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Abstract 

Dielectric elastomers (DEs) capable of large voltage-induced deformation show promise 

for applications such as resonators and oscillators. However, the dynamic performance of 

such vibrational devices is not only strongly affected by the nonlinear electromechanical 

coupling and material hyperelasticity, but also significantly by the material viscoelasticity. 

The material viscoelasticity of DEs originates from the highly mobile polymer chains that 

constitute the polymer networks of the DE. Moreover, due to the multiple viscous polymer 

subnetworks, DEs possess multiple relaxation processes. Therefore, in order to predict the 

dynamic performance of DE-based devices, a theoretical model that accounts for the 

multiple relaxation processes is very essential. In this work, by extending the general 

modelling framework for finite-deformation viscoelasticity, a new model that accounts for 

the multiple relaxation times of DEs is proposed to study the in-plane oscillation and 

frequency tuning of DE membrane resonators. It is found that the failure (electrical 

breakdown or loss-of-tension) of the DE membrane resonator could be delayed by tailoring 

the microstructure of the DE. In particular, resonators made of DEs with higher viscosity 

usually fail earlier with smaller deformation and lower resonant frequency, but they are 

highly adjustable to achieve similar large deformation. The desirable parameters of the 

tuneable natural frequency range and voltage safe operation range are also explored. 

Furthermore, it is more effective to tune up the resonant frequency for such DE membrane 

resonators. This work can provide guidelines on better predicting the dynamic performance 

of DE-based vibrational devices, as well as their optimal design.  

Keywords 

Dielectric elastomer, viscoelasticity, frequency tuning, multiple relaxation, resonator, 

electromechanical coupling. 
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Chapter 1  

1 Introduction 

1.1 Dielectric elastomers and application 

The forefront research in the interdisciplinary area of biology and engineering has been 

bringing great attention to soft materials. Dielectric elastomers as soft electroactive 

polymers are being studied to mimic the features of biological life by their voltage-induced 

or charge-induced deformation (Suo, 2010; Zhao, Hong, and Suo, 2007). Since the material 

shear moduli of dielectric elastomers are normally only a few KPas, they are very flexible 

and capable of undergoing large deformation (up to ~500% strain). However, their 

counterparts, piezoelectric crystals and ceramics with shear moduli of a few GPas, are 

generally brittle and can only reach less than 1% of strain. Moreover, besides being light 

in weight and relatively inexpensive, dielectric elastomers also possess high energy density 

(which is usually more than 8 MJ/m3, while piezoelectric has about 1 MJ/m3), making them 

promising materials for transducers to convert mechanical energy into electrical energy 

(Saito et al., 2004; Romasanta et al., 2015; Tagarielli, et al., 2012; Treloar, et al., 1944; 

Shankar et al., 2007; Bar-Cohen, 2004; Pelrine et al., 2000). Due to these unique properties 

and advantages, DEs have been developed as actuators, sensors, resonators, compliant 

capacitors and generators, which can be potentially used in soft robotics, medical and 

biomimetic equipment, energy harvesting systems, and MEMS (Zhou et al. 2015b, 2016a 

and 2017; Chiang et al., 2012; Ahmadi et al., 2013; Anderson et al., 2010; Chiba et al., 

2011; Heydt et al., 2006; Huang et al., 2013; Shian, et al., 2014; Karsten et al., 2013; 

Kornbluh et al., 2002; Lai et al., 2012; O’Brien et al., 2010; O’Halloran et al., 2008; Carpi 

et al., 2007 and 2008; Kofod et al., 2003). 
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Figure 1.1 Basic schematic of a dielectric elastomer actuator 

A typical DE membrane actuator is schematically illustrated in Fig. 1.1. Both surfaces of 

the DE membrane are coated with highly compliant electrodes, allowing free deformation 

in three directions of the DE body. When a voltage is applied to the electrodes in Fig. 1.1 

(b), an electric field is formed along the thickness direction of the membrane. Meanwhile, 

the dielectric body is polarized by the induced electric field and the elastomer expands in 

area and reduces in thickness. The actuator illustrated in Fig. 1.1 can serve as the basic 

element for more complicated DE-based devices. For example, Figs. 1.2 and 1.3 show 

some common configurations of DE-based devices in the literature (Kornbluh et al., 2002; 

Cameron et al., 2008; McKay et al., 2010; Pei et al., 2004; Biggs et al., 2010; Carpi et al., 

2007; Pelrine et al., 2002; Ahmadi et al., 2013). 
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Figure 1.2 Flexural motion manipulation of a four-cell (in grey colour) DE membrane, 

(a) at the reference state; (b) pre-stretched by the axial tension, while cells 1 and 4 are 

subjected to (1)V  and (2)V , respectively; (c) with incremental flexural motions 

superposed on top of static finite deformation (Shmuel et al., 2016). 

 

 

Figure 1.3 Various DE configurations from assembling of membrane elements 

(Kornbluh et al., 2002). 

1.2 Large actuated deformation of dielectric elastomers 

The advantage of DE-based devices mainly lies in their large deformation capacity. 

However, the large deformation of DEs are strongly affected by multiple failure modes 

such as electrical breakdown and electromechanical instability (Pelrine et al., 1998; Kofod 

et al., 2003; Plante and Dubowsky, 2006 and 2007; Wissler et al., 2007; Kollosche et al., 

2012 and 2015; Koh et al. 2011). The electric breakdown is determined by the electric 



 

4 

 

strength of the material. When the induced electric field in the DE exceed its dielectric 

strength, the DE fails by electrical breakdown. The electromechanical instability (EMI) is 

another significant factor that could limit the large deformation of DEs. When the DE 

membrane is subjected to a voltage, the reduction in its thickness results in a stronger 

electric field through the DE membrane even if the applied voltage is fixed, which could 

lead to an excessive thinning of the DE membrane (electromechanical instability) and 

premature electrical breakdown (Plante et al., 2006; Keplinger et al., 2012). The interplay 

between the electromechanical instability and electrical breakdown can be well explained 

through the electromechanical response curve and electrical breakdown curve of DEs. 

Actuated by the applied voltage, the electromechanical response of three different types of 

DEs are shown in Fig. 1.4 (Koh et al., 2011; Zhao et al., 2010; Huang et al., 2011; Leng et 

al., 2009). As shown in Fig. 1.4(a), DEs with low dielectric strength fails by electrical 

breakdown with relatively small stretch and the membrane does not undergo EMI. For DEs 

with moderate dielectric strength, as shown in Fig. 1.4(b), EMI occurs during their 

actuation and the DE fails by premature electrical breakdown. If the dielectric strength of 

a DE is high enough, as shown in Fig. 1.4(c), the DE undergoes a snap-through deformation 

and survive the EMI, and large deformation is achieved. The snap-through deformation is 

represented by dotted arrow. 
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Figure 1.4 Electromechanical response and electric breakdown for three classes of 

DE membranes, (a) DE with low dielectric strength, (b) DE with moderate dielectric 

strength, (c) DE with high dielectric strength (Koh et al. 2011). 

In order to improve the limit of the actuated deformation of DEs, researchers have proposed 

methods to tackle the EMI. By applying a pre-stretch, the actuation strain of a silicon 

dielectric elastomer plate increases from 30% ~ 40% to 117% (Kornbluh et al., 1999; 

Pelrine et al., 2000). When the pre-stretch is large enough, EMI can even be eliminated 

(Koh et al., 2011; Zhou, et al., 2013; Kollosche et al., 2012). Another common approach 

to avoid EMI is to apply proper boundary constraints to the DE membrane (Zhou, et al., 

2013). Other alternatives to avoid EMI are also available in the literature, such as spraying 

charges on the compliant electrodes (Keplinger et al., 2010), reinforcing the DE with fibres, 

solvents and interpenetrating networks (Lu et al., 2012; Shankar et al., 2007; Huang et al., 

2012b; Ha et al., 2006). However, in the applications of DEs, their actuated deformation, 

failure modes and dynamic performance are also significantly influenced by the intrinsic 

material viscoelasticity, which is still not well-understood. Therefore, to improve the 

performance of DE-based devices, further investigations accounting for their material 

viscoelasticity are needed. 

1.3 Objectives 

The ultimate goal of this work aims to provide guidance for the reliable design of DE 

oscillators and resonators. Detailed objectives are as follows: developing a theoretical 

model to account for their material viscoelasticity with consideration of multiple relaxation 

time; studying the dynamic performance of DE membrane resonators with different 

relaxation processes; investigating the frequency tuning and dynamic behaviours of DE 

membrane resonators and uncovering possible ways to improve their design. 

1.4 Thesis structure 

Following the introduction in Chapter 1, Chapter 2 presents a literature review and 

fundamentals. The studies on dielectric elastomers considering the material hyperelasticity 

and viscoelasticity are reviewed. Also, the modeling framework for finite-deformation 
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viscoelasticity of DEs is introduced in Chapter 2. In Chapter 3, the general viscoelastic 

model in Chapter 2 is specified to investigate the performance of DE membrane resonators. 

Last but not least, Chapter 4 summarizes this thesis and provides suggestions for the future 

work. 
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Chapter 2  

2 Literature review 

In recent years, much attention has been given to the potential use of DEs in soft robotics, 

medical and biomimetic equipment and energy harvesting systems. As a result, extensive 

work has been done to study the interplay of their electromechanical deformation, multiple 

failure modes and material viscoelasticity. This chapter reviews the existing studies on 

modelling the complex electromechanical coupling behaviours of DEs. 

2.1 Hyperelasticity and fully coupled electromechanical field 

theory of DEs 

Early studies on DEs assume that the stress induced by the electric field can be determined 

by the Maxwell pressure 
2

0P E (   is the dielectric constant, 0  is the vacuum 

permittivity, E is the electric field induced by the applied voltage) (Pelrine, et al., 1998; 

Kornbluh, et al., 1999). Also, the relation between the strain and stress is assumed to be 

linear. However, the assumed linear constitutive relation between the stress and the strain 

is limited to account for small deformation, while is insufficient to describe the large 

deformation of dielectric elastomers. Later work assumed that the total stress in DEs is the 

summation of the stress associated with a strain energy density function of the material and 

the empirical Maxwell stress (Goulbourne et al., 2005 and 2007; Mockensturm and 

Goulbourne, 2006; Wissler, et al., 2005b; Ma and Cross, 2004; G. Yang, et al., 2005). For 

example, Goulbourne, Mockensturm, and Frecker (2005) proposed a non-linear model for 

axisymmetric DE membranes, in which the Mooney-Rivlin and the Ogden strain energy 

functions were adopted. Wissler and Mazza (2005b) studied the actuation of a pre-stretched 

circular DE actuator under uniaxial and biaxial tension, and compared the stresses obtained 

from the Yeoh, Ogden and Mooney-Rivlin models. Nevertheless, these uncoupled models 

are only capable of explaining some experimental results. Later, Dorfmann and Ogden 

(2005), McMeeking and Landis (2005) and Suo, Zhao, and Greene (2008) proposed the 

fully coupled field theory for the electromechanical response of DEs. In those models, the 
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strain energy density and the electric polarization are coupled in the Helmholtz free energy 

density. Moreover, most hyperelastic energy density functions can be adopted in the 

modelling framework based on the fully coupled field theory (Boyce and Arruda, 2000 and 

1993; Boyce, 1996; Gent, 1996; Rivlin, 1948; Mooney, 1940; Yeoh, 1993; Ogden, 1972). 

The fully coupled field theory better explains the nonlinear electromechanical response of 

DEs and provides a solid foundation to further study the comprehensive performance of 

DEs. 

 

Figure 2.1 Illustration of a dielectric elastomer subject to body forces, surface 

tractions, and free charges. 

The fully coupled field theory is outlined in the following section. Fig. 2.1 shows the 

current state of a dielectric elastomer subjected to the body force b (X, t), the surface 

traction T (X, t), and free charges. The volume of the dielectric body is V0 and its surface 

is S. We denote x as the current position of an arbitrary material particle of the DE, and X 

as its reference or initial position. Q (X, t) is the density of the free volume charge and 

(X, t) is the density of the free surface charge. The deformation gradient in the current 

state is described as, 

i
ik

k

x
F

X





.      (2.1) 

Introducing two arbitrary test functions ( )i X  and ( ) X , 

V
0

b

Q

S

T
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0 0
i ik

ik i i i
k kV S V

s
s dV T dS dV

X X


 

 
 

    ,      (2.2) 

0 0
k

k
k kV S V

D
D dV dS dV

X X


 


  

    ,      (2.3) 

in which 𝑠𝑖𝑘  is the first Piola-Kirchhoff stress (nominal stress), and 𝐷̃𝑘  is the nominal 

electric displacement. The equation of motion gives  

2

2
ik i

i
k

s d x
b

X dt



  


.         (2.4) 

Combining Eqs. (2.2) and (2.4) results in 

0 0 0

2

0 0 02
i i

ik i i i i i
kV S V V

d x
s dV T dS b dV dV

X dt


   


  

    .     (2.5) 

According to the Maxwell’s law, the nominal electric field kE  of the DE body must satisfy 

k
k

E
X


 


.           (2.6) 

Also, the Gauss’ law relates the nominal electric displacement  𝐷̃𝑘  and the free charge by 

k

k

D
Q

X





.           (2.7) 

Combining Eq. (2.3) and (2.7) results in, 

0 0

0 0k
kV S V

D dV dS QdV
X


 


  

   .       (2.8) 
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Therefore, the change of the total free energy fG of the dielectric elastomer due to the small 

changes of the deformation and free charges can be expressed as 

0 0 0 0

2

0 0 0 02
i

i i i i i

V S

f

V S V V

d x
G WdV b x dV T x dS Q dV dS x dV

dt
                    , (2.9) 

where 𝐖(𝐅, 𝑫̃) is the Helmholtz free energy density. Considering ix  and   in Eq. (2.9) 

as the test functions ( )i X  and ( ) X  in Eqs. (2.2) and (2.3), Eq. (2.9) is reduced to, 

0 0 0

0 0 0ik ik k k

V V V

fG WdV F s dV E D dV        .     (2.10) 

Recalling 
ik k

ik k

W W
W F D

F D
  

 
 
 

, Eq. (2.10) is rewritten as 

0 0

0 0( ) ( )ik ik k k
kV k V

f
i

W W

F
G s F dV E D dV

D
  

 
 

 
   .    (2.11) 

Minimizing the change of the free energy gives 

( , )EQ

ik
ik

W
s

F






F D
,          (2.12) 

( , )EQ

k
k

W
E

D






F D
.          (2.13) 

The Helmholtz free energy density  W(F, 𝐷̃) of the pure elastic dielectric material is equal 

to the sum of the strain energy density ( )sW F and the polarization energy (Zhao et al., 

2007), i.e.,  

0

( , ) ( )
2 det( )

KM KL
s M L

F F
W W D D


 F D F

F
.       (2.14) 
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Then the true stress  , the true electric displacement D, and the true electric field E in the 

current state of the dielectric elastomer can be determined by the relations between true 

and nominal quantities i.e., 

det( )

jk
ij ik

F
s 

F
,          (2.15) 

det( )

ik
i k

F
D D

F
,          (2.16) 

ki ikE H E ,           (2.17) 

in which 1ik ikF H  .  

2.2 Viscoelastic DEs with single relaxation process 

Other than hyperelasticity, theoretical and experimental studies have shown that DEs also 

possess strong viscoelasticity (Plante and Dubowsky, 2007; Zhang, et al., 2004, Bai et al., 

2014, Kollosche, et al., 2015). Early modelling works on the viscoelasticity of DEs only 

account for their small deformation, e.g. the quasi-linear model for the viscoelastic DE 

membranes proposed by Wissler and Mazza (2005b). Later, researchers started to tackle 

the finite-deformation viscoelasticity of DEs. Based on the finite-deformation 

viscoelasticity theory of Christensen (1980), Yang et al. (2005) studied the nonlinear 

viscoelastic deformation of DE membranes. Recently, based on the fully coupled 

electromechanical field theory by Suo, et al. (2008) and the finite-deformation 

viscoelasticity theory by Reese and Govindjee (1998), Hong (2011) developed a 

constitutive model for viscoelastic DEs, which is capable of adopting most of the 

hyperelastic energy functions and thermodynamic evolution laws. 

Fig. 2.2 depicts the rheology model of viscoelastic DEs (Hong, 2011). In the rheology 

model, the purely elastic ground network is represented by spring 1 and the viscous 

subnetwork is represented by spring 2 and the dashpot. Therefore, the total Helmholtz free 

energy density of the elastomer consists of two parts: the equilibrium Helmholtz free 
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energy density WEQ (from spring 1 and the electric polarization) and the non-equilibrium 

Helmholtz free energy density WNEQ (from spring 2). The dashpot relaxes with time, 

leading to the energy dissipation and stress relaxation of the elastomer. 

 

Figure 2.2 Rheology model for the viscoelastic material of polymer networks with 

single relaxation process. 

Moreover, according to the work of Lee (1969) and the finite-deformation viscoelasticity 

theory of Reese and Govindjee (1998), the total deformation gradient of the DE can be 

expressed as the multiplication of the elastic deformation gradient and the inelastic 

deformation gradient, i.e., 

e i

ik im mkF F F ,          (2.18) 

where the superscripts ‘e’ and ‘i’ represent elastic and inelastic, respectively. Also, the total 

Helmholtz free energy density can be expressed as  

     , , ,i EQ NEQ iW W W F F D F D FH ,       (2.19)  

where 1)( H F , 1( )ii  FH  and 1( )ee  FH . Following Reese and Govindjee (1998), 

the inelastic deformation gradient must satisfy the thermodynamic evolution equation, 

 
 

1

1
11
:

2

i

T e

NEQ

d

dt






 
  

 
C

F F b γ τ ,       (2.20) 

1

2

(a)

reference state

(b)

current state

EQ

NEQ

e i

W
EQ

W
NEQ
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where  
T

i i iC F F ,    
1 T

e e e


b H H ,  2
NEQ

T
e e

NEQ e

W






F F

C
and 1

γ  is an isotropic 

rank four tensor. Here 1
γ  takes the form 

1 41 1 1

2 3 9D V 

  
     

 
γ I I I I I ,        (2.21) 

 4 1

2
ik jl il jk    I  is the fourth order symmetric identity tensor, I is the second order 

identity tensor, D and V represent the deviatoric and volumetric viscosities, respectively. 

Based on the finite-deformation viscoelasticity modelling framework above, Park et al. 

(2012 and 2013) developed a finite element model to study the inhomogenious deformation 

of DEs. With the FEM model of Park et al. (2012), Wang et al. (2013) investigated the 

creep behaviour and electromechanical instability of DEs.  

2.3 Viscoelastic DEs with multiple relaxation processes 

For the theoretical framework above, the material is assumed to have one purely elastic 

ground network and one viscous subnetwork. However, elastomers are known to have 

multiple relaxation processes, which could not be captured with a single viscous 

subnetwork. Furthermore, experiments have suggested that elastomeric materials have a 

wide range of relaxation times and it is necessary to consider multiple relaxation processes 

of dielectric elastomers to predict their dynamic behaviours(Liu et al., 2015; Guo et al., 

2015; Michel et al., 2010; Wissler and Mazza, 2007; Zhang, 2018; Zhang, et al., 2014, 

2017b and 2017c). For example, Zhang (2018) did frequency testings for VHB 4910 films 

and found that the model considering three relaxation processes improve the accuracy of 

prediction for the frequency response by 80% compared to the model with single relaxation 

process. Michel (2010) and Wissler (2007) proposed that the relaxation time of VHB 

polymer elastomers can range from a few seconds to hundreds of seconds or even longer. 

Therefore, a model with the consideration of multiple viscous subnetworks is needed to 

better capture the viscoelastic behaviours of DEs. A modified rheological model with 

multiple viscous subnetworks of DEs is shown in Fig. 2.3. The material viscosity for each 
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viscous subnetwork could be different, which result in multiple relaxation times of DEs. 

As shown in Fig. 2.3, the total Helmholtz free energy density of the DE equals the sum of 

the Helmholtz free energy density of each network, which results in 

     
1

, , ,
n

i EQ NEQ i

m m

m

W W W


 F F D F D FH .      (2.22)
 

 

Figure 2.3 Rheology model for the viscoelastic DE of polymer networks with multiple 

viscous subnetworks. 

From the literature review above, it can be seen that much effort has been devoted to 

studying the hyperelasticity and viscoelasticity of DEs. However, their effects on DE-based 

devices are still not well-understood, especially on the dynamic performance of DE 

oscillators or resonators. To tackle this unsettled issue, modelling and simulation of a DE 

membrane resonator considering material viscoelasticity with multiple relaxation 

processes will be presented in the following chapter. 

W
EQ

W
NEQ

1

W
NEQ

2

W
NEQ

n n

2

1
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Chapter 3  

3 Effect of the material viscoelasticity on the frequency 

tuning of the dielectric elastomer membrane resonators 

3.1 Introduction  

As soft electroactive polymers, dielectric elastomers (DEs) response to electrical stimuli. 

Due to this property of DEs, they have been developed as resonators and oscillators (Suo, 

2010; Hong and Suo, 2007; Romasanta et al., 2015; Ahmadi et al., 2013; Anderson et al., 

2010; Chiba et al., 2011; Heydt et al., 2006; Huang et al., 2013; Karsten et al., 2013; 

Bastawros and Hong, 2012). For DE resonators and oscillators, their resonant frequency 

and vibrating modes can be actively tuned by the applied voltage, which could be a 

desirable solution to the compensation for fabrication and environmental imperfection 

(Dubois et al., 2008; Son and Goulbourne 2010; Bonwit, 2006; O’Brien, 2012; Zhang, 

2005).  

In the literature, many studies have considered the material hyper-elasticity to investigate 

the dynamic and tuneable behaviour of dielectric elastomers. For example, Mockensturn 

and Goulbourne (2006) studied the dynamic response of an axisymmetric spherical 

membrane resonator using the Mooney model. Fox and Goulbourne (2008 and 2009) 

carried out numerical simulation and experimental study on the dynamic response of a 

membrane resonator with both the Mooney–Rivlin and the Ogden models. Zhu et al. 

(2010a and 2010b) studied the nonlinear oscillation and natural frequency tuning of a 

spherical DE membrane. Yong et al. (2011) explored the nonlinear oscillation of spherical 

DE membranes with a Neo-Hookean model. The resonant frequency tuning of a DE micro-

beam with small and large vibration amplitude was studied by Feng et al. (2011 and 2013). 

Li, Qu, and Yang (2012) demonstrated the natural frequency tuning and oscillation of a DE 

membrane resonator with the Gent model. 
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However, less effort has been devoted to exploring the viscoelastic effect of DEs, which 

has been proven to strongly affect the dynamic and resonant performance of DE oscillators 

and resonators (Zhou, et al., 2014 and 2016b; Zhang, et al., 2017a and 2017b). Zhou, et al. 

(2014 and 2016b) studied the viscoelastic effect on DE resonators and oscillators 

considering single relaxation process with a standard viscoelasticity model. Zhang, et al. 

(2017a) investigated the influence of viscous damping with the Kelvin-Voigt model on the 

vibration of DEs. Zhang, et al. (2017b) applied Kelvin-Voigt-Maxwell model to investigate 

the single viscoelastic creep and relaxation process of a DE membrane. As well-established, 

DEs exhibit strong viscoelastic property (cf., e.g., Wissler and Mazza, 2005a; Kornbluh et 

al., 2000; Zhang, et al., 2015; Wang, et al., 2013; Bai, et al., 2014, Vogel et al.,2014, among 

many others), which originates from the highly mobile polymer chains that form their 

polymer networks (Linder, et al., 2011; Li, et al., 2016; Wang et al., 2016; Cohen et al., 

2016). For example, Zhang, et al. (2015) showed that the resonant behavior and vibration 

of DE membranes under electric field and different mechanical loading states are highly 

time-dependent due to the material viscoelasticity. Wang, et al. (2013) explored the 

inhomogenous viscoelastic deformation of DE circular membranes. The constitutive model 

proposed by Linder, et al. (2011) for viscoelastic rubber-like materials was based on the 

diffusion processes of the flexible polymer chains. Based on the model of Linder, et al. 

(2011), Wang et al. (2016) studied the time-dependent effect of VHB4910 on large 

deformation and electromechanical instabilities by considering the material viscoelasticity 

and polymer chain microstructres. The polymer networks in DEs are commonly idealized 

as one purely elastic ground network and a few viscous subnetworks (Zhou, et al., 2018; 

Gerhard, 2000; Zhang, et al., 2017c; Linder, et al., 2011). Due to the multiple viscous 

subnetworks structure, DEs possess multiple relaxation times during the deformation (Guo, 

et al., 2015; Xiao, 2016; Hossain, et al., 2012 and 2015; Liu, et al., 2015), and the relaxation 

time for the polymer subnetworks can range from a few seconds to hundreds of seconds or 

even longer (Zhao et al., 2011; Michel et al., 2010; Wissler et al., 2007). Hossain et al. 

(2012 and 2015) demonstrated the time-dependent characterization of VHB 4910 by stress-

relaxation experiments and rate-dependent responses. Guo et al. (2015) and Xiao (2016) 

developed theoretical models with multiple relaxation processes of VHB 4905 membranes 

to study the temperature effect on their deformation. Nevertheless, most of the existing 
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modelling works on viscoelastic dielectric elastomers only consider a single viscous 

subnetwork (Hong, 2011; Zhou, et al., 2014 and 2016b; Zhang, et al., 2017b), which may 

lead to significant error when evaluating the performance of DE oscillators and resonators. 

Khan et al. (2013) stated that models with a single relaxation process is physically 

insufficient to capture the electromechanical responses and predict the critical condition of 

EMI for DEs. Zhang (2018) presented that a model with three relaxation processes could 

improve the accuracy by 80% in frequency responses prediction for DEs. Therefore, in 

order to predict the dynamic and resonant performance of DE resonators and oscillators, it 

is essential to develop a modelling framework that can account for their multiple relaxation 

processes.  

Based on the theoretical framework of Hong (2011) and employing Gent hyperelastic 

model (Gent, 1996), a modelling framework is developed in the current work to investigate 

the multi-relaxation effect on a viscoelastic DE membrane resonator, especially on its 

resonant frequency tuning process. In addition, the interplay among the pre-stretch effect, 

the material viscoelasticity and the failure modes (electrical breakdown and loss-of-

tension) of DEs are also studied in the modelling process. It should be mentioned that the 

electromechanical instability (EMI) is not considered here since it is avoided due to the 

boundary constraints of the resonator configuration (Zhou, et al., 2013; Koh, et al., 2011; 

Kollosche, et al., 2012). 

3.2 Formulation of the DE Membrane Resonator 

The configuration of a DE membrane resonator is illustrated in Fig. 3.1(Biggs and 

Hitchcock, 2010; Li, et al., 2012). An undeformed DE membrane (Fig. 3.1(a)) with 

dimensions L1, L2, and L3 ( 3 1 2,L L L ) is pre-stretched to l1 and l2 in 1 and 2 directions, 

respectively. The corresponding pre-stretch ratios are defined as 1 1 1p l L   and 

2 2 2p l L  (Fig. 3.1(b)). The pre-stretched membrane is retained with a rigid frame and 

clamped with two rigid bars of mass m to divide the membrane into two parts A and B (Fig. 

3.1(c)). Membrane A is coated with compliant electrodes on its both surfaces (shaded area). 

The lengths of membrane A and B in 1-direction are denoted as L1A and L1B respectively, 
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with the length ratio denoted as 1 1A Bk L L  (Fig. 3.1(c)). When a voltage V is applied to 

the electrodes of membrane A, both membrane A and B deform in 1-direction to the current 

state with lengths l1A and l1B, respectively (Fig. 3.1(d)). The corresponding stretch ratios 

are calculated as 1 1 1A A Al L   and 1 1 1B B Bl L  . At the current state, membrane A is 

subjected to the tensile forces P1A and P2A in 1 and 2-direction respectively, and the electric 

loading V; the membrane B is subjected to tensile forces P1B and P2B. The stretch ratios of 

membrane A and B satisfy  1 1 1 1B p p Ak      , and 
2 2 2A B p     since the pre-

stretch in 2-direction is assumed to be fixed by the rigid frame. 

              

 

Figure 3.1 Schematic illustration of the DE membrane resonator: (a) unstrained 

reference state; (b) pre-stretch state; (c) the pre-stretched membrane is confined with 

a rigid frame in 2-direction and divided into A and B parts by the bonded two rigid 

mass bars; (d) current actuation state with electric loading V applied to membrane 

part A. 

Under actuation, the total deformation gradients of membrane A and B at the current state 

with relative to the undeformed state are written as 

(a)

L2

L1

L3

l2

(b)
l1
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1

2

3

0 0

0 0

0 0

A

A

A

A







 
 

  
 
 

F ,         (3.1a) 

and 

1

2

3

0 0

0 0 .

0 0

B

B

B

B







 
 

  
 
 

F          (3.1b) 

According to the study of Lee (1969), the total deformation gradient can be multiplicatively 

split into an elastic part and a viscous part (Hong, 2011; Reese and Govindjee, 1998). 

Therefore, for each viscous polymer subnetwork (see Fig. 2.3), 
e i

A Am AmF F F  and 

e i

B Bm BmF F F , where m=1, 2, …, n, and the superscripts ‘e’ and ‘i’ represent elastic and 

inelastic, respectively. Expressing the deformation gradients in terms of the stretch ratios 

gives that 

1

2

3

0 0

0 0

0 0

e

Am

e e

Am Am

e

Am







 
 

  
 
 

F ,        (3.1c) 

1

2

3

0 0

0 0

0 0

i

Am

i i

Am Am

i

Am







 
 

  
 
 

F ,        (3.1d) 

and 

1

2

3

0 0

0 0

0 0

e

Bm

e e

Bm Bm

e

Bm







 
 

  
 
 

F ,        (3.1e) 
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1

2

3

0 0

0 0

0 0

i

Bm

i i

Bm Bm

i

Bm







 
 

  
 
 

F .        (3.1f) 

DEs are commonly assumed to be incompressible for both elastic and inelastic deformation 

in many existing studies (Wissler and Mazza, 2005; Plante and Dubowsky, 2006; Zhao and 

Suo, 2007; Zhao, et al., 2007; Zhu, et al., 2010; Zhao and Suo, 2010; Hong, 2011; Koh, et 

al., 2011; Lu, et al., 2012; Huang and Suo, 2012; Zhou, et al., 2013). Adopting the same 

assumption, the deformation gradients above depend solely on the stretch ratios in 1 and 

2-direction, i.e., 3 1 21A A A   , 3 1 21e e e

Am Am Am   , 3 1 21i i i

Am Am Am   , 3 1 21B B B   , 

3 1 21e e e

Bm Bm Bm   , and 3 1 21i i i

Bm Bm Bm   . 

The finite-deformation viscoelasticity theory by Reese and Govindjee (1998) suggests that 

the Helmholtz free energy density W of the DE membrane at the current actuation state can 

be split into the non-equilibrium Helmholtz free energy density WNEQ and the equilibrium 

Helmholtz free energy density WEQ. WNEQ is determined by the elastic deformation of all 

the polymer subnetworks and WEQ depends on the total deformation of the purely elastic 

ground network of and the electric displacement D. For membrane A, The Helmholtz free 

energy density under the electric loading is expressed as 

1 2 1 2

1

( , , ) ( , )
n

EQ NEQ e e

A A A A A m Am Am

m

W W D W   


  ,      (3.2) 

where 
1 2

1

( , )
n

NEQ NEQ e e

A m Am Am

m

W W  


 . The electric field is assumed to be always in 

equilibrium since it is commonly agreed that it reaches equilibrium much faster than 

mechanical deformations (Zhou, 2015; Zhou et al., 2014, 2016b). Therefore, the 

equilibrium Helmholtz free energy density W 
EQ 

A  (λ1A, λ2A, D) consists of the strain energy 

density WS (λ1A, λ2A) from the total deformation of the membrane and the energy density 

D2/ (20) from electric polarization (Huang and Suo, 2012; Hong, 2011), i.e., 
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 
2

1 2 1 2

0

( , , ) ,
2

EQ

A A A s A A

D
W D W   


  ,       (3.3) 

where ε is the permittivity of the vacuum, ε0 is the relative dielectric material constant. The 

electric field D is assumed to be uniformly distributed (Lu, et al., 2012; Koh, et al., 2011). 

Applying the relation between the electric field E and the voltage V i.e.,
1 2

3

A
A A

V
E

L
  , and 

the material law between the electric field E and electric displacement D, i.e., 0D E

(Zhao, et al., 2007; Huang and Suo, 2012), Eq. (3.2) can be further expressed as 

 
2

2 20
1 2 1 1 2 2 1 2

1 3

, ( , )
2

n
NEQ i i A

A s A A A m A Am A Am A A

m

V
W W W

L


       



 
    

 
 .   (3.4) 

During the actuation state for membrane A, the change of the Helmholtz free energy 

density WA resulting from any small change of the stretch ratios (denoted as δλ1A and δλ2A 

in 1 and 2-direction, respectively) is equal to the work done by the tensile forces P1A, P2A, 

the inertial force, and the voltage V. It is thus expressed as 
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where ρ is the material density. When the film is very thin ( 3 1L L ), the last term in Eq. 

(3.5) can be neglected (Li et al., 2012). Combining Eq. (3.4), Eq. (3.5) gives 
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  (3.6) 

The change of the stretch ratios (δλ1A and δλ2A) are small and arbitrary, which yields 
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Adopting the Gent model (Gent, 1996) as the strain energy density function for membrane 

A, i.e., 
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where GEQ is the equilibrium shear modulus and Jlim is a dimensionless stretch limit 

parameter of the DE material. Following the work of Hong (2011), the non-equilibrium 

Helmholtz free energy density for each polymer subnetwork can be expressed as 
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G
 NEQ 

m  is the non-equilibrium shear modulus for each polymer subnetwork. Combining Eqs. 

(3.7) ~ (3.10), we can obtain the stresses of membrane A as 
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where material parameters 
1

,
n
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    and EQG G  . χ is the 

fraction of the purely elastic ground polymer networks (Bergstrom and Boyce, 1998). For 

pure elastic material, χ =1. Similarly, the stresses of membrane B can be obtained as 
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The oscillation of the resonator is represented by the vibration of the rigid bars in 1-

direction, and the rigid bars are subjected to forces P1A, P1B and the inertial force. The 

motion equation of the rigid bars is expressed as 
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However, when the membranes are in a static state, the inertia terms in Eq. (3.11) and Eq. 

(3.13) become 0 and forces P1A and P1B in Eq. (3.15) are in balance, i.e., 

1 2 3 1 2 3A BP GL L P GL L . Combining Eq. (3.11), Eq. (3.13) and Eq. (3.15), we obtain 
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Furthermore, the inelastic stretch ratios for each polymer subnetwork must satisfy the 

thermodynamic evolution law as presented by Reese and Govindjee (1998). For example, 

for membrane A, 
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positive-definite to meet Eq. (3.17), and it takes the expression as follows  
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where Dm  is the shear viscosity of each polymer subnetwork, 4
I  is the fourth order 

symmetric identity tensor and I is the second order identity tensor. With Eq. (3.17) and 

(3.18), we can obtain the inelastic stretch ratios of each polymer subnetwork of membrane 

A, i.e., 
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(3.20) 

where /NEQ

m m DmG   represents the relaxation time of each polymer subnetwork of the 

DE membrane. Similarly, the time-dependent inelastic stretch ratios of each polymer 

subnetwork of membrane B can be obtained as 
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Since the thickness L3 of the membrane of the resonator is much less than the lengths (

3 1 2,L L L ), the resonator cannot sustain compression during the operation. Therefore, the 

stresses of membranes in both directions need to be ensured to be positive, i.e., 

1 2 3 0AP GL L  , 2 3 0A AP GL L  , 1 2 3 0BP GL L  , and 2 3 0B BP GL L  . Besides, when the 

electric field induced by the voltage applied to the membrane A exceeds the dielectric 

strength EEB, the resonator fails by electric breakdown. The critical applied voltage VEB 

can be determined as (Koh et al., 2011; Zhou et al., 2013) 
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V
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L G


   ,         (3.23) 

with the material parameter 0EBd E G . We choose a moderate value of d=5 for the 

following simulation (Koh et al., 2011). 

3.3 Natural frequency of the DE Membrane Resonator 

Combining Eq. (3.11), (3.13) and Eq. (3.15) with geometric relations 

 1 1 1 1B p p Ak      , and 2 2 2A B p    , we get the motion equation for the rigid bars 

as 
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To find the natural frequency ωn, we follow the previous studies (Zhu et al., 2010; Li et 

al., 2012; Zhang et al., 2014a and 2014b) regarding the nonlinear vibration analysis for 

viscoelastic DE oscillators. At any time, t, when a small amplitude Δ(t) of perturbation is 

applied in 1-direction to the rigid bars, the induced deformation of membrane A is 

   1 1A At t    ,          (3.25) 

with 1 1A A    being the stretch ratio of membrane A before the perturbation is applied. 

Expanding the function  1 1 2 1 2, , , , ,i i i i

A Am Am Bm Bm Ag V      into the first order Taylor series 

in terms of Δ(t) gives 
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   (3.26) 
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Combining Eqs. (3.24) ~ (3.26), we obtain the motion equation in terms of perturbation 

Δ(t), i.e., 

 2

2

1 1 2 1 2

1

, , , , ,
0

i i i i

A Am Am Bm Bm A

A

g Vd

dt

    






  


.      (3.27) 

Then the natural frequency of the DE resonator can be expressed as 

 1 1 2 1 22

1

, , , , ,i i i i

A Am Am Bm Bm A

n

A

g V    








.       (3.28) 

Combining Eqs. (3.24) and (3.28), we obtain the natural frequency as 
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           (3.29) 

From Eq. 3.29, it is clear that the natural frequency of the resonator depends on the 

relaxation time of each polymer subnetwork, as well as the total number n of polymer 

subnetworks. When the geometric and material parameters are given, the natural frequency 
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can be obtained by solving equations (3.16), (3.19), (3.20), (3.21), (3.22) and (3.29), the 

ordinary differential equations are solved by ODE15s function in MATLAB. 

3.4 Simulation Results and Discussion  

In order to illustrate the actuation process and natural frequency tuning of the DE 

membrane resonator, we first consider the case in which the voltage is applied 

instantaneously to membrane A with a loading rate * /r dV dt after pre-stretching, 

framing and clamping of the DE membrane (before it starts to relax). The dimensionless 

voltage is defined as 
*

0 3/ /V V G L , and the length ratio and the pre-stretch ratios are 

set as k = 1, 1p = 2 and 2p = 4, respectively. The typical electromechanical response of the 

resonator ( 1A *V  ) with different values of viscoelastic material parameter  is plotted 

in Figure 3.2, in which χ =GEQ/G is selected as 0.1, 0.5 and 0.9, respectively. The 

dimensionless voltage *V  on membrane A is increased at a loading rate r=0.3 until the 

loss-of-tension of the membrane either in 1-direction (denoted by triangle) or 2-direction 

(denoted by rectangle). For the model of a single polymer subnetwork (dotted lines), the 

relaxation time is chosen as τ =1s, while  the three relaxation times are assumed as τ =0.01s, 

1s, 100s for the model with three polymer subnetworks (solid lines).  With the same 

conditions and the loading process, figure 3.3 shows the dimensionless natrual frequency 

n n     as a function of the dimensionless applied voltage *V . 
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Figure 3.2 Electromechanical response (λ1A Vs. V*) of DE membrane resonators with 

single polymer subnetwork τ =1s, n=1 (dotted lines), and three polymer subnetworks 

τ = 0.01s, 1s, 100s, n=3 (solid lines), χ = 0.1, 0.5, 0.9, respectively, at r = 0.3, α=1, λ1p=2, 

λ2p=4. 
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Figure 3.3 Dimensionless natural frequency response (Ωn Vs. V*) of DE membrane 

resonators with single polymer subnetwork τ =1s, n=1 (dotted lines), and three 

polymer subnetworks τ =0.01s, 1s, 100s, n=3 (solid lines), χ =0.1, 0.5, 0.9, respectively, 

at r=0.3, α=1, λ1p=2, λ2p=4. 

It shows that the stretch ratio increases monotonically for both cases, while the natural 

frequency changes non-monotonically as the applied voltage increases. The non-

monotonic behavior observed in figure 3.3 may be linked to the change of the stiffness of 

the membrane during the actuation (indicated by the slope of stretch ratio curves in figure 

3.2). In general, it is observed from figure 3.2 that the DE modeled with three polymer 

subnetworks can sustain a higher voltage, i.e., the loss-of-tesnison failure of the membrane 

is delayed. Correspondingly, larger deformation of the membrane and higher natural 

frequency tuned by the applied voltage could be achieved. For the DE model with a single 

polymer subnetwork, the stiffness of the membrane decresease for small voltage, then 

increases as the applied voltage increases. The natural frequency of the membrane tuned 

by the voltage thus drops with the increase of the voltage and then rises up as the voltage 

continues to increase. A localized minimum natural frequency could be achieved. 

However, for the DE model with three polymer subnetworks, the variation of the stiffness 

of the membrane is more complex due to the interaction of the subnetworks. The variation 

of the membrane stiffness is caused by the stress relaxation and the electromechanical 

coupling for a viscoelastic DE. It should be mentioned that with the increase of χ, the results 

for the two different models become closer. This is expected since the response of the 

membrane is mainly governed by the purely elastic ground network for this condition. 

From Fig. 3.2 and and Fig. 3.3, it is concluded that both the material parameter  and the 

polymer subnetworks strongly affect the actuation response and the frequency tuning of 

the DE resonator. Particularly, for the material possessing lower fraction of elastic ground 

network,  it is more adjustable to tune the resonator frequency by tailoring the polymer 

subnetworks. 
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Figure 3.4 Electromechanical response (λ1A Vs. V*) of DE membrane resonators with 

a single polymer subnetwork τ =0.01s, χ =0.1, 0.5, respectively; and two polymer 

subnetworks τ =0.01s, 100s, n=2, χ =0.1, at r=0.3, k=1, λ1p=2, λ2p=4. 
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Figure 3.5 Dimensionless natural frequency response (Ωn Vs. V*) of DE membrane 

resonators with a single polymer subnetwork τ =0.01s, χ =0.1, 0.5, respectively; and 

two polymer subnetworks τ =0.01s, 100s, n=2, χ =0.1, at r=0.3, k=1, λ1p=2, λ2p=4. 

Fig. 3.4 shows a comparison of the combined effects of  and the polymer subnetworks on 

the actuation response. For the material with the same polymer subnetwork, for example, 

n=1 and =0.01 s, with a higher value of , the DE membrane can sustain a higher voltage, 

which leads to a larger deformation. For the material with different fraction of purely elastic 

ground network, i.e., the value of , it is also possible to achieve the similar actuation 

response by adding some other polymer subnetworks. As demonstrated in Fig. 3.4, when 

one polymer subnetwork with a relaxation time of =100 s is added into the DE with the 

original polymer subnetwork of a relaxation time of  =0.01 s, the materials with different 

fraction of the purely elastic ground network respond in a similar way. Since the two 

electromechanical response curves are rather close to each other, the frequency tuning 

processes are also similar, as shown in Fig. 3.5. Furthermore, the results stay similar as 

well when the electric loading is changed into a relatively high rate as shown in Fig. 3.6 

and Fig. 3.7. It is concluded that the electromechanical response and frequency tuning 

could be modified by tailoring the microstructure of the DE material. 
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Figure 3.6 Electromechanical response (λ1A Vs. V*) of DE membrane resonators with 

a single polymer subnetwork τ =0.01s, χ =0.1, 0.5, respectively; and two polymer 

subnetworks τ =0.01s, 100s, n=2, χ =0.1, at r=10, k=1, λ1p=2, λ2p=4. 
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Figure 3.7 Dimensionless natural frequency response (Ωn Vs. V*) of DE membrane 

resonators with single polymer subnetwork τ =0.01s, χ =0.1, 0.5, respectively; and two 

polymer subnetworks τ =0.01s, 100s, n=2, χ =0.1, at r=10, k=1, λ1p=2, λ2p=4. 

Fig. 3.4 and Fig. 3.5 demonstrate the effect of adding a polymer subnetwork with longer 

relaxation time (=100 s) to the elastomer. On the other hand, Fig. 3.8 shows the effect of 

adding a polymer subnetwork with shorter relaxation time (=0.01 s) on the actuation 

response of the DE. The DE with a single polymer subnetwork withstands a higher critical 

voltage, as well as a larger deformation. Moreover, its actuation response is insensitive to 

the material viscosity  when the applied voltage rate is relatively high (r=10), while the 

response of the DE with two polymer subnetworks is still significantly affected by . The 

same effect on corresponding frequency tuning processes is shown as well in Fig. 3.9. 

 

 

Figure 3.8 Electromechanical response (λ1A Vs. V*) of DE membrane resonators with 

single polymer subnetwork τ=0.01s, n=1; and two polymer subnetworks τ=0.01s, 1s, 
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n=2; for χ=0.1, 0.5, respectively, and k =1, λ1p =2, λ2p =4. The voltage rate is applied at 

r= 10. 

 

Figure 3.9 Dimensionless natural frequency response (Ωn Vs. V*) of DE membrane 

resonators with single polymer subnetwork τ =0.01s, n=1; and two polymer 

subnetworks τ =0.01s, 1s, n=2; for χ =0.1, 0.5, respectively, and k =1, λ1p =2, λ2p =4. 

The voltage rate is applied at r= 10. 

For Figures 3.2-3.9, the voltage is applied before the DE mambrane starts to relax. 

However, in many DE-based applications, the voltage is very likely to be applied after the 

DE membrane is completely relaxed. Therefore, Fig. 3.10 illustrates the the tuning process 

of the dimensionless natural frequency under the circumstance that the voltage is applied 

on a fully relaxed DE. The voltage rate, the length ratio, the pre-stretch ratios and the 

material parameter χ are set as r =0.3, k = 1, 1p = 2, 2p = 4, and χ =0.5, respectively. For 

the case of a single polymer subnetwork (dotted lines), the relaxation time is chosen as τ 

=100s, while the relaxation times of the three subnetworks are set as τ =0.01 s, 1 s, 100 s 

(solid lines). 
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Figure 3.10 The natural frequency variation (Ωn Vs. t) of DE membrane resonators 

with single polymer subnetwork τ=100 s, n=1 (dotted line); and three polymer 

subnetworks τ=0.01 s, 1 s, 100 s, n=3 (solid line), respectively, in the presence and 

absence of the applied voltage (stipple line), for χ=0.5, k =1, λ1p=2, and λ2p=4. (a) The 

preliminary stage for the polymer subnetworks to relax from the pre-stretching 

without voltage loading; (b) the actuation stage with voltage applied at the rate r=0.3; 

(c) the evolution stage with the constant voltage; (d) the complete natural frequency 

tuning process. 

Fig. 3.10(a) describes the preliminary stage for the natural frequency tuning process of the 

DE membrane A, i.e., the relaxation without the applied voltage. Although the relaxtion 

process of the three subnetworks is a bit more complex than that of a single subnetwork, 

they both reach the same steady state in the end. For the actuation stage (Fig. 3.10(b)), after 

the membrane is fully relaxed, a voltage is applied at the rate of r =0.3 until it reaches the 

preset value 
* 0.2pV  , which is a safe value of the DE membrane. Since the DE is actuated 

by the applied voltage, the natural frequency first decreases and then increases. For the 

evolution stage (Fig. 3.10(c)), the applied voltage remains at 
*

pV . Although the final steady 

state is the same for both cases, the DE with three subnetworks reaches it faster. The three 

stages for both cases are plotted in figure 3.10(d) to show the complete natural frequency 

tuning process. As can be seen from Fig. 3.10, once the DE is fully relaxed, the natrual 

frequency of both cases are the same. In fact, the number of polymer subnetworks does not 

affect the two steady states since they are only governed by the elastic ground network. 
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Figure 3.11 The natural frequency variation (Ωn Vs. t) of DE membrane resonators 

with single polymer subnetwork τ =1 s, n=1 (dotted line); and three polymer 

subnetworks τ =0.01 s, 1 s, 100 s, n=3 (solid line), respectively, in the presence and 

absence of the applied voltage (stipple line), for χ =0.5, k =1, λ1p=2, and λ2p=4. (a) The 

preliminary stage; (b) the actuation stage; (c) the evolution stage; (d) the complete 

natural frequency tuning process. 

Fig. 3.11 is the natural frequency tuning processes for the resonator of a single subnetwork 

with relaxation time τ =1 s, n=1, and the case of three subnetworks with τ =0.01 s, 1 s, 100 

s, n=3. From Fig. 3.10 and Fig. 3.11, it concludes that although the natural frequency at 

steady states is independent of both the number and the relaxation time of polymer 

subnetworks, the time to achieve the steady states can be tuned obviously by tailoring the 

material polymer structure. 
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Figure 3.12 The complete natural frequency tuning process (Ωn Vs. τ) of DE 

membrane resonators with three polymer subnetworks τ=0.01 s, 1 s, 100 s, n=3 (solid 

line), with voltage loadings( stipple line) applied at rates of r=10, 0.002, 0.0005, 

respectively, at the actuation stages, for χ=0.5, k =1, λ1p=2, and λ2p=4. 

Fig. 3.12 depicts the effect of the loading rate of the applied voltage on the frequency tuning 

during the whole process. It can be seen that the rate of the applied voltage only affects the 

time that the DE takes to reach the final steady state, while it will not change the value of 

the steady natural frequency of the DE resonator. The pre-set voltage 
* 0.2pV   in Figures 

3.10 and 3.12 is a safe operation value that the DE membrane can reach the final steady 

state without any failure. In fact, the failure of the membrane (loss-of-tension or electrical 

breakdown) could occur either at the actuation stage or at the evolution stage. Fig. 3.13 

depicts the critical voltage at both the actuation stage (
*

fV ) and the evolution stage (
*

pV ) as 

a function of the electrical loading rate. It is found from Fig. 3.13, 
*

fV  is equal to 
*

pV  at low 

electrical loading rates. For high electrical loading rates (about over r=0.01), 
*

fV  becomes 
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higher than 
*

pV . Therefore, the critical voltage at the evolution stage 
*

pV  should be regarded 

as the limiting voltage for the frequency tuning process. 

 

Figure 3.13 The variation of critical failure voltage with respect to the loading rate 

(V* Vs. r) for the DE membrane resonator with relaxation time τ =0.01 s, 1 s, 100 s, 

for χ =0.5, k =1, λ1p=2, and λ2p=4. 

In Figs. 3.10(d) and 3.12, the difference of the natural frequency between the final steady 

state and initial steady state is defined as the frequency tuned by the applied voltage, which 

is denoted as ΔΩn. For a given geometry of the resonator, ΔΩn is solely determined by the 

pre-set voltage, which should be selected below the critical voltage. Fig 3.14 depicts how 

the tuned frequency ΔΩn varies with 
*

pV  for a DE resonator. The DE membrane is modelled 

with three polymer subnetworks with relaxation time τ =0.01 s, 1 s, 100 s. The voltage 
*

pV  

is applied from 0 to the point where the membrane fails by either loss-of-tension or 

electrical breakdown. Fig. 3.14 also illustrates the tuneable frequency range and the safe 

operation voltage range of the resonator, which are essential parameters in the design and 

application of DE resonators. The tuneable frequency range of the resonator is defined as 
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the difference between the minimum tuned frequency ΔΩ
min 

n  and the maximum tuned 

frequency ΔΩ
f 

n, and the safe operation voltage range is between 0 and the failure voltage. 

It can be seen that both the tuneable frequency range and the safe operation voltage range 

can be changed by choosing different electrical loading rate r. 

 

Figure 3.14 Tuneable natural frequency range and safe voltage operation range for 

the DE membrane resonator with relaxation time τ =0.01 s, 1 s, 100 s (n=3) for fixed 

parameters χ =0.5, k =1, λ1p=2, λ2p=4, the applied voltage is at the rate of r= 10-4, 0.002, 

10, respectively. 

The tuneable frequency range for the viscoelastic resonator showed in Fig. 3.14 is 

corresponding to the prescribed material parameter (χ), geometry parameters (k, λ1p, λ2p) 

and the voltage loading rate. To account for the effect of the geometric change, Fig. 3.15 

presents the variation of the tuneable frequency range of the resonator (modelled with three 

viscous subnetworks) as a function of the geometric parameters k, λ1p and λ2p. The other 

parameters are chosen as χ=0.5, r=0.3 and V*=0.2. The pre-stretch ratios λ1p and λ2p range 
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from 1 to 4, respectively. The aspect ratio k is selected as 0.3, 1, and 2. As illustrated in 

Figs. 3.15(a) and 15(b) with the aspect ratio k set as 2, the frequency can be raised up to 

around 2.2 or brought down to -0.2. A negative value of ΔΩ
min 

n  indicates that the membrane 

becomes softer after the frequency tuning process. It is observed that the maximum tuned 

frequency ΔΩ
max 

n  can be significantly raised by configurating the membrane resonator with 

a larger aspect ratio. On the other hand, the aspect ratio only exerts a minor effect on the 

minimum tuned frequency ΔΩ
min 

n . Overall, the natural frequency of the DE membrane 

resonator is easier to be tuned up than tuned down. 
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Figure 3.15 ΔΩ
max 

n  and ΔΩ
min 

n  of the tuneable frequency range of the viscoelastic DE 

memebrane resonators (χ =0.5) with relaxation time τ =0.01 s, 1 s, 100 s (n=3), for 

combinations of pre-stretch ratios λ1p and λ2p. At the actuation stage, the votage is 

applied at rate of r=0.3 until V*=0.2. (a) ΔΩ
max 

n  for k =2, (b) ΔΩ
min 

n  for k =2, (c) ΔΩ
max 

n  

for k =1, (d) ΔΩ
min 

n  for k =1, (e) ΔΩ
max 

n  for k =0.3, (f) ΔΩ
min 

n  for k =0.3. 

 

3.5 Conclusion 

The purpose of this work is to provide better understanding on the effects of material 

viscoelasticity with multi-relaxation on the resonant frequency tuning for DE membrane 

resonators. The dielectric elastomer as a polymer is simulated to be consisted of ground 

elastic networks and multiple viscoelastic subnetworks with different relaxation time. The 

viscoelastic model based on the finite deformation viscoelastic theory and Gent model of 

hyper-elasticity for dielectrics with one viscous subnetwork is extended to the modelling 

for DEs of multiple relaxation processes. The possible ways of monitoring the dynamic 

actuation of DE membrane resonators are proposed, by comparisons of the 

electromechanical responses and natural frequency variations for viscoelastic DE 

resonators with single or multiple (i.e. with three or two viscoelastic subnetworks) 

relaxation processes. The resonant frequency tuning processes of DE resonators with single 

or multiple viscoelastic subnetworks are presented, indicating that the ground elastic 
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networks govern steady states of resonators while viscoelastic subnetworks control the time 

to reach the steady states. Limited by failure modes of loss of tension or electric breakdown, 

the essential design parameters of tuneable frequency range and safe voltage operation 

range for DE resonators with three viscoelastic subnetworks under different electric 

loading rates are acquired. The tuneable frequency range within a safe voltage operation 

range is investigated with further consideration of various geometry parameters, suggesting 

that the DE membrane resonator is more favourable in vibration applications with need of 

natural frequency tuning-up. This work can be a reference for studying the dynamic 

performance of DE-based vibration devices. 
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Chapter 4  

4 Conclusions and future work 

4.1 Conclusions 

As soft electroactive polymers, dielectric elastomers are featured with high flexibility and 

capacity of large deformation. They are desirable materials for transducers that convert 

mechanical and electrical energy into each other. As one of their potential applications, DE 

resonators and oscillators have attracted much interest in the recent years. One of the merits 

of DE resonators lies in their tuneable resonator frequency. While the challenging issue for 

DE resonators is that their dynamic performance is highly influenced by the nonlinear 

electromechanical coupling, the multiple failure modes and the material viscoelasticity. 

Aiming to comprehensively understand the dynamic behaviours of DE resonators, this 

work extends the widely used modelling framework for finite-deformation viscoelasticity 

of DEs to cover their dynamic response. Furthermore, the modelling framework is further 

modified to account for the multiple relaxation processes of DEs. From our simulation 

results, it is found that by tailoring the microstructure of the DEs, the failure (both the 

electrical breakdown and loss-of-tension) of the DE membrane resonator can be delayed; 

larger deformation can be achieved; and the resonant frequency tuning process can be 

improved. In addition, DE membranes with different material viscosity may achieve 

similar dynamic responses if the electrical loading rates are properly selected. The tuneable 

frequency range and safe voltage operation range for the DE resonator are also obtained 

with consideration of the possible failure modes (loss-of-tension and electrical 

breakdown). Last but not least, it is found that this design of DE membrane resonator is 

more effective in tuning up the resonant frequency. 
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4.2 Future work 

The results of this work are expected to offer guidelines for the prediction and possible 

monitoring ways for the dynamic performance of DE-based vibrational devices. 

Nevertheless, since the model here is limited to idealized DEs and the configuration of the 

DE is rather simple, there is substantially more work to be done in the future. 

The theoretical model is only focused on homogeneous deformation here. In practical 

applications, DEs may undergo inhomogeneous deformation, which should be further 

considered. Similar to other theoretical works, we adopt a constant dielectric strength in 

this work. However, experiments have shown that the dielectric strength is affected by 

many factors such as the deformation, the voltage loading rate and the temperature. 

Therefore, the deformation-dependent electrical breakdown of DEs should be further 

considered. In addition, the multiple relaxation times could affect the dielectric strength of 

DEs as well. Furthermore, the relaxation time of each viscous polymer subnetwork is 

assumed to be constant in this work. However, according to the theory of polymer 

dynamics, the relaxation time of the viscous subnetwork should be deformation-dependent, 

and its effect on the dynamic performance of DE resonators is still unknown, this could 

also be a topic of our future study. 
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