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Abstract 

Carbohydrates are a class of molecule occurring widely in the body. Their presence has 

varied biological implications, generating clinical interest regarding their impact on disease 

prognosis. This thesis will investigate the development of chemical entities surrounding two 

carbohydrates, hyaluronan and inulin. 

The Receptor for hyaluronan mediated motility (RHAMM) is one of several receptors for 

hyaluronan (HA), a polysaccharide that, when fragmented, has pro-angiogenic and 

inflammatory properties. RHAMM expression is tightly regulated during homeostasis but 

increases in response to cellular stress, including during injury or disease states. HA-

RHAMM interactions stimulate the Ras-ERK-Mek pathway to promote cell motility, 

differentiation, and proliferation. Specific inhibition of HA-RHAMM interactions could have 

significant therapeutic potential. 

Chapters 2 and 3 explore two platforms for disrupting HA-RHAMM interactions. Chapter 2 

discusses development of a 62-amino acid chemically synthesized truncated RHAMM 

protein, 7 kDa RHAMM, for use in screening novel therapeutics. This mini-protein exhibited 

similar secondary structure, bioactivity, and HA-binding capabilities as the full-length 

protein, and binds known RHAMM-binding peptides with similar affinities as recombinant 

RHAMM. This suggests that it is a suitable replacement for the difficult-to-obtain 

recombinant version. Chapter 3 discusses the development of double stapled RHAMM 

peptide mimetics as therapeutic anti-inflammatory agents. The peptides were evaluated for 

secondary structure, HA-binding capability, and inflammation-related bioactivity. The lead 

compound blocked 27.2% and 52% of induced inflammation in culture and in vivo, 

respectively. The lead peptide was further optimized to improve metabolic stability while 

maintaining secondary structure and HA-binding affinity, improving therapeutic efficacy. 

Glomerular filtration rate (GFR) is a measure of kidney function and a prognostic indicator 

of chronic kidney disease. Filtration of the polysaccharide inulin is the gold standard for 

measuring GFR clinically, as it is neither reabsorbed nor secreted by the kidneys; however, 

this method is laborious and invasive. Chapter 4 explores the development of a near-infrared 

dye-labeled inulin, Cy7.5-inulin conjugate, as an optical probe to accurately and non-
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invasively measure GFR by transcutaneous pulse dye densitometer. The conjugate was 

characterized by different analytical techniques, and is stable under in vivo conditions. The 

probe was successfully used in a pig model to accurately measure GFR non-invasively. 

Keywords 

Receptor for hyaluronan mediated motility, RHAMM, HMMR, Hyaluronan, Inflammation, 

Peptide, Glomerular filtration rate, Inulin, Optical probe 
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Chapter 1  

1 Introduction 

 Hyaluronan 
Hyaluronan (HA) is a simple linear extracellular matrix polysaccharide that belongs to 

the glycosaminoglycan (GAG) family of macromolecules and consists of dimeric repeats 

of N-acetylglucosamine followed by D-glucuronic acid (Figure 1.1). In homeostatic 

tissues, the majority of HA occurs in its high molecular weight (HMW) and native form 

(e.g. >500 kDa), which is organized into scaffolds and matrices of the extracellular 

matrix (ECM) [1, 2], making it a ubiquitous component of the ECM. The ECM 

environment is tightly regulated during normal physiological conditions, providing 

important structural and biochemical support to surrounding cells [3, 4]. Its functions are 

understudied, but at a minimum, it promotes tissue hydration, provides lubrication, 

protects against mechanical damage, reduces proliferation, modulates immune 

recognition, promotes expression of anti-inflammatory cytokines, and blocks macrophage 

functions, such as phagocytosis [3, 5-10]. In contrast to homeostatic tissues, HA polymer 

size in remodeling and diseased tissues is strikingly polydisperse, ranging from <10 kDa 

to >500 kDa [11]. HA fragments are generated by reactive oxygen/nitrogen species 

(ROS/RNS) and hyaluronidases that are produced during tissue stress and repair [5-9, 12-

14]. Fragmentation of polymeric HA drastically alters the functions of HA. Short HA 

fragments are reported to promote pro-inflammatory cytokine expression/release as well 

as regulate innate immune cell proliferation [15-17]. Thus, the specific function of HA 

depends on the precise polymer size and the type of cell responding to the fragments [18-

21]. HA fragments activate multiple receptors, triggering different downstream events 

depending upon the injury or disease context [2, 15, 22-25]. HMW HA binds to CD44, 

while smaller fragments of HA bind to receptor for hyaluronan mediated motility 

(RHAMM) [2]. It has been suggested that HA fragments can also inhibit the binding of 

higher molecular weight HA to CD44 [2, 26, 27]. Thus, fragmented HA could impact 

tissues by either directly binding specific receptors or by acting as an antagonist such that 

they prevent the binding of larger HA polymers to their cognate receptors. These 
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complex interactions control a variety of signaling pathways that regulate cell 

adhesion/motility, mitotic spindle integrity and transcriptomes. 

 

Figure 1.1. Structure of hyaluronan, depicting the dimeric repeat of D-glucuronic 

acid and N-acetyl glucosamine 

 Receptor for hyaluronan mediated motility 
(RHAMM) 

RHAMM (gene name HMMR) is a largely hydrophilic protein that was originally 

isolated from embryonic chicken heart explant cultures exhibiting high HA production 

and increased cell migration. It is one of a number of HA receptors that are expressed on 

immune cells that bind to complex mixtures of HA polymer sizes and activate pathways 

required for an inflammatory or tumorgenic response. RHAMM exists in two 

populations: intracellularly, where it exists in both the nucleus and the cytoplasm, and 

extracellularly, where it is a cell surface glycosylphosphatidylinositol (GPI) linked 

protein. RHAMM expression is tightly regulated and limited during homeostasis; 

however, RHAMM mRNA expression transiently increases in response to injury or 

cellular stress, such as inflammation and cancer, resulting in increased receptor protein 

expression and export to the cell surface. Cell surface RHAMM is a HA co-receptor with 

CD44, and the interaction between the three molecules stimulates the activation of the 

mitogen activated pathway (MAPK) or the Ras-Mek-ERK pathway and the transcription 

of genes involved in cell motility, differentiation and proliferation in pro-inflammatory 

microenvironments (Figure 1.2) [28]. Thus, the specific inhibition of HA-RHAMM 

interactions could have significant therapeutic potential in cancer and other diseases. 
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Figure 1.2. The interaction between cell surface RHAMM and HA activates the Ras-

Mek-ERK pathway, and the phosphorylation of ERK1,2, which results in active 

transcription of mitogenic genes (A). Increased cytoplasmic RHAMM expression 

also results in phosphorylation of ERK1,2, and therefore, the transcription of 

mitogenic genes (B). Increased nuclear RHAMM expression results in aberrant 

mitotic activity and genomic instability (C). All of these increases in RHAMM 

expression result in the release of inflammatory cytokines and cellular migration 

and proliferation. Adapted from [29]. 

RHAMM interacts with HA via two HA binding domains (HABDs) located near the 

protein’s carboxyl terminus, each of which has a BX7B binding motif, where B represents 
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any basic residue and X represents any non-acidic residue [4]. These clusters of basic 

residues allow for ionic interactions with the carboxylate ions of HA [4].  

In addition to being a cell surface receptor for HA, RHAMM binds to extracellular-

regulated kinase (ERK) kinase, and regulates the expression of ERK [30]. ERK has two 

closely related isoforms (ERK1 and -2) that are required for cellular differentiation and 

proliferation [28, 30]. RHAMM is also a microtubule-associated protein (MAP) that 

binds directly to microtubules and interacts with TPX2, a different MAP that is required 

for microtubule formation [31]. RHAMM localizes to the centrosome, where it interacts 

with tubulin and helps to maintain mitotic spindle integrity and polarity [32] (Figure 

1.3). TPX2 initiates the formation of microtubules at the kinetochore, and activates 

Aurora kinase A (AURKA), which accumulates at the centrosome from S phase to the 

end of mitosis and facilitates the formation of microtubules [33-35]. This results in 

centrosome maturation and spindle assembly [33]. High expression of AURKA results in 

aberrant mitotic spindle formation, and is, therefore, correlated with genetic instability 

and poor prognosis in human diseases [36]. 

 

Figure 1.3. RHAMM binds to microtubules and TPX2, and localizes at the 

centrosome, where it also binds to tubulin (A). TPX2 initiates the formation of 

microtubules at the kinetochore and activates AURKA (B). AURKA complexes with 

TPX 2 (C) and accumulates at the centrosome (D). Adapted from [32]. 
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While RHAMM expression is tightly regulated or absent in most tissues, it is important 

for a number of wound repair processes that require cell migration, invasion, and 

remodelling of the ECM. Its restricted expression makes it a potential target for cancer 

and wound repair therapy with low toxicity. RHAMM peptides are currently being tested 

in phase II clinical trials for multiple myeloma and myelodysplastic syndrome and are 

showing efficacy and low toxicity in patients [37, 38]. 

 Peptide synthesis 
Peptides can be synthesized chemically by two main techniques, solid phase peptide 

synthesis (SPPS) and solution phase peptide synthesis. Solution phase peptide synthesis 

can be more problematic than its solid phase counterpart, as dimerization and the 

formation of other unwanted by-products requires the purification after the addition of 

each amino acid.  

In the early 1960s, Merrifield pioneered the idea of SPPS, using a polystyrene-based 

solid support for peptide synthesis, which would deal with the difficulties associated with 

solution phase synthesis [39]. The technique of solid phase peptide synthesis covalently 

links the peptide chain to an insoluble resin, which acts as a solid support off of which the 

peptide chain can grow or elongate. The solid support facilitates the addition of excess 

soluble reagents in order to drive each reaction to completion, and the excess reagents 

can be easily removed by multiple washing and filtration steps, eliminating the need for 

tedious purification steps after the addition of each amino acid [39]. Following synthesis, 

the crude peptide is released from the solid support and purified by traditional HPLC 

methods, with higher yields often reported for SPPS than for solution phase methods 

[39]. SPPS can be performed either manually or using an automatic peptide synthesizer, 

which is convenient, and improves throughput. 

Peptide synthesis by the SPPS strategy is carried out in a stepwise procedure that builds 

the peptide chain from the C- to the N-terminus using Nα- protected amino acids. The 

first amino acid is loaded onto the resin, which is functionalized with linkers for easy 

loading, and the chain is elongated as subsequent amino acids are coupled together. Once 

the peptide has been synthesized in its entirety or the desired peptide length has been 
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achieved, it can be removed from the resin, yielding the free and linear peptide (Figure 

1.4). Similarly, the synthesis can be monitored by LC-MS at any point during the 

synthesis by removing a small aliquot of resin and cleaving the peptide off of it. 

 

Figure 1.4. General scheme of solid-phase peptide synthesis 

Successful SPPS depends on the choice of resin used. Resins are insoluble polymers that 

are pre-loaded with varying linkers, which provide flexibility during synthesis, and allow 

for control over the final product by determining the functionalization of a cleaved 

peptide [40]. For example, Rink amide resins are functionalized with an amine group that 

covalently binds to the first amino acid in the sequence to obtain an amide bond at the 

carboxyl terminus of the peptide. In addition, resins can have different substitution levels, 

which when decreased, facilitate the synthesis of long peptides by avoiding interchain 

crowding, resulting in improved the synthetic yields [41]. 

One of the most common methods for synthesizing peptides by SPPS is through the 9-

fluorenylmethoxycarbonyl (Fmoc) strategy, which was first introduced by Carpino and 

Han in 1970, in which amino acids are N-terminally protected [42]. This method employs 

an orthogonal scheme that allows the removal of only the N-terminal Fmoc protecting 

group without disrupting the remainder of the peptide. This is accomplished by mild 
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basic conditions for the removal of the Fmoc group from each amino acid in order for the 

next amino acid to be added, and by the strong acidic conditions that are required to 

liberate the peptide from the resin, as well as remove all of the acid-labile side-chain 

protecting groups. 

Fmoc-based SPPS is carried out as depicted in Scheme 1.1. A protected amino acid is 

added to the resin through standard coupling procedures to form an amide bond. The N-

terminal Fmoc group of the amino acid is then deprotected with piperidine, resulting in a 

free amine. The remainder of the peptide sequence is built following the same procedure 

until the final peptide length is acquired. The free peptide is then obtained by treatment of 

the resin with acid in order to simultaneously deprotect amino acid side chains and 

remove the peptide from the solid support. 

 

Scheme 1.1. Fmoc-based solid-phase peptide synthesis 

 Rational design of peptides 

Targeting a protein-polysaccharide or protein-carbohydrate interaction is often 

challenging, as there is a large surface area of interaction and a lack of well-defined 

binding pockets that prevent the use of small molecules for interfering with these binding 

interfaces and inhibiting the interaction. Similarly, a challenge exists in trying to develop 
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mimics that contain the specific multivalences that will foster interaction with its target 

[43].  This is further complicated by the conformational changes that these HA receptor 

proteins undergo upon binding to HA [44]. Higher molecular weight entities such as 

peptides, proteins, and antibodies are more readily able to block protein-polysaccharide 

interactions due to their ability to interact over a larger surface area. 

The discovery of peptides that modulate protein-carbohydrate interactions has focused 

largely on two approaches: unbiased or random peptide library screening and rational 

design based upon known structure or binding sites. Unbiased peptide library screening 

has used phage display, which is a biochemical approach to identify high affinity peptides 

displayed on a bacteriophage, and one-bead one-compound (OBOC) libraries, which is a 

chemical approach of screening peptides using polymer beads. These unbiased peptide 

libraries were primarily used for identifying peptide mimetics that scavenge HA and HA 

fragments. The discovery approaches used for finding HA binding peptides that mimic 

HA receptors have primarily been based upon rational design, with many structural leads 

being derived from RHAMM’s known binding sites for HA. 

In many cases, the rational design of targeting peptides can start with a known crystal 

structure of the peptide, which provides important information on the compound’s 

secondary and tertiary structure [45]. Based on the initial crystal structure, alanine scans, 

small focused libraries, and structure-activity relationship (SAR) studies are carried out in 

order to identify the essential amino acids and sites for possible modification. This 

process allows for the identification of those amino acids that are unstable and 

susceptible to events such as isomerization, glycosylation, or oxidation [46]. In addition 

to optimizing the peptide’s sequence, rational design involves improving the 

physicochemical properties of natural or native peptides. This is often carried out by 

introducing structural constraints, such as staples to cyclize the peptide the backbone, and 

unnatural amino acids for use as pharmacologically active building blocks. Rational 

design of a compound must account for target affinity and specificity, biological stability, 

and its pharmacological and pharmacodynamics properties [45].  
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 Peptides as therapeutics 

Targeting a specific receptor or other class of target can be achieved with a number of 

different classes of molecules, including small molecules, peptides, or antibodies. There 

are advantages and disadvantages to using the different classes of compounds. Small 

molecules have relatively low molar mass, and therefore, can access many biological 

targets in the body. In addition, small molecules are not easily recognized or degraded by 

enzymes; however, they unfortunately suffer in lipophilicity, and because of their small 

surface area, suffer from nonspecific interactions, which can lead to toxicity [47]. 

Peptides, on the other hand, can be synthesized by standard synthetic protocols, and 

improvements in manufacturing technology have allowed for peptides of various length 

ranges up to 40 amino acids to be synthesized, as well as quick and easy synthesis of 

peptide analogues [48, 49].  

Peptide-based drugs are generally shorter than 50 amino acids in length, with molecular 

weights that lie between those of small molecules and large biologics [50]. Peptides as a 

class of molecule are particularly attractive as drug candidates because they are 

biocompatible with typically low toxicity, structurally diverse permitting high selectivity 

and potency, and have a predictable metabolism [51]. These features have enabled 

peptides to have high affinity for their targets at nanomolar and picomolar concentrations. 

Unfortunately, peptides suffer from a relatively short circulating half-life because they 

are susceptible to the same digestive enzymes designed to break down amide bonds of 

ingested proteins, and can be cleaved by both endopeptidases and exopeptidases. As a 

result, they have poor oral bioavailability and are quickly eliminated [45]. In addition, 

they are prone to hydrolysis and oxidation, and have low membrane and tissue 

permeability due to their polarity and relatively high molecular weight [45]. However, 

there has been an increasing number of commercially available unnatural amino acids 

and strategies that have helped improve the stability and other physical properties of 

peptides. For example, the identification of possible cleavage sites within the peptide 

sequence and the substitution of relevant amino acids is a preliminary approach to 

limiting enzymatic degradation of the peptide. Novel synthetic strategies supplement this, 

including modifications to amino acids or the peptide backbone, the incorporation of 
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unnatural amino acids, the conjugation of additional moieties that extend half-life or 

improve solubility, and cyclization of the peptide backbone with synthetic structural 

constraints, which may stabilize the peptide’s secondary structure [48, 52]. 

 Current peptide mimetics that inhibit RHAMM-HA 
interactions 

1.6.1 Rationally designed peptide mimetics 

To date, several peptide mimetics have been rationally designed to interfere and block the 

HA-RHAMM interaction. RHAMM-sequence based peptide mimetics that bind to HA 

fragments and have been shown to have therapeutic effects in a number of processes, 

including inflammation, wound repair, and fibrosis/adipogenesis. One of the first 

rationally designed HA-binding peptides was based on the RHAMM BX7B HA binding 

motif, but does not otherwise have any amino acid sequence homology with RHAMM. 

This peptide strongly reduced BAL macrophages in bleomycin-induced lung injury and 

blunted destruction of lung architecture [53], reduced surfactant protein A-induced 

macrophage chemotaxis [54] and ozone induced lung hyper-responsiveness [55]. Another 

peptide, pep-35, has 70% homology with the RHAMM sequence and essentially joins 

four RHAMM HA binding sequences together. This peptide reduced Staphyloccus 

aureus burden in infected surgical wounds and increased the production of CXCL1,2 by 

inflammatory cells, which subsequently increased neutrophil influx into the wound [56]. 

Other peptides have been designed to mimic the three BX7B motifs of CD44 and were 

shown to block tumor cell growth [57]. Finally, RHAMM sequence mimics (NPI-0102, 

NPI-0104), which disrupt HA binding to RHAMM, were reported to promote 

adipogenesis and reduce tissue fibrosis [58] by increasing the production of adiponectin, 

an anti-fibrogenic adipokine [59, 60]. 

In another rationally designed approach, Esguerra et al. developed HA peptide mimics 

from the C-terminal region of D- and E-tubulin that bind to RHAMM [61]. Novel 12mer 

peptide ligands were identified that bind with high affinity (nM) to RHAMM and block 

HA binding to tumor cells [61]. The strongest binding compounds were taken from the 

negatively charged carboxy terminal tail (CTT) and the helix H12 regions of tubulin, and 
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those that contained a repeating amino acid motif of EEXEE, suggesting that both 

electrostatic forces and conformational effects may be important for the development of 

RHAMM-binding ligands. 

Other RHAMM peptide-based therapies could reasonably be developed from varying the 

peptide backbone and/or altering the peptide structure, which may confer improved 

specificity and affinity towards its target. Such strategies include the development of 

stapled or cyclized peptides, resulting in more drug-like compounds. 

1.6.2 Peptide library screening for HA- and HA receptor-binding 

In addition to rational design, many peptides with therapeutic potential were discovered 

through peptide library screenings. The P15-1 peptide (STMMSRSHKTRSHHV) is a 

15mer peptide, which was the first peptide mimetic that was reported to bind specifically 

to HA fragments of <10 kDa.  It was identified by screening a recombinant phage display 

library with a complexity of approximately 1013 transformants for peptides that both bind 

to HA fragments (MW range 5-200 kDa) linked to Sepharose beads and that block cell 

motility [62]. Two peptide sequences were recovered in the screen and of these, P15-1 

exhibited the highest affinity for HA fragments (KD = 10-7 M), and most strongly blocked 

cell motility. It has low homology with known HA receptors but contains a BX7B motif 

similar to that required for binding of HA to RHAMM [4]. In a model of excisional skin 

injury, P15-1 blunted inflammation and fibrogenesis [62]. Consistent with the proposed 

possibility that P15-1 blocks RHAMM signaling though HA fragments, the consequences 

of this peptide mimetic on skin wound repair is similar to that of the genetic deletion of 

RHAMM [28], which results in blunted responses to HA fragments [63].  For example, 

both conditions block inflammation and fibrogenesis in excisional wounds but neither 

affect the course of incisional wound repair, which does not involve the massive waves of 

cellular trafficking and migration that are required for the healing of excisional wounds 

[28, 64, 65]. P15-1 synthesized entirely with D-amino acids (referred to as HABP42) also 

reduced bacterial burden in surgical skin wounds by modulating neutrophil responses [56, 

66]. 
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Pep-1, a 12mer peptide (GAHWQFNALTVR) was identified as an HA binding sequence 

by screening an M13 phage display library expressing random 12mer peptides fused to 

gene 3 (pIII) minor coat proteins with a complexity of approximately 109 transformants 

[67]. This peptide (Pep-1) was isolated by panning the library for sequences that bind to 

HA-coated plates.  Pep-1 binds to HA with moderate affinity (KD = 1.4 µM), inhibits HA 

binding to innate immune cells, and was shown to inhibit leukocyte attachment to HA 

substrates [67, 68]. The systemic, subcutaneous or topical administration of this peptide 

inhibited dinitrofluorobenzene/oxazolone induced-contact hypersensitivity by blocking 

both the in-trafficking of inflammatory cells and the migration of dendritic cells out of 

the epidermis [67].  Skin dendritic cells utilize HA as a motogenic stimulus for migrating 

from the epidermis to lymph nodes, where they function as antigen-presenting cells, a 

process that is required for generating protective pro-inflammatory and tolerogenic 

immune responses during tissue injury [69, 70]. Aberrant activation of these cells 

contributes to inflammatory disease processes [70]. These results provided early support 

for the development of HA inhibitors for inflammatory disorders. Pep-1 was later shown 

to inhibit the production of fragmented HA-promoted chemokine MIP-2 by bone marrow 

macrophages [71], reduce bronchial inflammation [72], reduce pro-inflammatory 

cytokine production (TNF-α, IL-6, MMP13 and iNOS), and preserve cartilage 

architecture in a mouse model of collagen-induced arthritis [69, 73]. In addition, Pep-1 

dramatically inhibited interleukin-2 (IL-2)-induced vascular leak syndrome (VLS) [74], 

which may be linked to its anti-inflammatory effects. P15-1 and Pep-1 have been useful 

in dissecting the signaling pathways that are regulated by HA fragments, and their 

efficacy in blocking inflammation in animal models propelled the development of peptide 

mimetics that block fragmented HA-induced activity that leads to disease. 

Recombinant CD44 protein has also been used to screen peptide libraries [75]. In this 

study, a Ph.D.TM -12 phage display peptide library with a peptide complexity of 2.7x10-9 

transformants was screened using recombinant CD44 as bait. The screen isolated several 

peptides, one of which exhibited a KD = 7.5 pM for recombinant CD44. However, none 

of the isolated peptides were tested for their ability to bind to the CD44 HA binding 

region or evaluated for functional effects. Nevertheless, these studies show that isolating 
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peptides that bind to HA receptors is a viable approach for potentially developing novel 

inhibitors of HA receptor signaling. 

Peptide-displaying phage and peptide library technology have also been used to identify 

peptides that mimic carbohydrates [76]. HA peptide mimics that bind with high affinity 

to recombinant RHAMM containing hyaluronan binding sequences, were originally 

identified by Ziebell, M. et al [77, 78]. Two libraries of 8mer peptides were designed to 

target recombinant RHAMM fragments, with one library consisting of peptides made of 

entirely random sequences. The second library was biased, with alternating acidic 

residues incorporated in every other position of the sequence, with the intention of 

mimicking the placement of the glucuronic acid moieties of HA [77]. Peptides from the 

unbiased (random) library bound to recombinant RHAMM in an HA fragment-dependent 

manner with µM to nM affinity, and exhibited some similarities with respect to regions of 

hydrophobic residues (e.g. PVY), but contained very few negatively charged amino 

acids. These peptides were then computationally modeled to evaluate their binding to an 

NMR-based model of RHAMM, from which residues within RHAMM were identified 

and theorized to stabilize RHAMM-HA interactions [78]. However, these peptides have 

not yet been reported to affect cellular functions. 

 Protein-Carbohydrate interactions 

There are a number of proteins that bind glycosaminoglycan carbohydrates, and many of 

the binding partners have been studied extensively. Generally, the main interaction 

between GAGs and the proteins that bind them are strong ionic interactions between the 

highly acidic sulphate or carboxylate groups of the carbohydrates and the basic side 

chains of arginine, lysine, and to a lesser extent, histidine residues of the protein [79]. 

GAGs interact with those residues that are exposed and easily accessible on the surface of 

proteins. Aliphatic residues, including Ala, Gly, Leu, and Ile, and other hydrophobic 

residues, such as Pro, Phe, Met, and Trp, are usually buried on the inside of proteins, and 

therefore, do not appear to participate in sugar bonding, while more polar and charged 

residues, such as Asn, Asp, Glu, Gln, His, Arg, and Lys, have been shown by both 

structure and sequence-based statistical analysis to bind to non-sulfated carbohydrates 

[80-82], such as heparin and hyaluronan. It is common for clusters of basic amino acids 
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to exist on proteins, which facilitates the protein’s interaction with the negatively charged 

groups of the sugar. Heparin-binding proteins have been identified as having binding 

sites with sequences of XBBXBX or XBBBXXBX, where B is any basic residue, and X 

is any non-acidic residue [83]. Similar binding sequences have been observed in HA-

binding proteins, such as RHAMM and CD44, both of which exhibit a BX7B binding 

motif [4]. Depending on the secondary structure of the protein, it is possible that very few 

residues in these binding sequences actually contribute to or participate in binding. For 

example, when the binding domains are arranged in an alpha-helix, the basic residues are 

often found along one exposed face of the protein, resulting in an amphipathic helical 

arrangement [84]. Therefore, in order for an interaction to take place between linear 

carbohydrates, such as HA, and largely helical proteins, such as RHAMM, the positively 

charged residues arrange themselves so that they are on the same face of the protein 

segment (Figure 1.5). 

 

Figure 1.5. In an alpha-helix, the basic residues are often found along one exposed 

face of the protein, resulting in an amphipathic helical arrangement. 

Biochemical assays are used to evaluate protein-carbohydrate interactions and can be 

carried out by chemically modifying the entities being evaluated, such as in the case of 

enzyme-linked immunosortbent assay (ELISA), or without modifying either entity, such 

as in the case of surface plasmon resonance (SPR). ELISA has the potential to be the 

more high-throughput method of screening, allowing the binding of several compounds 

to be evaluated simultaneously against either a single or multiple targets [85]. This assay 

requires that compounds be labeled or chemically modified, such as with a dye or biotin 
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molecule, for signal readout. SPR, on the other hand, is a label-free method for evaluating 

biomolecular interactions, measuring single concentrations of compound at a single time, 

decreasing the throughput of measurement compared to ELISA. Despite this, label-free 

methods of evaluating the interaction between two compounds is especially important for 

small proteins or peptides, as secondary structure often influences binding, and 

chemically modifying these molecules can potentially alter their secondary structure. In 

addition, unlike ELISA, SPR delivers a kinetic analysis of the interaction in addition to 

the binding affinity in real-time, providing information on the association (ka) and 

dissociation (kd) phases of the interaction. 

 

Figure 1.6. Analyte binding to the immobilized ligand at the sensor chip surface 

results in a change in resonance angle of reflected light. The Langmuir model with 

mass transport limitations describes the relationship between on (ka) and off (kd) 

rate constants, taking into account the rate at which analyte is brought from the 

bulk solution to the sensor chip surface. Adapted from Nicoya Lifescience. 
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The principle of SPR utilizes the immobilization of a compound of interest, known as the 

ligand, to a metal-coated sensor chip surface, and the measurement of changes in 

refractive index at the surface as another molecule, the analyte, binds. A light source 

shines light or a laser on the metal-coated film, reflecting with a resonance angle T that 

shifts when a binding event occurs at the sensor chip surface, resulting from a change in 

refractive index (Figure 1.6). This shift depends on the mass and density of analyte at the 

chip surface. In this thesis, a variation of SPR, localized SPR (LSPR), was studied. LSPR 

differs from traditional SPR by using gold nanoparticles at the sensor chip surface instead 

of the continuous metal film used in traditional SPR. In addition, LSPR produces a strong 

resonance absorbance peak, with its position being highly sensitive to the refractive index 

localized around the nanoparticles. As a result, it measures changes in the wavelength of 

the absorbance position resulting from binding events rather than changes in angles 

(Figure 1.7), like is measured in traditional SPR. 

 

Figure 1.7. Analyte binding causes a shift in wavelength of absorbance position in 

localized SPR (LSPR). Adapted from Nicoya Lifesciences. 

Following immobilization of the ligand to the sensor chip surface, the remaining binding 

sites are blocked in order to prevent non-specific interactions between the analyte and the 

chip surface. As the analyte flows across the immobilized ligand surface, and interacts or 
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associates with it, it accumulates on the chip surface, resulting in a change in molecular 

weight at the chip surface, which is denoted by a change in signal. The rate of association 

between the two compounds depends directly on the on-rate of the interaction (ka) and 

the mass transport of the analyte from the bulk flow to the sensor chip surface (km). Once 

the flow of analyte switches to buffer, the analyte dissociates from the chip surface, 

resulting in a decrease in signal (kd). A strong ligand-analyte interaction requires the use 

of a regeneration buffer to completely remove analyte from the chip surface, while 

leaving the immobilized ligand in-place. 

An important consideration in SPR is that tethering the ligand to the sensor chip surface 

will not disrupt its activity, prevent rotational freedom, or block any sites of binding. 

Therefore, the correct method of immobilizing one of the binding partners to the sensor 

chip surface is important. Biomolecule immobilization can be either direct, by covalent 

interaction with the sensor chip surface, or indirect, by binding to an immobilized 

capturing molecule [86]. Examples of direct immobilization include biotin-streptavidin 

interactions, gold-thiol interactions, and amine-carboxylic acid interactions. In many of 

these instances, orientation of these proteins is difficult to control, resulting in mixed 

orientations of protein on the surface, and the interaction can be so strong that 

regeneration of the sensor chip surface is not possible, such as with biotin-streptavidin 

interactions [87]. An alternative approach is to indirectly immobilize a biomolecule by 

labeling it with an oligo histidine tag (His tag) at either its C- or N-terminus, which 

interacts with nitrilotriacetic acid (NTA) that is pre-immobilized on the sensor chip. This 

method of attachment involves the capture of the His-tag protein by Ni2+ NTA chelation 

without altering secondary structure or blocking important analyte-binding residues, and 

allows for regeneration of the sensor chip. The exact immobilization chemistry depends 

on the specific interaction that is being evaluated. 

 Stapled peptides 

1.8.1 Alpha-helices 

Protein secondary structure is broken down into conformations that are in an alpha-helix, 

a beta-sheet, or a random coil. The Protein Data Bank (PDB) consist of approximately 
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62% alpha-helical proteins, suggesting that the alpha-helical conformation plays an 

important role in mediating a number of biological processes, including interactions with 

other proteins and macromolecules [52, 88]. 

There is a high energy requirement associated with organizing three consecutive amino 

acids into a helical conformation, which is referred to as the helix-coil transition theory 

[89]. Many short peptides lack a helical structure, as the energy required to organize them 

into well-defined helices is too great. However, pre-folding short peptides synthetically 

has the potential to overcome this energy barrier and can therefore facilitate the adoption 

of a stable secondary structure, such as an alpha-helix. 

1.8.2 Stapled peptides 

One complete turn of an alpha-helix is made up of 3.6 amino acids, resulting in the 

residues at positions i, i+4, and i+7 occurring on the same face of the helix [52]. 

Synthetically, the alpha-helical conformation of a peptide is carried out by introducing a 

covalent bond, or “staple”, at these amino acids positions, stabilizing the structure and 

inducing an alpha-helical conformation [90]. The positions of these staples can be 

important, however, and care must be taken in order to not replace or obstruct those 

residues that are important for binding to the target. Four methods for synthesizing 

stapled peptides have been extensively studied thus far, and include their formation by a 

lactam bridge, a hydrocarbon chain, a metal-ion clip, and a hydrogen bond surrogate [50, 

52]. Staples formed by a hydrocarbon chain and lactam bridge are the preferred methods 

of peptide cyclization for the improvement in bioactivity and target recognition that they 

confer [91]. 

Staple formation in peptides depends on the linear peptide sequence and can only take 

place if the unfolded peptide sequence has the natural propensity to adopt an alpha-

helical conformation. If the peptide sequence is unable to naturally adopt an alpha-helical 

conformation, it is possible that the side chains forming the staple will not arrange 

themselves appropriately, and therefore, will not bridge. Staple length depends on the 

size of the ring that is created following bridging, with shorter staples between side 

chains decreasing the peptide’s flexibility, and resulting in a more stable helix [90]. 
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Amino acid side chains should produce a staple length or size that is large enough to not 

cause significant ring strain, and therefore, decrease the demand for activation energy for 

successful cyclization to be completed [92]. Side chains involved in creating the linker do 

not contribute to target recognition, and therefore, block at least one face of the helix 

once the staple is created. 

A lactam bridge is created by means of an amide bond that forms between the side chains 

of two amino acids. Natural amino acids, glutamic acid or aspartic acid and lysine, are 

commonly applied to make the lactam bridge, but unnatural amino acids, such as 

ornithine and aminoadipic acid, can also be used. During synthesis, orthogonally-

protected glutamic acid and lysine residues replace the amino acids of the natural peptide 

sequence in the appropriate positions (i.e. positions i, i+4, i+7, i+11). The peptide chain is 

built on resin following standard Fmoc-based SPPS procedures, allowing for the selective 

deprotection of the two amino acid side chains forming the lactam bridge, and their 

subsequent coupling to staple the peptide backbone and yield the cyclized product. 

Specifically, allylester and alloxycarbonyl protecting groups on glutamic acid and lysine 

side chains, respectively, are deprotected with palladium (0) catalyst under basic 

conditions, and the deprotected side chains are coupled together with a coupling agent, 

such as 1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid 

hexafluorophosphate (HATU). The remainder of the peptide sequence can be modified as 

necessary, and eventually removed from the resin, with the staple intact (Scheme 1.2). 

 

Scheme 1.2. General synthetic protocol for the formation of a lactam bridge between 

glutamic acid and lysine residues 
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1.8.3 Circular Dichroism spectroscopy 

The secondary structure of proteins and peptides can be analyzed and quantified by 

analytical techniques, such as circular dichroism (CD) spectroscopy, which measures the 

extent to which asymmetric molecules can absorb right- and left-handed circularly 

polarized light [93]. The amide bonds in the primary sequence of proteins and peptides 

contain chromophores that produce different excitation interactions, resulting in 

identifiable characteristics on the spectra [94]. Each type of secondary structure produces 

a unique CD spectrum, which are blended together when different secondary structure 

elements exist within a single compound. The CD spectrum of a perfect alpha-helix (3.6 

amino acids per turn) is characterized by two minima at 222 nm and 208 nm, and a 

maximum at 193 nm, but these signals may shift in wavelength or in intensity if the 

compound contains elements of E-sheet or random coil within its structure [94]. Many 

large proteins are made up of multiple secondary structure elements, and many small 

stapled peptides lack a perfectly stable secondary structure beyond the stapled sequence. 

In both of these cases, the CD spectrum is unlikely to reflect a perfect single secondary 

structure. 

 Glomerular filtration rate 
Glomerular filtration rate (GFR) measures renal clearance, and can therefore, be a 

valuable tool in assessing kidney function and identifying the presence of chronic kidney 

disease (CKD) or other diseases that may target the kidneys. GFR may also be used for 

monitoring kidney function following kidney transplant, and therefore, identifying threats 

associated with organ rejection and nephrotoxicity. 

The gold standard for measuring GFR is by directly measuring plasma clearance of a 

marker molecule or compound that filters freely through the glomeruli and is neither 

metabolized nor reabsorbed through the renal tubules. Inulin, a polysaccharide made of 

up of a single glucose unit and many fructose units, has been accepted as the marker of 

choice for quantifying GFR.  
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Figure 1.8. Structure of inulin 

In the classic method for measuring clearance by Homer Smith, patients receive a 

continuous intravenous infusion of inulin following a period of fasting, multiple 

collections of blood and urine samples at precise times over 3 hours, and bladder 

catheterization in order to ensure complete urine collection [95]. Because this method of 

determining GFR is time-consuming, impractical, and invasive for patients, the clinical 

practice of using inulin has decreased, and the common clinical practice has been 

replaced with measuring the clearance of endogenous markers, such as serum creatinine 

levels, which provide an estimated GFR (eGFR) value quickly for clinical decision 

making using the Modification of Diet in Renal Disease (MDRD) Study equation [96] or 

the Cockcroft-Gault formula [97]. 

Cockcroft-Gault formula: 

𝐶𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒 𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒 =
(140 − 𝑎𝑔𝑒 𝑖𝑛 𝑦𝑒𝑎𝑟𝑠) × (𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 𝑖𝑛 𝑘𝑔)

(72 × 𝑠𝑒𝑟𝑢𝑚 𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒 𝑖𝑛 𝑚𝑔
𝑑𝐿 )

 

The value is multiplied by 0.85 if the individual is female. 

MDRD formula:  

𝐺𝐹𝑅 = 186.3 × (𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒 𝑙𝑒𝑣𝑒𝑙 𝑖𝑛
𝑚𝑔
𝑑𝐿 )

−1.154

× 𝑎𝑔𝑒0.203 × 0.742 (𝑖𝑓 𝑓𝑒𝑚𝑎𝑙𝑒)

× 1.210(𝑖𝑓 𝑏𝑙𝑎𝑐𝑘) 
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Plasma levels of endogenous filtration markers, such as creatinine, are determined by 

their generation from cells and diet, renal excretion, including filtration through the 

glomeruli, and tubular secretion and reabsorption, and elimination by the gut and liver 

(Figure 1.9) [98]. Unfortunately, equations that estimate GFR consider only 4 variables: 

age, gender, race, and body weight. Factors that influence muscle mass or diet, changes 

in diet or muscle mass due to illness or amputation that are not considered, and 

differences in race other than those considered in the equation, result in inaccuracies that 

underestimate the normal physiologic GFR value. 

 

Figure 1.9. The plasma level of endogenous filtration markers depends on their 

generation (G) from cells and diet, elimination (E) by the liver and gut, and urinary 

excretion (U) by the kidneys. Urinary excretion includes filtration, tubular secretion 

and reabsorption. Under homeostatic conditions, U = G+E. Adapted from [98]. 

In order to improve the efficiency and accuracy of GFR measurements, several 

alternative exogenous tracer agents [98] have been developed, all of which allow for real-

time measurement of kidney function by monitoring the decay of a bolus infusion of the 

reporter molecule from the plasma or the extracellular space over a period of time [99]. 

These alternative techniques include the use of radioisotope-labeled probes, such as 125I-

iothalamate [100], 51Cr-ethylenediaminetetraacetic acid (EDTA) [101], and 99mTc-

diethylenetriaminepentaacetic acid (DTPA) [102, 103], as well as non-radioactive probes, 
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including iohexol [104], unlabeled iothalamate [105, 106], FITC-labeled sinistrin [107, 

108], and FITC-labeled inulin [109, 110]. Methods for detecting these reporter molecules 

have included corometric assays, scintillation counting, X-ray fluorescence, HPLC, 

visible fluorescence, and two-photon intravital microscopy [99]. While many of these 

techniques are useful for developing and evaluating probes, they can be costly and are not 

easily translated to a clinical environment. In addition, these alternative probes have all 

been found to underestimate GFR, suggesting that they might be suffering from tubular 

reabsorption or plasma protein binding [98]. 

 Rationale of thesis 

This thesis will focus on two separate frameworks. The first framework encompasses 

chapters 2 and 3, studying the protein-carbohydrate interaction between RHAMM and 

HA and developing tools that inhibit it, while the second framework is discussed 

exclusively in chapter 4, involving a different carbohydrate, inulin, and the development 

of an optical agent based on it. Chapter 2 describes the chemical synthesis and 

optimization of a truncated RHAMM receptor, 7 kDa RHAMM, for use as the target 

receptor in screening and discovering novel peptide ligands. Chapter 3 describes the 

development of double stapled RHAMM peptide mimetics that bind HA with high 

affinity, and that are active in blocking inflammation both in vitro and in vivo. Chapter 4 

describes the development of a dye-labeled inulin conjugate for measuring glomerular 

filtration rate by transcutaneous pulse dye densitometry and has been evaluated in vivo in 

farm-raised pigs. 
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Chapter 2  

2 A Truncated RHAMM Protein for Discovering Novel 
Peptide Therapeutics 

 Introduction 

The receptor for hyaluronan mediated motility (RHAMM, gene name HMMR) is one of 

several proteins that bind to the polysaccharide hyaluronan (HA).  HA is a high 

molecular weight (HMW) anionic polysaccharide that is a major component of the 

extracellular matrix in most tissues and is important to both tissue homeostasis and 

response to injury processes.  Thus, it regulates immune cell infiltration, and such cell 

behavior as migration, proliferation, and adhesion [1-9]. These functional effects of HA 

depend upon its molecular weight.  For example, native HMW HA (>500 kDa) reduces 

inflammation and angiogenesis while fragmented HA (<200 kDa) has pro-angiogenic, -

inflammatory and -fibrosis properties.  Notably, fragmented HA accumulation is linked 

to the progression of inflammation and fibrosis-based pathologies such as arthritis, 

diabetes, and idiopathic pulmonary fibrosis [3, 4, 10, 11]. 

 Full-length human RHAMM is an 85 kDa coiled-coil protein in humans (95 kDa in 

mice) that occurs both in intracellular and extracellular compartments. It has highly 

restricted and tightly regulated expression in most normal tissues [12], but is one of a 

number of oncogenic proteins  that are exported to the cell surface in response to tissue 

stress by unconventional transport mechanisms.  Cell surface RHAMM regulates both 

cell motility and mesenchymal differentiation, while intracellular RHAMM is a 

microtubule-associated protein (MAP) that binds to ERK1,2 [13] and also mediates 

interactions of TPX2 with Aurora A kinase, which affects microtubule assembly [14]. 

Intracellular RHAMM localizes to interphase microtubules, the mitotic spindle and 

centrosomes, and contributes to mitotic spindle integrity and orientation during mitosis 

[13-18]. These RHAMM functions are required for mobilizing progenitor/stem cells and 

innate immune cells during development [19] and normal tissue repair [20-23]. De-

regulated RHAMM expression has been linked to both centrosomal abnormalities and 

aberrant cell motility, which likely contribute to the genetic instability and invasion that 
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fuels progression of many cancers. Elevated RHAMM expression is common in cancer, 

and is prognostic of poor outcome, such as in oral squamous cell, breast and prostate 

carcinomas [24-26]. The ability of fragmented HA to bind to RHAMM is key to its 

signaling functions. RHAMM binds to HA fragments and interacts with CD44 and 

growth factor receptors such as platelet-derived growth factor receptor (PDGFR), 

epidermal growth factor receptor (EGFR) and members of the hepatocyte growth factor 

receptor (HGFR) family [13, 27-32]. These interactions activate signaling pathways such 

as the RAS/MEK1,2/ERK1/,2 cascade and promote AP1/TRE and NFNB transcriptional 

activity [3, 13, 27, 33] resulting in the expression of genes that promote cell growth and 

differentiation, tissue remodeling [34-36], tissue morphogenesis [34, 37], matrix 

organization, inflammation and angiogenesis, and cell trafficking [27, 38-41]. Thus, the 

specific inhibition of HA-RHAMM interaction could have significant therapeutic 

potential for preventing activation of HA-mediated signaling cascades. 

RHAMM was originally isolated from the supernatants of chick embryonic heart 

fibroblasts in culture as a 60 kDa isoform [42], and was subsequently cloned from 

mesenchymal cells [43, 44]. Production and isolation of full-length RHAMM using 

recombinant protein technology has proven difficult with low isolation yields. We 

propose the chemical synthesis of a truncated version of the protein (706-767), 7 kDa 

RHAMM, which contains the HA-binding region [45, 46], for use as the target receptor 

in the screening of new RHAMM-binding peptides for the development of peptide-based 

therapeutic agents for treating RHAMM-related disease. 

 Results and Discussion 

2.2.1 Synthesis and purification of 7 kDa RHAMM 

The therapeutic potential of RHAMM-binding peptides that inhibit cellular RHAMM-HA 

interaction deserves investigation. RHAMM expression is tightly regulated and restricted 

in healthy homeostatic tissues, but is overexpressed during cellular stress, including 

tissue repair, chronic inflammation, and oncogenic processes. This makes RHAMM 

protein an ideal candidate for therapeutic intervention. Synthesis of full-length RHAMM 

by recombinant protein production methods has been described previously using 
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glutathione-S-transferase (GST) recombinant fusion protein [47, 48], but elution of GST-

RHAMM from a glutathione column and the subsequent removal of the GST tag with 

thrombin results in a final yield of 0.06-0.13% (2-4 mg final yield following 3 g starting 

material in the supernatant) for recombinant RHAMM protein that is the C-terminal 10 

kDa fragment, with much lower yields for larger fragment sizes. The largest loss occurs 

during the column elution step, and the treatment of the column with SDS to facilitate 

protein elution compromises bioactivity. Thus, the biosynthesis of recombinant RHAMM 

protein is difficult, resulting in very low yields. This has therefore directly hindered the 

discovery and development of therapeutic agents that target RHAMM. Here, we 

proposed and investigated the chemical synthesis of a truncated receptor that contains 

both HA binding sites, affording it the HA binding properties that have been well 

characterized of the native protein, and that can be readily synthesized by Fmoc-based 

peptide chemistry in high purity. 7 kDa RHAMM (mRHAMM 706-767) is a 62-amino 

acid mini-protein that bears the same amino acid sequence as that portion of the full-

length protein, including the two HA binding domains. 

The RHAMM protein is predicted to be predominantly helical and binds to HA by 

carboxyl-terminal positively charged amino acid clusters [49, 50] in contrast to CD44, 

which binds to HA in a conformationally-dependent manner to a much larger link module 

sequence [51]. We reasoned that synthesis of the carboxyl terminal RHAMM sequence 

should retain its HA binding potential and provide much better yields than achieved 

recombinantly.  We therefore synthesized the aa706-767 fragment of mRHAMM, which 

contains the HA binding sequence (Figure 2.1). 
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Figure 2.1. 7 kDa RHAMM protein. (A) mRHAMM (706-767) sequence (B) 

Depiction of 7 kDa RHAMM, showing the protein’s two hyaluronan binding 

domains contained within two helices, as proposed by [50, 51]. 

7 kDa RHAMM was synthesized by automated Fmoc solid phase peptide synthesis, using 

Rink amide MBHA resin (0.39 mmol/g loading) and Fmoc-protected L-amino acids. 

Synthesis of 7 kDa RHAMM was carried out under microwave irradiation conditions, 

with coupling reactions taking place at 75 qC, with the exception of His residues, which 

were done at room temperature in order to prevent racemization [52]. Synthesis was 

performed on a 0.05 mmol scale, as initial attempts indicated that a 0.1 mmol scale did 

not allow for adequate mixing of the resin during periods of vortexing. Purification by 

automated HPLC resulted in a final product with a purity >95%. All expected charged 

states until the [M+13H]13+ signals were observed, and the observed isotope pattern for 

each charged state was as expected (Table S2.1). 

A negative control mini-protein was synthesized under the same conditions as 7 kDa 

RHAMM. All basic residues were replaced with alanine residues in both HA binding 

domains, and we have therefore termed this control Ala-7 kDa RHAMM. Purification by 

HPLC-MS resulted in a final product with a purity of >95%, and charged states were 

observed until the [M+8H]8+ signals were observed. Characterization of 7 kDa RHAMM 

RHAMM’s protein sequence is predicted to be largely hydrophilic and alpha helical, with 

the HA binding domains contained in two tightly coiled coils that are separated by a 
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central loop [50, 53]. The alpha helical structure of the HA binding domains results in the 

alignment of the positively charged residues on the same face of the helix, where they 

presumably interact with the negatively charged carboxylate ions of HA [50]. 

2.2.2 Characterization of 7 kDa RHAMM 

The RHAMM protein sequence is predicted to be largely hydrophilic alpha helical, with 

the HA binding domains contained in two tightly coiled coils that are separated by a 

central loop [50, 53]. The alpha helical structure of the HA binding domains facilitates 

ligand binding by ensuring the alignment of the positively charged residues on the same 

face of the helix, where they presumably interact with the negatively charged carboxylate 

ions of HA [49, 50]. The portion of the full protein that makes up the mini-protein 

specifically has been reported to contain helices [50], and therefore, 7 kDa RHAMM is 

expected to have a similar secondary structure as that portion of full-length RHAMM. 

Structural analysis of 7 kDa RHAMM by CD spectroscopy confirmed that the mini-

protein has an alpha-helical character (Figure 2.2). The ratio of the molar ellipticities at 

the two minima defining helicity in a CD spectrum, [θ]222/[θ]208, is indicative of the 

relative helicity of a compound; a compound is more helical when the ratio of these two 

values approaches 1.0. 7 kDa was found to have a [θ]222/[θ]208 value of 0.86 in a water 

solution. For this reason, despite truncation, the secondary structure of 7 kDa RHAMM 

suggests that this part of the protein might have important secondary structure properties 

needed for interaction with the protein’s native ligand, HA. 
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Figure 2.2. 7 kDa RHAMM is helical by CD spectroscopy. CD spectrum of 7 kDa 

RHAMM in water (0.5 mg/mL) showing alpha-helical character, similar to that of 

the full-length protein’s predicted secondary structure [49, 50]. 

2.2.3 HA-binding 

SPR was used to evaluate the mini-protein-carbohydrate interaction. 5-10 kDa HA was 

immobilized on the SPR sensor chip surface by a gold-thiol bond. A concentration 

dependent dose response was observed for the interaction between 7 kDa RHAMM and 

HA, and in each case, a rapid rate of association, and a stable SPR signal were observed, 

suggesting a strong interaction between the two compounds (Figure 2.3A). Indeed, 7 

kDa RHAMM was determined to bind to HA with an average dissociation constant, KD 

value, of 9.0 nM r 0.2 nM. The dissociation constant between RHAMM protein and HA 

was originally determined to be approximately 10-8 M [44], but no reports have 

confirmed the accuracy of this affinity range until now. Reports on the increase in 

RHAMM expression in response to HA fragments ranging from 6 kDa HA to 100 kDa 

HA [11], and the realization that HA fragments that range from 3 to 25 disaccharide units 

(1.2-10 kDa) have inflammatory and pro-angiogenic properties in vitro [54] make the 

observed binding between 7 kDa RHAMM and 5-10 kDa HA comparable to the cellular 

receptor. We developed a negative control mini-protein, in which all of the basic residues 

in both HA binding domains were replaced with alanine, thereby eliminating the 
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characteristic BX7B binding motif of the HA binding domains, and theoretically 

preventing the majority of HA binding through ionic interactions. This was indeed found 

to be the result, yielding a dissociation constant of 3.2 PM r 0.6 PM, which is almost a 

400X weakening of the affinity compared with when the natural sequence is used in the 

same size protein. In addition, the SPR signal resulting from the interaction between HA 

and Ala-7 kDa RHAMM had a significantly lower signal to noise ratio than its 7 kDa 

RHAMM counterpart, as well as a slower association and quicker dissociation, 

suggesting a weak and less specific interaction. The residual binding that is observed, 

however, is possibly the result of interactions that are not the predominant ionic 

interactions of the two molecules, and may include other interactive forces that are 

common among glycosaminoglycans and the receptors that bind them, such as van der 

Waals forces, hydrogen bonds and hydrophobic interactions with the carbohydrate 

backbone [7]. This stark difference in binding affinity between 7 kDa RHAMM and its 

alanine counterpart highlights the importance of the basic charges to the RHAMM-HA 

interaction, and that SPR can be used a successful tool in measuring interactions with the 

mini-protein. 

 

Figure 2.3. 7 kDa RHAMM binds HA by SPR. SPR signals showing the interactions 

between immobilized 5-10 kDa HA and 7 kDa RHAMM (A) and a negative control 

mini-protein, which had no basic residues in the HA binding domains (B). Each 

signal corresponds to the responses of different HA concentrations, and solid lines 

indicate a linear 1:1 interaction curve fitting model for the ligand-analyte 

interaction. The dissociation constant was determined to be 9.0 nM for 7 kDa 

RHAMM and 3.2 PM for the negative control mini-protein. 
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To confirm the interaction between HA and 7 kDa RHAMM, an enzyme linked 

immunosorbent assay was carried out using biotinylated 7 kDa RHAMM on HA-coated 

plates with an average polymer size of 1500-1800 kDa (Echelon). Binding between the 

mini-protein and HA was found to vary with concentration, resulting in an effective 

concentration (EC50) value of 0.30 r 0.05 PM (Figure 2.4). This value differs from that 

obtained by SPR, and can be explained by two major reasons: the difference in size of 

HA used in the two techniques and the fact that in SPR, substrates are not fixed to the 

surface of the biosensor, while in ELISA, HA is fixed to the plate, potentially resulting in 

a different orientation of the carbohydrate, and specifically its carboxylate ions, than in 

SPR. Nevertheless, the strong and highly specific interaction between 7 kDa RHAMM 

and HA suggests that truncating the receptor to the 62-amino acids length of mini-protein 

does not negatively impact HA binding, and therefore, 7 kDa RHAMM can be used as a 

receptor in developing novel peptide-based ligands that compete with HA for RHAMM-

binding. 

 

Figure 2.4. 7 kDa RHAMM binds HA by ELISA. ELISA was performed with HA-

coated plates and varying concentrations of biotinylated 7 kDa RHAMM. 

2.2.4 Optimization of synthesis 

Synthesis of long peptides or short proteins by Fmoc chemistry requires additional 

synthetic tools beyond those available through standard Fmoc-based solid-phased peptide 
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synthesis. Specifically, aggregation during chain assembly and inter- and intra-chain 

interactions can be minimized by special solvents, such as complex solvent mixtures [55], 

chaotropic salts[55, 56], structure disrupters such as Pro residues, 2-hydroxy-4-

methoxybenyl (Hmb) peptide backbone protection [57, 58], and by resins that facilitate 

the solvation of peptide chains. Here, we investigate the optimization of 7 kDa RHAMM 

by applying pseudoproline dipeptides within its sequence during synthesis, as it has been 

advocated as being the most promising method of facilitating the synthesis of long 

sequences that are at risk of aggregation [59, 60]. In pseudoproline dipeptides, Ser, Thr, 

or Cys residues are reversibly protected as proline-like oxazolidines [60]. As with 

proline, the pseudoproline dipeptides induce kinks in the backbone of the growing 

polymer chain, thereby removing hydrogen bond donors and disrupting aggregation 

during chain elongation. Following completion of synthesis of the peptide, cleavage with 

TFA opens the oxazolidine ring, generating the natural amino acid sequence.  

While the strategy of using 5-minute microwave irradiation coupling steps in standard 

Fmoc-based solid-phase peptide synthesis generated a 62mer mini-protein with high 

purity following purification (>95%), the final preparative yield was only a few mg in 

total on a 0.05 mmol scale (3%). We therefore tried optimizing the synthesis of the mini-

protein by employing pseudoproline dipeptides at various positions within its sequence. 7 

kDa RHAMM has 5 Ser resides, 4 of which have commercially available dipeptides 

available for replacement: S750, S747, S743, and S708. We evaluated the replacement of the 

natural amino acids at each of these sites, and compared their yield and purity with the 

normal synthetic strategy of using all L-amino acids (Table 2.1) under identical 

synthesis, cleavage and purification conditions. 
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Table 2.1. Summary of 7 kDa RHAMM synthesis and purification by SPPS using 

natural amino acids and pseudoproline dipeptide on rink amide resin 

 Pseudoproline substitution Purity Preparative 

Yield 

1 None (all L amino acids, natural sequence) >95% 3% 

2 D707S708  

N742S743 

>95% 4% 

3 D707S708  

N742S743 

K746S747 

>95% 10% 

4 D707S708  

N742S743 

V749S750 

>95% 12% 

5 D707S708  

N742S743 

K746S747 

V749S750 

>95% 10% 

Using pseudoproline dipeptides as replacements of two individual amino acids at each of 

the positions optimized the synthesis yield for 7 kDa RHAMM from 3% to 12% without 

sacrificing purity. The greatest improvement in yield resulted when the amino acids were 

replaced at S743 and S750, which lie in the middle of the amino acid sequence and where 

aggregation begins to occur. This finding correlates with published protocols, which 
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suggest that the effect of pseudoproline dipeptides are realized 6-10 residues after their 

incorporation [61, 62]. Interestingly, the replacement of S750, S747, and S743 was less 

efficient when compared to the synthesis in which replacement of only S743 and S750 was 

done, suggesting that introducing pseudoproline residues at close proximity, and below 

the 6-10 residue optimal spacing, negatively influences yield. In this case, a higher than 

optimal number of kinks could be introduced in the polymer backbone. Despite the 

modest improvement in yield resulting from using the pseudoproline dipeptides, we 

concluded that use of natural amino acids is still more prudent for our needs due to the 

cost constraints associated with the purchase of commercially available pseudoproline 

dipeptides. 

2.2.5 In culture functional assay 

It has been previously shown that RHAMM regulates cellular functions associated with 

motility and affects signaling cascades in mesenchymal cells [26, 27, 63, 64]. RHAMM 

blocking antibodies, RHAMM mimetic peptides, and genetic deletion of RHAMM 

reduce migration of mesenchymal and other cell types [3, 22, 27, 65-69]. To investigate 

whether 7 kDa RHAMM competes with native cell-surface RHAMM on mesenchymal 

cells, we quantified scratch wound induced migration of RHAMM-transfected 10T1/2 

cells with and without 7 kDa RHAMM. As shown by fluorescent staining, RHAMM is 

located in cell processes on the cell surface where it can interact with HA while 

intracellular RHAMM is diffused in the cytoplasm (Figure S2.10). 7 kDa RHAMM 

inhibited migration of these cells in scratch wound assays, suggesting that it successfully 

competes with the endogenous HA receptor for HA binding. (Figure 2.5). 
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Figure 2.5. Excisional scratch wound assay performed on RHAMM-transfected 

10T1/2 cells (LR21). LR21 cells treated with 7 kDa RHAMM (B) migrate slower 

over 24 hours than those not treated with the synthetic receptor (A). Statistical 

significance determined by students t-test (***p<0.005). Scale bar, 100 µM. 

We have demonstrated that RHAMM binds to HA more tightly than it has been 

previously reported to bind to other HA receptors, such as CD44 [70, 71], LYVE-1 [72-

74]. Interestingly, CD44, which is the major HA-binding receptor expressed on most cell 

types [11], appears to require simultaneous clustering with other HA receptor molecules, 

including RHAMM, in a multivalent fashion in order to stably bind the polysaccharide 

[75]. In addition, the activation of ERK1,2 and cellular motility in culture depend directly 

on the function of RHAMM in the presence of HA [27]. In fact, it has been shown that 

RHAMM expression increases in response to an increase in the expression of all sizes of 

fragmented HA [11], predicting that the development of RHAMM-targeted peptides that 

bind and block RHAMM signaling will be useful in blunting many disease processes. 

RHAMM regulates cellular functions associated with motility and cellular migration after 

injury [27]. The RHAMM mini-protein binds HA and was therefore predicted to act as an 

HA fragment sink, inhibiting the normal function of RHAMM. Indeed, this was found to 

be the case when RHAMM-overexpressing mesenchymal cells were treated with 7 kDa 

RHAMM. LR21 cells are transfected with RHAMM'163 (73 kDa) [76], which differs 

from full length RHAMM (RHAMMFL, 85 kDa) in its cellular localization; while both 

isoforms of the protein are expressed both intracellularly and at the cell surface, full 

length RHAMM localizes primarily to the cytoskeleton and RHAMM'163 has been 

suggested to be found primarily in the nucleus, on the cell membrane [77] and at 
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podosomes, which are specialized structures of cell substratum contact and matrix 

metalloproteinase (MMP) release (Figure S2.10), and therefore, contribute to the 

migration. Biotinylated 7 kDa RHAMM was shown by confocal microscopy to be 

endocytosed in vesicles by LR21 cells following incubation, with vesicle accumulation in 

the perinuclear region (Figure 2.6) as is typical of most endocytosed cell surface 

receptors. This is the first report of cells behaving in this manner following treatment 

with a RHAMM protein. Treatment of cells with 7 kDa RHAMM protein, despite 

truncation to 7 kDa in size, inhibits the natural function of the endogenous cell surface 

protein, where it potentially binds endogenous HA receptors or growth factor receptors 

that are present at the cell surface, blocking RHAMM-dependent motile behavior. 

 

Figure 2.6. Biotinylated 7kDa RHAMM binds to the cell surface and occurs in 

intracellular perinuclear vesicles. The 7kDa RHAMM mini-protein was added to 

cultured RHAMM-transfected 10T1/2 fibroblasts, and its distribution was detected 

using a fluorescent streptavidin. Results show that extracellular staining can be 

detected (solid white arrows) and in intracellular, perinuclear vesicles (dotted white 

arrows). Results show that 7 kDa RHAMM is detected near or at the cell surface 

and that the majority of staining occurs in perinuclear vesicles, which is consistent 

with its endocytic uptake. Blue is Dapi to detect nuclei, and brightfield images are 

included to show intact cells. 
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2.2.6 Protein-ligand binding studies 

We have previously reported the discovery and screening of tubulin-derived peptides that 

compete with HA for RHAMM binding by SPR [78]. However, the difficult purification 

and isolation of the full-length RHAMM protein renders direct protein-ligand interaction 

studies difficult to undertake, and may have hindered the discovery of novel molecules 

since. Here, we investigated the interaction between 7 kDa RHAMM and tubulin-derived 

peptides by SPR in order to compare chemically synthesized truncated RHAMM with our 

previous results using recombinant RHAMM protein. 

7 kDa RHAMM was functionalized with a histidine tag on its carboxyl terminus during 

synthesis for immobilization on a nitrilotriacetic acid (NTA) biosensor surface without 

disrupting the mini-protein’s secondary structure or hindering the HA binding sites. 

Previously reported tubulin-derived peptides were observed to bind the immobilized 

mini-protein (Figure 2.7) with affinities that are highly comparable to those of the 

recombinant protein (Table 2.2), suggesting that truncating the receptor has little effect 

on binding potential of RHAMM-binding peptides. Compounds that did not bind the 

recombinant protein also showed no binding to the synthesized RHAMM mini-protein, 

such as in the case of compound 7a (Figure 2.7). Therefore, the chemically synthesized 

receptor appears to be an appropriate replacement receptor for the recombinant protein in 

screening novel peptide ligands that bind to the HA binding region of RHAMM. 

Interestingly, RHAMM sequence aa706-767 has also been shown to bind to tubulin, 

kinases, such as ERK1 [13], and kinase regulators, such as TPX2 [14], suggesting that 

this mini-protein will also be useful to screen for peptides that block intracellular 

signaling as well as interactions/functions involving microtubules, mitotic spindles and 

centrosomes. Successful synthesis of the RHAMM mini-protein permits discovery and 

screening for novel RHAMM-binding therapeutic agents, as well as optimizing and 

evaluating current HA and RHAMM mimic peptides and other therapeutic agents.  

Importantly, this will facilitate the identification of novel drug compounds that block 

extra- and intra-cellular RHAMM functions that play important roles in disease 

progression. 
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Figure 2.7. SPR signals showing the interaction between immobilized 7 kDa 

RHAMM and previously reported tubulin-derived peptides, both binding and non-

binding. Negative control (no peptide) graphs are also shown. Each signal 

corresponds to the responses of six peptide concentrations (1000 nM, 750 nM, 500 

nM, 100 nM, 10 nM, and 1 nM). The solid lines indicate a global 1:1 interaction 

curve fitting model for each of the interactions. 

Table 2.2. Binding affinities of tubulin-derived peptide analogues for 7 kDa 

RHAMM and recombinant RHAMM 

Peptide 
ID [78] 

Conc. 

(nM) 

ka 

(104/(M*s)) 

kd  

(103/s) 

KD  

(nM) 

Avg. KD 

(nM) 

Avg. KD 

with 
recomb. 
RHAMM 
[78]  

(nM) 

2b 1000 4.1 r 0.1 1.6 r 0.1 39.7 r 0.1 43.3 r 3.7 24.2 r 0.4 

750 5.0 r 0.1 8.1 r 0.1 61.5 ± 4.7 

500 5.8 r 0.2 1.4 r 0.2 72.4 ± 2.3 
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100 0.2 r 0.04 4.3 r 0.1 8.8 ± 0.1 

10 1.6 r 0.1 1.22 r 0.02 77.4 ± 14.8 

1 0.7 r 0.1 4.5 r 0.1 2.40 ± 0.01 

3b 1000 1.3 r 0.1 1.08 r 0.03 84.3 ± 2.2 31.9 r 1.2 331.1r 24.5 

750 1.9 r 0.2 1.03 r 0.03 54.6 ± 3.3 

500 2.3 r 0.4 0.08 r 0.02 36.5 ± 1.4 

100 1.4 r 0.1 1.9 r 0.1 14.3 ± 0.3 

10 0.16 r 0.02 2.4 r 0.2 1.5 ± 0.2 

1 0.02 r 0.03 5.9 r 0.2 0.5 ± 0.1 

10b 1000 4.0 r 0.2 1.3 r 0.1 314.2 r 12.2 201.8 r 8.0 

 

 

32.6 r 1.1 

750 3.3 r 0.1 1.3 r 0.1 392.1 r 10.3 

500 3.0 r 0.2 1.1 r 0.1 366.3 r 12.3 

100 1.4 r 0.3 1.4 r 0.2 99.3 r 12.0 

10 2.3 r 0.2 8.2 r 0.3 36.3 r 1.3 

1 5.7 r 0.1 1.5 r 0.2 2.6 r 0.2 

11b 1000 1.6 r 0.2 2.3 r 0.3 144.1 ± 15.8 265.1 r 4.9 

 

130.0 r 
12.9 

750 1.2 r 0.1 3.5 r 0.5 295.2 ± 1.7 

500 1.0 r 0.1 3.9 r 0.3 379.3 ± 5.8 

100 1.5 r 0.1 0.1 r 0.2 694.4 ± 5.1 

10 0.22 r 0.02 0.1 r 0.2 49.3 ± 0.4 

1 0.48 r 0.03 0.1 r 0.2 29.4 ± 0.5 

12b 1000 3.4 r 0.4 3.1 r 0.4 90.9 r 1.6 289.2 r 2.2 

 

 

211.3 r 8.6 

750 2.9 r 0.2 5.2 r 0.5 180.2 r 3.3 

500 0.9 r 0.1 7.7 r 0.6 90.9 r 3.7 

100 3.1 r 0.2 0.8 r 0.2 476.6 r 2.2 
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10 3.1 r 0.1 0.4 r 0.1 52.3 r 1.0 

1 3.7 r 0.12 5.2 r 0.2 27.0 r 1.0 

14b 1000 2.0 r 0.3 1.4 r 0.2 70.7 ± 11.7 20.9 r 5.9 30.2 r 1.5 

750 3.5 r 0.4 8.5 r 0.6 23.9 ± 11.1 

500 4.9 r 0.2 8.9 r 0.7 18.1 ± 7.3 

100 0.1 r 0.1 1.5 r 0.2 11.3 ± 2.3 

10 0.5 r 0.1 6.2 r 0.3 1.2 ± 3.1 

1 0.8 r 0.1 1.2 r 0.2 0.1 ± 0.1 

 Conclusion 

The present study demonstrated that chemically synthesized truncated RHAMM can be 

used as a surrogate for the binding site for screening novel peptide ligands. 7 kDa 

RHAMM has the same predicted secondary structure as the native protein [49, 50], 

facilitating binding to the native ligand, HA, and is biologically active in fibroblast cells. 

Chemical modifications, such as the addition of a histidine tag and a biotin molecule, can 

be easily incorporated during synthesis of 7 kDa RHAMM, and purification of the 

chemically synthesized mini-protein produces a final compound with higher yield and 

purity than is possible for the recombinant protein. In addition, 7 kDa RHAMM binds 

previously reported tubulin-derived peptides with similar affinities as recombinant 

RHAMM. The high degree of similarity in binding kinetics between the tubulin-derived 

peptides and recombinant RHAMM and the peptides and chemically-synthesized 

RHAMM is suggestive of a strong similarity in the binding action of the two proteins. 

Therefore, 7 kDa RHAMM may have potential applications in further characterizing the 

nature and functions of the interactions of RHAMM with HA and other ligands, which 

are currently lacking in the literature. For these reasons, 7 kDa RHAMM is an efficient 

and effective replacement receptor protein for screening and discovering novel RHAMM-

binding ligands, and will allow for the specific inhibition of RHAMM-ligand 

interactions, and treatment of RHAMM-associated diseases. 
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 Experimental 

2.4.1 General Methods 

All peptides, 7 kDa RHAMM, and modified versions of the mini-protein containing 

pseudoproline dipeptides and a C-terminal histidine tag, were synthesized on an 

automated synthesizer (Syrowave, Biotage) applying fluorenyl-9-methoxycarbonyl 

(Fmoc) solid phase peptide synthesis. All coupling reactions were carried out under 

microwave conditions at 75 qC for 5 minutes with vortexing, with the exception of 

histidine residues, which were double coupled for 90-minute and 30-minute intervals at 

room temperature. Cleavage of the peptides was carried out by treating the resin with 

TFA: water: triisopropylsilane (95:2.5:2.5 v/v) for 5 hours. The cleaved peptides were 

then precipitated with cold TBME, and were pelleted by centrifugation at 1000 Gs for 10 

min. After decanting the supernatant, the pellets were rinsed with tert-butyl methyl ether 

(TBME), re-suspended by vortexing, and centrifuged again. The ensuing products were 

dissolved in water, frozen and lyophilized until a dry, solid powder was obtained. 

Analysis of the peptides was carried out using a reversed-phase analytical HPLC column 

(Agilent Zorbax SB-C18 column 4.6 x 150 mm, 3.5 Pm). This system was outfitted with 

a Waters 600 136 controller, Waters Prep degasser, and Waters MassLynx software 

(version 4.1). The mobile phases employed were 0.1% TFA in water (solvent A) and 

0.1% TFA in acetonitrile (solvent B) with a flow rate of 1.5 mL/min over 15 minutes. 

The absorbance was monitored using a Waters 2998 Photodiode array detector set at 220 

nm, 254 nm, and 400 nm. All peptides and 7 kDa RHAMM were purified using a 

reversed-phase preparative HPLC column (Agilent Zorbax SB-C18 column 21.2 x 150 

mm, 5 Pm) all system specifics were the same as those used for the analytical system. 

The flow rate for the preparative HPLC was set at 20 mL/min, with the absorbance being 

monitored under the same conditions as previously described. The collected fractions 

were then lyophilized to a solid, and subsequently analyzed by analytical RP-HPLC (220 

nm) and ESI-MS on a Acquity UHPLC-MS system (Waters Co.). 
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2.4.2 Synthesis and purification of 7 kDa RHAMM 

Synthesis was conducted on a 0.05 mmol scale using Rink amide MBHA (0.39 mmol/g), 

with a four-fold excess of Fmoc protected L-amino acids. Amino acids were coupled with 

HCTU (4 eq.) in DMF and DIPEA (6 eq.). All couplings from Ser30 onwards were double 

coupled. Fmoc was removed using 2 treatments of 20% piperidine/DMF for 15-minute 

and 5-minute periods. Following synthesis, the resin was washed with dichloromethane. 

Purification of 7 kDa RHAMM was carried out as described above at a gradient of 25 to 

45%. 

2.4.3 Circular Dichroism spectroscopy 

CD was carried out on a Jasco J-810 spectropolarimeter and recorded in the range of 180-

260 nm. 7 kDa RHAMM (>95% purity, lyophilized) was dissolved in Milli-Q water to a 

concentration of 0.5 mg/mL. The measurement was carried out at 20 ᴼC, using a quartz 

cuvette with a path length of 1 mm. The instrument measured at a scanning speed of 10-

50 nm/min, and averaged five individual data points in order to obtain the reported CD 

spectrum. A blank solution of Milli-Q water, and 40% TFE/water were run before the 

measurements, and the spectra were baseline corrected. 

2.4.4 Evaluation of HA-binding 

2.4.4.1 SPR 

5-10kDa HA (purchased as sodium hyaluronate, Research Grade 5K, Lifecore 

Biomedical) was dissolved in DMSO/H2O (7/3, v/v), and was reacted with excess sodium 

cyanoborohydride for 12 hours at room temperature. 10 equivalents of cysteamine 

hydrochloride (Sigma Aldrich) was added, and the reaction proceeded for an additional 

24 hours. The solution was then dialyzed exhaustively in deionized water for 3 days 

using a 3.5-5 kDa dialysis tube (Float-a-Lyzer, Spectrum Labs) with a biotech grade 

cellulose ester membrane. 

All experiments were carried out on an OpenSPRTM instrument (Nicoya Lifesciences) at 

25qC, equipped with a 100 PL loading loop. 100 nm gold nanoparticle biosensors were 

purchased from Nicoya Lifesciences. All experiments were carried out in phosphate 
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buffered saline (PBS) running buffer (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 

mM KH2PO4), pH 7.4. The gold biosensors were incubated with cystamine-

functionalized 5-10 kDa HA (3mg/mL) for 3 days. Available binding sites on the chip 

surface were blocked with poly(ethylene glycol) methyl ether thiol (2 mg/mL) (Sigma 

Aldrich). 7 kDa RHAMM and Ala-7 kDa RHAMM were dissolved in PBS at varying 

concentrations, and were injected at a flow rate of 25 PL/min when the baseline was 

stabilized. Regeneration of the chip surface was carried out with 1M NaCl, and no further 

injections were done until the baseline was stable. The data was processed and analyzed 

using Tracedrawer software (Ridgeview Instruments AB). Kinetic parameters were 

calculated using a local analysis, fitting the data to a 1:1 model. 

2.4.4.2 ELISA 

Biotinylated 7 kDa RHAMM was synthesized under the same conditions as before, but 

was N-terminally modified to include biotin as the free acid (Sigma Aldrich), separated 

by a PEG-2 linker from the remainder of the mini-protein strand. Fmoc-AEEA-OH 

(PEG-2) (3 eq.) was coupled onto the N-terminus of the peptide at room temperature for 

1 hour with activation by HCTU (3 eq.) and DIPEA (6 eq.). Following Fmoc 

deprotection with two cycles (5 minutes and 15 minutes) of 20% piperidine in DMF, 

Biotin-OH (3 eq.) was added with HATU (3 eq.) and DIPEA (6 eq.), which proceeded 

overnight. Cleavage of the truncated protein from the resin was carried out as described 

above. 7 kDa RHAMM was purified by the same method as before, with a solvent 

gradient of 30 to 45%.  

An ELISA was utilized to measure HA-binding. Five milligrams of biotin-labeled mini-

protein was dissolved in 1 mL phosphate-buffered saline (PBS). This stock solution was 

further dissolved in 1X Tris-buffered saline (TBS) to generate peptide solutions of 50 

μg/mL, 10 μg /mL, 2 μg /mL, 0.4 μg /mL, 0.08 μg /mL, and 0.016 μg/mL. These were 

subsequently added to HA coated ELISA plates (200 μL/well, triplicates, Echelon kit K-

1200), and were incubated overnight at 40 °C. 200 μL of 1X TBS was used as a negative 

control. Wells were washed 3 times with 200 μL 1X TBS and then 100 μL pre-diluted 

streptavidin-HRP (LSAB2 Streptavidin-HRP, DAKO K1016) was added to each well and 

the ELISA plate was incubated for 1 hour at room temperature. Wells were washed 3 
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times with 200 μL 1X TBS and 100 μL 3,3’,5,5’-tetramethylbenzidine (TMB) solution 

(Echelon kit K-4800) was added. After a 20-minute incubation at room temperature, 50 

μL 1N H2SO4 stop solution was added. Absorbance was measured at 450 nm using a 

SYNERGY H4 (BioTek) plate reader. Data was fitted to a nonlinear regression curve 

with equation Y = 0.97 + (0.07 - 0.97)e-2.58X. 

2.4.5 Optimization 

All syntheses were carried out as described above, except that Fmoc-Asp(OtBu)-

Ser(\Me,Me pro)-OH, Fmoc-Asn(Trt)-Ser(\Me,Me pro)-OH, Fmoc-Lys(Boc)-Ser(\Me,Me 

pro)-OH, and Fmoc-Val-Ser(\Me,Me pro)-OH (Novabiochem) were used to introduce 

D707S708, N742S743, K746S747, and V749S750, respectively. All coupling reactions were 

carried out under the same conditions as their L-amino acid counterparts. Cleavage of the 

peptides from the resin, and purification were carried out as before. 

2.4.6 Confocal Microscopy 

LR21 cells were plated on fibronectin coated cover slips. The next day, medium was 

changed to defined medium (DEMEM, insulin, transferrin) and 10 PM biotinylated 7 

kDa RHAMM was added. Defined medium without biotinylated 7 kDa RHAMM was 

used as negative control. After 24 hrs, cover slips were washed three times with 1X PBS. 

Cover slips were treated with 0.1 % Triton-x /PBS for 10 min at RT, then washed once 

with 1X PBS. Cover slips were blocked with 3% BSA/PBS for 1 hour at RT. Blocking 

buffer was removed and fluorescent streptavidin (Alexa 647), diluted 1:250 in 1% 

BSA/PBS, was added. After 2 hours at RT, cover slips were washed three times with 1X 

PBS at RT, then cover slips were mounted with mounting medium containing DAPI 

(Invitrogen, antifade Gold with DAPI). A confocal microscope (Olympus) was used to 

obtain fluorescence and DIC images using a 100X objective. 

2.4.7 Scratch Wound Assay 

LR21 cells were cultured in DMEM low glucose medium containing 10% FBS and 

antibiotics/antimycotics. For scratch wound assays, sufficient LR21 cells were plated in 

fibronectin (25 Pg/ml PBS) coated ibidi 15P-slide 8 well chambers to allow formation of 
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a confluent cell monolayer. The next day, cultures were scratch wounded using a blue 

micro pipettor tip. Cells were washed once with growth medium to remove cell debris. 

Medium was changed to defined medium (DMEM low glucose, 4 Pg/ml insulin, 8 Pg/ml 

transferrin, antibiotics/antimycotics) containing 7 kDa RHAMM (1 PM). 8 well 

chambers were placed inside an ibidi environmental chamber attached to an ibidi 

temperature controller and gas mixer. Culture conditions were kept constant at 37 ºC, 5% 

CO2, humidified atmosphere. Wound closure was filmed for 24 hours using a Nikon 

Eclipse TE 300 microscope equipped with a 10X objective, Hoffman optic and a 

Hamamatsu digital camera. Image acquisition occurred every 5 min over 24 hours and 

was controlled by NIS-Elements AR 3.2 software. Wound closure was quantified by 

measuring migration distance of the migration front over 24 hours using the NIS-

Elements AR 3.2 software. 

2.4.8 Statistical Analysis 

Statistical analysis was performed using GraphPad Prism® software. Data were 

expressed as means ± SEM. Statistical analysis was performed using a one-way ANOVA 

and Tukey’s post-hoc test with level of significance indicated as follows: *p < 0.05, ** p 

< 0.01 and *** p < 0.001 

2.4.9 SPR experiments with tubulin-derived peptides 

Histidine tagged 7 kDa RHAMM was synthesized by first synthesizing the histidine tag 

on the C-terminus, comprising of six His residues, which were coupled at room 

temperature. Following synthesis of the His tag, Fmoc-AEEA-OH (PEG-2) (3 eq.) was 

coupled, followed by the synthesis of 7 kDa RHAMM, which was synthesized under the 

same conditions as before. Cleavage of the peptide from the resin was carried out as 

before. 7 kDa RHAMM was purified by the same methods as described above, with a 

gradient of 25 to 45%. 

All experiments were carried out on an OpenSPR� instrument (Nicoya Lifesciences). 

Nitrilotriacetic acid (NTA) biosensors were purchased from Nicoya Lifesciences. All 

experiments were carried out in PBS buffer. The sensor chip surface was primed with 
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imidazole (200 mM) and NiCl2 (40 mM). 7 kDa RHAMM was immobilized onto the 

biosensor surface at a flow rate of 25 PL/min using a protein concentration of 0.1 mg/mL 

in a 100 PL sample loop. The peptide ligands were dissolved in water at 10X, 4X, 2X, 

and 1.25X concentration dilutions from 1 mM to 100 pM, and were injected at a flow rate 

of 25 PL/min when the protein signal was stabilized. Regeneration of the chip surface 

was carried out with 1 M NaCl, and no further injections were done until the baseline was 

stable. The data was processed and analyzed using Tracedrawer software. 

2.4.10 Immunofluorescent staining 

10T1/2 cells were purchased from ATCC and transfected with 73 kDa RHAMM and a 

full-length RHAMM cDNA encoding either Zs-green or non-immune IgG [76].  For 

immunofluorescent staining, RHAMM-transfected cells were plated on fibronectin-

coated coverslips. The confluency of these cultures was less than 50%. Cells were fixed 

in 4% paraformaldehyde/PBS pH 7.5 for 10 minutes at RT. Fixed cells were washed two 

times with PBS.  Non-specific antibody binding was prevented by incubating cover slips 

with 3% BSA/PBS for 1 hr. Cover slips were then incubated with either a primary 

antibody to ZsGreen (CloneTech) or non-immune IgG used as a negative control 

according to manufacturer’s instructions. Cover slips were washed three times with PBS 

to remove unbound IgG/antibody and were then incubated with Alexa dye-conjugated 

secondary antibody (Alexa 555 or Alexa 488, Invitrogen), washed and mounted using 

DAPI containing ProLong Gold antifade mounting reagent (Invitrogen). Cells were 

imaged using a confocal microscope (Olympus IX81) using FV10-ASW 4.2 software. 
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 Supplemental Information 

 

Figure S 2.1. UHPLC trace of 7 kDa RHAMM 

 

Figure S 2.2. UHPLC trace of Ala-7 kDa RHAMM 
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Figure S 2.3. UHPLC trace of 2b (H-VEGEGEEEGEEY-NH2) 

 

Figure S 2.4. UHPLC trace of 3b (H-SVEAEAEEGEEY-NH2) 
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Figure S 2.5. UHPLC trace of 10b (H-EEDFGEEAEEEA-NH2) 

 

Figure S 2.6. UHPLC trace of 11b (H-GEFEEEAEEEVA-NH2) 
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Figure S 2.7. UHPLC trace of 12b (H-EAFEDEEEEIDG-NH2) 

 

Figure S 2.8. UHPLC trace of 14b (H-FTEAESNMNDLV-NH2) 
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Figure S 2.9. UHPLC trace of 7a (H-GEFSEAREDMAA-NH2) 

 

Figure S 2.10. 10T1/2 mesenchymal cells display RHAMM in cell processes and 

adhesion sites.  10T1/2 cells were transfected with full-length Zs-Green tagged 

RHAMM (green, top panel) and Zs-Green tagged RHAMM'163 (bottom panel). The 

tagged cell surface RHAMM was detected by co-localization of Zs-green antibody 

staining (red) with Zs-green fluorescence in non-permeabilized cells and is present 

in cell processes. Intracellular RHAMM, which is detected as green fluorescence 

only, is diffused in the cytoplasm.    Scale bar, 20 µM. 
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Figure S 2.11. ESI+ Mass Spectrum for 7 kDa RHAMM 

 

Figure S 2.12. ESI+ Mass Spectrum for Ala-7 kDa RHAMM 
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Table S 2.1. Calculated and observed m/z peaks of 7 kDa RHAMM 

 m/z calculated m/z observed 

[M+5H]5+ 1446.55 1446.47 

[M+6H]6+ 1205.59 1205.63 

[M+7H]7+ 1033.88 1033.78 

[M+8H]8+ 904.39 904.45 

[M+9H]9+ 804.15 804.12 

[M+10H]10+ 723.72 723.77 

[M+11H]11+ 658.11 658.09 

[M+12H]12+ 603.20 603.23 

Table S 2.2. Calculated and observed m/z peaks of Ala-7 kDa RHAMM 

 m/z calculated m/z observed 

[M+4H]4+ 1651.89 1562.02 

[M+5H]5+ 1321.71 1321.94 

[M+6H]6+ 1101.60 1101.65 

[M+7H]7+ 944.37 944.39 

[M+8H]8+ 826.45 826.62 
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Table S 2.3. Calculated and observed m/z peaks of tubulin-derived peptides 

Peptide 

ID [49] 

Peptide Sequence Mmono 
calculated 

Mmono 
observed 

m/z 
calculated 

m/z 
observed 

Purity 
(%) 

2b H-VEGEGEEEGEEY-NH2 1353.52 1358.28 677.77 677.56 >92 

3b H-SVEAEAEEGEEY-NH2 1339.53 1339.30 670.77 670.66 >95 

10b H-EEDFGEEAEEEA-NH2 1381.51 1381.28 691.76 691.65 >95 

11b H-GEFEEEAEEEVA-NH2 1365.55 1365.39 683.78 683.70 >94 

12b H-EAFEDEEEEIDG-NH2 1409.54 1409.56 705.33 705.79 >93 

14b H-FTEAESNMNDLV-NH2 1367.60 1368.08 684.81 684.43 >94 

7a H-GEFSEAREDMAA-NH2 1310.55 1311.44 656.28 656.73 >97 

 

 

Figure S 2.13. ESI+ Mass Spectrum for Peptide 2b (H-VEGEGEEEGEEY-NH2) 
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Figure S 2.14. ESI+ Mass Spectrum for Peptide 3b (H-SVEAEAEEGEEY-NH2) 

 

Figure S 2.15. ESI+ Mass Spectrum for Peptide 10b (H-EEDFGEEAEEEA-NH2) 
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Figure S 2.16. ESI+ Mass Spectrum for Peptide 11b (H-GEFEEEAEEEVA-NH2) 

 

Figure S 2.17 ESI+ Mass Spectrum for Peptide 12b (H-EAFEDEEEEIDG-NH2) 
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Figure S 2.18. ESI+ Mass Spectrum for Peptide 14b (H-FTEAESNMNDLV-NH2) 

 

Figure S 2.19. ESI+ Mass Spectrum for Peptide 7a (H-GEFSEAREDMAA-NH2) 
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Chapter 3  

3 The Development of RHAMM Peptide Mimetics for 
Blocking Inflammation 

 Introduction 

Hyaluronan is a nonsulfated, linear glycosaminoglycan (GAG) that is composed of 

repeating disaccharide units of (ß, 1-4) glucuronic acid (GlcUA) and (ß, 1-3) N-

acetylglucosamine (GlcNAc). In homeostatic tissues, native HA is a polysaccharide that 

has a high molecular weight (HMW) of >500 kDa. Native HMW HA is the major 

carbohydrate component of the extracellular matrix (ECM) in all tissues, where it acts to 

maintain water homeostasis and matrix structure [1], and as such, plays a vital role in 

tissue organization and cellular behaviour, including proliferation, growth, and motility 

[2-8]. However, like many other components of the ECM, HMW HA is broken down to 

oligosaccharide fragments by hyaluronidases (HYALs) and free radicals (reactive 

oxygen/nitrogen species, ROS/RNS) in response to cellular stresses, resulting in the 

accumulation of lower molecular weight (LMW) forms of the polysaccharide that have 

different functions than their native HMW precursors [9-13]. Many of HA’s functions 

appear to be mediated through specific HA receptors, including LYVE-1, Stab2, CD44 

and receptor for hyaluronan mediated motility (RHAMM/HMMR/CD168). Fragmented 

HA-HA receptor interactions have been shown to increase inflammation, fibrosis and 

angiogenesis, all of which are processes that have the potential to lead to development of 

disease.[11, 13-16]. In the case of inflammation specifically, their increased interaction 

activates macrophages and the expression of pro-inflammatory genes and cytokines, such 

as macrophage chemoattractant protein-1 (MCP-1), Interleukin-8 (IL-8), RANTES, and 

TNF-D [17]. A positive feedback loop is also possible when an HA-induced 

inflammatory response perpetuates further inflammatory processes; inflammation leads to 

inflammation, and this may eventually lead to fibrosis [7]. Thus, scavenging HA 

fragments, and preventing HA fragment-HA receptor interactions with targeted entities 

has both a preventative and therapeutic application. 
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RHAMM is unique among the group of HA receptor proteins in its strong binding 

affinity and specificity for HA (Hauser-Kawaguchi, et al., submitted). In addition, unlike 

the other HA receptors, which bind HA through a link module binding motif [18], 

RHAMM binds HA through two HA binding domains, both of which have a BX7B 

binding motif, where B represents a basic amino acid, and X represents any non-acidic 

amino acid [19]. Further, RHAMM binds directly to microtubules [20, 21] and 

TPX2/AURKA A [22, 23] through the leucine zipper that exists between the two HA 

binding domains. RHAMM is largely present in the cytoplasm and nucleus, where its 

expression is tightly regulated [24-26], but is also exported to the cell membrane by 

unconventional mechanisms in response to cellular stress, where it associates with 

transmembrane receptors including CD44 and PDGFR in order to activate ERK 1,2 [20, 

27-29] and focal adhesion kinase (FAK) [30] signaling pathways. The exact signal 

transduction mechanism of RHAMM-HA-induced signaling has not yet been fully 

characterized. 

Several RHAMM mimetic peptides have been reported to have functional properties [30, 

31]. Here, we report the design and synthesis of the first cyclized RHAMM peptide 

inhibitors and show that this strategy is effective for targeting HA fragments and 

blocking HA fragment-induced signaling outcomes. Specifically, these RHAMM 

mimetics have been stabilized by two lactam bridge staples that are adjacent to one 

another, which we have shown facilitate ligand binding, and therefore, bioactivity both in 

culture and in vivo, suggesting that they have therapeutic potential in treating 

inflammation-related diseases. 

 Results and Discussion 

The development of peptide mimetics that bind to HA fragments has proven successful as 

a therapeutic approach in experimental models of inflammation and other diseases. These 

peptides bind directly to and sequester HA fragments, which are therefore prevented from 

binding and activating receptors. 

We have developed 30mer RHAMM peptide mimetics that incorporate both HA binding 

domains of RHAMM as well as the linker region that connects them. Our aim was to 
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develop peptides that have improved affinity towards their target HA, resulting in 

improved efficiency for scavenging HA, and therefore, are more effective at blocking HA 

fragment-induced signaling in culture and in vivo. 

We have identified RHAMM peptide mimetics that have been stabilized by the insertion 

of lactam bridge staples in the portion of the peptide sequence that lies between the two 

HA binding domains. We propose that these peptides are prototypical drug molecules, 

especially our lead compound, Peptide 3.1, and its variants, which may be used for the 

treatment of conditions that arise from HA signaling, especially those that involve a 

strong inflammatory response, such as pro-inflammatory conditions and some cancers. 

RHAMM has been reported to be a largely helical protein, and specifically, the two HA 

binding domains have been reported to have helical character. It has been hypothesized 

that the arrangement of the binding domains in this structure facilitates the correct 

orientation of the basic residues in the BX7B binding motif towards the target so that the 

two molecules will interact [32]. To this end, two adjacent (i, i+4) lactam bridge staples 

were inserted between the two HA binding domains in order to stabilize the linker region 

and confer further helicity to the shortened RHAMM peptides. In addition, we 

investigated whether the order of amino acids forming the lactam bridge was important 

for HA binding, as it has been reported that staples formed by a Lys-Glu staple were less 

efficient in improving helicity over the Glu-Lys counterpart [33].  

In order for the RHAMM peptide mimetics to prevent the activation of signaling 

pathways, they are required to target and scavenge HA fragments. As expected, all of the 

compounds bound to HA, as they contain the HABDs, which are required for ligand 

binding. However, the improvement in ligand-binding observed in the cyclized peptides 

is noteworthy. Cyclization significantly improved the affinity of these compounds for HA 

compared to the linear peptide in all cases, as well as decreased their dissociation from 

HA, suggesting that the double stapled peptides are more specific for their target than 

their linear counterpart. The most notable increase resulted in the case of Peptide 3.1, in 

which both staples were formed by the conjugation of the side chains of an N-terminal 

Glu and C-terminal Lys residue. Interestingly, switching the order of staple-forming 



80 

 

residues decreases the compound’s binding affinity for the ligand (Peptides 3.3 and 3.4). 

Because the sequence or placement of the staples does not vary between Peptide 3.1 and 

Peptides 3.3 and 3.4, the difference in binding affinity is likely due to the difference in 

secondary structure of the overall compound, where improved helicity results in 

improved HA-binding. This insertion and placement of the staples confers rigidity into 

the structure, cyclizing the linker region of the peptide, ensuring that the HABDs are 

accessible to the ligand.  

Table 3.1. Sequences of double stapled RHAMM peptide mimetics and their linear 

counterpart. Side-chain cyclization indicated by square brackets. 

Peptide ID Sequence 

Linear Ac-KIKHVVKLKDENSQLKSEVSKLRSQLVKRK-NH2 

3.1 Ac-KIKHVVKLK[EENSK][EKSEK]SKLRSQLVKRK-NH2 

3.2 Ac-KIKHVVKLKD[ENSQK][ESEVK]KLRSQLVKRK-NH2 

3.3 Ac-KIKHVVKLK[EENSK][KKSEE]SKLRSQLVKRK-NH2 

3.4 Ac-KIKHVVKLK[KENSE][EKSEK]SKLRSQLVKRK-NH2 

 

3.2.1 CD Spectroscopy 

The importance of the secondary structure of RHAMM’s HABDs is a well-accepted 

characteristic for the ligand binding to the receptor  [32, 34, 35]. We evaluated the 

secondary structure of each of the peptides by CD spectroscopy, and determined the 

mean residue ellipticity of the peptides by taking the ratios of the values at the two 

minima that are characteristic of an alpha-helix, 208 and 222 nm. The closer the ratio 

approaches a value of 1, the closer the peptide achieves perfect helicity, while a greater 

value at 208 nm than at 222 nm suggests the presence of additional conformations in the 

structure, such as some beta sheet or random coil properties [36]. The secondary structure 

of the linear peptide was observed to have a mean residue ellipticity of 0.32 in water, 
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suggesting some degree of alpha-helical character, which improved to 0.80 in a 40% TFE 

solution, following stabilization of the compound’s inherent secondary structure [37]. All 

of the double stapled peptides were reported to exhibit an increase in helicity compared to 

their linear counterpart. The peptide with the highest degree of helical character was 

Peptide 3.1.  

The availability of the RHAMM binding domains in the correct conformation is a 

requirement for binding of the receptor to the ligand. Therefore, some alpha-helical 

character observed in the linear peptide, which contains both HABDs, is expected, but the 

minimal degree of helicity is the result of a lack of hydrophobic residues that would 

contribute to a hydrophobic core [35]. Cyclization of the peptide backbone is a 

commonly used technique that decreases the flexibility and free rotation of individual 

bonds contained within the staple, as well as facilitates the distinct formation of an alpha-

helical secondary structure. Thus, the addition of staples in the peptide backbone within 

the linker region acts to stabilize the inherent helicity present within the peptide 

sequence, evidenced by the linear peptide, and identify those compounds with the 

greatest potential for targeting HA fragments and preventing HA signaling. 

Table 3.2. Mean residue ellipticities of linear and double stapled peptides at 0.25 

mg/mL of peptide 

Peptide ID Water [θ]222 /[θ]208 Water + 40% TFE [θ]222 /[θ]208 

Linear 0.32 0.80 

3.1 0.65 0.85 

3.2 0.48 0.83 

3.3 0.37 0.83 

3.4 0.41 0.81 
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Figure 3.1. Stapling RHAMM peptide mimetics increases helicity compared to the 

linear peptide by CD spectroscopy in both water (A) and 40% TFE solution (B) 

3.2.2 Cyclized RHAMM peptide mimetics bind hyaluronan with 
high affinity 

All of the peptides were evaluated for their binding to LMW HA fragments (5-10 kDa). 

Cystamine-functionalized HA [38] was covalently conjugated to a gold nanoparticle 

surface, providing a biosensor for SPR experiments. PEG thiol was used to block any 

available sites on the chip in order to prevent nonspecific binding of the peptides to the 

gold surface (data not shown). 

All of the peptides were observed to bind to the 5-10 kDa HA surface over a range of 

peptide concentrations, including the linear peptide. All of the double stapled peptides 

(3.1 – 3.4) had improved binding to HA over the linear peptide, as well as a slower 

dissociation rate. Peptide 3.1 had the strongest binding to HA, binding the ligand with a 

KD of 88 nM, and was found to have the slowest dissociation from the HA surface. 

Table 3.3. Kinetic analysis of linear and double stapled peptides 

Peptide ID Average ka 
(103/(M*s)) 

Average kd 
(10-4/s) 

Average KD 
(nM) 

Linear 2.6 r 0.1 3.4 r 0.3 1260.2 r 24.8 

3.1 5.3 r 0.2 4.7 r 0.5 88.5 r 6.3 

3.2 7.0 r 0.4 1.7 r 0.7 240.3 r 16.4 

3.3 7.6 r 0.8 1.4 r 0.8 168.4 r 21.1 

3.4 6.1 r 0.5 1.4 r 0.4 230.6 r 13.8 
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Figure 3.2. SPR signals of linear and stapled peptides. Stapling and staple placement 

are important for HA-binding. Each signal corresponds to the response of 5 peptide 

concentrations (750 nM, 1 PM, 2.5 PM, 5 PM, and 10 PM). The solid lines indicate a 

global 1:1 interaction curve fitting model for each of the interactions. 

3.2.3 Cyclized RHAMM peptide mimetics block inflammation 

RHAMM expression is induced in macrophages following tissue injury or cellular stress, 

so blocking normal RHAMM function in sites of injury would reduce the RHAMM-

mediated inflammatory response. Several approaches have been reported for blocking 

pro-inflammatory signaling that is mediated by HA fragments, including, but not limited 

to inhibiting HA synthesis by small molecules, such as 4-MU [39, 40], gene knockdown 
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or knockout [41-43], blocking hyaluronidase production, and with targeted peptides that 

bind either HA or HA receptors [30, 31, 44, 45]. Here, we discuss and validate the first 

RHAMM-based cyclized peptides for treating inflammation. Other HA-targeted peptides 

have been developed and shown to have therapeutic potential in inflammation, wound 

repair, and fibrosis/adipogenesis models [31], and as such, this class of molecule offers 

considerable promise in regulating inflammation-based diseases and disorders.  

The lead peptide was subjected to an inflammation protein array to determine the specific 

cytokines that would be the best readout to measure bioactivity of our peptide library. 

The mouse inflammation array was purchased from R&D Systems and performed 

according to manufacturer’s protocol. Briefly, RAWBlue macrophages were stimulated 

with Toll-like receptor (TLR) agonist PAM3CSK4 to induce inflammation and treated 

with peptide at the same time for a period of 24 hours. The peptide was found to block 

the expression of a number of inflammatory cytokines measured in the array, the most 

notable of which was RANTES, where the peptide was able to bring the levels down 

close to that of the control (Figure 3.3).  

 

Figure 3.3. An inflammation protein array was performed on RAWBlue 

macrophages stimulated with TLR agonist PAM3CSK4 in the presence or absence 

of 1 PM of peptide 
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Peptide 3.1 was further validated in vivo where it blocked 54% of tumor necrosis factor 

alpha (TNF-D) levels under pro-inflammatory conditions following exposure to 

lipopolysaccharide (LPS) (Figure 3.4). By blocking cytokine recruitment in vivo, we 

have shown that our lead compound could potentially be used to prevent fragmented HA-

mediated signaling, including macrophage recruitment. 

 

Figure 3.4. Preclinical evaluation of Peptide 3.1 was carried out in mice that were 

stimulated with lipopolysaccharide (LPS), a TLR agonist. Preliminary results 

demonstrate that a 54% decrease in TNF-D concentration is observed in the 

presence of Peptide 3.1 compared to the LPS. 

In order to compare the effects of the stapled peptides, Peptides 3.1-3.4 and their linear 

counterpart were evaluated for their ability to block inflammation in a RANTES ELISA 

at a single concentration of 50 nM, which was determined from a dose response of 

Peptide 3.1 (data not shown). All of the stapled peptides were observed to block the 

RANTES expression more effectively following stimulation with PAM3CSK4 than the 

linear peptide, which was not found to block the cytokine’s expression at all. 

RHAMM functional peptides have been developed and successfully been shown to block 

cellular functions based on the HA-RHAMM interaction, and have therapeutic effects in 

a number of processes, including inflammation, wound repair, and adipogenesis, without 
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conferring any observable negative toxicities in the injected tissues [31, 46], suggesting 

that other RHAMM peptide mimetics have a wide range of potential therapeutic 

applications. Moreover, RHAMM R3 vaccines have already been tested in Phase I/II 

clinical trials [47, 48], offering promise that other RHAMM-based therapeutics can be 

developed and safely translated to a clinical setting. 

Table 3.4. Inhibition of RANTES expression (compared to +PAM3CSK4 positive 

control) was observed in response to a number of peptide variants (50 nM dose). 

Peptide ID Inhibition (at 50 nM) 

Linear 0% 

3.1 27% 

3.2 11% 

3.3 10% 

3.4 0% 

3.2.4 Cyclization improves peptide stability 

Peptide stability was evaluated by monitoring the degradation of the compounds 

following incubation in human serum. In addition to improving helicity, peptide stapling 

increases the diameter of the compound so that it exceeds that of the protease active site, 

and reduces exposure of the vulnerable amide backbone to protease cleavage [37, 49]. 

Thus, we expected that the stapled peptides would have improved resistance to enzymatic 

breakdown than their linear counterpart. In a similar fashion, N-terminal acetylation and 

carboxyamidation increase a peptide’s resistance to enzymatic breakdown, and 

specifically hinders the actions of exopeptidases and endoproteases [50]. As expected, the 

linear peptide degraded at a much faster rate than all of the cyclized variants, with 

degradation occurring immediately after incubation in serum began (Figure 3.5). 

Interestingly, all of the stapled peptides were still >80% intact after 6 hours of incubation, 

while the linear peptide had only 11% of the peptide remaining. The most notable 
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degradation product in all of the stapled peptides, particularly after 24 hours of 

incubation, correlated with the loss of the first three N-terminal residues of the peptide 

sequence, KIK. No other cleavage products were observed, suggesting that the remainder 

of the peptide remains intact over the 24-hour incubation period. The residues being 

cleaved belong to the first HABD (HABD1) of the RHAMM protein (mRHAMM 721-

750), which has predicted by computational modeling to be less important for HA 

binding [35]. The first HABD comprises fewer leucine and glutamine residues in its 

primary sequence than that of the second HABD, and these amino acids have been 

proposed to have a greater propensity to form an alpha-helix, making them helix-

inducing and stabilizing residues [51]. With fewer helix-stabilizing residues in its 

sequence, HABD1 may not only have less helical character than HABD2, but may also 

contribute less to the overall stability of the compound, and therefore, be more likely to 

produce degradation products following incubation in serum. 

Table 3.5. Peptide stability in 25% human serum at 6 hours and 24 hours 

Peptide ID Percent remaining after 6 hours Percent remaining after 24 hours 

Linear 11.4 ± 3.3 0.3 ± 0.1 

3.1 82.3 ± 6.8 4.7 ± 0.7 

3.2 91.7 ± 7.4 1.9 ± 0.1 

3.3 86.5 ± 4.1 23.1 ± 0.1 

3.4 66.6 ± 6.3 4.2 ± 2.1 
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Figure 3.5. Stapling the peptide backbone (black) increases the half-life in human 

serum compared to the linear (red). Data was fit to nonlinear regression curves. 

3.2.5 Modifying the lead compound to find a metabolically stable 
compound with strong binding affinity 

The effect of altering the rigidity of the linker region was evaluated by removing the 

adjacent double staple. If two adjacent staples confer rigidity, removing one, or inserting 

a linker to separate them should increase the flexibility of the region, and therefore, 

destabilize the helical structure. Peptide 3.1 was used as a model for determining the 

effect of specific modifications to the structure and sequence on helicity and binding 

affinity. We evaluated the effect of removing the three N-terminal residues, KIK, which 

were observed as cleavage products following incubation in serum (Peptide 3.1-KIK), as 

well as that of destabilizing the linker region between the two HABDs. In addition, we 

studied the effect following staple separation by one residue (3.1+Gly), two residues 

(3.1+GG), helix-inducing residues (3.1+AA), a hydrophobic residue, N-aminomethyl 

benzoic acid (amb) (3.1+amb), and the isolation of one of the staples, either the first 

staple (3.1_1st staple) or the second staple (3.1_2nd staple).  
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Table 3.6. Modifications to the linker region of Peptide 3.1. (*Peptides named based 

on IUPAC-IUB Joint Commission on Bicohemical Nomenclature [52], but reference 

ID will be used for ease of reference.) 

Peptide ID Reference ID* Sequence 

3.1 3.1 Ac-KIKHVVKLK [EENSK]-[EKSEK] 

SKLRSQLVKRK-NH2 

des-(K1-K3)-Peptide 3.1 3.1-KIK Ac-HVVKLK [EENSK]-[EKSEK] 

SKLRSQLVKRK-NH2 

[Leu16,Val20]-Peptide 3.1 3.1_1st staple Ac-KIKHVVKLK [EENSK]-LKSEV 

SKLRSQLVKRK-NH2 

[Asp10,Lys14]-Peptide 3.1 3.1_2nd staple Ac-KIKHVVKLK DENSQ-[EKSEK] 

SKLRSQLVKRK-NH2 

endo-Gly15a-Peptide 3.1 3.1+Gly Ac-KIKHVVKLK [EENSK]-Gly-

[EKSEK] SKLRSQLVKRK-NH2 

endo-Amb15a-Peptide 3.1 3.1+Amb Ac-KIKHVVKLK [EENSK]-Amb-

[EKSEK] SKLRSQLVKRK-NH2 

endo-Gly15a, Gly15b-

Peptide 3.1 

3.1+GG Ac-KIKHVVKLK [EENSK]-G-G-

[EKSEK] SKLRSQLVKRK-NH2 

endo-Ala15a, Ala15b-

Peptide 3.1 

3.1+AA Ac-KIKHVVKLK [EENSK]-A-A-

[EKSEK] SKLRSQLVKRK-NH2 

des-(K1-K3)-endo- 

Ala15a, Ala15b-Peptide 3.1 

3.1-KIK+AA Ac-HVVKLK [EENSK]-A-A-[EKSEK] 

SKLRSQLVKRK-NH2 

We observed a significant difference in secondary structure in the modified 3.1-series 

peptides in a solution without the secondary structure-stabilizing solvent, TFE. In the 
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cases of 3.1_1st staple, 3.1+Amb, 3.1+Gly, and 3.1+GG, the peptides not only lost some 

of their helical character, but may have even started to gain random coil character. 

Peptide 3.1_2nd staple has greater alpha-helical character compared to those that appear 

to have random coil properties. This is particularly interesting when compared with 

3.1_1st staple, as the stark difference in helicity between the two peptides is attributed to 

the position of the staple. In 3.1_1st staple, the staple is placed adjacent to the first 

HABD, while in 3.1_2nd staple, the staple is placed adjacent to the second HABD, which 

has been reported to have greater helical character than the first, as well as play a greater 

role in HA binding than the first based on computational modeling [35] and site 

mutagenesis analysis [19]. This is further supported by the similar helicities observed 

between Peptide 3.1 and Peptide 3.1-KIK, in which three residues were removed from 

HABD1, suggesting that the entirety of HABD1 does not contribute to RHAMM’s 

overall helicity, and therefore, potentially does not bind to HA. 

Table 3.7. Mean residue ellipticities of 3.1-series peptides 

Peptide ID Water [θ]222 /[θ]208  Water + 40% TFE [θ]222 /[θ]208  

3.1 0.65 0.85 

3.1-KIK 0.64 0.88 

3.1_1st staple 0.35 0.88 

3.1_2nd staple 0.58 0.84 

3.1+Gly 0.39 0.81 

3.1+Amb 0.42 0.80 

3.1+GG 0.43 0.82 

3.1+AA 0.70 0.90 

3.1-KIK+AA 0.67 0.90 
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Figure 3.6. Modifications to lead compound, Peptide 3.1, affect helicity of peptides 

in water (A) by circular dichroism spectroscopy. Despite the modification, peptides 

all exhibit similar helical character in 40% TFE solution (B). 

It has been proposed that the regions surrounding the HABDs of RHAMM facilitate the 

stabilization of the protein’s secondary structure by their inward positioning that forms a 

hydrophobic core [35]. Interestingly, the introduction of a hydrophobic residue (n-

methylaminobenzoic acid) into the sequence of this relatively hydrophilic peptide has the 

greatest negative effect on binding (Table 3.8, Figure 3.7). It is possible that rather than 

forming a hydrophobic core, separating the staples by one hydrophobic residue has a 

destabilizing effect on the peptide’s helicity, by increasing the flexibility of the sequence 

so that the peptide adopts random coil properties, which would have detrimental effects 

on the HA binding properties of the peptide. In a similar manner, a single glycine residue 

between the two staples acts to destabilize the peptide, decreasing the peptide’s helicity. 

This is immediately juxtaposed by a moderate increase in helicity when the staples are 

separated by two glycine residues (0.39 to 0.43 in water). The addition of two residues 

allow for the staples to be spaced closer to 3.6 amino acids apart from one another, 

facilitating helicity within the peptide backbone. The greatest improvement in helicity 

was observed when two alanine residues were added to the sequence (Peptide 3.1+AA). 

Alanine has helix-inducing potential and stabilizes helices more than glycine by having a 

greater contribution to the hydrophobic effect than glycine as well as having a lower 

conformational entropy upon folding [53-55]. In the unfolded state, the backbone polar 
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area of alanine is approximately 20.6 Å lower than that of glycine [53]. Alanine is 

especially stabilizing when it is positioned in internal helical positions [53]. Therefore, 

two alanine residues act to elongate the helices that are formed by the two staples by the 

spacing that it confers, and its helix-inducing properties. Interestingly, there is negligible 

change in helicity with the loss of the three N-terminal amino acids, but the additional of 

the alanine spacer between the staples more than compensates for the loss of amino acids 

by improving helical stability and secondary structure. 

Table 3.8. Kinetic analysis of 3.1-series peptides 

Peptide ID ka (104/(M*s)) kd (103/s) KD  

(nM) 

3.1 5.3 ± 0.5 4.7 ± 0.9 88.2 ± 2.5 

3.1-KIK 23.5 ± 1.3 1.00 ± 0.2 117.4 ± 8.4 

3.1_1st staple 60.6 ± 3.3 7.9 ± 0.5 479.8 ± 15.3 

3.1_2nd staple 8.0 ± 1.0 2.3 ± 0.1 346.4 ± 10.3 

3.1+Gly 12.2 ± 0.5 4.9 ± 0.2 381.1 ± 4.5 

3.1+Amb 17.9 ± 2.4 4.0 ± 0.3 553.6 ± 13.1 

3.1+GG 3.3 ± 0.5 4.5 ± 0.5 168.4 ± 9.8 

3.1+AA 25.9 ± 1.2 2.5 ± 0.3 84.7 ± 5.4 

3.1-KIK+AA 9.8 ± 1.0 6.2 ± 0.5 89.3 ± 7.2 
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Figure 3.7. SPR experiments between modified variants of Peptide 3.1 and 5-10 kDa 

HA. Each signal corresponds to the responses of 5 peptide concentrations (750 nM, 

1 PM, 2.5 PM, 5 PM, and 10 PM). The solid lines indicate a global 1:1 interaction 

curve fitting model for each of the interactions.    

 

We observed a relationship between secondary structure stability and the binding 

potential of the 3.1-series peptides. This supports past reports in which secondary 

structure has been described as being important in order for binding to occur between HA 

and RHAMM [34, 35]. As expected, destabilising the linker region of Peptide 3.1 results 

in weaker binding to HA than the lead compound, regardless of whether only one of the 

two staples was present, or if a spacer was inserted between the two staples. Separating 

the two staples with a spacer, such as with a glycine residue or a N-methylamino benzoic 

acid residue, resulted in slightly improved affinity for HA than when only one of the two 

staples was present. The dissociation rate constants also increased, indicating a decrease 
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in specificity of the RHAMM peptide mimetics for HA. This finding suggests that there 

may be a need for the increased stability in the linker region that is conferred through the 

incorporation of two staples rather than a single one. The exceptions to this, however, are 

Peptides 3.1+AA and 3.1-KIK+AA, which have very similar affinities to the lead 

compound. This highlights the importance of alpha-helical character in RHAMM, which 

is induced by additional Ala residues, on its ability to bind to HA. Interestingly, the loss 

of 3 residues from HABD1 (3.1-KIK) results in a negligible decrease in affinity 

compared to Peptide 3.1, but this is negated in Peptide 3.1-KIK+AA when two alanine 

residues are placed between the two staples, and the binding remains the same. Thus, 

Peptide 3.1-KIK+AA yields a compound with superior stability and almost identical 

affinity for HA, making it a drug candidate with high potential for treating diseases 

ensuing from the RHAMM-HA interaction. 

 Conclusion 
Here, we described the development of the first RHAMM-based drug prototype for 

interfering with HA-RHAMM interactions. Alpha-helicity is an inherent property of the 

RHAMM protein, which facilitates binding to its ligand, hyaluronan, and its endogenous 

activity. The RHAMM peptide mimetics described here were cyclized by two (i, i+4) 

lactam bridge staples placed in the linker region between the two HABDs in order to 

improve helicity, HA binding, and bioactivity both in culture and in vivo over the linear 

compound. One lead compound, Peptide 3.1, was identified from a structure activity 

relationship analysis, and was validated for the ability to block inflammation in culture 

and in vivo. From this compound, the sequence was successfully optimized in order to 

create a metabolically stable peptide with strong affinity for its target that can be further 

investigated as a prototypical drug molecule. 

 Methods 

3.4.1 General Methods 

All Fmoc-protected amino acids were obtained from ChemImpex. HCTU, HATU, and 

Rink Amide MBHA resin (4-(2’,4’-dimethoxyphenyl-(9-fluorenylmethoxycarbonyl)-

aminomethyl)-phenoxy-acetamidonorleucyl-4-methyl benzhydrylamine resin) were 
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obtained from ChemImpex. Tetrakis(triphenylphosphine)palladium (0), phenylsilane, and 

Fmoc-AEEA-OH spacer were obtained from Sigma-Aldrich. All solvents were obtained 

from Fisher Thermo-Scientific. 

3.4.2 Synthesis of peptides 

All peptides were synthesized by applying fluorenyl-9-methoxycarbonyl (Fmoc) solid 

phase peptide synthesis. Synthesis was conducted on a 0.1 mmol scale using Rink amide 

MBHA (0.39 mmol/g), with a four-fold excess of Fmoc protected L-amino acids. Amino 

acids were coupled with HCTU (4 eq.) in DMF and DIPEA (6 eq.). All coupling 

reactions were carried out at room temperature for 45 minutes with vortexing. The Fmoc 

group was removed using 2 treatments of 20% piperidine/DMF for 15-minute and 5-

minute periods. Following synthesis, the resin was washed with dichloromethane. 

Cleavage of the peptide was carried out by treating the resin with TFA: water: 

triisopropylsilane (95:2.5:2.5 v/v) for 5 hours. The cleaved peptide was then precipitated 

with cold TBME, and was then pelleted by centrifugation at 3000 rpm for 10 min. After 

decanting the supernatant, the peptide pellet was rinsed with TBME, resuspended by 

vortexing, and centrifuged again. The ensuing peptide pellet was dissolved in water, 

frozen and lyophilized until a dry, solid powder was obtained. 

Purification was carried out using a reversed-phase preparative HPLC column (Agilent 

Zorbax SB-C18 column 21.2 x 150 mm, 5Pm) and analyzed on a reversed-phased 

analytical HPLC column (Agilent Zorbax SB-C18 column 4.6 x 150 mm, 3.5 Pm). This 

system was outfitted with a Waters 600 136 controller, Waters Prep degasser, and Waters 

MassLynx software (version4.1). The mobile phases employed were 0.1% TFA in water 

(solvent A) and 0.1% TFA in acetonitrile (solvent B). The flow rate for the preparative 

HPLC was set at 20 mL/min and with a flow rate of 1.5 mL/min over 15 minutes for the 

analytical system. The absorbance was monitored using a Waters 2998 Photodiode array 

detector set at 220 nm, 254 nm, and 400 nm. The collected fractions were then 

lyophilized to a solid, and subsequently analyzed by analytical RP-HPLC (220 nm). 

All peptides were purified by the above-mentioned protocol at a gradient of 20% to 35% 

with a retention time of 9-10 minutes. 
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3.4.3 Lactam bridge formation 

Double-staple containing peptides were synthesized by Fmoc-based SPPS. Each staple 

was synthesized separately; the peptide was synthesized from its C-terminus to the N-

terminus of the first lactam bridge, followed by selective deprotection of the orthogonal 

protecting groups (allyloxycarbonyl and allylester) on the side chains of the residues 

creating the staple. The two side chains were coupled with the N-terminal Fmoc group 

still in place. The remainder of the peptide was then synthesized and the second staple 

was formed as before. 

Allyloxycarbonyl and the allylester protecting groups on the lysine and glutamic acid 

groups, respectively, were deprotected with phenylsilane (24 eq) in DCM to the resin-

bound peptide, flushing with nitrogen, and shaking for 5 minutes. 

Tetrakis(triphenylphosphine) palladium (0) (0.1 eq) was then added to the mixture and 

the peptide vessel was again flushed with nitrogen. This reaction was allowed to proceed 

for 10 minutes. The resin was subsequently washed with DCM (4 x 30 s), followed by a 

series of washings with DCM, DMF, MeOH, DMF, DCM (30 s each). Cyclization was 

carried out with HATU (3 eq) and DIPEA (6 eq) in DMF for a minimum of 2 hours. 

Following successful cyclization, the N-terminal Fmoc group was deprotected with 20% 

piperidine/DMF for 15 minutes. The peptide was acetylated with 2 treatments of 20% 

acetic anhydride/DMF for 30 minutes each. 

3.4.4 Circular Dichroism spectroscopy 

CD was carried out on a Jasco J-810 spectropolarimeter and recorded in the range of 180-

260 nm. The peptides were dissolved in Milli-Q water, and in a 40% TFE/water solution 

at a concentration of 0.25 mg/mL. The measurements were carried out at 20ᴼC, using a 

quartz cuvette with a path length of 1mm. The instrument measured at a scanning speed 

of 10-50 nm/min, and averaged five individual data points in order to obtain the reported 

CD spectrum. A blank solution of Milli-Q water, and 40% TFE/water were run before the 

measurements, and the spectra were baseline corrected. 
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3.4.5 Synthesis of HA-Cystamine 

5-10 kDa HA (purchased as sodium hyaluronate, Lifecore Biomedical) was dissolved in 

DMSO/H2O (7/3, v/v), and was reacted with excess sodium cyanoborohydride for 12 

hours at room temperature. 10 equivalents of cysteamine hydrochloride (Sigma Aldrich) 

was added, and the reaction proceeded for an additional 24 hours. The solution was then 

dialyzed exhaustively in deionized water for 3 days using a 3.5-5 kDa dialysis tube 

(Float-a-Lyzer, Spectrum Labs) with a biotech grade cellulose ester membrane. 

3.4.6 HA binding 

All experiments were carried out on an OpenSPRTM instrument (Nicoya Lifesciences) at 

25qC, equipped with a 100 PL loading loop. Gold nanoparticle (100 nm) biosensors were 

purchased from Nicoya Lifesciences. All experiments were carried out in phosphate 

buffered saline (PBS) running buffer (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 

mM KH2PO4), pH 7.4. The gold biosensors were incubated with cystamine-

functionalized 5-10 kDa HA (3mg/mL) for 3 days. Available binding sites on the chip 

surface were blocked with poly (ethylene glycol) methyl ether thiol (2 mg/mL) (Sigma 

Aldrich). The peptide ligands were dissolved in PBS at varying concentrations, and were 

injected at a flow rate of 50 PL/min when the baseline was stabilized. Regeneration of the 

chip surface was carried out with 1 M NaCl, and no further injections were done until the 

baseline was stable. The data was processed and analyzed using Tracedrawer software 

(Ridgeview Instruments AB). Kinetic parameters were calculated using a global analysis, 

fitting the data to a 1:1 model. 

3.4.7 Serum stability 

Each peptide (1 mM final concentration) was incubated in a mixture of 25% human 

serum (Sigma-Aldrich, Male type AB cat# H4522) in PBS (pH 7.4, 450 PL final volume, 

DMSO final concentration 0.5%) at 37 °C. At appropriate time intervals, aliquots of 

peptide solution were removed and mixed with either acidic solutions (4% phosphoric 

acid, pH 1-2) or basic (4% ammonium hydroxide, pH 11-13) to dissociate peptide 

interactions with components of human serum. Peptide was isolated from human serum 

by column separation on Oasis® sorbent 96-well μElution plates (HLB- amphiphilic 
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resin and MCX-cation exchange resin) and manifold. The extracted peptide was 

quantified on an Acquity UHPLC-MS system (Waters Co.). Peptide was quantified by 

measuring the peak area of a peptide specific M+n ion peak (average of 3 replicates). 

Percent abundance of peptide peak area relative to peptide peak abundance at T0 was 

plotted as a function of time. Peptide half-life was calculated by optimized curve fitting 

(linear, 2-parameter or 3-parameter exponential decay curve) on SigmaPlot™ and solving 

for time at 50% peptide peak abundance. 

3.4.8 Inflammation protein array 

Commercially available murine RAW 264.7 macrophages carrying a SEAP reporter gene 

(RAW-Blue; InvivoGen, San Diego, CA, USA) were used.  Cells were grown to 80% 

confluence in DMEM containing 4.5 g/L glucose, 10% heat-inactivated fetal bovine 

serum, 2 mM L-glutamine, 50 μg/mL penicillin/streptomycin, 100 μg/mL Normocin 

(InvivoGen) at 37 °C in 5% CO2. 

For peptide screening experiments, cells were scraped in growth medium, counted, and 

plated to flat-bottom 96-well plates at a density of 5x104cells/well either in the presence 

or absence (control) of 200 ng/mL TLR1/TLR2 agonist PAM3CSK4 (InvivoGen). 

RHAMM peptides were added in 6 replicate wells at a dose of 10ng/mL in the presence 

of PAM3CSK4. After 18 hours of stimulation, reverse phase protein microarray 

membrane was incubated in the supernatants collected from the RAW-Blue cells. After 

20 minutes of incubation at 37 °C, a general secondary antibody was washed over the 

membrane, and the SEAP levels were determined using spectrophotometry at a 

wavelength of 630 nm. 

3.4.9 RANTES ELISA 

RANTES levels were also measured in the supernatants of stimulated RAW-Blue cells by 

sandwich ELISA (mouse Quantikine TNFα ELISA; R&D Systems, Minneapolis, MN, 

USA) following manufacturers protocol.  
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3.4.10 Lipopolysaccharide mouse assay 

Peptide 3.1 was converted from its TFA salt form to the acetate salt with three 

incubations in a 25% acetic acid solution. It was dissolved in PBS buffer and was 

sterilized by filtration through a 0.22 Pm filter. 5-week old C57BL/6 female mice 

(Charles River) were housed for one week prior, and were subsequently injected 

subcutaneously with Peptide 3.1 (9 mg/kg, 1.85 PM). A second dose of the same 

concentration of peptide was injected 18-20 hours after the first injection. Mice in the 

control group and LPS only group received an injection of PBS buffer instead of peptide. 

All mice were injected with buprenorphine (subcutaneous, 0.2mg/kg). Mice in the 

peptide treated and LPS only control groups were injected with LPS (intraperitoneal (IP), 

5 mg/kg) 1 hour after the second peptide injection. The control group did not receive 

LPS. The mice were anesthetized by isoflurane inhalation 30 minutes after the LPS 

injection, and blood was drawn by cardiac puncture. The serum was isolated by 

centrifugation at 4 °C for 10 min at 13 000 RPM. An ELISA was carried out to quantify 

serum concentration of TNF-D. 
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 Supplemental Information 

 

Figure S 3.1. HPLC trace of Linear peptide (Ac-KIKHVVKLKDENSQLKSEVSKL 

RSQLVKRK-NH2) 

 

Figure S 3.2. HPLC trace of Peptide 3.1 (Ac-KIKHVVKLK [EENSK]-[EKSEK] 

SKLRSQLVKRK-NH2) 
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Figure S 3.3. HPLC trace of Peptide 3.2 (Ac-KIKHVVKLKD [ENSQK]-[ESEVK] 

KLRSQLVKRK-NH2) 

 

Figure S 3.4. HPLC trace of Peptide 3.3 (Ac-KIKHVVKLK [EENSK]-[KKSEE] 

SKLRSQLVKRK-NH2) 
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Figure S 3.5. HPLC trace of Peptide 3.4 (Ac-KIKHVVKLK[KENSE]-[EKSEK] 

SKLRSQLVKRK-NH2) 

 

Figure S 3.6. HPLC trace of Peptide 3.1-KIK (Ac-HVVKLK [EENSK]-[EKSEK] 

SKLRSQLVKRK-NH2) 
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Figure S 3.7. HPLC trace of Peptide 3.1_1st staple (Ac-KIKHVVKLK [EENSK]-

LKSEV SKLRSQLVKRK-NH2) 

 

Figure S 3.8. HPLC trace of Peptide 3.1_2nd staple (Ac-KIKHVVKLK DENSQ-

[EKSEK] SKLRSQLVKRK-NH2) 
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Figure S 3.9. HPLC trace of Peptide 3.1+Gly (Ac-KIKHVVKLK [EENSK]-Gly-

[EKSEK] SKLRSQLVKRK-NH2) 

 

Figure S 3.10. HPLC trace of Peptide 3.1+Amb (Ac-KIKHVVKLK [EENSK]-Amb-

[EKSEK] SKLRSQLVKRK-NH2) 
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Figure S 3.11. HPLC trace of Peptide3.1+GG (Ac-KIKHVVKLK [EENSK]-G-G-

[EKSEK] SKLRSQLVKRK-NH2) 

 

Figure S 3.12. HPLC trace of Peptide 3.1+AA (Ac-KIKHVVKLK [EENSK]-A-A-

[EKSEK] SKLRSQLVKRK-NH2) 
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Figure S 3.13. HPLC trace of Peptide 3.1-KIK+AA (Ac-HVVKLK [EENSK]-A-A-

[EKSEK] SKLRSQLVKRK-NH2) 

Time
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00

A
U

-1.0e-1

0.0

1.0e-1

2.0e-1

3.0e-1

4.0e-1

5.0e-1

6.0e-1

7.0e-1

8.0e-1

9.0e-1

AHK-03-45-qc29-20to60-Agilent-15min 2: Diode Array 
Range: 1.1749.16
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Table S 3.1. Expected and observed double stapled RHAMM peptide mimetics and 

the linear counterpart 

Peptide ID Expected m/z Observed m/z 

Linear [M+4H]4+ = 897.55 

[M+5H]5+ = 718.24 

[M+6H]6+ = 598.70 

[M+7H]7+ 513.46 

[M+4H]4+ = 897.43 

[M+5H]5+ = 718.14 

[M+6H]6+ = 598.61 

[M+7H]7+ =513.24 

Peptide 3.1 [M+5H]5+ = 722.84 

[M+6H]6+ = 602.54 

[M+7H]7+ =516.75 

[M+8H]8+ = 452.15 

[M+5H]5+ = 722.78 

[M+6H]6+ = 602.48 

[M+7H]7+ =516.55 

[M+8H]8+ = 452.11 

Peptide 3.2 [M+5H]5+ = 722.44 

[M+6H]6+ = 602.20 

[M+7H]7+ =516.46 

[M+8H]8+ = 451.90 

[M+5H]5+ = 720.03 

[M+6H]6+ = 600.20 

[M+7H]7+ =516.26 

[M+8H]8+ = 451.86 

Peptide 3.3 [M+5H]5+ = 722.84 

[M+6H]6+ = 602.54 

[M+7H]7+ =516.75 

[M+8H]8+ = 452.15 

[M+5H]5+ = 722.37 

[M+6H]6+ = 602.14 

[M+7H]7+ =516.54 

[M+8H]8+ = 452.11 

Peptide 3.4 [M+5H]5+ = 722.84 

[M+6H]6+ = 602.54 

[M+7H]7+ =516.75 

[M+8H]8+ = 452.15 

[M+5H]5+ = 722.22 

[M+6H]6+ = 602.40 

[M+7H]7+ =516.53 

[M+8H]8+ = 452.09 
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Figure S 3.14. ESI+ Mass Spectrum for Linear peptide (Ac-KIKHVVKLKDENSQL 

KSEVSKLRSQLVKRK-NH2) 

 

Figure S 3.15. ESI+ Mass Spectrum for Peptide 3.1 (Ac-KIKHVVKLK [EENSK]-

[EKSEK] SKLRSQLVKRK-NH2) 
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Figure S 3.16. ESI+ Mass Spectrum for Peptide 3.2 (Ac-KIKHVVKLKD [ENSQK]-

[ESEVK] KLRSQLVKRK-NH2) 

 

Figure S 3.17. ESI+ Mass Spectrum for Peptide 3.3 (Ac-KIKHVVKLK [EENSK]-

[KKSEE] SKLRSQLVKRK-NH2) 
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Figure S 3.18. ESI+ Mass Spectrum for Peptide 3.4 (Ac-KIKHVVKLK[KENSE]-

[EKSEK] SKLRSQLVKRK-NH2) 

Table S 3.2. Calculated and observed m/z values for Peptide 3.1-series peptides 

Peptide ID Expected m/z Observed m/z 

Peptide 3.1-KIK [M+4H]4+ = 810.98 

[M+5H]5+ = 648.99 

[M+6H]6+ = 540.99 

[M+7H]7+ =464.00 

[M+4H]4+ = 811.25 

[M+5H]5+ = 649.02 

[M+6H]6+ = 541.01 

[M+7H]7+ =464.01 

Peptide 3.1_1st staple [M+4H]4+ = 892.06 

[M+5H]5+ = 713.85 

[M+6H]6+ = 595.04 

[M+7H]7+ =510.32 

[M+8H]8+ = 446.53 

[M+4H]4+ = 892.06 

[M+5H]5+ = 713.85 

[M+6H]6+ = 595.04 

[M+7H]7+ =510.32 

[M+8H]8+ = 446.53 
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452.4841

452.6055
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602.9797
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Peptide 3.1_2nd staple [M+4H]4+ = 899.79 

[M+5H]5+ = 720.03 

[M+6H]6+ = 600.20 

[M+7H]7+ =514.74 

[M+8H]8+ = 450.40 

[M+4H]4+ = 899.79 

[M+5H]5+ = 720.03 

[M+6H]6+ = 600.20 

[M+7H]7+ =514.74 

[M+8H]8+ = 450.40 

Peptide 3.1+Gly [M+4H]4+ = 917.56 

[M+5H]5+ = 734.25 

[M+6H]6+ = 612.04 

[M+7H]7+ =524.89 

[M+8H]8+ = 459.28 

[M+4H]4+ = 917.56 

[M+5H]5+ = 734.26 

[M+6H]6+ = 612.07 

[M+7H]7+ =524.78 

[M+8H]8+ = 459.67 

Peptide 3.1+Amb [M+5H]5+ = 749.48 

[M+6H]6+ = 624.73 

[M+7H]7+ =535.77 

[M+8H]8+ = 468.80 

[M+5H]5+ = 749.69 

[M+6H]6+ = 625.23 

[M+7H]7+ =535.63 

[M+8H]8+ = 469.07 

Peptide 3.1+GG [M+5H]5+ = 745.65 

[M+6H]6+ = 621.54 

[M+7H]7+ = 533.04 

[M+8H]8+ = 466.41 

[M+5H]5+ = 745.69 

[M+6H]6+ = 621.58 

[M+7H]7+ = 533.07 

[M+8H]8+ = 466.42 

Peptide 3.1+AA [M+5H]5+ = 751.26 

[M+6H]6+ = 626.22 

[M+7H]7+ = 537.04 

[M+8H]8+ = 469.91 

[M+5H]5+ = 751.69 

[M+6H]6+ = 626.25 

[M+7H]7+ = 536.92 

[M+8H]8+ = 469.92 

Peptide 3.1-KIK+AA [M+4H]4+ = 846.50 

[M+5H]5+ = 677.40 

[M+6H]6+ = 564.67 

[M+7H]7+ = 484.29 

[M+4H]4+ = 846.40 

[M+5H]5+ = 677.43 

[M+6H]6+ = 564.85 

[M+7H]7+ = 484.29 



117 

 

 

 

Figure S 3.19. ESI+ Mass Spectrum for Peptide 3.1-KIK (Ac-HVVKLK [EENSK]-

[EKSEK] SKLRSQLVKRK-NH2) 

 

Figure S 3.20. ESI+ Mass Spectrum for Peptide 3.1_1st staple (Ac-KIKHVVKLK 

[EENSK]-LKSEV SKLRSQLVKRK-NH2) 
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Figure S 3.21. ESI+ Mass Spectrum for Peptide 3.1_2nd staple (Ac-KIKHVVKLK 

DENSQ-[EKSEK] SKLRSQLVKRK-NH2) 

 

Figure S 3.22. ESI+ Mass Spectrum for Peptide 3.1+Gly (Ac-KIKHVVKLK 

[EENSK]-Gly-[EKSEK] SKLRSQLVKRK-NH2) 
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Figure S 3.23. ESI+ Mass Spectrum for Peptide 3.1+Amb (Ac-KIKHVVKLK 

[EENSK]-Amb-[EKSEK] SKLRSQLVKRK-NH2) 

 

Figure S 3.24. ESI+ Mass Spectrum for Peptide3.1+GG (Ac-KIKHVVKLK 

[EENSK]-G-G-[EKSEK] SKLRSQLVKRK-NH2) 

m/z
400 450 500 550 600 650 700 750 800 850 900 950 1000

%

0

100
AHK-05-05-266-amb-qc8-05to40 852 (1.101) 1: TOF MS ES+ 

21535.7777

535.6310

469.0660

468.9287

453.0640 505.9290

535.9244

536.2031

536.3352

625.2322

536.4673

589.3788

623.5693

625.3430

625.5649

626.2308

749.6909700.6681645.3738
969.8815870.8848775.9620

m/z
400 450 500 550 600 650 700 750 800 850 900 950 1000

%

0

100
AHK-06-31-266-GG-qc22-05to40 904 (1.166) Cm (894:919) 1: TOF MS ES+ 

682533.0674

466.6808

466.4207

427.6399

466.9410

467.1875

467.3108499.5774

533.2137

621.7350533.3455

533.4918

533.6235

621.5770

533.7699

533.9164

534.0482

622.0669

622.2408

622.3673

622.5411

746.0861622.6835
745.6880



120 

 

 

Figure S 3.25. ESI+ Mass Spectrum for Peptide 3.1+AA (Ac-KIKHVVKLK 

[EENSK]-A-A-[EKSEK] SKLRSQLVKRK-NH2) 

 

Figure S 3.26. ESI+ Mass Spectrum for Peptide 3.1-KIK+AA (Ac-HVVKLK 

[EENSK]-A-A-[EKSEK] SKLRSQLVKRK-NH2) 
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Figure S 3.27. CD spectra of double stapled Peptides 1-4 (B-E) and their linear 

counterpart (A) showing helicity in water and 40% TFE solution. Peptides were run 

at 0.25 mg/mL 
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Figure S 3.28. CD spectra of modified double stapled peptides, in which the linker 

region and N-terminal sequence of Peptide 3.1 were modified. All peptides were run 

at 0.25 mg/mL in water and 40% TFE solution 
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Figure S 3.29. Serum stability of Peptides 3.1-3.4 and their linear counterpart 
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Chapter 4 

4 The development of an optical probe for measuring 
glomerular filtration rate 

 Introduction 

Glomerular filtration rate (GFR) is a measure of kidney filtering capacity and renal 

function, and therefore, is a prognostic indicator of chronic kidney disease (CKD), such 

as graded renal artery stenosis. The polysaccharide, inulin, is considered the gold 

standard for measuring GFR clinically, as it is freely filtered through the kidneys, without 

being reabsorbed or secreted through peritubular capillaries or glomeruli. Therefore, the 

amount of inulin that is excreted in urine indicates the volume of plasma that is filtered 

by the glomeruli. The classic method of measuring GFR requires continuous intravenous 

administration of inulin, precise blood and urine collections over a 3-hour period, and 

bladder catheterization in order to ensure complete urine collection [1]. This laborious, 

tedious, and invasive method has diminished its clinical value in favour of faster 

estimated GFR (eGFR) values that can be easily obtained by endogenous serum 

creatinine levels. Unfortunately, the estimation suffers from a number of limitations that 

result in underestimated values compared with the physiological value. As a result, there 

has been considerable development of exogenous biomarkers for measuring GFR 

directly, and include probes that are radioisotopically labeled, such as 125I-iothalamate 

[2], 51Cr-ethylenediaminetetraacetic acid (EDTA) [3], and 99mTc-

diethylenetriaminepentaacetic acid (DTPA) [4, 5], and those that are non-radioactive, 

such as iohexol [6], iothalamate [7, 8], fluorescently labeled sinistrin [9, 10] and 

fluorescein-labeled inulin [11, 12]. 

The measurement of GFR is a multi-faceted process, not only facilitating the detection 

and monitoring of chronic kidney disease, but also acts as a pre-screening method for 

identifying therapeutic efficiency. Drug dosing and uptake efficiency depends on a 

patient’s GFR, as many commonly administered drugs are excreted by the kidneys. 

Therefore, accurate measurement of GFR will permit more accurate dosing of drugs, and 

result in superior therapeutic outcome with fewer adverse complications.  
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Here, we propose the development of an optical probe based on inulin, the current 

clinical gold standard renal clearance biomarker, allowing for an efficient method of 

measuring GFR by transcutaneous pulse dye densitometer (TPDD) at 788 nm, without 

requiring blood sampling or urine collection. No reports exist on the synthesis and 

characterization of dye-labeled inulin. Fluorescein-labeled inulin is available 

commercially (Sigma Aldrich), but its synthesis is not described and its application is 

limited to measurements at 495 nm. It must be noted that the choice of dye used here, 

Cy7.5, was directed by the requirement of NIR absorption for enhanced penetration into 

human tissue, facilitating the detection of a probe with relative ease, and the convenience 

of a NIR dye that is commercially available. The method of synthesis proposed here 

allows for the functionalization of inulin with any dye molecule, and thus could satisfy 

any absorption wavelength requirement. 

 Results and Discussion 
The novel optical probe described here is based on inulin, which is the current clinical 

standard for measuring GFR, and was synthesized by a straightforward method that does 

not require the immediate purification of the intermediate. Cy7.5-Inulin was prepared by 

a two-step synthesis via a non-toxic intermediate, carboxymethyl inulin (CMI) [13] 

(Scheme 4.1). The dye, functionalized with an amine, was conjugated to CMI after 

activation with EDC and NHS. The conjugate was then dialyzed exhaustively in water for 

a minimum of 3 days to remove any unconjugated dye or unreacted reagents. 

 

Scheme 4.1. 2-step synthesis of Cy7.5-inulin conjugate after CMI intermediate 
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Characterization of the starting material, inulin, the intermediate product, CMI, and the 

final dye-labeled inulin by FT-IR suggests that modifications made at each step allowed 

the successful addition of Cy7.5 to the carbohydrate (Figure 4.1). The appearance of new 

absorption signals at 1425 cm-1, correlating with the –C-H bend of the methylene group, 

1650 cm-1, corresponding to the N-H bend of an amide, and 1708 cm-1, corresponding to 

the carbonyl group of an amide, confirm the addition of the amine-functionalized dye to 

the inulin polysaccharide chain. The spectrum for inulin indicates that there might be a 

carbonyl in inulin (1660 cm-1), which indicates that the polysaccharide’s reducing end 

may be in its open chain form. 

 

Figure 4.1. FT-IR spectrum showing shift in peaks as inulin is modified to CMI and 

Cy7.5-inulin conjugate and new functional groups are added 

This transformation was further monitored by 1H (Figure S4.1) and 13C NMR 

spectroscopy (Figure S4.2). The conversion of inulin to CMI is noted by the appearance 

of the carboxylic signal (COOH) at two sites (162.97 ppm and 176.66 ppm), which were 

then converted to the amide (CONH) following the addition of the dye, with new 

carbonyl amide signals shifting to 158.76 ppm and 173.27 ppm, respectively (Figure 

S4.2).  Signals representing Cy7.5 were observed in the aromatic region for the final 
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product, which matched those of the commercial dye. We observed unreacted 

chloroacetic acid (169.97 ppm) in the carbon NMR of CMI, but noted that it was no 

longer present in the final dye-labeled conjugate, as the final conjugate is exhaustively 

purified by dialysis over 3-4 days, removing any unreacted reagents, including unreacted 

dye. We determined from the ratio of aromatic proton signals (associated with the dye) to 

signals identified as being part of the carbohydrate polymer (4.5 ppm to 5.5 ppm), that 

there are approximately 1-2 dye molecules per 10 sugar units, or approximately 2-4 dye 

molecules per inulin molecule (Figure S4.1). This was confirmed by absorption, in 

which a known amount of dye-conjugated inulin was measured by UV-Vis and compared 

with a standard curve of dye alone in order to determine the amount of dye by weight for 

each sample. Dye-loading efficiency ranged from 5% to 25%. 

Mass analysis was carried out using matrix-assisted laser desorption/ionization mass 

spectrometry (MALDI-MS) (Figure 4.2) and electrospray ionization mass spectrometry 

(ESI-MS) (Figure 4.3), both of which confirmed the starting material as inulin by the 162 

Da mass difference between peaks, correlating with glucose and fructose residues. 

However, because of the number of potential charged states produced from a single 

compound in ESI, poor ionization potential of polysaccharides, and the number of 

different sized sugar molecules present, we monitored the transformation from inulin to 

dye conjugate using MALDI, which produces singly charged ions almost exclusively 

[14]. In the spectrum, we were able to identify sodiated adducts, which agrees with the 

previously reported data for inulin [15, 16], and for each signal, we observed a 

corresponding signal of the polysaccharide with the reducing end residue (additional 

18.015 Da). Reflectron mode and linear mode were used for the polysaccharides, and we 

observed fragmentation of the polysaccharides in both modes, with fructans containing 

from 3 to 25 residues being identified. This was unexpected, although fragmentation of 

large polymers to smaller ions during the MALDI process despite its soft ionization has 

been reported before for polysaccharides [17, 18]. ESI-MS disproved the size variability 

observed in MALDI, instead indicating the presence of a mixture of fructans containing 

11 to 25 residues, with peaks assigned to the mass of the doubly charged molecular ion, 

which was calculated as twice the mass of 81.07n (mass of fructan units) + 38.96 (K 

mass) + 18.015 (additional mass of the reducing end residue), where n is the number of 
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fructose units [17, 19]. The identification of sodium and potassium adducts by both mass 

spectrometry techniques confirms the presence of contaminants from the glass and plastic 

vials or plates, which can easily ionize with significant signal to noise ratios [20]. 

 

Figure 4.2. MALDI-MS of Inulin (A) and carboxymethyl inulin (CMI) (B) using 

DHB as matrix, acquired in reflectron mode. Masses were observed as sodiated 

adducts. A mass difference of 162 was observed for both inulin and CMI, and a 

mass difference of 57 Da was observed between inulin and CMI (boxed) (B). 

 

Figure 4.3. ESI-MS spectrum of inulin 
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A mass difference of 57 Da was observed between inulin and CMI, correlating with the 

mass of acetic acid to inulin (Figure 4.2B). However, there is an incomplete conversion 

of inulin to CMI, and starting material persists following the modification. It is unclear if 

each polysaccharide is equally modified with the same number of modified fructans per 

molecule, or if the number of modified monomers varies. Complete conversion is 

difficult to achieve [21], and the efficiencies of modifications of different sizes of 

polysaccharides vary. The range in number of carboxymethylated sites in CMI directly 

results in a range in the number of dye-conjugated sites in Cy7.5-inulin, where the 

maximal number of sites that can accept a dye molecule depends directly on the number 

of modified sites in CMI. Inconsistencies in the number of modified sites in CMI are not 

expected to cause any negative toxic effects, as both inulin and CMI have been 

conclusively determined to be non-toxic in humans, and the mixture of inulin and CMI is 

expected to be freely filtered by the kidneys without inducing tubular secretion or 

reabsorption [13]. Similarly, disparities in the number of dye-conjugated sites is not 

expected to affect toxicity as the conjugate’s hydrodynamic diameter falls significantly 

below the average minimum capillary size of 4 microns [22] (Figure 4.4). 

MALDI produced inconclusive results for the conjugate, instead resulting in the loss of 

the dye molecule from the polysaccharide, as well as a repeating signal pattern of 71 Da 

(Figure S4.3), which does not correlate with the mass of the sugar molecules or portions 

of the dye that could be reasonably fragmented. It is unlikely that the dye is fragmenting 

into smaller ions, or that the fructan units are breaking apart. We believe that MALDI is 

an insufficient method of monitoring the addition of the dye to the polysaccharide. 

Despite the wide use of MALDI for polysaccharide analysis, the technique may not be an 

ideal method for characterizing the modification of sugars, due to its relatively poor mass 

accuracy and polydispersity of polysaccharides, and may explain why it has not been 

successfully used for analyzing large linear polysaccharides to date [18]. In fact, MALDI 

is approximately 1500 times more efficient for proteins than for polysaccharides of the 

same mass [18]. However, analysis by dynamic light scattering (DLS) confirmed there 

was an increase in hydrodynamic diameter during the modification of inulin and the 

formation of the conjugate (Figure 4.4). Interestingly, two average size populations of 

starting material, inulin, are present, which when modified to the intermediate, are more 
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homogenous in size. An increase in average size from ~10 nm for inulin to ~25 nm for 

CMI, followed by a change to ~90 nm for the dye conjugate was observed. The large size 

change from CMI to dye-loaded inulin may be the result of the loading of multiple dye 

molecules, which was also determined by NMR, but may also indicate aggregation of the 

conjugate. 

 

Figure 4.4. Dynamic light scattering of inulin, CMI, Cy7.5-inulin conjugate  

The stability of the conjugate was evaluated by incubation in 25% plasma derived from 

volunteer patient blood at 38 °C for different periods over a 2-hour period, at 38 qC. After 

absorption measurements were taken, the samples were placed on ice to slow down any 

plasma-related degradation, and were subsequently centrifuged in centrifugal filter units. 

Following centrifugation, water and any particles smaller than the 3 kDa MWCO filter 

were pulled down in the eluent, while the conjugate and plasma were retained in the 

filter. Little to no change was observed in the absorption measurements following 

reconstitution to the same volume as the initial absorption measurements (Figure 4.5), 

indicating that both the dye and the dye-carbohydrate site of conjugation are robust 

enough for in vivo applications. However, the pharmacokinetic properties of the 

conjugate are unknown. 
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Figure 4.5. Cy7.5-inulin is stable in plasma from CKD patients over 2 hours. Each 

measurement was done in triplicate. The eluent following centrifugation, which 

contained water and particles <3 kDa in size, had absorption values < 0.05 at all 

time points. 

Absorption measurements by UV-Vis spectrophotometry verified the absorption capacity 

of the dye-carbohydrate conjugate (Figure 4.6). In plasma alone, obtained from the blood 

of volunteer patients with chronic kidney disease (CKD), little is absorbed above 700 nm, 

while the conjugate readily absorbs at wavelengths greater than 700 nm. This suggests 

that all in vivo measurements taken at wavelengths greater than 700 nm would be 

measuring only the dye-carbohydrate conjugate as it circulates through the body and 

passes through the glomeruli. 
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Figure 4.6. Plasma from patients with chronic kidney disease does not absorb 

significantly at 788 nm, where Cy7.5-inulin has its maximal absorption in plasma. 

Preliminary evaluation of the conjugate has been carried out in farm-raised pigs with 

decreasing GFR from graded renal artery stenosis. Monitoring and analysing the plasma 

clearance of the conjugate allows for calculation of both the GFR and the optimal dose of 

drugs that filter primarily through the kidneys, such as carboplatin. Drug-related 

complications are partly associated with poor plasma clearance, and this subsequently 

increases the risk of adverse reactions from the drug.  For example, most anticancer drugs 

have an optimal area under the curve (AUC) of the plasma drug concentration vs time 

curve that leads to the best therapeutic efficacy with a level of acceptable adverse 

reaction risks.  If the drug is entirely cleared from the body by the kidneys, then the 

Calvert formula [23] relates the dosage needed to achieve the optimal AUC with the 

patient’s GFR. With the development of an optical marker, such as Cy7.5-inulin, the 

procedure for measuring GFR can be greatly simplified. Analogous to the Calvert 

formula, GFR determination also depends on the AUC of plasma Cy7.5-inulin clearance 

curve, as shown in Figure 4.7. 
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Figure 4.7. Transcutaneous pulse dye densitometry reading of Cy7.5-inulin at 805 

nm in the plasma of a farm-raised pig after intravenous injection of the dye. GFR 

was calculated as the ratio of the amount of dye injected to the AUC, resulting in an 

estimated value of 120 mL/min, which is comparable with a GFR of 130 mL/min in 

a healthy 70 kg pig [24]. 

 Conclusion 
Here, we report the synthesis and characterization of dye-labeled inulin for use as an 

optical probe to accurately measure GFR efficiently and non-invasively. This soluble 

conjugate will also allow for optimal dosing of drugs that are filtered by the kidneys in 

order to achieve the most efficient therapeutic outcome. To our knowledge, there is no 

published protocol for the synthesis of dye-labeled inulin, and no commercially available 

NIR dye-labeled inulin other than fluorescein-labeled inulin. Following this procedure, 

more variations can be produced allowing for a range of applications. The conjugate is 

stable under the conditions needed to measure GFR in vivo. Preliminary evaluation of the 

probe is currently underway in farm-raised pigs with decreasing GFR from graded renal 

artery stenosis. 
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 Methods 

4.4.1 Synthesis of carboxymethyl inulin (CMI) 

CMI was synthesized using a method described by Creixell et al. (2010) and Santiago-

Rodriguez et al. (2013). Inulin (500 mg, DP 22-25) (Alfa Aesar) was dissolved in 2.5 mL 

deionized water at room temperature. Cold 10 M NaOH was added slowly in multiple 

aliquots, with stirring, for a total volume of 400 PL. Chloroacetic acid (276 mg, 2.9 

mmol) was added immediately, and the mixture was heated to 70 qC for 75 minutes. The 

solution was cooled to room temperature, and neutralized with acetic acid. An excess of 

cold ethanol was added to precipitate the reaction product. The product was then pelleted 

by centrifugation and lyophilized until a dry, solid powder was obtained. 

4.4.2 Cy7.5 labeling of CMI 

For conjugation of Cy7.5 dye to CMI, the polysaccharide was activated with N-

hydroxysuccinimide (NHS) and 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC). 

For this to occur, CMI (40-50 mg) was dissolved in water, and 1 molar equivalent of 

NHS and EDC were added. Activation was carried out for 1.5 hours with shaking. The 

activated CMI solution was subsequently added drop wise to Cy7.5-amine (Lumiprobe) 

(10-15 mg, 12.2-18.3 PM), dissolved in dimethyl sulfoxide (DMSO). The conjugation of 

the dye to CMI was allowed to proceed for 24 hours at room temperature, in the dark 

with shaking. The conjugated product was then lyophilized to provide a dry green 

crystalline product. 

4.4.3 Dialysis of dye-labeled CMI 

Cy7.5-conjugated inulin was resolubilized in 10:90 DMSO:water and added to a pre-

treated biotech cellulose ester membrane dialysis tube (Float-a-Lyzer, Spectrum Labs, 

Phoenix, AZ) with a biotech grade cellulose ester membrane. Exhaustive dialysis was 

carried out in water with spinning in the dark. Following dialysis, the solution was 

lyophilized until a dry green powder was obtained. 
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4.4.4 FT-IR (ATR) 

All measurements were carried out on a Perkin Elmer Spectrum Two IR Spectrometer, 

UATR-unit diamond. IR spectra were analysed using OMNIC 8.2.0.389 (Thermo 

Scientific Inc.) 

4.4.5 Absorption measurements 

All absorption readings were performed on an Agilent Cary 60 UV-Vis 

Spectrophotometer, and data was acquired in the Scan and Simple Reads applications 

(both version 5.0.0.999) in Cary WinUV version 5.0.0.1005.  All optical density (OD) 

readings were performed at 406 nm (local maximum) in 50:50 DMSO:water. 

4.4.6 Dynamic Light Scattering 

All measurements were performed at 25 qC using a Zetasizer Nano ZS instrument from 

Malvern Instruments. Three measurements, each with a duration of 10 seconds, were 

performed at an angle of 173 degrees Backscatter (NIBS default). Three runs, each with a 

duration of 10 seconds, were performed. Samples were prepared in Milli Q water at a 

concentration of 0.8 mg/mL. 

4.4.7 Plasma stability 

Blood was obtained from volunteer chronic kidney disease (CKD) patients. Patient 

plasma was then obtained by mixing the blood with sodium heparin, and centrifuged to 

obtain supernatant.  

Cy7.5-inulin conjugate was dissolved in 25% patient plasma. Absorption readings were 

taken after t=0 min, 20 min, 40 min, 60 min, 80 min, 100 min, and 120 min of incubation 

with plasma. All samples except those in the 0-minute time period were incubated at 38 

°C. For those samples that were used for more than one incubation period, after each 

absorption measurement was taken at the end of an incubation period, the samples were 

placed on ice, and centrifuged at 3000 RPM at 20 °C for 40 minutes in pre-treated 

Amicon Ultra-15 Centrifugal Filters, MWCO 3kDa (Merck Millipore Ltd.). The 

ultrafiltrate was then incubate with 25% patient plasma for the time required before new 
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absorption readings were obtained after the volumes were brought to 1 mL. The 

absorption readings from different incubation periods were compared. The National 

Research Council Canada’s Research Ethics Board approved the protocols for blood 

withdrawals from patients with chronic kidney disease and treatment procedures 

described in this study (REB # 108616). 

4.4.8 NMR 

All spectra were recorded on a Bruker 400 Advance III HD NMR spectrometer (Bruker, 

Germany) equipped with an Oxford AS400/54 magnet. The samples were all run in 

DMSO-d6 at room temperature, with a delay D1 of 10 seconds in the carbon to ensure 

full relaxation of the carbonyl signals. The field strength was 100 MHz for carbon, and 

400 MHz for proton.  

4.4.9 MALDI-TOF-MS 

Mass spectrometric data were obtained using an AB Sciex 5800 TOF/TOF System, 

MALDI TOF (Framingham, MA, USA).  Data acquisition and data processing were 

respectively done using a TOF TOF Series Explorer and Data Explorer (both from AB 

Sciex). The instrument is equipped with a 349 nm Nd:YLF OptiBeam On-Axis laser. The 

laser pulse rate was 400 Hz.  Reflectron positive mode was used and each mass spectrum 

was collected as a sum of 500 shots. The samples were dissolved in deionized water (1 

mg/mL) and mixed with the matrix, 2,5-dihydroxybenzoic acid (DHB), at 1:1 ratio. DHB 

was prepared as 20 mg/mL in 50% acetonitrile and 0.1% trifluoroacetic acid. 

4.4.10 ESI-MS 

Prior to high resolution mass spectrometry (HRMS) analysis, lyophilized inulin was 

reconstituted in 5 mM sodium acetate solution to 1 mg/mL, and filtered into a HPLC vial 

using a 0.45 um PTFE syringe filter (Chrome Spec). HRMS data was obtained using a Q-

Exactive Orbitrap mass spectometer (Thermo Fisher Scientific). The sample was 

introduced at 3.0 mL/min by direct injection in positive ESI ionization mode using the 

following settings: capillary voltage, 3.9 kV; capillary temperature, 400 °C; sheath gas, 

18 units; auxillary gas, 8 units; probe heater temperature, 450 °C; S-Lens RF level, 45. 
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Full MS data were obtained using the following conditions: scan range, 500-3000 m/z; 

resolution, 70,000; AGC target, 3e6; max IT, 200 ms. Data was processed using Thermo 

Xcalibur software. 

4.4.11 In vivo Transcutaneous pulse dye densitometry 

The Cy7.5-inulin conjugate was dissolved in sterile water and filtered first through a 5 

Pm, followed by a 1.2 Pm polytetrafluoroethylene (PTFE) filter. The solution was then 

injected into the ear vein of a farm-raised pig as a single bolus (1 mg/kg) following 

administration of an anesthetic. The signal intensity was monitored by a Nihon Kohden 

(NK) TPDD clipped to the tail of the pig, tuned to indocyanine green (ICG), which has a 

similar absorption wavelength as Cy7.5. Plasma clearance of the conjugate was 

calculated using the the 2-compartmental open model of drug distribution, in which an 

administered drug is eliminated from the body by an excretory mechanism. The plasma 

clearance curve was fitted by the sum of two decaying exponentials from the time that the 

dye equilibrated with the blood pool (t0) to the end of acquisition (tn) of pulse dye 

densitometry data. The AUC of the dye plasma curve was then determined by 

extrapolation of the fitted biexponential curve to infinity, and the addition of the area 

before t0, as the contribution from the vascular phase before dye equilibrium in the blood 

pool was achieved. The Animal Use Subcommittee of the Canadian Council on Animal 

Care at Western University approved the protocols for all pig handling and treatment 

procedures described in this study (protocol 2009092). 
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 Supplemental Information 

Table S 4.1. FTIR analysis of inulin, carboxymethyl inulin, and Cy7.5-labeled inulin 

Polymer 

–OH 

stretch 

(cm-1) 

–NH 

stretch 

(cm-1) 

–CO 

stretch 

(cm-1) 

–CH 

bend 

(alkane) 

(cm-1) 

–C=O 

stretch 

(cm-1) 

–C=C– 

stretch  

(cm-1) 

–CN 

stretch 

(cm-1) 

–NH 

bend 

(cm-1) 

Inulin 3277 – 1130 – 1660 – – – 

CMI 3217 – 1134 1425 1600 – – – 

C7.5-inulin 

conjugate 
3320 3320 1123 1442 1708 1604 1228 1650 

 

 

Figure S 4.1. Proton NMR spectra of Inulin (A), CMI (B), Conjugate (C). The signal 

at 5.15 ppm in inulin corresponds to the anomeric carbon. All samples were run in 

DMSO-d6. 
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Figure S 4.2. Carbon NMR of Inulin (A), CMI (B), Conjugate (C). All samples were 

run in DMSO-d6. 

 

Figure S 4.3. MALDI-MS spectrum of dye-inulin conjugate. Depending on the 

sample, the dye was observed to cleave off easily, producing a strong signal (A) and 

subsequently fragment (A and B). Mass differences of 71 Da was also observed, 

which does not correlate with any mass where the polysaccharide could be easily 

fragmented. 
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Chapter 5 

5 Outlook and conclusions 

 Outlook and conclusions 
This thesis examined two separate principles. The first focused on the RHAMM-

hyaluronan (HA) interaction and methods for interrupting their association in order to 

prevent the progression of diseases related to elevated RHAMM expression. The second 

focused on the development and characterization of an optical probe to measure 

glomerular filtration rate that is based on the clinical gold standard: the carbohydrate 

inulin. 

The second chapter studied the development of a target receptor, 7 kDa RHAMM, for 

discovering and screening novel RHAMM-binding ligands. 7 kDa RHAMM is a 62-

amino acid chemically synthesized receptor, and is the first report of a mini-protein with 

biological properties that was synthesized by continuous peptide chemistry. 7 kDa 

RHAMM was determined to be biologically active in inhibiting the migration of 

RHAMM-transfected 10T1/2 (LR21) cells, which we rationalize is the result of the 

chemically synthesized receptor blocking the native cell-surface receptor’s motility-

stimulating actions. This receptor was revealed to have the important alpha-helical 

character that has been described in the native protein [1, 2]. Because reports have 

indicated that the protein’s secondary structure is important for it to bind its 

polysaccharide ligand, HA [1, 2], we expected the chemically synthesized receptor to 

also bind HA because it also exhibits alpha-helical character. This was found to be the 

case, and our reported dissociation constant of 8.98 nM is the first quantification of the 

RHAMM-HA interaction. The absence of protein-carbohydrate interaction analysis to 

date in the literature is most likely due to the lack of readily available full-length 

recombinant RHAMM protein. Similarly, new reports on novel RHAMM-binding 

ligands have likely been hindered by the lack of available protein for screening. While 

the synthesis and purification of recombinant RHAMM has been previously reported [3, 

4], it is known to be a challenging process, which is reflected in the commercial price of 
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the recombinant protein. 7 kDa RHAMM was further validated by evaluating its binding 

to previously reported tubulin-derived peptides [5]. Using SPR, the tubulin-derived 

peptides were determined to have very similar binding affinities to 7 kDa RHAMM as to 

recombinant RHAMM. It is therefore concluded that truncating the receptor to 7 kDa in 

size and producing it by chemical synthesis are suitable approaches for utilization in drug 

development programs for this novel target. This is exciting, as it provides a reliable tool 

for screening and discovering new compounds that are currently lacking in the clinic.  

The third chapter discusses the development of novel double stapled RHAMM peptide 

mimetics for blocking the RHAMM-HA interaction. These double stapled peptides 

contain two adjacent lactam bridge staples that lie between both HA binding domains. 

The position of the staple within the peptide sequence and the order of amino acids 

making up the staples were evaluated and compared with the linear peptide for helicity, 

HA-binding potential, stability and bioactivity. A correlation between helicity, binding 

affinity and bioactivity was observed, and a lead compound was identified (Peptide 3.1) 

(Table 5.1). Peptide 3.1 was further modified to explore the importance of rigidity in the 

linker region containing the staple to helicity and HA-binding. This was done by studying 

the effect of only one staple vs both staples, and by introducing a spacer between the 

staples in the linker region, including a single Gly residue, two residues (Gly and known 

helix-stabilizing Ala), and a hydrophobic residue (4-aminomethyl benzoic acid). In 

addition, the lead compound was synthesized without the notable cleavage product 

following incubation in serum. These efforts resulted in the identification of a new lead 

peptide sequence (Peptide 3.1-KIK+AA) that is more stable against enzymatic 

degradation than the original compound, with improved helicity and binding to HA. 

While the bioactivity of this new compound has yet to be determined, the observed 

correlation between helicity, binding affinity, and bioactivity suggests that it will be 

active in inhibiting the release of pro-inflammatory cytokines. Similarly, it may have the 

potential to inhibit motogenic stimulus from elevated RHAMM expression, and therefore, 

have applications in treating cancers that involve RHAMM expression. 
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Table 5.1. Lead double stapled RHAMM peptide mimetics and their corresponding 

helicities and binding affinities for binding to 5-10 kDa HA 

Peptide ID Sequence [θ]222 

/[θ]208 

(Water) 

KD 

(nM) 

3.1 Ac-KIKHVVKLK[EENSK]-[EKSEK]SKLRSQLVKRK-NH2 0.65 88 

3.1-KIK+AA Ac-HVVKLK[EENSK]-AA-[EKSEK]SKLRSQLVKRK-NH2 0.67 89 

Elevated RHAMM expression propagates increased levels of fragmented HA, and 

therefore, there is an increase in RHAMM-HA interactions at the cell surface [6, 7]. Prior 

studies have shown that high RHAMM expression is correlated with highly invasive and 

aggressive disease, and in the case of cancer, highly metastatic disease [8]. In the case of 

cancer, current treatments are not always effective in targeting the primary tumor, which 

can lead to metastasis and poor patient outcome. Thus, there is a clinical need for the 

development of novel drug molecules that effectively target cells with aggressive or 

metastatic potential. This can be carried out with targeted therapeutics that sequester 

fragmented HA before it can activate the signaling cascade, thereby preventing the active 

transcription of motogenic and pro-inflammatory genes. While further research into the 

pharmacokinetic and pharmacodynamics properties of these compounds is required to 

properly validate and translate the peptides to a clinical setting, the double stapled 

RHAMM peptide mimetics provide a framework for developing fragmented HA-targeted 

therapeutic agents. The identified lead compound, Peptide 3.1-KIK-AA, can be used as 

the prototype drug molecule for treating those diseases that are affected by elevated 

RHAMM levels or fragmented HA. Specifically, patients suffering from pro-

inflammatory conditions or cancers with RHAMM-overexpressing tumors could receive 

Peptide 3.1-KIK-AA as part of the treatment regimen in order to prevent worsening of 

the disease or metastatic effects from occurring. 

The bioactivity studied in this chapter focused directly on inflammation by measuring the 

change in inflammatory cytokine levels before and after treatment with the peptides in 
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question.  This is an exciting application for therapeutic intervention of the RHAMM 

mimetic peptides, and could have potential use in treating inflammation early. However, 

other applications of these peptides are certainly viable, several of which have been 

explored at a preliminary level and were reported in the patent application No. 

PCT/IB2016/051587. Models in which they may have therapeutic application, and in 

which they deserve further evaluation, include fibrosis/adipogenesis and wound repair, 

specifically invasion and migration. In fact, different RHAMM mimetic peptides that 

inhibit the RHAMM-HA interaction were observed to promote adipogenesis and reduce 

tissue fibrosis [9], suggesting that the double stapled RHAMM mimetic peptides may 

also be effective in this model. 

The fourth chapter discussed the development of an optical probe for measuring 

glomerular filtration rate (GFR), an indication of kidney function. The current clinical 

standard for measuring GFR is by quantifying the rate of renal elimination of inulin, 

which is neither metabolized nor reabsorbed by the renal tubules, and therefore passes 

through the body intact. The optical probe discussed in this chapter was based on the 

inulin structure, but was chemically modified for the conjugation of a dye molecule by 

way of a non-toxic intermediate [10]. This was the first detailed report on the synthesis 

and analysis of a dye-labeled inulin conjugate. The starting material, the intermediate, 

and the final compound were all characterized by a number of analytical techniques in 

order to monitor the synthetic progress, as well as determine the efficiency of dye-

labeling. In addition, the probe was determined to be stable in serum following 2 hours of 

incubation at 38 qC, suggesting that dye conjugation results in a stable final product. 

Analysis by 1H and 13C NMR spectroscopy and absorption concluded that approximately 

2-5 dye molecules per polysaccharide were added, which corresponds to approximately 

5% to 25% dye by weight. The range of dye-labeling is not expected to pose toxicity 

related complications in vivo, as its diameter falls beneath the average capillary size. In 

fact, the probe has been evaluated in vivo in pigs with compromised kidneys, and shows 

promise in accurately measuring GFR. In addition to measuring GFR, this probe will 

allow for improved dosing of drugs that filter through the kidneys, such as carboplatin, a 

commonly administered anticancer drug. Despite its use as an anticancer drug, it results 
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in adverse side effects and toxicities, including anemia and the suppression of bone 

marrow function [11, 12]. Delivering the optimal dose of drugs like carboplatin would 

help ensure that patients receive the optimal therapeutic result with a lower risk of 

treatment morbidity or toxicity. 

The work carried out in the fourth chapter involved the use of a fluorescent dye. It should 

be noted that any dye that absorbs at the right wavelength (788 nm) could be used in 

place of a commercially available dye (ℇ = 223 000 L mol-1 cm-1). This could include a 

novel synthetic dye, which could potentially be developed at a lower cost than the 

commercially available Cyanine dyes, which tend to be quite expensive. A current 

challenge faced with the probe is that Cy7.5-amine is not water-soluble, with no 

sulfonated versions commercially available. Similarly, the conjugate suffers from 

occasional solubility difficulties and is often trapped in the filter. When this occurs, the 

filtrate contains strictly conjugate with low dye loading, and is often insufficient for 

analysis by transcutaneous pulse dye densitometry (TPDD). Thus, the development of 

novel dyes with the appropriate absorption properties that have improved water-solubility 

over the current commercially available ones could improve dye-loading and facilitate 

the clinical translation of the probe. 

In conclusion, this thesis described the development and characterization of chemical 

entities that have the potential to facilitate the translation of novel technologies to a 

clinical setting. Firstly, the development of 7 kDa RHAMM as a suitable replacement 

receptor for screening novel RHAMM-binding compounds will enable the screening and 

discovery of new therapeutic and imaging agents, permitting early treatment of diseases 

that are correlated with aggressive and metastatic phenotypes. In addition, the 

development of double stapled RHAMM peptide mimetics that bind to HA with strong 

affinity and that have function blocking activity in inflammation models both in vitro and 

in vivo are promising as potential therapeutic agents themselves, or as prototypes for 

designing other compounds. Lastly, the development of an optical probe based on the 

current clinical gold-standard, inulin, for measuring GFR efficiently and non-invasively, 

is exciting, and will allow for improved patient care both in individuals with 



148 

 

compromised kidneys, as well as other diseases through the minimizing of risk associated 

with over- or under-dosing of renal excreted drugs. 
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