89.0 (10.5) 

Snow removal 17.5 (7.5)* 4.8 (2.2) 1.7 (0.6) 92.2 (14.4)* 82.0 (12.6) 65.6 (8.5) 

2017       

No snow removal 39.6 (11.8) 38.4 (10.1) 7.3 (2.8) 65.8 (10.3) 61.4 (9.5) 149.5 (8.4) 

Snow removal 42.3 (7.4) 10.0 (2.9)* 7.3 (1.9) 79.4 (11.3) 80.8 (8.0) 128.5 (15.3) 

Within microsite type, means followed by * (p < 0.05) are significantly different from the control treatment (no snow removal). 

2015 was the pre-snow removal year and 2016 and 2017 represent the growing seasons after one and two winters of snow removal, 

respectively. 

Means were back-transformed from the log scale log10(y+1) and standard error in the positive direction is shown. 
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Table B.4 Mean percent cover (standard error) of adventive grasses in sand and woodchip heterogeneous microsites with and without 

snow removal during the late growing season. 

 Topsoil patch Microedge Woodchips 

patch 

Topsoil 

patch 

Microedge Sand patch 

2015        

No snow removal 3.3 (2.5) 0 (0) 0 (0) 0.6 (0.3) 3.0 (1.6) 0.1 (0.1) 

Snow removal 12.0 (8.3) 2.5 (2.5) 0.3 (0.3) 1.9 (1.3) 1.6 (1.5) 0 (0) 

2016        

No snow removal 3.6 (1.1) 1.6 (0.5) 1.9 (0.5) 6.6 (2.4) 4.1 (1.2) 2.6 (1.0) 

Snow removal 8.1 (1.6)* 5.2 (1.9)* 3.4 (1.9) 3.4 (1.2) 1.6 (0.5)+ 1.5 (0.5) 

2017       

No snow removal 1.0 (0.5) 0.9 (0.3) 0.8 (0.4) 0.5 (0.2) 0.8 (0.5) 0.4 (0.2) 

Snow removal 6.6 (4.8)+ 3.8 (1.9)+ 1.5 (1.0) 0.9 (0.5) 0.7 (0.3) 0.9 (0.3) 

Within microsite type, means followed by * (p < 0.05) or + (p < 0.1) are significantly different or marginally significantly different, 

respectively, from the control treatment (no snow removal). 

2015 was the pre-snow removal year and 2016 and 2017 represent the growing seasons after one and two winters of snow removal, 

respectively. 
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Table B.5 Mean percent cover (standard error) of adventive forbs in sand and woodchip heterogeneous microsites with and without 

snow removal. 

 Topsoil patch Microedge Woodchips 

patch 

Topsoil patch Microedge Sand patch 

Late growing season       

2015        

No snow removal 10.1 (4.7) 1.0 (0.7) 0.1 (0.1) 4.6 (4.5) 9.0 (7.9) 8.6 (7.9) 

Snow removal 1.4 (1.2) 7.2 (6.0) 2.0 (1.1) 1.5 (1.5) 7.9 (5.1) 10.2 (10.0) 

2016        

No snow removal 15.4 (8.3) 15.7 (6.2) 8.2 (5.0) 12.1 (3.1) 15.2 (7.0) 4.0 (1.0) 

Snow removal 14.6 (5.7) 5.9 (2.1) 14.8 (8.8) 15.6 (7.3) 16.9 (8.5) 11.2 (4.2) 

2017        

No snow removal 10.7 (4.9) 8.3 (3.2) 7.9 (2.4) 3.2 (1.0) 5.0 (2.1) 4.8 (2.1) 

Snow removal 15.7 (10.0) 6.6 (1.4) 11.6 (5.2) 9.8 (4.1) 2.7 (0.7) 4.9 (2.0) 

Early growing season1       

2015        

No snow removal 0.4 (0.4) 0 (0) 0 (0)    

Snow removal 0.6 (0.6) 1.2 (0.8) 0.4 (0.4)    

2016        

No snow removal 10.2 (3.4) 13.1 (4.9) 14.6 (9.0)    

Snow removal 16.2 (7.9) 8.1 (4.9) 16.5 (10.6)    
1Early growing season data is shown for the woodchip treatment only since significant homogeneous and heterogeneous treatment 

differences were not detected in the sand treatment. 

2015 was the pre-snow removal year and 2016 and 2017 represent the growing seasons after one and two winters of snow removal, 

respectively. 

 

 

 

 



   

129 

 

Table B.6 Mean species richness (standard error) in woodchip heterogeneous microsites with and 

without snow removal. 

 Topsoil patch Microedge Woodchips patch 

2015     

No snow removal 3.5 (0.4) 1.6 (0.3) 0.8 (0.2) 

Snow removal 2.9 (0.4) 1.3 (0.2) 0.7 (0.2) 

2016     

No snow removal 8.5 (0.6) 6.2 (0.5) 4.3 (0.3) 

Snow removal 6.8 (0.4)* 5.5 (0.5) 4.2 (0.3) 

2017    

No snow removal 7.2 (0.5) 6.2 (0.4) 4.6 (0.5) 

Snow removal 6.9 (0.5) 5.5 (0.4) 4.5 (0.4) 

Within microsite type, means followed by * (p < 0.05) are significantly different from the control 

treatment (no snow removal). 

2015 was the pre-snow removal year and 2016 and 2017 represent the growing seasons after one 

and two winters of snow removal, respectively. 

Means were back-transformed from the log scale log10(y+1) and standard error in the positive 

direction is shown. 
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Figure B.1 Mean soil temperature in no snow removal (solid line) and snow removal (dotted line) 

plots during the two winters of snow removal, A) 2015-2016 and B) 2016-2017. Soil temperature 

sensors were buried at 5 cm soil depth (n = 6).  

 

 

 

 

 



   

131 

 

Appendix C: Permission to reproduce published material 

 

Some of the Chapter 1 content was published in the journal Ecosphere. 

Citation: Stover, H. J., and H. A. L. Henry. 2018. Soil homogenization and microedges: 

perspectives on soil-based drivers of plant diversity and ecosystem processes. Ecosphere 

00(00):e02289. doi: 10.1002/ecs2.2289. 

Authors of papers appearing in Ecosphere retain copyright and do not transfer copyright to the 

Ecology Society of America. Papers are published under the terms of the Creative Commons 

Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 

provided the original author and sources are credited.  

A link to the Creative Commons Attribution License is provided here: 

http://creativecommons.org/licenses/by/4.0/.
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