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ABSTR ACT

A developmental trajectory describes the course of behaviour over time. Iden­

tifying multiple trajectories within an overall developmental process permits a 

focus on subgroups of particular interest. This research introduces a SAS macro 

program that identifies trajectories by using the Expectation-Maximization (EM) 

algorithm to fit semi-parametric mixtures of logistic distributions to longitudinal 

binary data. For performance comparison, we consider full maximization algo­

rithms (e.g. SAS procedure PROC TRAJ) and standard EM, as well as two 

other EM-based algorithms for speeding up convergence. The simulation study 

shows that our EM methods produce more accurate parameter estimates than 

the full maximization methods. The EM-based methodology is illustrated with 

a longitudinal data set involving adolescents smoking behaviours.

K ey  W ords: Expectation-Maximization algorithm, Mixture models, Binary 

data, Longitudinal trajectories
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Chapter 1

Background and Introduction

1.1 Introduction

A developmental trajectory describes the course of behaviour over age or time. 

Such trajectories have been used by researchers in the fields of social sciences 

since its introduction over a decade ago. The studies of behavioural sciences in 

areas such as psychology, criminology and sociology often use trajectory mod­

eling to analyze and characterize developmental processes. As the interest in 

the analysis of longitudinal data increases, there is a need for the development of 

increasingly rigorous statistical analytic methods, including trajectory modelling.

Child and youth development can be studied through trajectory modelling 

of the development of school-related skills, social development, risk-taking and 

substance use behaviour in adolescents and young adults, and the effectiveness 

of targeted intervention programs. One application of trajectory modelling is the 

analysis of how adolescents develop the habit of smoking. Longitudinal studies of 

adolescent smoking habits have shown that smoking uptake behaviour progresses 

through a sequence of developmental stages. Identifying and characterizing these 

adolescent smoking trajectories would improve our understanding of the factors 

motivating individuals to the smoking habit, thus leading to better smoking 

prevention and intervention programs.
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1.2 Background

The focus of this thesis is on a method to analyze temporal trajectories of longi­

tudinal binary data. Cross-sectional data are limited in the sense that hypotheses 

relating to change cannot be evaluated with such data. On the other hand, longi­

tudinal studies follow the population over time with the repeated measurements 

that can reflect the trend of an outcome over time. In addition, longitudinal 

data would allow for the separation of aging effects (changes over time within 

subjects) from cohort effects (differences between subjects at baseline) (Diggle et 

al., 1994). Longitudinal study designs are becoming more popular because they 

can provide more efficient estimators than cross-sectional designs with the same 

number and pattern of observations. Subjects serve as their own controls so that 

between-subject variation can be excluded from the error term when examining 

effects of interest.

Analysis of longitudinal data is complicated by the correlation that exists 

in the data. Since the data consists of repeated measurements over the same 

subjects, this means that the observations are not independent and therefore 

researchers must account for the dependency in the data. Analytic methods 

for longitudinal data are not as well developed for more sophisticated models. 

Some general approaches of dealing with longitudinal data include random effects 

regression models, Generalized Estimating Equations (GEE) models, and other 

Generalized Linear Models (GLMs). Since the choice of analysis method depends 

on the question of interest, we focus on statistical methods suitable for analyzing 

mixture models: modelling longitudinal trajectories of distinct groups.
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1.3 Cluster analysis and Mixture models

A mixture model is a model for analyzing data from mixture distributions, in 

problems when the measurements of a random variable are taken under different 

conditions. Mixture models assume that the data are collected from a number 

of subpopulations, and the data within each subgroup can be modelled using a 

standard statistical model. If the number of subpopulations is finite, then these 

models are called finite mixture models; otherwise, they are continuous mixture 

models. The frailty model for survival data is an example of continuous mixture 

models. In this thesis we will focus on the finite mixture distributions.

As an example, a mixture model can be applied to model the average height 

of people in a country. For instance, if we consider all Canadians as a single 

population, then we ignore the possibility that the individuals’ heights might 

systematically differ, depending on their characteristics such as gender. Ignoring 

the group differences may lead to biased and error-prone estimates and inap­

propriate predictions and hypothesis tests (Nurmi, 2010). We would be able 

to get more accurate estimates if we divide the Canadian population into sub­

groups based on gender or age, within each of which a simple model would apply.

Mixture models can be regarded as a type of clustering model, where each 

component probability distribution corresponds to a cluster. The idea of cluster 

analysis is to group previously unstructured data into distinct groups containing 

data that are similar in some sense. Typically in mixture modelling problems, 

the number of subpopulation is unknown and one needs to use the data to de­

termine the optimal number of components. The model parameters within each 

subgroup are also unknown and must be estimated from the data.
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In some cases, there may only be hypotheses as to the number of compo­

nents; the goal is to find a suitable set of subpopulations. This is usually done 

via model-based clustering methods, where we have a cluster model and the ob­

jective is to divide the data optimally into the clusters. Since group membership 

is unknown, the classification of the observations into the different components 

has to be carried out simultaneously with parameter estimation.

In recent years model-based clustering has appeared in statistics literature 

with increased frequency. Mixtures of multivariate normal densities have been 

considered by many researchers, including Wolfe (1970) and Day (1969). Friihwirth- 

Schnatter (2006) noted that some practical applications of model-based cluster­

ing using Gaussian mixtures include character recognition, minefield and seismic 

fault detection, clustering gene expression data and classification of astronomical 

data. Mixture models with non-normal components that have been studied by 

researchers include mixtures of the exponential (Heckman et ah, 1990), Poisson 

(Karlis and Xekalaki, 2005), binomial (Wang and Puterman, 1998), and multi­

nomial distributions (Jorgensen, 2004).

There have been many methods designed for parameter estimations in mix­

ture models, ranging from Pearson’s (1894) method of moments to informal 

graphical techniques and formal maximum likelihood approaches. Everitt and 

Hand (1981) discussed some generally applicable methods, including the maxi­

mum likelihood (ML) method. The ML method for estimating the parameters 

has desirable statistical properties: the estimators obtained by the method are 

consistent and they are asymptotically normally distributed (Everitt and Hand, 

1981). The ML equations for parameter estimation are not usually explicitly 

solvable so they need to be solved using some form of iterative procedure.
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For mixture modelling and model-based clustering, the iterative method usu­

ally employed for the ML estimation was first suggested by Hasselblad (1966) 

and Wolfe (1970), which was later called the Expectation-Maximization (EM) 

algorithm by Dempster, Laird, and Rubin (1977). This algorithm has two steps. 

In the first step, the probability of each observation belonging to each component 

of the mixture model is estimated. Then the second step evaluates the estimation 

problem, with each observation contributing to the log-likelihood with a weight 

given by the membership probabilities estimated in the first step. These steps 

are then repeated until convergence.

1.4 Applications of mixture models to longitu­

dinal trajectories

Hierarchical modeling and latent curve analysis are two popular approaches for 

analyzing developmental trajectories. Nagin (1999; 2005) noted that these two 

standard growth curve modelling methods use unconditional models to estimate 

the mean and covariance structure of the population distribution of growth curve 

parameters, and use conditional models to explain the variability in growth 

throughout the population by relating the growth parameters to explanatory vari­

ables. The “semi-parametric” group-based approach proposed by Nagin (1999; 

2005) focuses on identifying relatively homogeneous clusters of developmental 

trajectories. In summary, hierarchical and latent curve methodologies model 

population variability in growth with multivariate continuous distribution func­

tions for analyzing individual-level trajectories; while the group-based method 

uses mixtures of suitably defined probability distributions to identify distinctive 

clusters of individual trajectories within the population.
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The “semi-parametric” group-based method assumes that the population is 

composed of a mixture of distinct groups defined by their trajectories, rather 

than assuming a continuous distribution of trajectories within the population. 

The assumption of distinct subgroups may not be correct, as the development 

of behaviour may not follow such clear-cut categories. However, the powerful 

feature of the group-based approach is that, by identifying the clusters of in­

dividuals with similar trajectories, differences that may explain individual-level 

variability can be expressed in terms of group differences (Nagin, 2005).

The standard growth curve modelling approach is more appropriate than the 

group-based method in situations where the developmental process of all popu­

lation members follow a common pattern of increase or decrease. Raudenbush 

(2001) gave examples related to language acquisition or academic learning in 

early childhood. For phenomena in which there may be different trajectories of 

change across subpopulations, such as when gang membership is the outcome 

of interest (Lacourse et al., 2003), the group-based method is a useful approach. 

This group-based approach is appropriate when the assumption that all individu­

als within the population follow a common trend that increases or decreases reg­

ularly may be violated, or if the objective of the analysis is to discover distinctive 

developmental trends in change. In general, the standard growth curve modelling 

is suitable for analyzing questions in terms of predictors of the outcome’s devel­

opmental course, while the group-based method can answer questions in terms 

of the shape of the developmental course of the outcome of interest (Nagin, 2005).

In order to describe the changes in behaviour over time through develop­

mental trajectories, the “semi-parametric” model proposed by Nagin (1999) for
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longitudinal data links behaviour to age or time. In summary, this group-based 

trajectory modeling method was designed to: (1) determine the optimal number 

of distinctive groups of trajectories and identify those trajectories, (2) estimate 

the proportion of the population that is believed to belong to each trajectory 

group, (3) relate the group assignments to individual characteristics, and (4) 

use the group membership probabilities for purposes such as creating profiles of 

group members.

The “semi-parametric” group-based estimation model has been implemented 

as a SAS based procedure, PROC TRAJ, by Jones, Nagin and Roeder (2001). 

This SAS procedure has been used by researchers to identify longitudinal trajec­

tories on the development of the smoking habit. To understand the development 

of smoking behaviour in youth, Driezen (2001) used PROC TRAJ to analyze 

longitudinal data from the third Waterloo Smoking Prevention Project. The 

goal was to identify distinct groups of smoking initiation trajectories and regular 

smoking trajectories among a cohort of grade 6 students, followed for a seven year 

period (1990-1996). Among 2306 students who reported as non-smokers or non­

regular smokers at baseline, five groups of smoking initiation trajectories were 

identified: never smoked, and early, mid-early, mid-late, and late onset. Like­

wise, among 2495 students with complete smoking histories, five distinct groups 

of regular smoking trajectories were identified: never regular, early uptake, mid 

uptake, late uptake, and dabblers.

Karp et al. (2005) have analyzed smoking trajectories of data from The 

McGill University Study on the Natural History of Nicotine Dependence, which 

consisted of a student population recruited from grade 7 classes of a sample of 

Montreal secondary schools and followed for seven years (1999-2005). The re­
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searchers analyzed data from the first 14 questionnaires, administered every 3 to 

4 months during the first 3.5 years of follow up. The objective of the study was 

to describe trajectories of smoking intensity in adolescent novice smokers and 

to identify predictors of trajectory group membership. The statistical analysis 

included: (1) using individual growth modeling to uncover the overall trajec­

tory of smoking intensity, and (2) performing the “semi-parametric” group-based 

modelling to classify major classes of trajectories. Prom the 269 novice smok­

ers included in the analysis, four groups of smoking intensity trajectories were 

identified by PROC TRAJ: low-intensity, non-progressing smokers, and slow, 

moderate, and rapid escalators.

In order to understand the smoking behaviours in Canadian youth from late 

childhood to adolescence, Maggi et al. (2007) used the group-based mixture 

modelling method to identify smoking trajectories among participants of the 

Canadian National Longitudinal Survey of Children and Youth. Among chil­

dren and youth from 10 to 17 years of age, the researchers examined questions 

regarding smoking behaviour such as trying smoking and frequency and inten­

sity of smoking. They used PROC TRAJ to estimate growth mixture models for 

smoking behaviours and identified three trajectories for the probability of having 

tried smoking from the 2886 youths and children: early, middle, and late onset 

smokers. From 280 smokers regarding frequency of smoking, five distinct groups 

were discovered: early, and late infrequent experimenters, early frequent exper­

imenters, as well as early, and late frequent smokers. The intensity of smoking 

reported by the subpopulation of 260 regular smokers could be classified into two 

groups: late and slow, or early and rapid escalators, with respect to the number 

of cigarettes smoked daily.
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White et al. (2002) reported on a study which analyzed the smoking be­

haviours and the risk factors related to smoking among a group of 374 individ­

uals in New Jersey. Participants were first interviewed in 1979-1981 at the age 

of 12, and then re-visited over the years and the fifth and final interview was 

conducted in 1997-1999 at the age of 30 or 31. Information regarding cigarette 

use was collected, such as frequency of smoking and typical quantity per day, as 

well as risk factors including demographic characteristics, differential association 

variables and intrapersonal characteristics. Using PROC TRAJ, they identified 

three trajectory groups with respect to cigarette use: non/experimental smokers, 

occasional/maturing out smokers, and heavy/regular smokers.

1.5 Objective

Nagin (1999) proposed the use of a “semi-parametric” model to identify homoge­

neous clusters of longitudinal developmental trajectories, and a SAS procedure 

called PROC TRAJ had been created to estimate parameters in this model (Jones 

et al., 2001). This procedure performs a maximization using the Quasi-Newton 

method to obtain parameter estimates, but the use of this procedure requires 

a careful choice of starting values to ensure convergence (Roeder et al., 1999). 

Some problems that have been encountered when using PROC TRAJ are: (1) the 

procedure sometimes fail to converge, and (2) it converges to a false maximum or 

a local maximum instead of global maximum (Driezen, 2001; Nawa, 2004). The 

EM algorithm was proposed as the solution to the convergence problems since 

it has been suggested as a better algorithm than the Quasi-Newton method for 

computing MLE’s for mixtures of normal distributions (Davenport et al., 1988). 

Roeder et al. (1999) used the EM algorithm to model longitudinal trajectories 

of count data; while Nawa (2004) proposed using the EM algorithm to model 

binary data.
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The objective of this research is to extend the EM algorithm for trajectory 

modelling proposed by Nawa (2004), focusing on the model for binary longi­

tudinal data. We would like to extend the EM algorithm into a method with 

improved convergence properties and speed. To improve and speed up the EM 

convergence, we propose the use of iteratively reweighted least squares (IRLS) 

to fit a weighted logistic regression model at the maximization stage of the EM 

algorithm. We evaluate the performance of the algorithm based on measures of 

accuracy, in hopes of developing an algorithm with good convergence property, 

small estimated mean squared error of prediction, and small relative error for pa­

rameter estimates. This research also aims to provide an open source SAS/IML 

macro program that is publicly available for other researchers to enhance future 

analyses of longitudinal data.
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Chapter 2

The Model and Methods of Estimation

2.1 Introduction

Mixture models can be used when it is believed that there is unobserved het­

erogeneity in the population, and that there exist subgroups with different pa­

rameter values within the population. In mixture modeling with longitudinal 

data, some models that are commonly used include latent class growth analysis 

(LCGA) and the growth mixture model (GMM). The “semi-parametric” group- 

based approach proposed by Nagin (1999) is an example of LCGA, which is 

the simplest longitudinal mixture model for binary or categorical measurements. 

This model assumes that there is no variation across individuals within a class, 

whereas the GMM (Muthen and Shedden, 1999) allows for within-class varia­

tion of individuals. The GMM is a more complex model where the within-class 

variation is represented by random effects, and it is more suitable for situations 

where the latent classes corresponding to one set of variables influence another 

set of observed variables. Muthen and Muthen (2007) described other types of 

longitudinal mixture models, including latent transition analysis (also referred to 

as hidden Markov modelling) and discrete- and continuous-time survival mixture 

modelling.

The group-based trajectory modeling method proposed by Nagin (1999) was 

designed to identify distinctive groups of individual trajectories within the pop­
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ulation. The methodology estimates the number of groups that best fits the 

data and the proportion of the population following each trajectory group. The 

shape of the trajectory for each group is estimated and along with the group 

membership probabilities, profiling of the characteristics of group members can 

be obtained for analysis. This group-based trajectory modelling methodology is 

an application of finite mixture models. We will focus on the model for binary 

longitudinal data. The trajectories estimated by this group-based method are 

produced by maximum-likelihood estimation.

2.2 Mixture Models

2.2.1 Likelihood formulation for mixture models

Following Fruhwirth-Schnatter (2006), we consider a population that is made up 

of g subgroups, mixed at random in proportion to relative group sizes. Suppose 

we are interested in some random feature Y  which is heterogeneous across and 

homogenous within the subgroups. When we sample from such a population, we 

can record not only Y, but also the group membership indicator S, S G {1, ...,#}.

Suppose we have the mixing proportions (or component weights) indicated 

by 7Tj, i =  1, where each 7Tj is non-negative and Ylt=i11 i =  1- We then have 

the probability of sampling from group S is equal to tts.

For the population, the joint density p(y, S) is given by

p{y,S) =  p{y\S)p{S) 

= nap(y\S),



13

and conditional on the group S, Y  is a random variable following a distribution 

p(y\9s) with 9S being the parameter of group S. Due to heterogeneity in the 

population, Y  has a different probability distribution p(y\9s) for each subgroup.

A finite mixture distribution arises if the group indicator S is not observed, 

that is, the population is modelled as consisting of g distinct groups (or compo­

nents) in some unknown mixing proportions tti, ...,7rp.

Let Yi, ...,Yn be a random sample of size n, and y  =  (yi, ...,yn)T denote the 

observed random sample where yj is the realization of the random variable Yj. 

Then a standard ^-component mixture model can be expressed in the form

a

i=l

where fi(yy, 9i) is the component density for component i, which is the conditional 

density function of Yj given group membership of the ith component, and i/* =  

(tti, ...,ng,9i, ...,9g) is the set of model parameters from the different mixture 

components. The corresponding likelihood is given by
n

L(ip) =  Y [ f ( y y ^ )
3= 1  

n g

j — 1 i=l

2.2.2 Complete-data likelihood for mixture models

In finite mixture models, the mixing proportions 7Ti,...,7rfl and component pa­

rameters 9i,...,9g are unknown and need to be estimated from the data. We
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denote these unknown parameters as ^  =  (^i , ...,ng,9i, ...,0g). As previously- 

mentioned, we denote S =  ( S \ , S n)T, Sj G 1 , —,g, to indicate the group allo­

cation of individual j.

Under the assumption that the allocations S =  (S i,..., Sn)T are observed, we 

can estimate parameters based on the complete data (y ,S ). The complete- 

data likelihood function is equal to the sampling distribution p(y, S|i/>) of the 

complete data (y ,S ), regarded as a function of the unknown parameter •»/>• It 

can be written as

p(y,S\il>) =  p(y\S,tl>)p(S\v>)
n

3= 1

Given group i, we know that

p(yj \Sj =  i,i/>)=p(yj \6i)

and

Pr(Sj =  i\r/>) =  7Tj.

Then the complete-data likelihood becomes

p(y, S\iJ)) =  J !  [xiP(yj\0i)]I{Sj=t} ■ 
j =i ¿=i

However, in the mixture model context we do not observe the allocations 

S. Following Nawa (2004), we define an unobserved or missing data vector 

z  =  (z f , ...,zJ()T, where Zj =  ( z y , ..., zgj) is a vector of indicator variables 

reflecting the group membership of individual j. We define Zy =  I{S j =  *}, 

indicating that Zy =  1 if individual j  belongs to group i and zy =  0 otherwise. 

This also implies that
9

y !  z *j =
¿=1
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Suppose we have an observed sample of size n, denoted as y  =  (y\, ...,yn)T, 

then the complete-data likelihood for a g-component mixture model can be ex­

pressed as

l cW  =  u n w ^ A ) ) «
j = i ¿=1 

j =i ¿=1

2.3 Mixture models: Binary longitudinal data

2.3.1 The Likelihood

When working with binary longitudinal data, we denote P r(Y j)  as the proba­

bility of observing a specific longitudinal sequence of binary measurements on 

individual j  over time. The goal is to obtain a set of parameters such that 

the likelihood is maximized. These parameters define the shape of the trajec­

tories and the probability of group memberships. The shape of each trajectory 

is described by a polynomial function of age or time, and a separate set of pa­

rameters is estimated for each group to allow the shapes of trajectories to differ 

across groups.

Suppose we have Y i , ..., Y n as a random sample of size n, where Y j  is a m- 

dimensional vector. We have y3 =  (y^i, Uj2, Vjm) representing a longitudinal 

sequence of observations over m time points, where the response yjt (t =  1,..., m) 

observed at the tth time point recorded as a binary measurement.
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We will assume a quadratic relationship between age (or time) and behaviour 

on the logit scale, and we model with the assumption that conditional on mem­

bership in group i, the probability of outcome of interest can be written as

e/3j+/3i agejt +0 \age2jt 

Pr(Xjt)  ̂ e&i+p\agejt+p\age2jt ’

with agejt being the age of individual j  at time t. The parameters fa, fa, and 

fa determine the shape of the trajectories, and they are allowed to vary across 

the different trajectories. A positive fa and a negative fa show a single peaked 

trajectory, while a constant trajectory is shown if fa and fa equal to zero.

Conditional on being in group i, a subject j  is assumed to have independent 

observations over the m time points, so we have

Y j (  ePo+Pia9ejt+P'ta9e'jt \ V3i /  l
U U j '  ^  \ l _|_ g^o +0{a9ejt  +02a9e% J  \ 1 -)- e P'o+Pia9ej t  + fyage2t

1 -V jt

The likelihood for the entire sample of n individuals is
n g

m >) =
j = 1 i= 1 

n g= nx>n 0o+0\agejt+02agejt  ̂Vjt
f  , . p'0+p[agej t + fta g e2jt
] = \  i = l i=l X -1

and the corresponding log-likelihood is

(___  1 ^
V 1 -(- e0o+0\a9e3t+02a9e% J

l - V j t

w )  =  X l log
3=1

e0i+0\agejt+Piage2jt

^  7Tl V 1 +  ê 0+̂ a9eit+̂ a9e+t )  V 1 +  e ô+0ia9eit+02a9e%

l - l I j t

The maximum likelihood estimates, rji =  (fii, ,...,¡3?), can be ob­

tained by maximizing the above log-likelihood.
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2.3.2 The complete-data likelihood

With yj =  (i/ji, yj2,..., yjm) representing a sequence of longitudinal measurements 

for individual j  over m time points, the complete-data likelihood for the entire 

sample of n individuals is

Lc W  =
j=i ¿=i

n 9 r «  / JU-P\agejt+Piage% \  W* / t \ 2ij

= IU K " n1 1 1 1  * 11 \ i . p0'o+Plagejt+P2a9e2jt \ , 8l0+^{agejt+ ^ a g e2jt
j = l t = l  Li=i \ 1 ' e /  U T C

and the corresponding log-likelihood is
n g n g

k w  =  log ̂ + Y l Y l Zii log
j = 1 i = l  j = 1 i= l
n P

3 = 1 i = l
n p

j = 1 i = l  Lt=l
¿ » ( f t  +  / W i t  +  P h w l )  -  l»e(l +  esi+fl«*«+fi5*W.)

The EM algorithm (Dempster, Laird and Rubin, 1977) can be used to obtain 

maximum likelihood estimates, -i/>, from the above complete-data log-likelihood.

2.4 Implementation in SAS

Jones, Nagin and Roeder (2001) developed a SAS procedure for estimating devel­

opmental trajectories, which is based on the “semi-parametric” group-based mod­

eling strategy proposed by Nagin (1999). The procedure, called PROC TRAJ, 

uses a model which is a mixture of probability distributions that are specified to 

describe the data to be analyzed. PROC TRAJ can model three different dis­

tributions: the zero-inflated Poisson (ZIP) model for analyzing count data, the
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censored normal (CNORM) model for psychometric scale data, and the logistic 

(LOGIT) model for binary data. The user defines the input information such as 

the type of data to be analyzed, the number of groups to be fitted, and the shape 

of the trajectory to be fitted which could be a linear, quadratic or cubic function 

of age or time. Also, the initial starting values for each of the parameters can be 

specified, or the default values will be used for the model fitting. By default, the 

procedure uses starting values which assume constant trajectories evenly spaced 

through the range of the dependent variables. Parameter estimates are obtained 

through maximum likelihood (presented in Section 2.3.1) and performed using a 

Quasi-Newton method. PROC TRAJ is a compiled procedure written in the C 

programming language and can only be used in SAS for WINDOWS. A macro 

called trajplot can be used to plot the obtained trajectories, or users may make 

use of other software (such as MS Excel) for plotting the trajectories.

2.5 Number of groups

When one is working with finite mixture models, often the number of compo­

nents or groups is unknown. Fitting too many groups would lead to the problem 

of overfitting, such that trajectory groups reflect only random variation. On the 

other hand, fitting too few groups to the data may result in a model that is 

not flexible enough to approximate the true underlying distribution. There are 

several statistical tools for determining the optimal number of distinct groups in 

a mixture model.

The chi-square likelihood ratio statistic could be used to determine the most 

appropriate number of distinct groups (Everitt and Hand, 1981); however, it is 

not suitable for mixture modeling because a (/-component model is not nested in
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the interior of the parameter space of a (g +  l)-component model. In the group- 

based trajectory modeling context, the problem is caused by the null hypothesis. 

The null hypothesis (i.e. g groups) is on the boundary of the parameter space, 

because we set the probability of being in the (p-t-l)si group to zero. The classical 

asymptotic results that underly the likelihood test would not hold under such a 

situation (Nagin, 1999). Since the regularity conditions of the test statistics are 

not met, the null distribution of the likelihood ratio statistic does not converge 

to a chi-square distribution and the calculated p-value obtained would not be 

correct (Nylund et al., 2007). McLachlan and Peel (2000, Section 6.4 and 6.5) 

and Priihwirth-Schnatter (2006, Section 4.4) provide more details and reviews 

of relevant literature. Simulation studies conducted by Everitt (1981; 1988) and 

Nylund et al. (2007) have shown the inappropriateness of using the chi-square 

likelihood ratio test when working with mixture models. Nylund et al. (2007) 

noted that, although the chi-square difference test in the form of the likelihood 

ratio test cannot be used for mixture model selection, there are alternative like­

lihood ratio tests that may be appropriate.

Other methods for determining the number of groups in mixture models in­

clude the Akike’s Information Criterion (AIC) (Akaike, 1973) and the Bayesian 

Information Criterion (BIC) (Schwarz, 1978). Both measure the goodness-of-fit 

based on the log likelihood of a fitted model, while penalizing for model com­

plexity and/or sample size. Since they use different penalties, the two criteria 

may point to a different number of groups as the best model.

The AIC is defined as

AIC =  —2 log(L) +  2k

where k is the number of free parameters in the model. This depends on the
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number of groups and the function used for describing the shape of trajectories. 

For example, for a three-groups model with trajectories described by quadratic 

functions, there are eleven parameters (nine parameters for the three trajecto­

ries and two for the mixing proportions). Akaike (1973) suggested choosing the 

model which gives the smallest AIC over the set of models considered.

The BIC is defined as

B IC  =  log(L) — 0.5fclog(n)

where k is again the number of free parameters in the model and n is the sample 

size. The model with the maximum BIC value, i.e. least negative number (since 

BIC is always negative), is recommended as the best finite mixture model. The 

BIC criterion can be used for comparison of both nested and non-nested models 

(Kass and Raftery, 1995).

It has been shown that the use of either AIC or BIC as a criteria for mixture 

model selection would not underestimate the true number of groups in the pop­

ulation (Leroux, 1992). The use of BIC is often preferred over AIC because the 

BIC is consistent as a selection criterion, whereas the AIC has been shown to 

be not consistent (Bozdogan, 1987). In particular, the probability that the BIC 

will select the true model approaches one as the sample size becomes large, while 

the AIC tends to choose more complex models as the sample size increases. Re­

searchers had performed simulation studies to evaluate the various model choice 

criteria including AIC and BIC. Keribin (2000) found that BIC can determine 

the optimal number of groups in finite mixture models, with it being consistent 

(avoiding over- or underestimation) under correct specification of the group den­

sity families. Nylund et al. (2007) conducted a Monte Carlo simulation study 

that examined the performance of likelihood ratio tests and several Information
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Criterion (ICs) used for determining the number of groups in mixture models. 

Comparing the performance of AIC, consistent AIC (CAIC), BIC, and adjusted 

BIC across different mixture models and sample size specifications, they showed 

that the BIC is the best of the ICs considered. They found that AIC is not a 

good criterion for identifying the correct model for any of the modelling settings 

being considered. Also, the accuracy of AIC decreased as sample size increased, 

reflecting a known problem with AIC because there is no adjustment for sample 

size. These results are in agreement with previous research indicating the AIC 

is not a good indicator for determining the optimal number of groups (Celeux 

and Soromenho, 1996; Yang, 2006), and that BIC performs well in the context 

of mixture models (Keribin, 2000). PROC TRAJ implemented the calculation 

of both BIC and AIC. In our proposed EM approach, we choose a model which 

maximizes BIC among the different component models.

2.6 Newton-type optimization methods

Parameter estimations in statistical problems often involve the maximization or 

minimization of an objective function. For mixture models, maximum likelihood 

(ML) estimation has been the approach most widely considered in the literature. 

To find the maximum likelihood estimate (MLE) 9 of a parameter 9, we use the 

log-likelihood function 1(6, y) and find the value of 9 that maximizes the log- 

likelihood function. The MLE can be found by differentiating the log-likelihood 

and equating the derivative with zero. This derivative is called the score function, 

S (9 ,y ), so that we have
S V ,v ) = ^  =  o.
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The score function is often nonlinear, thus requiring iterative root-finding algo­

rithms to obtain the solution. Different types of iterative algorithms are used 

to perform nonlinear optimization, namely the Newton-Raphson, Fisher Scor­

ing, and Expectation-Maximization (EM) algorithms. Starting with some initial 

value as the parameter estimate for 6, the estimate gets updated through it­

erations and eventually converges to the MLE of interest, 6. In this section, 

we focus on Newton-type optimization methods. An advantage of the Newton­

type optimization methods compared with EM is that the Newton-type methods 

provide estimates of the standard errors for the MLE’s as a by-product of the 

maximization process. The covariance matrix of the estimated parameters can 

be obtained using the Hessian matrix.

2.6.1 Newton-Raphson method

The Newton-Raphson method is one of the best known methods for numerically 

evaluating roots of complex functions. The Newton sequence is

0(fc+i) =  0 «  _  j f r 1(0(fe))5(0(fc))j

where 6 ^  is the ML estimate at the kth iteration, is the inverse of

the Hessian matrix, and S is the score function. The Hessian matrix H  is the 

matrix of the second derivatives of the log-likelihood, Jj-̂ , and is the negative of 

the observed information matrix.

Some disadvantages of the Newton-Raphson method include its sensitivity 

regarding starting values and slow convergence. The initial estimate for starting 

the iterations should not be a “guess” , as it should be selected such that it has 

as many properties of the solution as possible (Kelley, 2003 pg 15). When it
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works, Newton-Raphson can find the solution rapidly. However, if the initial 

estimate is not close enough to the solution, the Newton-Raphson method may 

not converge, or may converge to the wrong root, such as converging to a local 

maximum instead of the global maximum.

In some situations, the iteration may fail to converge to a root, when either 

the iteration becomes unbounded or the Hessian matrix is non-invertible (Kelley, 

2003 pg 18). One of the main drawbacks of the Newton-Raphson method is that 

the Hessian may become numerically singular when iterations are far from the 

maximum point. The other problem is that the calculation of the Hessian matrix 

might be very computational intensive for high dimensions, leading to very slow 

convergence. There have been alternatives proposed to speed up the convergence 

of this algorithm.

2.6.2 Fisher scoring method

The Fisher scoring algorithm is similar to the Newton-Raphson method, except 

the Fisher’s information matrix (the expected information matrix) is used in­

stead of the observed information matrix (the negative of the Hessian matrix). 

For generalized linear models, the two methods are the same if the canonical link 

function is used, that is, the expected value and the actual value of the Hessian 

matrix are equivalent for the canonical link (McCullagh and Nelder, 1989). The 

Fisher scoring method is more reliable than the Newton-Raphson method in the 

sense that, for a well-defined model, the expected information matrix is more 

likely to be positive definite than the negative Hessian matrix. Also, compared 

to the observed information matrix, the expected information matrix is more 

robust to possible outliers; thus leading to a better estimate of the approximate
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standard errors at the final iteration (Demidenko, 2004 pg 86). However, one 

disadvantage of the Fisher scoring method is that, in some cases it is difficult to 

evaluate the Fisher’s information matrix analytically.

2.6.3 Quasi-Newton method

Since Newton-Raphson and Fisher scoring methods require the calculation of 

the second order derivatives of the log-likelihood with respect to the parame­

ters; this computation may be very difficult and is often very slow. For solving 

nonlinear-equation systems with n-dimensions, the Newton methods require n2 

second derivative evaluations, n first derivative evaluations and a matrix inverse 

before even the linear search can be attempted (Nash, 1990 pg 187). The Quasi­

Newton algorithm has been proposed as a solution to this slow computation, 

because the Quasi-Newton method uses an approximation to the Hessian to up­

date the nonlinear iteration sequence. The inverse of the Hessian matrix can 

be approximated directly from the first derivative information at each step of 

the iteration, so that the calculation of the second partial derivatives can be 

avoided (Nash, 1990 pg 187). This greatly reduces the amount of computation 

needed to obtain the Hessian matrix and its inverse. This method reduces the 

tendency of the Newton-Raphson method to lead to local minima or maxima by 

forcing the approximate Hessian to be negative definite; however, there is still no 

guarantee of global convergence (McLachlan and Krishnan, 2008). As well, the 

Quasi-Newton method still suffers from being too sensitive to the initial iterate 

estimates, because initially it approximates the Hessian by the identity, which 

may be a poorly scaled approximation to the estimation problem (McLachlan 

and Krishnan, 2008 pg 6).
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2.7 EM algorithm

2.7.1 Introduction

Since the EM algorithm was presented in a paper by Dempster, Laird, and Rubin 

(1977), it has become a popular algorithm for ML estimation in a wide variety 

of situations. McLachlan and Krishnan (2008) noted that the EM algorithm 

is the most suitable method for handling parameter estimations in incomplete- 

data problems such as missing data, truncated distributions and censored or 

grouped observations. EM is the preferred approach in these situations, where 

the Newton-type methods may be more complicated due to the absence of some 

part of the data. Another application of the EM algorithm is in the optimization 

of the likelihood function when that likelihood is analytically intractable, but 

the likelihood function can be simplified by assuming the values for additional 

parameters as missing. In other words, the incompleteness of the data is not 

natural or evident. It would then depend on the statistician to formulate the 

incompleteness in an appropriate manner to facilitate the application of the EM 

algorithm.

Each iteration of the EM algorithm consists of two steps: the Expectation 

step (E-step) and the Maximization step (M-step). During the E-step, the algo­

rithm finds the expected value of the complete-data log-likelihood with respect to 

the unknown data, given the observed data and the current parameter estimates. 

The M-step of the algorithm would then maximize the expected log-likelihood 

obtained in the first step and update the parameter estimates. Starting from 

some initial values, the E- and M-steps are repeated until some convergence cri­

terion is satisfied. Each iteration is guaranteed to increase the log-liklihood and 

thus the algorithm is guaranteed to converge to a local maximum of the ML
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function. The EM algorithm for the mixture modeling problem has been studied 

by several authors (Hathaway, 1986; McLachlan and Peel, 2000; Meng, 1997); 

Redner and Walker (1984) noted that the algorithm has been found, in most 

instances, to have the advantages of reliable global convergence, low cost per 

iteration and ease of programming.

A main drawback of the EM algorithm is that it can be very slow to converge 

in some situations. Researchers have been developing modified versions of the 

algorithm in attempt to solve this problem, as well as other simulation-based 

methods and extensions. To speed up the estimation procedure, authors such as 

Redner and Walker (1984) and Aitkin and Aitkin (1996) have proposed the use of 

hybrid algorithms such as combining the EM algorithm with Newton’s method. 

Another criticism of EM algorithm is that the covariance matrix of the estimated 

parameters is not produced as an end-product of the algorithm, but there are 

methods for obtaining approximate standard errors from EM algorithms (Louis, 

1982; McLachlan and Krishnan, 2008; Meng and Rubin, 1991). In the context of 

mixed logistic regression models, Wang and Puterman (1998) reported the use of 

a hybrid algorithm for speeding up the convergence and obtaining approximate 

standard errors for estimates. They performed the EM algorithm for parameter 

estimates until some convergence criteria has been met, and then switched to 

the Quasi-Newton method so that approximations of standard errors could be 

obtained as a by-product of the Newton maximization approach.

2.7.2 EM  estimation for longitudinal trajectory models

The EM algorithm can be used to obtain MLE’s for the group-based trajectory 

models by maximizing the complete-data log-likelihood previously described in
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Section 2.3.2, with the inclusion of a missingness component. The EM algorithm 

is implemented by treating the unknown group membership of the mixture pop­

ulation as missing data, so that the data is augmented with indicators of group 

membership.

In the EM framework, starting from some initial value for ip, say ip̂ °\ the 

E-step involves the calculation of the expectation of the complete data log- 

likelihood, conditional on the observed data and the initial estimate rj)̂ °K Since 

y  and ip^  are constants, the conditional expectation depends only on the ex­

pectation of Ztj.

The E-step of the (k -I- l)th iteration involves the evaluation of

E(Z,j |s/,; </>“ >)

E i= i A “ ’ )
dk)

The resulting estimate is the posterior probability that individual j  belongs to 

group i.

The M-step then determines the value of tp that maximizes the complete- 

data log-likelihood with each zy replaced by the corresponding posterior proba­

bility, that is, the evaluation of

t/?(fe+i) =  argmax^E^ogL(,ip\y, ip^)],

which is given by

7T,(fc+1) _  1- yn j=i
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ß[k+1)

a r g m a x ß .  ^  z f f

j=i
Z v M  +  ß\agejt +  ßiage%) -  log(l +  e^ + ^ + « t)

Li=i

Starting from some initial parameter value the E- and M-steps are re­

peated until convergence. In the M-step, there is no closed form solution for the 

evaluation of (3 so this maximization requires iteration. We can use optimiza­

tion procedures such as Newton-Raphson or Quasi-Newton methods. Another 

alternative to these maximization methods is to fit a weighted logistic regres­

sion model and perform ML estimation via iteratively reweighted least squares 

(IRLS).

2.7.3 Weighted logistic regression and IRLS

We note that our longitudinal trajectory model is a mixture of weighted logistic 

distributions. Consider the estimation for component i. When we perform the 

maximization step in the EM algorithm for this group, we can estimate the pa­

rameters /3l =  (/%, /3[ , fy) by treating the model as a weighted logistic regression. 

That is, for each group i we have the model with log-likelihood written in the 

form

3= 1
L » «  +  f e ' i  +  $ 0 9 4 ) -  log(l +  e « * ' « )
,t=1 ,

Using matrix notation, we have the following parameters in our longitudinal
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model.

0* = ft

3x1
where f3l describes the shape of the trajectory for a particular group. Let

^ ™ ^ ^ 1  ageji age2jX ^
X  = , X j  —

 ̂ J mnx  3

Y  =

y 1 agejm agejm y

^ Vji ^

m x  3

i Vjm /'  /  m x l

>Vj =

\ Vn J m nx  1
where X  denotes the covariate (age) information for the n individuals over m 

time points, and Y  denotes the binary responses of the n individuals observed 

over m time points.

The probability that individual j  belongs to group i is denoted by ztj. Let 

the vector Z  represent the group membership probabilities for all n individuals, 

so that

Z  =

Note that we are estimating the parameters for group i only, so that all m ele­

ments in Zj are the same, namely zy.

z  1 z  \¿13

>z 3 =

V )

The logistic model is a generalized linear model with the logit link as the 

canonical link, that is,

rj — logit(fx) =  log
l - / x

=  X t /3
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and

exp(XT (3)
^  1 +  exp(XTf3)

For our longitudinal model, the parameter p in matrix notation is

H =

V " » /

,Hj =
exJt

1 +  e ^
îrmxl

McCullagh and Nelder (1989, pg 114-117) described the method for parameter 

estimation for binary data. We follow the same steps using the parameters 

defined above, but we fit the weighted logistic model rather than a classic linear 

logistic model. We need to consider the group membership probabilities of the 

individuals when we fit the model. We can incorporate them into the weight 

matrix, thus we have W  as a diagonal matrix of weights given by

W  =  Z /i (  1 -  pi)

and the score function becomes

dl/d(3 =  X tZ (Y  -  /x).

We can estimate (3 using the iterative Fisher’s scoring procedure, where at the 

(t +  l) th stage we have

¡ 3 ^  =  i3W + i-H f,m)S(i3m),

where

r\p{t)) = xw(p{t))xT

is the information matrix and

S0m) = x w 0 m)(y -
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is the score function.

This is called the IRLS procedure because the weight matrix changes for 

each iteration, depending on the previous parameter estimates. We will use this 

procedure to perform the maximization (M-step) in the EM algorithm for each 

group. We start the IRLS procedure using the parameter estimates for this group 

i from the previous EM iteration, and repeat the iterative step until convergence 

produces MLE’s of (3 for this particular group. We perform the same method to 

obtain parameter estimates for all the groups in our mixture model, and repeat 

the EM iteration steps until we reach the EM convergence criteria.

2.8 Limitations of ML estimation methods

Although ML is the most widely used estimation approach for mixture models, 

there are some practical difficulties associated with this type of estimation meth­

ods. Some of the common problems researchers may encounter when dealing 

with estimations of mixture models include issues related to model identifica­

tion, convergence and sample sizes (Friihwirth-Schnatter, 2006). A model is 

non-identifiable when more than one set of parameter values correspond to the 

same model, such that there is no way of knowing which set of parameters con­

tains the true values (Casella and Berger, 1990 pg 511). Model identification 

may be a problem for mixture modelling, as a ^-component model may have g\ 

ways of assigning the g sets of parameters to g components, leading to a total of 

g\ equivalent solutions (Bishop, 2006 pg 434). Muthén and Muthén (2007) noted 

that not all growth mixture models are identifiable, and the Hessian matrix in 

a non-identifiable model may be singular. In this case, standard errors cannot 

be computed and estimation may not converge or may not produce interpretable
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estimates for all of the model parameters.

Convergence failures may also occur when mixture components are not well 

separated or when the sample size is small. There is no guarantee that the ML 

methods will fit a model successfully, as the estimation procedures may fail to 

find a solution or only converge to a local maximum instead of global maximum. 

For example, Finch et al. (1989) performed simulation studies on two-component 

normal mixtures, which are considered computationally easy compared to mix­

tures with more components, but their results showed that it was difficult to 

get the global maximum with a high degree of reliability. Also, mixture likeli­

hoods may be unbounded and have many local spurious modes. In these situa­

tions, the search methods will usually converge to a local maximum rather than 

the global maximum (Friihwirth-Schnatter, 2006). Finally, McLachlan and Peel 

(2008) noted that sample sizes of mixture models have to be very large before 

asymptotic theory of ML can be applied. Working with mixtures with small 

data sets or small mixing proportions, or overfitting mixtures with too many 

components may lead to violation of regularity conditions. Mixture models are 

complex statistical models, and researchers need to be cautious when using ML 

estimations to fit mixture models.
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Chapter 3

Simulation Study

3.1 Introduction

This research introduces a SAS/IML macro program that identifies trajectories 

by using the EM algorithm to fit mixtures of logistic distributions to longitudinal 

binary data. To try to speed up the EM convergence, we proposed the use of 

iteratively reweighted least squares (IRLS) to fit a weighted logistic regression 

model at the maximization stage. We performed simulation studies to investi­

gate the properties of PROC TRAJ and EM-based algorithms under a variety 

of parameter combinations in mixtures with different numbers of components.

3.2 Data generation

Simulations were designed to compare six estimation algorithms when the pop­

ulation consists of two or three mixture components, fitting various trajectory 

shapes. Consider the trajectories shown in Figure 3.1, with time plotted against 

the probability of the group having the characteristics of interest. Suppose that 

we are interested in the probability of smoking for individuals. For each trajec­

tory, the trend being described and the corresponding parameters are displayed 

in Table 3.1. The different trends reflect how an individual’s smoking habit may 

change over time. For example, trajectory 1 shows how an individual may have
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tried to quit but then resumed to smoking regularly later on, while trajectories 3 

and 4 show that individuals may become regular smokers at different rates. The 

simulation cases consisted of observations generated from the different combina­

tions of the trajectories. We generated data involving five time points, denoted 

as age of individuals (ageji =  1 , . . . ,  agej5 — 5), and we assumed that the re­

sponses (yjt) were independent across time. The binary response for the j th 

individual in group i at tth time point was generated by a binomial distribution 

with probability of success as

e Pb+Pl agejt + /3£ age?t 

^  J  _|_ e P'0+Plagejt+Piage?t '

Various Trajectories

Figure 3.1: Trajectories designed for simulation
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Table 3.1: Descriptions and parameter values for the various trajectories
Parameters

Trajectory Description A) Al A2
1 Temporarily quitting then resumed smoking 6.170 -5.780 0.997
2 Stopped smoking -7.690 6.590 -1.099
3 Gradual onset -2.240 -0.170 0.210
4 Early onset -3.050 -0.800 1.350
5 Never smoked -3.000 0.010 0.010

3.3 Comparing different estimation algorithms

We considered six different algorithms for maximum likelihood estimation:

1. EM with the IRLS method (EM-IRLS):

Given specific initial values, the estimation was performed using the EM 

algorithm, with the use of the IRLS method at the maximization step;

2. EM with mixed maximization method (EM-Mixed):

Given specific initial values, the estimation was performed using EM with 

IRLS, and then switched to the EM-NLPQN if the IRLS estimation failed;

3. EM with the Quasi-Newton method (EM-NLPQN):

Given specific initial values, the estimation was performed using the EM 

algorithm, with the use of the Quasi-Newton method to perform the max­

imization step;

4. PROC TRAJ 1:

Estimation was performed using the SAS procedure PROC TRAJ with 

specified starting values;

5. PROC TRAJ 2:

Estimation was performed using PROC TRAJ with the procedure’s default 

starting values; and
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6. Full maximization using Quasi-Newton method (FullMax):

Given specific initial values, the estimation was performed using the Quasi­

Newton approach. This is an attempt to replicate the algorithm being used 

by PROC TRAJ 1.

We refer to the PROC TRAJ and FullMax algorithms as full maximization ap­

proaches and the other three algorithms as the EM-based methods.

The FullMax and the EM-based algorithms were implemented as SAS macro 

programs using the SAS/IML language. The IRLS method within the maximiza­

tion step of the EM-IRLS algorithm was programmed using code adapted from 

the example on logistic and probit regression for binary response models given 

in the SAS/IML 9.2 User’s Guide (SAS, 2008). We have implemented the EM- 

IRLS using the portion of code corresponding to the logistic regression model; 

it is mathematically equivalent to the IRLS method described in Chapter 2. 

The EM-NLPQN method used the SAS/IML function NLPQN (nonlinear opti­

mization by Quasi-Newton method) to perform the Quasi-Newton maximization 

(SAS, 2008), and FullMax was also implemented using this optimization subrou­

tine.

The iterative estimation procedures stop when convergence is reached, which 

suggests that the log-likelihood reaching a maximum. PROC TRAJ stops iter­

ating when the log-likelihood stops increasing or when it decreases. Following 

Nawa (2004), the EM algorithm was implemented to stop when the log-liklihood 

stops increasing (defined as having a difference in successive values of the log- 

likelihoods of 10-8) or if it reaches a specified maximum number of 1000 it­

erations. When the EM algorithms failed to converge within 1000 iterations, 

the estimates obtained from the last iteration were taken to be the final esti­
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mate. PROC TRAJ often converges within small number of iterations (less than 

100 iterations) and since FullMax performs the same maximization procedure 

as PROC TRAJ, we decided to use the default setting of 200 iterations in the 

optimization subroutine NLPQN as the maximum number of iterations for the 

FullMax algorithm. Standard errors of the estimates from the EM algorithms 

were calculated using a closed formula (Nawa, 2004 Section 3.2), whereas ap­

proximate standard errors of estimates from PROC TRAJ and FullMax were 

obtained as a by-product of the Quasi-Newton approach (Jones et al., 2001).

To analyze each case of simulated data, the same set of initial values was 

used for the different algorithms (except for PROC TRAJ 2, which used the 

procedure’s own default starting values). We simplified the choice of starting 

values by only specifying the intercept component of the /3’s, that is, we specify 

the initial trajectories to be constant trajectories. The initial values used for 

the simulation cases are displayed in the corresponding tables in Appendices A 

and B. We considered using equal proportions as starting values for the mixing 

proportions, which is the default setting for PROC TRAJ. We compared the al­

gorithms in terms of: the number of converged samples, estimated mean squared 

error of prediction (EMSEP) of the trajectories, mean number of iterations re­

quired until convergence, and run-time required.

1. Number of converged samples

It was discovered that the estimation methods did not always converge and some­

times produced unreasonable estimates of standard errors, i.e. very large values. 

For mixture modelling, model identification can be difficult. The term non- 

identified is used for models without reliable estimates for its parameters (Muthen 

and Muthen, 2007). When a model cannot be identified, standard errors cannot
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be computed due to a singular Fisher information matrix (i.e. non-invertible ma­

trix). Another problem that may arise is obtaining estimates with large standard 

errors, which is associated with trajectories being over-parameterized (Nagin, 

1999). Due to these issues, we have excluded from our results summary those 

realizations where variances were unable to be calculated, or estimated negative 

variances or standard errors larger than 100. We defined the remaining sam­

ples as the “converged samples” and we compared the number of such converged 

samples in each case across the different algorithms.

2. Estimation of the mixing proportions

To assess how well the algorithms could identify the distinct trajectories in each 

case, we can look at the estimated mixing proportions. If the estimated mixing 

proportions are different from the true values, this indicates that some observa­

tions in the samples have been misclassified into the wrong group. We calculated 

the relative errors of the mixing proportion estimates in each case, and gener­

ated box plots for display of the error characteristics. Relative errors (RE) are 

calculated as
„  „  Estimate — Theoretical valueRE =  ---------— ------------------ ------------- .

Theoretical value
The ideal case would be RE =  0.

3. Estimated mean squared error of prediction (EMSEP)

We calculated the EMSEPs to reflect the closeness of the estimated shapes to 

the true shapes of the trajectories, rather than of the parameter estimates. We 

focused on the trajectory shapes because the practical meaning of trajectory 

modelling depends on how the trajectory describes the development of behaviour, 

and we note that different estimates of the parameters (intercept, linear and 

quadratic components) may describe the same shape of a trajectory. For example,
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consider two sets of parameter estimates of /3 =  (/30, /3i, $ 2) as (-3.05, -0.8, 1.35) 

and (-5.80, 3.28, -0.02). The two groups of parameter estimates are distinctively 

different but they lead to the trajectory curves shown in Figure 3.2, which are 

describing the same developmental trend on the behaviour of interest. Since we 

want to use the trajectories to characterize behaviour changes over time, it was 

decided that we should focus on a measure for indicating the difference between 

the estimated and the theoretical trajectory curves.

Time

Figure 3.2: Example: Same trajectory shape may be described by different pa­

rameter values
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Based on our definition of EMSEP as a measure of difference in trajectory 

shapes, the EMSEP based on one simulation case is given by

ns
EM SEP  =  — ^ [ ( p a  -  pi)2 +  (pi2 -  P2 ) 2 +  • • • +  (pm -  p5)2],

Us i=1

where ns is the number of converged samples in that simulation case, pt denotes 

the theoretical smoking probability at time t and pit denotes the estimated smok­

ing probability at time t for the ith sample.

4. Number of iterations

Since the estimations by the EM-based algorithms and the full maximization 

algorithms are based on different models (maximizing different log-likelihoods), 

it was not appropriate to compare the number of iterations across the two types 

of approaches. Thus we focused on the EM methods and only compared the 

number of EM iterations required to reach convergence for each case (averaged 

over the number of converged samples) across the three EM-based algorithms: 

EM-IRLS, EM-NLPQN and EM-Mixed.

5. Run-time for each case

PROC TRAJ is a compiled program written in C but the other algorithms were 

implemented using SAS/IML macro programs, so time efficiency is not a fair 

measure for comparison across all estimation algorithms. We therefore only 

evaluated the run-time required between the implemented programs of the EM- 

based algorithms and FullMax.
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3.4 Results

3.4.1 Two-component mixtures

For mixtures of two components, we considered six different sets of parameter 

configurations and for each set we simulated 50 samples of 500 observations from 

a mixture with mixing proportions 7Ti =  0.32 and 7t2 =  0.68 (leading to 160 

observations in group one and 340 observations in group two). This is similar to 

the data set simulated by Nawa (2004, Section 3.2) but fitting different combi­

nations of trajectories. The trajectory groups being simulated for the six cases 

are displayed in Figure 3.3.

Converged samples

Table 3.2 shows the number of converged samples for the different meth­

ods, that the EM approach produced more acceptable results than PROC TRAJ 

and FullMax, with the EM-IRLS and EM-Mixed being the more reliable meth­

ods than EM-NLPQN. EM-Mixed was able to improve the result for case 2 by 

reaching convergence in one more sample than EM-IRLS. Across all six cases, 

the numbers of converged samples using FullMax appeared to be more stable 

than using EM-NLPQN or the two PROC TRAJ methods, in that it produced 

relatively high number of converged samples across the cases. Performances of 

EM-NLPQN and the two PROC TRAJ algorithms were comparable, with the 

PROC TRAJ procedures having more converged samples in some cases while 

EM-NLPQN was superior in other cases.

We note that the number of converged samples may be considered as a mea­

sure for how well the algorithms can estimate the parameters for each mixture
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Case 6

Figure 3.3: Mixtures of two components: Trajectories simulated in each case 

(Trajectory 1: solid line; Trajectory 2: dashed line)

component. Based on the values of the parameters describing the theoretical 

curves (see Table 3.1), we can expect that combinations of the gradual onset, 

early onset, and never smoking trajectories will be the most difficult situations 

for parameter estimation, since those three trajectories are described by parame­

ter values that are very similar. Thus for the two-component mixtures, we would 

expect that the convergence properties of the algorithms would be worse in cases 

2, 3 and 4 compared to the other two cases. The results in Table 3.2 indeed in­

dicated that case 3 appeared to be the most difficult situation for the algorithms 

to model the trajectories correctly, especially for EM-NLPQN and the PROC 

TRAJ algorithms.
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Table 3.2: Mixtures of two components: Number of converged samples
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

EM-IRLS 50 48 50 50 50 50
EM-Mixed 50 49 50 50 50 50
EM-NLPQN 50 47 14 34 21 50
PROC TRAJ 1 50 50 18 23 28 42
PROC TRAJ 2 50 50 19 25 28 46
FullMax 46 46 47 35 42 48

Parameter estimates

Table 3.3 shows the estimated mixing proportions from the different algo­

rithms for all cases of two-component mixtures, averaged over the converged 

samples in each case. The results for case 1 were expected to be excellent, due to 

the very distinct trajectory shapes being simulated. Across the six cases being 

considered, we have expected the classification performance of algorithms to be 

worst for analyzing data in case 2 and case 5 due to the close resemblance in 

the trajectory shapes in these two cases. Case 4 was also considered to be a 

difficult case for identifying the two distinct trajectories since both trajectories 

were describing an increasing trend (i.e. describing the onset of behaviour).

By inspecting Table 3.3, we can see that the estimation results agree with 

what we have expected. The estimated mixing proportions have values furthest 

from the true values for case 4, which consisted of the two trajectories describing 

the onset of behaviour. Also as predicted, the algorithms classified some observa­

tions into the wrong groups in cases 2 and 5 as well. Estimates across the different 

algorithms do not differ much, but we can see that EM-IRLS, EM-Mixed, and 

FullMax had the estimates that are closer to the true values compared to other 

algorithms. If we focus on cases 4 and 5, FullMax appeared to have produced
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Table 3.3: Mixtures of two components: Estimates of mixing proportions

Method Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Group 1 0.32
EM-IRLS 0.3208 0.3390 0.3194 0.3511 0.3310 0.3231
EM-Mixed 0.3208 0.3374 0.3194 0.3511 0.3310 0.3231
EM-NLPQN 0.3208 0.3404 0.3189 0.3613 0.3408 0.3231
PROC TRAJ 1 0.3218 0.3447 0.3190 0.3575 0.3279 0.3194
PROC TRAJ 2 0.3218 0.3449 0.3198 0.3568 0.3279 0.3201
FullMax 0.3215 0.3413 0.3198 0.3381 0.3199 0.3215
Group 2 0.68
EM-IRLS 0.6792 0.6610 0.6806 0.6489 0.6690 0.6769
EM-Mixed 0.6792 0.6626 0.6806 0.6489 0.6690 0.6769
EM-NLPQN 0.6792 0.6596 0.6811 0.6387 0.6592 0.6769
PROC TRAJ 1 0.6782 0.6553 0.6810 0.6425 0.6721 0.6806
PROC TRAJ 2 0.6782 0.6551 0.6802 0.6432 0.6720 0.6799
FullMax 0.6785 0.6587 0.6802 0.6619 0.6801 0.6785

estimates closest to the true values for the two mixing proportions, although 

they were averaged over only 35 and 42 converged samples for the two cases 

respectively (see Table 3.2 for number of converged samples). All the estimates 

were within the 95% confidence interval, which were (0.19, 0.45) and (0.55, 0.81) 

for the mixing proportions 0.32 and 0.68 respectively. We note that these con­

fidence intervals are wide due to the sample size of 50. If the sample size was 

doubled, the corresponding confidence intervals would become (0.23, 0.41) and 

(0.59, 0.77). The estimates would still fall within this narrower 95% confidence 

interval for the sample size of 100, resulting to the same conclusions with the 

assumption of observing similar results from the algorithms.

The box plots showing the relative errors for the estimates of mixing propor­

tions (described in section 3.3) are displayed in Appendix A.l. The box plots for 

the mixing proportion estimates across the different cases show that the relative



45
errors for the estimates of mixing proportions by FullMax are distinctively far 

away from zero in all cases. Across all the simulation cases of two-component 

mixtures, FullMax consistently over-estimated the mixing proportions of group 1. 

This means the FullMax algorithm estimated the observations as more equally 

distributed among the two mixtures (that is, mixing proportions close to 0.5) 

than they actually were. The inter-quartile range (H-spread) of a box plot rep­

resents the middle 50% of the data; for FullMax, this range of data is often 

further away from zero than the outliers produced by the other methods. Hence, 

it cannot be concluded that FullMax has better classification performance than 

the other algorithms. For the other estimation algorithms, PROC TRAJ 1 and 

2 had wider H-spread for cases 2, 4 and 6 but they performed best for case 1. 

Note that the EM-based algorithms produced outliers for case 5 while the PROC 

TRAJ methods did not; however the PROC TRAJ methods only converged for 

28 samples while the EM-IRLS and EM-Mixed converged for all 50 samples in 

this simulation case.

The parameter estimation results from the different algorithms are presented 

in Appendix A .2. Except for FullMax, the estimates obtained from all other 

methods were close to the theoretical ones and estimated the correct shapes of 

the trajectories, with the exception of the early onset trajectory. If we focus on 

the early onset trajectory in the simulation cases 3, 4 and 5, we can see that all 

methods produced estimates far away from the theoretical values, with standard 

errors larger than those of other trajectory estimates. However, although the 

estimates were not similar to the theoretical values, they still described the same 

trajectory shape as the theoretical curve. For FullMax, the estimates for this 

trajectory curve were very different from the estimates obtained by the other 

methods in all three cases. FullMax was able to produce estimates very close to
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the theoretical values for the early onset trajectory in case 4, but for the other 

two cases it obtained estimates that are quite different from both the true values 

and the results from the other methods.

Estimated mean squared error of prediction (EMSEP)

Table 3.4 summarizes the EMSEP values for the simulation cases. The EM- 

SEPs we present here are summed over the two trajectories in each case. The 

EM-based algorithms outperformed the full maximization algorithms in most 

cases except for case 5. FullMax produced estimates that described trajectories 

with shapes rather different from the true trajectories for all cases, especially 

worse for cases 1 and 3. The other algorithms had the most trouble identifying 

the shapes of the trajectories in case 2, but the EMSEPs for this case were still 

very small, indicating that the algorithms were able to estimate trajectories that 

were very similar to the correct trajectory shapes even in the worst case.

Table 3.4: Mixtures of two components: EMSEP
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

EM-IRLS 0.005 0.012 0.002 0.009 0.011 0.006
EM-Mixed 0.005 0.012 0.002 0.009 0.011 0.006
EM-NLPQN 0.005 0.012 0.002 0.011 0.012 0.006
PROC TRAJ 1 0.005 0.015 0.002 0.010 0.004 0.007
PROC TRAJ 2 0.005 0.015 0.002 0.010 0.004 0.007
FullMax 4.616 2.122 6.118 1.862 1.797 2.674

To summarize the accuracy of the different estimation algorithms, Figure 3.4 

shows the plot of number of converged samples and EMSEPs for all six cases and 

all six algorithms. The ideal situation would be to obtain all the points in the 

upper left region of the plot, indicating high number of converged samples and 

EMSEPs close to zero. However, we see that the points representing results from
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FullMax are spread out across the top of the plot, showing the varying EMSEPs 

obtained. All other algorithms produced estimates with very small EMSEPs 

across various numbers of converged samples. EM-IRLS and EM-Mixed had the 

best performances; points representing these two algorithms are concentrated in 

the upper left corner, showing low EMSEPs with large numbers of converged 

samples.

Two-component mixtures: Convergence and EMSEP
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Figure 3.4: Mixtures of two components: Convergence and EMSEP 

EM iterations and run-time

The number of EM iterations and run-time required for the different algo­

rithms are presented in Table 3.5 and Table 3.6. We note that in most cases,
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EM-NLPQN requires less number of iterations but more time to reach conver­

gence when compared to EM-IRLS and EM-Mixed. For the samples in case 3, 

EM-NLPQN required very small number of iterations to converge (approximately 

21 iterations), while the other two EM methods required the maximum number 

of iterations (1000 iterations) to reach convergence in a lot of the samples, thus 

EM-NLPQN obtained estimates for this case much quicker than the other two 

EM methods. The full maximization algorithms can produce estimates faster 

than the EM methods (Roeder et al., 1999); Table 3.6 shows that FullMax was 

much faster than the EM-based algorithms in parameter estimation.

Table 3.5: Mixtures of two components: EM iterations required
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

EM-IRLS 36.12 468.42 955.18 778.12 938.82 110.66
EM-Mixed 36.12 496.9 955.18 778.12 938.82 110.66
EM-NLPQN 29.46 301.91 21.07 215.29 252.52 80.96

Table 3.6: Mixtures of two components: Run-time required in (hrs):mins:secs
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

EM-IRLS 29:48 6:50:03 12:42:23 10:49:54 13:18:40 1:28:26
EM-Mixed 29:53 8:16:45 12:44:20 10:51:50 13:22:09 1:28:49
EM-NLPQN 1:37:47 15:03:10 1:26:59 11:09:45 13:06:26 4:10:43
FullMax 27:32 52:37 49:35 44:40 56:49 45:09

3.4.2 Three-component mixtures

We considered 5 different sets of parameter configurations for the three-component 

mixtures and the trajectories being simulated for each case are presented in Fig­

ure 3.5. For each case, we simulated 50 sets of 800 observations from a three 

group model with proportions 7Ti =  0.2, 7r2 =  0.425 and 7r3 =  0.375 (leading to 

160 observations in group one, 340 in group two and 300 in group three). This
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follows from Nawa’s (2004, Section 3.2) data generation procedure.

Case 1 Case 2

Figure 3.5: Mixtures of three components: Trajectories simulated in each case 

(Trajectory 1: solid line; Trajectory 2: dashed line; Trajectory 3: dotted line)

Converged samples

We expected case 1 to be the easiest case for the algorithms to handle due 

to the distinct shapes of the trajectories being simulated. Case 3 was expected 

to be the hardest case for algorithms to reach convergence since it consisted of 

the combination of the three trajectories with very similar parameter values: the 

early onset, gradual onset, and never smoking groups. All other cases included 

combinations of any two of these three trajectory shapes, thus the performances
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of the algorithms in such cases were predicted to be worse than those in case 1.

The number of converged samples in each case are presented in Table 3.7. As 

expected, case 1 had the most number of converged samples across all algorithms, 

and most algorithms performed worst in case 3. Across all cases, EM-IRLS and 

EM-Mixed have the best performance, while PROC TRAJ 2 and FullMax gen­

erally performed worse than other methods. It is unclear why EM-IRLS and 

EM-Mixed converged in more number of samples in case 3 compared to case 2, 

but they still performed well and was able to reach convergence in at least 43 out 

of the total 50 samples. The performances of FullMax in case 1 and case 5 were 

much worse than those of the other algorithms, with only 15 and 13 converged 

samples respectively. Overall, it is noted that EM-based algorithms performed 

better than the full maximization algorithms in terms of number of converged 

samples.

Table 3.7: Mixtures of three components: Number of converged samples
Case 1 Case 2 Case 3 Case 4 Case 5

EM-IRLS 50 43 47 50 50
EM-Mixed 50 43 48 50 50
EM-NLPQN 50 35 31 27 47
PROC TRAJ 1 44 21 21 24 43
PROC TRAJ 2 24 16 9 21 37
FullMax 15 17 25 22 13

Parameter estimates

Next, we examined the estimates of the mixing proportions for each case to 

evaluate each algorithm’s ability to classify the observations into the correct tra­

jectory groups. Table 3.8 shows the results from the six algorithms across the 

five cases. Despite its good performance in the two-component mixtures, it is
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clear that FullMax was not able to handle the more complex three-component 

mixtures. All other algorithms performed well, but small amounts of misclassi- 

fications occurred in cases 2, 3 and 5 similarly across the five algorithms. For 

case 2 and case 5, the algorithms were more likely to misclassify observations be­

tween groups 1 and 2, while for case 3 the algorithms misclassified observations 

between groups 2 and 3. FullMax produced estimates of the mixing proportion 

for group 1 falling outside the 95% confidence interval (0.09, 0.31) for cases 1 and 

5. If the sample size was doubled, the estimate of group 1 proportion for case 2 

will also be outside the 95% confidence interval (0.12, 0.28) for a sample size of 

100. The 95% confidence intervals for the groups 2 and 3 mixing proportions for 

50 samples are (0.29, 0.56) and (0.24, 0.51) respectively. The estimates for the 

groups 2 and 3 mixing proportions produced by all algorithms were within these 

95% confidence intervals, as well as the intervals for a sample size of 100, which 

are (0.33, 0.52) and (0.28, 0.47) for the groups 2 and 3 proportions.

The box plots showing the relative errors of the estimated mixing proportions 

(described in section 3.3) are shown in Appendix B.l. We can see that besides 

FullMax, the relative errors of estimates from all other algorithms have medians 

close to zero but varying H-spread widths in most cases. In some cases, the rela­

tive errors from EM-based methods had narrower H-spreads, while in other cases 

the PROC TRAJ methods produced relative errors with smaller H-spreads. For 

case 1, the algorithms (except for FullMax) had wide H-spreads for the mixing 

proportions of groups 1 and 3 but narrow H-spreads for the group 2 proportion. 

Excluding FullMax, PROC TRAJ 2 had relatively wide H-spreads for cases 1 

and 2 while EM-NLPQN had wide H-spreads for cases 2 and 3 when compared 

to the other algorithms. We can see that almost all algorithms produced outliers 

in case 2, indicating that it was a difficult combination of trajectories for the
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Table 3.8: Mixtures of three components: Estimates of mixing proportions

Method Case 1 Case 2 Case 3 Case 4 Case 5

Group 1 0.200
EM-IRLS 0.2043 0.222 0.1994 0.2015 0.2212
EM-Mixed 0.2043 0.222 0.2005 0.2015 0.2212
EM-NLPQN 0.2043 0.2433 0.1991 0.2008 0.2241
PROC TRAJ 1 0.1985 0.2406 0.1832 0.2076 0.2265
PROC TRAJ 2 0.2484 0.2294 0.2013 0.1986 0.2305
FullMax 0.0732 0.1089 0.2365 0.1835 0.5037
Group 2 0.425
EM-IRLS 0.4224 0.4144 0.4418 0.4318 0.4025
EM-Mixed 0.4224 0.4144 0.4413 0.4318 0.4025
EM-NLPQN 0.4223 0.4143 0.442 0.4344 0.3994
PROC TRAJ 1 0.4251 0.3957 0.4429 0.4312 0.4041
PROC TRAJ 2 0.4222 0.36 0.4425 0.4254 0.4031
FullMax 0.4476 0.5492 0.3851 0.4317 0.1515
Group 3 0.375
EM-IRLS 0.3734 0.3636 0.3588 0.3667 0.3763
EM-Mixed 0.3734 0.3636 0.3582 0.3667 0.3763
EM-NLPQN 0.3734 0.3424 0.3589 0.3648 0.3766
PROC TRAJ 1 0.3764 0.3638 0.3739 0.3612 0.3694
PROC TRAJ 2 0.3296 0.4106 0.3562 0.376 0.3665
FullMax 0.4792 0.3419 0.3784 0.3848 0.3448

algorithms to identify. Across all cases, FullMax had relative errors with

ans further away from zero and with H-spreads wider than those of the other 

algorithms. For some of the simulation samples, FullMax could only identify two 

components instead of three, thus leading to such unreasonable mixing propor­

tion relative errors estimates.

The parameter estimates from the different algorithms are presented in Ap­

pendix B.2. FullMax was unable to provide estimates similar to the theoretical 

values, leading to incorrect trajectory shapes being estimated. All other algo-
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rithms performed well, with parameter estimates close to true values, except for 

the early onset trajectories in cases 2, 3 and 4. Similar to the results obtained for 

the two-component mixtures, the algorithms (except FullMax) produced biased 

parameter estimates for the early onset trajectory, but the estimated parameters 

described the same trajectory shape as the true curve. The distances between 

the estimated and the true trajectories can be described using the EMSEPs.

Estimated mean squared error of prediction (EMSEP)

From the EMSEPs shown in Table 3.9, we can see that the EM-based algo­

rithms and PROC TRAJ 1 performed better than the other two full maximization 

algorithms across all cases compared to the full maximization algorithms. The 

EM methods were able to estimate trajectories closer to the true curves in all 

cases except case 2. All algorithms had trouble modelling the trajectories in case 

2 in terms of the number of converged samples, but the EM algorithms had ap­

proximately twice as many converged samples than the PROC TRAJ 1 method 

(see Table 3.7).

Table 3.9: Mixtures of three components: EMSEP
Case 1 Case 2 Case 3 Case 4 Case 5

EM-IRLS 0.041 0.398 0.016 0.006 0.023
EM-Mixed 0.041 0.398 0.016 0.006 0.023
EM-NLPQN 0.041 0.638 0.017 0.006 0.023
PROC TRAJ 1 0.110 0.021 0.201 0.006 0.070
PROC TRAJ 2 0.300 0.743 0.239 0.304 0.201
FullMax 3.553 3.391 1.930 1.715 1.754

The accuracy of the estimations in terms of number of converged samples 

and EMSEPs axe shown in Figure 3.6. Compared to the simulation cases of 

two-component mixtures (see Figure 3.4), the algorithms obtained less precise
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estimations in the three-component mixture cases. FullMax had the worst per­

formance among all algorithms, as the FullMax converged in low number of sam­

ples and produced EMSEPs far from zero in all cases. For the three-component 

mixture cases, the PROC TRAJ procedures resulted in estimates with larger 

EMSEP values compared to the estimates from two-component mixtures. The 

points representing EM-IRLS and EM-Mixed are close to the upper left region, 

indicating their excellent performance in terms of both small EMSEPs and high 

convergence.

Three-component mixtures: Convergence and EMSEP

0>
Q.
E
(S3 
tn 

" O  CD O)-̂0)>coo
<D-Q
E

oto

o■sr

oCO

oCM

z: 5? -

*
$ o EM-IRLS

A EM-Mixed
^  A + EM-NLPQN

x PROC TRAJ 1
O PROC TRAJ 2

O
+ v FullMax

+

+
x  o  v
x x o  v

0 V
V

V

o

2
EMSEP

Figure 3.6: Mixtures of three components: Convergence and EMSEP

EM iterations and run-time



55
The results regarding number of EM iterations and run-time required are 

summarized in Table 3.10 and Table 3.11, and the same trends are observed here 

as those seen in the two-component mixture cases. Across the EM-based algo­

rithms, EM-IRLS required the least amount of time for parameter estimation but 

required more iterations than EM-NLPQN. FullMax was much faster than the 

EM algorithms but its performance based on the other characteristics (number of 

converged samples and EMSEPs) showed that it is not a reliable method despite 

its speed. Overall, all algorithms required more time to perform parameter esti­

mation in the three-component mixtures than the two-component cases. This is 

expected, as the parameter estimation process becomes more complicated when 

the model complexity increases (an increase in parameters and uncertainty in 

group allocation).

Table 3.10: Mixtures of three components: EM iterations required
Case 1 Case 2 Case 3 Case 4 Case 5

EM-IRLS 829.56 955.74 941.09 963.80 587.74
EM-Mixed 829.56 955.74 942.31 963.80 587.74
EM-NLPQN 610.92 697.91 488.35 159.07 374.40

Table 3.11: Mixtures of three components: Run-time required in hrs:mins:secs
Case 1 Case 2 Case 3 Case 4 Case 5

EM-IRLS 25:24:22 31:53:46 31:35:59 34:37:58 18:20:17
EM-Mixed 26:53:30 39:59:43 41:14:44 34:38:12 18:21:25
EM-NLPQN 69:09:48 81:46:43 53:40:38 19:20:46 44:30:29
FullMax 5:18:08 8:24:44 4:42:09 6:41:07 4:37:02

3.5 Summary

The complexity of mixture models increases as the number of components in­

creases. This is shown through our simulation results, as the performances of all
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methods were more stable in the two-component mixtures compared to the three- 

component mixtures. In general, the full maximization algorithms (FullMax and 

PROC TRAJ 1 and 2) are faster than the EM-based algorithms (EM-IRLS, 

EM-Mixed and EM-NLPQN) in parameter estimation. However, the conver­

gence properties of the EM-based methods are much more dependable, in that 

they converged for high number of samples in most cases. Results showed that 

the FullMax algorithm was not able to handle the more complex cases of three- 

component models.

In terms of the number of converged samples, the EM-based algorithms out­

performed the full maximization algorithms in almost all the simulation cases. 

This is an important characteristic of the algorithms since it reflects how depend­

able the estimation methods are in regards to trajectory modelling. EM-IRLS 

converged for 43 out of the total 50 samples in the worst situation (case 2 of 

the three-component mixtures). However, the full maximization methods ob­

tained lower numbers of converged samples in some cases, such as PROC TRAJ 

1 converging for only 18 samples (case 3 of the two-component mixtures) in the 

worst situation, and PROC TRAJ 2 and FullMax had even worse performances 

in terms of convergence.

Based on the converged samples, all algorithms except FullMax were able to 

obtain the correct estimation results. The focus is on the estimated trajectory 

shapes rather than on the estimated parameters ¡3 because different parameters 

may describe the same trajectory curve. Unlike the coefficients from linear re­

gression, the parameter estimates do not have interpretation by themselves, one 

must look at the curves described by the parameters to understand the changes 

in the behaviour of interest. The EMSEPs showed that EM-based algorithms
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and PROC TRAJ were able to estimate the correct trajectory shapes even when 

some parameter estimates were quite different from the true parameter values. 

However, FullMax was unable to achieve the same results, because their esti­

mated trajectories were very far from the true curves in some cases.

The full maximization algorithms need to perform the optimization of the log 

of sum, which is difficult to evaluate (see, for example, Bilmes (1998 pg 3)). This 

may explain why the FullMax and PROC TRAJ methods have difficulties with 

the more complex mixture models. Although the FullMax estimation and PROC 

TRAJ were supposed to be using the same algorithm, sometimes they produced 

distinctively different results. For the FullMax algorithm, the results obtained 

for the two-component mixtures were remarkably different from those for the 

three-component mixtures. For the two-component mixtures, FullMax produced 

results with relatively high number of converged samples but with large EMSEPs. 

For the three-component mixtures, FullMax converged to the false maximum in 

many situations, and for some samples the procedure could only identify two 

mixture components instead of three. Note that the default maximum of 200 

iterations was used as one of the stopping criteria for the FullMax algorithm; it 

may be able to produce better estimates if more iterations were allowed. How­

ever, since the PROC TRAJ procedures often converged within 100 iterations in 

the simulation cases; there is no strong evidence for this suggestion.

With regards to the maximization method in the EM framework, simulation 

results showed that the EM-IRLS algorithm was able to obtain correct conver­

gence in a less amount of time compared to the EM-NLPQN method. It is noted 

that the Quasi-Newton method is slow to converge but each iteration step is 

scaled to ensure an increase in the optimization function. Also, at each M-step
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of an EM iteration, the SAS function NLPQN call would perform a maximum 

of 200 iterations by default; while the IRLS was implemented such that a max­

imum of 20 iterations would be performed. These reasons may explain why 

EM-NLPQN required less number of iterations but more time to converge when 

compared to EM-IRLS in most situations.

It was anticipated that EM-NLPQN would have good performance but slow 

speed, while the performance of the faster algorithm EM-IRLS was unsure. The 

EM-Mixed approach was implemented such that it may improve the performance 

of EM algorithm in the sense of allowing the failed samples from EM-IRLS to 

have a second chance. From our simulation results, we did observe improve­

ments in some cases when EM-Mixed algorithm was used, although the method 

was not necessarily needed in most of the simulation cases due to the excellent 

performance of the EM-IRLS method. The poor behaviour of EM-NLPQN in 

the simulation results was unexpected; namely it produced a small number of 

converged samples in some simulation cases.

One concern of our simulation study is the sample size. The confidence level 

of simulation output depends on the size of data set; the larger the number of 

runs, the higher is the associated confidence. In our simulation study, increas­

ing the simulation runs would have allowed for narrower confidence intervals of 

our estimates. However, larger simulation sample sizes also require more effort 

and resources. With the use of a single computer, our current sample size of 50 

required the systems to run non-stop for approximately 31 days to finish all the 

simulation cases. Doubling the sample size to 100 would required approximately 

two months to complete the simulation study. Future simulation studies may 

consider increasing the sample size and compare the performances of the algo­
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rithms with different parameters and starting values.

In conclusion, our simulation results showed that EM-IRLS is a reliable 

method with better convergence and estimation properties than other algorithms. 

On average, the FullMax algorithm required 25% of the time required for EM- 

IRLS and EM-Mixed, while the EM-NLPQN algorithm required almost the same 

time or even more time than the other two EM-based algorithms. Although the 

full maximization methods were faster in parameter estimation, we may not be 

able to draw conclusions from their results due to having non-identified models. 

Compared to the full maximization algorithms, the EM-based algorithms have 

superior performance in terms of convergence. The PROC TRAJ 1, PROC TRAJ 

2, and FullMax algorithms converged for only 66%, 57% and 63% of the sam­

ples respectively, while EM-IRLS and EM-Mixed converged for over 98% of the 

samples and EM-NLPQN converged for 74% of samples on average. For future 

trajectory modelling research, the use of the EM-IRLS algorithm is recommended 

in order to avoid convergence problems and produce precise estimations.
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Chapter 4

Application: smoking data

4.1 Introduction

We have applied the group-based trajectory modelling methods discussed in pre­

vious chapters to the data set from the Third Waterloo Smoking Prevention 

Project (WSPP3) (Brown et al., 2002). The main purpose of our analysis was 

to determine the number of distinct smoking trajectories to allow for profiling 

the characteristics of the identified groups. In this chapter, we will give a short 

description of the study design of the WSPP3; a more detailed description of 

the study is given by Driezen (2001). Then we will discuss the results obtained 

by applying the longitudinal trajectory model to identify the different smoking 

trajectories within the study sample.

4.2 Description of the longitudinal study

The objective of the longitudinal study WSPP3 was to evaluate a high school 

tobacco control intervention program (Brown et ah, 2002). The study followed 

a cohort of more than 4000 students over a seven year period (1990-1996), and 

examined their smoking behaviour and the long term effectiveness of the smok­

ing prevention program. The study was carried out in three phases: evaluate 

the social influences smoking prevention program at the elementary school level



61
(grades 6 to 8), at the secondary school level (grades 9 and 10), and then a 

follow-up assessment when students were in grades 11 and 12.

The first phase of the study consisted of a randomized trial with 100 elemen­

tary schools from seven school boards. The goal of this phase was to evaluate the 

effectiveness of self-preparation materials and having teachers as the providers of 

the social influences programs. Six of the school boards agreed to continue their 

participation into the second phase of the study, and 30 schools were eligible and 

willing to take part in this next phase. In the second phase, the schools were 

matched within school board and then randomized within pairs to intervention 

and control groups. The intervention program was provided to grade 9 and grade 

10 students within the intervention schools, and the program consisted of involv­

ing as many students as possible in smoking prevention and cessation activities 

(Brown et al., 2002). The final phase of the study consisted of a follow up survey 

of the participated students when they were in grade 11 and grade 12, in order 

to assess the long term impacts of the interventions provided (Driezen, 2001).

4.3 Description of the data set

We considered the data set that was used by Driezen (2001) to identify regular 

smoking trajectories. The sample consisted of 2495 students for whom smoking 

status was recorded at all seven time points, but may have missing age infor­

mation. This sample included students who did not smoke at baseline (grade 

six) as well as students who reported as smokers. Smoking status was originally 

recorded into five categories: never smoker, tried once, quitter, experimental, 

or regular. Following Driezen (2001), we wanted to focus on how youths de­

velop the habit of smoking regularly, thus smoking status at each time point
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was dichotomized as regular or non-regular (never smoker, tried once, quitter or 

experimental). Table 4.1 summarizes the number of students in each category at 

each time point, and we can see that the proportion of regular smokers increases 

as the students grew older.

Table 4.1: Number of non-regular and regular smokers at each time point
Grade Non-regular smoker Regular smoker % Regular smoker

6 2483 12 0.48
7 2463 32 1.28
8 2349 146 5.85
9 2151 344 13.79
10 1893 602 24.13
11 1775 720 28.86
12 1649 846 33.91

4.4 Longitudinal trajectories

The current analysis aims to identify developmental trajectories of smoking in a 

sample of adolescents. We estimated several trajectory models based on the 2495 

students, and each model used a quadratic term in age to describe the relationship 

between age and youths’ smoking behaviours. We applied the EM-IRLS, PROC 

TRAJ, and FullMax algorithms to fit the three-, four-, five- and six-component 

models without covariates. We used BIC for model selection, choosing the model 

with the maximum BIC as the optimal model for each algorithm.

Logistic regression starting values proposed by Nawa (2004) were used to 

start the estimation procedures; he has shown that these starting values may 

reduce convergence problems. The procedure for obtaining the starting values 

consisted of dividing the data into groups according to responses at some chosen
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time points, then fitting a logistic regression model in each groups and use the 

obtained parameter estimates as initial values to start the trajectory modelling 

algorithms. The method is given in detail by Nawa (2004, Section 3.2.4).

The logistic regression starting values were obtained and used to start the 

EM-IRLS and FullMax algorithms for the different component models. How­

ever, floating point exceptions occurred in PROC TRAJ when Nawa’s starting 

values were specified, so the PROC TRAJ analyses were performed using the 

procedure’s default starting values. It was not necessary to use the stringent con­

vergence criterion of having log-likelihood values correct to five decimal places; 

therefore, the EM-IRLS convergence criterion was changed to 10-3 , meaning 

the iterative procedure would stop when the difference between successive log- 

likelihood values was less than 10~3.

4.4.1 Models

Three group model

Figure 4.1 shows the results from fitting a mixture of three components using 

EM-IRLS, PROC TRAJ and FullMax respectively. The corresponding mixing 

proportions are shown within each figure; the results obtained by EM-IRLS and 

PROC TRAJ were very similar. Although FullMax obtained the same trajectory 

shapes, the mixing proportions obtained were different from the other two. Also, 

FullMax obtained negative variances for the estimates in the model, indicating 

that it is a non-identifiable model and conclusions cannot be made based on 

these estimated trajectories. The EM-IRLS and PROC TRAJ models showed 

that about 69% of students remained as non-smokers throughout the seven years.
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About 12% of students started smoking early while 19% of the students had a 

later smoking onset, but both groups escalated to regular smoking by the age of 

seventeen.

Four group model

The four group models fitted using the three algorithms are presented in Fig­

ure 4.2. Note that the trajectories and mixing proportions estimated by PROC 

TRAJ and FullMax appeared to be the same, but standard errors could not be 

calculated for the parameter estimates (FullMax obtained a singular observa­

tion matrix). The model fitted by EM-IRLS showed that three distinct smoking 

trajectories were identified, with different smoking onset patterns. The largest 

group was the non-smoker group of students, consisted of approximately 69% 

of the study sample. The two smoking groups from the three-component model 

were split into the three smoking trajectories shown in this model, and the early 

onset trajectory showed that only 3.6% of the students started smoking at the 

early age of twelve.

Five group model

The five group models fitted are displayed in Figure 4.3. PROC TRAJ and 

FullMax had the similar problem of being unable to calculate the standard er­

rors, with FullMax producing negative variances for the parameter estimates. 

FullMax obtained the same trajectories and mixing proportions as those esti­

mated by EM-IRLS, but PROC TRAJ estimated two non-smoking groups of 

students (the two groups were split from the non-smoking group estimated in 

the four group model). The five group model fitted by EM-IRLS is of interest, as



65

the additional trajectory in this model compared to the four-component model 

showed a group of students with decreased smoking probability by the age of 

seventeen. Although this group of “quitters” consisted of only 5.6% of the study 

population, it is of public health interest to characterize this group of students 

to better understand the factors that led them to smoking reduction.

Six group model

Figure 4.4 shows the six group models fitted by the three algorithms. Again, 

PROC TRAJ and FullMax suffered from the problem of non-identifiable models, 

with FullMax obtaining negative variances for the estimates. PROC TRAJ was 

only able to identify four distinct trajectories while FullMax estimated two non­

smoking trajectories in this model. EM-IRLS produced six distinct trajectories, 

with the largest group of student as the non-smokers group and the smallest 

group being the early onset smokers. Compared to the five-component model, 

the group of “quitters” in this model remained as approximately 5.5% of the 

study population and the additional group identified was a group of late onset 

smokers, consisting of about 7.14% of the study population.
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ENMRLS: Three group model

Scaled age

Smoking vs. Time
Logistic Model

S m nitir^g

Full Max: Three group model

Figure 4.1: Three group model fitted by EM-IRLS, PROC TRAJ, and FullMax
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EM-4RLS: Four group model

Scaled age

Smoking vs. Time
Logistic Model

Scaled Age
Group Rtrcenls 1 -r ?  14.2 T T T  47A m  1L1 t~ t~ t 27&

FullMax: Four group model

Scaled age

Figure 4.2: Four group model fitted by EM-IRLS, PROC TRAJ, and FullMax
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EM-IRL8: Five group model

Smoking vs. Time
Ingiurio Modal

Scaled Age
Group Rrcoita r r r  1S.4 r r r  15.7 m  1L0 r - t - t  14.7 r - r r  43.2

FirftMax: Five group model

Figure 4.3: Five group model fitted by EM-IRLS, PROC TRAJ, and FullMax
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ENMRL8: Six group model

Scaled age

Smoking vs. Time
logistic Model

Scaled Age
Group Rncanls IT T  11.1 r T T  14.2 m  0.2 r~t~t 44.0 rT T  3.S i r r t  27.0

FullMax: Six group model

Scaled age

Figure 4.4: Six group model fitted by EM-IRLS, PROC TRAJ, and FullMax
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4.4.2 Discussion

For model selection, BIC was used to choose the optimal model for each algo­

rithm. The BIC values, shown in Table 4.2, indicate that the four group model 

was the best fitting model chosen for EM-IRLS while the five group model was 

optimal for the other two algorithms. We cannot draw conclusions based on the 

models fitted by PROC TRAJ and FullMax, because the approximate standard 

errors could not be calculated for the estimates in almost all of the models. The 

EM-IRLS algorithm converged without such problems in all models.

Table 4.2: BIC values for modelsEM-IRLS PROC TRAJ FullMax
3 groups -4937.96 -4535.91 -4535.84
4 groups -4932.54 -4530.39 -4506.53
5 groups -5053.95 -4520.36 -4481.21
6 groups -5556.99 -4561.88 -4491.79

The four group model obtained by EM-IRLS (see Figure 4.2) showed that four 

developmental trajectories related to smoking behaviour were identified, of which 

three were distinct smoking trajectory groups that led to regular smoking at age 

sixteen to seventeen. The remaining trajectory consisted of the non-smoking 

group of students, which was the largest subgroup within the study sample. Al­

though the group of “quitters” identified in the five- and six-component models 

is of public health interest, there was only a small percentage of students within 

this group, indicating that there were not enough students following a reduced 

smoking pattern that was distinct from the other frequent smoking patterns.

Using PROC TRAJ with the procedure’s default starting values, Driezen 

(2001, Section 3.3) fitted the same component models without covariates to this 

data set in order to determine the optimal number of trajectory groups. How­
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ever, he obtained different trajectory models from those estimated by PROC 

TRAJ in our study. Driezen’s (2001) results suggested that the five group model 

was optimal and he further investigated the effect of baseline risk factors by fit­

ting the five group model with the risk factors as covariates. The discrepancies 

between our results and his results may be explained by the different versions 

of SAS and PROC TRAJ used. Driezen’s analyses were performed using the 

version of PROC TRAJ tailored for SAS version 8, while we used the version of 

PROC TRAJ designed for SAS version 9. Some extensions of the methodology 

included the ability to calculate group membership probabilities as a function of 

time-stable covariates and fitting the dual-trajectory model (Jones and Nagin, 

2007).

Nawa (2004) proposed the algorithm of starting the parameter estimation 

with the EM algorithm and then switch to PROC TRAJ after a few iterations. 

He applied this algorithm to fit the same component models without covariates 

to the WSPP3 data set and chose the six group model as the best model. Due to 

the complete case analysis approach he employed, the data set he analyzed only 

contained the 2394 students with complete response measurements at all seven 

time points and complete baseline risk factors values. This is a smaller sample 

from the one we analyzed; this may explain the difference between our results 

and those he obtained.

Nawa (2004) continued his analysis by fitting the three- to six-component 

models with three risk factors as covariates, and the four group model was cho­

sen as the optimal model. The final model with covariates selected by Nawa 

(2004, Section 5.3.2) for this complete data set showed the same four trajectory 

as those in our final model produced by EM-IRLS. However, the mixing propor­
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tions were not presented so it is not certain that we have identified the same four 

trajectory groups.
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Chapter 5

Conclusions and future work

5.1 Summary and conclusions

This thesis focused on trajectory modelling of longitudinal binary data. We 

considered the group-based “semi-parametric” trajectory modelling method pro­

posed by Nagin (1999; 2005), which identifies multiple trajectories within a pop­

ulation using a mixture modelling approach. In the case of longitudinal binary 

data, the model consists of mixtures of logistic regressions, in which the regres­

sion coefficients for each group determine the shape of the group trajectory. The 

number of groups is unknown and has to be inferred from the available data, 

along with the mixing proportions and the logistic regression parameter esti­

mates. A procedure in SAS called PROC TRAJ had been created to estimate 

the parameters in this trajectory model (Jones et al., 2001). This procedure 

employs the Quasi-Newton method for parameter estimation, but it has been 

shown to be very sensitive to starting values and have some convergence prob­

lems, so that the procedure sometimes fails to converge or converges to a false 

maximum. It has been suggested that using the EM algorithm may solve the 

problems (Nawa, 2004).

The EM algorithm can be implemented to perform maximization using differ­

ent optimization methods or by fitting a weighted logistic regression model. To 

speed up the EM convergence, we proposed the use of the iteratively reweighted
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least squares method (denoted as EM-IRLS) to fit the weighted logistic model 

at the maximization step. The simulation study shows that EM-based methods 

produced estimates which described the correct trajectory shapes with fewer con­

vergence problems compared to full maximization methods such as PROC TRAJ. 

We found that the full maximization algorithms had a higher chance of result­

ing in non-identifiable models where parameter estimates are unreliable. The 

EM-IRLS method outperformed the EM method implemented with the Quasi­

Newton maximization step in terms of convergence properties and speed. When 

we applied the various trajectory modelling algorithms to smoking data, the re­

sults were consistent with our simulation study.

5.2 Future work

The longitudinal trajectory model we considered can be extended in several ways. 

We note that we have only considered models without covariates, and that mod­

els may be more stable if covariates are included (such as risk factors related to 

smoking behaviour). Also, this model assumes independence over time points and 

between individuals, which may not be true in clustered data. Since the model 

is fitted to longitudinal data, the independence assumption may be violated due 

to correlation between observations over time. The regression coefficients of our 

model are most likely estimated without bias, however, the estimates of standard 

errors may be overestimated by ignoring the dependency (see, for example, Ro­

driguez and Goldman (1995) and Donner and Klar (2000 pg 96)). By including 

covariate information and correlation structures into the model, the subgroups 

within the population would become more distinct with less variation. The tra­

jectories identified from such an improved model would then be more reliable.
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The current model assumes that there is a quadratic relationship between 

age (time) and behaviour, but the relationship can be represented using other 

polynomial functions as well. Our model can analyze data with missing covari­

ates but requires complete response information from the individuals. It is of 

interest to extend this model to one where missingness in the responses can be 

handled using sophisticated methods such as multiple imputation. This can be 

done, for example, using SAS PROC MI (SAS, 2009) and the efficiency can be 

evaluated. Information loss by considering only the complete data or available 

data can then be reduced and the analysis would result in improved parameter 

estimation.

Another concern for this group-based trajectory approach is related to model 

selection. For mixture models, model selection is complicated and there is not 

one commonly accepted statistical tool for choosing the optimal number of mix­

ture components in the models. BIC is one of the popular model selection tools 

often used for mixture models and model-based clustering, but researchers can 

also consider many other instruments. Statistical efforts need to focus on how 

to choose the most efficient and appropriate model selection criteria depending 

on the scientific problem of interest.

The implementation of any iterative procedure requires a choice of conver­

gence criterion. Our methods were implemented such that the iterations would 

stop when the difference between two successive log-likelihood values is less than 

a specified value. It was argued that this condition is actually a lack of progress 

criterion rather than a convergence criterion, and that it might underestimate 

the correct log-likelihood value (McNicholas et al., 2010). An adjustment that 

can be made to our EM algorithm is to make use of an Aitken’s acceleration-
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based convergence criterion. This condition considers the estimated value of 

log-likelihood that the algorithm will converge to asymptotically, based on the 

last three iterations, and iteration would stop when the difference between this 

estimated value and the current log-likelihood value is small (McNicholas et ah, 

2010).

Future work should focus on these issues to improve the current group-based 

trajectory modelling methodology. This study has been concerned with develop­

ing and evaluating methods of trajectory modelling of longitudinal binary data. 

Additional research can include evaluating the methodology for modelling other 

types of data, such as count data. Furthermore, the methods should be evalu­

ated for the case of more than three mixture components as researchers may be 

interested in identifying more distinct patterns within a developmental process.
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Appendix A

Results for two-component mixtures

A .l  Relative errors of mixing proportions esti­

mates

Algorithms compared: EM-IRLS, EM-Mixed, EM-QN (represents EM-NLPQN), 

PT1 (represents PROC TRAJ 1), PT2 (represents PROC TRAJ 2), and FullMax

G roup 1 (n ■ 0 .32 ) Relative Error G roup 2 (n * 0 .68) Relative Error

Figure A .l: Mixtures of two components: Relative errors of mixing proportions 
estimates in Case 1
(Trajectory 1: Temporarily quitting then resumed smoking; Trajectory 2: 
Stopped smoking)
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G roup 1 (if■ 0 .32 ) Relative Error Group 2 (n *  0 .68) Relative Error

Figure A .2: Mixtures of two components: Relative errors of mixing proportions 
estimates in Case 2
(Trajectory 1: Never smoked; Trajectory 2: Gradual onset)

G roup 1 (n ■ 0 .32 ) Relative Error Group 2 (n a 0 .68) Relative Error

Figure A.3: Mixtures of two components: Relative errors of mixing proportions 
estimates in Case 3
(Trajectory 1: Never smoked; Trajectory 2: Early onset)
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Group 1 (n »  0 .32) Relative Error Group 2 (a ■ 0.68) Relative Error

Figure A.4: Mixtures of two components: Relative errors of mixing proportions 
estimates in Case 4
(Trajectory 1: Early onset; Trajectory 2: Gradual onset)

G roup 1 (n ■ 0 .32) Relative Error G roup 2  (n ■ 0 .68) Relative Error

Figure A.5: Mixtures of two components: Relative errors of mixing proportions 
estimates in Case 5
(Trajectory 1: Early onset; Trajectory 2: Stopped smoking)



Group 1 (ji ■ 0 .32) Relative Error Group 2 (w *  0 .68) Relative Error

Figure A.6: Mixtures of two components: Relative errors of mixing proportions 
estimates in Case 6
(Trajectory 1: Gradual onset; Trajectory 2: Stopped smoking)
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A .2 Parameter estimates for trajectories

Table A .l: Mixtures of two components: Parameter and standard error (SE) 
estimates for trajectories in Case 1____________________________________________

Group
ft

Estimate SE
ft

Estimate SE ftEstimate SE
1 Theoretical 6.17 -5.78 0.997

EM-IRLS 6.2447 0.5760 -5.8406 0.4843 1.0074 0.0835
EM-Mixed 6.2447 0.5760 -5.8406 0.4843 1.0074 0.0835
EM-NLPQN 6.2447 0.5760 -5.8406 0.4843 1.0074 0.0835
PROC TRAJ 1 6.1460 0.5680 -5.7672 0.4783 0.9959 0.0825
PROC TRAJ 2 6.1459 0.5680 -5.7672 0.4783 0.9959 0.0825
FullMax 6.1669 0.5669 -5.7771 0.4764 0.9952 0.0820

ft ft ft
Group Estimate SE Estimate SE Estimate SE
2 Theoretical -7.69 6.59 -1.099

EM-IRLS -7.7649 0.4423 6.6745 0.3417 -1.1156 0.0567
EM-Mixed -7.7649 0.4423 6.6745 0.3417 -1.1156 0.0567
EM-NLPQN -7.7649 0.4423 6.6745 0.3417 -1.1156 0.0567
PROC TRAJ 1 -7.8369 0.4503 6.6897 0.3450 -1.1129 0.0569
PROC TRAJ 2 -7.8369 0.4503 6.6897 0.3450 -1.1129 0.0569
FullMax -7.8164 0.4486 6.6984 0.3455 -1.1178 0.0572

*Starting values of /3: (-2, 0, 0), (-1, 0, 0)
*Trajectory 1: Temporarily quitting then resumed smoking 
*Trajectory 2: Stopped smoking
*Parameter and SE estimates axe averaged over the number of converged samples.
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Table A.2: Mixtures of two components: Parameter and standard error (SE) 
estimates for trajectories in Case 2____________________________________________

ft A A
Group Estimate SE Estimate SE Estimate SE
1 Theoretical -3.00 0.01 0.01

EM-IRLS -3.4036 1.4367 0.3110 1.3131 -0.0607 0.2773
EM-Mixed -3.4097 1.4799 0.3382 1.3872 -0.0730 0.3032
EM-NLPQN -3.2973 1.5474 0.2183 1.5086 -0.0427 0.3502
PROC TRAJ 1 -2.8259 1.2073 -0.1202 1.1545 0.0133 0.2507
PROC TRAJ 2 -2.8242 1.2062 -0.1229 1.1528 0.0141 0.2502
FullMax -3.3160 1.6136 0.2214 1.5854 -0.0384 0.3720

ft A ft
Group Estimate SE Estimate SE Estimate SE
2 Theoretical -2.24 -0.17 0.21

EM-IRLS -2.2045 0.4174 -0.1620 0.3185 0.2103 0.0574
EM-Mixed -2.2186 0.4167 -0.1531 0.3174 0.2088 0.0571
EM-NLPQN -2.2190 0.4200 -0.1561 0.3204 0.2100 0.0578
PROC TRAJ 1 -2.3028 0.4290 -0.1350 0.3263 0.2102 0.0589
PROC TRAJ 2 -2.3018 0.4292 -0.1360 0.3265 0.2104 0.0590
FullMax -2.2066 0.4199 -0.1636 0.3213 0.2112 0.0580

*Starting values of f t  (-2, 0, 0), (-1, 0, 0)
*Trajectory 1: Never smoked 
*Trajectory 2: Gradual onset
*Parameter and SE estimates are averaged over the number of converged samples.



83

Table A.3: Mixtures of two components: Parameter and standard error (SE) 
estimates for trajectories in Case 3___________________________________________

Group
P o

Estimate SE
P i

Estimate SE
P 2

Estimate SE
1 Theoretical -3 .00 0.01 0.01

EM-IRLS -2.9762 0.7940 -0.0504 0.5956 0.0204 0.0961
EM-Mixed -2.9762 0.7940 -0.0504 0.5956 0.0204 0.0961
EM-NLPQN -3.0230 0.7886 0.0135 0.5881 0.0100 0.0950
PROC TRAJ 1 -2.9984 0.7924 -0.0151 0.5937 0.0135 0.0962
PROC TRAJ 2 -3.0707 0.8034 0.0918 0.6116 -0.0143 0.1016
FullMax -2.9788 0.7909 -0.0500 0.5918 0.0217 0.0954

P o P i P 2
Group Estimate SE Estimate SE Estimate SE
2 Theoretical -3.05 -0.80 1.35

EM-IRLS -4.1026 1.2403 0.7916 1.6732 0.8231 0.5301
EM-Mixed -4.1026 1.2403 0.7916 1.6732 0.8231 0.5301
EM-NLPQN -4.1239 1.5064 0.8190 2.0821 0.8049 0.6671
PROC TRAJ 1 -3.9757 2.1488 0.5805 3.0536 0.8910 0.9933
PROC TRAJ 2 -3.9329 2.0988 0.5573 2.9802 0.8946 0.9690
FullMax 4.5067 3.3414 -12.0924 4.9466 5.1107 1.6418

*Starting values of /?: (-2, 0, 0), (-1, 0, 0)
* Trajectory 1: Never smoked
* Trajectory 2: Early onset
*Parameter and SE estimates are averaged over the number of converged samples.
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Table A.4: Mixtures of two components: Param eter and standard error (SE) 
estim ates for trajectories in Case 4__________________________________________

Group
A

Estimate SE
A

Estimate SE
A

Estimate SE
1 Theoretical -3.05 -0.80 1.35

EM-IRLS -6.0465 1.8059 3.6679 2.2676 -0.1545 0.6900
EM-Mixed -6.0465 1.8059 3.6679 2.2676 -0.1545 0.6900
EM-NLPQN -5.8994 2.0178 3.5958 2.5703 -0.1674 0.7841
PROC TRAJ 1 -6.0140 2.0786 3.7050 2.7182 -0.1795 0.8436
PROC TRAJ 2 -5.7970 5.1369 3.3578 7.3353 -0.0540 2.3881
FullMax -3.6014 3.1224 -0.0519 4.4737 1.1068 1.4750

A) A A
Group Estimate SE Estimate SE Estimate SE
2 Theoretical -2 .24 -0.17 0.21

EM-IRLS -2.1929 0.4192 -0.2407 0.3202 0.2209 0.0518
EM-Mixed -2.1929 0.4192 -0.2407 0.3202 0.2209 0.0518
EM-NLPQN -2.2043 0.4293 -0.2529 0.3290 0.2236 0.0532
PROC TRAJ 1 -2.2697 0.4321 -0.2678 0.3273 0.2312 0.0528
PROC TRAJ 2 -2.2148 0.4268 -0.2850 0.3236 0.2324 0.0523
FullMax -2.2435 0.4027 -0.1617 0.2994 0.2051 0.0480

*Starting values of A  (-1, 0, 0), (1, 0, 0)
*Trajectory 1: Early onset 
*Trajectory 2: Gradual onset
*Parameter and SE estimates are averaged over the number of converged samples.
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Table A.5: Mixtures of two components: Parameter and standard error (SE) 
estimates for trajectories in Case 5____________________________________________

0 0 0 1 0 2Group Estimate SE Estimate SE Estimate SE
1 Theoretical -3.05 -0.80 1.35

EM-IRLS -5.9616 2.2902 2.7495 2.5394 0.3038 0.7022
EM-Mixed -5.9616 2.2902 2.7495 2.5394 0.3038 0.7022
EM-NLPQN -4.2215 5.9679 1.0534 8.7071 0.7053 2.8638
PROC TRAJ 1 -4.6839 5.5193 1.5702 8.0482 0.5836 2.6486
PROC TRAJ 2 -4.6953 4.9202 1.5874 7.1480 0.5779 2.3483
FullMax 1.5555 5.3244 -7.6308 7.8310 3.6142 2.5858

0 0 0 1 0 2Group Estimate SE Estimate SE Estimate SE
2 Theoretical -7.69 6.59 -1.099

EM-IRLS -7.7008 0.4349 6.6452 0.3428 -1.1135 0.0603
EM-Mixed -7.7008 0.4349 6.6452 0.3428 -1.1135 0.0603
EM-NLPQN -7.7703 0.4495 6.7397 0.3620 -1.1355 0.0648
PROC TRAJ 1 -7.9076 0.4458 6.7912 0.3585 -1.1363 0.0645
PROC TRAJ 2 -7.9077 0.4453 6.7912 0.3579 -1.1363 0.0644
FullMax -7.7703 0.4269 6.6886 0.3404 -1.1189 0.0608

*Starting values of 0 \  (-1, 0, 0), (1, 0, 0)
*Trajectory 1: Early onset 
* Trajectory 2: Stopped smoking
*Parameter and SE estimates are averaged over the number of converged samples.
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Table A.6: Mixtures of two components: Parameter and standard error (SE) 
estimates for trajectories in Case 6__________________________________ __________

Group
A

Estimate SE
A

Estimate SE
A

Estimate SE
1 Theoretical -3.05 -0.80 1.35

EM-IRLS -2.2102 0.6573 -0.1781 0.5553 0.2102 0.1010
EM-Mixed -2.2102 0.6573 -0.1781 0.5553 0.2102 0.1010
EM-NLPQN -2.2101 0.6573 -0.1781 0.5553 0.2102 0.1010
PROC TRAJ 1 -2.1679 0.6706 -0.2679 0.5701 0.2294 0.1038
PROC TRAJ 2 -2.1773 0.6657 -0.2439 0.5656 0.2240 0.1029
FullMax -4.7424 1.8854 1.4211 0.8606 -0.0293 0.1598

A A A
Group Estimate SE Estimate SE Estimate SE
2 Theoretical -7.69 6.59 -1.099

EM-IRLS -7.7809 0.4608 6.6983 0.3933 -1.1202 0.0697
EM-Mixed -7.7809 0.4608 6.6983 0.3933 -1.1202 0.0697
EM-NLPQN -7.7808 0.4608 6.6983 0.3933 -1.1202 0.0697
PROC TRAJ 1 -7.8018 0.4587 6.6618 0.3865 -1.1083 0.0679
PROC TRAJ 2 -7.8234 0.4609 6.6772 0.3882 -1.1100 0.0682
FullMax -7.5932 0.4580 6.4817 0.3884 -1.0797 0.0686

^Starting values of /3: (-1, 0, 0), (1, 0, 0)
* Trajectory 1: Gradual onset 
^Trajectory 2: Stopped smoking
*Parameter and SE estimates are averaged over the number of converged samples.
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Appendix B

Results for three-component mixtures

B .l Relative errors of mixing proportions esti­
mates

Algorithms compared: EM-IRLS, EM-Mixed, EM-QN (represents EM-NLPQN), 

PT1 (represents PROC TRAJ 1), PT2 (represents PROC TRAJ 2), and FullMax



Group 1 (* = 0 2) Relative Error

-1--- 1--- 1--- 1--- 1--- 1—
EM-RLS EM-Mxed EM-QN PT1 PT2 FuMax

Group 3 (a = 0.375) Relative Error

Figure B.l: Mixtures of three components: Relative errors of mixing proportions estimates in Case 1
(Trajectory 1: Temporarily quitting then resumed smoking; Trajectory 2: Stopped smoking;

Trajectory 3: Gradual onset)
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Group 2 (*  = 0.425) Relative Error

EM-RLS Brf-Mfcced EM-QN PT1 PT2 FiJMax

Group 3 (* =  0.375) Relative Error

Figure B.2: Mixtures of three components: Relative errors of mixing proportions estim ates in Case 2 
(Trajectory 1: Early onset; Trajectory 2: Gradual onset; Trajectory 3: Stopped smoking)
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Group 1 (* = 0.2) Relative Error Group 2  (a = 0.425) Relative Error Group 3 (* = 0.375) Relative Error

Figure B.3: Mixtures of three components: Relative errors of mixing proportions estimates in Case 3
(Trajectory 1: Never smoked; Trajectory 2: Early onset; Trajectory 3: Gradual onset)



Group 1 (« = 0.2) Relative Error Group 2 (* = 0.425) Relative Error Group 3 (* = 0.375) Relative Error

Figure B.4: Mixtures of three components: Relative errors of mixing proportions estimates in Case 4
(Trajectory 1: Never smoked; Trajectory 2: Early onset; Trajectory 3: Stopped smoking)



Group 3 (* = 0.375) Relative Error

Figure B.5: Mixtures of three components: Relative errors of mixing proportions estimates in Case 5
(Trajectory 1: Never smoked; Trajectory 2: Gradual onset; Trajectory 3: Stopped smoking)
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B.2 Parameter estimates for trajectories
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Table B.l: Mixtures of three components: Parameter and standard error (SE)
estimates for trajectories in Case 1_______________________________________

Group
0 0

Estimate SE 0 1
Estimate SE

0 2
Estimate SE

1 Theoretical 6.17 -5.78 0.997
EM-IRLS 6.6065 3.0975 -6.1384 2.1327 1.0501 0.3098
EM-Mixed 6.6065 3.0975 -6.1384 2.1327 1.0501 0.3098
EM-NLPQN 6.6051 3.1380 -6.1374 2.1590 1.0499 0.3134
PROC TRAJ 1 7.4092 3.5154 -6.6626 2.4711 1.1272 0.3656
PROC TRAJ 2 6.1253 2.3614 -5.6926 1.6220 0.9784 0.2349
FullMax 3.2042 5.6249 -1.9946 4.4331 -0.3504 3.2960

0 o  A  02
Group Estimate SE Estimate SE Estimate SE
2 Theoretical -7.69 6.59 -1.099

EM-IRLS -7.7751 0.5181 6.6901 0.4471 -1.1178 0.0799
EM-Mixed -7.7751 0.5181 6.6901 0.4471 -1.1178 0.0799
EM-NLPQN -7.7751 0.5181 6.6901 0.4471 -1.1178 0.0799
PROC TRAJ 1 -7.9494 0.5300 6.7787 0.4463 -1.1274 0.0784
PROC TRAJ 2 -8.1221 0.6754 6.7813 0.5466 -1.1142 0.0924
FullMax -7.6487 0.5298 6.4363 0.4364 -1.0601 0.0753

0 o 0 1 0 2
Group Estimate SE Estimate SE Estimate SE
3 Theoretical -2.24 -0.17 0.21

EM-IRLS -2.4015 1.7643 -0.0428 1.1499 0.1920 0.1700
EM-Mixed -2.4015 1.7643 -0.0428 1.1499 0.1920 0.1700
EM-NLPQN -2.4018 1.7885 -0.0426 1.1654 0.1919 0.1722
PROC TRAJ 1 -2.1914 1.9116 -0.2278 1.1092 0.2294 0.1923
PROC TRAJ 2 -2.6334 1.8671 0.4620 1.4352 0.0745 0.2289
FullMax 0.6187 0.8922 -2.1574 0.6664 0.5100 0.1084

*Starting values of 0 :  (-2, 0, 0), (-1, 0, 0), (2, 0, 0)
* Trajectory 1: Temporarily quitting then resumed smoking
* Trajectory 2: Stopped smoking
* Trajectory 3: Gradual onset
*Parameter and SE estimates are averaged over the number of converged samples.
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Table B.2: Mixtures of three components: Parameter and standard error (SE)
estimates for trajectories in Case 2_______________________________________

Group
/So

Estimate SE
Si

Estimate SE
S2

Estimate SE
1 Theoretical -3.05 -0.80 1.35

EM-IRLS -6.3523 1.9586 3.9648 1.8948 -0.3570 0.4664
EM-Mixed -6.3523 1.9586 3.9648 1.8948 -0.3570 0.4664
EM-NLPQN -5.2830 3.0544 2.9047 3.7849 -0.1590 1.1287
PROC TRAJ 1 -6.1273 2.3703 3.8106 3.1282 -0.2110 0.9869
PROC TRAJ 2 -5.6193 1.7600 3.2682 2.0025 -0.2455 0.5706
FullMax -5.2471 12.1678 0.5842 9.6299 5.3895 15.8710

So Si S2
Group Estimate SE Estimate SE Estimate SE
2 Theoretical -2.24 -0.17 0.21

EM-IRLS -1.9168 0.7820 -0.6168 0.6914 0.2991 0.1260
EM-Mixed -1.9168 0.7820 -0.6168 0.6914 0.2991 0.1260
EM-NLPQN -1.7585 1.0029 -0.8040 0.9169 0.3446 0.1762
PROC TRAJ 1 -2.2499 0.5298 -0.3055 0.4605 0.2385 0.0806
PROC TRAJ 2 -0.3019 8.4694 -1.3147 7.5900 0.3957 1.4306
FullMax -3.7483 0.5087 1.4278 0.4627 -0.0569 0.0987

Group
So

Estimate SE
Si

Estimate SE
S2

Estimate SE
3 Theoretical -7.69 6.59 -1.099

EM-IRLS -7.6393 0.7187 6.4801 0.6973 -1.0588 0.1446
EM-Mixed -7.6393 0.7187 6.4801 0.6973 -1.0588 0.1446
EM-NLPQN -7.9022 0.8071 6.6679 0.7861 -1.0728 0.1613
PROC TRAJ 1 -7.7521 0.5974 6.7091 0.5514 -1.1279 0.1057
PROC TRAJ 2 -7.6860 0.6769 6.5365 0.6344 -1.0528 0.1106
FullMax -6.7069 2.0202 5.5208 1.2035 -0.5190 0.8468

*Starting values of ¡3: (-2, 0, 0), (-1, 0, 0), (1, 0, 0)
*Trajectory 1: Early onset 
*Trajectory 2: Gradual onset 
*Trajectory 3: Stopped smoking
*Parameter and SE estimates are averaged over the number of converged samples.
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Table B.3: Mixtures of three components: Parameter and standard error (SE)
estimates for trajectories in Case 3

0 0 0 1 0 2
Group Estimate SE Estimate SE Estimate SE
1 Theoretical -3.00 0.01 0.01

EM-IRLS -3.8923 1.7860 0.8085 1.5681 -0.1688 0.3366
EM-Mixed -3.8668 1.7685 0.7771 1.5502 -0.1613 0.3322
EM-NLPQN -3.6334 1.4652 0.7706 1.4454 -0.1881 0.3408
PROC TRAJ 1 -3.6342 1.9603 0.9570 2.3083 -0.2738 0.6408
PROC TRAJ 2 -3.1276 1.3505 0.5101 1.4055 -0.1193 0.3281
FullMax -3.4621 1.4931 0.1183 2.3242 0.1457 0.7220

0 0 0 1 0 2
Group Estimate SE Estimate SE Estimate SE
2 Theoretical -3.05 -0.80 1.35

EM-IRLS -5.7396 1.1551 3.2811 1.5176 -0.0153 0.4822
EM-Mixed -5.7172 1.2674 3.2488 1.6963 -0.0041 0.5445
EM-NLPQN -5.0633 9.1377 2.2452 13.5774 0.3359 4.5198
PROC TRAJ 1 -5.2361 2.9553 2.6943 4.1972 0.0826 1.3697
PROC TRAJ 2 -5.7331 1.5767 3.2956 2.1044 -0.0355 0.6592
FullMax -6.3667 8.8728 -1.2030 5.3900 2.6280 1.9163

0o 0i 02
Group Estimate SE Estimate SE Estimate SE
3 Theoretical -2.24 -0.17 0.21

EM-IRLS -2.2268 0.5299 -0.2189 0.4280 0.2184 0.0736
EM-Mixed -2.2261 0.5309 -0.2182 0.4312 0.2182 0.0738
EM-NLPQN -2.2662 0.5268 -0.2003 0.4295 0.2168 0.0716
PROC TRAJ 1 -2.1377 4.6742 -0.6107 6.6828 0.4447 2.1728
PROC TRAJ 2 -2.2518 0.5693 -0.2838 0.4467 0.2134 0.0780
FullMax -2.3859 0.6163 0.0928 0.4874 0.1780 0.0795

*Starting values of 0 :  (-2, 0, 0), (-1, 0, 0), (1, 0, 0)
*Trajectory 1: Never smoked 
^Trajectory 2: Early onset 
* Trajectory 3: Gradual onset
*Parameter and SE estimates are averaged over the number of converged samples.
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Table B.4: Mixtures of three components: Parameter and standard error (SE)
estimates for trajectories in Case 4_______________________________________

Group
P o

Estimate SE
P i

Estimate SE
P ‘2

Estimate SE
1 Theoretical -3.00 0.01 0.01

EM-IRLS -2.9701 1.3124 -0.1158 1.2560 0.0321 0.2071
EM-Mixed -2.9701 1.3124 -0.1158 1.2560 0.0321 0.2071
EM-NLPQN -2.9011 1.1233 -0.1491 1.0335 0.0382 0.1698
PROC TRAJ 1 -3.3741 0.9386 0.4440 0.8056 -0.0627 0.1323
PROC TRAJ 2 -2.9315 1.3719 0.3886 0.9705 -0.0665 0.1457
FullMax -2.4986 1.4869 -0.1383 1.6163 -0.0740 0.8057

P o  P i  P 2
Group Estimate SE Estimate SE Estimate SE
2 Theoretical -3.05 -0.80 1.35

EM-IRLS -4.7172 1.1627 1.7032 1.5352 0.5284 0.4802
EM-Mixed -4.7172 1.1627 1.7032 1.5352 0.5284 0.4802
EM-NLPQN -4.1755 4.3674 0.8829 6.4152 0.8045 2.1189
PROC TRAJ 1 -4.4190 1.7646 1.1841 2.4866 0.6955 0.8054
PROC TRAJ 2 -4.5608 3.5362 1.3828 5.1143 0.6099 1.6749
FullMax -7.1540 3.7793 2.3678 2.7014 0.7335 1.0097

P o P i p 2
Group Estimate SE Estimate SE Estimate SE
3 Theoretical -7.69 6.59 -1.099

EM-IRLS -7.8646 0.4971 6.7891 0.4193 -1.1395 0.0747
EM-Mixed -7.8646 0.4971 6.7891 0.4193 -1.1395 0.0747
EM-NLPQN -7.9336 0.5239 6.8384 0.4473 -1.1484 0.0805
PROC TRAJ 1 -7.9666 0.5185 6.8929 0.4446 -1.1564 0.0800
PROC TRAJ 2 -8.0649 0.5319 6.9542 0.4510 -1.1631 0.0800
FullMax -7.6069 0.4536 6.5106 0.3706 -1.0565 0.0626

^Starting values of /3: (-2, 0, 0), (-1, 0, 0), (1, 0, 0)
^Trajectory 1: Never smoked 
^Trajectory 2: Early onset 
*Trajectory 3: Stopped smoking
^Parameter and SE estimates are averaged over the number of converged samples.
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Table B.5: Mixtures of three components: Parameter and standard error (SE)
estimates for trajectories in Case 5_______________________________________

Group
P o

Estimate SE
P i

Estimate SE
P 2

Estimate SE
1 Theoretical -3 .00 0.01 0.01

EM-IRLS -3.2160 1.9600 0.0060 1.8592 0.0164 0.3435
EM-Mixed -3.2160 1.9600 0.0060 1.8592 0.0164 0.3435
EM-NLPQN -2.7353 1.4051 -0.2868 1.4100 0.0670 0.2774
PROC TRAJ 1 -3.2954 1.4959 0.4949 1.5925 -0.1086 0.3817
PROC TRAJ 2 -3.2313 1.3913 0.3531 1.4142 -0.0575 0.3164
FullMax -3.2094 0.7037 0.6079 0.6272 -0.0079 0.1203

P o  P i  P ‘2
Group Estimate SE Estimate SE Estimate SE
2 Theoretical -2 .24 -0.17 0.21

EM-IRLS -2.2274 0.5329 -0.2045 0.4665 0.2254 0.0896
EM-Mixed -2.2274 0.5329 -0.2045 0.4665 0.2254 0.0896
EM-NLPQN -2.2104 0.5372 -0.2195 0.4708 0.2287 0.0907
PROC TRAJ 1 -2.3797 0.5501 -0.1216 0.4760 0.2089 0.0914
PROC TRAJ 2 -2.4114 0.5503 -0.0447 0.4819 0.1875 0.0924
FullMax -1.4061 4.9705 2.2696 6.2296 -0.8355 3.3652

P o P i P ‘2
Group Estimate SE Estimate SE Estimate SE
3 Theoretical -7.69 6.59 -1.099

EM-IRLS -7.6928 0.5356 6.6179 0.4773 -1.1061 0.0857
EM-Mixed -7.6928 0.5356 6.6179 0.4773 -1.1061 0.0857
EM-NLPQN -7.7038 0.5372 6.6265 0.4787 -1.1076 0.0860
PROC TRAJ 1 -7.7877 0.5359 6.7222 0.4766 -1.1251 0.0851
PROC TRAJ 2 -7.6895 0.5442 6.5768 0.4832 -1.0952 0.0867
FullMax -8.0079 0.7092 6.9550 0.5833 -1.1552 0.0998

*Starting values of P : (-2, 0, 0), (-1, 0, 0), (1, 0, 0)
* Trajectory 1: Never smoked
* Trajectory 2: Gradual onset 
*Trajectory 3: Stopped smoking
*Parameter and SE estimates are averaged over the number of converged samples.
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Appendix C

SAS/IM L Macro

/ ***************************************************************\ 
SAS/IML macro for identifying group-based trajectories 
(EM-IRLS for two-group model)

dataset: data set to be analyzed 
cov: time/age information at each time point 

(e.g. agel age2 age3 age4 age5) 
dep: response variables at each time point 

(e.g. smkl smk2 smk3 smk4 smk5) 
groups: number of mixture components

\***************************************************************/ 
'/.macro traj_model(dataset, cov, dep, groups); 
proc iml;

use fedataset;
read all var{&cov> into time; 
read all var{&dep} into resp; 
n = nrow(resp); 
m = ncol(resp); 
g = fegroups;

/* check if have missing covariates */ 
miss=0;
do indiv = 1 to n while (miss=0); 
do tp = 1 to m;
if time[indiv,tp] = . then miss = 1; 

end; 
end;

/* define variables */ 
loglik = 0; 
loglik_m = 0;
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iter = 1;

/* set up vectors for parameters */
/* equal proportions as initial values for mixing proportions */
default.pi = 1/g;
pi = shape(default_pi, g, 1);
pi_m = shape(0, g, 1);
zj = shape(0,n,g);
err = 0;

/* starting values for beta parameters */ 
beta = shape(0,3,g); 
do i = 1 to g; 
k = -3 + i; 
beta[l,i] = k; 

end;
beta_m = shape(0,3,g);

do until(iter > 10001 (diffloglik <= 0.0001));

/* E-step */ 
do indiv = 1 to n;
compdensity = shaped,g, 1); 
fl = 1; 
f 2 = 1;
z_est = shape(0,g,1); 
do tp = 1 to m;
if time[indiv,tp]“=. then do; 
timej =111 time[indiv,tp] II time[indiv,tp]#2; 
yjt = resp[indiv,tp];

do grp = 1 to g;
expA = exp(beta[1,grp])

#exp(timej[2]#beta[2,grp])#exp(timej[3]#beta[3,grp]); 
if yjt = 1 then Tt = expA/(l+expA); 
else Tt = l/(l+expA); 
compdensity[grp] = compdensity[grp]#Tt; 
if grp = 1 then fl = fl#Tt; 
if grp = 2 then f2 = f2#Tt; 

end; 
end;
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end;

density = 0; 
do grp = 1 to g;
density = density + pi[grp]#compdensity[grp]; 

end;

do grp = 1 to g;
z_est[grp] = (pi[grp]#compdensity[grp])/density; 
zj[indiv,grp] =z_est[grp]; 

end; 
end;

/* M-step */
/* estimation of mixing proportions */ 
do grp = 1 to g;
pi_m[grp] = sum(zj[,grp])/n; 
if pi_m[grp] = 0 then pi_m[grp] = 0.000001; 

end;

/* IRLS */
/* estimation of beta parameters */ 
do grp = 1 to g while (err = 0); 
err = 0; 
b = 0;
newb = beta[,grp]; 
total = m#n; 
index = 1;

X = shaped, total, 3); 
do indiv = 1 to n; 
do tp = 1 to m;
if time[indiv,tp] “=. then do; 
a = time[indiv,tp];
X[index,1] = 1; 

end;
else do; 
a = 0;
X [index,1] = 0; 

end;
X[index,2] = a;
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X[index,3] = a##2; 
index = index+1; 

end; 
end;
Y = shaped, total, 1);
Z = shaped, total, 1); 
index = 1; 
do indiv = 1 to n; 
do tp = 0 to m-1;
Z[index+tp] = zj [indiv,grp]; 
Y[index+tp] = resp[indiv,tp+1]; 

end;
index = index+m; 

end;

fz = 0;
do looptime = 1 to 20 while(max(abs(newb-b)) > le-8); 
b = newb; 
fz = X*b;
fpi = shape(0,nrow(fz),1);
do k = 1 to total while(err = 0);
if fz[k] > 700 then fpi[k] = l/(l+exp(-fz[k])); 
else fpi[k] = exp(fz[k])/(l+exp(fz[k])); 

end;

if err = 0 then do;
fpi = choose(fpi=0, 0.0000001, fpi); 
fpi = choose(fpi=l, 0.9999999, fpi);

W = Z/(fpi#(l-fpi)); 
xx = fpi#fpi#exp(-fz)#X; 
info_mat = t(xx)*(W#xx); 

end;

if det(info_mat) = 0 then err = 1; 
if err = 0 then do; 
info = inv(info_mat);
D = Y-fpi;
score = t(xx)*(W#D); 
newb = b + info*score; 

end;
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else do;
newb = b; 

end; 
end;

beta_m[,grp] = b; 
end;

/* calculate log-likelihood */ 
if err = 0 then do; 
z = shape(0,n,g); 
do indiv = 1 to n; 
do grp = 1 to g;
z[indiv,grp] = zj[indiv,grp]#log(pi_m[grp]); 

end; 
end;

parti = 0; 
do grp = 1 to g;
parti = parti + sum(z[,grp]); 

end;

z = shape(0,n,g); 
do indiv = 1 to n; 
do grp = 1 to g;
T = 0;
b = beta_m[,grp]; 
do tp = 1 to m;
if time[indiv,tp] ~= . then do;
timej = 1 II time[indiv,tp] II time[indiv,tp]##2; 
yjt = resp[indiv,tp];
A = b[l] + (timej [2]#b[2]) + (timej [3]#b[3]);
T = T + (yjt#A) - A - log(l+exp(-A)); 

end; 
end;
z[indiv,grp] = zj[indiv,grp]#T; 

end; 
end;

part2 = 0; 
do grp = 1 to g;
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part2 = part2 + sum(z[,grp]); 

end;

loglik_m = parti + part2; 
end;
else do;
loglik_m = loglik; 

end;

/* initialization for the next iteration */
diffloglik = abs(abs(loglik)-abs(loglik_m));
pi = pi_m;
beta = beta_m;
loglik = loglik_m;
iter = iter+1;

end;
iter = iter-1;

/* SE calculation (For two group model)*/ 
if err = 0 then do;
Ic_pi = sum(zj[,1]/(pi[1]##2) + zj [,2]/(pi [2]##2)); 

do gp = 1 to 2;
za = shape(0,n,l); zb = shape(0,n,1); 
zc = shape(0,n,l); zd = shape(0,n,1); 
ze = shape(0,n,l); 
do indiv = 1 to n; 
aa = 0; bb = 0; 
cc = 0; dd = 0; 
ee = 0;
if gp = 1 then b = beta[,l]; if gp = 2 then b = beta[,2]; 
do tp = 1 to m;
agejt = time[indiv,tp];
agej =111 agejt II agejt#agejt;
expAB = exp(b[l] )#exp(agej [2]#b[2] )#exp(agej [3]#b[3]);
denom = (l+expAB)##2;
aa = aa + expAB/denom;
bb = bb + (agejt#expAB)/denom;
cc = cc + ((agejt##2)#expAB)/denom;
dd = dd + ((agejt##3)#expAB)/denom;
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ee = ee + ((agejt##4)#expAB)/denom; 

end;
if gp = 1 then z = zj [,1]; if gp = 2 then z = zj[,2]; 
za[indiv] = z[indiv]#aa; zb[indivi = z [indivi#bb; 
zc[indivi = z[indivi#cc; zd[indivi = z [indivi#dd; 
ze[indivi = z[indivi#ee; 

end;
if gp = 1 then
Ic.betal = (sum(za)|Isum(zb)||sum(zc))//

(sum(zb)|Isum(zc)||sum(zd))//
(sum(zc)||sum(zd)|Isum(ze));

if gp = 2 then
Ic_beta2 = (sum(za)||sum(zb)I|sum(zc))//

(sum(zb)IIsum(zc)I|sum(zd))//
(sum(zc)||sum(zd)IIsum(ze));

end;

covsc_pi = sum((zj[,1]# C1—zj[, 1] ))/(pi [1]##2) +
(zj[,2]#(l-zj[,21))/(pi[2]##2) +
(2#zj[,l]#zj[,2])/(pi[1]#pi [21));

AOj_l = shape(0,n,1); Alj_1 = shape(0,n,1); A2j_l = shape(0,n,1); 
A0j_2 = shape(0,n,l); Alj_2 = shape(0,n,1); A2j_2 = shape(0,n,1); 
do indiv = 1 to n; 
do gp = 1 to 2;
if gp = 1 then b = beta[,l]; if gp = 2 then b = beta[,2]; 
aO = 0; al = 0; a2 = 0; 
do tp = 1 to m;
agejt = time[indiv,tpl;
agej =111 agejt II agejt#agejt;
yjt = resp [indiv,tp];
expAB = exp(b[1 ] )#ex p (a g ej[2 ]#b [2 ] )#ex p (a g e j[3]#b[3]) ;  
aO = aO + y jt  -  (expAB/( 1+expAB)) ;  
al = a l + (y jt# a g e jt) -  (agejt#expAB)/(1+expAB); 
a2 = a2 + (y jt# (a g e jt# # 2 )) -  ( (agejt##2)#expAB)/(1+expAB); 

end;
if gp = 1 then do;
A0j_l[indiv] = aO; Alj_l[indiv] = al; A2j_l[indiv] = a2; 

end;
if gp = 2 then do;
A0j_2[indiv] = aO; Alj_2[indiv] = al; A2j_2[indiv] = a2;
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end;

end;
end;

one = zj[,1]#((1-zjC,1])/pi[1] + zj [,2]/pi[2]); 
covsc_pi_betal = sum(A0j_l#one)I Isum(Alj_l#one)I Isum(A2j_l#one);

two = zj [,2]#(zj [, 1]/pi[1] + (1-zj [,2])/pi[2]);
covsc_pi_beta2 = (-sum(A0j_2#two))I I(-sum(Alj_2#two))I I(-sum(A2j_2#two));

one = zj[,1]#(1—zj C,1]); 
covsc_betal =

((sum((A0j_l##2)#one)||sum(AOj_l#Alj_l#one)||sum(A0j_l#A2j_l#one))// 
(sum(AOj_l#Alj_l#one)I Isum((Alj_l##2)#one)||sum(Alj_l#A2j_l#one))// 
(sum(A0j_l#A2j_l#one)I Isum(Alj_l#A2j_l#one)I Isum((A2j_l##2)#one)));

two = zj [,2]#(l-zj[,2]); 
covsc_beta2 =

((sum((A0j_2##2)#two)||sum(A0j_2#Alj_2#two)I|sum(A0j_2#A2j_2#two))// 
(sum(A0j_2#Alj_2#two)||sum((Alj_2##2)#two)||sum(Alj_2#A2j_2#two))// 
(sum(A0j_2#A2j_2#two)I|sum(Alj_2#A2j_2#two)I|sum((A2j_2##2)#two)));

k = zj [,l]#zj C,2] ; 
covsc_betal_beta2 =

-((sum(A0j_l#A0j_2#k)||sum(A0j_l#Alj_2#k)|Isum(A0j_l#A2j_2#k))// 
(sum(Alj_l#A0j_2#k)I|sum(Alj_l#Alj_2#k)||sum(Alj_l#A2j_2#k))// 
(sum(A2j_l#A0j_2#k)I|sum(A2j_l#Alj_2#k)||sum(A2j_l#A2j_2#k)));

Jm = ((covsc.piI Icovsc_pi_betalI Icovsc_pi_beta2)//
(t(covsc_pi_betal)I Icovsc.betalI Icovsc_betal_beta2)// 
(t(covsc_pi_beta2)||t(covsc_betal_beta2)||covsc_beta2));

A = shape(0,l,3); B = shape(0,3,3);

le = ((Ic_piI IAI I A)//
(t(A)I IIc_betalI IB)//
(t(A)I IBI IIc_beta2));

info_mat = Ic-Jm; 
end;
if det(info_mat) = 0 then err = 1;
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if err = 0 then do;
cov_mat = inv(info_mat); 
var_est = diag(cov_mat); 

end;
do w = 1 to 7 while (err = 0);
if var_est[w,w] < 0 then err = 1; 

end;
se_est = 0;
if err = 0 then do;
se_est = sqrt(var_est); 

end;
se_est = vecdiag(se_est); 
pi_se = se_est [1];
betal_se = se_est [2]//se_est[3]//se_est[4]; 
beta2_se = se_est [5]//se_est[6]//se_est[7]; 
beta_se = betal_se||beta2_se;

/* Module RMISS */
/* http://www.psych.yorku.ca/lab/sas/iml.htm */
/* Remove rows with missing observations from matrix*/ 
start rmiss(matl, mat2, miss); 

if nrow(miss)=0 then miss={.}; 
badpos=loc(matl=miss); 
badrow=ceil(badpos/ncol(matl)); 
keeprow=remove(l:nrow(matl).badrow); 
mat2=matl [keeprow,]; 

finish;

/* Find column averages for time */ 
avg = shape(0,m,1); 
if miss = 1 then do;
run rmiss(time, time_cc, miss); 

end;
else time_cc = time; 

do tp = 1 to m;
do indiv = 1 to nrow(time_cc);
avg[tp] = avg[tp] + time_cc[indiv,tp]; 

end; 
end;
avg = avg/n;

http://www.psych.yorku.ca/lab/sas/iml.htm
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/* Final results */
if err = 1 then print ’Unsuccessful optimization termination’;

print ’Number of iterations:’ iter; 
print ’Log-likelihood:’ loglik;

traj_curve = shape(0,m,g); 
do grp = 1 to g; 
do tp = 1 to m;
t = 1 M avg[tp] II (avg[tp])##2;
traj_curve[tp,grp] = exp(t*beta[,grp])/(l+exp(t*beta[,grp])); 

end; 
end;

do group = 1 to g; 
print group;
group.proportion = pi[group]; 
group_proportion_SE = pi.se; 
beta.values = t(beta[,group]); 
beta_standard_error = t(beta_se[.group]); 
traj ectory = t(traj.curve[,group]); 
print group.proportion;
if group = 1 then print group_proportion_SE; 
print beta.values; 
print beta_standard_error; 
print trajectory; 

end;

quit;
'/»mend traj .model;
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