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Abstract
The human brain is a complex, nonlinear dynamic chaotic system that is poorly understood.

When faced with these difficult to understand systems, it is common to observe the system
and develop models such that the underlying system might be deciphered. When observing
neurological activity within the brain with functional magnetic resonance imaging (fMRI), it
is common to develop linear models of functional connectivity; however, these models are
incapable of describing the nonlinearities we know to exist within the system.

A genetic programming (GP) system was developed to perform symbolic regression on
recorded fMRI data. Symbolic regression makes fewer assumptions than traditional linear
tools and can describe nonlinearities within the system. Although GP is a powerful form of
machine learning that has many drawbacks (computational cost, overfitting, stochastic), it may
provide new insights into the underlying system being studied.

The contents of this thesis are presented in an integrated article format. For all articles, data
from the Human Connectome Project were used.

In the first article, nonlinear models for 507 subjects performing a motor task were created.
These nonlinear models generated by GP contained fewer ROI than what would be found with
traditional, linear tools. It was found that the generated nonlinear models would not fit the data
as well as the linear models; however, when compared to linear models containing a similar
number of ROI, the nonlinear models performed better.

Ten subjects performing 7 tasks were studied in article two. After improvements to the
GP system, the generated nonlinear models outperformed the linear models in many cases and
were never significantly worse than the linear models.

Forty subjects performing 7 tasks were studied in article three. Newly generated nonlinear
models were applied to unseen data from the same subject performing the same task (intra-
subject generalization) and many nonlinear models generalized to unseen data better than the
linear models. The nonlinear models were applied to unseen data from other subjects perform-
ing the same task (intersubject generalization) and were not capable of generalizing as well as
the linear.

Keywords: Functional Magnetic Resonance Imaging, Nonlinear Relationships, Functional
Connectivity, Symbolic Regression, Genetic Programming, Timeseries
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Chapter 1

Introduction

The human brain is a nonlinear computational system. Although neuroscience literature ex-
plicitly acknowledges this [15, 18, 26, 38, 36, 122], it is commonly deemphasized or ignored,
especially when working with functional magnetic resonance imaging (fMRI) data [18, 84].
When studying fMRI timeseries data to find functional relationships within the brain, it is com-
mon to exclusively use linear tools, such as Pearson product-moment correlation coefficient or
the general linear model (GLM). However, these methods are not capable of describing what
we know to be a nonlinear system as it lacks the power to truly model the underlying processes.

In spite of this inability to truly model the system, neuroscientific studies make meaningful
contributions to the field with these linear methods [18]. However, one must wonder if a
more expressive, nonlinear method capable of describing the underlying system would increase
the analytical power and significance of results. It is in no way surprising that the nonlinear
relationships are ignored and more complex tools are not used since it is exceptionally difficult
to find nonlinear relationships, especially when working with large amounts of noisy high-
dimensional data from a nonlinear, dynamic complex system.

1.1 fMRI Data
Magnetic resonance imaging (MRI) scanners harness magnetic fields and electromagnetic en-
ergy in a controlled way to capture localized information about physical properties of tissue
within the brain1. More precisely, they capture information about the spin-relaxation proper-
ties of particles within the brain (this idea is discussed further in Chapter 3). MRI scanners
capture the localized information which can then be represented in the form of voxels —
three-dimensional analogues to two-dimensional pixels. Ultimately, the whole brain can be
represented as a three-dimensional structure made up of voxels to give a static view of the
underlying three-dimensional anatomy.

Functional MRI records the blood oxygen level dependent (BOLD) signal — a measure-
ment of the relative oxygenation level of blood within tissue — which is used as a proxy for
brain activation. These relative blood oxygen level variations occur since neurons do not store
their own energy, and after activation, the vascular system must replenish the resources to the
cerebral tissue. This process is called the hemodynamic response (HDR) and is a consequence

1MRI technology is not restricted to brain imaging, however neuroimaging is the focus of this thesis.
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2 Chapter 1. Introduction

of metabolism. Although the BOLD signal is not actually brain activation, it can be used as a
proxy and has been shown to strongly correlate with localized neural activity [95, 85, 84, 51].

The fMRI technology still captures images of the three-dimensional structure, however the
information within the voxels is the BOLD signal.

Unlike MRI, which captures the three-dimensional anatomical information, fMRI captures
the spatially localized BOLD signal from the three-dimensional brain. Since the moment-to-
moment changes in neural activity are of interest, the scanner will take many three-dimensional
snapshots of the brain over time such that the changes in the BOLD signal can be observed.
The data being recorded is four-dimensional — the three-dimensional physical brain, over time
(the additional dimension).

Often, subjects will be placed within an fMRI scanner and will be given some task, such as
viewing images, playing a game, or moving a body part. By time-locking the task onsets with
the observed BOLD signal, researchers try to determine which areas of the brain (voxels, or
perhaps larger regions of interest (ROI)) are functionally related to the task being performed.
This usage is sometimes called task-based fMRI analysis.

Sometimes subjects are placed within a scanner and are instructed to perform no task at
all. In this scenario, the idea is to observe the spontaneous changes in the BOLD signal during
rest instead of comparing the signal to what is expected to be seen when some task is being
performed. This approach is called resting-state fMRI.

1.1.1 Graph Interpretation
Resting-state fMRI data is commonly used to develop functional connectivity models of the
brain: if the BOLD signal within two areas of the brain (voxels, or ROI) appear to be moving
together similarly in time, then they are said to be functionally connected. There are many
ways one could measure area similarity over time, but the Pearson correlation coefficient is
typically used to infer the functional connections (although in reality, all that can be said is that
the two areas are linearly correlated).

By doing this, we can create a simple graph representation of the complex four-dimensional
object. A simple graph is a collection of vertices/nodes connected together by edges. A vertex
represents some entity, and an edge between two vertices represents some relationship between
the entities. In this case, we treat the areas of the brain as vertices, and connect the vertices
with an edge if the linear correlation score is above some predefined threshold. In this example,
Pearson correlation was used to infer connectivities, however this is by no means a requirement.

These graphs provide static views of the synchronization of areas of the brain and greatly
simplify the four-dimensional data. These models enable researchers to study the data in
new ways; there are many well-defined graph theory metrics that are now available to the
researchers [113]. For example, the topology of the graph can be analysed to study clinical
questions, like if there are topological differences/similarities between individuals with certain
neurological disorders [88, 17], or between adult and adolescent brain networks [31].

1.1.2 Human Connectome Project Data
The work is focused on studying task-based fMRI timeseries data to find nonlinear functional
connectivities between ROI within the brain. Data is fit to a seed ROI and not an expected



1.2. NeuroscientificMotivation 3

Figure 1.1: A snapshot of a brain when segmented into the 30 ROIs as seen in FSL view. Each
colour represents a different region.

HDR.
The data selected for this analysis was obtained from the Human Connectome Project, WU-

Minn Consortium, which can be found at http://www.humanconnectome.org/. The Hu-
man Connectome Project has an open database of a large collection of neuroimaging data, and
as of April 2018, the database contains structural MRI, resting-state fMRI, diffusion imaging,
and task-based fMRI data for roughly 1200 subjects, and Magnetoencephalography (MEG)
data for resting-state and tasks on a subset of the participants.

The task-based fMRI data available from the Human Connectome Project include: Emo-
tion, Gambling, Language, Motor, Relational, Social, and Working Memory. The actual tasks
and number of subjects used varied throughout the project.

The fMRI timeseries data was segmented into meaningful ROIs (refer to Figure 1.1) with
Craddock et al.’s spatially constrained parcellation [24]. Each voxel’s activation within each
ROI was averaged to determine the ROI’s mean activation.

Although the fMRI timeseries data is a four-dimensional object (three-dimensional snap-
shots of a brain over time), it can easily be represented as a two-dimensional matrix of voxels
over time if the three-dimensional physical space of the brain is flattened into one long vector,
and time is left as the other dimension. Each entry in the matrix corresponds to the BOLD sig-
nal of a single voxel at a particular time point. Ultimately, the data can cleanly be represented
in tabular format.

1.2 Neuroscientific Motivation

Neuroscientists will generate models of the brain to develop a better understanding of the
underlying system. Having a high quality model of the brain can allow us to study the model
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itself to discover properties about the complex system. For example, if we are interested in
which regions of the brain are functionally connected, we may record resting-state or task-
based fMRI data, fit a mathematical model to the data, and from the model determine which
regions of the brain are related to one another, and in which way.

Typically the graphical models of functional connections are generated from resting-state
fMRI data, however task-based fMRI data can also be used. By doing so, we can develop these
functional connectivity models of the brain during certain tasks. Additionally, there is no need
to restrict the model development to linear correlations.

For example, if we are interested in developing a model of functional connectivity, then we
may perform some thresholding on the recorded data, and then develop a linear model of the
data with the GLM. There are a couple of ways this could be done depending on the question
being asked.

If we wanted to know how a given ROI X is functionally connected to all other ROIs, then
we would calculate the Pearson product-moment correlation coefficients between the ROIs,
perform some correction for multiple comparisons (typically false discovery rate (FDR) or
Bonferroni correction (BC)), and remove statistically unrelated ROIs. Finally, the remaining
ROIs are regressed to our ROI X and the beta weights (coefficients) can be used to indicate
relatedness during the task.

This, along with the simpler linear correlation strategy described above, assumes that the
system is linear, however we know that the human brain is a nonlinear system. This strategy
makes many additional assumptions, including: the ROIs are fixed values as opposed to random
variables, constant variance in the data, and the errors are independent.

Statistically unrelated ROIs are eliminated with thresholding to ensure that only meaning-
ful ROIs are included in the resulting model; however, what does it mean for an ROI to be
meaningfully related? The brain is a connected system being recorded at the same time under
the same circumstances, and unsurprisingly many ROIs end up being highly correlated. After
thresholding, a large number of ROIs will typically be left as meaningful — sometimes even
all. Perhaps the whole brain is involved in the function of the task be studied, but this would
seem unlikely.

Despite the assumptions described above, there are many reasons to prefer the traditional,
simpler linear tools. Linear models are easy to generate, the tool is well understood, and
the models are easy to interpret. More complex methodologies are susceptible to overfitting,
the methods are harder to understand, the resulting models are difficult to interpret, and they
typically have a much greater computational cost. However, despite these drawbacks, using
a more complex method actually capable of describing the underlying nonlinear system may
allow us to eliminate assumptions and develop a more accurate and descriptive model of the
functional connectivities within brain.

1.3 Methods
Observing processes, developing models from data, and deriving natural rules, laws, and for-
malisms about a system is an intractable task that is difficult to automate. However, a promising
approach is genetic programming (GP) [13, 103, 106]. GP is an optimization strategy based
on the natural process of evolution that stochastically and iteratively writes its own programs
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to learn how to solve a given problem [69]. GP is used in this work to automate the process
of finding minimal and interpretable network relationships in a system for which we can only
observe a recorded timeseries from the system’s network’s nodes. Namely, GP is used to find
nonlinear functional relationships within fMRI timeseries data with symbolic regression.

Symbolic regression is a type of regression analysis that, in addition to parameter optimiza-
tion, searches for model structure by performing feature selection and exploring the space of
mathematical expressions. A GP system was developed for this work that was specifically de-
signed for symbolic regression. The GP implementation was based on Schmidt et al.’s work,
and incorporates improvements to increase performance [106]. Noteworthy improvements in-
clude a distributed population/island model, an acyclic graph representation [102], and fitness
predictors [104, 105]. A summary of the method’s improvements is provided here, but more
details on evolutionary computation and GP can be found in Chapter 2.

Typical GP systems employ a tree based representation [76], however many popular non-
tree based representations exist. In this work, an acyclic graph representation is used. The
implemented representation has a lightweight array based encoding that avoids bloat, scales
well, and can reuse subexpressions [102].

Computational costs of the evolutionary search is greatly reduced with the use of fitness
predictors, which approximates the local search gradient [104, 105]. The high level idea is
to evaluate each candidate solution on a small, but representative subset of the data being
fit to. The subset of data is always changing such that it contains data points the current
candidate solutions do not fit well; it focuses the search on areas of the space that need the most
improvement. Fitness predictors were shown to lower computational cost, reduces overfitting,
and improves results [105].

For much of the work, symbolic regression was used to develop nonlinear models of the
brain, which can be interpreted as graph/network models of nonlinear functional relationships.
This nonlinear regression is capable of describing the actual nonlinearities that must exist
within the underlying system; nonlinear regression is strictly more powerful than linear regres-
sion in its descriptive power. Symbolic regression also performs feature selection, eliminating
the need to manually perform thresholding.

These nonlinear models were compared to linear models developed with typical methods
employed within the neuroscientific literature (GLM and the Pearson product-moment coeffi-
cient). A description of the methods used to develop the linear models are discussed within
the integrated articles found in Chapters 4, 5, and 6. Each of the integrated articles found in
Chapters 4, 5, and 6 also provide a description of the GP system and a summary of the sys-
tem settings used for each project. Appendix B includes technical details about the GP system
implemented (version number, number of classes, lines of code).

1.4 Nonlinear Analysis of fMRI data
Although it is overwhelmingly common to use linear tools when studying fMRI data, nonlin-
ear tools have been used in some work. Friston et al. studied nonlinear responses in the BOLD
signal with Volterra series expansion [36, 37]. Kruggel et al. used a nonlinear regression to
study the timeseries of the BOLD signal to relate the dependency between the expected HDR
shape and stimulus [77]. Friston et al. used Dynamic Causal Modelling to describe functional
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connectivities between neuronal regions of the brain [35]. Zhang et al. used a semi-parametric
model built around Volterra series to characterize BOLD signal and found deviations from
the linear models and showed that their approach outperformed many existing methods [126].
Symbolic regression, a type of regression analysis, was used to describe nonlinear functional
connectivities between known networks in resting-state fMRI data [2]. These works are dis-
cussed in more detail in Chapter 3.

The symbolic regression work done by Allgaier et al. in [2] is the most relevant to the work
in this thesis as it also develops network models from nonlinear relationships found within
fMRI data. Their work used resting-state data and focused on areas of the brain already known
to exist within functional networks of interest. The work in this thesis searches for nonlinear re-
lationships within task-based fMRI data within ROI throughout the whole brain. Additionally,
the work contained within this thesis evaluates the models in different ways.

1.5 Contribution
A GP system incorporating a number of modular improvements was implemented and made
publicly available. This GP system was developed for the purpose of finding nonlinear func-
tional connectivities within fMRI data, however it is a specialized system for symbolic re-
gression in general. Given the high dimensionality of the search space, the improvements
incorporated into the system were required in order for the evolutionary search to complete
in a reasonable amount of time. After the initial development of the system, numerous revi-
sions were done over the past three years. Development of the GP system will continue for the
foreseeable future.

While working within the limitations of the real task-based fMRI data available, a graph-
based interpretation of the timeseries data was developed. Functional connectivities were mod-
elled with a GP system specifically created for this project. These graph-based models of non-
linear relationships were found to be much more succinct (fewer relationships) when compared
to models developed with conventional linear tools.

This thesis demonstrates a methodology that will enable the longer term goal of finding
meaningful nonlinear functional relationships within fMRI data, interpreting the meaning of
these relationships, and making contributions to the neuroscientific literature.

Three articles are presented in this work and are the natural progression of the project.
The first article presents the proof of concept by applying the GP system to data from a

single task and exploring the differences between nonlinear and linear models of a network
interpretation of fMRI data. In this article, data from 507 subjects were studied. It found the
nonlinear models to contain fewer ROI than the linear models developed with typical linear
methods, and the nonlinear models’ ROIs were almost always subsets of the linear models’
ROIs. It also found that the GP generated nonlinear models were not capable of fitting the
recorded fMRI signal as well as the linear models.

The second article expands on the first by improving upon the GP system, broadening the
analysis to additional tasks, and exploring the differences between the linear and nonlinear
models in greater detail. In this article, data from 10 subjects were studied. After the improve-
ments in the GP system, the nonlinear models were larger than those found in the first article,
however they still had fewer ROI than the linear. In many cases, the nonlinear models were
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now able to fit their data better than the linear models. There were many similarities in ROIs
found between the model types, but the nonlinear models contained functional connectivities
not found with linear tools.

The third article incorporates more subjects and a deeper analysis into the generalizability
of the models to unseen data. In this article, data from 40 subjects were studied. Again,
after improvements, the nonlinear models, on average, grew in size by a small amount over
the previous work’s nonlinear models, but still contained fewer ROI than the linear models.
However, LASSO regression was included in the comparison and the linear models created
with LASSO regularization were of comparable size to the nonlinear. The nonlinear models fit
their data better than the linear models, and their intersubject and intrasubject generalizability
was explored to determine if the nonlinear models were effective, and not overfitting.

Ultimately, the nonlinear models fit data better than traditional linear models, and were ca-
pable of generalizing to unseen data; however, the author very explicitly and clearly acknowl-
edges the statistical biases and limitations of the current conclusions in Chapter 7. Methods for
overcoming the limitations are discussed in Section 7.3 where future directions are presented.

1.6 Thesis Format
This thesis is presented in the integrated-article format. Chapter 2 provides a background and
literature review on evolutionary computation and GP. Chapter 3 provides background and a
brief literature review for the fMRI data and related neuroscientific works. Chapters 4, 5, and
6 are integrated articles from works completed during the duration of the author’s PhD and
are the natural progression of the overall project. Each of these chapters provide motivation,
a small literature review, descriptions of the data used, and GP system implementation and
settings details. Chapter 7 provides a discussion and concludes the work and includes possible
future directions.

Appendix A contains the published extended abstract for the work in Chapter 4. Appendix
B includes specific details on the GP implementation and execution.



Chapter 2

Evolutionary Computation and Literature
Review

This chapter provides background information for evolutionary computation (EC), genetic al-
gorithms (GA), and GP, along with a brief literature review of some algorithmic enhancements.
This chapter is derived from the Topics Survey/Proposal written in December 2015 and pre-
sented June 2017. Brief details on the current implementation of the GP system can be found
in Appendix B.

2.1 Genetic Algorithms
Evolutionary algorithms (EAs), a subcategory of evolutionary computation, are a population
based metaheuristic — a high level algorithm designed to guide a problem space exploration
— which search by simulating the process of biological evolution through a series of nature
inspired operations: mutations, sexual reproduction, recombination, and natural selection.

Evolutionary algorithms developed over time with contributions by many researchers from
around the world. These contributions began with simulation of artificial selection by many
researchers, including Nils Barricelli in the late 1950s [10] and Alex Fraser in the 1960s [34].
Alan Turing even highlighted the parallels between a stochastic hypothetical “learning ma-
chine” and the natural process of evolution [120]. These ideas later developed into well defined
evolutionary algorithms we use today, such as Evolutionary Strategies, Evolutionary Program-
ming, and Genetic Algorithms (GAs) — a popular branch of EAs developed by John Holland
in the mid 1970s [47]. These algorithms can typically be easily broken down into a few simple
operations: initialization, fitness evaluation, selection, genetic operators, and termination.

Initialization involves generating a starting population (collection) of chromosomes, some-
times referred to as candidate solutions; a collection of potential solutions to a given problem.
These candidate may be randomly generated, or seeded into the algorithm.

Fitness evaluation is the process of calculating how effective a given chromosome is at
solving the problem the GA is being applied to. For example, if the GA was being applied to
the travelling salesman problem1, then the fitness could be the total Euclidean distance defined

1A common problem. Given a weighted connected graph, the goal is to visit all vertices while minimizing the
total weight along all used edges.

8
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Figure 2.1: Example, high level description of a typical evolutionary algorithm.

by a chromosome’s representation of a city ordering. In this case, the smaller the distance
travelled, the fitter the chromosome. Calculating the fitness of the whole population is typically
the bottleneck of the algorithm.

Selection is a method used to decide which chromosomes are to be propagated into the next
generation (next round of evaluations, selection, and genetic operators). There are multiple
ways one could go about doing this, however the main objective is to select some relatively fit
chromosomes. One should avoid simply selecting the most fit individuals as this typically sends
the search into a local optimum and the algorithm will converge too quickly. To discourage the
GA from converging too quickly, one wants to encourage a good level of genetic diversity — a
population containing chromosomes somewhat distinct from one another.

Genetic operators are the methods applied to selected chromosomes when propagated into
the next generation’s population. There are typically two genetic operators: crossover and
mutation. Crossover is designed to be somewhat analogous to processes which occur during
sexual reproduction; two reasonably fit chromosomes will breed and produce two offspring
which are somewhat similar to both parent chromosomes. Mutations, unlike crossover, occur
on a single chromosome at a time and will alter the chromosome slightly in some way.

This process repeats many times until some termination criteria is met. This could be after
some number of generations, after the algorithm has converged, or after some fitness value is
obtained. Figure 2.1 depicts the execution flow of a typical GA/EA.

Although this search is stochastic, it can produce high quality results to computationally
intractable problems with minimal application/domain knowledge [44, 27, 41, 39]. EAs, be-
ing a type of computational intelligence, are ideal for problems which include uncertainty, are
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potentially stochastic in nature, and have no other reasonable means of computational based
problem solving. GAs, and its variations, have been applied to many applications. Engineering
and design has been accomplished with the design of buildings to minimize energy use [119],
structural design of commercial buildings [90], synthesis of the antennas for NASA’s Space
Technology 5 (ST5) mission [48, 86], NASA’s deep space communication networks [45], elec-
trical circuit design [73], robot programming [75], and robot design/manufacturing or robotic
lifeforms [83, 127].

2.1.1 Modular Enhancements

One of the major advantages of genetic algorithms is the modular nature of the methods. It is
easy to alter and add operators to the algorithm to better fit the application. Alterations and
additions are frequently created and some have since become standard in the literature. Below
are a collection of typical enhancements incorporated in genetic algorithms.

Representation

Representations have become a widely studied area within the field as there are numerous ways
to represent any given problem and some representations may have some inherit advantages
over others.

Classically, a genetic algorithm’s representation of a candidate solution would be a string
of 0s and 1s which would represent something meaningful with respect to the problem space.
These 0s and 1s would be the genotype and would require some sort of translation into a phe-
notype (something to be evaluated by the fitness function — the function which calculates the
candidate solution’s fitness). With this binary representation John Holland introduced Hol-
land’s schema theorem for exponential increases in fitness over successive generations [47].
This theorem essentially demonstrates the power and usefulness of GAs.

This indirect representation is by no means a requirement. Over time it became easier to
implement other representations and more direct representations — where no translation is
required — became feasible. For example, when studying the travelling salesman problem,
instead of a binary string, one could implement an ordered list of cities directly representing
the order to visit each city. Although these more complex representations do not strictly align
to Holland’s schema theorem, they were shown early to be effective [42, 63].

Selection

Multiple selection algorithms for genetic algorithms exist and new ones are always being de-
veloped.

One could always select the best chromosomes to breed and populate the next generation,
however this approach tends to cause the GA to converge quickly into a local optimum. Alter-
natively, one might implement a completely random selection, although this would eliminate
the high selection pressure of the strong (relatively fitter) candidate solutions.

Typically an effective selection method would encourage the fittest candidate solutions to
propagate while still avoiding early convergence.
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Figure 2.2: One point crossover example with a simple binary value representation. All values
within the darker emphasised area are swapped between the two chromosomes. This figure
also shows a simple binary representation.

Popular selection methods include proportional selection [47], tournament selection [43],
and linear ranking [7]. These, and more, have well studied effects on selection pressure [6].

Elitism

Despite the fact that selection algorithms make an effort to avoid always selecting the best chro-
mosomes, it has become standard to propagate the most fit chromosome (sometimes more than
one) into the next generation to preserve the best known solution. The best known chromosome
will always be monotonically non-decreasing over time; it cannot be destroyed by stochastic
changes [8].

Genetic Operators

The genetic operators are how the GA explores new areas of the search space and exploits
already known highly fit chromosomes. These operators area easily changed and tuned to
appropriately align to the specific problem the GA is being applied to. There are a number
common techniques for both operators, however, new techniques are always being developed
to exploit the intricacies of specific problem spaces.

Common crossover techniques include One-Point Crossover (depicted in Figure 2.2) (every
element after an index is swapped between two parent chromosomes), Two-point crossover (ev-
ery element between two indices are swapped between two parent chromosomes), and Uniform
Crossover (some number of indices are selected and all elements at these indices are swapped
between the parent chromosomes). Some techniques are more destructive than others, and they
all have their strengths and weaknesses.

Mutation only occurs on one chromosome at a time. Common mutation techniques include
a single/multi-point mutation (select random indices and replace them with new values from
the set of available values), exchange mutation (swap two or more elements), and updates
(altering real value elements with an increment/decrement).

More complex genetic operators may become necessary for certain problems. For example,
some problems may require variable length chromosomes or in the case of the travelling sales-
man problem, the uniqueness of elements may need to be preserved. In these cases, special
genetic operators will be required to accommodate these requirements. Many of these unique
operators are reviewed and studied in [80].
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Migrations

Figure 2.3: In this example, each circle represents a separate population (4 in this case) which
evolve independently from one another. After some number of generations, chromosomes
from each population have the opportunity to migrate to other populations. This particular
figure shows allowable migrations between all populations, however this is not a requirement.

Distributed Populations

Distributing the search by dividing a population into multiple sub-populations has become pop-
ular. This method attempts to simulate punctuated equilibria and allopatric speciation, or sim-
ply, encouraging genetic diversity over the whole population by allowing the sub-populations
to traverse the search space along their own trajectories. This idea is sometimes called the
island model.

The general idea is to break the population down into sub-populations and execute a GA
on each of the sub-populations with periodic information transfer between them. Multiple
versions of these distributed systems exist. Figure 2.3 demonstrates a case with four sub-
populations that is completely connected; information can be transferred, or migrated, between
any of these sub-populations.

The idea of distributing the search has existed for some time. Booker notes in his Doctoral
Dissertation [14]:

Two separate populations are used rather than one large one so that the learning al-
gorithms can benefit from having classifiers already separated into gross functional
“niches.”

However these distributed searches became popular later with various works [23, 94, 97,
118] including [116] which demonstrates that these distributed GAs typically have faster eval-
uation, faster convergence, and better results over a single population alternative.
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Fitness Approximation

The fitness evaluation of each chromosome is, in most cases, the most computationally expen-
sive portion of the evolutionary search.

It can be advantageous to use a method which can quickly approximate the fitness of a chro-
mosome or a collection of chromosomes. There are a number of approaches to this within the
literature, and many are not restricted to just evolutionary searchers. Some popular approaches
include sub-sampling the data, fitness inheritance (inherited fitness values from parent chro-
mosomes) [107], fitness imitation (cluster chromosomes and evaluate only representative chro-
mosomes) [68, 66], and partial evaluation (a combination of fitness inheritance and imitation)
[99]. These, and other techniques are reviewed in [66].

As stated in [105], these techniques are beneficial as they can reduce the complexity of
the problem, eliminate the need for an explicit fitness function (some problems don’t have
an explicit evaluation method), reduces the concerns of a noisy fitness function, smooths the
fitness landscape (reduces the number of local optima), and promotes genetic diversity.

2.2 Genetic Programming

As interesting and creative representations for GAs became more popular, a tree structure rep-
resenting computer programs was implemented [25]. John R. Koza expanded upon the idea
of using a tree structure representation and ultimately developed the field of Genetic Program-
ming (GP); using evolutionary search to explore the space of functions/computer programs
[69, 70, 71, 72, 75, 73, 74].

Figure 2.4 demonstrates three small functions/programs which could easily be represented
with a tree structure. All leaf nodes (dark nodes) are terminals and non-leaf nodes (light nodes)
are operators of some kind. The fitness evaluation method in GP would be some measure of
how effective the function/program is at solving the given problem. For example, if the function
described in Figure 2.4a was being used to perform some mathematical regression/modelling
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Figure 2.5: Example of a one point crossover operation between two tree-structure chromo-
somes.

— symbolic regression2 — then the fitness may be the mean squared error calculated when
applying the expression to data. If Figure 2.4b was some decision tree for binary classification,
the fitness could be the percent accuracy. If the program in Figure 2.4c is describing how a
robot should manoeuvre to solve a maze, then the fitness may how close the robot got to the
exit 3.

Special genetic operators are also required for these tree structures. A common approach
would be to select sub-trees from each chromosome and swap them. Figure 2.5 demonstrates
this sub-tree exchange. This is a very similar technique to one-point crossover, a common
crossover technique with basic GAs. Mutation could be a single point mutation (select a node
and change it), or an exchange mutation (select two nodes and swap them within the same
chromosome). Similar to GAs, new genetic operators are developed for GP constantly.

The operators and operands that are used in the representation are defined by a language
(basis functions). Languages are selected for the problem being solved. If one was performing
symbolic regression then an appropriate language may be +, −, ∗, /, log, exp, variables, and
floating point number constants. If a decision tree was to be developed, a more appropriate
language may be the logical operators, real numbers, and the variables. Note that in the latter
example there are multiple types (Boolean and Numerals). A GP system with multiple types
(typed GP) has additional requirements on the genetic operators as they need to preserve node
return types.

GP is in no way limited to a tree structure. Linear Genetic Programming is an alternative
which treats the representation as a sequence of instructions from an imperative, or machine
language. This differs from the more functional implementation of the tree structure. Other
noteworthy representations exist, including graph based representations (more on this in Sec-
tion 2.2.1).

Notable early applications of GP are reviewed in [71, 72, 74], and include quantum com-

2A type of regression analysis often performed with GP that searches for the whole model (operators, coeffi-
cients, structure, feature selection) as opposed to just coefficients.

3There is no suggestion that these would be effective candidate solutions.
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puting [9, 112, 109, 110, 111], robot programming [3, 87], bioinformatics [71], engineering,
and circuit design [71].

2.2.1 Acyclic Graph Representation

An acyclic graph representation for symbolic regression was studied and compared to the
traditional tree structure by Schmidt et al. in [102]. Other graph encodings (either explicit or
implicit) for GP have existed for some time [98]. One of the most popular is Cartesian GP
[93, 91, 92], however, Schmidt et al.’s gives some unique advantages (although this is entirely
implementation dependent).

Figure 2.6 presents a comparison of a tree representation and an acyclic graph representa-
tion. These structures represents the following equation: (1.23 − x) + sin((1.23 − x) · y · ex),
where x and y are variables.

This representation, when compared to the tree representation, scales better, has a lightweight
array encoding, and avoids bloat — the tendency of evolved programs to grow arbitrarily large
without significant improvement in fitness [98]. Additionally, it can easily reuse possibly im-
portant sub-expressions and can maintain vestigial information within the encoding which may
resurface effectively in future generations.

It was also noticed that this acyclic graph representation converges slower (although this
may be considered an advantage) and is susceptible to deleterious crossovers [102]. However,
their results strongly demonstrate the benefits of this representation.

2.2.2 Fitness Predictors

Fitness Predictors, a fitness approximation approach, were studied by Schmidt el al. in [104,
105] and it was demonstrated that they can reduce computational cost by approximating the
local search gradient.

The candidate solutions are evaluated with an adaptive subset of the data as opposed to all
data. If the subset of data can sufficiently describe the whole, then it can be used as an effective
approximation of fitness. Using a subset in the realm of 10% the size of the whole data set
can greatly reduce the number of evaluations required to determine fitness values. This value
is parameterized and os typically determined empirically with preliminary testing.

The fitness predictors are adapted by evolving alongside the candidate solutions, and the
fitness predictors’ fitness value is determined by a measure of how well it can approximate the
whole data set. Additionally, this method also attempts to select the data points in a way which
creates a large variance in the fitness of candidate solutions on fitness predictors through the use
of fitness trainers. In other words, the subset of data points are selected in a way to focus the
search on areas of the search space where the candidate solutions are less effective. Figure 2.7
presents an overview of how these fitness predictors would evolve alongside the evolutionary
search.

The fitness of the candidate solutions are evaluated using only the current top fitness pre-
dictor, however since these populations are evolving in parallel, these predictors are always
changing. This allows for a highly dynamic search which can focus on areas of the search
space needing the most improvement.
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Figure 2.6: Figures 2.6a and 2.6b both represent the same expression: (1.23 − x) + sin((1.23 −
x) · y · ex). Figure 2.6c shows a possible encoding for an acyclic graph with an array.
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Figure 2.7: High level overview of a GP system implementation with fitness predictors evolv-
ing in parallel. This particular example contains multiple sub-populations.

In addition to the performance enhancement of a reduction in computation cost through
using a small subset of data points for evaluation, fitness predictors have been shown to produce
better quality results by reducing overfitting. Overfitting is curbed since evolution is always
based on the fitness of an ever evolving subset of data points; overfitting becomes difficult
when the target points are always changing.

It has also been shown that symbolic regression performs better when allowed to focus on
key features (subsets of data) as opposed to the whole data set [104, 105].

2.3 Genetic Programming Implementation
The papers in Chapters 4, 5, and 6 contain brief descriptions of the GP implementation and
parameter settings used. In summary, the GP system built for this work incorporates multiple
enhancements to improve the search capability of the evolutionary algorithm and were ulti-
mately required in order to effectively traverse the large space in a reasonable amount of time.
These enhancements include: elitism, an acyclic graph representation [102], fitness predictors
[104, 105], and parallel evolution of subpopulations. Figure 2.7 provides a high level overview
of the algorithmic flow of the implemented GP system. A GitHub repository of the GP system
can be found at https://github.com/jameshughes89/jGP [52].



Chapter 3

Functional Magnetic Resonance Imaging
Data and Literature Review

MRI is a technology which harnesses magnetic fields to create images of anatomy and physio-
logical processes within a body. MRI uses nuclear magnetic resonance in a controlled way
to generate 1 – 5mm3 voxels — three-dimensional volume elements analogous to a two-
dimensional pixel — containing information about the spin-relaxation properties of atomic
particles within the voxels. This information can be used to distinguish tissue types and prop-
erties [16, 26].

MRI works by aligning protons within a body with a very strong magnetic field, applying
electromagnetic (EM) energy at a resonance frequency such that specific atomic particles ab-
sorb it, and then recording the resulting particle activity [50]. Whether the MRI technology
is being used to generate structural images of the brain or the functional moment-to-moment
changes within the brain, the high level idea is the same. For the interested reader, a thorough
discussion of the underlying technology and phenomenon can be found in [16].

A large static magnetic field is used to align a small, but not insignificant number of protons
(the atomic nuclei within the hydrogen atoms in water). Typically, the magnetic field used for
MRI is created by passing a current through a coil of superconducting wire. Modern scanners
can generate and maintain static magnetic fields between 1.5 – 11T for humans (realistically,
it is common to see 1.5T and 3T scanners), and up to 24T for animals. The earth’s magnetic
field is on the order of 0.0001T (between 25 – 65µT).

The static magnetic field does not create any magnetic resonance signal, but the application
of resonant EM radiation to the aligned protons and resulting reaction does. EM radiation
(photons) tuned to a specific frequency is applied to the body within the scanner such that some
protons absorb the energy and enter an excited state. The specific frequency is selected to be
the resonant frequency for the target particle, typically hydrogen nuclei. When the application
of the EM radiation is stopped, the excited protons will eventually return to align with the
magnetic field, and in doing so, will release energy over time that can be recorded.

The way this is measured will record different signals that may be suited for structural or
functional imaging. The important part is that with the application of EM radiation, a collection
of particles will react a predictable way, and the results can be measured to indicate blood
oxygen levels. With the clever use of controlled spatial variations in the magnetic field strength,
the recorded signal can be spatially localized. Localized variations in the blood oxygen levels

18



19

are of interest as they can be used as a proxy for brain activation.
Functional magnetic resonance imaging (fMRI) is a neuroimaging modality used to mea-

sure functional brain activity with the BOLD signal. The BOLD signal is a measure of the
relative (de)oxygenation level of blood within tissue resulting from an increase in blood flow
to cerebral tissue which correlates with neural activation (a result of the HDR) [79, 95, 50].
This is believed to happen because neurons do not store their own energy and oxygen and must
depend on the vascular system to replenish resources.

The actual nature of the BOLD signal is not entirely understood, and it should be noted
that fMRI is in reality measuring a phenomenon that lags behind electrical recordings of neural
actively by a few seconds and is spatially diffused; the surrogate signal is based on to the
blood flow of surrounding tissue of recent activity. However, it has been firmly demonstrated
that this signal is strongly linked with the underlying neural activity [85], but ultimately there
are physical and biological limitations to the signal which are consistently under-represented,
many of which are reviewed in [5, 46, 84].

fMRI data is four-dimensional; it contains the three-dimensional anatomical space along
with the changes in activation over time. Depending on the technology, the anatomical space
is measured from 1 – 5mm3 and changes in time are sampled every 0.5 – 3s; modern scanners
are capable of capturing at a frequency of 0.75 – 2Hz. Although the resolution each voxel is on
the order of millimetres, each voxel contains tens of thousands of neurons. For this reason they
can be thought of as a “mesoscale” representation; it lies between the microscale of neurons
and the macroscale of brain lobes.

fMRI is particularly popular as it is non-invasive and has relatively high spatial resolution
when compared to other imagining technologies. fMRI allows researchers to ask which brain
regions are involved in tasks/stimulus, how they relate to one another, and how they com-
municate. This technique has been used to ask many interesting behavioural, physiological
(functional and structural), clinical questions.

In task-based fMRI, tasks or stimulus are presented to a subject and the corresponding
measured signal (BOLD) is compared to the expected HDR [1, 30]; what we expect a measured
signal to look like if it were responding to some presented stimulus. Areas of the brain (voxels
or other ROI) whose signal corresponds to the expected HDR is said to have been activated
by the task/stimulus [18, 96, 101, 49]. Any timeseries metric could be used for comparing the
BOLD signal to the expected HDR, however the GLM (general linear model) is very common.
The general linear model is a linear model of the form Y = BX + U, where Y is a matrix of
dependent variables, X is a matrix of independent variables, B is a matrix of parameters (to
be found), and U is a matrix of errors/residuals. Effectively, it is a generalization of multiple
linear regressions for many dependent variables.

Figure 3.1 depicts an HDR function; if a voxel/ROI’s measured BOLD signal were to lin-
early correlate with this spiking event then it is said to be activated by the stimulus.

In resting-state fMRI subjects are placed in the scanner and are not presented with an ex-
plicit task or stimulus [12, 33]. Here, instead of comparing the measured BOLD signal with the
expected HDR, voxels/ROIs are compared to each other with some timeseries metric. Similar
to the task-based studies which use linear tools, a linear Pearson product-moment correlation
coefficient is commonly used. These studies analyse spontaneous changes in the measured
BOLD signal. One particular area of interest is default mode networks (DMN); highly corre-
lated brain regions in the absence of stimulus whose thought to be involved with, although not



20 Chapter 3. FunctionalMagnetic Resonance Imaging Data and Literature Review

Timeu~25-39s

In
te

ns
ity

Sometimesuthere
isuanuinitialudipuhere

Signalupeaku
betweenu~4-8s

Returnsutoubaselineu
atuaroundu10s

Undershootumay
appearuforusome
time

Event

Figure 3.1: Hemodynamic Response Function [15]. After an event/neural spike, the relative
deoxygenated blood levels increases (sometimes with an initial dip before the increase) and
after roughly 10 seconds, levels returns to close to baseline.

limited to, self-referencing, self-memory, thinking of others, moral reasoning, social and moral
reasoning, remembering the past, and planning the future [4]. Additionally, these resting-state
networks also have significant clinical implications with respect to better understanding of
mental illnesses such as Alzheimer’s, and schizophrenia [17, 88, 100, 113].

3.1 Graph Theory
When studying these brain relationships, neuroscientists began simplifying their data and anal-
ysis by reducing the four-dimensional fMRI data into a static graph — a set of vertices and
edges — representing functional or structural connectivities. With this, graph properties, such
as vertex degree or distance, become easy to study.

Interesting early discoveries with this graph approach include network motifs [115], and
the prevalence of small world properties within these connectivities [11]; graphs with densely
connected clusters and a small number of connections between clusters [124].

This approach has become increasingly popular and many of the methods can be viewed in
these review papers [19, 28, 114].

3.1.1 Discovering Relationships
For both task and resting-state fMRI it is common to use linear tools (GLM, Pearson product-
moment correlation coefficients) to discover underlying relationships. Once these relationships
are measured some thresholding method is then used to determine which relationships are sig-
nificant. Popular thresholding approaches in the literature are based on topological expecta-
tions and controlling the FDR (both of which have their statistical and implicational limita-
tions), although alternative approaches with different properties do exist, such as tools using
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random matrix theory [26].
It is interesting how well linear models can describe the relationships within the system,

given that the brain is a nonlinear computing system as it is Turing-complete. Perhaps a sig-
nificant portion of the relationships are linear; there has been work done with these linear tools
and the majority of the meaningful relationships appear to be linear [108]. Noise has also been
demonstrated to obscure potentially important nonlinearities [29]. Additionally, it has been
noted that the BOLD response is a nonlinear integrator [121, 123, 82].

3.2 Previous Work on Nonlinear Relationships
Below is a collection of works by various authors exploring nonlinearities within fMRI data.
This collection is by no means exhaustive and each individual work includes a literature review
of similar research. The last work in this section is the most relevant to this thesis as it is the
most similar; it studies the brain from a network/graph perspective and attempts to describe the
network relationships using symbolic regression (see Section 2.2).

Buxton et al. describe the Balloon model, a nonlinear input-output model of blood flow and
oxygenation changes where input is blood flow and output is the BOLD signal [20, 22]. The
simplistic biophysical model of the HDR was used in a finger tapping task-based fMRI study
to capture essential features of the BOLD signal.

Nonlinear models for the BOLD signal were studied with Volterra series expansion by
Friston et al. [36, 37]. They develop a nonlinear model of the BOLD signal using Volterra
series expansion, a model-independent method capable of modelling the behaviours or any
nonlinear time invariant dynamic system [36]. They show that the Balloon model can account
for nonlinearities in event-related responses. They also describe a nonlinear dynamic model
of the relationship between synaptic activity and fMRI signals. This model incorporates the
Balloon model and is characterized in terms of it’s Volterra kernels. They argue that the kernel
parameters are biologically plausible and are sufficient to account for a number of nonlinearities
in the data.

Deneux and Faugeras studied variations of the balloon models (such as those discussed in
[22, 21, 37]) and physiological plausible models and their use in fMRI data analysis. They
suggest that their models better describe the BOLD response when compared to linear tools,
but are comparable when being applied to noisy data [29].

Kruggel et al. used fMRI data recorded from an event related item recognition experimental
design [77]. After preprocessing, the authors used linear regression to find areas of functional
activation within the data to select ROIs. Once the areas of interest were selected, they used
nonlinear regression to quantify the relationships between the stimulus and the BOLD signal’s
shape. The nonlinear regression used in the work was developed by Kruggel and von Cramon
for modelling nonlinearities within fMRI data (described in [78]). They note that the success
of a nonlinear analysis of the data is dependent on a well thought out collection of model
equations and conclude that their presented approach achieves a finer description of the fMRI
experiments and hope that it will lead to new insight into cognitive neuroscience.

Friston et al. develop a dynamic causal model for nonlinear input-output system and used
it to analyze experimental inputs/stimulus and the fMRI measured responses [35]. The model
uses bilinear parameters for modelling, however they state that no such restriction is required.
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The work was extended by Stephan et al. to perform a more general nonlinear dynamic causal
model [117]. More up-to-date information regarding the project can be found at: http://www.
scholarpedia.org/article/Dynamic_causal_modelling [89]. The extended nonlinear
dynamic causal model was capable of distinguishing nonlinear and bilinear processes when
applied to synthetic fMRI data. The models were also applied to real fMRI data gathered from
a motion task to analyze nonlinearities, namely, gating — the response of a neuron to activity
is dependent on the history of inputs from other neurons.

Wager et al. show nonlinear effects in fMRI BOLD signal when a rapid event-related ex-
perimental design is used (1s apart) [123]. Their interest was in nonlinearities introduced by
stimulus history and they developed a low-dimensional parametrization of nonlinearities in re-
sponse magnitude, time to peek, and response onset time. The authors demonstrate that their
model is more accurate and reasonably consistent across the brain. They argue the importance
of accounting for nonlinearities when focused on subject specific analysis relative to a group
analysis since inaccurate linear models of the nonlinear phenomenon for the group could create
biases when applied across participants.

Zhang et al. used a nonlinear semi-parametric model built around Volterra series to char-
acterize measured BOLD signal and found deviations from the linear models [126]. They
applied the method to real fMRI data from a monetary incentive delay experiment [67] and
showed that their approach outperformed many existing methods. They acknowledge the dif-
ficulty in selecting the number of parameters for describing nonlinearities with their approach,
and therefore they limit the number of functional bases (free parameters).

In 2015 Nicholas Allgaier used symbolic regression as a means to discover nonlinear rela-
tionships within resting-state fMRI data [2]. This particular work is the most relevant to this
thesis as it is using the same underlying technique to discover nonlinearities and studies them
as a network; however, there are important distinctions1. The authors studied known networks
within resting-state data to develop nonlinear models. 52, 9mm3 ROIs were selected based
on the DMN. It was found that their nonlinear terms generated in the models better account
for variance when compared to traditional linear tools. It was also found that the most com-
mon relations modelled corresponded to known intrinsic connectivity networks. Similar work
was also done by Icke et al. in [61] which hybridized GP with deterministic techniques with
success. They also suggest that symbolic regression alone has too many shortcomings to be
effective for modelling nonlinearities in fMRI data. Other unpublished works from the same
lab also analyze some small sample task-based studies.

3.3 Details on Data Used

As discussed in Chapter 1, task-based fMRI timeseries data was obtained from the Human
Connectome Project and segmented into 30 ROIs. Figure 1.1 provides a view of the ROIs and
Table 3.2 names the neuroanatomical regions of the 30 ROIs.

Tasks performed for the Human Connectome Project’s task-based fMRI data include: Emo-
tion, Gambling, Language, Motor, Relational, Social, and Working Memory.

Table 3.1 provides an example of how the data can be represented simply in tabular format.

1James Hughes would like to emphasize that this work was not reported on until after the James’ project began.
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Table 3.1: Data excerpt from subject 100307 performing the Emotion task after z-score nor-
malization. This table demonstrates the tabular representation of the fMRI timeseries data.
ROIs 6 through 29, and time points 10 through 175 were excluded to conserve space.

Time Point ROI 1 ROI 2 ROI 3 ROI 4 ROI 5 ... ROI 30
1 1.22 3.36 1.01 1.49 5.81 ... 3.79
2 -0.89 2.00 0.09 -0.36 2.47 ... 2.34
3 -2.03 0.46 -0.11 -1.36 0.98 ... 1.10
4 -2.33 0.49 0.72 -0.51 0.19 ... -0.64
5 -1.49 1.30 1.13 -0.79 -0.12 ... 0.26
6 -1.32 0.37 1.05 -0.98 0.13 ... 0.96
7 -0.97 0.06 1.11 0.05 0.30 ... -1.09
8 -0.35 -0.01 1.84 1.50 1.30 ... -1.35
9 0.26 0.00 2.01 1.05 0.28 ... -0.77
... ... ... ... ... ... ... ...

176 0.31 -0.30 0.35 -0.10 0.27 ... 0.28

General preprocessing for the fMRI data was implemented in FMRIB Software Library
(FSL) and FreeSurfer [40, 32, 65, 64]. The tfMRI data, which was processed with FMRIB’s
Expert Analysis Tool (FEAT) [125], was selected for use in this study for convenience and
because our goal was to describe nonlinear functional relationships in fMRI data.

Additional preprocessing was attempted on the data in an attempt to reduce noise in the
signal; high pass filtering with a Fourier Transform was performed with cutoff values ranging
between 1 – 100s (0.01 – 1Hz) using FSL’s fslmaths band pass filtering [65]. Preliminary
tests however demonstrated that this filtering provided no noticeable impact on the results.
Interestingly, using a heavy filter like those common in resting-state fMRI studies significantly
hurt results. Additionally, any filtering of the results risks eliminating actual meaningful signal
from the data.

A github repository with a dump of preprocessing scripts used can be found at https:
//github.com/jameshughes89/NonlinaerFMRIpreprocessing.

Additional information about the data used in each work are provided within their respec-
tive chapters (Chapters 4, 5, 6).
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Table 3.2: Region of interest number and corresponding neuroanatomical region. This table
provides a frame for the resolution of the brain segmentation.

Region of Interest # Description
1 Visual (V1)
2 Insula/Medial Temporal (MT)
3 Cuneus
4 Posterior Ventral Temporal
5 Memory
6 Prefrontal Cortex (PFC)
7 Temporal Pole/Amygdala
8 Auditory (Middle/Lateral Temporal)
9 Intraparietal

10 Insula/Medial Temporal (MT)
11 Cerebellar
12 Thalamys/Midbrain
13 Intraparietal/Calculations
14 Prefontal/Orbitalfrontal Cortex (OFC)
15 Temporal Pole/Amygdala
16 Language Associated Prefrontal Cortex
17 Fusiform/Ventral Temporal
18 Prefrontal Cortex (PFC)
19 Lateral Occipital
20 Auditory (Middle/Lateral Temporal)
21 Medial Frontal/M1 area
22 Somatosensory/Premotor (M1/S1)
23 Somatosensory/Premotor (M1/S1)
24 Fusiform/Ventral Temporal
25 Lateral Occipital
26 Cingulate
27 Medial Orbitalfrontal Cortex (OFC)
28 Prefontal/Orbitalfrontal Cortex (OFC)
29 Language Associated Prefrontal Cortex
30 Anterior Cingulate Cortex (ACC) & Prefontal



Chapter 4

Paper 1

This paper was submitted to Association for Computing Machinery’s (ACM) Genetic and Evo-
lutionary Computation Conference (GECCO) 2016. This paper was accepted as an extended
abstract and published in the conference’s companion proceedings. The full 8 pages submitted
are included within this chapter. The published extended abstract can be found in Appendix A.
References contained within this article are numbered according to the article’s bibliography.
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ABSTRACT
The brain is an intrinsically nonlinear system, yet the domi-
nant methods used to generate network models of functional
connectivity from fMRI data use linear methods (e.g., the
Pearson product-moment coefficient). Although these ap-
proaches have been used successfully, they are limited in
that they can find only linear relations within a system we
know to be nonlinear.

This study employs a highly specialized genetic program-
ming system which incorporates multiple enhancements to
perform symbolic regression, a type of regression analysis
that searches for declarative mathematical expressions to
describe relationships in observed data.

Publicly available fMRI data from the Human Connec-
tome Project was segmented into meaningful regions of in-
terest and highly nonlinear mathematical expressions de-
scribing functional connectivity were generated with sym-
bolic regression. These nonlinear expressions exceed the ex-
planatory power of traditional linear models and allow for
more accurate probing of the underlying physiological con-
nectivities.

CCS Concepts
•Computing methodologies→Genetic programming;
Modeling methodologies; •Applied computing → Sys-
tems biology;

Keywords
Symbolic regression; Computational neuroscience; Functional
magnetic resonance imaging; Modeling nonlinear relation-
ships.

1. INTRODUCTION
The literature in the field of neuroscience explicitly ac-

knowledges the existence of nonlinear relationships in brain
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function [3, 4, 7, 12, 10, 27], but it is common to treat them
as a footnote or ignore them altogether [4, 19]. Linear tools,
such as the General Linear Model (GLM) or the Pearson
product-moment coefficient, are used, almost exclusively, to
model functional magnetic resonance imaging (fMRI) time
series data. However, it would ultimately be improper to
use a linear method to observe what we know to be non-
linear phenomenon as it lacks the power to truly model the
underlying processes.

Despite this, neuroscientific studies are able to make pow-
erful contributions with the limited linear model [4]. How-
ever, one wonders if a more expressive, nonlinear method for
modeling functional relationships — that must exist within
the space — would increase the analytical power and signif-
icance of results. Nevertheless, it is not surprising that the
nonlinear relationships are ignored; discovering underlying
nonlinearities is an exceptionally non-trivial task, especially
when working with large amounts of high-dimensional data.

Nonlinear tools have been used in analysis of fMRI time
series, but still remain underutilized. Friston et al. used
Volterra series expansion to study nonlinear responses and
showed that nonlinearities in the Balloon model (a physio-
logical model) sufficiently describe hemodynamic refractori-
ness and other nonlinearities in fMRI [10, 11]. A form of
Nonlinear regression was implemented by Kruggel et al. for
modeling dependencies between hemodynamic response and
stimulation conditions [18]. Dynamic Causal Modeling was
done by Friston et al. to describe effective connectivity [9].
In 2014, Zhang et al. succeeded in using a Semi-parametric
Volterra series based analysis to find deviations from linear
assumptions [30]. In 2015, Symbolic Regression was used to
describe nonlinear relationships within known networks in
resting state fMRI data [1].

The procedure of observing data, detecting natural laws,
and discovering their corresponding formalisms is an in-
tractable task that has been difficult to automate effectively
[2, 23, 26]. A promising approach to searching for math-
ematical expressions describing data is a machine learning
technique called genetic programming (GP), a tool that can
perform symbolic regression — a type of regression analysis.
GP is a machine learning technique which iteratively writes
and updates its own programs to independently learn how to
solve a given problem based on the principles of the natural
process of evolution [17].

In this work GP will be implemented to automate the
process of discovering minimal and interpretable network



relationships in the behavior of a system for which we can
observe only time series derived from a network’s nodes:
task based fMRI time series data. No assumptions or prior
knowledge will be applied to the system.

The GP system built for the purpose of this work incor-
porates multiple enhancements to improve the search ca-
pability of the evolutionary algorithm and were ultimately
required in order to effectively traverse the large space in
a reasonable amount of time. These enhancements include:
an acyclic graph representation [22], fitness predictors [24,
25], and parallel evolution of subpopulations.

2. DATA
The data selected for this analysis was obtained from the

Human Connectome Project, WU-Minn Consortium1. The
data contains structural MRI, resting state fMRI (rfMRI),
diffusion imaging (dMRI), and task-evoked fMRI (tfMRI)
for roughly 500 subjects and Magnetoencephalography (MEG)
data for resting state and tasks on a subset of the partici-
pants.

This work focuses on task based fMRI time series data
which is obtained by placing subjects into fMRI scanners
and instructing them to perform some task. This technology
harnesses nuclear magnetic resonance to generate data con-
taining information which can ultimately be used as proxy
for functional activation within particular brain voxels [7].

The actual information being recorded by the fMRI is the
blood oxygen level dependent (BOLD) signal — a measure
of the relative oxygenation level of blood within tissue. This
change is the result of an increase in blood flow to cerebral
tissue which correlates with neural activation (a result of the
hemodynamic response (HDR)) [21, 14]. Although it has
been demonstrated that the modulation of blood flow to tis-
sue is strongly linked with the actual underlying functional
activity [20], it is important to note that the actual nature
of the BOLD signal is still under investigation [7]. Addi-
tionally, the BOLD signal lags behind electrical recordings
of neural actively by a few seconds and is spatially diffused
— the signal is based on to the bloodflow of surrounding
tissue of recent activity. fMRI signal also has a very high
signal to noise ratio.

The fMRI time series data can be visualized as a two di-
mensional matrix of voxels (three-dimensional analogues to
two-dimensional pixels). One flattened dimension represents
all voxels in the three dimensional physical space and the
other dimension represents time points; each entry in the
matrix corresponds to the BOLD signal intensity of a single
voxel at a particular time point. The actual number of vox-
els depends on the resolution of fMRI scanner. For example,
modern hardware with a resolution of 1-5mm3 can capture
hundreds of thousands of voxels. Similarly, the number of
time points depends on the hardware and overall duration of
the experiment; how long a subject was in the fMRI. Modern
scanners are capable of capturing at a frequency of 0.75Hz
- 2Hz.

Although the resolution of each voxel is on the order of
millimeters, each voxel contains tens of thousands of neu-
rons. For this reason they can be thought of as a“mesoscale”
representation; it lies between the microscale of neurons and
the macroscale of brain lobes.

General preprocessing for the fMRI data was implemented

1http://www.humanconnectome.org/

in FSL and FreeSurfer [13, 8, 16, 15]. The tfMRI data, which
was processed with FMRIB’s Expert Analysis Tool (FEAT)
[28], was selected for use in this study for convenience and
because our goal was to describe nonlinear functional rela-
tionships in fMRI data.

Tasks performed for the Human Connectome Project’s
tfMRI data include: Working Memory, Gambling, Motor,
Language, Social Cognition, Relational Processing, and Emo-
tion Processing. It was decided to focus on the Motor task
as it is a clean and simple task that is highly studied and
already well understood with linear tools. A total of 509
subjects were imaged for the Motor task, but only 507 were
studied in this work as two were missing data.

The Motor task was adapted from studies performed by
Buckner et al. and Yeo et al. [5, 29]. Visual cues were
presented to subjects which instructed them to either tap
their left or right finger, squeeze their left or right foot, or
move their tongue. Tasks were divided into blocks and each
block lasted 12 seconds and included 10 movements of re-
spective body part. 13 blocks were included in each run: 2
left finger, 2 right finger, 2 left foot, 2 right foot, 2 tongue,
and 3 fixation blocks of 15 seconds each. A 3 second cue
was presented before each block. This task had a total run
duration of 3:34 and contained 284 frames per run (includ-
ing pre- and post-task data) and was performed twice for
each subject, one for each phase encoding. The temporal
resolution was 720ms; a whole brain volume was captured
at a rate of roughly 1.389Hz.

Additional preprocessing was attempted on the data in an
attempt to reduce noise in the signal; high pass filtering was
performed with values ranging between 1 − 100s. Prelimi-
nary tests however demonstrated that this filtering provided
no noticeable impact on the results. Interestingly, using a
heavy filter like those common in resting state fMRI studies
significantly hurt results. Additionally, any filtering of the
results risks eliminating actual meaningful signal from the
data.

The fMRI time series data was segmented into meaningful
regions of interest (ROIs) (refer to Figure 1) with Craddock
et al.’s spatially constrained parcellation [6]. Each voxel’s
activation within each ROI was averaged to determine the
respective ROI’s mean activation. A variety of resolutions
were explored and it was determined that using 30 ROIs
consistently resulted in meaningful expressions. Using fewer
than 30 ROIs appeared to not provide enough resolution for
the GP system to find substantive expressions, and using
anything greater than 30 ROIs overloaded the GP system;
current hardware’s computational power limits the search
space of the GP system. Refer to Table 1 for details on the
neuroanatomy of the 30 ROIs.

Ultimately the data was represented in a two dimensional
matrix with 30 columns (ROI average activation) and 284
rows (time points).

3. GENETIC PROGRAMMING IMPLEMEN-
TATION

This specific GP implementation is motivated by Schmidt
et al.’s work [26], is extremely specialized for symbolic re-
gression, and incorporates modular improvements which sig-
nificantly increase the performance of the system. Some of
these improvements including parallel evolution of subpopu-
lations, fitness predictors [24, 25], and an acyclic graph rep-



Figure 1: A snapshot of a brain when segmented into the 30
ROIs. Each colour represents a different region.

ROI # Description

1 Visual (V1)
2 Insula/Medial Temporal (MT)
3 Cuneus
4 Posterior Ventral Temporal
5 Memory
6 Prefrontal Cortex (PFC)
7 Temporal Pole/Amygdala
8 Auditory (Middle/Lateral Temporal)
9 Intraparietal
10 Insula/Medial Temporal (MT)
11 Cerebellar
12 Thalamys/Midbrain
13 Intraparietal/Calculations
14 Prefontal/Orbitalfrontal Cortex (OFC)
15 Temporal Pole/Amygdala
16 Language Associated Prefrontal Cortex
17 Fusiform/Ventral Temporal
18 Prefrontal Cortex (PFC)
19 Lateral Occipital
20 Auditory (Middle/Lateral Temporal)
21 Medial Frontal/M1 area
22 Somatosensory/Premotor (M1/S1)
23 Somatosensory/Premotor (M1/S1)
24 Fusiform/Ventral Temporal
25 Lateral Occipital
26 Cingulate
27 Medial Orbitalfrontal Cortex (OFC)
28 Prefontal/Orbitalfrontal Cortex (OFC)
29 Language Associated Prefrontal Cortex
30 Anterior Cingulate Cortex (ACC) & Prefontal

Table 1: Neroanatomical regions and their corresponding
segmented regions of interest. This list provides a frame for
the resolution of the currently attempt to model functional
activity with symbolic regression.

resentation [22]. With these improvements, this intractable
problem becomes much more manageable.

Multiple subpopulations are evolved separately from one
another to encourage a well diversified set of candidate so-
lutions. Periodically these subpopulations are combined,
shuffled, and redistributed into subpopulations again. This
procedure attempts to simulate punctuated equilibria and
allopatric speciation, or simply, encourage genetic diversity
over the whole population by allowing the subpopulations
to traverse the search space along their own trajectories.

3.1 Fitness Predictors
Fitness predictors have been demonstrated to reduce com-

putational cost by approximating the local search gradient
[24, 25].

Candidate solutions are evaluated with an adaptive subset
of the data as opposed to all data points. If the subset of
data can sufficiently describe the whole, then it can be used
as an effective approximation of fitness. Using a subset in
the realm of 10% the size of the whole data set can reduce the
number of evaluations required to determine fitness values.

The fitness predictors are evolved alongside the candidate
solutions, and the fitness predictors’s fitness value is deter-
mined by a measure of how well it can approximate the
whole data set. Additionally, this method ultimately also
attempts to select the data points in a way which creates a
large variance in the fitness of fitness predictors through the
use of fitness trainers. In other words, the subset of data
points are selected in a way to focus the search on areas
of the search space where the candidate solutions need the
most improvement.

The fitness of candidate solutions are evaluated using only
the subset of data points within the current top fitness pre-
dictor, however since these populations are evolving in par-
allel, these predictors are always changing. This allows for
a highly dynamic search which can focus on areas of the
search space needing the most improvement.

In addition to the performance enhancement of a reduc-
tion in computation cost, fitness predictors have been shown
to produce better quality results by reducing overfitting.
Overfitting is curbed since evolution is always based on the
fitness of an ever evolving subset of data points; overfitting
becomes difficult when the target points are always being
adapted [25].

It has also been shown that symbolic regression performs
better when allowed to focus on key features (subsets of
data) as opposed to the whole data set [25].

3.2 Acyclic Graph Representation
Bloat can be reduced with the use of fitness predictors

[25], however, in this work an acyclic graph representation
has been implemented which can also bias the algorithm
away from bloated, overfit expressions [22].

Traditional systems typically represent expressions in tree
structures where leaf nodes are terminals (constants or vari-
ables) and internal nodes are operators. In this work an
acyclic graph representation is used. Figure 2 presents a
comparison of a tree representation and an acyclic graph rep-
resentation. These structures both represent the following
equation: R21 = (1.23−R10)+Sin((1.23−R10)∗R30∗eR10),
where R10, R21, and R30 are variables representing the val-
ues of regions of interest 10, 21, and 30 over the time series.
Even with this simple example, notice how the acyclic graph
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(a) An example mathematical expression using a typical tree
representation. 13 nodes were used to represent this expres-
sion with this tree representation. Every part of this expres-
sion needs to be explicitly represented with a individual node.
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(b) An example mathematical expression using an acyclic
graph representation. 9 nodes were used to represent this
expression with this acyclic graph representation. Notice how
the sub-expression (1.23− R10) is easily reused.

Figure 2: Figures 2a and 2b both represent the same expression: (1.23 − R10) + Sin((1.23 − R10) ∗ R30 ∗ eR10), however,
Figure 2b was able to represent the same information as Figure 2a with less resources. In this example, blue nodes represent
binary operators, red nodes represent unary operators, and grey nodes represent a terminals;Rx signifies a variable (region of
interest in this case) and a number signifies a constant.

representation is more succinct relative to the tree structure.
Motivation for selecting the acyclic graph representation

for this work was, first, the representation scales well and
avoids bloat, and second, it can reuse possibly important
subexpressions effectively [22].

3.3 Execution of Evolutionary Search
An overview of the execution flow of the whole GP system

is presented in Figure 3. The left side of Figure 3 depicts
the execution of the evolution of the population of candidate
solutions (mathematical expressions in this particular case)
while the right side depicts the execution of the evolution of
the fitness predictors (in this case, a collection of subsets of
data points from the fMRI time series).

After a population of candidate solutions is generated a set
of fitness trainers and fitness predictors are generated to be
evolved. Following this, the whole population of candidate
solutions is split into an arbitrary number of subpopulations
to be evolved in parallel.

Evolution of the subpopulations occurs in parallel, how-
ever, evaluation of the subpopulations is calculated with the
subset of data points within the most fit fitness predictor,
which is always changing as it is evolving at the same time
as the subpopulations. The motivation for this is described
in Section 3.1.

After a predefined number of iterations of evolution, the
subpopulations are recombined, and if some stopping cri-
teria is met, the execution completes. If execution is not
complete, the combined subpopulations are shuffled and will
ultimately split once again into many subpopulations. Just
as it was done earlier, the fitness trainers and predictors are
updated based on the current whole population before it is
split into subpopulations.

4. EXPERIMENTAL METHODS
Typical task based fMRI studies employ linear methods,

such as Pearson product-moment correlation and the GLM
to analyze their results. For example, if one wants to derive

Figure 3: High level structure of this symbolic regression
implementation. The left side demonstrates the evolution of
the expressions while the right side depicts the evolution of
fitness predictors. This example shows only three subpopu-
lations evolving in parallel.



how ROI 21 is related to the other ROIs, then they would
use some thresholding technique to eliminate statistically
unrelated ROIs (based on correlation) and then employ a
GLM to fit the other ROIs to ROI 21. These methods make
the large assumption that the system is describable with
only linear operators.

For symbolic regression, it was required to have some value
over the time series that the evolved expressions fits to. For
the purpose of the motor task, ROI 21 was selected as it
is the ROI that contained the primary motor cortex. All
ROIs, with the exception of ROI 21, were fed into the GP
system and acted as variables over the time series and the
expressions evolved to equate these variables to ROI 21. Al-
though these values are being equated to ROI 21, the actual
expressions generated can be thought as of more how the
ROIs relate to one another over the time series.

All 507 subjects for which a complete set of data existed
from the Human Connectome Project were used for the pur-
pose of this work. For each of these subjects the search for
expressions describing the data was executed 100 times in
an effort to improve significance of obtained results. A total
of 50,700 executions of evolutionary search were performed.

The language/basis functions used for the experiments
included unary and binary linear and nonlinear operators.
These operators include: +, −, ∗, /, e, abs, ln, sin, cos,
and tan. It should be emphasized here that using symbolic
regression to model fMRI time series does make one assump-
tion: it is assumed that the language (basis functions) pro-
vided to the system is sufficient to describe the data.

Mean Squared Error was used for the fitness function.
No rigorous parameter tuning was done since preliminary

results demonstrated that fine tuning the large number of
system parameters provided no meaningful improvement over
the large number of runs per subject.

7 individual populations of 25 candidate solutions were
evolved in parallel. The choice of 7 populations was be-
cause the evolutionary search was being executed on 8 core
systems, and with the addition of fitness predictors running
on a single core, a total of 8 threads were effectively utilized:
1 thread per core. 10,000,000 generations were done with
shuffles of the populations and updates of fitness trainers
occurring every 1,000 generations; a total of 10,000 shuffles
and updates to fitness predictors were done over the course
of the 10,000,000 generations. This all results in a total
of 1,750,000,000 mating events. Although these values are
excessive and a reduction by orders of magnitude has little
impact on the models, the goal is to find the best possi-
ble nonlinear model. Even after apparent convergence, any
marginal improvement may be important for describing the
underlying complex system.

The maximum number of operators/operands in the acyclic
graph representation for a candidate solution was set to 40,
however the actual number operators and operands in the
expression represented can be higher since subexpressions
can be reused.

The crossover and mutation rates were set to 80% and
50% respectively. Two mutations were possible per candi-
date solution for each propagation to the next generation.

The number of fitness trainers was 8, the number of fitness
predictors was 10, and the number of data points per fitness
predictor was set to 10% the size of the total number of data
points within the data, which was 28 for this particular task
as there were 284 data points in total for each subject.

R2

R6

R12

R18

R21

R27

Figure 4: Representation of relationships between regions of
interest for a single generated expression. Red lines repre-
sent nonlinear relationships, blue lines represent nonlinear
and linear relationships, and black lines represent strictly
linear relationships. This particular example corresponds to
the equation: R21 = R12 − sin(11.97 ∗ (18.30 − R12)) −
(0.42 ∗ |(R12 − R18) ∗ R27|)/(R6 − tan(R2)) which had a
absolute average error from the measured signal of 12.4.

Keeping in mind the stochastic nature of the algorithm,
each run of the evolutionary search using this GP system
takes between 1-4 hours when running with 8 cores on an
IBM System x iDataPlex dx360 M3 node with 2 quad-core
Intel Nehalem (Xeon 5540) processors running at 2.53GHz.

5. RESULTS AND DISCUSSION

5.1 Individual Models
The GP system was run 100 times for each subject to find

numerous high quality models. Highly nonlinear expressions
are found in top models on all subjects. Figure 4 depicts the
relationships between ROIs in the top model from the very
first subject studied. Notice how most relationships in this
model are nonlinear.

To demonstrate that there is meaningful information in
the data being studied, and that symbolic regression finds
meaningful relationships, it was applied to a random Gaus-
sian brain. This random brain was generated to have similar
signal intensities to the real subjects. For this reason, the
brain was generated with a mean of 10,000 and standard
deviation of 2,000. Models for this random brain would un-
surprisingly equate ROI 21 with some value near 10,000,
such as e9.21, and would have an absolute error of roughly
2000.

Figure 5 shows a time series of one subject’s recorded sig-
nal alongside two models describing the signal, one found
with the nonlinear tool, and the other with linear regres-
sion after thresholding ROIs with a 95% false discovery rate
(FDR). This figure clearly shows that both the nonlinear
and linear models fit the data very well with minimal error.
The mean absolute errors over the whole time series on this



one subject for the nonlinear model and linear models are
10.82 and 8.85 respectively.

The interesting observation here is that the nonlinear search
found highly nonlinear models that could not be found with
the linear tool; however, the models generated with the lin-
ear tool fit the data better.

5.2 Analyzing All Models
Figures 6 and 7 show the percentage of times each ROI

appeared in models on average over all generated models on
every subject.

Figure 6 shows the percentage of times ROIs appeared in
the nonlinear models versus the number of times ROIs ap-
pear when using a linear tool after thresholding with 95%
FDR. Even with the popular thresholding technique, almost
every ROI is always related to ROI 21. The mean abso-
lute time series errors for the top nonlinear models and the
thresholded linear models on their respective subjects av-
eraged over every subjects were calculated. These values
were roughly 16.68 with a standard deviation of 3.51 for
the nonlinear models and 11.79 with a standard deviation
of 1.11 for the linear models. A Mann-Whitney U test pro-
vides a p-value of 3.08 ∗ 10−133, which clearly demonstrates
that the linear models, although only slightly better than
the nonlinear, are in fact fitting the recorded signal better.

Even with a popular thresholding method almost every
ROI is linearly related to ROI 21. This ultimately generates
a set of models created with high degrees of freedom that
fit the data well, however they provide minimal insight and
are difficult to interpret.

On average, a nonlinear model contained slightly less than
4 ROIs (3 when excluding ROI 21). Figure 7 shows a com-
parison only when the top 3 linearly related ROIs from the
linear models (4 when including ROI 21) were counted. By
observing this figure one can see that the same ROIs ap-
pear at very similar rates for both the linear and nonlinear
tools. The mean absolute time series error of the linear
models generated with roughly the same number of ROIs
was calculated to be approximately 19.16 with a standard
deviation of 5.08. A Mann-Whitney U test comparing the 4
ROIs models provided a p-value of 8.56 ∗ 10−19; the nonlin-
ear models were significantly better. In fact, it was not until
the linear models were given the top 8 ROIs that there was
no more statistical difference. Linear models only performed
better than the 4 ROIs nonlinear models once they received
10 or more ROIs (with a p-value of 1.34 ∗ 10−3); it took at
least 10 ROIs for a linear model to fit the recorded signal
better than a nonlinear model containing only 4.

6. CONCLUSIONS AND FUTURE WORK
A highly specialized GP designed for symbolic regression

was implemented to search for nonlinear relationships in a
dynamic complex nonlinear system: the human brain. Task
based fMRI data was modeled and numerous nonlinear rela-
tionships were found that would otherwise not be discovered
with conventional tools.

When compared to linear models generated with all ROIs
available after a typical thresholding technique, the nonlin-
ear models, although close, could not fit the signal as well.
Unfortunately however, these linear models would typically
contain more than 25 ROIs and would be difficult to in-
terpret and provide minimal insight into understanding the
underlying processes. Alternatively, nonlinear models were

more succinct. On average, with just 4 ROIs, a nonlin-
ear model could fit the recorded signals better than linear
models using 8; even with more information (ROIs), linear
models could not describe the data as clearly.

This work can be continued in multiple directions. Cur-
rent work is being done to explore how well a model gen-
erated for some subject can fit data from another subject.
Results have been generated for unnormalized data with in-
consistent results as there are numerous linear translations
in the data across different ROIs. However there are few
cases where other subjects models can fit the data very well.
Modeling will be performed on z-score normalized data in
order to evaluate how models can generalize across subjects.

Data from other tasks, such as gambling, emotional pro-
cessing, social cognition, and relational processing will be
analyzed to determine if the descriptive power of the non-
linearities is persistent across an array of task complexities.

Performing symbolic regression on other neuroimaging modal-
ities where nonlinearities are observed, such as EEG or MEG,
could allow for a comparison to the models generated on
fMRI data.
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Chapter 5

Paper 2

This paper was submitted to Association for Computing Machinery’s (ACM) Genetic and Evo-
lutionary Computation Conference (GECCO) 2017 and was accepted for presentation and pub-
lication in the conference proceedings [57]. An abstract based on this work was submitted and
accepted to the 11th Annual Canadian Association of Neuroscience Meeting 2017 [56]. Refer-
ences contained within this article are numbered according to the article’s bibliography.

Within this article it stresses that the goal is to find descriptive models and not predictive
models. This is a subtle point that is intended only to emphasize the motivation of generating
these models. Ultimately, assuming the models are accurate, they could be used for prediction.

The article states “Although it is possible the whole brain is involved with the task mean-
ingfully, it would seem unlikely that the relationships are truly significant.”, which is not an
empirically demonstrated fact, and is a current discussion within connectomics.

It also states that symbolic regression is model free. Within the field this is not uncommon
phrasing, however it is not truly model free as there are a number of constraints the GP system
must work with (language/basis functions, independent variables).

34
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ABSTRACT

�e vast majority of methods employed in the analysis of func-

tionalMagnetic Resonance Imaging (fMRI) produce exclusively lin-

ear models; however, it is clear that linear models cannot fully de-

scribe a system with the observed behavioral complexity of the

human brain — an intrinsically nonlinear system. By using tools

embracing the possibility of modeling the underlying nonlinear

system we may uncover meaningful undiscovered relationships

which further our understanding of the brain.

We employ genetic programming, an arti�cial intelligence tech-

nique, to perform symbolic regression for the discovery of nonlin-

ear models be�er suited to capturing the complexities of a high

dimensional dynamic system: the human brain.

fMRI data for multiple subjects performing di�erent tasks were

segmented into regions of interest and nonlinear models were gen-

erated which e�ectively described the system succinctly. �e non-

linear models contained undiscovered relationships and selected

di�erent sets of regions of interest than traditional tools, which

leads to more accurate understanding of the functional networks.
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1 INTRODUCTION

�e human brain is a manifestly nonlinear system; however, de-

spite the prevalence of literature acknowledging the existence of
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these nonlinearities [4, 5, 7, 9, 11, 26], the bulk of the cognitive

neuroscience literature continues to almost exclusively employ lin-

ear tools to model functional Magnetic Resonance Imaging (fMRI)

data (e.g., the Pearson product-moment coe�cient, general linear

model) [5, 18]. �is approach, while e�ective in some ways, robs

us of the ability to �nd the nonlinearities which we know exist

within the system.

Despite this, neuroscienti�c studies are able to make powerful

contributions with the limited linear model [5]. However, a ques-

tion naturally arises: would a more expressive, nonlinear method

for modeling functional relationships — thatmust exist within the

space — increase the analytical power and signi�cance of results?

Nevertheless, it is not surprising that the nonlinear relationships

are ignored. Discovering underlying nonlinearities is an exception-

ally non-trivial task, especially when studying large amounts of

high-dimensional data.

Nonlinear tools have been applied to fMRI time series, but still

remain remarkably underutilized. Friston et al. used Volterra series

expansion to study nonlinear responses and showed that nonlin-

earities in the Balloonmodel (a physiological model) su�ciently de-

scribe hemodynamic refractoriness and other nonlinearities [9, 10].

A form of nonlinear regression was implemented by Kruggel et al.

for modeling dependencies between hemodynamic response and

stimulation conditions [17]. Dynamic Causal Modeling was done

by Friston et al. to describe e�ective connectivity [8]. In 2014,

Zhang et al. succeeded in using a Semi-parametric Volterra series

based analysis to �nd deviations from linear assumptions [27]. Icke

et al. employed a hybrid deterministic regression/genetic program-

ming approach in 2014 to study resting state fMRI data [14]. In 2015,

Symbolic Regression was used by Allgaier et al. to describe nonlin-

ear relationships within known networks in resting state fMRI data

and reported novel nonlinearities [1, 2]. In 2016, Hughes and Daley

used Symbolic Regression to discover novel nonlinear relationships

within task based fMRI data (a motor task) and found nonlinear

models to be more succinct [13].

�e procedure of observing data, detecting natural laws, and

discovering their corresponding formalisms is an intractable task

that has been di�cult to automate e�ectively [3, 22, 25]. A promis-

ing approach to searching formathematical expressions describing

data is genetic programming (GP), an evolutionary algorithm that

can perform symbolic regression— a type of regression analysis. GP

is a technique that iteratively writes and updates its own programs

to independently learn how to solve a given problem based on the

principles of the natural process of evolution [16].

In this work GP will be employed to automate the process of

discovering interpretable network relationships in the behavior of
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a system for which we can observe only time series derived from

a network’s nodes: task based fMRI time series data. No assump-

tions or prior knowledge of linearity or how the system interacts

with itself is used. �e goal is not to �nd predictive models, but

descriptive ones. �e brain is a very high dimensional system and

technological limitations allow for only a small number of data

points. It would be unreasonable to expect the creation of a true

predictive model with so li�le data whether using traditional lin-

ear regression, or something as rigorous as symbolic regression.

�e current goal is to generate descriptive representations of the

systems that can be used to further our understanding of the func-

tional network relationships within the brain.

2 DATA

Data selected for analysis was obtained from the Human Connec-

tome Project, WU-Minn Consortium1. �e current iteration of the

data contains structural MRI, resting state fMRI (rfMRI), di�usion

imaging (dMRI), and task-evoked fMRI (tfMRI) for roughly 900 sub-

jects and Magnetoencephalography (MEG) data for resting state

and tasks on a subset of participants.

�is study focuses on task based fMRI time series data obtained

by placing subjects into fMRI scanners (Figure 1) and having them

perform some task, such as a movement, memory, or gambling

task. �is technology harnesses nuclear magnetic resonance to

generate data which can be used as proxy for functional activation

within the brain [7]. �e actual information being recorded by

fMRI is the blood oxygen level dependent (BOLD) signal — a mea-

sure of the relative oxygenation level of blood within tissue. �is

change is the result of an increase in blood �ow to cerebral tissue

which correlates with neural activation (a result of the hemody-

namic response (HDR)) [12, 20]. Although it has been demonstrated

that the modulation of blood �ow to tissue is strongly linked with

the actual underlying functional activity [19], it is important to

note that the precise nature of the BOLD signal is still under in-

vestigation [7]. Additionally, the BOLD signal has a low signal to

noise ratio, lags behind electrical recordings of neural actively by

a few seconds, and is spatially di�used — the signal is based on the

blood�ow to tissue surrounding recent activity.

fMRI time series data can be represented as a two dimensional

matrix of voxels (three-dimensional analogues to two-dimensional

pixels). One dimension represents all voxels in the three dimen-

sional physical space �a�ened into one long vector, and the other

dimension represents time points; each entry in the matrix corre-

sponds to the BOLD signal intensity of a single voxel at a particular

time point. �e actual number of voxels depends on the resolution

of fMRI scanner; modern hardware with a resolution on the order

of 2-5mm3 can capture hundreds of thousands of voxels. Similarly,

the number of time points depends on the hardware and overall

duration of the experiment (how long a subject was in the fMRI).

Modern scanners are capable of capturing whole brain volumes at

a frequency of 0.75Hz - 2Hz.

Although the resolution of each voxel is on the order of mil-

limeters, each voxel contains tens of thousands of neurons. For

this reason they can be thought of as a “mesoscale” representation;

1h�p://www.humanconnectome.org/

Figure 1: Siemens3TMagnetomPrisma functionalMagnetic

Resonance Imaging scanner located in the Robarts Research

Institute at the University of Western Ontario.

it lies between the microscale of neurons and the macroscale of

brain lobes.

Tasks performed for the Human Connectome Project’s tfMRI

data include: Emotion Processing (176 time points), Gambling (253

time points), Language (316 time points), Motor (284 time points),

Relational Processing (232 time points), Social Cognition (274 time

points), and Working Memory (405 time points). fMRI time series

data for all tasks was recorded at a temporal resolution of 720ms

per sample; a whole brain volumewas captured at roughly 1.389Hz.

�e data was z-score normalized and segmented into meaning-

ful regions of interest (ROIs) (refer to Figure 2) with Craddock et

al.’s spatially constrained parcellation [6]. Each voxel’s activation

within each ROI was averaged to determine the respective ROI’s

mean BOLD signal intensity. A variety of resolutions were ex-

plored and it was determined that using 30 ROIs consistently re-

sulted in high quality models, although it is expected that higher

or lower resolutions would work similarly well in general. Table 1

provides details on the neuroanatomy of the 30 ROIs.

Ultimately the data was represented as a two dimensional ma-

trix with 30 columns (ROI average BOLD intensity) and t rows,

where t is the total number of time points for the speci�c task.

3 NEUROSCIENTIFIC MOTIVATION

�e motivation for generating a model of the brain is to be�er un-

derstand the system. If one wants to study the execution of some

brain function, they will generate a model based on appropriate

recorded data which can be used to interpret the physiological phe-

nomenon by revealing which areas of the brain are involved, and

to what extent.

Task based fMRI studies employ linearmethods to generate their

models, such as Pearson product-moment correlation and the Gen-

eralized Linear Model (GLM).

For example, if one wants to derive how ROI 21 is related to the

other ROIs, the �rst step would be to calculate the correlations in

the data. Once the correlation coe�cients are calculated, correc-

tion for multiple comparisons is performed with a method such as
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Figure 2: A snapshot of a brain when segmented into the 30

ROIs. Each color represents a di�erent region.

Table 1: Neroanatomical regions and their corresponding

segmented regions of interest. �is list provides a frame for

the resolution of the segmentation of the brain.

ROI # Description

1 Visual (V1)

2 Insula/Medial Temporal (MT)

3 Cuneus

4 Posterior Ventral Temporal

5 Memory

6 Prefrontal Cortex (PFC)

7 Temporal Pole/Amygdala

8 Auditory (Middle/Lateral Temporal)

9 Intraparietal

10 Insula/Medial Temporal (MT)

11 Cerebellar

12 �alamys/Midbrain

13 Intraparietal/Calculations

14 Prefontal/Orbitalfrontal Cortex (OFC)

15 Temporal Pole/Amygdala

16 Language Associated Prefrontal Cortex

17 Fusiform/Ventral Temporal

18 Prefrontal Cortex (PFC)

19 Lateral Occipital

20 Auditory (Middle/Lateral Temporal)

21 Medial Frontal/M1 area

22 Somatosensory/Premotor (M1/S1)

23 Somatosensory/Premotor (M1/S1)

24 Fusiform/Ventral Temporal

25 Lateral Occipital

26 Cingulate

27 Medial Orbitalfrontal Cortex (OFC)

28 Prefontal/Orbitalfrontal Cortex (OFC)

29 Language Associated Prefrontal Cortex

30 Anterior Cingulate Cortex (ACC) & Prefontal

false discovery rate or Bonferroni correction. �resholding is then

used to eliminate statistically unrelated ROIs; any number of ROIs

could be used in the creation of the linear models, however it is

ideal to use only meaningful ROIs. Here lies one of the problems

— what does it mean for an ROI to be meaningful? Because each

ROI is a part of one larger connected system that was measured at

the same time under the same circumstances with the same envi-

ronmental noise factors, many of the ROIs tend to have reasonably

high correlation coe�cients. Even a�er thresholding, one is typi-

cally le� with a large number of ROIs being statistically related —

sometimes even all ROIs. Although it is possible the whole brain is

involved with the task meaningfully, it would seem unlikely that

the relationships are truly signi�cant.

Once the set of ROIs for the linearmodel are selectedwith thresh-

olding, linear regression is used to derive the model by ��ing the

remaining ROIs to ROI 21.

�ese methods make many incorrect assumptions: the system

is linear, ROIs are treated like �xed values as opposed to random

variables (weak exogeneity), constant variance in the data, inde-

pendence of errors, and a lack of multicollinearity.

By using a di�erent method, such as symbolic regression, which

is at least as powerful as linear regression and capable of eliminat-

ing many of the assumptions linear regression makes, it may be

possible to develop more accurate and descriptive models of the

complex system. Although the computational cost of employing

symbolic regression is extensive, it is well worth the price if the

generated models do help in the discovery of the true underlying

phenomenon.

4 GENETIC PROGRAMMING
IMPLEMENTATION

�eGP implementation used was inspired by Schmidt et al.’s work

[25]. It is specialized for symbolic regression and incorporates

modular improvements which signi�cantly increase the perform-

ance of the search. Some of these improvements include paral-

lel evolution of subpopulations, �tness predictors [23, 24], and an

acyclic graph representation [21].

Multiple subpopulations are evolved separately to encourage

a well diversi�ed set of candidate solutions. Periodically these

subpopulations are combined, shu�ed, and redistributed into new

subpopulations. �is procedure encourages genetic diversity over

the whole population by allowing the subpopulations to traverse

the search space along separate trajectories.

Fitness predictors have been demonstrated to reduce computa-

tional cost by approximating the local search gradient [23, 24]. Can-

didate solutions are evaluated with a subset of data that is both

representative of the whole dataset, and creates a large variance

among candidate solutions’ �tness. In other words, a subset of

data points are selected in a way to emphasize the evolution on

relatively small areas of the search space where candidate solu-

tions need the most improvement. �ere are many successful simi-

lar techniques [15], however this particular approach was selected

as it has many bene�ts, such as reducing computational cost, re-

ducing over��ing, and focuses the search on key features, an idea

shown to signi�cantly improve symbolic regression [24].

Traditional systems typically represent expressions in tree struc-

tures where leaf nodes are terminals (constants or variables) and

internal nodes are operators. In this work an acyclic graph represen-

tation is used. Figure 3 presents an example of an acyclic graph rep-

resentation with an array encoding. Other graph representations
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1.2   x     ?    ?     e     -    y    ?     *     ?     *     ?   sin   ?     ?    +

Figure 3: An array encoding for the expressions (1.23 − x) +

Sin((1.23−x) ∗y ∗ex ). Sub-expressions can be referencedmul-

tiple times by any number of operators in a higher index.

‘?’ represent information not expressed in the phenotype,

however they may contain vestigial sub-expressions [21].

exist in the literature, however the acyclic graph representation

is unique, and motivations for selecting this representation were:

�rst, the encoding is lightweight, second, the representation scales

well and avoids bloat, and third, it can reuse important subexpres-

sions e�ectively [21].

4.1 Execution of Evolutionary Search

An overview of the execution �ow of the whole GP system is pre-

sented in Figure 4 — full details can be found in Schmidt et al.’s

work [25]. �e le� side of Figure 4 depicts the evolution of the pop-

ulation of candidate solutions (mathematical expressions in this

particular case) while the right side depicts the execution of the

evolution of �tness predictors (in this case, a collection of subsets

of data points from the recorded task based fMRI time series).

For initialization, and a�er a population of candidate solutions

is generated, a set of �tness predictors and �tness trainers (a sub-

set of candidate solutions used to evaluate the quality of the �tness

predictors [24]) are generated. Following this, the whole popula-

tion of candidate solutions is split into an arbitrary number of sub-

populations to be evolved in parallel.

Evolution of the subpopulations occurs in parallel, however, eval-

uation of the subpopulations is calculated with the subset of data

points from the �tness predictors, which is always changing as it

is evolving alongside the subpopulations.

A�er a prede�ned number of iterations the subpopulations are

recombined, and if some stopping criteria is met, the execution

completes. If execution is not complete, the combined subpopula-

tions are shu�ed and split once again into subpopulations. Just

as it was done earlier, the �tness trainers and predictors are up-

dated based on the current whole population before it is split into

subpopulations.

4.2 Experimental Methods

For symbolic regression, it is required to have some value over the

time series that the evolved expressions �ts to. �is value is cho-

sen to be an ROI that is already known to be involved in the spe-

ci�c tasks. For example, ROI 21 was selected as the le� hand side

of the equation for the motor task as it is the ROI containing the

primary motor cortex. �e le� hand sides of the equations for the

emotion, gambling, language, motor, relational, social, and work-

ing memory tasks were ROIs 7, 2, 12, 21, 28, 3, and 21 respectively.

All remaining ROIs were given to the GP system and acted as vari-

ables over the time series and the expressions evolved to equate

these variables to the ROI on the le� hand side of the equation. Al-

though these values are being equated to a speci�c ROI, the actual

expressions generated can be thought of as a network relationship.

Figure 4: High level structure of this symbolic regression

implementation. �e le� side demonstrates the evolution

of the expressions while the right side depicts the evolution

of �tness predictors. �is example shows only three subpop-

ulations evolving in parallel.

Ten subjects for which a complete set of data existed for all 7

tasks from the Human Connectome Project were studied. For each

of these subjects, the search for expressions describing the data

was executed 100 times in an e�ort to improve the signi�cance of

results. A total of 7000 evolutionary searches were performed.

�e language/basis functions used for the experiments included

unary and binary linear and nonlinear operators that can be ob-

served in nature. �ese operators include: +, −, ∗, /, e , abs , sin,

cos , and tan. �e inclusion of the arithmetic operators allow the

search to be at least as powerful as linear regression. e allows

for exponentiation, and absolute value introduces point nonlinear-

ities. Trigonometric operators are included as they introduce sim-

ple nonlinearities, and we know from Fourier that any periodic

function can be expressed as a sum of sine waves.

It should be emphasized here that using symbolic regression to

model fMRI time series does require the acceptance of one assump-

tion: it is assumed that the language provided to the system is suf-

�cient to describe the data.

Mean Squared Error was used for the �tness function.

7 individual populations of 101 candidate solutionswere evolved

in parallel. �e choice of 7 populations was because the evolution-

ary search was being executed on 8 core systems, and with the

addition of �tness predictors evolving on a single core, a total of

8 threads were e�ectively utilized: 1 thread per core. 10,000,000

generations were done with shu�es of the subpopulations and up-

dates of �tness trainers occurring every 1,000 generations. �is all

results in a total of 7,070,000,000 mating events for every model. It

should be noted that these values are excessive and a reduction by

orders of magnitude has li�le impact on the models, however it is

crucial to note that the goal is to �nd the best possible representa-

tive explanation of the underlying nonlinear system to further our

understanding of the brain — predictive models are not the goal.
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Even a�er apparent convergence, any marginal improvement may

be important for describing the underlying complex system.

�emaximumnumber of unique operators/operands in the acyclic

graph representation for a candidate solution was set to 40, how-

ever the actual number of operators and operands in the expression

can be higher as subexpressions are reused.

�e crossover and mutation rates were set to 80% and 10% re-

spectively. Two mutations were possible per candidate solution

for each propagation to the next generation. �e mutation rate

was set high as the encoding (Figure 3) makes it so mutations may

have no e�ect on the phenotype.

�e number of �tness trainers was 8, the number of �tness pre-

dictors was 20, and the number of data points per �tness predictor

was set to 25% the size of the total number of data points.

Keeping in mind the stochastic nature of the algorithm and the

varying amounts of data between each task, each run of the evolu-

tionary search using this GP system takes between 5 and 24 hours

(in the most extreme cases) when running with 8 cores on an IBM

System x iDataPlex dx360 M3 node with 2 quad-core Intel Nehalem

(Xeon 5540) processors running at 2.53GHz.

5 RESULTS AND DISCUSSION

Symbolic regression is model free: it selects which ROIs to �t the

data with and how they relate to one another. �e evolutionary

search selected many fewer ROIs than any of the typical correction

for multiple comparison and thresholding techniques would for

the linear models, demonstrating that nonlinear models are able

to describe the system with much less information.

For a thorough comparison to linearmodels, multiple techniques

were used to correct for multiple comparisons before thresholding

ROIs. �is was done for the linear models as their e�ectiveness

depends on how many ROI are used to �t the data, and di�erent

techniques can result in a di�erent set of ROIs. Two popular tech-

niques within the neuroscience literature, Bonferroni Correction,

which is known to be conservative (higher false negative rate), and

False Discovery Rate (with familywise error rate α = 0.05) were
employed. In almost all cases, Bonferroni Correction would result

in fewer ROIs than False Discovery Rate. Two other ideas were

also included: forcing linear models to have the same number of

ROIs as the nonlinear models (typically between 7 to 10 ROIs), and

allowing linear models to �t the data with all ROIs.

Table 2 provides a summary of the mean absolute error of the

models averaged over all subjects per task and the corresponding

standard deviations. A Mann-Whitney U test p-value is included

comparing the ten subjects’ corresponding linear models’ mean

absolute error values to the nonlinear models’ (�rst columns). Note

that unlike the linear models, the nonlinear models are generated

stochastically so only the top nonlinear model for each subject’s

100 models is used in the comparison. Linear models improve as

they are allowed to �t the data with more ROIs; however, even

with all 30 ROI, the linear models never perform signi�cantly be�er

than the nonlinear.

It is possible that although the nonlinear models contain fewer

ROIs, and �t the data well, they may not truly be meaningful or

novel. Additionally, nonlinear models — despite using much less

information than linear models to �t the data — may still over�t

the recorded fMRI signal.

Figure 5 shows how theMann-Whitney U test’s probability value

between the linear and nonlinear models’ mean absolute error dis-

tributions change as the number of ROIs used in the linear model

increase. �is novel representation of the data was created to bet-

ter understand how the number of ROIs impacts the quality of the

linear models. Columns represent tasks, rows show the number of

the top linearly correlated ROIs used in the linear model (includ-

ing the le� hand side of the equation — the �rst row with the num-

ber 2 uses only the top 1 linearly correlated ROI to �t the data),

and color represents the probability value calculated comparing

the �xed, top performing nonlinear models for each subject to the

linear models �t with the corresponding row’s number of ROIs.

�e white text on the plot show the average number of ROIs for

all 100 nonlinear models generated per subject (NL-A-), the aver-

age number in the top nonlinear models per subject (NL-T-), how

many when Bonferroni Correction was used before thresholding

selected (BC-), and how many with False Discovery Rate (FDR-).

Figure 5 unsurprisingly shows that, in general, linear models

improve as the number of ROIs used to �t the data increases. How-

ever, the nonlinear models had smaller mean absolute error values

than the linear models up until the linear models were �t with at

least 20 ROIs;more than twice as many ROIs were needed by the lin-

ear models to explain the underlying system as well as the nonlinear.

In each column, the reddest area shows where the models were

nearly indistinguishable, and any point below shows when linear

models obtained be�er mean absolute errors. Although the linear

models, once given enough ROIs, had be�er average mean abso-

lute error values, they were never signi�cantly be�er. �e closest

linear models were to being signi�cantly be�er was when all ROIs

were used to �t the language task’s data (p-value of 0.07 ). Refer to

the last column in Table 2 for the p-values comparing nonlinear

models to linear models generated with all ROIs.

Figure 5 also shows that the number of ROIs required for lin-

ear models to become comparable to nonlinear models di�ers be-

tween task, suggesting the level of nonlinearity in the functional

connections is dependent on the task being performed by the sys-

tem. Although this phenomenon seems rather obvious, it would be

unaccounted for with traditional tools. It is not possible to demon-

strate this variation without a tool that can infer model structure,

such as symbolic regression.

Figure 6 shows a comparison of a nonlinear model along with

two linear models against the actual recorded signal for the ROI

being �t to (ROI 7 for the Emotion task). �e nonlinear model,

which contained only 8 ROIs (including ROI 7— the le� hand side of

the equation) in this example, �t the data best with amean absolute

error of 0.14. When a linear model contained only 8 ROIs (the same

number the nonlinear model used) it was only able to �t the data

with a mean absolute error of 0.27. Even when the linear model

was given all ROIs, it was only able to achieve a mean absolute

error of 0.15. In this particular case, using Bonferroni correction

resulted in no ROI being eliminated (same model as using all ROI)

and False Discovery Rate resulted in 28 ROI being �t to the data

and achieved a mean absolute error of 0.16 (both not shown).

Models generated with symbolic regression were highly nonlin-

ear and could not possibly be created with linear regression. Not
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Table 2: summary of the top nonlinear models and linear models with di�erent correction for multiple comparison and

thresholding techniques. MAE is the averaged mean absolute error over all subjects for each task and the probability value

(p-val.) was calculated with a Mann-Whitney U test between the nonlinear models and the respective column’s linear model.

Task
Nonlinear Same # ROIs Bonferroni Correction False Discovery Rate All ROIs

MAE Std. MAE Std. p-val. MAE Std. p-val. MAE Std. p-val. MAE Std. p-val.

EMOTION 0.34 0.11 0.42 0.12 0.06 0.36 0.14 0.45 0.33 0.12 0.40 0.31 0.10 0.17

GAMBLING 0.31 0.08 0.36 0.09 0.09 0.30 0.08 0.43 0.30 0.08 0.37 0.30 0.08 0.34

LANGUAGE 0.29 0.06 0.39 0.09 0.00 0.29 0.06 0.26 0.28 0.06 0.14 0.27 0.05 0.07

MOTOR 0.24 0.05 0.32 0.05 0.00 0.23 0.05 0.48 0.23 0.04 0.37 0.22 0.04 0.15

RELATIONAL 0.23 0.08 0.31 0.10 0.04 0.22 0.07 0.37 0.21 0.07 0.31 0.21 0.07 0.29

SOCIAL 0.30 0.05 0.42 0.09 0.01 0.32 0.08 0.31 0.30 0.06 0.48 0.28 0.05 0.21

WM 0.27 0.10 0.32 0.10 0.06 0.26 0.10 0.24 0.25 0.09 0.24 0.25 0.09 0.21

Figure 6: Nonlinear and Linear models expected ROI intensity value compared to the measures signal.

Figure 5: Probability value transition plot between the lin-

ear and nonlinear models’ mean absolute errors (averaged

over all subjects per task) as the number of the top linearly

correlated ROIs used to �t the data with linear regression is

increased. �e number of ROIs used in the nonlinear mod-

els was �xed as the number of ROIs linearmodels usedwere

increased.

only were the relationships between the ROIs novel, but the ROIs

selected by symbolic regression would sometimes di�er from the

top correlated ROIs. Figure 7 shows which ROIs are most impor-

tant for the respective models and Figure 7c emphasizes where

the ROIs di�er by showing the top linearly correlated ROIs (which

would be found in the linear models) minus the ROIs selected by

symbolic regression. For example, ROI 27 was in all nonlinear

models for the language task, however Figure 7b shows ROI 27

being one of the least linearly correlated ROIs. �ese di�erences

demonstrate that linear correlation may be inadequate for accu-

rately modeling functional connectivity. Just because an ROI is, or

is not, highly correlated, does not mean that it is, or is not, mean-

ingful in the function of the underlying system; high correlation

between ROI time series does not imply the existence of a true

functional relationship between them.

A similar argument could be made against symbolic regression:

just because an ROI is, or is not, selected by the evolutionary search,

does not mean that it is, or is not, meaningful. However symbolic

regression is at least as powerful as linear regression; symbolic re-

gression can exploit any linear relationships within the data that

traditional linear tools are limited to, while also capable of discov-

ering more complex nonlinear relationships. Although it is possi-

ble the ROIs in the nonlinear models may not truly be meaningful,

they are at least selected with fewer assumptions, namely, without

the signi�cant incorrect assumption that the system is linear.

Symbolic regression was executed with the only constraint be-

ing that the data could be modeled su�ciently with the language

(mathematical operators) provided to the GP system. �is assump-

tion can negatively a�ect the models as the language may not be

descriptive enough to accurately model the functional networks,

however the language used by symbolic regression is more expres-

sive than the limited operators used for linear regression — which

were also included in the language.

It is possible that the data recorded by fMRI is not truly repre-

sentative of the underlying system, which could result in nonlin-

ear models not accurately describing the functional connectivities.

However this limitation of the hardware and our imperfect ability
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(a) Number of times every ROI appeared in top models for each

subject on all tasks. �e ROI being �t to (le� hand side of equation)

is forced to be in the expression. For example, the Motor task was

�tting to ROI 21, therefore ROI 21 was in all models for the Motor

task.

(b) Every ROI’s average absolute correlation coe�cient’s for each

subject on all tasks along with that ROIs rank. �e ROI being �t to

(le� hand side of equation) will have a correlation coe�cient of 1.

(c) Di�erence between ROI counts when linear models were forced

to have the same number of ROIs as nonlinearmodels (linear - non-

linear). For example, if a nonlinearmodel contained 7 ROI, the top

7 linearly correlated ROI would be used. Highly negative values

mean nonlinear models were more likely to select that ROI, and

highly positive valueswerewhen nonlinearmodelswere less likely

to use the ROIs.

Figure 7: Representations of where the linear and nonlinear

models disagree on what ROIs are important in describing

the system.

to measure functional brain activity a�ects all data driven tech-

niques. Additionally, if fMRI is only capable of extracting lineari-

ties from a system we know to be nonlinear, then the technology

itself is insu�cient for the understanding the system under study.

As the tools being used become more sophisticated and able to

describe the data inmore complexways, over��ing becomes a con-

cern. Although nonlinear models only used between 7 and 10 ROIs

to �t the data, and linear models used up to 30 (markedly more de-

grees of freedom), it is important to keep in mind that symbolic

regression is a powerful tool susceptible to over��ing.

Figure 8 shows three error matrices with similar values. �e

generated models for each subject and task were applied to every

other subject performing every other task. �e mean absolute er-

ror was recorded and the error was then averaged over all subjects

within the same task. �e nonlinear models, as shown by the aver-

aged mean absolute errors in th le� matrix generalize reasonably

well across all subjects performing the same task. �e le� matrix

also has a similar set of results as the linear models (�e center

and right matrices), showing that the nonlinear models generalize

similarly well to other subjects as the linear models. Despite being

more complex, these current results provide some evidence that

the nonlinear models are not over��ing the data signi�cantly, or

at least, not over��ing the data any more than linear models.

6 CONCLUSIONS AND FUTUREWORK

A highly specialized GP system designed for symbolic regression

was implemented to search for nonlinear relationships in a dy-

namic complex nonlinear system: the human brain. Task based

fMRI data was e�ectively modeled with symbolic regression, and

not only were novel nonlinear relationships found, but when com-

pared to linear tools, a di�erent and much smaller set of ROIs were

selected as meaningful. �ese relationships and ROIs could not

possibly be discovered with conventional tools — �ndings that pro-

vide new insight into the underlying system. Despite the paramet-

ric complexity of symbolic regression, results suggest that signi�-

cant over��ing was unlikely.

Nonlinear models described the system well, and performed sig-

ni�cantly be�er than linear models in many cases; however, as lin-

ear models were given more ROIs to �t the data, their e�ectiveness

surpassed nonlinear models — although never signi�cantly.

Nonlinear models required markedly fewer ROIs to describe the

system than linear models, which contained nearly all ROIs. “Ver-

bose models” are di�cult to interpret in a meaningful way, so suc-

cinct models may lead to be�er insight into the system being mod-

eled. Additionally, we know that linear correlation is not an e�ec-

tive means for describing a system we know to be nonlinear.

As one should expect, our results demonstrated that the level of

nonlinearity required to describe the functional networks within

the system depended on the task being performed by the subject.

�iswork can be continued inmultiple directions. Current work

is being done to explore additional subjects to expand the signi�-

cance of the �ndings. Further work is currently being done to bet-

ter understand the nonlinear models and over��ing. Although the

goal of this work is not to generate predictive models, exploration

into creating such models can be done with the goal of �nding

more general models. Performing symbolic regression on other

neuroimaging modalities where nonlinearities are commonly ob-

served, such as electroencephalogram or Magnetoencephalogra-

phy, would allow for a comparison to the novel nonlinear models

generated for fMRI data.

�e investigation of what neuroscienti�c questions can now be

answered with these novel discoveries, and the deployment of a

symbolic regression tool for neuroscientists are current priorities.
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�ébec - Nature et technologies (FRQ-NT).

Data were provided by the Human Connectome Project, WU-

Minn Consortium (Principal Investigators: David Van Essen and

Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes

and Centers that support the NIH Blueprint for Neuroscience Re-

search; and by the McDonnell Center for Systems Neuroscience at

Washington University.

REFERENCES
[1] Nicholas Allgaier. 2015. Reverse Engineering the Human Brain: An Evolution-

ary Computation Approach to the Analysis of fMRI. (2015).
[2] Nicholas Allgaier, Tobias Banaschewski, Gareth Barker, Arun LWBokde, Josh C
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Chapter 6

Paper 3

This paper was submitted to Association for Computing Machinery’s (ACM) Genetic and Evo-
lutionary Computation Conference (GECCO) 2018. An abstract based on this work was sub-
mitted and accepted to the 12th Annual Canadian Association of Neuroscience Meeting 2018
[58]. References contained within this article are numbered according to the article’s bibliog-
raphy.

Similar to Article 2, the article states “It is possible that the entire brain is involved in the
task being studied, but this seems unlikely.”, which is not an empirically demonstrated fact,
and is a current discussion within connectomics.
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ABSTRACT

�ebrain is an intrinsically nonlinear system; however, most meth-

ods employed in studying functional magnetic resonance imaging

data (fMRI) produce strictly linear models — models incapable of

truly describing the underlying system.

In this work, genetic programming is used to develop nonlin-

ear models of functional connectivity from fMRI data. �e study

builds on previous work and observes that nonlinear models con-

tain relationships not found by traditional linear methods. When

compared to traditional methods, nonlinear models are more suc-

cinct and are never signi�cantly worse when applied to data the

models were �t to. It was also observed that the nonlinear models

could not generalize to other subjects as well, but would generalize

to unseen data from the same subject be�er than the linear mod-

els. �is study presents the problem that many, manifestly di�er-

ent models in both operators and features, can e�ectively describe

the system with acceptable metrics.

CCS CONCEPTS

•Computing methodologies → Genetic programming; Mod-

eling methodologies; •Applied computing → Systems biology;

KEYWORDS

Symbolic regression; Computational neuroscience; Functional mag-

netic resonance imaging; Nonlinear Modelling.

ACM Reference format:

James AlexanderHughes andMark Daley. 2018. Generalizability of Nonlin-

ear Models of Functional Connectivity. In Proceedings of GECCO ’18, Kyoto,

Japan, July 15-19, 2018, 8 pages.

DOI: somenumber

1 INTRODUCTION

Almost all methods typically used for modeling functional Mag-

netic Resonance Imaging (fMRI) data produce models with linear

tools (Pearson Product-moment correlation coe�cient, general lin-

ear model) despite the brain being a nonlinear system and the liter-

ature acknowledging the existence of nonlinearities [3, 4, 6, 8, 10,

24]. Although the �eld has made many contributions using linear
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tools, they may not be powerful enough to truly capture the un-

derlying nonlinearities that are known to exist within the system.

�e bene�t of using linear tools is that they, and the models

they produce, are easily understood; o�en, simpler tools and mod-

els are desirable. Finding nonlinearities is a non-trivial task, es-

pecially when faced with large amounts of high-dimensional data.

Sophisticated nonlinear tools introduce more degrees of freedom,

are more computationally expensive, and in many cases, produce

hard to interpret models. However, sometimes these sacri�ces are

required to understand the intricacies of a nonlinear dynamic com-

plex system, such as the brain.

Althoughnonlinear tools have been developed and studied, they

remain under-represented within the neuroscience literature. Fris-

ton et al. use Volterra series expansion to study the balloon model

[8, 9] and dynamic causal modelling to study e�ective connectivity

[7]. Kruggel et al. used a form of nonlinear regression to model re-

lationships between the hemodynamic response and stimulus con-

ditions [17]. Semi-parametric Volterra series was used by Zhang

et al. to �nd nonlinearities in fMRI data [25]. With symbolic re-

gression, Allgaier et al. found novel nonlinear relationships within

known networks in resting state fMRI data [1, 2]. Hughes & Daley

used symbolic regression to develop nonlinear models of task based

fMRI data and found that, when compared to linear models, they

were more succinct and �t the data be�er [12, 13].

In this work Genetic Programming (GP) will be used to perform

Symbolic Regression. GP is an arti�cial intelligence techniquewhere,

through a strategy based on the natural process of evolution, the

algorithmwrites (evolves) its own programs to solve problems [16].

Symbolic regression is a regression technique that not only searches

for coe�cients, but also for the structure of the model. �is allows

for a more powerful regression capable of �nding nonlinear rela-

tionships with fewer assumptions, when compared to typical lin-

ear regression. Since we are using GP for symbolic regression, the

programs being wri�en by GP are mathematical expressions.

We build upon the work of Hughes & Daley [12, 13]; we de-

velop nonlinear models of fMRI data gathered from real subjects

performing a variety of tasks. �ese models provide interpretable

functional network relationships between brain areas to ultimately

give new insight into the underlying system. �e goal is not to cre-

ate predictive models, but to develop descriptive models; the goal

is the generation of interpretable model, not to collect the model’s

output. We expand upon the previous work by including addi-

tional subjects for greater insight and statistical signi�cance. We

also expand the analysis by applying unseen data from the same

subject performing the same task to the developed models.

High quality nonlinear models were generated that generalized

to unseen form the same subject, however the nonlinear models

could not generalize to unseen data from di�erent subjects as well
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as the traditional linear models. We �nish with remarks on the

di�culty of model selection when presented with a collection of

di�erent models with similar error values.

2 NEUROSCIENTIFIC DATA

�e data studied in this work was obtained from the Human Con-

nectome Project, WU-Minn Consortium1 (HCP) — a large, notewor-

thy publicly available bank of neuroscienti�c data. As of April

2017, the project contains data from 1200 subjects. Although a

variety of types of data is included in the dataset, we focus on

task based fMRI recordings. �is data is recorded from subjects

performing a task while inside fMRI scanners. �e fMRI scan-

ner records the blood oxygen level dependent (BOLD) signal — a

measure of the relative oxygenation level of blood within tissue

— which can be used as an e�ective proxy for functional activa-

tion [11, 18, 19]; however, the precise nature of the BOLD signal

is not well understood [6]. �e BOLD signal is notoriously noisy,

spatially di�used, and lags behind actual neural activity.

�e BOLD signal from the three-dimensional brain over time is

recorded and represented as voxels (three-dimensional analogues

to two-dimensional pixels). �is four dimensional data (Figure 1)

can be represented as a two dimensional matrix of voxels by �at-

tening the three-dimensional physical space into one long vector

and treating time as the second dimension. Each entry in the two-

dimensional matrix corresponds to the BOLD signal intensity of a

single voxel at some time point. Although each voxel’s size is on

the order of millimetres, they contain tens of thousands of neurons.

�e seven tasks performedby subjects for theHCP’s fMRI record-

ings include: Emotion Processing (176 time points/127s), Gambling

(253 time points)/182s), Language (316 time points/228s), Motor

(284 time points/204s), Relational Processing (232 time points/167s),

Social Cognition (274 time points/197), and Working Memory (405

time points/292s). �e temporal resolution of the scans were 720ms

per sample.

Data from all tasks for forty subjects were analyzed in this work.

Each subject had two separate recordings for each task (one le�-

to-right (LR) phase encoding direction, and one right-to-le� (RL) —

the direction of applied gradient required for fMRI data acquisition

[11]). �e LR phase encoding data was used as the training data,

and the RL was used as independent testing data.

Data was z-score normalized and segmented into 30 regions of

interest (ROIs) with Craddock et al.’s spatially constrained parcella-

tion [5]. Each ROI’s value is the mean BOLD signal from all voxels

within it. Multiple resolutions were explored and 30 ROIs consis-

tently produced high quality models. A high level overview of the

ROIs can be found in Table 1.

A�er preprocessing, the data was represented as a two dimen-

sional matrix of 30 columns of ROI average BOLD intensities and

t rows, where t is the number of time points for a given task.

3 NEUROSCIENTIFIC MOTIVATION

Neuroscientists generate models of the brain to be�er understand

the underlying system. If we generate e�ective models, we can

1h�p://www.humanconnectome.org/

Figure 1: A three-dimensional snapshot of the four-

dimensional fMRI data. �e voxels in this brain contain the

BOLD signal from a single time point.

Table 1: Region of interest number and corresponding neu-

roanatomical region. �is table provides a frame for the res-

olution of the brain segmentation.

Region of Interest # Description

1 Visual (V1)
2 Insula/Medial Temporal (MT)
3 Cuneus
4 Posterior Ventral Temporal

5 Memory
6 Prefrontal Cortex (PFC)
7 Temporal Pole/Amygdala
8 Auditory (Middle/Lateral Temporal)
9 Intraparietal
10 Insula/Medial Temporal (MT)
11 Cerebellar
12 �alamys/Midbrain
13 Intraparietal/Calculations

14 Prefontal/Orbitalfrontal Cortex (OFC)
15 Temporal Pole/Amygdala
16 Language Associated Prefrontal Cortex
17 Fusiform/Ventral Temporal
18 Prefrontal Cortex (PFC)
19 Lateral Occipital
20 Auditory (Middle/Lateral Temporal)
21 Medial Frontal/M1 area

22 Somatosensory/Premotor (M1/S1)
23 Somatosensory/Premotor (M1/S1)
24 Fusiform/Ventral Temporal
25 Lateral Occipital
26 Cingulate
27 Medial Orbitalfrontal Cortex (OFC)
28 Prefontal/Orbitalfrontal Cortex (OFC)
29 Language Associated Prefrontal Cortex
30 Anterior Cingulate Cortex (ACC) & Prefontal

study the models to discover which areas of the brain are function-

ally connected. Although error values can indicate model accuracy,

the model itself is of interest, not the output of the models.

Typical task based fMRI studies employ linear methods to gen-

erate models. �ese methods include Pearson product-moment cor-

relation coe�cient and the Generalized Linear Model (GLM). For ex-

ample, if one wanted to derive how a given ROI X was function-

ally connected to all other ROIs, one would correlate the timeseries

from each ROI and do some correction for multiple comparisons

(false discovery rate (FDR) or Bonferroni correction (BC)). Statisti-

cally unrelated ROIs are eliminated and the remaining ROIs will

be used as regressors in our linear regression to ROI X. �e result-

ing model and beta weights will be used to indicate which areas of

the brain are functionally related during a task, and to what extent.

�esemethods assume that the underlying system is linear, how-

ever we know this to be incorrect — the human brain is a non-

linear system. It also treats ROIs as �xed values as opposed to

random variables (weak exogeneity). Other assumptions include:

constant variance in the data, independence of errors, a lack of

multicollinearity, and that the residuals are not autocorrelated.

�resholding is done to eliminate statistically unrelated ROIs

before regression as one would only want to include meaningful
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ROIs as regressors. However, what does it mean for an ROI to be

meaningfully related? All ROIs are apart of a larger, connected

system being recorded at the same time, under the same circum-

stances, in the same environment susceptible to the same noise

factors. Ultimately, many ROIs are highly correlated, and even af-

ter thresholding, one is typically le� with a large number of ROIs

being statistically related (sometimes even all). It is possible that

the entire brain is involved in the task being studied, but this seems

unlikely.

Despite the drawbacks, there aremany reasons to use the simple

models; complex models tend to over�t data, are hard to interpret,

and typically have a much greater computational cost. But, per-

haps using a di�erent method, such as symbolic regression, we can

develop more accurate and descriptive models of the brain. Sym-

bolic regression is at least as powerful as linear regression, will

eliminate many of the assumption the linear methods make, and

will perform feature selection.

4 METHODS

4.1 Genetic Programming Implementation

�e GP implementation used in this work is based on Schmidt

et al.’s work, is specialized for symbolic regression, and incorpo-

rates improvements to increase performance [23]. Although many

ideas are incorporated into the system, noteworthy ones include

�tness predictors [21, 22] and an acyclic graph representation [20].

�ese ideas are summarized below, but full descriptions are avail-

able from their respective sources.

Fitness predictors reduce the computational cost of the search by

approximating the local search gradient [21, 22]. Chromosomes

are only evaluated on a representative subset of data that empha-

sizes the search on areas of the space candidate solutions disagree

the most — if the population has no consensus on an area, then

the search might bene�t by focusing on that area. �is subset of

data is always evolving throughout the evolutionary search as the

data points required to create the disagreement between candidate

solutions will depend on the current population. Although there

are similar techniques [15], this method was selected since it not

only lowers computational cost by reducing the number of data

points needed for evaluation, but it has also been shown to reduce

over��ing, focus on key features, and improves results [22].

Unlike typical GP systems which represent the candidate solu-

tions as trees, an acyclic graph representation is used in this work

as it has a lightweight encoding, scales well, avoids bloat, and has

the ability to easily reuse subexpressions. Many graph based en-

codings exist in the literature, but the implementation described

by Schmidt et al. was used for the above reasons [20].

4.2 Genetic Programming Settings

�e system parameters used are presented in Table 2.

�emutation ratewas set high as amutationmay have no change

on the phenotype due to the nature of the acyclic graph encoding.

�e language was selected to be at least as powerful as linear re-

gression (arithmetic operators), and to have nonlinear operators:

absolute value for point nonlinearity, e for exponentiation, and

trigonometric operators since any periodic function can be expressed

as a sum of sine waves.

Table 2: Parameter settings forGPSystem.�e last 4 settings

are speci�c to the improvements discussed in 4.1.

Elitism 1

Population 101/subpopulation (707 total)

Subpopulations 7

Migrations 10,000

Generations 1,000 per migration (10,000,000 total)

Crossover 80%

Mutation 10% (x2 chances)

Fitness Metric Mean Squared Error: 1
n

∑n
i=1

(Ŷi − Yi )
2

Language +, − ,∗ , /, exp , abs , sin, cos , tan

Trainers 8

Predictors 20

Predictor Pop. Size 25% of Dataset

Max # Graph Nodes 140

�e choice of 7 subpopulations was because the evolutionary

search was performed on systems with 8 core processors, and with

the addition of �tness predictors evolving on a single core, a total

of 8 threads were e�ectively utilized.

A total of 7,070,000,000 mating events could occur for every model.

�ese values are excessive by orders of magnitude, however any

marginal improvement may result in a be�er description of the un-

derlying system; predictive models are not the goal, high quality

descriptive models are.

Given the stochastic nature of the search and the varying amounts

of data in each task, each execution of the search took between 24

and 124 hours (in the most extreme cases) when running with 8

cores on an IBM System x iDataPlex dx360 M3 node with 2 quad-

core Intel Nehalem (Xeon 5540) processors running at 2.53GHz.

4.3 Experimental Methods

Fourty subjects with data from all seven tasks were studied (280

datasets total). For symbolic regression, to improve the signi�-

cance and quality of results, 100 models were generated. For linear

regression, six di�erent ways of generating models were investi-

gated: ��ing all ROI, performing FDR and thresholding then �t-

ting, performing BC and thresholding then ��ing, ��ing all ROI

with LASSO regression, performing FDR and thresholding then �t-

ting with LASSO regression, performing BC and thresholding then

��ing with LASSO regression. Least absolute shrinkage and selec-

tion operator (LASSO) regression is already used in some of the

neuroscience literature, and it typically generates smaller models

compared to typical linear regression. Previous work found that

symbolic regression selected very few ROI compared to linear re-

gression [13], so it is of interest to compare symbolic regression to

a linear method with similarly succinct models.

For both linear and symbolic regression, an ROI known to be in-

volved with the task was chosen to be the dependent variable (le�

hand side of the equation (y)) and all other ROIs are used as the

regressors (X ). For example, ROI 21 was selected as the dependent

variable for the motor task as it is the ROI containing the primary

motor cortex. �e le� hand sides of the equations for the emotion,

gambling, language, motor, relational, social, and working mem-

ory tasks were ROIs 7, 2, 12, 21, 28, 3, and 21 respectively.
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5 RESULTS AND DISCUSSION

5.1 Model E�ectiveness

Table 3 contains summary statistics for the top models for each

subject on all tasks. Although 100 nonlinear models were gener-

ated for each subject and task, only the top performing model was

analyzed here. Additionally, a Mann-Whitney U test’s p-value ob-

tained by comparing the mean absolute errors of the nonlinear and

the respective linear model is also included. �is table is similar

to previous work’s [13], however the presented values were cal-

culated on LASSO models and over more subjects. �e results in

this table reinforces previous observations that nonlinear models

are comparable to linear when applied to the data they were �t to.

�e model type obtaining the best results were those �t to all ROI

with regular linear regression, however they were never signi�-

cantly be�er than nonlinear models. Additionally, these models

likely over�t the data and would not provide any neuroscienti�c

insight since they used all features.

Figure 2 presents the p-value transition plot. �is plot was gen-

erated by comparing the top nonlinear models’ errors from all sub-

ject to the errors from a linear model �t with increasingly more

ROIs. �e p-value is represented as color and each column cor-

responds to di�erent tasks. �e �rst row compares the nonlinear

models to linear models �t with the top 1 linearly correlated ROI

(to the ROI on the le� hand side of the equation). More ROIs are

added in the order of absolute correlation score until all ROI are

included (the last row). �e average number of ROI (over all sub-

jects) in a linear model with BC and FDR is wri�en on the plot

along with the average number of ROI in all (100) nonlinear mod-

els generated for each subject (NL-A-) and the average number of

ROI in the top nonlinear model for each subject (NL-T-).

�is plot shows that the average number of ROI in the nonlinear

model is much lesser than those generated with linear regression.

It also shows that nonlinear models are signi�cantly be�er than

linear models �t with few, top correlated ROI, but as the number

increases, the di�erence disappears. �e last row corresponds to

the last column in Table 3 where we see that the best linear mod-

els are not signi�cantly be�er than nonlinear. �is plot does not

include the LASSOmodels as the ROI in thosemodels are not deter-

mined based on correlation scores. �e number of ROI in the linear

models generated with LASSO was typically between 7 – 11 and

is much more comparable to the number of ROI in the nonlinear

models, however, as seen in Table 3, the LASSO models typically

have worse mean absolute errors than the nonlinear models.

It is not the speci�c operators found in the model, but the pres-

ence of the ROI, and the fact that they are related in some nonlin-

ear way, that is of interest. Figure 3 shows how o�en each ROI

appeared in the 40 subjects’s models for each task. �e �rst matrix

shows the results for the top nonlinear models and bo�om three

shows the results from three linear models. Although all these four

matrices are similar, the one for the nonlinear models is the most

di�erent. Not only are the nonlinear models e�ective, but they

appear to present somewhat di�erent ROIs. Similar observations

were noted in [13]. �e other linear regression models’ ROIs were

not shown as they typically had nearly all, or all ROI present.

Figure 2: p-value transition plot comparing linear and non-

linear models’ mean absolute errors (averaged over all sub-

ject) as the number of ROIs used to create the linear model

increases. ROIs were added to the linearmodels in the order

of their absolute correlation score. �e number of ROIs in

the nonlinear models was �xed.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

E
G

L
M

R
S

W
N

o
n
lin

e
a
r

7 19 8 9 9 6 40 25 4 10 17 6 8 12 21 8 6 7 7 9 9 13 6 12 7 9 19 18 7 14

6 40 10 10 8 7 26 30 7 30 4 19 8 6 7 20 8 7 8 7 17 17 5 4 6 11 13 21 5 19

5 16 9 12 12 9 19 29 19 7 7 13 11 12 8 40 5 33 18 12 21 13 7 3 10 20 27 26 30 11

11 18 11 8 11 39 9 11 16 19 7 8 15 8 7 16 9 10 8 13 40 29 26 8 11 10 15 6 19 19

14 12 17 14 6 8 19 7 15 4 2 6 11 29 9 32 10 29 12 11 6 9 3 9 7 9 14 40 10 20

27 4 40 22 8 12 7 25 23 6 11 3 12 3 9 7 13 9 17 19 10 7 15 12 20 35 23 10 13 9

9 18 6 11 9 22 12 10 9 16 7 13 11 12 11 21 12 16 6 14 40 34 24 9 18 16 10 11 17 21

E
G

L
M

R
S

WLi
n
e
a
r 

B
C
 L

A
S
S
O 16 14 7 5 15 19 40 16 9 9 13 5 8 4 10 6 4 6 4 2 3 2 5 2 1 4 7 5 0 15

5 40 5 2 2 8 31 28 7 25 13 17 3 2 5 21 5 3 7 12 26 11 6 7 5 7 15 14 3 24

6 20 0 3 4 7 15 17 6 6 5 8 6 9 9 40 12 20 7 7 8 9 5 4 2 4 4 8 3 17

4 25 4 15 8 30 9 11 9 11 14 8 5 14 6 15 7 9 6 15 40 24 11 1 4 3 1 12 8 16

4 21 1 3 9 9 18 7 13 6 6 4 16 21 11 18 8 17 5 0 3 5 4 5 3 7 10 40 0 9

21 5 40 3 3 11 12 14 12 7 9 5 3 12 6 12 20 11 2 12 5 11 7 12 10 14 5 1 0 4

5 21 6 3 18 18 6 7 7 16 9 7 6 5 6 21 14 15 11 15 40 29 13 9 7 9 6 6 8 20

E
G

L
M

R
S

WLi
n
e
a
r 

FD
R
 L

A
S
S
O

8 22 4 2 7 12 40 17 7 6 17 9 9 9 12 5 7 10 2 1 6 0 5 10 3 3 12 5 0 20

3 40 4 1 1 4 31 31 5 26 12 19 2 3 4 22 5 3 5 6 26 15 7 10 6 5 15 21 3 26

5 21 0 0 1 3 13 22 7 5 5 3 3 6 7 40 18 22 13 5 10 11 2 5 3 7 9 8 5 11

2 25 0 14 11 32 7 13 6 12 10 10 3 8 4 19 6 13 5 6 40 33 16 2 3 3 2 8 14 16

4 21 1 3 8 6 18 8 15 5 4 5 11 21 8 20 13 20 3 3 3 4 1 2 3 5 12 40 0 18

23 5 40 0 1 9 10 17 7 7 11 5 1 6 2 9 16 7 14 20 9 8 7 12 11 19 13 2 0 4

5 21 6 2 15 20 4 9 7 15 7 9 3 4 8 16 14 14 8 16 40 29 18 8 9 11 7 3 12 23

ROI

E
G

L
M

R
S

W
Li

n
e
a
r 

LA
S
S
O

2 27 4 0 1 4 40 27 0 4 17 9 0 2 22 12 1 10 12 0 3 1 2 12 0 4 29 20 0 15

1 40 4 1 0 3 30 33 3 28 9 23 0 1 3 26 4 1 4 6 27 14 5 11 1 4 16 31 4 28

6 21 0 0 1 0 4 24 13 5 2 10 3 1 1 40 4 35 17 1 13 22 2 2 2 0 0 21 18 4

2 24 1 13 7 37 2 17 0 15 8 13 2 7 1 18 7 14 2 3 40 32 26 4 3 3 2 3 23 15

3 22 0 1 8 6 20 6 18 3 2 3 7 28 1 28 3 30 6 0 2 5 1 1 0 2 13 40 1 27

23 4 40 0 0 3 6 25 4 5 12 5 1 4 2 1 20 6 0 20 10 3 4 21 6 37 20 5 0 6

5 21 6 2 14 21 4 9 2 19 5 12 1 3 2 16 14 16 2 11 40 33 28 8 5 15 1 4 20 24

ROI Counts From All Subjects on All Tasks for Multiple Model Types

Figure 3: Number of subjects for each ROI (column) that ap-

peared in the top model for each task (row). Counts for the

nonlinear and LASSO generated linearmodels are presented.

�e other liner models were excluded as they typically con-

tained nearly all (or all) ROIs. 40 is maximum. Note that the

ROI corresponding to the le� hand side of the equation was

in all models.

5.2 Intersubject Generalizability

Figure 4 contains matrices showing how well models generalize to

unseen data from di�erent subjects. �e matrices were generated

by applying models from all subjects and tasks to every other sub-

ject and task’s data. �e mean absolute errors were then averaged

over all subjects performing the same task. �e matrices for the

other linear models were not included as they did not generalize

to other subjects as well as the LASSOmodels. �e diagonals are of

particular interest as they show howwell, on average, models for a
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Table 3: Summary statistics (median and in interquartile range (IQR)) for all generated models along with probability values

obtained with a Mann-Whitney U test when comparing the mean absolute errors of the nonlinear models to the respective

linear model.

Nonlinear BC LASSO FDR LASSO BC FDR ALL LASSO ALL

Median IQR Mdn IQR p-Val Mdn IQR p-Val Mdn IQR p-Val Mdn IQR p-Val Mdn IQR p-Val Mdn IQR p-Val

EMOTION 0.39 ±0.06 0.49 ±0.08 1.08e-04 0.47 ±0.07 2.81e-04 0.41 ±0.09 1.29e-01 0.39 ±0.08 4.11e-01 0.47 ±0.07 5.44e-04 0.37 ±0.06 2.00e-01

GAMBLING 0.32 ±0.06 0.37 ±0.07 1.58e-02 0.36 ±0.07 1.65e-02 0.31 ±0.06 3.17e-01 0.3 ±0.06 2.77e-01 0.36 ±0.07 1.65e-02 0.3 ±0.06 2.58e-01
LANGUAGE 0.28 ±0.03 0.39 ±0.04 4.02e-10 0.38 ±0.04 4.28e-10 0.28 ±0.04 2.19e-01 0.27 ±0.03 4.87e-01 0.38 ±0.04 6.92e-10 0.26 ±0.03 1.79e-01

MOTOR 0.23 ±0.04 0.32 ±0.05 8.94e-08 0.32 ±0.05 9.41e-08 0.23 ±0.05 4.90e-01 0.23 ±0.05 3.52e-01 0.32 ±0.05 1.16e-07 0.23 ±0.04 1.89e-01

RELATIONAL 0.23 ±0.05 0.31 ±0.05 2.50e-05 0.31 ±0.05 2.71e-05 0.22 ±0.06 4.41e-01 0.22 ±0.05 3.20e-01 0.31 ±0.05 2.82e-05 0.22 ±0.05 2.58e-01

SOCIAL 0.3 ±0.04 0.44 ±0.07 5.12e-10 0.42 ±0.06 6.52e-10 0.33 ±0.06 5.56e-02 0.31 ±0.05 3.38e-01 0.42 ±0.06 9.89e-10 0.29 ±0.04 2.80e-01

WM 0.26 ±0.05 0.31 ±0.06 3.35e-04 0.31 ±0.06 3.72e-04 0.25 ±0.05 4.18e-01 0.25 ±0.05 3.59e-01 0.31 ±0.06 3.72e-04 0.25 ±0.05 2.71e-01

speci�c task can �t data from other subjects performing the same

task. �e three linear models generalize to other subjects similarly

well, and signi�cantly be�er than the nonlinear models. However,

it should noted that the LASSO models also �t all other task’s data

well. Perhaps these LASSO models are not as capable at describing

task speci�c nuances. �is problem can be seen in the non-LASSO

linear models (not shown), but to a far lesser extent.

5.3 Intrasubject Generalizability

If we take the top models of each type (1 nonlinear and 6 linear)

and apply them to unseen test data from the same subject and task,

we can compare the resulting mean absolute error values and use

the di�erence as a way to understand over��ing. Although the

task was the same in the unseen data, the order in which the sub-

tasks were done (ex: moving hand, foot, tongue) were di�erent.

Fortunately, this should not ma�er since the models are tempo-

rally independent. Figure 5 plots the training and testing errors

against each other. Unsurprisingly, nearly all the points are above

the y = x line, indicating that the models obtain be�er errors on

the data they were �t to. �e di�erence between the training and

testing errors averaged over all subjects in tasks for each model

are: NL – 0.20, BC LASSO – 0.10, BC – 0.10, FDR LASSO – 0.18,
FDR – 0.19, All LASSO – 0.11, and ALL – 0.21.

A total of 100 nonlinear models were generated for each subject

and task combination for statistical power and, because of the sto-

chastic nature of the search, to increase our chance of obtaining

high quality models. We apply these 100 models, which should all

be reasonably e�ective, to the unseen testing data from the same

subject performing the same task. Figure 6 shows the distribution

of mean absolute errors from the 100 models along with vertical

lines indicating the mean absolute errors from the 6 linear models

�t to the same data as the nonlinear and applied to the same un-

seen data. From this example we can see that some number of the

100 nonlinear models performed be�er than the best.

Distributions like Figure 6 can be generated for each of the 280

subject and task combination. Figure 7 was generated by plo�ing

the best nonlinear model’s error (le� most error from the respec-

tive distribution) against the best linear model’s. Each point on

these plots corresponds to a di�erent subject. Points above the

y = x line indicate that a nonlinear model was best at generalizing

to unseen data from the same subject. �e overwhelming majority

of these points are above this line, suggesting that, in general, a

nonlinear model can generalize to unseen data from the same sub-

ject be�er than the linear. Table 4 shows the average di�erence

between the models when the respective column’s model type was

best. Not only were more nonlinear models be�er, but when they

Figure 6: Distribution of mean absolute error values when

applying all 100 nonlinear models to unseen data from the

same subject performing the same task. Vertical lines corre-

spond to the mean absolute errors obtained by linear mod-

els.

were be�er, they were be�er by more than when linear models

were be�er.

�e authors want to make very clear that they acknowledge the

bias being introduced in this section; we have 100 nonlinear mod-

els to choose from and only 6 linear to choose from. �e only way

to con�rm the generalizability of any of these models is to apply

the selected models to new unseen data. Unfortunately, a third set

of data for each subject and task is not available and this con�rma-

tion is not currently possible. �is limitation is important to keep

in mind when interpreting these results.

Figure 7 only compares the best nonlinear model found when

applied to unseen data. However, for each subject, it is likely that

more than just one of the 100 nonlinear model performed be�er

than the best linear model. Figure 8 shows a distribution of how

many nonlinear models were be�er than the best linear model for

all subjects (if such models exist). For many subjects, numerous

nonlinear models generalized to unseen data be�er than the best

linear model, suggesting that these nonlinear models are meaning-

ful and, while still acknowledging the bias, perhaps more capable

of generalizing to unseen data from the same subject be�er than

linear models.
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Figure 4: Matrices showing the mean absolute error values obtained by applying every task/subject combination’s models to

all other datasets and averaged over all subjects performing the same task. �e diagonal provides a means of quantifying

intersubject generalization; if all subject’s models on the same task can �t all other subject’s data from that task similarly

well, then the models are capable of generalizing between subjects.

Figure 5: Scatterplot comparing the training and testingmean absolute errors for all models. For the nonlinear model, the top

model on the training data was compared to it’s error when applied to unseen data.

Figure 7: Scatterplot comparing the smallest mean absolute error from the 100 nonlinear models when applied to unseen data

versus the best of the 6 linear models. Points above the y = x line indicate that the nonlinear model was best. Points below

indicate that a linear model was best. Color indicates method for model generation.

Figure 8: For each subject, the number of the 100 nonlinearmodels generated that were better than the best linearmodel when

applied to unseen data was calculated and the distributions were plotted. Bins (x-axis) represent the number of nonlinear

models better than the best linear. �e bin height (y-axis) corresponds to the number of subjects.

Although we unfortunately do not have a third set of data for

each subject, we can use the other subjects’ data from the same

task as a pseudo third dataset. Understanding that the data is not

obtained from the same random variable, we can apply the top

model on unseen data from the same subject to this pseudo third

dataset. Similar to �gure 4, Figure 9 shows how well the best same

subject generalizing models �t all other subject’s data. When com-

paring thematrices for the nonlinear models, with the exception of

the emotion andmotor task, we observe a signi�cant improvement

in between subject generalization. However, the be�er generaliz-

ing nonlinear models were still signi�cantly worse than the best

linear models at generalizing to other subjects.
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Table 4: Average di�erence between the best nonlinear and

linearmodels’mean absolute errors when the respective col-

umn’s model was best. �e values are averaged over all sub-

jects performing the same task. Ex: for the emotion task,

when nonlinear models were better than linear, they were

on average better by 0.041.

Task # Nonlinear Be�er Linear Be�er

Emotion 0.041 0.023

Gambling 0.044 0.013

Language 0.031 0.022

Motor 0.045 0.022

Relational 0.043 0.014

Social 0.034 0.015

W. Memory 0.039 0.010

Figure 9: Similar to Figure 4, this matrix shows the mean

absolute error values obtained by applying the best model on

the unseen data from every subject/task to all other datasets

and averaged over all subjects performing the same task.

5.4 Model Selection Problem

�e purpose of generating these models is to �nd a descriptive

model that can provide insight into the underlying system — the

brain. Since we have no actual target, we use the error values to

indicate model quality. Here in lies a signi�cant problem. We have

a collection of high quality models, both linear and nonlinear. Al-

though some have smaller errors than other, and since the error

can only be used as a proxy for model correctness, any small dif-

ferences in error should not be taken as meaningful. How can one

select a model, or decipher meaning from the collection of models?

Perhaps if the collection of models generated provide some con-

sensus on which ROI were meaningful, then we could use that in-

formation to develop our functional connectivity network. Figure

10 shows how o�en each ROI (column) appeared in the 100 mod-

els generated for each subject (row) on each task. Although these

matrices are similar to those found in Figure 3, the ROI counts cor-

responds to how o�en they appeared in all 100 models, not how

o�en they appeared in the top models for each subject. �ere are

two main observations to be made from Figure 10.

First, there is no overwhelming consistency of ROIs between

the subjects. �ere are some ROIs that appear to be more preva-

lent in all subjects’ models than others, but it would be di�cult

to draw strong conclusions from this. �is inconsistency could ex-

plainwhy the nonlinear models do not generalize between subjects

as well as the linear models. �is is also interesting since, given

the resolution of the brain being studied (30 ROI), one would ex-

pect some level of consistency. It is di�cult to conclude why this

inconsistency would happen. It could be the result of low quality

models, noisy data, or that there really is this much of a di�erence

in the functional connectivity networks between these subjects.

�e second observation is that when focusing on speci�c sub-

jects (rows), there is again, in general, no overwhelming consis-

tency in which ROIs are prevalent in all models generated for each

subject and task. �ese di�erences are also di�cult to account for.

It could be the result of low quality models or that more than one

ROI can explain the same phenomenon. One could try to develop

subject speci�c functional connectivity networks from this infor-

mation, but this would likely require arbitrary thresholding.

We have generated seemingly high quality models based on er-

ror values, but how can one select a single model from the collec-

tion and expect it to be representative of the underlying system? A

more concerning question is: how can one generate a single linear

model and expect it to be representative of the underlying system?

6 CONCLUSIONS AND FUTUREWORK

Nonlinear models of functional connectivity of human brains were

generated with symbolic regression. �ese models were built from

real fMRI data obtained from the Human Connectome Project. �e

nonlinear models were found to bemore succinct thanmany linear

models. �e nonlinear models had di�erent ROI than the linear

and contained nonlinear relationships — something not possible

with traditional linear tools.

Nonlinear models obtained low error values, were be�er than

certain linear models, and were never signi�cantly worse than the

best linear models when applied to data they were �t.

�e nonlinear models were unable to �t unseen data from other

subjects as well as the traditional linear models. However, the lin-

ear models were capable of ��ing other subject’s data from unre-

lated tasks well.

Many nonlinear models �t unseen data from the same subject

be�er than linear models, however the analysis did introduce bias

and would require additional data for con�rmation. Unfortunately

additional data is not available and is a common limitation in neu-

roscience. In an a�empt to simulate additional unseen data, the

more general nonlinear models were applied to data from di�er-

ent subjects. �ese nonlinear models signi�cantly improved the

between subject generalizability of the nonlinear models, but the

linear models still generalized between subjects be�er.

�is work presents the problem of model selection. In the end,

a large collection of seemingly high quality nonlinear and linear

models (based on acceptable error metrics) was obtained. �ese

models had similarities, but had no strong consensus on ROI and

relationship type. Since the goal is to discover the underlying func-

tional connectivities and not to �nd the model with the lowest er-

ror, it is di�cult to intelligently select any model, whether linear
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Figure 10: Matrices showing the number of times (color) each ROI (column) appeared in the 100 nonlinear models generated

for each subject (row) on each task. Note that the ROI corresponding to the le� hand side of the equation was in all models.

or nonlinear. At the very least however, it would seem be�er to

have a collection of models rather than a linear single model —

something GP and symbolic regression delivers.

To enable a be�er investigation into same subject generalizabil-

ity, it is necessary to obtain additional, di�erent data with mul-

tiple sets of data from each subject performing each task. �is

would allow for a training, validation and testing analysis to elim-

inate bias. A deeper investigation into model consensus (Figure

10) could yield stronger evidence of functional connectivities. �is

could be achieved with some methods of thresholding, �ltering,

and data smoothing.

�is work regressed models to ROIs within the system. It is pos-

sible to generate models �t to a design matrix, where the le� hand

side of the equation is some prediction of functional activity. �is

approach would work towards the same conclusions, but from an-

other direction. Further, this strategy could be used to �t resting

state fMRI data (fMRI data gathered while the subject was perform-

ing no task) to an unrelated design matrix. Testing GP’s ability to

�t a model to a system that has no relationship could provide in-

sight into symbolic regression’s propensity to over�t this type of

data. �is work has been started by in [14].
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Bongard, Uli Bromberg, Christian Büchel, Anna Ca�rell, Patricia J Conrod,
Christopher M Danforth, and others. 2015. Nonlinear functional mapping of
the human brain. arXiv preprint arXiv:1510.03765 (2015).

[3] Geo�reyM Boynton, Stephen A Engel, GaryHGlover, and David J Heeger. 1996.
Linear systems analysis of functional magnetic resonance imaging in human V1.
�e journal of neuroscience 16, 13 (1996), 4207–4221.

[4] R.L. Buckner and T.S. Braver. Event-Related Functional MRI. In Functional MRI,
P. Bande�ini and C. Moonen (Eds.). Springer-Verlag, Chapter 36, 441–452.

[5] R Cameron Craddock, G Andrew James, Paul E Holtzheimer, Xiaoping P Hu,
and Helen S Mayberg. 2012. A whole brain fMRI atlas generated via spatially
constrained spectral clustering. Human brain mapping 33, 8 (2012), 1914–1928.

[6] MarkDaley. 2014. An Invitation to the Study of Brain Networks, with Some Sta-
tistical Analysis of �resholding Techniques. In Discrete and Topological Models
in Molecular Biology. Springer, 85–107.

[7] Karl J Friston, Lee Harrison, and Will Penny. 2003. Dynamic causal modelling.
Neuroimage 19, 4 (2003), 1273–1302.

[8] Karl J Friston, Oliver Josephs, Geraint Rees, and Robert Turner. 1998. Nonlinear
event-related responses in fMRI. Magnetic resonance in medicine 39, 1 (1998),
41–52.

[9] Karl J Friston, Andrea Mechelli, Robert Turner, and Cathy J Price. 2000. Nonlin-
ear responses in fMRI: the Balloon model, Volterra kernels, and other hemody-
namics. Neuroimage 12, 4 (2000), 466–477.

[10] Karl J Friston, CJ Price, Paul Fletcher, C Moore, RSJ Frackowiak, and RJ Dolan.
1996. �e trouble with cognitive subtraction. Neuroimage 4, 2 (1996), 97–104.

[11] Sco� A Hue�el, Allen W Song, and Gregory McCarthy. 2009. Functional mag-
netic resonance imaging (second ed.). Vol. 1. Sinauer Associates Sunderland,
MA.

[12] James Alexander Hughes and Mark Daley. 2016. Finding Nonlinear Relation-
ships in fMRI Time Series with Symbolic Regression. In Proceedings of the 2016
on Genetic and Evolutionary Computation Conference Companion. ACM, 101–
102.

[13] James Alexander Hughes and Mark Daley. 2017. Searching for nonlinear rela-
tionships in fMRI data with symbolic regression. In Proceedings of the Genetic
and Evolutionary Computation Conference. ACM, 1129–1136.

[14] Ethan Jackson, James Alexander Hughes, and Mark Daley. 2018. On the Gener-
alizability of Linear and Non-Linear Region of Interest-Based Multivariate Re-
gression Models for fMRI Data. arXiv preprint arXiv:1802.02423 (2018).

[15] Yaochu Jin. 2005. A comprehensive survey of �tness approximation in evolu-
tionary computation. So� computing 9, 1 (2005), 3–12.

[16] John R Koza. 1992. Genetic programming: on the programming of computers by
means of natural selection. Vol. 1. MIT press.

[17] F Kruggel, Stefan Zysset, and D Yves von Cramon. 2000. Nonlinear regression
of functional MRI data: an item recognition task study. Neuroimage 12, 2 (2000),
173–183.

[18] Nikos K Logothetis, Jon Pauls, Mark Augath, Torsten Trinath, and Axel Oelter-
mann. 2001. Neurophysiological investigation of the basis of the fMRI signal.
Nature 412, 6843 (2001), 150–157.

[19] Seiji Ogawa, DavidW Tank, Ravi Menon, Ju�aM Ellermann, Seong G Kim, Hel-
mut Merkle, and Kamil Ugurbil. 1992. Intrinsic signal changes accompanying
sensory stimulation: functional brain mapping with magnetic resonance imag-
ing. Proceedings of the National Academy of Sciences 89, 13 (1992), 5951–5955.

[20] Michael Schmidt and Hod Lipson. 2007. Comparison of tree and graph encod-
ings as function of problem complexity. In Proceedings of the 9th annual confer-
ence on Genetic and evolutionary computation. ACM, 1674–1679.

[21] Michael D Schmidt and Hod Lipson. 2007. Coevolving �tness models for accel-
erating evolution and reducing evaluations. InGenetic Programming�eory and
Practice IV. Springer, 113–130.

[22] Michael D Schmidt and Hod Lipson. 2008. Coevolution of �tness predictors.
Evolutionary Computation, IEEE Transactions on 12, 6 (2008), 736–749.

[23] MichaelD Schmidt, Ravishankar RVallabhajosyula, JerryW Jenkins, Jonathan E
Hood, Abhishek S Soni, John P Wikswo, and Hod Lipson. 2011. Automated
re�nement and inference of analytical models for metabolic networks. Physical
biology 8, 5 (2011), 055011.

[24] Alberto L Vazquez and Douglas C Noll. 1998. Nonlinear aspects of the BOLD
response in functional MRI. Neuroimage 7, 2 (1998), 108–118.

[25] Tingting Zhang, Fan Li, Marlen Z Gonzalez, Erin L Maresh, and James A Coan.
2014. A semi-parametric nonlinear model for event-related fMRI. Neuroimage
97 (2014), 178–187.



Chapter 7

Conclusions and Future Directions

7.1 Genetic Programming System
Although the majority of this thesis concerns itself with the application of GP to fMRI data
for the purpose of finding nonlinear functional connectivities, the development of the GP sys-
tem was a significant part of the contribution. The system was based on Schmidt et al.’s work
[103, 106] and it incorporated a number of enhancements, some of which are fairly standard
within the field of evolutionary computation (elitism, distributed populations/island model),
and others were more application specific (representation, fitness predictors). These enhance-
ments enabled the success of the project as they improved results and runtimes when compared
to a more basic GP implementation.

The development of version 1 took months, and multiple subsequent versions were devel-
oped throughout the course of the project as new results would guide the development of the
system. The system is currently in version 9, and will continue to be developed. A GitHub
repository of the GP system can be found at https://github.com/jameshughes89/jGP
[52].

The GP system proved to be highly effective in both quality of results and runtimes. The
success of the GP system led to the application of it to additional side projects: modelling
human walking data [53, 54], and developing a predictive model of intracranial pressure [59,
60]. The GP system has also been used by Jackson et al. for a project related to the contents of
this thesis — analysing nonlinear models of fMRI data [62].

Despite being a form of computational intelligence, which is known to be highly susceptible
to overfitting, it was demonstrated that the specific implementation was capable of finding
generalizable results, as demonstrated in [53, 59, 54, 62].

7.2 Application: Nonlinear Models of fMRI Data
The GP system specifically designed to perform symbolic regression on fMRI timeseries data
was successful in finding nonlinear relationships within the data recorded from the dynamic
nonlinear system: the human brain. All fMRI data used was obtained from the Human Con-
nectome Project’s database, a popular publicly available collection of neuroimaging data of
a large number of subjects performing a variety of tasks. Originally, data from a single task

52
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(motor) from all subjects that were available (507) were modelled; however, the most recent
developments in the project studied all seven tasks available from only forty subjects.

Symbolic regression, a data driven form of regression analysis, found nonlinear relation-
ships within the data. The models of data were highly nonlinear; models contained nonlinear
operators and variables were combined in ways that did not follow the law of superposition
(see Figure 4 in Chapter 4 (article 1) for an example). These nonlinear models could not have
been found with the typical linear tools used within the field. Although it is possible to derive
a linear combination of nonlinear basis functions with linear regression, the nonlinear basis
functions would have to be selected beforehand. Unlike linear regression, one of the major
benefits of using symbolic regression is that it allows the user to reduce the number of prior
assumptions about the space; model structure is completely derived by the search.

A major goal of this work was to produce descriptive models of the system. For some
instances, particularly in the application of artificial intelligence and machine learning within
computer science, models are developed for their predictive capabilities. For example, devel-
oping an image classifier where the model outputs a classification. In this long term project,
although model output (error) is used to indicate effectiveness, it is the models themselves that
are of interest, and not the model output.

Unlike many other forms of computational intelligence and machine learning, symbolic
regression produces symbolic models that can be relatively easily interpreted. For example, ar-
tificial neural networks might model the system well, but it would be difficult to derive meaning
from them.

The author wants to stress that they are not suggesting to interpret every relationship
and operator within the symbolic models literally, but to interpret the models at the level of
ROIs/features and if their relationships are linear or nonlinear (see Figure 4 in Chapter 4 (arti-
cle 1)). For example, if a model was ROI21 = sin (ROI5), one should take away that ROI21 and
ROI5 are related in some nonlinear way.

After interpreting the models, it was observed that although the nonlinear models and linear
models found many of the same relationships, the nonlinear models also found novel relation-
ships not contained within the linear models. It was also noted that the similarity/differences
between the linear and nonlinear models was task dependent. Given that a collection of non-
linear models was created for each subject/task combination, it’s possible to look at the models
as a whole group. When doing so, there is some consistency with respect to ROI relationships,
but there is no consensus among the nonlinear models.

Not only did the nonlinear models contain nonlinear relationships, but they contained many
fewer relationships. Symbolic regression is capable of performing feature selection and also
searches for a model structure. The nonlinear models of functional connectivity were consis-
tently more succinct (fewer ROIs) when compared to linear models with thresholding. Al-
though it depends on the task, nonlinear models would typically contain fewer than 10 ROIs
while linear regression with thresholding would have well over 20 ROIs (sometimes all). Al-
though it is possible that the entire brain is meaningfully functionally connected during a task,
perhaps these more succinct models are more representative of relationships of interest (the
project in its current state makes no rigorous attempt to justify this hypothesis). When LASSO
regularization was used, the number of features included in the linear and nonlinear models
were comparable.

Although the linear and nonlinear models being similar provides face validity that the non-
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linear models are actually capable of describing functional connectivities found with already
accepted methods, it is their differences that are of neuroscientific interest. However, this
project in its current state makes no attempt to justify the meaning behind these differences.

7.2.1 Error Values

In many cases the nonlinear models were better at fitting to the data they were fit to (had smaller
mean absolute errors) when compared to linear models, and they were never significantly worse
than the best linear models.

When compared to linear models, the nonlinear models were not capable of generalizing
to unseen data from different subjects as well (intersubject generalization). However, it was
observed that the linear models generated with LASSO regularization were capable of gener-
alizing to unseen data from other subjects on unrelated tasks. It is hypothesized that perhaps
the linear models were not capable of extracting task specific nuances within the data.

All 100 nonlinear models generated for each subject and task were applied to unseen data
from the same subject (intrasubject generalization). In the majority of instances, many of the
100 nonlinear models generalized to the unseen data better than the best of 6 linear models.
Having 100 nonlinear models to choose from introduces bias into the analysis, and it would be
required a third unseen testing set of data. Unfortunately, no such data exists from the Human
Connectome Project as the database only contains two independent scans for each subject
performing each task.

As a means of having a pseudo testing set of unseen data, the top model of the 100 being
applied to unseen data from the same subject was applied to unseen data from different subjects.
Effectively, another analysis of intersubject generalization was done, but the best of the 100
models at intrasubject generalization was used as opposed to the best of the 100 models on the
data the models were fit to. If the best intrasubject generalizing model can generalize to unseen
data from other subjects better, then we can show how general the nonlinear models are. In
most cases the top nonlinear model at intrasubject generalization was capable of generalizing to
unseen data from other subjects significantly better than the top nonlinear models found when
applied to the data they were fit to; however, they were still significantly worse at intersubject
generalization when compared to linear models.

7.2.2 Model Selection Problem

Ultimately, in its current state, this project presents a model selection problem. Many high
quality linear and nonlinear models are produced for noisy timeseries data recorded from a
high-dimensional nonlinear chaotic dynamic system. Many models had relatively low errors,
whether it was applied to data the models were fit to, unseen data from the same subject, or
unseen data from other subjects. However, the goal is to develop a meaningful model of the
underlying system and to learn about the functional connectivities within the brain.

The author feels that this is one of the major conclusions of the work in its current state.
When presented with a large number of similarly high quality models, how does one intelli-
gently select the appropriate descriptive model? Perhaps the best method is to study the models
as a group in an attempt to discover some agreement between ROIs and relationship types, but
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currently there is no consensus in the collection of models. Fortunately, symbolic regression
provides a means of developing a collection of models that can be studied in this way.

7.3 Future Work

The GP system will continue to be developed. Small incremental changes are inevitable as
continued work always presents results that may suggest improvements. Larger changes will
also be included as the field of evolutionary computation is always growing and many im-
provements tend to be modular in nature and are easily incorporated into existing systems. An
example of this could be novelty search, a strategy which encourages novelty in the population
[81]. Another major change that is of particular interest is to enable the system to develop
temporally dependent models since the system itself if temporally dependent; the current state
of the system depends on previous states. Additionally, as discussed in Section 3.2, much of
the current work studying nonlinearities within the data are concerned with temporal nonlin-
earities.

Gathering our own data, or having access to similarly controlled data with 3 independent
recordings for each subject would allow for a much better analysis of intrasubject generaliza-
tion as it will provide a training, testing, and validation dataset.

The methods are not restricted to fMRI data, and it would be interesting to model other neu-
roimaging modalities where nonlinearities are commonly observed, such as electroencephalo-
gram or MEG.

Currently the data was studied at a resolution of 30 ROIs. Although there was original
motivation in selecting only 30 ROIs, Jackson et al. used the same GP system to develop models
of fMRI data at a resolution of 50 ROIs [62]. By using only 30 ROIs, important features in
the data may have been lost and smoothed out. Future work on this project should increase the
number of ROIs from 30 in hopes of creating higher quality models.

The models developed for this project were regressed to ROIs within the system. This is
not a requirement and it is possible to regress the data to an expected HDR function instead
(although this may remove some nonlinearlities as doing so is effectively a low-pass filter).
This approach would still work towards developing nonlinear models of the system, but from
a different direction. This could also allow more specific questions to be asked, such as which
ROI is functionally connected and related to specific stimuli. This work has already been
conducted by Jackson et al. [62].

As a means of studying if the nonlinear models are overfitting the data, symbolic regression
can be used in an attempt to fit resting-state fMRI data to unrelated expected hemodynamic
response functions. If symbolic regression is able to develop models of unrelated data, then it
would indicate that the models are not effective and are finding non-existent relationships. This
investigation has already been started by Jackson et al. and currently symbolic regression was
incapable of fitting resting-state data to an unrelated expected hemodynamic response function.
This does eliminate some concerns of overfitting [62].

One of the major strengths of symbolic regression is that it performs feature selection,
and perhaps this conclusion is one of the most significant contributions of this thesis. With
Compute Canada resources, it is currently computationally feasible to develop linear models



56 Chapter 7. Conclusions and Future Directions

of all permutations of a reasonably small number of ROIs1. The resulting models could be
studied in a similar way to the nonlinear models if provided with enough training, validation,
and testing data. If the nonlinear models are still capable of describing the system better than
the large number of linear models with varying features, then it could indicate that symbolic
regression’s benefit is more than just feature selection2.

Symbolic regression was used to develop nonlinear models of fMRI data, and the models
were analysed and compared to linear models; however, there is currently no attempt to justify
the nonlinear models from a neuroscientific perspective. For example, why do certain ROIs
appear in the nonlinear models, but not in the linear models? Is there any reasonable neuro-
scientific justification for this? Although there is still much work to be done in the analysis of
the methodology, working with neuroscientists to develop a meaningful understanding of the
resulting models is a priority.

1At the very least, it is possible to do a Monte Carlo method.
2However, the author predicts that the nonlinear models will not outperform optimal models of all permutations

of ROIs.
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Appendix A

Published Work for Paper 1

This appendix includes the published 2 page extended abstract for Finding Nonlinear Rela-
tionships in fMRI Time Series with Symbolic Regression [55] along with the corresponding
presented poster. The submitted work was presented in Chapter 4.
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ABSTRACT
The brain is an intrinsically nonlinear system, yet the domi-
nant methods used to generate network models of functional
connectivity from fMRI data use linear methods. Although
these approaches have been used successfully, they are lim-
ited in that they can find only linear relations within a sys-
tem we know to be nonlinear.

This study employs a highly specialized genetic program-
ming system which incorporates multiple enhancements to
perform symbolic regression, a type of regression analysis
that searches for declarative mathematical expressions to
describe relationships in observed data.

Publicly available fMRI data from the Human Connec-
tome Project were segmented into meaningful regions of
interest and highly nonlinear mathematical expressions de-
scribing functional connectivity were generated. These non-
linear expressions exceed the explanatory power of tradi-
tional linear models and allow for more accurate investiga-
tion of the underlying physiological connectivities.

Keywords
Symbolic regression; Computational neuroscience; Functional
magnetic resonance imaging; Nonlinear relationships

1. INTRODUCTION
Literature in the field of neuroscience explicitly acknowl-

edges the existence of nonlinear relationships in brain func-
tion [1, 3], but it is common to treat them as a footnote or
ignore them altogether [2, 3]. Linear tools, such as the Gen-
eral Linear Model (GLM) or the Pearson product-moment
coefficient are used, almost exclusively, to model functional
magnetic resonance imaging (fMRI) time series. Despite
this, neuroscientific studies are able to make contributions
with limited linear model [1]; however, it would ultimately
be improper to use linear methods to observe what we know
to be nonlinear phenomenon as it lacks the power to truly
model the underlying processes. It is not surprising that the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’16 July 20-24, 2016, Denver, CO, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4323-7/16/07.

DOI: http://dx.doi.org/10.1145/2908961.2909021

Figure 1: Snapshot of a brain segmented into the 30 ROIs.
Each color represents a different region.

nonlinear relationships are ignored; discovering underlying
nonlinearities is an exceptionally non-trivial task, especially
when working with large amounts of high-dimensional data.

In this work Genetic Programming (GP) is implemented
to automate the discovery of minimal and interpretable net-
work relationships in the behavior of a system for which we
can observe only time series derived from a network’s nodes:
task based fMRI time series data. No prior knowledge or as-
sumptions are applied to the system, such as linearity or how
the system interacts with itself.

2. EXPERIMENTAL METHODS
The task based fMRI time series data selected was of a

Motor task and was obtained from the Human Connectome
Project, WU-Minn Consortium1. This four-dimensional data
(three-dimensional brain over time) was collected into 30
spatial regions of interest (ROIs) (Figure 1) for the time
series of 284 time points, and can be represented as a two-
dimensional matrix of 30 columns with 284 rows.

This specific GP implementation is motivated by Schmidt
et al.’s work [6], is extremely specialized for symbolic regres-
sion, and incorporates modular improvements which signifi-
cantly increase performance. These improvements including
parallel evolution of subpopulations, fitness predictors [5],
and an acyclic graph representation [4].

For symbolic regression, it was required to have some value
over the time series that evolved expressions fits to. For the
purpose of this motor task, ROI 21 was selected for the
left hand side of the equation as it is the ROI that contains
the primary motor cortex. 100 models for all 507 subjects
available were generated.

1http://www.humanconnectome.org/
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Figure 3: Relationships between ROIs for a single generated
nonlinear model. Red represents nonlinear relationships be-
tween ROIs, blue represents nonlinear and linear relation-
ships, and black is strictly linear. This particular exam-
ple corresponds to the equation: R21 = R12 − sin(11.97 ∗
(18.30−R12))−(0.42∗|(R12−R18)∗R27|)/(R6−tan(R2)).

3. RESULTS AND CONCLUSIONS
With Pearson product-moment correlation and false dis-

covery rate (FDR) thresholding (typical linear methods),
almost every ROI is linearly related to ROI 21 (on average,
28 ROIs were related to ROI 21 per subject). Performing
linear regression with this many ROIs generates models with
high degrees of freedom that fit the data well, but provide
minimal insight and are difficult to interpret.

Figure 2 shows a time series of one subject’s recorded sig-
nal alongside two models describing the signal — one found
with the nonlinear tool (Figure 3), the other with linear re-
gression after thresholding ROIs with a 95% FDR. The mean
absolute error over the time series for the top nonlinear mod-
els and the thresholded linear models were averaged over all
subject. These values were roughly 16.68 (sd = 3.51 ) and
11.79 (sd = 1.11 ) respectively. Although both models fit
the data well, a Mann-Whitney U test (U-test) provides a
p-value of 3.08 ∗ 10−133, which demonstrates that the linear
models fit the recorded signal better.

On average, a nonlinear model contained fewer than 4
ROIs (3 when excluding ROI 21). The mean absolute time
series error of the linear models generated with the top 4
correlated ROIs — which were typically the same ROIs as
those found with GP — was calculated to be approximately
19.16 (sd = 5.08 ). A U-test comparing the 4 ROIs models
provided a p-value of 8.56∗10−19 ; the nonlinear models were
significantly better. In fact, it was not until the linear models
were given the top 8 ROIs that there was no more statistical
difference. Linear models only performed better than the

nonlinear models with 4 ROIs once they received 10 or more
ROIs (U-test p-value of 1.34∗10−3); it took at least 10 ROIs
for a linear model to fit the recorded signal better than a
nonlinear model containing only 4.

When compared to linear models generated with all ROIs
available after a typical thresholding technique, nonlinear
models, although close, could not fit the signal as well. How-
ever, these linear models would typically contain more than
28 ROIs and would be difficult to interpret and provide min-
imal insight into understanding the underlying processes.
Nonlinear models, in contrast, were more succinct and de-
scribe nonlinear relationships that would otherwise not be
discovered with conventional tools. On average, with just 4
ROIs, a nonlinear model could fit the recorded signals bet-
ter than linear models using 8; even with more information
(ROIs), linear models could not describe the data as clearly.

4. ACKNOWLEDGMENTS
This research was supported in part by the Natural Sci-

ences and Engineering Research Council of Canada (NSERC).
Computations were enabled by the SciNet HPC Consortium.
Data were provided by the Human Connectome Project,
WU-Minn Consortium.

5. REFERENCES
[1] R. Buckner and T. Braver. Event-related functional

mri. In P. Bandettini and C. Moonen, editors,
Functional MRI, chapter 36, pages 441–452.
Springer-Verlag.

[2] M. Daley. An invitation to the study of brain networks,
with some statistical analysis of thresholding
techniques. In Discrete and Topological Models in
Molecular Biology, pages 85–107. Springer, 2014.

[3] N. K. Logothetis. What we can do and what we cannot
do with fmri. Nature, 453(7197):869–878, 2008.

[4] M. Schmidt and H. Lipson. Comparison of tree and
graph encodings as function of problem complexity. In
Proceedings of the 9th annual conference on Genetic
and evolutionary computation, pages 1674–1679. ACM,
2007.

[5] M. D. Schmidt and H. Lipson. Coevolution of fitness
predictors. Evolutionary Computation, IEEE
Transactions on, 12(6):736–749, 2008.

[6] M. D. Schmidt, R. R. Vallabhajosyula, J. W. Jenkins,
J. E. Hood, A. S. Soni, J. P. Wikswo, and H. Lipson.
Automated refinement and inference of analytical
models for metabolic networks. Physical biology,
8(5):055011, 2011.



Appendix B

Genetic Programming System Details

B.1 Brief Version History
The genetic programming (GP) system created for this work was based on work done by Hod
Lipson’s research group [13, 103, 106]. It was implemented in Java version 8 with no addi-
tional libraries beyond java.io and java.util. A C++ version was implemented, but provided no
significant speed up and has since been deprecated.

The system is called jGPvX (java genetic programming) where X is the version number1.
It is currently in its 9th version and is continuously being developed and improved. The first
iteration was completed in March 2015 but has since changed significantly.

This first version was very basic and did not include any noteworthy improvements. Sub-
sequent version incorporated improvements such as the island model and fitness predictors
(discussed in Chapter 2). Various bugs were also worked out throughout development.

Version 4 threaded the system such that the distributed populations (islands) ran on separate
cores. This greatly decreased runtimes as the fitness evaluation was parallelized.

Typically the system spends more than 95% of the CPU time evaluating the fitness of the
candidate solutions. The fitness evaluation is performed with tail end recursion. Version 5
attempted to eliminate the recursive evaluation with a stack, however this yielded no improve-
ment as Java’s complier already optimizes tail end recursion effectively.

Around the beginning of the second phase of the project when the runtimes increased sig-
nificantly, in order to not hit computing resources runtime limits, save states were incorporated
into the system. After a parametrized number of generations, the whole population is saved in a
serialized file to be reloaded into a subsequent run of the search. This enabled longer runtimes
by allowing the user to simply submit a new job continuing a search from the saved state. Addi-
tionally, if a search failed because of some system issue with the computing resource (memory
error, power outage), the search could continue from a saved state, as opposed to starting from
generation 0.

Version 9 has 15 classes and a total of roughly 2200 lines of code with typical white
space. A GitHub repository of the current GP system can be found at https://github.
com/jameshughes89/jGP [52].

Figures 2.1 and 2.7 give a high level overview of how the evolutionary search is executed.

1This is a working title as jGP is already in use for an implementation of genetic programming in java
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Figure B.1: Gamma function and approximation of the gamma function where −3 < x < 3.
Blue is the gamma function, the green points are the (x,Γ(x)) pairs provided to the GP system,
and red is the model derived by the GP system.

B.2 Early Test

During preliminary tests of the system, data from simple functions were provided to the system.
These functions would be simple linear and nonlinear expressions. Unfortunately the functions
provided are now lost, but would have been similar to: x + sin(yż) + 5. This data was provided
to me by Mark Daley (supervisor), however Mark never told me what the functions were and
would only confirm if the GP system found the correct function. On all but one, the GP
system found exact, or near exact functions (near exact would happen when real numbers were
introduced).

The only exception to finding exact or near exact functions was when the GP system
was provided data from the gamma function. Hundreds of (x,Γ(x)) pairs where −3 < x <
3 were given to the system and the system developed the model y = 3.59+ex

5.43−2x+5.43+(5.43−x)x +
5.43−x

5.43308−x+(5.43308−x)x)x , where y is an approximation of Γ(x). Figure B.1 plots the gamma func-
tion, the data points provided to the GP system, and the resulting model. The GP system
was not capable of deriving the actual gamma function based on the provided basis functions,
however it developed an effective approximation of it where −3 < x < 3.
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B.3 Resources, System Settings, and Runtimes
For the majority of the project, the system was executed on the general purpose cluster (GPC)
at SciNet, a high performance computing system. The GPC consists of 2780 nodes with at
least 16GB of memory per node of 8 Intel cores. Keeping in mind the stochastic nature of the
algorithm and that the run times are dependent on the specific problem being solved, each run
of the evolutionary search using this GP system searching for the nonlinear relationships takes
between 1-4 hours when running with 8 cores (one node) on an IBM System x iDataPlex dx360
M3 node with 2 quad-core Intel Nehalem (Xeon 5540) processors running at 2.53GHz. The
system was also executed on Graham, Guillimin, Mammouth Parallèle 2 (MP2), Orca, and
Cedar.

Runtimes differed significantly throughout the course of the project for a variety of reasons:
the search itself is stochastic so each execution would take different amounts of time, the com-
puting resources were not the same throughout the project, and the tasks being studied had a
different number of time points (176 – 405).

The system parameters also affected runtimes in four ways. First, changing the probability
of a mating event occurring would affect the runtime. Second, the population size, number of
generations, and number of island migrations affected the number of potential mating events
by orders of magnitude. Third, the number of data points in the fitness predictors would affect
the time to evaluate fitness values. Forth, the maximum size of an acyclic graph would alter
the size of the models, and larger models take longer to evaluate.

The system settings for each paper are discussed in detail in their respective chapters. For
the first phase/paper, a total of 1, 750, 000, 000 potential mating events were allowed and the
runtimes were between 1 – 4 hours per model on Compute Canada resources. In the second
phase, 7, 070, 000, 000 potential mating events were allowed with runtimes taking between 5
– 24 hours. For the third phase, the same number of mating events were allowed, but the
number of data points included in the fitness predictors, and the maximum size of the models
was increased, resulting in runtimes between 24 – 124 hours.

Although the incorporated enhancements improved the search, they had interesting impacts
on the runtime. For example, although fitness predictors reduced the number of data points to
be evaluated for fitness evaluation, which would reduce the time required to evaluate a candi-
date solution, it would also typically slow down the speed of convergence. The evolutionary
search could run for many more generations and find much better solutions, which would in
turn increased the total runtime.

Total runtime for the GP system on Compute Canada resources is reported in Table B.1.
These numbers reflect the total amount of work on all phases of the project to date.

The only system setting of note that seems unusual is the high mutation rate. This was a
consequence of the representation/genotype/candidate solution encoding. Due to the nature of
the genotype, mutations might make alterations to the candidate solution that do not actually
manifest in an actual alteration in the phenotype. For this reason, the mutation rate was set
higher.
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Table B.1: Total CPU usage in core years for the project over a 4 year period. All project GP
system executions were done on Compute Canada resources.

Year CPU Usage (core years)
2015 238.45
2016 536.54
2017 768.32
2018 8.26
Total 1551.58
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