
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

7-9-2018 2:00 PM 

Crop monitoring and yield estimation using polarimetric SAR and Crop monitoring and yield estimation using polarimetric SAR and 

optical satellite data in southwestern Ontario optical satellite data in southwestern Ontario 

Chunhua Liao, The University of Western Ontario 

Supervisor: Wang, Jinfei, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree 

in Geography 

© Chunhua Liao 2018 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Remote Sensing Commons 

Recommended Citation Recommended Citation 
Liao, Chunhua, "Crop monitoring and yield estimation using polarimetric SAR and optical satellite data in 
southwestern Ontario" (2018). Electronic Thesis and Dissertation Repository. 5465. 
https://ir.lib.uwo.ca/etd/5465 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F5465&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1192?utm_source=ir.lib.uwo.ca%2Fetd%2F5465&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/5465?utm_source=ir.lib.uwo.ca%2Fetd%2F5465&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


 

i 

 

Abstract 

Optical satellite data have been proven as an efficient source to extract crop information 

and monitor crop growth conditions over large areas. In local- to subfield-scale crop 

monitoring studies, both high spatial resolution and high temporal resolution of the image 

data are important. However, the acquisition of optical data is limited by the constant 

contamination of clouds in cloudy areas. This thesis explores the potential of polarimetric 

Synthetic Aperture Radar (SAR) satellite data and the spatio-temporal data fusion approach 

in crop monitoring and yield estimation applications in southwestern Ontario.  

Firstly, the sensitivity of 16 parameters derived from C-band Radarsat-2 polarimetric SAR 

data to crop height and fractional vegetation cover (FVC) was investigated. The results 

show that the SAR backscatters are affected by many factors unrelated to the crop canopy 

such as the incidence angle and the soil background and the degree of sensitivity varies 

with the crop types, growing stages, and the polarimetric SAR parameters. Secondly, the 

Minimum Noise Fraction (MNF) transformation, for the first time, was applied to multi-

temporal Radarsat-2 polarimetric SAR data in cropland area mapping based on the random 

forest classifier. An overall classification accuracy of 95.89% was achieved using the MNF 

transformation of the multi-temporal coherency matrix acquired from July to November. 

Then, a spatio-temporal data fusion method was developed to generate Normalized 

Difference Vegetation Index (NDVI) time series with both high spatial and high temporal 

resolution in heterogeneous regions using Landsat and MODIS imagery. The proposed 

method outperforms two other widely used methods. Finally, an improved crop phenology 

detection method was proposed, and the phenology information was then forced into the 

Simple Algorithm for Yield Estimation (SAFY) model to estimate crop biomass and yield. 

Compared with the SAFY model without forcing the remotely sensed phenology and a 

simple light use efficiency (LUE) model, the SAFY incorporating the remotely sensed 

phenology can improve the accuracy of biomass estimation by about 4% in relative Root 

Mean Square Error (RRMSE). The studies in this thesis improve the ability to monitor crop 

growth status and production at subfield scale. 
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Chapter 1  

1 Introduction 

1.1 Background 

Canada is a major agricultural production country and plays an important role in the global 

agricultural market (Shang, McNairn, Deschamps, Jiao, & Champagne, 2011). The agriculture 

sector employs 12.5% of Canadian employees. In 2016, the Canadian agriculture and agri-

food system (AAFS) generated $ 111.9 billion, accounting for 6.7% of Canada's gross 

domestic product (GDP) (Agriculture and Agri-Food Canada, 2017). Field crops in the 

agricultural sector are grown on 36.4 Mha (3.6% of Canada’s total landmass) (Wood & 

Layzell, 2003). They not only provide food and fiber for human beings and livestock, but 

also have significant influence on climate change by contributing to the global carbon 

budget (Jones & Vaughan, 2010). To ensure the food security for the growing world 

population while maintaining environmental health, the need for agricultural land use 

assessment and crop monitoring is well recognized at the national, regional and global scale. 

Crop monitoring refers to the monitoring of crop biophysical variables such as crop height, 

vegetation cover, crop phenology and biomass at temporal scale and spatial scale. With 

these temporal and spatial biophysical variables, crop production can be estimated. 

Agriculture and Agri-food Canada has conducted a series of studies in crop monitoring, 

crop land cover mapping and crop yield estimation. Most of the studies focus on regional 

or national scale, and the results of these studies can provide products and guidance for 

better informed trading decisions and agri-environmental policy decisions (Liu, Shang, 

Vachon, & McNairn, 2013; Wiseman, McNairn, Homayouni, & Shang, 2014). The 

monitoring of crop growth and crop production forecasting at smaller scale (subfield scale) 

also enables agriculture companies or farmers to make timely decisions on crop 

management in order to maximize crop production and boost the agricultural economy. 

Crop type information is essential for crop monitoring, yield estimation and agriculture 

statistics reporting (Larrañaga, 2011). Therefore, crop type mapping is also an important 

topic in agricultural applications. 
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The use of Earth Observation (EO) technology has provided an efficient way for spatial 

and temporal monitoring of crops as well as the identification of crop types over large areas 

(Duveiller & Defourny, 2010). Optical satellites such as Aqua/Terra and Landsat-8 

passively observe the earth surface and capture spatial and spectral information of objects 

on the earth surface. Vegetation indices (VIs), which are related to crop growth conditions, 

can be computed from the spectral information. Crop biophysical or biochemical variables 

such as Leaf Area Index (LAI) and chlorophyll content can be derived from the VIs 

(Rasmus Fensholt, Sandholt, & Rasmussen, 2004; Gutman & Ignatov, 1998; Muñoz-

Huerta et al., 2013). The Normalized Difference Vegetation Index (NDVI) time series are 

widely used for crop phenology detection or crop production estimation (Claverie et al., 

2012; Liu et al., 2010; Sakamoto et al., 2005, 2010). Multi-temporal and multi-spectral 

data are often used for crop classification (Tatsumi, Yamashiki, Canales Torres, & Taipe, 

2015; Wardlow, Egbert, & Kastens, 2007). However, the acquisition of optical data relies 

heavily on the weather condition as optical bands cannot penetrate cloud. Therefore, the 

number of cloud-free optical images will be limited if the presence of clouds are frequent.  

Synthetic Aperture Radar (SAR) satellites such as the Advanced Land Observing Satellite 

(ALOS) and Radarsat-2 observe the earth surface in an active way by transmitting and 

receiving pulses of electromagnetic waves at wavelength from 1 mm to 1 m. They are less 

weather dependent and can provide crop structure information such as height, size, 

orientation of leaves, and water content of crop canopy, due to the ability to penetrate 

clouds, haze, light rain, and vegetation canopy (Berens, 2006). Two important parameters 

for SAR systems are frequency and polarization. The sensitivity of SAR backscatter 

depends on their wavelength, polarization, and incidence angle (Jiao, McNairn, Shang, & 

Liu, 2010). Generally, longer wavelengths such as L-band (15 to 30 cm) and P-band (30 - 

100 cm) have better capability of penetrating through the crop canopy than shorter SAR 

wavelengths such as X-band (2.4 to 3.8 cm) and C-band (3.8 - 7.5 cm) (Lee & Pottier, 

2009b). Shorter wavelengths are more sensitive to small surface structures (Huang, Wang, 

Shang, Liao, & Liu, 2017) and longer wavelengths will interact more with the soil surface 

instead of the crop canopy since they  have a stronger ability to penetrate the crop canopy. 

Radarsat-2 polarimetric SAR (Appendix A) with four independent polarization channels 

(HH, HV, VH, VV) can provide more crop structure information than single polarization. 
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The SAR parameters acquired at a steeper (smaller) incidence angle are more sensitive to 

crop variables than the parameters acquired at a shallower (larger) incidence angle (Jiao et 

al., 2010). In many studies, multi-temporal SAR data are coupled with multi-temporal 

optical data for crop monitoring.  

1.2 Research questions 

Two of the most important parameters in the application of remote sensing data are spatial 

resolution, the ground size of an image pixel, and temporal resolution, the length of time it 

takes for a satellite to revisit the same area on the earth surface. In local-scale to subfield-

scale crop monitoring research, not only is the high spatial resolution needed due to the 

spatial variations of the patchy distribution of different types of crop lands, but also high 

temporal resolution is needed to monitor the fast growth of crops through the growing 

season. However, for optical remote sensing data, the two requirements, high spatial 

resolution and high temporal resolution, generally cannot be met at the same time due to 

the trade-off in remote sensor designs that balance spatial detail and temporal coverage. 

For areas with frequent cloud cover, high temporal optical data are more difficult to acquire 

due to the interference of cloud cover. On the other hand, polarimetric SAR data have great 

potential in crop monitoring due to its capability of penetrating the clouds, haze, etc., but 

they are affected by speckle noise and soil background. Therefore, the research questions 

in this dissertation are:  

(1) What is the potential of multi-temporal Radarsat-2 polarimetric SAR in subfield-scale 

crop biophysical variable monitoring and crop type mapping?  

(2) How can a limited number of high spatial resolution optical images collected in an area 

with frequent cloud cover be used for subfield-scale crop growth monitoring and yield 

estimation? 

1.3 Research objectives 

The main objectives of the thesis are to monitor crop growth and estimate crop yield at a 

subfield scale in a cloudy area using different sources of remotely sensed data. To answer 

the research questions proposed above, the following four specific objectives are defined: 
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(1) Investigate the sensitivity of polarimetric SAR parameters to crop biophysical 

variables and the potential of polarimetric SAR in crop monitoring. 

(2) Improve the crop classification accuracy using multi-temporal polarimetric SAR data, 

and examine the performance of different polarimetric SAR parameters in crop 

classification and the impact of the timing of the polarimetric SAR datasets on crop 

classification in southwestern Ontario.  

(3) Propose a spatio-temporal data fusion method that is suitable for crop monitoring in 

heterogeneous region to generate NDVI time series with a high temporal and spatial 

resolution. 

(4) Improve a crop phenology detection method and estimate the crop biomass and yield 

by calibrating the Simple Algorithm for Yield Estimation (SAFY) model using the 

spatio-temporal fusion of Landsat-8 and MODIS data.  

1.4 Study areas 

Ontario is the largest producer (about 63%) of corn in Canada and a major producer of 

soybean (Statistics Canada, 2015; Statistics Canada, 2018). Most of the field crops are 

located in southwestern Ontario due to the suitable water, soil and mild climate. The study 

site for Chapter 2 is the croplands area near Stratford, Ontario and study site for Chapter 3, 

Chapter 4 and Chapter 5 is near Komoka, Ontario. The study areas are located in the 

Mixedwood Plains Ecozone in southwestern Ontario, characterized by abundant water 

supply, relatively mild climate and productive soils for agriculture. It covers a 175 963 km2 

area bounded by the Great Lakes. Many types of crops are planted in this area such as corn, 

soybean, and winter wheat. It has a longer growing season than most of the rest of the 

country. However, it is difficult to obtain cloud-free high spatial resolution satellite images 

(e.g. Landsat, RapidEye) during the growing season.  

The field data including soil moisture, crop height, LAI, phenology, and crop biomass 

(winter wheat, corn, and soybean) during the whole growing season have been collected in 

2013 for the Stratford site and in 2015 for the Komoka site. The multi-temporal Radarsat-
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2 polarimetric Synthetic Aperture Radar (SAR) data during the growing season over the 

two sites have been provided by Agriculture and Agri-Food Canada (AAFC).  

 

Figure 1-1: Overview of the study areas 

1.5 Structure of the dissertation  

This dissertation contains six chapters. Chapter 1 introduces the background of this 

research, and briefly reviews the remote sensing technology used in crop monitoring. It 

states the research questions, research objectives, and introduces the study areas and thesis 

structure. The next four chapters are standalone papers that have been published, are in 

press, or are in review. Chapter 2 presents a sensitivity study of Radarsat-2 polarimetric 

SAR to crop height and fractional vegetation cover of corn and wheat. Chapter 3 

investigates the effects of the Minimum Noise Fraction (MNF) transformation of multi-

temporal Radarsat-2 polarimetric SAR data on the performance of cropland classification. 

It discusses the performance of different polarimetric SAR parameter sets, and the impact 

of the timing of Radarsat-2 datasets in southwestern Ontario. Chapter 4 presents a new 

method to fuse Landsat and MODIS NDVI images. In this chapter, I proposed a spatio-

temporal vegetation index image fusion method (STVIFM) to generate NDVI time series 

with both high spatial and high temporal resolution. Chapter 5 proposes an improved 
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phenology detection method based on the crop classification map generated from Chapter 

3 and the STVIFM method proposed in Chapter 4. It estimates crop biomass by calibrating 

the SAFY model based on the phenology information and remotely sensed Green Leaf 

Area Index (GLAI). Chapter 6 concludes the dissertation and discusses possible future 

work. The overall relationships among Chapter 2, Chapter 3, Chapter 4 and Chapter 5 are 

illustrated in Figure 1-2. 

 

Figure 1-2: The relationships among Chapter 2, 3, 4 and 5 
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Chapter 2  

2 Sensitivity Study of Radarsat-2 Polarimetric SAR to Crop 
Height and Fractional Vegetation Cover of Corn and 
Wheat1  

2.1 Introduction 

Corn and wheat are two different types of crops according to their leaf size (broad-leaf crop 

vs narrow-leaf crop). They are two of the most valuable crops in Canada and play an 

important role in the global agricultural trading market (Farm Credit Canada, 2013; Hamel 

& Dorff, 2014). The corn and wheat planted in Canada are used not only for grain but also 

for silage. Therefore, crop growth monitoring enables farmers to make timely decisions on 

crop management in order to maximize crop production. Crop height is closely related to 

crop biomass and phenology and is an important indicator for crop growth monitoring, crop 

discrimination and crop production estimation (McNairn & Brisco, 2004; Srivastava, Patel, 

& Navalgund, 2006). The fractional vegetation cover (FVC) is defined as the fraction of 

green vegetation area including leaves and stems projected on a flat surface in unit area. 

FVC is an important structural property of a plant canopy, and a key variable for describing 

the vegetation coverage. It was found that FVC has a linear relationship with the Fraction 

of Absorbed Photosynthetically Active Radiation (fAPAR) of crop canopies, which is an 

important variable for crop biomass estimation (Donghui Xie, Wang, Wang, Yan, & Song, 

2013). Compared with Leaf Area Index (LAI), both the LAI and FVC can be calculated 

from the gap fractions derived from digital hemispherical photographs (DHP) (Mougin et 

al., 2014), whereas the uncertainties of FVC is lower than the effective LAI (Verger, 

Martínez, Camacho‐de Coca, & García‐Haro, 2009). 

                                                 

 

1
 A version of this chapter has been published (Chunhua Liao, Jinfei Wang, Jiali Shang, Xiaodong Huang, 

Jiangui Liu, Ted Huffman. Sensitivity Study of RADARSAT-2 Polarimetric SAR Parameters to Crop Height 

and Fractional Vegetation Cover of Corn and Winter Wheat in Southwest Ontario, Canada. International 

Journal of Remote Sensing. 2018, 39(5): 1475-1490). 
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The use of Earth Observation (EO) technology has provided an efficient way for various 

agricultural applications such as crop variable estimation, crop type inventory, and crop 

yield prediction due to its capability of providing timely and large spatial coverage of land 

surface information over a wide range of spatial and temporal scales. However, optical 

image acquisition relies heavily on the weather condition, and the crop variable estimation 

over regions with frequent cloud cover usually cannot meet the temporal requirement for 

agricultural applications during the growing season. Besides, the estimation of crop 

structure-related variables such as crop height is difficult using optical remote sensing 

(Srivastava et al., 2006). The multi-temporal polarimetric Synthetic Aperture Radar (SAR) 

data can be used to monitor the temporal variations of crop growth more continuously than 

optical data due to its capability of penetrating the clouds, haze, light rain, and vegetation 

canopy. Polarimetric SAR data have great potential in estimating crop variables because 

SAR parameters are sensitive to many vegetation biophysical variables such as plant 

structure, leaf size, stem density, biomass and plant water content (McNairn & Brisco, 

2004; Srivastava et al., 2006). However, they are also sensitive to the parameters of the 

underlying soil such as soil moisture and surface roughness (Jiao et al., 2011; McNairn & 

Brisco, 2004), and the responses of SAR backscatter to crop biophysical characteristics 

vary with SAR frequency, incidence angle, and polarizations (Jiao et al., 2011), which 

makes the application of SAR in agriculture more complicated. Previous research has 

revealed that polarimetric SAR parameters are sensitive to crop leaf area index (LAI) (Jiao 

et al., 2011) and crop biomass (Mattia et al., 2003; Wiseman, Mcnairn, Homayouni, & 

Shang, 2014) which is related to crop phenological development (Shang et al., 2013). Jiao 

et al.(2010) investigated the sensitivity of X-band, C-band, and L-band polarimetric SAR 

backscatter signatures to corn and soybean LAI. High correlations were observed between 

L-band and C-band polarimetric SAR backscatter and corn and soybean LAI, whereas X-

band backscatter was poorly correlated with both corn and soybean LAI. C-band SAR data 

have relatively longer wavelength than X-band SAR data but shorter wavelength than L-

band SAR data, and thus they can penetrate into the crop canopy but are less affected by 

soil due to reduced penetration into the deep crop canopy (McNairn & Brisco, 2004). 

Therefore, the C-band polarimetric SAR data was regarded as a good candidate for biomass 

and LAI estimation of crops (Ferrazzoli et al., 1997; Lin, Chen, Pei, Zhang, & Hu, 2009).  



 

12 

 

Radarsat-2 is a C-band (5.3 GHz) polarimetric SAR system with the spatial resolutions 

varying from 3 to 100 meters (Appendix A). Although the orbit repeat cycle is 24 days, the 

flexibility of the steerable radar beam makes the revisit intervals shorter. With the available 

of quad-polarization data from satellites such as Radarsat-2, it is possible to study the 

sensitivity of more polarimetric SAR parameters including the four polarizations (HH, HV, 

VH, and VV) and several decompositions extracted from the quad polarization scattering 

matrix. Previous studies have investigated the sensitivity of SAR parameters to crop 

biophysical variables such as LAI and biomass, and it was observed that the responses of 

SAR backscatter to LAI or biomass of narrow-leaf crops such as wheat were different from 

the responses of SAR backscatter to the LAI or biomass of broad-leaf crops such as corn 

(Fontanelli, Paloscia, Zribi, & Chahbi, 2013; Macelloni, Paloscia, Pampaloni, Marliani, & 

Gai, 2001; Mattia et al., 2003; Smith et al., 2006; Wiseman et al., 2014). Besides LAI and 

biomass, crop height is an important crop variable in vegetation growth dynamics 

monitoring, and FVC has been used for crop biomass estimation and crop 

evapotranspiration modeling (Paruelo, Lauenroth, & Roset, 2000; Singh, Dutta, & 

Dharaiya, 2013). If these crop variables can be estimated from Radarsat-2 polarimetric 

SAR data, the high temporal frequency requirement can be met. However, the responses 

of Radarsat-2 polarimetric SAR backscatter to crop height and FVC were not well 

documented in the literature. In order to investigate the potential of Radarsat-2 polarimetric 

SAR in crop height and crop FVC estimation and monitoring, the objectives of this study 

are (1) to investigate the sensitivity of different Radarsat-2 polarimetric SAR parameters 

to crop height and FVC of corn and wheat, and (2) to explore the variations in SAR 

responses to crop height and FVC at different crop growth stage. 

2.2 Methodology 

2.2.1 Study site  

The study site was selected near Stratford, Ontario, Canada (43.3° N, 80.8° W, Figure 2-

1), a place located in the Mixedwood Plains Ecozone, and characterized by abundant water 

supply, ideal weather conditions and productive soil for agriculture. The study site’s 

average elevation is about 350 m above sea level with a relatively flat terrain. Corn and 

winter wheat are two major crops grown in this area. Corn in our study area is generally 
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seeded in May and harvested in September or October, and winter wheat is seeded in 

October and harvested in July. Five corn fields and 4 winter wheat fields were selected for 

intensive field measurements and sampling throughout the growing season in 2013. The 

fields were within a 100 km2 area.  

 

Figure 2-1: Map of study site and the sample sites 

2.2.2 Field data collection and analysis 

A total of 17 sample sites located in 5 corn fields and 18 sample sites in 4 winter wheat 

fields were deployed (Appendix D). The distance between two neighboring sample sites is 

between 30 - 120 meters. The Garmin GPS, with a maximum error of 3 meters, was used 

to navigate during each field work. Field data collected at each sample site within a 5 m by 
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5 m area include: (1) taking 14 hemispherical photographs for each sampling site (7 

photographs along one row and then another 7 photographs along another row), (2) 

collecting 6 crop height measurements and recording crop phenological stages using the 

Biologische Bundesanstalt, Bundessortenamt and Chemical (BBCH) scale (AAFC, 2011) 

at each sample site. For corn fields, the photos were taken by the camera facing downward 

if the plant height of corn was less than 1.2 m, otherwise, the photos were taken upward. 

For wheat fields, the photos were all taken downwards. The FVC for each sample site was 

extracted from the 14 hemispherical photographs using CAN-EYE (Weiss & Baret, 2017). 

The mean crop height of the 6 measurements was calculated for each sample site. The 

fieldwork was conducted from April to August 2013, concurrently with Radarsat-2 satellite 

passing over. Figure 2-2 gives a synopsis of the corn and winter wheat at different growing 

stages during the period under study.  
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Figure 2-2: Photos of different growth stages of (a-h) wheat and (i-p) corn: (a) leaf 

development, (b) tillering (c) beginning of stem elongation, (d) middle of stem 

elongation, (e) end of heading, (f) development of fruit, (g) ripening (hard dough), 

(h) fully ripe; (i) leaf development (3 leaves), (j) leaf development (4 leaves), (k) Leaf 

development ( 6 leaves), (l) beginning of stem elongation, (m) end of stem elongation, 

(n) tassel emergence; (o) tassel in flower and stigmata fully emerged, (p) end of 

flowering and stigmata completely dry. 

Crop height was related to crop phenology and crop biomass, especially at the early 

growing stage. According to the phenological stage survey, the relationship between the 

BBCH scale and the average crop height of each sample site is shown in Figure 2-3 (a) and 

Figure 2-3 (b). In this study site, when the corn height was around 150 cm, the BBCH scale 

was observed as 51, and the phenology of corn reached to the beginning of heading and 

tasselling. When the wheat height was greater than 65 cm, the BBCH scale was observed 

as 59, the end of heading. It was observed that different wheat height could have the same 

wheat BBCH. This may be because that the difference of wheat varieties and growth 
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conditions lead to the difference of wheat height even though they are at the same 

phenology. Experience in fields showed that plants canopy can have different heights or 

LAI values in the same field – with the same BBCH. 

 

Figure 2-3: Relationship between crop height and BBCH scale for (a) corn and (b) 

winter wheat  

Corn FVC showed a strong correlation with corn height at the early growing stages but 

became less responsive when the height was greater than 150 cm, as the plants continued 

growth in the vertical dimension after canopy reached closure. For wheat, FVC also 

showed a saturation phenomenon when wheat height was greater than 45 cm, and it varied 

from nearly 60% to 85% (Figure 2-4). According to the definition of FVC, this 

phenomenon for wheat may be because the dense plants and narrow leaves of wheat make 

the stems contribute a large percentage to the FVC, and accordingly lead to the saturation 

of FVC at the early stage. In addition, this large variation of FVC at the later stage may be 

caused by the difference of wheat varieties.  
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Figure 2-4: Correlation between FVC and (a) corn height and (b) wheat height  

2.2.3 Radarsat-2 data acquisition and processing   

The characteristics of the Radarsat-2 data used in this study and the phenology of the winter 

wheat and corn associated with each image were shown in Table 2-1. Radarsat-2 

polarimetric SAR can provide full polarimetric data with its Wide Fine Quad-polarization 

mode (FQW) at different incidence angles. The temporal resolution for the same mode is 

24 days. However, most of the crops such as corn in North America grow rapidly in the 

summer season. For example, during the 16-day period from June 25 to July 11, the average 

height of corn changed from 60 cm to 145 cm. So if only the polarimetric SAR images 

acquired at the same mode were used, there will be a lack of data at some important 

phenological stage. For this reason, 10 SAR images at two modes: FQ9W (incidence angle: 

27.2°-30.5°) and FQ19W (incidence angle: 37.7°-40.4°) during the growing season from 

29 April 2013 to 13 August 2013, were acquired and analysed together in this study, and 

the time intervals were shortened to 10-14 days. The difference of the two incidence angles 

is about 10°. Even though the backscatter will decrease slightly with the increase of 

incidence angle (McNairn, van der Sanden, Brown, & Ellis, 2000), the sensitivity will not 

change significantly when the difference of the two incidence angles is less or equal to 10° 

degrees if the data for each incidence angle could cover all phenological stages (Fontanelli 

et al., 2013). 
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Table 2-1: Characteristics of the acquired Radarsat-2 data and the phenology of 

crops associated with each image 

Date Sensor type 
Incidence 

angle (°) 
Beam Crop type Growing stage of  most crops 

29 April 2013 Radarsat-2 27.2-30.5 FQ9W Wheat Leaf development (5 leaves) 

08 May 2013 Radarsat-2 37.7-40.4 FQ19W Wheat Beginning of tillering 

23 May 2013 Radarsat-2 27.2-30.5 FQ9W Wheat/corn 
Beginning of stem elongation/Leaf 

development (3 leaves) 

02 June 2013 Radarsat-2 37.7-40.4 FQ19W Wheat/corn 
Middle of stem elongation/ Leaf 

development ( 4 leaves) 

16 June 2013 Radarsat-2 27.2-30.5 FQ9W Wheat/corn 
End of heading / Leaf development ( 6 

leaves) 

26 June 2013 Radarsat-2 37.7-40.4 FQ19W Wheat/corn 
Development of fruit/ Beginning of 

stem elongation 

10 July 2013 Radarsat-2 27.2-30.5 FQ9W Wheat/corn 
Ripening (hard dough)/ End of stem 

elongation 

20 July 2013 Radarsat-2 37.7-40.4 FQ19W Wheat/corn Fully ripe/ Tassel emergence 

03 August 2013 Radarsat-2 27.2-30.5 FQ9W Corn 
Tassel in flower and stigmata fully 

emerged 

13 August 2013 Radarsat-2 37.7-40.4 FQ19W Corn 
End of flowering and stigmata 

completely dry 

Radarsat-2 data were processed using PolSARPro 4.2 (López-Martínez, Ferro-Famil, and 

Pottier, 2005) and the final pixel size of the Radarsat-2 data was 12.5m. A 7×7 boxcar filter 

was applied to the data by averaging the speckle noise (Goodman, 1976) to suppress the 

speckle. Then, orthorectification was performed using MapReady 3.2 (Alaska Satellite 

Facility, 2012). A variety of parameters can be extracted from the Radarsat-2 polarimetric 

SAR data. The covariance matrix (𝐂𝟑 ) and coherency matrix (𝐓𝟑 ) are convertible 

fundamental matrices, from which other decomposition parameters can be derived. The 

covariance matrix (𝐂𝟑) was extracted from the single look complex (SLC) format SAR 

data, which can be described by a scattering matrix S (Equation (2-1)) (Lee and Pottier 

2009): 

𝐒 = [
𝑆HH 𝑆HV
𝑆VH 𝑆VV

]                                                            (2-1) 

The four elements of the 𝐒 matrix 𝑆HH, 𝑆HV, 𝑆VH, and 𝑆VV represent the four polarizations, 

with each polarization having a complex pair.  

The covariance matrix 𝐂𝟑 can be expressed as Equation (2-2): 
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𝐂𝟑 = ⟨𝐟𝟑𝐋 ∙ 𝐟𝟑𝐋
∗T⟩ = [

𝐶11 𝐶12 𝐶13
𝐶21 𝐶22 𝐶23
𝐶31 𝐶32 𝐶33

] 

= [

⟨|𝑆HH|
2⟩ ⟨√2𝑆HH𝑆HV

∗⟩ ⟨𝑆HH𝑆VV
∗⟩

⟨√2𝑆HV𝑆HH
∗⟩ ⟨2|𝑆HV|

2⟩ ⟨√2𝑆HV𝑆VV
∗⟩

⟨𝑆VV𝑆HH
∗⟩ ⟨2𝑆HV(𝑆HH − 𝑆VV)

∗⟩ ⟨|𝑆VV|
2⟩

]                  (2-2) 

where 𝐟𝟑𝐋 = [𝑆HH  √2𝑆HV   𝑆VV]
T . For the monostatic case, 𝑆HV = 𝑆VH , ∗ denotes the 

conjugate, | | denotes the modulus, and ⟨ ⟩ denotes the average. 

The coherency matrix 𝐓𝟑 can be expressed as Equation (2-3): 

𝐓𝟑 = ⟨𝐟𝟑𝐏 ∙ 𝐟𝟑𝐏
∗T⟩ = [

𝑇11 𝑇12 𝑇13
𝑇21 𝑇22 𝑇23
𝑇31 𝑇32 𝑇33

] 

=
1

2
[

⟨|𝑆HH + 𝑆VV|
2⟩ ⟨(𝑆HH + 𝑆VV)(𝑆HH − 𝑆VV)

∗⟩ ⟨2(𝑆HH + 𝑆VV)𝑆HV
∗⟩

⟨(𝑆HH − 𝑆VV)(𝑆HH + 𝑆VV)
∗⟩ ⟨|𝑆HH − 𝑆VV|

2⟩ ⟨2(𝑆HH − 𝑆vv)𝑆HV
∗⟩

⟨2𝑆HV(𝑆HH + 𝑆VV)
∗⟩ ⟨2𝑆HV(𝑆HH − 𝑆VV)

∗⟩ ⟨4|𝑆HV|
2⟩

]

(2-3) 

where 𝐟𝟑𝐏 =
1

√2
[𝑆HH + 𝑆VV   𝑆HH − 𝑆VV   𝑆HV + 𝑆VH]

T.  

In the covariance matrix, the upper or lower triangular elements are complex numbers. The 

diagonal elements 𝐶11 , 𝐶22 , and 𝐶33  are used as the backscattering coefficients of the 

targets in horizontal polarization (HH), cross polarization (HV), and vertical polarization 

(VV) respectively (𝐶11= 𝜎0HH, 𝐶22= 𝜎0HV , 𝐶33 =𝜎0VV) (Duguay, Bernier, Lévesque, & 

Tremblay, 2015), and they are associated with the structural characteristics of the targets. 

The three diagonal elements in the coherency matrix (𝐓𝟑) matrix, 𝑇11 (|HH+VV|2), 𝑇22 

(|HH-VV|2), and 𝑇33 (|HV|2) are Pauli decomposition parameters and are associated with 

single bounce scattering, double bounce scattering, and volume scattering respectively 

(Lee and Pottier 2009). It has been reported that the element 𝑇22 (|HH-VV|2) of Radarsat-

2 Pauli-basis decomposition is a good indicator of crop growth development since it 

represents double bounce and is related to crop canopy ( Liu et al., 2013; Wiseman et al., 
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2014). Because the element 𝑇33 is the same as 𝐶22, which represents HV polarization, 𝑇33 

is not analysed in this study.    

The Cloude-Pottier decomposition, Yamaguchi 4-component decomposition, radar 

vegetation index (RVI), as well as the intensity ratio (HH/VV, HV/VV, HV/HH) were 

obtained from the covariance matrix. These polarimetric SAR parameters reflect the 

scattering characteristics associated with the structural information of targets, such as the 

dominant type of scattering, the randomness of the scattering. The Cloude-Pottier 

decomposition includes entropy (H), anisotropy (A), and alpha angle (α). Entropy (H) is 

the randomness of the scattering, which ranges between 0  and 1. The alpha angle identifies 

the type of scattering, which varies among  surface scattering (0° - 40°), volume scattering 

(40° - 50°) and double-bounce scattering (50° - 90°). The anisotropy (A) represents how 

relatively important the second eigenvalue is in comparison to the third eigenvalue (Cloude 

& Pottier, 1996). The Yamaguchi 4-component decomposition is a modification of the 

Freeman-Durden decomposition. It decomposes covariance matrix into volume scattering, 

helix scattering, double bounce scattering and single bounce scattering. The surface 

scattering and double bounce components represent the same mechanisms as in Freeman-

Durden decomposition. The helix component is added to interpret areas with sharp corners 

and edges over urban areas (Yamaguchi, Moriyama, Ishido, & Yamada, 2005).  

The radar vegetation index (RVI) was proposed to monitor the vegetation growth condition 

(Kim & van Zyl, 2009), and it was found that RVI had a good correlation with different 

vegetation indices such as LAI and NDVI as well as the crop water content. The RVI was 

calculated by Equation (2-4).  

RVI =
8𝜎0HV

𝜎0HH+𝜎0VV+2𝜎0HV
                                                   (2-4) 

where 𝜎0HH, 𝜎0HV, and 𝜎0VV represent the backscatter at HH, HV, and VV polarization.  

2.2.4 Correlation analysis  

Correlation analysis between  the crop variable observations at all the sample sites and their 

corresponding Radarsat-2 polarimetric SAR parameter values was conducted to evaluate 

the sensitivity of SAR parameters to crop variables through the course of the growth cycle. 
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The crop height and FVC were collected through fieldwork from April to August. The 

scatterplots of SAR response to crop height and FVC show different patterns or trends at 

different crop stages. Therefore, the correlation analysis between SAR parameters and crop 

variables was conducted separately at different growing stages for corn and wheat.  

2.3 Results and Discussion 

The SAR data obtained at two different incidence angles were combined in this study in 

order to shorten the revisit time and capture the important phenological changes of crops 

during the growing season. From the scatterplots between different Radarsat-2 polarimetric 

SAR parameters, including linear backscatter coefficients, Pauli decomposition, Cloude-

Pottier decomposition, Yamaguchi four-component decomposition parameters, radar 

vegetation index and the intensity ratios (|HH/VV|2, |HV/VV|2, |HV/HH|2), and crop 

variables (crop height and FVC), it was found that the responses of SAR parameters to the 

crop variables were different for corn and wheat, and the responses were also different at 

different growing stages. Corn and wheat are two distinct types of crops with different leaf 

size, orientation, and canopy structures. Corn has a much broader leaf size than wheat, and 

the contribution of corn leaves to backscattering dominates and the contribution of stems 

is attenuated for the broadleaf crop (Macelloni et al., 2001; Paloscia et al., 2014). Wheat 

leaf is narrow, and the contribution of the leaves and stems to backscattering is comparable 

(Macelloni et al., 2001; Paloscia et al., 2014). In addition, the soil below, the canopy and 

the change of crop physical structure can also affect the SAR backscatter, and the 

penetrating capability of C-band SAR signal can be weakened by the growing canopy 

volume and accumulation of biomass.  

2.3.1 Correlation analysis between Radarsat-2 polarimetric SAR 
parameters and crop height 

From the scatterplots between corn height and different SAR parameters, it was found that 

the corn height was correlated with most SAR parameters, especially |HV|2, |HH-VV|2, and 

|HV/VV|2, when the height was less than 150 cm or before the heading of corn (hereafter 

we call it the early stage). When the corn grew taller than 150 cm (hereafter we call it the 

later stage), the sensitivity of most SAR parameters to the corn height was lost. From the 
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scatterplots between wheat height and different SAR parameters, three distinctive stages 

were observed for most SAR parameters. The two height thresholds for the three stages 

were 25 cm (middle of tillering) and 65 cm (end of heading) (hereafter we call the three 

stages the early stage, the middle stage, and the later stage).  

Table 2-2 provides the correlation coefficients (r) between in-situ measured crop height 

and the Radarsat-2 polarimetric SAR parameters for corn and wheat at two different 

growing stages. The sensitivity of polarimetric SAR parameters to crop variables was 

higher for corn than for wheat, which is consistent with the finding by Wiseman et al. (2014) 

in their study over western Canada. It was also found that most polarimetric SAR 

parameters had negative relationship with wheat height, and the correlation was very weak. 

At the early stage when wheat height was less than 25 cm, SAR backscatter was not 

responsive to wheat height at all. This is probably due to the dominant influence of soil 

moisture caused by the melting of snow at the beginning of winter wheat growth. Therefore, 

the analysis at the early stage was not listed in Table 2-2. 
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Table 2-2: Correlation coefficients (r) between in situ measured crop height and 

Radarsat-2 polarimetric SAR parameters. 

SAR parameters 

Corn Wheat 

Height <150 cm Height ≥150 cm 25≤ Height <65 

cm 

Height ≥65 cm 

Linear polarization 

|HH|2(C11)  0.87* -0.52*  -0.28 -0.3 

|HV|2(C22)  0.94* -0.44 -0.75* -0.2 

|VV|2(C33)  0.53* -0.14 -0.45* -0.37* 

Pauli decomposition 

|HH+VV|2(T11) 0.58* -0.14  -0.46* -0.39* 

|HH-VV|2(T22) 0.92* -0.77* -0.1 -0.32* 

Intensity ratio 

|HH/VV|2(C11/C33) 0.76* -0.4 0.35 0.17 

|HV/HH|2(C22/C11) 0.63* 0.2 -0.55* 0.1 

|HV/VV|2(C22/C33) 0.89* 0.1 -0.14 0.36* 

Radar vegetation index 

RVI 0.73* 0.36  -0.51* 0.26 

Cloude-Pottier decomposition 

Entropy(H) 0.69* -0.22 -0.46* -0.1 

Anisotropy (A) -0.53* -0.44 0.32 -0.1 

Alpha (α) -0.62* 0.41 -0.45* -0.14 

Yamaguchi 4-component decomposition 

Yamaguchi single bounce 0.39*  0.00 -0.33 -0.4 

Yamaguchi double bounce 0.78* -0.68* 0.3 0.00 

Yamaguchi volume scattering 0.8* -0.5* -0.2 0.00 

Yamaguchi helix scattering 0.81* -0.3 -0.62* -0.24 

*p-value < 0.01 

Figure 2-5 illustrates the relationships between the corn height and |HV|2 (a) and |HH-VV|2 

(b) for the two modes (FQ9W and FQ19W). The HV polarization, representing volume 

scattering, was significantly correlated with the corn height at the early stage (r=0.94). At 

the later stage, the HV backscatter intensity decreased with the further increase of corn 

height, and the sensitive to the corn height became weak. This is because that HV is 

primarily representing the volume scattering at early growing stages, but once the corn 

grows taller and denser, the SAR penetration ability is limited. Therefore, L-band 

polarimetric SAR may be more useful for the corn height estimation for the later growing 

stage. The |HH-VV|2 is strongly correlated with the corn height at the early stage (r=0.92), 

and a good negative correlation was also observed at the later stage (r=-0.77). This 

correlation was also supported by Liu’s work addressing that |HH-VV|2 was strongly 

correlated with corn LAI, and |HH-VV|2 decreased as the LAI increased in the later stage 
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(Liu et al., 2013). The |HH-VV|2 represents double-bounce scattering and it is related to 

the growth of stems. At different stages of corn, the dominant scattering may be different. 

If there is only one dominant scattering, the correlation with the height would be high. 

Otherwise, the correlation would be lower. The good correlations between |HH-VV|2 and 

corn height at both stages, even though the trends of the correlations are opposite, indicate 

that the |HH-VV|2 has a great potential in corn height monitoring and estimation through 

the whole growing season.  

 

Figure 2-5: Scatterplots between (a) corn height and |HV|2 (C22), (b) corn height and  

|HH-VV|2 (T22)  

Table 2-2 shows that most SAR parameters except |HV|2 and Yamaguchi helix scattering 

were not sensitive to wheat height in this study site. Figure 2-6 illustrates that the 

relationship between the wheat height and |HV|2 (a) and Yamaguchi helix scattering (b) for 

the two modes (FQ9W and FQ19W). At the early stage when the wheat height was less 

than 25 cm, no SAR parameters were sensitive to wheat height. The HV backscatter from 

FQ9W (29 April) was much higher than that from FQ19W (8 May). This is perhaps due to 

the much higher soil moisture after the rain on 29 April when the FQ9W mode image was 

acquired (Baghdadi et al., 2007; Shoshany, Svoray, Curran, Foody, & Perevolotsky, 2000), 

the large soil roughness or crop residues (Huang, Wang, & Shang, 2016) at the early 

growing stage. It was also observed that wheat height was negatively correlated with |HV|2 

(r=-0.75) and Yamaguchi helix scattering (r=-0.62) at the middle stage. This may be 

|H
H
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V
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because that the dense vertical and hollow stems would absorb the backscatter (Fontanelli 

et al. 2013; Macelloni et al. 2001), hence it results in the decrease of backscatter with the 

growth of wheat during the stem elongation. At the later stage, the wheat was in its heading 

and ripening stage, the |HV|2 and Yamaguchi helix scattering increased drastically and was 

no longer sensitive to wheat height. It is likely that the emergence of inflorescence led to 

the change of the wheat canopy and affected the responses of SAR parameters. In addition, 

as the wheat kernels developed, the inside of them changed from a liquid state to dough, 

and became denser in consistency and thus resulting in the increase in SAR backscatters 

(Wiseman et al., 2014). Due to the variations of |HV|2 and Yamaguchi helix scattering 

before and after the heading stage, they may be applied to the wheat phenology detection. 

 

Figure 2-6: Scatterplots between (a) wheat height and |HV|2 (C22), (b) wheat height 

and Yamaguchi Helix Scattering  

2.3.2 Correlation analysis between Radarsat-2 polarimetric SAR 
parameters and FVC 

Table 2-3 shows the correlation coefficients (r) between the in-situ measured FVC and 

Radarsat-2 polarimetric SAR parameters for corn and wheat at two different growing 

stages. Previous research has found that when crop (corn and soybean) LAI reached to a 

certain value (LAI >3) (Jiao et al., 2011), the sensitivity of Radarsat-2 polarimetric SAR 

parameters to crop LAI decreased. A similar phenomenon also exists in the correlation 

analysis between SAR parameters and corn FVC. All SAR parameters were insensitive to 
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corn FVC when FVC was greater than 75% (the beginning of tassel emergence). For wheat 

FVC, because of the influence of soil at the early stage, and the saturation and the large 

variation of FVC at later stage (Figure 2-4), no SAR parameters were found sensitive to 

wheat FVC at any stage. 

Table 2-3: Correlation coefficients (r) between in situ measured FVC and Radarsat-

2 polarimetric SAR parameters.  

SAR parameters 
Corn Wheat  

FVC<75% FVC≥75% FVC<42% FVC≥42% 

Linear polarization 

|HH|2(C11)  0.59* 0.55* 0.14 -0.35 

|HV|2(C22)  0.89* 0.35 0.1 -0.51* 

|VV|2(C33)  0.1 -0.24 -0.52* -0.46* 

Pauli decomposition 

|HH+VV|2(T11) 0.14 -0.32 -0.51* -0.37 

|HH-VV|2(T22) 0.82* 0.56* 0.41* -0.35 

Intensity ratio 

|HH/VV|2(C11/C33) 0.73* 0.35 0.5* 0.22 

|HV/HH|2(C22/C11) 0.71* 0.32 0.00 -0.22 

|HV/VV|2(C22/C33) 0.96* 0.00 0.35 0.1 

Radar vegetation index 

RVI 0.75* 0.33 0.17 -0.14 

Cloude-Pottier decomposition 

Entropy(H) 0.75* 0.00 0.51* -0.00 

Anisotropy (A) -0.49* 0.00 0.39 -0.00 

Alpha (α) -0.54* 0.32 -0.42* -0.24 

Yamaguchi 4-component decomposition 

Yamaguchi single bounce -0.1 -0.1 -0.41* -0.24 

Yamaguchi double bounce 0.66* 0.37 0.28 -0.1 

Yamaguchi volume scattering 0.82* 0.41* 0.00 -0.17 

Yamaguchi helix scattering 0.59* 0.1 0.00 -0.35 

*p-value < 0.01 

Among the three linear polarizations (HH, HV, VV), HV showed a good correlation with 

the corn FVC (r=0.89) when the FVC was below 75%. The VV barely showed any 

correlation with FVC at both stages. It suggests that the C-band VV polarization is not an 

effective parameter to monitor broadleaf plants. Similar results were also found in 

Moncelloni’s study (Macelloni et al., 2001), which showed that the correlation between C-

band VV polarization and LAI of broadleaf crops (corn and sunflower) was lower than the 

correlation between VV polarization and LAI of narrow leaf crops (wheat), and in Xu’s 

study (Xu et al., 2014), which showed that the classification accuracy of peanut and woods 
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using Radarsat-2 VV polarization was the lowest among the three polarizations (HH, HV, 

VV). These findings indicate that the VV polarization is mainly dominated by surface 

scattering. 

In Figure 2-7, the ratio |HV/VV|2 is plotted against the corn FVC. The |HV/VV|2 gave the 

best correlation with corn FVC (r=0.96) when the FVC was below 75%. When the corn 

FVC was greater than 75%, the sensitivity of |HV/VV|2 to FVC decreased significantly 

(r=0.00). In addition to the weakened penetrating capability caused by accumulated 

biomass, this may also be caused by the saturation of FVC at the later growing stage.  

 

Figure 2-7: Scatterplots between (a) corn FVC and |HV|2 (C22), (b) corn FVC and 

|HV/VV|2 

Figure 2-8 shows the scatterplots between wheat FVC and |VV|2 (a) and |HV+VV|2 (b). No 

obvious correlation was observed between the Radarsat-2 polarimetric decompositions and 

the wheat FVC at any stage. It may be because of the two following factors. Firstly, the 

dense plants and narrow leaves of wheat make the stems contribute a large percentage to 

the FVC and accordingly lead to the saturation of FVC at an early stage. In addition, the 

SAR backscatter can easily penetrate the canopy and be affected by the stems and 

underlying soil due to the upright and narrow characteristics of wheat leaves and the small 

amount of biomass (Macelloni et al., 2001). In this view, C-band polarimetric SAR 

parameters are not good indicators for wheat FVC. 

|H
H

-V
V

|2
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Figure 2-8: Scatterplots between (a) wheat FVC and |VV|2 (C33), (b) wheat FVC and 

|HH+VV|2 (T11)  

The results indicated that the C-band Radarsat-2 polarimetric SAR has great potential in 

crop height and FVC estimation for broad-leaf crops (corn), and identifying the changes in 

crop canopy structures and phenology (corn and wheat) in cloudy areas. 

2.4 Conclusions 

This study investigated the sensitivity of different Radarsat-2 polarimetric SAR parameters 

to crop height and FVC of corn and wheat in southwestern Ontario, Canada. The results 

showed that the sensitivity of polarimetric SAR parameters to crop variables was higher 

for corn than for wheat. For corn, the |HV|2, |HH-VV|2, and |HV/VV|2 were strongly and 

positively correlated with the corn height when it was below 150 cm (before the heading 

stage). The correlation between most of the SAR parameters and corn height became 

weaker and negative after the heading stage. Only the |HH-VV|2 was observed to be 

strongly correlated with corn height at the later stage. The |HV|2 and |HV/VV|2 showed 

good sensitivity to corn FVC when corn FVC was below 75% (before the heading stage). 

Beyond this threshold, the sensitivity to corn FVC was lost. For wheat, the responses of 

polarimetric SAR parameters to wheat height were complex. The correlation between 

polarimetric SAR parameters and wheat height was very weak at the early and later 

growing stage. And then negative trends with weak correlations were observed between 

most polarimetric SAR parameters and wheat height during the stem elongation stage. 
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Among the SAR parameters studied, |HV|2 and Yamaguchi helix scattering were negatively 

correlated with wheat height during this stage with relatively higher coefficients of 

determination (r=0.75 and r=0.62). Whereas, the wheat FVC was not correlated with any 

SAR parameters.  
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Chapter 3  

3 Contribution of Minimum Noise Fraction Transformation 
of Multi-temporal Radarsat-2 Polarimetric SAR Data to 
Cropland Classification2 

3.1 Introduction 

Canada is a major exporter of agricultural products and plays an important role in the global 

agricultural market (Shang, Mcnairn, Deschamps, Jiao, & Champagne, 2011a). Annual 

crop inventories are required in many agriculture applications such as crop monitoring, 

crop biomass and yield estimation, scientific agriculture management and agriculture 

statistics reporting (Larrañaga, 2011). Compared with other vegetation land covers, crop 

fields are heavily influenced by human activities, and the crop types commonly change 

every year due to crop rotation, which makes an accurate and robust system for annual crop 

inventory delivery important.  

Due to the different temporal change patterns or phenology associated with different crop 

types (Zhu, Woodcock, Rogan, & Kellndorfer, 2012), multi-temporal optical data have 

been widely used in crop classification to provide not only spectral information but also 

temporal information of different crops. Multi-temporal Advanced Very High Resolution 

Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) 

vegetation index data are generally used for large scale crop classification (Wardlow, 

Egbert, & Kastens, 2007). Landsat TM/ETM+, RapidEye, and Sentinel-2 data are generally 

used for detailed local-scale crop mapping (Tatsumi, Yamashiki, Canales Torres, & Taipe, 

2015).  

                                                 

 

2
 A version of this chapter has been accepted for publication (Chunhua Liao, Jinfei Wang, Xiaodong Huang, 

Jiali Shang. Contribution of Minimum Noise Fraction transformation of multi-temporal RADARSAT-2 

polarimetric SAR data to cropland classification. Canadian Journal of Remote Sensing. 2018, 44(4). (will be 

published in August 2018)) 
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As frequent cloud contamination challenges the application of optical remote sensing 

imagery, the synthetic aperture radar (SAR) sensors show great potential in agriculture 

applications due to their capability of working day and night and penetrating the cloud 

cover (Zhu et al., 2012). Polarimetric SAR data with four polarization channels, which 

contain more information than the single polarization SAR data, can assist in crop 

discrimination by reflecting the structure and dielectric properties of the crop canopies 

(Forkuor, Conrad, Thiel, Ullmann, & Zoungrana, 2014; McNairn, Shang, Jiao, & 

Champagne, 2009a; Zhu et al., 2012). Different frequency polarimetric SAR systems such 

as the ASAR (C-band) (Tavakkoli & Lohmann, 2006), PALSAR (L-band) (Mishra, Singh, 

Yamaguchi, & Singh, 2011), TerraSAR-X (X-band) (Sonobe, Tani, Wang, Kobayashi, & 

Shimamura, 2014), Radarsat-1 (C-band), Radarsat-2 (C-band) (Deschamps, McNairn, 

Shang, & Jiao, 2012; Huang, Wang, Shang, Liao, & Liu, 2017; Shang, McNairn, 

Deschamps, & Jiao, 2011b), and the combination of different frequency SAR data (Shang 

et al., 2011b; Skriver, 2012) have been applied to crop classification with satisfactory 

accuracies. It has been reported that large biomass crops such as corn and soybean were 

well classified using the longer wavelength L-band SAR data, and the lower biomass crops 

such as cereals and hay pasture were better classified using C-band SAR data (McNairn et 

al., 2009a). The combination of multi-temporal SAR and optical data was also used for 

crop classification (McNairn, Champagne, Shang, Holmstrom, & Reichert, 2009b). 

Previous studies suggested that the integration of optical and SAR data was able to improve 

crop classification accuracy due to its ability to provide complementary information to 

better characterize crops. Optical images contain spectral (pigment) information of 

different crops, and SAR images provide the structure information of crop canopy (Zhu et 

al., 2012). Multi-temporal optical and SAR images capture the temporal change 

characteristics of different crop types. Integration of the spectral, polarimetric and temporal 

dimensions of features can produce higher accuracy in crop classification than using only 

one dimension of the features (Iannini, Molijn, & Hanssen, 2013; Larrañaga, 2011; 

McNairn et al., 2009a; Heather McNairn et al., 2009b; Shang et al., 2006; Zhu et al., 2012). 

Many SAR decomposition methods have been developed to separate the SAR backscatter 

signals into surface scattering, double bounce, and volume scattering. A previous study 

conducted in an agricultural area over North-eastern Ontario, Canada (Jiao et al., 2014) 
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found that the Cloude–Pottier decomposition parameters have higher accuracy than both 

measured linear polarizations (HH, HV, VV) and parameters decomposed by the Freeman–

Durden decomposition parameters using multi-temporal Radarsat-2 data using an object-

oriented classification method. Similar findings were also reported in another study 

conducted in the Great Lakes–St. Lawrence Valley near Ottawa (McNairn et al., 2009b). 

The crop classification results using multi-temporal Phased Array type L-band Synthetic 

Aperture Radar (PALSAR) showed that the L-band parameters derived from three 

decomposition approaches (Cloude–Pottier, Freeman–Durden, and Krogager) produced 

superior crop classification accuracies relative to linear polarizations. However, few 

studies have focused on the potential of elements of the coherency matrix and covariance 

matrix of the fully-polarimetric Radarsat-2 data in crop classification. 

Due to the cost and acquisition limitations of optical and SAR data, identifying the ideal 

timing of data acquisition during the growing season is also of great importance (McNairn 

et al., 2009a; Shang et al., 2006). For western Canada, where spring wheat is the main 

cereal crop, it is found that data acquired at the later growing season (late August and early 

September) are critical for crop classification, and early season data are less useful due to 

low vegetation cover (Jiao et al., 2014; McNairn et al., 2009a; Shang et al., 2006). However, 

the optimal acquisition dates of the datasets for crop classification may vary with regions 

due to the difference in crop type and complexity of crop mix. For regions where winter 

wheat is the main cereal crop, such as southwestern Ontario, earlier images may also be 

important. Therefore, it is necessary to study the impact of timing of polarimetric SAR data 

acquisition on crop classification, and provide guidance in data selection for crop 

classification in southwestern Ontario.  

Due to the inherent speckle phenomenon, it is important to suppress the noise of the data. 

Generally, a speckle filter is applied for each band of the polarimetric SAR data, but the 

speckle noise is still not sufficiently reduced. The Minimum Noise Fraction (MNF) 

transformation was originally developed for hyperspectral image processing to produce 

principal components by maximizing the signal-to-noise ratio of the data (Green, Berman, 

Switzer, & Craig, 1988). The MNF transform was also applied to MODIS time series in 

order to reduce the noise (Couto Junior, de Carvalho Júnior, Martins, & Vasconcelos, 2013). 
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From our knowledge, however, the MNF transform has never been applied to multi-

temporal polarimetric SAR data.  

Therefore, the main objectives of this study are (1) to determine the performance of 

different polarimetric SAR parameter sets for crop classification using the random forest 

classifier, (2) to study the impact of the timing of the acquisition of SAR images on crop 

classification in southwestern Ontario, and (3) to investigate the effects of MNF 

transformation of SAR time series data on crop classification.  

3.2 Methodology 

3.2.1 Study site 

The study site is a cropland area near Komoka, Ontario, which is located in the Mixedwood 

Plains Ecozone in southwestern Ontario (Figure 3-1). This region is characterized by 

abundant water supply, relatively mild climate, productive soils for agriculture, and a 

longer growing season than most of the country. The croplands in the study site are mixed 

with woods, and the dominant crops are winter wheat, corn, soybean, and forage including 

alfalfa and grass. These four crops accounted for more than 90% of the total planting area 

in the study site. Generally, the winter wheat in this study site is seeded in October the 

previous year and harvested in July, while the corn and soybean are seeded in May and 

harvested in September or October. Due to crop rotation, the type of crop planted in each 

field usually changed every year.  
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Figure 3-1: Location of the study site 

3.2.2 Ground reference data collection  

Field surveys were conducted in each month from April to September 2015. A total of 118 

fields (Figure 3-2) including 35 corn fields, 22 winter wheat fields, 29 soybean fields, 18 

forage fields, one bare soil field, one built-up field, one watermelon field, and two tobacco 

fields were visited. Nine forest patches were identified on Google Earth and Landsat 

images. For each crop type, about half of the ground truth data were selected as training 

samples from the ground reference fields, and the remaining ones were used as testing 

samples for the accuracy assessment (Table 3-1). There was no overlap between the 

training samples and testing samples.  

Table 3-1: Field data collected in the field work and the number of pixels used for 

training and testing 

LU/LC type Number 

of Fields 

Surveyed  

No. of 

training 

pixels  

No. of 

test 

pixels  

LU/LC type Number of 

Fields 

Surveyed 

No. of 

training 

pixels  

No. of 

test 

pixels 

Built-up 1 1267 1117 Winter wheat 22 6018 17723 

Forest  9 5148 7292 Forage 18 3700 3615 

Corn 35 6258 20246 Watermelon  1 310 309 

Soybean 29 6505 15995 Tobacco  2 416 301 

Soil 1 2331 1592     
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Figure 3-2: Map of the (a) surveyed fields, (b) training data and (c) testing data 

(c) Testing data 

(a) Surveyed fields 

(b) Training data 
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3.2.3 Satellite data acquisition  

A total of 15 fine-quad wide beam mode (FQW) Radarsat-2 polarimetric SAR images were 

acquired throughout the 2015 growing season over the study site. There was no 

precipitation during the time of the Radarsat-2 image acquisitions. The acquired Radarsat-

2 data are single look complex (SLC) products, which contain four polarizations HH, HV, 

VH, and VV. The revisit time for the same FQW of Radarsat-2 data is 24 days. In order to 

shorten the revisit time and to achieve satisfactory classification accuracies (Shang et al., 

2011b), SAR images acquired at different incidence angles (FQ1W, FQ9W, FQ10W, 

FQ14W, FQ15W, FQ20W) were also included. The incidence angle ranges from 20º to 40º 

(Table 3-2).  

Table 3-2: The acquired Radarsat-2 data 

Satellite Date Mode Incidence angle 

(degree) 

Nominal range 

resolution (m)  

Radarsat-2 

12 April 2015 FQ10W 28.4-31.6 9.9-10.9  

6 May 2015 FQ10W 28.4-31.6 9.9-10.9  

20 May 2015 FQ1W 17.5 21.2 14.4-17.3  

23 June 2015 FQ10W 28.4-31.6 9.9-10.9  

3 July 2015 FQ20W 38.6-41.3 7.9-8.3  

17 July 2015 FQ10W 28.4-31.6 9.9-10.9  

10 Aug. 2015 FQ10W 28.4-31.6 9.9-10.9  

3 Sep. 2015 FQ10W 28.4-31.6 9.9-10.9  

13 Sep. 2015 FQ20W 38.6-41.3 7.9-8.3  

17 Sep. 2015 FQ1W 17.5 21.2 14.4-17.3  

27 Sep. 2015 FQ10W 28.4-31.6 9.9-10.9  

1 Oct. 2015 FQ9W 27.2-30.5 10.2-11.4  

14 Oct. 2015 FQ15W 33.7-36.7 8.7-9.4  

1 Nov. 2015 FQ14W 32.7-35.7 8.9-9.6  

25 Nov. 2015 FQ14W 32.7-35.7 8.9-9.6 

Three cloud-free Landsat-8 OLI surface reflectance products (path 19, row 30) were 

downloaded from the USGS Explorer (https://earthexplorer.usgs.gov/). The first cloud-free 

Landsat image was captured on 10 June 2015, when all crops were growing. The other two 

images were captured on 28 July 2015, when the winter wheat began to be harvested, and 

14 September 2015, when corn and soybean began to senesce (Table 3-3).  
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Table 3-3: The acquired Landsat-8 data 

Satellite Date  Row Path Spatial resolution (m) 

Landsat-8 

10 June 2015 19 30 

30  28 July 2015 19 30 

14 Sep. 2015 19 30 

3.2.4 Satellite image preprocessing 

3.2.4.1 Polarimetric SAR parameter extraction 

The Radarsat-2 data were filtered using a 9×9 Boxcar filter to suppress the inherent speckle 

noise. Even though the Boxcar filtered image shows blurred boundaries when compared 

with other filters such as the Gaussian, Lee Refined, and Lee Sigma filters, it looks much 

smoother and more uniform, which is very important in the agricultural classification 

where all pixels within an entire crop field are supposed to be classified as the same crop 

type. In addition, the Boxcar filter has a higher Equivalent Numbers of Looks (ENL) than 

other filters, a good indicator to evaluate the filter performance with a larger value 

corresponding to a better quantitative performance, than other filters (Huang et al., 2017). 

The 9 by 9 window size is chosen in order to preserve the sufficient ENL to reduce the 

speckle noise and to keep details as many as possible. A too small window size will lead 

to insufficient filtering and too large window size will not preserve the details (Huang et 

al., 2017). Then, orthorectification was performed using MapReady software with an 

external digital elevation model (DEM) of Ontario and an output cell resolution of 10 m 

by 10 m. The coherency matrix (𝐓3) and covariance matrix (𝐂3) are two fundamental 

matrices representing the information of the polarimetric SAR data, from which most 

decomposition parameters can be extracted (Lee & Pottier, 2009).  

Linear polarizations (HH, HV, and VV) can be represented by the three diagonal elements 

(𝐶11, 𝐶22, 𝐶33) of the covariance matrix 𝐂3, of which, 𝐶22 represents the volume scattering. 

The components of the Pauli decomposition can be represented by the three diagonal 

elements (𝑇11 , 𝑇22 , 𝑇33) of the coherency matrix 𝐓3 . 𝑇11 , 𝑇22  and 𝑇33  represent single 

bounce scattering, double bounce scattering, and volume scattering respectively. The 

typical examples of those three scattering mechanisms are bare soil, soil-stalk and crop 

canopies respectively (Lee & Pottier, 2009). 
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The Cloude-Pottier decomposition decomposes the coherency matrix into three 

eigenvectors and eigenvalues, and from which the entropy (H), anisotropy (A), and alpha 

angle (α) can be derived. Entropy (H) is a measure of the purity of scattering mechanism, 

which varies between 0 (a single pure mechanism) and 1 (equal contributions from all three 

basic mechanisms). The α corresponds to the average scattering mechanism of an extended 

target and varies between 0° and 90°, measuring the impotence between the surface and 

double-bounce scattering. It is segmented into surface scattering (0° - 40°), volume 

scattering (40° - 50°) and double-bounce scattering (50° - 90°). The anisotropy (A) is 

defined as the relative importance between the two smallest eigenvalues ( Alvarez-Perez, 

2011; Cloude & Pottier, 1996 ).  

The Freeman-Durden decomposition is a model based decomposition. It decomposes each 

polarimetric SAR backscatter into three scattering components: surface scattering, double-

bounce scattering, and volume scattering. The three components are modeled as the first-

order Bragg surface scatter, the scattering from a dihedral corner reflector, and canopy 

scatters from randomly oriented dipoles respectively (Freeman & Durden, 1998). The 

Freeman-Durden decomposition has been widely used in LU/LC classification since it can 

provide useful features for distinguishing between different surface cover types. 

Each of the upper and lower triangular elements of the coherency matrix (𝐓3 ) and 

covariance matrix (𝐂3) is a complex number. The nine parameters, including three diagonal 

elements and the real and imaginary parts of the three off-diagonal elements, were given 

as one type of input feature. For other parameters, all of the elements of each decomposition 

were stacked. Then all the Radarsat-2 images were clipped to the study area.  

Due to the fact that a single image is usually not adequate for distinguishing different crop 

types, multi-temporal data are always required for successful LU/LC classification in 

agricultural areas as it provides temporal dimensional information, which can reflect the 

difference in crop change over time. In this study, a total of 14 scenarios of multi-temporal 

were prepared for the classification (Table 3-4). All the acquired data were used in Scenario 

1, and then one image was removed each time from April to November for the following 

scenarios. This strategy was selected because the images acquired later in the growing 
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season are reported to be important for crop classification (Jiao et al., 2014; McNairn et al., 

2009a; Shang et al., 2006). Even though nearly all the crops were generally harvested in 

November, the difference in crop residual features for different crop types such as residual 

height and density can still provide useful information for crop classification. For example, 

in our study area, the corn residuals will be left in the corn fields with a height of 20 cm to 

30 cm after the harvest. Thus the corn fields will present different polarimetric SAR 

backscattering features due to the roughness caused by corn residuals. Therefore, the 

November images were kept in all scenarios.  

Table 3-4: Different combination of multi-temporal Radarsat-2 data 

Date 
Scenarios 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

12 April 2015 √              

6 May 2015 √ √             

20 May 2015 √ √ √            

23 June 2015 √ √ √ √           

3 July 2015 √ √ √ √ √          

17 July 2015 √ √ √ √ √ √         

10 Aug. 2015 √ √ √ √ √ √ √        

3 Sep. 2015 √ √ √ √ √ √ √ √       

13 Sep. 2015 √ √ √ √ √ √ √ √ √      

17 Sep. 2015 √ √ √ √ √ √ √ √ √ √     

27 Sep. 2015 √ √ √ √ √ √ √ √ √ √ √    

1 Oct. 2015 √ √ √ √ √ √ √ √ √ √ √ √   

14 Oct. 2015 √ √ √ √ √ √ √ √ √ √ √ √ √  

1 Nov. 2015 √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

25 Nov. 2015 √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

3.2.4.2 MNF transformation 

The multi-temporal Radarsat-2 images for each set of parameters were stacked as one file. 

Then the MNF transform was performed on the multi-temporal Radarsat-2 data using the 

MNF transform module in ENVI. The MNF transform can determine the inherent 

dimensionality of data by examining the final eigenvalues, and segregate noise in the data 

(Boardman & Kruse, 1994). The MNF transform contains two steps: (1) estimates the noise 

covariance matrix (Σ𝑁) to decorrelate and rescale the noise in the data (noise whitening), 
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and (2) performs two separate standard Principal Component Analysis (PCA) (Appendix 

B) transformation of the noise-whitened data to compute the signal covariance matrix (Σ𝑆). 

The MNF transform is an eigenvector procedure, and the output of MNF is a set of image 

bands that are ordered according to image information content  (Green, Berman, Switzer, 

& Graig, 1988). Assuming that the multi-temporal data have m bands Ai(x), i=1, 2,…, m, 

and A(x)={ A1(x), A2(x),…Am(x)}T. It can be expressed as the sum of the uncorrelated 

signal (S(x)) and noise (N(x)) components: 

𝐀(𝐱) = 𝐒(𝐱) + 𝐍(𝐱)                                        (3-1) 

Hence, 

𝐶𝑜𝑣{𝐀(𝐱)}  =  ∑ =  ∑𝑆 + ∑𝑁                                  (3-2) 

where Cov{A(x)} represents the covariance matrix of A(x). The signal covariance ∑𝑆 is 

computed in the same way as is done for the PCA transform. The noise covariance ∑𝑁 can 

be estimated using minimum/maximum autocorrelation factors (MAF) (Switzer & Green, 

1984) (Appendix C). Compared with the PCA, MNF depends on the signal-to-noise ratio 

(SNR), and is better for signal-dependent noise (i.e. speckle) (Luo, Chen, Tian, Qin, &Qian, 

2016). 

The Landsat data were resampled to 10 m, and the reflectance was converted to a range 

from 0 to 1. Then the Landsat-8 OLI data were clipped to the study area, and the three 

optical images were stacked as one file. 

3.2.5 Image classification 

The classification methods such as Maximum-Likelihood Classifier (MLC), Decision Tree 

(DT), Artificial Neural Networks (ANN), Support Vector Machines (SVM), and the 

Random Forest (RF) classifier  have been frequently used in crop classification (McNairn 

et al., 2009b; Sonobe et al., 2014). The RF classifier was selected in this study due to its 

excellent ability in crop classification. The RF classifier shows a compromise between the 

requirement of the large numbers of training samples and expensive cost of time, and has 

a good ability in crop classification (Deschamps et al., 2012; Jiao et al., 2014; Rodriguez-
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Galiano, Ghimire, Rogan, Chica-Olmo, & Rigol-Sanchez, 2012; Sonobe et al., 2014; 

Tatsumi et al., 2015). Compared with other classification methods mentioned above, the 

RF classifier has several advantages: (i) overall and class-specific accuracies are generally 

higher, (ii) a supplementary variable importance measure can be provided, and (iii) the 

parameters that are needed to run the RF classifier show low sensitivity to classification 

accuracy (Deschamps et al., 2012). It has also been demonstrated that the RF classifier 

performs well even with a relatively small size of training samples (Banks et al., 2015). 

The RF classifier consists of an ensemble of decision tree classifiers. Each tree is grown to 

the maximum depth independently using a random combination of features from the input 

features. An input vector is classified into a class according to the maximum number of 

votes from the collection of trees (Breiman, 1999). As the number of decision trees 

increases, classification results will not be affected by the problem of overfitting because 

of the Strong Law of Large Numbers (Breiman, 1999; Prasad, Iverson, & Liaw, 2006), and 

thus pruning is unnecessary. Each tree is grown using a certain percentage (two-thirds) of 

the training sample data (the “bag”). The remaining (one-third) training sample data (the 

“Out-Of-Bag”, OOB) are used to compute the error rate for the tree. Variable importance 

of the input image can be produced by the random forest algorithm to determine the 

predictive ability and importance of each input feature in the classification (Banks et al., 

2015). The variable importance score can be calculated from the difference between the 

OOB error rate with variable j included and the OOB error rate variable j excluded. Usually, 

the classification accuracy increases as the number of trees increases. However, the 

improvement diminishes with an increase of the numbers of trees (Zhu et al., 2012). 

Optimal results can be achieved by defining the number of trees, and the number of split 

variables for each decision tree. According to previous studies, the error rate nearly reached 

stability when the number of trees is larger than 50 (Sonobe et al., 2014). In this study, a 

random forest classifier with a total of 100 trees was built, and the number of split variables 

was given as the default value, the square root of the total number of variables (Zhu et al., 

2012).  

The linear polarizations (HH, HV, VV), the elements of the coherency matrix, covariance 

matrix, the polarimetric parameters of the Pauli decomposition, Cloude-Pottier 
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decomposition and Freeman-Durden decomposition were extracted from all Radarsat-2 

data. For comparison purposes, the classifications were firstly run on the 6 sets of 

parameters of the single-date RADARSAT-2 data. Then the classifications were also 

performed on 14 scenarios of multi-temporal RADARSAT-2 images and the MNF 

transformed multi-temporal images. The classifications were also run on the multi-

temporal Landsat-8 data and the integration of Landsat-8 (resampled to 10 m and clipped 

to the study area) and Radarsat-2 data for comparisons. All the classifications were 

performed on a per-pixel basis, and the post-classification (clump classes) was performed 

to eliminate the “speckle” classes with a window size of 5 by 5. The producer’s accuracy 

(PA), user’s accuracy (UA), overall accuracy (OA) and the Kappa coefficient were 

generated using the testing samples. The PA represents the probability that a certain area 

is accurately classified as such on the map (omission error). The UA represents the 

probability of a pixel being labeled as a certain class on the map really is that class 

(commission error). Kappa represents the measure of agreement between the classification 

map and the reference data.  

3.3 Results and discussion 

Table 3-5 shows the overall accuracy using the 6 parameter sets of single-date Radarsat-2 

data. The average accuracies of all dates were calculated for each SAR parameter, and the 

average overall accuracies of different polarimetric SAR parameter sets were calculated 

for each date (Table 3-5). The coherency matrix produced the highest overall classification 

accuracy and followed by the covariance matrix, Pauli decomposition, linear polarization, 

Freeman-Durden decomposition and Cloude-Pottier decomposition. The images acquired 

on 23 June, 3 July, 3 September, 13 September and 14 October produced higher overall 

accuracy than the images acquired on other dates. 
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Table 3-5: Overall classification accuracies (%) for different polarimetric SAR 

parameter sets using single-date Radarsat-2 data (T3: coherency matrix; C3: 

covariance matrix; F-D: Freeman-Durden decomposition; C-P: Cloude-Pottier 

decomposition; Pauli: Pauli decomposition; Linear: Linear polarization) 

Date  T3 C3 F-D C-P Pauli Linear Average 

12 April 2015 45.07 44.16 41.30 40.87 41.29 40.79 42.25 

6 May 2015 53.04 47.73 44.55 41.49 43.08 39.74 44.94 

20 May 2015 61.33 61.40 57.02 50.11 55.98 58.33 57.36 

23 June 2015 70.44 69.73 61.15 58.92 68.75 64.99 65.66 

3 July 2015 74.03 73.88 55.85 51.26 64.10 65.99 64.19 

17 July 2015 58.10 59.13 43.36 48.05 44.59 51.97 50.87 

10 Aug. 2015 52.77 53.00 46.86 36.44 45.57 48.48 47.19 

3 Sep. 2015 72.62 71.52 61.40 45.92 63.11 63.82 63.07 

13 Sep. 2015 76.54 76.65 61.28 58.52 68.07 67.04 68.02 

17 Sep. 2015 49.71 49.5 43.34 35.39 44.17 44.26 44.4 

27 Sep. 2015 68.73 67.41 61.55 46.74 64.25 53.44 60.35 

1 Oct. 2015 64.12 62.72 59.80 43.91 61.59 56.12 58.04 

14 Oct. 2015 76.98 75.00 72.60 59.98 74.04 71.22 71.64 

1 Nov. 2015 61.37 61.23 51.02 43.29 54.07 52.25 53.87 

25 Nov. 2015 54.26 51.74 52.17 48.75 51.96 51.55 51.74 

Average 62.61 61.65 54.22 47.31 56.31 55.33  

Table 3-6 shows the overall classification accuracies for the individual set of polarimetric 

SAR parameters using the original and the MNF transformed multi-temporal Radarsat-2 

images. The average overall accuracies of different scenarios for each polarimetric SAR 

parameter and the average overall accuracies of polarimetric SAR parameter sets for each 

scenario were calculated (Table 3-6).  
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Table 3-6: Overall classification accuracies (%) using the original and the MNF 

transformation of multi-temporal Radarsat-2 parameters for different scenarios 

Scenarios 
T3 C3 F-D C-P Pauli Linear Average 

Orig MNF Orig MNF Orig MNF Orig MNF Orig MNF Orig MNF Orig MNF 

Scenario 1 92.6 94.51 91.71 92.04 91.86 89.74 91.36 91.31 91.08 91.08 90.98 90.84 91.6 91.32 

Scenario 2 94.41 95.23 93.4 94.52 93.74 93.31 91.65 91.63 94.29 93.47 91.93 92.05 93.24 93.18 

Scenario 3 94.05 95.28 93.59 94.78 92.96 93.97 91.12 91.45 93.49 94.86 92.56 93.65 92.96 93.8 

Scenario 4 94.65 95.88 93.66 95.57 92.64 95.54 90.79 90.09 93.59 94.77 93.09 95.87 93.07 94.47 

Scenario 5 94.38 95.89 93.59 95.35 92.84 95.09 90.35 88.94 93.3 95.21 94.02 95.47 93.08 94.4 

Scenario 6 93.39 94.81 93.37 94.62 92.65 94.55 89.95 87.49 93.49 93.82 94.06 94.08 92.82 93.33 

Scenario 7 93.14 95.05 92.93 95.12 91.57 93.97 88.65 85.98 92.68 94.7 92.58 94.13 91.93 93.2 

Scenario 8 91.92 94.76 91.27 94.2 90.72 93.53 88.55 84.5 90.89 92.57 89.52 93.23 90.48 92.56 

Scenario 9 90.27 93.02 89.41 92.62 88.8 92.1 86.59 85.39 89.1 91.31 88.41 91.87 88.76 91.13 

Scenario 10 86.65 88.92 85.68 89.54 83.14 86.64 83.8 79.85 85.15 86.06 83.74 85.19 84.69 86.18 

Scenario 11 85.98 86.88 84.17 88.33 82.41 83.7 80.55 76.8 83.43 84.34 82.21 83.56 83.13 83.96 

Scenario 12 84.37 85.35 81.72 85.77 82.8 82.17 76.48 77.3 83.15 83.9 82.28 82.73 81.8 82.75 

Scenario 13 84.79 81.97 82.61 82.36 80.38 76.15 76.23 76.45 81.97 78.21 81.04 81.17 81.17 79.39 

Scenario 14 72.61 72.58 70.89 72.68 61.29 68.17 61.58 61.92 68.1 69.19 69.69 70.29 67.36 69.14 

Average 89.52 90.72 88.43 90.54 86.99 88.47 84.83 83.51 88.12 88.82 87.58 88.87   

The MNF transformation improved the overall accuracy for most of the parameters and 

most of the scenarios, and the improvement ranges from 0 to 6.88%. The overall 

classification accuracy using the MNF transformation of the coherency matrix for Scenario 

5 was the highest (95.89%), and increased by 1.51% when compared with the overall 

accuracy using the data without MNF transformation.  

The MNF transformed bands were ordered according to the amount of information in the 

image. Figure 3-3 shows the first two bands and the last band of the MNF transformation 

of the multi-temporal Radarsat-2 coherency matrix for Scenario 5. The first two bands of 

the MNF transformed data show spatially coherent texture and clear field boundaries, and 

the last band contains almost noise, whereas the original images showed obvious noise. 
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Figure 3-3: The first two bands and the last band of the MNF transformation of 

multi-temporal coherency matrix of Radarsat-2 data 

As revealed in the MNF eigenvalue plot (Figure 3-4), the eigenvalue for the first band of 

the MNF transformed SAR time series was the largest, which means most of the 

information was contained in band 1. Information content decreased gradually in the 

subsequent bands.  

 

Figure 3-4: Eigenvalues of the MNF transformation of the multi-temporal Radarsat-

2 coherency matrix for Scenario 5.Eigenvalues of the MNF transformation of the 

multi-temporal Radarsat-2 coherency matrix for Scenario 5. 
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3.3.1 Effects of MNF transformation on cropland classification in 
terms of different polarimetric SAR parameter sets  

3.3.1.1 Overall classification accuracies and the effects of MNF 
transformation 

When the classifications were run on the 6 sets of parameters of single-date Radarsat-2 

data, the overall accuracies of all parameters were below 80%. The highest overall accuracy 

(76.98%) was achieved by the coherency matrix using the data acquired later in the 

growing season (Table 3-5). Figure 3-5 illustrates that the average overall accuracy for 

coherency matrix reaches the highest (89.52%), followed by the covariance matrix 

(88.43%), Pauli decomposition (88.12%), linear polarization (87.58%), Freeman-Durden 

decomposition (86.99%) and the Cloude-Pottier decomposition (84.83%). The difference 

among classifications using different SAR parameters can vary by as high as 20%. 

The coherency matrix outperformed the covariance matrix in classification because it is a 

more appropriate representation of underlying physical scattering mechanisms, as it 

considered the phase of different combinations of polarizations (Gao & Ban, 2008). The 

overall accuracy for the Cloude-Pottier decomposition was the lowest, which agreed with 

previous findings (Alberga, 2007). This is possibly due to the following two causes: Firstly, 

as the entropy and anisotropy are derived from eigenvalues, they do not contain any span 

(intensity) information. The eigenvalue analysis compressed the original information into 

fewer dominant components and reduced the detailed information. Secondly, the Cloude-

Pottier decomposition only senses the scattering mechanism without taking the crop types 

into consideration. All crops might show a dominant volume scattering with high Entropy 

and medium Alpha value (Alberga, 2007; Cao & Hong, 2005).  

However, Jiao et al. (2014) reported that the Cloude-Pottier decomposition performed 

better than linear polarizations and Freeman-Durden decomposition for wheat 

classification using an object-oriented method. It may be because that the object-oriented 

classification was able to reduce the noise inherent in the SAR data. It is also probably 

because the crop (especially corn) residual left from previous year existed in many fields 

in our study site before the soybean and corn were seeded, and the Cloude-Pottier 
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decomposition parameters may be sensitive to crop residual, so that it was difficult to 

classify between wheat and crop residual.  

The MNF transformation of the coherency matrix and covariance matrix gave competitive 

average overall accuracies (90.72% vs 90.54%). The performance of the Pauli 

decomposition, linear polarizations and Freeman-Durden decomposition are comparable 

(88.82% vs 88.87% vs 88.47%). The average overall accuracies for the coherency matrix, 

covariance matrix, Pauli decomposition, linear polarization and Freeman-Durden 

decomposition were increased by 1.20%, 2.11%, 0.70%, 1.29%, and 1.48% respectively 

when compared with the average overall accuracies using the data without MNF 

transformation. It seems that the MNF transformation can reduce the differences of overall 

accuracies between SAR parameter sets. However, the MNF transformation of the Cloude-

Pottier decomposition reduced the classification accuracy by 1.32%.  

 

Figure 3-5: The average overall accuracy before and after the MNF transformation 

for different polarimetric SAR parameter sets 
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3.3.1.2 Individual land cover classification accuracies and the 
effects of MNF transform 

To examine the classification performance of different parameters for individual land 

covers, the average accuracies of all scenarios for the five dominant land cover types (forest, 

corn, winter wheat, soybean, and forage) were calculated using the multi-temporal data 

before and after the MNF transformation (Figure 3-6). As tobacco and watermelon were 

rare crop types in this area, and the sample size for the two crop types was small, these two 

crops were out of our discussion. 

The coherency matrix was the best for corn and winter wheat classification, and the highest 

producer’s accuracies were 94.26% for corn at Scenario 3 and 93.87% for winter wheat at 

Scenario 5. The Cloude-Pottier decomposition was the best for soybean classification and 

the highest producer’s and user’s accuracy were 99.44% and 91.52 % at Scenario 1. Linear 

polarization was the best for forage classification with the highest producer’s accuracy of 

95.44% at Scenario 1. All the parameters had similar performance for forest classification. 

However, the Cloude-Pottier decomposition was slightly better than other parameters with 

a producer’s accuracy of 99.97% at Scenario 1.  

 

Figure 3-6: The average producer’s accuracies of all scenarios for 5 dominant land 

cover types using different SAR parameter sets 
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Among the five dominant land cover types, forest was classified with the highest accuracy. 

The MNF transformation of the original Radarsat-2 data for all the parameters showing 

only minor differences in forest classification accuracies. For corn, an average producer’s 

accuracy of 89.6% was produced, and the coherency matrix can give a slightly higher 

producer’s accuracy. However, the MNF transformation of multi-temporal Radarsat-2 

parameters except for the Freeman-Durden decomposition decreased the producer’s 

accuracy by about 1% to 3%. For soybean, the average producer’s accuracy is 

approximately 90%. The MNF transformation of the parameter sets except for the Cloude-

Pottier decomposition improved the producer’s accuracy by about 2% to 4% and reduced 

the differences in the producer’s accuracy between different parameter sets. However, the 

MNF transformation of the Cloude-Pottier decomposition decreased the producer’s 

accuracy. For winter wheat, the MNF transformation of the coherency matrix, covariance 

matrix, and linear decomposition improved the producer’s accuracies by about 3% to 5%. 

For forage, the Cloude-Pottier decomposition gave the lowest accuracy, but the MNF 

transformation of the Cloude-Pottier decomposition improved the average producer’s 

accuracy by 10.76%. The MNF transformation of the coherency decomposition, covariance 

decomposition, linear polarizations, and Freeman-Durden decomposition gave similar 

producer’s accuracies.  

The results of this study indicated that different parameters were sensitive to different land 

cover types. For instance, the coherency matrix is sensitive to most crops, and the Cloude-

Pottier decomposition has the lowest sensitivity for most crops but has the highest 

sensitivity for soybean. This difference in classifications can be caused by the spatial 

difference in the canopy structures as well as the temporal difference in planting and 

harvesting dates. The MNF transformation can improve the producer’s accuracy for 

soybean, winter wheat and forage, and can reduce the differences in the producer’s 

accuracy between different parameter sets.   
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3.3.2 Effects of MNF transform on cropland classification in terms 
of the timing of Radarsat-2 datasets   

3.3.2.1 Overall classification accuracies and the effects of MNF 
transformation  

When the classifications were run on the six parameters of single-date Radarsat-2 data, the 

Radarsat-2 data acquired in the middle of October gave the best average overall accuracy 

(71.64%), while the data acquired early in September, and from the end of June to the 

beginning of July, gave average accuracies of more than 60%. The Radarsat-2 images 

acquired in April, early in May and later in September gave the average classification 

accuracy as low as 40% (Table 3-4). This is probably because in the middle of October the 

main crops especially soybean and corn have the largest separability as the soybean and 

corn show the largest difference in the vertical structure after they have been senescent and 

before harvested. 

When the classifications were run on the original multi-temporal polarimetric SAR data, 

the average overall accuracies of all polarimetric SAR parameter sets for each scenario 

(Figure 3-7) illustrated that the inclusion of the image acquired in April reduced the 

accuracy of the classification using the multi-temporal data. The MNF transformation 

nearly gave the same overall accuracy as the original data. This is likely caused by the fact 

that the corn and soybean fields were presented as bare soil in April, and thus larger 

misclassification was introduced. 

The best average overall classification accuracy was produced at Scenario 5, when the 

image acquired in the end of June was included. The changes in average overall accuracy 

were small (less than 0.3%) when the data acquired in May, June, and early July were 

eliminated respectively, and the average overall accuracy reached a maximum when the 

images acquired before early July were removed, while the MNF transformation of these 

scenarios improved the average overall accuracies and the average overall accuracy 

reached a maximum when the images acquired before June were eliminated. Generally, 

corn and soybean were planted later in May, therefore, the soil could still affect the 

classification when the images acquired in May were used.  



 

56 

 

It is worth noting that there were two large overall accuracy decreases (4.07% and 14.43%) 

at Scenario 10 and Scenario 14, when the images acquired on 13 September and 14 October 

were eliminated respectively. It means that the images acquired on these two dates were 

important in crop classification, which agreed with the results using single-date images. 

When the SAR image acquired on other dates were eliminated, the average overall 

accuracy decreased by about 1% each time. The MNF transformation improved the average 

overall accuracy for most scenarios. Scenario 4 and Scenario 5 showed similar overall 

accuracy before and after the MNF transformation. From Scenario 6 to Scenario 9, it is 

likely that the MNF transformation made the differences of overall accuracies between 

scenarios smaller (Figure 3-7). 

 

Figure 3-7: The average overall accuracy before and after the MNF transformation 

for different scenarios 

As the coherency matrix outperforms other parameter sets for the classifications, the 

overall classification accuracy decreases after the elimination of each image were 

calculated for coherency matrix. As shown in Table 3-6, the best classification was 

produced at Scenario 4 for original multi-temporal coherency matrix, while the best 

classification was produced at Scenario 5 for the MNF transformation of the multi-
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temporal coherency matrix. According to Table 3-6, the overall accuracy decreased by 

12.18% when the image acquired on 14 October was removed, and the overall accuracy 

decreased by 3.62% when the image acquired on 13 September was removed. According 

to Table 3-5, the single-date images acquired on 14 October can produce the best 

classification accuracy and followed by the image acquired on 13 September. This 

indicates that the images acquired on 14 October and 13 September are two import images 

for the classification in this study site. In order to explore the best classification accuracies 

using different numbers of images, the classifications were performed using random 

combinations of the images acquired from July to November based on the principle that 

the images should be acquired at different growth stages of crops as much as possible.  

Table 3-7 presents the overall accuracies of the classifications using different combinations 

of coherency matrix datasets acquired on different dates and the MNF transformation of 

the datasets. Figure 3-8 shows the maximum overall classification accuracies using 

different numbers of dates of coherency matrix datasets and the MNF transformation of the 

datasets presented in Table 3-7. It illustrates that an overall accuracy of more than 90% can 

be achieved using two-date images (14 October and 13 September), and similar overall 

accuracy was achieved using the MNF transformation of the images. The overall accuracy 

for three-date images acquired on 10 August, 13 September and 14 October was 92.25% 

and the MNF transformation of three-date images also showed a similar overall accuracy 

(92.76%). The overall accuracy of four-date images acquired on 10 August, 3 September, 

13 September and 14 October can be 92.98%. An overall accuracy of 94.57% can be 

achieved using the MNF transformation of images acquired on 3 July, 3 September, 13 

September and 14 October. With the increase of numbers of images, the average of the 

overall accuracy basically increased accordingly. The MNF transformation can improve 

the overall accuracy by 1% to 3% for most combinations using 4 or more images. A 

maximum overall accuracy of 95.46% can be achieved using the MNF transformation of 

six-date datasets. Then with the increase of numbers of images, the improvement of the 

overall accuracy was limited. 
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Table 3-7: Overall classification accuracies using different combinations of 

coherency matrix datasets acquired on different dates and the MNF transformation 

of the datasets. The coloured cells mean the dates when the RADARSA-2 data were 

used for the classification (Red: two-date; Orange: three-date; Yellow: four-date; 

Green: five-date; Blue: six-date; Purple: seven-date; Cyan: eight-date; Pink: nine-

date; Gray: Ten-date). 

 03 

July 

17 

July 

10 

Aug. 

03 

Sep. 

13 

Sep. 

17 

Sep. 

27 

Sep. 

01 

Oct. 

14 

Oct. 

01 

Nov. 

Orig 

OA (%) 

MNF 

OA(%) 

2 

          90.27 90.54 

          88.85 90.09 

          84.29 83.48 

          82.96 83.54 

          85.16 84.52 

3 

          91.31 91.54 

          91.08 91.45 

          92.25 92.76 

          91.72 91.34 

          89.26 92.16 

          91.95 91.46 

          89.07 90.69 

          90.92 91.28 

4           92.13 93.47 

          92.98 92.66 

          92.03 94.57 

          90.88 94.09 

5           93.82 94.44 

          93.53 94.69 

          93.79 94.72 

          93.19 94.47 

6           93.78 95.03 

          93.56 94.82 

          92.95 95.46 

          94.01 95.17 

7           94.00 94.87 

          93.47 95.51 

8           94.68 95.24 

          93.27 94.85 

9           94.75 94.95 

          94.85 95.78 

10           94.10 95.48 
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Figure 3-8: Maximum OA using original and MNF transformation of two-date to 

seven-date coherency matrix datasets 

3.3.2.2 Individual land cover classification accuracies and the 
effects of MNF transformation 

In order to investigate the impact of timing of the Radarsat-2 data on individual land cover 

classification, we examined the average producer’s accuracies of all SAR parameter sets 

for 5 dominant land cover types in the study site at different scenarios (Figure 3-9).  

89

90

91

92

93

94

95

96

97

0 1 2 3 4 5 6 7 8 9 10 11

M
ax

im
u
m

 O
A

 (
%

)

Number of images

Orig MNF



 

60 

 

 

Figure 3-9: The average producer’s accuracies of all SAR parameter sets for 5 

dominant land cover types at different scenarios 

It was found that, the average producer’s accuracy for soybean was the highest (97.03%) 

when the data acquired in April and May were excluded (Scenario 4). Before and after the 

elimination of the image acquired on 13 September, the producer’s accuracy decreased by 

nearly 10%. According to the photos and phenology information collected during the 

fieldwork, we found that there was an obvious senescence process for the soybean plants 

during this period of time. In late September, most soybean fields were in the late stage of 
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senescence (basically there are two types of soybean within this study site). On 13 

September, the soybean was still green or green-to-yellow. But on 17 September, the leaves 

of some soybean fields were senescent and had dried up. Therefore, the SAR backscatter 

was mainly affected by the stems of soybean and the soil surface. The maximum difference 

of average producer’s accuracies between different scenarios was 2.14% for forest. 

Therefore the producer’s accuracies for forest were barely influenced by the timing of 

Radarsat-2 data. For wheat, the producer’s accuracy of more than 90% was produced when 

the images acquired in May, June and July were included (Scenario 2 to Scenario 6). As 

wheat was harvested early in August, an obvious decrease in producer’s accuracy was 

observed after the image acquired in August was eliminated. The highest producer’s 

accuracy for corn was observed when the data acquired before June were excluded, and the 

difference of average producer’s accuracies between different scenarios for corn was less 

than 3 % when the SAR data acquired before November were included (Scenario 1 to 

Scenario 13). However, after the SAR data acquired in October were eliminated and only 

images acquired in November were retained, the average overall accuracy for corn 

decreased by 31.65%. It turned out that the corn was harvested in November, and thus the 

separability between corn fields and other fields became small. For forage, the highest 

accuracy was produced when the April data were eliminated (85.76%), and the average 

producer’s accuracy decreased the most (9.44%) when the data acquired before November 

was excluded. 

The MNF transformation obviously improved the average producer’s accuracy for all the 

scenarios for soybean except Scenario 13, and the maximum improvement was 6.02%. The 

MNF transformation also improved most scenarios for wheat (the maximum improvement 

is 3.94%) and forage (the maximum improvement is 8.65%). For forest, MNF 

transformation had little influence on the producer’s accuracy. For corn, however, the MNF 

transformation slightly reduced the producer’s accuracy for all scenarios except Scenario 

14, and more pixels were misclassified into soybean, forage or winter wheat. A possible 

reason for the decrease of producer’s accuracy for corn when using the MNF 

transformation of the multi-temporal data is that the corn has a larger space between 

individual plants and a larger leaf inclination angle than soybean, forage and wheat. Due 

to these spatial and temporal differences in different land cover types, the MNF 
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transformation of the multi-temporal data cannot extract spatial and temporal features from 

corn that are helpful for distinguishing corn fields, so that the classification accuracies are 

not improved. 

According to the classification results using single-date and multi-temporal SAR images, 

the SAR backscatters were mainly affected by the soil roughness due to the low vegetation 

cover in April and May (McNairn et al., 2009b; Shang et al., 2006). Therefore the data 

acquired early in the growing season (April and May) are not suitable for crop classification. 

The senescence or harvesting of crops can also affect the classification of the crops due to 

the loss of volume scattering information of these crops. Generally, the images acquired 

during the time when the crop was growing with distinguishable structure and a large 

amount of biomass was of great importance to crop classification. So the images acquired 

before the senescence or harvesting of the crops were of great importance. In this study 

area, the SAR data acquired during the time from June to the end of July, June to the middle 

of September and June to the end of October are important for wheat, soybean and corn 

classification respectively. During these periods, the greater the number of SAR images, 

the higher the classification accuracy. In November, even though the crops were harvested 

and the forest was senescent, the crop residual can provide special features for crops. 

3.3.3 Assessment of the best classification result and the random 
forest classifier  

As the best classification was obtained using the MNF transformation of multi-temporal 

coherency matrix at Scenario 5, the classification map and the confusion matrix were 

presented in Figure 3-10 and Table 3-8.  
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Figure 3-10: The land cover mapping using the MNF transformation of the 

coherency matrix at Scenario 5 

The confusion matrix (Table 3-8) shows that the user’s accuracies for most of the land 

cover types were high (97.72% in average) with an exception of the forage class (85.95%). 

Higher producer’s accuracies were achieved for forest (99.67%) and soybean (99.54%). 

Lower producer’s accuracies were produced for tobacco (72.4%) and watermelon 

(75.73%), which may be because that the tobacco and watermelon were rare crop types in 

this area, and the training sample size for the two crop types was limited. The 

misclassification mainly occurred between soybean and corn classes, which are both 

summer crops with broad leaves. Confusion also occurred between winter wheat and forage. 

This is likely caused by the reasons that the wheat shows similar canopy features with grass 

in the early growing stage, and the grass or alfalfa sometimes was planted after the 

harvesting of winter wheat. 
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Table 3-8: Confusion matrix for the land cover mapping obtained using the MNF 

transformation of the coherency matrix at Scenario 5 (B=Built-up, C=Corn, 

F=Forest, FG=Forage, S=Soil, SB=Soybean, T=Tobacco, WM=Watermelon, 

W=Wheat) 

The random forest classifier uses all the features simultaneously to classify a pixel 

(Rodriguez-Galiano et al., 2012). Figure 3-11 illustrates the variable importance generated 

from the random forest classifier before and after the MNF transformation of the coherency 

matrix at Scenario 5. Before the MNF transformation, the most important image was 

acquired on 13 September (𝑇22), and then the image acquired on 3 July (𝑇22). It is apparent 

that the imaginary part of the 𝑇12 on 13 September has a high variable importance (5.32). 

After the MNF transformation, the MNF eigenvalue plot which plots the eigenvalue of 

each band will be generated by ENVI. The larger the eigenvalue of a band is, the more 

information it contains. According to the eigenvalue plot, more than 95% of useful 

information was kept in the first 60 bands (Figure 3-4). As a result, the features with high 

variable importance were distributed in the first 60 bands.  

Class 
Ground truth 

B C F FG S SB T WM W Tol. UA (%) 

B 945 0 0 0 0 0 0 0 0 945 100.00 

C 8 19022 24 97 0 16 4 2 198 19371 98.20 

F 152 70 7268 0 27 43 2 0 4 7566 96.06 

FG 12 18 0 3309 0 11 16 13 471 3850 85.95 

S 0 0 0 0 1537 0 0 0 0 1537 100.00 

SB 0 872 0 7 25 15922 37 60 120 17043 93.42 

T 0 5 0 0 0 2 218 0 0 225 96.89 

WM 0 0 0 0 0 0 0 234 0 234 100.00 

W 0 259 0 202 3 1 24 0 16930 17419 97.19 

Tol. 1117         20246          7292          3615          1592 15995 301 309 17723 68190  

PA (%) 84.60 93.95 99.67 91.54 96.55 99.54 72.43 75.73 95.53   

OA (%) 95.89 

Kappa 0.95 
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Figure 3-11: The variable importance of different input features (a) before and (b) 

after the MNF transformation 

Figure 3-12 shows the relationship between the number of trees and the Out-Of-Bag (OOB) 

accuracy for different land cover types. The accuracy became stable when the number of 

trees reached 20. It indicates that a random forest classifier with 100 trees, which was used 

in this study is stable enough for crop classification.  

 

Figure 3-12: Learning curve (OOB accuracy) of the random forest classifier with 

different numbers of trees (a) original image, (b) MNF transformed image 

3.3.4 Comparison of the classification accuracies using the MNF 
transformation of multi-temporal Radarsat-2 polarimetric SAR 
data with the accuracies using other strategies 

Among the machine learning approaches, the neural network-based approach faces the 

problems such as slow convergence and the possibility of falling in local minima (Ghamisi, 

(a) (b) 
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Plaza, Chen, Li, & Plaza, 2017). The support vector machine (SVM) classifier is a kernel-

based technique which aims to find the optimal separating hyperplane between classes 

(Soliman, Mahmoud, & Hassan, 2012). In this study, the SVM classifier with a second-

order kernel polynomial was used for comparison. We also compared the classification 

accuracies using Landsat-8 data, the original multi-temporal coherency matrix at Scenario 

5, the MNF transformation of the coherency matrix, the first 60 bands of the MNF 

transformation and the integration of Landsat-8 and Radarsat-2 data (Table 3-9).  

Table 3-9: Comparison of the classification accuracies using the MNF 

transformation of multi-temporal Radarsat-2 polarimetric SAR data with the 

accuracies using other strategies  at Scenario 5 based on RF and SVM classifier 

(B=Built-up, C=Corn, F=Forest, FG=Forage, S=Soil, SB=Soybean, T=Tobacco, 

WM=Watermelon, W=Wheat) 

RF 

 
OA 

(%) 
Kappa B C F FG S SB T WM W 

Ι 93.26 0.91 98.84 85.04 99.20 83.57 96.23 99.33 78.74 68.28 96.76 

II 94.38 0.93 76.90 94.14 98.68 88.96 96.67 96.42 80.07 60.84 93.87 

III 95.89 0.95 84.60 93.95 99.67 91.54 96.55 99.54 72.43 75.73 95.53 

IV 92.42 0.90 76.1 93.11 99.38 91.65 95.92 95.78 67.77 55.99 87.67 

V 96.03 0.95 83.17 93.89 99.66 90.48 97.11 99.64 77.74 78.96 96.17 

VI 95.13 0.94 90.15 89.42 99.01 96.07 97.68 99.74 84.72 63.75 96.52 

VII 94.73 0.93 99.91 87.82 99.37 88.82 97.99 99.92 85.38 75.73 97.09 

SVM 

 
OA 

(%) 
Kappa B C F FG S SB T WM W 

Ι 91.20 0.89 99.37 86.76 99.73 88.96 97.30 92.00 76.41 94.82 91.62 

II 92.23 0.90 69.11 90.02 99.74 91.48 97.74 98.99 75.42 63.43 87.49 

III 92.48 0.90 68.85 85.19 99.55 92.34 97.42 98.87 73.75 75.40 93.84 

IV 93.25 0.91 67.68 89.76 99.37 84.98 96.92 99.17 72.76 75.08 93.03 

V 92.56 0.90 71.26 84.35 99.41 94.55 97.24 98.95 76.74 79.61 94.38 

VI 94.89 0.93 84.51 88.62 99.84 89.82 97.55 99.47 84.39 83.82 97.70 

VII 94.58 0.93 98.66 86.74 99.74 91.40 96.17 99.31 83.39 84.14 97.77 

Note:  

I: multi-temporal Landsat-8 data;  

II: multi-temporal coherency matrix;  

III: MNF transformation of multi-temporal coherency matrix;  

IV: PCA transformation of multi-temporal coherency matrix;  

V: first 60 bands of the MNF transformed data;  

VI: multi-temporal Landsat-8 and coherency matrix;  

VII: multi-temporal Landsat-8 and MNF transformation of coherency matrix) 
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The overall accuracies and kappa coefficients illustrated that the RF classifier 

outperformed the SVM classifier, and higher producer’s accuracies were achieved for bare 

soil, corn, tobacco, and winter wheat using the RF classifier. The MNF transformation of 

the multi-temporal data improved the overall accuracy more using the RF classifier than 

using the SVM classifier. As a comparison, the classification was conducted using the PCA 

transformation of multi-temporal polarimetric SAR data. With the RF, the MNF 

transformation shows higher classification accuracy than the PCA transformation. The 

producer’s accuracy for winter wheat using the MNF transformation is 8% higher than the 

producer’s accuracy using the PCA transformation. Since the most information was 

contained in the first 60 bands, the last 39 bands (noise bands) of the MNF transformation 

can be removed in order to improve the computational efficiency. The overall classification 

accuracy improved slightly after removing the noise bands using both classifier. The 

accuracies for the main land cover types were comparable with the accuracies using all 

bands of the MNF transformed data based on both classifiers.  

The optical data can provide spectral information that the polarimetric SAR data cannot 

provide, while the temporal changes in the spectral information of the optical data will be 

limited due to the lower temporal resolution and frequent cloud cover. Compared with the 

classification results obtained using the three Landsat-8 reflectance images, the overall 

accuracy using multi-temporal Radarsat-2 coherency matrix was improved based on both 

classifiers, and the producer’s accuracies for corn and forage were improved by 

approximately 9% and 5% respectively. The overall classification accuracies obtained 

using the MNF transformation of multi-temporal Radarsat-2 data and using the integration 

of multi-temporal Landsat-8 and Radarsat-2 data were competitive, and the producer’s 

accuracy for corn was obviously higher using the MNF transformation of the multi-

temporal coherency matrix than using the integration of the two datasets based on the RF 

classifier.   

3.4 Conclusions 

This study investigated the effects of MNF transformation of multi-temporal Radarsat-2 

polarimetric SAR data using a random forest classifier on cropland classification in 

southwestern Ontario. The research is performed through a discussion of the performance 
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of different polarimetric SAR parameters sets and the impact of timing of Radarsat-2 

datasets on cropland classification. 

Among the six polarimetric SAR parameter sets, coherency matrix gave the best overall 

accuracy when the random forest classification was applied, followed by the covariance 

matrix, Pauli decomposition, linear polarization, Freeman-Durden decomposition and 

Cloude-Pottier decomposition. The data acquired later in the growing season were 

important for the crop classification. Specifically, the multi-temporal SAR data acquired 

during the time between June and the end of July, July and the middle of September, and 

July and the end of October were important for wheat, soybean and corn classification 

respectively. The November SAR data are also helpful to achieve a higher accuracy. An 

overall accuracy of 90% can be achieved using two images acquired in the middle of 

September and October, and an accuracy of 94% can be achieved using four datasets 

acquired between July and October. 

The MNF transformation of the multi-temporal polarimetric SAR parameter sets can 

improve the overall classification accuracy when random forest classifier was used. In 

addition, the difference between different polarimetric SAR parameter sets or between 

different scenarios can be reduced through the MNF transformation. A maximum overall 

accuracy of 95.89% was achieved using the MNF transformation of the multi-temporal 

(July to November) coherency matrix, and the accuracy was further improved by removing 

the last few bands which mainly contained noise. The maximum improvement of the MNF 

transformation was 3.94% for wheat, 6.02% for soybean, and 8.65% for forage. For forest, 

the accuracies before and after the MNF transformation showed minor differences, and the 

classification accuracies were similar between different polarimetric SAR parameter sets. 

However, for corn, the MNF transformation slightly reduced its producer’s accuracy. The 

overall accuracy of the MNF transformation of the multi-temporal coherency matrix data 

was competitive with the overall accuracy of the integration of multi-temporal optical 

images and the coherency matrix data. The SVM classifier performed worse than the RF 

classifier, and the MNF transformation of the multi-temporal SAR data had a minor 

influence on the classification accuracy when the SVM classifier was used.  
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Chapter 4  

4 A Spatio-Temporal Data Fusion Model for Generating 
NDVI Time Series in Heterogeneous Regions3 

4.1 Introduction 

The Normalized Difference Vegetation Index (NDVI) is a widely used vegetation index 

(VI) derived from optical remote-sensing data to evaluate the biophysical or biochemical 

information related to vegetation growth (Busetto, Meroni, & Colombo, 2008; Fensholt, 

2004; Hilker et al., 2009; Jönsson & Eklundh, 2002; Kang et al., 2003). Large scale time 

series NDVI is generally used for assessment and monitoring of forest (Bhandari, Phinn, 

& Gill, 2012; Walker, De Beurs, Wynne, & Gao, 2012), grassland (Olexa & Lawrence, 

2014; Schmidt, Udelhoven, Gill, & Röder, 2012; Tewes et al., 2015), ecological 

environment (Tian et al., 2013; Watts, Powell, Lawrence, & Hilker, 2011), wildlife habitat 

disturbance (Gaulton, Hilker, Wulder, Coops, & Stenhouse, 2011), and to estimate gross 

primary productivity (Chen et al., 2010), biomass (Dong et al., 2016; Meng, Du, & Wu, 

2011), and evapotranspiration (Anderson et al., 2011). It can be calculated from the images 

acquired by sensors such as the Advanced Very High Resolution Radiometer (AVHRR), 

Moderate Resolution Imaging Spectroradiometer (MODIS), Medium Resolution Imaging 

Spectrometer (MERIS), Sea-Viewing Wide Field-of-View Sensor (SEAWIFS), or 

VEGETATION, with spatial resolution ranging from 250 m to a few kilometers (Busetto 

et al., 2008). In applications such as crop monitoring, time series images acquired by high 

spatial-resolution sensors such as Landsat-OLI (30 m) and RapidEye (5 m) are required to 

provide spatial and temporal details. However, due to cost and technical limitations (trade-

off between pixel spatial resolution and satellite temporal revisiting cycle) (Zhu, Chen, Gao, 

Chen, & Masek, 2010) and cloud cover problems, it is difficult to acquire images with both 

                                                 

 

3
 A version of this chapter has been published (Chunhua Liao, Jinfei Wang, Ian Pritchard, Jiangui Liu, Jiali 

Shang. A spatio-temporal vegetation index image fusion model for generating high spatial and temporal 

resolution NDVI images in cropland areas. Remote Sensing. 2017, 9(11):1125) 
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high spatial resolution and high temporal frequency. Thus, spatio-temporal data fusion 

techniques have been developed as a feasible and less expensive way to acquire remote 

sensing time series data for land surface dynamics monitoring (Gao, Masek, Schwaller, & 

Hall, 2006; Hazaymeh & Hassan, 2015; Marfai, Almohammad, Dey, Susanto, & King, 

2008; Zhu et al., 2016). 

In general, generating fine-resolution NDVI time series images through spatio-temporal 

data fusion can be conducted in two ways (Jarihani et al., 2014): (i) conduct fusion of 

reflectance first and then calculate the NDVI (Blend-then-Index, BI); and (ii) calculate the 

NDVI first and then conduct fusion (Index-then-Blend, IB). The theoretical basis of the 

two ways are essentially the same, and some of the methods developed for reflectance 

images can also be used for NDVI images. However, the IB is preferred over BI due to less 

error propagation and fewer computational steps (blending one index band versus multiple 

reflectance bands) (Jarihani et al., 2014). 

A few categories of spatio-temporal data fusion approaches have been originally proposed 

to blend reflectance images including data-assimilation based algorithms, unmixing based 

methods, dictionary-pair learning based methods, and weighted function based methods 

(Zhu et al., 2016). The data-assimilation based algorithms incorporate observation data 

with models and their uncertainties to minimize the residual errors (Mathieu & O’Neill, 

2008). The advantage of data-assimilation based algorithms is that a complete time series 

of fine-resolution images, rather than single synthetic image, can be synthesized in the 

implementation. A recursive Kalman filter algorithm (KF) was implemented to produce 

frequent fine-resolution NDVI time series using available fine-resolution images and a time 

series of coarse-resolution NDVI images in previous studies (Kempeneers, Sedano, Piccard, 

& Eerens, 2016; Sedano, Kempeneers, & Hurtt, 2014). The uncertainty of these algorithms 

is correlated to the number of available fine-resolution observations, and these algorithms 

suffer large uncertainties when the available fine-resolution images are limited in 

heterogeneous areas. 

The unmixing based methods include the Multisensor Multiresolution Technique (MMT) 

(Zhukov, Oertel, & Lanzl, 1999), the spatial temporal data fusion approach (STDFA) (Wu, 
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Wang, Niu, Zhao, & Wang, 2012), and the spatial and temporal reflectance unmixing 

model (STRUM) (Gevaert & García-Haro, 2015). These methods assume that remote 

sensing signal of coarse-resolution pixels is the weighted average of the mean reflectance 

of each class and a residual error. The weight of each class is its fractional cover within 

one coarse-resolution pixel, which can be calculated from a fine-resolution land-cover map. 

The mean reflectance of each land cover is estimated by solving a number of spectral 

unmixing model equations of coarse-resolution pixels, and the mean reflectance of each 

land cover is assigned to the fine-resolution pixels. The unmixing based concept can also 

be used for spatio-temporal fusion of NDVI images. Busetto et al. (2008) proposed an 

approach for the estimation of sub-pixel NDVI time series by combining fine- and coarse-

resolution NDVI images based on an unmixing approach. This approach aims to estimate 

the mean NDVI of each land cover within one coarse-resolution pixel from daily MODIS 

data by solving the linear weighted equations using manually selected coarse-resolution 

pixels, and disaggregate MODIS NDVI using weights calculated by Gaussian functions of 

MODIS spectral dissimilarity index and the Euclidean spatial distance between the target 

and each pixel. Rao et al. (2015) proposed the NDVI Linear Mixing Growth Model (NDVI-

LMGM) to produce high spatial resolution NDVI time-series data by using MODIS NDVI 

time series data and Landsat NDVI images. The NDVI-LMGM combines the NDVI linear 

mixing model with the NDVI linear growth model. It assumes that the short-term changes 

in NDVI can be interpreted as linear, and long-term NDVI changes can only be predicted 

reliably by several short-term predictions. The change rate of each land cover during the 

two dates on the TM/ETM+ pixel scale within the corresponding MODIS pixel can be 

estimated by solving the linear weighted equations. Another method, NDVI-Bayesian 

spatiotemporal fusion model (NDVI-BSFM) (Liao, Song, Wang, Xiao, & Wang, 2016), 

employed the Bayesian pixel unmixing process through incorporating the prior multi-year 

average MODIS NDVI from the first day of the year to the last day of the year for each 

land cover type, and it can predict a single Landsat-like NDVI image as well as build a 

Landsat-like NDVI time-series dataset. However, these methods are computationally 

intensive and rely heavily on the quality of MODIS NDVI data. Furthermore, the 

performance of these methods will be affected by the classification accuracies (Zurita-

Milla, Kaiser, Clevers, Schneider, & Schaepman, 2009), especially when there are land 
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cover changes within a year. These methods are not applicable when reliable Land 

cover/Land use (LC/LU) ancillary information is not available. For example, in some 

cropland area, the crop types change every year due to the annual rotation of the crops. 

Thus, the LC/LU data are generally produced at the end of the growing season. 

The dictionary-pair learning based methods, such as the sparse representation-based spatio-

temporal reflectance fusion model (SPSTFM) (Huang & Song, 2012; Song & Huang, 2013) 

and the error-bound-regularized semi-coupled dictionary learning (EBSCDL) (Wu, Huang, 

Zhang, & Member, 2015), need one or two pairs of fine- and coarse-resolution images and 

one coarse-resolution image as input data. It builds relationships (dictionaries) between the 

features of fine-resolution images and their corresponding coarse-resolution images 

through dictionary-pair learning (Chen, Huang, & Xu, 2015; Yang, Wright, Huang, & Ma, 

2010), and then applies the relationship (dictionary) to predict a fine-resolution image on 

the prediction date. The dictionary-pair learning based methods performed well in 

phenology change, but they still face challenges in heterogeneous regions with abrupt land 

cover type changes (Zhu et al., 2016), and they are computationally complex (Huang & 

Song, 2012; Zhu et al., 2016). 

The weighted function based methods include the spatial and temporal adaptive reflectance 

fusion model (STARFM) (Gao et al., 2006), and the enhanced spatial and temporal 

adaptive reflectance fusion model (ESTARFM) (Zhu et al., 2010). Due to simple input 

requirements (no ancillary land cover data or classification data required) and robustness, 

they are widely used in many applications (Bisquert et al., 2015; Jarihani et al., 2014; 

Knauer, Gessner, Fensholt, & Kuenzer, 2016; Meng et al., 2011; Tian et al., 2013). The 

input data of the STARFM algorithm are one or two pairs of fine- and coarse-resolution 

images acquired at the same time and one coarse-resolution image acquired at the 

prediction time. This algorithm assumes that the reflectance of a given coarse-resolution 

pixel can be aggregated from fine-resolution homogeneous pixels. The STARFM attempts 

to search neighboring spectral similar fine-resolution pixels within a moving window and 

endows the weights of these similar pixels calculated according to the spectral difference 

between coarse-resolution and fine-resolution data, the temporal difference between the 

input MODIS data, and the distance to the central pixel. The reflectance of the central fine-
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resolution pixel is estimated from the neighboring similar homogeneous pixels. However, 

the STARFM algorithm is not applicable to heterogeneous areas such as croplands (Zhu et 

al., 2010). Due to this limitation, an improved STARFM with help of unmixing-based 

method (USTARFM) was proposed (Xie et al., 2016). However, it still subjects the 

problem of land cover changes. The ESTARFM was proposed by Zhu et al. (Zhu et al., 

2010) to enhance the ability of STARFM through the use of two pairs of fine-resolution 

and coarse-resolution images obtained on two dates. It is able to minimize the system biases 

between the sensors and is more suitable for heterogeneous areas by using two pairs of 

fine- and coarse-resolution images to detect land cover changes and it keeps more spatial 

details (Zhu et al., 2010). However, the ESTARFM method assumes that there is no 

temporal variation in change rate of the vegetation during a period, which is not reasonable 

if it is long a period between the input images. Furthermore, the ESTARFM neglects the 

variation of the relationship between the fine- and coarse-resolution images caused by 

different acquisition dates. The spatial and temporal nonlocal filter-based data fusion 

method (STNLFFM) (Cheng, Liu, Shen, Wu, & Zhang, 2017) is a recently proposed 

method that can predict the fine-resolution reflectance accurately and robustly by 

introducing the idea of nonlocal filtering, for both heterogeneous landscapes and 

temporally dynamic areas. However, it is based on the assumption that the reflectance 

change rate is linear, which is not accurate over a long period. The flexible spatiotemporal 

data fusion (FSDAF) model (Zhu et al., 2016) is a method using one pair of fine- and 

coarse-resolution images and one coarse-resolution image acquired on the prediction date. 

This method integrates the unmixing-based methods, spatial interpolation, and STARFM 

into one framework. It performs better in predicting abrupt land cover changes than other 

methods that use only one pair of fine- and coarse-resolution images. However, this method 

is computationally expensive and the prediction accuracy greatly depends on the extent of 

land cover changes between the two dates of the input images. 

In this study, a spatio-temporal vegetation index image fusion model (STVIFM) is 

proposed to generate NDVI time series images with high spatial and high temporal 

resolution in heterogeneous regions such as croplands more accurately and robustly. 

Different from the methods mentioned above, we aim to predict the NDVI change for each 

fine-resolution pixel by using a weighting system to disaggregate the total NDVI change 



 

79 

 

within a moving window, which can be calculated from the coarse-resolution NDVI images 

acquired on two different dates. The proposed model employed: (1) a new weighting 

system; (2) a new method to obtain the relationship between the two resolution images; 

and (3) more reasonable assumptions on the NDVI change rate of non-evergreen vegetation, 

which considers the change rate variations at both spatial scale and temporal scale. This 

algorithm is tested by Landsat-OLI and MODIS data acquired in three study sites. The 

results generated by the STARFM, ESTARFM and FSDAF methods are validated by the 

real Landsat NDVI images or field measurements for three study sites and different growth 

stages of a cropland area. 

4.2 Methodology 

4.2.1 Theoretical Basis 

Most of the spatio-temporal data fusion methods are based on the linear mixture model, 

which assumes that the reflectance of a coarse-resolution pixel (mixed pixel) can be 

modeled as the sum of the reflectance of different land cover endmembers (pure pixels) 

within the pixel, weighted by the corresponding fractional cover of each component 

(Busetto et al., 2008; Settle & Drake, 1993). This assumption can also be used for NDVI 

values, and it was demonstrated that this linear assumption for NDVI only led to minor 

inaccuracies (Kerdiles & Grondona, 1995). The linear mixture model can be written as in 

Equation (4-1): 

NDVI =  ∑(𝑓𝑐 ×  NDVI𝑐)

𝑘

𝑐=1

 +  𝜀 (4-1) 

where k is the number of classes. 𝑓𝑐 represents the fractional cover of land cover class c in 

this pixel and ∑ 𝑓𝑐
𝑘
𝑐=1  =  1. NDVI𝑐 is the NDVI of endmember of land cover class c. 𝜀 is 

the residual error term. This model can be applied to both fine- and coarse-resolution pixels. 

The difference in NDVI between a single coarse-resolution pixel and a fine-resolution pixel 

results from the heterogeneity of the observed area and the systematic biases caused by the 

difference in sensor systems (Zhu et al., 2010). For heterogeneous areas, there may be great 

changes of fine-resolution pixels within one original coarse-resolution pixel, so it is 
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inappropriate to build relationships between the individual fine-resolution pixels and 

coarse-resolution pixels with a linear regression method. The relationship between NDVI 

of a pure coarse-resolution pixel (NDVI′𝑐) and NDVI of a pure fine-resolution pixel (NDVI𝑐) 

for a given class c can be described with a linear model: 

NDVI𝑐  =  𝑎 × NDVI
′
𝑐  +  𝑏 (𝑐 =  1, 2, … , 𝑘) (4-2) 

where a and b are the coefficients of the linear regression model between the coarse- and 

fine-resolution NDVI of pure pixels. 

For fine-resolution pixels contained by a coarse resolution pixel, if we neglect the residual 

error, NDVI of the ith fine-resolution pixel can be calculated from Equations (4-1) and (4-

2): 

NDVI𝑖  =  ∑(𝑓𝑐𝑖  × 

𝑘

𝑐=1

(𝑎 ×  NDVI′𝑐  +  𝑏))  =  𝑎 × (∑𝑓𝑐𝑖  ×  NDVI
′
𝑐)  +  𝑏

𝑘

𝑐=1

 

 
(4-3) 

The average fractional cover of class c of all the fine-resolution pixels within one coarse-

resolution image is equal to the fractional cover of the coarse-resolution image. Therefore, 

the average NDVI of fine-resolution pixels can be obtained using Equation (4-4): 

NDVI̅̅ ̅̅ ̅̅ ̅  =  𝑎 × NDVI′  +  𝑏 (4-4) 

where NDVI′ is the NDVI of one coarse-resolution pixel. If the coarse-resolution image is 

resampled to the same spatial resolution as the fine-resolution image using the nearest 

neighbor method (the value of each resampled pixel is the same within a coarse-resolution 

pixel), the NDVI value of each original coarse-resolution pixel is equal to the mean value 

of the resampled pixels within the original pixel. If there are three pairs of fine- and coarse-

resolution images acquired on date m (tm), date n (tn), and the prediction date p (tp), which 

is between tm and tn (tm < tp < tn), the mean NDVI of the 𝑁 fine-resolution image pixels on 

the three dates (NDVI̅̅ ̅̅ ̅̅ ̅
𝑚, NDVI̅̅ ̅̅ ̅̅ ̅

𝑛, NDVI̅̅ ̅̅ ̅̅ ̅
𝑝) have linear relationships with the mean NDVI of 

the corresponding 𝑁 resampled coarse-resolution image pixels (NDVI′̅̅ ̅̅ ̅̅ ̅̅
𝑚, NDVI′̅̅ ̅̅ ̅̅ ̅̅

𝑛, NDVI′̅̅ ̅̅ ̅̅ ̅̅
𝑝) 

respectively. The relationships can be expressed as Equation (4-5): 
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NDVI̅̅ ̅̅ ̅̅ ̅
𝑘  =  𝑎𝑘  ×  NDVI′̅̅ ̅̅ ̅̅ ̅̅

𝑘  +  𝑏𝑘 (𝑘 = 𝑚, 𝑝, 𝑛) (4-5) 

where am, an and bm, bn can be obtained through the regression of the two pairs of images, 

respectively. As there is no available fine-resolution image at tp, the correlation cannot be 

achieved through regression. ap and bp may be different from am, bm or an, bn; thus, the total 

NDVI difference between the prediction date (tp) and the date before (tm) or after (tn) of the 

fine-resolution pixels within the moving window can be obtained by Equation (4-6): 

∑(∆NDVI𝑝𝑘𝑖)

𝑁

𝑖=1

 =  (NDVI̅̅ ̅̅ ̅̅ ̅
𝑝  −  NDVI̅̅ ̅̅ ̅̅ ̅

k)  ×  𝑁 

=  (𝑎𝑝  ×  NDVI′̅̅ ̅̅ ̅̅ ̅̅
𝑝  −  𝑎𝑘  ×  NDVI′̅̅ ̅̅ ̅̅ ̅̅

𝑘  +  𝑏𝑝  −  𝑏𝑘)  ×  𝑁 (𝑘

= 𝑚, 𝑛) 

(4-6) 

To obtain each fine-resolution pixel’s NDVI change between tm (or tn) and tp, a 

disaggregation weighting system can be adopted to describe the contribution of each pixel 

to the total NDVI changes calculated from the coarse-resolution pixels within the moving 

window. Then, the NDVI for each pixel can be obtained from the image acquired at tm or 

the image acquired at tn by adding the predicted NDVI change of each fine-resolution pixel 

(Equation (4-7)): 

NDVI𝑝𝑘𝑖  =  NDVI𝑘𝑖  +  𝑊𝑘𝑖  ×  ∑(∆NDVI𝑝𝑘𝑖)

𝑁

𝑖=1

 (𝑘 =  𝑚, 𝑛) (4-7) 

Theoretically, the NDVI at tp can be predicted using the fine-resolution NDVI at tm or tn. 

In heterogeneous regions, local land cover changes may cause large inaccuracies if only 

one fine-resolution image is used as the base image. To reduce the inaccuracy caused by 

local land cover changes, the two estimations based on the two fine-resolution images can 

be combined according to the local similarity between the two coarse-resolution images to 

obtain a more robust result. 

NDVI𝑝𝑖  =  𝑆𝑙𝑝𝑚  ×  NDVI𝑝𝑚𝑖  +  𝑆𝑙𝑝𝑛  ×  NDVI𝑝𝑛𝑖 (4-8) 
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where 𝑆𝑙𝑝𝑚  and 𝑆𝑙𝑝𝑛  represent the local similarity weights, 𝑆𝑙𝑝𝑚 + 𝑆𝑙𝑝𝑛 = 1 . The 

calculation of 𝑆𝑙𝑝𝑚 and 𝑆𝑙𝑝𝑛 will be given in Section 4.2.3. 

4.2.2 Weighting System 

To predict fine-resolution NDVI at tp, the accurate calculation of weights, which aim to 

disaggregate the total NDVI change to each fine-resolution pixel within a moving window, 

is an important part of this algorithm. The traditional approach to calculate the NDVI 

change is to solve a system of linear mixture equations based on a prior classification map. 

However, this process is time consuming and the results ignored the difference of growth 

status in the same land cover type. Another approach is to calculate the change rate using 

the two fine-resolution images, which is adopted in the ESTARFM method (Zhu et al., 

2010). The ESTARFM assumes that the change rate is stable during the period between tm 

and tn. This assumption is reasonable if the period between tm and tn is short enough (e.g., 

a few days), but if the period is not short enough (e.g., 20 days), the change rate will vary 

during this period. In this study, we attempt to estimate the NDVI change based on the two 

acquired fine-resolution images by addressing the variations of NDVI change rate at spatial 

and temporal scale. 

According to the NDVI time series profile of pure vegetation pixels generated from 

MODIS NDVI time series data acquired in a growing season shown in previous studies 

(Liao et al., 2016; Rao et al., 2015) or the simulated NDVI time-series profile modeled by 

a double logistic function (Sun & Schulz, 2017), the NDVI change rate increases with the 

increase of NDVI at the beginning of the growing stage, then reaches a maximum, and then 

decreases at the growing stage. The same trend is shown at the senescent stage. 

Theoretically, at the early growing stage, the growth rate, which is related to the NDVI 

change rate of healthy vegetation, is low due to the limited photosynthesis process caused 

by many factors such as temperature and chlorophyll content (Lambers, Chapin III, & Pons, 

2008). Then, the growth rate increases due to the optimal temperature, increasing 

chlorophyll content and other factors. At the later growing stage, the growth rate decreases 

due to the deficiency of nitrogen, water, and the change of temperature, etc. (Lambers et 

al., 2008). For heterogeneous regions, the NDVI change rates of different pixels may vary 
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within a moving window. This variation may be caused by the difference of vegetation 

types or the difference in growth stages of the same vegetation type. Therefore, the spatial 

variation of fine-resolution NDVI change (spatial weight) varies with the prediction time 

tp. For better understanding the variation of NDVI change rate at the temporal scale and 

spatial scale, we simulated the NDVI time series profiles for three pure crop pixels within 

a moving window according to the NDVI time series profile of vegetation pixel generated 

from MODIS NDVI time series data in previous studies (Liao et al., 2016; Rao et al., 2015) 

(Figure 4-1). 

 

Figure 4-1: Diagram of simulated Normalized Difference Vegetation Index (NDVI) 

profiles for different crop pixels. 

When image acquired at tm is used as the base image, if ∆𝑡𝑛𝑝 (tn − tp) is short enough, the 

spatial variation of NDVI change from tm to tp can be determined by the spatial variation 

of the fine-resolution NDVI change from tm to tn. If ∆𝑡𝑚𝑝 (tp − tm) is short enough (e.g., 

one day), the spatial variation of NDVI change from tm to tp cannot be accurately calculated 

using the spatial variation of the fine-resolution NDVI change from tm to tn due to the spatial 

and temporal variations of NDVI change rate. However, the spatial variation of fine-

resolution NDVI change from tm to tp is closely related to the spatial variation of NDVI 

change rate at tm. When tp moves from tm to tn, the NDVI change between tm and tp becomes 

more and more related to the NDVI change between tm and tn. The idea is the same when 

image acquired at tn is used as the base image. Thus, for any time tp between tm and tn, we 
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propose to calculate the final spatial weight for NDVI changes by combining the NDVI 

change rate calculated from the image acquired at tm or tn, and the temporal NDVI change 

between tm and tn using a temporal weight. Since two estimations can be calculated from 

the two base images, and there may be abrupt changes, a more robust final prediction can 

be achieved by combining the two predictions using a local similarity weight (Equation (4-

8)). However, if there are peaks (growing stage to senescence stage) or valleys (senescence 

stage to growing stage) for the vegetation NDVI profile between tm and tn, and tp is neither 

close to tm nor to tn, large inaccuracy would be produced. The detailed idea of the weighting 

system is illustrated in Sections 4.2.2.1–4.2.2.3. 

4.2.2.1 Weight Calculation Based on Temporal NDVI Change 

As mentioned above, if tp is very close to tn, the variation of NDVI change from tm to tp can 

be determined by the variation of the fine-resolution NDVI change from tm to tn (Equation 

(4-9)). 

𝐷 =  NDVI𝑛  −  NDVI𝑚 (4-9) 

In heterogeneous regions, for example when increasing NDVI pixels may be mixed with 

decreasing NDVI pixels caused by harvesting, flooding or re-planting areas and unchanged 

NDVI pixels such as bare soil within the moving window, the weight calculation based on 

temporal NDVI change is complex. To keep the same sign of the weight calculated from 

temporal NDVI change, the three types of pixels should be processed separately. The land 

covers were classified into three categories according to the NDVI change from tm to tn 

(Equation (4-10)). Even though it is an unvegetated area such as bare soil, the NDVI may 

have minor temporal changes due to the slight variation of its spectral characteristics over 

time. Therefore, ±0.1 are selected as the thresholds for the classification. The selection of 

the thresholds is also supported by the finding that the NDVI threshold for bare soil was 

0.1 (Gandhi, Parthiban, Thummalu, & Christy, 2015). The weight of each pixel within the 

moving window was calculated separately according to their categories. 

{

𝐷𝑖 > 0.1                                     𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 1, 𝑔𝑟𝑜𝑤𝑖𝑛𝑔 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 
𝐷𝑖 < −0.1          𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 2, 𝑠𝑒𝑛𝑒𝑠𝑐𝑒𝑛𝑡 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛/ 𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒 

−0.1 ≤ 𝐷𝑖 ≤ 0.1 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 3, 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑 𝑎𝑟𝑒𝑎/𝑠ℎ𝑜𝑟𝑡 𝑡𝑒𝑟𝑚 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 
 (4-10) 
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where 𝐷𝑖  is the NDVI difference of the ith pixel in the moving window. If 𝐷𝑖 is greater 

than 0.1 (𝐷𝑖 > 0.1), the ith pixels is marked as growing vegetation. If 𝐷𝑖 is less than −0.1 

(𝐷𝑖 < −0.1), it is marked as a disturbance or senescent vegetation. If 𝐷𝑖 is less than or 

equal to −0.1 and greater than or equal to 0.1 (−0.1 ≤ 𝐷𝑖 ≤ 0.1 ), it is regarded as 

unchanged area or short-term changes that were not recorded in the two fine-resolution 

images. For Categories 1 and 2, the weight related to the temporal NDVI change between 

tm and tn for each pixel can be obtained by and Equation (4-11). 

𝑤𝑡𝑗𝑖  =  𝐷𝑖/∑𝐷𝑖  

𝑁𝑗

𝑖=1

  (𝑗 =  1, 2) (4-11) 

where 𝑤𝑡𝑗𝑖  is the weight calculated from temporal NDVI change for the ith pixel that 

belongs to the jth category. 𝑁𝑗 is the number of the pixels that belong to category j within 

the moving window. However, for areas where there is no temporal NDVI change between 

tm and tp (Category 3), this calculation is not applicable. 

4.2.2.2 Weight Calculation Based on NDVI Change Rate 

If ∆𝑡𝑚𝑝 (tp − tm) is short enough (e.g., 1 day), the variation of fine-resolution NDVI change 

from tm to tp is closely related to the variation of NDVI change rate at tm. Under this 

circumstance, we believe that the NDVI value of the fine-resolution image acquired at any 

time is related to the NDVI change rate at that time according to Figure 4-1 and the 

physiological characteristics of plants described in (Lambers, Chapin III, & Pons, 2008). 

For heterogeneous regions, the spatial variation of NDVI values at tm causes the spatial 

variation of the NDVI change rate, and accordingly the NDVI change between tm and tp. 

From the simulated NDVI profile shown in Figure 4-1 or the NDVI profile generated from 

remote sensing time series images (Liao et al., 2016; Rao et al., 2015), it can be assumed 

that for different types of vegetation or the same type of vegetation with different growth 

stages, the pixels with low or high NDVI values have lower NDVI change rate and the 

pixels with median NDVI values should have higher change rate at that time. The spatial 

variation of the NDVI change rate can be interpreted using a change rate index (CRI) 
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calculated by an exponential function (Equation (4-12)) based on one acquired fine-

resolution NDVI image. 

𝐶𝑅𝐼𝑘  =  𝑒
− 
(𝑁𝐷𝑉𝐼𝑘−𝑑)

2

𝜎2
 
 (𝑘 = 𝑚, 𝑛) (4-12) 

where 𝜎2 is the variance of the transformed values, and d represents the NDVI value where 

the change rate is maximum. Since the theoretical NDVI values for vegetation pixels range 

from 0 to 1, the median value 0.5 was selected as the value of d in this study. 𝜎2 was set to 

0.1 to obtain the change rate index with a dynamic range from 0 to 1. 

The weight calculated from the NDVI change rate for the ith pixel that belongs to category 

j at tm (𝑤𝑚𝑗𝑖) or tn (𝑤𝑛𝑗𝑖) can be calculated by Equation (4-13). 

𝑤𝑘𝑗𝑖  =  
𝐶𝑅𝐼𝑘𝑖

∑ 𝐶𝑅𝐼𝑘𝑖
𝑁𝑗
𝑖=1

 (𝑘 = 𝑚, 𝑛;  𝑗 = 1, 2, 3) (4-13) 

4.2.2.3 Final Weight Calculation 

For heterogeneous vegetated areas, the more similar the land cover on the base date (tm or 

tn) is to the land cover on the prediction date, the more accurate is the predicted image. The 

time interval can be an indicator for the similarity of land cover but there are exceptions. 

For example, in Figure 4-1, the NDVI change is larger from tn to t1 than from t1 to t2 for 

pixel 2 even though t1 − tn is less than t2 − t1. To avoid the manual input of dates for the 

acquired images, and the circumstance that the NDVI change is larger in a shorter period, 

the correlation coefficient (𝑟𝑤) (Equation (4-14)) between two coarse-resolution images for 

the whole region is selected to calculate the temporal weight (T) (Equation (4-15)). 

Compared with other statistical indices, the correlation coefficient is more suitable for 

indicating land cover similarity in heterogeneous regions as it reflects the similarity in the 

trend of differences associated with each pixel. 

𝑟𝑤𝑝𝑘  =  
∑ (NDVI𝑘𝑖

′  −  NDVI𝑘
′̅̅ ̅̅ ̅̅ ̅̅ )(NDVI𝑝𝑖

′  −  NDVI𝑝′̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑁
𝑖=1

√∑ (NDVI𝑘𝑖
′ − NDVI𝑘

′̅̅ ̅̅ ̅̅ ̅̅ )2𝑁
𝑖=1  ×  √∑ (NDVI𝑝𝑖

′ − NDVI𝑝′̅̅ ̅̅ ̅̅ ̅̅ ̅)2𝑁
𝑖=1

 (𝑘 = 𝑚, 𝑛) 
(4-14) 
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𝑇𝑝𝑘  =  
𝑟𝑤𝑝𝑘

2

𝑟𝑤𝑝𝑚2  +  𝑟𝑤𝑝𝑛2
 (𝑘 = 𝑚, 𝑛) (4-15) 

where 𝑟𝑤𝑝𝑘 is the correlation coefficient of the whole image at tp and tk (k = m, n). N is the 

number of pixels in the whole region. 𝑇𝑝𝑘 represents the temporal weight between image 

tp and tk (k = m, n). 

For any prediction time between tm and tn, the final weight for vegetated areas (Category 

1,2) can be calculated using the temporal weighted average of the weight calculated from 

the spatial NDVI variation and the temporal NDVI change (Equation (4-16)). 

{
𝑊𝑚𝑗𝑖  =  𝑇𝑝𝑚  ×  𝑤𝑚𝑗𝑖  +  𝑇𝑝𝑛  ×  𝑤𝑡𝑗𝑖
𝑊𝑛𝑗𝑖  =  𝑇𝑝𝑛  ×  𝑤𝑛𝑗𝑖  +  𝑇𝑝𝑚  ×  𝑤𝑡𝑗𝑖 

 (𝑗 = 1,2) (4-16) 

where 𝑊𝑚𝑗𝑖  or 𝑊𝑛𝑗𝑖  is the final weight for the ith pixel calculated based on the fine-

resolution image acquired at tm or tn for the jth category. For areas where there is no 

temporal NDVI change (Category 3) between tm and tp, the final weight is the same as the 

weight calculated based on the NDVI change rate (Equation (4-17)). 

{
𝑊𝑚𝑗𝑖  =  𝑤𝑚𝑗𝑖
𝑊𝑛𝑗𝑖  =  𝑤𝑛𝑗𝑖  

 (𝑗 = 3) (4-17) 

4.2.3 Implementation of the STVIFM 

The STVIFM requires two pairs of fine- and coarse-resolution images acquired on the same 

date and one coarse-resolution image on the prediction date. All of the input images need 

to be preprocessed (re-projection, geometric correction, and NDVI calculation). A moving 

window is adopted for implementing the STVIFM. The step of the moving window is one 

fine-resolution pixel and each step calculates the NDVI of the center pixel in the moving 

window. 

The flowchart for the STVIFM algorithm is shown in Figure 4-2. There are four main steps 

for the STVIFM implementation. The first step is to detect NDVI changes according to the 

two input fine-resolution NDVI images and classify the land cover into three categories. 
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The second step is to calculate the correlation coefficient between the coarse-resolution 

images for the whole region and within the moving window, and then the weights. The 

third step is to determine the coefficients a and b through a linear regression between the 

two fine-resolution and coarse-resolution image pairs. The last step is to calculate the final 

weight and the NDVI value of the center pixel on the prediction date for its category. As 

the weight calculations have been introduced in Section 4.2.2, this section mainly illustrates 

the last two steps. 

 

Figure 4-2: Flowchart of the spatio-temporal vegetation index image fusion model 

(STVIFM) algorithm. The steps are shaded by different colors (blue: satellite data 

preprocessing; green: NDVI change detection; orange: weight calculation; purple: 

coefficients determination; yellow: NDVI prediction).   

4.2.3.1 Determination of Coefficients between the Fine- and 
Coarse-Resolution Images 

Due to differences in remote sensor systems, systematic biases exist between different 

sensor imagery. In addition, directional effects and weather conditions can also lead to 

biases between different sensor images on different dates. In this study, the coefficients 
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between the fine-resolution and coarse-resolution images on different dates were acquired 

through regression analyses. For the two pairs of fine-resolution and coarse-resolution 

images, a moving window was used to calculate the mean NDVI of the fine- and coarse-

resolution images within this window, then the linear regression with the mean NDVI 

values was conducted to obtain the coefficients am, bm and an, bn. The window size should 

be the odd number which is near to the integer multiple of the ratio between the coarse 

resolution and fine resolution to accommodate the original coarse-resolution pixel. The 

step of the moving window is the same as the window size (rather than one-pixel step) so 

as to avoid self-correlation with the mean values of the NDVI. For example, if the window 

size is 9 by 9, the step will be 9. It is difficult to determine ap and bp due to the unavailability 

of the fine-resolution image at tp. The coefficients ap and bp were calculated by the temporal 

weighted average of am, an and bm, bn respectively (Equations (4-18) and (4-19)), with the 

assumption that the more similar the two coarse-resolution images, the greater the weight: 

𝑎𝑝  =  𝑇𝑝𝑚  ×  𝑎𝑚  +  𝑇𝑝𝑛  ×  𝑎𝑛 (4-18) 

𝑏𝑝  =  𝑇𝑝𝑚  ×  𝑏𝑚  +  𝑇𝑝𝑛  ×  𝑏𝑛 (4-19) 

4.2.3.2 Local Similarity Weight Calculation and NDVI Prediction for 
the Central Pixel 

There may be local land cover changes caused by harvesting or flooding for heterogeneous 

regions such as croplands with crops growing in different seasons. The correlation 

coefficient of the local area within the moving window (𝑟𝑙) is used to calculate the local 

similarity weight (𝑆𝑙), which is mentioned in Section 4.2.1 for local heterogeneous area, 

whereas the mean absolute difference within the moving window (MAD𝑙) (Equation (4-20)) 

is used to calculate local similarity weight for local homogeneous area (Equation (4-21)).  

MAD𝑙𝑝𝑘  =  
1

𝑁𝑙
∑𝑎𝑏𝑠(NDVI𝑘𝑖

′  −  NDVI𝑝𝑖
′ )

𝑁𝑙

𝑖=1

 (𝑘 = 𝑚, 𝑛) (4-20) 
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{
  
 

  
 𝑆𝑙𝑝𝑘 =

𝑟𝑙𝑝𝑘
2

𝑟𝑙𝑝𝑚2 + 𝑟𝑙𝑝𝑛2
 (𝑘 = 𝑚, 𝑛) ℎ𝑒𝑡𝑒𝑟𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 𝑎𝑟𝑒𝑎

𝑆𝑙𝑝𝑚 =
MAD𝑙𝑝𝑛

MAD𝑙𝑝𝑚 +MAD𝑙𝑝𝑛
 ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 𝑎𝑟𝑒𝑎

𝑆𝑙𝑝𝑛 =
MAD𝑙𝑝𝑚

MAD𝑙𝑝𝑚 +MAD𝑙𝑝𝑛
 ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 𝑎𝑟𝑒𝑎

 (4-21) 

where MAD𝑙pk is the local mean absolute difference between course-resolution image at tk 

(k = m, n) and tp. 𝑁𝑙 is the number of pixels within the local moving window. 𝑆𝑙𝑝𝑘 is the 

local similarity weight between course-resolution image at tk (k = m, n) and tp. If 

MAD𝑙𝑝𝑚 = MAD𝑙𝑝𝑛 = 0, 𝑆𝑙𝑝𝑚 =  𝑆𝑙𝑝𝑛 = 0.5. 

To determine the heterogeneous area and homogeneous area, the standard deviation (SD) 

was calculated for all three coarse-resolution images (Equation (4-22)). If the SD for the 

three images satisfies Equation (4-23), the area within the moving window is determined 

as homogeneous, otherwise heterogeneous. 

SD𝑘  =  √
∑ (NDVIki

′  −  NDVI𝑘
′̅̅ ̅̅ ̅̅ ̅̅ )2

𝑁𝑙
𝑖=1

𝑁𝑙  −  1
 (𝑘 = 𝑚, 𝑛, 𝑝) (4-22) 

SD𝑚 < 0.002 × NDVI𝑚𝑎𝑥𝑚
′  𝑎𝑛𝑑 SD𝑛 < 0.002 × NDVI 𝑚𝑎𝑥𝑛

′  𝑎𝑛𝑑  

SD𝑝 < 0.002 × NDVI𝑚𝑎𝑥𝑝
′  

(4-23) 

where 𝑁𝑙 is the number of pixels in the local moving window, and NDVI 𝑚𝑎𝑥𝑘
′  means the 

maximum NDVI of the whole coarse image acquired on date k (k = m, n, p). NDVI𝑘𝑖
′  and 

NDVI𝑘
′̅̅ ̅̅ ̅̅ ̅̅  represent NDVI of the ith pixel and mean NDVI within the moving window on the 

coarse-resolution image acquired on date k (k = m, n, p) respectively. 

In the moving window, the weight was calculated within each category (Equations (4-16) 

and (4-17)), and the final NDVI for the central pixel on the prediction date can be predicted 

by Equations (4-7) and (4-8) using the pixels which have the same category as the central 

pixel. 
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4.3 Results of Data Fusion 

4.3.1 Test Sites and Data 

Three test sites of distinct geographic locations and climate zones were chosen to test the 

STVIFM algorithm. The first site (42°53′N 81°35′W, 12 km × 12 km) is located in the 

Mixedwood Plains Ecozone in southwestern Ontario, Canada, near the city of London. 

This area is constantly contaminated by cloud cover during the growing season. For 

example, from April to October, about 57% of Landsat-8 images contain cloud cover 

greater than 35%. The dominant crops are winter wheat, corn, and soybean. The winter 

wheat is generally seeded in October in the previous year and harvested in late July, 

whereas the corn and soybean are generally seeded in May and harvested in September or 

October. The second site (37°01′N 99°07′W, 24 km × 24 km) is located near Dodge City 

in Kansas, United States. This study site contains a large area of grassland as well as crops 

such as winter wheat. This area receives around 532 mm of rainfall with annual average 

temperature of 13.3 °C, and altitude between 700 and 800 m above sea level. The third site 

(44°13′N 87°53′E, 45 km × 45 km) is situated in the south of the Junggar Basin in Xinjiang, 

China, bordered by the Gurbantunggut Desert in the north. The dominant crop types in this 

area are cotton, corn, and winter wheat. The cotton and corn are planted in April and 

harvested in September, whereas wheat is generally seeded in October in the previous year 

and harvested in May. This area receives scarce rainfall and has long and cold winters with 

short and hot summer with sharp contrast between daytime and night temperature (Zhang, 

Liao, Li, & Sun, 2013). 

Landsat-8 OLI data and Moderate Resolution Imaging Spectroradiometer (MODIS) 

surface reflectance products (MOD09GQ and MOD09Q1) were obtained. The Landsat-8 

images, with 9 spectral bands, 16-day temporal frequency, and 30 m spatial resolution, 

were downloaded from the United States Geological Survey (USGS) 

(http://landsat.usgs.gov/landsat8.php). MOD09GQ is a daily reflectance product and 

MOD09Q1 is a level-3 eight-day composite product of MOD09GQ, which provides 

surface reflectance of Band 1 and Band 2 at 250 m resolution. Each MOD09Q1 pixel 

represents the best observation during an eight-day period (Vermote, Kotchenova, & Ray, 

2011). The eight-day MODIS reflectance products (MOD09Q1) were downloaded from 

javascript:void(0);
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the National Aeronautics and Space Administration (NASA) Reverb portal 

(http://reverb.echo.nasa.gov/reverb/) for the Ontario site due to the frequent cloud 

contamination of the daily reflectance products. The daily MODIS reflectance products 

MOD09GQ were downloaded for Kansas and Xinjiang sites. The MODIS data were re-

projected and mosaicked using the MODIS re-projection tool (MRT). They were then 

resampled to 30 m resolution using the nearest neighbor method and geo-rectified to the 

corresponding Landsat images. To avoid the influence of clouds, the MODIS and Landsat-

8 images were then clipped to the areas where there was no cloud presence. Finally, the 

NDVI was calculated.  

The dates of cloud-free Landsat-8 OLI and the corresponding MODIS images acquired 

near the dates of the Landsat acquisitions are shown in Table 4-1. The two pairs of MODIS 

and Landsat-8 NDVI images acquired before and after the prediction date, and one MODIS 

NDVI image acquired on the prediction date were used to predict the synthetic Landsat-

like NDVI image. The Landsat-8 images acquired on the prediction date at each study site 

were used to validate the synthetic Landsat-like NDVI images. 

Table 4-1: Dates of MODIS and Landsat-8 OLI images. 

Figure 4-3–Figure 4-5 show the NDVI images obtained on three dates over three study 

sites. The sub-images (30 m resolution, 400 × 400 pixels) at the upper rows are Landsat-8 

NDVI images (fine-resolution, 30 m) and lower rows are MODIS NDVI images (coarse-

resolution, 250 m resampled to 30 m). 

 
Composite Period (Date) of Obtained MODIS 

Images 

Date of Obtained Landsat OLI 

Images 

Ontario, 

Canada 

15 April 2014–22 April 2014 (DOY: 105–112) 20 April 2014 (DOY: 110) 

1 May 2014–8 May 2014 (DOY: 121–128) 
6 May 2014 (DOY: 126) 

(validation) 

2 June 2014–9 June 2014 (DOY: 153–160) 7 June 2014 (DOY: 158) 

Kansas, U.S. 

3 May 2014 (DOY: 123) 3 May 2014 (DOY: 123) 

19 May 2014 (DOY: 139) 
19 May 2014 (DOY: 139) 

(validation) 

20 June 2014 (DOY: 171) 20 June 2014 (DOY: 171) 

Xinjiang, 

China 

27 May 2014 (DOY: 147) 27 May 2014 (DOY: 147) 

12 June 2014 (DOY: 163) 
12 June 2014 (DOY: 163) 

(validation) 

28 June 2014 (DOY: 179) 28 June 2014 (DOY: 179) 
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Figure 4-3: Landsat (upper row); and MODIS (lower row) NDVI images from three 

dates in 2014 over a cropland area in Ontario, Canada. 
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Figure 4-4: Landsat (upper row) and MODIS (lower row) NDVI images from three 

dates in 2014 over a mixed crop and grassland area in Kansas, U.S. 
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Figure 4-5: Landsat (upper row) and MODIS (lower row) NDVI images from three 

dates in 2014 over a cropland area in Xinjiang, China. 

To assess the application of the proposed algorithm on time series data, a total of 18 cloud-

free MODIS MOD09Q1 data and six Landsat-8 OLI data were acquired over London, 

Ontario throughout the growing season in 2014 (Figure 4-6). Figure 4-7 shows the six 

cloud-free NDVI images and corresponding MODIS NDVI images. The sub-images at the 

upper row are Landsat-8 NDVI images (fine-resolution, 30 m). The sub-images at the lower 

row are the eight-day MODIS NDVI images. From 6 May to 7 June, as the winter wheat 

grew, the NDVI increased greatly. On 10 August, the winter wheat had been harvested, 

and most of the land was covered by corn and soybean. Thus, there were great land cover 

changes from 7 June to 10 August. From 10 August to 26 August, a few winter wheat fields 

were covered by alfalfa, and the NDVI increased again. On 27 September, most corn and 

soybean were senescent and the NDVI decreased. 
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Figure 4-6: The dates for the available cloud free Landsat imagery and the MODIS 

time series data for the Ontario site. 

 

Figure 4-7: The Landsat and MODIS NDVI image pairs acquired throughout the 

growing season in Ontario, Canada. 

4.3.2 Selection of Window Size for Deriving the Coefficients 

Linear regression analysis was conducted between the fine- and coarse-resolution image 

pairs (Section 4.2.3.1) for different study sites using different sizes of moving window. The 

variations of the coefficient of determination (R2), a and b with the increasing window size 

are shown in Figure 4-8. It was illustrated that when 9 (the approximate size of one course-

resolution pixel) was adopted as the window size, the correlation was much lower than for 
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other choices. The reason for this is likely that there are errors introduced by rounding and 

the geometric correction process between fine-resolution and coarse-resolution images. In 

this way, the fine-resolution pixels may not be the pixels that are supposed to be within the 

original coarse-resolution pixel. With the increase of window size, the R2 values increased 

for most image pairs and plateaued when the window size is 17, which contains 4 MODIS 

pixels. This should be impacted by the MODIS point spread function (SPF) (Amorós-

López et al., 2013). The value of a ranges from 0.9 to 1.5 for different study sites, and b 

ranges from −0.15 to 0.05 for different study sites. Even for the same study site, a and b 

vary on different dates. With the increase of the window size, the variations of a and b are 

slight and smooth. It can be believed that both a and b are not sensitive to the change of 

window size. However, with a larger window, the increase rate of R2 becomes smaller, the 

sample points become less, and the significance of the correlation will be reduced. 

Accordingly, a 33 × 33 moving window (4 × 4 coarse-resolution pixels) was used to obtain 

the coefficients. 

 

Figure 4-8: The variations of: R2 (a); a (b); and b (c) with the increasing window size 

for fine- and coarse-resolution NDVI pairs over different study sites. 

Besides the proposed method, the STARFM, ESTARFM and FSDAF methods were also 

used for comparison purposes. To select a reasonable window size for the algorithm 

implementation, the data fusion was conducted with different window sizes based on the 

STARFM, ESTARFM, FSDAF and STVIFM methods. Take the Ontario site as an 

example (Table 4-2). For the STVIFM, the accuracy is the highest when the window size 

is 25, and the computation time increases with the increase of window size. For the 

ESTARFM, the accuracy is the highest when the window size is 33. For the STARFM and 

the FSDAF, the larger window size gives higher accuracy (higher R2 and lower RMSE), 
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but the increase of accuracy is very small. Therefore, we chose 33 as the window size (the 

same as the window size used in coefficients calculation) for the fusion models, after 

analyzing the R2, RMSE, and computational efficiency of these algorithms using different 

window sizes. 

Table 4-2: Correlation analysis between Landsat-8 NDVI image and correspondent 

synthetic NDVI image based on different algorithm using different window size at 

the Ontario site. 

p < 0.01. 

4.3.3 Algorithm Tests in Regions with Different Landscapes 

As the FSDAF only needs one pair of fine- and coarse-resolution images, the pair of images 

acquired on the date before and after the prediction date were used, respectively, for all 

three sites, and FSDAF_m and FSDAF_n were used to represent the two predictions 

hereafter. The performances of the four algorithms were assessed by visual comparison 

and correlation analyses. The coefficient of determination, Mean Absolute Difference 

(MAD) and Mean Difference (MD) between the observed NDVI and predicted NDVI 

images were also calculated to assess the accuracies of the four algorithms. 

Figure 4-9 to Figure 4-14 show the original Landsat-8 OLI NDVI image and the synthetic 

NDVI images predicted by the four algorithms, and the scatter plots between the synthetic 

and the original NDVI values of Landsat OLI image acquired at tp at the three study sites. 

Table 4-3 shows the R2, RMSE, MAD, MD and computation time of the four algorithms 

at different test sites. The performance of the STVIFM is better than the STARFM and 

ESTARFM methods, and similar with the best prediction of the FSDAF at all the three 

study sites according to R2, RMSE, and MAD. In addition, the STVIFM is more 

Window 

Size 

STARFM ESTARFM FSDAF STVIFM 

R2 
RMS

E 

Time 

(s) 
R2 

RMS

E 

Time 

(s) 
R2 

RMS

E 

Time 

(s) 
R2 

RMS

E 

Time 

(s) 

9 0.668 0.099 2.08 0.673 0.120 34.67 0.782 0.081 52.04 0.739 0.099 13.6 

17 0.661 0.098 4.07 0.704 0.116 40.57 0.804 0.077 55.56 0.824 0.071 20.69 

25 0.659 0.096 7.21 0.717 0.113 46.71 0.816 0.076 58.68 0.83 0.070 31.5 

33 0.659 0.096 11.52 0.723 0.112 52.2 0.824 0.075 68.6 0.826 0.071 46.4 

41 0.659 0.095 16.31 0.722 0.112 62.01 0.828 0.075 67.45 0.818 0.074 64.18 

49 0.659 0.094 22.8 0.721 0.113 73.59 0.832 0.074 78.7 0.811 0.076 87.08 



 

99 

 

computationally efficient than the ESTARFM and FSDAF when a window of 33 × 33 

pixels was adopted. 

The Ontario site has many small-area croplands (the width of the fields is less than 250 m), 

which resulted in many mixed pixels in the coarse-resolution image. Figure 4-10 shows 

that the predicted NDVI images generated by the FSDAF_m and STVIFM are more similar 

to the original image. However, the small-area land cover changes shown in the red boxes 

in Figure 4-10 were not accurately predicted by the FSDAF. Actually, the predicted NDVI 

image obtained by the FSDAF is more similar to the input fine-resolution image. As there 

are less land cover changes between 20 April and 6 May than between 6 May and 7 June 

at this site, the predicted result using the FSDAF (FSDAF_m) is more similar to the 

observed NDVI. The STARFM, ESTARFM, and STVIFM are all able to predict the land 

cover change by making use of two image pairs, whereas the ESTARFM overestimated 

the NDVI. 
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Figure 4-9: Comparison of the (a) observed Landsat image; and the synthetic 

images based on: (b) spatial and temporal adaptive reflectance fusion model 

(STARFM); (c) enhanced spatial and temporal adaptive reflectance fusion model 

(ESTARFM); (d, e)flexible spatiotemporal data fusion (FSDAF); and (f) spatio-

temporal vegetation index image fusion model (STVIFM), in Ontario, Canada. Red 

boxes show small-area land cover changes occurred on Landsat-8 images acquired 

at tp (6 May 2014) and tn (7 June 2014). 
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Figure 4-10: Scatter plots of the observed and synthetic Landsat NDVI produced 

by: (a) STARFM; (b) ESTARFM; (c) FSDAF_m; (d) FSDAF_n; and (e) STVIFM in 

Ontario, Canada. 
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Figure 4-11: Comparison of the (a) observed Landsat image; and the synthetic 

images based on: (b) STARFM; (c) ESTARFM; (d, e) FSDAF; and (f) STVIFM, in 

Kansas, U.S. Red boxes show that the harvesting of crops appeared in Landsat-8 

images acquired at tn (20 June 2014) are accurately predicted in the synthetic NDVI 

image based on the STVIFM and ESTARFM. 
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Figure 4-12: Scatter plots of observed and synthetic Landsat NDVI by: (a) 

STARFM; (b) ESTARFM; (c) FSDAF_m; (d) FSDAF_n; and (e) STVIFM in 

Kansas, U.S. 
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Figure 4-13: Comparison of the (a) observed Landsat image; and the synthetic 

images based on: (b) STARFM; (c) ESTARFM; (d) FSDAF_m; (e) FSDAF_n; and 

(f) STVIFM  in Xinjiang, China. (A–F) Zoom-in images shown in the black boxes on 

the original NDVI and the all the results generated by the four methods. Red boxes 

show the senescent fields. 
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Figure 4-14: Scatter plot of observed and synthetic Landsat NDVI by: (a) STARFM; 

(b) ESTARFM; (c) FSDAF_m; (d) FSDAF_n; and (e) STVIFM in Xinjiang, China. 
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Table 4-3: Statistical parameters of the correlation analysis between synthetic and 

original Landsat NDVI image. 

p < 0.01. 

As indicated by the scatter plots shown in Figure 4-11 and the assessment indices shown 

in Table 4-3, the accuracy of the predicted NDVI image using the STVIFM is the best (R2: 

0.826, RMSE: 0.071) and slightly better than the accuracy of the predicted NDVI image 

using FSDAF_m (R2: 0.824, RMSE: 0.075). The STARFM performed better than the 

ESTARFM and FSDAF_n in terms of the RMSE and MAD. Most NDVI values were 

overestimated by the ESTARFM and FSDAF_n. From the perspective of computational 

efficiency, the STVIFM consumed less time than the ESTARFM and the FSDAF. For the 

sub-image of 400 × 400 pixels, the ESTARFM and FSDAF consumed 52 s and 69 s, 

respectively, and the STVIFM consumed about 46 s. 

The Kansas site is mostly covered by grassland and it is more homogeneous than the other 

two sites. The overall accuracy using the proposed STVIFM method (R2: 0.711, RMSE: 

0.076) is the best when compared with the STARFM and ESTARFM. The RMSE and 

MAD of the result produced by the STVIFM are comparable with that of the result 

produced by the FSDAF_m, but the R2 of the former result is higher than the later one. 

Figure 4-12 reveals that the ESTARFM, FSDAF_m, and STVIFM performed better in the 

cropland area shown in the red box, while all the methods seem to overestimate the NDVI 

in the grassland area. The RMSEs for these three methods are similar (RMSE: 0.077 vs. 

Study 

Site 
Image Size Methods R2 RMSE MAD MD Time 

Ontario, 

Canada 

400 × 400  

(12 km × 12 

km) 

STARFM 0.659 0.096 0.066 0.020 12 s 

ESTARFM 0.723 0.112 0.075 0.052 52 s 

FSDAF_m 0.824 0.075 0.061 0.026 69 s 

FSDAF_n 0.594 0.151 0.109 0.072 65 s 

STVIFM 0.826 0.071 0.052 0.026 46 s 

Kansas, 

United 

States 

800 × 800  

(24 km × 24 

km) 

STARFM 0.343 0.113 0.073 0.005 40 s 

ESTARFM 0.67 0.077 0.057 0.031 3 min 25 s 

FSDAF_m 0.69 0.075 0.056 0.032 9 min 21 s 

FSDAF_n 0.271 0.133 0.102 0.059 9 min 

STVIFM 0.711 0.076 0.055 0.028 3 min 9 s 

Xinjiang, 

China 

1500 × 1500  

(45 km × 45 

km) 

STARFM 0.656 0.115 0.072 −0.02 2 min 42 s 

ESTARFM 0.82 0.082 0.048 0 12 min 29 s 

FSDAF_m 0.812 0.085 0.060 0.010 41 min 57 s 

FSDAF_n 0.593 0.128 0.095 0.001 40 min 16 s 

STVIFM 0.891 0.065 0.045 0.006 11 min 15 s 
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0.075 vs. 0.076) but the R2 for the STVIFM is the highest (R2: 0.711). As the land cover 

for most areas barely changed from the date of the first image pair (3 May 2014) to the 

prediction date (19 May 2014), the NDVI predicted by the FSDAF_m shows higher 

accuracy than the NDVI predicted by the FSDAF_n. In terms of computational efficiency, 

the ESTARFM and FSDAF consumed 3 min 29 s and 9 min, respectively, whereas the 

STVIFM consumed 3 min 9 s for an image of 800 × 800 pixels. 

At the Xinjiang site, the predicted NDVI image produced by the STVIFM shows good 

agreement with the observed NDVI (R2: 0.891, RMSE: 0.065). Most of the fields were in 

the growing stage during this period and a few fields were in the senescent stage. The 

accuracy of the synthetic NDVI images produced by the ESTARFM and FSDAF_m are 

comparable but lower than that of the STVIFM (R2: 0.820 vs. 0.812, RMSE: 0.082 vs. 

0.085). As shown in the zoom-in area in the black box, the predicted NDVI image obtained 

by the STARFM shows “blurred” field boundaries, and the overall accuracy is much lower 

than the ESTARFM. The temporal NDVI changes of the senescent fields shown in the red 

box in Figure 4-14 were more accurately captured using the STVIFM when compared with 

the STARFM and ESTARFM. For the FSDAF, the predicted NDVI image is more accurate 

using the image pair acquired on 27 May than using the image pair acquired on 28 June. 

Even though the time intervals between the prediction date (12 June 2014) and dates of the 

two base image pairs were the same, the land cover changed significantly from 12 June to 

28 June. Therefore, the NDVI prediction using the image pair acquired on 27 May is more 

accurate than using the image pair acquired on 28 June. In terms of the computational 

efficiency, the ESTARFM and FSDAF consumed about 12 min and 40 min respectively 

for an image of 1500 × 1500 pixels, whereas the STVIFM consumed about 11 min. 

When we compare the accuracies for the three study sites, it is obvious that both the Ontario 

site and Xinjiang site are more heterogeneous than the Kansas site and there are many crop 

fields with small areas. This is possibly the reason that the STARFM and ESTARFM 

performed better at Kansas site than Ontario site and Xinjiang site in terms of the RMSE 

and MAD. However, the STVIFM performed better for Ontario site and Xinjiang site than 

Kansas site. Therefore, it can be concluded that the STVIFM performs better than the 
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STARFM and ESTARFM not only in homogeneous regions but also in heterogeneous 

regions. 

4.3.4 Tests with Time Series Data 

In this test, all six available Landsat NDVI images and the corresponding MODIS NDVI 

images acquired throughout the whole growing season over Ontario site were tested using 

the four methods for the four predictions shown in Table 4-4. For the FSDAF, both the 

image pairs before and after the prediction date were used to implement this method. (a1)–

(a6) and (b1)–(b6) are the images shown in Figure 4-7. 

Table 4-4: Images used for the four methods in the four experiments. 

Prediction Date (DOY) Input Images Images for Validation 

121 

FSDAF_m: b1, a1, b2 

a2 

FSDAF_n: b3, a3, b2 

STARFM: b1, a1, b3, a3, b2 

ESTARFM: b1, a1, b3, a3, b2 

STVIFM: b1, a1, b3, a3, b2 

158 

FSDAF_m: b2, a2, b3 

a3 

FSDAF_n: b4, a4, b3 

STARFM: b2, a3, b4, a4, b3 

ESTARFM: b2, a3, b4, a4, b3 

STVIFM: b2, a3, b4, a4, b3 

222 

FSDAF_m: b3, a3, b4 

a4 

FSDAF_n: b5, a5, b4 

STARFM: b3, a3, b5, a5, b4 

ESTARFM: b3, a3, b5, a5, b4 

STVIFM: b3, a3, b5, a5, b4 

238 

FSDAF_m: b4, a4, b5 

a5 

FSDAF_n: b6, a6, b5 

STARFM: a4, b4, a6, b6, a5 

ESTARFM: a4, b4, a6, b6, a5 

STVIFM: a4, b4, a6, b6, a5 

The results were validated with the original Landsat NDVI images, and the assessment 

indices including R2, RMSE, MAD, and AD for different methods were shown in Figure 

4-15. For the first prediction, the two Landsat images were acquired on 20 April and 7 June. 

The main crop was winter wheat, which was growing steadily during this period. There 

were some small-area land cover changes in images acquired on 6 May and 7 June (Figure 

4-7 (a3)). As presented in Section 4.3.3 (Ontario site), the STVIFM performed the best 

when compared with the other three methods during this period. 
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Figure 4-15: The accuracy of predicted NDVI obtained by different methods on four 

different dates in Ontario site during the growing season: (a) R2; (b) RMSE; (c) 

MAD; and (d) MD. 

For the second prediction, the two Landsat images were acquired on 6 May and 10 August 

and the prediction date was 7 June. From 6 May to 7 June, corn and soybeans were planted, 

then wheat was harvested and alfalfa was planted in the harvested wheat fields from 7 June 

to 10 August. The STVIFM performed better than the STARFM and ESTAFM (RMSE: 

0.184 vs. 0.195 vs. 187). The predicted NDVI image generated by the FSDAF using the 

image pair acquired on 6 May shows much higher accuracy than using the image acquired 

on 10 August and the predicted NDVI generated by the other two methods. 
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For the third prediction, the two Landsat images were acquired on 6 June and 26 August 

and the prediction date was 10 August. As mentioned above, the wheat fields changed 

greatly from 6 June to 10 August, whereas the land cover seldom changed from 10 August 

to 26 August. The correlation of determination of the predicted NDVI using the STVIFM 

is higher than the STARFM and ESTARFM (R2: 0.579 vs. 0.550 vs. 0.552), whereas the 

RMSE is higher than the STARFM and ESTARFM (RMSE: 0.158 vs. 0.151 vs. 0.156). 

This may be because of the large land cover changes for wheat fields from 6 June to 26 

August, and the NDVI for wheat field is near the valley of the NDVI profile on 10 August. 

As mentioned earlier, larger inaccuracy would be produced by the STVIFM if the peak or 

valley in the NDVI profile between the two dates of acquired Landsat images needs to be 

predicted, and the NDVI change is not captured by the NDVI difference of the two Landsat 

images. This inaccuracy can be reduced if more fine-resolution images can be acquired 

during this period. The prediction of the FSDAF using the image pair acquired on 26 

August shows a higher accuracy than using the image pair acquired on the 6 June. 

For the fourth prediction, the two Landsat images were acquired on 10 August and 27 

September, and the prediction date was 26 August. Corn and soybeans were senescent 

during this period. The STVIFM performed better than the STARFM and ESTARFM 

(RMSE: 0.116 vs. 0.133 vs. 0.137). The accuracy of the image predicted by the FSDAF 

using image acquired on 27 September is higher than the accuracy of the NDVI predicted 

by the FSDAF using image acquired on 10 August in terms of the RMSE and MAD. 

In addition, a total of 12 Landsat-like NDVI images were predicted using the six acquired 

Landsat and MODIS image pairs. By using more Landsat images, the prediction accuracy 

would be improved. However, there was no more available Landsat image to assess the 

prediction results. The NDVI time series were assessed by analyzing the temporal 

variations over the cornfield and winter wheat field and compare with the phenology 

information and photos collected in the field work. For the STARFM, ESTARFM and 

STVIFM, two temporally closest Landsat and MODIS NDVI image pairs and one MODIS 

NDVI image acquired between the two dates were used to predict the Landsat-like NDVI 

image each time. For the FSDAF, the MODIS NDVI image on the prediction date and one 



 

111 

 

Landsat and MODIS NDVI image pair acquired closer to the prediction date was used to 

predict the Landsat-like NDVI image each time. 

Figure 4-16 shows the temporal profiles of the average NDVI of an area (360 m × 360 m) 

from a healthy cornfield and an area (360 m × 360 m) from a healthy winter wheat field 

between DOY 113 and DOY 249, which were generated by the STARFM, ESTARFM, 

FSDAF, and the STVIFM. These two fields were surrounded by different crop types; 

therefore, the MODIS pixels contain mixed Landsat pixels. The average NDVI extracted 

from the original MODIS NDVI time series images and five Landsat-8 NDVI images are 

also presented as comparisons. 

 

Figure 4-16: Time series of the average NDVI of: (a) the cornfield; and (b) the wheat 

field, generated by the STARFM, ESTARFM, FSDAF, and STVIFM algorithms. 

The predictions shown in the black box (DOY 185) present large difference between 

the FSDAF and STVIFM. The pictures were collected two days before that date 

(DOY 183). 

The corn and winter wheat show two distinct temporal patterns due to the difference of 

their growing seasons. The corn was generally seeded in May and harvested in October. 

The winter wheat was generally seeded in October of the previous year, started to ripen 

from the beginning of July and was harvested by the end of July, then alfalfa was planted. 

Before the emergence of corn, the MODIS NDVI shows higher and fluctuated values in 

the cornfield due to the influence of neighboring wheat fields. All the methods can generate 
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reasonable predictions during this period. Between 7 June and 10 August, only two Landsat 

images were acquired, and the predictions of the STVIFM and FSDAF show large 

difference on 4 July (DOY 185). As the image pair closer to the prediction date was always 

used, the profile generated by the FSDAF shows peak and valley, but large inaccuracy was 

still produced on some dates when the land cover changed greatly. During this period, corn 

was in its growing stage whereas winter wheat was harvested and alfalfa was planted. From 

the general survey pictures collected in 2014, corn had reached to the stem elongation stage 

(BBCH-scale 33) and most fields were covered by corn leaves, whereas the color of wheat 

started to turn yellow (BBCH-scale 79). Therefore, the STVIFM seems to generate more 

reasonable temporal profiles for corn and winter wheat. The ESTARFM also shows 

reasonable temporal profiles for the two types of crops, however, the prediction of the land 

cover change for the wheat field is less accurate than the prediction produced by the 

STVIFM when compared with the nearby Landsat NDVI values. 

4.4 Discussion 

4.4.1 Advantages of the STVIFM 

The algorithm tests at three study sites illustrated that the STVIFM algorithm performed 

better than the STARFM, ESTARFM and FSDAF at the three study sites. According to the 

results of the above tests, the performance of the FSDAF greatly depends on the degree of 

land cover change between the two dates of the input data as it uses only one pair of fine- 

and coarse-resolution images as input, which agrees with the findings stated in (Liao et al., 

2016). It performs better than other methods which use one image pair and it is flexible 

when only one fine-resolution image can be acquired. However, it is less robust than 

methods using two fine-resolution images as inputs in the land cover change prediction. 

Even though the FSDAF can predict NDVI with higher accuracy when the time interval 

between the two dates of the input images are close enough or land covers are similar 

enough, the STVIFM still performs better than the FSDAF during the growing stage or 

senescent stage. In addition, the STVIFM is more computationally efficient and performs 

about three times faster than the FSDAF at Kansas site and Xinjiang site, where the sizes 

are 24 km × 24 km and 45 km × 45 km, respectively. 
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Since the inputs of the STVIFM are same as the inputs of the STARFM and ESTARFM, 

the theoretical comparisons are made between the three methods. Compared with the 

STARFM and ESTARFM algorithm, the STVIFM has made several improvements. Firstly, 

the STVIFM builds a relationship between the mean NDVI change of fine-resolution pixels 

and mean NDVI change of coarse-resolution pixels within a moving window. It attempts 

to detect the mean fine-resolution NDVI change calculated from the coarse-resolution 

NDVI images and to seek each fine-resolution pixel’s contribution to the total NDVI 

change by calculating the weight of each fine-resolution pixel. In contrast, the STARFM 

and ESTARFM build a relationship between the NDVI change of single fine-resolution 

pixels and single coarse-resolution pixels, therefore accurate geometric correction between 

the fine- and coarse-resolution images is required in order to achieve more accurate results 

(Chen et al., 2015). 

Secondly, the ESTARFM assumes that the relationships between the fine-resolution and 

coarse-resolution image pairs are the same on all dates. However, due to the difference of 

weather conditions, the relationship between the two images may be different on different 

dates. The STVIFM attempts to obtain the coefficients between the fine-resolution and 

coarse-resolution image pairs on different dates using linear regression analyses. However, 

it is difficult to obtain the coefficients between the images on the prediction date, due to 

the unavailability of the fine-resolution image. The STVIFM adopts the weights calculated 

from the correlation coefficients between the coarse-resolution images to obtain the 

coefficients between the fine- and coarse-resolution images on the prediction date. 

Thirdly, each of the STVIFM, STARFM and ESTARFM applied a weighting system to 

calculate the NDVI of the central pixel, but the meanings of the weighting system for 

STVIFM and the weighting system for STARFM and ESTARFM are different. The weight 

in the STARFM or ESTARFM means the similarity between the central pixel and the 

surrounding similar pixels within the moving window, whereas the weight in the STVIFM 

means the variation in contributions of fine-resolution pixels to the total NDVI change 

within the moving window. The STVIFM considers the change rate variation at both spatial 

scale and temporal scale, which is more reasonable for non-evergreen vegetation. It 

attempts to calculate the spatial variation of NDVI change (spatial weight) of each fine-
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resolution pixel at any prediction date by incorporating the weights calculated based on 

one base fine-resolution image and the temporal NDVI change of the two fine-resolution 

images. These two elements are incorporated according to the land cover similarity 

between the prediction date and the two base dates. However, the ESTARFM assumes that 

the change rate is stable during a short period. This assumption is reasonable if the 

vegetation is evergreen or if the period between the two input image pairs is short enough 

(e.g., one day), but it would be unreasonable if the period is longer (e.g., more than 10 days) 

(Zhu et al., 2010). 

Lastly, the two predictions obtained from the two base dates are combined using a temporal 

weight for the ESTARFM and a similarity weight for the STVIFM. The ESTARFM 

calculated the temporal weight using the mean absolute difference between two coarse-

resolution pixels within the moving window (Zhu et al., 2010). However, this is not the 

best selection to determine the land cover similarity in heterogeneous region. For instance, 

the mean absolute difference may be the same for area where has large land cover change 

(NDVI decrease mixed with NDVI increase), and area where has the same land cover but 

with NDVI decrease or increase. Therefore, the STVIFM adopts the correlation of 

determination for heterogeneous areas and the mean absolute difference for homogeneous 

areas to calculate the similarity weight. 

Due to the advantages mentioned above, the STVIFM can make more accurate NDVI 

predictions in heterogeneous regions than the STARFM and ESTARFM when the land 

cover or NDVI changes were captured by the two pairs of fine- and coarse-resolution 

images. The accuracy improvements of the STVIFM are more obvious for Ontario site and 

Xinjiang site, which are characterized by heterogeneous cropland areas. Accordingly, the 

STVIFM can generate more reasonable NDVI time series for winter wheat and corn, which 

have different growing seasons. 

4.4.2 Limitations and Uncertainties of the STVIFM 

In addition to the advantages mentioned above, it is worth noting that the STVIFM has its 

limitations. The following three aspects are the theoretical limitations of the STVIFM 

algorithm. Firstly, the STVIFM algorithm assumes that the NDVI is spatially additive. This 
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linear assumption for the NDVI may lead to minor inaccuracies since the NDVI is not a 

linear combination of reflectance. Secondly, the relationship between the fine-resolution 

and coarse-resolution images acquired at tp is calculated from the relationship between the 

two input image pairs. The result obtained in this way may be slightly different from the 

real relationship. Additionally, the STVIFM adopts the same coefficients for the whole 

image, but the coefficients may vary at different locations. More efforts should be made in 

further work to obtain the coefficients using a more accurate way. 

There are some practical limitations with the STVIFM. Firstly, the small-area (width or 

length is less than one coarse-resolution pixel) abrupt disturbances that occurred between 

tm and tp or between tp and tn, may not be accurately detected because the influence of other 

land covers in one coarse-resolution pixel. Secondly, if the dates tm and tn are in the growing 

and senescent period of the vegetation, respectively, and the NDVI change at tp is not 

captured by the images acquired at tm and tn, the performance of the STVIFM is slightly 

worse than the other methods since the NDVI change from tm to tn cannot reflect the NDVI 

change from tm to tp. In this case, more frequent high spatial resolution images that can 

cover the important vegetation phenology will be helpful. Another possible way to improve 

the prediction accuracy is to integrate the fusion model with a vegetation growth model for 

different types of vegetation. 

4.4.3 Applications of the STVIFM 

The STVIFM uses two pairs of Landsat-8 OLI and MODIS images acquired before and 

after the prediction date and one coarse-resolution image on the prediction date as inputs, 

to predict the fine-resolution NDVI image on the prediction date. This algorithm can be 

applied to regions with different landscapes such as grassland, forest and cropland areas. It 

can also be applied to other vegetation indices, but the thresholds may need to be adjusted 

accordingly. Besides the Landsat-8 OLI and MODIS data, other high spatial resolution data 

such as the SPOT, RapidEye, Sentinel-2, and high temporal frequency data such as 

AVHRR, MERIS can also be used. There are four parameters that could be set in the 

STVIFM, the window size for coefficients deriving and the window size for STVIFM 

implementation, the NDVI value for the maximum change rate of vegetation and the 

variance of the change rate index. The window size should be the odd rounding value of 



 

116 

 

the integer multiple of the resolution ratio between the coarse- and fine-resolution images. 

The suggested window size for coefficients deriving and algorithm implementation is 25 

or 33 for Landsat and MODIS data. However, for images with different spatial scales, the 

window size may need to be adjusted. Since the theoretical NDVI values for vegetation 

pixels range from 0 to 1, the median value 0.5 is suggested as the value of d, but the value 

can be adjusted according to the actual NDVI range of vegetation for special vegetation 

cover types. The suggested value for 𝜎2 is 0.1–0.2 to obtain the change rate index with a 

dynamic range from 0 to 1. For the NDVI time series generation, different spatio-temporal 

data fusion methods may need to be incorporated to improve accuracy. 

4.5 Conclusions 

In this study, a spatio-temporal vegetation index image fusion model (STVIFM) was 

developed to fuse high spatial resolution and high temporal frequency NDVI images. The 

STVIFM algorithm considers the differences between fine-resolution and coarse-

resolution pixel values on different dates. It also considers the variations of change rate at 

the spatial scale and temporal scale by using a temporal weight calculated from the 

correlation coefficients between two temporally adjacent coarse-resolution images. The 

STVIFM outperforms in NDVI prediction compared to the STARFM and ESTARFM 

when the land cover or NDVI changes are captured by two pairs of fine- and coarse-

resolution images. For the results predicted by STVIFM, the R2 varied between 0.711 and 

0.891 and the RMSE varied between 0.065 and 0.76 for three study sites with different 

landscapes, which shows a higher NDVI prediction accuracy than the STARFM and 

ESTARFM. The STVIFM is more robust than the FSDAF when there are large land cover 

changes between the prediction date and the date of the image pairs. In addition, the 

STVIFM is more computationally efficient than the FSDAF. The STVIFM enhances the 

capability for generating both high spatial resolution and high temporal frequency NDVI 

images in heterogeneous regions. More efforts are needed in the future for the calculation 

of coefficients between different sensor images obtained under different weather 

conditions and geographic locations, and for the prediction of land cover changes that are 

not captured in the two fine-resolution images. 
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Chapter 5  

5 Phenology, Biomass and Yield Estimation for Corn and 
Soybean Using Spatio-Temporal Fusion of Landsat-8 
and MODIS Data4 

5.1 Introduction 

To ensure food security for the growing world population, crop growth needs to be 

monitored and crop production needs to be estimated. The phenological information of a 

crop is an indicator to understand agricultural response to environment conditions and 

essential to estimate crop production (Sakamoto, 2010). Crop production is also a key 

indicator to understand the seasonal ecosystem carbon dioxide exchange and the 

contributions of agriculture to environmental change (Marshall & Thenkabail 2015; 

Paruelo et al. 2000).  

 Crop production can be estimated using empirical models, process-based models or semi-

empirical models. Traditionally, empirical models have been adopted for crop production 

estimation by building relationships between the remotely sensed vegetation index and in 

situ measurements. However, they may be only applicable to specific crop growth stages 

or specific regions (Cheng, Meng, & Wang, 2016) and the accuracy of this method varies 

with the heterogeneity of environmental conditions (Kuwata & Shibasaki, 2016). Process-

based models, such as the AquaCrop (Steduto, Hsiao, Raes, & Fereres, 2009), CERES-

Maize (Dyke, Kiniry, & Jones, 1986), STICS (Brisson et al., 2003), and WOFOST (van 

Dipen et al. 1989) have been developed to simulate crop production. These models simulate 

the key physical and physiological processes of the plant-soil-atmosphere system to obtain 

daily dry above-ground biomass, defined as the dry weight of the total above-ground matter 
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spatio-temporal fusion of Landsat-8 and MODIS data. International Journal of Applied Earth Observation 
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of crops (Marshall & Thenkabail, 2015; Sellers, 1985), and then calculate crop yield using 

a harvest index (HI). But these process-based models need a large set of agro-environment 

variables, which may not be all available or difficult to obtain over large areas (Battude et 

al., 2016; Betbeder, Fieuzal, & Baup, 2016; Claverie et al., 2012).  

Simpler process models based on the light use efficiency (LUE) theory (Monteith, 1972) 

have been widely used for regional biomass estimation by coupling with remote sensing 

data. The LUE refers to the efficiency of converting the Absorbed Photosynthetic Active 

Radiation (APAR) into aboveground dry matter in plants. In this model, the daily 

photosynthetic active radiation (PAR), fraction of PAR absorbed by green canopy (fAPAR), 

and LUE of the crops are the input parameters. The daily fAPAR can be obtained from 

daily optical remote sensing data or by fitting a crop growth model using in situ or satellite 

observations acquired at key stages of crops during the growing season (Dong et al., 2017;  

Liu et al., 2010). Generally, the LUE is a function of the maximum LUE (LUEmax) limited 

by the temperature stress or water stress (Monteith, 1977; Potter et al., 1993). However, 

temperature or water stress alone may not always elucidate the variations in LUE for 

croplands, as crop management practices such as fertilizer application and irrigation rates 

also affect the LUE (Bradford, Hicke, & Lauenroth, 2005; Claverie et al., 2012).  

A semi-empirical model, the Simple Algorithm for Yield Estimates (SAFY) model 

(Duchemin, Maisongrande, Boulet, & Benhadj, 2008), simulates the daily Green Leaf Area 

Index (GLAI) and Dry Aboveground Mass (DAM) (i.e. dry aboveground biomass) from 

the date of emergence by combining Monteith’s LUE theory (Monteith, 1972) and Maas’s 

leaf partitioning function (Maas, 1990). Claverie et al. (2012) demonstrated that the SAFY 

model could well estimate corn and sunflower biomass when the model parameters were 

calibrated by the high spatial and temporal resolution remotely sensed GLAI. To improve 

the corn biomass and yield, Battude et al. (2016) proposed a new version of the SAFY 

model by considering the seasonal dynamic of specific leaf area (SLA) and effective light 

use efficiency (ELUE), which is the LUE under all the environmental stresses excluding 

the temperature stress. The result demonstrated that the new model could accurately 

estimate crop biomass and yield by taking the interrelationship among parameters. The 

SAFY model coupled with time series remote sensing data was also applied to estimate 
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biomass and yield of other crops such as wheat (Dong et al., 2016) and soybean (Betbeder 

et al., 2016). In general, the time series GLAI data acquired at the key stages of the growing 

season are needed to calibrate the SAFY model. However, high spatial resolution data such 

as Formosat-2, SPOT-4, and Deimos-1 are costly, and free high spatial resolution data such 

as Landsat images may be unavailable on important dates due to low temporal resolution 

and frequent cloud contamination over the study site. Thus, how the biomass can be 

accurately estimated with a limited number of high spatial resolution remote sensing 

images is worth studying.  

Crop phenology information is needed when running the SAFY model as many parameters 

are linked with crop phenological events. Therefore an accurate crop phenology detection 

algorithm is essential. The common steps for crop phenology detection includes (1) 

obtaining satellite-based vegetation parameter (e.g., Normalized Difference Vegetation 

Index (NDVI), LAI and 𝑓APAR) time series, (2) reconstructing daily observation using a 

filter (Chen et al. 2004; Hird & McDermid 2009; Atkinson et al. 2012; Beck et al. 2006) 

or a mathematical function such as the asymmetric Gaussian function (Roerink, Menenti, 

Soepboer, & Su, 2003), and the double logistic function (Atkinson et al., 2012; Beck et al., 

2006; Hird & McDermid, 2009; Xiaoyang Zhang et al., 2003) to reduce the high-frequency 

noise, (3) determining specific phenological events based on the reconstructed daily 

observations. The traditional crop phenology detection methods basically estimate 

phenological dates of natural vegetation and crops by detecting preliminary-defined 

metrics such as fixed threshold value, seasonal midpoint, maximum point and inflection 

point on the remotely sensed vegetation index time series. For example, the dates when the 

NDVI is greater than a specific threshold are defined as key phenological stages (Sakamoto 

et al., 2005), or the inflection point (minimum/maximum value of first derivative) of the 

NDVI curve to determine the start of season (SOS) and end of season (EOS) (Jeong, Ho, 

Gim, & Brown, 2011). However, the commonly used phenology detection methods are 

sensitive to satellite data noise caused by atmospheric constituents, and rely on the number 

of satellite images acquired at key phenological stages (Sakamoto et al. 2010).  

The objective of this study is to propose a strategy to estimate subfield-scale crop 

phenology and crop production using the spatio-temporal fusion of Landsat-8 and MODIS 
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images. Firstly a recently proposed spatio-temporal vegetation index image fusion method 

(STVIFM) developed by Liao, Wang, Pritchard, Liu, and Shang (2017) will be applied to 

generate the NDVI time series with both high spatial resolution and high temporal 

resolution in this study. Then the fAPAR will be derived from the NDVI data and an 

improved Two-Step Filtering (TSF) method incorporated with the canopy structure 

dynamics model (CSDM) will be applied to simulate daily fAPAR and to detect major 

phenological events. Finally the phenology information will be linked to the parameters of 

the SAFY and the GLAI calculated from the remotely sensed data will be used to calibrate 

the SAFY model in order to estimate pixel-based biomass and ELUE. 

5.2 Materials 

5.2.1 Study site 

The study area is located in the Mixedwood Plains Ecozone in southwestern Ontario, 

characterized by abundant water supply, a relatively mild climate during the growing 

season and harsh winter, productive soils for agriculture, and a longer growing season than 

most of the rest of the country. The common practice in this region is one harvest per year 

for field crops. The croplands in the study site are mixed with woods and the dominant 

crops are winter wheat, corn and soybean. Generally, the winter wheat in this study site is 

seeded in October of the previous year and harvested in July while the corn and soybean 

are seeded in May and harvested in September or October. An area of about 14 km by 8 

km near the city of London, Ontario was selected as a study site (Figure 5-1). 



 

127 

 

 

Figure 5-1: The study site observed on Landsat-8 image in July 2015 (Nir-Red-

Green band). The green and yellow polygons are corn fields and soybean fields 

where the field data were collected; Green and yellow points are the sample sites for 

corn and soybean. 

5.2.2 Field data collection 

Intensive field work was conducted weekly from 23 May to 21 September in 2015 

(Appendix D). A general survey including the digital hemispherical photos (DHP), crop 

phenology, crop height was collected for a total of 27 soybean samples and 6 corn samples 

each time. For each sample site, 7 photographs were taken along one transect and then 

another 7 photographs along another transect (Shang et al., 2014).The effective LAI and 

fAPAR were derived from the photographs using the CAN-EYE software (Weiss & Baret, 

2017).  

Crop inventory information was also collected in September 2015. Crop biomass was 

collected on 25 September and 2 October using a destructive method in relatively 
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homogeneous locations for soybean (17 samples) and corn (15 samples). For corn sampling, 

5 plants were randomly selected within a 5 m by 5 m area and manually harvested. The 

number of corn plants was counted within this area, and accordingly, the corn density was 

derived. For soybean sampling, two sample sites were selected within a 5 m by 5 m area. 

For each sample site, the plants were harvested within a 0.25 m by 0.25 m area. The number 

of soybean plants was counted within this area, and accordingly, the soybean density was 

derived. Then the two measurements within the 5 m by 5 m area were averaged. The 

harvested plants were cut and placed in large plastic bags and transferred back to the lab. 

The plants were separated into stems, leaves and seeds and were weighed separately to 

obtain the fresh mass by organ. These samples were then oven dried at 40 °C for 4 d to 

obtain the DAM. Table 5-1 shows the dates the field work was conducted on and the data 

collected in the field work. 

Table 5-1: The dates for field work and crop types 

Dates when the field work was conducted Data collected in the field work 

23 May 2015 Corn/soybean, Phenology 

29 May 2015 Corn/soybean, Phenology 

9 June 2015 Corn/soybean, Phenology 

19 June 2015 Corn/soybean, Phenology 

23 June 2015 Corn, general survey* 

2 July 2015 Corn/soybean, general survey 

9 July 2015 Soybean, general survey 

16 July 2015 Soybean, general survey 

23 July 2015 Corn, general survey 

27 July 2015 Soybean, general survey 

3 August 2015 Corn/soybean, general survey 

11 August 2015 Corn/soybean, general survey 

20 August 2015 Corn/soybean, general survey 

3 September 2015 Corn/soybean, general survey 

13 September 2015 Corn/soybean, general survey 

21 September 2015 Corn/soybean, crop inventory 

25 September 2015 Corn/soybean, biomass 

27 September 2015 Corn/soybean, crop inventory 

2 October 2015 Corn/soybean, biomass 

* General survey include fisheye photos (LAI, fAPAR), phenology, crop type. 

5.2.3 Regional weather data 

Both the daily shortwave solar radiation and mean temperature are required in this study. 

The radiation data were acquired from the Modern-Era Retrospective Analysis for 
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Research and Applications (MERRA) product (http://disc.sci.gsfc.nasa.gov/) (Rienecker et 

al., 2011). The spatial resolution of the MERRA radiation product is 0.5° latitude by 0.67° 

longitude. The radiation from this product was in good agreement with that of the 

meteorological stations in Canada (Kross, Seaquist, & Roulet, 2016). The daily shortwave 

solar radiation in 2015 at the study site was extracted centered to the site and calculated as 

the sum of hourly radiation (Figure 5-2(a)). The PAR (0.4–0.7 µm) is part of the short wave 

solar radiation (0.3–3.0 µm) that is absorbed by chlorophyll for photosynthesis in the plants 

(Bastiaanssen & Ali, 2003). The daily temperature data were obtained from the historical 

climate data website (http://climate.weather.gc.ca/) for the nearest London weather station 

(Figure 5-2(b)). 

 

Figure 5-2: Annual time series of (a) daily shortwave solar radiation and (b) daily 

mean temperature  

5.2.4 Crop classification data 

In this study, the crop classification obtained from the minimum noise fraction (MNF ) 

transformation of multitemporal Radarsat-2 data based on random forest classifier (Liao, 

Wang, Huang, & Shang, 2018) was used. The overall classification accuracy is 95.89% 

over this study area, and the producer’s accuracy is 93.95% for corn and 99.54% for 

soybean. The corn and soybean fields were extracted separately based on this classification 

result.  

http://disc.sci.gsfc.nasa.gov/
http://climate.weather.gc.ca/
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5.2.5 Remote sensing data 

In this study, only three cloud-free Landsate-8 OLI reflectance images were acquired from 

the United States Geological Survey (USGS) (http://landsat.usgs.gov/landsat8.php) over 

the study site during the 2015 growing season. Due to the influence of cloud contamination 

on the daily reflectance products, 10 cloud-free Moderate Resolution Imaging 

Spectroradiometer (MODIS) 8-day surface reflectance products (MOD09Q1, V6.0) with a 

spatial resolution of 250 m were downloaded from the National Aeronautics and Space 

Administration (NASA) Reverb portal (http://reverb.echo.nasa.gov/reverb/) (Table 5-2). 

Each MOD09Q1 pixel represents the best observation during an 8-day period (Vermote et 

al., 2011). The NDVI was calculated from the Landsat-8 and MODIS reflectance data.  

Table 5-2: The acquired dates for remote sensing data. 

Sensor Landsat-8 OLI MODIS 

Date 

10 June 2015 10 June 2015 

 4 July 2015 

 12 July 2015 

 20 July 2015 

28 July 2015 28 July 2015 

 13 August 2015 

 21 August 2015 

 29 August 2015 

 6 September 2015 

14 September 2015 14 September 2015 

Spatial resolution 30 m 250 m 

5.3 Methodology 

Figure 5-3 is the flowchart showing the processing steps of this study. First of all, the 

Landsat-8 images and MODIS images were used to generate 10 Landsat-like NDVI images 

throughout the growing season by using a spatio-temporal vegetation index image fusion 

model (STVIFM) ( Liao, Wang, Pritchard, Liu, & Shang, 2017). For the second step, an 

improved TSF method was proposed to detect phenology based on the 10 Landsat-like 

NDVI images and the pixel-based daily fAPAR was generated at the same time. Lastly, the 

SAFY model was run using the GLAI computed from the remote sensing data, crop 

classification map, the phenology map, and the daily weather data. 

http://landsat.usgs.gov/landsat8.php
http://reverb.echo.nasa.gov/reverb/
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Figure 5-3: Flowchart for crop phenology, biomass, and yield estimation 

5.3.1 Spatio-temporal data fusion 

In 2015, only three cloud-free high spatial resolution Landsat-8 OLI images were acquired 

during the growing season over the study site. High temporal resolution images such as 

MODIS, however, have a lower spatial resolution of 250 m, which is not spatially sufficient 

for subfield agricultural studies. The spatio-temporal image fusion methods such as the 
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Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) (Gao et al., 2006) 

and the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) 

(Zhu et al., 2010) provide a way to generate time series images with both high spatial and 

temporal resolution. However, a previous study showed that the STVIFM performs 

superior to the STARFM and ESTARFM methods in generating NDVI time series in 

cropland area when the number of high spatial resolution images are limited (Liao et al., 

2017). This is because the STVIFM considers the temporal variation of the NDVI change 

rate when the time interval between two adjacent high spatial resolution images is large 

(Liao et al., 2017).  

In this study, seven other NDVI images with a spatial resolution of 30 m were generated 

using the three Landsat-8 OLI images and 10 MODIS images by the STVIFM. Two pairs 

of high spatial resolution and high temporal spatial resolution data, and the data acquired 

on the prediction dates were needed as inputs. The Landsat-8 and MODIS data acquired 

on 10 June and 28 July were used to generate the Landsat-like NDVI image for 4 July, 12 

July, and 20 July. The Landsat-8 and MODIS data acquired on 28 July and 14 September 

were used to generate the Landsat-like NDVI images on 13 August, 21 August, 29 August 

and 6 September. 

5.3.2 Crop phenology detection based on an improved TSF 
approach  

5.3.2.1 Description of the improved TSF approach 

The TSF method, firstly proposed by Sakamoto et al. (2010), incorporates the “shape-

model fitting” concept to detect major phenological stages of corn and soybean from the 

time-series MODIS Wide Dynamic Range Vegetation Index (WDRVI) data. This method 

firstly adopts a shape model, which is a crop-specific WDRVI curve with typical 

phenological features generated by using the 8-day MODIS data with a spatial resolution 

of 250 m. Then it derives the optimum scaling parameters from shape-model fitting 

procedure. This approach relies on the number of satellite images acquired during the 

growing season. However, in areas with constant cloud presence, the number of high 

spatial resolution satellite images will be limited. To solve this problem, this approach will 
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be improved by using the shape model generated from the canopy structure dynamics 

model (CSDM) (Equation (5-2)) instead of the WDRVI time series filtered by the wavelet-

based filter, and deriving three scaling parameters, which consider both growing and 

senescence stages, from the shape model through the optimizing procedure to obtain the 

daily 𝑓APAR for the entire region and detect the phenology (Equation (5-4)). 

5.3.2.2 Deriving 𝑓APAR from remote sensing images 

To implement the improved TSF approach, the remotely sensed 𝑓APAR should be derived 

firstly. The remote sensing data acquired simultaneously (or one or two days apart) (Table 

5-3) with the field work were selected to conduct the regression analysis between the NDVI 

and the in situ measured 𝑓APAR. To avoid the error caused by the different spatial scale 

between the collected data and the remote sensing data, the average values within the same 

crop fields were calculated. According to the relationship between the average NDVI and 

average 𝑓APAR collected in the fields (Figure 5-4), the 𝑓APAR can be calculated from the 

remotely sensed NDVI by Equation (5-1): 

𝑓APAR = 1.55 × NDVI − 0.48 (5-1) 

Table 5-3: The data used for regression analysis between NDVI and 𝒇𝐀𝐏𝐀𝐑 

 Dates for field work Dates for original and synthetic 

Landsat-8 images 

Corn/soybean 2 July 2015 4 July 2015  

Corn 23 July 2015 20 July 2015 

Soybean 27 July 2015 28 July 2015 

Corn/soybean 11 August 2015 13 August 2015 

Corn/soybean 20 August 2015 21 August 2015 

Corn/soybean 13 September 2015 14 September 2015 
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Figure 5-4: Relationship between average NDVI and average fAPAR of the samples 

collected within each field  

5.3.2.3 Shape model  

The CSDM can be used for daily LAI or daily 𝑓APAR simulation (Dong et al., 2017; Koetz, 

Baret, Poilvé, & Hill, 2005; J. Liu et al., 2010). The daily 𝑓APAR is selected because it will 

be used in the simple LUE model for the biomass estimation.  

𝑓APAR (𝑇) = 𝑓APAR𝑚𝑎𝑥[1/(1 + 𝑒
−𝑎(𝑇−𝑇𝑖)) − 𝑒−𝑏(𝑇−𝑇𝑠)] (5-2) 

where 𝑇 is the cumulative daily mean temperature for crops to grow starting from sowing 

date (Dong et al., 2017). As the corn and soybean were sowed between 5 May and 10 May, 

the cumulative temperature was calculated starting from 10 May. 𝑇𝑖  is the cumulative 

temperature corresponding to the inflection point during the growth phase; 𝑇𝑠  is the 

cumulative temperature at which 𝑓APAR decreases to 0 due to senescence. In this model, 

the five parameters 𝑓APAR𝑚𝑎𝑥, a, b, 𝑇𝑖, and 𝑇𝑠 vary with crop type and the crop growing 
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condition and they are optimized using the fAPAR obtained from the 10 remote sensing 

images. 

To generate the shape models, the 10 𝑓APAR  values generated from the Landsat or 

synthetic Landsat images were used for the optimization of the five parameters in the 

CSDM (Equation (5-2)) of the corn sample site C05-02 and the soybean sample site S09-

02 respectively by a nonlinear least-squares solver method (i.e. lsqnonlin). The cost 

function is the Root Mean Square Error (RMSE) between the estimated 𝑓APAR and the 

𝑓APAR derived from the remote sensing images (Equation (5-3)). 

RMSE = [
1

𝑁
∑(𝑓APAR𝑖

𝑁

𝑖=1

− 𝑓APAR𝑟𝑠𝑖)
2]
1
2 (5-3) 

where N is the number of remote sensing observations; 𝑓APAR𝑖 is the estimated 𝑓APAR; 

𝑓APAR𝑟𝑠𝑖 is the remotely sensed 𝑓APAR. 

The range and the optimized value of each parameter are shown in Table 5-4. The daily 

𝑓APAR for the two sites are shown in Figure 5-5. It illustrate that corn has a longer growing 

season than soybean. As the phenology information for the two sample points was observed 

throughout the growing season, the phenological stages were defined on the shape models 

according to the observation from the field (Figure 5-5). The SOS, which is the time when 

vegetation growth begins to rapidly increase (Zheng, Wu, Zhang, & Zeng, 2016), the DOS 

and the end of season were identified according to the shape of the 𝑓APAR time course and 

the characteristic of crops at each Biologische Bundesanstalt, Bundessortenamt and 

CHemische (BBCH) scale (Zheng et al., 2016). 

Table 5-4: The optimized parameters in CSDM obtained for soybean and corn 

  Range  Corn Soybean 

𝒇𝐀𝐏𝐀𝐑𝒎𝒂𝒙 0-1 0.99 0.99 

𝒂 0-0.01 0.0037 0.0068 

𝒃 -0.01-0 -0.0043 -0.0058 

𝑻𝒊 500-2000 742.5 1017.3 

𝑻𝒔 2000-3000 2694.2 2580.0 



 

136 

 

 

Figure 5-5: The shape model for (a) corn (BBCH=13, 16, 19, 31, 33, 37, 66, 67, 69, 

75, 85, 87, 97) and (b) soybean (BBCH=9, 10, 12, 14, 25, 29, 65, 67, 70, 75, 85, 95, 97). 

The red lines represent the SOS. The green lines represent the DOS and the blue 

lines represent EOS. 

5.3.2.4 Phenology detection 

The TSF method does not consider the variation of the length of season (LOS) within the 

same crop type. In this study, the TSF model was improved by introducing three scaling 

parameters yscale, xshift1 and xshift2 to the shape models (Equation (5-2)) for corn and 

soybean (Equation (5-4)), so that the variation of LOS can also be addressed. 

𝑓APAR(𝑇) = 𝑦𝑠𝑐𝑎𝑙𝑒 ∗ 𝑓APAR𝑚𝑎𝑥[1/(1 + 𝑒
−𝑎(𝑇+𝑥𝑠ℎ𝑖𝑓𝑡1−𝑇𝑖))

− 𝑒−𝑏∗(𝑇+𝑥𝑠ℎ𝑖𝑓𝑡2−𝑇𝑠)] 

(5-4) 

where yscale represents the scale for 𝑓APAR𝑚𝑎𝑥, xshif1 represents the temperature shift for 

the same phenology at the vegetative stage, and xshit2 represents the temperature shift at 

the reproductive stage. The ranges for the three parameters are: 0.5<yscale<1.5, 

0.5<yscale<1.5, -1000<xshift1<1000 °C, -1000<xshift2<1000°C. The three parameters 

were optimized for corn and soybean pixels respectively using the 𝑓APAR time series 

acquired from the NDVI images. 
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Then the scaling parameters were optimized for the entire region using the 10 remotely 

sensed 𝑓APAR images based on the same optimization procedure described above. Finally, 

the 𝑓APAR course can be obtained based on Equation (5-4) and the phenology for each 

pixel can be obtained based on the following steps.  

As the phenological stages have been defined on the shape models, the cumulative 

temperature of different phenological stages for the unknown pixels can be estimated using 

the following strategy. The CSDM describes the vegetative stage and reproductive stage 

of the crops separately. Therefore, the growth stages need to be considered when 

calculating the phenological dates of the unknown pixels. In this study, a weighting system 

was adopted to differentiate the two stages as follows:  

𝑤1 = 1/(1 + 𝑒
−𝑎∗(𝑇(𝑘)−𝑇𝑖)) (5-5) 

𝑤2 = 𝑒
−𝑏∗(𝑇(𝑘)−𝑇𝑠)) (5-6) 

where 𝑇(𝑘) represents the cumulative temperature at phenology k. The cumulative 

temperature at phenology k for each unknown pixel (𝑇′(𝑘)) was calculated as follows: 

𝑇′(𝑘) = 𝑤1/(𝑤1 + 𝑤2) ∗ ( 𝑇(𝑘) − 𝑥𝑠ℎ𝑖𝑓𝑡1) + 𝑤2/(𝑤1 + 𝑤2) ∗ ( 𝑇(𝑘)

− 𝑥𝑠ℎ𝑖𝑓𝑡2) 

(5-7) 

As a specific cumulative temperature has a corresponding day of year (DOY), a lookup 

table was built between DOY and cumulative temperature. Then, the DOY of each 

phenological stage and the daily 𝑓APAR for each pixel were obtained based on the lookup 

table.  

5.3.3 Dry aboveground biomass and yield estimation based on the 
SAFY model 

5.3.3.1 Description of the SAFY model  

The basic idea of the SAFY (Duchemin et al., 2008) is that during the plant growth, a 

fraction of daily plant DAM is partitioned to dry leaf mass production at the vegetative 

growth phase, and daily new GLAI is thus obtained by converting daily leaf biomass into 
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daily leaf area growth (∆𝐿𝐴𝐼
+ ) using the specific leaf area (SLA). The simulation begins on 

the day of plant emergence (D0) to the day Dj. Leaf senescence begins when the sum of 

temperature (SMT) reaches a given threshold (𝑆𝑡𝑡). The GLAI decrease (∆𝐿𝐴𝐼
− ) is simply 

modeled based on the rate of senescence coefficient (𝑅𝑠) controlled by temperature. The 

DAM is calculated based on the daily PAR absorbed by green plants (APAR), effective 

LUE (ELUE) and the temperature stress factor (𝐹𝑇(𝑇𝑎)). The SAFY only considers the 

temperature stress on crop condition, and the ELUE is the result of the interaction between 

nitrogen, water and other environmental stresses excluding the temperature stress. 𝑇𝑎 is the 

daily average temperature. The 𝑇𝑚𝑖𝑛 , 𝑇𝑚𝑎𝑥 , 𝑇𝑜𝑝𝑡  are the minimum, maximum, and 

optimum temperature for crop growth. 

∆𝐷𝐴𝑀= ELUE × 𝐹𝑇(𝑇𝑎) × APAR (5-8) 

𝐹𝑇(𝑇𝑎) =

{
 
 

 
 1 − [

𝑇𝑜𝑝𝑡 − 𝑇𝑎

𝑇𝑜𝑝𝑡 − 𝑇𝑚𝑖𝑛
]

𝛽

    𝑇𝑚𝑖𝑛 < 𝑇𝑎 < 𝑇𝑜𝑝𝑡

1 − [
𝑇𝑎 − 𝑇𝑜𝑝𝑡

𝑇𝑚𝑎𝑥 − 𝑇𝑜𝑝𝑡
]

𝛽

    𝑇𝑜𝑝𝑡 < 𝑇𝑎 < 𝑇𝑚𝑎𝑥

0      𝑇𝑎 < 𝑇𝑚𝑖𝑛 𝑜𝑟 𝑇𝑎 > 𝑇𝑚𝑎𝑥  

 (5-9) 

The APAR is calculated using the daily incoming global radiation (𝑅g ), the climate 

efficiency (𝜀c), which defines the ratio of the PAR to the incoming global radiation, and 

the fraction of daily photosynthetically active radiation absorbed by plants (Equation (5-

10)). The 𝑓APAR is estimated using Beer's law, and 𝑘𝑒𝑥𝑡  represents the light-extinction 

coefficient (Equation (5-11)) 

APAR = 𝜀𝐶 × 𝑅𝑔 × 𝑓APAR (5-10) 

𝑓APAR = 1 − 𝑒−𝑘𝑒𝑥𝑡×LAI (5-11) 

The partition-to-leaf (𝑃𝑙) is a function of the sum of temperature (SMT) and two parameters 

𝑃𝑙𝑎 and 𝑃𝑙𝑏: 

𝑃𝑙 = 1 − 𝑃𝑙𝑎𝑒
𝑃𝑙𝑏×SMT (5-12) 
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SMT = ∑(𝑇𝑎,𝑡 − 𝑇𝑚𝑖𝑛)

𝐷j

𝑡=𝐷0

 (5-13) 

If 𝑃𝑙 > 0, ∆𝐿𝐴𝐼
+ = ∆𝐷𝐴𝑀 × 𝑃𝑙 × SLA (5-14) 

If SMT > 𝑆𝑡𝑡, ∆𝐿𝐴𝐼
− = 𝐿𝐴𝐼𝑡

SMT − 𝑆𝑡𝑡

𝑅𝑠
 (5-15) 

LAI𝑡 = LAI𝑡−1 + ∆𝐿𝐴𝐼
+ − ∆𝐿𝐴𝐼

−  (5-16) 

Crop yield is generally estimated by multiplying the final biomass with a harvest index 

(HI), which is defined as the ratio of final grain yield over the final DAM (Equation (5-

17)). 

𝑌𝑖𝑒𝑙𝑑 = DAM × HI (5-17) 

As a comparison, the SAFY model with no phenology-related information was performed. 

The three phenology-related parameters were ingested as free parameters and determined 

in the second calibration phase. The simple LUE model was also performed as a 

comparison to the SAFY model. With the daily 𝑓APAR and daily solar radiation data, the 

daily APAR can be calculated based on Equation (5-10), and the DAM on date t can be 

computed using the ELUE, temperature stress and cumulative APAR by Equation (5-18). 

As the daily 𝑓APAR is simulated by the CSDM, this simple LUE model is referred as 

CSDM-LUE hereafter.  

DAM𝑡 = ELUE × ∑(𝐹𝑇(𝑇𝑎) × APAR𝑡)

𝐷j

𝑡=𝐷0

 (5-18) 

5.3.3.2 Calibration of the SAFY model  

The SAFY model requires 12 parameters. In this study, five parameters (𝜀𝐶, T, β, DAM0, 

𝑘𝑒𝑥𝑡) were fixed according to the literature and in situ measurements. Three parameters 

(D0, Stt, Rs) related to the phenological stages were determined from the remotely sensed 
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phenological map and the daily reginal weather data. The four remaining parameters (SLA, 

𝑃𝑙𝑎, 𝑃𝑙𝑏, ELUE) were calibrated using the original remotely sensed GLAI time series on 

two phases.  

Generally, the common value of 0.48 was used for the 𝜀𝐶 (Battude et al., 2016; Britton & 

Dodd, 1976; Claverie et al., 2012; Varlet-Grancher, Bonhomme, Chartier, & Artis, 1982). 

A value of 4.2 g/m2 was used for the initial dry above biomass (DAM0) (Claverie et al., 

2012; Dong et al., 2016, 2017). The 𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥, 𝑇𝑜𝑝𝑡 for summer crops such as corn and 

soybean in Canada are reported as (10, 35, 30 °C) with slight difference among different 

species (Qian, Zhang, Chen, Feng, & O’Brien, 2010; Sánchez, Rasmussen, & Porter, 2014). 

Considering the facts that the corn in the study site generally emerged earlier than the 

soybean, the minimal temperature for corn was adjusted to 8 °C according to the literature 

(Battude et al., 2016; Claverie et al., 2012). The polynomial degree (𝛽) in the temperature 

stress function is usually set as 2. The 𝑘𝑒𝑥𝑡 was computed by inverting Beer's law (Equation 

(5-11)) between the measured 𝑓APAR and the effective GLAI obtained from CAN-EYE 

software (Weiss & Baret, 2017) (Figure 5-6).  

  

Figure 5-6: Relationship between 𝒇𝐀𝐏𝐀𝐑 and effective GLAI  
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The D0 in the SAFY model was an important parameter. As in the SAFY, the remotely 

sensed GLAI on D0 is usually about 0.1 m2/m2 (Duchemin et al., 2008), D0 in the SAFY 

model was not exactly the day of emergence of the crops in the observation. In this study, 

D0 was replaced by the SOS generated from the remote sensing images in the phenology 

detection process.  

The Stt was the sum of temperature (SMT) from SOS to DOS (Equation (5-13)). As Figure 

5-5 shows, the senescence rate for corn and soybean are similar, the Rs was calculated 

using the SMT difference between the EOS and the DOS (Equation(5-19)) (Battude et al., 

2016).  

𝑅𝑠 = 1725.7 × 𝑒0.002×(SMTEOS−𝑆𝑡𝑡) (5-19) 

The remotely sensed GLAI time series were required to calibrate the remaining parameters 

of the SAFY model. The 𝑓APAR data obtained from the three original Landsat-8 data and 

the seven synthetic Landsat-like data were used to compute the GLAI based on the 

inversion of Equation (5-11). 

In the remaining parameters, a good relationship was reported between 𝑃𝑙𝑎 and 𝑃𝑙𝑏 for 

corn in a previous study (Battude et al., 2016). As the phenology-related parameters were 

forced into the SAFY model, and the soybean was also studied, the reported relationship 

between 𝑃𝑙𝑎  and 𝑃𝑙𝑏  may be not suitable. Therefore, the remaining three parameters 

ELUE, 𝑃𝑙𝑎 and 𝑃𝑙𝑏 were calibrated through two phases. The optimization procedure was 

based on the Shuffled Complex Evolution-University of Arizona (SCE-UA) algorithm 

(Duan, Sorooshian, & Gupta, 1994). The RMSE between the simulated GLAI and the 

remotely sensed GLAI was used as the cost function of the calibration. 

RMSE = [
1

𝑁
∑(GLAI𝑖

𝑁

𝑖=1

− GLAI𝑟𝑠𝑖)
2]
1
2 (5-20) 

where N is the number of remote sensing observations; GLAI𝑖  is the estimated GLAI; 

GLAI𝑟𝑠𝑖 is the remotely sensed GLAI. 
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Before the calibration, the range of each parameter needs to be defined. The SLA represents 

the leaf area that the unit leaf biomass was converted to. It is related to the thickness of 

leaves (Battude et al., 2016). The SLA was reported as 0.023 m2/g and 0.024 m2/g for corn 

(Battude et al., 2016; Claverie et al., 2012; Dong et al., 2017) while the SLA for soybean 

was reported ranging between 0.021 m2/g and 0.029 m2/g (Pierozan Junior & Kawakami, 

2013). Therefore, the range for SLA was defined as between 0.02 m2/g to 0.032 m2/g in 

this paper. 1 − 𝑃𝑙𝑎 defines the percentage of biomass that was partitioned to the leaf of the 

plants at the D0. In previous study (Battude et al., 2016), the 𝑃𝑙𝑎 was defined as between 

0.05 and 0.5 for corn and soybean, and 𝑃𝑙𝑏  is between 10-5 and 10-2. The ELUE was 

assumed as field-specific parameters in a few previous studies (Battude et al., 2016; 

Claverie et al., 2012), but due to the agricultural management (seeding date) and field scale 

agro-environmental stresses such as water stress or nitrogen stress, the actual ELUE may 

vary within the fields (Dong et al., 2016). Table 5-5 lists the LUE (considered stresses) or 

LUEmax (under no stresses) values for corn and soybean reported in literature. Therefore, 

the range of ELUE for corn is 2-5 g/MJ and for soybean is 1-2 g/MJ.  

Table 5-5: LUE or 𝐋𝐔𝐄𝒎𝒂𝒙 for corn and soybean reported in literature 

Corn  LUE (g MJ-1) Source 

Corn 3.9 (Liu et al., 2010) 

Corn 3.3 (Claverie et al., 2012) 

Corn 4.26 (Daughtry, Gallo, Goward, Prince, & Kustas, 1992) 

Corn 3.4 (Bastiaanssen & Ali, 2003; Sinclair & Horie, 1989) 

Corn 3.74, 3.84  (Lindquist, Arkebauer, Walters, Cassman, & Dobermann, 2005) 

Corn 3.42-3.9 (Gallo, Daughtry, & Wiegand, 1993) 

Soybean  1.14-1.91 (Jorge, Ponte, Ribeiro, & José, 2009) 

Soybean 1.59, 2.34 (Daughtry et al., 1992) 

Soybean 1.67-1.86 (Rochette, Desjardins, Pattey, & Lessard, 1995) 

On the first phase, the four free parameters were optimized at the same time. The 

calibration was performed by minimizing the RMSE between the GLAI simulated by 

SAFY and the GLAI obtained from the three Landsat-8 data and seven synthetic Landsat-

like data. 100 random pixels were selected from the corn fields and soybean fields 

respectively to conduct the optimization procedure. Each pixel was run 10 times to avoid 

the local minimum, and the one with the least RMSE was kept for analysing. We tried to 

analyze the correlation between 𝑃𝑙𝑎  and 𝑃𝑙𝑏  for both corn and soybean, and a good 

exponential relationship was found between 𝑃𝑙𝑎 and 𝑃𝑙𝑏 for soybean and corn respectively 
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(Figure 5-7). The mean value of SLA and 𝑃𝑙𝑎 were calculated, and 𝑃𝑙𝑏was computed from 

the relationship between 𝑃𝑙𝑎  and 𝑃𝑙𝑏  (Equation (5-21)). The values and sources of the 

twelve parameters are listed in Table 5-6.   

 

Figure 5-7: Relationship between Pla and Plb for (a) corn and (b) soybean  

{
𝑃𝑙𝑏 = 0.0144 × 𝑒

−4.442×𝑃𝑙𝑎              Corn

𝑃𝑙𝑏 = 0.0063 × 𝑒
−3.442×𝑃𝑙𝑎        Soybean

 (5-21) 

On the second phase, the crop-specific parameters obtained on the first phase were fixed, 

and the ELUE was optimized for each pixel and the biomass was estimated at the same 

time.  
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Table 5-6: The twelve SAFY parameters 

Parameter 

name 

Notation Unit Range Corn Soybean Source 

Fixed parameters 

Climatic 

efficiency 
𝜀𝐶 -  0.48 0.48 Literature (Battude et 

al., 2016; Britton & 

Dodd, 1976; Claverie et 

al., 2012; Varlet-

Grancher et al., 1982) 

Temperature 

for growth 
𝑇𝑚𝑖𝑛, 

𝑇𝑜𝑝𝑡, 

𝑇𝑚𝑎𝑥  

°C  [8, 30, 

35] 

[10, 30, 

35] 

Literature 

(Battude et al., 2016; 

Claverie et al., 2012; 

Qian et al., 2010) 

Polynomial 

degree 
𝛽 -  2 2 Literature (c Claverie et 

al. 2012) 

Initial dry 

above ground 

mass 

DAM0 g/m2  4.2 4.2 Literature (Claverie et 

al., 2012; Dong et al., 

2017)  

Light-

interception 

coefficient 

𝑘𝑒𝑥𝑡    0.65 0.65 in situ measurements 

Phenology-related parameters  

The day of 

emergence 
D0 DOY    SOS derived from the 

improved TSF model 

Sum of 

temperature 

for senescence 

Stt °C    SOS, DOS and daily 

mean temperature 

Rate of 

Senescence  

Rs °C day [0-105] Linked 

to Stt 
and 

EOS 

Linked to 

Stt and 

EOS 

SOS, DOS, EOS and 

daily mean temperature 

(Battude et al. 2016) 

Optimized parameters using remotely sensed GLAI 

Specific leaf 

area  

SLA M2.g-1 [0.02-

0.032] 

0.0245 0.027 First phase of 

calibration  

Partition to 

leaf function: 

par a 

Pla - [0.05-

0.5] 

0.5 0.19 First phase of 

calibration 

Partition to 

leaf function: 

par b 

Plb - [10-5-10-

2] 

Linked 

to Pla 
Linked to 

Pla 
Linked to Pla 

Effective light 

use efficiency 

ELUE g/MJ Corn [2-

5], 

soybean 

[0.5-2] 

Pixel 

specific 

Pixel 

specific 

Second phase of 

calibration 
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5.4 Results  

5.4.1 Evaluation of fitted 𝑓APAR based on the CSDM 

As the CSDM is optimized by the remotely sensed 𝑓APAR, the accuracy of the fitted 

𝑓APAR depends on the accuracy of the data fusion. Figure 5-8 shows that the fitted 𝑓APAR 

based on the CSDM agrees perfectly with the 𝑓APAR derived from the original Landsat-8 

images and the synthetic Landsat-like images at different sample sites. However, the 

simulated 𝑓APAR is slightly underestimated compared with the in situ measured𝑓APAR.  

The three cloud-free Landsat images were acquired at the beginning of the season, the time 

before the maximum 𝑓APAR and in the senescence stage. The three observations are not 

sufficient for optimizing the CSDM, but the synthetic images provided important 

observations (e.g. 𝑓APAR𝑚𝑎𝑥) between the DOY 209 and DOY 257 in characterizing the 

time course of the 𝑓APAR. The 𝑓APAR obtained from the synthetic Landsat data also 

agrees with the field measured 𝑓APAR at the vegetative stage (Figure 5-8). It indicates that 

the STVIFM has a great potential in spatio-temporal NDVI fusion for crops, and the CSDM, 

optimized by sufficient remotely sensed 𝑓APAR, has a great potential in daily 𝑓APAR 

simulation. 
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Figure 5-8: Comparison of the 𝒇𝐀𝐏𝐀𝐑 derived from the remotely sensed images, 

fitted by the CSDM, and measured in the field for different sample sites: (a) C05-02; 

(b) C24-02; (c) S09-03; (d) S114-02. 

5.4.2 Verification of detected phenology with ground-based 
observations 

Figure 5-9 shows the comparison of phenological dates between gourd-based observations 

and the remotely sensed estimations for corn and soybean throughout the entire growing 

season. Most of the detected phenological dates are within an error of 5 days with corn 

(RMSE=3.3 days) showing a lower accuracy than soybean (RMSE =2.7 days). Larger 

errors are mainly found at the beginning of the growth for soybean. 
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Figure 5-9: Comparison of phenological dates between the ground-based 

observations and estimations, (a) corn, (b) soybean  
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Figure 5-10: The spatial patterns of the dates of key phenological events (SOS, DOS, 

EOS) in the study area in 2015  

The dates of the three key phenological events (SOS, DOS, EOS) of corn and soybean were 

mapped for the study area. Figure 5-10 shows that the range of phenology difference within 

the study area is about 0 to 30 days. A few corn and soybean fields show relatively late 

phenological dates. This is probably caused by the late seeding activities.  
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5.4.3 Performance of the SAFY model 

5.4.3.1 Analysis of the pixel-based ELUE 

The SAFY model is able to obtain the pixel-based ELUE in the final calibration step. In 

this study, the ELUE maps were generated for corn and soybean with the estimated biomass 

(Figure 5-11). The mean ELUE is 3.53 g/m2 for corn and 1.22 g/m2 for soybean. Due to 

the speckle noise of the polarimetric SAR data, the pixels with very low ELUE values at 

the field boundaries are most likely to be misclassifications. While other pixels with low 

ELUE values in the fields may be caused by low plant density or stressed growth condition.  

Strong correlations were observed between the ELUE and 𝑓APAR𝑚𝑎𝑥 of the daily 𝑓APAR 

fitted by the CSDM for corn (R2=0.91), and soybean (R2=0.96) (Figure 5-12). Thus, the 

ELUE for corn and soybean can be easily computed from the 𝑓APAR𝑚𝑎𝑥, and the simple 

LUE model can be used derectly for biomass estimation. 
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Figure 5-11: Pixel-based ELUE for (a) corn and (b) soybean generated from the 

SAFY 
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Figure 5-12: Scatter plots showing the relationship between the ELUE derived from 

SAFY and 𝒇𝐀𝐏𝐀𝐑𝒎𝒂𝒙 derived from the CSDM: (a) corn, (b) soybean 

5.4.3.2 Evaluation of GLAI simulation  

To evaluate the performance of the SAFY model, the GLAI values simulated by the SAFY 

were compared with the GLAI derived from the remotely sensed images and the in situ 

measured GLAI for two corn sites (C05-02, C24-02) and two soybean sites (S09-03, S114-

02). As illustrated in Figure 5-13, the GLAI simulated by the SAFY model shows good 

agreements with the GLAI derived from the remote sensing images and the measured 

GLAI at the vegetative stage and the senescence stage. Discrepancies mainly exist at the 

peak GLAI stage, especially for corn, and the simulated GLAI is generally underestimated. 

As the photos were taken upward facing using the fisheye camera in the repreductive stage 

for corn, the in situ measured GLAI was not able to be obtained due to the difficulties in 

classification between green leaves and the yellow leaves. For sample site C05-02, the 

GLAI values derived from the synthetic Landsat images are slightly underestimated when 

compared with the field-measured GLAI, but the GLAI simulated by the SAFY show good 

agreements with the measured GLAI. This suggests that forcing the phenology information 

into the SAFY model is able to reduce the bias caused by the remotely sensed GLAI.   
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Figure 5-13: Comparison of GLAI simulated by the SAFY (GLAI_SAFY), the 

remotely sensed GLAI based on the original Landsat data (GLAI_Landsat), and the 

synthetic GLAI (GLAI_Synthetic) and the in situ measured GLAI (GLAI_CAN-

EYE) for sample site (a) C05-02, (b) C24-02, (c) S09-03, (d) S114-02.  

5.4.3.3 Evaluation of DAM estimation 

Figure 5-14 illustrates the biomass map of corn and soybean generated by SAFY. The 

biomass varies not only among different fields but also within each field. The biomass of 

corn ranges from 1000 g/m2 to 3131 g/m2, with a mean value of 2128.16 g/m2. The biomass 

for soybean ranges from 100 g/m2 to 1003 g/m2, with a mean value of 564.58 g/m2. A few 

fields show extremely low biomass estimations. It is likely that they have lower plant 

density or have a shorter growing season due to the late sowing date.  
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Figure 5-14: Spatial map of estimated total biomass using the SAFY model for (a) 

corn and (b) soybean 



 

154 

 

The estimated annual DAM values were compared with the destructive DAM 

measurements collected in three soybean fields and four corn fields. A total of 17 soybean 

measurements and 15 corn measurements collected at the end of the growing season were 

used for the evaluation. As comparisons, the DAM estimated by the SAFY model with no 

phenology information as input, the DAM estimated by the CSDM-LUE with fixed ELUE 

and the DAM estimated by the CSDM with varied ELUE were also compared with the in 

situ measurements. The accuracy of each method were listed in Table 5-7. 

The results show that the SAFY model, after the calibration using the remotely sensed 

GLAI, is able to estimate the field-scale biomass for corn and soybean. . The accuracy of 

biomass estimation is higher for corn (R2=0.92, RRMSE=5.91%) than for soybean 

(R2=0.49, RRMSE: 18.29%) (Figure 5-15). This is likely due to fallen leaves for some 

soybean sample at the end of growing season. The result simulated by the SAFY without 

the phenology information shows a lower accuracy for both corn (R2=0.76, RMSE=245.41 

g/m2, RRMSE=9.82%) and soybean (R2=0.35, RMSE=146.73 g/m2, RRMSE=22.32%).   

  

Figure 5-15: Comparison between measured biomass and the estimated biomass by 

the SAFY with and without forcing the phenology information for (a) corn, (b) 

soybean  

In the traditional method, the ELUE was set as a fixed value for each crop type. As the 

pixel-based ELUE can be obtained from the 𝑓APAR data, the CSDM-LUE model can be 
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improved by addressing the spatial difference of the ELUE. In this study, the CSDM-LUE 

model with both fixed ELUE (the mean ELUE generated from the SAFY model) and varied 

ELUE (calculated from the 𝑓APAR𝑚𝑎𝑥 ) was also performed for comparisons. The 

accuracy of the CSDM-LUE with varied ELUE (Corn: R2=0.82, RMSE=230.57 g/m2, 

RRMSE= 9.22%; Soybean: R2=0.47, RMSE=123.88 g/m2, RRMSE=18.84%) is lower than 

the accuracy of SAFY, but is higher than the accuracy of the CSDM-LUE with fixed ELUE 

(Corn: R2=0.80, RMSE=357.64 g/m2, RRMSE=14.31%; Soybean: R2=0.39, RMSE= 

141.48 g/m2, RRMSE=21.52%) (Figure 5-16).  

 

Figure 5-16: Comparison between measured biomass and estimated biomass by the 

CSDM-LUE model for (a) corn, (b) soybean 

Table 5-7: The accuracy of the biomass estimation using different strategies 

 Corn Soybean 

SAFY 

(phenology) 

SAFY 

(No 

phenology) 

CSDM

-LUE 

(varied 

ELUE) 

CSDM-

LUE 

(fixed 

ELUE) 

SAFY 

(phenology) 

SAFY 

(No 

phenology) 

CSDM-

LUE 

(varied 

ELUE) 

CSDM-

LUE 

(fixed 

ELUE) 

R2 0.92 0.76 0.82 0.80 0.49 0.35 0.47 0.39 

RMSE 

(g/m2) 

147.87 245.41 230.57 357.64 120.25 146.73 123.88 141.48 

RRMSE 

(%) 

5.91  9.82 9.22 14.31 18.29 22.32 18.84 21.52 
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5.4.3.4 Evaluation of crop yield  

The ratio between the yield and in situ measured final DAM was calculated for corn and 

soybean. The ratio is 0.55 for corn and 0.58 for soybean, and they are used as the HI values. 

The obtained HI for corn agrees with the HI found in the literature (Battude et al. 2016). 

But the HI for soybean is higher than the HI found in the literature (0.54 and 0.50) (Spaeth 

et al. 1984). This is probably because that most of soybean leaves were fallen at the end of 

growing season. The crop yield was estimated using the two HI values, and it was 

compared with the field measurements (Figure 5-17). The overall RMSE is 116.98 g/m2, 

and the RMSE is 146.34 g/m2 for corn and 82.86 g/m2 for soybean. 

  

Figure 5-17: Comparison between measured and estimated yield for (a) corn and (b) 

soybean 

5.5 Discussion 

5.5.1 Factors that affect the crop biomass and yield 

As the crop yield is closely related to crop biomass, the factors that affect crop biomass 

also affect crop yield. According to the LUE model, the biomass is affected by ELUE and 

APAR. ELUE is affected by LUE𝑚𝑎𝑥 and all environmental stresses except temperature, 

such as nitrogen stress and water stress. By using the satellite remote sensing data, the plant 

density also matters as the spatial resolution is between meters to hundreds of meters. All 

of these stresses or plant density will finally affect the GLAI or 𝑓APAR of the crops in one 
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pixel. In this study, strong correlations were found between the ELUE and the maximum 

𝑓APAR  of each pixel during the growing season for corn and soybean respectively. 

Therefore, the pixel-based ELUE can be calculated from the daily 𝑓APAR fitted by the 

CSDM using remote sensing images if no remote sensing image was obtained at the 

peak 𝑓APAR stage.  

APAR is affected by 𝑓APAR and PAR. As the 𝑓APAR is linearly correlated with NDVI, 

the 𝑓APAR is also related to the crop growth status (vegetation cover, chlorophyll content, 

etc.). Generally, the spatial variation of PAR is less for a local area, but the temporal 

variation of PAR significantly affect the APAR and accordingly the biomass. This temporal 

variation is caused by the variation of phenological events as well as the variation of LOS. 

By comparing the phenology map and the biomass map, the pixels that have a later 

phenological dates have a lower biomass, even though they have similar LOS (LOS=EOS-

SOS). This is probably because the maximum shortwave solar radiation is between the end 

of May and the end of June (Figure 5-2). Therefore, the crops which were grown before 

the end of May received more PAR than crops which were grown later.  

5.5.2 Uncertainties of the estimated crop biomass and yield 

In this study, only three cloud-free high spatial resolution remote sensing images were 

acquired. To estimate crop biomass, daily LAI or 𝑓APAR is generally needed. The CSDM 

shows a great potential in simulating daily 𝑓APAR by using daily temperature. As there are 

5 parameters in the CSDM, at least five remotely sensed values are needed to optimize it. 

Therefore, the spatio-temporal data fusion method STVIFM was adopted to generate more 

Landsat-like images using the three Landsat and the MODIS image pairs. The daily 𝑓APAR 

is able to be used for phenology detection for the SAFY model, and calculate ELUE 

directly for the simple LUE model, and itself is a parameter in the simple LUE model. Even 

though a good accuracy was achieved to estimate corn and soybean biomass, uncertainties 

still exist, especially in the fields with very low biomass production, because of the 

following aspects: (1) the discrepancy between the actual NDVI and the synthetic NDVI 

using the STVIFM; (2) the discrepancy between the actual 𝑓APAR and the fitted 𝑓APAR 

based on the CSDM approach; (3) the discrepancy between the actual LAI and the remotely 
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sensed LAI; (4) the errors of the crop classification; (5) the bias of the harvest index; (6) 

the limitations of the SAFY model.  

Specifically, larger discrepancy may exist at the peak NDVI stage, and when the two 

adjacent Landsat images before and after this date are acquired far from this date. The 

remotely sensed 𝑓APAR which was calculated from NDVI through a linear regression 

method, and the daily 𝑓APAR which was fitted based on the CSDM and the remotely 

sensed 𝑓APAR, may have discrepancy compared with the actual 𝑓APAR. The first two 

discrepancies may be cancelled off to some degree. The LAI is calculated from the 𝑓APAR 

through the Beer’s law, which may cause discrepancy compared to the actual LAI. The 

crop classification result has a high overall and producer’s and user’s accuracy, but a small 

part of pixels were still misclassified, especially at the boundaries of the crop fields. The 

D0 in the SAFY model is not exactly the day of emergence observed in the field work. This 

may be caused by the assumption that the ELUE is fixed through the entire growing season. 

In fact, the ELUE may vary at different growing stages (Battude et al., 2016). This constant 

assumption leads to the bias of D0, ∆𝐷𝐴𝑀, and accordingly the bias of ∆𝐿𝐴𝐼
+  and maximum 

GLAI. In order to generate the ELUE map, which can be regarded as the mean ELUE 

through the whole season for each pixel, we did not consider the temporal variation of 

ELUE in this study.  

5.5.3 Application of this study in crop production forecasting  

This framework is also able to predict crop production by using empirical values for 

parameters and adjust these parameters by adding the real-time remote sensing 

observations. For example, for the phenology detection, the shape model defined for the 

previous year can be used as an initial shape model, and the remotely sensed 𝑓APAR 

obtained at the early stage (at least one observation) can be used to optimize the scaling 

parameter xshift1, and the other two scaling parameters can be fixed using empirical values. 

Therefore the real-time SOS can be obtained. Then the real-time SOS and the empirical 

DOS and EOS can be forced into the SAFY model, and the initial pixel-specific ELUE can 

be calibrated by the acquired remote sensing GLAI (at least one observation). This process 

can be repeated and the pixel-specific parameters can be updated once new remotely sensed 

observations are acquired. Therefore the crop production can be forecasted using the 
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remote sensing observations acquired at the early stage and adjusted using new remote 

sensing observations. 

5.5.4 Contributions and limitations of this study 

The phenology information is significant to the SAFY model. The parameters that are 

related to crop phenology are D0, Stt, Rs. Accurate detection of crop phenology is important 

to the biomass estimation using the SAFY model. The improved two-step filtering 

approach defined the shape models, the time courses of 𝑓APAR generated by CSDM with 

the phenological dates observed in the field work, for corn and soybean, and then detect 

the phenological dates for each pixel using the shape models. By using empirical values, 

forcing the phenology information into the SAFY, and analyzing the relationships between 

different parameters in the SAFY, the number of free parameters can be reduced, and the 

efficiency of the SAFY model will be improved accordingly. The contributions of this 

study include: (1) an improved phenology detection approach was developed, and an 

subfield scale crop phenology map can be produced; (2) a guidance was provided in 

parameters determination when complementing the SAFY model for corn and soybean 

yield estimation in southwestern Ontario and the biomass and yield can be estimated 

accurately at a subfield scale; (3) good correlations were found between ELUE and 

𝑓APAR𝑚𝑎𝑥 for corn and soybean, so that the simple LUE model can be performed directly. 

The accuracy of the LUE model was improved after the spatial variation of ELUE was 

addressed. This study can be applied to crop production forecasting and it will be tested in 

the future. 

The application of this framework would be limited if only two high spatial resolution 

images were acquired at the growing stage and the senescent stage respectively. Thus the 

fusion results would be inaccurate and the accuracy of the following procedure would be 

affected. We recommend that at least three images acquired at the growing, senescence, 

and peak stages and at least five MODIS images are needed. The relationship between 

ELUE and 𝑓APAR𝑚𝑎𝑥 may vary with the study areas and the remotely sensed datasets. As 

the pixel-based optimization procedure is time consuming, this framework is more 

applicable for local-scale or field-scale phenology detection and biomass estimation. 
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5.6 Conclusions 

In this study, we improved the TSF method to detect crop phenology and estimated biomass 

and yield for corn and soybean at subfield scale based on the SAFY model using the spatio-

temporal fusion of three Landsat-8 images and 10 MODIS images. The results show that 

the spatio-temporal vegetation index image fusion method has a great potential in 

generating high spatial resolution images and interpolating temporal NDVI changes for 

crops during the growing season. The high spatial resolution of the fusion products are able 

to capture crop growth variability within the fields, and determine the parameters in a crop 

growth model. The improved two-step filtering approach, by the integration of the CSDM, 

shows a good ability in simulating daily 𝑓APAR and detecting crop phenology at pixel 

scale with an RMSE less than 5 days. The SAFY model, calibrated by the remotely sensed 

GLAI, shows a good performance in pixel-based GLAI simulation and biomass estimation. 

The accuracy of biomass estimation was improved by about 4% in RRMSE for corn and 

soybean by forcing the phenological information derived from remote sensing images. In 

addition, the SAFY model is able to obtain the ELUE for each pixel though the calibration 

and good correlations were found between ELUE and 𝑓APAR𝑚𝑎𝑥 . Therefore, the ELUE 

can be estimated from the 𝑓APAR𝑚𝑎𝑥 and used for CSDM-LUE model.  
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Chapter 6  

6 Discussion and Conclusions  

6.1 Summary 

Earth Observation (EO) technology has provided an efficient and effective way for spatial 

and temporal monitoring of crops. Multi-temporal optical satellite remote sensing data 

have been widely used in crop monitoring and crop yield estimation. For sub-field scale 

agriculture applications, both high spatial resolution and high temporal resolution are 

important. However, due to technical limitations and cloud contamination, it is difficult to 

obtain optical remote sensing data with both high spatial and temporal resolution. One 

alternative is to make use of multi-temporal high spatial resolution Synthetic Aperture 

Radar (SAR) data, which are less dependent on the weather condition. Another approach 

is to fuse high spatial resolution data and high temporal resolution data. This thesis mainly 

focuses on the application of multi-temporal polarimetric SAR data and optical remote 

sensing data in crop monitoring at a sub-field scale when the number of high spatial 

resolution optical remote sensing images is limited.  

First, I investigated the sensitivity of Radarsat-2 polarimetric SAR parameters to crop 

biophysical variables. Next, I examined the contribution of Minimum Noise Fraction 

(MNF) transformation of multi-temporal Radarsat-2 polarimetric SAR on crop 

classification. Then, I proposed a spatio-temporal data fusion method that is suitable for 

crop monitoring in a heterogeneous region to generate time series images with a high 

temporal and high spatial resolution. Finally, I improved a crop phenology detection 

method and estimated the crop biomass for corn and soybean using the SAFY method 

based on the phenology information. 

Chapter 2 presents the sensitivity study of 16 polarimetric SAR parameters derived from 

10 C-band Radarsat-2 polarimetric SAR data to crop height and fractional vegetation cover 

(FVC) of corn and wheat. The 16 polarimetric SAR parameters include Linear 

polarizations (HH, VV, HV), Pauli decompositions (HH+VV, HH-VV), intensity ratios 

(HH/VV, HV/HH, HV/VV), Radar Vegetation Index (RVI), Cloude-Pottier 



 

168 

 

decompositions (Entropy, Anisotropy, Alpha angle) and Yamaguchi 4-component 

decompositions (Yamaguchi single bounce, Yamaguchi double bounce, Yamaguchi 

volume scattering, Yamaguchi helix scattering). Correlation analysis was conducted 

between these parameters and two crop variables (FVC, height). It was observed that at the 

early growing stage, the corn height was strongly correlated with the SAR parameters 

including HV, HH-VV, and HV/VV, and the corn FVC was significantly correlated with 

HV and HV/VV, but the correlation became weaker at the later growing stage. The 

sensitivity of the SAR parameters to wheat variables was very low and only HV and 

Yamaguchi helix scattering showed relatively good but negative correlations with wheat 

height at the middle growing stage.  

Multi-temporal polarimetric SAR data are a necessary source for crop classification when 

there are insufficient optical remote sensing images. In Chapter 3, I investigated the 

contributions of MNF transformation of multi-temporal Radarsat-2 polarimetric SAR data 

on cropland classification in southwestern Ontario based on random forest classifier. The 

research is performed through a discussion of the performance of different polarimetric 

SAR parameters sets and the impact of timing of Radarsat-2 datasets on cropland 

classification..  

The results illustrate that the coherency matrix gave the best overall accuracy. The multi-

temporal polarimetric SAR data acquired between June and the end of July, July and the 

middle of September, and July and the end of October were important for wheat, soybean 

and corn classification respectively. An overall accuracy of 90% can be achieved using two 

images acquired in the middle of September and October, and an accuracy of 94% can be 

achieved using four datasets acquired between July and October. The MNF transformation 

was originally developed for hyperspectral image processing to produce principal 

components by maximizing the signal-to-noise ratio of the data. The MNF transformation 

of the multi-temporal polarimetric SAR parameter sets can improve the overall 

classification accuracy by segregating noise in the data. A maximum overall accuracy of 

95.89% was achieved based on random forest classifier using the MNF transformation of 

the multi-temporal (July to November) coherency matrix, and the accuracy was further 

improved by removing the last few bands which mainly contained noise. The maximum 
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improvement of the MNF transformation was 3.94% for wheat, 6.02% for soybean, and 

8.65% for forage. Compared with the Support Vector Machine (SVM) classifier, the 

Random Forest (RF) classifier performs better.  

The retrieval of subfield-scale crop biophysical variables using polarimetric SAR data is 

limited due to the speckle noise, the influence of soil on SAR backscatters in the early 

growing stage of crops, and the saturation phenomenon of polarimetric SAR data in the 

later growing stage. To make use of the high spatial resolution characteristics and the high 

temporal resolution characteristics of difference optical satellite sources, in Chapter 4, I 

developed a spatio-temporal vegetation index image fusion model (STVIFM) to blend 

MODIS and Landsat NDVI images for generating NDVI time series in a heterogeneous 

region. Similar to most spatio-temporal data fusion methods, the STVIFM assumes that the 

NDVI is additive. The NDVI change of each fine-resolution pixel is obtained by a 

disaggregation weighting system, which describes the contribution of each fine-resolution 

pixel to the total NDVI changes calculated from the coarse-resolution pixels. The 

weighting system considers the differences between fine-resolution and coarse-resolution 

pixel values on different dates. It also considers the variations of change rate at both spatial 

scale and temporal scale. The spatial variation of NDVI change of each fine-resolution 

pixel at any prediction date is calculated by incorporating the weights calculated based on 

one base fine-resolution image and the temporal NDVI change of the two fine-resolution 

images. These two elements are incorporated according to the land cover similarity 

between the prediction date and the two base dates. The STVIFM outperforms in NDVI 

prediction compared to the STARFM and ESTARFM when the land cover or NDVI 

changes are captured by the two pairs of fine- and coarse-resolution images. In addition, 

the STVIFM is more computationally efficient and more robust than the FSDAF. The 

STVIFM enhances the capability for generating both high spatial resolution and high 

temporal frequency NDVI time series in heterogeneous regions. 

With a more accurate spatio-temporal data fusion method, the high spatial resolution NDVI 

images at key stages of crops can be more accurately generated. In Chapter 5, I improved 

the two-step filtering method to detect crop phenology and estimated crop biomass and 

yield at subfield scale based on the SAFY model using the spatio-temporal fusion of three 
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Landsat-8 images and ten MODIS images. First, the STVIFM was  applied to generate high 

spatial resolution time series images by integrating Landsat-8 and MODIS images. Second, 

the two-step filtering approach was improved by using the daily 𝑓APAR fitted by the 

CSDM to detect corn and soybean phenology at subfield scale: (1) the crop growth model 

CSDM was adopted to simulate daily 𝑓APAR for a known corn sample site and a known 

soybean sample site based on the daily mean temperature and the seven 𝑓APAR values 

calculated from the original and generated remote sensing images. (2) Based on the 

simulated shape model of corn and soybean with known phenological dates, the 

phenological dates for the remaining pixels of the image were obtained by introducing 

another three parameters to the CSDM function and the spatial maps of the phenological 

dates for SOS, DOS and EOS over the study site were produced. The parameters in the 

SAFY model were determined through the literature, forcing the SOS, DOS and EOS 

information integrated with the daily mean temperature and calibrating using the 10 

remotely sensed GLAI values. The results show that the improved two-step filtering 

approach, by the integration of the CSDM, has a good ability in simulating daily 𝑓APAR 

and detecting crop phenology at pixel scale. The accuracy of biomass estimation was 

improved by about 4% in RRMSE for corn and soybean by forcing the phenological 

information derived from remote sensing images into the SAFY model. The SAFY model 

is able to obtain the ELUE for each pixel though the calibration and can accurately reflect 

the spatial variation of crop biomass. In addition, good correlations were found between 

ELUE and the 𝑓APAR𝑚𝑎𝑥 during the growing season for corn and soybean. 

6.2 Conclusions and research contributions  

This thesis accomplished four specific objectives and answered the two research questions 

raised in Section 1.3. The following conclusions can be drawn from this thesis: 

(1) Multi-temporal Radarsat-2 polarimetric SAR data have potential in crop biophysical 

variable monitoring and show excellent performance in crop type mapping as 

demonstrated by the following two findings.  

(a) This thesis suggests that Radarsat-2 polarimetric SAR parameters are sensitive to 

biophysical variables such as crop height and FVC. The degree of sensitivity 
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varies with crop types, growing stages, and the polarimetric SAR parameters. The 

multi-temporal Radasat-2 polarimetric SAR parameters such as C22 and T22 are 

sensitive to corn height and FVC at the early growing stages with R2 of more than 

0.8. But there is a large uncertainty in the later growing stage due to the influence 

of speckle noise in the SAR image, soil background at the early growing stage and 

weak capability of penetrating a large crop canopy at the later growing stage. 

However, the Radasat-2 polarimetric SAR data provide a good alternative for crop 

variables monitoring in areas where the cloud-free optical images are not available. 

(b) The multi-temporal coherency matrix of Radarsat-2 polarimetric SAR data 

acquired between June and November has excellent performance in crop 

classification using the random forest classifier with the highest OA of 94.65%. 

The MNF transformation of multi-temporal coherency matrix can improve the 

accuracy of soybean by about 6% and winter wheat by about 4%.  

(2) A limited number of high spatial resolution optical images can be used for crop growth 

monitoring and yield estimation by integrating high temporal but lower spatial 

resolution images using a spatio-temporal data fusion model and fitting a crop growth 

model. 

(a) The temporal resolution of high spatial resolution optical data can be improved by 

using a spatio-temporal data fusion method. The proposed STVIFM algorithm in 

this thesis improved the accuracy of the synthetic Landsat-like NDVI in 

heterogeneous regions using Landsat-8 and MODIS data compared to the existing 

methods such as STARFM and ESTARFM. 

(b) The fusion of high spatial and high temporal resolution optical remote sensing 

images and the CSDM were used to generate daily 𝑓APAR and improve the TSF 

phenology detection model. The crop yield was estimated by calibrating the SAFY 

model using the phenology information and GLAI calculated from the original and 

synthetic NDVI images. The accuracy of biomass estimation was improved by 

about 4% in relative RMSE (RRMSE) compared with the SAFY model without 

forcing the remotely sensed phenology and a simple light use efficiency (LUE) 
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model. 

The contributions of this thesis are summarized as follows: 

(1) The sensitivity of different Radarsat-2 polarimetric SAR parameters to crop FVC of 

corn and wheat was analyzed for the first time. Compared with most similar studies, 

this study was conducted on a per-pixel basis instead of the segmented polygon basis. 

The results indicated that the C-band Radarsat-2 polarimetric SAR has great potential 

in crop height and FVC estimation for broad-leaf crops (corn), and for identifying the 

changes in crop canopy structures and phenology (corn and wheat) in cloudy areas.  

(2) For the first time, the MNF transformation was applied to multi-temporal Radarsat-2 

polarimetric SAR parameters. The results show that the MNF helps to segregate 

speckle noise when it is applied to multi-temporal polarimetric SAR. With the random 

forest classifier, the MNF transformation of most polarimetric SAR parameter sets 

improved the crop type classification accuracy.  

(3) I proposed a spatio-temporal vegetation index image fusion model (STVIFM) to blend 

high spatial resolution images and high temporal resolution images for generating high 

resolution NDVI time series. This algorithm performs better than the existing widely 

used algorithms especially in crop land areas. It can be applied to other vegetation 

indices with appropriate adjustment of the thresholds, and other sources of satellite 

images.  

(4) I proposed an improved TSF approach to detect crop phenology based on daily 𝑓APAR 

simulated from the CSDM model instead of the NDVI time series generated from the 

remote sensing images. The phonology information was forced into the SAFY model 

and a framework to calibrate the SAFY was introduced for both corn and soybean. In 

addition, a good relationship was found between the ELUE and the 𝑓APAR𝑚𝑎𝑥 . 

Subfield-scale crop biomass and yield estimation provide important information and 

practical tools for farmers, traders and agricultural companies for precision agriculture 

and crop production management.  
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6.3 Future research 

6.3.1 Crop height estimation using PolInSAR 

Crop height is closely related to crop biomass and phenology and is an important indicator 

for crop growth monitoring, crop discrimination and crop production estimation (H. 

McNairn & Brisco, 2004; Srivastava et al., 2006). Chapter 2 demonstrates that HV 

backscatter shows the best correlation with corn height at the early growing season. 

However, there is a saturation issue later in the growing season for crop height estimation. 

Polarimetric SAR interferometry (PolInSAR) may overcome the limitations of PolSAR 

because it combines the advantages of Polarimetric SAR and Interferometry (Kumar & 

Khati, 2010) and yields information not only about the dielectric properties, shape and 

orientation of the whole plant constituents (as PolSAR does), but also about the vertical 

structure of the plant (Hutt, Tilly, Schiedung, & Bareth, 2016). However, the potential of 

Radarsat-2 PolInSAR was limited due to the low-coherence caused by the 24-day repeat 

period. The Radarsat-2 PolInSAR was used for crop change detection through a coherence 

optimization (Li et al., 2014).  

Therefore, future work may attempt to investigate the potential of Radarsat-2 in crop height 

estimation. Firstly, the crop height change between two dates (24-day interval) will be 

estimated using UAV point cloud data. Then Radarsat-2 PolInSAR and coherency 

optimization will be conducted. By analyzing the relationship between the coherency 

optimized Radarsat-2 PolInSAR information and crop height changes, the crop height 

might be estimated by adding the crop height change to the crop height estimated at the 

previous time.  

6.3.2 Crop classification using polarimetric SAR data and optical 
remotely sensed data based on deep learning method 

Deep learning (DL) methods have become a hotspot in the machine learning area in recent 

years. By simulating human neural networks organized in a deep architecture, DL 

algorithms have excellent learning ability (Zhang, Zhang, & Du, 2016). Algorithms such 

as deep belief networks (DBNs) (Hinton, Osindero, & Teh, 2006), restricted Boltzmann 

machines (RBMs) (Freund & Haussler, 1994), convolutional neural networks (CNNs) 
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(LeCun, Bottou, Bengio, & Haffner, 1998) have been applied to hyperspectral and 

polarimetric SAR remote sensing image classification (Chen et al., 2014; Chen, Zhao, 

Member, Jia, & Member, 2015; Geng et al., 2015; Hou, Luo, Wang, & Jiao, 2015; Z. Lin, 

Chen, Zhao, & Wang, 2013; Lv et al., 2015; Lv, Dou, Niu, Xu, & Li, 2014; Yue, Zhao, 

Mao, & Liu, 2015). By combining multi-temporal SAR and optical data, spatial, temporal, 

spectral and polarimetric features can be generated. Therefore, future work can investigate 

the potential of deep learning approaches.     

6.3.3 Crop yield forecasting using Unmanned Aerial Vehicle (UAV)-
based remotely sensed data  

The SAFY model is used for crop biomass or yield estimation, and it needs temporal LAI 

as inputs parameters. Chapter 5 improved a crop phenology model based on the daily 

fAPAR obtained from the fusion of three Landsat-8 and seven MODIS data and the CSDM, 

and proposed a framework to implement the SAFY model by forcing the phenological 

information and calibrating using the original and synthetic remotely sensed GAI. However, 

if the number of cloud-free Landsat images or MODIS images during the growing season 

is less than three, the SAFY model cannot be implemented. The Radarsat-2 polarimetric 

SAR data can provide alternative information at field-scale, but it is not suitable for sub-

field scale analysis due to the speckle noise.  

In recent years, unmanned aerial vehicle (UAV)-based images have become popular in 

precision agriculture applications, and they have a great potential in sub-field-level 

measurement of LAI due to their flexibility, low cost and high spatial resolution. Generally, 

a crop surface model (Bendig et al., 2015) was used for crop biomass estimation using the 

UAV data. In the crop surface model, crop height needs to be retrieved from the point cloud 

generated from the UAV images, and a regression model is built between the crop height 

and biomass. The limitation of this model is that it is still unclear which combination of 

satellite data and crop modelling is most effective and whether the models can be applied 

successfully at different spatial scales.  

https://en.wikipedia.org/wiki/Unmanned_aerial_vehicle
https://en.wikipedia.org/wiki/Unmanned_aerial_vehicle
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Future work may focus on assimilating real-time UAV remotely sensed crop biophysical 

variables to the SAFY-WB model, which coupled with a water balance model, to predict 

crop yield.   
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Appendices 

Appendix A: Polarimetric SAR basics  

A Synthetic Aperture Radar is an imaging radar that sequentially transmits microwave 

pulses and receives the backscatters by the radar antenna. Due to the platform movement, 

the consecutive time of transmission/reception translates into different positions. A virtual 

aperture that is much longer than the physical antenna length can be constructed using an 

appropriate coherent combination of the received signals (Moreira et al., 2013). 

Polarizations 

The polarization of the radiation is an important property of microwave energy propagation 

and scattering. For a plane electromagnetic (EM) wave (Figure A-1), polarization refers to 

the electric vector in the plane perpendicular to the direction of propagation, and the 

orientation and shape of the pattern traced by the tip of the vector (Natural Resources 

Canada, 2015).  

 

Figure A-1: Example of EM wave. E: Electric vector, M: Magnetic vector, C: 

Propagation direction (https://earth.esa.int/handbooks/asar/CNTR5-5.html) 

A radar system can have one, two or all four of the following transmit/receive polarization 

combinations: 

(1) HH - for horizontal transmit and horizontal receive 

(2) VV - for vertical transmit and vertical receive 
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(3) HV - for horizontal transmit and vertical receive, and 

(4) VH - for vertical transmit and horizontal receive. 

 

Figure A-2: Examples of the four polarizations: (a) HH, (b) VV, (c) HV, (d) VH 

(Retalis, 2010) 

Incidence angle 

Unlike the optical satellite dada such as Landsat, MODIS and most airborne images, radar 

data are collected looking off to the side of the spacecraft. Because radar measures the time 

that it takes for the microwave signal to go from the spacecraft to the ground and back, the 

side looking is necessary to avoid the confusion of signals coming back at the same time 

from the two opposite sides of the spacecraft ground track. 

(a) HH (b) VV 

(d) VH (c) HV 
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Figure A-3 illustrates some of the common terms used to describe the geometry of a radar 

image, including the incidence angle, which is the angle at which the radar beam hits the 

surface.  

The wavelength, polarization and incidence angle affect how a radar system observes the 

elements on the earth surface. Therefore, radar data collected at different incidence angle, 

polarization and wavelength combinations may provide different and complementary 

information. The primary description of how a radar target or surface feature scatter’s EM 

energy is given by the scattering matrix. And other forms of polarimetric information such 

as the polarimetric decompositions can be derived from the scattering matrix, (Natural 

Resources Canada, 2015).  

 

Figure A-3 Illustration of radar geometry  

 

 

incidence  

angle 

radar wave 

look  

angle 

radar  

radar wave 
beam 



 

182 

 

Radarsat-2 polarimetric SAR 

Radarsat-2 is a C-band (5.3 GHz) polarimetric SAR satellite which was launched in 2007. 

It has the spatial resolutions varying from 3 to 100 meters, and four polarizations.  

Imaging can be carried out in one of several different beam modes, each of which offers a 

unique set of imaging characteristics. The Radarsat-2 beam modes are shown in Figure A-

4. 

 

Figure A-4: Radarsat-2 SAR beam modes (MacDonald, Dettwiler and Associates 

Ltd, 2016) 

During imaging, the SAR instrument may be operated in one of three fundamental imaging 

sensor modes: Single Beam, ScanSAR, and Spotlight. In this thesis, the Wide Fine Quad 

Polarization mode is used, so I mainly introduce the single beam mode (Figure A-5). 

https://en.wikipedia.org/wiki/C-band_(IEEE)
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Figure A-5: Single beam mode (MacDonald, Dettwiler and Associates Ltd, 2016)  

In Single Beam imaging, the following beam modes are available:  

(a) Standard. Standard Beam Mode allows imaging over a wide range of incidence angles 

with a set of image quality characteristics which provides a balance between fine 

resolution and wide coverage, and between spatial and radiometric resolutions. 

(b) Wide. The Wide Swath Beam Mode allows imaging of wider swaths than Standard 

Beam Mode, but at the expense of slightly coarser spatial resolution in some cases. 

(c) Fine. The Fine Resolution Beam Mode is intended for applications which require finer 

spatial resolution than Standard Beam Mode. 

(d) Wide Fine. The Wide Fine Resolution Beam Mode is intended for applications which 

require both a finer spatial resolution and a wide swath. 

(e) Multi-Look Fine. The Multi-Look Fine Resolution Beam Mode covers the same swaths 

as the Fine Resolution Beam Mode. 

(f) Wide Multi-Look Fine. The Wide Multi-Look Fine Resolution Beam Mode offers a 

wider coverage alternative to the regular Multi-Look Fine Beam Mode, while 

preserving the same spatial and radiometric resolution, but at the expense of higher data 

compression ratios (which leads to higher signal-dependent noise levels). 

(g) Extra-Fine. The Extra-Fine Resolution Beam Mode nominally provides similar swath 

width and incidence angle coverage as the Wide Fine Beam Mode, at even finer 

resolutions, but with higher data compression ratios and noise levels. 
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(h) Ultra-Fine. The Ultra-Fine Resolution Beam Mode is intended for applications which 

require very high spatial resolution. 

(i) Wide Ultra-Fine. The Wide Ultra-Fine Resolution Beam Mode provides the same 

spatial resolution as the Ultra-Fine mode as well as wider coverage, but at the expense 

of higher data compression ratios (which leads to higher signal-dependent noise levels). 

(j) Extended High (High Incidence). In the Extended High Incidence Beam Mode, six 

Extended High Incidence Beams, EH1 to EH6, are available for imaging in the 49 to 

60 degree incidence angle range. 

(k) Extended Low (Low Incidence). In the Extended Low Incidence Beam Mode, a single 

Extended Low Incidence Beam, EL1, is provided for imaging in the incidence angle 

range from 10 to 23 degrees with nominal ground swath coverage of 170 km. 

(l) Standard Quad Polarization. In the Quad Polarization Beam Mode, the radar transmits 

pulses alternately in horizontal (H) and vertical (V) polarizations, and receives the 

return signals from each pulse in both H and V polarizations separately but 

simultaneously. 

(m)  Wide Standard Quad Polarization. The Wide Standard Quad Polarization Beam Mode 

operates the same way as the Standard Quad Polarization Beam Mode but with higher 

data acquisition rates, and offers wider swaths of approximately 50 km at equivalent 

spatial resolution. 

(n) Fine Quad Polarization. The Fine Quad Polarization Beam Mode provides full 

polarimetric imaging with the same spatial resolution as the Fine Resolution Beam 

Mode.  

(o) Wide Fine Quad Polarization. The Wide Fine Quad Polarization Beam Mode 

operates the same way as the Fine Quad Polarization Beam Mode but with higher data 

acquisition rates, and offers a wider swath of approximately 50 km at equivalent spatial 

resolution. 
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Appendix B: Principal component analysis (PCA)  

Principal component analysis (PCA) is a mathematical technique that transforms an 

original set of image bands into a new set of components that are uncorrelated and are 

ordered in terms of the amount of the original variance that is explained (Jensen, 2016). 

Original multispectral or hyperspectral image channels may be correlated. That is, images 

from different bands often appear similar and convey the same information. PCA has been 

used to reduce the redundancy in multispectral or hyperspectral data and by reducing a 

larger data dimension into a smaller set of 'representative' dimension, called 'principal 

components', which account for most of the variance in the original variables (Zeng, 2014).  

As in the example provided in Figure A-1, two image bands can be represented by a coordinate 

system PC1 and PC2, where the majority of information can be described merely by the first 

component PC1. 

To compute each component specifically for remote sensing bands, the covariance matrix 

for all the bands is computed firstly. Then the eigenvalues E= [𝜆11, 𝜆22, 𝜆33,…𝜆𝑛𝑛] and 

eigenvectors EV= [𝑎𝑘𝑝 … for k=1 to n bands, p=1 to n components] of the covariance 

matrix are computed. Finally, the eigenvalues are sorted in descending order. With the 

eigenvector, each principle component can be calculated by summarized each old band 

with given weight:  

𝐷𝑁𝑖
′ = ∑ (𝑎𝑘𝑖 × DN𝑘

𝑛
𝑖=1 ),    𝑘 = 1,… , 𝑛                                 (B-1) 

Where DN is the original bands, DN′ is the new principle components.  
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Figure B-1: The spatial relationship between the first two principal components: (a) 

Scatter-plot of data points collected from two remotely bands labeled X
1
 and X

2
 with 

the means of the distribution labeled µ
1
 and µ

2
. (b) A new coordinate system is created 

by shifting the axes to an X system. (c) The X axis system is then rotated about its 

origin (µ
1
, µ

2
) so that PC

1
 is projected through the semi-major axis of the distribution 

of points and the variance of PC
1
 (Component 1) is a maximum. PC

2
 (Component 2) 

must be perpendicular to PC
1
 (Jensen, 2016). 
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Appendix C: Minimum/Maximum Autocorrelation Factors 
(MAF) 

Minimum/Maximum Autocorrelation Factors (MAF) (Switzer & Green, 1984) is a noise 

separation procedure to avoid the signal blurring introduced through smoothing or spatial 

averaging procedure.  

Let the spatial covariance function of a multivariate stochastic variable, 𝑍𝑘 , where k 

denotes spatial position and ∆  a spatial shift, be Г(∆) = 𝐶𝑜𝑣 {𝑍𝑘, 𝑍𝑘+∆} . Evidently, 

Г𝑇(∆) = Г(−∆). Then by letting the variance-covariance matrix of 𝑍𝑘 be ∑ and defining 

the variance-covariance matrix ∑∆ = 𝐷{𝑍𝑘 − 𝑍𝑘+∆} , 𝐷{. }  is the variance-covariance 

matrix of its argument, then 

∑∆ = 2∑ − Г(∆) − Г(−∆)                                        (C-1) 

The covariance between a linear combination of the original variables and the shifted 

variables can be computed 

𝐶𝑜𝑣 {𝜔𝑖
𝑇𝑍𝑘, 𝜔𝑖

𝑇𝑍𝑘+∆} = 𝜔𝑖
𝑇Г(∆)𝜔𝑖 = 𝜔𝑖

𝑇Г𝑇(∆)𝜔𝑖 =
1

2
𝜔𝑖
𝑇(Г(∆) + Г(−∆))𝜔𝑖 = 𝜔𝑖

𝑇(∑ −

1

2
∑∆)𝜔𝑖                                                       (C-2) 

Thus the autocorrelation in shift ∆ of a linear combination of the mean-centered original 

variables, 𝑍𝑘, is  

𝐶𝑜𝑟𝑟 {𝜔𝑖
𝑇𝑍𝑘, 𝜔𝑖

𝑇𝑍𝑘+∆} = 1 −
1

2

𝜔𝑖
𝑇∑∆𝜔𝑖

𝜔𝑖
𝑇∑𝜔𝑖

                               (C-3) 

In order to minimize that correlation, the Rayleigh coefficient must be maximized 

𝑅(𝜔) =
𝜔𝑖
𝑇∑∆𝜔𝑖

𝜔𝑖
𝑇∑𝜔𝑖

                                             (C-4) 

The MAF transform is given by the set of conjugate eigenvector of ∑∆ with respect to ∑, 

W=[𝜔1 , …𝜔𝑚 ], corresponding to the eigenvalues 𝑘1 ≤ ⋯ ≤ 𝑘𝑚 . The resulting new 
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variables are ordered so that the first MAF is the linear combination that exhibits maximum 

autocorrelation. The autocorrelation of the ith component is 1−
1

2
𝑘𝑖 (Larsen, 2002). 
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Appendix D: Field data collection forms and photos 

Table D-1: Biomass Field Datasheet (Corn/Soybean) 

Recorded by: Assisted by: Date: Weather: Camera 

name: 

Site 

Name 
Point ID Photo # 

Phenolo

gy 

Width 

(cm) 

Lengt

h (m) 

# of 

plants 
Total # of 

cobs/pods 

# of 

cobs/pods of 

a plant 

 

       

1  

2  

3  

       

1  

2  

3  

Notes  

 

       

1  

2  

3  

       

1  

2  

3  

Notes  
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Table D-2: Biomass Lab Datasheet (Corn)   

Recorded by: Date: 

Site 

name 

Point 

ID 

Total fresh weight of stalks and 

cobs without bags(g) 

Fresh weight of stalks without bag (g) Fresh weight of cobs without bag (g) Fresh weight of 

seeds 

   

  
 

 

Total dry weight of stalks and 

cobs without bags(g) 

Dry weight of stalks without bag (g) Dry weight of cobs without bag (g) Dry weight of 

seeds 

 

  

 

 Total fresh weight of stalks and 

cobs without bags(g) 

Fresh weight of stalks without bag (g) Fresh weight of cobs without bag (g) Fresh weight of 

seeds 

 

  

 

 

Total dry weight of stalks and 

cobs without bags(g) 

Dry weight of stalks without bag (g) Dry weight of cobs without bag (g) Dry weight of 

seeds 

    

 Cob ID  # of rows per cob # of kernels per 

row 

# of seeds a cob Fresh weight of 

seeds of a cob 

Dry weight of 

seeds of a cob 

1      

2      

3      

 4      

5      

6      

Notes  
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Table D-3: Biomass Lab Datasheet (Soybean)   
Recorded by: Date: 

Site 

name 

Point 

ID 

Fresh weight of stalks and pods 

without bag (g): 

Fresh weight of stalks without bag (g) Fresh weight of pods without bag (g) Fresh weight of 

seeds 

 

 

  

  
 

 

Dry weight of paper bag for stalks 

(g) 

Dry weight of stalks without bag (g) Dry weight of pods without bag (g) Dry weight of 

seeds 

 

  

 

 Fresh weight of paper bag for 

stalks(g): 

Fresh weight of stalks without bag (g) Fresh weight of pods without bag (g) Fresh weight of 

seeds 

 

  

 

 

Dry weight of paper bag for stalks 

(g) 

Dry weight of stalks without bag (g) Dry weight of pods without bag (g) Dry weight of 

seeds 

    

 Pod ID  # of seeds of per pod Average # of seeds of a pod 

1   

2  

3  

4  

5  

 6  

7  

8  

9  

10  

Notes  
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Figure D-1: Work photos 
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Figure D-2: Examples of hemispherical photos (a) corn, (b) soybean 

 

(a) 

(b) 
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Figure D-3: Example of hemispherical photos recoding sheets 
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Figure D-4: Example of biomass recoding sheets 
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Figure D-5: Example of general survey recoding sheets 
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Figure D-6 (a) 

 

Figure D-6 (b) 
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Figure D-6 (c) 

Figure D-6: Detailed locations of the winter wheat sample points and Radarsat-2 

image for Stratford study site 
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Figure D-7 (a)  

 

Figure D-7 (b) 
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Figure D-7 (c) 

Figure D-7: Detailed locations of the corn sample points and Radarsat-2 image for 

Stratford study site 
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Figure D-8 (a) 

 

Figure D-8 (b) 
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Figure D-8 (c) 

 

Figure D-8 (d) 

Figure D-8: Detailed locations of the corn sample points and Landsat-8 image for 

Komoka study site 
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Figure D-9 (a) 

 

Figure D-9 (b) 
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Figure D-9 (c) 

Figure D-9: Detailed locations of the soybean sample points and Landsat-8 image 

for Komoka study site 
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