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Abstract
The advent of next generation sequencing technologies (NGS) generated a revolution in 

biological research. However, in order to use the data they produce, new computational tools 
are needed. Due to significantly shorter length of the reads and higher per-base error rate, more 
complicated approaches are employed and still critical problems, such as genome assembly, 
are not satisfactorily solved. We therefore focus our attention on improving the quality of the 
NGS data. More precisely, we address the error correction issue. The current methods for 
correcting errors are not very accurate. In addition, they do not adapt to the data. We proposed 
a novel tool, HiTEC, to correct errors in NGS data. HiTEC is based on the suffix array data 
structure accompanied by a statistical analysis. HiTEC’s accuracy is significantly higher than 
all previous methods. In addition, it is the only tool with the ability of adjusting to the given 
data set. In addition, HiTEC is time and space efficient.

Keywords: Next generation sequencing, error correction, suffix array, statistical analysis.
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Chapter 1

INTRODUCTION

DNA sequencing, determining the order of the nucleotide bases in a molecule of DNA, is a 
challenging job since there is no machine that can sequence an entire molecule of DNA at a 
time. The technology is in fact very far from that. Very short pieces can be sequenced and 
computers are used to assemble them into longer sequences or use them in many other ways. 
The well known Sanger sequencing method [46] has been used for the sequencing of the first 
human genome [32, 61]. When it was introduced, the Sanger method improved very much 
the speed of the DNA sequencing process. However, the Sanger method is still very slow and 
very expensive. Therefore, the so-called next generation sequencing (NGS) technologies (or, 
high-throughput) have been developed, such as Roche’s 454 sequencing, Illumina’s Genome 
Analyzer (Solexa technology), or Applied Biosystems’s SOLiD platform; see [36]. They can 
sequence billions of nucleotides in a single run. By comparison, the Sanger method produces 
half a million base-pairs per run. At the same time, the cost of NGS data is much lower.

Next-generation sequencing technologies have a variety of applications such as de-novo 
genome assembly [14, 17, 21, 24, 53], read mapping [10, 18, 25, 30, 33], full-genome re­
sequencing, i.e., comprehensive polymorphism and mutation discovery in individual human 
genomes (detecting mutations or polymorphisms) [63], small RNA sequencing, i.e., microRNA 
profiling [39], chromatin immunoprecipitation-sequencing (ChIP-Seq), i.e., genome-wide map­
ping of protein-DNA interactions [26], etc.

However, there are several issues behind these novel technologies that make it difficult 
to use the generated data. The reads produced are significantly shorter, 35-100bp compared 
to 500-1000bp in the Sanger technology, and have higher per-base error rate. New methods 
and algorithms are required to deal with the huge amount of data produced by these novel 
technologies.

1.1 Problem statement
Among several fundamental computational problems concerning NGS data, genome assembly 
and read mapping have been investigated the most. The former attempts to align and merge the 
reads in order to reconstruct the genome that originated them [14, 17, 21, 24, 53]. The latter 
attempts to determine the location of newly sequenced reads against a reference genome of the 
same species [10, 18, 25, 30, 33].
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Chapter 1. INTRODUCTION 2

Several issues such as huge amounts of data, repeats in the genome, and sequencing errors 
are common among all these novel tools. Whereas not much can be done about the first two, 
quite a bit of research has been done on finding methods for correcting errors [13, 14, 17, 50, 
52, 58, 65].

The general idea for correcting reads is as follows. In order to determine the erroneous 
bases in the reads, the high coverage of the current sequencing technologies is used. Each base 
is usually sampled many times and the correct value will prevail. Approaches that work for 
Sanger reads, e.g., the algorithm of [58], based on multiple alignment, are too time consuming 
for the huge amount of data generated by NGS. New ideas are needed.

The SHARCGS assembly tool [17] filters erroneous reads before assembling of the genome. 
Reads are confirmed to be kept if they are generated multiple times and overlapping partners 
exist. However, this reduces the coverage. The version of the Euler assembler [45] for short 
reads, Euler-SR, [13, 14], includes its own method for correcting errors. The method is based 
on the spectral alignment algorithm [45]. Shi et al. proposed an efficient implementation of 
Euler-SR on a CUDA hardware [52]. They run the spectral alignment algorithm for correcting 
the errors in parallel. Their experiments show that the CUDA implementation is of 3 -  63 
times faster than the Euler-SR program. Schroder et al., [50], proposed a new method, called 
SHREC, for error correction based on weighted suffix trees. A weighted suffix tree of all reads 
and their reverse complement are constructed. If the weight of a node is less than a threshold, 
then the string labeling the node is suspected to be an error and correct otherwise. An erroneous 
node is corrected to one of its neighbor nodes. They showed their algorithm can outperform the 
Euler-SA algorithm but still lots of parameters are required to be tuned quite a bit to achieve a 
high accuracy. Simultaneously with our work, Yang et al. [65] proposed Reptile, also based on 
the k-spectrum approach of Euler-SR and CUDA.

1.2 Research objectives
All methods mentioned above often have modest accuracy. In addition, their parameters do 
not adapt to the data. This is a serious issue since, in real applications, testing of different 
parameters to see which perform the best is not possible. The goal of this thesis is to find a 
new, more accurate, method which also adapts to the data automatically.

We proposed a new method, HiTEC — High Throughput Error Correction — based on the 
suffix array data structure and accompanied by statistic analysis to tune parameters automati­
cally. Our contribution in this work is as follows:

1. Show how to use statistics to find automatically the best parameters based on the input 
data.

2. Develop a C++ code based on the proposed method to identify and correct errors.

3. Test our software on real and simulated data and compare it with previous methods.

We evaluated the methods based on accuracy, that is, the ratio between the number of 
corrected reads and the number of initially erroneous reads. HiTEC’s accuracy is significantly 
higher than the accuracy of all the other programs.
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During testing, we ran all programs with default parameters. In some cases, that means 
their performance decreased significantly from that claimed by the paper. For instance, there 
is a significant difference between the accuracy obtained by running the SHREC program and 
that provided in [50].

For HiTEC, only the genome length and per-base error rate is required to be given as the 
input parameters. We evaluate our algorithm on a wide range of read lengths and coverage 
levels. Our experiments reveal that HiTEC is not only more accurate than previous works but 
also more robust. Its performance is affected very little by coverage level or read length.

In addition to accuracy, we evaluate HiTEC in terms of time and space complexities and 
showed that it is very efficient with respect to both. Our current serial implementation of 
HiTEC is comparable with Reptile and it is about six times faster than the parallel implemen­
tation of SHREC on the four-processor machine we used for testing. The space consumption is 
comparable with Reptile is and lower than that of SHREC for all tests. Nevertheless, we plan 
to improve the time and space complexity of our algorithm by providing a parallel implemen­
tation.

1.3 Thesis overview
In Chapter 2, a brief introduction on DNA Sequencing is given, containing a background on 
the Sanger method and next generation technologies, followed by their achievements and lim­
itations. In Chapter 3, we present the most relevant related literature describing the latest 
methods developed for correcting errors in NGS data. Chapter 4 explains in depth the pro­
posed approach. We have tested in Chapter 5 our algorithm on many data sets, simulated or 
real, from [50, 52, 65] as well as on several new ones. Finally, in Chapter 6, we present the 
conclusions and future work.



Chapter 2

DNA SEQUENCING

2.1 DNA

DNA, or deoxyribonucleic acid, is a macromolecule (polynucleotide) that contains the biolog­
ical instructions required for an organism to develop, survive and reproduce. Its also referred 
to as a “genetic blueprint” since it contains the instructions required to construct other com­
ponents of cells, such as proteins and RNA macromolecules which make each species unique. 
All information in the DNA is encoded by four chemical bases: adenine (A), guanine (G), cy­
tosine (C), and thymine (T), illustrated in Figure 2.1. Each nucleotide is composed of a sugar 
molecule (deoxyribose) bonded to a phosphate functional group and one of the four bases A, 
C, G, and T. The number of base pairs that constitute the DNA sequences of a few organisms is 
listed in Table 2.1. Human DNA consists of about 3 billion bases, and more than 99 percent of 
those bases are common in all people. The precise order of these bases determines the available 
information for an organism.

The exact structure of DNA was unknown until 1953 when the double-stranded helix model 
of DNA structure was proposed by James D. Watson and Francis Crick [62], which was essen­
tially based on the x-ray data collected by Rosalind Franklin. The proposed double-stranded 
helix model initiated a revolution in molecular biology (Figure 2.2). Each strand has a direction 
and by convention is always read in the 5’ end to 3’ direction. The 5’ end of DNA has a termi­
nal phosphate (-P04) group and the 3’ end has a chemically different hydroxyl (-OH) terminal 
group. In the DNA double helix, one strand has an opposite direction versus the other strand. 
Each base within one strand binds with a complementary base in the other strand with A pair­
ing up with T, and C with G. This arrangement of two nucleotides binding together across the

Organism Number of base pair
Escherichia coli (bacterium) 

Saccharomyces cerevisiae (yeast) 
Drosophila melanogaster(insect) 

Homo sapiens(human)
Zea mays(corn)

4 x 106 
1.35 x 107 
1.65 x 108 
2.9 x 109 
5.0 x 109

Table 2.1: Number of base pairs of DNA in different organisms.

4
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Figure 2.1: DNA Bases [2]

Copro#* O Pootca  EOuunca  A  c tM m n o M d tf p m n C u m n n p

Figure 2.2: DNA Structure [1]
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double helix, A-T and C-G, is known as complementary base pairing. Therefore, one strand of 
DNA is called the reverse complement or the complementary strand. If the nucleotide sequence 
of one strand is known, the nucleotide sequence of the second strand can be determined via the 
reverse complement rule. In order to get the reverse complement s of s, first the transformation 
A «-» T and C «-» G for all letters in s is applied. Then the resulting string is reversed. For 
example if we know the nucleotide sequence of strand S 1, the nucleotide sequence of 5 2 can 
be identified as follow,

SI: 5’ ATTTAGGCC 3’
Complement of SI S2: 3’ TAAATCCGG 5’

Reverse S2: 5’ GGCCTAAAT 3’

One important property of DNA is that it can make copies of itself which are called replicates.

2.2 Sanger sequencing

2.2.1 How it works
DNA sequencing, determining the order of the nucleotide bases in a molecule of DNA, is a 
challenging task since there is no machine that can sequence an entire long molecule of DNA 
at a time. In 1977, Sanger invented a novel method for DNA sequencing [46] for which he was 
awarded the Chemistry Nobel Prize in 1980. The basics of the Sanger Method are described 
below.

First, the DNA must be obtained in the single-stranded form and amplified. In order to 
sequence a piece of amplified DNA, four reaction mixtures are set up (Figure 2.3). Each 
reaction consists of

• DNA to be sequenced, called the template

• DNA polymerase

• Single Short Primer

• A supply of nucleotide (A, C, G and T)

• A small amount of a fluorescently labeled chain-terminating variant of one of the four 
nucleotides (dideoxy nucleoside triphosphates, ddNTPs).

The short oligonucleotide ‘primer’ has the nucleotide sequence that is complementary to the 3’ 
end of the template at that region to be copied. DNA polymerase is an enzyme for catalyzing 
DNA replication, making new complementary strands of DNA from single-strand templates. In 
order to initiate DNA replication, DNA polymerase requires a primer. The primer can bind to a 
known region of the template strand. In each reaction, the synthesis ends up when a replication­
terminating nucleotide is incorporated randomly into the growing DNA strand. The products of 
the reaction mixtures are then loaded into separate lanes of an electrophoresis gel. The presence 
of a ddNTP at the terminus can be recorded on a computer based on the different signal that is 
transmitted by ddNTP (Figure 2.4). Amplified DNA is then separated from smallest to largest
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O  t h e  SANGER METHOD; Single-stranded DNA Is 
mixed with a primer and split into four aliquots, each 

r '  containing DNA polymerase, four deoxyribonucleotide triphos­
phates and a replication terminator Each reaction proceeds until a replication-terminating 

nucleotide is added The mixtures are loaded into separate lanes o f a gel and electrophoresis is used to 
separate the DNA fragments The sequence of the original strand is inferred from the results. (See p. 40 

for an illustration of a high-speed DNA sequencer.)

Figure 2.3: DNA sequencing using the Sanger method [3].

S e q u e n c e

O tig o n u c le o w J e  U n g th

Figure 2.4: An electropherogram of a finished sequencing reaction using the Sanger method 
[20],
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Figure 2.5: Final sequencing of the DNA using Sanger Method [43],

when the fluorescent DNA reaches the bottom of the gel. The original DNA is then sequenced 
by length and color of the truncated DNA products (Figure 2.5).

The original method was primarily a manual endeavor and hard to automate. Radioac­
tive labeling of primer and using four separate reactions in Sanger’s method made it non-user 
friendly and time consuming. Therefore, two modified versions of the first generation sequenc­
ing have been developed. In 1985, radioactive labeling was replaced with color fluorescent dyes 
[57]. It generates the possibility of mixing all four chain-termination reactions in one tube and 
thereby fastening the sequencing. In the second version [66], capillary-electrophoresis is used 
instead of slab-gel based separation which reduces the reagent consumption. Thereby, higher 
parallelism could be applied because of the compact form of capillary-electrophoresis that in­
creases the number of concurrent samples that can be analyzed.

2.2.2 The Sanger method’s achievements and limitations

With the introduction of the gel-based sequencing methods, the rate of DNA sequencing in­
creased (Figure 2.6). The raw data accuracy with a high sequence read length generated by 
these technologies, lead to their continuous usage until today. The Sanger Method has had a 
variety of accomplishments such as:

• Complete sequencing of the phi X genome in 1977 [8, 56] which was a revelation in 
genome coding such as,

-  Translation of a DNA sequence in all possible reading frames for the first time.
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Figure 2.6: Growth of database Sequencing with advent of Sanger Sequencing Method [22]

-  Identifying long open reading frames that could be assigned to genes identified by 
traditional genetic methods.

-  Revealing that more than one reading frame were used to translate significant por­
tions of a genome to produce two different proteins.

• Sequencing of the simian virus SV40 in 1978 [19]

• Sequence and organization of the 16.5 kb human mitochondrial genome in 1981 [4]

• Nucleotide sequence of the 48.5 kb complete bacteriophage lambda DNA in 1982 [47]

• Sequencing of the 172 kb EpsteinBarr virus in 1984 [6]

• Sequencing of the 237 kb human cytomegalovirus genome in 1991 [7]

• Complete Sequencing of first Human Genome in 2001 [32, 61]. The project started 
in 1990 with an expected time frame of 15 years and cost of 5-10 billion USD. It was 
successfully finished in 13 years with an actual cost of 3 billion USD.

Reducing cost of sequencing via miniaturization, higher degree of parallelism, and faster 
analysis are highly demanded. However, the Sanger method can not be improved further be­
cause it relys on electrophoretic separation. Therefore, completely novel methods of sequence 
generation were required to overcome all above limitations.

2.3 Next Generation Sequencing (NGS)
The Sanger method is very slow and very expensive per base. Therefore, the so-called next 
generation sequencing (NGS) technologies (or, high-throughput) have been developed. Differ­
ent platforms have been developed for NGS as follows [51].
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Roche’s 454 sequencing. In 2004, 454 system, the first commercial product of next gen­
eration sequencing, was available. Figure 2.7 illustrates Roche’s 454 workflow. In this ap­
proach, emulsion PCR is applied for clone sequencing. A mixture of tiny paramagnetic beads 
coated with DNA primers and a single-stranded template DNA library are prepared in aque­
ous droplets within an oil phase with components necessary for PCR reaction. Beads are then 
enriched based on hybridization enrichment for amplicon-bearing beads. A picotiter plate fab­
ricated is utilized in organized array of tiny wells with each hole is occupied by only one bead. 
The pyrosequencing method is then applied for Sequencing. Each of the four dNTPs are in­
troduced into the flow cell. The incorporation/non-incoporation of corresponding nucleotide is 
identified based on presence/absence of light burst of each picotiter well.

Illumina’s Genome Analyzer (Solexa technology). Figure 2.8 shows how DNA is se­
quenced by Illumina’s Genome Analyzer. “Bridge amplification” is applied for amplifying a 
single-stranded library fragments on an oligo-decorated solid support. [13] Amplicons, thou­
sands of copies of the input DNA, from any single template molecule are created via multiple 
times of tethering of both forward and reverse PCR primers to a solid substrate by a flexible 
linker. The amplicons are then divided randomly seeded into clusters consisting of around 
1000 clonal amplicons on the surface to a single physical location on an array. After single 
stranding the amplicons, the sequencing run is started by hybridizing a sequencing primer to a 
universal sequence flanking the region of interest. Each cycle of sequencing consists of single­
base extension with a modified DNA polymerase and a mixture of four fluorescently labeled 
nucleotides and reversible terminators. To generate a read length of 50 bp this process repeats 
for 50 cycles.

Applied Biosystems’s SOLiD platform. Workflow of Applied Biosystems’s SOLiD platform 
is shown in Figure 2.9. Like in the case of 454, emulsion PCR is utilized to amplify a template 
DNA with paramagnetic beads. After breaking the emulsion, a dense, disordered array is 
created from fixing enriched amplified beads on a flat glass substrate. A DNA ligase is applied 
for sequencing by synthesis rather than a polymerase. The key feature of this approach is 
that sequencing by synthesis is driven by ligation, instead of polymerization as in previous 
platforms. The ligation of a degenerate population of fluorescently labeled octamers is involved 
in each cycle of sequencing. In addition, a dual-base encoding scheme is applied in the process 
to assist error detection. Measuring each base twice, i.e. in two separate ligation cycles, leads 
to another advantage of identifying miscall during sequencing [16].

A comparison of NGS platforms is shown in Table 2.2.

2.4 Applications of NGS
Next-generation sequencing technologies have been applied to a variety of applications [51] 
such as

• Genome assembly which attempts to align and merge the reads in order to reconstruct 
the genome that originated them [14,17, 21, 24, 53].

• Reads mapping which attempts to determine the location of newly sequenced reads 
against a known different reference genome of the same species [10,18, 25, 30, 33].
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Figure 2.9: DNA Sequencing with Applied Biosystems’s SOLiD platform [36]



Chapter 2. DNA SEQUENCING 14

Platform Read
lengths(bases)

Sequencing
run
time(days)

Total bases 
per run (Gb)

Machine
cost
(USD)

Pros cons Biological Appli­
cations

Roche’s
454

330(Average) 0.35 0.45 500,000 Longer reads 
improve mapping 
in repetitive 
regions; fast ran 
times

High reagent 
cost; high er­
ror rates in 
homopolymer 
repeats

Bacterial and 
insect genome de 
novo assemblies; 
medium scale 
(< 3 Mb) exome 
capture; 16S in 
metagenomics

Ulumina's
Genome
Ana­
lyzer

75 or 100 4(Fragment 
run), 
9(Mate- 
pair ran)

18(Fragment 
ran),35(Mate- 
pair ran)

540,000 Currently the 
most widely used 
platform in the 
field

Low multiplexing 
capability of sam­
ples

Variant dis­
covery by 
whole-genome 
resequencing or 
whole-exome 
capture; gene 
discovery in 
metagenomics

Applied
Biosys­
tems’s
SOLiD
platform

50 7(Fragment 
run), 
14(Mate- 
pair ran)

30(Fragment 
ran), 
50(Mate- 
pair ran)

595,000 Two-base encod­
ing provides in­
herent error cor­
rection

Long ran times Variant dis­
covery by 
whole-genome 
resequencing or 
whole-exome 
capture; gene 
discovery in 
metagenomics

Table 2.2: A comparison of NGS platforms [37]

• Full-genome resequencing(detecting mutations or polymorphisms), e.g., comprehensive 
polymorphism and mutation discovery in individual human genomes [63].

• Reduced representation sequencing, e.g., large-scale polymorphism discovery [60].

• Targeted genomic resequencing, e.g., targeted polymorphism and mutation discovery
[16].

• Paired end sequencing, e.g., discovery of inherited and acquired structural variation [11].

• Metagenomic sequencing, e.g., discovery of infectious and commensal flora [15].

• Small RNA sequencing, e.g., microRNA profiling [39].

• Transcriptome sequencing, e.g., quantification of gene expression and alternative splic­
ing; transcript annotation; discovery of transcribed SNPs or somatic mutations [64].

• Sequencing of bisulfite-treated DNA, e.g., determining patterns of cytosine méthylation 
in genomic DNA [34].

• Nuclease fragmentation and sequencing, e.g., nucleosome positioning [49].

•  Molecular barcoding, e.g., multiplex sequencing of samples from multiple [41].

•  Chromatin immunoprécipitation sequencing (ChIP-Seq), e.g., genome-wide mapping of 
protein-DNA interactions [26].

Several software programs available for analyzing NGS data are listed in Table 2.3.
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Program Category A uthors) Summary URL
ELAND Alignment Anthony J. Cox Efficient Large-Scale Alignment o f Nucleotide Databases. 

Whole genome alignments to a reference genome.
http://www. illumina.com/

Exonerate Alignment, Mapping Guy S. Slater et al. Various forms o f alignment (including Smith-Waterman- 
Gotoh) o f DNA/protein against a reference.

http://www. ebi. ac. uk/~ guy/exonerate

MAQ Alignment, variant de­
tection

Heng Li Mapping and Assembly with Qualities (renamed from MA- 
PASS2)

http://maq. sourceforge. net

Mosaik Alignment Michael Stromberg et al. Producing gapped alignments using the Smith-Waterman 
algorithm. Support for Roche's 454, Illumina, and SOLiD

http://bioinformatics.bc.edu/marthlab
/Mosaik

RMAP Alignment Andrew Smith et al. Assembles 20 - 64 bp Solexa reads to a FASTA reference 
genome.

http://ridai.cshl. edu/rmap

SHRiM P Alignment Michael Bradno et al. Assembles to a reference sequence. Developed with Ap­
plied Biosystem’s colourspace genomic representation in 
mind.
SOAP (Short Oligonucleotide Alignment Program) is a pro­
gram for efficient gapped and ungapped alignment o f short 
oligonucleotides onto reference sequences. SOAP2 is an 
updated program based on Burrows-Wheeler Transform

http://compbio.es. toronto. edu/shrimp

SOAP Alignment, variant de­
tection

Ruiqiang Li et al. http://soap.genomics.org.cn

SSAHA2 Alignment Zemin Ning et al. a pairwise sequence alignment program designed for the 
efficient mapping of sequencing reads onto genomic refer­
ence sequences

http://www.sanger.ac. uk/Software/ 
analysis/SSAHA2

SXOligoSearch Alignment Synamatix align Illumina reads against a range of Refseq RNA or 
NCBI genome builds for a number o f organisms

http://www.bioinformatics.org/wiki/
SXOligoSearch

ALLPATHS Assembly Jonathan Butler et al. De novo assembly o f whole-genome shotgun microreads. ftp://ftp.broadinstitute.org/pub/crd/
ALLPATHS/

Edena Assembly David Hernandez et al. An assembler dedicated to process the millions o f  very short 
reads produced by the Illumina Genome Analyzer. Edena is 
based on the traditional overlap layout paradigm.

http:/fwww.genomic. ch/edena

Euler-SR Assembly Mark Chaisson et al. Contrary to the overlap-layout approach, EULER-SR uses 
a de Bruijn graph to construct an assembly.

http://euler-assembler. ucsd edu/ 
portal/

SHARCGS Assembly Juliane Dohm et al. http://sharegs. molgen. mpg. de
SHRAP Assembly Andreas Sundquist et al. A sequencing protocol and assembly methodology that uti­

lizes high-throughput short-read technologies.
SSAKE Assembly Rene Warren et al. A genomics application for aggressively assembling mil­

lions o f short nucleotide sequences by progressively search­
ing for perfect 3 '-m ost k-mers using a DNA prefix tree.

http://www.bcgsc. ca/platform/bioinfo/ 
software/ssake

vCAKE Assembly William Jeck De novo assembly o f  short reads with robust error correc­
tion. An improvement on early versions o f SSAKE.

http://sourceforge. net/projects/vcake

velvet Assembly Daniel Zeibino aet al. A de novo genomic assembler specially designed for short 
read sequencing technologies, such as Solexa o r 454. Need 
about 20-25X coverage and paired reads.

http://www.ebi.ac.uk/% 7Ezerbino/ 
velvet

PyroBayes Base caller Aaron Quinlan et al. It was designed to assign more accurate base quality esti­
mates to the 454 pyrosequences.

hrtp://bioinformatics. be. edu/ma rthlab/ 
PyroBayes

PbShort variant detection Gabor Marth http://bioinformatics.bc.edu/manhlab/
PbShon

ssahaSNP variant detection Zemin Ning et al. It detects homozygous SNPs and indels by aligning shotgun 
reads to the finished genome sequence. Highly repetitive 
elements are filtered out by ignoring those kmer words with 
high occurrence numbers.

http://www.sanger.ac.uk/Software/
analysis/ssahaSNP

Table 2.3: Bioinformatics tools for short-read sequencing [51].

http://www.illumina.comJ
http://www
http://maq.sourceforge.net
http://bioinformatics.bc.edu/marthlab
http://rulai
http://compbio
http://soap.genomics.org.cn
http://www.sanger.ac.uk/Software/
http://www.bioinformatics.org/wiki/
ftp://ftp.broadinstitute.org/pub/crd/
http://www.genomic.ch/edena
http://euler-assembler
http://sharegs
http://www.bcgsc.ca/platform/bioinfo/
http://sourceforge.net/projects/vcake
http://www.ebi.ac.uk/%7Ezerbino/
http://bioinformatics
http://bioinformatics.bc.edu/marthlab/
http://www.sanger.ac.uk/Software/
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2.5 Problems with NGS
Among several fundamental computational problems concerning NGS data, genome assembly 
and read mapping have been investigated the most. Several issues such as the huge amount of 
data, significantly short reads, repeats in genome, and sequencing errors are common among 
these different novel tools. The reads produced are significantly shorter, 35-100bp compared 
to 500-1000bp in Sanger technology and have higher per-base error rate. Since the read length 
are significantly short, large portions of a read set can not uniquely align and make assembly 
and alignment in mapping more difficult for NGS than for the Sanger method. In the following, 
we explain two other issues, repeats in the genome and sequencing errors.

Repeats
A segments of DNA repeated multiple times in the genome is called a repeat. Repetitive 
sequences are categorized into five classes based on their origin [32]:

1. Transposon-derived repeats (100-6,000 bp in length) also known as interspersed repeats;

2. Processed pseudogenes, that is, inactive retroposed copies of transcribed coding genes;

3. Low copy repeats derived from segmental duplications (10 kb-300 kb in length), that is, 
chunks of DNA copied from one region of the genome to another;

4. Microsatellites, that is, simple sequence tandem repeats, e.g., AAAAAAA, TATATATATA, 
or CGCCGCCGCCGCCGCCGC;

5. Minisatellites, which are blocks of tandemly repeated sequences (10-100 base in length).

Unlike the first three class of repeats that can be present at different locations across a whole 
genome, the last two classes known as tandem repeats occur consecutively in the genome. 
Tandem repeats fall into two sub-categories, primitive and non-primitive. If a tandem repeat 
does not contain other tandem repeats, it is called a primitive tandem repeat. For example, 
strings aa and abab are primitive tandem repeats, while aaaa is not a primitive tandem repeat. 
Detection of repeats is a well-studied problem in computational biology.

Tandem repeats play a role in regulation of gene expression. They are used as markers 
in mapping and population studies because of their higher rate of variation. In spite of the 
useful functions of repeats, these elements make assembly of shotgun fragments very difficult 
for complex (repeat-rich) genomes.

Gaps in assembly of genome can be produced because of missing some repeats. Repeats 
can produce false overlaps that make them to be collapsed and generate smaller number of 
copies which inaccurately sequenced. Repeats can confuse an assembler to misjoin nonadja­
cent genomic fragments together and generate false overlaps as illustrated in Figure 2.10.

Higher error rate
Reads sequenced by NGS have a higher error rate than for Sanger sequencing. Most of frag­
ment assemblers rely on the overlap-layout-consensus paradigm which consists of three phases.
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(b)

(c )

1

Contig I
----- Contig 2

1
Contig 1

A R c
Contig 2 

B

A R r R C R ^ D

pseudo-overlap

i
A R . C R B R _ D

l
A_______  R t B g R C________

Figure 2.10: How repeats cause false overlapping in an assembler: (a) Collapsing two repeat 
copies (R) in the correct sequence (top) into one copy in the incorrect assembled sequence 
(bottom); (b) Flanking two DNA segments (B and C) by three repeat copies (R); (c) a DNA 
segment (B) flanked by two inverted repeat copies (R); orientation of B is changed in the 
misassembled genome sequence [59].
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In the first phase, the overlaps between all possible pairs of reads are determined. In order to 
find the overlap between two reads, they are aligned in order to determine the overlap with the 
maximum score which is the sum of scores of each match, each mismatch, and each gap. In 
the second phase, the layout step, all reads are aligned together based on the overlaps between 
them. A group of overlapping reads that are ordered is called a contig which is oriented with 
respect to a region of the target genome. A list of ordered contigs oriented with respect to the 
target genome is called a scafold. In the last phase, the consensus sequence is built by taking 
major nucleotide at each aligned position.

While reliable overlaps can be identified using long reads, 500-1000 nucleotides, generated 
by the Sanger method, the errors in the shorter reads, 35-100 nucleotides, make it more difficult 
to determine firm overlaps. Since there exist substantial variance from a reference, coverage 
gaps can occur when sequences are not aligned. Some assemblers simply discard reads with 
ambiguous alignments, or contigs, with no information regarding relative order. However, this 
is not desirable because of significantly reducing the coverage. In spite of several methods of 
correcting errors [13, 14, 17, 50, 52, 58, 65] proposed in the several past years a method for 
correcting errors with high accuracy in a reasonable time with less parameters is still required. 
In this thesis we study this issue in more depth.
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NGS ERROR CORRECTING

Error correction methods applicable to Sanger reads are not suitable for NGS reads because 
of significanlty shorter read length and huge amount of data genereted by NGS technologies. 
Therefore, new tools have been developed. We review in this section the most important read 
correcting methods that have been developed for NGS data.

The genomes that were used in [50, 52] for comparing these methods are shown in Ta­
ble 3.1.

3.1 Spectral alignment
The version of the Euler assembler [45] for short reads, Euler-SR, [13,14], includes its own 
method for correcting errors. The method is based on the spectral alignment algorithm [45] 
which is described below. Let R = [rx, r2, • • • r„] be a set of reads. Let s be a string over the 
alphabet X = [A, C, G, T}. A substring of s is any consecutive sequence of letters from s, i.e., 
s[i •••/] = s[/]s[i + 1] • • • s[j]; in particular s = i[ l  • • • ML Each read r, is a substring of length 
l. Let &-mer be any substring of the genome of length k. Assume two parameters k and m are 
given, then spectral alignment problem can be defined as follows.

Solid k-mer: A &-mer a is called solid with respect to m and R if there exist at least m reads in 
R with a substring a.

Reference genome (ID)_____________________
Saccharomyces Cerevisiae, Chr. 5 (S.cer5) 
Saccharomyces Cerevisiae, Chr. 7 (S.cer7) 
Haemophilus Influenzae (H.inf)
Escherichia coli str.K-12 substr.MG1655 (E.coli) 
Escherichia coli str.K-12 substr.DHIOB (E.coli2) 
Staphylococcus aureus (S.aureus)
Helicobacter acinonychis (H.acinonychis)

Accession no. 
NC_001137 
NC.001139 
NC-007146 
NC_000913 
NC_010473 
NC_003923 
NC-008229

Len.(bp)
576,869

1,090,946
1,914,490
4,639,675
4,686,137
2,820,462
1,553,927

Table 3.1: List of Genomes used for comparison. They can be downloaded from 
http://www.ncbi.nlm.nih.gov/ using their accession number listed in the second column, Ac­
cession no.

19

http://www.ncbi.nlm.nih.gov/
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Weak £-mer: A &-mer which is not solid.

Spectrum: The set of all solid fc-mers with respect to m and R is called the spectrum of the 
reads with respect to k, m, and R denoted by T^OT(R)

Spectral Alignment Problem: Given a string s and a spectrum Tktm(R), determine the mini­
mum number of mutations in s so as to minimize their distance to the spectrum T.

Pe‘er and Shamir considered the same problem in a different context of resequencing by 
hybridization [44]. In [12], a dynamic approach for correcting errors is applied to Roche’s 454 
reads. It is based on a spectral alignment algorithm using edit distance as a distance function. 
In case of small number of mutations, a dynamic programming method can solve the spectral 
alignment problem efficiently even for large k. In [13, 14] an iterative approach is proposed 
to correct errors in Illumina reads. Since there is a few insertion/deletion in Illumina reads, 
substitutions (Hamming distance) can be considered as mutations (distance function). In their 
greedy approach, spectral alignments is called iteratively with the set of all reads and all solid 
^-tuples. In each iteration, the spectral alignment algorithm may change the sets of weak and 
solid ifc-mers in order to decrease the number of weak fc-mers and increase the number of solid 
&-mers. A mutation is selected if the number of changed weak fc-mers is bigger than a threshold 
t. The heuristic is called iteratively until there is no mutation that can change at least t weak 
fc-mers or all fc-mers are solidified.

3.2 SHREC
Schroder et al., [50], proposed a new method, called SHREC, for error correction based on 
weighted suffix trees. A brief introduction to suffix trees is given first.

3.2.1 Suffix Trees
Let s be a finite string over the alphabet I  = [A, C, G, T}. E* is the set of all strings over E and 
|i| denotes length of string s. Let $ be a termination character which does not belong to E. We 
change s by appending $ at the end so that each suffix of s is unique. The suffix of s starting 
at the ith position is defined by suff, = s[i • • • |s|] = s[i]s[i + 1] • • • s[|s|]. A suffix tree ST of s is 
a tree with n leaves with labels 1,2, • • • ,n  where n. The concatenation of edges from the root 
to a leaf of the suffix tree labeled i is suff,. Figure 3.1 shows a suffix tree generated from the 
string “CATTATTAGGA”.

Path-label (x) is a the string obtained by concatenating the edge’s strings on the path from 
the root to a node x. A weighted suffix tree is a generalized suffix tree where each node has 
a weight. The weight of node x  represents the number of occurrences of the substring path- 
label(x) in string s.

3.2.2 SHREC Algorithm
A weighted suffix tree of all reads and their reverse complements (R) is constructed. The 
structure of the suffix tree in the presence of errors is illustrated in Figure 3.2. An error at
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Figure 3.1: Suffix tree of the string “CATTATTAGGA” [5],

Figure 3.2: Changing the suffix tree structure in the presence of errors [50].
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Endlevel

Startlevel

Prefix

Figure 3.3: Reducing memory consumption of the suffix tree by constructing only a part of the 
suffix tree between two levels (Startlevel and Endlevel), and building and analyzing only the 
sub-tree starting with Prefix [50],

position k of a read with no error in positions 1 to k - 1  causes a node at the corresponding level 
to have two children. The children nodes representing erroneous bases have smaller weight 
than expected.

The expected weight of a node depends on its level and the coverage of the genome. The ex­
pected weight of a node at level m is calculated based on the expectated number of occurrences 
of a substring of length m in R, (3.1), and the standard deviation value <x(m), (3.2).

Then, nodes are categorized into reliable and erroneous based on their weights. If the weight 
of a node at level m is less than E(m) -  x.cr(m) then it is suspected of being an error and correct 
otherwise, where x  is a parameter that should be tuned. If x  is too small, more errors can be 
detected but this may increase number of false positives, identifying a correct base as an error. 
If it is set to a large value, the number of false positives can be reduced but it may miss some 
errors. The authors suggest to choose a value for x  between 5 and 7 based on their experiments. 
They will correct an erroneous node to one of its correct neighbor nodes.

In order to save space and reduce computations only a part of the suffix tree is built between 
two levels, Startlevel and Endlevel, instead of the entire tree (Figure 3.3). They proposed 
a parallel program to correct errors by splitting the tree into smaller sub-trees (Figure 3.3). 
Each sub-tree starts with a prefix substring. Since correcting a node in a sub-tree is totally 
independent from another sub-tree, they run the correcting program in parallel on the sub-trees.

They showed their algorithm can outperform Euler-SA algorithm (Table 3.2) on a real and 
several simulated data sets from some of genomes listed in Table 3.1. Still many parameters 
must be tuned emparically to achieve high accuracy.

a = l -  m + 1

(3.1)n
a a2

cr(m) = k(--------) (3.2)
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Data set Accuracy (%)
Genome err.(%) read len. cov. SHREC Euler-SR
S.cer5 1 70 35 95.2 83.2
S.cer5 2 89.3 71.1
S.cer5 3 81.1 57.4
S.cer5 1 70 70 95.7 80.2
S.cer5 2 90.5 68.0
S.cer5 3 84 16.9
S.cer7 1 95.3 80.3
S.cer7 2 90.0 68.0
S.cer7 3 83.3 13.7
H.inf 1 94.1 80.0
H.inf 2 88.2 67.7
H.inf 3 81.0 53.5
E.coli 1 93.5 80.0
E.coli 2 87.4 67.7
E.coli 3 80.0 54.4
S.aureus 1 35 43 88.3 33.4

Table 3.2: Accuracy, percentage of corrected reads relative to the total number of erroneous 
reads, comparison between SHREC and Euler-SR [50].

3.3 CUDA implementation

H. Shi et al. proposed an efficient implementation of the error correcting algorithm of Euler-SR 
on CUDA hardware [52], mainly to improve the speed.

3.3.1 CUDA Programming model

Compute Unified Device Architecture (CUDA) is a parallel computing architecture developed 
by NVIDIA. CUDA processors are programmed in CUDA C, which is C/C++ with a CUDA 
extension (minimum extension of C) to write scalable multithreaded programs for CUDA- 
enabled GPUs [42]. The hardware model of CUDA is illustrated in Figure 3.4. The kernel is 
a sequential part of all CUDA programs representing the operations that can be performed by 
a single thread. A set of concurrent threads is called a thread block and a set of independent 
blocks is a grid.

Several kinds of memory are available in a CUDA architecture. Each thread has access 
to a local memory of size 16KB which is readable and writable and a set of readable and 
writable per-thread registers which is the fastest memory. All threads in a block have access to 
a readable and writable shared memory of size 16KB called per-block shared memory. Threads 
of different blocks can not communicate directly. The whole device (the GPU) has a readable 
and global memory of size around 1GB with high latency and low bandwidth. Kernels can read 
from a large cached texture memory using a texture fetching device function which is faster 
than reading from the global or local memory.
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Figure 3.4: CUDA’s hardware model [52].

3.3.2 Error correction

The error correction is done based on the spectral alignment algorithm and a Bloom filter data 
structure [9]. A Bloom filter represents a set of given keys in a bit-vector (Figure 3.5). Several 
hash functions are used for insertion and querying of keys. The spectrum of the set of reads is 
first constructed, represented by a Bloom filter. The spectrum is transformed into the CUDA 
texture memory. Then, they run the spectral alignment algorithm for correcting the errors in 
parallel.

They compared their method on a set of simulated benchmarks of length 35 with coverage 
70. The comparison of running time of Euler-SR and CUDA implementation of EULER-SR is

Figure 3.5: Bloom filter data structure. [52]
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Data set Run Time(s)
Genome err.(%) read len. cov. Euler-SR CUDA
S.cer 5 1 35 70 345 26

2 1454 70
3 3239 92

S.cer 7 1 911 47
2 2876 105
3 6153 174

H.inf 1 1455 82
2 5195 187
3 12042 315

E.col 1 4875 279
2 14793 669
3 30250 1153

H.inf 1 70 70 15758 229
2 578458 607
3 70312 832

S.aureus 1 35 43 13260 230
H.acinonychis 1.6 36 190 7867 526

Table 3.3: Run time comparison between CUDA implementation and Euler-SR [52],

shown in Table 3.3. It can be concluded that CUDA is significantly faster than Euler-SR.

3.4 REPTILE
Yang et al. [65] proposed the newest method, Reptile, also based on k-mers. They attempt 
to correct erroneous k-mers based on contextual information as follow. A tile t = a\\\a2 is 
a concatenation of overlapping k-mers a\ and a2. First clusters of tiles are created based on 
their Hamming distance and a threshold d. An erroneous tile t is corrected to a tile t' if the 
Hamming distance between t and t' is less than the Hamming distance between t and any other 
tile in the cluster and °̂ currenceU) ' s more than a threshold, e.g., 2 where occurrence^ ) is the 
number of occurrences of t. If t' is the only correct tile in the cluster then t will be corrected to 
t' if occurrence((') is greater than a threshold; the threshold is chosen so that a large percentage 
(e.g. 4%) of tiles occur more than that value in the set of reads. They used the quality of reads, 
if it is available, as one of the parameters for determining the correct tiles.

They define some measure for comparison as follow.

• True Positive (TP): The number of erroneous bases that are corrected to a correct base.

•  False Positive (FP): The number of correct bases that are wrongly changed.

•  False Negative (FN): The number of erroneous bases that are left unchanged.

• True Negative (TN): The number of correct bases that are left unchanged.
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Data set£ read len. No. of Reads(M) cov. err.(%)
SRX000429* 36 20.8 160 0.6
SRR001665-1* 36 10.4 80 0.6
SRR006332t 36 17.7 173 1.5
D§ 36 4.0 40 1.5
SRR022918.1* 47 7.0 71 3.3
SRR034509J* 101 8.9 193 2.2
£ Represented by accession number of read sets in NCBI.
* Illumina reads from the E. coli str. K-12 substr (NC-000913) genome, 
t  Illumina reads from the Acinetobacter sp. ADP1 (NC.005966) genome.

8 Set of reads generated randomly from SRR006332.

Table 3.4: The sets of real Illumina reads used in [65].

•  ne\ The number of erroneous bases that are correctly identified but changed to a wrong 
base.

Sensitivity is the percentage of actual erroneous bases which are correctly corrected (Eq. 
3.3). Specificity is the percentage of actual correct bases which are left unchanged (Eq. 3.4). 
Erroneous Base Assignment, EBA (Eq. 3.5), means how well erroneous bases are corrected to 
the true bases after a sequencing error has been identified. A lower value of EBA indicates a 
more accurate base assignment. Gain is the number of remaining erroneous bases divided by 
the number of actual erroneous bases (Eq. 3.6).

Sensitivity

Specificity

EBA

Gain

TP
TP + FN 

TN
TN + FP

ne
TP + ne 
T P -F P  
TP + FN

(3.3)

(3.4)

(3.5)

(3.6)

Table 3.4 gives the sets of real Illumina reads used for their comparison. As seen in the 
Table 3.5, Reptile outperforms SHREC in terms of gain, time, and space. Similar to all previous 
work, Reptile is required to tune several parameters in order to achieve high gain.
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Genome Method(d) EBA(%) Sensitivity(%) Specificity(%) Gain(%) CPU Hours Memory (GB)
SRX000429 SHREC 1.794 70.4 99.9 53.8 - >8

Reptile(l) 0.007 79 99.9 75.7 0.79 1.1
Reptile(2) 0.028 86.4 99.9 80.2 2.49 1.1

SRROO 1665.1 SHREC 1.549 75.5 99.9 61.0 3.6 7.1
Reptile(l) 0.009 67.8 99.9 65.2 0.35 0.84
Reptile(2) 0.042 76.2 99.9 70.9 1.23 0.84

SRR006332 SHREC
Reptile(l) 0.013 75.1 99.8 63.2 1.66 2.2

D SHREC 1.306 73.5 99.6 42.9 2.78 7.6
Reptile(l) 0.091 71 99.8 59.9 0.26 0.66

SRR022918-1 SHREC
Reptile(l) 0.017 52.7 99.7 38.1 0.94 1.9

SRR034509-1 SHREC 
Reptile! 1) 0.01 85.3 99.9 78.9 2.76 4.6

Table 3.5: Comparison between Reptile and SHREC [65].
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A NEW APPROACH

4.1 Suffix Array and Longest Common Prefix Array
In this section, the basic definitions for strings and the suffix array data structure are described. 
Let s be a string over the alphabet E = {A, C, G, T}. A substring of s is any consecutive 
sequence of letters from s, i.e., s[i ■•■]] = s[i]s[i +1] • • • s[j]. Suffix of s starting at ith position, 
s u ff„  is a substring of s with j  = |s|. Similarly, a prefix of s is a substring of s with i = 1. In 
order to get the reverse complement s of s, first the transformation A <-> T and C <-» G for all 
letters in s is applied. Then the resulting string is reversed. For example, if s = CAT, then s = 
ATG. It is obvious that s = s. The suffix array of s, denoted SA, gives the lexicographical order 
of the suffixes of s, i.e., s u f fSA[i] < s u f fSA[2] < • • • < s u f fSA[|.S|]. In other words, SA[j] = j  if 
and only if s u ff ) is the ith lexicographically smallest suffix of s. For example, the suffix array 
of the string “CATTATTAGGA” is shown in the second column of Table 4.1.

The suffix array is often used in combination with the longest common prefix (LCP) ar­
ray that gives the length of the longest common prefix between consecutive suffixes of SA. 
Let lcp(a,/3) denote the longest common prefix between strings a  and /?. Then, LCP[i] = 
|/cp(suffSA[,_i], s u f f SA[,]|, is the length of the lep between s u f fSA[,_i] and s u f fSA[/]; see the 
fourth column of Table 4.1. By definition, LCP[1] = 0.

The suffix array data structure was introduced by [35]; SA can be computed in 0(m) time 
and space by any of the algorithms of [27,29, 31 ]; the LCP array can be computed also in 0(m) 
time and space by the algorithm of [28]. However, suboptimal algorithms exist which behave 
much better in practice. We have used the libdivsufsort library of [38] in the implementation of 
our method. Also, since we need only bounded LCP values, we preferred a direct computation 
of the LCP, thus avoiding [28] altogether.

4.2 Basic idea for correcting
Consider a set of short reads {ru r2, ••• ,rn) that have been sequenced from a genome (S  of 
length L. Each read r, has a length l with per-base error rate p; <£, r, e E* = [A,C, G, T}* 
(Reads containing any letter not in E are discarded.)

Let read r, = xuay be sequenced from a position j  of where x,u ,y  € E* and a e E and 
\u\ = w,\x\ = k -  w -  Assume a is sequenced wrongly and u = rt[k -  w ■ • • k -  1] is correct.

28
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i SA S U ffSA[/] LCP[i]
1 11 A 0
2 8 AGGA 1
3 5 ATTAGGA 1
4 2 ATTATTAGGA 4
5 1 CATTATTAGGA 0
6 10 GA 0
7 9 GGA 1
8 7 TAGGA 0
9 4 TATTAGGA 2
10 6 t t a g g a 2
11 3 TTATTAGGA 3

Table 4.1: Suffix array, SA, and LCP array of the string “CATTATTAGGA”.

The letter b = &[j + k -  1] that actually appears in the genome is changed to the letter a in 
sequencing. Therefore, there are few occurrences of ua in if. However, there are possibly other 
reads in R that are correctly sequenced around the same region as r„ that is they contain the 
correct substring ub. The base a is suspected to be an error and it should actually be b because 
u is followed more often by b than by a. If there is a good coverage of reads, we can possibly 
correct a to the correct letter b.

A good data structure is required to analyze the huge amount of data generated by NGS in 
a feasible time. We use the suffix array which can be used as an index to quickly locate every 
occurrence of a substring within the string. First, we build the suffix array, SA, of all reads and 
their reverse complement, R

R = ri$ri$r2$f2$ • • • rn$rn$,

where r, is the reverse complement of read r, and $ i  I .  A witness u is any substring of R 
with a length of w. Support of u e L* for a e £ is defined as the number of occurrences of the 
substring ua in R, supp(w, a).

In order to correct errors with high accuracy and sensitivity, a good estimation of parameters 
T  and w are required. We estimated the parameters based on careful statistical techniques and 
provide the user with a full automatic tool for correcting the reads.

4.3 Statistical analysis
We now formalize the idea in the previous section. To correct errors in the reads, we go through 
the suffix array and cluster together positions that have a common prefix u of length w. The 
size of this cluster is

clust(M) = ^  supp(w, a).
a el

It is easy to compute the support values and cluster size, given the suffix array because all these 
positions are consecutive in SA and so are all occurrences of u supporting the same letter. The
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n,
na
»•»
r*4

»'*6

ffl . . .  C Q TC rC C TC C M G im ’tGTTGTCTCÏTftCGCGGATCSTTe

Figure 4.1: An example of an error covered by six reads; the genome region where the reads 
came from is shown at the bottom. The letter (inside the frame) following the witness u = 
CTGTTGTCTC (underlined) should be T and not A. The support values are supp(n, T) = 5 
and supp(u, A) = 1. If we omit the grey part, then the remaining suffixes are lexicographically 
sorted, as in SA.

clusters, corresponding to witnesses of a given length w, are easily found using the LCP values: 
a cluster consists of all consecutive positions with LCP values w or higher so that the (w + l)st 
letter is not $. In Figure 4.1, the occurrences of a witness are shown in the order in which they 
appear in the suffix array.

Assume for now that any witness u of length w does not appear elsewhere in the genome 
since additional occurrences would make the identification of the errors more difficult. How­
ever, it is not a precise assumption, because of the presence of repeats in the genome. The 
probability of random occurrences can be reduced in our Bernoulli model by adjusting the 
value of w. With a large value of w, the witness u is less likely to appear again in the genome 
but it will decrease its useful support because it will be covered by fewer reads. We are going 
to estimate the value of w using the statistical methods in Section 4.3.2.

4.3.1 Estimating the support values

Differentiating the correct and erroneous witnesses are required for estimating the support of 
a given witness u for a letter a following it. First, exact definitions are given since a witness 
may appear without errors in some reads and with errors in others. A witness is correct if 
it appears as a substring of the genome $  and erroneous otherwise. Consider a witness u = 

+ w -  1] followed a letter a = ^ [ i  + w], A read has to start within the interval 
I  = [[i - 1 + w + 1 • • • i] to cover both u and a. Then, we estimate the support of u for a for each 
of the following cases.

1. Both u and a are correct.

2. u is correct but a is an error or u has one error but a is correct.

3. u. has more than one error or both u and a are erroneous.

Case 1:
Denote by qc the probability that a given read starts in the interval I  and contains no errors
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inside ua. In order to calculate qc, we define two variables X  and Y as follows:

X

Y

1, if a given read starts inside the interval /;
0, otherwise.
1, if a given read containing ua has no error inside wa; 
0, otherwise.

Each position has a Bernoulli distribution with 1 -  p probability of success (correct base) 
and p  probability of failure (erroneous base). With the assumption of independent occurrence 
of errors at each base, the probability that w + 1 consecutive bases are correct is (1 -  p)w+]. 
Therefore, qc is calculated as shown in Eq. 4.1.

I - w  
~ L '
= (1 ~P)W+X.
= P(X = 1 and Y = 1)
= P(X= l)-P (Y  = 1)

/ — W
= — (1 ~P)W+X. (4.1)

Let Rc be the number of reads that start in the interval I  and contain no errors inside ua.

P(Rc = k) = (nk)qck( \ - q cr k. (4.2)

P (X = 1)

/ >G '= 1 )
qc

Then Wc(k), the expected number of pairs (u, a) when both of them are correct, given supp(w, a) = 
k, is

Wc(k)
L

Y j P(Rc = *)

O q c\\-q cr kL. (4.3)

Case 2:
Assume u is correct but a is an error. Let qe be the probability that a given read covering ua 
with no error inside u but the original letter in a ’s position, say b, has been replaced by a.

^  _ f 1 if a given read containing ua has no error inside u but an error in a 's position;
~ \  0 otherwise.

a can be changed to either of the three other letters with probability p. Therefore, the proba­
bility that a is changed to one of them, say b t  a, is f . Then, the probability that P(Z = 1) is 
the probability of having no error inside u, (1 -  p)w, multiplied by the probability of having an 
error in a ’s position, Therefore,

P(Z=  1) =

qe =
f  (!-? )'•
P(X=  1 andZ =  1) 
P(X = 1) • P(Z = 1)

(4.4)
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Let Re be the number of reads that start in the interval I and contain no error inside u but an 
error in a’s position. Then

P{Re = k) = {nk)qe\ \ - q e)n-k. (4.5)

and We(k), the expected number of pairs (u,a) when u is correct but a is an error, given 
supp(w, a) = k, is

L
We(k) = £ p ( R e = k)

(=i
= (¡)qe\ \ - q er kL. (4.6)

The case when u has one error and a is correct is analogous.
Case 3
When u has more than one error or both u and a are erroneous, the support is much lower.

Now, we can compute a threshold, T, to differentiate the support by a correct witness for a 
correct letter from the support when either one or both of them are erroneous. We are required 
to find an interval for k such that We(k) is smaller than Wc(k). Any value in this interval is a 
good choice for T. Notice that with increasing the error rate this interval grows. Therefore the 
value of T  remains good when the error rate reduces with correcting errors. Figure 4.2a shows 
the value of Wc(k) and We(k) for the genome of size 4.2 million with same number of reads and 
read length of 70 with per base error rate of 0.01. Figure 4.2b illustrates the region where both 
Wc(k) and We(k) are very small.

Such a region may not exist, for example in low coverage, when both We(k) and Wc(k) are 
very low. In order to cover also this case, the value of T is increased by an experimentally 
computed constant of two:

T  = min({*|(W,c(*) > We(k))) + 2. (4.7)

4.3.2 Estimating the witness length
We should also consider another case when errors in a read are distributed in such a way that 
no w consecutive correct positions exist. In this case, such reads can not be corrected using the 
current procedure because a correct witness at any position can not be fit. We are required to 
estimate a good value for w to reduce the chance of this. Let f w(k, l) be the number of possible 
ways to place k errors in a read of length / such that any interval of length w contains at least 
one error (Eq. 4.8).

m , i)
(O’ lfl< W ,

' o i f* <  L^J,
k IX i fw(k — 1,1 — 0, otherwise.

The probability of having k errors in a read of length l is,

(4.8)

f w(k,Dpk( \ - p ) ‘-k. (4.9)
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k k

(a) (b)

Figure 4.2: a) The values of Wc(k) and We(k) for L - n  -  4.2 mil., / = 70, w = 21, p  = 0.01 b) 
the region of the (a) where the values of both Wc(k) and We(k) are very low. The value of the 
threshold T in this example equals 9.

Then the expected number of such reads is,
n

2  f J X  Dpk( 1 -  p t k = U k ,  l)pk( 1 -  p t kn. (4.10)
i=i

An example is illustrated in Figure 4.3 for a genome length of 4.2 billion and read length of 
70 with different per base error rate. It can be obtained that the number of reads with k errors 
decreases with k but f w(k, l) increases and so the maximum is reached somewhere around 4-5 
errors.

Therefore, the total number of reads uncorrectable with a witness of length w for different 
value of k is,

t

U(w) = f w(k, l)pk( 1 -  p t kn. (4.11)
k =\

Let the expected number of erroneous reads be £<, = (1 -  (1 -  p)‘)n. The percentage U(w') 
represents out of Ee for w -  21 and w = 18 for different error rate is shown in Table 4.2. It can 
be seen from Figure 4.4 and Table 4.2 that decreasing the witness length will drop the number 
of uncorrectable reads.

However by decreasing the witness length we may face a new problem. The probability of 
the witness occurring more than once in the genome with small witness length increases. In 
this case, correct positions may be wrongly changed as follows. Consider the case that a is 
correct but its witness u is sampled as v in some reads (|v| = |«|). Assume that the probability
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k k

(a) w = 21 (b) w = 18

Figure 4.3: The number of reads with a given number of errors and no error-free interval of 
length w for L — n = 4.2 mil. and / = 70.

p Ee U(w)/Ee(%) 
w = 21 w = 18

0.01 2121678 0.15 0.02
0.02 3178885 0.87 0.17
0.03 3701953 2.56 0.68

Table 4.2: The percentage of the total number of reads uncorrectable with a witness of length 
w (U(w)) with a witness of length w out of the total number of expected erroneous reads (Ee).
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p=0.01 p=0.02

(a) (b)

p=0.03

U(w)/errReads
D(w)/errReads

w w

( C ) (d)

Figure 4.4: (a-b-c) The values of U(w) and D(w) as percentages of the total number of erro­
neous reads, Ee, for L = n = 4.2 mil., / = 70, and p -  0.01. (d) The values of U(w) + D(w) as 
percentages of the total number of erroneous reads, Ee, for L = n -  4.2 mil., / = 70.
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of v appearing in Sf is non-negligible, that is, v occurs in (S  at some position followed by b t  a. 
Then supp(v, b) will be very large where supp(v, a) will be very small. In this case, a probably 
will be changed, incorrectly, into b. Therefore, we require to take into account such of errors.

The probability that u is erroneous is

P(u is erroneous) = 1 -  P(u is correct)
= 1 - 0  ~P)W- (4.12)

The probability that a witness of length w starts at position i is ^  since the probability of 
occurrence of each base at a specific position is Therefore the probability that it does not 
start at position i is 1 — The witness does not appear in the genome if  if it does not start at 
any position i where 0 < i < L - w  + \ with probability of (1 -  ^ ) L~w+l. Since the difference 
between L and L - w  + 1 is negligible, the probability is chosen to be (1 -  -^)L in Eq. 4.13.

P(v appears in i f ) = 1 -  P(v does not appear in if)

=“ 1 - 0 - ¿ A  0-13)

Assume u is erroneous, a is correct, and v appears in if  and b t  a. Then, the probability 
for this case based on Eq. 4.12 and 4.13 is

qw = (1 ~ O -  P)w)(1 -  pX  1 -  (1 -  ^ ) L) \ -  (4.14)

The probability that none of the correct positions in a given read is changed this way is 
(1 -  qw)l~w. Therefore, the probability that at least one correct position in a given read is 
changed is

1 - ( 1  - q j ~ w. (4.15)

A read is correct with probability (1 -  p)1. Then the expected number of destructible reads, 
that is, correct reads that are turned erroneous this way is

n

D(w) = ^  P(r¡ are turned erroneous^, is correct) • P(r¡ is correct)
i=i

= ¿ a -a  - qj - » ) ( i - p y
i=i

= { \ - { \ - q wt wX \ - p ) ln. (4.16)

It can be seen from Figure 4.4 that lowering the witness length w decreases the number 
U(w) of uncorrectable reads but increases the number D(w) of destructible. Therefore a better 
evaluating function for choosing the witness length is to minimize U(w) + D(w).

wm = argmin(i/(w) + D(w)). (4.17)
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It can be seen from Figure 4.4d that the optimal values for p = 0.01,0.02,0.03 are wm -  19, 
17,16, respectively.

The highest accuracy for the current iteration and a greedy strategy can be obtained with 
w = wm, theoretically. In order to avoid changing correct reads, a combination of values that 
are close to the optimal wm and the smallest w,

wM = argmin(D(w) < 0.000\Ee) (4.18)
W

works best in practice. While witnesses of length wM effectively correct all but the uncor­
rectable U(wm) reads, those of length wm will create large enough stretches of consecutive 
correct positions inside an additional U(wM) -  U(wm) reads so that they become correctable 
by witnesses of length wM- Also, wM satisfies the conditions under which we computed the 
parameter T and hence it will be also used for this purpose. The sequence of witness lengths 
used in the HiTEC algorithm, denoted wseQ = wseq[ 1 • • • 9], is:

Wm + 1 ,WM + 1 ,w M + 1 ,wm,w M,xvM,wm -  1 ,w M-  1 ,w M -  1. (4.19)

Finally, since some reads contain several errors, the correcting procedure is done iteratively 
until the number of corrected positions in a single iterations drops below a certain threshold.

4.4 The algorithm
The pseudo code of the HiTEC algorithm that results from the above reasoning in shown is 
Figure 4.5. Notice that the input parameters of HiTEC are only L and p. The value of L is 
either known before the experiment or can be estimated by either a biological experiment or 
an expectation maximization procedure (such as in [40]). The value of p can be approximated 
from the machine that does the sequencing. As previously mentioned, the libdivsufsort library 
of [38] is used for the construction of the SA array in Step 7. The libdivsufsort library is the 
state-of-the-art algorithm for suffix array construction. It is significantly faster and more space 
efficient than the theoretically optimal algorithms. We did not store the LCP array since we 
only require it in Step 8, for construction of clusters. Instead, we calculate the LCP values by a 
direct computation. Cache effects ensured that the time remains essentially the same.

The iterative greedy algorithm for correcting erroneous letters is as follows. In Steps 10-11, 
the set of correct and erroneous letters supported by a witness u are constructed if u generates 
a large enough cluster. This procedure is done for all witness u. In Step 14, if there is no 
ambiguity, only one correct letter exists in the cluster and the erroneous letters will be corrected 
to the correct letter. In case of ambiguity, there is more than one correct letter in the cluster, the 
next two letters are checked in (Step 18) to choose the reliable correct letter. The position of a 
in the string R corresponds to a position inside a read r which can be some rj or r). In either 
case, we correct both r and its reverse complement r.

The iterative procedure continues until the number of changed based in each iteration is less 
than 0.01 % of the total number of bases (Step 22) or 9 iterations are performed. With increasing 
number of iterations, the ratio between the number of changed bases in one iteration and the 
total number of bases become less reliable as indicator of the actual number of corrected reads. 
Therefore, we add the last stopping condition.
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We did not mention one practical improvement in the algorithm. In case of high coverage, 
HiTEC can split the data set into several sets of lower coverage. The algorithm in Figure 4.5 
will be applied on each subset independently. This will decrease the space usage.

HiTEC (ru r2, • • • r„)

- given: n reads rx---rn (of length / each); L and p
- output: n corrected reads

1 compute wm and wM //using Eq. 4.17 and 4.18, resp.
2 compute T //using Eq. 4.7 with w = wm
3 i <— 1 //iteration number
4 repeat
5 c <— 0 //bases changed this iteration
6 W <- wseq[i] //from Eq. 4.19
7 construct R and compute SA and LCP
8 compute the clusters in SA for all witnesses of length w
9 forali w i t n e s s  u wi t h clust(w) > T + 1

10 Corr <— {a \ supp(w, a) > T }
11 E rr <— {a \ supp(u, a) < T  -  1 )
12 for all a e Err
13 if (|Corr| = 1)
14 correct a to b € Corr // change both r and r
15 c «- c + 1
16 if (|Corr| > 2)
17 for all b e Corr
18 if (ua, ub followed by same two letters)
19 correct a to b  // change both r and r
20 c «— c + 1
21 i *— i+  1
22 untili ((£ < 0.0001) or (/ > 9))
23 return all rj s from R

Figure 4.5: The HiTEC algorithm.
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EXPERIMENTS

5.1 Accuracy
The ratio between the number of corrected reads and the number of initially erroneous reads 
is called accuracy. A read is correct if it appears as a substring in the genome and erroneous 
otherwise. A suffix array of the genome is built in order to search reads in the genome. Then 
the erroneous/correct status of all reads (before and after correction) has been found. We have:

• True Positive(TP): the number of erroneous reads that are corrected

• True Negative(7W): the number of correct reads that are left unchanged

• False Positive(FP): the number of correct reads that are wrongly changed

• False Negative(FA): the number of erroneous reads that are left unchanged

• errbef: the number of erroneous reads before correction (TP  + FN )

• erraft: the number of erroneous reads after correction (FP + FN)

Then accuracy is defined in Eq. 5.1.

accuracy
errbef -  erraft

CITbef
T P - F P  
TP + FN (5.1)

We have compared the accuracy of HiTEC with that of SHREC, CUDA and Reptile on a 
number of data sets (Table 3.1), including those of [50, 52, 65]. Several bacterial genomes, 
see Table 3.1, were downloaded from GenBank under the accession numbers given. We refer 
to these genomes by their IDs in parentheses in the first column of Table 3.1. We generated 
simulated data sets as those used in [50, 52] from the above genomes by uniformly sampling 
reads with a given length, coverage, and per-base error rate. That is, we do not use the same 
data sets but they were generated in the same way. According to the results, the performance of 
the programs does not depend on the generation of the data sets and therefore we can assume

39
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Data set Accuracy
Genome read len. covrg. err.(%) SHREC SHRECpaper CUDA Reptile HiTEC
S.cer5 70 70 1 95.85 95.70 92.89 99.79
S.cer5 70 70 2 88.93 90.50 83.22 99.55
S.cer5 70 70 3 78.15 84.00 71.71 99.40
S.cer7 70 70 1 94.83 95.30 92.93 99.74
S.cer7 70 70 2 85.60 90.00 83.38 99.58
S.cer7 70 70 3 71.61 83.30 71.90 99.39
H.inf 70 70 1 91.21 94.10 87.50 93.00 99.73
H.inf 70 70 2 76.35 88.20 76.60 83.57 99.50
H.inf 70 70 3 55.84 81.00 63.60 72.08 99.02
E.coli 70 70 1 89.37 93.50 92.98 99.75
E.coli 70 70 2 71.38 87.40 83.45 99.42
E.coli 70 70 3 47.80 80.00 71.97 99.22

Table 5.1: Accuracy comparison for the data sets of [50]

our simulated data sets are identical with those of [50, 52]. All programs are run with their 
default parameters.

The comparison of the algorithms using the data sets used in [50] is shown in Table 5.1, 
All of data sets are generated by uniformly sampling reads of length 70 with coverage 70 for 
different per base error rate, 1, 2, and 3 %. The “SHREC” column represents the accuracy 
values we obtained by running the SHREC program whereas the values in the SHRECpaper 
column are taken from [50]. Since we were not able to run the “CUDA” implementation we 
just put the results in the paper [52] in the “CUDA” column. Thereby, some values are missing 
for these data sets since in [52] those tests have not been performed. It can be seen that HiTEC 
has accuracy over 99% for all data sets which is significantly higher than all previous results.

Table 5.2 shows the data sets used in [52] with smaller read length 35 and coverage 70. 
Since the results for SHREC provided in [50] did not include these data sets, we only put a 
column “SHREC” representing the accuracy values we obtained by running SHREC with its 
default parameters. In the “CUDA” column, accuracies from [52] is reported. Again HiTEC’s 
accuracy for all data sets is over 90% and higher than both of SHREC and CUDA.

We also evaluate the proposed method on a mixture of read lengths and coverage levels 
taken from the longest genome, E.coli. These data sets are shown in Table 5.3 . The compar­
ison was done by running the SHREC program and HiTEC. It can be seen that HiTEC with 
automatic tuning parameters has a stable performance for all different kinds of data sets with 
different read lengths and coverages. The accuracy of HiTEC is again over 90% and much 
higher than SHREC.

In order to be more precise, we did more comparison on several real sets of Illumina reads 
which are shown in Table 5.4. The first one, S.aureus, was also used in [50] and is available 
from www.genomic.ch/edena.php. This data set was previously used in [21]. Both the first and 
the second real data sets, S.aureus and H.acinonychis, were used in [52]. The second one, 
H.acinonychis, is available from sharcgs.molgen.mpg.de/download.shtml and it was used ini­
tially by [17]. The third one, E.coli2, is new and is available from clcbio.com/index.php?id=1290,

http://www.genomic.ch/edena.php
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Data set Accuracy
Genome read len. covrg. err.(%) SHREC CUDA HiTEC
S.cer5 35 70 1 96.09 83.50 96.27
S.cer5 35 70 2 93.43 77.20 96.90
S.cer5 35 70 3 89.46 69.90 93.95
S.cer7 35 70 1 95.31 83.60 95.76
S.cer7 35 70 2 92.27 77.20 95.86
S.cer7 35 70 3 88.13 69.90 93.48
H.inf 35 70 1 93.34 83.50 96.39
H.inf 35 70 2 89.45 77.20 94.80
H.inf 35 70 3 83.93 69.90 89.83
E.coli 35 70 1 91.50 83.60 94.41
E.coli 35 70 2 87.06 77.20 94.37
E.coli 35 70 3 80.76 69.90 91.13

Table 5.2: Accuracy comparison for the data sets used in [52]

Data set Accuracy
Genome read len. covrg. err.(%) SHREC HiTEC
E.coli 70 35 1 93.44 99.75
E.coli 70 35 2 87.87 99.46
E.coli 70 35 3 80.84 99.25
E.coli 50 50 1 93.44 99.25
E.coli 50 50 2 88.85 98.75
E.coli 50 50 3 83.65 97.88
E.coli 50 35 1 93.31 99.27
E.coli 50 35 2 89.20 99.06
E.coli 50 35 3 83.85 97.91
E.coli 35 50 1 91.60 94.37
E.coli 35 50 2 87.40 94.37
E.coli 35 50 3 82.32 91.15

Table 5.3: Accuracy comparison between SHREC and HiTEC for a variety of read lengths, 
coverage levels, and error rates sampled from the E.coli genome.

Genome genome len. read len. original data set after mapping
reads coverage reads coverage

S.aureus 2,820,462 35 3,835,036 47.6 3,422,582 42.5
H.acinonychis 1,553,927 36 11,628,154 269.4 8,148,208 188.8
E.coli2 4,686,137 35 2,601,425 19.4 2,377,936 17.8

Table 5.4: List of several real sets of Illumina reads (original data set and after mapping using 
RMAP).



Chapter 5. EXPERIMENTS 42

Data set Accuracy

Genome read len. covrg. err.(%) SHREC SHRECpaper CUDA HiTEC

S.aureus 35 42.5 1.00* 74.75 88.30 48.30 93.38

H.acinonychis 36 188.8 1.60* 34.83 47.40 91.26

E.coli2 35 17.8 0.38* 80.65 90.40
* Calculated from Eq. 5.4.

t  Calculated from Eq. 5.3.

Table 5.5: Accuracy comparison for several real sets of Illumina reads listed in the “after 
mapping” column of Table 5.4.

the CLCbio web site, as an example of NGS data. A fourth real data set, E.coli, has been sug­
gested by one of the reviewers of our paper [23] as a more recent example of Illumina reads 
with accession number ERA000206.

The real data sets were used in [50, 52] with a different coverage and number of reads 
(first and second data sets in Table 5.5). The comparison between the original data sets and the 
reduced ones after mapping are given in the fourth and fifth columns of Table 5.4. According 
to [48], the data sets were reduced by retaining only reads that mapped with three or less 
mismatches by mapping reads using RMAP, a read mapping software, [54]. The number of 
reads and the coverage after mapping are given in the last two columns of Table 5.4.

./rmap -c chromosome dir -w 36 -m 3 -v -o output file reads file (5.2)

The per-base error rate is calculated by counting the total number of mismatches from the 
output file of RMAP. For instance, the number of reads that were mapped with 0,1,2, and 3 
mismatches for the S.aureus data set were 2,573,004, 589,619, 189,094, and 76,104, respec­
tively. Therefore, the total number of mismatches is 1,196,119. The per-base error rate (err) 
is

err
No. of mismatches ^
total No. of bases 

1,196,119
35x3,422,582
.009985101 * 1%. (5.4)

We compared the accuracy of SHREC, CUDA, and HiTEC on the reduced data sets and the 
results are shown in Table 5.5.

We have also tested SHREC and HiTEC on the original data sets and the results are shown 
in Table 5.6. In the case of the original data sets we could not map all reads and therefore could 
not provide the error rate in that way. We estimated the error rate by searching the reads in the 
genome and counting the number of erroneous reads, denoted by errs. We then estimated the 
error rate by applying a binomial distribution, it is given in Eq. 5.5. For example in the forth
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Data set Accuracy
Genome7 read len. covrg. err.(%) SHREC HiTEC
S.aureus 35 47.6 1.06* 57.47 74.21
H.acinonychis 36 269.4 2.06* 15.23 53.91
E.coli2 35 19.4 0.41* 59.26 68.20
E.coli 100 574 0.50* 87.49
* Calculated from Eq. 5.5. 

» Calculated from Eq. 5.6.

Table 5.6: Accuracy comparison for several real sets of Illumina reads listed in the “original 
data set” column of Table 5.4.

Data set Accuracy
Accession number read len. covrg. err.(%) Reptile HiTEC
SRX00429 36 160 0.44 84.32 86.17
SRR001665.1 36 80 0.38 75.28 85.78

Table 5.7: Accuracy comparison between Reptile and HiTEC on two sets of reads from the 
E.coli genome that were used in [65].

data set there are 10444830 erroneous reads among 26633604 total reads.

err 1 - 0 - = ) »n
10444830 . ,

1 - ( ( 1 ---------------)T®)
26633604 '

0.004966184 « 0.5%.

(5.5)

(5.6)

For the first three data sets, the accuracy of both programs is lower, as expected, but the ad­
vantage of HiTEC increases. SHREC program was not able to produce any results on the forth 
data set because of its very large size. The performance of HiTEC is very high.

Table 5.7 lists the relevant data sets from [65]. All of them are available in the Sequence 
Read Archive (SRA, http://www.ncbi.nlm.nih.gov/srd). However, for the data sets in SRA, the 
sequence of the genome from which the reads were sequenced is usually not known. (Indeed, 
there is no need to sequence a known genome, unless it is done precisely to provide data for 
verious tools.) When the genome is not known, the closest one known can be used but the 
results are not relevant since a very large proportion of the reads cannot be mapped.

The percentage of the reads that can be mapped (Table 5.8) is around 97% for the first two 
data sets in [65], indicated true reference genome, and only around 60-70% for the other ones. 
This is clear indication that the genomes for the last four data sets are not the actual genomes 
that produced the reads. Therefore, we just evaluated HiTEC on two of the data sets used in 
[65],

A discussion about all above results among all different experiments is given below. First, 
it can be obtained that HiTEC’s accuracy is significantly higher than that of all the other pro­
grams for all experiments. It is also the case for the real data sets. While HiTEC’s accuracy

http://www.ncbi.nlm.nih.gov/srd
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Data
Allowed
mismatches

Number of 
reads §

Uniquely
mapped
reads(%)

Ambiguously
mapped
reads(%)

SRX000429 5 20,708,709 96.5 2.5
SRR001665J 5 10,359,952 96.7 2.5
SRR006332 5 17,675,271 79.9 1.5
D 5 4,000,000 84.1 1.6
SRR022918J 10 7,049,153 62.5 1.5
SRR034509J 10 8,874,761 63.5 1.2

15 68.8 1.4

8 number of reads containing no ambiguous bases.

Table 5.8: Results of mapping each data sets in Table 3.4 to the corresponding genome using 
RMAP [65].

is not affected by the error rate or coverage, CUDAs accuracy is much lower compared to the 
simulated data and SHRECs accuracy decreases with the increase of the error rate. The accu­
racy of Reptile is clearly lower than that of HiTEC when quality scores are available (Table 5.7) 
and much lower when they are not (Table 5.1). HiTEC is also much less affected than Reptile 
by lower coverage.

Second, SHREC’s accuracy is significantly different between the results from our tests of 
the software and those provided by [50], especially with increasing genome length and error 
rate. The difference appears because the best accuracy is obtained among a number of tuned 
parameters in [50]. As mentioned before, we run other programs with default parameters, 
without adjusting parameters. Also the accuracy values from [52] are higher than the values 
obtained by the tests of Euler-SR reported by [50]. The accuracy of HiTEC is significantly 
higher than all the other accuracy values, either the values reported in the published papers or 
the values from our experiments.

Third, in order to have a fair comparison between SHREC and HiTEC, we run SHREC 
program with the same number of iteration as ours, as resulted from the stopping criterion in 
Step 22. However, HiTEC’s accuracy in most cases after one or two iterations is already higher 
that that of SHREC after nine iterations.

Similarly with SHREC, the parameters of Reptile are fixed. That means they do not adapt to 
the data. As a result, Reptile could not correct any errors of the fourth data set from Table 5.5.

Finally, we evaluate HiTEC using accuracy which is different from the measure, gain, used 
in [65]. The results are totally similar with our accuracy performance. For the data sets 
considered in Table 5.7, the gain for HiTEC is 83.33 and 82.22, respectively, whereas Reptile’s 
is 82.81 and 72.53.
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Data set Time (s) Space (MB)
Genome read len. covrg. err.(%) SHREC Reptile HiTEC SHREC Reptile HiTEC
S.cer5 70 70 1 3126 151 543 1340 727 399
S.cer5 70 70 2 4261 222 665 1350 531 399
S.cer5 70 70 3 7597 284 1193 1293 666 399
S.cer7 70 70 1 6511 373 1069 1502 1184 754
S.cer7 70 70 2 10649 618 1581 1512 1314 754
S.cer7 70 70 3 15823 792 2399 1745 1148 754
H.inf 70 70 1 9595 783 1971 1675 1434 1324
H.inf 70 70 2 15826 1340 2866 2090 1630 1324
H.inf 70 70 3 23319 1810 4253 3072 1771 1324
E.coli 70 70 1 23530 2741 5107 3194 1865 3210
E.coli 70 70 2 32073 5365 6290 3628 2266 3210
E.coli 70 70 3 57185 8812 11193 3437 2711 3210

Table 5.9: Time and space comparison between SHREC, Reptile and HiTEC.

5.2 Time and space comparison
We evaluated also the performance of all algorithms in terms of time and space (Table 5.9). 
The tests were performed for the data sets in Table 5.1 on a Sun Fire V440 Server, with four 
UltraSPARC Illi processors at 1593MHz, 4GB RAM each, running SunOS 5.10. In addition to 
obtaining higher accuracy, HiTEC is time and space efficient, because of the use of good data 
structures. Our serial implementation of HiTEC is about six times faster than the multithreaded 
SHREC. The space required by our algorithm is comparable to that of Reptile and both are 
lower than SHRECs. Reptile is slightly faster however, the running time of HiTEC includes 
many iterations. In fact HiTEC may achieve higher accuracy sooner.
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CONCLUSION

Correcting errors in next generating sequencing data is highly demanded for further NGS ap­
plications. In spite of several programs for handling this issue, all of them require lots of 
parameters to be quite tuned. Beside tuning parameters, the proportion of the reads that are 
correctable using these methods is not very high. In this thesis we have provided an algorithm 
which is highly efficient at correcting the errors of next generating sequencing.

Our proposed method is based on the suffix array accompanied by statistical analysis. Be­
cause of huge amounts of data generated by these novel technologies, a good data structure is 
required to be able to analyze these data. The suffix array of a string can be used as an index 
to quickly locate every occurrence of a substring within the string. It can be constructed in 
linear time and space. Since reads are sampled several times randomly from different parts of 
genome with a high coverage, it can provide a good evidence to determine the erroneous bases. 
In order to correct errors with high accuracy and sensitivity, a good estimation of parameters 
are required. A careful statistical analysis is required to estimate those. We have provided the 
user with a fully automated tool for correcting the reads.

We have performed extensive comparisons with the best existing algorithms. They revealed 
that the accuracy of our algorithm is significantly higher than the accuracy of all previous 
algorithms. Our algorithm requires only the genome length and per-base error rate as the input 
parameters. Our algorithm is the only one which is able to automatically adjust to the input 
data.

We chose the data sets from Illumina reads. However, the approach can be applied to any 
type of reads for which the errors consist mainly of substitutions.

6.1 Very large genomes
We have also performed measurements to predict the ability of our algorithm to correct errors 
in the case of very large genomes. Figures 6.1 and 6.2 show the percentage of U(w) + D(w) 
(uncorrectable plus destructible reads) for genome size 1GB with read lengths of 75 and 100, 
respectively, which are two common read lengths from Illumina.

In practice, the error rate increases with read length but so does our algorithms performance, 
only faster. While for reads of size 35 the ratio of those that can be corrected decreases below 
50% for very large genomes, the situation is much better already for read size 50. In a 1GB

46
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p=0.01 p=0.02

p=0.03

(c) (d)

Figure 6.1: a-b-c) The values of U ( w )  and D(w) as percentages they represent out of the total 
number of erroneous reads, Ee, for L = n = 1 bil. and / = 75. d) The values of U ( w ) + D(w) 
as percentages they represent out of the total number of erroneous reads, Ee, for L = n -  1 bil. 
and / = 75.
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Figure 6.2: a-b-c) The values of U(w) and D(vv) as percentages they represent out of the total 
number of erroneous reads, Ee, for L — n — l bil. and / = 100. d) The values of U(yv) + D(w) 
as percentages they represent out of the total number of erroneous reads, Ee, for L -  n = l bil. 
and / = 100.
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genome, for an error rate of 0.01 and a read length 50, our algorithm can correct up to 97.72% 
of the erroneous reads but when we increase the read length to 100, we can correct up to 
97.70% even for a very high error rate of 0.03.

6.2 Further research
The read length is going to grow with the 3rd generation of sequencing technologies such as 
single molecule sequencing or nanopore sequencing (Zhou et al., 2010). By increasing the read 
length, the accuracy of our algorithm increases. Thereby, we hope that our algorithm will be 
very competitive even with the rapid change of sequencing technologies.

We plan to improve our algorithm in several ways. Quality scores as well as additional 
knowledge of the bias of the sequencing devices concerning the actual distribution of the posi­
tions of the reads in the genome could be used to improve further the accuracy of our algorithm. 
A parallel implementation of the proposed method is highly demanded. That causes not only 
to expedite the correcting procedure but also to provide the ability to handle the even more 
massive outputs to come. A new implementation will also be capable of dealing with all types 
of reads as well as with mixed sets of reads.



Bibliography

[1] [online], available: http://academic.brooklyn.cuny.edu/biology/bio4fv/page/molecular%20 
biologyldna-structure.html.

[2] NCBI science primer. 2004. [online], available: http://www.ncbi.nlm.nih.gov/About/primer/ 
images/Actg4. GIF.

[3] The scientist. 2004. [online], available: http://www.the-scientist.eom/2004/09/27/44/l/.

[4] Anderson S., Bankier A.T., Barrell B.G., de Bruijn M.H., Coulson A.R., Drouin J., Eperon 
I.C., Nierlich D.P., Roe B.A., et al. Sequence and organization of the human mitochondrial 
genome. Nature, 290:457-465, 1981.

[5] Aluru S. Ko R Lookup Tables, Suffix Trees and Suffix Arrays. Handbook of Computational 
Molecular Biology, Edited by Srinivas Aluru, 2005.

[6] Baer R., Bankier A.T., Biggin M.D., Deininger P.L., Farrell P.J., Gibson T.J., Hatfull G., 
Hudson G.S., Satchwell S.C., et al. DNA sequence and expression of the B95-8 Epstein- 
Barr virus genome. Nature, 310:207-211, 1984.

[7] Bankier A.T., Beck S., Bohni R., Brown C.M., Cerny R., Chee M.S., Hutchison C.A., 
Kouzarides T., Martignetti J.A., et al. The DNA sequence of the human cytomegalovirus 
genome. DNA Seq., 2:1-12, 1991.

[8] Barrell B.G., Air G.M., and Hutchison C.A. Overlapping genes in bacteriophage phixl74. 
Nature, 264:34-41,1976.

[9] Bloom B. Space/time trade-offs in hash coding with allowable errors. Commun. ACM, 
13:422-426, 1970.

[10] Campagna D„ et al. PASS: a program to align short sequences. Bioinformatics, 25:967­
968, 2009.

[11] Campbell P.J., et al. Identification of somatically acquired rearrangements in cancer using 
genome-wide massively parallel paired-end sequencing. Nat. Genet. 40: 722-729, 2008.

[12] Chaisson M.J., Tang H„ and Pevzner P.A. Fragment assembly with short reads. Bioinfor­
matics, 20:2067-2074, 2004.

[13] Chaisson M.J. and Pevzner P.A. A short read fragment assembly of bacterial genomes. 
Genome Res., 18:324-330, 2008.

50

http://academic.brooklyn.cuny.edu/biology/bio4fv/page/molecular%20
http://www.ncbi.nlm.nih.gov/About/primer/
http://www.the-scientist.eom/2004/09/27/44/l/


BIBLIOGRAPHY 51

[14] Chaisson M.J., et al. De novo fragment assembly with short mate-paired reads: Does the 
read length matter? Genome Res., 19:336-346, 2009.

[15] Cox-Foster D.L., et al. A metagenomic survey of microbes in honey bee colony collapse 
disorder. Science 318:283-287, 2007.

[16] Dahl F. et al. Multigene amplification and massively parallel sequencing for cancer mu­
tation discovery. Proc. Natl. Acad. Sci. USA 104:9387-9392, 2007.

[17] Dohm J.C., et al. SHARCGS, a fast and highly accurate short-read assembly algorithm 
for de novo genomic sequencing. Genome Res., 17:1697-1706, 2007.

[18] Eaves L.H. and Gao Y. MOM: maximum oligonucleotide mapping. Bioinformatics, 
25:969-970, 2009.

[19] Fiers W., Contreras R., Haegemann G., Rogiers R., Van de Voorde A., Van Heuverswyn 
H., Van Herreweghe J., Volckaert G., and Ysebaert M. Complete nucleotide sequence of 
SV40 DNA. Nature, 273:113-120, 1978.

[20] Helmut Kae. The science creative quarterly. 2003. [online], available: 
http://www.scq.ubc.ca/genome-projects-uncovering-the-blueprints-of-biology/.

[21] Hernandez D., et al. De novo bacterial genome sequencing: millions of very short reads 
assembled on a desktop computer. Genome Res., 18:802-809, 2008.

[22] Hutchison C.A. DNA sequencing: bench to bedside and beyond. Nucleic Acids Research, 
35(18):6227-6237, 2007.

[23] Ilie L., Fazayeli F., and Ilie S. HiTEC: accurate error correction in high-throughput se­
quencing data. Bioinformatics, 27(3), 295-302, 2011.

[24] Jeck W.R., et al. Extending assembly of short DNA sequences to handle error. Bioinfor­
matics, 23:2942-2944, 2007.

[25] Jiang H. and Wong W.H. SeqMap: mapping massive amount of oligonucleotides to the 
genome. Bioinformatics, 24:2395-2396, 2008.

[26] Johnson D.S., et al. Genome-wide mapping of in vivo protein-DNA interactions. Science, 
316:1497-1502,2007.

[27] Karkkainen J. and Sanders P. Simple linear work suffix array construction, in Proc. o f 
ICALP03, Lecture Notes in Comput. Sci. 2719, Springer-Verlag, Berlin, Heidelberg 943­
955, 2003.

[28] Kasai T., et al. Simple linear work suffix array construction. Proc. o f CPM01, Lecture 
Notes in Comput. Sci. 2089, Springer-Verlag, Berlin 181192, 2001.

[29] Kim D.K., et al. Constructing suffix arrays in linear time. J. Discrete Algorithms, 3(2- 
4): 126-142, 2005.

http://www.scq.ubc.ca/genome-projects-uncovering-the-blueprints-of-biology/


BIBLIOGRAPHY 52

[30] Kim Y.J., et al. ProbeMatch: a tool for aligning oligonucleotide sequences. Bioinformat­
ics, 25:1424-1425, 2009.

[31] Ko P. and Aluru S. Space efficient linear time construction of suffix arrays. J. Discrete 
Algorithms, 3(2-4): 143-156, 2005.

[32] Lander E.S., et al. Initial sequencing and analysis of the human genome. Nature, 409:860­
921,2001.

[33] Langmead B., et al. Ultrafast and memory-efficient alignment of short DNA sequences to 
the human genome. Genome Biol., 10:R25, 2009.

[34] Lister R., et al. Highly integrated single-base resolution maps of the epigenome in Ara- 
bidopsis. Cell 133:523-536, 2008.

[35] Manber U. and Myers G. Suffix arrays: a new method for on-line search. SIAM J. Com- 
put., 22(5):935-948, 1993.

[36] Mardis E.R. The impact of next-generation sequencing technology on genetics. Trends in 
Genetics, 24(3): 133-141,2008.

[37] Metzker M.L. Sequencing technologies-the next generation. Nature Reviews Genetics, 
11:31-46,2010.

[38] Mori Y. libdivsufsort: A lightweight suffix sorting library. 2010. [online], available: 
http://code.google.com/pHibdivsufsort/.

[39] Morin R.D., et al. Application of massively parallel sequencing to microRNA profiling 
and discovery in human embryonic stem cells. Genome Res., 18:610-621,2008.

[40] Myers G. Building fragment assembly string graphs. Bioinformatics, 21:ii79-ii85, 2005.

[41] Meyer M., Stenzel U. and Hofreiter M. Parallel tagged sequencing on the 454 platform. 
Nat. Protocols 3:267-278, 2008.

[42] Nickolls J., Buck I., Garland M., et al. Scalable parallel programming with cuda. ACM 
Queue, 6:39-55, 2008.

[43] Olena Morozova. Genome British Columbia. 2009. [online], available: 
http://www.genomebc.ca/education/articles/sequencing/.

[44] Peer I. and Shamir R. Spectrum alignment: Efficient resequencing by hybridization. Pro­
ceedings o f the Eighth International Conference on Intelligent Systems for Molecular Bi­
ology (San Diego, CA), 260-268, 2000.

[45] Pevzner P.A. et al. An Eulerian path approach to dna fragment assembly. Proc. Natl. 
Acad. Sci., 98:9748-9753, 2001.

[46] Sanger F., Nicklen S., and Coulson A.R. DNA sequencing with chain-terminating in­
hibitors. Proc. Natl. Acad. Sci., 74:5463-5467,1977.

http://code.google.eom/p/libdivsufsort/
http://www


BIBLIOGRAPHY 53

[47] Sanger F., Coulson A.R., Hong G.F., Hill D .F., and Petersen G.B. Nucleotide sequence 
of bacteriophage lambda DNA. J. Mol. Biol., 162:729-773, 1982.

[48] Schmidt B. Personal communication. 2010.

[49] Schones D.E., et al. Dynamic regulation of nucleosome positioning in the human genome. 
Cell 132:887-898, 2008.

[50] Schroder J., et al. SHREC: a short-read error correction method. Bioinformatics, 25:2157­
2163,2009.

[51] Shendure J. and Ji H. Next-generation DNA sequencing. Nat Biotech, 26:1135-1145, 
2008.

[52] Shi H., et al. A parallel algorithm for error correction in high-throughput short-read data 
on CUDA-enabled graphics hardware. J. Comput. Biol., 17:603-615, 2010.

[53] Simpson J.T., et al. ABySS: A parallel assembler for short read sequence data. Genome 
Research, 19:1117-1123, 2009.

[54] Smith A.D., et al. Using quality scores and longer reads improves accuracy of Solexa 
read mapping. BMC Bioinformatics, 9:128, 2008.

[55] Smith L.M., Fung S., Hunkapiller M.W., et al. The synthesis of oligonucleotides contain­
ing an aliphatic amino group at the 5 terminus: synthesis of fluorescent DNA primers for 
use in DNA sequence analysis. Nucleic Acids Res., 13:2399-2412, 1985.

[56] Smith M., Brown N.L., Air G.M., Barrell B.G., Coulson A.R., Hutchison C.A., and 
Sanger F. DNA sequence at the c termini of the overlapping genes A and B in bacte­
riophage phi X I74. Nature, 265:702-705, 1977.

[57] Smith L.M., Fung S., Hunkapiller M.W., et al. The synthesis of oligonucleotides contain­
ing an aliphatic amino group at the 5 terminus: synthesis of fluorescent DNA primers for 
use in DNA sequence analysis. Nucleic Acids Res., 13:2399-2412, 1985.

[58] Tammi M.T., et al. Correcting errors for shotgun sequencing. J. Comput. Biol., 31:4663­
4672, 2003.

[59] Tang H. Genome assembly, rearrangement, and repeats. Chemical Reviews, 107(8):3391- 
3406, 2007.

[60] Van Tassell C.P., et al. SNP discovery and allele frequency estimation by deep sequencing 
of reduced representation libraries. Nat. Methods 5:247-252,2008.

[61] Venter J.C., Adams M.D., Myers E.W. The sequence of the human genome science. Na­
ture, 291:1304-1351,2001.

[62] Watson J.D. and Crick F.H.C. A structure for deoxyribose nucleic acid. Nature, 171:737­
738, 1953.



BIBLIOGRAPHY 54

[63] Wheeler D.A., et al. The complete genome of an individual by massively parallel DNA 
sequencing. Nature, 452:872-876, 2008.

[64] Wilhelm B.T., et al. Dynamic repertoire of a eukaryotic transcriptome surveyed at single­
nucleotide resolution. Nature 453:1239-1243, 2008.

[65] Yang X., Dorman K.S., and Aluru S. Reptile: representative tiling for short read error 
correction. J. Comput. Biol., 26:2526-2533, 2010.

[66] Zhou X.G., Ren L.F., Li Y.T., Zhang M., Yu Y.D., and Yu J. The next-generation se­
quencing technology: A technology review and future perspective. SCIENCE CHINA Life 
Sciences, 53:44-57, 2010.


	ALGORITHMS FOR CORRECTING NEXT GENERATION SEQUENCING ERRORS
	Recommended Citation

	tmp.1649195257.pdf.6JBBt

