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Abstract 

Metastasis is responsible for 90% of cancer-related deaths. An important early step in the 

metastatic process is epithelial-to-mesenchymal transition (EMT) of tumor cells. 

Stimulated by TGFβ signaling, cells that undergo EMT have increased migratory and 

invasive potential, resulting in metastasis and the development of tumors at a secondary 

site. The TGFβ type 3 receptor (TβR3) has been implicated in modulating TGFβ signaling, 

yet its functional outcomes remain unclear. My findings demonstrated that TβR3 silencing 

does not alter TGFβ-dependent Smad2 phosphorylation in neither H1299, not A549 non-

small cell lung carcinoma cells but reduces Smad2 expression in H1299 cells. Interestingly, 

although TβR3 knockdown did not alter mRNA expression of EMT markers, it resulted in 

the reduction of TGFβ-dependent EMT protein markers. Finally, inhibition of EMT 

attenuated cellular invasion while enhancing chemotactic migration.  Together, these 

results suggest that TβR3 has a distinct role in modulating EMT and cellular motility in a 

Smad-independent manner. 
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Introduction 

1.1 Lung Cancer 

1.1.1 Disease Process 

Lung cancer is separated into two main categories based on cellular size: small cell lung 

carcinoma and non-small cell lung carcinoma (NSCLC). First characterized by Watson and 

Berg (1962), small cell lung carcinoma represents 15% of all lung cancer diagnoses and, 

despite being responsive to initial chemotherapeutic treatments, is more aggressive than 

non-small cell lung carcinoma. The remaining 85% of lung cancers are non-small cell lung 

carcinomas, which include histological subtypes such as adenocarcinoma, squamous cell 

carcinoma, and large cell carcinoma (Riihimaki, 2014). Since NSCLC is less responsive to 

chemotherapy and represents the majority of lung cancer diagnoses, this thesis will focus 

on investigating non-small cell lung carcinomas.   

Riihimaki et al. (2014) observed that the most prevalent histological subtype of cancer in 

its cohort was adenocarcinoma, representing 43% of all lung cancer diagnoses. While no 

significant sex difference was found, 80% of all lung cancer diagnoses were made in 

patients who were 60 years of age or older. This year, only 750 Canadians under the age 

of 50 are expected to be diagnosed with NSCLC, whereas 28,000 diagnoses are expected 

among those who are 50 years of age or older (Canadian Cancer Society, 2017). Survival 

is also reduced as the age of diagnosis increases. Patients diagnosed under the age of 40 

have the highest five-year survival rate of 45%, while patients diagnosed at 80+ have the 

lowest at 10% (Canadian Cancer Society, 2017).  
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Smoking tobacco is associated with 85% of all cases of lung cancer in Canadian patients 

(Canadian Cancer Society, 2017). Other risk factors include inhalation of radon, asbestos 

or air pollution, in addition to genetic predisposition. Despite the associated health 

concerns, approximately 15% of Canadian men and women remain daily smokers 

(Statistics Canada, 2015). 

Epithelial in origin, lung cancer is responsible for approximately 20, 000 deaths in Canada 

annually, accounting for 26% of cancer-related deaths and 8% of all deaths (Canadian 

Cancer Society, 2017). Behind prostate cancer in males, breast cancer in females, and 

nonmelanoma skin cancer, lung cancers account for one of the most prevalent cancer 

subtypes (Canadian Cancer Society, 2017). The discrepancy between incidence and 

mortality rate of lung cancer reinforces its severity and aggressiveness. Furthermore, 

survival rates of patients diagnosed with lung cancer are poor, with more than 50% of 

patients dying within 1 year of initial diagnosis (U.S. National Institutes of Health, 2016). 

The five-year survival rate of lung cancer is 55% when diagnosis shows a localized tumor 

(U.S. National Institutes of Health, 2016).  

1.1.2 Lung Cancer Metastasis 

Metastasis involves the migration of tumor cells away from the primary tumor, local 

invasion, transport through the bloodstream and/or lymphatic system, and relocation into 

the secondary location. Metastatic processes are an important target for cancer research, as 

the prevention of metastasis drastically improves prognoses and treatment outcomes. The 

seed and soil hypothesis, first described by Paget (1889), expressed the idea that cancer 

cells migrated throughout the body, and would only form a secondary tumor after reaching 

a fertile tissue that promotes development. However, the advancement of recent genetic 



3 

technologies has led to studies that counter this view by suggesting cancer cells are pre-

programmed to target specific regions of the body as secondary tumor sites (Bloom et al., 

2004). Common locations of secondary tumors arising from primary lung carcinomas 

include brain (39%), bone (34%), and liver (20%), although metastasis to the liver or bone 

yields worse prognoses than to nervous system tissue. Riihimaki et al. (2014) showed that 

various types of lung cancer have different preferred locations of secondary tumor 

development. For example, adenocarcinomas tend to metastasize to bone or liver tissue, 

while squamous cell lung cancers develop secondary tumors primarily in the nervous 

system and liver. Tumor metastasis occurs prior to diagnosis in 84% of cases, reducing a 

patient’s five-year survival rate to 4% (U.S. National Institutes of Health, 2016). 

Additionally, the average survival rate of patients exhibiting metastatic lesions is reduced 

from 13 to 5 months when compared to patients with localized lung tumors (U.S. National 

Institutes of Health, 2016; Riihimaki et al., 2014). 

1.1.3 Epithelial to Mesenchymal Transition and Metastasis 

In response to the TGFβ signaling cascade, epithelial-to-mesenchymal transition (EMT) 

involves the transition of adherent epithelial cells to mesenchymal cells, which possess an 

enhanced ability to migrate, invade, and resist apoptosis (Gunaratne & Di Guglielmo, 2013; 

Kalluri & Neilson, 2003).  Although EMT is necessary during normal embryogenesis, 

fibrotic wound healing, and organ development, it is commandeered by epithelial tumor 

cells to metastasize to secondary sites in the body (Kalluri & Weinberg, 2009). 

Epithelial-to-mesenchymal transition (Figure 1.1) involves the reduced expression of 

epithelial markers including E-cadherin, claudins, and occludins, which are necessary in 

establishing cell-to-cell junctions (Kalluri & Weinberg, 2009). Alterations in epithelial  
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Figure 1.1 Characterization of cellular epithelial-to-mesenchymal transition (EMT): 

an early metastatic process. 

Epithelial cells express several cell-cell adhesions, including E-cadherin and ZO-1 to form 

tight junctions (orange), adherens junctions (green), and desmosomes (blue) which limit a 

cells migratory potential (1). Facilitated by transcription factors Snail, Slug, Zeb1, Zeb2, 

and Twist, epithelial cells lose cellular contacts, undergo changes in polarity, and develop 

an enhanced ability to migrate and invade (2). A reduction in epithelial markers is matched 

by an upregulation of mesenchymal markers, which include N-cadherin and vimentin. It is 

important to note that EMT is a reversible process, and mesenchymal cells can reacquire 

epithelial phenotype through a mesenchymal-to-epithelial transition (MET). 
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protein expression results in morphological changes such as the dissociation of tight-

junctions, adherens-junctions, desmosomes, and the loss of apical-basal polarity (Zhang et 

al., 2016; Angadi & Kale, 2015). Complementarily to the loss of epithelial markers is the 

increased expression of mesenchymal markers, including N-cadherin, vimentin, and α-

smooth muscle actin (Angadi & Kale, 2015). Cellular transformation into a more 

mesenchymal phenotype promotes front-back polarity and cytoskeletal reorganization. In 

epithelial cells, actin is primarily cortical but it is rearranged through EMT to create stress 

fibers, thus bolstering migratory and invasive potential (Thiery, 2002). This invasive 

potential is exacerbated by the upregulation of matrix metalloproteinases, with their ability 

to degrade components of the extracellular matrix (Angadi & Kale, 2015). 

E-cadherin is a traditional marker of epithelial cells, as its high expression level is 

indicative of established cell-cell junctions (Baum & Georgiou, 2011). These cellular 

connections are modulated via the cytoplasmic domain of E-cadherin, which interacts with 

various components of adherens junctions including p120 and β-catenin (Harris & Tepass, 

2010). The maintenance of epithelial integrity is important in preventing metastatic 

dispersion of cancer cells. 

Epithelial-to-mesenchymal shift is an early process involved in tumor metastasis (Figure 

1.2). Cells undergoing EMT develop increased migratory and invasive potential, leading 

to local invasion of their surrounding stroma and intravasation into the bloodstream. Bodily 

dissemination occurs, followed by extravasation of cancer cells into secondary sites of 

micrometastasis. It is important to note that EMT is a reversible process, and cells undergo 

mesenchymal-to-epithelial transition (MET) to reacquire epithelial characteristics after 

reaching a targeted body region. Supplementary to distant metastasis, cells that have locally 
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Figure 1.2 Processes involved in tumor metastasis. 

Cancerous cells dissociate from a primary tumor and locally invade after undergoing EMT 

(1; EMT is denoted by the colour shift). Cells can then intravasate into the bloodstream (2) 

or reacquire an epithelial phenotype to locally recur (3). Once in the bloodstream, tumor 

cells disseminate (4) to a secondary location, where they adhere to endothelial cells and 

extravasate into surrounding tissues (5). Finally, cellular phenotype is reversed via 

mesenchymal-to-epithelial transition (demonstrated by a change in colour) and a 

secondary, micrometastatic tumor is developed (6). 
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invaded have the potential to reversibly shift back from a mesenchymal to an epithelial 

state. Thus, the initiation of EMT promotes both metastasis to a secondary location, as well 

as local recurrence after treatment (Kalluri & Weinberg, 2009; Thompson & Haviv, 2011). 

1.2 TGFβ Signaling 

1.2.1 TGFβ in Cancer 

Under normal physiological conditions, transforming growth factor-beta (TGFβ) signaling 

acts as a tumor suppressor by controlling cell growth, proliferation, and differentiation 

(Kalluri & Weinberg, 2009).  However, dysregulation of the TGFβ signaling pathway in 

tumor cells results in the promotion of cancerous characteristics. Late stage tumors often 

upregulate the expression of TGFβ ligands, which possess context-specific tumor 

promoting effects such as angiogenesis, evasion of immune defenses, and epithelial-to-

mesenchymal transition (Elliot & Blobe, 2005; Rahimi & Leof, 2007; Xu et al., 2009). 

Activity of the TGFβ signaling pathway is elevated in tumor cells, establishing a target for 

chemotherapeutic treatments. 

1.2.2 TGFβ Family of Ligands and Receptors 

Pathway activation is initiated via ligand binding to TGFβ receptors, which triggers a 

downstream signaling cascade. TGFβ1, TGFβ2, and TGFβ3 are tightly regulated cytokines 

that are synthesized and secreted as precursor proteins that remain in a latent state until 

pro-peptide N-terminal regions are cleaved by MMP2, MMP9, or thrombospondin 

(Flanders et al., 2016; Konrad et al., 2007; Yu & Stamenkovic, 2000; Schultz-Cherry & 

Murphy-Ullrich, 1993). All three forms of TGFβ are highly conserved, with 80% amino 

acid sequence homology (Robertson & Rifkin, 2013). Despite genetic similarity, structural 
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variation influences ligand function. For example, TGFβ3 possesses a more flexible 

structural conformation than the rigid TGFβ1, resulting in difference in binding affinity for 

different receptors (Huang et al., 2014; Konrad et al., 2007).  

There are three main receptors involved in the TGFβ signaling pathway, termed TGFβ type 

1 (TβR1), type 2 (TβR2), and type 3 (TβR3) receptors. The genes that encode TβR1 and 

TβR2 contain multiple splice variants with different exons in sequences corresponding to 

the extracellular domain. However, alternative splicing does not occur during TβR3 mRNA 

maturation, resulting in a single protein isoform (Konrad et al., 2007). Each of these three 

receptors possesses an extracellular, transmembrane, and cytoplasmic domain, yet the 

functionality of each region varies among receptor types (Figure 1.3). Since TβR1 lacks a 

canonical extracellular ligand binding site, TGFβ signaling relies on ligand association 

with TβR2 to transform external stimuli into intracellular communication. While both 

TβR1 and TβR2 transduce signaling via intracellular serine/threonine kinase domains, that 

of TβR2 is constitutively active and phosphorylated. The cytoplasmic region of TβR1 also 

incorporates a 20-amino acid glycine-serine rich (GS) pocket which, when 

unphosphorylated, is occupied by FKBP12. This binding pocket is phosphorylated by 

TβR2 and undergoes a conformational change to dissociate from FKBP12 and open the 

domain to R-Smad interactions (Wrana et al., 1994). 

TβR1 and TβR2 are internalized via clathrin-dependent and clathrin-independent 

mechanisms. Following ligand binding, the TβR1/2 heteromeric complex is internalized 

via clathrin-coated pits to facilitate TGFβ signaling from the early endosome. However, 

cell surface receptor levels are also regulated by clathrin-independent endocytosis. When 

present in lipid-raft membranes, clathrin-independent internalization of TβR1/2 into  
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Figure 1.3 Structure of membrane bound TGFβ receptors I, II, and III. 

The type III TGFβ receptor (TβR3) facilitates TGFβ signaling by binding and presenting 

TGFβ ligand to the type II TGFβ receptor (TβR2) (1), and by binding and relocating 

TβR1/2 receptors in membrane domains (2). Additionally, membrane bound TβR3 can be 

cleaved at sites recognized by plasmin and matrix metalloproteinases into soluble factors, 

which bind and sequester TGFβ ligand from interacting with TβR1/2 (3). 
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caveolin-1 positive vesicles causing Smurf2-mediated ubiquitination and 

proteasomal/lysosomal degradation (Di Guglielmo et al., 2003). 

Mutations in TβR1 or TβR2 often arise in epithelial tissues, interfering with TGFβ-

dependent apoptosis. Furthermore, inactivating mutations in TβR2 occur more frequently 

than TβR1, primarily in the cytoplasmic kinase domain responsible for phosphorylating 

TβR1 (de Caestecker et al., 2000).  

TGFβ receptor level is regulated through mechanisms that involve post-translational 

changes. An inhibitory-Smad, Smad7, recruits an E3-ubiquitin ligase, Smurf2, to associate 

with TβR1 and TβR2, inducing ubiquitin-dependent proteolysis (Kavsak et al., 2000). Like 

TβR1 and TβR2, TβR3 internalization is a ligand-independent process. Furthermore, 

modifications to the glycosaminoglycan region of TβR3 has no effect on receptor 

internalization or degradation (Finger et al., 2008a). In addition, the short cytoplasmic tail 

of TβR3 is critical for docking of β-arrestin2, which initiates receptor endocytosis through 

intracellular processes (Finger et al., 2008a). TβR3 endocytosis is important for both Smad-

dependent and Smad-independent signaling. A decrease in the phosphorylation of Smad2 

and p38 MAP kinase, following blockade of TβR3 internalization by nystatin, suggests that 

TβR3 has specific functions dependent on endocytosis (Finger et al., 2008a). 

While TβR2 is restricted to binding TGFβ1 and TGFβ3, TβR3 is able to bind all three 

forms of TGFβ ligand (Finger et al., 2008a). Thus, TβR3 possesses the unique ability to 

induce TGFβ signaling of TGFβ2. In addition to TβR3 uniquely binding TGFβ2, it also 

binds with greater affinity than either TGFβ1 or TGFβ3 (Mendoza et al., 2009). TβR1 is 

unable to bind any TGFβ ligand isoform as it does not possess an extracellular ligand 
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binding domain (Finger et al., 2008a). Notably, regardless of ligand subtype, TβR2 binds 

more strongly to TGFβ that is being presented by TβR3 than it does to free ligand (Lopez-

Casillas et al., 1993). Binding affinity of certain ligands is also dependent on receptor 

interactions. When TβR1 is not physically associated with TβR2, TβR2 possesses low 

affinity for TGFβ1 (Lopez-Casillas et al., 1994). However, formation of a receptor complex 

with TβR1 increases TβR2 binding affinity for TGFβ1, while the affinity for TGFβ2 

remains low. Additionally, cells become more responsive to TGFβ stimulation following 

expression of exogenous TβR3 (Lopez-Casillas, 1993). 

Although the TGFβ1, TGFβ2, and TGFβ3 have similar functions in vitro, genetic 

inactivation of individual ligands in mice reveals distinctly different phenotypical 

outcomes. Further in vivo research has revealed unique roles that are performed by 

specific TGFβ subtypes. For example, wound healing during embryogenesis is associated 

with high levels of TGFβ3, but not TGFβ1 or TGFβ2 (Whitby & Ferguson, 1991). 

1.2.3 SMAD Function and Regulation 

Smad proteins, named after shared similar genetic sequences with Sma and Mad proteins, 

function as downstream effectors of TGFβ signaling by acting as receptor substrates (Liu 

et al., 1996). Of the eight Smad proteins involved in TGFβ signaling, only five, Smad-1, -

2, -3, -5, and -8, act as substrates for type 1 receptor activation, and are therefore referred 

to as receptor-regulated Smads (R-Smads). Smad4, a common-Smad (Co-Smad), is not a 

substrate for type 1 receptor phosphorylation, and instead forms complexes with R-Smads 

prior to nuclear localization. Finally, inhibitory-Smads (I-Smads), Smad6 and Smad7, 

repress TGFβ signaling by interfering with R-Smad interactions with Co-Smad or activated 

receptors (Massague, 1998). 
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Approximately 500 amino acids long, R- and Co-Smad proteins are comprised of an N-

terminal Mad-homology 1 domain (MH1), a central linker region, and a C-terminal MH2 

domain. Interestingly, the MH1 domain is absent in I-Smads. Additionally, although a C-

terminal MH2 domain is conserved among all Smad proteins, functionality of this domain 

differs between Smad subtypes. When unphosphorylated, Smad2 and Smad4 exist as 

homotrimers (Wu et al., 2001b). However, upon Smad2 phosphorylation, Smad2/4 form a 

heterodimer, or a heterotrimer (2 R-Smads, 1 Co-Smad) via binding of MH2 domains (Wu 

et al., 2001a). R-Smad interaction with receptor kinases is dependent on the connection 

between loop 3 domain in the carboxy-terminal region of R-Smads with a loop 1 domain 

of the receptor. Co-Smads do not possess a loop 3 domain, and are therefore unable to bind 

to, or be phosphorylated by, activated type 1 receptors (Massague, 1998). Receptor kinases 

are responsible for phosphorylation of R-Smad C-terminal S-S-X-S domain (Wrana, 2000). 

Specifically, TβR1 and activin type 1 receptors target Smad2 and Smad3 for 

phosphorylation, while BMP type 1 receptors are primarily associated with Smad1, Smad5, 

and Smad8.  

MH1 and MH2 domains are separated by a proline rich central linker region, which in 

Smad1, Smad2, and Smad3 is phosphorylated by serine/threonine MAP kinases Erk1 and 

Erk2 to impede Smad nuclear localization and TGFβ signaling (Wrana, 2000; Kretzschmar 

et al., 1999). 

Ski and Sno are oncogenes without catalytic function. However, interactions with the 

Smad2/4 complex negatively regulates canonical TGFβ signaling. Ski and Sno have been 

shown to simultaneously bind to Smad2 and Smad4, hindering their ability to modulate 

gene transcription. Specifically, Ski has been shown to competitively bind Smad4 MH2 
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domain, preventing its association with phosphorylated Smad2 (Wu et al., 2002). 

Additionally, when interacting with Smad2/4 complexes, Ski and Sno act as corepressors 

by binding promoter regions and inhibiting gene transcription (Akiyoshi et al., 1999; 

Stroschein et al., 1999). 

Inactivating mutations in the MH2 domains inhibit Smad2/4 complex formation and are 

evident in cancer cells (Wu et al., 2001b). Mutations can occur in the MH2 domain of 

Smad2, Smad3, and Smad4, most frequently in the binding sites responsible for 

heteromeric complex formation (Fleming et al., 2012). Missense mutations are more 

common than nonsense, and Smad4 is generally more prone to genetic mutations than R-

Smads (Fleming et al., 2012; de Caestecker et al., 2000). 

Hairpin loops of Smad4 MH1 domains bind to Smad binding elements (SBE) in the 

promoter regions of target genes (Shi et al., 1998). Smad2/4 weakly binds to DNA on its 

own and relies on interactions with other co-activators, co-repressors, or transcription 

factors to induce transcriptional change (Wrana, 2000).  

1.2.4 Canonical and Non-Canonical TGFβ Signaling 

Canonical Transforming Growth Factor-beta (TGFβ) signaling (Figure 1.4) is responsible 

for the regulation of many cellular processes, including cellular apoptosis, differentiation, 

and growth (Kalluri & Weinberg, 2009).  Two ubiquitously expressed, membrane bound 

serine/threonine kinase receptors initiate TGFβ signaling upon ligand binding: TGFβ Type 

1 Receptor and TGFβ Type 2 Receptor. Upon ligand binding, two constitutively  
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Figure 1.4 Schematic displaying the canonical TGFβ signaling pathway. 

TGFβ ligand binding to the serine/threonine kinase TGFβ type II receptor (TβR2) induces 

the transphosphorylation of the TGFβ type I receptor (TβR1) (1). After the TβR1/2 

complex is internalized into an early endosome, Smad anchor for receptor activation 

(SARA) recruits intracellular signaling protein to be phosphorylated by TβR1 (2). After 

phosphorylation, Smad2 dissociates from the TβR1, forms a complex with Smad4 to 

translocate into the nucleus, and facilitates gene transcription (3). 
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phosphorylated type 2 receptors interact with two type 1 receptors. This heterotetrameric 

complex is internalized into the early endosome, where downstream signaling processes 

are initiated. Following endocytosis, constitutively phosphorylated TβR2 

transphosphorylates TβR1. TβR1 then phosphorylates intracellular proteins Smad2 and 

Smad3 at C-terminal residues. Smad2/3 are referred to as receptor-activated Smads (R-

Smad) since they are responsive to external stimuli (Siegel & Massague, 2003; Finger et 

al., 2008b; Zhang et al., 2016). This association of TβR1 and Smad2 is mediated by Smad 

anchor for receptor activation (SARA) (Di Guglielmo et al., 2003). SARA has been shown 

to enhance Smad2 interaction with activated TβR1 by retaining Smad2 localization near 

the plasma membrane and increasing its proximity to the receptor (Tsukazaki et al., 1998). 

Once phosphorylated, Smad2 is released from the TβR1/2 complex into the cytoplasm and 

forms a complex with a common-mediated Smad, Smad4 (Massague, 1998; Wrana, 2000). 

Smad2/4 complexes undergo constant shuffling between the cytoplasm and the nucleus, 

which is dependent on the phosphorylation of Smad2 (Xu & Massague, 2004). The 

accumulation of Smad2/Smad4 complex in the nucleus facilitates transcription factor 

binding to DNA, initiating the transcription of genes that inhibit cell growth and 

proliferation in non-cancerous cells (Massague, 1998). 

However, while TGFβ signaling acts as a tumor suppression in healthy cells, TGFβ activity 

in tumor cells is tumor promoting. An intact TGFβ signaling pathway crosstalks with other 

signaling pathways including the MAPK, receptor tyrosine kinase (RTK), Wnt, and Notch 

pathways, exacerbating tumorigenic processes (Terai et al., 2011; Principe et al., 2014; 

Zavadil et al., 2004). Previous research has investigated the role of Type I and II receptors 
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on metastatic potential, yet the contributions of a third type of TGFβ receptor, the TGFβ 

Type III receptor remain unclear (Docea et al., 2012; Zhang et al., 2014).  

In an atypical fashion, TGFβ signaling has been linked to integrin-linked kinase (ILK) 

expression. Studies have demonstrated that ILK forms complexes with TβR2 and protects 

the receptor from ubiquitination and degradation (Vi et al., 2015). Furthermore, ILK 

expression may be necessary for Smad2 phosphorylation and for the facilitation of 

downstream TGFβ-dependent transcriptional responses (Vi et al., 2011). Li et al. (2003) 

have shown that ILK expression is involved in EMT processes including cadherin shift, 

migration, and invasion, which can be abrogated by ILK inhibition via HGF.  

TGFβ1-induced signaling can occur independent of both Smad2 phosphorylation and ILK. 

Non-canonical, or Smad-independent, TGFβ signaling through RhoA (a small GTPase) 

and its downstream kinase, ROCK, has been implicated in actin reorganization and cell 

migration, two necessary characteristics of epithelial-to-mesenchymal transition (Masszi 

et al., 2003; Bhowmick et al., 2001). However, RhoA activation was not observed to 

disturb cell-cell adherens junctions (Kaartinen et al., 2002). While both pathways are 

dependent upon TGFβ ligand for activation, their parallel function influence EMT 

separately.  

Furthermore, TGFβ ligand triggers TβR1 phosphorylation of ShcA, which, after forming a 

complex with Grb2 and Sos, induces Ras activation and the downstream activation of 

Erk1/2 via tyrosine phosphorylation (Roskoski, 2012). Increased Erk activation through 

the MAP kinase signaling pathway has been shown to enhance EMT in a TGFβ dependent 
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manner, through a reduction in E-cadherin and an increase in N-cadherin expression 

(Grande et al., 2002). 

1.2.5 Regulation of EMT 

The expression of epithelial and mesenchymal markers during EMT is regulated at both a 

transcriptional and post-translational level. Regulation of E-cadherin expression at a 

transcriptional level is repressed by several E-box binding transcription factors, including 

Snail, Slug, ZEB1, and ZEB2 (Peinado et al., 2007). Through a separate means of 

interaction, the helix-loop-helix transcription factor Twist also represses E-cadherin 

expression, facilitating EMT (Peinado et al., 2007). Once translated, these proteins are 

translocated to the nucleus, where the 5’ promoter region E-cadherin is bound, and 

transcription is repressed (Peinado et al., 2007). However, the action of these EMT 

regulating molecules may be dependent on cell-context. For instance, while it is well 

established that transcription factor Snail is necessary for mediation of E-cadherin 

expression, EMT in renal cells is Snail-independent (Li et al., 2003).  

E-cadherin expression is also regulated post-translationally via tyrosine phosphorylation 

or ubiquitination, promoting protein endocytosis and weakening cellular adhesions (Fujita 

et al., 2002). In addition to transcriptional and post-translational methods of modulating E-

cadherin expression, the degradative powers of matrix metalloproteinases (MMPs) have 

also been linked to E-cadherin repression. While MMPs have classically been 

characterized as tools used to remodel the extracellular matrix, recent studies have shown 

E- and N-cadherin to be alternative substrates for MMP proteolytic cleavage. Furthermore, 

cadherin cleavage by MMPs appears to be dependent on the makeup of surrounding 

extracellular matrix, with collagen I and IV providing a microenvironment that was more 
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prone to degradation of both E- and N-cadherin by MMP14 when compared to fibronectin 

(Covington et al., 2005). 

microRNAs are single-stranded, non-coding oligomeric nucleotides, 20-25 nucleotides in 

length, that bind to transcribed mRNA (Esquela-Kerscher & Slack, 2006). Once bound, 

microRNAs have two separate regulatory functions: reduce mRNA stability or inhibit 

protein translation (Esquela-Kerscher & Slack, 2006). Recently, microRNAs have been 

investigated with regards to their ability to alter EMT. The downregulation of two families 

of microRNA that share consensus seed sequences — miR-200 (miR-200a, -200b, -200c, 

-141, -429) and miR-30 (miR-30a-5p, -30a-3p, -30e, -30e-3p) — have been linked to 

enhanced epithelial-to mesenchymal transition and tumor metastasis (Schliekelman & Liu, 

2014). Furthermore, a reduction in miR-200 family members has been correlated with 

shortened survival of cancer patients (Mlcochova et al., 2016; Tang & Xu, 2015). 

Specifically, miR-200 family microRNAs target and repress the translation of mRNA 

encoding E-cadherin repressors ZEB1/2 (Mlcochova et al., 2016). In essence, these 

microRNAs act as repressors of E-cadherin transcriptional repressors. Furthermore, a 

double-negative feedback loop exists between expression of ZEB1 and the miR-200 

family, as ZEB1 is able to bind to the promoter region of miR-200 genes and inhibit 

transcription (Schliekelman & Liu, 2014). Treatment with miR-200 family members has 

been shown rescue TGFβ-dependent E-cadherin repression, and the suppression of EMT 

(Mlcochova et al., 2016; Zhang et al., 2012). Correspondingly, it is suggested that EMT 

may be suppressed in cancer patients via the upregulation of these microRNAs, or 

therapeutic treatment with exogenous oligomers that mimic microRNA sequences.  
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EMT can also be modulated independent of TGFβ signaling. Expression of other ligands, 

including HGF and BMP-7, has been shown to inhibit EMT by preventing and even 

reversing TGFβ1-dependent cadherin shift both in vitro and in vivo (Yang & Liu, 2001; 

Zeisberg et al., 2003). In contrast, EMT processes can also be enhanced by the activation 

of other signaling cascades. EMT has been promoted by bFGF2 initiation of the FGF 

signaling pathway (Strutz et al., 2002). Additionally, phosphorylation of Erk1/2 via the 

MAP kinase cascade has been implicated in EMT progression (Schramek et al., 2003). Wnt 

and notch, and their ligands β-catenin and Jagged-1 respectively, have also been 

established as drivers of EMT (Ye & Weinberg 2016). 

1.2.6 TGFβ, EMT, and Autophagy 

In addition to TGFβ signaling, EMT progression has recently been linked to autophagic 

processes. Autophagy is a mechanism through which cells degrade and process cellular 

proteins in response to stress (Parzych & Klionski, 2014). Through the formation of protein 

complexes involving ULK1 kinase, Atg13, and Atg17, double-membraned vesicles called 

autophagosomes are employed to facilitate endocytosis (Degenhardt et al., 2006). 

Following autophagosome formation, autophagic proteins Atg5, Atg12, and Atg16 are 

responsible for the recruitment of LC3B1 (Matsushita et al., 2007), which undergoes 

proteolytic cleavage by Atg4 to generate LC3B2 and is incorporated into the 

autophagosomal membrane (Satoo et al., 2009). Next, fusion with lysosomes facilitates the 

degradation of cellular components. Since LC3B remains integrated in the autophagosome 

until lysosomal fusion is completed, LC3B is the gold-standard as a marker of autophagy.  

Recently published studies have demonstrated that chemical inhibition of autophagy by 

Bafilomycin-A1 or chloroquine-di-phosphate inhibits TGFβ-induced EMT in cells from 
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retinal pigment epithelium, hepatocellular carcinoma, and NSCLC. (Alizadeh et al., 2018; 

Dash et al., 2018; Wu et al., 2018). Furthermore, knockdown of autophagic complex 

proteins Atg5 and Atg7 has been shown to inhibit EMT by reducing the protein expression 

of mesenchymal markers vimentin, Snail, and Slug (Jiang et al., 2018, Dash et al., 2018). 

Additionally, an increase in TGFβ- or rapamycin-induced autophagy simultaneously 

exacerbated epithelial-to-mesenchymal transition in both a time- and concentration-

dependent manner (Wu et al., 2018).  

In 2014, Nitta et al. found that TGFβ-induced cellular invasion was significantly hindered 

by autophagy inhibition, establishing a functional link between autophagy, EMT, and 

metastasis to supplement previously studied changes in cellular morphology. 

A study by Pang et al. (2016) demonstrated that autophagosome formation was necessary 

to induce E-cadherin degradation via the autophagosome-lysosomal degradation pathway. 

From their observations, an established mechanism displayed Src activation in response to 

autophagy, resulting in β-catenin phosphorylation and association with phosphorylated 

Smad2. This β-catenin/Smad2 complex translocates to the nucleus and initiates 

transcriptional upregulation of ILK, which has been implicated in EMT processes (Pang et 

al., 2016). In addition to its role as a structural component of adherens junctions by binding 

to the cytoplasmic domain of E-cadherin, β-catenin also regulates E-cadherin expression 

by stabilizing Smad2 DNA binding as a co-activator of gene transcription (Kim et al., 

2009). As such, the relationship between the expression of LC3B, an autophagic marker, 

and ILK, an EMT facilitator, is positive. 
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1.2.7 Matrix Metalloproteinases 

Matrix metalloproteinases (MMPs) are a group of 23 enzymes that carry out several 

functions, one of which is to degrade and remodel specific components of the extracellular 

matrix (ECM) and are classified into different groups based on structure or substrate. 

MMP1, MMP13, and MMP14 are collagenases, primarily responsible for degrading 

collagen I, II, and III, while MMP2 and MMP9 digest gelatin, collagen IV and collagen V 

(Lu et al., 2011). Under normal physiological conditions, MMPs play a vital role in 

embryogenesis and wound healing (Cepeda et al., 2017). However, their ability to degrade 

and remodel components of the extracellular matrix (ECM) promotes the migration and 

invasion of tumor cells. 

The expression patterns of MMPs varies widely and are present in both tumor cells and the 

surrounding stroma (Okada et al., 1995; Sato et al., 1994). Membrane-bound MMP-14 has 

been characterized in cancer-associated fibroblasts, tumor-associated macrophages, and 

endothelial cells (Chun et al., 2004; Sakamoto & Seiki, 2009) However, MMP-15 and -16 

are primarily expressed in endothelial cells. MMP14 expression is high in mesenchymal 

cancers and sarcomas, facilitating invasion of tumor cells through microenvironments that 

are rich in collagen (Apte et al., 1997). 

MMP activity is tightly regulated. Translated as inactive zymogens, MMPs are only 

activated following N-terminal proteolytic cleavage (Cepeda et al., 2017). Plasmin is a 

common activator of collagenase MMPs, including MMP-1, -3, -8, -10, and -13 (Lu et al., 

2011). However, MMPs that possess a transmembrane domain (MMP-14, -15, -16, -24) or 

have cytoplasmic C-termini anchored to glycosylphosphatidylinositol (GPI) (MMP-17, 

MMP-25), are activated only by furin (Lu et al., 2011; Sohail et al., 2008). Furin binds a 
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specific recognition site in the pro-peptide region, situated at the N-terminal end of the 

catalytic domain (Pei & Weiss, 1995). Interestingly, certain gelatinase pro-MMP 

zymogens must be activated by other MMPs. MMP-2 and MMP-9 are each activated by a 

plethora of MMPs that can specifically interact with one of the two gelatinases, but not 

both. Notably, all membrane-bound MMPs cleave pro-MMP-2, while pro-MMP-9 is 

activated by the secreted MMPs of MMP-3, -10, and -13. Once activated, MMP-2 also has 

the proteolytic potential to activate the zymogen of its fellow gelatinase MMP-9. (Lu et al., 

2011).  

Additionally, a group of four tissue inhibitors of metalloproteinases (TIMP-1, -2, -3, -4) 

can selectively restrict the functional capabilities of specific MMPs. Dysregulation of 

zymogen cleavage or TIMP expression by cancer cells can result in aberrant ECM 

degradation, facilitating tumor metastasis (Jackson et al., 2017). In a stoichiometric 1:1 

ratio, TIMPs reversibly insert an intrinsic cysteine disulfide bridge into the active domain 

of MMPs, inhibiting their catalytic function (Jackson et al., 2017; Brew & Nagase, 2010).  

The regulation of MMP activity by TIMPs in a stoichiometric fashion is important to 

control not only degradation of the extracellular membrane, but also downstream cell 

signaling (Cepeda et al., 2017; Frantz et al., 2010; Hynes & Naba, 2012). This is especially 

relevant to membrane-bound MMPs that possess a cytoplasmic C-terminus. Thus, these 

MMPs possess the intrinsic capability to modulate intercellular communication and 

intracellular signaling by acting as a scaffold to promote cytoplasmic protein association. 

Membrane-bound MMP14 can form a complex with TIMP-2 facilitating MAPK signaling 

and phosphorylating downstream effector Erk1/2 (Pahwa et al., 2014; Sounni et al., 2010) 

MMP14 has also been shown to induce NF-κB transcription (Cepeda et al., 2017). 
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EMT transcription factors such as Snail, Zeb1/2, and Twist, have been shown to increase 

membrane-bound MMP transcription in addition to repressing E-cadherin (Ota et al., 2009; 

Huang et al., 2009; Liu et al., 2016). These EMT transcription factors influence metastasis 

on two separate levels: releasing cell-cell junctional connections and promoting the 

expression of proteolytic enzymes to degrade the extracellular matrix. 

1.3 Transforming Growth Factor β Type 3 Receptor 

1.3.1 TβR3 in Cancer 

Transforming Growth Factor Type 3 receptor (TβR3), also referred to as betaglycan, is the 

most abundantly expressed TGFβ receptor in normal epithelial cells and is ubiquitous 

(Zhang et al., 2016). However, many cancer types have abnormally low expression levels 

of TβR3, including breast, prostate, lung, and ovarian cancers, and reduction is further 

enhanced as cancers develop into more advanced grades and later stages (Finger et al., 

2008a). These cancer types demonstrate that TβR3 expression is an active suppressor of 

tumorigenicity, invasiveness, and progression (Zhang et al., 2016; Dong et al., 2007; 

Turley et al., 2007; Finger et al., 2008b; Hempel et al., 2008). However, the reduction of 

TβR3 is not due to aberrations in transcriptional, translational, or degradational processes. 

Rather, loss of the chromosomal locus of TβR3, 1p31-32, has been demonstrated in 

cancerous tumors (Dong et al., 2007, Turley et al., 2007). In lung cancer specifically, TβR3 

mRNA and protein expression are both reduced due to loss of heterozygosity (Finger et al., 

2008b). Zhang et al. (2016) found that TGFβ1 stimulation suppresses both the mRNA and 

protein expression of TβR3, in a dose-dependent manner (Hempel et al., 2008). However, 

the mechanism by which this occurs is currently unclear.  
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Conflicting literature has suggested that overexpression or silencing of TβR3 in various 

cell types results in TβR3 acting as either a tumor promoter or suppressor (Criswell et al., 

2008; Finger et al., 2008b). In colon cancer cells, TβR3 acts as a tumor promoter, and 

knockdown has been shown to inhibit cell viability, while reducing cell migration and 

invasion (Liu et al., 2013). On the contrary, overexpression of TβR3 has been shown to 

suppress migratory and invasive potential in non-small-cell lung carcinoma and 

hepatocellular carcinoma (Finger et al., 2008b; Zhang et al., 2016). Additionally, 

exogenous TβR3 following knockdown has been shown to inhibit invasion, and metastasis 

both in the presence and absence of TGFβ (Dong et al., 2007; Turley et al., 2007, Sun et 

al., 1997). Abnormally repressed TβR3 expression in late stage malignant cancers suggests 

a possible involvement in suppressing cell migration, invasion, and in vivo tumorigenesis 

(McLean & Di Guglielmo, 2010; Zhang et al, 2016; Criswell et al., 2008; Finger et al., 

2008b). 

Additionally, the administration of TGFβ increased the migratory potential of 

hepatocellular carcinoma cells. This suggests a link between the reduction in TβR3 and 

cellular migration (Zhang et al., 2016). 

1.3.2 Structure of TβR3 

Genetic coding for TβR3 is made of a 225 kbp sequence on chromosome 1p33-p32 

(Zakrzewski et al., 2016). Divided into 18 exons, TβR3 transcription is primarily regulated 

by the more proximal of its two separate upstream promoter regions (Hempel et al., 2007; 

Zakrzewski et al., 2016). The core protein of TβR3 is 851 amino acids in length, comprised 

of a 766 amino acid extracellular region, transmembrane domain, and short, 42 amino acid 

cytoplasmic tail, and exhibits a molecular weight of 100 kDa (Lopez-Casillas et al., 1994). 
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The core molecular weight of TβR3 is 100 kDa, however specific composition of bound 

extracellular chondroitin sulfate glycosaminoglycans (GAGs) may increase the molecular 

weight to between 180 and 300 kDa (Zhang et al., 2016, Lopez-Casillas et al., 1994). 

However, while modifications to GAG does not alter TβR3 internalization, functional 

characteristics are impaired (Finger et al., 2008a). Importantly, ligand interaction with 

TβR3 is weakened, suppressing downstream TGFβ signaling (Deng et al., 1999) 

TGFβ Type 3 Receptor (Figure 1.3) is a membrane-anchored, heparin sulfate proteoglycan 

that possesses a short cytoplasmic C-terminal tail (Finger et al., 2008a; Gatza et al., 2010). 

The short cytoplasmic tail of TβR3 contains a PDZ binding motif, which is necessary for 

binding to the constitutively phosphorylated site of TβR2 (Blobe et al, 2001a; Lopez-

Casillas et al., 1991; Blobe et al., 2001b).  This interaction is released following the 

association of TβR1 to TβR2 (Blobe et al., 2001a). Tazat et al. (2015) also established that 

TβR3 can bind TβR1 or TβR2 independent of one another or form a heterotrimer 

containing all three TGFβ receptors. This cytoplasmic tail can also be phosphorylated at 

its threonine 841 residue by TβR2, promoting the association of β-arrestin, and TβR3 

endocytosis (Finger et al., 2008a). Independent of ligand, TβR3 can be internalized via 

clathrin-dependent or -independent mechanisms. Notably, endocytosis of a β-

arrestin2/TβR2/TβR3 complex through a clathrin-independent sequence facilitates TβR3 

degradation and suppresses both canonical and atypical routes of TGFβ signaling (Finger 

et al., 2008a; Chen et al., 2003). Additionally, this tail may be responsible for anchoring 

TβR3 to clathrin-mediated membranes, or lipid-raft membranes through clathrin and 

flotillin, respectively (Finger et al., 2008a).  
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However, TβR3 lacks the Ser/Thr kinase abilities of TGFβ Type 1 and 2 receptors, or any 

other intrinsic enzymatic capabilities (Finger et al., 2008a, Zhang et al., 2016). As such, it 

is unable to phosphorylate Smad2 and induce TGFβ signaling on its own. The facilitation 

of TGFβ signaling is reliant upon the TβR1/2 complex, to which TβR3 presents TGFβ 

ligand.  

TβR3 differs from its TβR1 and TβR2 counterparts in more ways than simply lacking an 

intracellular kinase domain. The extracellular domains of TβR1 and TβR2 are shorter than 

that of TβR3 and are primarily constructed of cysteine residues (Attisano et al., 1993). On 

the contrary, the N-terminal ectodomain of TβR3 is folded into two ligand binding regions, 

separated by a linker region (Wang et al., 1991; Lopez-Casillas et al., 1991; Lopez-Casillas 

et al., 1994; Mendoza et al., 2009). Together, these binding sites allow dual, independent 

action of the receptor which are modulated by receptor cleavage (Gatza et al., 2010).  

In addition to membrane-bound TβR3, the receptor can undergo ectodomain shedding by 

proteolytic cleavage at two separate sites of the extracellular domain. This cleavage is 

mediated by two membrane-bound matrix metalloproteinases, MT1-MMP (MMP14) and 

MT3-MMP (MMP16), and plasmin (Velasco-Loyden et al., 2004; Zakrzewski et al., 2016). 

MMP cleavage occurs at an extracellular site proximal to the transmembrane domain, while 

plasmin cleavage is present in the more distal linker region that separate the two 

extracellular binding domains of TβR3 (Figure 1.3). Ectodomain shedding released a 

soluble form of TβR3, which can be detected in both the serum and the extracellular 

domain (Gatza et al., 2010). Interestingly, the two forms of TβR3 possess different and 

opposite actions with regards to TGFβ signaling. Interestingly, the invasive capabilities of 
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NSCLC cells have been inhibited following culture in conditioned media containing 

soluble TβR3 (Finger et al., 2008a). 

TβR3 resembles certain structural components of Endoglin in each of its distal 

extracellular, transmembrane, and intracellular domains (Lopez-Casillas et al., 1994). Like 

TβR3, endoglin is a glycoprotein coreceptor of TGFβ, whose primary function is to induce 

angiogenesis among endothelial cells (Burrows et al., 1995; Cheifetz et al., 1992). 

Interestingly, despite these structural similarities, endoglin is only able to bind TGFβ1 and 

TGFβ3 ligands but is unable to mimic the ability of TβR3 to bind TGFβ2 (Cheifetz et al., 

1992). Thus, TβR3 possesses unique binding capabilities that cannot be explained by 

structural similarities with other receptors. 

1.3.3 Modulation of TGFβ Signaling 

TβR3 influences TGFβ signaling in three distinct ways (Figure 1.3). Two of these 

functions act to promote TGFβ stimulation and response, while the third acts as a protective 

neutralizer of excessive TGFβ signaling. Firstly, TβR3 facilitates TGFβ signaling by 

binding either TGFβ1, TGFβ2, or TGFβ3 and presenting the ligand to TβR2 (Lopez-

Casillas et al., 1993). From there, the canonical TGFβ signaling pathway can proceed as 

previously described. Since TβR3 has the ability to bind TGFβ2, unique among TGFβ 

receptors, TβR3 can initiate TGFβ-dependent processes that would otherwise not occur.  

TβR3 further propagates TGFβ signaling by extending the half-life of TβR1 and TβR2 

(Figure 1.5). Normally, TβR1 and TβR2 can be internalized in either a clathrin-mediated  
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Figure 1.5 Complex role of TβR3 in TGFβ signaling. 

In addition to facilitating or inhibiting TGFβ ligand association with the TβR1/2 complex, 

TβR3 extends the half-life of TβR1/2 receptors. Normally internalized into caveolin-1 

positive vesicles and ubiquitinated by Smurf2 for degradation (3), TβR1/2 can be relocated 

out of lipid-raft membranes after binding to TβR3 (2). Thus, activation of the TGFβ 

signaling pathway is prolonged (1). 
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manner or through lipid-raft endocytosis (Finger et al., 2008a); distinct trafficking routes 

that serve opposing functions. TβR1/2 complexes found in lipid raft membranes are 

degraded through caveolae internalization and ubiquitination. Once endocytosed into 

caveolin-1 positive vesicles, Smurf2, an E3 ubiquitin ligase, is responsible for tagging 

TβR1 and TβR2 with ubiquitin, which targets the receptors for proteasomal/lysosomal 

degradation (McLean & Di Guglielmo, 2010; Kavsak et al., 2000). TβR3 has also been 

shown to bind and relocate TβR1/2 from lipid rafts to clathrin-coated pits, extending 

receptor complex half-life (McLean & Di Guglielmo, 2010). This relocation may occur by 

TβR3 binding TβR1 or TβR2 independently, in the absence or presence of TGFβ ligand 

(McLean & Di Guglielmo, 2010). Furthermore, the relocation of these receptors has been 

shown to reduce trafficking of TβR2 into caveolin-1 positive vesicles, while increasing 

endocytosis into the early endosome. Extension of TβR1 and TβR2 half-life suggests that 

TβR3 expression heightens basal levels of TGFβ signaling (McLean & Di Guglielmo, 

2010) 

Downstream signaling is propagated by the presentation of TGFβ ligand by TβR3 to 

TβR1/2 complex, yet also reduced by inhibiting receptor complex formation by binding 

and sequestering ligand from binding to the TβR1/2 complex (Siegel & Massague, 2003; 

Zhang et al., 2016). Membrane-bound and soluble TβR3 possess different and opposite 

actions with regards to TGFβ signaling. While membrane-bound TβR3 facilitates 

canonical TGFβ signaling by increasing TGFβ ligand affinity for TβR2, soluble TβR3 

binds TGFβ and interferes with ligand access to TβR2. Thus, ectodomain shedding of 

TβR3 acts as a negative feedback mechanism to neutralize excessive TGFβ signaling, 

suppressing uncontrollable cell proliferation (Mendoza et al., 2009). Additionally, Tazat et 
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al. (2015) found that the ability of TβR3 to bind TβR1 or TβR2 competed with TβR1 and 

2 from binding each other, thus reducing TGFβ signaling. 

1.3.4 TβR3 Modulation of Other Signaling Pathways 

TβR3 is not limited to binding the three TGFβ ligands. It also binds inhibin, and BMP-2, -

4, and -7 through ligand binding sites. TβR3 also binds inhibin A, whose binding sites 

overlap with those of TGFβ. Once bound, the TβR3/inhibin A complex interacts with, and 

inhibits activin and BMP type 2 receptor signaling (Mendoza et al., 2009, Finger et al., 

2008a). TβR3 also interacts with basic fibroblast growth factor 2 (bFGF2), by way of GAG 

modifications (Finger et al., 2008a), thus implying that TβR3 is involved in a number of 

different signaling pathways, other than the one after which it was named. 

Additionally, silencing of TβR3 has been shown to promote the phosphorylation of Akt 

kinase, facilitating downstream pro-tumorigenic influences (Zhang et al., 2016). Akt is an 

established anti-apoptotic factor, inactivating Bad and pro-caspase 9 through 

phosphorylation, downregulating p53, and activating NF-κB (Downward, 2004; Pommier 

et al., 2004; Mayo & Donner, 2002; Zhou & Hung, 2002). 

The overexpression of TβR3 has been shown to suppress the viability of nasopharyngeal 

carcinoma cells through the induction of apoptosis. TβR3 was demonstrated to increase the 

intracellular concentration of divalent calcium, a known inducer of apoptosis. As a 

mediator of apoptosis, TβR3 expression also activates apoptotic signaling through the 

protein upregulation of Bad and Bax, the downregulation of Bcl-2 expression, and 

inhibition of Bad phosphorylation. Together, these results suggest TβR3 acts as a tumour 

suppressor through the anti-proliferative effect of apoptosis (Zheng, 2013). 
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1.4 Rationale, Hypothesis, and Objectives 

Previous studies have demonstrated that the tumor suppressive capabilities of TβR3 are 

lost in late stage tumors due to a reduction in receptor expression. Primarily, TβR3 

modulates the TGFβ signaling pathway by presenting TGFβ ligand to, and extending the 

half-life of, the TβR1/2 receptor complex, in addition to soluble TβR3 sequestering 

overabundant TGFβ to prevent excessive signaling. As such, it is of interest to investigate 

the sensitivity and longevity of TGFβ-dependent signaling in the absence of TβR3. 

Furthermore, examining the transcriptional expression of TGFβ-responsive genes could 

elucidate the multi-layered regulatory nature of TβR3 on TGFβ signaling. 

Although EMT is regulated through many pathways, an important driver of this pre-

metastatic process is the TGFβ signaling cascade. Exploring the effect of TβR3 silencing 

on EMT through alterations in epithelial and mesenchymal markers may reveal TGF-

dependent and -independent influences on EMT. 

TGFβ signaling and EMT are established promoters of cell migration and invasion, which 

are both phenotypical characteristics of cancerous tumors.  Thus, studying the migratory 

and invasive capabilities of TβR3 silenced non-small-cell lung cancer cells can reveal a 

functional process that is regulated by TβR3. 

Based on these studies, since TβR3 is posited to facilitate TGFβ signaling, thereby inducing 

EMT and enhancing cellular migratory and invasive potential, I hypothesize that silencing 

TβR3 will suppress TGFβ signaling, shifting cells into a more epithelial phenotype and 

inhibiting migration and invasion. 
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Based on this hypothesis, my overall objectives are to: 

1) Determine how TβR3 influences TGFβ signaling in NSCLC cells. 

2) Assess the role of TβR3 in regulating TGFβ-dependent epithelial-to-mesenchymal 

transition of NSCLC cells. 

3) Investigate the downstream functional implications of TβR3 on cell migration and 

invasion. 
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Materials and Methods 

2 Materials and Methods 

2.1 Antibodies, Primers, and Reagents 

The following antibodies, primers, and reagents were used in applicable western blotting 

and qPCR analyses. 

Table 2.1 Primary and secondary antibodies used for western blotting. 

Target Supplier Product Number Dilution 

E-Cadherin (mouse) BD Biosciences 610182 1:1000 

GAPDH (rabbit) Cell Signaling 2118S 1:2000 

LC3B1/2 (rabbit) Cell Signaling 2775S 1:1000 

N-Cadherin (mouse) BD Biosciences 610921 1:1000 

Smad2 (mouse) BD Biosciences 610843 1:1000 

pSmad2 (rabbit) Cell Signaling 3101 1:1000 

TGFBR3 (goat) R&D Systems AF-242-PB 1:1000 

Tubulin (mouse) Sigma T4026 1:2000 

Goat HRP from donkey Santa Cruz Sc-2020 1:25 000 

Mouse HRP from goat Pierce PI31430 1:25 000 

Rabbit HRP from goat Pierce PI31460 1:25 000 
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Table 2.2 Primer sequences used for qPCR.  

Primers were designed to correspond with human proteins using Integrated DNA 

Technologies Realtime PCR tool and supplied by Invitrogen. All sequences are 5’ to 3’. 

Target 

Gene 

Protein Forward Reverse Coding 

Sequence 

TGFBR3 TβR3 CGGGAGATATGGATGAAGGAG CATGTTGAAGGTGATGTTTCCG CCDS55614.1 

SNAI1 Snail AATCGGAAGCCTAACTACAGCG GTCCCAGATGAGCATTGGCA CCDS13423.1 

SNAI2 Slug ATACCACAACCAGAGATCCTCA GACTCACTCGCCCCAAAGATG CCDS6146.1 

SERPINE1 PAI-1 CATCCCCCATCCTACGTGG CCCCATAGGGTGAGAAAACCA CCDS5711.1 

SMAD7 Smad7 GTGTTGCTGTGAATCTTACGG TCGGGTATCTGGAGTAAGGAG CCDS59317.1 

CDH1 E-Cadherin CCCACCACGTACAAGGGTC CTGGGGTATTGGGGGCATC CCDS82005.1 

CDH2 N-Cadherin CCCAAGACAAAGAGACCCAG GCCACTGTGCTTACTGAATTG CCDS11891.1 

ARRB2 Β-Arrestin2 AATCTTCCATGCTCCGTCAC CGAATCTCAAAGTCTACGCCG CCDS58504.1 

MET MET GACTCCTACAACCCGAATACTG ATAGTGCTCCCCAATGAAAGTAG CCDS47689.1 

PRICKLE1 Prickle1 TGAGACCAGAGCAGATCCAG AAAGACTGGCAATACCGTACC CCDS8742.1 

SMAD2 Smad2 GATCCTAACAGAACTTCCGCC CACTTGTTTCTCCATCTTCACTG CCDS11934.1 

TGFBR1 TβR1 ACATGATTCAGCCACAGATACC GCATAGATGTCAGCACGTTTG CCDS47998.1 

TGFBR2 TβR2 GAGCTCCAATATCCTCGTGAAG TATCTTGCAGTTCCCACCTG CCDS33727.1 

MMP1 MMP1 GCACAAATCCCTTCTACCCG AACAGCCCAGTACTTATTCCC CCDS8322.1 

MMP14 MMP14 TGCCTACCGACAAGATTGATG ATCCCTTCCCAGACTTTGATG CCDS9577.1 

HPRT HPRT TGGCGTCGTGATTAGTGATG AACACCCTTTCCAAATCCTC CCDS14641.1 
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Table 2.3 Reagents used for cell processing and data collection. 

Reagent Supplier Product Number Application 

Clarity™ Western ECL 

Substrate 

BioRad 170-5060 Western blotting 

DC™ Protein Assay 

Reagent A 

Reagent B 

Reagent C 

BioRad  

500-0113 

500-0114 

500-0115 

Protein Assay 

E.N.Z.A.® Total RNA 

Kit I 

OMEGA bio-tek R6834-01 RNA Isolation 

iScript™ Reverse 

Transcription Supermix 

for RT-qPCR 

BioRad 1708841 Reverse Transcription 

Lipofectamine® 

RNAiMAX 

Invitrogen 13778-150 Transfection 

Matrigel Matrix BD Biosciences 356237 Transwell Invasion 

BLUeye Prestained 

Protein Ladder 

FroggaBio PM007-0500 Western blotting 

siRNA medium GC 

content Control 

Ambion  Transfection 

siRNA against 

TGFBR3 

Ambion 439240 Transfection 

SensiFAST™ SYBR 

No-ROX Kit 

Bioline BIO-98020 qPCR 
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2.2 Cell Culture and Transfection 

2.2.1 Cell Culture 

NCI-H1299 (hereafter termed H1299) non-small-cell lung carcinoma cells (ATCC® CRL-

5803™) were cultured in RPMI-1640 medium with L-glutamine and sodium bicarbonate 

(Sigma R7858-500ML) and supplemented with 10% fetal bovine serum (FBS). A549 

NSCLC cells (ATCC® CCL-185™) were cultured in Kaighn’s modification of F-12 Ham 

nutrient mixture with L-glutamine and sodium bicarbonate (F12K; Sigma N3520-10X1L) 

medium containing 10% FBS. All cells were maintained at 37°C in a humidified 

atmosphere containing 5% CO2. 

2.2.2 Cell Transfection 

H1299 and A549 cells were plated and transfected using Lipofectamine® RNAiMAX 

reagent (Invitrogen) as per manufacturer’s recommendations. Specifically, 100 µL of 

OptiMEM medium was used as a diluent for appropriate volumes of each Lipofectamine® 

RNAiMAX and siRNA in separate 1.5 mL microcentrifuge tubes. The volumes of 

Lipofectamine® RNAiMAX and siRNA corresponded to a 3:1 ratio. After vortexing, 

solutions containing OptiMEM and siRNA were pipetted into their paired tube containing 

appropriate volumes of OptiMEM and Lipofectamine® RNAiMAX and mixed by 

pipetting. Solutions were incubated at room temperature for five minutes, then pipetted in 

a drop-wise fashion into their corresponding cell plates. Cells were incubated for 48 hours 

with the transfection agents prior to downstream applications. 
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2.3 TGFβ Administration 

For experiments that required TGFβ1 (hereby referred to as TGFβ) administration, cells 

were rinsed three times with phosphate buffered saline (PBS) and serum-starved in growth 

media containing 0.2% FBS (low-serum) overnight. The following morning, TGFβ ligand 

was diluted to a specific concentration (as indicated in individual experiments) in culture 

medium containing 0.2% FBS and vortexed. Spent media was aspirated, cells were washed 

with PBS, and fresh medium supplemented with TGFβ was added. All control cells were 

cultured in low-serum medium lacking TGFβ. 

When investigating TGFβ sensitivity and longevity, cells were incubated with a specific 

concentration of TGFβ (dose response – 0 pM, 1 pM, 2.5 pM, 5 pM, and 10 pM; time 

course – 250 pM) at 37°C for 30 minutes. Experiments using a concentration gradient were 

then lysed. To assess a signaling time course, media containing 250 pM TGFβ1 was 

aspirated and one set of cell plates, one control and one TβR3 silenced, were lysed as a 30-

minute timepoint. Remaining plates were rinsed three times with PBS. Culture media 

containing 0.2% FBS was added to cells, which were incubated at 37°C and lysed either 1 

hour, or 4 hours later. 

When investigating protein markers of EMT, following transfection and serum-starvation, 

cells were incubated with 250 pM TGFβ in a reverse manner. In this regard, cells to be 

treated with TGFβ for 48 hours were initially supplemented with TGFβ, while remaining 

plates were cultured in media containing low-serum media without TGFβ. Twenty-four 

hours later, fresh low-serum media including 250 pM TGFβ was added to plates designated 

for 24- and 48-hour exposures to TGFβ. After an additional 24 hours, all cells, including a 

48-hour low-serum condition, were lysed. 
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All experiments examining transcriptional response to TGFβ involved cells that were 

treated with 250 pM TGFβ in low-serum media for 24 hours, after undergoing transfection 

and overnight serum-starvation. 

2.4 Cell Lysis and Protein Assay 

Following appropriate incubations, cells were rinsed with PBS. Next, a lysis buffer 

comprised of 50 mM Tris pH 7.5, 1 mM EDTA, 0.5% Triton X-100, 150 mM sodium 

chloride was used in conjunction with phosphatase and protease inhibitors 2.5 mM sodium 

fluoride, 10 mM sodium pyrophosphate, 50 µM PMSF, and 1 mg/mL pepstatin A. This 

solution was pipetted onto the cells and rocked at 4°C for 20 minutes. Cells were scraped, 

and lysates were pipetted into individual 1.5 mL microcentrifuge tubes to be centrifuged at 

4°C for 10 minutes at 15 000 rcf. Supernatants were transferred to separate tubes and 

sample prep buffer (30% glycerol, 10% 1.5M Tris pH 6.8, 1.2% sodium dodecyl sulfate, 

0.018% bromophenol blue, 15% β-mercaptoethanol) and stored at -20°C. 

Using the DC™ Protein Assay system (BioRad) as per manufacturer’s instructions, 

concentrations of protein samples were determined prior to the addition of sample prep 

buffer. A Beckman Coulter DU® 730 Life Science UV/Vis Spectrophotometer was used 

to measure absorbance values relative to a standard curve and to calculate protein 

concentration.  

2.5 SDS-PAGE and Western Blotting 

For SDS-PAGE, separating gels containing 10% acrylamide (15% to separate LC3B1 from 

LC3B2) were used in conjunction with 5% acrylamide stacking gels. Following gel 

polymerization and the setup of a running apparatus, samples were heated at 90°C for 5 
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minutes. A BLUeye Prestained Protein Ladder (FroggaBio) was used as a reference in 

comparison to separation of total protein. Next, volumes corresponding to 50 µg of protein 

sample were loaded and electrophoresed at 120 V. Following protein separation, a wet 

transfer technique was employed to transfer proteins from SDS-acrylamide gels onto 

nitrocellulose membranes at a constant amperage of 350 mA for 2 h. Nitrocellulose 

membranes were then stained using Ponseau S (15% acetic acid, 4 mg/mL Ponseau S) to 

visualize total protein. Membranes were then cut at appropriate protein sizes and Ponseau 

S was removed using tris-buffered saline-tween 20 (TBST; 50 mM Tris, 150 mM sodium 

chloride, 0.05% Tween-20, pH7.5).  

As a method of blocking non-specific antibody binding, membranes were rocked at room 

temperature for 1 hour in 5% skim milk in TBST. After blocking, membranes were 

incubated overnight at 4°C on a rocker, in appropriate primary antibodies diluted in TBST. 

The next day, primary antibody solutions were removed, and membranes were washed with 

TBST three consecutive times for 10 minutes each. Next, membranes were incubated in 

appropriate secondary antibodies, conjugated to horseradish peroxidase, rocking at room 

temperature for 1 hour. An additional round of three 10-minute washes with TBST 

preceded membrane coating with Clarity™ Western ECL Substrate (BioRad) per 

manufacturer’s instructions. A VersaDoc Imaging System (BioRad) was used to visualize 

luminescent proteins, and densitometry was completed via QuantityOne 1-D Analysis 

Software (BioRad). 

2.6 RNA Isolation and cDNA Synthesis 

Following TGFβ incubations, an E.N.Z.A.® Total RNA Kit I (OMEGA bio-tek) was used 

per manufacturer’s instructions to isolate total RNA, and eluted RNA was stored at -80°C. 
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Prior to reverse transcription, the concentration and purity of isolated RNA was assessed 

using a NanoDrop 2000 spectrophotometer (ThermoFisher Scientific). Next, 1 µg of RNA 

was mixed with iScript™ Reverse Transcription Supermix for RT-qPCR (BioRad) per 

manufacturer’s instructions, and reverse transcription was performed in a DNA Engine 

(BioRad) with parameters of 25°C for 5 minutes, then 46°C for 20 minutes, and 95°C for 

1 minute to generate cDNA. cDNA was then stored at -20°C. 

2.7 Quantitative Polymerase Chain Reactions 

For qPCR, master mixes comprised of 0.6 µL 10 mM forward primer, 0.6 µL 10 mM 

reverse primer, 4.3 µL nuclease-free water, and 7.5 µL SensiFAST™ SYBR (Bioline) were 

added to 2 µL of sample cDNA, per reaction, depending on the number of genes or samples 

being studied. Quantitative polymerase chain reactions were performed by a CFX96™ 

Real-Time System and C1000 Touch™ Thermal Cycler (BioRad), with PrimePCR 

parameters optimized for SYBR. Samples were initially denatured at 95°C for 2 minutes. 

Next, samples were cycled forty times through a denaturing step at 95°C for 5 seconds and 

primer annealing at 60°C for 30 seconds. After forty cycles, samples were incubated at 

95°C for five seconds. The efficiency and amplification factor of each primer set was 

determined using a standard curve and calculated using Thermofisher Scientific qPCR 

Efficiency Calculator. 

2.8 Transwell Assays 

2.8.1 Cell Migration 

Following transfection, cells to be seeded in Transwell chambers were serum-starved using 

culture media with 0.2% FBS for 4 hours. Transwell® Permeable Supports (Corning; 6.5 
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mm Insert, 24 Well Plate, 8.0 µm Polycarbonate Membrane, REF#3422) were placed in 

24-well plates with culture media containing either 0.2% or 10% FBS in the lower 

chamber. After serum starvation, cells were lifted following cleavage of adhesion proteins 

by Trypsin, counted, and diluted to a concentration of 250 000 cells/mL using low-serum 

media. Next, 200 µL of cell suspension (corresponding to 50 000 cells) was pipetted into 

the upper Transwell chamber and incubated for 24 hours at 37°C with 5% CO2. 

The next day, cotton swabs soaked in PBS were inserted into the upper chamber and were 

used to gently remove any adherent cells from the upper side of the membrane. Washes 

with PBS removed any remaining non-adherent cells from the upper membrane and 

cleaned cells that were adherent to the lower side of the membrane. Cells were then fixed 

by 4% paraformaldehyde (PFA) for 10 minutes at room temperature, washed 5 times with 

PBS, and permeabilized with 0.25% Triton X-100. Following 3 additional PBS washes, a 

razorblade was used to precisely cut the Transwell membrane out of the supporting 

apparatus. Excised membranes were then incubated in DAPI (1 µg/mL) in the dark for 5 

minutes. One final wash with PBS prepped the membranes for mounting between a glass 

slide and coverslip. When handling membranes, care was taken to not rub the underside of 

the membrane and accidentally remove migrated adherent cells. 

Visualization of migrated cells (5 fields/experimental condition) was completed using an 

Olympus IX81 motorized inverted research microscope and InVivo software 

(MediaCybernetics; Version 3.2.2 Build 45, 2007). Finally, the number of migrated cells 

per field of view was quantified using ImageJ software (Version 1.51n). 
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2.8.2 Cell Invasion 

Cellular invasion was investigated using the same procedure as Transwell migration above, 

with one addition: Prior to cell trypsinization and seeding, 50 µL of ice cold 1.02 mg/mL 

Matrigel Matrix (BD Biosciences) diluted in low-serum culture media was added to the 

upper chamber of each Transwell apparatus and incubated at 37°C. After allowing the 

matrix to gel for 30 minutes, cells were trypsinized and the protocol described above was 

performed. 

2.9 Microarray Analysis 

Following transfection of H1299 cells, total RNA was isolated using the E.N.Z.A. Total 

RNA Kit (OMEGA bio-tek) as per the manufacturer’s instructions. Next, samples were 

diluted to a concentration of 100 ng/µL and sent to the London Regional Genomics Center 

(Robarts Research Institute, London, Ontario, Canada) for processing. Once received, the 

use of an Agilent 2100 Bioanalyzer (Aligent Technologies) and an RNA 6000 Nano kit 

(Caliper Life Sciences) evaluated RNA quality. Upon validation, single-stranded 

complimentary DNA (sscDNA) was generated from 200 ng of total RNA via the Ambion 

WT Expression Kit for Affymetrix GeneChip Whole Transcript WT Expression Arrays 

(Applied Biosystems), and the Affymetrix GeneChip WT Terminal Labeling kit and 

Hybridization User Manual (Affymetrix). Total RNA was then converted to cDNA and in 

vitro transcription resulted in cRNA. Through this process, 5.5 µg of single stranded cDNA 

was synthesized, end-labeled, and hybridized to Human GeneChip 2.0 arrays for 16 hours 

at 45°C. To reduce human error, all steps involving liquid transfer were performed by a 

GeneChip Fluidics Station 450 (Affymetrix). Next, GeneChips were scanned using a 

GeneChip Scanner 3000 7G (Affymetrix) and probe level data was analyzed using 
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Affymetrix Command Console v1.1. Partek Genomics Suite v6.5 was used to convert 

probe data to gene level information, and an ANOVA was performed to determine 

significance. Gene fold-change represents the average of two separate experiments 

comparing gene expression in TβR3 silenced cells to control cells. A fold-change of ±1.75 

was considered the cutoff for further investigation. Microarray False Discovery Rate and 

multiple comparison tests were carried out using Partek Genomics Suite v6.5. Gene 

ontology analyses were performed using PANTHER v13.1. 

2.10 Statistical Analyses 

Statistical analysis for a minimum of three biological replicates was conducted using 

GraphPad Prism® 6 for Windows (Version 6.01). Unpaired t-tests, one-way ANOVA, or 

two-way ANOVA analyses were performed, followed by Tukey’s post-hoc tests. Values 

were considered to be statistically significant when p<0.05, which is denoted by asterisks 

as specified in the figures below. 
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Results 

3 Results 

3.1 The effect of TβR3 on TGFβ-dependent Smad2 

phosphorylation in A549 and H1299 cells 

To determine how TβR3 influences TGFβ signaling in NSCLC cells, I first assessed Smad2 

phosphorylation.  However, I first confirmed the expression of TβR3 in two NSCLC cell 

lines, H1299 and A549 cells, and the knockdown efficiency of siRNA-mediated TβR3 

silencing. I observed that H1299 cells indeed expressed TβR3 and interestingly, significant 

TβR3 knockdown was observed even at the lowest concentrations of siTβR3 when 

compared to equivalent concentration of scrambled negative control siRNA (siControl) 

(Figure 3.1). Cells treated with 12.5 nM siTβR3 expressed 47% TβR3 when compared to 

siControl. However, since I observed that 25 and 37.5 nM of both siTβR3 and siControl 

resulted in approximately 25% of cell detachment from the culture dishes (data not shown), 

this suggested that increased volumes of Lipofectamine might be toxic to the cells. In 

contrast to H1299 cells, low basal expression of TβR3 in A549 cells prevented the 

quantification of knockdown of the western blots (Figure 3.2a). Therefore, qPCR was 

performed on mRNA extracted from both A549 and H1299 cells treated with 12.5 nM 

siTβR3 or 12.5 nM siControl using primers for TβR3 (Table 2.2). Consistent with H1299 

cells, A549 cells had significantly reduced TβR3 mRNA levels (Figure 3.2b). Based on 

the western blotting and qPCR results, a concentration of 12.5 nM siTβR3 was used in all 

following experiments investigating TβR3 expression in H1299 or A549 cells. 

I first investigated the impact of TΒR3 knockdown on TGFβ signaling by measuring 

Smad2 phosphorylation. First, sensitivity to different concentrations of TGFβ was   
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Figure 3.1 Knockdown of TβR3 in H1299 cells by siRNA 

a) H1299 cells were transfected with increasing concentrations of either siTβR3 or 

siControl and incubated at 37°C for 48 hours. Cell lysates were then subjected to western 

blotting for TβR3 or GAPDH (loading control).  

b) Three separate experiments were carried out as described in panel a, imaged and 

quantitated using the BioRad QuantityOne software.  (Mean ± SD; One-way ANOVA with 

Tukey’s post-hoc, *p<0.05) 
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Figure 3.2 Knockdown of TβR3 in A549 cells by siRNA 

a) A549 cells were transfected with increasing concentrations of either siTβR3 or siControl 

and cultured at 37°C for 48 hours. Cell lysates were then subjected to western blotting for 

TβR3 or GAPDH (loading control).  

b) Relative mRNA expression of TβR3 in A549 and H199 cells transfected with 12.5 nM 

siTβR3 or siControl and cultured at 37°C for 48 hours. RNA was isolated and subjected to 

reverse-transcription qPCR analysis to assess TβR3 transcript levels. (Two-way ANOVA; 

Mean ± SEM; N=3; Tukey’s post-hoc ****p<0.0001)  
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measured by relative phosphorylation of Smad2. In both cell lines, TβR3 knockdown did 

not significantly alter the increase of Smad2 phosphorylation in response to an increase in 

TGFβ concentration (Figures 3.3, 3.4). Second, the maintenance of Smad2 

phosphorylation was assessed using a time-course protocol. Briefly, following 

administration of 250 pM TGFβ for 30 minutes, TGFβ was washed-out, replaced with 

TGFβ free media, and lysed at various time points to determine the maintenance of 

signaling following ligand removal. Both H1299 and A549 cells responded to 250 pM 

TGFβ following 30 minutes, demonstrated by increased Smad2 phosphorylation (Figures 

3.5, 3.6). Both cell lines also displayed similar levels of TGFβ signaling following TGFβ 

washout, with Smad2 phosphorylation decreasing over time. Therefore, based on my 

results, I conclude that neither A549 nor H1299 cells displayed altered TGFβ-dependent 

Smad2 signaling sensitivity (amplitude of signal), nor longevity (time course of signaling), 

following TβR3 knockdown. Interestingly, total Smad2 expression was insignificantly 

reduced following TβR3 knockdown in H1299 cells when compared to matched controls 

(Figure 3.5). However, a similar reduction in total Smad2 expression was not seen in A549 

cells. Although the fraction of expressed Smad2 that had been phosphorylated was not 

altered following TβR3 knockdown, there was a reduction in Smad2 phosphorylation when 

compared to time- and concentration-matched controls. Thus, TβR3 knockdown may 

reduce TGFβ signaling through suppressed Smad2 expression, rather than by regulating 

phosphorylation processes. To investigate this possibility, I assessed downstream effects 

of TGFβ signaling, the E-to-N cadherin shift that is observed during TGFβ-dependent 

EMT.  
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Figure 3.3 The effect of TβR3 knockdown on TGFβ-dependent Smad2 

phosphorylation in H1299 cells  

 

a) H1299 cells transfected with 12.5 nM siTβR3 or siControl were treated with the 

indicated concentrations of TGFβ in serum-free media for 30. Cell lysates were then 

subjected to western blotting for TβR3, phosphorylated Smad2 (pSmad2), Smad2 or 

GAPDH (loading control).  

 

b) Three separate experiments were carried out as described in panel a, imaged and 

quantitated using the BioRad QuantityOne software, and expressed as phosphorylated 

Smad2/total Smad2 (Relative pSmad2). (Two-way ANOVA; Mean ± SD; N=3; Tukey’s 

post-hoc) 
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Figure 3.4 The effect of TβR3 knockdown on TGFβ-dependent Smad2 

phosphorylation in A549 cells 

 

a) A549 cells transfected with 12.5 nM siTβR3 or siControl were treated with the indicated 

concentrations of TGFβ in serum-free media for 30. Cell lysates were then subjected to 

western blotting for phosphorylated Smad2 (pSmad2), Smad2 or GAPDH (loading 

control).  

 

b) Three separate experiments were carried out as described in panel a, imaged and 

quantitated using the BioRad QuantityOne software, and expressed as phosphorylated 

Smad2/total Smad2 (Relative pSmad2). (Two-way ANOVA; Mean ± SD; N=3; Tukey’s 

post-hoc) 

 

a) 

b) 

siControl siTβR3 

0.5 1 2.5 5 10 0 0 0.5 1 2.5 5 10 

GAPDH 

Smad2 

pSmad2 

TGF-β (pM) 

63 

48 

35 

63 

48 

48 

a) 

b) 



50 

v 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c)  

a) 

b) 

a) 

b) 



51 

Figure 3.5 Time course of Smad2 phosphorylation in H1299 cells following TβR3 

knockdown 

 

a) H1299 cells were transfected with 12.5 nM siTβR3 or siControl, incubated for 48 hours 

at 37°C, and serum-starved overnight. Following incubation with 250 pM TGFβ for 30 

minutes, media was replaced with serum-free media and cells were lysed at various time 

points. Cell lysates were then subjected to western blotting for TβR3, phosphorylated 

Smad2 (pSmad2), Smad2 or GAPDH (loading control).  

 

b) Three separate experiments were carried out as described in panel a, imaged and 

quantitated using the BioRad QuantityOne software, and expressed as phosphorylated 

Smad2/total Smad2 (Relative pSmad2). (Two-way ANOVA; Mean ± SD; N=3; Tukey’s 

post-hoc) 

c) H1299 cells were transfected with 12.5 nM siTβR3 or siControl, incubated for 48 hours 

at 37°C, and serum-starved overnight. Following incubation with 250 pM TGFβ for 30 

minutes, media was replaced with serum-free media and cells were lysed at various time 

points. Cell lysates were then subjected to western blotting for Smad2 or GAPDH (loading 

control). The relative total Smad2 protein expression was normalized and graphed. (Two-

way ANOVA; Mean ± SD; N=3; Tukey’s post-hoc) 
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Figure 3.6 Time course of Smad2 phosphorylation in A549 cells following TβR3 

knockdown 

 

a) A549 cells were transfected with 12.5 nM siTβR3 or siControl, incubated for 48 hours 

at 37°C, and serum-starved overnight. Following exposure to 250 pM TGFβ for 30 

minutes, media was replaced with serum-free media and cells were lysed at various time 

points. Cell lysates were then subjected to western blotting for phosphorylated Smad2 

(pSmad2), Smad2 or GAPDH (loading control).  

 

b) Three separate experiments were carried out as described in panel a, imaged and 

quantitated using the BioRad QuantityOne software, and expressed as phosphorylated 

Smad2/total Smad2 (Relative pSmad2). (Two-way ANOVA; Mean ± SD; N=3; Tukey’s 

post-hoc) 
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3.2 The effect of TβR3 silencing on TGFβ-dependent EMT 

markers 

As described by Kalluri & Weinberg (2009), hallmarks of EMT include reduced E-

cadherin and increased N-cadherin protein expression when treated with TGFβ. 

Investigating genes such as SNAI1 (Snail), SNAI2 (Slug), SERPINE1 (PAI-1), and Smad7 

would demonstrate a mechanism by which TβR3 expression influences gene transcription 

in a TGFβ-dependent manner. Interestingly, TβR3 knockdown did not significantly alter 

gene transcription in the absence of TGFβ, in either cell line (Figure 3.7). However, 

following TGFβ stimulation, a significant increase in expression of Smad7 mRNA was 

found in the absence of TβR3 in both cell lines. This result was not demonstrated when 

TGFβ was administered to control cells. Furthermore, the significant increase in SNAI1 in 

response to TGFβ in control A549 cells was diminished when TβR3 was silenced. In 

contrast, SNAI1 mRNA expression did not significantly increase in H1299 control cells 

following TGFβ administration but did in TβR3 silenced cells. 

I next carried out qPCR analysis to investigate E-cadherin and N-cadherin mRNA levels 

in both cell lines. Following TβR3 knockdown, a significant increase in CDH1 (E-

cadherin) expression was observed in A549 cells, but not in H1299 cells, regardless of 

TGFβ administration (Figure 3.8), suggesting that the altered E-cadherin levels might be 

post-translational. In contrast, A549 N-cadherin expression was significantly increased in 

the presence of TGFβ (Figure 3.8b), yet no difference was seen between control and 

knockdown conditions. Interestingly, I observed an additive effect between TβR3 

knockdown and TGFβ administration in H1299 N-cadherin expression (Figure 3.8a).  

 



54 

  

a) 
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Figure 3.7 

Figure 3.7 TGFβ-dependent transcription in response to TβR3 knockdown 

H1299 (a) and A549 (b) cells were transfected with 12.5 nM siTβR3 or siControl, 

incubated for 48 hours at 37°C, and serum-starved overnight. Cells were then treated with 

250 pM TGFβ for 24 hours and total RNA was isolated. qPCR analysis was carried out as 

described in the materials and methods section and graphed.  (One-way ANOVA; Mean ± 

SEM; N=3; *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001) 
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Figure 3.8 Expression of cadherin mRNA in the absence of TβR3 

Relative mRNA expression of E- and N-cadherin. H1299 (a) and A549 (b) cells were 

transfected with 12.5 nM siTβR3 or siControl, incubated for 48 hours at 37°C, and serum-

starved overnight. Cells were then treated with 250 pM TGFβ for 24 hours and total RNA 

was isolated. qPCR analysis was carried out as described in the materials and methods 

section and graphed.  (One-way ANOVA; Mean ± SEM; N=3; *p<0.05, **p<0.01, 

****p<0.0001) 

  

a) 

b) 
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Therefore, while N-cadherin transcription was not found to be TGFβ dependent in control 

H1299 cells, N-cadherin mRNA levels were significantly increased following TGFβ 

administration in TβR3 knockdown cells. 

Since TGFβ signaling has been shown to modulate EMT protein markers, we next explored 

the expression of E-cadherin and N-cadherin to determine whether TβR3 expression 

influences downstream phenotypic changes. Following supplementation with 250 pM 

TGFβ for 0, 24, or 48 hours, A549 cells showed a canonical E- to N- cadherin shift. 

However, knockdown of TβR3 dampened the TGFβ-dependent cadherin shift (Figure 

3.10).  Surprisingly, H1299 cells demonstrated an increase in both E-cadherin and N-

cadherin over time (Figure 3.9). However, as seen with the A549 cells, TβR3 knockdown 

interfered with TGFβ-dependent alteration in E- and N-cadherin levels. TβR3 silenced cells 

did not exhibit and increase in N-cadherin protein levels in response to TGFβ, although 

control cells did. Together, these results suggest that the knockdown of TβR3 dampens the 

ability of TGFβ to induce an E to N cadherin shift in both A549 and H1299 cells, which is 

consistent with the hypothesis that TβR3 promotes TGFβ-signaling. 

When comparing E-cadherin protein expression to mRNA expression, basal expression 

was observed to be consistently increased in TβR3 knockdown cells. Corresponding to 

protein expression, mRNA levels were also reduced following TGFβ exposure in A549 

cells and increased in H1299 cells. However, inconsistencies were present when examining 

these relationships with N-cadherin. Protein expression level was reduced in response to 

TGFβ stimulation, while mRNA expression was significantly increased in both cell lines. 

The disconnect between mRNA and protein expression of N-cadherin in the presence of 

TGFβ suggests a complex interplay between mRNA and protein expression, so I further 
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Figure 3.9 TβR3 knockdown on TGFβ-dependent cadherin shift in H1299 cells 

 

a) H1299 cells were transfected with 12.5 nM siTβR3 or siControl, incubated for 48 hours 

at 37°C, and serum-starved overnight. Cells were then treated with 250 pM TGFβ for the 

indicated time points and lysed. Cell lysates were then subjected to western blotting for E-

cadherin, N-cadherin or GAPDH (loading control).  

 

b) Three separate experiments were carried out as described in panel a, imaged and 

quantitated using the BioRad QuantityOne software. (Two-way ANOVA; Mean ± SD; 

N=3; Tukey’s post-hoc *p<0.05, **p<0.01) 
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Figure 3.10 TβR3 knockdown on TGFβ-dependent cadherin shift in A549 cells 

 

a) A549 cells were transfected with 12.5 nM siTβR3 or siControl, incubated for 48 hours 

at 37°C, and serum-starved overnight. Cells were then treated with 250 pM TGFβ for the 

indicated time points and lysed. Cell lysates were then subjected to western blotting for E-

cadherin, N-cadherin or GAPDH (loading control).  

 

b) Three separate experiments were carried out as described in panel a, imaged and 

quantitated using the BioRad QuantityOne software. (Two-way ANOVA; Mean ± SD; 

N=3; Tukey’s post-hoc *p<0.05) 

 

  

b) 

a) 

b) 

a) 
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mined the microarray data for microRNAs that may alter EMT processes. Specifically, 

microRNAs targeting E-cadherin repressors SNAIL, ZEB1/2, or E-cadherin directly, 

would have the ability to modulate E-cadherin mRNA levels. However, the expression of 

an important subset of EMT-regulating microRNAs, including the mir200 and mir30 

families, were unaffected by TβR3 knockdown (Appendix Table 5). 

As described in the introduction, the processes of autophagy and epithelial-to-

mesenchymal transition are related and positively correlated; i.e., as autophagy is induced, 

so is EMT. As such, I used the autophagy protein LC3B as a marker of EMT and observed 

that its expression is markedly reduced in both A549 and H1299 cells following TβR3 

knockdown. A significant decrease was found in LC3B1 in A549 cells, regardless of TGFβ 

administration (Figure 3.12). Similar results were found in H1299 cells, with TβR3 

knockdown reducing expression of both LC3B1 and LC3B2 (Figure 3.11). However, 

significance was only seen following 48 hours of TGFβ incubation. 

Based on my observations that EMT markers were affected by TβR3 silencing, I next 

investigated if this would result in altered cell migration or invasion. 
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Figure 3.11 LC3B expression in H1299 cells following TβR3 knockdown 

a) H1299 cells were transfected with 12.5 nM siTβR3 or siControl for 48 hours, serum-

starved overnight, and treated with 250 pM TGFβ. Cell lysates were then subjected to 

western blotting for LC3B or tubulin (loading control).  

b) Three separate experiments were carried out as described in panel a. LC3B1 and LC3B2 

were imaged and quantitated using the BioRad QuantityOne software. (Two-way 

ANOVA; Mean ± SD; N=3; Tukey’s post-hoc *p<0.05) 

 

  

a) 

b) 
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Figure 3.12 LC3B expression in A549 cells following TβR3 knockdown 

a) A549 cells were transfected with 12.5 nM siTβR3 or siControl for 48 hours, serum-

starved overnight, and treated with 250 pM TGFβ. Cell lysates were then subjected to 

western blotting for LC3B or tubulin (loading control).  

b) Three separate experiments were carried out as described in panel a. LC3B1 and LC3B2 

were imaged and quantitated using the BioRad QuantityOne software. (Two-way 

ANOVA; Mean ± SD; N=3; Tukey’s post-hoc **p<0.01, ****p<0.0001) 

  

a) 

b) 
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3.3 Cell migration and invasion in the absence of TβR3 

Since cellular EMT was reduced in both A549 and H1299 cells following TβR3 

knockdown, it was expected that the invasive potential of these cells would 

correspondingly be reduced. Transwell assays were coated with Matrigel to measure 

H1299 cell invasion. Following seeding and a 24-hour incubation period, cellular invasion 

through Matrigel was significantly decreased in TβR3 knockdown cells when compared to 

control cells (Figure 3.13).  

We next sought to determine whether the role of TβR3 in TGFβ signaling and cadherin 

shift could also reduce phenotypic changes in cell migration. Cell migration was 

investigated using transwell assays. Contrary to my expectations, A549 and H1299 cells 

exhibited a significantly greater migratory ability following TβR3 knockdown (Figure 

3.14). Additionally, a greater number of H1299 cells migrated when compared to A549 

cells. Since H1299 cells had previously metastasized to the lymph node, they may be more 

mesenchymal than A549 cells and possess a greater migratory potential. 

The diametrically opposite effect of TβR3 silencing on cell migration vs. invasion 

suggested that a complex interplay of gene expression could be regulating effects.  I 

therefore assessed this via microarray analysis.  
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Figure 3.13 The number of H1299 cells that invaded through Matrigel following TβR3 

knockdown 

(a) H1299 cells were transfected with 12.5 nM siTβR3 or siControl, incubated for 48 hours, 

and serum-starved for 4 hours. Following trypsinization, 50,000 cells were seeded into 

Transwell chambers (24-well, 8 µm pores) coated with 50 µL Matrigel (0.9 µg/µL) for 30 

mins at 37°C.  Media containing 0.2% FBS (SF) was placed in the upper chamber, and 

either 0.2% or 10% FBS (S) in the lower chamber. Following 24 hours of incubation at 

37°C, the cells were fixed with 4% PFA, permeabilized with 0.25% Triton X-100, and 

stained using DAPI. Scale bar = 100 µm. 

b) The number of cells that migrated through the filter was counted using ImageJ using 5 

representative fields per cover slip and graphed. (Unpaired t-test; Mean ± SEM; N=3; 

***p<0.001)  

  

a) 

b) 
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Figure 3.14 The number of A549 and H1299 cells that migrated following TβR3 

knockdown 

 

A549 (a) or H1299 (b) cells were transfected with 12.5 nM siTβR3 or siControl, incubated 

for 48 hours, and serum-starved for 4 hours. Following trypsinization, 50,000 cells were 

seeded into Transwell chambers (24-well, 8 µm pores).  Media containing 0.2% FBS (SF) 

was placed in the upper chamber, and either 0.2% (SF) or 10% FBS (S) in the lower 

chamber. Following 24 hours of incubation at 37°C, the cells were fixed with 4% PFA, 

permeabilized with 0.25% Triton X-100, and stained using DAPI. Scale bar = 100 µm. 

c) The number of migrated cells was counted using ImageJ using 5 representative fields 

per cover slip and graphed. (Unpaired t-test; Mean ± SEM; N=3; ***p<0.001)  

a) b) 

c

) 

c) 



66 

3.4 Changes in mRNA expression 

3.4.1 Microarray Analysis 

The disconnect between cellular migration and invasion following TβR3 knockdown 

motivated the assessment of gene transcription on a wider scale. RNA isolated from H1299 

cells following TβR3 knockdown was then analyzed by microarray gene chip analyses 

(Figure 3.15). The most upregulated gene encoded matrix metalloproteinase 1 (MMP1), 

with cells expressing +7.59-fold more MMP1 mRNA following TβR3 knockdown when 

compared to control (Figure 3.15a). Notable genes of interest, including prickle planar cell 

polarity protein 1 (PRICKLE1, +3.98), hepatocyte growth factor receptor (MET, +3.43), 

and the notch receptor ligand jagged 1 (JAG1, +2.85), were also significantly upregulated. 

In addition to MMP1, MMP14 was the only other matrix metalloproteinase to exhibit 

significant alteration, with a fold-change of +1.78. Notably, the transcription of genes 

involved in TGFβ signaling (Smad2, Smad4, Smad7) and EMT (E-cadherin, N-cadherin, 

Snail, Slug) did not demonstrate significant changes. Numerous genes involved in cell 

cycling and DNA replication were significantly downregulated, including cyclins E2 

(CCNE2, -3.82), A2 (CCNA2, -3.00), and B2 (CCNB2, -2.53), in addition to various cell 

division cycle proteins (CDC25C, CDC45, CDCA2) and cyclin-dependent kinases (CDK1, 

CDK14). ZEB2, a Smad-binding transcriptional repressor of E-cadherin displayed a fold-

change of -1.81, but curiously, the expression of its paralog, ZEB1, was unchanged. qPCR 

was employed to validate the accuracy of the microarray, which was confirmed as no 

significant change was seen between mRNA expression levels between the two techniques 

(Figure 3.15b). 
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Figure 3.15 mRNA expression of selected genes from H1299 microarray analysis 

Selected genes (most up- and downregulated genes, as well as the genes of TGFβ signaling 

members) from (a) Affymetrix Human GeneChip 2.0 Microarray mRNA analysis (N=2) 

and (b) validation by qPCR (Mean ± SEM; N=3) of H1299 cells transfected with 12.5 nM 

siTβR3 or siControl and incubated at 37°C for 48 hours. Black dashed line denotes ±1.75 

fold-change. Total RNA was isolated and microarray technique was performed by London 

Regional Genomics Center. 

b) 

a) 
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Quantitative polymerase chain reactions were also performed on mRNA isolated from both 

A549 and H1299 cells following TβR3 knockdown and stimulation with TGFβ. Measuring 

the mRNA expression of MMP1 and MMP14 would both validate microarray findings, as 

well as determine the effect of TGFβ ligand on the upregulation of these genes. MMP1 

mRNA expression was significantly upregulated in both cell lines, following TβR3 

knockdown and incubation with exogenous TGFβ (Figure 3.16). MMP14 also 

demonstrated a significant increase in both basal and stimulated mRNA expression. 

Furthermore, TβR3 knockdown and TGFβ presence displayed an additive effect on the 

expression of MMP1 and MMP14 in A549 cells. However, this relationship was 

synergistic in nature in H1299 cells. 

3.4.2 Gene Ontology Analysis 

Using a subset of genes that exhibited a minimum microarray fold-change of +2.00 (Figure 

3.17a) or -2.00 (Figure 3.17b), separate gene ontology analyses were performed using the 

PANTHER Classification System to reveal cellular processes. The group of up-regulated 

genes displayed greatest affinity for the pathways of cardiac right ventricle morphogenesis 

and regulation of chromatin binding, demonstrating fold enrichments of 48.86 and 38.68, 

respectively. Mirroring findings from the microarray analysis, pathways involving mitotic 

and DNA regulation emerged from the group of genes that were significantly down-

regulated.  

Interestingly, two relevant pathways were revealed when analyzing the cohort of up-

regulated genes: Regulation of chemotaxis and regulation of locomotion. These pathways 

possessed fold enrichments of 10.37 and 3.98, respectively, and supported transwell 

migration results. Inquiry into specific genes involved in these pathways yielded MET   
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Figure 3.16 MMP1 and MMP14 mRNA expression following TβR3 knockdown 

H1299 (a) and A549 (b) cells were transfected with 12.5 nM siTβR3 or siControl, 

incubated for 48 hours at 37°C, and serum-starved overnight. Cells were then treated with 

250 pM TGFβ for 24 hours and total RNA was isolated. qPCR was carried out for MMP1 

or MMP14.  (Two-way ANOVA; +/- SEM; N=3; *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001) 

  

a) 

b) 



70 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17 Gene ontology analysis of microarray mRNA expression 

Pathways involving genes that exhibited a fold-change of +2.00 or greater (a), and -2.00 or 

less (b) as determined by microarray analysis of H1299 cells. 

  

a) 

b) 
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being involved in both regulation of chemotaxis and locomotion, while JAG1 is important 

in only the regulation of locomotion (Figure 3.18; Table 3.1; Table 3.2). 

In this thesis, my results have demonstrated that the knockdown of TβR3 did not alter the 

phosphorylation of Smad2 in response to a gradient of TGFβ concentrations, nor over time. 

Additionally, TGFβ-dependent transcription was altered following TβR3 silencing, and 

cadherin expression was suppressed, along with LC3B expression, in both A549 and 

H1299 cells. Phenotypically, a greater number of cells migrated through Transwell assays 

in the absence of TβR3, while fewer cells invaded through a Matrigel plug. Finally, 

Microarray and qPCR analyses revealed the upregulation of MMP1 and MMP14, while 

gene ontology analysis reported the upregulation of genes involved in the regulation of 

chemotaxis and locomotion.  
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Figure 3.18 Specific upregulated genes that regulate locomotion and chemotaxis 

Fold-change of genetic hits involved in chemotactic and locomotion pathways reported in 

gene ontology analysis. 
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Table 3.1 Regulation of Chemotaxis 

Gene Protein Average Microarray 

Fold-change 

THBS1 Thrombospondin-1 +2.03 

SCG2 Secretogranin-2 +2.37 

PTPRO Receptor-type tyrosine-

protein phosphatase O 

+2.95 

EFNB2 Ephrin-B2 +2.13 

CXCL1 Growth-regulated alpha 

protein 

+2.30 

MET Hepatocyte growth factor 

receptor 

+3.43 

Table 3.2 Regulation of Locomotion (including above) 

Gene Protein Microarray Fold-change 

DPYSL3 Dyhydropyrimidinase-

related protein 3 

+2.00 

PTPRG Receptor-type tyrosine-

protein phosphatase gamma 

+2.14 

HAS2 Hyaluronan synthase 2 +2.05 

JAG1 Jagged-1 +2.85 

SEMA3C Semaphorin-3C +2.38 
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Discussion 

4 Discussion 

4.1 TGFβ-dependent Smad2 signaling after knockdown of TβR3  

Despite previous studies that demonstrated the role of TβR3 modulating TGFβ signaling 

(Figure 1.5), neither H1299 nor A549 cells exhibited a change in relative Smad2 

phosphorylation in response to a gradient of TGFβ ligand (Figures 3.3, 3.4). Thus, TβR3 

silencing may not alter the ability of TβR2 to associate with the TGFβ ligand. Additionally, 

the knockdown of TβR3 was predicted to induce a faster return to basal Smad2 

phosphorylation as measured by a washout time-course (Figures 3.5, 3.6). However, the 

relative phosphorylation of Smad2 following TGFβ washout was not significantly different 

when comparing TβR3 knockdown to control in A549 or H1299 cells.  

Interestingly, when investigating Smad2 phosphorylation in H1299 cells over time, a 

reduction in the expression of Smad2 was seen in both the presence and absence of TGFβ 

ligand when compared to control (Figure 3.5). A reduction in Smad2 protein in H1299 

suggests TβR3 expression may protect Smad2 linker regions from phosphorylation and 

downstream degradative pathways. Erk1/2 is active in phosphorylating serine residues in 

the linker region of Smad2 (Xu et al., 2012), which recruits E3 ubiquitin ligases to 

ubiquitinate Smad2 and promote proteasomal degradation. MMP14 has been implicated in 

activating Erk1/2 through the MAPK signaling cascade (Cepeda et al., 2017). An increased 

MMP14 expression following TβR3 silencing may therefore facilitate Erk1/2 activation, 

Smad2 linker phosphorylation, and subsequent degradation. Additionally, PI3K signaling 

has been shown to modulate Smad2 degradation. Yu et al. (2015) demonstrated that PI3K 

phosphorylation of specific tyrosine residues of the Smad2 linker region recruits ubiquitin 
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ligase Nedd4L. Thus, although the fraction of total Smad2 that is phosphorylated remains 

unchanged in response to TβR3 silencing, the reduction in absolute Smad2 phosphorylation 

may suppress downstream TGFβ signaling and functional processes. Furthermore, TβR3 

was more highly expressed in H1299 cells than in A549 cells, so protein knockdown may 

have had a more significant physiological impact in H1299 cells than in A549. Thus, 

silencing of TβR3 in H1299 cells may be more impactful on Smad2 expression than in 

A549 cells. As such, a knockdown of this receptor may have a greater impact on Smad-

dependent TGFβ signaling in H1299 cells by reducing absolute Smad2 phosphorylation 

through suppressed Smad2 expression, rather than by regulating kinase activity. 

Contrary to my predictions, these results support the null hypothesis that the relative Smad2 

phosphorylation level was not altered following TβR3 silencing. However, a reduction in 

Smad2 protein via linker phosphorylation and degradation in H1299 cells may hinder 

absolute Smad2 phosphorylation and suppress TGFβ signaling. This finding supports my 

hypothesis, yet through the modulation of Smad2 expression rather than altering Smad2 

phosphorylation. 

4.2 TGFβ-dependent EMT marker analysis 

First, steady-state mRNA expression of TGFβ responsive genes assessed transcriptional 

changes in A549 and H1299 cells following TβR3 silencing. Notably, TβR3 silencing in 

A549 cells prevented a significant increase in SNAI1 expression as was seen in control 

cells, and induced a significant increase in Smad7 expression, in response to TGFβ in A549 

cells (Figure 3.7b), suggesting that TβR3 silencing regulates transcription of different 

genes in different ways. However, in H1299 cells, a significant increase was seen in SNAI1 

in TβR3 silenced cells treated with TGFβ (Figure 3.7a). Thus, TβR3 silencing exhibits 
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differential regulation of transcriptional response to TGFβ in a cell specific manner. Since 

mRNA expression is altered in both cell lines, together with unchanged TGFβ-dependent 

Smad2 phosphorylation, it can be concluded that both cell lines retain intact TGFβ 

signaling cascades despite TβR3 silencing. 

Interestingly, differential TGFβ response holds true for the CDH1 gene (E-cadherin). 

When examining mRNA expression of EMT markers, a significant increase in E-cadherin 

expression in A549 but not H1299 cells suggests TβR3 silencing shifts the cellular 

phenotype to a more epithelial state in certain cell contexts (Figure 3.8). A comparative 

increase in E-cadherin protein expression suggests a link between transcriptional and 

translational or degradative regulation of E-cadherin by TβR3 (Figures 3.9, 3.10). 

Therefore, silencing TβR3 enhances E-cadherin steady-state mRNA levels, which results 

in increased E-cadherin protein generated by functional translational machinery.  In 

addition to greater basal expression, E-cadherin responds to TGFβ in a traditional manner, 

with both mRNA and protein expression decreasing in response to TGFβ, following 

canonical EMT progression simply from a more epithelial baseline.  

Interestingly, A549 cells expressed more E-cadherin protein than H1299 cells (Figure 3.9, 

3.10). While A549 cells were removed from an adenocarcinoma primary tumor, localized 

in the lung, H1299 cells were excised from lymph node (Giard et al., 1973; Giaccone et 

al., 1992). Thus, H1299 cells have previously undergone metastatic processes, and may not 

be as epithelial as A549 cells. As a result, A549 cells may display changes in phenotypical 

EMT markers more clearly than H1299 cells. 
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Similar changes in the expression of both E-cadherin protein and mRNA suggests TβR3 

primarily influences E-cadherin expression on a transcriptional level, and that downstream 

protein levels are adjusted accordingly. The expression of E- and N-cadherin is tightly 

regulated through separate and distinct processes. Since E-cadherin expression is 

suppressed by transcription factors including Zeb1, Zeb2, Snail, and Slug, a reduction in 

repressor protein expression may increase the basal and TGFβ-induced expression of E-

cadherin. The transcription factor ZEB2 represses the transcription of E-cadherin in 

response to TGFβ signaling by binding the promoter region of CDH1 (Peinado et al., 2007). 

As observed by microarray analysis, the mRNA expression of ZEB2 was reduced 

following TβR3 silencing (Figure 3.15a). Mining of microarray data for microRNAs that 

repress E-cadherin transcription directly, or indirectly through transcription factors, 

yielded no significant change in expression (Appendix Table 5). Future studies 

investigating protein expression of repressive transcription factors may elucidate a 

mechanism by which TβR3 influences E-Cadherin transcription.  

Autophagy processes have been linked to EMT and E-cadherin expression (Alizadeh et al., 

2018; Dash et al., 2018). In support of a suppressed epithelial-to-mesenchymal transition, 

and increased expression of E-cadherin, LC3B expression was significantly reduced 

following TβR3 silencing (Figures 3.11, 3.12). Furthermore, the general reduction in 

LC3B expression, rather than the inhibition of LC3B1 cleavage to LC3B2, suggests that 

TβR3 silencing has an important upstream regulatory role in autophagy, independent of 

Atg4 cleavage of LC3B1 specifically. LC3B mRNA expression has been linked with 

Erk1/2 activation, demonstrating a regulatory pathway that is following atypical TGFβ 

signaling (Kim et al., 2014). Since Pang et al. (2016) demonstrated that autophagosome 
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formation was necessary to degrade E-cadherin, a broad downregulation of LC3B may 

suppress this degradation pathway, leading to the increase in E-cadherin protein expression 

exhibited after TβR3 silencing. 

From this, the influence of TβR3 on E-cadherin expression may be two-fold. My results 

showing increased E-cadherin mRNA expression following TβR3 knockdown, in 

conjunction with a reduction in the formation of autophagosomes, which have been shown 

to degrade E-cadherin (Pang et al., 2016), may result in elevated E-cadherin levels. 

However, my observations assessing the relationship between N-cadherin mRNA and 

protein expression was weaker. In A549 cells, N-cadherin mRNA was significantly 

increased in TβR3 silenced conditions when treated with TGFβ, equal to or greater than 

expression in control cells (Figure 3.8). However, a significant increase in N-cadherin 

mRNA expression was observed in TβR3 silenced H1299 cells treated with TGFβ, which 

was not seen in control cells. Together, these results demonstrate an inconsistency between 

transcriptional regulation of TβR3 with respect to specific genes and between cell lines. In 

stark contrast, N-cadherin protein expression remained consistent between the cell lines, 

with TβR3 silencing resulted in reduced TGFβ-dependent induction (Figures 3.9, 3.10).  

A clear disconnect is between N-cadherin mRNA and protein expression suggests TβR3 

may be involved in modulating N-cadherin translation or degradation. 

Although the transcriptional regulation of E-cadherin is well established, the 

characterization of N-cadherin control is unclear. A study by Alexander et al. (2006) found 

that the nuclear accumulation of transcription factor Twist1 resulted in its association with 

an E-box element in the promoter region of CDH2, the gene encoding N-cadherin, and 

enhanced its transcription. Thus, Twist1 is not only an important regulator of E-cadherin 
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repression, but also induces N-cadherin expression. However, Twist1 mRNA expression 

was not altered following TβR3 silencing and the role of other EMT-regulating 

transcription factors like Snail, Slug, Zeb1, and Zeb2, in N-cadherin regulation is unknown 

at this time.  

Interestingly, Cardenas et al. (2014) demonstrated that TGFβ signaling facilitates global 

changes in DNA methylation during EMT. TGFβ-dependent expression and activity of 

DNA methyltransferases (DNMT) has been shown to alter mRNA expression of genes 

associated with EMT, including COL1A1. Additionally, the methylation of histone H3 has 

been implicated in repressing the transcription of CDH1 (Cao et al., 2008). Furthermore, 

the pattern of DNA methylation is reversed following withdrawal of TGFβ ligand 

(Cardenas et al., 2014). Thus, Smad-independent TGFβ signaling may influence N-

cadherin mRNA expression through altered DNA methylation and would be an interesting 

future study. 

Recently, regulation of N-cadherin protein has also been linked to PI3K/PKCζ/mTOR 

signaling pathway, independent from transcriptional changes (Palma-Nicolas & Lopez-

Colome, 2013). Furthermore, Twist1 expression is transcriptionally regulated by PI3K 

activity, which suggests an overarching pathway that regulates N-cadherin transcription 

and translation through separate downstream events (Hao et al., 2012). Furthermore, N-

cadherin protein can be targeted for proteolysis via plasmin and matrix metalloproteinase 

activity (Paradies & Grunwald, 1993). A study by Takino et al. (2014) showed that MMP14 

expression reduces N-cadherin adhesion, and Covington et al. (2006) have also established 

that MMP14 expression is involved in N-cadherin cleavage. Therefore, opposing roles of 

PI3K in promoting N-cadherin translation, and upregulated MMP expression in degrading 
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N-cadherin, may result in unaltered N-cadherin protein expression in response to TGFβ 

despite significantly increased mRNA levels.  

While studies investigating N-cadherin mRNA and protein expression yielded significant 

differences in both cell lines, E-cadherin only exhibited significant changes in A549 cells 

at the mRNA level. Thus, TβR3 silencing may have a greater influence on the expression 

of N-cadherin than E-cadherin. Additionally, E-cadherin protein expression may be so 

tightly regulated that altering mRNA levels by knocking down TβR3 may not result in 

wide-spread phenotypical changes. 

Prickle1, which encodes Prickle Planar Cell Polarity Protein 1, has been implicated in β-

catenin-independent Wnt signaling (Daulat et al., 2012). Prickle1 is a homolog of planar 

cell polarity (PCP) proteins, which include the traditional Wnt signaling components of 

Frizzled and Dishevelled. PCPs, including Prickle1, are essential for the maintenance of 

epithelial apical-basal polarity, a characteristic that serves as a phenotypical epithelial 

marker to assess EMT (Tao et al., 2009). Since the mRNA expression of Prickle1 was 

found by microarray to be highly upregulated in H1299 cells following TβR3 silencing, 

this observation supports the enhanced epithelial state of TβR3 knockdown cells 

demonstrated by increased E-cadherin expression (Figure 3.15). Additionally, Prickle1 

homolog Prickle4 was found to be upregulated (+2.00) by microarray, as was tight junction 

protein Claudin1 (+2.70) (Appendix Table 1). While H1299 cells do not demonstrate a 

significant increase in E-cadherin expression, the upregulation of other epithelial markers 

may serve to maintain an epithelial phenotype. 
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Together, a potential reduction of E-cadherin proteasomal degradation through autophagic 

processes, the upregulation of E-cadherin mRNA, and the heightened expression of 

Prickle1, Prickle4, and Claudin1 all suggest the maintenance of an epithelial phenotype. 

The increase in epithelial marker expression corresponded with a reduction in the protein 

level of mesenchymal marker N-cadherin, further supporting my hypothesis. However, the 

mechanism behind these phenotypic changes remains unclear. 

4.3 Interplay between cell migration and invasion 

As predicted following a phenotypic shift towards a more epithelial state, fewer H1299 

cells invaded through a Matrigel plug (Figure 3.13). However, the cellular migratory 

potential in H1299 cells did not match the inhibited invasion exhibited following TβR3 

knockdown (Figure 3.14). Thus, TβR3 may influence these functional characteristics via 

different mechanisms of action. 

Cellular invasive potential is dependent on two qualities: the ability of a cell to degrade the 

surrounding extracellular matrix, and its capacity to move after ECM degradation. For a 

tumor cell to successfully invade, both its degradative and motile capabilities must be 

heightened. In my studies, since fewer cells were able to invade Matrigel plugs yet 

exhibited an enhanced ability to migrate when unobstructed, the inability to invade could 

be a result of reduced degradative function. Interestingly, this is countered by an increase 

in MMP1 and MMP14 steady-state mRNA levels in both cell lines when TβR3 is silenced, 

both basally and in the presence of TGFβ (Figure 3.16). However, despite greater mRNA 

expression, a lack of increased MMP protein expression would still not explain MMP 

functional activity, nor a reduction in cell invasion, as a maintenance of similar enzyme 

abundance should correspond with a similar number of cells that can invade. 
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However, a reduction in MMP activity would impede extracellular matrix degradation. 

Normally activated via proteolytic cleavage and inhibited by TIMPs, functionally active 

MMP levels may be regulated by TβR3. Thus, repression of invasion may be a result of 

reduced MMP activation by plasmin, furin, or other MMPs, or by an upregulation of TIMPs 

to aberrantly block MMP-dependent ECM degradation. However, no significant changes 

in mRNA expression were found by microarray with regards to proteins that regulate MMP 

activity (Appendix Table 4). Additionally, a downregulation of MMP protein expression 

despite increased mRNA levels could implicate TβR3 in a mechanistic pathway that 

controls MMP proteolysis. As a secreted enzyme (Lu et al, 2011), the ability of MMP1 to 

interact with its substrates and perform its functional ability relies upon an intact secretory 

pathway. Thus, impairment of the secretory pathway by which MMP1 is exocytosed could 

result in the suppression of extracellular matrix degradation, leaving a robust obstacle 

through which cells are unable to transverse.   

Although MMP expression and activity are necessary for cells to invade, the ability of 

MMPs to carry out their functions are limited to the substrates with which they interact. 

Specifically, MMP1 and MMP14 are collagenases, primarily responsible for degrading 

collagens I, II, and III (Lu et al., 2011). Matrigel is mainly composed of laminin and 

collagen IV (Corning). As such, formation of a Matrigel plug may create a barrier that is 

unable to be degraded by upregulated MMP1 and MMP14. Interestingly, recent studies 

have demonstrated that MMP14 expression is inversely proportional to invasive potential, 

finding that cancer cells expressing lower levels of MMP14 invaded 3D cultures at a 

greater rate than cells expressing higher levels of MMP14 (Cepeda et al., 2016; Yamamoto 

et al., 2008). Thus, the overexpression of MMP14 following TβR3 silencing may actually 
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hinder the ability of H1299 cells to invade through a Matrigel plug. As such, matrix 

metalloproteinases may have addition roles in modulating cell signaling through the 

proteolysis of other non-extracellular membrane components. 

TβR3 has also been shown to inhibit the NF-κB signaling pathway (Criswell et al., 2008), 

which is known to facilitate MMP1 expression (Nguyen et al., 2015). Thus, the silencing 

of TβR3 could permit NF-κB signaling to increase MMP1 transcription. Additionally, β-

arrestin2 has also been implicated in NF-κB regulation. β-arrestin2 is a scaffolding protein 

that can bind the cytoplasmic C-terminal tail of TβR3 and induce its internalization. 

Interestingly, following TβR3 silencing, the mRNA expression of β-arrestin2 was 

downregulated (Figure 3.15). In addition to its role as a scaffolding protein, β-arrestin2 is 

also involved in modulating intracellular signaling cascades. β-arrestin2 has been shown 

to inhibit Traf6 signaling and the activation of its downstream targets, including NF-κB 

(Wang et al., 2006; Xiao et al., 2015). Since β-arrestin2 mRNA expression was reduced, 

inhibition of Traf6 may be absent resulting in the enhancement of NF-κB signaling. Thus, 

TβR3 may promote β-arrestin2 expression, or protect it from degradation, as a way to 

suppress NF-κB. In either case, the reduction in TβR3 and β-arrestin2 expression can 

enhance NF-κB signaling and promote MMP1 upregulation. 

However, MMP14 transcriptional regulation is not mediated by NF-κB activation, but 

elevated MMP14 activity has been shown to promote Erk1/2 phosphorylation and 

downstream NF-κB activation (Cepeda et al., 2017). From these observations, an increase 

in MMP14 expression may initiate cell signaling processes to upregulate its fellow 

collagenase MMP1. Importantly, MMP14 transcription relies upon a promoter region that 

is distinct from that of other MMPs, as it lacks a conventional TATA-box domain. A 
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binding site for SP-1 transcription factor is vital for MMP14 transcription and provides a 

unique mechanism of MMP14 regulation in which TβR3 may be involved (Lohi et al., 

2000). Furthermore, a transcription factor involved in the repression of E-cadherin, Snail, 

has been shown to collaborate with SP-1 to induce the transcription of MMPs. Since TβR3 

silencing significantly upregulated Snail expression (Figure 3.7), its interaction with SP-1 

may act as a facilitator of increased MMP1 and MMP14 expression. Finally, microRNA 

expression of oligomers that are responsible for regulating MMP expression was found to 

remain unchanged following TβR3 silencing (Appendix Table 3). 

In contrast to my results, Gordon et al. (2009) proposed a mechanism by which TβR3 

expression suppressed cellular invasion through inhibiting Smad1 phosphorylation. Smad1 

is a substrate of the activin type 2 receptor in the BMP signaling pathway which is 

modulated by TβR3. However, when BMP-2, -4, or -7 ligand expressions are increased, 

TβR3 expression in reduced and Smad1 may be phosphorylated. Smad1 then translocates 

to the nucleus and enhances the expression of MMP2, which degrades the extracellular 

matrix to promote invasion. Thus, TβR3 involvement in BMP signaling may play a role in 

receptor expression, MMP activity, and downstream regulation of EMT and invasion. 

Contrary to a suppressed invasive capability of H1299 cells following TβR3 silencing, both 

H1299 and A549 knockdown cells exhibited greater migratory potential than control cells 

(Figure 3.14). Examination of microarray data and subsequent gene ontology analyses 

revealed two interesting genes that were upregulated and involved in the regulation of 

chemotaxis and locomotion: MET and JAG1 (Figure 3.18)  
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MET, also referred to as the hepatocyte growth factor receptor (HGFR), is a receptor 

tyrosine kinase that is an established promoter of cell migration (Piater et al., 2015). The 

binding of HGF to MET initiates a phosphorylation of tyrosine residues and initiates the 

Ras/MAPK signaling pathway, culminating in Erk1/2 phosphorylation and the promotion 

of migration (Gonzalez et al., 2017). Furthermore, the upregulation of both Met protein 

and mRNA expression have been implicated in cell migration and tumor budding (Bradley 

et al., 2016). JAG1 codes for the protein Jagged1, a ligand for Notch receptors which is 

upregulated in various late stage cancers (Dai et al., 2014). Upon ligand-receptor 

association, cleavage of the Notch intracellular domain (NICD) by γ-secretase induces 

nuclear accumulation and progression of prostate, breast, and head and neck cancers (Dai 

et al., 2014). As such, the elevated expression of Jagged1 and Notch receptors promotes 

Notch signaling and has been implicated in the promotion of cell migration (Tang et al., 

2017). Together, the upregulation of MET and JAG1 following TβR3 silencing may 

influence the increase in cellular migratory potential. 

Thus, the invasive and migratory potential of A549 and H1299 cells is clearly influenced 

by TβR3 silencing. However, the inconsistencies between migration and invasion suggests 

the interplay of additional, non-canonical TGFβ signaling pathways. 

4.4 Summary of observations 

In this thesis, I observed that TβR3 knockdown did not alter relative Smad2 

phosphorylation in response to TGFβ in the H1299 or A549 NSCLC cell lines, although 

total Smad2 expression was insignificantly reduced in H1299 cells. When examining E-

cadherin mRNA and protein levels, significant change was only found in the increased 

mRNA expression in A549 cells. However, in both cell lines, N-cadherin mRNA 
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expression was significantly increased in response to TGFβ, but protein levels were 

unaffected. Correlating with suppressed EMT transition, autophagic marker LC3B 

expression was reduced in both A549 and H1299 cells following TβR3 knockdown. 

Functionally, the invasive potential of H1299 cells was reduced, while more A549 and 

H1299 cells migrated through transwell assays. 

Together, these results suggest that epithelial to mesenchymal transition, cell migration, 

and cell invasion, may be altered by atypical TGFβ signaling. These processes have been 

shown to be regulated via mechanisms involving the PI3K, MAPK, and NF-κB pathways, 

which are each modulated by TGFβ ligand in a Smad-independent manner. TβR3 

expression may protect the integrity of the Smad signaling pathway and following receptor 

knockdown, cells may access non-canonical TGFβ cascades. Activation of various 

pathways may serve a purpose in modulating downstream processes independently, and in 

suppressing canonical Smad signaling by phosphorylating Smad linker regions to facilitate 

ubiquitination and degradation. Clearly, TβR3 expression is involved in controlling 

multiple signaling pathways, and its specific functions in modulating EMT transition, cell 

migration, and cell invasion are complex.  

4.5 Limitations and Future Directions 

In this study, TβR3 was transiently reduced by siRNA, thus limiting the length of time 

cellular processes could be monitored before TβR3 expression was reacquired. Developing 

stable cell lines that expressed shRNA against TβR3 would allow for long-term 

experiments to be conducted. The use of CRISPR-Cas9 gene editing technologies could 

also permanently remove TβR3 from each cell line for future testing. 
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Reducing TβR3 in cells that highly express TβR3, such as H1299, is an effective way to 

reveal specific processes with which it may be involved. However, the efficiency of the 

knockdown may not be sufficient to cause physiological changes in the event that the 

reduced expression level of TβR3 remains sufficient to perform its normal roles. 

Furthermore, reducing protein levels in cell lines that have low levels of receptor may not 

uncover small changes in signaling potential. Therefore, future studies investigating the 

overexpression of TβR3 in cells that express low basal receptor levels would be beneficial 

to demonstrate specific functions in a direct way. Furthermore, overexpression of mutant 

TβR3 that alter their interaction with TGFβ (other TGFβ receptors) may shed light on the 

mechanism of this system. 

The transition of A549 and H1299 cells from an epithelial state to a mesenchymal 

phenotype was investigated via the measurement of E-cadherin and N-cadherin expression 

at a protein and mRNA level. Although these proteins represent the gold-standard of EMT 

markers, the use of additional epithelial markers, including ZO-1 and cytokeratin; and the 

mesenchymal markers, vimentin and α-smooth muscle actin (αSMA), would further 

reinforce the cadherin shift demonstrated by E- and N-cadherin.  

My research primarily examined the protein and mRNA expression of EMT markers in 

response to TGFβ over time, but cellular morphology was not investigated. Next, it would 

be worthwhile to examine cytoskeletal organization of actin in response to TGFβ. In 

epithelial cells, actin is normally structured in a cortical fashion (Thiery et al., 2002). 

However, during EMT, actin is rearranged to form stress fibers and promote a migratory 

phenotype (Thiery et al., 2002). Fluorescence microscopy using Phalloidin, a polymerized 
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actin stain, could be employed to investigate any morphological changes exhibited in cells 

following TβR3 knockdown.  

Although LC3B expression was studied to determine a connection between TβR3, the 

autophagic processes, and EMT, further experiments examining TβR3 knockdown on other 

autophagic markers, such as Atg5, Atg7, Beclin1, or p62 should be conducted. Together 

with electron microscopic techniques to visualize the formation of autophagosomes, 

altered expression of these markers would hone in on specific autophagic stages that are 

influenced by TβR3.  

Functional analysis of cell migration was limited to transwell assays, which measure the 

ability of a cell to sense a chemotactic agent and migrate across a physical barrier. Thus, 

only amoeboid, chemotactic motility was investigated and measured the number of cells 

that were able to migrate a pre-established distance. As a result, the total distance traveled, 

velocity, and direction by which the cells migrated was not determined. Therefore, the use 

of single-cell tracking technologies to measure these outputs may provide greater insight 

into the specific migratory processes that are altered by TβR3. Additionally, employing 

wound-healing assays would take cell-cell signaling and contact into account when 

measuring migrated distance as a physiologically relevant cancerous mass. Finally, the use 

of µ-Slide Chemotaxis (Ibidi) would test the chemotaxis of a migrating cell sheet through 

a channel, rather than single cells through a membrane, acting as a comprehensive measure 

of cell migration, taking all the above factors into consideration.  

To investigate how MMP1 and MMP14 upregulation impact cellular invasion, a number 

of processes should be investigated. First, protein expression should be compared to the 
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steady-state mRNA expression of the MMPs to confirm an upregulation of MMP zymogen. 

Next, zymographic techniques should be performed to assess the activity of MMP1 and 

MMP14 in degrading appropriate substrates (Leber & Balkwill, 1997). Finally, when 

examining cellular invasion through a Transwell assay, establishing a barrier using 

collagen I-III may place cells in a more appropriate physiological context with regards to 

their MMP expression. Also, instead of using a plug, a hanging droplet apparatus may be 

used to measure cellular invasion out of a spheroid of cells and matrix as a pseudo-in vivo 

technique (Tung et al., 2011). 

Quantitative polymerase chain reactions and microarray techniques compare the relative 

steady-state mRNA expression of various genes. However, these analyses do not reveal 

changes in gene transcription. Incorporating a sequence encoding a luciferase enzyme into 

the promoter region of genes of interest would clarify the mechanism by which TβR3 

influences mRNA expression.  Finally, investigating the involvement of TβR3 expression 

in non-canonical TGFβ signaling processes would reveal novel functions of the accessory 

receptor previously solely associated with the TGFβ cascade. 

Despite these limitations, my results suggest that TβR3 has a distinct role in modulating 

EMT and cellular motility and will be of interest to the field of TGFβ cancer biology. 
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Figure 4.1 Proposed mechanism of TβR3 influence on cell migration and invasion 

Black boxes signify results found in this thesis. Arrows demonstrate a sequence of 

processes, while dashed arrows suggest speculated mechanisms of action. 



91 

References 

Abba, M., Patil, N., & Allgayer, H. (2014). MicroRNAs in the regulation of MMPs and 

metastasis. Cancers, 6(2), 625–645. 

Akiyoshi, S., Inoue, H., Hanai, J., Kusanagi, K., Nemoto, N., Miyazono, K., & Kawabata, 

M. (1999). c-Ski acts as a transcriptional co-repressor in transforming growth factor-

beta signaling through interaction with smads. Journal of Biological Chemisty, 

274(49), 35269–35277. 

Alexander, N. R., Tran, N. L., Rekapally, H., Summers, C. E., Glackin, C., & Heimark, 

R. L. (2006). N-cadherin gene expression in prostate carcinoma is modulated by 

integrin-dependent nuclear translocation of Twist1. Cancer Research, 66(7), 3365–

3369. 

Alizadeh, J., Glogowska, A., Thliveris, J., Kalantari, F., Shojaei, S., Hombach-Klonisch, 

S., … Ghavami, S. (2018). Autophagy modulates transforming growth factor beta 1 

induced epithelial to mesenchymal transition in non-small cell lung cancer cells. 

Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1865(5), 749–768.  

Angadi, P. V., & Kale, A. D. (2015) Epithelial-mesenchymal transition – A fundamental 

mechanism in cancer progression: An overview. Indian Journal of Health Sciences 

and Biomedical Research, 8(2), 77–84.  

Apte, S. S., Fukai, N., Beier, D. R., & Olsen, B.R. (1997). The matrix metalloproteinase-

14 (MMP-14) gene is structurally distinct from other MMP genes and is co-

expressed with the TIMP-2 gene during mouse embryogenesis. Journal of 

Biological Chemistry, 272(41), 25511–25517. 

Attisano, L., Carcamo, J., Ventura, F., Weis, F. M., Massague, J., & Wrana, J. L. (1993). 

Identification of human activin and TGF beta type I receptors that form heteromeric 

kinase complexes with type II receptors. Cell, 75(4), 671–680. 

Baum, B., & Georgiou, M. (2011). Dynamics of adherens junctions in epithelial 

establishment, maintenance, and remodeling. Journal of Cell Biology, 192(6), 907–

917. 

Bhowmick, N. A., Ghiassi, M., Bakin, A., Aakre, M., Lundquist, C. A., Engel, M. E. … 

Moses, H. L. (2001). Transforming growth factor-beta1 mediates epithelial to 

mesenchymal transdifferentiation through a RhoA-dependent mechanism. 

Molecular Biology of the Cell, 12(1), 27–36. 

Blobe, G. C., Liu, X., Fang, S. J., How, T., & Lodish, H. F. (2001a). A novel mechanism 

for regulating transforming growth factor beta (TGF-beta) signaling. Functional 

modulation of type III TGF-beta receptor expression through interaction with the 

PDZ domain protein, GIPC. Journal of Biological Chemistry, 276(43), 39608–

39617. 



92 

Blobe, G. C., Schiemann, W. P., Pepin, M. C., Beauchemin, M., Moustakas, A., Lodish, 

H.F., & O’Connor-McCourt, M. D. (2001b). Functional roles for the cytoplasmic 

domain of the type III transforming growth factor beta receptor in regulating 

transforming growth factor beta signaling. Journal of Biological Chemistry, 276(26), 

24627–24637. 

Bloom, G., Yang, I. V., Boulware, D., Kwong, K. Y., Coppola, D., Eschrich, S., … 

Yeatman, T. J. (2004). Multi-platform, multi-site, microarray-based human tumor 

classification. American Journal of Pathology, 164(1), 9–16. 

Bradley, C. A., Dunne, P. D., Bingham, V., McQuaid, S., Khawaja, H., Craig, S., … Van 

Schaeybroeck, S. (2016). Transcriptional upregulation of c-MET is associated with 

invasion and tumor budding in colorectal cancer. Oncotarget, 7(48), 78932–78945. 

Brew, K., & Nagase, H. (2010). The tissue inhibitors of metalloproteinases (TIMPs): an 

ancient family with structural and functional diversity. Biochimica et Biophysica 

Acta (BBA) - Molecular Cell Research, 1803(1), 55–71. 

Burrows, F. J., Derbyshire, E. J., Tazzari, P. L., Amlot, P., Gazdar, A. F., King, S. W., … 

Thorpe, P. E. (1995). Up-regulation of endoglin on vascular endothelial cells in 

human solid tumors: implications for diagnosis and therapy. Clinical Cancer 

Research, 1(12), 1623–1634. 

Canadian Cancer Society’s Advisory Committee on Cancer Statistics. (2017). Canadian 

Cancer Statistics 2017. 

Cao, Q., Yu, J., Dhanasekaran, S. M., Kim, J. H., Mani, R. S., Tomlins, S. A., … 

Chinnaiyan, A. M. (2008). Repression of E-cadherin by the polycomb group protein 

EZH2 in cancer. Oncogene, 27(58), 7274–7284. 

Cardenas, H., Vieth, E., Lee, J., Segar, M., Liu, Y., Nephew, K. P., & Matei, D. (2014). 

TGF-β induces global changes in DNA methylation during the epithelial-to-

mesenchymal transition in ovarian cancer cells. Epigenetics, 9(11), 1461–1472. 

Cepeda, M. A., Evered, C. L., Pelling, J. J. H., & Damjanovski, S. (2017). Inhibition of 

MT1-MMP proteolytic function and ERK1/2 signaling influences cell migration and 

invasion through changes in MMP-2 and MMP-9. Journal of Cell Communication 

and Signaling, 11, 167–179. 

Cepeda, M. A., Pelling, J. J. H., Evered, C. L., Williams, K. C., Freedman, Z., Stan, I., … 

Damjanovski, S. (2016). Less is more: low expression of MT1-MMP is optimal to 

promote migration and tumourigenesis of breast cancer cells. Molecular Cancer, 15, 

65. 

Cheifetz, S., Bellon, T., Cales, C., Vera, S., Bernabeu, C., Massague, J., & Letarte, M. 

(1992). Endoglin is a component of the transforming growth factor-beta receptor 

system in human endothelial cells. Journal of Biological Chemistry, 267(27), 

19027–19030. 



93 

Chen, W., Kirkbride, K. C., How, T., Nelson, C. D., Mo, J., Frederick, J. P., … Blobe, G. 

C. (2003). Beta-arrestin 2 mediates endocytosis of type III TGF-beta receptor and 

down-regulation of its signaling. Science, 301(5638), 1394–1397. 

Chun, T. H., Sabeh, F., Ota, I., Murphy, H., McDonagh, K. T., Holmbeck K., … Weiss, 

S. J. (2004). MT1-MMP-dependent neovessel formation within the confines of the 

three-dimensional extracellular matrix. Journal of Cell Biology, 167(4), 757–767. 

Covington, M. D., Burghardt, R. C., & Parrish, A. R. (2006). Ischemia-induced cleavage 

of cadherins in NRK cells requires MT1-MMP (MMP14). American Journal of 

Physiology Renal Physiology, 290(1), 43–51. 

Covington, M. D., Burghardt, R. C., & Parrish, A. R. (2015). Ischemia-induced cleavage 

of cadherins in NRK cells requires MT1-MMP (MMP-14). American Journal of 

Physiology-Renal Physiology, 290(1), 43–51. 

Criswell, T. L., Dumont, N., Barnett, J. V., & Arteaga, C. L. (2008). Knockdown of the 

Transforming Growth Factor-B Type III Receptor Impairs Motility and Invasion of 

Metastatic Cancer Cells. Cancer Research, 68, 7304–7312. 

Dai, Y., Wilson, G., Huang, B., Peng, M., Teng, G., Zhang, D., … Qiao, L. (2014). 

Silencing of Jagged1 inhibits cell growth and invasion in colorectal cancer. Cell 

Death & Disease, 5(4), e1170.  

Dash, S., Sarashetti, P. M., Rajashekar, B., Chowdhury, R., & Mukherjee, S. (2018). 

TGF-β2-induced EMT is dampened by inhibition of autophagy and TNF-α 

treatment. Oncotarget, 9(5), 6433–6449. 

Daulat, A. M., Luu, O., Sing, A., Zhang, L., Wrana, J. L., McNeill, H., … Angers, S. 

(2012). Mink1 regulates β-catenin-independent Wnt signaling via Prickle 

phosphorylation. Molecular and Cellular Biology, 32(1), 173–185. 

de Caestecker, M. P., Piek, E., & Roberts, A. B. (2000). Role of transforming growth 

factor-β signaling in cancer. Journal of the National Cancer Institute, 92(17), 1388–

1402. 

Degenhardt, K., Mathew, R., Beaudoin, B., Bray, K., Anderson, D., Chen, G., … White, 

E. (2006). Autophagy promotes tumor cell survival and restricts necrosis, 

inflammation, and tumorigenesis. Cancer Cell, 10(1), 51–64. 

Deng, X., Bellis, S., Yan, Z., & Friedman, E. (1999). Differential responsiveness to 

autocrine and exogenous transforming growth factor (TGF) beta1 in cells with 

nonfunctional TGF-beta receptor type III. Cell Growth & Differentiation, 10(1), 11–

18. 

Di Guglielmo, G. M., Le Roy, C., Goodfellow, A. F., & Wrana, J. L. (2003). Distinct 

endocytic pathways regulate TGF-beta receptor signaling and turnover. Nature Cell 

Biology, 5(5), 410–421. 



94 

Docea, A. O., Mitrut, P., Grigore, D., Pirici, D., Calina, D. C., & Gofita, E. (2012). 

Immunohistochemical expression of TGF beta (TGF-β), TGF beta receptor 1 

(TGFBR1), and Ki67 in intestinal variant of gastric adenocarcinomas. Romanian 

Journal of Morphology and Embryology, 53, 683–692. 

Dong, M., How, T., Kirkbride, K. C., Gordon, K. J., Lee., J. D., Hempel, N., … Blobe, G. 

C. (2007). The type III TGF-beta receptor suppresses breast cancer progression. 

Journal of Clinical Investigation, 117(1), 206–217.  

Downward, J. (2004). PI 3-kinase, Akt, and cell survival. Seminars in Cell and 

Developmental Biology, 15(2), 177–182. 

Elliot, R. L., & Blobe, G. C. (2005). Role of transforming growth factor Beta in human 

cancer. Journal of Clinical Oncology, 23(9), 2078–2093. 

Esquela-Kerscher, A., & Slack, F. J. (2006). Oncomirs - microRNAs with a role in 

cancer. Nature Reviews Cancer, 6(4), 259–269. 

Finger, E. C., Lee, N. Y., You, H. J., & Blobe, G. C. (2008a). Endocytosis of the type III 

transforming growth factor-β (TGF-β) receptor through the clathrin-

independent/lipid raft pathway regulates TGF-β signaling and receptor down-

regulation. Journal of Biological Chemistry, 283(50), 34808–34818. 

Finger, E. C., Turley, R. S., Dong, M., How, T., Fields, T. A., & Blobe, G. C. (2008b). 

TbetaRIII suppresses non-small cell lung cancer invasiveness and tumorigenicity. 

Carcinogenesis, 28, 528–535. 

Flanders, K. C., Yang, Y. A., Herrmann, M., Chen, J., Mendoza, N., Mirza, A. M., & 

Wakefield, L. M. (2016). Quantitation of TGF-beta proteins in mouse tissues shows 

reciprocal changes in TGF-beta1 and TGF-beta3 in normal vs neoplastic mammary 

epithelium. Oncotarget, 7(25), 38164–38179. 

Fleming, N. I., Jorissen, R. N., Mouradov, D., Christie, M., Sakthianandeswaren, A., 

Palmieri, M. … Sieber, O. M. (2013). SMAD2, SMAD3 and SMAD4 mutations in 

colorectal cancer. Cancer Research, 73(2), 725–735. 

Frantz, C., Stewart, K. M., & Weaver, V. M. (2010). The extracellular matrix at a glance. 

Journal of Cell Science, 123, 4195–4181. 

Fujita, Y., Krause, G., Scheffner, M., Zechner, D., Leddy, H. E., Behrens, J., … 

Birchmeier, W. (2002). Hakai, a c-Cbl-like protein, ubiquitinates and incudes 

endocytosis of the E-cadherin complex. Nature Cell Biology, 4(3), 222–231. 

Gatza, C. E., Oh, S. Y., & Blobe, G. C. (2010). Roles for the type III TGF-beta receptor 

in human cancer. Cell Signaling, 22(8), 1163–1174. 



95 

Giaccone, G., Battey, J., Gazdar, A. F., Oie, H., Draoui, M., & Moody, T. W. (1992). 

Neuromedin B is present in lung cancer cell lines. Cancer Research, 52(9), 2732–

2736. 

Giard, D. J., Aaronson, S. A., Todaro, G. J., Arnstein, P., Kersey, J. H., Dosik, H., & 

Parks, W. P. (1973). In vitro cultivation of human tumors: establishment of cell lines 

derived from a series of solid tumors. Journal of the National Cancer Institute, 

51(5), 1417–1423. 

Gonzalez, M. N., de Mello, W., Butler-Browne, G. S., Silva-Barbosa, S. D., Mouly, V., 

Savino, W., & Riederer, I. (2017). HGF potentiates extracellular matrix-driven 

migration of human myoblasts: involvement of matrix metalloproteinases and 

MAPK/ERK pathway. Skeletal Muscle, 7, 20. 

Gordon, K. J., Kirkbride, K. C., How, T., & Blobe, G. C. (2009). Bone morphogenic 

proteins induce pancreatic cancer cell invasiveness through a Smad1-dependent 

mechanism that involves matrix metalloproteinase-2. Carcinogenesis, 30(2), 238–

248. 

Grande, M., Franzen, A., Karlsson, J. O., Ericson, L. E., Heldin, N. E., & Nilsson, M. 

(2002). Transforming growth factor-beta and epidermal growth factor 

synergistically stimulate epithelial to mesenchymal transition (EMT) through a 

MEK-dependent mechanism in primary culture pig thyrocytes. Journal of Cell 

Science, 115(22), 4227–4236. 

Gunaratne, A., & Di Guglielmo, G. M. (2013). Par6 is phosphorylated by aPKC to 

facilitate EMT. Cell Adherion & Migration, 7(4), 357–361. 

Hao, L., Ha, J. R., Kuzel, P., Garcia, E., & Persad, S. (2012). Cadherin switch from E- to 

N-cadherin in melanoma progression is regulated by the PI3K/PTEN pathway 

through Twist and Snail. British Journal of Dermatology, 166(6), 1184–1197. 

Harris, T. J., & Tepass, U. (2010). Adherens junctions: from molecules to 

morphogenesis. Nature Reviews Molecular Cell Biology, 11(7), 502–514. 

Hempel, N., How, T., Dong, M., Murphy, S. K., Fields, T. A., & Blobe, G. C. (2007). 

Loss of betaglycan expression in ovarian cancer: role in motility and invasion. 

Cancer Research, 67(11), 5231–5238. 

Huang, T., Schor, S. L., & Hinck, A. P. (2014). Biological differences between TGF-β1 

and TGFβ-3 correltae with differences in the rigidity and arrangement of their 

component monomers. Biochemistry, 53(36), 5737–5749. 

Huang, C. H., Yang, W. H., Chang, S. Y., Tai, S. K., Tzeng, C. H. Kao, J. Y., … Yang, 

M. H. (2009). Regulation of membrane-type 4 matrix metalloproteinase by SLUG 

contributes to hypoxia-mediated metastasis. Neoplasia, 11(12), 1371–1382. 



96 

Hynes, R. O., & Naba, A. (2012). Overview of the matrisome--an inventory of 

extracellular matrix constituents and functions. Cold Spring Harbor Perspectives in 

Biology, 4(1). 

Jackson, H. W., Defamie, V., Waterhouse, P., & Khokha, R. (2017). TIMPs: versatile 

extracellular regulators in cancer. Nature Reviews Cancer, 17(1), 38–53. 

Jiang, Y., Jiao, Y., Liu, Y., Zhang, Z., Wang, Z., Li, Y., … Wang, D. (2018). Sinomenine 

hydrochloride inhibits the metastasis of human glioblastoma cells by suppressing the 

expression of matrix metalloproteinase-2/-9 and reversing the endogenous and 

exogenous epithelial-mesenchymal transition. International Journal of Molecular 

Science, 19, 844. 

Kaartinen, V., Haataja, L., Nagy, A., Heisterkamp, N., & Groffen, J. (2002). TGFbeta3-

induced activation of RhoA/Rho-kinase pathway is necessary but not sufficient for 

epithelia-mesenchymal transdifferentiation: implications for palatogenesis. 

International Journal of Molecular Medicine, 9(6), 563–570. 

Kalluri, R., & Neilson, E. G. (2003). Epithelial-mesenchymal transition and its 

implications for fibrosis. Journal of Clinical Investigation, 112, 1776–1784. 

Kalluri, R., & Weinberg, R. A. (2009). The basics of epithelial-mesenchymal transition. 

Journal of Clinical Investigation, 119(6), 1420–1428. 

Kavsak, P., Rasmussen, R. K., Causing, C. G., Bonni, S., Zhu, H., Thomsen, G. H., & 

Wrana, J. L. (2000). Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that 

targets the TGF beta receptor for degradation. Molecular Cell, 6(6), 1365–1375. 

Kim, J. H., Hong, S. K., Wu, P. K., Richards, A. L., Jackson, W. T., & Park, J. I. (2014). 

Raf/MEK/ERK can regulate cellular levels of LC3B and SQSTM1/p62 at expression 

levels. Experimental Cell Research, 327(2), 340–352. 

Kim, Y., Kugler, M. C., Wei, Y., Kim, K. K., Li, X., Brumwell, A. N., & Chapman H. A. 

(2009). Integrin alpa3beta1-dependent beta-catenin phosphorylation links epithelial 

Smad signaling to cell contacts. Journal of Cell Biology, 184(2), 309–322. 

Konrad, L., Scheiber, J. A., Völck-Badouin, E., Keilani, M. M., Laible, L., … Hofmann, 

R. (2007). Alternative splicing of TGF-betas and their high-affinity receptors TβRI, 

TβRII and TβRIII (betaglycan) reveal new variants in human prostatic cells. BMC 

Genomics, 8(318).  

Kretzschmar, M., Doody, J., Timokhina, I., & Massague, J. (1999) A mechanism of 

repression of TGFbeta/ Smad signaling by oncogenic Ras. Genes & Development, 

13(7), 804–816. 

Leber, T. M., & Balkwill, F. R. (1997). Zymography: a single-step staining method for 

quantitation of proteolytic activity on substrate gels. Analytical Biochemistry, 249, 

24–28. 



97 

Li, Y., Yang, J., Dai, C., Wu, C., & Liu, Y. (2003). Role for integrin-linked kinase in 

mediating tubular epithelial to mesenchymal transition and renal interstitial 

fibrogenesis. Journal of Clinical Investigation, 112(4), 503–516. 

Liu, F., Hata, A., Baker, J. C., Doody, J., Carcamo, J., Harland, R. M., & Massague, J. 

(1996). A human Mad protein acting as a BMP-regulated transcriptional activator. 

Nature, 381(6583), 620–623. 

Liu, Y., Sun, X., Feng, J., Deng, L. L., Liu, Y., Li, B., … Zhou, L. (2016). MT2-MMP 

induces proteolysis and leads to EMT in carcinomas. Oncotarget, 7(30), 48193–

48205. 

Liu, X. L., Xiao, K., Xue, B., Yang, D., Lei, Z., Shan, Y., & Zhang, H. T. (2013). Dual 

role of TGFBR3 in bladder cancer. Oncology Reports, 30(3), 1301–1308. 

Lohi, J., Lehti, K., Valtanen, H., Parks, W. C., & Keski-Oja, J. (2000). Structural analysis 

and promoter characterization of human membrane-type matrix metalloproteinase-1 

(MT1-MMP) gene. Gene, 242(1-2), 75–86. 

Lopez-Casillas, F., Cheifetz, S., Doody, J., Andres, J. L., Lane, W. S., & Massague, J. 

(1991). Structure and expression of the membrane proteoglycan betaglycan, a 

component of the TGF-beta receptor system. Cell, 67(4), 785–795. 

Lopez-Casillas, F., Payne, H. M., Andres, J. L., & Massague, J. (1994). Betaglycan can 

act as a dual modulator of TGF-beta access to signaling receptors: mapping of 

ligand binding and GAG attachment sites. Journal of Cell Biology, 124(4), 557–568. 

Lopez-Casillas, F., Wrana, J. L., & Massague, J. (1993). Betaglycan presents ligand to 

the TGF beta signaling receptor. Cell, 73(7), 1435–1444. 

Lu, P., Takai, K., Weaver, V. M., & Werb, Z. (2011). Extracellular matrix degradation 

and remodeling in development and disease. Cold Spring Harbor Perspectives in 

Biology, 3. 

Massague, J. (1998). TGF-beta signal transduction. Annual Review of Biochemistry, 67, 

753–791.  

Masszi, A., Di Ciano, C., Sirokmany, G., Arthur, W. T., Rotstein, O. D., Wang, J. … 

Kapus, A. (2003). Central role for Rho in TGF-beta1-induced alpha-smooth muscle 

actin expression during epithelial-mesenchymal transition. American Journal of 

Physiology-Renal Physiology, 284(5), 911–924.  

Matsushita, M., Suzuki, N. N., Obara, K., Fujioka, Y., Ohsumi, Y., & Inagaki, F. (2007). 

Structure of Atg5.Atg6, a complex essential for autophagy. Journal of Biological 

Chemistry, 282(9). 6763–6772. 

Mayo, L. D., & Donner, D. B. (2002). The PTEN, Mdm2, p53 tumor suppressor-

oncoprotein network. Trends in Biochemical Sciences, 27(9), 462–467. 



98 

McLean, S., & Di Guglielmo, G. M. (2010). TGFβ (transforming growth factor β) 

receptor type III directs clathrin-mediated endocytosis of TGFβ receptor types I and 

II. Biochemical Journal, 429(1), 137–145. 

Mendoza, V., Vilchis-Landeros, M. M., Mendoza-Hernandez, G., Huang, T., Villarreal, 

M. M., Hinck, A. P., … Montiel, J. L. (2009). Betaglycan has two independent 

domains required for high affinity TGF-β binding: proteolytic cleavage separates the 

domains and inactivates the neutralizing activity of the soluble receptor. 

Biochemistry, 48(49), 11755–11765. 

Mlcochova, H., Machackova, T., Rabien, A., Radova, L., Fabian, P., Iliev, R., … Slaby, 

O. (2016). Epithelial-mesenchymal transition- associated microRNA/mRNA 

signature is linked to metastasis and prognosis in clear-cell renal cell carcinoma. 

Scientific Reports, 6, 31852. 

Nguyen, C. H., Senfter, D., Basilio, J., Hozlner, S., Stadler, S., Krieger, S., … Krupitza, 

G. (2015). NF-κB contributes to MMP1 expression in breast cancer spheroids 

causing paracrine PAR1 activation and disintegrations in the lymph endothelial 

barrier in vitro. Oncotarget, 6(36), 39262–39275. 

Nitta, T., Sato, Y., Shan Ren, X., Harada, K., Sasaki, M., Hirano, S., & Nakanuma, Y. 

(2014). Autophagy may promote carcinoma cell invasion and correlate with poor 

prognosis in cholangiocarcinoma. International Journal of Clinical and 

Experimental Pathology, 7(8), 4913–4921. 

Okada, A., Bellocq, J. P., Rouyer, N., Chenard, M. P., Rio, M. C., Chambo, P., & Basset, 

P. (1995). Membrane-type matrix metalloproteinase (MT-MMP) gene is expressed 

in stromal cells of human colon, breast, and head and neck carcinomas. Proceedings 

of the National Academy of Science, 92(7), 2730–2724. 

Ota, I., Li, X. Y., Hu, Y., & Weiss, S. J. (2009). Induction of a MT1-MMP and MT2-

MMP-dependent basement membrane transmigration program in cancer cells by 

Snail1. Proceedings of the National Academy of Science, 106(48), 20318–20323. 

Paget, S. (1889). The distribution of secondary growths in cancer of the breast. Lancet, 

133(3421), 571–573. 

Pahwa, S., Stawikowski, M. J., & Fields, G. B. (2014). Monitoring and inhibiting MT1-

MMP during cancer initiation and progression. Cancers, 6(1), 416–435. 

Palma-Nicolas, J. P., & Lopez-Colome, A. M. (2013). Thrombin induces slug-mediated 

E-cadherin transcriptional repression and the parallel up-regulation of N-cadherin by 

a transcription-independent mechanism in RPE cells. Journal of Cellular 

Physiology, 228(3), 581–589. 

Pang, M., Wang, H., Rao, P., Zhao, Y., Xie, J., Cao, Q., … Zheng, G. (2016). Autophagy 

links β-catenin and Smad signaling to promote epithelial-mesenchymal transition via 



99 

upregulation of integrin linked kinase. International Journal of Biochemistry and 

Cell Biology, 76, 123–134. 

Paradies, N. E., & Grunwald, G. B. (1993). Purification and characterization of 

NCAD90, a soluble endogenous form of N-cadherin, which is generated by 

proteolysis during retinal development and retains adhesive and neurite-promoting 

function. Journal of Neuroscience Research, 36(1), 33–45. 

Parzych, K. R., & Klionski, D. J. (2014). An overview of autophagy: Morphology, 

mechanism, and regulation. Antioxidants & Redox Signaling, 20(3), 460–473. 

Pei, D., & Weiss, S. J. (1995). Furin-dependent intracellular activation of the human 

stromelysin zymogen. Nature, 375(6528), 244–247. 

Peinado, H., Olmeda, D., & Cano, A. (2007). Snail, Zeb and bHLH factors in tumour 

progression: an alliance against the epithelial phenotype. Nature Reviews Cancer, 

7(6), 415–428. 

Piater, B., Doerner, A., Guenther, R., Kolmar, H., & Hock, B. (2015). Aptamers binding 

to c-Met inhibiting tumor cell migration. PLoS One, 10(12), e0142412. 

Pommier, Y., Sordet, O., Antony, S., Hayward, R. L., & Kohn, K. W. (2004). Apoptosis 

defects and chemotherapy resistance: molecular interaction maps and networks. 

Oncogene, 23(16), 2934–2949. 

Principe, D. R., Doll, J. A., Bauer, J., Jung, B., Munshi, H. G., Bartholin, L., … Grippo, 

P. J. (2014). TGF-β: Duality of function between tumor prevention and 

carcinogenesis. Journal of the National Cancer Institute, 106(2), 1–16. 

Rahimi, R. A., & Leof, E. B. (2007). TGF-beta signaling: a tale of two responses. Journal 

of Cellular Biochemistry, 102(3), 593–608. 

Riihimäki, M., Hemminki, A., Fallah, M., Thomsen, H., Sundquist, K., Sundquist, J., & 

Hemminki, K. (2014). Metastatic sites and survival in lung cancer. Lung Cancer, 

86(1), 78–84. 

Robertson, I. B., & Rifkin, D. B. (2013). Unchaining the beast; insights from structural 

and evolutionary studies on TGFβ secretion, sequestration, and activation. Cytokine 

Growth Factor Reviews, 4, 355–372. 

Roskoski, R. (2012). ERK1/2 MAP kinases: structure, function, and regulation. 

Pharmacological Research, 66(2), 105–143. 

Sakamoto, T., & Seiki, M. (2009). Cytoplasmic tail of MT1-MMP regulates macrophage 

motility independently from its protease activity. Genes to Cells, 14(5), 617–626. 



100 

Sato, H., Takino, T., Okada, Y., Cao, J., Shinagawa, A., Yamamoto, E., & Seiki, M. 

(1994). A matrix metalloproteinase expressed on the surface of invasive tumour 

cells. Nature, 370(6484), 61–65.  

Satoo, K., Noda, N. N., Kumeta, H., Fujioka, Y., Mizushima, N., Ohsumi, Y., & Inagaki, 

F. (2009). The structure of Atg4B-LC3 complex reveals the mechanism of LC3 

processing and delipidation during autophagy. EMBO Journal, 28(9), 1341–1350. 

Schliekelman, P., & Liu, S. (2014). Quantifying the effect of competition for detection 

between coeluting peptides on detection probabilities in mass-spectrometry-based 

proteomics. Journal Proteome Research, 13(2), 348–361.  

Schramek, H., Feifel, E., Marschitz, I., Golochtchapova, N., Gstraunthaler, G., & 

Montesano, R. (2003). Loss of active MEK1-ERK1/2 restores epithelial phenotype 

and morphogenesis in transdifferentiated MDCK cells. American Journal of 

Physiology-Cell Physiology, 285(3), 652–661. 

Schultz-Cherry, S., & Murphy-Ullrich, J. E. (1993). Thrombospondin causes activation 

of latent transforming growth factor-beta secreted by endothelial cells by a novel 

mechanism. Journal of Cell Biology, 122(4), 923–932. 

Shi, Y., Wang, Y. F., Jayaraman, L., Yang, H., Massague, J., & Pavletich, N. P. (1998). 

Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding 

in TGF-beta signaling. Cell, 94(5), 585–594. 

Siegel, P. M., & Massague, J. (2003). Cytostatic and apoptotic actions of TGF-β in 

homeostasis and cancer. Nature Reviews Cancer, 3, 807–821. 

Sohail, A., Sun, Q., Zhao, H., Bernardo, M. M., Cho, J. A., & Fridman, R. (2008). MT4-

(MMP17) and MTP-MMP (MMP25), A unique set of membrane-anchored matrix 

metalloproteinases: properties and expression in cancer. Cancer Metastasis Reviews, 

27(2), 289–302. 

Sounni, N. E., Rozanov, D. V., Remacle, A. G., Golubkov, V. S., Noel, A., & Strongin, 

A. Y. (2010). Timp-2 binding with cellular MT1-MMP stimulates invasion-

promoting MEK/ERK signaling in cancer cells. International Journal of Cancer, 

1265), 1067–1078. 

Statistics Canada. (2015). Canadian tobacco, alcohol, and drugs survey (CTADS) 2013. 

Health Canada. 

Stroschein, S. L., Wang, W., Zhou, S., Zhou, Q., & Luo, K. (1999). Negative feedback 

regulation of TGF-beta signaling by the SnoN oncoprotein. Science, 286(5440), 

771–774. 

Strutz, F., Zeisberg, M., Ziyadeh, F. N., Yang, C. Q., Kalluri, R., Muller, G. A., & 

Neilson, E. G. (2002). Role of basic fibroblast growth factor-2 in epithelial-

mesenchymal transformation. Kidney International, 61(5), 1714–1728. 



101 

Sun, L., & Chen, C. (1997). Expression of transforming growth factor β type III receptor 

suppresses tumorigenicity of human breast cancer MDA-MB-231 cells. Journal of 

Biological Chemistry, 272(40), 25367–25372. 

Takino, T., Yoshimoto, T., Nakada, M., Li, Z., Domoto, T., Kawashiri, S., & Sato, H. 

(2014). Membrane-type 1 matrix metalloproteinase regulates fibronectin assembly 

and N-cadherin adhesion. Biochemical and Biophysical Research Communications, 

450(2), 1016–1020. 

Tang, G., Weng, Z., Song, J., & Chen, Y. (2017). Reversal effect of Jagged1 signaling 

inhibition on CCI4-induced hepatic fibrosis in rats. Oncotarget, 8(37), 60778–

60788. 

Tang, K., & Xu, H. (2015). Prognostic value of meta-signature miRNAs in renal cell 

carcinoma: an integrated miRNA expression profiling analysis. Scientific Reports, 5, 

10272. 

Tao, H., Suzuki, M., Kiyonari, H., Abe, T., Sasaoka, T., Ueno, N. (2009). Mouse 

prickle1, the homolog of a PCP gene, is essential for epiblast apical-basal polarity. 

Proceedings of the National Academy of Science, 106(34), 14426–14431. 

Tazat, K., Hector-Greene, M., Blobe, G.C., & Henis, Y. I. (2015). TβRIII independently 

binds type I and type II TGF-β receptors to inhibit TGF-β signaling. Molecular 

Biology of the Cell, 26(19), 3535–3545. 

Terai, K., Call, M. K., Liu, H., Saika, S., Liu, C. Y., Hayashi, Y., … Kao, W. W. (2011). 

Crosstalk between TGF-beta and MAPK signaling during corneal wound healing. 

Investigative Ophthalmology & Visual Science, 52(11), 8208–8215. 

Thiery, J. P. (2002). Epithelial-mesenchymal transitions in tumor progression. Nature 

Reviews Cancer, 2, 442–454. 

Thompson, E. W., & Haviv, I. (2011). The social aspects of EMT-MET plasticity. Nature 

Medicine, 17(9), 1048–1049. 

Tsukazaki, T., Chiang, T. A., Davison, A. F., Attisano, L., & Wrana J. L. (1998). SARA, 

a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell, 95(6), 

779–791. 

Tung, Y. C., Hsiao, A. Y., Allen, S. G., Torisawa, Y., Ho, M., & Takayama, S. (2011). 

High-throughput 3D spheroid culture and drug testing using a 384 hanging drop 

array. Analyst, 136(3), 473–478. 

Turley, R. S., Finger, E. C., Hempel, N., How, T., Fields, T. A., & Blobe, G. C. (2007). 

The type III transforming growth factor-beta receptor as a novel tumor suppressor 

gene in prostate cancer. Cancer Research, 67(3), 1090–1098. 

U.S. National Institutes of Health. (2016). SEER Cancer Statistics Review, 1975-2013. 



102 

Velasco-Loyden, G., Arribas, J., & Lopez-Casillas, F. (2004). The shedding of 

betaglycan is regulated by pervanadate and mediated by membrane type matrix 

metalloprotease-1. Journal of Biological Chemistry, 279(9), 7721–7733. 

Vi, L., Boo, S., Sayedyahossein, S., Singh, R., McLean, S., Di Guglielmo, G. M., & 

Dagnino, L. (2015). Modulation of type II TGF-β receptor degradation by integrin-

linked kinase. Journal of Investigative Dermatology, 135(3), 885–894. 

Vi, L., de Lasa, C., Di Guglielmo, G. M., & Dagnino, L. (2011). Integrin-linked kinase is 

required for TGF-β1 induction of dermal myofibroblast differentiation. Journal of 

Investigative Dermatology, 131, 586–593. 

Wang, X. F., Lin, H. Y., Ng-Eaton, E., Downward, J., Lodish, H. F., & Weinberg, R. A. 

(1991). Expression cloning and characterization of the TGF-beta type III receptor. 

Cell, 67(4), 797–805. 

Wang, Y., Tang, Y., Teng, L., Wu, Y., Zhao, X., & Pei, G. (2006). Association of beta-

arrestin and TRAF6 negatively regulates Toll-like receptor-interleukin 1 receptor 

signaling. Nature Immunology, 7(2), 139–147. 

Watson, W. L., & Berg, J.W. (1962). Oat cell lung cancer. Cancer, 15, 759–768. 

Whitby, D. J., & Ferguson, M. W. (1991). Immunohistochemical localization of growth 

factors in fetal wound healing. Developmental Biology, 147(1), 207–215. 

Wrana, J. L. (2000). Regulation of Smad activity. Cell, 100(2), 189–192.  

Wrana, J. L., Attisano, L., Wieser, R., Ventura, F., & Massague, J. (1994). Mechanism of 

activation of the TGF-beta receptor. Nature, 370(6488), 341–347. 

Wu, J., Chen, X., Liu, X., Huang, S., He, C., Chen, B., & Liu, Y. (2018). Autophagy 

regulates TGF-β2-induced epithelial-mesenchymal transition in human retinal 

pigment epithelium cells. Molecular Medicine Reports, 17, 3607–3614. 

Wu, J. W., Fairman, R., Penry, J., & Shi, Y. (2001a). Formation of a stable heterodimer 

between Smad2 and Smad4. Journal of Biological Chemistry, 276, 20688–20694. 

Wu, J. W., Hu, M., Chai, J., Seoane, J., Huse, M., Li, C. … Shi, Y. (2001b). Crystal 

Structure of a phosphorylated Smad2. Recognition of phophoserine by the MH2 

domain and insights on Smad Function in TGF-beta signaling. Molecular Cell, 8(6), 

1277–89.  

Wu, J. W., Krawitz, A. R., Chai, J., Li, W., Zhang, F., Luo, K., & Shi, Y. (2002). 

Structural mechanism of Smad4 recognition by the nuclear oncoprotein Ski: insights 

on Ski-mediated repression of TGF-beta signaling. Cell, 111(3), 357–367. 



103 

Xiao, N., Li, H., Mei, W., & Cheng, J. (2015). SUMOylation attenuates human β-arrestin 

2 inhibition of IL-1R/TRAF6 signaling. Journal of Biological Chemistry, 290(4), 

1927–1935. 

Xu, J., Lamouille, S., & Derynck, R. (2009). TGF-β-induced epithelial to mesenchymal 

transition. Cell Research, 19(2), 156–172.  

Xu, D., Li, D., Lu, Z., Dong, X., & Wang, X. (2016). Type III TGF-β receptor inhibits 

cell proliferation and migration in salivary glands adenoid cystic carcinoma by 

suppressing NF-κB signaling. Oncology Reports, 35(1), 267–274. 

Xu, P., Liu, J., & Derynck, R. (2012). Post-translational regulation of TGF-?? receptor 

and Smad signaling. FEBS Letters, 586(14), 1871–1884. 

Xu, L., & Massague, J. (2004). Nucleocytoplasmic shuttling of signal transducers. Nature 

Reviews Molecular Cell Biology, 5(3), 209–219. 

Yamamoto, H., Noura, S., Okami, J., Uemura, M., Takemasa, I., Ikeda, M., … Mori, M. 

(2008). Overexpression of MT1-MMP is insufficient to increase experimental liver 

metastasis of human colon cancer cells. International Journal of Molecular 

Medicine, 22(6), 757–761. 

Yang, J., & Liu, Y. (2001). Dissection of key events in tubular epithelial to myofibroblast 

transition and its implications in renal interstitial fibrosis. American Journal of 

Pathology, 159(4), 1465–1475. 

Ye, X., & Weinberg, R. A. (2016). Epithelial-mesenchymal plasticity: A central regulator 

of cancer progression. Trends in Cell Biology, 25(11), 675–686. 

You, H. J., How, T., & Blobe, G. C. (2009). The type III transforming growth factor-beta 

receptor negatively regulates nuclear factor kappa B signaling through its interaction 

with beta-arrestin2. Carcinogenesis, 30(8), 1281–1287. 

Yu, J. S. L., Ramasamy, T. S., Murphy, N., Holt, M. K., Czapiewski, R., Wei, S. K. & 

Cui, W. (2015). PI3K/mTORC2 regulates TGF-β/Activin signaling by modulating 

Smad2/3 activity via linker phosphorylation. Nature Communications, 6, 7212. 

Yu, Q., & Stamenkovic, I. (2000). Cell surface-localized matrix metalloproteinase-9 

proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. 

Genes & Development, 14, 163–176. 

Zakrzewski, P. K., Nowacka-Zawisza, M., Semczuk, A., Rechberger, T., Galczynski, K., 

& Krajewska, W. M. (2016). Significance of TGFBR3 allelic loss in the 

deregulation of TGFβ signaling in primary human endometrial carcinomas. 

Oncology Reports, 35(2), 932–938. 



104 

Zavadil, J., Cermak, L,, Soto-Nieves, N., & Bottinger, E. P. (2004). Integration of TGF-

beta/Smad and Jagged1/Notch signaling in epithelial-to-mesenchymal transition. 

The EMBO Journal, 23(5), 1155–1165. 

Zeisberg, M., Hanai, J., Sugimoto, H., Mannoto, T., Charytan, D., Strutz, F., & Kalluri, 

R. (2003). BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal 

transition and reverses chronic renal injury. Nature Medicine, 9(7), 964–968. 

Zhang, Z., Liu, Z. B., Ren, W. M., Ye, X. G., & Zhang, Y. Y. (2012). The miR-200 

family regulates the epithelial-mesenchymal transition induced by EGF/EGFR in 

anaplastic thyroid cancer cells. International Journal of Molecular Medicine, 30(4), 

856–862. 

Zhang, S., Sun, W. Y., Wu., J. J., Gu, Y. J., & Wei, W. (2016). Decreased expression of 

the type III TGF-β receptor enhances metastasis and invasion in hepatocarcinoma 

progression. Oncology Reports, 35(4), 2373–2381. 

Zhang, W., Zhang, T., Jin, R., Zhao, H., Hu, J., Feng, B., … Wang, M. (2014). 

MicroRNA-301a promotes migration and invasion by targeting TGFBR2 in human 

colorectal cancer. Journal of Experimental & Clinical Cancer Research, 33(113), 1–

13. 

Zheng, F., He, K., Li, X., Zhao, D., Sun, F., Zhang, Y., … Lu, Y. (2013). Transient 

overexpression of TGFBR3 induces apoptosis in human nasopharyngeal carcinoma 

CNE-2Z cells. Bioscience Reports, 33(2). 

Zhou, B. P., & Hung, M. C. (2002). Novel targets of Akt, p21(CipI/WAF1), and MDM2. 

Seminars in Oncology, 29(3), 62–70. 

 

 



105 

Appendix 

Appendix Table 1 Genes upregulated in Microarray analysis ≥ +1.75 fold-change (165 

genes) 

Gene Symbol Assignment 

Average Fold-

Change 

MMP1 
NM_001145938 // RefSeq // Homo sapiens matrix metallopeptidase 1 (MMP1), 
transcript var 7.587845 

PRICKLE1 
NM_001144881 // RefSeq // Homo sapiens prickle homolog 1 (PRICKLE1), 

transcript variant 3.98391 

MET 
NM_000245 // RefSeq // Homo sapiens MET proto-oncogene, receptor tyrosine 
kinase (MET), 3.43446 

HMBOX1 
XM_005273635 // RefSeq // PREDICTED: Homo sapiens homeobox containing 1 

(HMBOX1), trans 3.16948 

SOCS1 
NM_003745 // RefSeq // Homo sapiens suppressor of cytokine signaling 1 
(SOCS1), mRNA. / 3.099 

PTPMT1 
NM_001143984 // RefSeq // Homo sapiens protein tyrosine phosphatase, 

mitochondrial 1 (P 2.975635 

PTPRO 
NM_002848 // RefSeq // Homo sapiens protein tyrosine phosphatase, receptor 
type, O (PTP 2.95122 

JAG1 
NM_000214 // RefSeq // Homo sapiens jagged 1 (JAG1), mRNA. // chr20 // 100 // 

92 // 23  2.84577 

SERPINB7 
NM_001040147 // RefSeq // Homo sapiens serpin peptidase inhibitor, clade B 

(ovalbumin), 2.830065 

PIP4K2A 
NM_005028 // RefSeq // Homo sapiens phosphatidylinositol-5-phosphate 4-

kinase, type II, 2.7278 

NRBF2 
NM_001282405 // RefSeq // Homo sapiens nuclear receptor binding factor 2 

(NRBF2), trans 2.7113 

CLDN1 
NM_021101 // RefSeq // Homo sapiens claudin 1 (CLDN1), mRNA. // chr3 // 94 

// 89 // 16  2.70308 

PYGO2 
NM_138300 // RefSeq // Homo sapiens pygopus family PHD finger 2 (PYGO2), 

mRNA. // chr1  2.698445 

CRH 
NM_000756 // RefSeq // Homo sapiens corticotropin releasing hormone (CRH), 

mRNA. // chr 2.682165 

KLC1 
ENST00000348520 // ENSEMBL // kinesin light chain 1 

[gene_biotype:protein_coding transc 2.51896 

CALU 
NM_001130674 // RefSeq // Homo sapiens calumenin (CALU), transcript variant 

2, mRNA. // 2.51797 

HIST1H2BG 
NM_003518 // RefSeq // Homo sapiens histone cluster 1, H2bg (HIST1H2BG), 

mRNA. // chr6  2.49148 

PTPN1 
NM_001278618 // RefSeq // Homo sapiens protein tyrosine phosphatase, non-

receptor type  2.472065 

TSC22D2 
ENST00000361875 // ENSEMBL // TSC22 domain family, member 2 

[gene_biotype:protein_codin 2.471215 

SLC2A3 
NM_006931 // RefSeq // Homo sapiens solute carrier family 2 (facilitated glucose 

transp 2.429165 

CHAF1B 
XM_011529753 // RefSeq // PREDICTED: Homo sapiens chromatin assembly 

factor 1, subunit  2.41733 

HIST1H2BC 
ENST00000314332 // ENSEMBL // histone cluster 1, H2bc 
[gene_biotype:protein_coding tran 2.417155 

SPP1 
NM_000582 // RefSeq // Homo sapiens secreted phosphoprotein 1 (SPP1), 

transcript varian 2.403515 

GPAT3 
NM_001256421 // RefSeq // Homo sapiens glycerol-3-phosphate acyltransferase 3 
(GPAT3),  2.396755 

OR2A42 
NM_001001802 // RefSeq // Homo sapiens olfactory receptor, family 2, subfamily 

A, membe 2.388755 

SEMA3C 
NM_006379 // RefSeq // Homo sapiens sema domain, immunoglobulin domain 
(Ig), short basi 2.382555 

SOX4 
NM_003107 // RefSeq // Homo sapiens SRY (sex determining region Y)-box 4 

(SOX4), mRNA.  2.37484 

SCG2 
NM_003469 // RefSeq // Homo sapiens secretogranin II (SCG2), mRNA. // chr2 // 
100 // 68 2.366255 
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EHBP1L1 
NM_001099409 // RefSeq // Homo sapiens EH domain binding protein 1-like 1 

(EHBP1L1), mR 2.362085 

CALB2 
NM_001740 // RefSeq // Homo sapiens calbindin 2 (CALB2), transcript variant 

CALB2, mRNA 2.359335 

CNR1 
NM_001160226 // RefSeq // Homo sapiens cannabinoid receptor 1 (brain) 
(CNR1), transcrip 2.35512 

PDIA4 
NM_004911 // RefSeq // Homo sapiens protein disulfide isomerase family A, 

member 4 (PDI 2.34272 

ARL4C 
NM_001282431 // RefSeq // Homo sapiens ADP-ribosylation factor-like 4C 
(ARL4C), transcr 2.32081 

CXCL1 
NM_001511 // RefSeq // Homo sapiens chemokine (C-X-C motif) ligand 1 

(melanoma growth s 2.296395 

CCND2 
NM_001759 // RefSeq // Homo sapiens cyclin D2 (CCND2), mRNA. // chr12 // 
100 // 62 // 1 2.282615 

PGGT1B 
XM_005272020 // RefSeq // PREDICTED: Homo sapiens protein 

geranylgeranyltransferase typ 2.27886 

LOC286437 
NR_039980 // RefSeq // Homo sapiens uncharacterized LOC286437 
(LOC286437), long non-cod 2.25092 

DNER 
NM_139072 // RefSeq // Homo sapiens delta/notch-like EGF repeat containing 

(DNER), mRNA 2.2351 

WSB1 
NM_015626 // RefSeq // Homo sapiens WD repeat and SOCS box containing 1 
(WSB1), transcr 2.23316 

FLRT3 
NM_013281 // RefSeq // Homo sapiens fibronectin leucine rich transmembrane 

protein 3 (F 2.201595 

CYB5D1 
NM_144607 // RefSeq // Homo sapiens cytochrome b5 domain containing 1 
(CYB5D1), mRNA. / 2.196315 

FAM49B 
NM_001256763 // RefSeq // Homo sapiens family with sequence similarity 49, 

member B (FA 2.189425 

LOC105373538 
XR_923158 // RefSeq // PREDICTED: Homo sapiens uncharacterized 
LOC105373538 (LOC1053735 2.165175 

TDG 
NM_003211 // RefSeq // Homo sapiens thymine DNA glycosylase (TDG), 

mRNA. // chr12 // 10 2.15107 

PTPN14 
NM_005401 // RefSeq // Homo sapiens protein tyrosine phosphatase, non-receptor 
type 14  2.14654 

PTPRG 
NM_002841 // RefSeq // Homo sapiens protein tyrosine phosphatase, receptor 

type, G (PTP 2.138735 

EFNB2 
NM_004093 // RefSeq // Homo sapiens ephrin-B2 (EFNB2), mRNA. // chr13 // 
100 // 100 //  2.12732 

HOXB5 
NM_002147 // RefSeq // Homo sapiens homeobox B5 (HOXB5), mRNA. // chr17 

// 100 // 74 // 2.122855 

MYO10 
NM_012334 // RefSeq // Homo sapiens myosin X (MYO10), mRNA. // chr5 // 
100 // 83 // 33  2.110515 

RNU6-57P 
ENST00000411348 // ENSEMBL // RNA, U6 small nuclear 57, pseudogene 

[gene_biotype:snRNA  2.10814 

MIR548A1 
NR_030312 // RefSeq // Homo sapiens microRNA 548a-1 (MIR548A1), 
microRNA. // chr6 // 10 2.10333 

EYA3 
NM_001282560 // RefSeq // Homo sapiens EYA transcriptional coactivator and 

phosphatase  2.098615 

IGFL4 
ENST00000595006 // ENSEMBL // IGF-like family member 4 
[gene_biotype:protein_coding tra 2.098035 

MT1X 
NM_005952 // RefSeq // Homo sapiens metallothionein 1X (MT1X), mRNA. // 

chr16 // 100 // 2.09164 

B3GALT1 
NM_020981 // RefSeq // Homo sapiens UDP-Gal:betaGlcNAc beta 1,3-

galactosyltransferase,  2.09153 

MCL1 
NM_001197320 // RefSeq // Homo sapiens myeloid cell leukemia 1 (MCL1), 

transcript varia 2.09069 

ANKRD52 
NM_173595 // RefSeq // Homo sapiens ankyrin repeat domain 52 (ANKRD52), 

mRNA. // chr12  2.083575 

HMBOX1 
NM_001135726 // RefSeq // Homo sapiens homeobox containing 1 (HMBOX1), 

transcript varia 2.079915 

TMEM2 
NM_001135820 // RefSeq // Homo sapiens transmembrane protein 2 (TMEM2), 

transcript vari 2.0798 

B4GALT1 
NM_001497 // RefSeq // Homo sapiens UDP-Gal:betaGlcNAc beta 1,4- 

galactosyltransferase, 2.054165 

HAS2 
NM_005328 // RefSeq // Homo sapiens hyaluronan synthase 2 (HAS2), mRNA. // 

chr8 // 100  2.048335 

NABP1 
ENST00000410026 // ENSEMBL // nucleic acid binding protein 1 

[gene_biotype:protein_codi 2.03921 
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THBS1 
NM_003246 // RefSeq // Homo sapiens thrombospondin 1 (THBS1), mRNA. // 

chr15 // 100 //  2.029965 

FAM217B 
NM_001190826 // RefSeq // Homo sapiens family with sequence similarity 217, 

member B (F 2.02722 

SPRY1 
NM_001258038 // RefSeq // Homo sapiens sprouty RTK signaling antagonist 1 
(SPRY1), tran 2.021935 

UNC13A 
NM_001080421 // RefSeq // Homo sapiens unc-13 homolog A (C. elegans) 

(UNC13A), mRNA. // 2.018905 

PLD5 
NM_001195811 // RefSeq // Homo sapiens phospholipase D family, member 5 
(PLD5), transcr 2.01615 

LOC105376694 
XR_931876 // RefSeq // PREDICTED: Homo sapiens uncharacterized 

LOC105376694 (LOC1053766 2.012215 

ANKRD1 
NM_014391 // RefSeq // Homo sapiens ankyrin repeat domain 1 (cardiac muscle) 
(ANKRD1),  2.01199 

PRICKLE4 
ENST00000335515 // ENSEMBL // prickle homolog 4 

[gene_biotype:protein_coding transcript 2.009555 

DPYSL3 
NM_001197294 // RefSeq // Homo sapiens dihydropyrimidinase-like 3 
(DPYSL3), transcript  2.00606 

ZFP14 
NM_001297619 // RefSeq // Homo sapiens ZFP14 zinc finger protein (ZFP14), 

transcript va 2.00576 

ZNF783 
XM_005249929 // RefSeq // PREDICTED: Homo sapiens zinc finger family 
member 783 (ZNF783 2.003635 

PPP2R1B 
NM_001177562 // RefSeq // Homo sapiens protein phosphatase 2, regulatory 

subunit A, bet 1.989705 

CDS1 
NM_001263 // RefSeq // Homo sapiens CDP-diacylglycerol synthase 
(phosphatidate cytidyly 1.98269 

TGFB2 
NM_001135599 // RefSeq // Homo sapiens transforming growth factor, beta 2 

(TGFB2), tran 1.977195 

GATSL2 
NM_001145064 // RefSeq // Homo sapiens GATS protein-like 2 (GATSL2), 
mRNA. // chr7 // 1 1.97662 

SLC36A1 
NM_001308150 // RefSeq // Homo sapiens solute carrier family 36 (proton/amino 

acid symp 1.97038 

RRS1 
NM_015169 // RefSeq // Homo sapiens ribosome biogenesis regulator homolog 
(RRS1), mRNA. 1.96967 

STX12 
NM_177424 // RefSeq // Homo sapiens syntaxin 12 (STX12), mRNA. // chr1 // 

100 // 68 //  1.965035 

RBPJ 
NM_005349 // RefSeq // Homo sapiens recombination signal binding protein for 
immunoglob 1.96131 

FAM46A 
NM_017633 // RefSeq // Homo sapiens family with sequence similarity 46, 

member A (FAM46 1.954995 

TIAM1 
NM_003253 // RefSeq // Homo sapiens T-cell lymphoma invasion and metastasis 
1 (TIAM1),  1.940475 

MIR365A 
NR_029854 // RefSeq // Homo sapiens microRNA 365a (MIR365A), microRNA. 

// chr16 // 100  1.938085 

MAPKAP1 
NM_001006617 // RefSeq // Homo sapiens mitogen-activated protein kinase 
associated prot 1.93674 

MIR4655 
NR_039799 // RefSeq // Homo sapiens microRNA 4655 (MIR4655), microRNA. 

// chr7 // 100 / 1.934215 

CNR1 
NM_001160226 // RefSeq // Homo sapiens cannabinoid receptor 1 (brain) 
(CNR1), transcrip 1.924605 

ZNF157 
NM_003446 // RefSeq // Homo sapiens zinc finger protein 157 (ZNF157), mRNA. 

// chrX //  1.924055 

SBNO1 
NM_001167856 // RefSeq // Homo sapiens strawberry notch homolog 1 

(Drosophila) (SBNO1), 1.9178 

LOC105373538 
XR_923158 // RefSeq // PREDICTED: Homo sapiens uncharacterized 

LOC105373538 (LOC1053735 1.91522 

AK4 
NM_001005353 // RefSeq // Homo sapiens adenylate kinase 4 (AK4), transcript 

variant 1,  1.913045 

FAM32A 
NM_014077 // RefSeq // Homo sapiens family with sequence similarity 32, 

member A (FAM32 1.912335 

BARX2 
NM_003658 // RefSeq // Homo sapiens BARX homeobox 2 (BARX2), mRNA. // 

chr11 // 100 // 5 1.912105 

KDM7A 
NM_030647 // RefSeq // Homo sapiens lysine (K)-specific demethylase 7A 

(KDM7A), mRNA. / 1.898755 

DDX58 
NM_014314 // RefSeq // Homo sapiens DEAD (Asp-Glu-Ala-Asp) box 

polypeptide 58 (DDX58),  1.89858 

SSFA2 
NM_001130445 // RefSeq // Homo sapiens sperm specific antigen 2 (SSFA2), 

transcript var 1.89748 
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GUSBP1 
NR_027026 // RefSeq // Homo sapiens glucuronidase, beta pseudogene 1 

(GUSBP1), transcri 1.897305 

MIR4441 
NR_039643 // RefSeq // Homo sapiens microRNA 4441 (MIR4441), microRNA. 

// chr2 // 100 / 1.89599 

CYB561D1 
NM_001134400 // RefSeq // Homo sapiens cytochrome b561 family, member D1 
(CYB561D1), tr 1.884945 

GAS2L1 
NM_001278730 // RefSeq // Homo sapiens growth arrest-specific 2 like 1 

(GAS2L1), transc 1.880455 

MRPL45 
NM_001278279 // RefSeq // Homo sapiens mitochondrial ribosomal protein L45 
(MRPL45), tr 1.87827 

SPRY4 
NM_001127496 // RefSeq // Homo sapiens sprouty RTK signaling antagonist 4 

(SPRY4), tran 1.87776 

TCEB3 
NM_003198 // RefSeq // Homo sapiens transcription elongation factor B (SIII), 
polypepti 1.873875 

TMEM145 
NM_173633 // RefSeq // Homo sapiens transmembrane protein 145 (TMEM145), 

mRNA. // chr19 1.86874 

TNFRSF21 
NM_014452 // RefSeq // Homo sapiens tumor necrosis factor receptor 
superfamily, member  1.86786 

CUEDC1 
NM_001271875 // RefSeq // Homo sapiens CUE domain containing 1 (CUEDC1), 

transcript var 1.866395 

PTPRZ1 
NM_001206838 // RefSeq // Homo sapiens protein tyrosine phosphatase, receptor-
type, Z p 1.86588 

BANF1 
NM_001143985 // RefSeq // Homo sapiens barrier to autointegration factor 1 

(BANF1), tra 1.862805 

GOPC 
NM_001017408 // RefSeq // Homo sapiens golgi-associated PDZ and coiled-coil 
motif conta 1.862395 

MIR31HG 
NR_027054 // RefSeq // Homo sapiens MIR31 host gene (MIR31HG), long non-

coding RNA. //  1.86227 

KRTAP2-3 
NM_001165252 // RefSeq // Homo sapiens keratin associated protein 2-3 
(KRTAP2-3), mRNA. 1.861415 

FHOD1 
NM_013241 // RefSeq // Homo sapiens formin homology 2 domain containing 1 

(FHOD1), mRNA 1.85921 

CPPED1 
NM_001099455 // RefSeq // Homo sapiens calcineurin-like phosphoesterase 
domain containi 1.85535 

PLSCR4 
NM_001128304 // RefSeq // Homo sapiens phospholipid scramblase 4 (PLSCR4), 

transcript v 1.85202 

TRUB2 
NM_015679 // RefSeq // Homo sapiens TruB pseudouridine (psi) synthase family 
member 2 ( 1.848545 

CLIP4 
NM_001287527 // RefSeq // Homo sapiens CAP-GLY domain containing linker 

protein family, 1.84656 

ZNHIT6 
NM_001170670 // RefSeq // Homo sapiens zinc finger, HIT-type containing 6 
(ZNHIT6), tra 1.84486 

LIPH 
NM_139248 // RefSeq // Homo sapiens lipase, member H (LIPH), mRNA. // chr3 

// 100 // 90 1.843155 

LOC105374749 
XR_925976 // RefSeq // PREDICTED: Homo sapiens uncharacterized 
LOC105374749 (LOC1053747 1.83801 

SNORD114-1 
NR_003193 // RefSeq // Homo sapiens small nucleolar RNA, C/D box 114-1 

(SNORD114-1), sm 1.83693 

RHOB 
NM_004040 // RefSeq // Homo sapiens ras homolog family member B (RHOB), 
mRNA. // chr2 / 1.83475 

RNF43 
NM_001305544 // RefSeq // Homo sapiens ring finger protein 43 (RNF43), 

transcript varia 1.83369 

MAGEA6 
ENST00000412733 // ENSEMBL // melanoma antigen family A6 

[gene_biotype:protein_coding t 1.826145 

INPP5F 
NM_001243194 // RefSeq // Homo sapiens inositol polyphosphate-5-phosphatase 

F (INPP5F), 1.82158 

VGLL4 
NM_001128219 // RefSeq // Homo sapiens vestigial-like family member 4 

(VGLL4), transcri 1.81722 

MIR1587 
NR_039763 // RefSeq // Homo sapiens microRNA 1587 (MIR1587), microRNA. 

// chrX // 100 / 1.817035 

C15orf48 
NM_032413 // RefSeq // Homo sapiens chromosome 15 open reading frame 48 

(C15orf48), tra 1.816345 

GABPA 
NM_001197297 // RefSeq // Homo sapiens GA binding protein transcription 

factor, alpha s 1.81563 

ERCC5 
NM_000123 // RefSeq // Homo sapiens excision repair cross-complementation 

group 5 (ERCC 1.814955 

HIST2H2BF 
NM_001161334 // RefSeq // Homo sapiens histone cluster 2, H2bf (HIST2H2BF), 

transcript  1.8133 
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THSD7A 
NM_015204 // RefSeq // Homo sapiens thrombospondin, type I, domain 

containing 7A (THSD7 1.811745 

MYH8 
NM_002472 // RefSeq // Homo sapiens myosin, heavy chain 8, skeletal muscle, 

perinatal ( 1.80751 

RCHY1 
NM_001009922 // RefSeq // Homo sapiens ring finger and CHY zinc finger 
domain containin 1.801645 

TNFRSF10D 
NM_003840 // RefSeq // Homo sapiens tumor necrosis factor receptor 

superfamily, member  1.800885 

PPP3CB 
NM_001142353 // RefSeq // Homo sapiens protein phosphatase 3, catalytic 
subunit, beta i 1.7959 

MAGEA12 
NM_001166386 // RefSeq // Homo sapiens melanoma antigen family A12 

(MAGEA12), transcrip 1.79377 

SGK1 
NM_001143676 // RefSeq // Homo sapiens serum/glucocorticoid regulated kinase 
1 (SGK1),  1.792335 

ARHGDIA 
NM_001185077 // RefSeq // Homo sapiens Rho GDP dissociation inhibitor (GDI) 

alpha (ARHG 1.791955 

CEP170P1 
NR_003135 // RefSeq // Homo sapiens centrosomal protein 170kDa pseudogene 1 
(CEP170P1), 1.78878 

MAP2 
NM_001039538 // RefSeq // Homo sapiens microtubule-associated protein 2 

(MAP2), transcr 1.78864 

HIST1H2BD 
NM_021063 // RefSeq // Homo sapiens histone cluster 1, H2bd (HIST1H2BD), 
transcript var 1.788425 

RASSF8 
NM_001164746 // RefSeq // Homo sapiens Ras association (RalGDS/AF-6) 

domain family (N-t 1.78679 

B3GALT1 
XM_005246931 // RefSeq // PREDICTED: Homo sapiens UDP-Gal:betaGlcNAc 
beta 1,3-galactosy 1.7843 

FBXL19-AS1 
NR_024348 // RefSeq // Homo sapiens FBXL19 antisense RNA 1 (head to head) 

(FBXL19-AS1), 1.78243 

PPFIBP1 
NM_001198915 // RefSeq // Homo sapiens PTPRF interacting protein, binding 
protein 1 (li 1.7789 

ZNF626 
NM_001076675 // RefSeq // Homo sapiens zinc finger protein 626 (ZNF626), 

transcript var 1.776355 

MMP14 
NM_004995 // RefSeq // Homo sapiens matrix metallopeptidase 14 (membrane-
inserted) (MMP 1.776015 

CWC15 
NM_016403 // RefSeq // Homo sapiens CWC15 spliceosome-associated protein 

(CWC15), mRNA. 1.7755 

WDR83 
NM_001099737 // RefSeq // Homo sapiens WD repeat domain 83 (WDR83), 
transcript variant  1.77217 

LOC105376235 
XR_930270 // RefSeq // PREDICTED: Homo sapiens uncharacterized 

LOC105376235 (LOC1053762 1.77159 

FOXP2 
NM_001172766 // RefSeq // Homo sapiens forkhead box P2 (FOXP2), transcript 
variant 5, m 1.769185 

VAMP4 
NM_001185127 // RefSeq // Homo sapiens vesicle-associated membrane protein 4 

(VAMP4), t 1.769 

P3H2 
NM_001134418 // RefSeq // Homo sapiens prolyl 3-hydroxylase 2 (P3H2), 
transcript varian 1.768995 

MBTPS1 
NM_003791 // RefSeq // Homo sapiens membrane-bound transcription factor 

peptidase, site 1.76674 

GPR155 
NM_001033045 // RefSeq // Homo sapiens G protein-coupled receptor 155 
(GPR155), transcr 1.76206 

KATNAL1 
NM_001014380 // RefSeq // Homo sapiens katanin p60 subunit A-like 1 

(KATNAL1), transcri 1.760585 

MIR548AM 
NR_039762 // RefSeq // Homo sapiens microRNA 548am (MIR548AM), 

microRNA. // chrX // 100 1.758735 

EIF3B 
NM_001037283 // RefSeq // Homo sapiens eukaryotic translation initiation factor 

3, subu 1.756245 

OPHN1 
NM_002547 // RefSeq // Homo sapiens oligophrenin 1 (OPHN1), mRNA. // chrX 

// 100 // 89  1.756205 

PREPL 
NM_001042385 // RefSeq // Homo sapiens prolyl endopeptidase-like (PREPL), 

transcript va 1.755085 

SCX 
NM_001080514 // RefSeq // Homo sapiens scleraxis bHLH transcription factor 

(SCX), mRNA. 1.7548 

GPCPD1 
NM_019593 // RefSeq // Homo sapiens glycerophosphocholine phosphodiesterase 

1 (GPCPD1), 1.754265 

H3F3AP4 
NR_002315 // RefSeq // Homo sapiens H3 histone, family 3A, pseudogene 4 

(H3F3AP4), non- 1.75039 

RASA3 
NM_007368 // RefSeq // Homo sapiens RAS p21 protein activator 3 (RASA3), 

mRNA. // chr13 1.75039 
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Appendix Table 2 Genes downregulated in Microarray ≤ -1.75 fold-change (441 genes) 

Gene Symbol Assignment 

Average 

Fold-Change 

TGFBR3 
NM_001195683 // RefSeq // Homo sapiens transforming growth factor, beta 

receptor III (T -7.6191 

ULBP1 
NM_025218 // RefSeq // Homo sapiens UL16 binding protein 1 (ULBP1), mRNA. 
// chr6 // 10 -4.62948 

SLC35F1 
NM_001029858 // RefSeq // Homo sapiens solute carrier family 35, member F1 

(SLC35F1), m -4.51595 

APOLD1 
ENST00000534843 // ENSEMBL // apolipoprotein L domain containing 1 
[gene_biotype:protei -3.9413 

CCNE2 
NM_057749 // RefSeq // Homo sapiens cyclin E2 (CCNE2), mRNA. // chr8 // 100 

// 67 // 18 -3.82031 

HIST1H1B 
NM_005322 // RefSeq // Homo sapiens histone cluster 1, H1b (HIST1H1B), 
mRNA. // chr6 // -3.77962 

GUCY1B3 
NM_000857 // RefSeq // Homo sapiens guanylate cyclase 1, soluble, beta 3 

(GUCY1B3), tra -3.73332 

BLM 
NM_000057 // RefSeq // Homo sapiens Bloom syndrome, RecQ helicase-like 
(BLM), transcrip -3.56194 

ARRB2 
NM_001257328 // RefSeq // Homo sapiens arrestin, beta 2 (ARRB2), transcript 

variant 3,  -3.53547 

BRCA2 
NM_000059 // RefSeq // Homo sapiens breast cancer 2, early onset (BRCA2), 
mRNA. // chr1 -3.4322 

TICRR 
NM_001308025 // RefSeq // Homo sapiens TOPBP1-interacting checkpoint and 

replication re -3.23973 

SGOL1 
NM_001012409 // RefSeq // Homo sapiens shugoshin-like 1 (S. pombe) (SGOL1), 

transcript  -3.23506 

HIST1H3G 
NM_003534 // RefSeq // Homo sapiens histone cluster 1, H3g (HIST1H3G), 

mRNA. // chr6 // -3.22531 

FAM72D 
NM_207418 // RefSeq // Homo sapiens family with sequence similarity 72, 

member D (FAM72 -3.18314 

HIST1H2BH 
NM_003524 // RefSeq // Homo sapiens histone cluster 1, H2bh (HIST1H2BH), 

mRNA. // chr6  -3.17553 

TYMS 
NM_001071 // RefSeq // Homo sapiens thymidylate synthetase (TYMS), mRNA. 

// chr18 // 10 -3.14754 

MASTL 
NM_001172303 // RefSeq // Homo sapiens microtubule associated 

serine/threonine kinase-l -3.10531 

STC1 
NM_003155 // RefSeq // Homo sapiens stanniocalcin 1 (STC1), mRNA. // chr8 // 

100 // 86  -3.09791 

HIST1H3F 
NM_021018 // RefSeq // Homo sapiens histone cluster 1, H3f (HIST1H3F), 

mRNA. // chr6 // -3.0844 

SERPINB9 
NM_004155 // RefSeq // Homo sapiens serpin peptidase inhibitor, clade B 

(ovalbumin), me -3.04552 

CCNA2 
NM_001237 // RefSeq // Homo sapiens cyclin A2 (CCNA2), mRNA. // chr4 // 100 

// 100 // 2 -3.00154 

SKA1 
NM_001039535 // RefSeq // Homo sapiens spindle and kinetochore associated 

complex subun -2.98977 

FBXO43 
NM_001029860 // RefSeq // Homo sapiens F-box protein 43 (FBXO43), transcript 

variant 2, -2.94798 

HIST2H3A 
NM_001005464 // RefSeq // Homo sapiens histone cluster 2, H3a (HIST2H3A), 

mRNA. // chr1 -2.93141 

HIST2H3A 
NM_001005464 // RefSeq // Homo sapiens histone cluster 2, H3a (HIST2H3A), 
mRNA. // chr1 -2.93141 

MKI67 
NM_001145966 // RefSeq // Homo sapiens marker of proliferation Ki-67 

(MKI67), transcrip -2.87658 

PCNA 
NM_002592 // RefSeq // Homo sapiens proliferating cell nuclear antigen (PCNA), 
transcri -2.87572 

FAM111B 
NM_001142703 // RefSeq // Homo sapiens family with sequence similarity 111, 

member B (F -2.87548 

PLPP1 
NM_003711 // RefSeq // Homo sapiens phospholipid phosphatase 1 (PLPP1), 
transcript vari -2.86974 

CDC25C 
NM_001287582 // RefSeq // Homo sapiens cell division cycle 25C (CDC25C), 

transcript var -2.85109 

PBK 
NM_001278945 // RefSeq // Homo sapiens PDZ binding kinase (PBK), transcript 
variant 2,  -2.85087 
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HIST1H3E 
NM_003532 // RefSeq // Homo sapiens histone cluster 1, H3e (HIST1H3E), 

mRNA. // chr6 // -2.81285 

RNF10 
NM_014868 // RefSeq // Homo sapiens ring finger protein 10 (RNF10), mRNA. // 

chr12 // 1 -2.80049 

XRCC2 
NM_005431 // RefSeq // Homo sapiens X-ray repair complementing defective 
repair in Chin -2.79875 

SGMS2 
NM_001136257 // RefSeq // Homo sapiens sphingomyelin synthase 2 (SGMS2), 

transcript var -2.7831 

MYBL2 
NM_001278610 // RefSeq // Homo sapiens v-myb avian myeloblastosis viral 
oncogene homolo -2.78231 

SLC7A11 
NM_014331 // RefSeq // Homo sapiens solute carrier family 7 (anionic amino acid 

transpo -2.77462 

ATAD5 
NM_024857 // RefSeq // Homo sapiens ATPase family, AAA domain containing 5 
(ATAD5), mRN -2.75198 

POLQ 
NM_199420 // RefSeq // Homo sapiens polymerase (DNA directed), theta 

(POLQ), mRNA. // c -2.73644 

PPDPF 
NM_024299 // RefSeq // Homo sapiens pancreatic progenitor cell differentiation 
and prol -2.7147 

TSPAN6 
NM_001278740 // RefSeq // Homo sapiens tetraspanin 6 (TSPAN6), transcript 

variant 2, mR -2.71416 

KIF15 
NM_020242 // RefSeq // Homo sapiens kinesin family member 15 (KIF15), 
mRNA. // chr3 //  -2.7103 

ENPP1 
NM_006208 // RefSeq // Homo sapiens ectonucleotide 

pyrophosphatase/phosphodiesterase 1  -2.70423 

KIF24 
NM_194313 // RefSeq // Homo sapiens kinesin family member 24 (KIF24), 
mRNA. // chr9 //  -2.70389 

MARCKS 
NM_002356 // RefSeq // Homo sapiens myristoylated alanine-rich protein kinase 

C substra -2.66908 

EME1 
NM_001166131 // RefSeq // Homo sapiens essential meiotic structure-specific 
endonucleas -2.66487 

ASNS 
NM_001178075 // RefSeq // Homo sapiens asparagine synthetase (glutamine-

hydrolyzing) (A -2.652 

NSA2 
NM_001271665 // RefSeq // Homo sapiens NSA2 ribosome biogenesis homolog 
(NSA2), transcr -2.64196 

MNS1 
NM_018365 // RefSeq // Homo sapiens meiosis-specific nuclear structural 1 

(MNS1), mRNA. -2.63135 

CKAP2L 
NM_001304361 // RefSeq // Homo sapiens cytoskeleton associated protein 2-like 
(CKAP2L), -2.59652 

HIST1H2AM 
NM_003514 // RefSeq // Homo sapiens histone cluster 1, H2am (HIST1H2AM), 

mRNA. // chr6  -2.58476 

CDT1 
NM_030928 // RefSeq // Homo sapiens chromatin licensing and DNA replication 
factor 1 (C -2.58378 

NEIL3 
NM_018248 // RefSeq // Homo sapiens nei-like DNA glycosylase 3 (NEIL3), 

mRNA. // chr4 / -2.58248 

HIST1H3J 
ENST00000479986 // ENSEMBL // histone cluster 1, H3j 
[gene_biotype:protein_coding trans -2.58117 

FANCI 
NM_001113378 // RefSeq // Homo sapiens Fanconi anemia, complementation 

group I (FANCI), -2.57447 

CENPQ 
NM_018132 // RefSeq // Homo sapiens centromere protein Q (CENPQ), mRNA. // 
chr6 // 100  -2.57397 

DLGAP5 
NM_001146015 // RefSeq // Homo sapiens discs, large (Drosophila) homolog-

associated pro -2.57062 

BRCA1 
NM_007294 // RefSeq // Homo sapiens breast cancer 1, early onset (BRCA1), 

transcript va -2.54913 

CENPF 
NM_016343 // RefSeq // Homo sapiens centromere protein F, 350/400kDa 

(CENPF), mRNA. //  -2.54742 

MKNK2 
NM_017572 // RefSeq // Homo sapiens MAP kinase interacting serine/threonine 

kinase 2 (M -2.53381 

CCNB2 
NM_004701 // RefSeq // Homo sapiens cyclin B2 (CCNB2), mRNA. // chr15 // 

100 // 79 // 2 -2.52602 

SRRM2 
NM_016333 // RefSeq // Homo sapiens serine/arginine repetitive matrix 2 

(SRRM2), mRNA.  -2.51062 

YBX2 
NM_015982 // RefSeq // Homo sapiens Y box binding protein 2 (YBX2), mRNA. 

// chr17 // 1 -2.50458 

TSPAN13 
NM_014399 // RefSeq // Homo sapiens tetraspanin 13 (TSPAN13), mRNA. // chr7 

// 100 // 7 -2.49473 

C5 
NM_001735 // RefSeq // Homo sapiens complement component 5 (C5), mRNA. // 

chr9 // 100 / -2.49208 
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TPM4 
NM_001145160 // RefSeq // Homo sapiens tropomyosin 4 (TPM4), transcript 

variant Tpm4.1, -2.49028 

HORMAD1 
NM_001199829 // RefSeq // Homo sapiens HORMA domain containing 1 

(HORMAD1), transcript  -2.48965 

FADS1 
NM_013402 // RefSeq // Homo sapiens fatty acid desaturase 1 (FADS1), mRNA. 
// chr11 //  -2.48957 

PHGDH 
NM_006623 // RefSeq // Homo sapiens phosphoglycerate dehydrogenase 

(PHGDH), mRNA. // ch -2.48909 

FANCA 
NM_000135 // RefSeq // Homo sapiens Fanconi anemia, complementation group 
A (FANCA), tr -2.48745 

EXO1 
NM_003686 // RefSeq // Homo sapiens exonuclease 1 (EXO1), transcript variant 

3, mRNA. / -2.48328 

TRIM6 
NM_001003818 // RefSeq // Homo sapiens tripartite motif containing 6 (TRIM6), 
transcrip -2.48296 

RAD51 
NM_001164269 // RefSeq // Homo sapiens RAD51 recombinase (RAD51), 

transcript variant 4, -2.48137 

FAM64A 
NM_001195228 // RefSeq // Homo sapiens family with sequence similarity 64, 
member A (FA -2.48059 

CENPK 
NM_001267038 // RefSeq // Homo sapiens centromere protein K (CENPK), 

transcript variant -2.47994 

HTR1D 
NM_000864 // RefSeq // Homo sapiens 5-hydroxytryptamine (serotonin) receptor 
1D, G prot -2.4733 

GINS2 
NM_016095 // RefSeq // Homo sapiens GINS complex subunit 2 (Psf2 homolog) 

(GINS2), mRNA -2.46952 

HIST1H2BI 
NM_003525 // RefSeq // Homo sapiens histone cluster 1, H2bi (HIST1H2BI), 
mRNA. // chr6  -2.46158 

E2F7 
NM_203394 // RefSeq // Homo sapiens E2F transcription factor 7 (E2F7), mRNA. 

// chr12 / -2.46125 

KIF20A 
NM_005733 // RefSeq // Homo sapiens kinesin family member 20A (KIF20A), 
mRNA. // chr5 / -2.4581 

COMMD8 
NM_017845 // RefSeq // Homo sapiens COMM domain containing 8 (COMMD8), 

mRNA. // chr4 // -2.45305 

KIF18B 
NM_001264573 // RefSeq // Homo sapiens kinesin family member 18B (KIF18B), 
transcript v -2.44763 

SLC7A5 
NM_003486 // RefSeq // Homo sapiens solute carrier family 7 (amino acid 

transporter lig -2.44165 

HIST1H2AB 
NM_003513 // RefSeq // Homo sapiens histone cluster 1, H2ab (HIST1H2AB), 
mRNA. // chr6  -2.4379 

GPR19 
NM_006143 // RefSeq // Homo sapiens G protein-coupled receptor 19 (GPR19), 

mRNA. // chr -2.43532 

MCM10 
NM_018518 // RefSeq // Homo sapiens minichromosome maintenance 10 
replication initiatio -2.42739 

KIF11 
NM_004523 // RefSeq // Homo sapiens kinesin family member 11 (KIF11), 

mRNA. // chr10 // -2.41916 

KNTC1 
NM_014708 // RefSeq // Homo sapiens kinetochore associated 1 (KNTC1), 
mRNA. // chr12 // -2.41799 

ARID3B 
NM_001307939 // RefSeq // Homo sapiens AT rich interactive domain 3B 

(BRIGHT-like) (ARI -2.4156 

MIF4GD 
NM_001242498 // RefSeq // Homo sapiens MIF4G domain containing (MIF4GD), 
transcript var -2.4132 

TNFRSF9 
NM_001561 // RefSeq // Homo sapiens tumor necrosis factor receptor 

superfamily, member  -2.41134 

HIST1H3B 
NM_003537 // RefSeq // Homo sapiens histone cluster 1, H3b (HIST1H3B), 

mRNA. // chr6 // -2.4016 

DTL 
NM_001286229 // RefSeq // Homo sapiens denticleless E3 ubiquitin protein ligase 

homolog -2.39383 

CDCA8 
NM_001256875 // RefSeq // Homo sapiens cell division cycle associated 8 

(CDCA8), transc -2.39189 

DEPDC1 
NM_001114120 // RefSeq // Homo sapiens DEP domain containing 1 (DEPDC1), 

transcript var -2.39187 

ZIK1 
NM_001010879 // RefSeq // Homo sapiens zinc finger protein interacting with K 

protein 1 -2.37509 

NTAN1 
NM_001270766 // RefSeq // Homo sapiens N-terminal asparagine amidase 

(NTAN1), transcrip -2.37377 

SPAG5 
NM_006461 // RefSeq // Homo sapiens sperm associated antigen 5 (SPAG5), 

mRNA. // chr17  -2.36951 

CDKN3 
NM_001130851 // RefSeq // Homo sapiens cyclin-dependent kinase inhibitor 3 

(CDKN3), tra -2.36825 
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GSG2 
NM_031965 // RefSeq // Homo sapiens germ cell associated 2 (haspin) (GSG2), 

mRNA. // ch -2.36041 

TOB2P1 
NR_002936 // RefSeq // Homo sapiens transducer of ERBB2, 2 pseudogene 1 

(TOB2P1), non-c -2.35917 

STAG3 
NM_001282716 // RefSeq // Homo sapiens stromal antigen 3 (STAG3), transcript 
variant 2, -2.3581 

ASPM 
NM_001206846 // RefSeq // Homo sapiens abnormal spindle microtubule 

assembly (ASPM), tr -2.34388 

ORC1 
NM_001190818 // RefSeq // Homo sapiens origin recognition complex, subunit 1 
(ORC1), tr -2.34261 

NDC80 
NM_006101 // RefSeq // Homo sapiens NDC80 kinetochore complex component 

(NDC80), mRNA.  -2.33825 

MIR634 
NR_030364 // RefSeq // Homo sapiens microRNA 634 (MIR634), microRNA. // 
chr17 // 100 // -2.33724 

SPC25 
NM_020675 // RefSeq // Homo sapiens SPC25, NDC80 kinetochore complex 

component (SPC25), -2.3364 

LRRCC1 
NM_033402 // RefSeq // Homo sapiens leucine rich repeat and coiled-coil 
centrosomal pro -2.33023 

CBX1 
NM_001127228 // RefSeq // Homo sapiens chromobox homolog 1 (CBX1), 

transcript variant 2 -2.32889 

ARL17A 
uc010wwt.2 // UCSC Genes // Homo sapiens ADP-ribosylation factor-like 17A 
(ARL17A), tra -2.32815 

PTTG1 
NM_001282382 // RefSeq // Homo sapiens pituitary tumor-transforming 1 

(PTTG1), transcri -2.32531 

TOP2A 
NM_001067 // RefSeq // Homo sapiens topoisomerase (DNA) II alpha 170kDa 
(TOP2A), mRNA.  -2.31916 

RPL23AP53 
NR_003572 // RefSeq // Homo sapiens ribosomal protein L23a pseudogene 53 

(RPL23AP53), n -2.31843 

NCAPH 
NM_001281710 // RefSeq // Homo sapiens non-SMC condensin I complex, 
subunit H (NCAPH),  -2.31523 

PLK4 
NM_001190799 // RefSeq // Homo sapiens polo-like kinase 4 (PLK4), transcript 

variant 2, -2.31308 

SYNE2 
NM_015180 // RefSeq // Homo sapiens spectrin repeat containing, nuclear 
envelope 2 (SYN -2.30654 

GINS4 
NM_032336 // RefSeq // Homo sapiens GINS complex subunit 4 (Sld5 homolog) 

(GINS4), mRNA -2.30582 

AUNIP 
NM_001287490 // RefSeq // Homo sapiens aurora kinase A and ninein interacting 
protein ( -2.30536 

SKA3 
NM_001166017 // RefSeq // Homo sapiens spindle and kinetochore associated 

complex subun -2.29483 

HIST1H1E 
NM_005321 // RefSeq // Homo sapiens histone cluster 1, H1e (HIST1H1E), 
mRNA. // chr6 // -2.29437 

ARSB 
NM_000046 // RefSeq // Homo sapiens arylsulfatase B (ARSB), transcript variant 

1, mRNA. -2.28673 

SLC1A5 
NM_001145144 // RefSeq // Homo sapiens solute carrier family 1 (neutral amino 
acid tran -2.28431 

RAD54L 
NM_001142548 // RefSeq // Homo sapiens RAD54-like (S. cerevisiae) 

(RAD54L), transcript  -2.28079 

TTK 
NM_001166691 // RefSeq // Homo sapiens TTK protein kinase (TTK), transcript 
variant 2,  -2.28067 

MTBP 
NM_022045 // RefSeq // Homo sapiens MDM2 binding protein (MTBP), mRNA. 

// chr8 // 100 / -2.28056 

MXRA8 
NM_001282582 // RefSeq // Homo sapiens matrix-remodelling associated 8 

(MXRA8), transcr -2.27993 

ALDH1L2 
NM_001034173 // RefSeq // Homo sapiens aldehyde dehydrogenase 1 family, 

member L2 (ALDH -2.27302 

TIMM21 
NM_014177 // RefSeq // Homo sapiens translocase of inner mitochondrial 

membrane 21 homo -2.26865 

HMGB2 
NM_001130688 // RefSeq // Homo sapiens high mobility group box 2 (HMGB2), 

transcript va -2.26709 

C1orf112 
NM_018186 // RefSeq // Homo sapiens chromosome 1 open reading frame 112 

(C1orf112), mRN -2.25193 

NET1 
NM_001047160 // RefSeq // Homo sapiens neuroepithelial cell transforming 1 

(NET1), tran -2.24356 

LOC105374104 
XR_924474 // RefSeq // PREDICTED: Homo sapiens uncharacterized 

LOC105374104 (LOC1053741 -2.24206 

QIQN5815 
AY358807 // GenBank // Homo sapiens clone DNA129580 QIQN5815 

(UNQ5815) mRNA, complete c -2.24121 
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HIST1H2AJ 
NM_021066 // RefSeq // Homo sapiens histone cluster 1, H2aj (HIST1H2AJ), 

mRNA. // chr6  -2.24093 

ESCO2 
NM_001017420 // RefSeq // Homo sapiens establishment of sister chromatid 

cohesion N-ace -2.23819 

CDC45 
NM_001178010 // RefSeq // Homo sapiens cell division cycle 45 (CDC45), 
transcript varia -2.22858 

SLC25A40 
NM_018843 // RefSeq // Homo sapiens solute carrier family 25, member 40 

(SLC25A40), mRN -2.22491 

MELK 
NM_001256685 // RefSeq // Homo sapiens maternal embryonic leucine zipper 
kinase (MELK), -2.2229 

NUF2 
NM_031423 // RefSeq // Homo sapiens NUF2, NDC80 kinetochore complex 

component (NUF2), t -2.21993 

FBN1 
NM_000138 // RefSeq // Homo sapiens fibrillin 1 (FBN1), mRNA. // chr15 // 100 
// 92 //  -2.21078 

RNASEH2A 
NM_006397 // RefSeq // Homo sapiens ribonuclease H2, subunit A 

(RNASEH2A), mRNA. // chr -2.21014 

HMMR 
NM_001142556 // RefSeq // Homo sapiens hyaluronan-mediated motility receptor 
(RHAMM) (H -2.2026 

FLJ36000 
NR_027084 // RefSeq // Homo sapiens uncharacterized FLJ36000 (FLJ36000), 

long non-codin -2.20157 

LOC729732 
NR_047662 // RefSeq // Homo sapiens uncharacterized LOC729732 
(LOC729732), long non-cod -2.20116 

CDK1 
NM_001170406 // RefSeq // Homo sapiens cyclin-dependent kinase 1 (CDK1), 

transcript var -2.20087 

FANCD2 
NM_001018115 // RefSeq // Homo sapiens Fanconi anemia, complementation 
group D2 (FANCD2 -2.19693 

RRM2 
NM_001034 // RefSeq // Homo sapiens ribonucleotide reductase M2 (RRM2), 

transcript vari -2.19325 

DMC1 
NM_001278208 // RefSeq // Homo sapiens DNA meiotic recombinase 1 (DMC1), 
transcript var -2.19226 

PRIM1 
NM_000946 // RefSeq // Homo sapiens primase, DNA, polypeptide 1 (49kDa) 

(PRIM1), mRNA.  -2.19159 

HIST1H1C 
NM_005319 // RefSeq // Homo sapiens histone cluster 1, H1c (HIST1H1C), 
mRNA. // chr6 // -2.19158 

HIST1H2BM 
NM_003521 // RefSeq // Homo sapiens histone cluster 1, H2bm (HIST1H2BM), 

mRNA. // chr6  -2.19058 

LOC389831 
NM_001242480 // RefSeq // Homo sapiens uncharacterized LOC389831 
(LOC389831), mRNA. //  -2.18987 

TK1 
NM_003258 // RefSeq // Homo sapiens thymidine kinase 1, soluble (TK1), 

mRNA. // chr17 / -2.18966 

TXNDC16 
NM_001160047 // RefSeq // Homo sapiens thioredoxin domain containing 16 
(TXNDC16), tran -2.18921 

CDCA2 
NM_152562 // RefSeq // Homo sapiens cell division cycle associated 2 (CDCA2), 

mRNA. //  -2.18685 

CEP128 
NM_152446 // RefSeq // Homo sapiens centrosomal protein 128kDa (CEP128), 
mRNA. // chr14 -2.18442 

ZNF318 
NM_014345 // RefSeq // Homo sapiens zinc finger protein 318 (ZNF318), mRNA. 

// chr6 //  -2.18214 

PRC1 
NM_001267580 // RefSeq // Homo sapiens protein regulator of cytokinesis 1 
(PRC1), trans -2.17532 

CLSPN 
NM_001190481 // RefSeq // Homo sapiens claspin (CLSPN), transcript variant 2, 

mRNA. //  -2.17491 

CENPE 
NM_001286734 // RefSeq // Homo sapiens centromere protein E, 312kDa 

(CENPE), transcript -2.17471 

LOC105376944 
XR_936590 // RefSeq // PREDICTED: Homo sapiens uncharacterized 

LOC105376944 (LOC1053769 -2.17244 

CHAC1 
NM_001142776 // RefSeq // Homo sapiens ChaC glutathione-specific gamma-

glutamylcyclotra -2.17196 

KIFC1 
NM_002263 // RefSeq // Homo sapiens kinesin family member C1 (KIFC1), 

mRNA. // chr6 //  -2.16841 

BIRC5 
NM_001012270 // RefSeq // Homo sapiens baculoviral IAP repeat containing 5 

(BIRC5), tra -2.16823 

NUSAP1 
NM_001243142 // RefSeq // Homo sapiens nucleolar and spindle associated 

protein 1 (NUSA -2.15713 

ARHGAP11B 
OTTHUMT00000430733 // Havana transcript // Rho GTPase activating protein 

11B[gene_bioty -2.15201 

MCM8 
NM_001281520 // RefSeq // Homo sapiens minichromosome maintenance 8 

homologous recombin -2.15079 
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EIF4EBP1 
NM_004095 // RefSeq // Homo sapiens eukaryotic translation initiation factor 4E 

binding -2.14859 

ZNF257 
NM_033468 // RefSeq // Homo sapiens zinc finger protein 257 (ZNF257), mRNA. 

// chr19 // -2.14772 

BORA 
NM_001286746 // RefSeq // Homo sapiens bora, aurora kinase A activator 
(BORA), transcri -2.14507 

ZNF362 
NM_152493 // RefSeq // Homo sapiens zinc finger protein 362 (ZNF362), mRNA. 

// chr1 //  -2.13866 

HIST1H4B 
NM_003544 // RefSeq // Homo sapiens histone cluster 1, H4b (HIST1H4B), 
mRNA. // chr6 // -2.13846 

PLK1 
NM_005030 // RefSeq // Homo sapiens polo-like kinase 1 (PLK1), mRNA. // 

chr16 // 100 // -2.13694 

PDS5B 
NM_015032 // RefSeq // Homo sapiens PDS5 cohesin associated factor B 
(PDS5B), mRNA. //  -2.12941 

ASF1B 
NM_018154 // RefSeq // Homo sapiens anti-silencing function 1B histone 

chaperone (ASF1B -2.12772 

PSMG2 
NM_020232 // RefSeq // Homo sapiens proteasome (prosome, macropain) 
assembly chaperone  -2.12637 

MAP1B 
NM_005909 // RefSeq // Homo sapiens microtubule-associated protein 1B 

(MAP1B), mRNA. // -2.11948 

MMD 
NM_012329 // RefSeq // Homo sapiens monocyte to macrophage differentiation-
associated ( -2.11831 

LMNB2 
NM_032737 // RefSeq // Homo sapiens lamin B2 (LMNB2), mRNA. // chr19 // 

100 // 94 // 29 -2.11778 

C7orf60 
NM_152556 // RefSeq // Homo sapiens chromosome 7 open reading frame 60 
(C7orf60), mRNA. -2.11543 

NCAPG 
NM_022346 // RefSeq // Homo sapiens non-SMC condensin I complex, subunit G 

(NCAPG), tra -2.11229 

FAM222B 
NM_001077498 // RefSeq // Homo sapiens family with sequence similarity 222, 
member B (F -2.11169 

XK 
NM_021083 // RefSeq // Homo sapiens X-linked Kx blood group (XK), mRNA. // 

chrX // 100  -2.0995 

CLMP 
NM_024769 // RefSeq // Homo sapiens CXADR-like membrane protein (CLMP), 
mRNA. // chr11  -2.08887 

CDK14 
NM_001287135 // RefSeq // Homo sapiens cyclin-dependent kinase 14 (CDK14), 

transcript v -2.08755 

DSCC1 
NM_024094 // RefSeq // Homo sapiens DNA replication and sister chromatid 
cohesion 1 (DS -2.08379 

ZNF732 
NM_001137608 // RefSeq // Homo sapiens zinc finger protein 732 (ZNF732), 

mRNA. // chr4  -2.07746 

TEX15 
NM_031271 // RefSeq // Homo sapiens testis expressed 15 (TEX15), mRNA. // 
chr8 // 100 / -2.07638 

FOPNL 
NM_001304497 // RefSeq // Homo sapiens FGFR1OP N-terminal like (FOPNL), 

transcript vari -2.07263 

LOC105370623 
XR_915902 // RefSeq // PREDICTED: Homo sapiens uncharacterized 
LOC105370623 (LOC1053706 -2.06905 

MDC1 
NM_014641 // RefSeq // Homo sapiens mediator of DNA-damage checkpoint 1 

(MDC1), mRNA. / -2.06881 

NFATC3 
NM_004555 // RefSeq // Homo sapiens nuclear factor of activated T-cells, 
cytoplasmic, c -2.06809 

ECT2 
NM_001258315 // RefSeq // Homo sapiens epithelial cell transforming 2 (ECT2), 

transcrip -2.06422 

STIL 
NM_001048166 // RefSeq // Homo sapiens SCL/TAL1 interrupting locus (STIL), 

transcript v -2.06414 

MYL9 
NM_006097 // RefSeq // Homo sapiens myosin, light chain 9, regulatory (MYL9), 

transcrip -2.06385 

CDC6 
NM_001254 // RefSeq // Homo sapiens cell division cycle 6 (CDC6), mRNA. // 

chr17 // 100 -2.05956 

ZBED8 
NM_001303251 // RefSeq // Homo sapiens zinc finger, BED-type containing 8 

(ZBED8), tran -2.05872 

KIF14 
NM_001305792 // RefSeq // Homo sapiens kinesin family member 14 (KIF14), 

transcript var -2.05825 

ETV4 
NM_001079675 // RefSeq // Homo sapiens ets variant 4 (ETV4), transcript variant 

2, mRNA -2.05774 

LINC01096 
NR_015450 // RefSeq // Homo sapiens long intergenic non-protein coding RNA 

1096 (LINC01 -2.05319 

RTKN2 
NM_001282941 // RefSeq // Homo sapiens rhotekin 2 (RTKN2), transcript variant 

2, mRNA.  -2.0494 
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DIAPH3 
NM_001042517 // RefSeq // Homo sapiens diaphanous-related formin 3 

(DIAPH3), transcript -2.04876 

HIST1H2AI 
NM_003509 // RefSeq // Homo sapiens histone cluster 1, H2ai (HIST1H2AI), 

mRNA. // chr6  -2.04656 

LOC105373133 
XM_011508982 // RefSeq // PREDICTED: Homo sapiens uncharacterized 
LOC105373133 (LOC1053 -2.04589 

MEAT6 
NR_131926 // RefSeq // Homo sapiens melanoma-associated transcript 6 

(MEAT6), long non- -2.04357 

CKAP2 
NM_001098525 // RefSeq // Homo sapiens cytoskeleton associated protein 2 
(CKAP2), trans -2.03953 

LOC257396 
NR_034107 // RefSeq // Homo sapiens uncharacterized LOC257396 

(LOC257396), transcript v -2.03846 

MCM5 
NM_006739 // RefSeq // Homo sapiens minichromosome maintenance complex 
component 5 (MCM -2.03843 

CENPU 
NM_024629 // RefSeq // Homo sapiens centromere protein U (CENPU), transcript 

variant 1, -2.03755 

C9orf84 
NM_001080551 // RefSeq // Homo sapiens chromosome 9 open reading frame 84 
(C9orf84), tr -2.03306 

EFEMP1 
NM_001039348 // RefSeq // Homo sapiens EGF containing fibulin-like 

extracellular matrix -2.02715 

DEPDC1B 
NM_001145208 // RefSeq // Homo sapiens DEP domain containing 1B 
(DEPDC1B), transcript v -2.02609 

OIP5 
NM_007280 // RefSeq // Homo sapiens Opa interacting protein 5 (OIP5), mRNA. 

// chr15 // -2.02582 

PKMYT1 
NM_001258450 // RefSeq // Homo sapiens protein kinase, membrane associated 
tyrosine/thr -2.02559 

ZWINT 
NM_001005413 // RefSeq // Homo sapiens ZW10 interacting kinetochore protein 

(ZWINT), tr -2.0218 

RPL39L 
NM_052969 // RefSeq // Homo sapiens ribosomal protein L39-like (RPL39L), 
mRNA. // chr3  -2.01873 

TBC1D22A-

AS1 
NR_122047 // RefSeq // Homo sapiens TBC1D22A antisense RNA 1 
(TBC1D22A-AS1), long non-c -2.0186 

CEP55 
NM_001127182 // RefSeq // Homo sapiens centrosomal protein 55kDa (CEP55), 

transcript va -2.01809 

EZR 
NM_001111077 // RefSeq // Homo sapiens ezrin (EZR), transcript variant 2, 

mRNA. // chr6 -2.01395 

RBL1 
NM_002895 // RefSeq // Homo sapiens retinoblastoma-like 1 (RBL1), transcript 

variant 1, -2.01384 

TRO 
NM_001039705 // RefSeq // Homo sapiens trophinin (TRO), transcript variant 6, 
mRNA. //  -2.01381 

RFC3 
NM_002915 // RefSeq // Homo sapiens replication factor C (activator 1) 3, 38kDa 

(RFC3), -2.01231 

SUZ12 
NM_015355 // RefSeq // Homo sapiens SUZ12 polycomb repressive complex 2 
subunit (SUZ12) -2.00955 

EBAG9 
NM_001278938 // RefSeq // Homo sapiens estrogen receptor binding site 

associated, antig -2.00784 

DDIAS 
NM_145018 // RefSeq // Homo sapiens DNA damage-induced apoptosis 
suppressor (DDIAS), mR -2.0062 

KIF5C 
NM_004522 // RefSeq // Homo sapiens kinesin family member 5C (KIF5C), 

transcript varian -2.00381 

CENPA 
NM_001042426 // RefSeq // Homo sapiens centromere protein A (CENPA), 

transcript variant -2.00203 

ZWILCH 
NM_001287821 // RefSeq // Homo sapiens zwilch kinetochore protein (ZWILCH), 

transcript  -1.99939 

FOXM1 
NM_001243088 // RefSeq // Homo sapiens forkhead box M1 (FOXM1), transcript 

variant 4, m -1.99913 

IQGAP3 
NM_178229 // RefSeq // Homo sapiens IQ motif containing GTPase activating 

protein 3 (IQ -1.9938 

LOC101926892 
NR_110653 // RefSeq // Homo sapiens uncharacterized LOC101926892 

(LOC101926892), long n -1.99268 

MCM3 
NM_001270472 // RefSeq // Homo sapiens minichromosome maintenance 

complex component 3 ( -1.9913 

CENPN 
NM_001100624 // RefSeq // Homo sapiens centromere protein N (CENPN), 

transcript variant -1.989 

BUB1 
NM_001278616 // RefSeq // Homo sapiens BUB1 mitotic checkpoint 

serine/threonine kinase  -1.98889 
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LOC105370496 
XR_915613 // RefSeq // PREDICTED: Homo sapiens uncharacterized 

LOC105370496 (LOC1053704 -1.98868 

FANCB 
NM_001018113 // RefSeq // Homo sapiens Fanconi anemia, complementation 

group B (FANCB), -1.98421 

EML1 
NM_001008707 // RefSeq // Homo sapiens echinoderm microtubule associated 
protein like 1 -1.98099 

STOX1 
NM_001130159 // RefSeq // Homo sapiens storkhead box 1 (STOX1), transcript 

variant 3, m -1.98062 

LRR1 
NM_152329 // RefSeq // Homo sapiens leucine rich repeat protein 1 (LRR1), 
transcript va -1.97781 

KIF20B 
NM_001284259 // RefSeq // Homo sapiens kinesin family member 20B (KIF20B), 

transcript v -1.97745 

CCNE1 
NM_001238 // RefSeq // Homo sapiens cyclin E1 (CCNE1), mRNA. // chr19 // 
100 // 100 //  -1.97705 

AKT3 
NM_001206729 // RefSeq // Homo sapiens v-akt murine thymoma viral oncogene 

homolog 3 (A -1.97689 

DNA2 
NM_001080449 // RefSeq // Homo sapiens DNA replication helicase/nuclease 2 
(DNA2), tran -1.97594 

SIMC1 
NM_001308195 // RefSeq // Homo sapiens SUMO-interacting motifs containing 1 

(SIMC1), tr -1.97594 

CDC20 
NM_001255 // RefSeq // Homo sapiens cell division cycle 20 (CDC20), mRNA. // 
chr1 // 10 -1.97374 

DUSP3 
NM_004090 // RefSeq // Homo sapiens dual specificity phosphatase 3 (DUSP3), 

mRNA. // ch -1.97355 

CEP57 
NM_001243776 // RefSeq // Homo sapiens centrosomal protein 57kDa (CEP57), 
transcript va -1.97149 

UBL7-AS1 
NR_038448 // RefSeq // Homo sapiens UBL7 antisense RNA 1 (head to head) 

(UBL7-AS1), tra -1.96607 

RMND5A 
NM_022780 // RefSeq // Homo sapiens required for meiotic nuclear division 5 
homolog A ( -1.96548 

ITGB3BP 
NM_001206739 // RefSeq // Homo sapiens integrin beta 3 binding protein (beta3-

endonexin -1.96401 

DSN1 
NM_001145315 // RefSeq // Homo sapiens DSN1 homolog, MIS12 kinetochore 
complex componen -1.96374 

AURKB 
NM_001256834 // RefSeq // Homo sapiens aurora kinase B (AURKB), transcript 

variant 2, m -1.96293 

KNSTRN 
NM_001142761 // RefSeq // Homo sapiens kinetochore-localized astrin/SPAG5 
binding prote -1.96223 

MIR130B 
NR_029845 // RefSeq // Homo sapiens microRNA 130b (MIR130B), microRNA. 

// chr22 // 100  -1.96164 

AGBL2 
NM_024783 // RefSeq // Homo sapiens ATP/GTP binding protein-like 2 
(AGBL2), mRNA. // ch -1.95597 

ZNF680 
NM_001130022 // RefSeq // Homo sapiens zinc finger protein 680 (ZNF680), 

transcript var -1.95506 

HIST1H4K 
NM_003541 // RefSeq // Homo sapiens histone cluster 1, H4k (HIST1H4K), 
mRNA. // chr6 // -1.95383 

LAMP3 
NM_014398 // RefSeq // Homo sapiens lysosomal-associated membrane protein 3 

(LAMP3), mR -1.95296 

MEIOB 
NM_001163560 // RefSeq // Homo sapiens meiosis specific with OB domains 
(MEIOB), transc -1.95292 

TTF2 
NM_003594 // RefSeq // Homo sapiens transcription termination factor, RNA 

polymerase II -1.95057 

HADH 
NM_001184705 // RefSeq // Homo sapiens hydroxyacyl-CoA dehydrogenase 

(HADH), transcript -1.9487 

FAM225A 
NR_024366 // RefSeq // Homo sapiens family with sequence similarity 225, 

member A (non- -1.94812 

PRR14 
NM_024031 // RefSeq // Homo sapiens proline rich 14 (PRR14), mRNA. // chr16 

// 96 // 10 -1.94609 

RAD51AP1 
NM_001130862 // RefSeq // Homo sapiens RAD51 associated protein 1 

(RAD51AP1), transcrip -1.94598 

LOC729088 
XR_951689 // RefSeq // PREDICTED: Homo sapiens uncharacterized 

LOC729088 (LOC729088), m -1.94595 

MCM7 
NM_001278595 // RefSeq // Homo sapiens minichromosome maintenance 

complex component 7 ( -1.94178 

KIF2C 
NM_001297655 // RefSeq // Homo sapiens kinesin family member 2C (KIF2C), 

transcript var -1.94093 

LIG3 
ENST00000378526 // ENSEMBL // ligase III, DNA, ATP-dependent 

[gene_biotype:protein_codi -1.94081 
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SOBP 
NM_018013 // RefSeq // Homo sapiens sine oculis binding protein homolog 

(SOBP), mRNA. / -1.9385 

LCLAT1 
NM_001002257 // RefSeq // Homo sapiens lysocardiolipin acyltransferase 1 

(LCLAT1), tran -1.93616 

CEP162 
NM_001286206 // RefSeq // Homo sapiens centrosomal protein 162kDa 
(CEP162), transcript  -1.93355 

SMC4 
NM_001002800 // RefSeq // Homo sapiens structural maintenance of 

chromosomes 4 (SMC4),  -1.9333 

HJURP 
NM_001282962 // RefSeq // Homo sapiens Holliday junction recognition protein 
(HJURP), t -1.93232 

NDRG1 
NM_001135242 // RefSeq // Homo sapiens N-myc downstream regulated 1 

(NDRG1), transcript -1.9301 

TROAP 
NM_001100620 // RefSeq // Homo sapiens trophinin associated protein (TROAP), 
transcript -1.92979 

GINS1 
NM_021067 // RefSeq // Homo sapiens GINS complex subunit 1 (Psf1 homolog) 

(GINS1), mRNA -1.92743 

POLA2 
NM_002689 // RefSeq // Homo sapiens polymerase (DNA directed), alpha 2, 
accessory subun -1.92498 

SGOL2 
NM_001160033 // RefSeq // Homo sapiens shugoshin-like 2 (S. pombe) (SGOL2), 

transcript  -1.92472 

USP1 
NM_001017415 // RefSeq // Homo sapiens ubiquitin specific peptidase 1 (USP1), 
transcrip -1.92398 

EMP2 
NM_001424 // RefSeq // Homo sapiens epithelial membrane protein 2 (EMP2), 

mRNA. // chr1 -1.92346 

PTENP1 
NR_023917 // RefSeq // Homo sapiens phosphatase and tensin homolog 
pseudogene 1 (functi -1.92251 

CENPI 
NM_006733 // RefSeq // Homo sapiens centromere protein I (CENPI), mRNA. // 

chrX // 100  -1.92228 

ATP11A 
NM_015205 // RefSeq // Homo sapiens ATPase, class VI, type 11A (ATP11A), 
transcript var -1.92057 

FAM65A 
NM_001193522 // RefSeq // Homo sapiens family with sequence similarity 65, 

member A (FA -1.91896 

MCM2 
NM_004526 // RefSeq // Homo sapiens minichromosome maintenance complex 
component 2 (MCM -1.91833 

MUC1 
NM_001018016 // RefSeq // Homo sapiens mucin 1, cell surface associated 

(MUC1), transcr -1.91794 

SHCBP1 
NM_024745 // RefSeq // Homo sapiens SHC SH2-domain binding protein 1 
(SHCBP1), mRNA. // -1.91675 

UBE2C 
NM_001281741 // RefSeq // Homo sapiens ubiquitin-conjugating enzyme E2C 

(UBE2C), transc -1.91653 

PROSER1 
NM_025138 // RefSeq // Homo sapiens proline and serine rich 1 (PROSER1), 
mRNA. // chr13 -1.91487 

TGOLN2 
NM_001206840 // RefSeq // Homo sapiens trans-golgi network protein 2 

(TGOLN2), transcri -1.91374 

HIST1H4C 
NM_003542 // RefSeq // Homo sapiens histone cluster 1, H4c (HIST1H4C), 
mRNA. // chr6 // -1.91322 

GAS2L3 
NM_001303130 // RefSeq // Homo sapiens growth arrest-specific 2 like 3 

(GAS2L3), transc -1.90984 

MTFR2 
NM_001099286 // RefSeq // Homo sapiens mitochondrial fission regulator 2 
(MTFR2), trans -1.90928 

PDCD4 
NM_001199492 // RefSeq // Homo sapiens programmed cell death 4 (neoplastic 

transformati -1.90912 

BRIP1 
NM_032043 // RefSeq // Homo sapiens BRCA1 interacting protein C-terminal 

helicase 1 (BR -1.90746 

TMPO-AS1 
NR_027157 // RefSeq // Homo sapiens TMPO antisense RNA 1 (TMPO-AS1), 

long non-coding RN -1.90716 

ANLN 
NM_001284301 // RefSeq // Homo sapiens anillin actin binding protein (ANLN), 

transcript -1.90631 

ORC6 
NM_014321 // RefSeq // Homo sapiens origin recognition complex, subunit 6 

(ORC6), trans -1.90481 

DOCK11 
NM_144658 // RefSeq // Homo sapiens dedicator of cytokinesis 11 (DOCK11), 

mRNA. // chrX -1.90208 

LOC101927978 
XR_429768 // RefSeq // PREDICTED: Homo sapiens uncharacterized 

LOC101927978 (LOC1019279 -1.90171 

LOC101929475 
XR_242755 // RefSeq // PREDICTED: Homo sapiens uncharacterized 

LOC101929475 (LOC1019294 -1.89932 

TAS2R30 
ENST00000539585 // ENSEMBL // taste receptor, type 2, member 30 

[gene_biotype:protein_c -1.8989 
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CSTF3-AS1 
NR_034027 // RefSeq // Homo sapiens CSTF3 antisense RNA 1 (head to head) 

(CSTF3-AS1), l -1.89843 

MIR644A 
NR_030374 // RefSeq // Homo sapiens microRNA 644a (MIR644A), microRNA. 

// chr20 // 100  -1.89717 

LOC729987 
NR_046088 // RefSeq // Homo sapiens uncharacterized LOC729987 
(LOC729987), long non-cod -1.89649 

NPR2 
NM_003995 // RefSeq // Homo sapiens natriuretic peptide receptor 2 (NPR2), 

mRNA. // chr -1.89617 

BASP1 
NM_001271606 // RefSeq // Homo sapiens brain abundant, membrane attached 
signal protein -1.89362 

POLE 
NM_006231 // RefSeq // Homo sapiens polymerase (DNA directed), epsilon, 

catalytic subun -1.89189 

FAM161A 
NM_001201543 // RefSeq // Homo sapiens family with sequence similarity 161, 
member A (F -1.89113 

POLE2 
NM_001197330 // RefSeq // Homo sapiens polymerase (DNA directed), epsilon 2, 

accessory  -1.89109 

MDM1 
NM_001205028 // RefSeq // Homo sapiens Mdm1 nuclear protein (MDM1), 
transcript variant  -1.89068 

LOC728755 
XR_110268 // RefSeq // PREDICTED: Homo sapiens uncharacterized 

LOC728755 (LOC728755), t -1.89014 

SCML2 
NM_006089 // RefSeq // Homo sapiens sex comb on midleg-like 2 (Drosophila) 
(SCML2), tra -1.88981 

MCM4 
NM_005914 // RefSeq // Homo sapiens minichromosome maintenance complex 

component 4 (MCM -1.88922 

LOC101929140 
NR_120423 // RefSeq // Homo sapiens uncharacterized LOC101929140 
(LOC101929140), long n -1.88758 

ARHGAP11A 
NM_001286479 // RefSeq // Homo sapiens Rho GTPase activating protein 11A 

(ARHGAP11A), t -1.88685 

RPGRIP1L 
NM_001127897 // RefSeq // Homo sapiens RPGRIP1-like (RPGRIP1L), transcript 
variant 2, m -1.88681 

RAD54B 
NM_001205262 // RefSeq // Homo sapiens RAD54 homolog B (S. cerevisiae) 

(RAD54B), transc -1.88542 

WDHD1 
NM_001008396 // RefSeq // Homo sapiens WD repeat and HMG-box DNA 
binding protein 1 (WDH -1.88414 

MGME1 
NM_001310338 // RefSeq // Homo sapiens mitochondrial genome maintenance 

exonuclease 1 ( -1.88245 

KIF5A 
NM_004984 // RefSeq // Homo sapiens kinesin family member 5A (KIF5A), 
mRNA. // chr12 // -1.8816 

SFXN2 
NM_178858 // RefSeq // Homo sapiens sideroflexin 2 (SFXN2), mRNA. // chr10 // 

100 // 83 -1.87955 

AMOT 
NM_001113490 // RefSeq // Homo sapiens angiomotin (AMOT), transcript variant 
1, mRNA. / -1.87808 

GGH 
NM_003878 // RefSeq // Homo sapiens gamma-glutamyl hydrolase (conjugase, 

folylpolygamma -1.87685 

PARPBP 
NM_017915 // RefSeq // Homo sapiens PARP1 binding protein (PARPBP), 
mRNA. // chr12 // 1 -1.87651 

CABYR 
NM_001308231 // RefSeq // Homo sapiens calcium binding tyrosine-(Y)-

phosphorylation reg -1.87627 

SLC1A4 
NM_001193493 // RefSeq // Homo sapiens solute carrier family 1 
(glutamate/neutral amino -1.87597 

TAS2R31 
NM_176885 // RefSeq // Homo sapiens taste receptor, type 2, member 31 

(TAS2R31), mRNA.  -1.87416 

NUP54 
NM_001278603 // RefSeq // Homo sapiens nucleoporin 54kDa (NUP54), 

transcript variant 2, -1.87409 

KIAA1524 
NM_020890 // RefSeq // Homo sapiens KIAA1524 (KIAA1524), mRNA. // chr3 // 

100 // 88 //  -1.87288 

HOXD4 
NM_014621 // RefSeq // Homo sapiens homeobox D4 (HOXD4), mRNA. // chr2 // 

100 // 58 //  -1.86893 

FANCG 
NM_004629 // RefSeq // Homo sapiens Fanconi anemia, complementation group 

G (FANCG), mR -1.86851 

PLCB4 
NM_000933 // RefSeq // Homo sapiens phospholipase C, beta 4 (PLCB4), 

transcript variant -1.86727 

TRIP13 
NM_001166260 // RefSeq // Homo sapiens thyroid hormone receptor interactor 13 

(TRIP13), -1.86307 

ARID2 
NM_152641 // RefSeq // Homo sapiens AT rich interactive domain 2 (ARID, 

RFX-like) (ARID -1.86176 

GLI1 
NM_001160045 // RefSeq // Homo sapiens GLI family zinc finger 1 (GLI1), 

transcript vari -1.86078 
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CASC5 
NM_144508 // RefSeq // Homo sapiens cancer susceptibility candidate 5 

(CASC5), transcri -1.86076 

SLC6A8 
NM_001142805 // RefSeq // Homo sapiens solute carrier family 6 

(neurotransmitter transp -1.85991 

GADD45B 
NM_015675 // RefSeq // Homo sapiens growth arrest and DNA-damage-inducible, 
beta (GADD4 -1.85935 

DHFR 
NM_000791 // RefSeq // Homo sapiens dihydrofolate reductase (DHFR), transcript 

variant  -1.85934 

CENPW 
NM_001012507 // RefSeq // Homo sapiens centromere protein W (CENPW), 
transcript variant -1.859 

MIR548O2 
NR_039605 // RefSeq // Homo sapiens microRNA 548o-2 (MIR548O2), 

microRNA. // chr20 // 1 -1.85846 

GTSE1 
NM_016426 // RefSeq // Homo sapiens G-2 and S-phase expressed 1 (GTSE1), 
mRNA. // chr22 -1.85696 

UBE2T 
NM_001310326 // RefSeq // Homo sapiens ubiquitin-conjugating enzyme E2T 

(UBE2T), transc -1.85677 

FAM46D 
NM_001170574 // RefSeq // Homo sapiens family with sequence similarity 46, 
member D (FA -1.85511 

CCDC18 
NM_001306076 // RefSeq // Homo sapiens coiled-coil domain containing 18 

(CCDC18), trans -1.85401 

CEP295 
NM_033395 // RefSeq // Homo sapiens centrosomal protein 295kDa (CEP295), 
mRNA. // chr11 -1.85271 

GEN1 
NM_001130009 // RefSeq // Homo sapiens GEN1 Holliday junction 5 flap 

endonuclease (GEN1 -1.84863 

CHAF1A 
NM_005483 // RefSeq // Homo sapiens chromatin assembly factor 1, subunit A 
(p150) (CHAF -1.84837 

ZNF681 
NM_138286 // RefSeq // Homo sapiens zinc finger protein 681 (ZNF681), mRNA. 

// chr19 // -1.84784 

CT47B1 
NM_001145718 // RefSeq // Homo sapiens cancer/testis antigen family 47, 
member B1 (CT47 -1.84425 

CEP152 
NM_001194998 // RefSeq // Homo sapiens centrosomal protein 152kDa 

(CEP152), transcript  -1.84363 

SGOL1-AS1 
NR_132785 // RefSeq // Homo sapiens SGOL1 antisense RNA 1 (SGOL1-AS1), 
long non-coding  -1.84356 

EXOSC1 
NM_016046 // RefSeq // Homo sapiens exosome component 1 (EXOSC1), 

mRNA. // chr10 // 100 -1.84285 

COL12A1 
NM_004370 // RefSeq // Homo sapiens collagen, type XII, alpha 1 (COL12A1), 
transcript v -1.84184 

HEG1 
NM_020733 // RefSeq // Homo sapiens heart development protein with EGF-like 

domains 1 ( -1.8418 

FEN1 
NM_004111 // RefSeq // Homo sapiens flap structure-specific endonuclease 1 
(FEN1), mRNA -1.83949 

ERCC6L 
NM_017669 // RefSeq // Homo sapiens excision repair cross-complementation 

group 6-like  -1.83925 

REEP4 
NM_025232 // RefSeq // Homo sapiens receptor accessory protein 4 (REEP4), 
mRNA. // chr8 -1.83588 

ZNF100 
NM_173531 // RefSeq // Homo sapiens zinc finger protein 100 (ZNF100), mRNA. 

// chr19 // -1.83552 

SLC7A1 
NM_003045 // RefSeq // Homo sapiens solute carrier family 7 (cationic amino acid 
transp -1.83206 

PIGP 
NM_153681 // RefSeq // Homo sapiens phosphatidylinositol glycan anchor 

biosynthesis, cl -1.83136 

RASA4B 
ENST00000488284 // ENSEMBL // RAS p21 protein activator 4B 

[gene_biotype:protein_coding -1.82887 

ZNF492 
NM_020855 // RefSeq // Homo sapiens zinc finger protein 492 (ZNF492), mRNA. 

// chr19 // -1.82851 

FOSL1 
NM_001300844 // RefSeq // Homo sapiens FOS-like antigen 1 (FOSL1), transcript 

variant 2 -1.82848 

RNASEH2B 
NM_001142279 // RefSeq // Homo sapiens ribonuclease H2, subunit B 

(RNASEH2B), transcrip -1.82733 

KIF4A 
NM_012310 // RefSeq // Homo sapiens kinesin family member 4A (KIF4A), 

mRNA. // chrX //  -1.82716 

LOC101929787 
XR_917210 // RefSeq // PREDICTED: Homo sapiens uncharacterized 

LOC101929787 (LOC1019297 -1.82688 

SLC16A10 
NM_018593 // RefSeq // Homo sapiens solute carrier family 16 (aromatic amino 

acid trans -1.82569 

RFC5 
NM_001130112 // RefSeq // Homo sapiens replication factor C (activator 1) 5, 

36.5kDa (R -1.82462 
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NEMP1 
NM_001130963 // RefSeq // Homo sapiens nuclear envelope integral membrane 

protein 1 (NE -1.82227 

RPS6KA3 
NM_004586 // RefSeq // Homo sapiens ribosomal protein S6 kinase, 90kDa, 

polypeptide 3 ( -1.82142 

C16orf58 
NM_022744 // RefSeq // Homo sapiens chromosome 16 open reading frame 58 
(C16orf58), mRN -1.82101 

SNORD114-31 
NR_003224 // RefSeq // Homo sapiens small nucleolar RNA, C/D box 114-31 

(SNORD114-31),  -1.82069 

MERTK 
NM_006343 // RefSeq // Homo sapiens MER proto-oncogene, tyrosine kinase 
(MERTK), mRNA.  -1.81997 

CDCA3 
NM_001297602 // RefSeq // Homo sapiens cell division cycle associated 3 

(CDCA3), transc -1.81946 

PABPC4 
NM_001135653 // RefSeq // Homo sapiens poly(A) binding protein, cytoplasmic 4 
(inducibl -1.81677 

E2F8 
NM_001256371 // RefSeq // Homo sapiens E2F transcription factor 8 (E2F8), 

transcript va -1.81673 

CTGF 
NM_001901 // RefSeq // Homo sapiens connective tissue growth factor (CTGF), 
mRNA. // ch -1.81624 

NCAPD2 
NM_014865 // RefSeq // Homo sapiens non-SMC condensin I complex, subunit 

D2 (NCAPD2), m -1.8158 

FERMT2 
NM_001134999 // RefSeq // Homo sapiens fermitin family member 2 (FERMT2), 
transcript va -1.81567 

ZEB2 
NM_001171653 // RefSeq // Homo sapiens zinc finger E-box binding homeobox 2 

(ZEB2), tra -1.81486 

LOC105379280 
XR_949107 // RefSeq // PREDICTED: Homo sapiens uncharacterized 
LOC105379280 (LOC1053792 -1.81384 

DUSP19 
NM_001142314 // RefSeq // Homo sapiens dual specificity phosphatase 19 

(DUSP19), transc -1.81264 

LOC105372906 
XR_920756 // RefSeq // PREDICTED: Homo sapiens uncharacterized 
LOC105372906 (LOC1053729 -1.80893 

SPC24 
NM_182513 // RefSeq // Homo sapiens SPC24, NDC80 kinetochore complex 

component (SPC24), -1.80884 

ARHGAP11B 
NM_001039841 // RefSeq // Homo sapiens Rho GTPase activating protein 11B 
(ARHGAP11B), m -1.80219 

SMC2 
NM_001042550 // RefSeq // Homo sapiens structural maintenance of 

chromosomes 2 (SMC2),  -1.79989 

SMC1B 
NM_001291501 // RefSeq // Homo sapiens structural maintenance of 
chromosomes 1B (SMC1B) -1.79916 

PCNA-AS1 
NR_028370 // RefSeq // Homo sapiens PCNA antisense RNA 1 (PCNA-AS1), 

long non-coding RN -1.79718 

MPV17L2 
NM_032683 // RefSeq // Homo sapiens MPV17 mitochondrial membrane protein-
like 2 (MPV17L -1.7964 

FBXL7 
NM_001278317 // RefSeq // Homo sapiens F-box and leucine-rich repeat protein 7 

(FBXL7), -1.79537 

MMS22L 
NM_198468 // RefSeq // Homo sapiens MMS22-like, DNA repair protein 
(MMS22L), mRNA. // c -1.79497 

SGCB 
NM_000232 // RefSeq // Homo sapiens sarcoglycan, beta (43kDa dystrophin-

associated glyc -1.79416 

TMPO 
NM_001032283 // RefSeq // Homo sapiens thymopoietin (TMPO), transcript 
variant 2, mRNA. -1.79356 

ZNF594 
NM_032530 // RefSeq // Homo sapiens zinc finger protein 594 (ZNF594), mRNA. 

// chr17 // -1.79018 

HM13-AS1 
NR_046853 // RefSeq // Homo sapiens HM13 antisense RNA 1 (HM13-AS1), 

long non-coding RN -1.7893 

PLOD1 
NM_000302 // RefSeq // Homo sapiens procollagen-lysine, 2-oxoglutarate 5-

dioxygenase 1  -1.78928 

EMB 
NM_198449 // RefSeq // Homo sapiens embigin (EMB), mRNA. // chr5 // 100 // 

53 // 8 // 8 -1.7879 

FANCM 
NM_001308133 // RefSeq // Homo sapiens Fanconi anemia, complementation 

group M (FANCM), -1.78702 

PRKAA2 
NM_006252 // RefSeq // Homo sapiens protein kinase, AMP-activated, alpha 2 

catalytic su -1.78693 

GNPDA1 
NM_005471 // RefSeq // Homo sapiens glucosamine-6-phosphate deaminase 1 

(GNPDA1), mRNA. -1.78423 

DPYSL5 
NM_001253723 // RefSeq // Homo sapiens dihydropyrimidinase-like 5 (DPYSL5), 

transcript  -1.78283 

TACR3 
NM_001059 // RefSeq // Homo sapiens tachykinin receptor 3 (TACR3), mRNA. // 

chr4 // 100 -1.78228 
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GMNN 
NM_001251989 // RefSeq // Homo sapiens geminin, DNA replication inhibitor 

(GMNN), trans -1.78099 

KIF23 
NM_001281301 // RefSeq // Homo sapiens kinesin family member 23 (KIF23), 

transcript var -1.77925 

LRCH2 
NM_001243963 // RefSeq // Homo sapiens leucine-rich repeats and calponin 
homology (CH)  -1.7786 

ATAD2 
NM_014109 // RefSeq // Homo sapiens ATPase family, AAA domain containing 2 

(ATAD2), mRN -1.77827 

PHF19 
NM_001009936 // RefSeq // Homo sapiens PHD finger protein 19 (PHF19), 
transcript varian -1.77812 

GPLD1 
NM_001503 // RefSeq // Homo sapiens glycosylphosphatidylinositol specific 

phospholipase -1.77769 

HIST2H2AB 
NM_175065 // RefSeq // Homo sapiens histone cluster 2, H2ab (HIST2H2AB), 
mRNA. // chr1  -1.77599 

ZP3 
NM_001110354 // RefSeq // Homo sapiens zona pellucida glycoprotein 3 (sperm 

receptor) ( -1.7751 

SLC25A35 
NM_201520 // RefSeq // Homo sapiens solute carrier family 25, member 35 
(SLC25A35), mRN -1.77356 

LYRM4-AS1 
NR_126016 // RefSeq // Homo sapiens LYRM4 antisense RNA 1 (LYRM4-AS1), 

transcript varia -1.77335 

ZNF75D 
NM_001185063 // RefSeq // Homo sapiens zinc finger protein 75D (ZNF75D), 
transcript var -1.77287 

STC2 
NM_003714 // RefSeq // Homo sapiens stanniocalcin 2 (STC2), mRNA. // chr5 // 

100 // 71  -1.77274 

TRAJ5 
OTTHUMT00000410993 // Havana transcript // T cell receptor alpha joining 
5[gene_biotype -1.77194 

KIAA0101 
NM_001029989 // RefSeq // Homo sapiens KIAA0101 (KIAA0101), transcript 

variant 2, mRNA. -1.76817 

C17orf53 
NM_001171251 // RefSeq // Homo sapiens chromosome 17 open reading frame 53 
(C17orf53),  -1.76815 

PROCR 
NM_006404 // RefSeq // Homo sapiens protein C receptor, endothelial (PROCR), 

mRNA. // c -1.76695 

HIST2H2BB 
OTTHUMT00000098433 // Havana transcript // histone cluster 2, H2bb 
(pseudogene)[gene_bi -1.76424 

LOC105375974 
XR_929476 // RefSeq // PREDICTED: Homo sapiens uncharacterized 

LOC105375974 (LOC1053759 -1.76331 

POLD2 
NM_001127218 // RefSeq // Homo sapiens polymerase (DNA directed), delta 2, 
accessory su -1.76292 

ESPL1 
NM_012291 // RefSeq // Homo sapiens extra spindle pole bodies like 1, separase 

(ESPL1), -1.76247 

MYPN 
NM_001256267 // RefSeq // Homo sapiens myopalladin (MYPN), transcript 
variant 4, mRNA.  -1.76247 

CENPP 
NM_001012267 // RefSeq // Homo sapiens centromere protein P (CENPP), 

transcript variant -1.76236 

SNRPN 
AF400486 // GenBank // Homo sapiens clone kid4 SNURF-SNRPN mRNA, 
downstream untranslate -1.76199 

PMP22 
NM_000304 // RefSeq // Homo sapiens peripheral myelin protein 22 (PMP22), 

transcript va -1.76135 

PPP4R4 
NM_020958 // RefSeq // Homo sapiens protein phosphatase 4, regulatory subunit 4 
(PPP4R4 -1.76088 

SLC35G5 
OTTHUMT00000207313 // Havana transcript // solute carrier family 35, member 

G5[gene_bio -1.76033 

ADAM23 
NM_003812 // RefSeq // Homo sapiens ADAM metallopeptidase domain 23 

(ADAM23), mRNA. //  -1.75982 

ZNF480 
NM_001297624 // RefSeq // Homo sapiens zinc finger protein 480 (ZNF480), 

transcript var -1.75973 

PLEKHH2 
NM_172069 // RefSeq // Homo sapiens pleckstrin homology domain containing, 

family H (wi -1.7586 

SCOC-AS1 
NR_033939 // RefSeq // Homo sapiens SCOC antisense RNA 1 (SCOC-AS1), 

long non-coding RN -1.75854 

VBP1 
NM_001303543 // RefSeq // Homo sapiens von Hippel-Lindau binding protein 1 

(VBP1), tran -1.75736 

THAP9 
NM_024672 // RefSeq // Homo sapiens THAP domain containing 9 (THAP9), 

mRNA. // chr4 //  -1.7554 

ASRGL1 
NM_001083926 // RefSeq // Homo sapiens asparaginase like 1 (ASRGL1), 

transcript variant -1.75434 

MBNL3 
NM_001170701 // RefSeq // Homo sapiens muscleblind-like splicing regulator 3 

(MBNL3), t -1.75387 
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NCAPD3 
NM_015261 // RefSeq // Homo sapiens non-SMC condensin II complex, subunit 

D3 (NCAPD3),  -1.75143 

SLC47A1 
NM_018242 // RefSeq // Homo sapiens solute carrier family 47 (multidrug and 

toxin extru -1.75051 

CCNJ 
NM_001134375 // RefSeq // Homo sapiens cyclin J (CCNJ), transcript variant 1, 
mRNA. //  -1.75014 

Appendix Table 3 Expression of MMP1 or MMP14 microRNAs in microarray 

Gene Symbol Target Assignment 

Average 

Fold-Change 

MIR9-1 MMP14 
NR_029691 // RefSeq // Homo sapiens microRNA 9-1 (MIR9-1), 
microRNA. // chr1 // 100 //  1.44411 

MIR146A MMP1 
NR_029701 // RefSeq // Homo sapiens microRNA 146a (MIR146A), 

microRNA. // chr5 // 100 / 1.15373 

MIR22HG MMP14 
NR_028502 // RefSeq // Homo sapiens MIR22 host gene (MIR22HG), 
transcript variant 1, lo 1.1216 

MIR133A1 MMP14 
NR_029675 // RefSeq // Homo sapiens microRNA 133a-1 

(MIR133A1), microRNA. // chr18 // 1 -1.04109 

MIR34A MMP1 
NR_029610 // RefSeq // Homo sapiens microRNA 34a (MIR34A), 
microRNA. // chr1 // 100 //  -1.13227 

MIR222 MMP1 
NR_029636 // RefSeq // Homo sapiens microRNA 222 (MIR222), 

microRNA. // chrX // 100 //  -1.65699 

Appendix Table 4 Expression of MMP activity regulators in microarray 

 

Gene Symbol 

 

Assignment 

Average Fold-

Change 

TIMP2 NM_003255 // RefSeq // Homo sapiens TIMP metallopeptidase inhibitor 2 (TIMP2), 

mRNA. // 
1.25805 

TIMP1 NM_003254 // RefSeq // Homo sapiens TIMP metallopeptidase inhibitor 1 (TIMP1), 
mRNA. // 

1.13388 

TIMP4 NM_003256 // RefSeq // Homo sapiens TIMP metallopeptidase inhibitor 4 (TIMP4), 

mRNA. // 
1.09581 

TIMP3 NM_000362 // RefSeq // Homo sapiens TIMP metallopeptidase inhibitor 3 (TIMP3), 
mRNA. // 

-1.0215333 

FURIN NM_001289823 // RefSeq // Homo sapiens furin (paired basic amino acid cleaving 

enzyme)  
-1.07985 

PLG NM_000301 // RefSeq // Homo sapiens plasminogen (PLG), transcript variant 1, 
mRNA. // c 

-1.10423 

Appendix Table 5 Expression of EMT regulating microRNAs microarray 

Gene Symbol Target Assignment 

Average 

Fold-Change 

MIR30A SNAIL 
NR_029504 // RefSeq // Homo sapiens microRNA 30a (MIR30A), 
microRNA. // chr6 // 100 //  1.6762 

MIR101-1 CDH1 
NR_029516 // RefSeq // Homo sapiens microRNA 101-1 (MIR101-1), 

microRNA. // chr1 // 100 1.53542 

MIR200B ZEB1/2 
NR_029639 // RefSeq // Homo sapiens microRNA 200b (MIR200B), 

microRNA. // chr1 // 100 / 1.22807 

MIR200C ZEB1/2 
NR_029779 // RefSeq // Homo sapiens microRNA 200c (MIR200C), 

microRNA. // chr12 // 100  1.18659 

MIR22HG SNAIL 
NR_028502 // RefSeq // Homo sapiens MIR22 host gene (MIR22HG), 

transcript variant 1, lo 1.1216 

MIR200A ZEB1/2 
NR_029834 // RefSeq // Homo sapiens microRNA 200a (MIR200A), 

microRNA. // chr1 // 100 / 1.07458 

MIR429 ZEB1/2 
NR_029957 // RefSeq // Homo sapiens microRNA 429 (MIR429), 

microRNA. // chr1 // 100 //  1.01476 

MIR205HG ZEB1/2 
NM_001104548 // RefSeq // Homo sapiens MIR205 host gene 

(MIR205HG), mRNA. // chr1 // 10 -1.11731 

MIR141 ZEB1/2 
NR_029682 // RefSeq // Homo sapiens microRNA 141 (MIR141), 

microRNA. // chr12 // 100 // -1.25733 

MIR9-3 CDH1 
NR_029692 // RefSeq // Homo sapiens microRNA 9-3 (MIR9-3), 

microRNA. // chr15 // 100 // -1.52468 
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