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Abstract

I present a comprehensive study of the role of strong magnetic fields in characterizing

the structure of molecular clouds. We run three-dimensional turbulent non-ideal magnetohy-

drodynamic simulations (with ambipolar diffusion) to see the effect of magnetic fields on the

evolution of the column density probability distribution function (PDF). Our results indicate

a systematic dependence of the column density PDF of molecular clouds on magnetic field

strength and turbulence, with observationally distinguishable outcomes between supercritical

(gravity dominated) and subcritical (magnetic field dominated) initial conditions. We find that

most cases develop a direct power-law PDF, and only the subcritical clouds with turbulence

are able to maintain a lognormal body of the PDF but with a power-law tail at high values.

I also present a scenario for the formation of oscillatory quasi-equilibrium magnetic ribbons

in turbulent subcritical molecular clouds. The synthetic observed relation between apparent

width in projection versus observed column density is relatively flat, similar to observations

of molecular cloud filaments, and unlike the simple expectation based on a Jeans length ar-

gument. Additionally, I develop a core field structure (CFS) method which requires spatially

resolved observations of the nonthermal velocity dispersion from the Green Bank Ammonia

survey (GAS) of the L1688 region of the Ophiuchus molecular cloud along with the column

density map to determine magnetic field strength profile across dense cores. By applying the

CFS method we find that for most cores in Ophiuchus the mass-to-flux ratio is decreasing

radially outward.

Keywords: ISM: clouds - magnetic fields - magnetohydrodynamics (MHD) - stars: forma-

tion - turbulence
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Chapter 1

Introduction

1.1 Preliminaries and overview

The process of star formation is of fundamental significance as it acts as a link between galaxy

evolution, planet formation, and astrobiology (Chyba & Hand, 2005; Gillon, 2014; Lingam

& Loeb, 2018; Krumholz et al., 2018). Thus the question “how stars are formed?” is of pri-

mary importance in the contemporary astrophysics community. Many leading scientists have

addressed this key astrophysical problem from various perspectives (Mouschovias & Spitzer

(1976); Larson (1981); Shu et al. (1987); Mac Low & Klessen (2004), also see recent reviews

by Basu (2017); Basu & Auddy (2017)). In spite of significant progress, complete theoret-

ical and observational understanding of their formation remains elusive. The theory of star

formation is not definite owing to the complexities of the physical processes involved. The

dynamics of the star-forming molecular clouds in the interstellar medium are complicated by

the phenomenons like magnetic fields, supersonic turbulence (Mouschovias & Spitzer, 1976;

Shu, 1977; McKee & Ostriker, 2007; Lazarian & Hoang, 2007) and stellar feedback, via winds

and supernova (Hayward & Hopkins, 2017). In the simplest terms, stars are formed when

low-density molecular clouds fragment into locally collapsing objects when the force due to

gravity exceeds all other opposing forces. The fragmentation of molecular clouds is a complex

1



2 Chapter 1. Introduction

phenomenon driven by the interplay of gravity, magnetic fields, and turbulence (Basu, 2017).

In this thesis, we investigate the processes likely responsible for the formation of stars

in molecular clouds. We provide a comprehensive study of the fragmentation of large-scale

molecular clouds into filaments and cores, which eventually collapse under gravity to form

stars. We use theoretical models, magnetohydrodynamic (MHD) simulations, and observa-

tional data to bridge some of the existing gaps in our current understanding of the role of the

magnetic field in star formation. We find indirect signatures of imprints of the magnetic fields

on the observable structures like column density probability distribution function (PDF), fila-

ments, and dense cores. Finally, we quantify its role in formation and evolution of interstellar

clouds and in controlling the rate of star formation.

1.2 From clouds to filaments and cores

Molecular clouds are the centers for current day star formation. They are cold, T ∼ 10 K, and

massive objects with mass few ×109 M� (M� = 1.99× 1033g is a single solar mass). Molecular

clouds can fragment into locally collapsing objects when they become gravitationally unstable

i.e., when the gravitational force overwhelms the local support mechanism (also known as

Jeans-unstable (Jeans, 1929)). If gravity alone was relevant the overall expected Galactic star

formation rate (SFR) would be ∼ 500M� yr−1 i.e., the total mass of the molecular clouds

(∼ 2 × 109 M�) divided by their free-fall time (4 × 106 yr for a typical particle number density

of 100 H2 molecules per cm−3). Such an uninhibited gravitational collapse in a free-fall time

of tff ∝ 1/
√

Gρ (Jeans, 1902) would cause the Galaxy to be depleted of gas long ago. On the

contrary, the observed SFR in the Milky Way is only ∼ 1 − 3 M� yr−1 (McKee & Williams,

1997; Robitaille & Whitney, 2010; Chomiuk & Povich, 2011). We also observe large amounts

of gas in the interstellar medium, particularly the dense gas of molecular clouds called the

Giant Molecular Clouds (GMCs), each containing typically ≈ 106 M�. Furthermore, it has

been well established that star formation is an inefficient process with only a few percent of
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the total gas actually forming stars (Myers et al., 1986; Evans et al., 2009; Lada et al., 2010).

This naturally raises the question: what additional forces can counter gravity? Observationally

the increased spectral line widths, which are broader than their thermal counterpart (see review

by Zuckerman & Palmer (1974)), indicate that there must be some support besides the thermal

pressure.

Historically, it was established that the magnetic force could provide that additional non-

thermal support that can prevent fragmentation and rapid star formation (Mestel & Spitzer,

1956; Mestel, 1965). Observational results do indicate that magnetic fields are omnipresent

through our Galaxy and are mostly oriented along the Galactic spiral arms (see, e.g., Han &

Zhang (2007)). The presence of the magnetic field in the interstellar medium (ISM) can be

attributed to the tiny drift in velocity between electrons (ve) and positively charged ions (vi).

For example, a magnetic field of B ≈ 3 µG can be maintained by an very small differential ve-

locity drift |vi − ve| = cB/(nee4πL) ∼ 10−3cm s−1, where ne ∼ 10−2cm−3 is the number density,

L ∼ 1019cm is the cloud size, e and c are the electron charge and speed of light respectively.

Thus naturally magnetic field will have a substantial impact on the dynamics of the molecular

cloud particularly in the process of star formation.

It is intuitive to model ISM and star formating molecular clouds, which consist of charged

fluids in presence of magnetic fields, using MHD processes to explain complex astrophysical

phenomenon. The MHD model is based on the ‘fluid approximation’ approach, where the ISM

cloud is treated as a continuum medium. The collisional mean free path l ∼ (nσ)−1 in inter-

stellar space for neutral atoms and molecules, of typical density n ∼ 10−4 and elastic scattering

cross section σ ∼ 10−15cm2, equals ∼ 1011cm. Although, this represent a large distance, molec-

ular clouds span much greater, typically L =10 pc (1019 cm) or 0.1pc (1017 cm) in cores. Thus

such diffuse gas clouds (where l � L) can effectively be treated as fluids. Furthermore, we

can impose the MHD approximations that modify the equations of Maxwell’s theory of elec-

trodynamics to a more tractable form (see section 2.1.1 for details). For slow time variations

relevant for astrophysical fluids, we drop the displacement current term in Maxwell’s equation
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as it corresponds to a high-frequency phenomenon. Thus the local electric currents (due to the

small drift velocity between the ions and electrons) effectively constitute the only source for

the magnetic fields. However, for astrophysically realistic circumstances we neglect any spatial

separation between ions and electrons and consider a single-component MHD fluid. The fluid

is treated as neutral with the assumption that collisions occur frequently enough to mechani-

cally couple the three constituent of the gas (namely ions, electrons and neutrals). However, in

Chapter 2 we consider the additional non-ideal MHD effect of a relative drift between neutrals

and charged particles (know as ambipolar diffusion in the astrophysical community).

The theory of star formation has developed on the foundation laid by the MHD theories and

fluid dynamics. Over the past few decades researchers have considered various modifications

to the MHD models (including non-ideal effects and turbulence) to better interpret and under-

stand observational results. In the subsequent section, we discuss the three major classes of

contemporary star formation theories that differ on the role of magnetic fields and turbulence

(also see the review by Crutcher (2012)).

1.2.1 “Standard” or strong magnetic field model

The “standard” paradigm is the strong field theory, where magnetic fields and ambipolar dif-

fusion (neutral-ion slip) govern the star formation process. The ratio of mass to magnetic flux

(M/Φ) gives the relative strength of gravity and the magnetic field in a molecular cloud. Mestel

& Spitzer (1956); Mouschovias & Spitzer (1976); Strittmatter (1966); Tomisaka et al. (1988)

showed that there exist a critical mass-to-flux ratio (M/Φ)crit, such that for M/Φ < (M/Φ)crit

the cloud is subcritical and cannot collapse as long as flux freezing prevails. However, super-

critical clouds with M/Φ > (M/Φ)crit are unstable and prone to collapse. In the standard picture

clouds are initially subcritical (as observed by Heiles & Troland (2005)) with mass-to-flux ratio

M/Φ < (M/Φ)crit = (2πG1/2)−1(Nakano & Nakamura, 1978). They form a layer that is flattened

along the direction of the background magnetic field and are stable against fragmentation. The

magnetic pressure is sufficiently strong to halt the gravitational collapse.
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The magnetic force is only felt by the ionized gas and dust. However, for sufficiently

high ionization fraction, the neutrals and the charged species collide frequently enough that

the field lines are dragged along with the neutrals. The neutrals feel the influence of the mag-

netic field through collisions, even though the Lorentz force does not affect them directly.

Eventually, the neutrals slip past the ions (which are comoving with the magnetic field) and

contract gravitationally on an ambipolar diffusion time scale (Langer, 1978; Ciolek & Basu,

2006; Mouschovias et al., 2011). This phenomenon is called gravitationally-driven ambipolar

diffusion (Mouschovias, 1978; Lizano & Shu, 1989).

The typical observed ionization fraction in molecular clouds (primarily cosmic ray ioniza-

tion) is as low as 10−7 (nn/104cm−3)−1/2 (Elmegreen, 1979), where nn is the neutral number den-

sity. Such low ionization still provides enough coupling between the charged species and the

neutrals. This is because of the high-polarizability of the neutrals, particularly H2 molecules.

The effective collision cross section is much larger, ≈ 102 times the geometric cross-section

(Osterbrock, 1961). In case the coupling is relatively weak, the neutrals are only moderately

impeded by collisions with ions. They gradually diffuse through the field lines and make the

core supercritical as the mass increases. The supercritical core then collapses almost on a free-

fall timescale to form a star. This phenomenon is well studied in two dimensional simulations

of ambipolar-diffusion-driven fragmentation of infinitesimally thin sheet threaded by an ini-

tially perpendicular magnetic field (Indebetouw & Zweibel, 2000; Basu & Ciolek, 2004; Basu

et al., 2009b). However, one of the criticisms of the strong field model is the core formation

time which is typically few dynamical time tdyn(≈ 10 Myr). This is much longer than the ages

of pre-main-sequence stars within clouds (≈ 1−3 Myr) (Hartmann, 2001). Recently, alternative

theories have emerged that include turbulence as an initial condition. In section 1.2.3 we dis-

cuss turbulence accelerated ambipolar diffusion that essentially speeds up the core formation

time.



6 Chapter 1. Introduction

1.2.2 “Turbulent” or weak magnetic field model

The other model is that molecular clouds are short-lived and star formation is regulated by su-

personic random motions (Elmegreen, 2000; Palla & Stahler, 2002; Hartmann, 2001; Padoan

& Nordlund, 2002; Federrath & Klessen, 2012). Such large-scale turbulent motions are ubiq-

uitous in the ISM as reviewed by Elmegreen & Scalo (2004). Supersonic turbulence decays

in . 1 tdyn (Mac Low et al., 1998). The proponents of the turbulence-regulated star formation

theory (for example Hartmann (2001)) believe that molecular clouds are formed at the inter-

section of turbulent supersonic flow. In this picture the role of turbulence is dual. The turbulent

compressions induce local fragmentation producing cores and filaments which eventually form

stars. But on a large-scale, it provides global support where the turbulent energy stabilizes the

cloud. Commonly predicted drivers of the turbulent energy input are large-scale flows in the

ISM (Hartmann, 2001), supernovae (Klessen et al., 2005), and stellar feedback (Hayward &

Hopkins, 2017). One of the major criticisms of this turbulence driven star formation theory

is the constant need to drive turbulent motions into the system (e.g., simulations by Padoan &

Nordlund (2002); Mac Low & Klessen (2004), and more recent ones by Federrath & Klessen

(2012); Federrath (2016) and reference therein). Such continuous input of kinetic energy is

often unphysical.

1.2.3 “Turbulent-enhanced ambipolar diffusion”

An alternative scenario is the “turbulence-enhanced ambipolar diffusion” model where the tur-

bulent initial compressions cause the ambipolar diffusion to proceed at an increased rate. Li &

Nakamura (2004) and Nakamura & Li (2005) adopted the thin-disk approximation and found

that initial supersonic motions can cause rapid local ambipolar diffusion in a subcritical cloud.

The core formation time is significantly accelerated as confirmed by Basu et al. (2009a). De-

tailed three-dimensional simulations by Kudoh & Basu (2008); Nakamura & Li (2008); Kudoh

& Basu (2011) show that molecular clouds fragment due to the combined effect of turbulence,

gravity, and magnetic fields. However, gravity is still the primary driver for the fragmentation
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process. Fragmentation can ensue either through direct gravitational instability on the dynam-

ical timescale for clouds with a supercritical mass-to-flux ratio or due to gravitationally-driven

ambipolar diffusion if the cloud is subcritical. The MHD simulations show that a large-scale

turbulent flow sweeps up the interstellar medium and compresses the gas into filaments and

shocks. The magnetic field mainly provides a global support against the collapse until gravi-

tationally driven ambipolar diffusion leads to a runaway collapse of the densest regions of the

cloud.

1.3 From core to star

Once the supercritical cores are formed they are prone to collapse under its gravity. The frame-

work for the current theory of the formation of stars due to dynamic collapse of a core under

its self-gravity was motivated by the early work of Hayashi & Nakano (1965) and review by

Hayashi (1966). Larson (1969) showed that star undergoes a nonhomologous contraction to-

wards a centrally condensed configuration. This runaway collapse results in the formation of

a hydrostatic protostellar core. The modern standard picture of isolated star formation was

initiated by Shu and collaborators (Shu, 1977; Shu et al., 1987). Typically, collapse is self-

similar with an initial singular isothermal sphere with a density ρ ∼ 1/r2. As the free fall time

tff ∝ 1/
√

Gρ, the innermost densest part collapses faster while the outer envelope is still nearly

at rest (see Figure 1.1). Once a central point mass (the star) is formed, further infall is initiated

from “inside-out” by an expansion wave that propagates outward at the sound speed. The cen-

tral object accretes at a constant rate given as Ṁ ∼ c3
s/G (cs is the isothermal sound speed of

the core).

1.4 Evidence of magnetic field

In order to confirm or rule out the applicability of any of the above theories for the early phases

of star formation, it is imperative to test the theories against direct and indirect observations.
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Figure 1.1: The time variation of the density distribution of a collapsing core using numerical
simulation (Larson, 1969). The central density peak gradually grows during the initial isother-
mal phase of collapse. The density distribution approaches ρ ∝ r−2 outside the central flat
region. Each curve is labeled with time in the units of 1013s.

.

What role the magnetic field plays in regulating star formation has been debated for decades.

In spite of substantial progress both theoretically and observationally, the debate still persists

whether magnetic support (Mouschovias, 1991) or turbulent motions (Padoan & Nordlund,

1999) dominate, or if both processes are crucial in regulating star formation in molecular clouds

(Nakamura & Li, 2008). The best way to converge to a unique answer to this long-standing

controversy is to observe magnetic fields or their indirect tracers and compare with theoreti-

cal predictions. In this thesis, we primarily focus on identifying structural evidences that are

natural imprints of a (strong) magnetic field. In the following subsection, we discuss some of

the observational challenges in directly measuring the magnetic field. We then introduce some

alternative and indirect ways to gauge the influence of magnetic fields in the formation of stars.

1.4.1 Direct measurement of magnetic fields

The progress in measuring field strength is rather slow due to the various limitations of the

existing observational techniques (Crutcher, 2012). The Zeeman effect is the only direct way
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of measuring the line-of-sight component of the field strength (Crutcher et al., 2010). It is the

splitting of a spectral line into several components in the presence of a static magnetic field.

However, the Zeeman detection is often difficult as the spectral-line width ∆ν is much broader

than the Zeeman splitting ∆νZ. Zeeman observations are only suited for the line-of-sight com-

ponent BLOS of B. The Zeeman effect gives a lower limit to the total magnetic field strength as

it measures only one component of the magnetic vector B. Additionally Zeeman detections are

extremely rare and challenging owing to the limitations in observational sensitivity and resolu-

tion (Heiles & Troland, 2005; Crutcher et al., 2010). The recent compilation of magnetic field

strengths using the Zeeman effect was done by Crutcher et al. (2010). Four additional surveys

(Crutcher, 1999; Heiles & Troland, 2004; Falgarone et al., 2008; Troland & Crutcher, 2008)

were used for the volume density information. Crutcher et al. (2010) used Bayesian statisti-

cal techniques to fit a model to the magnetic field strengths of the observed clouds. However,

there are considerable debates regarding their conclusion that magnetic cores undergo isotropic

collapse. We discuss the possible inconsistencies in detail in Section 1.4.2.

Sensitive observations of dust polarization often provide a good characterization of the

plane-of-sky magnetic field. The dust grains tends to align with their shorter axis parallel to

the magnetic field (Andersson et al., 2015). Thus the emitted or absorbed light is in general per-

pendicular to the magnetic field due to various alignment mechanisms (for example radiative

torque (Draine & Weingartner, 1996, 1997; Cho & Lazarian, 2005; Lazarian & Hoang, 2007).

Polarization observations from dust thermal emission or extinction of background starlight

from the dust provide unique ways to probe the magnetic field morphology in the ISM, includ-

ing collapsing cores in molecular clouds. Several high resolution hourglass patterns (which

are consistent with gravitational contraction with at least approximate flux-freezing) are ob-

served in dense cores (e.g., NGC1333 (Girart et al., 2006); L1157-mm (Stephens et al., 2013);

G240.31+0.06 (Qiu et al., 2014); FeSt 1-457 (Kandori et al., 2017); and B335 (Maury et al.,

2018)). Dust polarization measurements in infrared and submillimeter can also be used to

estimate the mean magnetic field strength in the plane of the sky using the Chandrasekhar-
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Fermi (CF) (Davis & Greenstein, 1951; Chandrasekhar & Fermi, 1953; Kandori et al., 2017)

method. This method works on the assumption that the non-thermal motions are Alfvénic

with equipartition between the magnetic and the turbulent energy. The turbulent motion per-

turbs the magnetic field which shows up as an irregular scatter in the polarization position

angles with respect to the mean background field orientation. However, the CF estimates are

often restricted due to limitations in the resolution and the number of independent observed

polarization vectors. Furthermore, dust polarization can be weak in the centers of dense cores

where the dust grains are well shielded from the radiative torques necessary to move the grains

into alignment with the magnetic field (e.g., see Lazarian & Hoang (2007)). Other methods

of field strength estimation like Faraday rotation (Wolleben & Reich, 2004) are quite rare in

star-forming molecular clouds due to low fractional ionization.

1.4.2 Indirect measure of magnetic fields

It is evident that direct detection of the magnetic field using the above techniques is difficult

and highly uncertain. There are discernible differences of opinion on the role of the magnetic

field in the astrophysical community largely due to lack of observational constraints. It is

generally established that magnetic fields tend to preserve their order globally from the inter-

cloud medium (∼ 100 parsec) to cloud cores (sub-parsec) (see the review by Li et al. (2014)

and references therein). Some theories suggest that magnetic fields lose their orientation at

the scales of molecular clouds (Dobbs, 2008) due to turbulence and cloud rotation. On the

other hand, it is possible that gas is channeled along the field lines (e.g., Shetty & Ostriker

(2006)) as they fragment. The presence of ambient magnetic fields can directly influence the

structural properties and the fragmentation process of molecular clouds. Thus it is imperative

that we look for alternative methods that can serve as indirect detection of the magnetic field

in molecular clouds. We introduce structural evidence that can essentially link the theoretical

and simulation prediction of the role of magnetic fields, turbulence, and gravity to the observed

structure in star-forming molecular clouds.
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Column density PDFs

The column density probability distribution function (PDF) is an interesting and widely studied

structural property of molecular clouds. It can connect the ambient magnetic field strength to

the structural properties of the molecular clouds. In recent years, there has been developing

interest among both theorists and observers to study column density PDFs. It is consider-

ably easy to measure column density of molecular clouds from, e.g., dust extinction and/or

emission observations (Kainulainen et al., 2009; Alves et al., 2014) or simulations (Collins

et al., 2012; Federrath & Klessen, 2013) (also see Section 1.5.1 for details). Early theoret-

ical works including numerical simulations (Vazquez-Semadeni, 1994; Passot & Vázquez-

Semadeni, 1998) showed that PDFs are lognormal for turbulent non-self-gravitating purely hy-

drodynamic isothermal gas. However, the inclusion of self-gravity (Ballesteros-Paredes et al.,

2011; Ward et al., 2014) showed growing evidence of power-law at high density. Observations

(Kainulainen et al., 2009; Pokhrel et al., 2016) also showed that the column density PDFs are

lognormal with an additional power-law at the high column density. Alternatively, (Lombardi

et al., 2015; Alves et al., 2017) showed that PDFs are best represented as a power-law profile

with a larger dynamic range and a peak set by the cloud boundary. Thus the key question is

whether clouds with a strong magnetic field show any distinguishable features in the column

density PDFs in comparison to clouds with weak magnetic fields. Some theories (for exam-

ple by Federrath & Klessen (2013)) claim that although the magnetic field provides additional

support against turbulent compression, it does not affect the power-law slope of the PDFs. Fur-

thermore, it is also debatable if the width of the lognormal PDF is set by supersonic turbulence

(Collins et al., 2012) alone or if the magnetic field strength is also responsible (Molina et al.,

2012). In Auddy et al. (2018) (chapter 2 of this thesis), we have presented a systematic study

(also see the review by Basu & Auddy (2017)) of the evolution of the column density PDF for

different initial conditions. We do see that a strong magnetic field can substantially influence

the column density PDF with a distinguishable difference in its power-law slope.
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Filaments or Ribbon

Star formation simulations of a strongly magnetic medium with turbulent initial conditions

(Nakamura & Li, 2005; Basu et al., 2009a; Kudoh & Basu, 2011) show that molecular clouds

fragment into ribbon-like structures in a layer that is flattened along the field direction. These

triaxial objects are called “Magnetic Ribbons” and are studied theoretically by Tomisaka (2014)

and Hanawa & Tomisaka (2015). The ribbon geometry is consistent with the observation of

magnetic fields aligned perpendicular to the filaments (Palmeirim et al., 2013; Planck Collab-

oration et al., 2016). Another popular idea is that filaments are essentially isothermal cylinders

(André et al., 2010), which are either in equilibrium or unstable to collapse depending on their

mass per unit length. They could be formed as a result of compression due to shocks primar-

ily due to stellar feedback, supernovae, or turbulence (e.g., Hartmann (2001); Arzoumanian

et al. (2011)). This model implies dynamically weak magnetic fields that are embedded along

the long axis of the cylinder. Thus an interesting implication is that the global structure of the

magnetic field is connected with the morphology of the cloud (filaments or ribbon), particularly

if the strength of the ambient magnetic field is regulating the initial condensation of the gas.

Specifically, the measured relation between the apparent width and the observed column den-

sity could indicate if magnetic ribbons are a more natural configuration. Recent observations

(Arzoumanian et al., 2011) using the Herschel Space Observatory indicate that the relation-

ship between the filament width and column density is nearly flat, unlike the expectation based

on a Jeans length argument. In Auddy et al. (2016) (Chapter 3 of this thesis), we present a

quasi-equilibrium ribbon model that is consistent with a strong magnetic field with supersonic

turbulence model.

Transition to velocity coherence

Recent observations imply a transition from a non-thermal line width in low-density molecular

clouds to a nearly thermal line width within dense cores. This is termed as a transition to

velocity coherence (Goodman et al., 1998; Pineda et al., 2010). An important question is
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whether a transition from magnetic support of low-density regions to gravitational collapse of

dense regions is physically related to the transition to coherence. Observations using the NH3

emission maps from the Green Bank Ammonia Survey (GAS) has revealed gas kinematics

information with unprecedented sensitivity. In Chapter 4 of this thesis, we introduce a new

method of estimating the amplitude of magnetic field fluctuations using the recent detailed

maps from the GAS of the nonthermal line width profiles across a core. One of the outcomes of

the model is the measure of the mass-to-flux ratio profile across the dense cores in Ophiuchus.

This can potentially serve as a test of gravitationally-driven ambipolar diffusion theory, where

ambipolar diffusion leads to the formation of supercritical cores within a subcritical envelope.

Density scaling of the magnetic Field

For contracting interstellar clouds and fragments (particularly cores), the relation between

magnetic-field strength (B) and gas density (ρ) is of primary importance. It is central in

observationally quantifying the dynamical importance of magnetic fields in the evolution of

molecular clouds and star formation. Due to a high electrical conductivity of the interstellar

gas (Mestel & Spitzer, 1956) the magnetic field is frozen in the matter and can prevent frag-

mentation and spherical collapse. There are two testable predictions for the B − ρ relation

for a gravitating magnetic cloud. Mestel (1965) argued that for a magnetic cloud collaps-

ing spherically and isotropically, the scaling between the field strength B and the density is

B ∝ ρ2/3. This is true for quasi-spherical collapse where both the mass M and the flux Φ is

conserved i.e., M ∝ ρR3 = const, ΦB ∝ BR2 =const. However, a more self-consistent theory of

non-homologous contraction and equilibria of a self-gravitating isothermal interstellar cloud

bounded within a hot and tenuous medium was given by Mouschovias (1976a,b). He argued

that the plasma β = 8πρc2
s/B2, i.e., the ratio of gas to magnetic pressure, remains constant dur-

ing contraction. Thus for an isothermal contraction this yields B ∝ ρ1/2. Naturally, the cloud

flattens due to self-gravity along the field lines and settles into a vertical hydrostatic equilib-

rium to form a disk. The extent of flattening depends on the strength of the magnetic field,
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gravitational force, and intercloud pressure. Furthermore, for such a nonhomologous collapse

it is straightforward to show that conservation of mass M ∝ ΣR2 = const (where self gravity

imposes Σ ∝ ρ1/2) and flux Φ yield B ∝ ρ1/2. Numerical simulations (Fiedler & Mouschovias,

1992, 1993; Ciolek & Mouschovias, 1994) of cores forming due to gravitationally-driven am-

bipolar diffusion predict κ ≤ 1/2. Such simulations invoke a dynamically important magnetic

field that leads to flattening along the magnetic field direction, and subsequent evolution pri-

marily perpendicular to the field.

Crutcher (1999) compiled magnetic field strengths and number density of a large sample

of clouds. He found the best fit value for κ to be 0.47, in rough agreement with the theoretical

prediction. Recent observations of massive star-forming regions NGC 6334 by Li et al. (2015a)

estimate κ = 0.41. However, Crutcher et al. (2010) revised the B and ρ relation for a larger

sample of both low-density H1 and high-density molecular clouds. They used a Bayesian

statistical analysis to analyze the observed probability density function (PDF) and the line-

of-sight component of the magnetic field from Zeeman surveys of H1, OH, and CN spectral

lines. Figure 1 in Crutcher et al. (2010) shows the Zeeman measurements of the line-of-sight

component of B and their 1σ uncertainty plotted against the n(H1) and molecular clouds n(H2).

The plot consists of a flat part at low-density, a power-law scaling B ∝ ρ2/3 at high density, and

a joining point density ρ0. According to the Crutcher’s interpretation, the flat region represents

the initial accumulation of the gas along field lines resulting in an increase in density while B

remains unchanged, i.e., B ∝ ρ0. Furthermore, the gas becomes self-gravitating at ρ0, leading

to a more isotropic spherical contraction with the scaling of the flux frozen field as B ∝ ρ2/3.

The magnetic field is therefore considered too weak to affect the morphology of the collapse.

Li et al. (2015b) performed two three-dimensional turbulent ideal MHD simulations to con-

firm the B − ρ scaling relation from the Crutcher observation. Both the simulations with weak

and strong magnetic field were driven with Mach 10 turbulence. Their results indicate that val-

ues of κ are 0.70± 0.06 and 0.57± 0.05 for the strong and weak field models, respectively. The

authors suggest that the simulated results agree with the observed value of κ within the errors.
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Figure 1.2: A schematic diagram (similar to Figure 1 in Tritsis et al. (2015)) representing
different geometries of a collapsing cloud in the presence of magnetic fields. The red arrow
represents the direction of the magnetic field and the white arrows the direction of contraction.

However, it is counter-intuitive that power-law index κ is significantly lower for the weak field

model. The more expected result is that for the weak magnetic field the density dependence

must be closer to κ = 2/3 as predicted by the weak field spherical collapse theory (Mestel,

1965, 1966). The morphology of their simulation (see Figure 10 in Li et al. (2015b)) results

show that the density structures are very distorted and nothing like spheres. The emergence

of the values of κ in both the simulations may be entirely due to a time (ensemble) average of

epochs of turbulent compression. In situations where the magnetic field is weak compared to

the turbulent driving (like in the above simulation) the gas can be compressed both laterally

(x − y) and along the field lines (z). For the latter κ = 0, as the change in B is independent of

ρ. For lateral compression, κ = 1 due to flux freezing. The three possibilities yield κ = 0, or

1,1 for an average value of 2/3. An illustration showing of all the possible geometries for core

collapse are shown in Figure 1.2.

Ideal MHD simulations by Collins et al. (2011, 2012) of star-forming cores with weak

mean field in a turbulent environment resulted in a scaling relation B ∝ ρ0.4−0.5. Subsequent
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simulations using AREPO code ((Mocz et al., 2017)) with highly turbulent and magnetized

initial conditions showed that core collapse can be either B ∝ ρ2/3 for the turbulence scenario

and B ∝ ρ1/2 in the case of moderately strong large-scale magnetic fields.

Alternately, Tritsis et al. (2015) emphasized the fact that B ∝ ρ2/3 can only be realized

under isotropic contraction and is unique for a spherical core. On reanalysis of the same data

(as in Crutcher et al. (2010)) they claimed that there is no evidence of preferentially spherical

collapse. Furthermore, they claimed that the combined treatment of low (H1) and high density

(molecular) data (by Crutcher et al. (2010)) with a joining condition drastically influenced

the value of κ. They strongly asserted that B ∝ ρ1/2 is the preferred scaling implied by the

observational data and consistent with the prediction of the theoretical model.

1.5 Tracing the molecular clouds

Hydrogen is the most abundant species and also the primary constituent of the interstellar

medium. Most hydrogen is in its atomic gas (HI) phase at low to intermediate temperature

and densities (nH < 102 cm−3). However, within molecular clouds all hydrogen is mostly in its

molecular form, H2. Their excitation temperature for rotational emission is also much greater

than the local cloud temperature. Thus they are extremely difficult to detect due to the low

temperatures (∼ 10 K) that characterize such molecular clouds. Instead, less abundant traces

but with much lower excitation lines, in particularly emission lines from CO molecules are

often used to investigate the structure and the dynamics of the dense gas in molecular clouds.

Thermal dust emission is also employed as discussed below.

Dust constitutes a very tiny fraction of the total mass of the ISM, with an approximate dust

to gas ratio of 0.01 (Goldsmith et al., 1997). However, dust plays an extremely pivotal role as

their emission (thermal continuum radiation) provides an effective cooling mechanism. They

absorb photons emitted by young stars embedded in the cloud and re-radiate them at longer

wavelengths. Dust continuum emission in submillimeter wavelengths, from cold dust along
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the line of sight, can be used to determine the column density and the mass of the enclosed

materials. Dust thermal radiation peaks at a submillimeter wavelength λ ∼ 100 − 300µm and

radiates as a modified black body. Although the dust continuum emission observations help to

probe the detailed density structure of the molecular clouds and their embedded dense cores,

there is no kinematic information from these data.

The observations of molecular line emission are an excellent probe to study the physical

conditions as well as the kinematics within the molecular clouds. CO is the second most

abundant species (10−4 fraction of molecular hydrogen) and is often used as a proxy for H2 to

trace large-scale distribution of gas and velocities. These molecules can also be observed in

different forms: 12C16O,13C16O, and 12C18O, which have different optical depths. The isotopes

of C or O in CO means that the emission is less likely to be absorbed along the line-of-sight by

the other identical molecules since the isotopes bearing molecules are relatively few in number.

The millimeter CO rotational emission line J = 1 → 0 has a critical density of ncrit = 3 × 103

particles cm−3. Thus at densities below and near the critical density CO is a good tracer for

the large-scale features of molecular clouds. However, for regions with higher column density

CO ceases to be a reliable estimator as it freezes out on grain surfaces (Tafalla et al., 2002;

Christie et al., 2012). Thus, denser regions (n & 105cm−3) are often largely depleted of carbon

molecules, which forbids the use of their rotational lines as effective tracers. However, the

choice of the molecular line depends on the specific part of the cloud that is being studied.

For tracing the dense gas in the star-forming regions, nitrogen based species, such as NH3 and

N2H+, are much preferred. These molecules are excited at the high densities (n & 104cm−3)

and low temperature(T . 20 K) that characterizes dense molecular cores. I discuss some of the

general techniques to observe structural properties, particularly the column density PDF and

velocity structure of dense cores, in molecular clouds using the above tracers.
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1.5.1 Column density

The column density, which is one of the most important observed quantities, is typically de-

fined as the number of particles along the line of sight divided by the projected area. There

are various techniques of measuring column density in molecular clouds (for a review and his-

torical application of these techniques see Pineda et al. (2008); Goodman et al. (2009)). The

commonly used methods to map the column density in molecular clouds are: dust extinction

mapping in near-infrared (Lada et al., 1994; Lada et al., 1999), emission map in far-infrared

(Schlegel et al., 1998) and integrated intensity map of molecular-line emissions, particularly

using 12CO or 13CO (Padoan et al., 1999). In case of dust extinction mapping the column den-

sity is calculated from the visual extinction of the starlight by the intervening dust (for example

see Lombardi & Alves (2001)). For an assumed dust-to-gas ratio (typically 1%) the extinction

is empirically related to column density as: Av = (NH + 2NH2)/2× 1021, where Av is the extinc-

tion in magnitude, NH and NH2 are the column densities of the atomic and molecular hydrogen,

respectively.

The other frequently used method is to measure column density from the far-infrared (ther-

mal) dust emission flux. For a measured flux density S ν and solid angle Ω the column density

is given as NH2 = S ν/ (κν µmH ΩBν(Td)), where Bν(Td) is the blackbody emission from dust

at temperature Td, κν ∝ νβ is the dust opacity , mH and µ are the mass of hydrogen atom and

mean molecular weight per hydrogen molecule respectively (Schnee et al., 2005)). The dust

temperature is calculated using the measurements of two separate far-infrared wavelengths to

fit an assumed emissivity law (for details see Schnee et al. (2005, 2008)).

Column density can also be measured by integrating over the line profile of relatively

abundant molecules like 12CO or rarer but optically thin CO istopologues like 13C0. These

molecules undergo collisional excitation with the dominant H2, followed by radiative de-

excitation. The conversion between the molecular hydrogen column density NH2 and the

12CO(1 − 0) integrated intensity W(12CO) is obtained using the so called X−factor, X =

NH2/W(12CO) (Pineda et al., 2008).
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Column density PDFs are of particular interest in understanding the influence of magnetic

fields, turbulence, and gravity in star formation and are studied by both observers (e.g., Kain-

ulainen et al. (2009); Lombardi et al. (2015)) and theorists (e.g.,Vazquez-Semadeni (1994);

Federrath et al. (2008)).

1.5.2 Filaments

Filamentary structures are observed in the nearby star-forming molecular clouds with the Her-

schel Space Observatory (Pilbratt et al., 2010) equipped with two cameras SPIRE (Griffin et al.,

2010) and PACS (Poglitsch et al., 2010). The Herschel images (Men’shchikov et al., 2010; Ar-

zoumanian et al., 2011) reveal an intricate network of elongated structures that are ubiquitous to

star-forming regions. While the existence of filamentary structures is well established (Schnei-

der & Elmegreen, 1979; Myers, 2009), the recent Hershel observations using submillimeter

wavelength (70−500 µm) continuum maps of dust emission have revealed them with extraor-

dinary resolution. Such networks are possibly the imprint of turbulent initial conditions (André

et al., 2010; André, 2017). Given their omnipresence and the high degree of uniformity in their

properties (Arzoumanian et al., 2011) they are likely to play a significant role in fragmentation

and the formation process of dense cloud cores (André et al., 2010; Molinari et al., 2010). The

dust temperature (Td) and the column density (Σ) maps from the Herschel data are constructed

using the weighted spectral energy distribution (SED) from the 5 observed SPIRE/PACS wave-

lengths. For an assumed dust temperature, the two free parameters Td and Σ are derived from

the fit of the SED by the grey-body function Iν = Bν(Td)(1 − e−τν) (for details refer to section

3 from Könyves et al. (2010)). Here Iν is the observed surface brightness and τν = κνΣ is the

dust optical depth at frequency ν. The dust opacity per unit mass is approximated as a power-

law, κν = 0.1 × (ν/1000GHz)2)cm2/g, as advocated by Hildebrand (1983). For identifying the

filaments the column density maps are decomposed into curvelets and wavelets (Starck et al.,

2003). The high contrasting curvelet components are the filaments obtained after subtraction

of the denser cores (the wavelet component). The DisPerSE algorithm (Sousbie, 2011) is used



20 Chapter 1. Introduction

to identify the filament ridges and characterize their structural properties.

1.5.3 Dense cores

Ammonia observations are the ideal tracer of the hierarchical fragmentation of star-forming

regions. As they are typically immune to depletion they serve as a powerful probe of the kine-

matics of star-forming filaments and cores. NH3 is a symmetric top molecule with N at the top

and the three H atoms at the base of the pyramid. The rotation inversion transition of NH3 acts

as a useful probe to study cold dense interstellar clouds (particularly molecular cloud cores).

The angular quantum numbers J and K describe the rotational states of NH3. The rotational

states (J,K) split into inversion doublets (characterized by ∆J = 0, ∆K = 0), due to the tun-

neling of the N atom through the plane of the three H atoms. The inversion spectra are further

split into hyperfine structure due to the electric dipole and magnetic quadrupole moments. It

is possible to derive (for details see Ho & Townes (1983)) the line opacity and the excitation

temperature by fitting the frequency and the line strength of the (J,K) hyperfine structure. Over

the past few decades NH3 observations (Jijina et al., 1999; Rosolowsky et al., 2008) are used to

identify cores with various properties ranging from cold and quiescent (Goodman et al., 1998),

in near-critical equilibrium (Benson & Myers, 1983), and with significant velocity gradients

(Goodman et al., 1993). Recent sensitive and high resolution maps show a sharp spatial tran-

sition between the thermal and nonthermal line widths in dense cores (Pineda et al., 2010; Seo

et al., 2015). The recent Green Bank Ammonia Survey (GAS) provides extensive NH3 emis-

sion maps of target regions B18 in Taurus, NGC 1333 in Perseus, L1688 in Ophiuchus, and

Orion A (North) in the Gould Belt clouds. In Chapter 4 of this thesis we present a systematic

study of the gas kinematics and magnetic field of the dense cores in the L1688 region of the

Ophiuchus molecular clouds using the NH3 (J,K) = (1, 1) and (2, 2) inversion lines from the

GAS survey.
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1.6 Chapter preview

In Chapter 2 (published in MNRAS, Auddy et al. (2018)) we explore the effect of magnetic

fields on turbulent or quiescent molecular clouds in shaping their column density PDF. Our

results provide a unified model for column density PDFs that accounts for peaked power-laws

with different indices in one limit and lognormal plus power-law PDFs in another limit. For

clouds with a supercritical mass-to-flux ratio (weak magnetic field), the column density PDF is

a power-law with a peak associated with the background column density. The power-law index

converges to an approximate value of ' −2 when binned logarithmically, regardless of whether

the initial condition is turbulent. For subcritical clouds (strong magnetic field) we found that

the power-law is much steeper with index ' −4 for linear perturbations (indicating a shallower

core density profile and reduced star formation). However, for a turbulent initial conditions in

subcritical clouds, the PDF is lognormal with a transition at high density to a power-law with

index ' −2. Thus, in our model we explore a large dynamic range of magnetic field strength

and find a clear indication that strong magnetic support plays a crucial role in regulating star

formation. Additionally, the link between the structural properties (column density PDFs) and

the ambient magnetic field strength (or mass-to-flux ratio) will serve as an indirect way to mea-

sure the magnetic field.

Chapter 3 is published in the Astrophysical Journal, Auddy et al. (2016). Herschel obser-

vations (Arzoumanian et al., 2011) revealed that the relationship between filament width and

column density is relatively flat, unlike the simple expectation that width is inversely propor-

tional to column density, based on a Jeans length analysis. We argued that the turbulent flow

leads to compression in which the filament is like a ribbon whose width is set by the standoff

between ram pressure and the magnetic pressure. We show that the ribbon width is indepen-

dent of the local density, unlike the Jeans length. It depends only on the turbulent compression

scale L0, turbulent flow speed vt0 and ambient Alfvén speed vA (see equation (8) in chapter 2).

The vertical height is essentially the Jeans length set by the balance between internal pressure
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and gravity. Eventually, gravitationally driven ambipolar diffusion leads to runaway collapse

of the densest regions in the ribbon, where the mass-to-flux ratio has become supercritical. We

use our model to calculate a synthetic observed relation between apparent width in projection

versus observed column density. The relationship is relatively flat, in rough agreement with the

observations.

Chapter 4 is submitted to the Astrophysical Journal, Auddy et al. (2018). Characteriza-

tion and precise detection of magnetic fields in the interstellar medium is crucial in under-

standing the influence of magnetic fields in star formation. We have developed a “core field

structure”(CFS) method, which is a new technique to determine magnetic field strength across

dense cores using gas kinematics. The CFS method requires spatially resolved observations

of the nonthermal velocity dispersion (σNT ) from the GAS of the L1688 region of Ophiuchus

(Friesen et al., 2017) along with the column density map. The H2 column density (N(H2)) maps

are derived from SCUBA-2 850 micron dust continuum map (Pattle et al., 2015) assuming a

standard dust-to-gas mass ratio. The CFS method relies on the assumption that the non-thermal

velocity dispersions are due to Alfvénic fluctuations. The main result is that the cores in L1688

Ophiuchus are mostly supercritical in the interior with a gradual transition towards a subcritical

diffuse surrounding.
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Chapter 2

The Effect of Magnetic Fields and

Ambipolar Diffusion on the Column

Density Probability Distribution Function

in Molecular Clouds

In recent years there has been a growing interest in the study of the column density probability

distribution function (PDF) of molecular clouds. This function is significant in current theories

of star formation as it is used to explain the initial mass function (Padoan & Nordlund, 2002;

Hennebelle & Chabrier, 2008), star formation rates (Padoan & Nordlund, 2011; Hennebelle

& Chabrier, 2011; Federrath & Klessen, 2012) and star formation efficiencies (Federrath &

Klessen, 2013) of molecular clouds. The PDF is the normalized histogram of the column

density obtained from the measurement within some area of the sky that contains a molecular

cloud. One way to measure the column density of a molecular cloud is using dust extinction and

the reddening of the light of background stars in the near IR (Alves et al., 2001; Kainulainen

et al., 2009; Alves et al., 2014). Furthermore, mid-infrared (IR) absorption (Bacmann et al.,

2000), millimetre continuum emission (Ward-Thompson et al., 1999) and flux measurements

31
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in optically thin lines (Tafalla et al., 2002) are the other commonly used methods to measure

column density.

Early numerical investigation (Vazquez-Semadeni, 1994; Padoan et al., 1997; Passot &

Vázquez-Semadeni, 1998; Padoan & Nordlund, 1999) through non-self-gravitating purely hy-

drodynamic isothermal simulations showed that a lognormal density PDF is a preferred out-

come of the development of hierarchical structures. The next generation of magnetohydrody-

namic (MHD) simulations of the interstellar medium including self-gravity (Scalo et al., 1998;

Federrath et al., 2008) found evidence of a growing power law at high densities. It was natural

to interpret that the volume density PDF follows an underlying lognormal distribution, with a

departure to a power law at higher density as it develops gravitationally collapsed objects.

Recent observations by Kainulainen et al. (2009) are broadly consistent with the idea that

the column density PDF has an underlying lognormal shape with an additional power law

at high column density. They identified that active star-forming clouds have an excess of high

column densities, which manifests in the nonlognormal wings of the PDF. In contrast, quiescent

clouds without active star formation are fit well by a lognormal distribution over the whole

range of observed column density. A Herschel-SPIRE survey of the Mon R2 giant molecular

cloud (Pokhrel et al., 2016) found that the gas column density PDF is lognormal, but with

a power-law tail with best-fit index α = 2.15 above ∼ 1021 cm−2. These observations are

consistent with the evolutionary trend where turbulent motions play the main role in shaping

the cloud in the early stages, but core formation is dominated by gravity and possibly magnetic

fields. Several numerical studies (Tassis et al., 2010; Ballesteros-Paredes et al., 2011; Ward

et al., 2014) have subsequently shown that a power-law tail develops over time and its strength

grows as the rate of star formation activity increases.

A recent survey by Lombardi et al. (2015) reconfirms the results from Kainulainen et al.

(2009) that at a high extinction the PDFs are best fit with a power law. They measure the

column density in terms of the K-band extinction AK from the dust emission maps of Herschel

and Planck data, and show that for AK > 0.2 mag, the PDFs (dN/d log AK ∝ A−αK ) have power-
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law indices with α ≈ 2, but clouds with lower star formation activity, i.e. Polaris and Pipe, have

α = 3.9 and α = 3.0, respectively. Könyves et al. (2015) also find a power-law PDF for the

Aquila star-forming cloud using Herschel data, with index α ≈ 2. Alves et al. (2017) extend

the idea that PDFs of molecular clouds are only a power law, with slope varying from α ≈ 4

for diffuse clouds to α ≈ 2 for clouds with active star formation. This is consistent with the

fact that steeper slopes mean a lack of high density material and thereby less star formation.

However, a physical explanation of a steeper slope in such clouds has been lacking.

A key question is whether clouds with a strong magnetic field exhibit distinct features of

column density PDFs in comparison to clouds with a weak magnetic field. The lognormal

feature is often interpreted as a direct imprint of supersonic turbulence, which is believed to

dominate the evolution of observed clouds (Vazquez-Semadeni, 1994). However, the recent

work by Tassis et al. (2010) points out that lognormal column density PDFs may be a more

generic feature of molecular clouds and should not be interpreted as a result of supersonic tur-

bulence alone. Observationally there is also the claim by Alves et al. (2017) that the lognormal

peak may be an artifact arising due data incompleteness, and thereby not a result of supersonic

turbulence. Tassis et al. (2010) also show that gravitationally-driven ambipolar diffusion plays

a significant role in shaping the PDFs. Furthermore, a thermally bi-stable numerical simulation

by Ballesteros-Paredes et al. (2011) reveals that global gravitational contraction enhances the

initial density fluctuations and results in a wider lognormal PDF and a power-law tail at later

times. It is likely then that the column density PDFs of molecular clouds arise from a variety of

initial conditions and can represent different evolutionary stages. Here, we explore the process

of molecular cloud fragmentation based on the interplay of turbulence, gravity, and magnetic

fields. While large scale turbulence sweeps up the interstellar medium and compresses the gas

into filaments and shocks, magnetic fields can provide a global support against the collapse un-

til gravitationally-driven ambipolar diffusion leads to a runaway collapse of the densest regions

of the cloud (e.g. Nakamura & Li, 2005; Kudoh & Basu, 2011). In this paper, we explore the

effect of the magnetic field, gravity, and ambipolar diffusion in determining the column density
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PDFs. Our study follows the previous ones by Kudoh & Basu (2008, 2011). We carry out a

parameter study by running a number of simulations with different initial conditions. Our main

objective is to see the effect of large-scale magnetic fields and nonlinear initial perturbations on

the time evolution of the column density PDF. We further investigate the differences in steep-

ness of the power-law index of the column density PDF and connect them to different initial

conditions. Since direct magnetic field measurements using the Zeeman effect (Crutcher, 2012)

are rarely successful, a key goal is to find a link between the structural properties of molecular

clouds and the ambient magnetic field strength (or mass-to-flux ratio).

Our paper is organised in the following manner. The numerical model and some back-

ground theory is discussed in Section 2.1, and the results from the simulations are given in

Section 2.2. We provide more discussion of the results in Section 2.3 and give a summary in

Section 2.4.

2.1 Theory and Numerical Model

Magnetic fields and ambipolar diffusion play an important role in the star formation process.

They can regulate the cloud collapse and fragmentation process, control angular momentum

evolution through magnetic braking, and possibly moderate the mass reservoir for stars by

limiting the mass accretion from the magnetic envelope. The relative strength of gravity and

the magnetic field is measured by the mass-to-flux ratio M/Φ. There exists a critical mass-to-

flux ratio (M/Φ)crit (Mestel & Spitzer, 1956; Mouschovias & Spitzer, 1976; Strittmatter, 1966;

Tomisaka et al., 1988). For M/Φ > (M/Φ)crit, the cloud is supercritical and is prone to indef-

inite collapse. However, for M/Φ < (M/Φ)crit the cloud is subcritical and cannot collapse as

long as magnetic flux freezing applies. For example, M/Φ < (M/Φ)crit = (2πG1/2)−1 is required

for stability against fragmentation for an infinite uniform layer that is flattened along the di-

rection of the background magnetic field (Nakano & Nakamura, 1978). However, in nonideal

MHD, neutral-ion slip leads to gravitationally-driven fragmentation on the ambipolar-diffusion
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timescale (Langer, 1978; Ciolek & Basu, 2006; Mouschovias et al., 2011). In this project

we focus on the fragmentation and core formation in nonideal MHD clouds. Kudoh et al.

(2007) performed a three-dimensional simulation of the fragmentation and core formation in

the subcritical clouds with ambipolar diffusion and gravitational stratification along the mag-

netic fields. Kudoh & Basu (2008, 2011) did a further parameter study to demonstrate that core

formation occurs faster as the strength of the initial flow speed in the cloud increases.

2.1.1 Setup for numerical simulation

The numerical model used in this paper is similar to previous ones (Kudoh et al., 2007; Kudoh

& Basu, 2008, 2011). We solve the three-dimensional nonideal magnetohydrodynamic (MHD)

equations including self-gravity and ambipolar diffusion:

∂ρ

∂t
+ v · ∇ρ = −ρ∇ · v, (2.1)

∂ v
∂t

+ (v · ∇)v = −
1
ρ
∇p +

1
cρ

j × B − ∇ψ, (2.2)

∂B
∂t

= ∇ × (v × B) + ∇ ×

[
τni

cρ
(j × B) × B

]
, (2.3)

j =
c

4π
∇ × B, (2.4)

∇2ψ = 4πGρ, (2.5)

p = c2
sρ, (2.6)

where ρ is the density of the neutral gas, p is the pressure, v is the velocity, B is the magnetic

field, j is the electric current density, ψ is the self-gravitational potential and cs is the sound

speed. Equations (2.1) and (2.2) are the mass continuity and the momentum equations, respec-

tively. Equation (2.3) is the magnetic induction equation. The neutral-ion collision time in

equation (2.3) is given by

τni = 1.4
mi + mn

ρi〈σw〉in
(2.7)
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(e.g. Basu & Mouschovias, 1994), where ρi is the ion density and 〈σw〉in is the average collision

rate between the ions of mass mi and neutrals of mass mn.

Furthermore, it is assumed that the temperature of the gas makes a step-like transition from

a cool molecular gas to a warm surrounding medium at a height of zc = 2H0 (see Eq. [18] of

Kudoh & Basu (2011)) and that in the subsequent evolution each Lagrangian fluid particle is

in isothermal equilibrium (Kudoh & Basu, 2003, 2006) so that

dcs

dt
=
∂cs

∂t
+ v · ∇cs = 0. (2.8)

This means that each parcel of the molecular cloud and the surrounding warm gas retain their

initial temperature. As an initial condition we set up the simulation box with a preferred di-

rection of the uniform magnetic field. The self-gravitating cloud is in hydrostatic equilibrium

along the direction of the magnetic field and forms a sheet-like geometry. The one-dimensional

hydrostatic equilibrium can be calculated using the following equations:

dp
dz

= ρgz,
dgz

dz
= −4πGρ, p = c2

sρ, (2.9)

subject to boundary conditions gz(z = 0) = 0, ρ(z = 0) = ρ0, p(z = 0) = ρ0c2
s0, where ρ0 and cs0

are the initial density and the sound speed at z = 0. The initial magnetic field is assumed to be

uniform along the z-direction: Bz = B0, Bx = By = 0, where B0 is a constant. The simulation of

the equilibrium gas sheet is started with random velocity perturbations (vx = vaRm(x, y), vy =

vaRm(x, y), vz = 0) at each grid point where Rm is a random number with a spectrum v2
k ∝

kn in Fourier space and n is either −4 or 0. These correspond to turbulence or white noise,

respectively. The turbulence is not replenished, and therefore allowed to decay freely. We use

periodic boundaries in the x− and y− directions and a mirror-symmetric boundary condition at

z = 0. The computational region is −4πH0 < x, y < 4πH0 and 0 < z < 4H0. The number of

grid points in each direction is (Nx,Ny,Nz) = (256, 256, 20).
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Table 2.1: β0 is the initial ratio of thermal to magnetic pressure at z = 0, va is the amplitude of
the initial velocity fluctuation, tcore is the time needed for core formation.

Model β0 Spectrum va/cs tcore/t0 Comments
V1 0.25 k−4 0.1 87.6
V4 0.25 k−4 3.0 16.9 Fiducial model
K1 0.25 k0 3.0 95.7
B3 4.0 k−4 3.0 1.13 Initially supercritical
B4 9.0 k−4 3.0 1.06 Initially supercritical
B8 4.0 k−4 0.1 7.36 Initially supercritical

2.1.2 Numerical Parameters

As units of length, velocity and density we choose H0 = cs0/
√

2πGρ0, cs0 and ρ0, respectively.

This naturally gives the unit of time t0 ≡ H0/cs0. The ratio of the initial gas to magnetic

pressure at z = 0 introduces one dimensionless parameter,

β0 =
8πρ0c2

s0

B2
0

. (2.10)

The parameter β0 is related to the normalized mass-to-flux ratio µS ≡ 2πG1/2ΣS /B0 for Spitzer’s

self-gravitating cloud (Spitzer, 1942), in which ΣS = 2ρ0H0. Therefore,

β0 = µ2
S . (2.11)

Dimensional values of all the quantities can be found by specifying appropriate values for

ρ0 and cs0. For example, if cs0 = 0.2 km s−1 and n0 ≡ ρ0/mn = 104 cm−3 where mn =

2.33 × 1.67 × 10−24g, we obtain H0 ' 0.05 pc, t0 ' 2.5 × 105 yr and B0 ' 40 µG if β0 = 0.25.

The unit of column density is Σ0 = ρ0H0 ' 6 × 10−3g cm−2, which corresponds to a number

column density N0 ≡ Σ̃0/mn ' 1.5 × 1021cm−2. We define Σ̃ = Σ/Σ0 as the normalized column

density.
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2.2 Results

Table 2.1 summaries the simulation results for all the models and for different parameters. In

the table we have listed the values of β0, the form of power spectrum, vk, and the amplitude

of the initial velocity fluctuation va. We have also listed the core formation time t0, which is

defined as the time when the maximum density of a core reaches 100 ρ0. Depending on the

value of the initial mass-to-flux ratio, we have classified the models as subcritical (β0 < 1) or

supercritical (β0 > 1). Model V1 and V4 are subcritical clouds, in which we have changed

the amplitude of the initial velocity fluctuation va but with the turbulent spectrum fixed at

v2
k ∝ k−4. Model K1 is also subcritical and has an initial velocity fluctuation va = 3.0 cs0 but

the power spectrum is white noise, v2
k ∝ k0. In the models B3 to B8, we have β0 > 1, and

the cloud is supercritical with initial velocity fluctuation in both supersonic (va = 3.0 cs0) and

subsonic (va = 0.1 cs0) limits. We are particularly interested in the column density PDF of the

subcritical clouds where the magnetic support prevents rapid gravitational collapse. Instead,

the cloud oscillates and settles into a quasiequilibrium state of filamentary structure due to the

interplay of turbulence, magnetic support and gravitationally driven ambipolar diffusion (see

Auddy et al. (2016) for details). Interestingly, the subcritical clouds with linear perturbations

tend to have a much steeper slope in their column density PDF (α ' 4) as discussed later in

Section 2.2.2.

2.2.1 General properties of the supercritical cloud

Here we discuss models that are initially supercritical with β0 > 1. We consider a velocity

spectrum v2
k ∝ k−4 with both linear and nonlinear initial velocity amplitude. Figure 2.1 shows

the time snapshot of the logarithmic column density at the end of the simulation for model B3

(t = 1.13 t0). This model starts with an initially supercritical mass-to-flux ratio with β0 = 4.

The figure shows the column density in the x − y plane at the end of the simulation when the

maximum density is 100 ρ0. The column density is obtained by integrating the sheet along the
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Figure 2.1: Logarithmic column density (Σ̃ = Σ/Σ0) contours at t = 1.13 t0 for the model B3
with nonlinear velocity spectrum v2

k ∝ k−4 of amplitude va = 3.0 cs0. The model B3 is initially
supercritical (i.e. β0 = 4). The x and y axes are in the units of H0 ' 0.05 pc. The maximum
column density is located at (x, y) = (15.4 H0, 8.3 H0). The unit of time is t0 ' 2.5 × 105 yr.
The panel shows the column density when viewed face on along the direction of the magnetic
field (z−axis).

direction of the magnetic field (z axis). We assume that the cloud is viewed face on along the

short axis whose width is typically set by the hydrostatic equilibrium along the magnetic field.

Figure 2.2 shows the time snapshot of the logarithmic column density for model B8 at

t = 7.36 t0. Model B8 corresponds to a linear perturbation with initial velocity amplitude

va = 0.1 cs0. All the other parameters are the same as model B3. The core formation time

for model B3 (t = 1.13 t0) with nonlinear velocity perturbation is much less than for model

B8 (t = 7.36 t0) with a linear perturbation. Furthermore, visual inspection of Figures 2.1 and

2.2 shows that the column density distribution for model B3 is much more filamentary than

for model B8. The filaments in model B3 are distributed throughout the simulation region,

with some of them having more condensed regions with higher column density. The maximum

column density is located at (x, y) = (15.4 H0, 8.3 H0). Model B8 evolves much more slowly

until one of two dense regions go into a runaway collapse due to gravity. The maximum column

density for model B8 is located at (x, y) = (14.8 H0, 9.3 H0). The denser filamentary network in
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Figure 2.2: Logarithmic column density contours at t = 7.36 t0 for the model B8 with linear
initial velocity amplitude va = 0.1 cs0. All the other parameters are the same as model B3. The
panel shows the column density when viewed face on along the direction of the magnetic field
(z−axis).

model B3 can be attributed to the initial velocity amplitude that is 30 times greater than that in

model B8. As the clouds are supercritical to begin with, the large-scale supersonic turbulence

condenses the gas and gravity causes the dense regions to go into a runaway collapse. In model

B4 we further decrease the strength of the magnetic field, keeping all the other parameters

similar to model B3. The intrinsic nature of the column density remains the same only with

a tiny difference in the core formation time as shown in Table 2.1. The presence of a weak

magnetic field does not seem to have a strong impact compared to the decaying turbulence and

gravity in the evolution of these supercritical clouds.

The Column Density PDFs for supercritical clouds

Figures 2.3 and 2.4 show the column density PDFs along with the best-fit modified lognormal

power law (MLP) and Pareto distributions (Clauset et al., 2009), for the two models B3 and
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Figure 2.3: The column density PDF of model B3 at t = 0.28 Myr. The dashed-dotted line is
the best-fit MLP distribution with parameters α = 1.7, µ0 = −0.25, and σ0 = 0.37. The vertical
axis is log Σ̃ f (Σ̃) = log

(
∆N′/∆ log Σ̃

)
, where ∆N′ = ∆N/(Ntotal ln(10)) and ∆ log Σ̃ = 0.01. The

dashed red line in the best-fit power law to the tail of the column density PDF (log Σ̃ ≥ 0.8)
with power-law index α = 2.2. All fits are done using maximum likelihood estimation and are
independent of binning.

B8, respectively. The MLP distribution is a three-parameter PDF given in closed form as

f (Σ) =
α

2
exp

(
αµ0 + α2σ2

0/2
)
Σ−(1+α)

× erfc
(

1
√

2

(
ασ0 −

ln Σ − µ0

σ0

))
, Σ ∈ [0,∞)

(2.12)

(Basu et al., 2015). Here Σ is the column density of the molecular cloud, and the three pa-

rameters describing the MLP distribution are α, µ0 and σ0. The power-law tail is represented

by α, while µ0 and σ0 describe the body of the distribution (see Basu et al. (2015) for de-

tails). Here, we find the set of parameters for the MLP distribution that fits the normalized

column density PDF. The relative similarity in the normalized column density PDFs for both

the models is evident in the fit parameters. Figure 2.3 shows the normalized column density

PDF of model B3 obtained at the end of the simulation at t = 1.13 t0, i.e. 0.28 Myr. Here

we plot log
(
∆N′/∆ log Σ̃

)
≡ log Σ̃ f (Σ̃), where ∆N′ = ∆N/(Ntotal ln(10)) and ∆ log Σ̃ = 0.01

with log Σ̃ in the horizontal axis. We fit the MLP distribution using the maximum likeli-
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Figure 2.4: The column density PDF of model B8 at t = 1.84 Myr. The dashed-dotted line is
the best-fit MLP distribution with parameters α = 2.2, µ0 = 0.06, and σ0 = 0.14. The dashed
red line in the best-fit power law to the tail of the column density PDF (log Σ̃ ≥ 0.8) with
power-law index α = 2.5.

.

hood estimation (Johnson et al., 2002). The best-fit parameters are α = 1.7, µ0 = −0.25,

σ0 = 0.37. For all the fitting routines we have used the PYTHON optimization module

scipy.optimize.differential.evolution and scipy.optimize.basinhopping to find the global mini-

mum of the function. Figure 2.4 shows the normalized column density PDF of model B8

obtained at the end of the simulation at t = 7.36 t0, i.e. 1.84 Myr. Similarly, we fit the MLP

to Σ̃ f (Σ̃) using the maximum likelihood estimation (MLE) method. We note that the MLE fits

are independent of binning. The best-fit parameters are α = 2.2, µ0 = 0.06, and σ0 = 0.14.

For both the models B3 and B8 we also fit the Pareto distribution ( f (Σ) ∝ Σ−(1+α)) to the

tail of the column density PDF, i.e. where log Σ̃ ≥ 0.8. In Figures 2.3 and 2.4, the dashed red

line represents the best-fit power law using MLE, yielding α = 2.2 and α = 2.5 for model B3

and B8, respectively. The power-law fits are slightly steeper than the MLP fits. This is because

the MLP gives a global fit to the entire distribution, including the turnover at the lower column

density values. Thus, depending on the turnover point the MLP fits adjust accordingly and

give a global representation of the entire distribution. We performed several simulations with
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same initial conditions but different (increased) spatial resolution, different random perturba-

tion seeds, and different fitting routines, and found that the value of the measured power-law

index α has a variability of 10% − 20%. The slightly steeper slope for model B8 can be at-

tributed to the smaller initial velocity perturbation. There are fewer regions with dense gas

compared to model B3 as evident in Figures 2.1 and 2.2. The column density PDF for model

B3 with nonlinear perturbations has a wider spread (indicated by σ0) compared to model B8

with linear perturbations. More importantly, for both these supercritical models, the power law

establishes itself at a very early stage of evolution so there is no significant observable time

with a lognormal PDF. The power law dominates almost the entire distribution since many

regions go into direct collapse, i.e. there is a global fragmentation and gravitational collapse.

2.2.2 General properties of the subcritical cloud

We discuss the result of model V4 as a fiducial model, where the cloud has β0 = 0.25, corre-

sponding to a normalized mass-to-flux ratio of about 0.5. We initiate the simulation with an

initial nonlinear turbulent velocity perturbation of amplitude va = 3.0 cs0. Figure 2.5 shows

the time snapshot of the logarithmic column density colour map of model V4. The snapshot is

obtained at the end of the simulation, when the maximum density is 100 ρ0. The figure shows

the column density in the x−y plane that is obtained by integrating the sheet along the direction

of the magnetic field (z−axis).

Figure 2.6 shows the time snapshot of the logarithmic column density at the end of the

simulation for model V1. The model V1 corresponds to linear perturbations with va = 0.1 cs0.

All the other parameters are same as the fiducial model V4. One of the main differences

between model V4 and V1 is the core formation time. It is t = 16.9 t0 for model V4 but a much

longer time t = 87.6 t0 for model V1 with its initial linear perturbation. By visual inspection of

Figures 2.5 and 2.6, one can also see the morphological difference in the distribution of dense

structures. The fiducial model is much more filamentary and has more evolved collapsing

cores within the vicinity of the maximum column density located at (x, y) = (14.8 H0,−9.5 H0).
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Figure 2.5: Logarithmic column density contours at t = 16.9 t0 for the model V4. The model
V4 is the fiducial model, in which the turbulent spectrum is v2

k ∝ k−4 with the initial velocity
amplitude va = 3 cs0. This is a subcritical cloud with the initial mass-to-flux ratio of about 0.5
(i.e. β0 = 0.25). The unit of time is t0 ' 2.5 × 105 yr. The figure shows the column density
when viewed face on along the direction of the magnetic field (z−axis).

Although model V1 has evolved much longer than model V4, the weak velocity perturbation

causes very little compression of the gas. Furthermore, the presence of strong magnetic support

prevents the gas from collapsing due to self-gravity. The dense regions settle into an oscillatory

equilibrium between magnetic and gravitational forces, with the neutrals gradually diffusing

through the field lines due to ambipolar diffusion and forming denser regions.

Figure 2.7 shows a time snapshot of the column density of model K1 at the end of the

simulation. Model K1 has a turbulent spectrum v2
k ∝ k0 with all the other parameters same

as the fiducial model. Although a flat spectrum is not consistent with observations, we use it

to compare with the fiducial model. The white noise turbulence creates compressions in the

initial stages that are more localized than in model V4 and they are not filamentary. Eventually,

ambipolar diffusion leads to the formation of widely distributed cores. The core formation

time (t = 95.7 t0) is much longer than in the fiducial model. Furthermore, the cores are mostly

circular in shape with a lack of filamentary structures.
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Figure 2.6: Logarithmic column density contours at t = 87.6 t0 for the model V1 correspond-
ing to the initial velocity amplitude va = 0.1 cs0. This is also a subcritical cloud (similar to
ModelV4) with the initial mass-to-flux ratio of about 0.5 (i.e. β0 = 0.25) with the turbulent
spectrum is v2

k ∝ k−4. The unit of time is t0 ' 2.5×105 yr. The figure shows the column density
when viewed face on along the direction of the magnetic field (z−axis).

The column density PDFs for subcritical clouds

Figure 2.8 shows the time evolution of the column density PDF of the fiducial model V4. Here

we plot log
(
∆N′/∆ log Σ̃

)
≡ log Σ̃ f (Σ̃) and show the snapshots at different times of the column

density starting from t = 10 t0, (i.e. t = 2.50 Myr) till the end of the simulation when the

maximum density is 100 ρ0. The time corresponding to each snapshot is indicated on the top

of each panel. In each panel, the PDF is overplotted with the best-fit lognormal distribution

f (Σ) =
1

Σ
√

2πσ
exp

(
−

(ln Σ − µ)2

2σ2

)
(2.13)

(till the cutoff point Σ̃ = 6.3). We fit the lognormal distribution using MLE and the fit parame-

ters µ and σ of the successive epochs during the time evolution are shown in each panel.

The first panel on the top left of Figure 2.8 is a snapshot of the column density PDF at

a very early stage of evolution. The PDF is predominantly lognormal with a broad spread
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Figure 2.7: Logarithmic column density contours at t = 95.7 t0 for the model K1. The model
K1 has a turbulent spectrum v2

k ∝ k0. All other initial conditions are same as the fiducial model
V4. The initial velocity amplitude va = 3 cs0 and initial mass-to-flux ratio is about 0.5 (i.e.
β0 = 0.25). The unit of time is t0 ' 2.5 × 105 yr. The figure shows the column density when
viewed face on along the direction of the magnetic field (z−axis).

about its mean. A best-fit lognormal distribution (black dashed line) has the parameter values

µ = 0.60 and σ = 0.35. The lognormal shape in the early stages can be attributed to the initial

nonlinear perturbation (Vazquez-Semadeni, 1994) (discussion in the next section). As the cloud

evolves further, it gets compressed due to the large-scale flow and develops some pockets of

high column density. Then it rebounds and shows oscillation. Thus with each successive

compression more regions with high column density develop. The maximum density is also

strongly increased during each compression (see figure 14 in Kudoh & Basu (2011)) due to

the supersonic flow. This feature is very pronounced in Figure 2.8 where we see the width

of the column density PDF gradually widens over time (see also Ward et al. (2014); Tassis

et al. (2010)), hence it is not just a fixed value solely depending on the initial strength of the

nonlinear perturbation (supersonic turbulence)1. This is shown in the increase in the value of

1Although the width is growing as turbulence decays (decreasing Mach number), the final column density
PDF (see section 2.2.2) is consistent with the trend found in hydrodynamic simulations with driven turbulence
(e.g., Federrath & Klessen (2013)), where greater initial Mach number corresponds to a wider PDF.
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Figure 2.8: The time evolution of the column density PDF of the fiducial model V4 along with
the best-fit lognormal distribution in the normalized form. The time corresponding to each
snapshot is indicated on the top of each panel. The value of the fit parameters µ and σ are
also shown on the bottom left corner on individual panels. The dotted black line parallel to the
y−axis at log10 Σ̃ = 0.8 on the final subplot marks the power-law zone.

the lognormal fit parameter σ. After several oscillations, the local pockets of higher column

density become supercritical and go into a runaway collapse. The column density PDF retains

its lognormal shape for the most part of the evolution. However, at around t = 4.00 Myr, it

builds up regions of high column density. A distinct power-law tail gradually emerges, as seen

in the bottom row of Figure 2.8.

To resolve the high density regions and highlight the power law at the final snapshot, we

further perform a simulation with same initial conditions as model V4 but with twice the spatial

resolution. Therefore (Nx,Ny,Nz) = (512, 512, 40), and we follow the simulation till the max-

imum density is 100 ρ0. As reported previously in Kudoh & Basu (2011), the core formation

time becomes slightly shorter for the high-resolution cases. In the case of model V4 the core

formation time is t = 14.2 t0. It should be noted that the realization of the random perturbation

to the initial velocity fluctuations are also not the same when adopting a different resolution

(see Kudoh & Basu (2011) for details). Figure 2.9 shows the best-fit power law (red dashed
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Figure 2.9: The column density PDF of model V4 at t = 3.55 Myr with spatial resolution
(512,512,40). The dashed black line is best-fit lognormal distribution using the maximum
likelihood estimation and has parameters µ0 = 0.58 and σ0 = 0.39. The dashed red line
represents the best-fit power law using maximum likelihood with power-law index α = 2.4.
The two regions are separated by a dotted black line at log Σ̃ = 0.8. The inset box on the top
right corner is a zoomed in view of the power-law region along with the best-fit line.

line) along with the best-fit lognormal distribution (black dashed line) for the fiducial model

V4 but for a higher spatial resolution (512, 512, 40). The zoomed-in inset box on the upper

right corner in Figure 2.9 shows the power-law fit in the log Σ̃ f (Σ̃) vs log Σ̃ plot, which has an

index α = 2.4. The gradual development of a power-law tail in the later stages of the evolution

can be attributed to gravitationally-driven ambipolar diffusion occurring within the compressed

filaments (see Kudoh & Basu (2014) for an analytic model). The neutrals drift past the field

lines to form supercritical pockets within the filaments, on a somewhat shortened ambipolar

diffusion time scale, and rapid collapse ensues in those regions.

Figure 2.10 shows the normalized column density PDF of model K1 along with the best-fit

MLP distribution. The best-fit parameters are α = 4.0, µ0 = 0.37, σ0 = 0.09. This model has

a flat spectrum v2
k ∝ k0, but is otherwise the same as the fiducial model V4. The white noise

turbulence creates compressions in the initial stages that are more localized than in model V4

and they are not filamentary. Eventually, ambipolar diffusion leads to the formation of widely
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Figure 2.10: MLP fit to the column density PDF of model K1 at t = 23.93 Myr. The best-fit
parameter values are α = 4.0, µ0 = 0.37, and σ0 = 0.09.

distributed cores. The formation process of the cores is ultimately more similar to that of model

V1 (linear perturbations) discussed below, as there are no large scale density compressions that

create a filamentary structure (see also Basu et al. (2009)). An ensemble of cores formed

through ambipolar diffusion is expected to have a very steep column density PDF as explained

in Section 2.3.

Effect of Initial Velocity Amplitude

Model V1 has same initial conditions as our fiducial model V4 but with varying velocity pertur-

bation amplitude va. The characteristics of the column density PDF of this model are studied

using the best-fit MLP distribution. Figure 2.11 shows the normalized column density PDF

of the model V1 obtained at the end of the simulation at t = 87.6 t0, i.e. 21.90 Myr. We fit

the MLP distribution to Σ̃ f (Σ̃) using MLE. The best-fit parameters are α = 4.3, µ0 = 0.40,

σ0 = 0.06.

With the best-fit MLP distribution, it is relatively easy to quantify several important prop-

erties of the column density PDF for the subcritical cloud with different initial velocity fluctua-
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Figure 2.11: The column density PDF of model V1 at t = 21.90 Myr. The dashed-dotted line
is the best-fit MLP distribution with parameters α = 4.3, µ0 = 0.40, and σ0 = 0.06.

tions. For both the models, the magnetic field provides the dominant support against collapse in

the initial subcritical phase. The fiducial model V4 with nonlinear turbulence goes through an

oscillatory filamentary phase, with magnetic pressure and tension acting like a spring working

against the initial compression.

A major part of the evolution is dominated by a lognormal distribution as seen in Figure 2.8.

However, model V1 does not show any oscillations. It settles into a quasiequilibrium between

gravitational and magnetic forces and evolves rather slowly compared to model V4. While

Figure 2.9 shows that the power law is prominent only at higher column densities (log Σ̃ ≥ 0.8)

in model V4, for model V1 the power law is not only steep but extends all the way to much

lower values of column density as shown in Figure 2.11. The value of α is relatively high in the

log
(
Σ̃ f (Σ̃)

)
vs log Σ̃ plot. Another obvious distinction between the two PDFs is the spread of

the distribution indicated by the values of the fit parameters σ and σ0. The fiducial model has

a much broader distribution (σ = 0.39) compared to the model V1 (σ0 = 0.06). The difference

in the spread of the PDF between the models is a natural imprint of the differing initial velocity

perturbation amplitude va. The supersonic turbulent initial condition for model V4 results in a
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Table 2.2: Fit parameters for the MLP distribution to the column density PDF for models with
different initial conditions.

Model α µ0 σ0

V1 4.3 0.40 0.06
K1 4.0 0.37 0.09
B3 1.7 -0.25 0.37
B4 1.8 -0.55 0.17
B8 2.1 0.06 0.14

wider spread of the distribution compared to model V1.

2.2.3 Comparison of PDFs

Figure 2.12 is a composite plot that shows the column density PDFs of simulated molecu-

lar clouds with four different initial conditions. The vertical axis is the normalized frequency

∆N′ = ∆N/(Ntotal ln(10)) with the data binned with a uniform spacing of ∆ log Σ̃. The hori-

zontal axes are log Σ̃ on the top and number column density NH2 in cm−2 at the bottom, where

NH2 = Σ̃N0. The column density PDF for clouds with supercritical mass-to-flux ratio (red and

black histogram) is mostly power law above ∼ 1021 cm−2. In contrast, models with strong mag-

netic field show different characteristics. The column density PDF of the subcritical model V4

(blue histogram) is predominantly lognormal with a power-law tail above ≈ 9×1021 cm−2. Fur-

thermore, for model V1 the column density PDF is primarily a power law (no lognormal body)

like the supercritical cases but with a much steeper slope. We summarize the fit parameters of

the MLP function for all models (except V4) in Table 2.2.

2.3 Discussion

What role does a strong magnetic field play in shaping the column density PDFs and controlling

star formation? Many theorists (Kritsuk et al., 2011; Federrath & Klessen, 2013) assert that an

increasing magnetic field strength acts as an extra cushion against turbulent compression but
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Figure 2.12: The column density PDFs of simulated models of molecular cloud with different
initial conditions. The red and the black histogram are the supercritical model B8 and B3 with
linear and nonlinear perturbation respectively. The yellow and the blue histogram are both
subcritical clouds with linear (model V1) and nonlinear perturbation (model V4) respectively.
The vertical axis is the normalized frequency ∆N′ = ∆N/(Ntotal ln(10)) with the data binned
with a uniform spacing of ∆ log Σ̃ = 0.018. Blue histogram is the high resolution (512,512,40)
version of model V4.

has no definite influence on the power-law slope of the PDFs. Some indicate a weak steepening

of the power-law tail with increasing magnetic field strength (Collins et al., 2012). Our models

explore a larger dynamic range of magnetic field strength and instead demonstrate a clear trend

where subcritical models (strong magnetic field) with linear perturbations show minimum star

formation and have a steep power-law tail with index α ≈ 4. This broadly agrees with recent

observational results from Herschel and Planck (Lombardi et al., 2015; Alves et al., 2017),

which show that quiescent clouds with reduced star formation have similar power-law features.

Our results contradict the paradigm that clouds with little star formation have a lognormal PDF.

Furthermore, it is often debated whether a lognormal PDF is a direct imprint of supersonic

turbulence alone, with column density PDFs becoming wider with increasing Mach number

(Collins et al., 2012; Federrath & Klessen, 2013) and narrower with increasing magnetic field

strength (Molina et al., 2012). However, only our fiducial model V4 (with both strong magnetic

field and supersonic turbulence) mimics the results of these simulations (of magnetized clouds
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with driven turbulence) where the PDF is predominantly lognormal with a power law at the

high density end. The column density map of this model (Figure 2.5) is highly filamentary and

oscillating due to the interplay between the magnetic and ram pressures of the large-scale flow,

as described analytically by Auddy et al. (2016). The presence of a strong magnetic field acts

like a physical spring against the turbulent compression, and causes a sequence of oscillations.

This minimizes the decay of turbulence as most of the energy stays on the large scale for

an extended time (resembling driven turbulence) resulting in a nearly lognormal PDF until

gravitationally-driven ambipolar diffusion takes over. In all other models, the column density

PDF develops a power law with a peak and turnover at lower values. These PDFs should not be

classified as lognormal just because they have a peak. Indeed observations often show a pure

power-law PDF for both star forming and diffuse clouds (Lombardi et al., 2014, 2015; Alves

et al., 2017). One possible explanation (Ward et al., 2014) is that as the cloud evolves, the

underlying lognormal shape may be lost. Our results strongly indicate that magnetic support in

unison with turbulence and gravity play a crucial role in shaping the different observed PDFs.

A physical interpretation of these results requires understanding the fragmentation process

in magnetically supported clouds. For example, in the model of Basu & Mouschovias (1994),

the gravitational contraction of supercritical cores embedded in a subcritical envelope occurs

in a very nonhomologous manner. The ultimately self-similar evolution results in supercritical

cores having a central near uniform-column density surrounded by a radial power-law profile

proportional to r−1 (Basu (1997); and see Equation A.1). This is the same as for hydrodynamic

self-similar collapse (Larson, 1969; Shu, 1977; Hunter, 1977). However the convergence to

this solution occurs only at innermost radii, while an intermediate region makes the transition

from a magnetically supported envelope. Thus, the majority of the core area has a shallower

column density profile, and at the boundary the profile of Σ is proportional to r−0.7 (see Figure 1

in Basu (1997)). As shown in Appendix (A.1), the radial column density profile with a power-

law Σ ∝ r−1 as in Equation (A.8) corresponds to a PDF Σ f (Σ) ∝ Σ−2 but a profile Σ ∝ r−0.5 for

example will correspond to a PDF Σ f (Σ) ∝ Σ−4 (Equation (A.9)). The delay in reaching the
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self-similar collapse in the magnetically supported cloud, as opposed to a non-magnetically-

supported cloud is the critical factor that makes the PDF steeper for a magnetically supported

cloud. This is consistent with our high-resolution fiducial model V4, which develops a power-

law tail with index α = 2.4 in the high column density end (log Σ̃ ≥ 0.8) as shown in Figure 2.9.

The column density PDFs of our simulated models B3 and B8 with supercritical mass-to-flux

ratio have a power-law tail with MLP fit parameter α = 1.7 and α = 2.2 respectively. This

is also a direct imprint of the radial power-law profile (Σ ∝ r−1) within the core. In contrast,

the column density PDFs of the models V1 and K1 is much steeper with indices α = 4.3 and

α = 4.0, respectively. In both these models with initially small amplitude perturbations, the tur-

bulent energy is confined to small scales, causing primarily local collapse due to gravitational

contraction driven by ambipolar diffusion (see Figures 2.6 and 2.7). There is a slow transi-

tion towards a gravitationally collapsing supercritical inner core from an ambient magnetically

dominated regions. Most of the gas is in a transition zone in which the radial column density

profile is significantly shallower than Σ ∝ r−1, in fact closer to Σ ∝ r−0.5. These subcritical

models can be directly identified with observations of Polaris and Pipe (Lombardi et al., 2015),

which exhibit steeper power law with indices α = 3.9 and α = 3.0, respectively.

2.4 Conclusion

We have presented a unified model of column density PDFs that accounts for lognormal plus

power law PDFs in one limit and peaked power laws with different indices in other limits.

We employed fully three-dimensional magnetohydrodynamical simulations with either super-

critical or subcritical mass-to-flux ratio, and including ambipolar diffusion. We also studied

different amplitudes and spectra of initially-supplied turbulence that is allowed to decay freely.

Some of our key findings, including a comparison of clouds with strong and weak magnetic

fields, are listed below.

• The column density PDFs for clouds with supercritical mass-to-flux (β0 > 1) ratio have
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a power law with indices α = 1.7 and α = 2.2 for nonlinear and linear turbulence,

respectively. These power laws develop quickly both in time as well as in column density

evolution, so that the PDFs are like a pure power law except at the lowest values.

• Clouds with subcritical mass-to-flux ratio and linear perturbations (model V1) have a

PDF that is a steep power law with index α = 4.3. Similarly, for the subcritical model K1

with nonlinear white noise spectrum v2
k ∝ k0, the PDF is also steep with index α = 4.0.

The steep slope of these subcritical models (V1 and K1) is indicative of the process

that magnetic support restricts the rate of core and star formation in these clouds. This is

consistent with the fact that clouds with steeper slopes (α = 3.9 and α = 3.0), like Polaris

and Pipe, respectively (Lombardi et al., 2015), have minimum star formation activity.

• The fitting of the column density PDF of supercritical clouds or subcritical clouds with

linear perturbations is best done by a modified lognormal power law (MLP) function

(Basu et al., 2015). The MLP is a pure lognormal in one limit and pure power law in

another, depending on the values of its three parameters. The value of the parameter α

represents the slope of the power-law profile of all models studied here. The parameter α

has a typical variation of 10%−20% depending on the different realizations of the initial

perturbation and fitting routines.

• Only in the case of a subcritical (strong magnetic field) model V4 with nonlinear (su-

personic) perturbations with turbulent spectrum v2
k ∝ k−4 does the column density PDF

retain a lognormal shape for the major part of its evolutionary phase as it oscillates due to

the action of the magnetic field and turbulence. Eventually, the PDF develops a power-

law tail due to gravitationally driven ambipolar diffusion, where the neutrals drift past

the field lines and create subregions of supercritical pockets. In these subregions the PDF

has an index α ' 2, similar to supercritcal clouds.

• A nonlinear velocity perturbation with turbulent spectrum v2
k ∝ k−4 causes a much wider

spread of the column density PDF in both supercritical and subcritical clouds compared
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to clouds with linear perturbations. Furthermore, the strength of the strong velocity

perturbation shortens the core formation time (Kudoh & Basu, 2011).
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Chapter 3

A Magnetic Ribbon Model for

Star-Forming Filaments

The Herschel Space Observatory has revealed a wide-ranging network of elongated (filamen-

tary) structures in molecular clouds (e.g., André et al., 2010; Men’shchikov et al., 2010). Even

though filamentary structures in molecular clouds were already well established (e.g., Schnei-

der & Elmegreen, 1979), the Herschel continuum maps of dust emission at 70-500 µm have

achieved unprecedented sensitivity and revealed a deeper network of filaments, in both star-

forming and non-star-forming molecular clouds. This implies that the filamentary network is

an imprint of initial conditions, likely turbulence, rather than the result of pure gravitational

instability. Furthermore, the prestellar cores and protostars, when present, are preferentially

found along massive filaments.

Much interpretation of the filaments has been based on the assumption that they are isother-

mal cylinders. This simplifies their analysis as their observed shape is then independent of most

viewing angles and one can rely on established theoretical results about the equilibrium or col-

lapse of infinite cylinders. André et al. (2010) interpreted the observations in terms of the

critical line mass of an isothermal cylinder ml,crit = 2 c2
s/G, where cs is the isothermal sound

speed. For a mass per unit length m > ml,crit, a cylinder undergoes indefinite collapse as long as

60
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the gas is isothermal, and for m < ml,crit it can settle into an equilibrium structure, although still

unstable to clumping along its length into Jeans length sized fragments (Larson, 1985). André

et al. (2010) argue that star formation is initiated when m > ml,crit.

A challenge to the view of filaments as cylinders is the magnetic field alignment inferred

from polarized emission. Palmeirim et al. (2013) find that large scale magnetic fields are

aligned perpendicular to the long axis of the massive star-forming filaments (see also Planck

Collaboration et al., 2016). This makes a circular symmetry of a cylinder about the long axis

unlikely unless the magnetic field strength is dynamically insignificant. A more natural config-

uration is a magnetic ribbon, a triaxial object that is flattened along the direction of the large-

scale magnetic field with its shortest dimension in that direction. In the lateral direction to the

magnetic field, elongated structures can form due to turbulence and gravity. Indeed, simula-

tions of turbulence accelerated star formation in a strongly magnetic medium (Li & Nakamura,

2004; Nakamura & Li, 2005; Kudoh & Basu, 2008; Basu et al., 2009; Kudoh & Basu, 2011)

show the formation of ribbon-like structure in a layer that is flattened along the magnetic field

direction. Magnetic ribbons have recently been investigated theoretically by Tomisaka (2014)

and Hanawa & Tomisaka (2015). They study magnetohydrostatic equilibria of ribbons that

arise from a parent filament of radius R0, which is a free parameter in the problem. They find

that a critical line-mass-to-flux ratio exists for collapse, in analogy to the critical mass-to-flux

ratio for axisymmetric three-dimensional objects (Mouschovias & Spitzer, 1976).

A further challenge to filaments modeled as isothermal cylinders comes from the dust emis-

sion measurement of the FWHM of the mean column density profile relative to the axis of a

filament (Arzoumanian et al., 2011). For example, figure 7 of Arzoumanian et al. (2011) shows

that the FWHM values for 90 filamentary structures in low mass star forming regions cluster

around a mean of ∼ 0.1 pc with some scatter over two orders of magnitude range of mean

column density1. However, Ostriker (1964) showed that the central half-mass radius of an

equilibrium isothermal cylinder is a ∝ cs/
√

Gρc, essentially the Jeans length, where ρc is the

1Molecular line emission studies of the Taurus region show wider mean thicknesses ∼ 0.4 pc for filaments in
velocity-integrated emission and ∼ 0.2 pc for filaments in individual velocity channels (Panopoulou et al., 2014)
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central density. The projected column density of such a circularly symmetric configuration has

a central flat region of size a and column density Σc = 2ρc a (see Dapp & Basu, 2009), so that

we can also write a ∝ c2
s/(GΣc). Therefore, the approximate observed relation a ' constant

is unlike the expected a ∝ Σ−1
c . However, the observed set of values of the FWHM radii also

intersect the line of Jeans length at the median log column density, which implies that the Jeans

length may not be wholly unrelated to them.

In this paper, we explore the consequences of a magnetic ribbon model for molecular cloud

filaments for the measured relation between apparent width and the observed column density.

We argue that this is a more natural model for filaments and is based on the interplay between

turbulence, strong magnetic fields, and gravitationally-driven ambipolar diffusion, rather than

pure gravity and thermal pressure. We extend the analytic model of Kudoh & Basu (2014)

for the formation of magnetic ribbons that is based on numerical simulations. We derive a

lateral width of a magnetic ribbon and use it to calculate a synthetic observed relation between

apparent width in projection versus observed column density.

3.1 Semi-Analytic Model

3.1.1 Background

Dynamically important magnetic fields, corresponding to mass-to-flux ratios that range from

subcritical to mildly supercritical, will lead to flattening along the magnetic field direction,

and subsequent evolution will be primarily perpendicular to the magnetic field (Fiedler &

Mouschovias, 1993; Nakamura & Li, 2008). Even highly turbulent three-dimensional sim-

ulations (Kim & Basu, 2013) show that the turbulence is eventually dominated by motions

perpendicular to the ambient magnetic field. Observations of some filaments (e.g., Palmeirim

et al., 2013) that show a large-scale magnetic field along the short dimension of the filament

also support the idea of flattening along the field. In this paper, we adopt the scenario of turbu-

lent compression acting primarily perpendicular to the magnetic field direction in an initially
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subcritical molecular cloud. This leads to the paradigm of turbulence accelerated star forma-

tion, in which star formation occurs with globally low efficiency and in turbulent compressed

regions. These regions oscillate about an approximate force-balanced state until ambipolar dif-

fusion creates supercritical pockets that collapse to form stars. We explore the consequences

of this scenario by extending a semi-analytic model of Kudoh & Basu (2014) that is based on

numerical simulations.

3.1.2 Ribbon Width

We consider local pressure balance of a compressed region in a subcritical cloud and neglect

thermal pressure in comparison to magnetic pressure and the ram pressure of the flow. We

assume that the cloud is stratified in the z-direction, with compression happening primarily in

the x-y plane. Here we simplify the analysis of the compression by limiting it to one direction,

the x-axis (Fig. 3.1), as done by Kudoh & Basu (2014). The initial magnetic field strength

is B0 and the field strength increases upon compression until the magnetic pressure within

the compressed ribbon balances the external ram pressure and magnetic pressure. Hence the

compression ends (and oscillations may ensue) when

H
B2

8π
= H0

(
ρ0v2

t0 +
B2

0

8π

)
, (3.1)

where vt0 is the nonlinear flow speed. Assuming that the gas has adequate time to settle into

hydrostatic equilibrium along the z-direction, the half thickness of the cloud is

H =
cs√

2πGρ
(3.2)

(Spitzer, 1942). Now if the ambipolar diffusion time is longer than the compression time

(Kudoh & Basu, 2014), flux freezing is valid during compression, i.e.,

B
Σ

=
B0

Σ0
. (3.3)
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For the surface density Σ = 2ρH, equation (3.3) can be rewritten as

B

ρ
1
2

=
B0

ρ
1
2
0

. (3.4)

Using equation (3.2) and equation (3.4) in equation (3.1) and with some simplifications we get

(
ρ

ρ0

)1/2

= 2
(

vt0

vA0

)2

+ 1, (3.5)

where v2
A0 = B2

0/(4πρ0) is the square of the initial Alfvén speed of the cloud. The consequence

of such compression results in the formation of magnetic ribbons of width L and thickness 2H,

as they are flattened along the direction of magnetic field (see Fig. 3.1). For conservation of

mass per unit length in the ribbon during the compression of the cloud

ρ0L0H0 = ρLH, (3.6)

where L0 is the initial width (along the x-axis) and 2H0 is the initial thickness of the cloud in

the vertical direction (z-axis). Using equation (3.2), we can simplify the above equation to

(
ρ

ρ0

)1/2

=
L0

L
. (3.7)

By using equation (3.7) in equation (3.5), we can express the final width of the filament as

L = L0

2 (
vt0

vA0

)2

+ 1
−1

. (3.8)

Analysis of Zeeman measurements of the magnetic field in molecular clouds presented by

Crutcher (1999) shows that the turbulent line width is comparable to the Alfvén speed (Basu,

2000). If we make the plausible estimate that the flow speed is comparable to the Alfvén speed,
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i.e., vt0 ' vA0, the filament width becomes

L ' L0/3. (3.9)

The result illustrates the fact that the final width of a filament is independent of the density of

the medium. Instead it is a fraction of the initial length scale L0 of the compressed region.

B0 =BZ

L

2H

νt0

νt0

y

x

z

To observer

φ

θ

Figure 3.1: The formation of a magnetic ribbon as the molecular cloud contracts under the
influence of the “ram pressure” and the perpendicular magnetic field. The thick black arrow
points to an observer located at a random orientation in the sky.

3.1.3 Initial Compression Scale

In the above theory, the final ribbon width L is independent of its density, but does depend on

the initial compression scale L0 associated with turbulence. The origin and physics of L is then

quite different than that of the Jeans length. What is L0 then? In the turbulent scenario that we

adopt in this study, it would be associated with the dominant mode in the turbulent flow field in

a molecular cloud. At this point, no first principles theory exists to calculate L0 as the preferred

mode of an instability that leads to molecular cloud turbulence. Hence, we take guidance from

observations to make an empirical estimate for L0.
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Estimate from column density map

The column density maps used by Arzoumanian et al. (2011) to determine the mean filament

width can also be used to estimate a mean spacing between filaments, which we identify with L0

in our model. Figure 3b of Arzoumanian et al. (2011) identifies 27 filaments in a dust emission

map of the cloud IC 5146. We use this same map to make an approximate measurement of L0.

For each of the 27 filaments, we identify a center along the length (spine) of the filament. Then

for each filament we measure the distance to the nearest center point of another filament. We

obtain a set of 20 unique distance measurements (eliminating double counting in cases where

two filaments are mutually each other’s nearest neighbor). We ignore effects of an inclination

angle i in this analysis, which could mean that the measured distances are less than the actual

distances by a factor sin i. Our measured filament spacings (which we equate with L0) have a

minimum value 0.5 pc, a maximum value 2.2 pc, a median value 0.9 pc, and a mean value 1.0

pc.

Estimate from star formation timescale

Another way to constrain L0 is through the star formation timescale in molecular clouds. Since

this number is widely accepted to be in the range 1-3 Myr (Palla & Stahler, 2000, 2002; Hart-

mann, 2001), and star formation is often coordinated along a filament over this timescale, we

can place an upper limit (again empirically) on the compression timescale t0 of a few Myr.

Therefore the initial length scale that can trigger a compression can be written as

L0 ' vt0 t0 ' vA0 t0, (3.10)

where t0 is as above and again using the Alfvénic nature of turbulence. This further simplifies

to

L0 '
B0√
4πρ0

t0 =

√
2

µ0
cs t0, (3.11)



3.2. Results 67

where we have used pressure balance along the magnetic field, πGΣ2
0/2 = ρ0 c2

s and the nor-

malized mass-to-flux ratio µ0 = Σ0(2π
√

G)/B0. If we consider the initial cloud to be mildly

subcritical, i.e., µ0 ≈ 0.5, and a sound speed cs = 0.2 km s−1 ' 0.2 pc Myr−1, then t0 ' 1 − 3

Myr leads to L0 ' 1 pc.

3.2 Results

The simple arguments of the previous section show that the length scale at which the ribbon

formation is initiated is of the order of a parsec. Our semi-analytic model then implies that the

final width of the ribbon given by equation (3.9) is ∼ 0.3 pc. However, the shortest dimension

is flattened along the direction of the magnetic field and has a thickness 2H that does depend on

the column density. Therefore, the observed shape will depend on the viewing angle. Below we

calculate the observed width for a particular viewing angle and then calculate a synthetic plot

of observed ribbon width versus observed column density for a collection of random viewing

angles. Our objective is to gain insight into the form of the observed correlation, and how it

compares with the standard Jeans length scaling and with the observational results presented by

Arzoumanian et al. (2011). The value of L0 can be considered a free parameter and physically

may vary from one cloud to another and have a distribution of values within a single cloud.

While we do not advocate a specific individual value for L0, we use the empirical estimate that

it should be ∼ 1 pc to determine the shape and approximate quantitative values of an observed

correlation.

3.2.1 Observed Width

Let the normal to the filament, along the z-axis, be inclined at an angle θ to the observer as

shown in Fig. 3.2. For a ribbon-like filament of intrinsic width L and half thickness H the
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projected width Lobs as seen by the observer is

Lobs = L cos θ + 2H sin θ. (3.12)

If the ribbon is viewed face on, i.e., θ = 0◦, the observed width is just the intrinsic width

L. When viewed side on i.e., θ = 90◦ the observed width is the thickness 2H of the ribbon

along the z axis. For any other intermediate angles one sees the projection in the y-z plane i.e.,

equation (3.12), as shown in Fig. 3.2.

From our analysis we have already shown in equation (3.9) that the intrinsic width L is a

fraction of the initial compression length scale L0.

The thickness 2H of the magnetic ribbon is evaluated using the hydrostatic equilibrium,

equation (3.2), along the direction of the magnetic field (i.e., perpendicular to the filament

width). For column density Σ = 2ρH, the half-thickness of the clouds is estimated to be

H =
c2

s

πGΣ
. (3.13)

For a ribbon of any particular column density Σ we can estimate the corresponding half-

thickness H, which is essentially the Jeans scale, using equation (3.13). For example, H = 0.16

pc for cs = 0.2 km s−1 and N ≡ Σ/m = 1021cm−2 in which m = 2.3 mH.

3.2.2 Observed Column Density

The observed column density Σobs will be different from the intrinsic column density Σ depend-

ing on the angle at which the ribbon is being viewed. If the observer is situated at angle other

than θ = φ = 0◦ (as shown in Fig. 3.1), the length along the line of sight changes thus affecting

the observed column density. In the following section we will analyze the variation of Σobs with

the viewing angles θ and φ. We neglect the variation of ρ within the ribbon.
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Case 1 (0◦ ≤ θ ≤ θcrit)

For the beam incident on the face of the ribbon at an angle 0◦ ≤ θ ≤ θcrit and φ = 0◦, (refer to

Fig. 3.2a,) the observed column density is

Σobs = 2ρH sec θ. (3.14)

Since the intrinsic column density Σ = 2ρH, we get

Σobs = Σ sec θ. (3.15)

Thus only for θ = 0◦, i.e., when the ribbon is viewed face on, Σobs = Σ. For 0◦ < θ ≤ θcrit,

Σobs > Σ.

Case 2 (θ = θcrit)

For the beam entering at a critical angle θcrit and φ = 0◦ (Fig. 3.2b), the observed column

density is

Σobs = 2ρH sec θcrit = ρL csc θcrit. (3.16)

Rearranging the above equation, we find that

θcrit = tan−1 L
2H

. (3.17)

The critical angle θcrit separates the two sets of angles that have separate expressions for

Σobs.
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Figure 3.2: Different orientations of the magnetic ribbon with respect to the observer. Top
panel: case 1 (0◦ ≤ θ ≤ θcrit). Middle panel: case 2 (θ = θcrit) when the ribbon is observed at a
critical angle as shown. Bottom panel: case 3 (θcrit ≤ θ ≤ 90◦).

Case 3 (θcrit ≤ θ ≤ 90◦)

For the beam entering through the shorter dimension of the ribbon (see Fig. 3.2c) at an angle

θcrit ≤ θ ≤ 90◦ and φ = 0◦, the observed column density is

Σobs = ρL csc θ. (3.18)

Using equation (3.2), and Σ = 2ρH, we get
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Σobs =
ΣL

2H sin θ
=

πGΣ2L
2c2

s sin θ
. (3.19)

For θ = 90◦, i.e., when the ribbon is viewed side on, Σobs = Σ L
2H . For θcrit < θ ≤ 90◦, Σobs > Σ

if L > 2H, i.e., when the ribbon width is greater than the thickness of the ribbon, the observed

column density is greater than the actual column density.

Case 4 (φ , 0◦)

Furthermore, different angular orientation of the magnetic ribbons in the x-y plane will also

alter the observed column density. If the long axis (y) of the ribbon is not perpendicular the

line of sight (see Fig. 3.1), i.e., φ , 0◦ the observed column density will further increase. For

any random orientation in the x-y plane, the modified column density is

Σobs = Σ sec θ sec φ, 0◦ ≤ θ ≤ θcrit, (3.20)

Σobs =
πGΣ2L
2c2

s sin θ
sec φ, θcrit ≤ θ ≤ 90◦. (3.21)

However, different orientations in the x-y plane do not affect the observed ribbon width.

The resultant projection of the ribbon width on the y-z plane is independent of the azimuthal

angle φ.

3.2.3 Observed Correlation

Since the observations of Arzoumanian et al. (2011) reveal a relatively flat relation between

observed width and column density, it is instructive to use our model to make a synthetic map

of these quantities. For simplicity we consider φ = 0 in this analysis. We take a sample of

100 ribbons with number column density distributed uniformly in the range 1021 cm−2 ≤ N ≤

1023 cm−2. Furthermore we take viewing angles randomly chosen in the range 0◦ ≤ θ ≤ 90◦.

Each pair of values (N, θ) yields a pair of values (Nobs, Lobs) represented as blue dots in Fig.
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3.3. We obtain Lobs using equation (3.12) and Σobs using equation (3.15) or equation (3.19)

for θ ≤ θcrit or θ > θcrit, respectively. The black dashed line in Fig. 3.3 is the locus of points

obtained by taking 100 randomly chosen values of θ for each value of N and calculating the

mean values of Lobs and Nobs. This line is similar to the result of taking equation (3.12) and

inserting the mean values of cos θ and sin θ, which are both equal to 2/π, and replacing Σ

with the mean value of Σobs. However, the mean value of Σobs across all angles is not exactly

equal to Σ. Both the set of individual synthetic data points shown in blue dots as well as

the average relation in the black dashed line show a relatively flat relation over two orders of

magnitude variation in Nobs. Fig. 3.3 also shows the analytic relation for two limiting cases.

The black dotted line corresponds to the face on view (θ = 0◦) where Lobs = L = 0.3 pc and

is independent of the column density. The blue dot-dashed line corresponds to θ = 90◦ where

Lobs = 2c2
s/(πGΣ), essentially the Jeans length.
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Figure 3.3: Apparent ribbon width Lobs versus observed column density Nobs. Each blue dot
corresponds to a magnetic ribbon with intrinsic column density N and observing angle θ, cho-
sen as described in Sec. 3.2.3. The black dashed line is the mean ribbon width for the entire
range of values of Nobs. The black dotted line is the width when the ribbon is viewed at θ = 0◦.
The blue dot-dashed line is the width for the side on view i.e., θ = 90◦.
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3.3 Conclusion

We have presented a minimum hypothesis model for the width of a filament in a molecular

cloud in which magnetic fields and magnetohydrodynamic turbulence are initially dominant.

A turbulent compression leads to a magnetic ribbon whose thickness is set by the standoff be-

tween ram pressure and magnetic pressure region. Gravitationally-driven ambipolar diffusion

then leads to runaway collapse of the densest regions in the ribbon, where the mass-to-flux

ratio has become supercritical. This process has been demonstrated in published simulations

of trans-Alfvénic turbulence in a cloud with an initial subcritical mass-to-flux ratio (e.g., Naka-

mura & Li, 2005; Kudoh & Basu, 2011). We have extended the semi-analytic model of Kudoh

& Basu (2014) to estimate their lateral (perpendicular to magnetic field and ribbon long axis)

width. This quantity is independent of the density of the ribbon. This lateral width can also

be used to estimate the parent filament radius R0 in the theoretical magnetic ribbon model of

Tomisaka (2014). In our model, the thickness parallel to the magnetic field is essentially the

Jeans scale and does depend on density. Hence, we calculate a distribution of apparent widths

seen in projection assuming a random set of viewing angles. The resulting distribution of ap-

parent widths versus apparent column density is relatively flat (unlike expectations based on

the Jeans length) over the range 1021 cm−2 – 1023 cm−2, in rough agreement with the observa-

tions of Arzoumanian et al. (2011). Other models have been introduced to explain the apparent

near-uniform width of observed filaments. Fischera & Martin (2012) introduce an external

pressure to an isothermal cylinder and find that the FWHM versus column density is a peaked

function and approximately flat in the regime where ml is well below ml,crit and the external

pressure is comparable to the central pressure. However, filaments with ml > ml,crit would be

in a time-dependent state of dynamical collapse. Hennebelle & André (2013) develop a model

of a cylindrical self-gravitating filament that is accreting at a prescribed rate. A near-uniform

radius is derived based on assumption of a steady-state balance between energy input from

accretion and dissipation of energy by ion-neutral friction at the filament radius scale. Heitsch

(2013) also develops a model of accretion at the free-fall rate onto a filament with ml < ml,crit
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and uses various prescribed forms of internal structure to find that the FWHM has a peaked

dependence on column density. A series of simulation papers (Smith et al., 2014; Kirk et al.,

2015; Federrath, 2016) use hydrodynamic or MHD simulations (with supercritical mass-to-

flux ratio) and analyze filament widths at particular snapshots in time. Although their filament

widths cluster at ∼ 0.1 pc with some scatter, there is a mild to strong density dependence of

the widths, and the filaments are single time snapshots in a situation of continuing collapse.

Federrath (2016) suggests that ∼ 0.1 pc is special since the linewidth-size relation of Larson

(1981) would lead to subsonic turbulence below that scale, but it is not clear if his simulations

satisfy this scaling internally. We believe that the magnetic ribbon model provides an alterna-

tive simplified interpretation that accounts for turbulence and strong magnetic fields. We have

developed a method to estimate the width of a magnetic ribbon based on the characteristic scale

and amplitude of MHD turbulence. Such ribbons can have a line mass that exceeds the hydro-

dynamic limit 2c2
s/G and still be in a dynamically oscillating quasi-equilibrium state. However,

gravity still leads to star formation in the dense interior through rapid ambipolar diffusion.
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Chapter 4

Magnetic Field Structure of Dense Cores

using Spectroscopic Methods

4.1 Introduction

Stars form in dense cores embedded within interstellar molecular clouds (Lada et al., 1993;

Williams et al., 2000; André et al., 2009). Dense cores are well studied observationally from

molecular spectral line emission (Myers & Benson, 1983; Benson & Myers, 1989; Jijina et al.,

1999), infrared absorption (Teixeira et al., 2005; Lada et al., 2007; Machaieie et al., 2017)

and submillimeter dust emission (Ward-Thompson et al., 1994; Kirk et al., 2005; Marsh et al.,

2016).

Cores form in multiple ways due to fragmentation of over-dense regions (typically filaments

and sheets (Basu et al., 2009)) within turbulent magnetized clouds. Depending on the ambient

initial conditions they can form either as a result of spontaneous gravitational contraction (Jeans

instability Jeans (1929); Larson (1985, 2003)) or by rapid fragmentation due to preexisting

turbulence (Padoan et al., 1997; Klessen, 2001; Gammie et al., 2003). The other classical

scenario is the formation of cores in magnetically supported clouds due to quasistatic ambipolar

diffusion i.e., gravitationally induced drift of the neutral species with respect to ions (Mestel

77
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& Spitzer, 1956; Mouschovias, 1979; Shu et al., 1987)). However, a more recent view is that

both supersonic turbulence and gravitationally driven ambipolar diffusion are significant in the

process of core formation (e.g., Nakamura & Li (2005); Kudoh & Basu (2011, 2014); Chen &

Ostriker (2014); Auddy et al. (2018).

To get a vivid picture we investigate the kinematics of some of the dense cores in Ophi-

uchus. Dense cores are the seeds for star formation and often have nonthermal contributions

to linewidth that are small compared to the thermal values (Rydbeck et al., 1977; Myers,

1983; Caselli et al., 2002). These observations imply a transition from a primarily nonther-

mal linewidth in low density molecular cloud envelopes to a nearly thermal linewidth within

dense cores. This is termed as “a transition to velocity coherence” (Goodman et al., 1998).

A sharp transition between the coherent core and the dense turbulent gas surrounding the B5

region in Perseus was found using NH3 observations from the Green Bank Telescope (GBT)

by Pineda et al. (2010). An important question is whether a transition from magnetic support

of low density regions to gravitational collapse of dense regions is physically related to the

transition to coherence. Furthermore, how is the magnetic field strength affecting the nonther-

mal linewidth in the low density region, and is this related to the velocity transition? If so, can

one estimate the magnetic field strength and its radial variation across a dense core using such

observations?

Accurate measurement of the magnetic field is one of the challenges of observational as-

trophysics. Several methods exist that probe the magnetic field in the interstellar medium,

such as Zeeman detection (e.g., Crutcher (1999)), dust polarization (Hoang & Lazarian, 2008)

and Faraday rotation (Wolleben & Reich, 2004). While each method has its own limitations

(Crutcher, 2012), sensitive observations of dust polarization often provide a good characteri-

zation of the plane-of-sky magnetic field. According to the dust alignment theory (Andersson

et al., 2015), the elongated interstellar dust grains tend to align with their minor axis parallel

to the magnetic field. Dust polarization observations from thermal emission or extinction of

background star light provide a unique way to probe the magnetic field morphology in the ISM,
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including collapsing cores in molecular clouds. However, in addition to getting the field mor-

phology, there are various methods to estimate the magnetic field strength. One of the popular

technique is the Chandrasekhar-Fermi (CF) method (Davis & Greenstein, 1951; Chandrasekhar

& Fermi, 1953) that estimates the field strength using measurements of the field dispersion

(about the mean field direction), gas density, and one-dimensional nonthermal velocity disper-

sion. Dust polarization, however, can be weak in the centers of dense cores where the dust

grains are well shielded from the radiative torques necessary to move the grains into alignment

with the magnetic field (e.g., see Lazarian & Hoang (2007)). Accurate detection of magnetic

field strength and morphology is key to resolving the long standing debate about whether mag-

netic support (Mouschovias, 1991) or turbulent motions (Padoan & Nordlund, 1999) dominate,

or if both processes are crucial in regulating star formation in molecular clouds (Nakamura &

Li, 2005; Kudoh & Basu, 2011; Vazquez-Semadeni et al., 2011).

In this paper we present new NH3 observations of multiple cores in the L1688 region in

the Ophiuchus molecular cloud. Most of the cores show a sharp transition to coherence with

a nearly subsonic nonthermal velocity dispersion in the inner region. Here we propose a new

“Core Field Structure” (CFS) method of estimating the amplitude of magnetic field fluctu-

ations. It incorporates detailed maps from the Green Bank Ammonia Survey (GAS) of the

nonthermal linewidth profiles across a core. We use this method to estimate the magnetic field

profile of some of the dense cores in the Ophiuchus molecular cloud. The paper is organized

in the following manner. The observations of the gas kinematics and the column density are

reported in Section 2. In Section 3 we introduce the new CFS model and the inferred magnetic

field profile. In Section 4 we discuss the limitations of the model. We highlight some of the

important conclusions in Section 5.
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4.2 Observations

The first data release paper from the GBT survey (Friesen et al., 2017) included detailed NH3

maps of the gas kinematics (velocity dispersion, σv and gas kinetic temperature, TK) of four

regions in the Gould Belt: B18 in Taurus, NGC 1333 in Perseus, L1688 in Ophiuchus, and

Orion A North in Orion. The emission from the NH3 (J,K) = (1, 1) and (2, 2) inversion lines in

the L1688 region of the Ophiuchus cores were obtained using the 100 m Green Bank Telescope.

The observations were done using in-band frequency switching with a frequency throw of

4.11 MHz, using the GBT K-band (upper) receiver and the GBT spectrometer at the front and

back end, respectively. L1688 is located centrally in the Ophiuchus molecular cloud. It is a

concentrated dense hub (with numerous dense gas cores) spanning approximately 1 − 2 pc in

radius with a mass of 2 × 103 M� (Loren, 1989). L1688 has over 300 young stellar objects

(Wilking et al., 2008) and contains regions of high visual extinction, with AV ∼ 50 − 100 mag

(e.g., Wilking & Lada (1983)). The mean gas number density of L1688 is approximately a

few ×103cm−3. Submillimeter continuum emission from dust shows that the star formation

efficiency of the dense gas cores is ≈ 14% (Jørgensen et al., 2008).

4.2.1 Velocity Dispersion

Figure 6 in Friesen et al. (2017) shows the integrated intensity map of the NH3(1, 1) line for the

L1688 region in Ophiuchus. The ammonia map of L1688 in Ophiuchus includes four promi-

nent isolated starless cores (including H-MM1) lying on the outskirts of the cloud, plus more

than a dozen local linewidth minima in the main cloud (mainly in the south-eastern part in

regions called Oph-C, E, and F). Many of these minima correspond to roundish starless cores

that can be identified on the SCUBA-2 850 micron dust continuum map. The velocity disper-

sions and the kinetic temperatures are calculated from the averaged NH3(1, 1) and NH3(2, 2)

spectra. We have averaged the spectra in concentric annuli to follow the change of nonthermal

velocity dispersion as a function of the distance from the core center. Figure 4.1 shows radially
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Figure 4.1: Velocity dispersion profiles of the H-MM1 calculated using the NH3 (1, 1) and
NH3 (2, 2) spectral line cubes from the GAS survey of the L1688 region of Ophiuchus (Friesen
et al., 2017). Here cs and σNT are calculated from annularly averaged spectra, by first aligning
the spectra in velocity with the help of the vLSR map. The transonic radius (where cs = σNT) of
H-MM1 can be identified as r0 ' 86′′ (0.05 pc at the 120 pc distance of Ophiuchus).

averaged thermal and nonthermal velocity dispersions in HMM-1. It shows a clear transition

point at radius ≈ 86′′, where cs = σNT. We identify this radius as the transonic radius, rc, and

consider it to be the core boundary. The nonthermal velocity dispersion is ≈ 0.5cs inside the

core, and it increases steeply to ≈ 2cs across the core boundary. We use the same prescription

to map the thermal and nonthermal velocity dispersion of other selected cores in L1688. Figure

4.2 shows the annularly averaged thermal and nonthermal velocity dispersions of all the other

selected cores in L1688. We have selected only those cores that have a distinct delineation be-

tween thermal/nonthermal line-widths (cs = σNT) at a transonic radius rc with the nonthermal

dispersion becoming subthermal towards the center of the core. Outside the transonic radius for

some cores (for example Oph-CN and Oph-Fe) the nonthermal dispersion is comparable to the

sound speed. In Table 4.1 we give the measure of the transonic rc radius and the correspond-

ing velocity dispersion (σNT)c at rc. The values of rc and (σNT)c are obtained by interpolating

the thermal and nonthermal data points and finding their intersection. In this paper, while we
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Figure 4.2: Velocity dispersion profiles of some selected cores in Ophiuchus calculated using
the NH3 (1, 1) and NH3 (2, 2) spectral line cubes from the GAS survey of the L1688 region
of Ophiuchus (Friesen et al., 2017). Here cs and σNT are calculated from annularly averaged
spectra, by first aligning the spectra in velocity with the help of the vLSR map.

present the results from our analysis of seven different cores in L1688, we focus our discussion

on H-MM1.

4.2.2 Column Density and Density Model

Figure 4.3 shows the circularly averaged 850 µm intensity profiles of seven cores in L1688

derived from the SCUBA-2 maps (see Figure 1 in Pattle et al. (2015)). In order to characterize

each observed column density profile, we adopt an idealized Plummer model of a spherical

core (Arzoumanian et al., 2011) with radial density

ρ(r) =
ρ0[

1 + (r/r2
0)
]p/2 , (4.1)
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Figure 4.3: Top: Submillimeter intensities as functions of radial distance from the center of
cores in Ophiuchus. The colored markers with error bars indicate averages over concentric
annuli and their standard deviations. These are obtained from SCUBA-2 maps at 850 µm
published by Pattle et al. (2015). The solid curves are fits to the data using the Plummer model
Equation (4.1). Bottom: The density profiles as functions of radial distance from the center of
cores in L1688. Here we plot n(r) using the fit parameters (see Table 4.1). The vertical dotted
lines mark the extent of the central flat region r0.
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Table 4.1: The Plummer fit parameters are n0, r0, and p/2, rc is the transonic radius and (σNT)c

is the velocity dispersion at rc. The final column gives an estimate of the mass of each core.

Core rc (10−2 pc) (σNT)c (km s−1) n0 ( 105 cm−3) r0 (10−2 pc) p/2 Mass (M�)
H-MM1 5.0 0.25 8.0 ± 3.0 1.0 ± 0.4 1.3 ± 0.2 1.7 ± 0.8
H-MM2 3.9 0.23 9.0 ± 2.0 1.0 ± 0.2 1.4 ± 0.2 0.9 ± 0.3
Oph-C 4.5 0.23 7.0 ± 3.0 3.0 ± 1.0 1.4 ± 0.5 5.1 ± 2.1
Oph-E 2.2 0.24 8.0 ± 3.0 0.8 ± 0.3 0.9 ± 0.1 0.6 ± 0.2
Oph-X 3.5 0.24 18.0 ± 8.0 0.5 ± 0.2 0.8 ± 0.1 1.5 ± 0.7
Oph-CN 2.9 0.22 4.0 ± 1.0 1.0 ± 0.5 0.8 ± 0.1 0.7 ± 0.2
Oph-FE 3.6 0.23 2.0 ± 0.9 1.0 ± 0.4 0.9 ± 0.2 0.5 ± 0.2

where the parameter r0 is the characteristic radius of the flat inner region of the density profile,

ρ0 = µmHn0 is the density at the center of the core and p is the power-law index. The column

density profile for such a sphere of radius r can be modeled as

Σp(r) = Ap
ρ0r0[

1 + (r/r0)2] p−1
2

, (4.2)

where Σ = µmHNH2 is the observed column density, NH2 is the number column density, mH and

µ = 2.33 are the mass of hydrogen atom and the mean molecular mass, respectively, and

Ap =
1

cos i

∫ ∞

−∞

du
(1 + u2)p/2 (4.3)

is a constant. We fit the model profile to the SCUBA-2 850 µm data after they are averaged

over concentric circular annuli. For fitting the model to the observational data, r0, n0 (number

density at the center), and p are treated as free parameters. The left panel in Figure 4.3 is the

Plummer fit to the averaged submillimeter intensities of the concentric annuli of selected cores

(with clearest delineation between thermal/nonthermal motions) in L1688 region in Ophiuchus.

The results from the fit are summarized in Table 4.1. On the right panel of Figure 4.3 we

plot the density profile of all the cores (using Equation (4.1)). For most of the cores there

is a noticeable central flat region of nearly constant density and then a gradual power-law

decrease radially outward. The index p/2 is different for each model and varies in the range
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0.78 < p/2 ≤ 1.38. An estimate of the mass of each core (which is modeled as a sphere)

is also given in Table 4.1. The mass is calculated by integrating the density profile upto the

core radius (transcritical radius). We run several iterations where the density fit parameters are

drawn randomly from respective normal Gaussian distributions with a standard deviation equal

to the error range of each parameter. Additionally, for each core we assume a spread of 10%

for the transcritical radius rc to incorporate the uncertainty (which on average is ≈ 10%) in the

thermal and nonthermal linewidths. The obtained mass distribution is skewed. The process is

repeated 100 times and the uncertainty is calculated from the mean of S/
√

(2 ln 2), where S is

the semi-interquartile range, for each distribution.

4.3 Model

We introduce our new “Core Field Structure (CFS)” method that characterizes the magnetic

field profile of dense cores using the high resolution NH3 gas kinematics data from the GBT

and the 850 µm intensity profile from the SCUBA-2 map. The theory is motivated on the

premise that magnetic field lines are effectively frozen-in to the gas, as can be the case for

supercritical core contraction. The field lines are pinched towards the center of the core due

to gravitational contraction. Furthermore, Alfvénic fluctuations are assumed to dominate the

nonthermal component of the velocity dispersion. In the following subsection; we discuss the

details of the theory and provide justifications. We apply it to the seven well known cores of

Ophiuchus in order to estimate their magnetic field strength profile. Additionally, our model

yields the mean magnetic field fluctuations δB and mass-to-flux ratio profile of each of the

observed cores.
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4.3.1 Core Field Structure

Our first assumption is that the field strength follows a power-law approximation. The magnetic

field B(r) within the core radius rc can be written in terms of the observed values as

B(r)/B(rc) = [ρ(r)/ρ(rc)]κ, (4.4)

where 1/2 ≤ κ ≤ 2/3 (Crutcher, 2012) is a power-law index. Here B(rc) is the field strength

at the transcritical radius. The gas density approaches a near uniform value outside rc. Thus,

we do not extend the power-law approximation beyond the core radius. We assume that the

core is in a kind of pressure (thermal, magnetic and /or turbulent) equilibrium with the external

medium as in Bonnor-Ebert sphere. Equation (4.4) incorporates various relations obtained

from theoretical and numerical models of magnetic cores. Mestel (1966) showed that κ = 2/3

in the limit of weak magnetic field and spherical isotropic contraction (which can occur if

thermal support nearly balances gravity). Theoretically, B ∝ ρ2/3 in Mestel (1966) relates the

mean field and the mean density within a given radius. In Equation (4.4) we generalize the

idea with the approximation that B ∝ ρ2/3 can also be applied for local magnetic field B and

local density ρ(r) at any particular radius. However, in the limit of gravitational contraction

mediated by a strong magnetic field Mouschovias (1976a) showed that κ is closer to 1/2. Both

the above models do not include nonlinear turbulence within the core, which is consistent with

our observations within the transcritical radius. Finally, we know that even in the limit of very

strong magnetic field (subcritical mass-to-flux ratio) models of the ambient molecular cloud

(Fiedler & Mouschovias, 1993), ambipolar diffusion leads to the formation of supercritical

cores within which κ = 1/2. We are only applying Equation (4.4) within the transcritical

radius, within which local self-gravity is presumed to be dominant.

To model the nonthermal motions we assume Alfvénic fluctuations. The Alfvénic fluctua-

tions obey
σNT

vA
=
δB
B
, (4.5)
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Figure 4.4: The plane-of-sky magnetic field profile of H-MM1 obtained from the CFS method
using the observed linewidths and density. The red and the blue dashed lines are the magnetic
field B for κ = 1/2 and κ = 2/3, respectively for the choice of β1 = 0.5. The shaded region
encloses the first and the third quartile of the distribution obtained using a Monte Carlo anal-
ysis. The dot-dashed red and blue lines are the magnetic field B for κ = 1/2 and κ = 2/3,
respectively, for β2 = 0.8.

where vA ≡ B/(
√

4πρ). This directly leads to

δB = σNT

√
4πρ . (4.6)

We also use Equation (4.5) to estimate B(rc) for use in Equation (4.4) by estimating a value of

relative field fluctuation β ≡ δB/B at r = rc.

Kudoh & Basu (2003) showed in a model with turbulent driving that β is restricted to . 1

as highly nonlinear Alfvénic waves quickly steepen and drain energy to shocks and acoustic

motions, and that their model cloud evolved to a state in which σNT ≈ 0.5vA. Based on the

Kudoh & Basu (2003) simulations we pick a range 0.5 ≤ β ≤ 0.8 at the inner boundary (r = rc)

of the turbulent region For simplicity we demonstrate only the two limiting values β1 = 0.5 and

β2 = 0.8. The CFS model then gives estimates of the magnetic field profiles (using Equation

4.4) of the dense cores in Ophiuchus. Furthermore, it yields the variation of δB/B and the
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Figure 4.5: The plane-of-sky magnetic field profile of six different cores (names on the upper
left corner) obtained from the CFS method using the observed linewidths and density. The red
and the blue dashed lines are the magnetic field B for κ = 1/2 and κ = 2/3, respectively, for the
choice of β1 = 0.5. The shaded region encloses the first and the third quartile of the distribution
obtained using Monte Carlo analysis. The dot-dashed red and blue lines are the magnetic field
B for κ = 1/2 and κ = 2/3 respectively, for β2 = 0.8. The magnetic field increases radially
inward and the ascent is steeper for κ = 2/3.

normalized mass-flux ratio within each core profile. We discuss some of the predicted core

properties in the next subsection.

4.3.2 Core Properties

Figure 4.4 shows the plane-of-sky magnetic field profile of H-MM1 obtained using the CFS

method. The magnetic field B increases radially inward and the ascent is steeper for κ = 2/3.

For example, the B value at r = 0.01 pc for κ = 2/3 is ' 68% greater than that for κ = 1/2.

Similarly, we estimate the magnetic field strength profile of all the other cores using the power-

law model. Figure 4.5 shows the field profile as a function of radial distance from the center.

Similar to H-MM1, the field strength at a radius of 0.01 pc from the center is greater for κ = 2/3
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compared to κ = 1/2, with a maximum increase of 61% in H-MM2 and a minimum increase of

19% in Oph-E. Furthermore, the general increase of the field strength towards the core center

can be associated with the pinching of the field lines due to flux-freezing. The power-law

relation B ∝ ρκ for κ = 1/2 or 2/3 captures different geometries, for example κ = 2/3 is

consistent with a spherical core but κ = 1/2 is not. Nevertheless, for simplicity we consider

cores to be nearly spheres even for κ = 1/2.

We use a Monte Carlo analysis, where we run several iterations to evaluate the magnetic

field strength using Equation (4.4). The parameters (for example r0, ρ0, and p/2 ) are randomly

picked from a Gaussian distribution with standard deviation equal to the error range of each

parameter (see Table (4.1)). Additionally, we assume a variation of 10% for the values of

(σNT)c and rc to incorporate the uncertainty (on average ≈ 10%) in the thermal and nonthermal

linewidths. The shaded region in both the plots encloses the first and the third quartile of the

distribution of magnetic field strength. The dotted curve is the actual model value for β1 = 0.5.

We repeat a similar analysis for the six other cores in Ophiuchus. There is a significant dip in

the field strength of ≈ 38% (as indicated by the dot-dashed lines) for a larger assumed value

of field fluctuation (i.e., β2 = 0.8) at the transonic radius rc. Although there is a systematic

dependence of the field strength on the choice of β, the overall shape of the magnetic field

profile remains the same.

Figure 4.6 shows the fluctuations of the mean magnetic field δB (Equation (4.6)) and δB/B

mapped across the H-MM1 core using the observed nonthermal velocity dispersion data, den-

sity, and the modeled magnetic field. The δB measurements are done on a much finer scale

(spatially) due to the high resolution NH3 map. The inferred variation of δB/B shows a trend

very similar to the nonthermal velocity fluctuations. It increases outward as it approaches the

transcritical radius. Inside the core δB/B decreases to a relatively constant value of ≈ 0.1. The

δB/B profile essentially captures the Alfvénic fluctuations across H-MM1. Figure 4.7 shows

δB and δB/B for the other cores in Ophiuchus. They all exhibit a very similar trend as H-MM1.

In Figure 4.8 we give estimates of the kinetic, gravitational potential and magnetic energies for
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kinetic energy is much lower, consistent with the low values of non-thermal linewidth inside
the core.

H-MM1. The energy magnitudes (except the nonthermal kinetic energy) are comparable all

the way from the center to the edge of the core.

4.3.3 The mass-to-flux ratio

In this section, we estimate the normalized mass-to-flux ratio µ ≡ M/Φ/(M/Φ)crit, where

(M/Φ)crit = (2π
√

G)−1, of the seven cores studied in this paper, assuming a spherically sym-

metrically density profile. The relative strength of gravity and the magnetic field is measured

by the mass-to-flux ratio M/Φ. For M/Φ > (M/Φ)crit, the cloud is supercritical and is prone to

collapse. However, for M/Φ < (M/Φ)crit the cloud is subcritical and cannot collapse as long

as magnetic flux freezing applies. Here we consider a simple case where the magnetic field

lines are assumed to be vertically threading a spherical dense core in the plane of the sky. We

calculate the enclosed mass within cylindrical tubes of constant magnetic field lines as a func-

tion of radius from the center in the horizontal midplane of the core. We integrate the volume
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density ρ(r) given in Equation (4.1) with p/2 = 1 along the magnetic field lines to get the

corresponding column density as

Σ(x) =
2r2

0ρ0√
(x2 + r2

0)
arctan

 √
rc − x2√
r0 + x2

 , (4.7)

where x is the offset from the center in the midplane (see Dapp & Basu (2009) for an analogous

calculation). We estimate the mass by integrating the column density from the center to a given

radius r as

M(r) = 2π
∫ r

0
xΣ(x)dx. (4.8)

Inserting Equation (4.7) in Equation (4.8) and integrating, we find

M(r) = 4πρ0r2
0

[
rc − r0 arctan

rc

r0
−

√
r2

c − r2 (4.9)

+

√
r2

0 − r2 arctan

 √
rc − r2√
r0 + r2

 ]
.

The corresponding magnetic flux

Φ(r) = 2π
∫ r

0
B rdr (4.10)

is estimated using Equation (4.4) and Equation (4.1) to yield

Φ(r) = 2πBcr2
0

(
n0

nc

)κ [ (1 + (r/r0)2)(1−κ)

2 − 2κ
−

1
2 − 2κ

]
. (4.11)

For the more general case where p/2 , 1, we use numerical integration to estimate the

mass and the flux of a given core.

Furthermore, the magnetic field lines are not purely vertical. For a near-flux-frozen con-
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Figure 4.9: The normalized mass-to-flux ratio µ ≡ M/Φ/(M/Φ)crit of H-MM1 as a function of
radial distance from the center. The dashed and the solid lines are for β1 = 0.5 and β2 = 0.8
respectively. The core is mostly supercritical with µ > 1 (depending on the value of β) and is
decreasing outward. The dotted horizontal line indicates the critical mass-to-flux ratio.

dition, the field lines are pinched toward the central region of the dense core and resemble an

hourglass morphology (Girart et al., 2006; Stephens et al., 2013). We can essentially model

such three-dimensional flux lines threading a sphere using the power-law magnetic field model

(Myers et al., 2018). Each field line is a contour of constant enclosed flux (see Mouschovias

(1976b)). For simplicity, we confine our model to a two-dimensional plane (with y = 0). The

density profile normalized to ρc gives,

ρ(r)
ρc

=
ρ0/ρc[

1 + (x/r0)2 + (z/r0)2]p/2 . (4.12)

We further assume that the magnetic field is a power-law of gas density (B ∝ ρκ) in both the x−

and z−directions. In principle, we can estimate the flux Φ through a cylinder of infinitesimal

thickness in the z− direction and any radius (say ξ = x/r0) at a particular height above the

midplane (using Equations (4.4) and (4.10) as
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Figure 4.10: The normalized mass-to-flux ratio µ ≡ M/Φ/(M/Φ)crit as a function of radial
distance from the center for the remaining six cores in our sample. The dashed and the solid
lines are for β1 = 0.5 and β2 = 0.8 respectively. The core is mostly supercritical with µ > 1
(depending on the value of β) and is decreasing outward. The dotted horizontal line indicates
the critical mass-to-flux ratio.

Φ = 2πr2
0B(rc)

∫ ξ

0

 ρ0/ρc[
1 + ξ′2 + (z/r0)2]p/2

κ ξ′dξ′. (4.13)

Here we make the approximation that, within each thin segment, the vertical (z) component

of B = Bx x̂ + Bzẑ, is equal to the net magnetic field strength B i.e., Bz � B(x, z). This is an

improvement over purely vertical field lines (where B changes only radially in the midplane),

as B(x, z) varies along both x − z direction. An analytic solution to the above equation is

only possible for the case where p/2 = 1. We solve the above integral numerically and draw

contours of constant flux lines. To estimate the enclosed mass through each of the flux tubes

within the core (which is assumed to be spherical) we break the tubes into thin disks. The mass
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Figure 4.11: An illustration of the magnetic flux contours in H-MM1 for the power-law model
with κ = 2/3. The core parameters for H-MM1 (n0, r0, rc) are taken from Table 4.1. The peak
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of each disk is then added to estimate the total enclosed mass within the tube. Figure 4.9 shows

the mass-to-flux ratio of H-MM1 as a function of radial distance from the center. As evident

for both κ = 1/2 and 2/3, the mass-to-flux ratio (µ) is supercritical at the center and declines

towards the core edge. However, the mass-to-flux ratio is quite sensitive to the choice of β.

Figure 4.9 shows that for a greater value of β the mass-to-flux estimate increases and the entire

core is supercritical. Figure 4.10 shows the profile of the mass-to-flux ratio for the six other

cores studied in this paper. Most cores (namely H-MM2, Oph-E, Oph-X and Oph-CN) show a

similar decline of the mass-to-flux ratio towards the transcritical radius. Oph-C is supercritical

all the way to the core boundary for both the β values. Oph-FE is close to the critical limit.
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As an example of the flux tubes we demonstrate the case of H-MM1, where we plot in

Figure 4.11 the flux contours for the power-law model with index κ = 2/3. To represent the

field lines we introduce a background field strength (Bu) and background density ρu. The flux

Φ is estimated using the Equation (4.10) but with the modified density expression normalized

to background density ρu:

ρ(r)
ρu

= 1 +
ρ0/ρu[

1 + (x/r0)2 + (z/r0)2]p/2 . (4.14)

Here the background density ρu is added to the core density ρ(r). The flux lines in Figure 4.11

are normalized to Φ0 = 2πr2
0Bu for value ρ0/ρu = 300. It should be noted that the mass-to-flux

estimates are not strongly dependent on the background values, which are far less than the

density in the vicinity of the transonic radius.

4.4 Discussion

We introduce the CFS method, a new technique to estimate the magnetic field strength profile

of a dense core. This method is built on a similar premise as the CF method, where the nonther-

mal velocity fluctuations are assumed to be Alfvénic. The use of δB/B = σNT/vA is essentially

common to both the methods. In the CFS method we measure δB = σNT (4πρ)1/2, unlike the CF

method that estimates δB/B using the dispersion (δθ) in direction of the polarization vectors.

Although similar to the CF technique, the CFS method has a major advantage in that it esti-

mates a field strength profile. The CF method for a core gives only a core-average field strength

estimate based on average density, average velocity dispersion and average polarization angle

dispersion. We have a much finer scale knowledge of nonthermal velocity dispersion and den-

sity, so we can get a much better estimate of field structure in a core based on our choice of

δB/B at the transcritical radius. However the CFS method does not model the transition zone

where there is a sudden drop of the nonthermal linewidth. The sharp decease of the linewidth

can be a consequence of damping of the Alfvén waves due to reflection or dissipation across
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a density gradient (Pinto et al., 2012). Or it could be due to the drop in the ionization fraction

at the transcritical radius leading to ambipolar diffusion damping of Alfvén waves . Thus it

is possible that the non-ideal MHD effects may become relevant within the core. In the Ap-

pendix, we consider the effect of ambipolar diffusion on wave propagation within the core.

Equation (B.7) gives a modified version of the Alfvénic theory, which incorporates the correc-

tion term (a dimensionless parameter ξ = (τnivAk)) due to ambipolar diffusion. For conditions

appropriate to a dense core, Equation (B.11) shows that ξ � 1. This implies that the use of

the flux-freezing relation, Equation 4.5, is approximately valid within the core. Furthermore,

even though the Alfvén waves are damped within the core, their wavelengths λ are long enough

(i.e., λ > λcr = πvAτni) that they can propagate and be responsible for the observed nonthermal

linewidths.

The primary source of uncertainty in the CFS model is the value of β. As seen previously,

the magnetic field strength varies by ≈ 38% when the value of β changes from 0.5 to 0.8.

Although results from turbulent simulations (for example Kudoh & Basu (2003)) do constrain

the value of β to be < 1, there is still a spread in the choice of β. The other possible way is

to derive a value for β for each core that have a critical mass-to-flux ratio at the transcritical

radius. This will give a β value for all cores close to 0.6, with the distribution having a mean

and standard deviation 0.57 and 0.16 respectively. Either ways the core boundary is consistent

with the core having an approximately critical mass-to-flux ratio. Another way to think of it

is that turbulent and magnetic energy are in equipartition in the envelope while gravitational

energy is in equipartition with the magnetic and thermal energy in the core. Nevertheless, value

of β although slightly higher is still roughly of the same order of magnitude as β ≡ δθ = 0.12

radians measured by Kandori et al. (2017) for the starless core Fest 1-457.

Secondly, modeling the cores as approximate spheres adds to the uncertainties in the mag-

netic field and the M/Φ estimate. Particularly, κ = 1/2 in the B ∝ ρκ relation corresponds to

flattening along the field lines. Thus, cores are most likely to resemble a spheroid flattened

in the direction of the magnetic field. Furthermore, κ = 2/3 (which theoretically models the



4.5. Conclusions 99

weak field case with spherical isotropic collapse) overestimates the field strength inside the

core compared to the model with κ = 1/2.

This method introduces a new tool to study the spatial profile of magnetic fields in cores

with high resolution NH3 line maps. We can possible generalize the CFS method to study

magnetic fields on other well observed NH3 cores in Ophiuchus and Taurus using the already

published GAS data. Furthermore, the recent paper by Myers et al. (2018) on modeling the

magnetic polarization patterns has the potential to predict the polarization observations of dense

cores. This will complement the results of the CFS method. A map of the magnetic field

strength profile along with the field morphology will serve a great deal in understanding the

role of magnetic field in star formation.

4.5 Conclusions

The important results from the above study are summarized as follows

• All the observed cores in the L1688 region of the Ophiuchus molecular cloud show a

sharp decrease in their nonthermal linewidth as they become subthermal towards the

center of the core. Furthermore, in the outer part of H-MM1, H-MM2, Oph-C, and

Oph-E there is a substantial increase of σNT compared to cs.

• The CFS method makes an estimate of B(r), the plane-of-sky magnetic field strength as

a function of radius. It incorporates spatially resolved observations of the nonthermal

velocity dispersion σNT, and the gas density measurements in a relatively circular dense

core.

• The CFS method yields an estimate of the profile of the magnetic field fluctuations δB

and the relative field fluctuation δB/B inside the core.

• We find that the condition δB/B ≤ 1 at the edge of the core (whereσNT = cs) is consistent

with a normalized mass-to-flux ratio µ & 1 inside the core.
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• We map the mass-to-flux ratio of cores in Ophiuchus using the CFS method. The mass-

to-flux ratio is decreasing radially outward from the center of the core.
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André, P., Basu, S., & Inutsuka, S. 2009, The formation and evolution of prestellar cores, ed.

G. Chabrier (Cambridge University Press), 254
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Klessen, R. S. 2001, ApJ, 556, 837

Kudoh, T., & Basu, S. 2003, ApJ, 595, 842

—. 2011, ApJ, 728, 123

—. 2014, ApJ, 794, 127

Lada, C. J., Alves, J. F., & Lombardi, M. 2007, Protostars and Planets V, p.3

Lada, E. A., Strom, K. M., & Myers, P. C. 1993, in Protostars and Planets III, ed. E. H. Levy

& J. I. Lunine, 245

Larson, R. B. 1985, MNRAS, 214, 379

—. 2003, Reports on Progress in Physics, 66, 1651

Lazarian, A., & Hoang, T. 2007, MNRAS, 378, 910

Loren, R. B. 1989, ApJ, 338, 902

Machaieie, D. A., Vilas-Boas, J. W., Wuensche, C. A., et al. 2017, ApJ, 836, 19
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Chapter 5

Summary

In this Thesis, we have highlighted the importance of the magnetic field on the star formation

process. The fragmentation of molecular clouds is a complex phenomenon (although driven by

gravity) and is strongly affected by magnetic fields and turbulence. This Thesis in its entirety

has linked the structural and observational signatures to theoretical predictions of magnetically

driven star formation models. Some of the important results from the different chapters are

compiled in the following section.

Chapter 2

• The column density PDF of clouds with supercritical mass-to-flux ratio (weak magnetic

fields), with either linear perturbations or nonlinear turbulence, quickly develop a power-

law tail with slope α = −2. After the initial compression by the turbulence, gravity

dominates the collapse mechanism.

• Clouds with subcritical mass-to-flux (strong magnetic fields) ratio and weak turbulence

also proceed directly to a power-law PDF, but with a much steeper index α = −4. The

magnetic support prevents rapid collapse, until gravitationally driven ambipolar diffusion

takes over.

105
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• Subcritical clouds (strong magnetic fields) with turbulent initial condition do retain a

lognormal shape for a major part of the cloud evolution, and only develop a distinct

power-law tail with index α = −2, when dense cores form due to gravitationally driven

ambipolar diffusion.

Chapter 3

• A natural model of ribbons (or filaments) is based on the interplay between turbulence,

strong magnetic fields, and gravitationally driven ambipolar diffusion, rather than pure

gravity and thermal pressure.

• A turbulent compression leads to a magnetic ribbon for which the thickness is set by

the standoff between ram pressure and the magnetic pressure. Gravitationally driven

ambipolar diffusion then leads to runaway collapse of the densest regions in the ribbon,

where the mass-to-flux ratio has become supercritical.

Chapter 4

• The Core Field Structure (CFS) method estimates the plane-of-sky magnetic field strength

profile and magnetic field fluctuation (as a function of radius) of dense cores using gas

kinematics.

• The sharp decease of the linewidth can be a consequence of damping of the Alfvén waves

due to reflection or dissipation across a density gradient. Or it could be due to the drop in

the ionization fraction at the transcritical radius leading to ambipolar diffusion damping

of Alfvén waves.

• The results indicate that mass-to-flux ratio in the H-MM1 dense core in L1688 region of

the Ophiuchus molecular cloud is decreasing radially outward. We find that the condition

δB/B ≤ 1 at the edge of the core (where σNT = cs) is consistent with a normalized mass-

to-flux ratio µ & 1 inside the core.
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Our results provide substantial evidence that indicates that “turbulence-enhanced ambipolar

diffusion” could indeed be controlling the star formation process. In this scenario, the gas

settles along the field lines to have an overall sheet-like orientation. Subsequently, gravitational

instability can lead to fragmentation of clouds with supercritical mass-to-flux ratio. If the

cloud is subcritical (magnetically supported), fragmentation can still ensue due to turbulence

enhanced gravitationally-driven ambipolar diffusion.

A complete understanding of the role of magnetic fields in the fragmentation of large-scale

molecular clouds still requires more observational constraints and comparison with theoretical

models. Future work will involve using a much higher resolution computational approaches

(for example three-dimensional MHD codes like Athena) coupled with multi-wavelength ob-

servations (with telescopes like Herschel, SOFIA, and ALMA) to get a three-dimensional pic-

ture of the magnetic fields in a star-forming region. These can go a long way in determining

how the molecular clouds were formed, in particular, whether the magnetic field is a dominant

effect in channeling the gas into the clouds, or whether it is passively swept up by large-scale

gas flows. Understanding the connection between the the molecular cloud structure with its

formation mechanism is key in explaining the process of star formation. For example a mag-

netically channelled flow will lead to a sheet like cloud perpendicular to the mean magnetic

field. Alternatively, a supernova shell can sweep up a flattened gas cloud with a magnetic

field primarily in the plane of the sheet. Future work will involve investigating a much wider

range of initial conditions, particularly the magnetic field strength, field orientation, and tur-

bulent flow speed. Modeling the earliest phases will require the ability to simulate subcritical

clouds with ambipolar diffusion, since the progenitors of molecular clouds are the interstellar

HI clouds that are generally observed to have a subcritical mass-to-flux ratio (Heiles & Troland,

2005). More importantly the relation between magnetic-field strength (B) and gas density (ρ)

for collapsing interstellar clouds and fragments (or cores) is crucial in observationally quan-

tifying the dynamical importance of magnetic fields in the evolution of molecular clouds and

star formation. The relative importance of magnetic fields or turbulence will have a signifi-
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cant effect on how a prestellar core will collapse. This will require new simulations that can

probe stronger magnetic field limits of initial conditions as well the non-ideal MHD effects like

ambipolar diffusion.

The theory of star formation has evolved over the last few decades. Our understanding has

improved immensely thanks to the emergence of powerful computers and better telescopes.

Today we have the power to run “realistic” simulations that can better model the interstellar

medium. We have the potential to probe much deeper into space than previously imagined. We

are living in exciting times for research in numerical astrophysics. It might soon be possible to

have one self-consistent simulation that can explain most observations and give us a complete

understanding of the process of star formation
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Appendix A

Analytic Model of the PDF

Molecular clouds contain many cores that can be approximately described as isothermal spheres.

There are several analytic column density profiles to fit prestellar cores. One model to fit such

cores is the Bonnor-Ebert sphere (Ebert, 1955; Bonnor, 1956). This model assumes isothermal

gas spheres bounded by external pressure and a hydrostatic equilibrium of gravity and ther-

mal pressure. Dapp & Basu (2009) proposed a new three-parameter analytic formula to fit the

column density profiles of prestellar cores. This model does not assume the cloud to be in

equilibrium and can fit the dynamical states of the nonequilibrium collapse solutions (Larson,

1969) as well. Fischera (2014) discusses the PDF of the mass surface density of molecular

clouds. The column density PDF of the molecular clouds show two distinct features, involving

a broad distribution around the peak and a power-law tail at the high end. The first aspect can

be attributed to the turbulence of the cloud, while the tail develops because of the gravitation-

ally condensed structures. These condensed structures are modelled as spheres or cylinders

with a truncated radial density. Fischera (2014) provided an analytic model of the PDF of

the condensed structures, by either considering them as spheres or cylinders with a truncated

radial profile. He concluded that the asymptotic behaviour of the logarithmic PDF (ΣP(Σ)) in

the limit of high column density has a power-law index α = (p + 1)/(p − 1) for spheres or

α = p/(p − 1) − 1 for cylinders, where p is the power-law index of the column density profile
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of the condensed structures.

For clouds with a preferred direction of magnetic field the cloud is flattened along the

direction of the magnetic field and settles in to a hydrostatic equilibrium (Dapp & Basu, 2009).

In our simulation, the magnetic field is oriented along the z−axis, resulting in a collapsing core

resembling a disk as it is flattened along the magnetic field.

A.1 Disk Geometry

The generic face-on column density profile for disk shaped flattened core is

Σ(r) = Σc√
(1+(r/a)p)

r ≤ R, (A.1)

= 0, r > R, (A.2)

where p is the power-law index for the column density profile. The gravitational contraction

of the cores lead to the formation of supercritical pockets of near uniform column density

regions surrounded by a power-law profile. The index p achieves the value 2 just outside the

uniform region a, but transitions to ∼ 1.5 at the boundary of the supercritical cores (Basu

& Mouschovias, 1995; Basu, 1997). Assuming vertical hydrostatic equilibrium, the volume

density is proportional to the square of the column density (Spitzer, 1942) so that

c2
sρ =

π

2
GΣ2, (A.3)

and the corresponding density is given as

ρ(r) =
πG
2c2

s

Σ2
c

1 + (r/a)p . (A.4)

One can model the molecular cloud as an ensemble of condensed disks. The column density

PDF is then
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P (Σ) =
dN

′

dΣ
= −P(r)

(
dΣ

dr

)−1

, (A.5)

where dN′ = dN/Ntotal. Let r/a be the normalized impact radius where a = kcs/(
√

Gρc) is

the size of the flat region. P(r)dr is the probability to measure the column density at a impact

radius of r. Using equation A.1 we get

dΣ

dr
= −

Σc p(r/a)p−1

2a (1 + (r/a)p)3/2 . (A.6)

On substituting Equation A.6 in Equation A.5 and using P(r) = 2πr/(πR2) we establish the

PDF as

P(Σ) =
4

c2Σc p

(Σc

Σ

)2

− 1
(2/p−1) (

Σc

Σ

)3

. (A.7)

The power-law index for the column density profile (Equation A.1) p = 2 and p = 1 corre-

sponds to just outside the uniform region and the boundary of the supercritical core respec-

tively. Depending on the region of interest we can estimate the power-law index the column

density PDF (using Equation A.7). For p = 2 we get

P(Σ)p=2 =
2
c2

Σ2
c

Σ3 . (A.8)

In the regions just outside the uniform region, P(Σ) ∝ Σ−3. For p = 1 we find the column

density PDF as

P(Σ)p=1 =
4Σ2

c

c2

(Σ2
c − Σ2)
Σ5 . (A.9)

For Σ � Σc, i.e. corresponding to region well outside the center and closer to the core

boundary, P(Σ) ∝ Σ−5.
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Appendix B

Modified Alfvénic theory

B.1 Dispersion relation

The dispersion relation of Alfvén waves in a partially ionized medium (Pinto et al., 2012) in

the long wavelength limit is

ω2 − k2v2
A + iηADk2ω = 0. (B.1)

Here ηAD = v2
Aτni is the ambipolar diffusion resistivity and τni = (γniρi)−1 is the mean neutral-

ion collision time in terms of the drag coefficient

γni =
〈σw〉in

1.4 (mn + mi)
, (B.2)

(Basu & Mouschovias, 1994) and the ion density ρi. In the above equation 〈σw〉in is the average

collision rate between the ions of mass mi and neutrals of mass mn. On rearranging, Equation

(B.1) is rewritten as

k2 =
ω2

v2
A

[
1

1 + iτniω

]
. (B.3)
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In the limit τniω < 1, Equation (B.3) on binomial expansion yields

k =
ω

vA
(1 − i

1
2
τniω). (B.4)

Defining ξ = (1/2)τniω as a dimensionless parameter, we can represent Equation (B.4) in terms

of a magnitude and a phase θ: ∣∣∣∣∣ k
ω

∣∣∣∣∣ =
1
vA

√
1 + ξ2

∣∣∣eiθ
∣∣∣ . (B.5)

Using Equation (B.4) to replace k in Equation (17) from Pinto et al. (2012), we derive the

relation between the amplitude of fluctuations of the neutral velocity un0 to the fluctuation of

the magnetic field δB. In the long wavelength limit we get

|un0| = vA
|δB|
B

√
1 + ξ2. (B.6)

If ξ � 1, then

|un0| ' vA
|δB|
B

[
1 +

1
2
ξ2

]
. (B.7)

This gives a modified version for the Alfvénic theory, which incorporates the correction term

due to ambipolar diffusion. Equation (B.7) is equivalent to Equation (??), if we equate σNT =

|un0| and take the limit ξ → 0. Again assuming that ξ � 1 (which we will later verify), we

apply the standard dispersion relation of ideal Alfvén waves, ω = vAk, and express ξ in terms

of wavenumber k:,

ξ2 =

(
τnivAk

2

)2

. (B.8)

Using Equation (B.2) to replace τni in terms of the drag coefficient γni and ion density, we get

ξ2 =
1
4

B2

4πρn
k2

[
1.4

mi + mn

ρi〈σw〉in

]2

. (B.9)
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We can estimate the above quantities in Equation (B.8) by specifying appropriate values rele-

vant for dense cores embedded in molecular clouds. For example, if B ' 30 µG and ρn = mnn0,

where n0 = 104 cm−3 is the number density of neutrals and mn = 2.33 × 1.67 × 10−24 g,

the Alfvén speed vA = 0.4 km s−1. Furthermore, for 〈σw〉in = 1.69 × 10−9 cm−3s−1 and

mi = 29 × 1.67 × 10−24 g, the drag coefficient γni = 2.3 × 1013 cm3g−1s−1. The ion density

ρi is again determined by the approximate relation

ρi = miKn1/2
0 = 1.45 × 10−23g cm−3, (B.10)

where K = 3 × 10−3 cm−3. This gives τni = (γniρi)−1 = 3 × 109 s. The wavenumber k = (2π)/λ

of interest will roughly correspond to a wavelength λ ' 0.1 pc i.e., about equal to the core

diameter. This yields

ξ = 1.3 × 10−3
( vA

0.4 km s−1

) (
τni

3 × 109s

) (0.1 pc
λ

)
, (B.11)

such that ξ � 1 in a dense core. This is equivalent to the waves having wavelength λ � λcr,

where λcr = πvAτni, (see Eq. (15) in Pinto et al. (2012)) is the critical wavelength for wave

propagation, i.e., wavelengths shorter than this are critically damped. Thus, the Alfvén waves

can still propagate within the core and be responsible for the observed nonthermal linewidths.

The condition ξ � 1 continues to apply for wavelengths λ significantly smaller that 0.1.pc, as

can be seen from Equation (B.11)
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