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Abstract

The study of the retail gasoline market is of great interest in financial economics,

since it allows many theories about price formation, oligopolistic markets, and con-

sumer search to be tested. In addition, the risk management of gasoline prices is an

important instance of the management of any consumable commodity cost. For the

retailer, the tool of dynamic pricing may be found to be useful.

This thesis contributes to the study of retail gasoline markets in three main ways,

each in its own paper. The first paper tests various economic models to confirm earlier

results about pricing behavior in retail gasoline markets and the setting of optimal

pricing strategies. The second paper presents optimal refueling strategies, analysis

of optimal swap contracts. It also proposes and analyzes a price guarantee ”gasoline

option” based on loyalty programs and financial swap structures. The final paper

presents optimal refueling strategies using empirical data, and compares the value

obtained using a simulated approach with the value using an empirical approach.

Keywords: retail gasoline; oligopoly; game theory; dynamic programming; optimiza-

tion; optimal pricing; pricing and searching behavior; asymmetric response; floating-

to-fixed swap; loyalty program; guaranteed price; optimal control; optimal refueling

strategies.
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Chapter 1

Introduction

1.1 Retail Gasoline Market

Retail gasoline is the end product of a very long supply chain. The sale at local

retail stations is the last step of that long process, including refining, retailing and

distribution, and marketing. Due to the long supply chain, it is not clear what goes

into the price of a gallon of gasoline, what drives its prices up and down, and what

drives price differentials between cities, towns, and streets. Thus, in order to under-

stand retail gasoline markets, not only do we need to examine market size, the level

of competition, price variation between communities, but we also need to study how

gasoline is produced, distributed, priced and sold.

In Canada, during 2014, the total net sale of gasoline was 40.9 billion liters, while the

total population was estimated at 35.5 million, and the total number of road motor

vehicle registrations was 23.5 million (StatCan (2015) and StatCan (2014)). We can

estimate the average fuel consumption rate, 1,740 liters per car per year, by dividing

the total net sale of gasoline by the total number of registered road motor vehicles.

Then, by simple calculation, the average annual cost of the fuel consumption is about

$1,740 assuming $1/L and about $1,722.6 assuming $0.99/L, thus, every cent differ-

ence at the pump is worth about $20 per year for the typical consumer.
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The dollar amount may look small from the consumers point of view, but from the

retailers point of view, every cent at the pumps is worth about $410 million per year

for the industry as a whole, as the total annual quantity of gasoline sold in Canada

is about 41 billion liters. The sale of motor fuel is also a major economic activity in

most countries, especially in poorly planned and designed cities where the residential

area is far from business, commercial or industrial areas, as the cost of motor fuel is

a major cost of transportation for many commuters.

The share of the retail gasoline price are the cost of crude oil (about 50%), followed

by taxes (about 20% depending on your home province), refiner’s cost and margin

(about 20%), and retailer’s operational cost including distribution, marketing, stor-

age and gross margin (about 10%). Therefore, even before the gasoline is delivered

to the local retail stations, over 90% of the cost of gasoline is already determined.

The biggest factor of the retail gasoline price is the cost of crude oil, which varies

over time and across regions. The crude oil price is strongly driven by the world

market and Organization of Petroleum Exporting Countries (OPEC), who controls

about half of the world’s oil production and the world’s crude oil reserves. Other

factors can also affect the price of crude oil. For instance, a disruption in global oil

supplies due to natural disasters or conflicts in the petroleum exporting countries can

lead the price of crude oil to rise sharply. Prices may also fall in response to reduced

demand due to global recession or as inventories rise (Kilian and Murphy (2014)).

There are two main benchmarks for pricing crude oil, namely West Texas Interme-

diate (WTI) and Brent crude oil as shown in Figure 1.1. WTI is a crude produced in

Texas and southern Oklahoma and Brent is produced in the North Sea region, both

are light, sweet crude oils although WTI is generally sweeter (low in sulphur) and

lighter (higher petroleum density) than Brent. The crude oil price is volatile, for in-

stance, their price decreased about 66% between 2008 and 2009, but increased about

100% between 2009 and 2010, as depicted in Figure 1.1. The crack spread measures
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Figure 1.1: Historical spot prices of West Texas Intermediate (WTI) and Brent, the current mar-
ket rates at which the commodity can be purchased ”on the spot”, and crack spread measures the
differential between the price of WTI and New York Harbor Conventional Gasoline Regular Spot
Price (Source: U.S. Energy Information Administration (Oct 2017)).

the differential between the price of WTI or Brent and gasoline or other products.

Thus, the spread approximates the profit margin an oil refinery can expect to earn

by refining crude oil; as of October 2017, the crack spread is about 20 US dollar per

barrel, see Figure 1.1 (EIA (2017)).

The volatility of crude oil productions feeds into the volatility of petroleum products

because crude oil is refined to produce a wide array of petroleum products, including

gasoline for automobiles, heating oil, diesel and jet fuels, or other chemical products.

Thus, a change in world crude oil productions and imbalance in supply and demand

of crude oil based products can also lead to a change in wholesale gasoline price and

downstream retail gasoline price.
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1.2 Infrastructure of Retail Gasoline in Canada

Over the years, the structure of the retail gasoline market has changed significantly

in part because of trends in market de-regulation. Today’s retail gasoline market

is much more complex and fragmented in many countries including Canada (NRC

(2014)). Only a small number of gas stations are now directly owned and operated

by vertically integrated refiners or by national oil companies albeit many still display

national brands. Many national brands are run either by retail operators who own the

site inventory or by independent owners who have total control over the price. Thus,

today’s retail gasoline market is a highly competitive arena in which major branded

companies fight for their market share nation wide, while local small independent

owners compete against each other in niche markets. The price competition between

fuel retailers leads to price differentials across cities, towns, and streets (McCaffrey

et al. (2011)).

In Canada, total sales of refined petroleum products increased at a slow but steady

pace during most of the 1990s and early 2000s, stimulated by economic and popu-

lation growth. Transportation is largely responsible for the growth in total sales of

refined petroleum products since 1990, accounting for more than two-thirds the sales

of refined petroleum products, primarily motor gasoline, low-sulphur diesel fuel and

aviation fuel. According to Natural Resources Canada, the sales of refined petroleum

products including gasoline in Canada, the fifth largest oil producer in the world,

totalled 89.1 billion litres in 2014, about 46% was motor gasoline (includes ethanol),

20% was distillate fuel (heating oil and diesel fuel), and 8% was jet fuel. On average,

Ontario and Quebec account for about 60% of the gasoline consumed in Canada, the

Western provinces account for about 32%, and the remaining 8% of gasoline is con-

sumed in the Atlantic provinces and the Territories (NRC (2014), Statista (2014)).

Depending on classification and based on the way crude oil is distilled, petroleum
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products can be separated into three categories: light distillates (separated compo-

nents from distillation, such as, liquefied petroleum gas, gasoline, naphtha), middle

distillates (kerosene, diesel), other distillates (heavy fuel oil, lubricating oils, wax, as-

phalt). The unbalanced demand for gasoline and for other distillates can also create

challenges for refiners. This is because a refinery has a limited range of flexibility

in setting the gasoline to other distillates production ratio. Beyond a certain point,

the production of other distillates can only be increased by also increasing gasoline

production. Therefore, refiners can have an excess supply of gasoline compared to

other distillates or vice versa depending on the regional demand for gasoline and other

distillates (NRC (2014)).

A recent survey study, entitled the National Retail Petroleum Site Census 2014, iden-

tified a total of 11,811 retail gasoline stations operating in Canada as of December

31, 2014. The number of retail gasoline stations in Canada has decreased since 1989,

when over 20,000 retail outlets existed. The study determined that fifteen percent

of all 11,811 gas stations are under the price control of one of the three big oil com-

panies, and nineteen percent of all gas stations are under the price control of the

refiner-marketers. While most people are familiar with the big brands like Suncor,

Esso, Shell, and Petro Canada, many of them are independently owned and operated

by individual business people who set their own price (MJ Ervin & Associates (2015)).

The survey report illustrated the diversity of gasoline brands, with over 94 different

brand names in Canada. However, most of these are brands originate from fourteen

refineries, operated by eight refining companies. There are 66 companies involved

in the retail management of these brands. The provision of goods or services, such

as the type of pump service (full, self or split), convenience store size, car washes,

fast food, automotive service, and to what degree diesel fuel is offered for sale, other

than gasoline is also vital part that differentiate retail gasoline outlets, since the gross

margin on gasoline itself is generally very small (MJ Ervin & Associates (2015)).
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With the help of other services, margin plays a critical role for the profits of retail

gasoline station as discussed in Chapter 3. Due to the high degree of competition,

fuel retailers must optimally set their prices to maintain gross profit in response to

volatile costs and frequent price changes across competitors. We test different pric-

ing strategies and project the expected sales using a model developed based on the

historical data; retailer’s own price, sales, competitor’s price, and wholesale price.

In Chapter 2, we introduce key ideas of dynamic programming, basic optimality

equation, and the principle of optimality. Then, we show dynamic programming ap-

plication examples in radiation therapy, and discuss the analogy between radiation

therapy and a retail gasoline market.

In Chapter 3, we study dynamic competition between nearby retailers in the re-

tail gasoline market for multiple periods. We first model this dynamic retail gasoline

competition as a repeated single-period game where the retailers set their price si-

multaneously, then, extend the model to the sequential game where the retailers set

their price sequentially. Using backward induction, we find the optimal prices for

each retailers in the sequential game.

In Chapter 4, in contrast to the previous chapter, which is written from the per-

spective of a retailer, we change our attention to the end customers and introduce

loyalty program which provide customers with a guaranteed price to hedge against

the fluctuation of price. We also study the expected outcomes of the guaranteed price

and optimal quantity of gasoline to be hedged by retailers in order to provide this

guaranteed price.

In Chapter 5, we extend dynamic programming to determine an optimal solution
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when a dynamic state evolves stochastically. We analytically prove existence of the

optimal decision boundary and examine the optimal refueling time and quantity with-

out and with the loyalty program. We also numerically compute the optimal decision

boundary and optimal policies, then, we find the value of loyalty program.

In Chapter 6, we compare the value using a simulation approach with the value

using an empirical approach. The results show that it might be worth it to freely

offer the guaranteed price to valued customers as a loyalty program.

The thesis concludes in Chapter 7 which summarizes and provides next steps.
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Chapter 2

Mathematical Foundations for

Dynamic Programming

2.1 Optimization in High Dimension and the Need

for Dynamic Programming

One can easily find an optimal solution by the brute force method of checking all

possible candidate solutions for a simple 1-dimensional optimization problem when

the number of possible solutions is small. It gets harder to find an optimal solution

by the brute force method, as the dimension space gets bigger and the number of

feasible solutions grows. For example, to optimize N functions taking inputs from

a d-dimensional space, one must check Nd potential solutions. For example, using

N = 100 and d = 10, one must check 10010 spots to find the optimum. That motivates

dynamic programming, which converts a d-dimensional problem into d 1-dimensional

problems. For the same example above now, one needs to solve for 10 problems, each

of checking for 100 spots, for a total of 1000 or 104 function evaluations, which is

much easier.
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2.2 Dynamic Programming

Dynamic programming, proposed by Bellman (Bellman (1954)), is a powerful numer-

ical method for solving optimization problems efficiently. In addition to the simpli-

fication described in Section 2.1, the main advantage of dynamic programming over

other methods is the guaranteed global optimality of the solution.

One can use the dynamic programming technique to decompose an N-decision prob-

lem into a sequence of N separate, but interrelated, single-decision sub-problems, and

then combine the solutions of the smaller problems to obtain the solution of the entire

larger model.

First, we decompose a big systemic problem into small sub-problems each with only

one decision variable.

The basic optimality equation for an one-stage problem is

V (i) = max
{a∈A}

R(i, a), (2.1)

which can easily be extended to n-stage problems of the form Vn(i) via the relation:

Vn(i) = max
{a∈A}

[
R(i, a) +

∑
j

Pij(a)Vn−1(j)

]
. (2.2)

Let

Pij =

{
1 if a ∈ A
0 otherwise.

and where A is the finite set of all possible actions or decisions, a. If action a is

chosen, then the reward earned is R(i, a) and the next state will be j with probability
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Pij(a), where i is the current state. In practice, it often takes a great effort to solve

(2.2) analytically, thus numerical methods are one of the alternative options. The

most naive approach to solving such problems is to solve for all possible combination

of actions, selecting the series of actions that gives the biggest value of Vn(i), but,

as described in Section 2.1, this is computationally expensive. In contrast, a general

technique for recursively solving for Vn(i) follows

1. First obtain VN(i) given the final condition, i.e. a=max(A).

2. Now solve for Vn(i) when n = N − 1,

3. and so on, up to V1(i) for all i = 0, 1, · · · ,M.

The optimal policy is a path of actions a that maximizes the Vn(i) for n = 1 · · ·N .

When the state variables at stage i and the decision variables a to use are allowed to

take on only a finite set of discrete values, the result is a discrete dynamic program-

ming problem.

The solution of the discrete dynamic programming problem will always be a global

maximum (or minimum) regardless of the concavity, convexity, or even the continuity

of the functions R(i, a) (Bertsekas (1995)).

In this thesis, we consider discrete time finite horizon dynamic programming prob-

lems. The dynamic programming applications in retail gasoline market are;

1. Optimal pricing where firms sequentially compete on price,

2. Optimal refueling time and amount without a guaranteed price,

3. Optimal refueling time and amount with a guaranteed price.
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2.3 Simple Dynamic Programming Example

The reader who is familiar with dynamic programming is encouraged to skip this

section. Although in this thesis we mainly focus on retail gasoline markets, dynamic

programming is applied in many other areas. For instance, in radiotherapy, radiation,

which is high energy X or gamma rays, is directed to damage a tumor while avoiding

surrounding healthy normal tissue. Cancer cells are naturally more susceptible to ra-

diation due to their faster growth rate and oxygen saturation level than that of normal

tissues. It is very important to minimize dose to a normal tissue and to ensure that

sensitive biological structures near the tumor are not damaged more than a certain

amount (this corresponds to a tank level constraint in the gasoline problem consid-

ered in Chapter 5) so that we minimize adverse reactions to sensitive organs. This

leads an optimization problem for optimal dose sequences and fractionation schedules

(optimal refueling amount and strategy in Chapter 5 gasoline problem), whether to

deliver a large number of relatively low doses (fill only minimum in Chapter 5 gaso-

line problem) or deliver a small number of high doses (fill-up in gasoline problem in

Chapter 5).

The linear quadratic (LQ) dose response model is a popular model to study the re-

sponse of biological tissues to the radiation doses. For a tumor tissue, this is given by;

T (dk) = αTdk + βTd
2
k (2.3)

While for sensitive normal tissue, it is given by;

S(dk) = αSωdk + βS(ωdk)
2 (2.4)

Here 0 < ω < 1 is the ’sparing factor’, which depends on the level of dose, dk measured
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in Gray (Gy), αT and βT are the tumor specific response coefficients, while αS and

βS are the sensitive tissue response coefficients that are assumed to be constant for a

patient over the duration of radiation treatments (Davison, Kim, and Keller (2011)

and Keller et al. (2013)).

The constrained optimization problem to maximize the damage to the tumor is

max{d1,d2,··· ,dN}

N∑
k=1

T ({dk}) (2.5)

s.t.
∑N

k=1 S({dk}) = Ω for k = 1 to N .

The DP optimality equation for the above optimization problem is

Vn(i) = max
{a∈An}

[
R(i, a) +

∑
j

Pij(a)Vn−1(j)

]
. (2.6)

with a sensitive tissue constraint below,

N∑
k=1

S(dk) ≤ Ω and dk ≥ 0 for k = 1, · · · , N

where R(i, a) = T (dk) a = dk

At maximum the sensitivity tissue constraint will bind, and we have

Vn(i) = max
{dk∈S−1

(
Ω−

∑n
k=1 S(dk)

)
}

[
T (dk) +

∑
j

Vn−1(j)

]
. (2.7)

We have the final condition that all the remaining dose must be applied by the end

of decision periods with terminal condition;
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VT (s) = αT

[
S−1

(
Ω−

∑T−1
k=1 S(dk)

)]
+ βT

[
S−1

(
Ω−

∑T−1
k=1 S(dk)

)]2

Proposition 0:

• if T (dt) = αTdM + βTd
2
M ≥ N(αTde + βTd

2
e) (αT

βT
≥ αS

ωβS
)

Vt(s) = αT

[
S−1

(
Ω−

∑t−1
k=1 S(dk)

)]
+ βT

[
S−1

(
Ω−

∑t−1
k=1 S(dk)

)]2
and d∗t = dM = S−1

(
Ω−

∑t−1
k=1 S(dk)

)
for t ≤ T .

• if T (dt) = αTdM + βTd
2
M < N(αTde + βTd

2
e) (αT

βT
< αS

ωβS
)

Vt(s) = αTde +βTd
2
e +αT

[
S−1

(
Ω−

∑t
k=1 S(de)

)]
+βT

[
S−1

(
Ω−

∑t
k=1 S(de)

)]2

and d∗t = de for t ≤ T .

Proof by induction:

for t = T − 1 (for one stage-to-go)

VT−1(s) = αTd
∗
t + βTd

∗2
t + VT (s′)

= αTd
∗
t + βTd

∗2
t + αT

[
S−1

(
Ω−

T−1∑
k=1

S(dk)
)]

+ βT

[
S−1

(
Ω−

T−1∑
k=1

S(dk)
)]2

where

VT−1(s) = αTd
∗
t + βTd

∗2
t + αT

[
S−1

(
Ω−

∑T−1
k=1 S(dk)

)]
+ βT

[
S−1

(
Ω−

∑T−1
k=1 S(dk)

)]2

Thus, if αT

[
S−1

(
Ω−
∑T−2

k=1 S(dk)
)]

+βT

[
S−1

(
Ω−
∑T−2

k=1 S(dk)
)]2

≥ 2
[
αT
[S−1

(
Ω−

∑T−2
k=1 S(dk)

)
2

]
+

βT
[S−1

(
Ω−

∑T−2
k=1 S(dk)

)
2

]2]
, we maximize d∗t , and d∗t = dM = S−1

(
Ω−

∑T−2
k=1 S(dk)

)
,

and if αT

[
S−1

(
Ω−
∑T−2

k=1 S(dk)
)]

+βT

[
S−1

(
Ω−
∑T−2

k=1 S(dk)
)]2

< 2
[
αT
[S−1

(
Ω−

∑T−2
k=1 S(dk)

)
2

]
+

βT
[S−1

(
Ω−

∑T−2
k=1 S(dk)

)
2

]2]
, we minimize d∗t , and d∗t = de =

S−1
(

Ω−
∑T−2
k=1 S(dk)

)
2

.

The Proposition 0 holds for t = T − 1.

If d∗t = de,
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VT−1(s) = αTde + βTd
2
e + αT

[
S−1

(
Ω−

∑T−1
k=1 S(de)

)]
+ βT

[
S−1

(
Ω−

∑T−1
k=1 S(de)

)]2

and if d∗t = S−1
(
Ω−

∑T−2
k=1 S(dk)

)
,

VT−1(s) = αT

[
S−1

(
Ω−

∑T−2
k=1 S(dk)

)]
+ βT

[
S−1

(
Ω−

∑T−2
k=1 S(dk)

)]2

Assume the proposition 0 holds for all t = j + 1, j + 2, · · · , T − 1.

Prove the proposition 0 holds for t = j (for T − t stages-to-go)

Vj(s) = αTd
∗
j + βTd

∗2
j + Vj+1(s′)

= αTd
∗
j + βTd

∗2
j + αT

[
S−1

(
Ω−

j∑
k=1

S(dk)
)]

+ βT

[
S−1

(
Ω−

j∑
k=1

S(dk)
)]2

where

Vj(s) = αTd
∗
j + βTd

∗2
j + αT

[
S−1

(
Ω−

∑j
k=1 S(dk)

)]
+ βT

[
S−1

(
Ω−

∑j
k=1 S(dk)

)]2

Thus, if αT

[
S−1

(
Ω −

∑j−1
k=1 S(dk)

)]
+ βT

[
S−1

(
Ω −

∑j−1
k=1 S(dk)

)]2

≥
[
T − (j −

1)
][
αT
[S−1

(
Ω−

∑j−1
k=1 S(dk)

)
T−(j−1)

]
+βT

[S−1
(

Ω−
∑j−1
k=1 S(dk)

)
T−(j−1)

]2]
, we maximize d∗j , and d∗j = S−1

(
Ω−∑j−1

k=1 S(dk)
)
, and d∗1 = S−1(Ω) = dM ,

and else if, we minimize d∗j , and d∗j = de =
S−1
(

Ω−
∑j−1
k=1 S(dk)

)
T−(j−1)

.

By dynamic programming, we have shown there are only two extreme solutions to

this problem, an equal dose (de) per fraction and a megadose (dM) treatments.

de = S−1
(Ω

N

)
in which d1 = d2 = · · · = dN = de and N ∗ S(de) = Ω
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dM = S−1(Ω)

in which S(dM) = Ω

If αs, βs, Ω are all known and constant, the equal dose and the megadose are;

de =

√
α2
s + 4βs(Ω/N)− αs

2βsω

dM =

√
α2
s + 4βs(Ω)− αs

2βsω

The optimal dose and the number of fractions depend on whether αTdM + βTd
2
M ≥

N(αTde + βTd
2
e) or αTdM + βTd

2
M < N(αTde + βTd

2
e). By simple math, the above

conditions can be rewritten as, αT
βT
≥ αS

ωβS
or αT

βT
< αS

ωβS
.

With these retail gasoline market preliminary (in Chapter 1) and Dynamic Program-

ming preliminary (in Chapter 2) out of the way, we now proceed to some modeling

and analysis of gasoline markets. We begin in Chapter 3 with the discussion of price

setting behaviour by gasoline retailers.
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Chapter 3

Optimal Prices in the Case of the

Retail Gasoline Market?

3.1 Introduction

Economists have long been fascinated with retail gasoline markets because of the light

they shed on several microeconomic questions. Their work, as discussed in more detail

in the following literature review section, includes price formation, consumer search,

and oligopolistic competition. This study analyzes a rich new European dataset to

validate or partially validate some of the existing economic conclusions on gasoline

pricing, all of which were based on North American data. The economic models

we examine tend to have a descriptive focus (i.e., how do consumers and retailers

act?), but in addition to validating these models, we also take a slightly prescriptive

approach by following up with this question: Given the economic insights gleaned,

how should economic agents react? Our main new contribution in this regard is to

add time series-based optimal strategies to the setting of gasoline prices.

Gasoline is a product that many consumers must buy on a regular basis. Despite the
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best efforts of retailers to differentiate their brand from others, gasoline is essentially

a commodity, the wholesale price of which is set on financial markets and fluctu-

ates from day to day. The retail price of gasoline is easy for consumers to monitor,

both because it is posted in large numerals outside every gasoline station and be-

cause several websites (e.g., www.gasbuddy.com, www.gaspricewatch.com) now post

aggregated data about each individual station’s prices. The market for retail gaso-

line provides an interesting laboratory through which to study several microeconomic

questions. Gasoline markets are used as a study setting to examine the ways that

retailers can pass along price changes to consumers.

Gasoline is sold by small independent retailers but mostly by large chains of retailers

and, as such, it provides a useful field-based situation for studying the way retailers

may collude in setting prices when input prices change rapidly. Gasoline stations

occupy a variety of locations; some are farther from and some closer to consumers.

The impact of this spatial variation allows for an investigation of some interesting

questions on consumer search behaviours. Despite the large amount of data about

gasoline prices, even relatively simple tasks like estimating the price elasticity of

consumers to gasoline prices are remarkably hard to settle; these parameters may, in

fact, vary with time.

The profit of the individual retail gasoline station depends on both the direction

of the upstream cost change and the demand change. The upstream cost change

is something that cannot be controlled by the individual retailers, but the demand

change can be indirectly regulated by their pricing decisions. As a consequence,

demand can be modeled as a function of the individual retailers’ prices and their

competitors’ prices. Dynamic competition occurs when firms compete in the market

for multiple periods. We model this dynamic retail gasoline competition as a repeated

single-period game.
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This paper combines theoretical and empirical studies of retail gasoline pricing behav-

iors. Section 3.2 describes the dataset, followed by a statistical analysis. Section 3.3

presents several economic models, including the classic Bertrand model, the differenti-

ated Bertrand model, the repeated single-period game model, and a sequential game

model to derive the optimal pricing strategies in an oligopoly setting. Section 3.4

provides a quantitative case study based on a linear regression model for site-specific

gasoline prices and sales volumes with a self-selected competitor’s price. Section 3.4

also provides empirical results based on models from Section 3.3 and shows the profit

for using optimal pricing strategy for each game. Also, we examine empirical proof for

price asymmetry using daily data from cities in a western European country, and we

support the idea that implicit collusion may constitute a possible source of asymme-

try. A qualitative analysis follows, exploring how imperfect information on upstream

cost affects consumers’ search behaviors and retailers’ pricing decisions.

3.1.1 Literature Review

The retail gasoline pricing literature includes research that studies the price differen-

tials across individual stations using station-level empirical data and the response of

aggregated gasoline prices to wholesale gasoline prices. Some studies report asymmet-

ric gasoline price response to upstream costs and Edgeworth price cycles in gasoline

markets in which there are two phases: an undercutting phase and a relenting phase.

Slade (1987) investigated the Vancouver retail gasoline market by collecting daily

prices, sales volume, and cost data for three types of gasoline sold at 13 service

stations during a price-war period in the summer of 1983. In order to estimate

response matrices, Slade focused on the behavior of the subject firms during highly

competitive periods rather than during cooperative periods. Bertrand-Nash, best-

reply, and monopoly prices were calculated using the estimated demand and price
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change equations and were then compared to the prices observed both during and

after the price war.

Noel (2007) examined three different pricing phenomena, namely cost-based pricing,

sticky pricing, and sharp asymmetric pricing, observing all three in several Canadian

retail gasoline markets with a panel set of 19 cities over 574 weeks (January 1989

to December 1999). Using Markov-switching regression, Noel found cycling activity

in 43% of the sample, sticky pricing in 30%, and cost-based pricing in 27%. Cy-

cling activity becomes prevalent when there are more small firms, but sticky pricing

dominates with few small firms.

Verlinda (2008) found that retail gasoline prices respond asymmetrically to the cost

of wholesale gasoline. Prices rise at a much faster rate with cost increases compared

to the rate at which they recede with cost declines. In a study of weekly gas station

prices in Southern California from September 2002 to May 2003, Verlinda illustrated

the estimated asymmetry graphically through differences in Cumulative Response

Functions (CRF). CRF posits a single cost shock at time t and describes the path of

subsequent cumulative price changes until the price settles. Verlinda also found that

market power and collusion are related to price-response asymmetry.

Estimating the price elasticity of consumer demand to gasoline prices is hard to settle,

as discussed in Espey (1996), who finds that the average price elasticity of demand for

gasoline is -0.26, while in the long-run, the price elasticity of demand rises to -0.58.

Similarly, Hanly et al. (2002) also find that the price elasticity of demand is -0.25

in the short-run, while in the long-run, the price elasticity of demand rises to -0.64.

However, Hughes (2008) showed that the price and income elasticities of gasoline

demand have changed considerably over the past several decades. Hughes compared

two periods, from 1975 to 1980 and from 2001 to 2006, and found that short-run price

elasticities differed in range from -0.21 to -0.34 against -0.034 to -0.077, respectively.
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Lewis and Noel (2011) studied how the Edgeworth price cycle affects the speed with

which price responds to cost changes. As soon as falling prices become as low as

wholesale costs, prices jump back up again and a new cycle begins. Using a latent

regime Markov-switching regression framework, Lewis and Noel (2011) built a model

specific to cycling markets that incorporated the Edgeworth cycle price dynamics and

studied broad-panel data of daily retail and wholesale gasoline prices from 90 cities

during 2004 and 2005.

Janssen et al. (2011) examined the properties of a perfect Bayesian equilibrium, sat-

isfying a reservation price property (PBERP) where consumers buy if the observed

price is below the reservation price and search for a better price otherwise. In this

framework, these authors analyzed a sequential consumer search model in the context

of cost uncertainty and showed that, when the cost is uncertain, the average price

and the expected lowest price are higher and consumer welfare is relatively lower.

Chandra and Tappata (2011) tested temporal price dispersion using a panel data set

from the U.S. retail gasoline market and found that price dispersion increases with

the number of firms and search costs and decreases with the production cost. These

results imply that there are fewer gains for consumers to search at such times.

3.2 Description of the Data

Most previous studies have used either daily station-level short-panel data, such as

Slade (1987), Chandra and Tappata (2011), and Lewis and Noel (2011); or weekly

station-level long panel data, like Verlinda (2008); or daily city-level cross-sections,

like Lewis [2012] and Noel [2012]. A few studies used daily station-level long-panel

data, collecting sales data from individual gas stations (like that used in this study)

instead of using aggregated local demand.
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The dataset used in this study is unique and broad in its temporal and spatial di-

mensions. There are 109 different retail sites (stations index i, i = 1, 2, ..., 109), each

with anonymized site ID in the data set. Each site is independent of the others,

and all are located in western European cities. The data collected per site contains

a date index t (t = 1, ..., 380)1; a weekday index from 1 (Sunday) to 7 (Saturday);

and station-specific daily retail price (pit, in euros per liter) data; the replacement

cost of regular grade gasoline (Ci
t , in euros per liter) on the date specified, including

delivery from the wholesale terminal to the retail site; and the daily total regular

gasoline grade fuel sales volume (in liters). Each set of station-specific data also

contains self-selected competitors’ daily retail prices (pik,t, k = 1, ..., Ni, in euros per

liter), where Ni is the number of competitors to station i, with five to eight competi-

tors assigned to each site. We define the static average competitor price to station

i on date t as pic,t =
∑Ni

k=1

pik,t
Ni

. The data were collected every morning by retailers

who contracted with a leading global pricing and solution company for the period

from January 2009 to December 2009. Unlike previous studies, most of the data is

complete, and there are no missing observations during the sample period. Due to a

confidentiality agreement, no further detail description can be provided.

We use the total daily sales volume for regular-grade gasoline as a proxy for de-

mand. We apply 21% VAT on the replacement cost (i.e., the cost of the gasoline

that will replace the inventory is being sold) as a proxy for marginal cost to re-

tailers, using the raw data to show the behavior of the retail gasoline market. For

each retail gasoline station i, the static average price of each self-selected competitor

(five to eight competitors per retailer) is considered for the linear regression model,

and thus, the regression results are site-specific. We site-specifically regress quantity

demanded(qit) against the subject retailer’s own price(pit) and the static average com-

petitor’s price(pic,t) over time, given as:

1Slightly more than 1 year.
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Model 0: qit ∼ pit + pic,t.

In order to capture a general characteristic and improve model fit, we also try to

smooth our data when fitting a model and estimating parameters. Let qt be the

original demand series. To smooth this, now define qt as a seven-day moving average;

as defined by:

qt =
(qt−3 + qt−2 + qt−1 + qt + qt+1 + qt+2 + qt+3)

7
. (3.1)

Similarly, we define pt and pc,t as a seven-day moving average retailer’s own price and

static average competitors’ price, respectively. The smoothed data makes it easier to

observe the relationship between the demand and the price. We use this symmetric

averaging to determine elasticities that are not regularly updated in our dynamic

models. We tried other models, such as quadratic models, and we also tried addi-

tional variables, but none of these more complicated models significantly improved the

model fit for the complexity. We regressed the moving average of demand on the mov-

ing averages of the retailer’s own price and static average competitor’s price, given as:

Model 1: qit ∼ pit + pic,t.

The adjusted R-squared improves from 0.14 (Model 0) to 0.41 (Model 1); see Table

3.1 for an example of a particular station.
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Table 3.1: Estimation of quantity demanded with own price and a static average competitor’s price
(q = β0 + β1p + β2pc) and estimation of the moving average of demand with moving average of
own price and of static average competitor’s price (q = β0 + β1p + β2pc), where over bar denotes
moving average and variables starred **, and *** indicate significance at the 1%, and 0.1% level,
respectively. Standard errors are in parentheses.

Variable Model 0 Variable Model 1

Constant β0 = 14128*** Constant β0 = 13378.1***
(1956) (957.2)

p β1 = -170866*** p β1 = -217990.8***
(24735) (15076.5)

pc β2 = 167407*** pc β2 = 215560.5**
(25098) (15274.1)

Adjusted R-squared 0.14 Adjusted R-squared 0.41
Degrees of Freedom 361 Degrees of Freedom 355

3.3 A Duopoly Model Against a Static Player

First, we consider a modified Bertrand model, which describes a situation with only

two firms that reach perfect competition with prices set at the marginal cost (Maskin

and Tirole 1988) and (Ledvina and Sircar 2011). While the classical Bertrand model

is well suited to firms that compete on prices, the model assumes that the products

are undifferentiated, that the firms do not cooperate, that the firms compete by

setting prices, and that consumers buy everything from the firm with the lowest price

(Maskin and Tirole 1988). In this framework, firms will simply lower their prices until

they reach the marginal cost in order to gain any demand.

Although it is true that, with only two firms, the model reaches perfect competition,

(Maskin and Tirole 1988), this scenario is not directly relevant to the real retail

gasoline market, in which there are nearly always more than two competitors in

each geographic area. Although the gasoline that is sold at different stations may

be fairly homogeneous, it is nonetheless differentiated by several factors, including

brand, facility, service, and location. Because of these factors, stations with higher-

than-average prices may retain some non-zero demand. Thus, we consider a modified
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formulation in which we assume that the products are differentiated, and in the

modified Bertrand model, we assume a functional form for how the quantity demanded

for retail gasoline reacts to the static average competitor’s price change as well as to

the individual retailer’s own price change. We investigate the optimal pricing strategy

for an individual gas station against a static player (i.e. average competitor). We

denote the price in a station by p and the static average competitor’s price by pc. We

denote the demand in a station by q and assume a linear relation between prices and

demand, where β0, β1, β2 are nonnegative regression coefficients. We have explicitly

accounted for the fact that β1 is negative.

q = β0 − β1 ∗ p+ β2 ∗ pc (3.2)

The quantity demanded has a positive relationship with static competitor’s price but

a negative relationship with the retailer’s own price, as shown by Table 3.1. The

coefficients of the function were derived from empirical data using OLS regression.

We assume the marginal cost is nearly the same for the stations, and we denote it by

C, and finally denote profit by π. The profit function is then simply the product of

quantity and margin:

π = q(p− C) = (β0 − β1p+ β2pc)(p− C) (3.3)

The price at a station, p, is bounded by the maximum price (the price that drives

demand to zero) and the minimum price (the marginal cost) so that the profit always

takes a non-negative value. We look for solutions in which dπ
dp

= 0. Simple algebra

then shows that a firm’s best response to a static competitor’s price is:

p∗ =
(β0 + β1C + β2pc)

2β1

(3.4)
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Figure 3.1: The logged sales volume (demand) data for a specific site from a Western European
country is shown in solid line, and the 7 days moving average is shown in thicker solid line. The ver-
tical axis displays the log demand which is scaled logarithmically and ranges from 4914.8 to 22026.4
Liters, and the horizontal axis displays time (Jan-Dec 2009).

Here, p∗ is the optimal price when only one firm plays the optimal strategy, and there

are no equilibrium price pairs; p 6= pc, where pc is simply the observed static average

competitor’s price at t assuming the retailer sets their price myopically, believing that

their competitor keep their prices static. The resulting profit function is:

π(p∗, pc) = (β0 − β1p
∗ + β2pc)(p

∗ − C) (3.5)

3.4 A Case Study in Retail Gasoline Markets

In order to further investigate the retailer’s pricing behavior and sales volume, we

focus our discussion on a case study of one specific retailer from the dataset. As-

suming that nearby retail gasoline stations have similar marginal costs and taxes, the

retail margin would be the only factor that differentiates retail gasoline prices across
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stations. Each individual gasoline station is unique, however, in that their market

power and consumers’ preferences may differ. Brands and the proximity of com-

petitors and consumers affect their pricing strategies. For example, national brands

located near rental car locations are able to set prices higher than other stations in

the same metropolitan area (Jaureguiberry 2010). In fact, the evidence suggests that,

for gasoline stations, brand and location are the most important factors for garnering

local market power (Verlinda 2008) and (Jaureguiberry 2010).

We have only limited information about the competitors’ market data. Thus, it

remains unclear how individual retailers set their prices and to what extent they

can alter their prices relative to a competitor’s price. Using the limited information

available to us, we attempt to determine the pricing strategies used in a specific retail

gasoline station. Then, based on our model described in Section 3.3, we attempt to

optimize the price.

3.4.1 Descriptive Statistics on Demand and Price

The trend of the quantity demanded (sales volume) for gasoline in a specific site is

shown in Figure 3.1. The demand shows periodic spikes due to the seasonal (longer

scale) and weekly (shorter scale) trends of the retail price, as well as a few random

spikes, but without a long-run trend. The moving average of demand still fluctuates

over the course of one year, but the short-term periodic cycles are mostly removed,

as depicted by the thicker solid line in Figure 3.1. Thus, the sales volume of this site

is non-stationary without deterministic trends.

To examine the trend of the quantity demanded for gasoline for each day of the week,

we plotted the quantity demanded for gasoline in each site against the relevant day

of the week. Figure 3.2 shows a weekly cycle in gasoline sales for a specific site, with

the demand for gasoline gradually rising as the end of the week approaches, with a
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Figure 3.2: The weekly trend of gasoline sales volume (demand) for a specific site from a Western
European country is shown with error bars. The vertical axis displays sales (or demand) in Liters,
and the horizontal axis displays the day of week labeled as Weekday.

peak on Friday.

Although the demand and the margin still represent the two most important key

factors for retail gasoline profits, we observe that the demand is fairly stable against

the margin. If the upstream price information was also given to consumers, we would

expect to see the demand fall as the margin rises and rise as the margin falls. Figure

3.3 plots the pairs of observed retailers’ own prices and the static average competitors’

prices as a scatter plot. The pairs of observed prices form a small band along the

diagonal line of the plot, and the actual prices are not observed in the region below

the small band, where the retailer’s own price is much less than the static average

competitor’s price, nor in the region above the band, where the retailer’s own price

is much greater than the static average competitor’s price. This result implies that
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Figure 3.3: The scatter plot of static average competitor’s price and own price for a specific site
from a Western European country, 364 observations plotted as points. The vertical axis displays own
price, and horizontal axis displays static average competitor’s price in Euros. Reaction curve, given
by Eq. (3.4), lines for fixed cost (1.0, 1.1) and straight line (y=x) are added to the plot.

the observed price differences between the retailers’ own prices and the static average

competitor’s prices are bounded within a small window of about 2 to 3 cents. Perfect

competition suggests that prices would, on average, converge to the same level for

all retailers. If this were true, the straight line (y = x) would be at the center

of the scatter plot. However, the situation depicted is still far from one of perfect

competition, with the retailers’ own prices nearly always sitting a few cents higher

than the static average competitors’ prices. This is consistent with the proposed

modified Bertrand competition model and is backed up by the other dashed lines’

reaction curves.

From the first-order condition, Eq. (3.4), for each firm’s profit function, we can

compute the reaction curve for each firm, which crosses at the equilibrium price pair
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Figure 3.4: The solid line shows margin over time, the dotted line shows the price difference, own
price - minimum competitor’s price, for gasoline from a Western European country over time. The
left hand vertical axis displays margin in Euros, and the right hand vertical axis displays the price
difference in Euros, and the horizontal axis displays time (days).

of marginal cost for a homogeneous Bertrand model.

The competitor’s demand is estimated based on the same linear demand function.

The dashed line in Figure 3.3 shows the reaction curves for the different costs of

1.0 and 1.1. The lines that cross the vertical axis are the reaction curve for a firm

labeled as i, and the lines that cross the horizontal axis are the reaction curve for the

static average competitor of the firm labeled as −i. The reaction curves for a firm

and its static average competitor cross each other at the equilibrium price pair. All

equilibrium price pairs for a range of different costs lie between the marginal cost and

the monopoly price, implying a moderate competition in the retail gasoline market,

which is consistent with the modified Bertrand model.

In order to study how retail gasoline prices are set and how they change over time,

we plot the margin and the price difference between a given station’s price and the

minimum competitor’s price against time. From Figure 3.4, it can be speculated that
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stations do not use constant margin pricing because we observe that the margin is

never stationary but fluctuates within the range of 6 ∼ 16 euro cent over time. On

the other hand, the price difference fluctuates within a relatively small interval (5

euro cents) and is always positive. It is also observed that, the price difference stays

at a certain level for quite a long period of time, at 2 cents over 50 days. Based on

these pieces of evidence, it can be inferred that stations may maintain their relative

position to the minimum competitor prices in recognition of the competitor’s greater

market power. It is also possible that, in an inverse manner, the minimum competitor

may have set its price a few cents lower than the subject station’s own price. In the

following subsection of our paper, we develop a pricing strategy that may beat the

existing strategy.

3.4.2 Prescriptive Pricing

We adopt a price range given as p ∈ (pmin, pmax), where pmin is the minimum price

giving zero profit, and pmax is the maximum price that drives demand to zero. The

optimal price and profit can be computed for the given cost and the competitor’s price

using Eqs. (3.2) and (3.3). For a sensitivity test, we vary the static competitor’s price

while fixing the cost. The result shows that as the static competitor’s price drops, pmax

decreases, and vice versa. In fact, pmax directly depends on the static competitor’s

price, mathematically given as:

pmax =
(β0 + β2pc)

β1

(3.6)

The optimal prices and profits for the repeated single period game are computed for

floating time points using Eq. (3.4). Figure 3.5(a) shows optimal prices for a single

player as p∗. We observe that the trend of p∗ is always a few cents lower than the
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(a) (b)

Figure 3.5: (a): p1 is the trend of observed gasoline price over the course of year from a Western
European country, p∗ is the optimal price for a single firm. The vertical axis displays gasoline price
in Euros, and the horizontal axis displays time. (b): p1 indicates the trend of profit realized by
actual price over the course of year from a Western European country, p∗ indicates the optimal
profit realized by optimal price for a single firm. The vertical axis displays the profit in Euros, and
the horizontal axis displays time.

actual price trend.

Figure 3.5(b) shows the optimal profit for the same observed price and the optimal

prices as in Figure 3.5(a). A higher profit is observed for p∗ than the the observed

price. Also, we observe an asymmetry in which, when the actual price rises, the

optimal price is closer to the observed price than when the actual price falls. This

is because retailers set their margins low when the upstream cost rises, forcing the

possible price range (pmin, pmax) to shrink; and they set their margins high when the

upstream cost falls, forcing the possible price range (pmin, pmax) to expand. We will

discuss empirical evidence of this price response asymmetry in Section 3.4.4.
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3.4.3 Asymmetric Pricing and Searching Behavior

In this section of the paper, we conduct a more qualitative analysis to study retailers’

pricing decisions and consumers’ search behaviors. Firms earn high profit margins

by setting their prices high, relative to the upstream cost, when the upstream cost

falls. This action is possible partially because the demand does not fall much dur-

ing high-margin times. The inelastic demand response to the margin implies that

the consumers have only limited upstream cost information. This may further imply

that consumer’s purchasing decision is based mainly on their expected price, which is

estimated based on previous period’s prices and current competitor’s prices (Chan-

dra and Tappata 2011). Therefore, consumers with limited access to upstream cost

information find it difficult to maximize their welfare or utility (Janssen et al. 2011).

Table 3.2: Estimation of margin with price difference and cost change ( m = α0 +α1∆p+α2∆C).
Variables starred *, **, and *** indicate significance at the 5, 1, and 0.1 % level, respectively.
Standard errors are in parentheses.

Variable Model 2

Intercept α0 = 0.122938 ***
( 0.003803)

∆p α1 = -0.603528 ***
(0.165248)

∆C α2 = -2.510867***
(0.346661)

Adjusted R-squared 0.2004
Degrees of Freedom 355

We run a regression using site-specific price difference (∆pt = pt −min(pc,t)), where

min(pc,t) is a minimum competitor’s price at t; and cost change (∆Ct = Ct − Ct−1)

to examine the relationship of these two variables on margins (mt), given as:

Model 2: mt ∼ ∆pt + ∆Ct
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The retailer’s gain is offset by the consumer’s gain, and the relationship between the

two parties is more like a competition for available utility than it is a partnership.

Therefore, one might argue that consumers should be able to save more money by

searching harder when retailers enjoy big profit margins (i.e., when cost falls) than

when retailers enjoy small profit margins (i.e., when cost rises) if retailers do not col-

lude to keep their own price high when cost falls. However, exploring the regression

results using Model 2, this argument receives little empirical support, as we observe

that price dispersion is negatively correlated to the margin (see Table 3.2). There-

fore, firms enjoy higher margin when the dispersion between their own price and the

minimum competitor’s price is small, and vice versa. Also, firms indeed enjoy higher

margin when cost falls compared to when cost rises, as indicated by the negative

regression coefficient of cost change in Table 3.2.

This observation supports the result of Borenstein et al. (1997), which states that

retailers collude (at least, implicitly) to set high margins when upstream cost falls.

Since the retailers are colluding at those times, the price dispersion is smaller, as seen

in Figure 3.4. These observations support Borenstein et al. (1997) theory providing

smaller incentives for consumers to search when the upstream cost falls partially due

to the small price dispersion, and partially due to the lower price than their expected

price. This explains why other studies describe that consumers search less for cheaper

prices when prices fall than when prices rise.

Recall that the raw data for the quantity demanded displayed weekly periodicity, as

shown in Figure 3.2. In our data, the weekly trend of the quantity demanded for

gasoline gradually rises as the week approaches the weekend.
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3.4.4 Evidence for Price Response Asymmetry in the Euro-

pean Retail Gasoline Market

Cumulative Response Functions (CRF) have theoretical and practical importance

in examining the response asymmetry between retail prices and costs. The price

response asymmetry describes a gasoline price behavior in which prices rise quickly

following an increase in the cost, but fall slowly following a decrease in the cost. For

more details about CRF, see Borenstein et al. (1997) and Verlinda (2008). We present

a response asymmetry, which is an error correction model with separate coefficients

for positive and negative changes in wholesale costs and retail prices, given as:

∆pt =
∑
l

(b+
l ∆C+

t−l + b−l ∆C−t−l) +
∑
m

(γ+
m∆p+

t−m + γ−m∆p−t−m) + λet + εt (3.7)

where et = pt−1 − α− θCt−1 for l = 0, 1, ..., L and m = 0, 1, ...,M

Here ∆p+
t is the positive price change; ∆p+

t−m = max(pt−m − pt−m−1, 0), ∆p−t is the

negative price change; ∆p−t−m = min(pt−m − pt−m−1, 0). ∆C+
t−l is the positive cost

change; ∆C+
t−l = max(Ct−l − Ct−l−1, 0), ∆C−t−l is the negative cost change; ∆C−t−l =

min(Ct−l−Ct−l−1, 0), pt−1 is the previous period’s price, and Ct−1 denotes the previous

period’s wholesale cost. λ measures the rate of reversion to the long-run relationship;

in the long-run, the gasoline price should be proportional to the cost, specified by

et. The long-run response of expected prices to a cost is denoted by θ, and α is the

intercept for the long-run expected margin. The parameters b+
l , b

−
l , γ

+
m, γ

−
m are the

regression coefficients, and εt is the noise term.

We estimate the three lagged cost change(L=3) coefficients (b+
l , b

−
l ) separately for

wholesale cost increases and decreases, and we also estimate the two lagged price

change(M=2) coefficients (γ+
m, γ

−
m) separately for each of the cases of price moving up
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(a) (b)

Figure 3.6: (a): The figure shows CRF, the path of cumulative price change after positive and
negative cost shock at day 1. The unit of the vertical axis is Euros labeled as cumulative price
change, and the time unit in the horizontal axis is days. (b): The asymmetry function(At) is the
difference between the path of cumulative price change after positive and negative cost shock at day
1. The unit of the vertical axis is Euros labeled as asymmetry function, and the time unit in the
horizontal axis is days.

or moving down. The resulting coefficient estimates are used to construct a CRF as

in Lewis and Noel (2011) and Verlinda (2008). The subsequent price change, ∆pt,

describes the CRF at each period t, which is the previous period’s predicted price

plus the predicted change in prices in the current period:

CRFt = pt−1 + ∆pt (3.8)

where pt−1 is the previous period’s predicted price, and ∆pt is the predicted change

in prices from Eq.(11) that describes how retail prices pass through an upstream cost

change.

Figure 3.6(a) plots the CRF (i.e., the path of cumulative price changes) until the

price settles at the equilibrium value after a one-unit change in cost at day 1. The

path of cumulative price change for negative cost shock is also plotted on the same

positive domain.

Lastly, we use an asymmetry function At = CRF+
t − CRF−t , as defined in Verlinda
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(2008), where CRF+
t represents the path of cumulative price changes after positive

single shock in costs, and CRF−t represents that after negative single shock in costs.

Figure 3.6(b) plots the At, and the observed deviation from 0 indicates a price asym-

metry toward the direction of the deviation.

Positive values for the cumulative response asymmetry are observed, implying that

the price response to negative cost shocks is much slower than that of positive cost

shocks. Cost increases are initially passed through more quickly than cost decreases.

However, prices fully respond to cost changes for both positive and negative cost

shocks over the course of a week following a cost change. This rate of asymmetric

response is faster than the findings of previous studies (three to six weeks), as in

Lewis and Noel (2011). The rate of asymmetric response may depend on the type of

gasoline market or pricing policy.

3.5 Conclusion

In this study, we found optimal prices and profits in a stylistic repeated single-period

game in the retail gasoline market. We also showed that retailers do not fully opti-

mize their prices, possibly because they do not know how demand responds to their

prices in a quantitative scale, so they instead respond to their competitor’s prices.

Individual gasoline retailers have no control over external factors like upstream cost

changes and static average competitor’s prices. Given the upstream cost and static

average competitor’s price, we showed that retailers may optimize their profit using

our strategy when the strategy is practiced on a small scale. Obviously, when a given

retailer is the only one or is part of a small group of retailers who set prices at the

optimal price, that retailer will earn a higher profit than the actual profit. But when

all retailers use the same price-setting strategy, depending on price conditions, the
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subject retailer might earn higher or lower profit, assuming similar market power.

Although all models are incomplete representations of reality, the stylistic repeated

sequential leader and follower game is very realistic in the following sense: Once a

retailer has garnered big market power with a big brand name and a great location,

that retailer will remain the leader until a new, stronger competitor enters the market.

Similarly, once a retailer becomes a follower, that retailer will remain the follower for

a long period of time because the location and the brand name are fixed external

factors, and market power cannot shift quickly.

This evidence of price asymmetry (or collusive behavior) is presented with daily data

using the same approach as that used in other recent studies. However, the entire

market does not show the price leadership characteristics. According to Noel (2007),

about 40% of the market shows an Edgeworth price cycle where retailers pass through

the slow undercutting phase and short relenting phase. Thus, we need more than one

model to capture multiple market characteristics, and we may be able to model this

price cycle behavior by alternating the leader’s and follower’s responses, and by raising

one of their prices when near the marginal cost.

Our main goal for this study was to investigate how an individual retailer might max-

imize its profit by optimally setting the retail gasoline price under modified Bertrand

model. The economic models we proposed do not incorporate market phenomena like

collusion and random demand spikes. A comparison of model predictions with empir-

ical data may reveal those phenomena. While these models do have some limitations,

we have obtained much insight from empirically testing the modified Bertrand model

and its derivatives. The empirical data shows competitive market behavior followed

by somewhat cooperative market behavior thereafter. This finding suggests that the

retail gasoline market may change its behavior over time.

For future study, our study can be extended to more complicated scenarios, where
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every retailer responds to everyone’s price instead of just to the static average com-

petitor’s price as well as to price cycle behavior using alternating sequential game

models. There are still many elements that can push the envelope of our understand-

ing of the retail gasoline market and the effects of its imperfect information on both

consumers and retailers. Thus, as a setting for future research, the retail gasoline

market holds much potential.

In the next Chapter, we change the focus to fluctuating retail gasoline prices from

consumers’ perspective, and we introduce guaranteed retail gasoline price using swap

structure.
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Chapter 4

Retail Gasoline Price Guarantees

with Swap Structures

4.1 Introduction: a general background to the prob-

lem and overview of idea

As a result of retailer competition and changes in key input costs, retail gasoline prices

and margins fluctuate over time (Deltas 2008). Fluctuating retail gasoline prices are

problematic for both retailers and consumers in that the fluctuating retail gasoline

prices lead to uncertainty in sales and competitive strategies from retailer’s perspec-

tive, and to uncertainty in cost from consumers’ perspective. When a commodity

price suddenly rises and so retail gasoline prices also rise, customers would observe

higher prices and search for lower prices. Thus, with price competition between re-

tailers, margins may drop. When a commodity price suddenly falls, the retail gasoline

prices also falls, customers would observe lower prices, and feel less concern about

prices.

Some companies (e.g., http://www.mygallons.com, www.firstfuelbank.com) offer cus-
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tomers the opportunity to buy a quantity of gasoline at current prices and then cash

in the quantity when prices rise. However, they still expose customers to the risk

of taking the wrong side of price movements, and involve both hidden fees and a

large premium to pay. For example, MyGallons charges customers a 6% fee upon

pre-purchasing, with an additional charge of six cents per gallon as a pre-purchased

quantity is cashed in, and a $30 annual membership fee. First Fuel Bank sells a

price-locked gallon of gasoline almost a dollar above the market price. While these

companies offer a way to protect against a big surge in the future, they are profit-

oriented and charge a premium for their services. Thus, customers would benefit from

these services only if gasoline prices rise very high.

In this study, gasoline markets are used as an example to examine another way cus-

tomers can hedge against price changes regardless of their directions and magnitude.

The fluctuations of gasoline prices make searching for an optimal refueling strategy

(time and quantity) for consumers an interesting problem to solve. Likewise, retailers

may want to hedge against the fluctuation of wholesale gasoline price to stabilize their

overall sales and profits.

Large fuel consuming companies, such as airlines, use commodity swaps or options

to reduce their exposure to volatile and potentially rising fuel costs. Hedging the fuel

costs by locking in the future fuel prices can protect against sudden losses from rising

fuel prices, but also prevents sudden gains from decreasing fuel prices. The reason

that airlines still choose to hedge fuel prices is not to improve profits but to stabilize

overall costs, cash flows, and profits (Morrell and Swan (2006)).

As mentioned above, commodity swaps, futures, and options are widely used to hedge

commodity prices by producers of commodities, such as precious and base metals, en-

ergy stores (natural gas and crude oil) and food (including corn, wheat, pork bellies

and cattle). The swap is a contractual agreement between two parties who agree to

exchange their cash flows; one of which is fixed and the other is fluctuating prices,
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for a defined period of time and quantity without physical delivery (Dubofsky and

Thomas (2003)).

The simplest examples of hedging are for a portfolio manager using a call option, a

right to buy a underlying stock at strike price at maturity, to hedge against rising

stock price; or using put option, a right to sell an underlying stock at strike price

at maturity, to hedge against falling stock price. Farmers can also use a forward

contract to sell their crops at predetermined prices protecting against sudden losses

from falling crop prices. Airlines can use a commodity swap to reduce their exposure

to volatile and potentially rising fuel costs. Using the floating-to-fixed rate cash flow

swaps, producers can lock in fixed cash flows which meet their budget estimates, and

hedge against falling prices (Davies et al. (2004)).

In what follows, we introduce a new loyalty program which provides customers with a

guaranteed price. The floating-to-fixed swap may also be used to establish a fixed cost

when prices surge, so that retailers can provide their consumers with the guaranteed

price. We primarily focus on the end customers in this study, but gasoline retailers

can also use this product format to drive loyalty and boost repeated sales. Using

a case study, we quantitatively investigate the expected outcomes of the guaranteed

price and optimal quantity to hedge under price uncertainty.

4.1.1 Literature Review

Much of the fuel hedging related literature has focused on airlines. The hedging por-

tion of sales vary between different airlines, but generally airlines only partially hedge

their fuel requirements for a certain period (Morrell and Swan (2006)). The main

topic of the literature includes research that studies the benefits of hedging using

options, swaps, futures and forwards to manage risks.
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Morrell and Swan (2006) reach the conclusion that there is no reason to contradict

the economic fundamentals of hedging; and a policy of permanent hedging of fuel

costs should leave expected long-run profits unchanged. Depending on the stage of

the economic cycle, this hedging may or may not damp out profit volatility. Data

suggests it may only damp out volatility when oil price and air travel demand are

negatively correlated. However, when oil prices and air travel demand cycles are pos-

itively correlated, then hedging is less effective in reducing volatility. So oil prices can

be observed to either increase or decrease airline profit cycles, depending on the time

period sampled. The economic cycle can be made worse by hedging, when oil price

moves are demand-driven rather than supply-driven.

Vieira et al. (2014) examine a case study based on American Airlines’ quarterly fi-

nancial reports collected from Reuters Knowledge Database from 1989 to 2010, the

quarterly jet fuel price calculated from daily spot jet fuel price for kerosene-type jet

fuel data from the US EIA, and share prices collected from Yahoo Finance. Us-

ing time series regression coefficients as a measure of risk sensitivity, Vieira found it

makes economic sense for American Airlines to have some hedge for fuel price risk,

but suggest that the company has not been able to optimize the level of its hedging

strategy.

Jin and Jorion (2006) investigate the hedging activities of 119 U.S. oil and gas pro-

ducers from 1998 to 2001, and test for a difference in firm value between firms with

and without hedging strategy. Using Tobin’s Q ratio, which is defined as the ratio

of the market value to the replacement value of assets, Jin and Jorion do not find a

significant relation between the firms value and its hedging activities. Instead, they
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suggest the oil and gas context is closer to a perfect capital market, where there are

no information asymmetries, taxes, or transaction costs, and hedging should not add

value to the firm since it can be easily done by individual investors.

Westbrooks (2005) discusses hedging solutions available to airlines. The most desir-

able way for airlines to hedge against an increase in their fuel cost to directly pass it

on to their customers. When reasons such as competitive pressure make that impos-

sible, the next best alternative is to hedge the fuel cost using financial tools such as

forwards, futures, and options contracts. Because of the volatility of the price of jet

fuel, airline financial managers are enticed to use hedging as a risk management tool

to insulate their companies from price increases, and it has been shown that hedging

jet fuel price exposure has a positive effect on an airline stock values (12-13% value

added for the extent of hedging).

Acharya and Lochstoer (2013) investigate the hedging activities using a theoretical

model, and empirical proxy based on data of spot and futures prices for heating oil,

crude oil, gasoline, and natural gas over the period 1979 to 2010, pairing these data

with crude oil and natural gas producing firms’ reported hedging policies from their

financial accounting standards 133 disclosures from 2000 to 2010. They find that,

when firm-specific default risk is high, these firms are more likely to hedge: an in-

crease in measures of the aggregate default risk of producers of commodities with the

volatility of the commodity prices forecasts a significant increase in the excess return

on short term futures, and limits to arbitrage in the financial market generate limits

to hedging for firms in the real economy. Consequently, corporate hedging policy

changes affect asset prices; such market generated limits to hedging have predictive

power for commodity futures and spot prices, inventory.
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In summary, previous studies have mixed support for hedging, and suggests that

investors should only value a company higher if its hedging strategy yields benefits

that offset higher costs. But there are some distinctions in the retail gasoline market,

in which price is driven not primarily by demand but by the supply and hence by

wholesale prices. Also, retail gasoline demand would be less sensitive to its prices

than air travel demand to its prices as air travel is more expensive and not a daily

necessity. For instance, people need to drive to work regardless of the gasoline price,

but they can choose not to travel to Cuba when air tickets are expensive. Thus,

gasoline retailers may use hedging as risk management and marketing tools against

increase in fuel cost without passing it on to the consumer. Hedging commodities like

gasoline is possible when relatively large amounts of fuel are being traded and the

upstream of the retail gasoline market is fully understood.

4.2 Design of the Swap Structure

In the previous section we have introduced that hedging means, reduced risks using

financial tools, such as options, forwards, swaps, etc, designed to share the risks with

speculators, financial institutions, or insurance companies. We also discussed how

other industries use hedging instruments to reduce their exposure to volatile price

and potentially rising costs.

In this study, we focus our attention to design a swap structure for retailers and

customers to hedge against fluctuating gasoline prices. In the proposed swap struc-

ture, a retailer sells the gasoline to a swap provider at an average floating price set
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by retail gasoline market for a defined period of time and quantity, e.g. $g/litre for

10,000 litres a month. In return, the swap provider sells it back to the retailer at a

guaranteed price set by swap provider, e.g. $G/litre for 10,000 litres a month. There-

fore, the retailer gets the floating cash flow which will cover the floating cost, and

may offer guaranteed prices to their customers.

This guaranteed price feature would give customers the possibility to hedge against

increasing price movements. This would eliminate the possibility of having to pay

higher price when market price rises above the guaranteed price, while still enjoying

favourable price movements when market price falls below the guaranteed price, i.e.,

to buy gasoline at the minimum of market price and the guaranteed price. In other

words, customers may buy gasoline at whichever offers them a lower price between

market price (g), which is random, and guaranteed price (G), which is deterministic

at a cost of the option premium; see the Figure 4.1 and Figure 4.2. In this way, not

only customers but also retailers can reduce the risk of sales and profit fluctuations

due to the price fluctuations.

Swap providers may enter into multiple swap transactions with multiple retailers

and/or speculators with different preferences for particular prices, quantities, and

terms. The swap provider may pay floating price in one transaction (to retailers) and

pay guaranteed price in the other (to speculators) (Davies et al. (2004)). For these

swap transactions to be feasible there must be price spreads between the two fixed

prices for the swap provider’s interest.

4.2.1 Retail Gasoline Price Guarantees

To enjoy the price guarantee benefits, customers first need to register a loyalty pro-

gram at a participating gas station. With the loyalty program, the loyal customers
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Figure 4.1: Schematic diagram shows the cash flow between swap provider, retailer, and consumers
with and without guaranteed price (G). Between the retailer and swap provider, there is only cash
flow exchange, floating price (g) and guaranteed price (G), not the actual gasoline.

can enter into a option contract with the retailer who gives them a right to buy gaso-

line at a guaranteed price (G) for a given period of time and for a desired quantity

(e.g. 200 L for 1 month). Only loyal customers can enter into the contract, and pay

a premium (P) upfront at the beginning of each month for an anticipated quantity of

gasoline, e.g. 200 L for 1 month. The loyal customers can enjoy the guaranteed price

(G) with the peace of mind which comes from hedging against rising price.

4.2.2 Outcomes of the Guaranteed Price

How would this swap impact the consumers’ payoff, if the floating price were 20%

higher or lower during the next month than the guaranteed price of $1.3/L? Let’s as-

sume that a retailer anticipates to sell 500,000 L during the coming month, and wants

to hedge against the fluctuating sales entering into the floating-to-fixed swap. Also,



53

Figure 4.2: Schematic diagram of floating gasoline price, which change up and down with time,
and guaranteed price.

assume that the premium for each consumer to enter into this contract is $0.13/L for

a desired quantity 200 L, which is aggregated to 500,000 L for 2500 consumers.

If the floating price falls below the guaranteed price by 20% during the next month,

loyal customers would buy gasoline at floating prices; and the loss for the consumers on

the floating-to-fixed swap is limited to just the premium paid, $65,000 at aggregated-

level for 500,000 L (200 L(-$0.13/L) = $26 at individual-level).

On the other hand, if the market price rises above the guaranteed price by 20% during

the next month, the loyal customers will buy the gasoline at the guaranteed price; and

the gain for the consumers on the floating-to-fixed swap is $65,000 at aggregated-level

for 500,000 L (200 L($1.56/L - $1.3/L - $0.13/L) = $26 at individual-level). In this

study, we mainly focus on the consumers’ payoff.

4.3 Optimal Strategy under Uncertainty

Economic theory suggests that rational consumers would continue to search for a bet-

ter price until the marginal cost of searching exceeds the marginal benefit. However,

consumers are generally not informed of wholesale price, and tend to search more
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when retail price rises and less when price falls (Chandra and Tappata 2011). Since

consumers search more when retail price rises, this lead retailers to lower their mar-

gins, and their prices would be less dispersed. On the other hand, when retail price

falls retailers have little incentives to lower their margins, and their prices would be

more dispersed. This feature is described as the gasoline price rising fast like rockets

and falling slow like feathers in an atmosphere of local market power (Verlinda 2008).

Retailers might decide to cooperate for high margin, or decide to compete for high

sales as they would want to sell as much as possible when margin is high. When

the retailers decides to compete for high sales, their sales would highly fluctuate de-

pending on their relative prices against their competitors’ prices. They also need to

make sure they do not run out of fuel inventory. While the demand of an individual

purchase is limited by the capacity of the gas tank, the supply is also limited with

much larger underground tanks in the gas stations. For a very low-traffic and small

gas stations which do not get deliveries as frequently as big companies, it might take

days or a week to refill the underground tanks. Thus, while conserving the minimum

level of tank, retailers need to sell as much as possible when the margin is high.

4.3.1 Optimal Quantity to Hedge

The guaranteed retail gasoline price could potentially stabilize fuel sales across sta-

tions and time. Furthermore, it could enable retailers to foresee the desired quantity

from customers and manage fuel inventory better. In order to sell the contracted

quantity of gasoline at a guaranteed price, retailers need to hedge some portion of

their underground tank against rising price because they could just sell the unhedged

portion when the price falls and sell the hedged portion when the price rises.

We first assume that loyal customers use a simple refueling strategy, and buy gasoline

evenly over time regardless of price changes, and consider for instance a North Amer-
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ican driver who drives about 13,000 miles evenly over a year (e.g. 15 gallon every 10

days, see Appendix B).

To minimize the total cost of hedging, retailers must decide how much gasoline to

hedge. We find the optimal quantity of gasoline to hedge for retailers with simple

models and assumptions. For simplicity, we only consider the portion of gasoline to

be sold to customers participating in a loyalty program, not to regular customers.

Quantity to hedge: q = {0, 1, · · · , Q},

Reward: r(q) = q
T

∑T
t=1(min(gt, G)−G+ P ) + Q−q

T

∑T
t=1(min(gt, G)− gt + P )

rewrite as

r(q) =
Q

T

T∑
t=1

(min(gt, G)− gt + P )− q

T

T∑
t=1

(G− gt)

r∗(q) = max
q

(
Q

T

T∑
t=1

(min(gt, G)− gt + P )− q

T

T∑
t=1

(G− gt))

where

Q: an average anticipated quantity of gasoline to be sold to loyal customers over a

month

q: a quantity of gasoline for retailers to hedge against rising price over a month

t: current time

T : a maturity time of the contract

P : a premium for the loyalty program.

gt: floating gasoline price

G: guaranteed gasoline price

To find the optimal quantity (q) to hedge, assume this decision has to be made

every first day of month, taking the first order partial derivative with respect to q,

we get:

dr(q)
dq

= 1
T

∑T
t=1(gt −G)
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Optimal quantity to hedge:

if 1
T

∑T
t=1(gt −G) ≥ 0 q∗ = arg maxq r(q) = Q

if 1
T

∑T
t=1(gt −G) < 0 q∗ = arg maxq r(q) = 0

Then, the optimal quantity for retailers to hedge would be;

q∗ = P ( 1
T

∑T
t=1(gt −G) ≥ 0)Q = P (E[gt] ≥ G)Q

For instance, with equal chance of E[gt] ≥ G or E[gt] < G

q∗ = 1
2
Q

Next, we assume that loyal customers use a quasi-optimal refueling strategy, and

buy minimum (10% of full tank) only if the tank is low (k = 1), when g ≥ G and fill

up when g < G.

Optimal quantity to hedge:

if 1
T

∑T
t=1(gt −G) ≥ 0 q∗ = arg maxq r(q) = Q

if 1
T

∑T
t=1(gt −G) < 0 q∗ = arg maxq r(q) = 0

Then, the optimal quantity for retailers to hedge would be;

q∗ = 0.1P (k = 1|E[gt] ≥ G)Q (10% of full tank)

Thus, under the quasi-optimal refueling strategy, the retailers should hedge a smaller

quantity than under the simple strategy where gasoline is purchased evenly over time.

Another approach to solving the above problem is by minimizing the variance of

the hedged position as below;

r(q) = Q
T

∑T
t=1(min(gt, G)− gt + P )− q

T

∑T
t=1(G− gt)

let rA = 1
T

∑T
t=1(min(gt, G)− gt + P ) and rB = 1

T

∑T
t=1(G− gt), rewrite as

r(q) = QrA − qrB
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rA is the average return rate without hedging and rB is the average return rate

from the floating-to-fixed rate swap. We define the variance of rA as σ2
A; the variance

of rB as σ2
B; and their correlation coefficient as ρ.

As a consequence, the variance of r(q) is: var(QrA−qrB) = Q2σ2
A−2ρQqσAσB+q2σ2

B

In order to minimize the hedging cost we find the optimal quantity(q∗) to hedge,

taking the first order partial derivative of the variance of r(q) with respect to q, we

get the same results as above:

δr(q)

δq
= −2ρQσAσB + 2qσ2

B = 0

q∗ =
QρσA
σB

For special cases:

if gt < G for all t q∗ = QρσA
σB

= 0 when σA = 0 and ρ = 0.

if gt ≥ G for all t q∗ = Qρ = Q when σA = σB and ρ = 1.

For general cases, q∗ = QρσA
σB

when σA 6= σB > 0 and 0 < ρ < 1.

In this chapter, we introduced how a retail gasoline call option-like guaranteed price

can be created using the swap structure. We also briefly discussed the expected out-

comes of the guaranteed price and optimal strategy under price uncertainty. In the

following chapter, we will discuss optimal exercise of the guaranteed price by retail

consumers and examine the optimal refueling time and quantity without and with

the loyalty program.
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Chapter 5

Optimal Refueling Strategy

5.1 Introduction

In this chapter we quantify the value of the loyalty program proposed in Chapter

4. We begin by deriving and solving the optimal refueling strategy without loyalty

program in Section 5.2. Next we prove that there exists a non-trivial price threshold

and characterize the optimal control for the refueling cost with loyalty program in

Section 5.3. In Section 5.4, we present numerical methodology that was used to find

the price threshold and the value of the loyalty program. In Section 5.5, we present

the numerical results using simulated prices, following the optimal policy (refueling

only when the floating price is below the optimal decision boundary, or when running

out of fuel is imminent, otherwise waiting), and compare the price thresholds and the

value of loyalty program for different parameters and states.
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5.2 Optimal Control without Loyalty Program

The purpose of this section is to study the consumers optimal refueling strategy when

there is no price guarantee. Based on simple, yet general, price models and some nat-

ural assumptions about the type of strategies available to retail gasoline purchasers,

we solve the consumer’s optimization problem using dynamic programming.

We first assume consumers refuel at most once a day, the opportunity cost of having

to visit the station at most once a day is negligible, and that the quantity used on

each day is constant. Based on normal day to day living (i.e. not while on a road

trip), the assumption of refueling at most once a day is reasonable. While quantities

of gas consumed each day are, for most drivers, somewhat variable, for a commuter

traveling say 50 km to and another 50 km from work, the variability around the daily

average may be rather small. Let the amount of fuel used each day be one unit and

the price also be quoted in terms of that single unit, e.g., a commuter using 10 liters

daily; 1 unit equals to 10 liters.

Although the gas tank can hold any continuous volume, we consider a discrete tank

of K units of fuel. The amount of fuel that can be purchased at each time is an

integer multiple of the fuel units. The tank level cannot go below 1, the minimum

tank reserve level to avoid engine damage, or above K, the maximum tank capacity.

We formulate the refueling problem as a Markov Decision Process as follows;

Time Horizon: we consider a finite time horizon with T discrete periods (i.e. T = 30

for a month)
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Decision Stages: t = {1, 2, · · · , T}. We assume decision to refuel happens at the

end of each day, and T − t is stages-to-go (or number of days-to-go).

State: s = (k, gt), where k is the discrete tank level at the end of day, k ∈ {1, · · · , K},

the maximum tank level is K, the minimum tank reserve level is 1, and gt is the gaso-

line price at the end of day t, gt ∈ R+, t = 1, 2, · · · , T .

Actions: set of permissible decision variable on how much gasoline to fill up at

each stage

A =

{
{0, 1, · · · , K − k} if k>1,

{1, · · · , K − 1} if k = 1.

Refueling Cost: rt(s, a) = a × gt cost to fill a quantity of gasoline without the

loyalty program, a ∈ A

Terminal Cost: rT (s) = (K − k) × gT , assume at the end of period, must fill

up. This corresponds to the requirement that the driver must fill the tank at the end

of the period.

Transitional Probability Function: The transition of the tank level state variable

is deterministic and defined by kt+1 = kt − 1 + a. The gasoline price state variable is

stochastic and follows a transitional probability function, f(gt+1), where gt+1 ∈ R+

is the next day’s gasoline prices. Typically this probability will be conditional on

today’s price, f(gt+1|gt).

Remark 5.2.1. Given that we are implicitly considering a short time horizon like a

daily time increment, we will ignore the discount factor.
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The consumer’s objective is to minimize the total expected cost of refueling. The

optimality equation for the optimization problem follows for t < T :

Vt(s) = inf
a∈A
{r(s, a) +

∫ ∞
0

Vt+1(s′)f(gt+1)dgt+1}

= inf
a∈A
{gta+

∫ ∞
0

Vt+1(s′)f(gt+1)dgt+1}

with terminal condition: VT (s) = gT (K − kT ) and s′ = (kt − 1 + a, gt+1)

This can be written as,

Vt(s) = gta
∗ +

∫ ∞
0

Vt+1(s′)f(gt+1)dgt+1 (5.1)

where a∗ = arg mina∈A{r(s, a) +
∫∞

0
Vt+1(s′)f(gt+1)dgt+1}

We now provide a result for a special case in which gasoline price moves are ex-

pected to be constant.

Proposition 5.2.2. Let the expected gasoline price change be constant and non-

negative, E[gt+1 − gt|gt] = ∆ ≥ 0, t = 1, 2, · · · , T .

The optimal refueling is to fill up daily, i.e. a∗ = K − kt for t ≤ T . This results in

the following optimality equation;

Vt(s) = gt(K − kt + (T − t)) +
(T − t)(T − t+ 1)

2
E[gt+1 − gt|gt] (5.2)

Proof. Proposition 5.2.2
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From the optimality equation (5.1), we have

for t = T − 1 (for one stage-to-go),

VT−1(s) = gta
∗ +

∫ ∞
0

VT (s′ = (kt − 1 + a∗, gt+1))f(gt+1)dgt+1

= gta
∗ +

∫ ∞
0

(gt+1)(K − kt + 1− a∗)f(gt+1)dgt+1

= gta
∗ + gt(K − kt + 1− a∗) + (K − kt + 1− a∗)

∫ ∞
0

(gt+1 − gt)f(gt+1)dgt+1

= gta
∗ + gt(K − kt + 1− a∗) + (K − kt + 1− a∗)E[gt+1 − gt|gt]

VT−1(s) = −a∗E[gt+1 − gt|gt] + (K − kt + 1)(gt + E[gt+1 − gt|gt]) (5.3)

If E[gt+1 − gt|gt] ≥ 0, the optimality equation to be minimized is a linear function of

a∗ with a negative slope. Hence, the minimum is achieved at a∗ = K − kt.

Substituting a∗ = K − kt into equation (5.3), we have

VT−1(s) = −(K − kt)E[gt+1 − gt|gt] + (K − kt + 1)(gt + E[gt+1 − gt|gt])

= gt(K − kt + 1) + E[gt+1 − gt|gt]

VT−1(s) = gt(K − kt + (T − t)) +
(T − t)(T − t+ 1)

2
E[gt+1 − gt|gt]

Thus, the solution of equation (5.3) satisfies (5.2) and so Proposition 5.2.2 is true for

t = T − 1.

Now assume that proposition 5.2.2 holds for all t = j + 1, j + 2, · · · , T − 1.
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for t = j, from the optimality equation (5.1), we have

Vj(s) = inf
a∈A

{
gja+

∫ ∞
0

Vj+1(s′)f(gj+1|gj)dgj+1

}
Vj(s) = gja

∗ +

∫ ∞
0

(
(gj+1)(K − kj + 1− a∗)

+ (T − j − 1)(gj+1) +
(T − j − 1)(T − j)

2
E[gj+1 − gj|gj]

)
f(gj+1|gj)dgj+1

= gja
∗ + (K − kj + 1− a∗)(gj + E[gj+1 − gj|gj]) + (T − j − 1)(gj + E[gj+1 − gj|gj])

+
(T − j − 1)(T − j)

2
E[gj+1 − gj|gj]

= −a∗E[gj+1 − gj|gj] + (K − kj + 1)(gj + E[gj+1 − gj|gj])

+ (T − j − 1)(gj + E[gj+1 − gj|gj]) +
(T − j − 1)(T − j)

2
E[gj+1 − gj|gj]

Vj(s) = −a∗E[gj+1 − gj|gj] + (K − kj + 1)(gj + E[gj+1 − gj|gj])

+ (T − j − 1)(gj + E[gj+1 − gj|gj]) +
(T − j − 1)(T − j)

2
E[gj+1 − gj|gj]

(5.4)

If E[gj+1 − gj|gj] ≥ 0, it is linear function of a∗ with a negative slope. Hence, the

minimum is achieved at a∗ = K − kt.

Substituting a∗ = K − kt into equation (5.4), we have

Vj(s) = −(K − kj)E[gj+1 − gj|gj] + (K − kj + 1)(g + E[gj+1 − gj|gj])

+ (T − j − 1)(gj + E[gj+1 − gj|gj]) +
(T − j − 1)(T − j)

2
E[gj+1 − gj|gj]

= gj(K − kj) + gj + E[gj+1 − gj|gj] + (T − j − 1)(gj + E[gj+1 − gj|gj])

+
(T − j − 1)(T − j)

2
E[gj+1 − gj|gj]

Vj(s) = gj(K − kj + (T − j)) +
(T − j)(T − j + 1)

2
E[gj+1 − gj|gj]

Thus, it has been proved that the Proposition 5.2.2 is true for all t.
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Proposition 5.2.3. Let the expected gasoline price change be constant and negative,

E[gt+1 − gt|gt] = ∆ < 0, t = 1, 2, · · · , T .

• If kt > 1, then a∗ = 0 for t < T , and

Vt(s) = (K − kt + (T − t))(gt + (T − t)E[gt+1 − gt|gt]) (5.5)

• If kt = 1, then a∗ = 1 for t < T , and

Vt(s) = −(T−t)E[gt+1−gt|gt]+(K−kt+(T−t))(gt+(T−t)E[gt+1−gt|gt]) (5.6)

Proof. Proposition 5.2.3

From equation (5.3), we have for t = T − 1, Vt(s) = −a∗E[gt+1 − gt|gt] + (K − kt +

1)(gt+E[gt+1−gt|gt]). If E[gt+1−gt|gt] < 0, the optimality equation to be minimized

is linear function of a∗ with a positive slope. Hence, the minimum is achieved at

a∗ = 0 or a∗ = 1.

If E[gt+1 − gt|gt] < 0 and kt > 1, a∗ = 0 for t < T , substituting a∗ = 0 into

(5.3) we have, VT−1(s) = (K − kt + 1)(gt + E[gt+1 − gt|gt]). If E[gt+1 − gt|gt] < 0

and kt = 1, a∗ = 1 for t < T , substituting a∗ = 1 into (5.3) we have VT−1(s) =

−E[gt+1 − gt|gt] + (K − kt + 1)(gt + E[gt+1 − gt|gt]). Thus, the above solutions of

equation (5.3) satisfy equation (5.5) and (5.6) for t = T − 1, and Proposition 5.2.3 is

true for t = T − 1.

Now assume that proposition 5.2.3 holds for all t = j + 1, j + 2, · · · , T − 1. For

t = j, from the optimality equation (5.1), we have that

Vj(s) = infa∈A

{
gja+

∫∞
0
Vj+1(s′)f(gj+1|gj)dgj+1

}
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If E[gt+1 − gt|gt] < 0 and kt > 1, using the above results, we get

Vj(s) = gja
∗ +

∫ ∞
0

(
K − kj + (T − j)− a∗)(gj+1 + (T − j − 1)E[gj+1 − gj|gj]

)
f(gj+1|gj)dgj+1

= gja
∗ + (K − kj + (T − j)− a∗)(gj + (T − j − 1)E[gj+1 − gj|gj])

+ (K − kj + (T − j)− a∗)
∫ ∞

0

(gj+1 − gj)f(gj+1|gj)dgj+1

= −a∗(T − j)E[gj+1 − gj|gj] + (K − kj + (T − j))(gj + (T − j)E[gj+1 − gj|gj])

Vj(s) = −a∗(T−j)E[gj+1−gj|gj]+(K−kj+(T−j))(gj+(T−j)E[gj+1−gj|gj]) (5.7)

If E[gt+1 − gt|gt] < 0 and kt > 1, it is a linear function of a∗ with a positive slope.

This is minimized when a∗ is as small as possible, hence a∗ = 0 for t = j.

Vj(s) = (K − kj + (T − j))(gj + (T − j)E[gj+1 − gj|gj])

Similarly, if E[gt+1 − gt|gt] < 0 and kt = 1, the minimum is achieved at a∗ = 1 for

t = j.

Vj(s) = −(T − j)E[gj+1 − gj|gj] + (K − kj + (T − j))(gj + (T − j)E[gj+1 − gj|gj])

Thus, it has been proved that the proposition 5.2.3 is true for all t.

Illustration 5.2.4. Arithmetic Brownian Motion (ABM)

The dynamic price changes can be modeled using different price processes, each with

advantages and disadvantages. The simpler processes like Brownian motion may miss

out some desired characteristic, but are easier to interpret and calibrate from market
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prices. More complicated models like Ornstein Uhlenbeck Process or jump diffusions

process may better characterise the behaviour of certain commodities, but require

more parameters to be estimated with higher probability of model errors. Since retail

gasoline price does not experience extreme price changes, it is reasonable to illustrate

the price process using Arithmetic Brownian Motion (ABM).

ABM price process is gt such that dgt = µdt + σdZt where both µ and σ are con-

stant. Let ∆t = gt − g0 denote the total price increment, then ∆t = µt + σZt. Since

Zt ∼ N(0, t), and ∆t ∼ N(µt, σ2t), the normal density function N(∆t;µt, σ
2t) is

given as;

N(∆t;µt, σ
2t) =

1

σ
√

2πt
e
−
(

∆t−µt
)2

2σ2t

where the expected value and variance given by E[∆t] = µt and V ar(∆t) = σ2t,

respectively.

Note that, using ABM, technically prices can go negative for, but would be very

unlikely for a sufficiently large positive g0 and µ, and for a relatively small t and σ.

Let ∆ be the conditional price increment, given gt, written as;

∆ = E[gt+1 − gt|gt] = E[gt+1|gt]− E[gt|gt] = µ

From (5.4), for E[gt+1 − gt|gt] = µ ≥ 0

Vt(s) = −a∗E[gt+1−gt|gt]+(K−kt+1)(gt+E[gt+1−gt|gt])+(T − t−1)(gt+E[gt+1−

gt|gt]) + (T−t−1)(T−t)
2

E[gt+1 − gt|gt]



69

From (5.7), for E[gt+1 − gt|gt] = µ < 0,

Vt(s) = −a∗(T − t)E[gt+1 − gt|gt] + (K − kt + (T − t))(gt + (T − t)E[gt+1 − gt|gt])

We have shown the optimality equations have a negative relationship with a∗(T −

t)E[gt+1 − gt|gt]. As a consequence, the optimal solution is to make a as large as

possible; a∗ = K − kt, if E[gt+1− gt|gt] ≥ 0. On the other hand, if E[gt+1− gt|gt] < 0

then make a as small as possible; a∗ = 0, if kt > 1, a∗ = 1 if kt = 1.

With the expected price increment of E[gt+1 − gt|gt] = µ, for t = 1, 2, · · · , T − 1

1) If µ ≥ 0, then a∗ = K − kt

2) If µ < 0, then a∗ = 0 if kt > 1

3) If µ < 0, then a∗ = 1 if kt = 1

The illustrations with ABM price process imply that people should fill up their car

daily when price is expected to rise and wait when price is expected to fall. The

reason we might not see this in real life, instead seeing people just fill up their car

once it is empty is because there is a hidden cost to fill up (time, convenience, etc).

We could potentially include an additional fixed cost for each time you fill up, but

for simplicity we ignore this cost.

Although this example is useful to build insights, the model is flawed as an ABM

model for gas prices allows the gas price to take on negative values. As a result, in

what follows we use more special case in which gt+1 is a non-negative i.i.d. r.v.s.
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5.3 Optimal Control with Loyalty Program

We now consider the optimal refueling strategy with the loyalty program described in

Chapter 4. We first discuss the expected price overrun and the premium associated

with the current period’s gasoline price, then we show that there exist a non-trivial ĝt

at which the expected price overrun is zero and the current period’s gasoline price gt

is equal to the expected future price (above which the current period’s gasoline price

gt is higher than the expected future fueling price; vice versa below ĝt the current

gasoline price gt is lower than the expected future fueling price) for t = {1, 2, · · · , T}.

Finally, we solve the optimization problem based on some assumptions.

5.3.1 Existence of Price Threshold

Definition 5.3.1. We define the expected price overrun, ct(gt), as the current price

per unit volume minus the expected price of refueling a unit of gasoline in the future.

Mathematically, we denote this by,

ct(gt) = gt −Nt(gt)

the expected future fueling price per unit volume, Nt(gt), is given recursively by;

Nt(gt) =
∫∞

0
min(gt+1, Nt+1(gt+1))f(gt+1)dgt+1

the expected fueling price per unit volume at the final time horizon is given by;

NT (g) = min(g,G) where G is a guaranteed price

Remark 5.3.2. Assumptions are needed to show ct(gt) has a non-trivial root, ĝt.

1) Gasoline price can rise or fall with nonzero probability except at gt = 0; P (gt+1 >

gt) > 0 and P (gt+1 < gt) > 0, gt ∈ (0,∞),∀t, this is reasonable assumption for

various price processes, and some price processes require that gt+1 = 0 when gt = 0.

2) If g1 > g2, then Nt(g1) ≥ Nt(g2). This is a reasonable assumption and, for

differentiable functions Nt(g), corresponds to the assumption that dNt
dg

> 0.
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Lemma 5.3.3. The expected refueling price per unit volume in the future has the

following properties;

1) Nt(g) ≤ G and Nt+1(g) ≤ G t = T − 1,∀g

2) Nt(g) ≤ Nt+1(g) ≤ G t < T − 1,∀g

where Nt(g) =
∫∞

0
min(g′, Nt+1(g′))f(g′|g)dg′ = E[min(g′, Nt+1(g′))|g]

Proof. for t=T-1 and for all g

G−NT−1(g) = G− E[min(g′, NT (g′))|g] (since NT−1(g) = E[min(g′, NT (g′))|g] )

= G− E[min(g′,min(g′, G))|g] (since NT (g) = min(g,G) thus NT (g) ≤ G )

= G− E[min(g′, G)|g] (since min(g′,min(g′, G)) = min(g′, G) )

= G− E[min(g′, G)|g] (if g ≥ G, min(g,G) = G)

= −E[min(g′ −G, 0)|g] (since min(x, 0) is less than equal to zero)

≥ 0

Thus, G ≥ NT−1(g) and G ≥ NT (g) for t = T − 1,∀g

for t=T-2 and for all g, note that Nt(g) = E[min(g′, Nt+1(g′))|g],

NT−1(g)−NT−2(g) = E[min(g′, NT (g′))|g]− E[min(g′, NT−1(g′))|g]

= E[min(g′, NT (g′))−min(g′, NT−1(g′))|g]

= E[min(g′, G)−min(g′, NT−1(g′))|g]

≥ 0 (if G ≥ NT−1(g′) for all g)(
min(g′, G)−min(g′, NT−1(g′)) = g′ − g′ = 0 if G ≥ NT−1(g′) > g′

min(g′, G)−min(g′, NT−1(g′)) = g′ −NT−1(g′) > 0 if G ≥ g′ > NT−1(g′)

min(g′, G)−min(g′, NT−1(g′)) = g′ −NT−1(g′) ≥ 0 if g′ > G ≥ NT−1(g′)
)
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Thus, E[min(g′, G)−min(g′, NT−1(g′))] ≥ 0 ifG ≥ NT−1(g′), and E[min(g′, NT (g′))|g] ≥

E[min(g′, NT−1(g′))|g] and NT−1(g) ≥ NT−2(g) ∀g

The desired result, Nt(g) ≤ Nt+1(g), holds true for t = T − 1 and t = T − 2.

To finish the proof by induction, we show that Nj(g) ≥ Nj−1(g) if Nj+1(g) ≥ Nj(g).

for all j < T − 1 and for all g

Nj(g)−Nj−1(g) = E[min(g′, Nj+1(g′))|g]− E[min(g′, Nj(g
′))|g]

= E[min(g′, Nj+1(g′))−min(g′, Nj(g
′))|g]

(But, Nj+1(g′) ≥ Nj(g
′) for all g′ so this can never be negative)

≥ 0

Thus, the relation holds true for all t. We have proved Lemma 5.3.3, and Nt(g) ≤

Nt+1(g) ≤ G ∀t < T − 1, g.

This can be explained intuitively, as there is no state of nature in which we would

ever pay more than G for a unit of gas, and many in which we would pay less. Next,

Figure 5.1: Illustrative Diagram of the Region of Integration for the Order Change
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we will prove that there exist a non-trivial price threshold, which is the main result

of this Chapter. To prove that we require the following Lemma 5.3.4.

Lemma 5.3.4. From Karlin and Taylor (1975); Let X be a non-negative random

variable with cumulative distribution function F (x) = Pr(X ≤ x), x ≥ 0, and Xc =

min(X, c) where c is a given constant, then, E[Xc] =
∫ c

0
[1− F (x)]dx.

Proof. Lemma 5.3.4: We have

∫ c

0

[
1− F (t)

]
dt =

∫ c

0

[
Pr(X > t)

]
dt =

∫ c

0

(∫ ∞
t

f(x)dx
)
dt

(the region of integration is coloured in red, see Figure 5.1 )

t ≤ x ≤ ∞, 0 ≤ t ≤ c

( since x can be split into 0 ≤ x ≤ c and c ≤ x ≤ ∞ )

0 ≤ t ≤ x for 0 ≤ x ≤ c, and 0 ≤ t ≤ c for c ≤ x ≤ ∞

The integral with the order changed is then,

∫ c

0

[
1− F (t)

]
dt =

∫ c

0

(∫ x

0

dt
)
f(x)dx+

∫ ∞
c

(∫ c

0

dt
)
f(x)dx

=

∫ c

0

xf(x)dx+

∫ ∞
c

cf(x)dx

=

∫ ∞
0

min(x, c)f(x)dx = E[Xc]

Note this proof can easily be modified to apply to cumulative conditional distribution

functions simply by writing F (x|y) = Pr(X ≤ x|y) throughout.

Lemma 5.3.5. Let ct(gt) = gt−Nt(gt) from definition 5.3.1, assume ct(gt) and Nt(gt)

are continuous and twice differentiable, then ∀t < T , there exists a ĝt, such that 1)

ct(ĝt) = 0; 2) ct(gt) < 0 ∀gt < ĝt; 3) ct(gt) > 0 ∀gt > ĝt.
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Remark 5.3.6. Lemma 5.3.5 implies that there exists a non-trivial ‘price threshold’,

ĝt, below which it is optimal to buy gas, and above which it is optimal to wait.

Proof. Lemma 5.3.5, there are two cases 1) ct(0) < 0 and ct(G) > 0, and 2) ct(0) = 0

and ct(G) > 0 for all t. In the first case, from the intermediate Value Theorem, it is

sufficient to show that ct(0) < 0 and ct(G) > 0, then there exist non-trivial value ĝt

for which ct(ĝt) = 0. In the second case, ct(0) = 0 and ct(G) > 0 , we also need to

show dct(0)
dg
≤ 0 for all g and t, then there is a non-trivial root ĝt by basic calculus and

continuity of ct(gt).

For above two cases, from the definition 5.3.1, for t = T − 1, we have

ct(gt) = gt −Nt(gt)

= gt −
∫ ∞

0

min(gt+1, G)f(gt+1)dgt+1 (from the definition 5.3.1)

= gt −
∫ G

0

[1− F (gt+1)]dgt+1 (applying Lemma 5.3.4 to i.i.d. r.v.s.)

= gt −
∫ G

0

dgt+1 +

∫ G

0

F (gt+1)dgt+1

Thus, ct(gt) = gt −G+
∫ G

0
F (gt+1)dgt+1,

ct(0) = 0−G +
∫ G

0
F (gt+1)dgt+1 ≤ 0, this is clearly true since

∫ G
0
F (gt+1)dgt+1 ≤ G,

and ct(0) < 0 if
∫ G

0
F (gt+1)dgt+1 < G with some probability gt+1 > G when gt = 0.

ct(G) = G − G +
∫ G

0
F (gt+1)dgt+1 =

∫ G
0
F (gt+1)dgt+1 > 0, this is true with some

probability gt+1 ≤ G when gt = G, and this is very reasonable as any random price

process, with non-zero probability, can rise or fall as discussed in Remark 5.3.6.

Thus, for t = T − 1 ct(0) ≤ 0, and ct(G) > 0. From the Intermediate value the-

orem, if ct(0) < 0, ct(G) > 0, then we are guaranteed an interior point root, but if

ct(0) = 0 and ct(G) > 0 for many classes of probability density function, require the

condition of dct(0)
dg
≤ 0 for an interior point root, see Remark 5.3.6 for the proof.
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Assume the above statement is true for all t = j + 1, j + 2, · · · , T − 2.

We prove that ct(0) ≤ 0, and ct(G) > 0 for t = j.

From the definition 5.3.1, for t = j, we have

ct(gt) = gt −Nt(gt)

= gt −
∫ ĝt+1

0

gt+1f(gt+1)dgt+1 −
∫ ∞
ĝt+1

Nt+1(gt+1)f(gt+1)dgt+1

for gt = 0

ct(0) = 0−
∫ ĝt+1

0

gt+1f(gt+1)dgt+1 −
∫ ∞
ĝt+1

Nt+1(gt+1)f(gt+1)dgt+1

ct(0) ≤ 0

for gt = G

ct(G) = G−
∫ ĝt+1

0

gt+1f(gt+1)dgt+1 −
∫ ∞
ĝt+1

Nt+1(gt+1)f(gt+1)dgt+1

> G−
∫ ĝt+1

0

Nt+1(gt+1)f(gt+1)dgt+1 −
∫ ∞
ĝt+1

Nt+1(gt+1)f(gt+1)dgt+1

Because gt+1 < Nt+1(gt+1) for gt+1 ∈ [0, ĝt+1)

ct(G) > G−
∫ ∞

0

Nt+1(gt+1)f(gt+1)dgt+1

> G−
∫ ∞

0

Gf(gt+1)dgt+1

(because Nt+1(gt+1) ≤ G for all t from Lemma 5.3.3)

> 0

Therefore, ct(0) ≤ 0 and ct(G) > 0 for all t.

We now have shown that there are two possible cases, ct(0) < 0 and ct(G) > 0, or

ct(0) = 0 and ct(G) > 0, and we further prove the two cases in the following.
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Case 1: When ct(0) < 0 and ct(G) > 0, given ct(gt) is a continuous function, then

we are guaranteed an interior point root from the intermediate value theorem, thus,

there exists a non-trivial root ĝt.

Case 2: When ct(0) = 0 and ct(G) > 0, we require a condition of dct(0)
dgt
≤ 0 to have a

non-trivial root, ĝt.

ct(gt) and Nt(gt) are continuous and twice differentiable from Lemma 5.3.5,

ct(gt) = gt −Nt(gt),

dct
dgt

= 1− dNt
dgt

,

d2ct
dg2
t

= −d2Nt
dg2
t

We also know that, ct(gt) is a convex function with positive curvature becauseNt(gt) =∫∞
0

min(gt+1, Nt+1(gt+1))f(gt+1)dgt+1, and Nt(gt) ≤ G for all gt and t from Lemma

5.3.3, thus, d2ct
dg2
t
≥ 0 and this guarantees that d2Nt

dg2
t
≤ 0 ∀t, gt. Nt is twice-differentiable

and d2Nt
dg2
t
≤ 0, then Nt is concave.

If Nt is concave, then it is bounded above by its first-order Taylor approximation

(Varian (1992));

Nt(ĝt)−Nt(0)

(ĝt − 0)
≤ dNt(0)

dgt

(Nt(ĝt) = ĝt from Lemma 5.3.5 and Nt(0) = 0 since ct(0) = 0 from Remark 5.3.6)

ĝt
ĝt
≤ dNt(0)

dgt

1 ≤ dNt(0)

dgt

Thus, dct(0)
dgt

= 1 − dNt(0)
dgt

≤ 0. Therefore, for both case 1 and 2, there exists a non-

trivial root ĝt such that ct(ĝt) = 0, ct(gt) ≤ 0 ∀gt < ĝt, and ct(gt) > 0 ∀gt > ĝt, ∀t.

Calculations illustrating the price condition for a binomial tree approach are included

in Appendix B.
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Remark 5.3.7. From Lemma 5.3.3, Nt(g) is monotonically increasing with time;

(i) ct(g) is decreasing with time; ct(g) ≥ ct+1(g), because ct(g) = g − Nt(g) and

ct+1(g) = g −Nt+1(g) ∀t < T − 1 and ∀g

(ii) ĝt is increasing with time; 0 < ĝt ≤ ˆgt+1 < G ∀t < T − 1, because ct( ˆgt+1) ≥

ct+1( ˆgt+1) from (i), Nt( ˆgt+1) ≤ Nt+1( ˆgt+1) from Lemma 5.3.3, and ĝt = Nt(ĝt),

ˆgt+1 > Nt( ˆgt+1), ˆgt+1 = Nt+1( ˆgt+1) from Lemma 5.3.5, thus, ĝt = Nt(ĝt) ≤ Nt( ˆgt+1) <

Nt+1( ˆgt+1) = ˆgt+1

As we have proved Lemma 5.3.5, there exists a price threshold, ĝt, which also grows

with time from Remark 5.3.7, below which it is optimal to fill up the tank, and above

which it is optimal to wait for the price to fall. Note that we have not excluded the

possibility that the price threshold depends on the tank level. Indeed later numerical

work will suggest that it does, at least where there is insufficient gas in the tank to

make it to the end of the decision period without refueling. See Section 5.5.

5.3.2 Optimal Refueling Strategy with Loyalty Program

Up until now, we discussed the expected price overrun and proved that there exists

a price threshold. In the remainder of the Chapter 5, we present general forms of the

optimality equation for the refueling strategy problem with the loyalty program, and

solve the optimality equation.

As before, we assume the time horizon T is known and sufficiently short to ignore

discounting. At the end of each day, loyal customer can buy gas at minimum of

market price (gt) and guaranteed price (G); or wait until the next day depending on

her or his tank level. Again, we assume one unit of gas is used each period, and the

customers must fill up the tank at the end of the time horizon.
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Decision Stages: T is the known final stage, and t = {1, 2, · · · , T}, is a discrete

periods of days. We assume decision to refuel happens at the end of each day, and

T − t denotes stages-to-go.

State: s = (k, gt), where k is the discrete tank level at the end of day, k ∈ {1, · · · , K},

the maximum tank level is K, the minimum tank reserve level is 1 (i.e, avoid dam-

aging the engine), and the tank level at the next period is kt+1, which depends on

the purchasing quantity at the end of each period t, at, and a fuel consumption rate,

that we normalize to 1. gt is the current gasoline price at the end of day t, gt ∈ R+.

Actions: permissible decision variable on how much gasoline to fill up at each stage

A =

{
{0, 1, · · · , K − k} if k>1,

{1, · · · , K − k} if k = 1.

The refueling cost with a loyalty program at the end of each period is given by:

rt(s, at) = at min(gt, G), where gt is a market gasoline price and G is a guaranteed

price

Terminal Cost: rT (s) = (K − kT ) min(gT , G), assume at the end of period, must

fill up

Transitional Probability Function: The transition of the tank level state variable

is deterministic and defined by kt+1 = kt − 1 + a. The gasoline price state variable

is stochastic and follows f(gt+1), where gt+1 ∈ R+ is the next day’s gasoline prices,

which is a non-negative i.i.d. random variable.

The optimality equation for t < T is given below;



79

Vt(s) = inf
at
{at min(gt, G) +

∫ ∞
0

Vt+1(s′ = (kt+1, gt+1))f(gt+1)dgt+1} (5.8)

where kt+1 = kt + at− 1, at is the control variable, with 1 unit fuel consumption rate

Theorem 5.3.8. When gt ≥ G for t < T , the optimal refueling strategy is trivial,

and should wait (a∗t = 0 is dominant) until the price falls below the guaranteed price

unless the tank is at the minimum level.

Proof. Theorem 5.3.8 is financially obvious, as there is no state of nature in which

we would ever pay more than G for a unit of gas, and many in which we would pay

less. If gt ≥ G for t < T , and if the tank level permits, it’s weakly optimal to wait

for the price to fall; you cannot do worse than waiting as the price will never exceed

G. Thus, a∗t = 0.

Theorem 5.3.9. When gt < G for t < T , there exists an optimal policy a∗t such that:

(i) if gt ≤ ĝt, then a∗t = K − kt (i.e. fill up),

(ii) if gt > ĝt and kt > 1, then a∗t = 0 (i.e. don’t fill), and

(iii) if gt > ĝt and kt = 1, then a∗t = 1 (i.e. fill only 1 unit).

Proof. If gt < G for t < T , the problem becomes more interesting, and we proved in

Lemma 5.3.5 that there exists a price threshold, ĝt, below which it is optimal to fill

up the tank, and above which it is optimal to wait for the price to fall if the tank

level permits.

We now prove Proposition 5.3.10, the solutions of the optimality equation (5.8).

Proposition 5.3.10. Provided gt < G, the optimality equation (5.8) results in the

following optimality equations;

• if gt ≤ ĝt, then a∗t = K − kt for t ≤ T − 1, and
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Vt(s) = (K − kt)gt +Nt(gt) +Rt(gt) (5.9)

• if gt > ĝt and kt > 1, then a∗t = 0 for t ≤ T − 1, and

Vt(s) = (K − kt + 1)Nt(gt) +Rt(gt) (5.10)

• if gt > ĝt and kt = 1, then a∗t = 1 for t ≤ T − 1, and

Vt(s) = gt + (K − kt)Nt(gt) +Rt(gt) (5.11)

The expected prices are divided into two terms, namely Nt(gt) and Rt(gt). This

enables us to simplify the expressions which follow. Nt(gt) is the expected price per

unit volume in the future, and Rt(gt) is the expected remainder cost due to the one

unit consumption each day after filling up the tank at t (the remainder amount,

T − t− 1). ct(gt) is the expected price overrun as defined in 5.3.1.

ct(gt) = gt −
∫ ĝt+1

0

gt+1f(gt+1)dgt+1 −
∫ ∞
ĝt+1

Nt+1(gt+1)f(gt+1)dgt+1 (5.12)

Nt(gt) =

∫ ĝt+1

0

gt+1f(gt+1)dgt+1 +

∫ ∞
ĝt+1

Nt+1(gt+1)f(gt+1)dgt+1 ≥ 0 (5.13)

Rt(gt) =

∫ ∞
0

Nt+1(gt+1)f(gt+1)dgt+1 +

∫ ∞
0

Rt+1(gt+1)f(gt+1)dgt+1 ≥ 0 (5.14)

Proof. (5.9) and (5.10) in Proposition 5.3.10 by induction:
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for t = T − 1

Vt(s) = inf
at
{atgt +

∫ ∞
0

Vt+1(s′)f(gt+1)dgt+1}

= inf
at
{atgt + (K − kt + 1− at)(

∫ ∞
0

min(gt+1, G)f(gt+1)dgt+1)}

= inf
at
{atgt + (K − kt + 1− at)(

∫ G

0

gt+1f(gt+1)dgt+1 +

∫ ∞
G

Gf(gt+1)dgt+1)}

= inf
at
{at(gt −

∫ G

0

gt+1f(gt+1)dgt+1 −
∫ ∞
G

Gf(gt+1)dgt+1)}

+ (K − kt + 1)(

∫ G

0

gt+1f(gt+1)dgt+1 +

∫ ∞
G

Gf(gt+1)dgt+1)

Let Nt(gt) =

∫ G

0

gt+1f(gt+1)dgt+1 +

∫ ∞
G

Gf(gt+1)dgt+1 < G (5.15)

ct(gt) = gt −
∫ G

0

gt+1f(gt+1)dgt+1 −
∫ ∞
G

Gf(gt+1)dgt+1 (5.16)

= gt −Nt(gt) (5.17)

Thus, Vt(s) = inf
at
{atct(gt)}+ (K − kt + 1)Nt(gt) (5.18)

Since Vt(s) is linear in at, the optimal solution lies at an extreme point of the set of

feasible control variables.

If gt ≤ ĝt, then ct(gt) ≤ 0 and gt ≤ Nt(gt) from Lemma 5.3.5. In other words, if the

current price is less than or equal to the expected price in the future, the optimality

function has a negative linear relationship with at. Thus, it is minimized when a∗t is

as large as possible, and a∗t = K − kt.

Using expressions (5.17), (5.18), we get;

VT−1(s) = (K − kt)gt +Nt(gt) +Rt(gt) if gt ≤ ĝt
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If gt > ĝt, then ct(gt) > 0 and gt > Nt(gt) from Lemma 5.3.5. the current price

is greater than the expected price in the future, and the optimality function has a

positive linear relationship with at. Thus, it is minimized when a∗t is as small as

possible, hence a∗t = 0 if kt > 1 and a∗t = 1 if kt = 1 (minimum constraint on tank

level).

VT−1(s) = (K − kt + 1)Nt(gt) +Rt(gt) if gt > ĝt and kt > 1

VT−1(s) = gt + (K − kt)Nt(gt) +Rt(gt) if gt > ĝt and kt = 1

(5.9) and (5.10) in Proposition 5.3.10 holds for t = T − 1, but since there is only

one period left there is no remainder expected cost due to the one unit consumption

each day after filling up at t, T − t− 1 = T − (T − 1)− 1 = 0, thus, Rt(gt) = 0.

Assume (5.9) and (5.10) in Proposition 5.3.10 hold for all t = j + 1, j + 2, · · · , T − 2,

using expressions (5.12), (5.13), and (5.14) the following proof can be derived: a∗t =

K − kt if gt ≤ ĝt and a∗t = 0 if gt > ĝt and kt > 1 for t = j .

Vt(s) = inf
at
{atgt +

∫ ∞
0

Vt+1(s′)f(gt+1)dgt+1}

= inf
at
{atgt +

∫ ĝt+1

0

(
(K − kt + 1− at) gt+1 +Nt+1(gt+1) +Rt+1(gt+1)

)
f(gt+1)dgt+1 +

∫ ∞
ĝt+1

(
(K − kt + 2− at)Nt+1(gt+1) +Rt+1(gt+1)

)
f(gt+1)dgt+1}
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Vt(s) = inf
at
{at
(
gt −

∫ ĝt+1

0

gt+1f(gt+1)dgt+1 −
∫ ∞
ĝt+1

Nt+1(gt+1)f(gt+1)dgt+1

)
}

+ (K − kt + 1)
( ∫ ĝt+1

0

gt+1f(gt+1)dgt+1 +

∫ ∞
ĝt+1

Nt+1(gt+1)f(gt+1)dgt+1

)
+

∫ ∞
0

(Nt+1(gt+1) +Rt+1(gt+1))f(gt+1)dgt+1

Thus, Vt(s) = inf
at
{atct(gt)}+ (K − kt + 1)Nt(gt) +Rt(gt) (5.19)

a∗t = K − kt if gt ≤ ĝt, and a∗t = 0 if gt > ĝt and kt > 1, and using expression (5.17),

ct(gt) = gt −Nt(gt) and plugging in a∗t we get;

Vt(s) = (K − kt)gt +Nt(gt) +Rt(gt) if gt ≤ ĝt

Vt(s) = (K − kt + 1)Nt(gt) +Rt(gt) if gt > ĝt and 1 < kt < K

Thus, (5.9) and (5.10) in Proposition 5.3.10 hold for all t = j.

Similarly, a∗t = K − kt if gt ≤ ĝt and a∗t = 1 if gt > ĝt and kt = 1 for t = j.

Vt(s) = inf
at
{atgt +

∫ ∞
0

Vt+1(s′)f(gt+1)dgt+1}

= inf
at
{atgt +

∫ ĝt+1

0

(
(K − kt + 1− at) gt+1 +Nt+1(gt+1) +Rt+1(gt+1)

)
f(gt+1)dgt+1 +

∫ ∞
ĝt+1

(
min(gt+1, G) + (K − kt + 1− at)Nt+1(gt+1) +Rt+1(gt+1)

)
f(gt+1)dgt+1}
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Vt(s) = inf
at
{at
(
gt −

∫ ĝt+1

0

gt+1f(gt+1)dgt+1 −
∫ ∞
ĝt+1

Nt+1(gt+1)f(gt+1)dgt+1

)
}

+ (K − kt + 1)
( ∫ ĝt+1

0

gt+1f(gt+1)dgt+1 +

∫ ∞
ĝt+1

Nt+1(gt+1)f(gt+1)dgt+1

)
+

∫ ĝt+1

0

(Nt+1(gt+1) +Rt+1(gt+1))f(gt+1)dgt+1

+

∫ ∞
ĝt+1

(min(gt+1, G) +Rt+1(gt+1))f(gt+1)dgt+1

Since a∗t = 1 if gt > ĝt and kt = 1, notice that Rt(gt) is slightly different.

Vt(s) = gt + (K − kt)Nt(gt) +

∫ ĝt+1

0

(Nt+1(gt+1) +Rt+1(gt+1))f(gt+1)dgt+1

+

∫ ∞
ĝt+1

(min(gt+1, G) +Rt+1(gt+1))f(gt+1)dgt+1

Vt(s) = gt + (K − kt)Nt(gt) +Rt(gt) if gt > ĝt and kt = 1

Thus, (5.11) in Proposition 5.3.10 holds for all t = j.

Therefore, we have proved all (5.9), (5.10), and (5.11) in Proposition 5.3.10, including

the optimality equation (5.8) and Theorem 5.3.9. We also have proved the existence

of price thresholds, ĝt, and that it is optimal to buy K−kt if gt ≤ ĝt, and buy nothing

if kt > 1 and if gt > ĝt and buy one unit if kt = 1 and if gt > ĝt.

Remark 5.3.11. Assuming g < G and an optimal solution exists at either extreme

bounds, fill-up or fill minimum or nothing, we define numerical price threshold as the

point where expected cost is indifferent between the extreme bounds.

If k > 1, then price threshold is g, such that g = E[Vt+1(k−1,g′)|g]−E[Vt+1(K−1,g′)|g]
K−k

If k = 1, then price threshold is g, such that g = E[Vt+1(1,g′)|g]−E[Vt+1(K−1,g′)|g]
K−2

where E[Vt+1(k, g′)|g] is the expected cost-to-go for the random price g′ and a tank-

level k, as will be seen in Section 5.5, the price threshold for the smaller tank-level

are higher than that for the larger tank-level than the number of days-to-go.
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5.4 Numerical Methodology

In previous Section, we have analytically studied the existence of a non-negative

threshold on the optimal decision below which it is optimal to fill-up and above

which it is optimal to wait or fill one day’s worth of travel minimum depending on

the time-to-go and tank level. We now numerically compute the optimal decision

boundary, ĝk, and show how the threshold value changes with different parameters.

We start by looking at the optimal policy as we hold the days-to-go (1, 2, · · · , 6, 7)

and the tank level (1, 2, · · · , 9, 10) at one value, and allow two parameters of gasoline

price process, µ and σ, to vary at a time. We found that the price thresholds are

more sensitive to σ than to µ. This might be because the numerical value of µ is up

to 10 times smaller than the values for σ used in this study.

Figure 5.2 shows the optimal policy separated by the price thresholds for a specific

tank level, days-to-go, and µ, while varying σ from 0.002 to 0.01. Price thresholds

changes from about 3.12 to 3.08.

Figure 5.2: ĝ against σ, varied from 0.002 to 0.01, while fixing G = 3.13, tank level=4 and days-
to-go=6, and µ = 0.0002
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Figure 5.3 shows the optimal policy separated by the price thresholds for specific tank

level, days-to-go, and σ, while varying µ from 0.0001 to 0.0005. Price thresholds do

not change much.

Figure 5.3: ĝ against µ, varied from 0.0001 to 0.0005, while fixing G = 3.13, tank level=4 and
days-to-go=6, and σ = 0.004

5.4.1 Numerical Algorithm

Problem: Given a finite tank (10 unit tank-level) and a number of days-to-go (7 days-

to-go), minimize the refueling cost with a constraint of filling up the tank by the 7th

day with a guaranteed price G.

Inputs: price grid points (gk), 0 ≤ gk ≤ G, a list of daily drift rate (µ) varied

from 0.0001 to 0.001, a list of daily volatility (σ) varied from 0.002 to 0.01, and the

guaranteed price G = 3.13.

Outputs: We simulate n possible prices for time k + 1 at each price grid (gk) and at
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each days-to-go, given drift rates and volatilities. We compute the Cost-to-Go follow-

ing optimal policy both with the guaranteed price and without the guaranteed price

at each state. Then, we find the value of loyalty program as the cost-to-go difference

between with the guaranteed price and without the guaranteed price following opti-

mal policies at each state. We also find ĝt, which is the maximum price that satisfies

the optimal policy to re-fill at each state.

Dynamic Programming Algorithm:

I) One-Period Random Price Movement

Generate a M ×N matrix with one-period price transitions following a non-negative

price process for a specific µ and σ. Each row is a discrete price-level, gk, with interval

of G
M−1

, i.e. 0, G
M−1

, 2G
M−1

, · · · , G, and each column is a simulated instance of the price

one-period later given an initial price gk (i.e. N = 1000 and M = 10).

For each possible tank-level 1, 2, 3, · · · , 10, do the following;

II a) Expected cost-to-go which follows optimal policy for period 6

Generate a M × 2 matrix with each row corresponding to the current price level, gk.

In the first column, simply take the closed form solution for the cost of filling up tank

(last period) at the simulated price, gk+1, and then take average of these costs.

with guaranteed price

E[ refuel cost at price gk+1 in period 7|gk] = ( 10 - current tank level )
∑

min(gk+1,G)

N

In the second column, you calculate the expected cost-to-go, given by;

min( refuel cost at price gk in period 6 +E[ refuel cost at price gk+1 in period 7 ])

In general, the expected cost-to-go is the argmin of the previous column, which follows
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the optimal policy, given as;

cost-to-go(i, j, gk) = min
a

(a×min(gk, G) + E[cost-to-go(i+ a− 1, j − 1, gk+1)])

Where gk+1 is the simulated price one-period later and gk is the current period price

level, i is the current tank-level, and j is the current number of days-to-go.

II b) Expected Cost-to-go following Optimal policy for period 5, 4, 3, 2, and 1

Generate M × 5 matrix with each row corresponding to the current price level. Start

with period 5 and move back to period 1.

In the following columns of each matrix we calculate the expected cost-to-go;

min( refuel cost at price gk in period t+E[ refuel cost at price gk+1 in period t+ 1])

Where,

E[ refuel cost at price gk+1 in period t+ 1] = 1
N

∑
(interpolated cost-to-go in t+ 1)

Since the majority of simulated prices, gk+1, do not fall in exactly one of the dis-

crete price grid points gk = 0, G
M−1

, 2G
M−1

, · · · , (M−3)G
M−1

, (M−2)G
M−1

, G, but fall in between

the price grid points, we interpolate the cost-to-go from the nearest discrete price

buckets, above and below the simulated price. We then take the average of all cost-

to-go.

[0,
G

M − 1
], [

G

M − 1
,

2G

M − 1
], · · · , [ (M − 3)G

M − 1
,
(M − 2)G

M − 1
], [

(M − 2)G

M − 1
, G]

To find the optimal decision boundary or ”price thresholds”, and the value of the

guaranteed price, we use dynamic programming (DP) and the recursive value func-
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tion or ”cost-to-go” function, which follows the optimal policy. The optimal policy

resulting from this cost-to-go function is described by the value of the guaranteed

price matrices for each of the 10 tank-levels, of 7 days-to-go, and of gk. The price

thresholds are, then, mapped from the optimal policy and the value of the guaranteed

price; as the maximum price such that it is optimal to fill-up and has the value greater

than 0.005.

The price grid points are constructed by assuming that all simulated prices, gk+1,

will fall on or between the discrete price grid points. The dynamics of the price are

only depend on µ and σ, and for reasonable µ and σ, gk+1 will be between the price

grid points, but in the case of gk = G, the simulated price will not be between the

price grid points, and we do not have the cost-to-go for gk+1 > G. To overcome

this issue, we use one additional price-level as we approach the final period. i.e. the

discrete price-levels increases MG
M−1

, (M+1)G
M−1

, · · · , (M+5)G
M−1

as the number of days-to-go

decreases.

5.4.2 Price Simulation Approach

Using the algorithm we presented in Section 5.4.1, we can numerically find the value

of the loyalty program and the optimal decision boundary. For the numerical values,

we need particular price process, and we now impose Geometric Brownian motion

(GBM) on the price-movement because of its links with quantitative finance, station-

ary normal increments, and non-negativity. As discussed, more complicated processes

can be used and may better characterize the behaviour of gas prices, but may be more

difficult to understand and requires more parameters to be estimated. For GBM, we

just need only to estimate parameter values µ and σ as described in Appendix D from

the logged daily gasoline price changes.
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Let gt+1 be the next period price and gt be the current period price, then, we have

gt+1 = gte
µ−σ

2

2
+σZt where µ is the daily drift rate and σ is the daily volatility. For

example, the drift rate of 0.0002 means logged gasoline price will move up .02%, each

day, on average and volatility of 0.004 means some day logged price will move up

0.4%, others down 0.4%, and most of the time in the middle.

5.5 Simulation Results

5.5.1 Price Thresholds

In what follows, we present the numerical results using simulated prices for different

parameters, and compare the price thresholds and the value of the loyalty program

that follows the optimal refueling strategy. The simulated prices at time k+1 at each

number of days-to-go are based on the price grid points gk, and the full price paths are

unknown. Assuming the full price paths and price cycles are unknown, if gk is greater

than G, then the (less interesting) optimal strategy is simply to wait or to refill the

minimum unit of gas at G. Under the same assumption, if gk is less than or equal to

G, then, the optimal strategy is to compare today’s price with price thresholds and

fill-up if today’s price is below the appropriate price thresholds, otherwise wait unless

the tank is near empty.

We learned that the optimal decision boundaries or price thresholds are time-varying

as well as state-dependent while fixing parameters to parameters appropriate for his-

torical proxy (µ = 0.0002, σ = 0.004). The lower the tank level and the fewer the

days-to-go, the higher the price thresholds with some exceptions. In fact, the price

thresholds is monotonically increases as approach to the final stage because there is

lower the chance of price changes.



91

Figure 5.4: Price Thresholds, ĝ (y-axis), against the number of days-to-go (x-axis), while fixing
µ = 0.0002, σ = 0.004, and G = 3.13.

The price thresholds are the same for all tank levels at the final stage, also the same

for the minimum tank-level (k = 1) and tank-level (k = 2), and same for tank-levels

(k = 7, 8, 9), while the difference between different tank levels grows as the number

of days-to-go increases for other tank levels. This is intuitively reasonable because of

the constraint of filling up the tank at the final stage for all tank levels, the constraint

of filling up at least 1 unit for the minimum tank-level (k = 1), and never forced to

refill except the final stage for tank-level (k = 7, 8, 9), make their expected cost-to-go

equivalent between, the above mentioned, tank levels.

Figure 5.4 shows price thresholds for specific µ and σ, price thresholds monoton-

ically decrease as time-to-go increase, also decreases as tank level increases. This

makes perfect sense both financially and psychologically when you are less desperate

about re-filling your tank either because you have more time to make your decision

or have more reserve in your tank, you can get more picky about price.
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5.5.2 Value of a Loyalty Program

A call option is in the money if the price of the underlying asset is higher than the

strike price, it is out of the money if the price of the underlying asset is lower than the

strike price, and it is at the money if the price of the underlying asset is the same as

the strike price. Similarly, loyalty program is in the money if the gas price is higher

than the guaranteed price, it is out of the money if the gas price is lower than the

guaranteed price, and it is at the money if the gas price is the same as the guaranteed

price.

The difference between the gas price and the guaranteed price is instant cost-saving,

and the possibility that it will move into the money is potential cost-saving. Thus,

the loyalty program would only be valuable when the current price is near or greater

than the guaranteed price. In fact, from Section 5.5.1, for reasonable parameters

the price thresholds exist near the guaranteed price, thus, gk near G or near at-the-

money is expected to be more interesting and variable than for deep out-of-the-money

(gk << G) or deep in-the-money (gk >> G). The value of the loyalty program is

expected to be very small when gk << G, relatively bigger when gk is near G, and

very big when gk >> G. As introduced in Section 5.4.1, using dynamic programming

and the recursive cost-to-go functions, we find the expected cost-to-go both with and

without guaranteed price that follows the optimal policy at each state of the 10 tank-

levels, of 7 days-to-go, and of gk. The expected cost-to-go with guaranteed price is

given as;

cost-to-go(i, j, gk) = min(a ∗min(gk, G) + E[cost-to-go(i+ a− 1, j − 1, gk+1)])
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The expected ¯cost-to-go without guaranteed price is given as;

¯cost-to-go(i, j, gk) = min(a ∗ gk + E[ ¯cost-to-go(i+ a− 1, j − 1, gk+1)])

The value of the loyalty program is then calculated as the expected cost-to-go differ-

ence between with the guaranteed price and without the guaranteed price following

optimal policies at each state of the 10 tank-levels, of 7 days-to-go, and of gk.

Figure 5.5: The value of loyalty program (y-axis) against the number of days-to-go (x-axis). while
fixing µ = 0.0002, σ = 0.004, and gk = G = 3.13

Figure 5.5 shows the value of loyalty program for gk = G with specific µ, and σ,

the value of loyalty program increases almost linearly as the number of days-to-go

increases and as the tank level gets lower; the value as well as the variations of the

value shrinks as the number of days-to-go decreases and as tank level increases. This

implies that the value of loyalty program is determined by both tangible and intangi-

ble factors; the more gas to fill and the longer the time to go, the higher the value gets.
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This is more evident when we plot the same value against the tank level for dif-

ferent number of days-to-go, see Figure 5.6. The values are clearly higher for more

days-to-go and for lower tank levels. More interestingly, the value increases linearly

as tank level gets lower at 1 day-to-go. This is because of the constraint of filling up

the tank by the 7th day, and there is no potential cost-saving, just the instant cost-

saving at 1 day-to-go. For longer days-to-go, the potential cost-saving is also added

to the instant cost-saving, and the potential cost-saving grows slowly, approximately

logarithmically with smaller tank level, especially when that tank level is not large

enough to wait and be forced to refill, see Figure 5.6.

Figure 5.6: The value of loyalty program (y-axis) against the tank level (x-axis), while fixing
µ = 0.0002, σ = 0.004, and gk = G = 3.13

We now fix the tank level and days-to-go at one value, and vary two of µ, σ, gk. As ex-

pected, value gets higher as gk gets near G. The value shows the most variations at gk

near G, and less variations away from the G, also, more sensitive to σ than to µ. This

is because the changes in volatility parameter, σ, is greater than the drift parameter,

µ− σ2

2
, due to the relative magnitude difference between the two parameters, µ and σ.
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Figure 5.7 shows the value of loyalty program for fixed tank level, days-to-go, and µ,

while varying gk for different σ. The value shows the most variation in gk near G.

Figure 5.7: The value (y-axis) against gk (x-axis), while fixing tank level=4 and days-to-go=6,
G = 3.13, and µ = 0.0002

Figure 5.8 shows the value of loyalty program for fixed tank level, days-to-go, and σ,

while varying gk for different µ. Not much variations are observed for all gk.

Figure 5.8: The value (y-axis) against gk (x-axis), while fixing tank level=4 and days-to-go=6,
G = 3.13, and σ = 0.004
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For coarse grid points, in Figure 5.7 and 5.8, we observed the progression of gk moving

from out of the money to in the money. Thus, we study the figure in more detail

using finer grid points, for gas price values near G, in the following. Figure 5.9 shows

the value of loyalty program for specific tank level, days-to-go, and µ, while varying

gk and σ. The value of σ matters most at near the money, 3.11, while deep out of the

money, σ does not matter much.

Figure 5.9: The value (y-axis) against gk (x-axis), while fixing tank level=4 and days-to-go=6,
G = 3.13, and µ = 0.0002

Figure 5.10 shows the value of loyalty program for specific tank level, days-to-go, and

σ, while varying gk and µ. The value of µ does not matter as much as the value of

gk and σ.

As discussed, the results show that the value of loyalty program is fairly independent

of µ (as long as µ > 0). We further study the value of guaranteed price for µ < 0.

Figure 5.11 shows the value of loyalty program for gk = G with µ = −0.004, and

σ = 0.004. For µ = −0.004 < 0, the value of loyalty program is still small positive

numbers, increase as the number of days-to-go increase and tank levels get lower.

Figure 5.12 shows the value of loyalty program for gk = G with µ = −0.016, and
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Figure 5.10: The value (y-axis) against gk (x-axis), while fixing tank level=4 and days-to-go=6,
G = 3.13, and σ = 0.004

Figure 5.11: The value of loyalty program (y-axis) against the number of days-to-go (x-axis) while
fixing µ = −0.004, σ = 0.004, and gk = G = 3.13

σ = 0.004, the value of loyalty program now becomes zero for all states.

In order to drive the value of loyalty program to zero, the µ has to be big enough, need

condition of µ− σ2

2
+ σ×Z < 0, and µ < σ2

2
− σ×Z, i.e. µ < 0.0042

2
− 0.004×Z, µ .

−0.015 because the percentage changes over one day for GBM are independent log-

normal random variables.
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Figure 5.12: The value of loyalty program (y-axis) against the number of days-to-go (x-axis) while
fixing µ = −0.016, σ = 0.004, and gk = G = 3.13

5.6 Conclusion

In this chapter we found optimal purchasing strategies for customers, providing both

theoretical results about the abstract structure of these strategies and numerical val-

ues for these policies computed with numerical parameters. Using simulated data, we

found the price thresholds, estimated the value of the loyalty program, the premium

to be paid, and quantitatively supported the loyalty program. The empirical study

of loyalty programs was limited to potential value and benefits for customers because

the particular loyalty program we proposed has never been globally introduced in re-

tail gasoline market. Once the loyalty program is launched, with the comprehensive

‘before’ and ‘after’ data, the impact of a loyalty program can be assessed, how much

it would increase market share and repeat-purchase, as well as attract new customers.

Since 1980’s, trading in crude oil has shifted from a domain of buyers and sellers

to a market where speculators bet on a price of a given crude oil on a specific future

date to make profits from speculation (Engdahl (2008)). Studies show that unregu-

lated speculation in oil futures, can drive prices up, which cannot be justified by the

supply and demand theory (Engdahl (2008)).
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Thus, to avoid such price manipulations in the retail gasoline market, the quan-

tity any speculator buys on the retail gasoline market, needs to be regulated. But,

this may be a lesser problem in the retail gasoline market because the quantity can be

restricted naturally by the quantity which consumers are willing to buy and by which

retailers are willing to sell. The value of petroleum product will eventually become

very low, discouraging speculators as fuel powered vehicles are replaced by electric

vehicles.

While further investigation is needed to fully understand the benefits and risks of

bringing the guaranteed price in the world of retail gasoline market, we presented

some promising theoretical results to promote the loyalty program and show that it

would be a great tool for both retailers and consumers, hedging against the price and

sales fluctuations. Truck and taxi companies could also manage their fleet costs more

effectively using the same loyalty program with much bigger potential benefits by the

volume.

In addition to the positive value of loyalty program, we postulate the guaranteed

price in the loyalty program would also discourage consumers from ‘price search’ be-

haviour. Thus, sales and profit are expected to be less sensitive to the price change

over the time with the guaranteed prices and brand loyalty. Thus, it might also be

interesting to study the impact of the loyalty program in gasoline market on both

price searching and pricing behaviour.

In the next Chapter, we investigate the performance of this on real market data

and compare numerical results with empirical data.
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Chapter 6

Optimal Refueling Strategy Using

Empirical Data

6.1 Comparison with Empirical Data

In this Chapter, we present empirical data (historical values), and find the optimal

refueling strategy based on a theoretical model introduced in Section 5.4.1. The em-

pirical data set used in this Chapter is unique and broad in its temporal and spatial

dimensions. There are over 1000 different retail sites each with anonymized site ID

in the data set. Each site is independent of the others, and all are located in North

American cities.

The data collected per site contains a date index; a weekday index from 1 (Sun-

day) to 7 (Saturday); and station-specific daily retail price (in $ per gallon) data.

The data were collected by retailers who contracted with a leading global pricing and

solution company for the period from July 2012 to June 2013. Due to a confidentiality

agreement, no further detail may be provided here.
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In what follows, we analyze results from the empirical data, and compare the empir-

ical results with results from the simulated data of chapter 5.

Figure 6.1: Floating prices(gt) and monthly constant guaranteed prices(e.g. G1,2,··· ,9 =
1.008g01,2,··· ,9) are plotted using gasoline price data in US (Firm G, site 2015) from July 2012
to March 2013. On the right, the spread of floating and guaranteed prices of gasoline price for the
same site, which changes positively and negatively with time.

The spread of floating and guaranteed prices, as seen in Figure 6.1, is the difference

between floating and customizable guaranteed prices, and the average of which is the

value of the floating-to-fixed swap, assuming negligible transaction costs and cash

flows occur at nearly the same time. The spread is within $0.3/gal, but it has varia-

tions over time with linear trends either upward or downward on a smaller scale. On

a bigger scale, the spread is discontinuous, and shows cyclical patterns because we

assume that the guaranteed price is updated monthly adapting to the floating price

changes.
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While the value of the swap is simply given as the spread between floating and

guaranteed prices, we must estimate the expected value (the premium) of the loy-

alty program, which is designed to be paid by customers upfront at the beginning

of each month. The expected value of the loyalty program, with which customers

have options to purchase gasoline up to a pre-set quantity (e.g., 40 gal, about four

times fill-up for 10 gal tank) at a guaranteed price (G) at any discrete time during

finite time horizon [0, T ], where T is the option’s maturity time (e.g., a month), is

not directly observable and easily calculated.

The relative prices in future are uncertain, furthermore, purchasing frequency and

quantity at each time would depend on the particular refueling strategy. The pur-

chasing frequency would also depend on the individual’s consumption rate and the

quantity at each time is bounded by lower bound (when full, 0 gal) and upper bound

(when empty, e.g.,10 gal) depending on the state of individual’s tank and gasoline

price.

6.1.1 Implementation

First, retailers need to set a guaranteed price, which can be matched to or a few cents

lower than the guaranteed price that the customers get, with swap providers (e.g.,

as in forward contract G = g0 expµT ) and set the premium for the loyalty program

as discussed in Chapter 4. In order to set the premium, retailers need to know the

monthly guaranteed price (G), and to determine the guaranteed price must know

the monthly initial floating price (g0), daily drift rate (µ) and volatility (σ) of retail

gasoline price, and the contract time period (T ).



105

All the information is given except the two parameters, the daily drift rate and

volatility, that must be estimated. The two parameters can be estimated from his-

torical data over the life of contract looking back. Additionally, swap providers may

find speculators to hedge their exposed floating rate risk or may solely enter into the

fixed-to-floating swap without speculators. Swap documentation should include the

following; guaranteed price (G), the average floating gasoline price (gt, e.g., average

retail gasoline price over a month), the scheduled time for cash flow exchange (e.g.,

at the end of each month) between retailers and swap providers, the termination date

(e.g., end of the month), and the conditions of termination.
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Figure 6.2: Historical Retail Gasoline Price from July 2012 to June 2013 with (upper panel) and
without (lower panel) Seasonality

6.1.2 Empirical Price Approach

We have solved the optimality problem in retail gasoline market both theoretically

and numerically in Chapter 5. In the following Sections, we aim to show that our
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optimal strategy derived from the optimality problem is effective in practice.

To support the proposed idea of loyalty program and a guaranteed gasoline price

in the retail gasoline market, we numerically investigate how much money the guar-

anteed price could actually have saved individuals who follow the optimal strategy

using individual realized price paths. The optimal strategy is to refuel as soon as the

floating price drops below the price thresholds, otherwise wait as described in Section

5.3.2 and as obtained in Section 5.5.1.
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Figure 6.3: Left panel: Illustration of one of the seven segmented realized prices from July 2012
to June 2013 by 7 days. Right panel: After shifting by one day for each day of week, the seven
segmented realized prices are combined and scaled with the same initial prices.

For the individual realized price paths, the time series of historical retail gasoline

price, shown in Figure 6.2, is segmented into 7 days in order to keep using the same

model framework and assumptions (7 days to go, fill-up at the end of decision pe-

riods). Next, we adjust the weekly seasonality by shifting the segmented prices, see

Figure 6.3 (Left panel), by one day for each day of week, and combine them all. Then,

we scale the combined prices so that all the price paths can have the same initial value
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Table 6.1: Summary of Calibrated Parameters from the Short-term (7 days) segmented realized
prices.

Summary µ σ

Mean 0.0002 0.0033

Max 0.0063 0.0089

Min -0.0045 0.0000

as illustrated in Figure 6.3 (Right panel).

After this price data manipulation, we re-calibrate µ and σ for short-term (7 days),

and compare these parameters with the parameters estimated from the long-term.

The long-term (350 days) price changes have only one set of calibrated parameters,

while the short-term (7 days) price changes have multiple sets of calibrated param-

eters (50 segments). Table 6.1 shows the summary statistics of 50 sets of calibrated

parameters from the short-term (7 days) price changes.

The single set of calibrated parameters from the long-term (350 days) prices are

daily µ = 0.0002 and σ = 0.0046. The average price drifts and variations of the

short-term (7 days) price changes are very close to the long-term price drifts and

variations over almost a year, but the calibrated parameters from the short-term (7

days) prices vary between -0.0045 to 0.0063 for µ and between 0 to 0.0089 for σ.

In the following, we compute the total costs over time (7 days) with and without

the guaranteed price, assume guaranteed prices, G = 3.52, following the optimal

strategy. We first study the empirical realized price paths, and then, the larger num-

ber of simulated price paths given the price thresholds.



108

As introduced in Section 5.4.1, we find the expected cost-to-go both with and without

guaranteed price that follows the optimal policy found in the Section 5.3.2 for each

of the 10 tank-levels, and of 7 days-to-go. The main difference is that we now use

individual price paths (where full price paths are known) instead of price distributions

(where full price paths are unknown). Then, we compute the value of loyalty pro-

gram using the individual price paths that a consumer would earn under the optimal

strategy. The value, the expected cost-saving, is the difference between the expected

cost-to-go with and without guaranteed price throughout 7 days.
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Figure 6.4: Histogram (Left panel) and Box-plots (Right panel) of the value of loyalty program for
the realized price paths for all tank level over 7 days, the mean of a distribution is overlaid with the
vertical red dotted line, numerical results based on the empirical data in US (Firm G, site 2015)
from July 2012 to June 2013.

The empirical value of loyalty program under the optimal strategy has some variation

changing between $0 and $5, see Figure 6.4 (Left panel), increases as the initial tank

level gets lower, see Figure 6.4 (Right panel), and the mean expected cost-saving is

about $0.72. Assuming one unit of tank level is consumed at each day and the average

tank level is 5, on average 11 units needs to be filled per week.
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Thus, the value of the loyalty program is $0.72/11 units per week which is about 7

cents/unit per week. The empirical results show that the loyalty program under the

optimal strategy is beneficial in practice, in that using guaranteed price saves some

money when i.e. premium < 7 cents/unit, especially for companies who own fleets of

vehicles.
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Figure 6.5: Illustration of 1000 Simulated Individual Price Paths over 7 days

Next, we repeat our findings with a larger number of simulated price paths. We simu-

late 1000 price paths using one of the calibrated parameters µ (0.005) and σ (0.0089)

from the Short-term (7 days) segmented realized prices. Then, we compute the total

costs over time (7 days) for each of the 10 tank-levels, with and without the guar-

anteed price, assume G = 3.52, following the optimal strategy. For 1000 simulated

price paths, shown in Figure 6.5, we find the expected cost-saving, difference between

the total costs over time with and without guaranteed price, as shown in Figure 6.6.

The value of loyalty program using the larger number of simulated price paths is very

close to the value using the realized price paths in Figure 6.4. The value lies between

$0 and $4.5, and the mean value is $0.78, see Figure 6.6. Thus, the value of loyalty

program for the simulated prices is $0.78/11 units per week or 7 cents/unit per week.
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Figure 6.6: Histogram (Left panel) and Box-plots (Right panel) of the value of loyalty program for
the simulated price paths for all tank level, g0=3.52, mu=0.005, and sigma= 0.0089

In what follows, we examine to get a sense of how variable the values of loyalty

program are against the number of simulations. In Figure 6.7, the boxplots shows the

variability of the values for each of 100, 1,000, and 10,000 simulated price paths. The

variability of the values gets reasonably small from 1,000 samples, in that, the aver-

age values (green rhombus) vary between $0.66 and 0.87 (standard deviation=0.06)

for 100 samples, the average values vary between $0.76 and 0.80 (standard devia-

tion=0.01) for 1,000 samples, and the average values vary between $0.78 and 0.80
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Figure 6.7: (a): Boxplots of the value of loyalty program for 100 simulated price paths (b): Boxplots
of the value of loyalty program for 1,000 simulated price paths (c): Boxplots of the value of loyalty
program for 10,000 simulated price paths for initial g0=3.52 and tank level of 5, and mu=0.005 and
sigma= 0.0089
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(standard deviation=0.0075) for 10,000 samples.

We now compare the value estimated from individual price paths approach with

the value estimated from the price distributions in the price grids in Section 5.5.2.

It is worth noting that they convey slightly different stories and that their simulated

prices are derived from a different stochastic process. The value from the price grids

approach tells us given the current state (tank-level and days-to-go), parameters (µ

and σ), and current price (gk), what the expected value is following the optimal pol-

icy at a point in time. While, the value from the individual price paths approach

tells us given the initial price (g0), initial tank level, parameters (µ and σ), and total

number of days-to-go, what the total expected value is following the optimal policy

throughout the time.

Although, the values from two different approaches are not directly comparable, it

is still worthwhile to compare the two values for a benchmark under the reasonable

assumptions with the same parameters N(µ = 0.005, σ = 0.0089). Also, gk near G

is most interesting and variable as shown in Figure 5.9. Thus, to compare the two

approaches we use gk = G = 3.52 and g0 = G = 3.52 as a benchmark, but the values

are simply lower when gk < G or g0 < G, and bigger when gk > G or g0 > G.

Thus, we assume the current state (tank level=5 and 7 days-to-go), parameters (µ

= 0.005 and σ = 0.0089), and current price (gk = G = 3.52) for the price grids ap-

proach. Similarly, we assume the initial price (g0 = G = 3.52), initial tank level (tank

level=5), parameters (µ = 0.005 and σ = 0.0089), and total number of days-to-go

(7 days-to-go) for the individual price paths approach. The values are computed for

the price grids approach first, and then, using the same price thresholds the values

are computed for the individual price paths approach; for the 1000 individual price
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paths, 10 runs are repeated to get standard deviation.

Table 6.2: Estimated values for the parameters (µ = 0.005, σ = 0.0089),all starting from the same
fill level of 5. Y is the estimated value for price distributions on price grids, from Y1 to Y10 are the
estimated value for individual price paths(each with 10 runs). The first run(row) of Y is compared to
10 runs(10 rows) of Y1, the second run(row) of Y to 10 runs(10 rows) of Y2, · · · , the 10th run(row)
of Y to 10 runs(10 rows) of Y10.

Runs Y Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10

1 0.71 0.74 0.78 0.76 0.79 0.80 0.78 0.76 0.80 0.81 0.76

2 0.72 0.79 0.78 0.77 0.77 0.79 0.76 0.77 0.80 0.80 0.81

3 0.71 0.75 0.79 0.80 0.75 0.81 0.75 0.80 0.76 0.82 0.79

4 0.73 0.79 0.80 0.80 0.83 0.80 0.78 0.80 0.76 0.76 0.75

5 0.72 0.79 0.79 0.77 0.77 0.79 0.80 0.79 0.74 0.78 0.78

6 0.71 0.78 0.78 0.77 0.82 0.78 0.81 0.78 0.77 0.79 0.79

7 0.71 0.78 0.77 0.76 0.81 0.81 0.82 0.78 0.78 0.78 0.80

8 0.72 0.80 0.79 0.77 0.79 0.77 0.78 0.78 0.79 0.79 0.74

9 0.72 0.80 0.78 0.80 0.83 0.81 0.77 0.76 0.81 0.77 0.75

10 0.72 0.78 0.77 0.79 0.77 0.77 0.82 0.78 0.80 0.77 0.84

Mean 0.72 0.78 0.78 0.78 0.79 0.79 0.79 0.78 0.78 0.78 0.78

Deviation 0.007 0.01 0.01 0.02 0.03 0.02 0.03 0.01 0.02 0.02 0.03

Table 6.2 shows that the estimated values from the price grids approach, Y, are more

consistent with smaller variations (SD = 0.007) than the estimated values from indi-

vidual price paths approach, Y1-10 with slightly bigger variations (SD = 0.01-0.03).

The estimated values from the price grids approach, Y, is also close to the estimated

values from individual price paths approach, Y1-10. However, they are not expected

to be at the same level because of the aforementioned differences in their price sim-

ulation framework (point in time vs. throughout the time) and the different story

they convey. Although most of their estimated values from the price grids approach,

Y, are within 2 to 3 standard deviation of the mean values from individual price

paths approach, Y1-10, the variations may change for different state conditions and
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different parameters.

Both numerical results based on empirical and simulated data in this Chapter, where

parameters are calibrated from the short-term price variations, provide convincing ev-

idence that it might be worthwhile to offer the guaranteed price to valued customers

as a loyalty program free of charge, since the value of the loyalty program would be

fairly small at individual level when it is out of the money (gk << G), relatively small

when it is near at the money (gk . G), as long as G is set reasonably higher than

g0. The average value of loyalty program for both simulated prices and the empirical

data, is about 7 cents/unit per week for the given G = 3.52 when it is near at the

money, considering the average gross margin is about 15-20 cents/unit, the loyalty

program may be freely offered or offered with small membership fee, i.e. 7 cents/unit

× 15unit about $1 per week.

Whether the loyalty program may be freely offered or offered with small member-

ship fees, the potential benefits of the loyalty program are still valuable for both

agents, especially for customers. The customers have the potential for rewards, but

their risk is limited to the price of premium. On the other hand, retailer’s direct

potential rewards are limited to the price of premium, while their risk is either unlim-

ited in case they do not get into swap contract or limited to the price of swap in case

they get into swap contract, which can further be minimized when properly hedged.

Instead of fully hedging, retailers can choose to hedge optimal quantity, minimizing

their cost of hedging, because hedged portion of gasoline can be sold when floating

price is above the guaranteed price, and unhedged portion can be sold when floating

price is below the guaranteed price.

Loyalty program and some kinds of customer reward have become a norm in re-
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tail and small business such as coffee shop punch card, membership points system, or

membership coupon emails due to the associated benefits that outweigh the costs of

the reward. The most popular types of loyalty program are in-store rewards program

and other incentive to customers who earn membership points by shopping there.

Many retail businesses, from a coffee shop to ice cream store, implement these pro-

grams for marketing and sales growth. The associated benefits of rewards programs

that specifically applies for retail gasoline market is that it attracts new customers

and keep them coming back, and brings opportunity for the customers to shop in the

convenience store attached to the gas station or to use the other services provided

such as car wash and auto shop.

The most important benefits of loyalty program are that both retailers and consumers

could hedge against the price and sales fluctuations respectively. As aforementioned

retail gasoline prices both periodically and suddenly change, and having the guaran-

teed price, the sales would become less sensitive to the price change. Also, retailers

have the control to make it more prestigious or more attractive to customers and

build brand loyalty, by controlling the premium.

In Chapter 7, we provide a high level summary of the key findings, conclusions,

recommendations, and provide next steps.
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Chapter 7

Conclusion

In this dissertation, we have shown how optimization techniques can be applied to

solve complex problems under various price structures; static, dynamic, and stochastic

evolution of states. In all cases, the method of dynamic programming was applied

in solving the complex problems using practical models in the context of economical

theory.

In Chapter 2, we introduced the principle of optimality, optimality function, and how

to find the optimal value of the control variable under all possible circumstances.

In Chapter 3, we found optimal prices and profits using the repeated single-period

game and the repeated sequential game in the retail gasoline market. We were able

to show that retailers do not fully optimize their prices, thus their profits. Given the

upstream cost and average competitor’s price, we showed that retailers may optimize

their profit by optimally responding to their competitors’ prices. Then, we showed

the evidence of price asymmetry (or collusive behavior) with daily data using the

same approach as found in other recent studies. The price response asymmetry has a

theoretical and practical importance in examining the response asymmetry between

retail prices and costs. We also learned that the market changes its behavior over
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time, and we need more than one model to capture multiple market characteristics.

In Chapter 4, we introduced a retail gas loyalty program which provide customers

with a tool to hedge against the fluctuation of price. To the best of our knowledge, the

guaranteed price has never been globally implemented either in North American retail

gasoline market making it a very interesting model to study. We also investigated

the expected outcomes of the guaranteed price and how optimal quantity of gasoline

might be hedged by retailers.

In Chapter 5, we analytically proved existence of optimal decision boundary and

studied optimal refueling time and quantity without and with the loyalty program.

In contrast to the static dynamic programming studied in Chapter 2, we extended to

stochastic dynamic programming where price evolve stochastically. We numerically

computed the optimal decision boundary and optimal policies, and found the value of

loyalty program. We learned several things from this study. First, it is often difficult

to solve a dynamic programming problem analytically, and the dynamic programming

equation can sometimes look very messy, especially with uncertainty and continuous

transitional density functions. But, often a common pattern can be found by the

nature of recursive functions from which we can simplify to find a solution. When

the optimality functions are linear with a decision variable, the optimal policy follows

either nothing or everything, as known as bang-bang control.

In Chapter 6, we compared the value of loyalty program using simulated approach

with the value using empirical approach. We discussed that the empirical results

support that the loyalty program may be a great tool for both consumers and retailers

hedging against the price and the sales fluctuations respectively. We also argued that

it might be worth to freely offer the guaranteed price to valued customers as a loyalty

program for the following benefits it has. For instance, retailers might be able to

manage the delivery effectively knowing how much volume is expected to be sold by
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the loyalty program, and truck and taxi companies could also manage fleet price more

effectively using the loyalty program.

Future work could include investigating price competition and price cycle behavior in

gasoline market using more complex models and techniques such as neural network,

forecasting weekly gasoline price using both regional prices and macroeconomic vari-

ables, studying the impact of the loyalty program on retailer’s own profit and on other

retailers’ pricing behaviour and investigating loyalty behaviour of card holders with

the loyalty program setting.
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Appendix A

Illustrative Example for Optimal

Refueling Time and Quantity

Application of Inventory Theory

Retailers’ Perspective Heuristic:

Retailers may avoid a retail out-of-stock by having a safety stock or a buffer protect-

ing against unexpected demand shocks exceeding the average demand. Depending

on the size of the station’s tank and the level of traffic, a gas station’s order varies

from 1,500 to 9,000 gallons every week. We attempt to find an optimal quantity and

time to order. As suggested by Dennis (1991) and Giordano (2009), for simplicity,

assuming constant ordering costs, carrying costs, and demand rate are known, the

optimal order time and quantity can be found as:

T ∗ =
√

2Co
DCc

Q∗ =
√

2DCo
Cc
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where

T ∗ = optimal time between orders in days

Q∗ = optimal delivery quantity of gasoline in gallon

Co = the cost of placing an order per order,

Cc = carrying cost per gallon per day

D = demand rate in gallon per day

For an example, the total sales for Gulf’s unleaded gasoline at a specific site is

1,079,373 gallons. Thus, the number of gallons of gasoline sold per day is 2,957.18

gallons, and the number of gallons of gasoline sold per week is 20,700.3 gallons. We

assume Co = $700, and Cc is $0.01/day.

Then, T ∗ is,
√

2×700
2,957.18×0.01

= 6.88 days.

and Q∗ is,
√

2×2,957.18×700
0.01

= 20, 347.12 gallons.

With a safety stock for a medium size gas station assuming SS = 5, 000 gallons

and LT = 3 days, an optimal reorder point would be:

RP = D × LT + SS

where

D = demand rate per day

LT = the time required for a supplier to process an order and ship (assume 3 days)

SS = the desired level of safety stock

RP = D × LT + SS = 2, 957.18 gallons/day ×3 days+5, 000 gallons = 13, 871.54

gallons.



120

Consumers’ Perspective Heuristic:

T ∗ =
√

2Co
DCc

Q∗ =
√

2DCo
Cc

where

T ∗ = optimal time between refueling in days

Q∗ = optimal refueling quantity of gasoline in gallon

Co = fixed order cost(searching cost) per order,

Cc = holding cost per gallon per day

D = fuel consumption rate in gallon per day

For an example, an average North American mid-size car travels 21 mpg (about

11 L/100 km) city, 27 mpg (about 9 L/100 km) highway. If we assume the average

North American drives 13000 miles (about 20000 km) per year, roughly consuming,

13000 miles/year/24 mpg = 541.67 gallons/year (about 2000 L/year), which is about

1.5 gallons/day (D). Assuming gasoline is selling for $3/gallon and about 4 miles is

driven for price searching on average, we estimate the cost of searching, 4 miles/24

mpg × $3/gallon= $0.5 (Co). The carrying cost can be estimated to be $0.0069/gal-

lon because 15% more gasoline is spent for extra 400 pounds, that is, about 0.0375%

gallons/pound, thus 0.0375% gallons/pound × 6.2 pounds/gallon (density of gaso-

line) × $3/gallon = $0.0069/gallon (Cc).

Then, T ∗ is,
√

2×0.5
1.5×0.0069

= 9.82 days.

and Q∗ is,
√

2×1.5×0.5
0.0069

= 14.74 gallons.

With a 15 gallons fuel tank car, purchasing 14.74 gallons per visit is certainly possi-

ble. Thus, the optimal strategy for average North American who drives about 13000

miles evenly over a year is filling up every 10 days.
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Appendix B

Price Threshold Conditions:

Binomial Tree Approach as an

Approximation to GBM

Consider the special case in which a price at time t of x becomes, at time t + 1, a

price of Ux (probability 1
2
) or Dx (probability 1

2
). in order for this to make sense we

need 0 < D < U .

Then,

F (y|x) = 0, y < Dx,

= 0.5, Dx ≤ y < Ux,

= 1, y ≥ Ux
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Thus A(x) =
∫ G

0
F (y|x)dy is given by

A(x) =

∫ Ux

Dx

0.5dy +

∫ G

Ux

dy = 0.5(Ux−Dx) +G− Ux = G− 0.5(U +D)x, x ≤ G

U

A(x) =

∫ G

Dx

0.5dy = 0.5(G−Dx), Dx < G < Ux, or
G

U
< x ≤ G

D

A(x) = 0, x >
G

D

Now, CT−1(x) = x−G+ A(x), so

cT−1(x) = x(1− 0.5(U +D)), x ≤ G

U

cT−1(x) = x(1− 0.5D)− 0.5G,
G

U
< x ≤ G

D

cT−1(x) = x−G, x >
G

D

This is very instructive. The curve here is piecewise linear and continuous with

c(0) = 0. The slopes of the three piecewise segments are increasing, so there can’t be

more than one root.

If U + D > 2 then we have that the initial slope of c(x) is negative, but it then

becomes positive; if D < 2 at the next segment, but for certain by the third segment.

So in this case we have a single root.

On the other hand, if U + D < 2 we have that the initial slope is already posi-
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tive, and only rises faster and faster. Here we have no (positive) roots except for the

trivial one c(0) = 0.

This is a very meaningful and natural separation of models. Recall that the ex-

pected value of the gas at time t+ 1 is U+D
2

.

So if U + D > 2 the gas price, on average, rises. As such, without a guaranteed

price, you would always buy gas right away. With the guaranteed price, G, it might

occasionally make sense to wait, gambling that a big move down might happen, know-

ing that a big move up won’t hurt you much as you will never pay more than G for

the gas.

If U +D < 2, on the other hand, the gas price falls on average, making it worthwhile

to wait even without the guaranteed price to protect you. So nothing interesting

happens.

If U +D = 2 the situation is totally pathological, with infinitely many roots.

Case 1: Let gk+1 be the next period price and gk be the current period price, then,

gk+1 = U × gk with probability p, and gk+1 = D × gk with probability 1 − p; where

0 < D < 1 < U .

For gk such that, gk ≤ G
U

, the slope of C(gk) is negative, and the slope of C(gk)

turns positive for gk >
G
U

when U + D > 2, whereas the slope of C(gk) is always

positive for gk when U + D < 2, and the slope of C(gk) is zero for gk ≤ G
U

, and the

slope of C(gk) turns positive for gk >
G
U

when U +D = 2.
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Figure B.1: c(gk) against gk when U +D > 2, where G = 4, U = 1.5, D = 0.99 for one period.

Figure B.2: c(gk) against gk when U +D < 2, where G = 4, U = 1.5, D = 0.2 for one period.

Threfore, price thresholds only exist when U +D >= 2 and it is not sensitive to the

changes in U but to the changes in D; ĝ decreases as D decreases.

There are infinitely many roots when U + D = 2, and the price threshold is the

biggest root.

Figures B.4 and B.5 show that ĝ does not depend on U , but on D, with condition of

U +D ≥ 2.
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Figure B.3: c(gk) against gk when U +D = 2 where G = 4, U = 1.5, D = 0.5 for one period.

Figure B.4: ĝ against U when U +D > 2 while fixing D = 0.5 and G = 4 for one period.

The one period model can be expanded for multiple periods-to-go. For specific U,D,

and G. Figure B.6 shows ĝ for multiple periods fixing parameters at one value,

U = 1.5, D = 0.99 and G = 4 .

The logged percentage change over one day, log( gt
gt−1

), is also identically distributed

and has a normal distribution with mean µ and variance σ2. Thus we can approxi-

mate geometric BM over the fixed time interval by matching the mean and variance

with proper u, d, p:
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Figure B.5: ĝ against D when U +D > 2 while fixing U = 1.5 and G = 4 for one period.

Figure B.6: ĝ against the number of days-to-go when U +D > 2, where G = 4, U = 1.5, D = 0.99
for multiple periods.

E[ gt
gt−1

] = expµ+σ2

2 = pu+ (1− p)d

V ar[ gt
gt−1

] = exp2µ+2σ2
= pu2 + (1− p)d2
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Appendix C

Supplementary Results and Proofs:

Proposition 5.3.10 with a normal

density function

Proof by induction:

for t = T − 1

VT−1(s = (kt, gt)) = inf
at
{min(gt, G)at +

∫ ∞
−∞

VT (s′ = (kt − 1 + at, gt+1))f(gt+1|gt)dgt+1}

VT−1(s = (kt, gt)) = inf
at
{min(gt, G)at + (K − kt + 1− at)

∫ ∞
−∞

min(gt+1, G)f(gt+1|gt)dgt+1}
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VT−1(s) = inf
at
{min(gt, G)at + (K − kt + 1− at)

∫ ∞
−∞

min(gt + zσ + µ,G)φ(z)dz}

= inf
at
{min(gt, G)at

+ (K − kt + 1− at)(
∫ G−gt−µ

σ

−∞
(gt + zσ + µ)φ(z)dz +

∫ ∞
G−gt−µ

σ

Gφ(z)dz)}

= inf
at
{at[min(gt, G)−G− (gt + µ−G)Φ(

G− gt − µ
σ

) + σφ(
G− gt − µ

σ
)]}

+ (K − kt + 1)((gt + µ)Φ(
G− gt − µ

σ
)− σφ(

G− gt − µ
σ

)

+G(1− Φ(
G− gt − µ

σ
)))

Let cT−1(gt) = gt − G − (gt + µ − G)Φ(G−gt−µ
σ

) + σφ(G−gt−µ
σ

), which is a increasing

function in gt while gt < G and let ĝT−1 be gt such that cT−1(gt) = 0. If cT−1(gt) < 0,

it is a negative linear function with respect to at. Thus, it is minimized when a∗t is as

large as possible, and a∗t = K−kt. If cT−1(gt) ≥ 0, it is a positive linear function with

respect to at. Thus, it is minimized when a∗t is as small as possible, hence a∗t = 0.

If gt < ĝT−1, a∗t = K − kt

VT−1(s) = gt(K − kt) +G+ (gt + µ−G)Φ(
G− gt − µ

σ
)− σφ(

G− gt − µ
σ

)

If gt ≥ ĝT−1, a∗t = 0

VT−1(s) = (K − kt + 1)(G+ (gt + µ−G)Φ(
G− gt − µ

σ
)− σφ(

G− gt − µ
σ

))
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Assume the proposition holds for all t = j + 1, j + 2, · · · , T − 1

Prove a∗t = K − kt if gt < ĝt and a∗t = 0 if gt ≥ ĝt for t = j

Vj(s) = inf
at
{min(gt, G)at +

∫ ĝj+1−gt

−∞
Vj+1(s′)f(gt+1|gt)dgt+1 +

∫ ∞
ĝj+1−gt

Vj+1(s′)f(gt+1|gt)dgt+1}

Vj(s) = inf
at
{min(gt, G)at

+

∫ ĝj+1−gt

−∞

(
(gt+1)(K − kt + 1− at) +Nj+1(gt+1) +Rj+1(gt+1)

)
f(x)dx

+

∫ ∞
ĝj+1−gt

(
(K − kt + 2− at)Nj+1(gt+1) +Rj+1(gt+1)

)
f(x)dx}

= inf
at
{at
(

min(gt, G)−
∫ ĝj+1−gt

−∞
(gt+1)f(x)dx−

∫ ∞
ĝj+1−gt

Nj+1(gt+1)f(x)dx
)
}

+ (K − kt + 1)
(∫ ĝj+1−gt

−∞
(gt+1)f(x)dx+

∫ ∞
ĝj+1−gt

Nj+1(gt+1)f(x)dx
)

+

∫ ∞
−∞

Nj+1(gt+1)f(x)dx+

∫ ∞
−∞

Rj+1(gt+1)f(x)dx

Where

Rj(gt) =

∫ ∞
−∞

Nj+1(gt+1)f(x)dx+

∫ ∞
−∞

Rj+1(gt+1)f(x)dx

Nj(gt) =

∫ ĝj+1−gt

−∞
(gt+1)f(x)dx+

∫ ∞
ĝj+1−gt

Nj+1(gt+1)f(x)dx

Let cj(gt) = min(gt, G) −
∫ ĝj+1−gt
−∞ (gt+1)f(x)dx −

∫∞
ĝj+1−gt Nj+1(gt+1)f(x)dx, which is

a locally increasing function in gt while gt < G and let ĝj be gt such that cj(gt) = 0.

If cj(gt) < 0 ( or gt < ĝj ), it is a negative linear function with respect to at. Thus,

it is minimized when at is as large as possible, and a∗t = K − kt, for t = j.

Vj(s) = gt(K − kt) +Nj(gt) +Rj(gt)

If cj(gt) ≥ 0 ( or gt ≥ ĝj ), it is a positive linear function with respect to at. Thus, it is

minimized when at is as small as possible, hence a∗t = 0, for t = j.

Vj(s) = Nj(gt)(K − kt + 1) +Rj(gt)
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Appendix D

Parameter Calibration

We calibrate parameters for standard geometric Brownian motion, and the time in-

terval, ti − ti−1, is fixed and there is no random time changes. The parameters were

estimated from historical data. Average price was used from a sample taken from the

historical data.

First, we define Xi = log(
gti
gti−1

) ∼ N(µ̂, σ̂), the drift and variance parameters µ̂

and σ̂ were estimated for normal distribution.

Estimated µ̂ = 0.0001768, σ̂ = 0.004614;

Since µ̂ = (µ− σ2

2
)(ti − ti−1), σ̂ = σ

√
(ti − ti−1) and ti − ti−1 = 1,

µ =
µ̂

ti − ti−1

+
σ2

2
= 0.0001874,

σ =
σ̂√

ti − ti−1

= 0.004614
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