July 2018

Glycopolymer Functionalization of Polymersomes

Josh Jadischke
The University of Western Ontario

Supervisor
Gillies, Elizabeth R.
The University of Western Ontario

Graduate Program in Chemistry

A thesis submitted in partial fulfillment of the requirements for the degree in Master of Science

© Josh Jadischke 2018

Follow this and additional works at: https://ir.lib.uwo.ca/etd

Part of the Materials Chemistry Commons, Organic Chemistry Commons, and the Polymer Chemistry Commons

Recommended Citation
https://ir.lib.uwo.ca/etd/5421

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact tadam@uwo.ca.
Abstract

Carbohydrates are important to cellular communication, recognition, and pathogenesis, making them a useful synthetic target for application in therapeutics and diagnosis. Synthetic carbohydrate presenting scaffolds can replicate or interrupt the binding interactions that occur in nature. Due to the weak nature of the monosaccharide-protein bond, most carbohydrate presenting scaffolds display saccharides in a multivalent manner to improve binding. Recently there has been an effort to combine carbohydrate containing scaffolds with polymersomes (vesicles composed of polymers), due to the structural resemblance of polymersome membranes to biological membranes. This thesis describes the progress towards functionalizing polymersomes with linear glycopolymers as a potential method to achieve improved multivalent binding. A novel β-D-Galactose containing polymer was synthesized using reversible addition-fragmentation chain transfer polymerization. This polymer, as well as a previously reported glycopolymer based on a polyacrylamide backbone were labeled with rhodamine in order to quantify their subsequent conjugation to the polymersome surface. Two different vesicle platforms were investigated, polybutadiene-b-poly(ethylene glycol) and poly(ethylene glycol)-b-poly(ethyl glyoxylate)-b-poly(ethylene glycol). The experiments suggested that it is possible to conjugate the glycopolymers to the polymersome surfaces to obtain different glycopolymer densities and quantify the reaction yields using fluorescence spectroscopy. Future work will involve binding studies of the glycopolymer-coated vesicles to carbohydrate binding proteins (lectins).

Keywords

Carbohydrates, glycopolymers, carbohydrate scaffolds, polymersomes, vesicles, surface functionalization, RAFT, multivalency.
Co-Authorship Statement

The work presented in this thesis is the result of the author’s work as well as the work of coworkers at Western University and Dr. Elizabeth Gillies whose exact contributions are described here.

Chapter 1 was written by the author and edited by Dr. Elizabeth Gillies.

Chapter 2 describes an ongoing project proposed by Dr. Elizabeth Gillies. Both PAGal glycopolymers were synthesized and characterized by Brooke Raycraft. Synthesis and characterization of the PEtGUV was performed by Dr. Bo Fan and Dr. Kai Cao. Dr. Fan also synthesized and characterized the MeO-PETGThermo-PEG-OME. All other work was performed by the author.

Chapter 3 was written by the author and edited by Dr. Elizabeth Gillies.

Chapter 4 was written by the author and edited by Dr. Elizabeth Gillies.
Acknowledgments

I would like to first and foremost thank Dr. Gillies for being my supervisor. She taught me so much. From crucial soft skills, like effective and clear communication, to technical skills, like comprehensive NMR analysis. I will be forever grateful for the numerous learning opportunities she gave me. Finally, I cannot thank her enough for all the times she went above and beyond to edit reports for me.

My thanks go out to everyone I have had the pleasure working with in the Gillies Group. Thank you for your words of wisdom on chemistry and unrelated topics. I am grateful to have had the opportunity to get know some of you very well and look forward to the long years of friendship to come. I wish the best for every one of you.

I would to say a heartfelt thank you to my parents who have supported me along my academic journey. It would have been impossible to have reached this point in my life without your guidance. To my sister, thank you for always being there.

Finally, I must thank my girlfriend Meghan for her advice, continuous support, and words of encouragement. I greatly appreciate the different perspective you always have to offer. Thank you for helping me through the late nights of writing reports, and for being more than willing to read them.
Table of Contents

Abstract ... i

Co-Authorship Statement .. ii

Acknowledgments .. iii

Table of Contents .. iv

List of Tables .. vi

List of Figures ... vii

List of Schemes ... x

List of Abbreviations ... xi

Chapter 1 ... 1

1 Carbohydrates and their Role in Therapeutics ... 1

1.1 Introduction to Carbohydrates ... 1

1.1.1 Carbohydrates and their role in Nature .. 1

1.1.2 Carbohydrates and the Human Immune System ... 1

1.1.3 Carbohydrates and Cancer ... 3

1.2 The Nature of Carbohydrate Bonds ... 3

1.2.1 Carbohydrate–Protein Binding ... 3

1.2.2 Multivalent Carbohydrate Binding to Lectins ... 5

1.3 Carbohydrate Presenting Scaffolds for use in Therapeutics ... 6

1.3.1 Naturally Occurring Glycopolymers ... 6

1.3.2 Synthetic Glycopolymers ... 7

1.3.3 Glycopeptides .. 8

1.3.4 Glycoconjugates .. 9

1.3.5 Glycodendrimers ... 9

1.3.6 Carbohydrate Functionalized Nanoparticles ... 11
1.4 Carbohydrate Presenting Assemblies and their Applications12
 1.4.1 Micelles ..12
 1.4.2 Polymersomes ..13
 1.4.3 Dendrimersomes ..14
1.5 Thesis Objectives ..15
 1.5.1 Project Background ..15
 1.5.2 Project Objectives ...16

Chapter 2 ...18
 2 Results and Discussion ..18
 2.1 Synthesis and Characterization of Glycopolymers18
 2.2 Azide Functionalized PBD-PEO Polymersomes28
 2.3 Quantification of CuAAC with Azide Functionalized PBD-PEO Polymersomes 32
 2.4 Difficulties in the reproducibility of polymersome preparation33
 2.5 Azide Functionalized PEG-PEtG-PEG Polymersomes34

Chapter 3 ...43
 3 Experimental ..43

Chapter 4 ...51
 4 Conclusions and Future Work ..51

References ...53

Appendices ..59

Curriculum Vitae ...68
List of Tables

Table 2.1. Summarized characterization results for short and long protected glycopolymer PSAcGal. Determined by \(^a\) SEC, \(^b\) TGA, \(^c\) DSC, \(^d\) \(^1\)H NMR spectroscopy. ..26

Table 2.2. Table summarizing the percentage of functionalized azide groups relative to the total number of available azide groups...33
List of Figures

Figure 1.1. Binding of viruses to a macrophage presenting MBP-Receptors and SABP’s to induce phagocytosis and an immune response. ...2

Figure 1.2. Schematic illustrating the effect of binding of galactose to a binding pocket. β-galactose favourably binds to the protein where α-galactose does not bind favourably due to steric hindrance.12 ...4

Figure 1.3. Structure of Hyaluronic Acid, a natural glycopolymer.................................6

Figure 1.4. (a) Neutralization of an influenza virus with Mucin, a natural glycoprotein containing sialic acid groups. The Mucin inhibits binding of the virus to the cell, preventing invasion. Modified and reprinted with permission.19 (b) Structure of sialic acid glycopolymer derivative used to neutralize influence A. ..7

Figure 1.5. (a) Sialylated lactose cyclic glycopeptide shown to neutralize influenza A.21 (b) Pentasaccharide core of N-glycans.24 ..8

Figure 1.6. Structure of the lactose–functionalized starburst glycodendrimer synthesized by André et al.28 ...10

Figure 1.7. Simplified representation of a lactose–functionalized goldnanoparticle.3012

Figure 1.8. (a) Self–assembly of galactose-functionalized amphiphilic polycarbonate-based polymer into a micelle loaded with hydrophilic cargo.35 (b) Self–assembly of PGalSMA amphiphilic block copolymer or a twin-twin amphiphilic glycodendrimer into a vesicle loaded with hydrophobic and hydrophilic cargo.36,37 ...13

Figure 1.9. Schematic showing the method for functionalizing polymersomes with glycopolymers..16

Figure 1.10. Diagram showing the four degrees of glycopolymer functionalization targeted. ...17
Figure 2.1. 1H NMR spectra of PAGal-Rho showing the characteristic rhodamine dye peak (600 MHz, DMSO-d6). .. 20

Figure 2.2. 1H NMR spectrum of SAcGal (400 MHz, CDCl$_3$). .. 23

Figure 2.3. 1H NMR spectrum (400 MHz, CDCl$_3$) of PSAcGal$_8$ with the reference peaks for end-group analysis labelled. .. 27

Figure 2.4. SEC traces of PSAcGal$_8$ and PSAcGal$_{18}$ in THF with refractive index detection. .. 27

Figure 2.5. CLSM images of 100% PBD-PEG-N$_3$ polymersomes: a) loaded with Nile red and (b) with rhodamine functionalized glycopolymer, PAGal$_{19}$-Rho, conjugated to the surface.. 29

Figure 2.6. CLSM image of (a) 10% PBD-PEG-N$_3$ and (b) 100% PBD-PEG-N$_3$ polymersomes conjugated with PSGal$_{19}$-Rho. .. 31

Figure 2.7. Structures of the target triblock copolymers (a) MeO-PEG-Pet$_{UV}$-PEG-OMe (550) and (b) N$_3$-PEG-Pet$_{UV}$-PEG-N$_3$ (600) and N$_3$-PEG-Pet$_{UV}$-PEG-N$_3$ (1000) 34

Figure 2.8. 1H NMR spectrum (400 MHz, CDCl$_3$) of MeO-PEG-Pet$_{UV}$-PEG-MeO (550). .. 38

Figure 2.9. FT-IR spectrum of MeO-PEG-Pet$_{UV}$-PEG-MeO (550). .. 38

Figure 2.10. Overlay of the SEC traces for (a) MeO-PEG-Pet$_{UV}$-PEG-MeO (550) and (b) MeO-PEG-N$_3$. .. 39

Figure 2.11. CLSM images of the PEG-Pet$_{UV}$-PEG-N$_3$ (1000) suspension, showing that small particles were obtained. .. 40

Figure 2.12. Chemical structure of MeO-PEG-Pet$_{Thermo}$-PEG-OMe. .. 41

Figure 2.13. (a) Large vesicle morphology and (b) small particles observed within the same 10 wt% N$_3$-PEG-Pet$_{UV}$-PEG-N$_3$ (1000) 90 wt% MeO-PEG-Pet$_{Thermo}$-PEG-OMe (750) nanoparticle suspension .. 42
Figure A.0.1. 1H NMR Spectrum of PAGal_{19}-Rho. (DMSO-d6, 400 MHz)..........................59

Figure A.0.2. 1H NMR Spectrum of crude AAcGal. (CDCl$_3$, 600 MHz).................................60

Figure A.0.3. 1H NMR Spectrum of PSAcGal_{18}. (CDCl$_3$, 600 MHz).................................60

Figure A.0.4. 1H NMR Spectrum of PSGals-Rho. (D$_2$O, 600 MHz).................................61

Figure A.0.5. 1H NMR spectrum of PBD-PEG-OH. (CDCl$_3$, 400 MHz).................................61

Figure A.0.6. 1H NMR spectrum of PBD-PEG-N_3. (CDCl$_3$, 600 MHz).................................62

Figure A.0.7. 1H NMR spectrum of N_3-$\text{PEG-PETG}_{\text{UV-PEG-N}_3}$ (600). (CDCl$_3$, 600 MHz) ...62

Figure A.0.8. 1H NMR spectrum of N_3-$\text{PEG-PETG}_{\text{UV-PEG-N}_3}$ (1000). (CDCl$_3$, 600 MHz) 63

Figure A.0.9. FT-IR spectrum of SAcGal ..63

Figure A.0.10. FT-IR spectrum of N_3-$\text{PEG-PETG}_{\text{PEG-N}_3}$ (1000).................................64

Figure A.0.11. SEC overlay of N_3-$\text{PEG-PETG}_{\text{PEG-N}_3}$ (600) and N_3-PEG-N_3 (600).64

Figure A.0.12. TGA trace of PSAcGal_8 ..65

Figure A.0.13. DSC trace for PSAcGal_8 ..65

Figure A.0.14. Fluorescence Calibration Curve for PSGal_8-Rho ..66

Figure A.0.15. Fluorescence Calibration Curve for PSGal_{18}-Rho ..66

Figure A.0.16. Rights and Permission to reprint Figure 1.4 ..67
List of Schemes

Scheme 2.1. Synthetic scheme for the coupling of rhodamine B onto \textbf{PAGal}.19

Scheme 2.2. Synthesis of monomer \textbf{AAcGal}, \(\beta\)-D-galactose pentaacetate functionalized acrylamide monomer...21

Scheme 2.3. Synthesis of the monomer \textbf{SAcGal}, a \(\beta\)-D-galactose pentaacetate functionalized styrenic monomer...23

Scheme 2.4. RAFT-mediated polymerization of \textbf{SAcGal} and the subsequent deprotection and functionalization with Rhodamine B...25

Scheme 2.5. Synthesis of azide functionalized PBD-PEG (\textbf{PBD-PEG-N3}).................................29

Scheme 2.6. Preparation of \textbf{PAGal-Rho}-functionalized PBD-PEG polymersomes.31

Scheme 2.7. Synthesis of (a) mono-azide terminated PEG, \textbf{MeO-PEG-N3}, and (b) di-azide terminated PEG, \textbf{N3-PEG-N3}. ...35

Scheme 2.8. Synthesis of \textbf{MeO-PEG-P\textit{EtG}_{UV}-PEG-OMe (550)} and (b) \textbf{N3-PEG-P\textit{EtG}_{UV}-PEG-N3 (600)}...37
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIBN</td>
<td>Azobisisobutyronitrile</td>
</tr>
<tr>
<td>ATR</td>
<td>Attenuated Total Reflectance</td>
</tr>
<tr>
<td>BHT</td>
<td>Butylated hydroxytoluene</td>
</tr>
<tr>
<td>BPS</td>
<td>Bathophenanthrolinedisulfonic acid disodium salt hydrate</td>
</tr>
<tr>
<td>CLSM</td>
<td>Confocal Laser Scanning Microscopy</td>
</tr>
<tr>
<td>CTA</td>
<td>Chain Transfer Agent</td>
</tr>
<tr>
<td>CuAAC</td>
<td>Copper Azide-Alkyne Cycloaddition</td>
</tr>
<tr>
<td>D</td>
<td>Dispersity</td>
</tr>
<tr>
<td>DCC</td>
<td>N,N'-Dicyclohexylcarbodiimide</td>
</tr>
<tr>
<td>DIPEA</td>
<td>N,N'-Diisopropylethylamine</td>
</tr>
<tr>
<td>DLS</td>
<td>Dynamic Light Scattering</td>
</tr>
<tr>
<td>DMAP</td>
<td>4-Dimethylaminopyridine</td>
</tr>
<tr>
<td>DMF</td>
<td>Dimethylformamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>D_{P_n}</td>
<td>Degree of Polymerization</td>
</tr>
<tr>
<td>DPTS</td>
<td>4-(Dimethylamino)pyridinium 4-toluenesulfonate</td>
</tr>
<tr>
<td>DSC</td>
<td>Differential Scanning Calorimetry</td>
</tr>
<tr>
<td>ECM</td>
<td>Extracellular Matrix</td>
</tr>
<tr>
<td>EDC-HCl</td>
<td>N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>FT-IR</td>
<td>Fourier-transform infrared spectroscopy</td>
</tr>
<tr>
<td>GNP</td>
<td>Gold Nanoparticle</td>
</tr>
<tr>
<td>iNKT</td>
<td>invariant Natural Killer T</td>
</tr>
<tr>
<td>MBP</td>
<td>Mannose Binding Protein</td>
</tr>
<tr>
<td>M_n</td>
<td>Number Average Molar Mass</td>
</tr>
<tr>
<td>MWCO</td>
<td>Molecular Weight Cut Off</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>PBD</td>
<td>Polybutadiene</td>
</tr>
<tr>
<td>PEG</td>
<td>Poly(ethylene glycol)</td>
</tr>
<tr>
<td>PEtG</td>
<td>Poly(ethyl glyoxylate)</td>
</tr>
<tr>
<td>RAFT</td>
<td>Reversible Addition-Fragmentation Chain-Transfer</td>
</tr>
<tr>
<td>SABP</td>
<td>Sialic Acid Binding Proteins</td>
</tr>
<tr>
<td>SEC</td>
<td>Size Exclusion Chromatography</td>
</tr>
<tr>
<td>TEG</td>
<td>Tri(ethylene glycol)</td>
</tr>
<tr>
<td>T_g</td>
<td>Glass Transition Temperature</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission Electron Microscopy</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermogravimetric Analysis</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin Layer Chromatography</td>
</tr>
<tr>
<td>T_o</td>
<td>Onset of Decomposition Temperature</td>
</tr>
</tbody>
</table>
Chapter 1

1 Carbohydrates and their Role in Therapeutics

1.1 Introduction to Carbohydrates

1.1.1 Carbohydrates and their role in Nature

Carbohydrates or saccharides play a crucial role in cellular adhesion and molecular signaling that occurs at the surfaces of many mammalian and microbial cells.\(^1\)\(^,\)\(^2\) The interactions between cells and the surrounding extracellular matrix (ECM) are regulated by cellular adhesion events that fall under one of three interaction types: protein-protein, protein–carbohydrate, and carbohydrate–carbohydrate interactions. These interactions control the binding of connective proteins that form the ECM.\(^3\) Carbohydrates displayed on the surfaces of cells act as identifying molecules that inform cells of their respective type, thereby allowing for cellular organization and the formation of homogeneous-multicellular tissue.\(^4\)\(^,\)\(^5\) Signaling molecules regulate the immune response, cancer metastasis, and act as indicators for disease states in the human body.\(^5\)

1.1.2 Carbohydrates and the Human Immune System

The innate and adaptive immune systems mimic key interactions between displayed carbohydrates and complimentary binding proteins on the surface of mammalian cells and pathogens in order to fight infection. The innate immune system is the part of the immune system that can protect the body from a wide variety of pathogens. It is partially composed of different types of phagocytes that can consume and destroy pathogens. For example, macrophages can identify and trap a virion by multiple carbohydrate-based mechanisms.\(^5\) Mannose Binding Proteins (MBPs) found in the blood stream can bind to mannose residues displayed on the surface of a virion to form a complex.\(^6\) MBP-virion
complexes can then associate with receptors on the surface of the macrophage to trigger phagocytosis (Figure 1.1).5,7 Phagocytosis can also be triggered by the binding of sialic acid residues displayed on a macrophage’s surface sialic acid binding proteins (SABP) or long linear pendent protein chains to virion surface proteins8; sialic acid functionalized protein chains act like a net in the blood stream, attempting to capture pathogens that do not make direct contact with the macrophage’s surface.5

Figure 1.1. Binding of viruses to a macrophage presenting MBP-Receptors and SABP’s to induce phagocytosis and an immune response.

Although the innate immune system provides defense against many invading pathogens, the adaptive immune system allows for a long term and larger immune response than the innate system. Dendritic cells, a type of phagocyte from the innate immune system, display fragments of glycoproteins or glycolipid complexes that were derived from a previously consumed virion. Specialized lymphocytes interact with the presented fragments and use the information to trigger an immune response. A dissimilar immune response targeting the human body’s own cells can be triggered by abnormal or pathogenic carbohydrate displays on the surface of human cells.
1.1.3 Carbohydrates and Cancer

The body can identify cancerous cells by the aberrant presentation of carbohydrates on the surface of the cell. Malignant cancer cells often have different carbohydrates presented due to the fact that they have different cellular adhesion and mobility than typical cells. Increased glycosylation of surface glycoproteins has been observed in multiple types of cancer including breast, prostate, and pancreatic cancers. Higher degrees of glycosylation have been speculated to increase the ability of tumors to metastasize by improving binding of the cancerous cells to the walls of blood vessels. Unique and cancer specific antigens are displayed by cancerous cells. Thus, these antigens have been considered to be a useful target for potential cancer vaccines or targeted drug delivery. Carbohydrates have widely been hailed as potential therapeutics but to understand the design of such therapeutics, a closer look at the nature of carbohydrate bonds is required.

1.2 The Nature of Carbohydrate Binding

1.2.1 Carbohydrate–Protein Binding

Carbohydrates typically bind to proteins and other carbohydrates through weak intermolecular forces. When binding to proteins, carbohydrates typically bind either in pockets or grooves on the surface of a protein. Pockets only allow specific saccharides with a certain conformation to favourably bind (Figure 1.2); grooves offer a less specific binding. Non–covalent hydrogen bonding of saccharide hydroxyl groups to aspartic acid, asparagine, glutamic acid, glutamine, and arginine residues are the most important and strongest binding interactions. The formation of new hydrogen bonds is important to the spontaneous binding of saccharide to proteins. However, to understand the binding of mono-, oligo- or polysaccharides to proteins, driving forces other than hydrogen bond formation must also be introduced.
Figure 1.2. Schematic illustrating the effect of binding of galactose to a binding pocket. β-galactose favourably binds to the protein where α-galactose does not bind favourably due to steric hindrance.12

The spontaneous binding of carbohydrate presenting molecules to complimentary lectins is assumed to be a model system for carbohydrate-protein binding interactions. “Lectins are proteins of nonimmune origin that bind to specific carbohydrates without modifying them,” and have been found in most microorganisms and multi-cellular organisms.5,13 In a binding interaction, initially both the carbohydrate and site of binding are solvated, typically with water molecules. The water molecules at the site of binding are suspected to be highly ordered and in a higher-energy state than water molecules interacting in bulk.13 When the carbohydrate hydroxyl groups interact with amino acid residues at the site of binding, the high-energy water molecules are displaced, and become lower in energy.13,14 The breaking of the hydrogen bonds contributes a small negative ΔH term to ΔG, in ΔG = ΔH - TΔS, where a negative ΔG indicates spontaneous binding. There is an enthalpic cost associated with the formation of new water–water hydrogen bonds, but it is
compensated for by the slightly larger entropic contribution of solvent rearrangement to ΔS.15 The rearrangement of highly–ordered water molecules surrounding the hydrophobic portions of the carbohydrate and lectin binding site to disordered water molecules is highly favours entropy. Thus, solvent rearrangement is the main driving force behind carbohydrate–lectin binding.13,15 The binding site favours the binding of a specific conformation of the carbohydrate, but conformational binding and locking reduces the rotational freedom of the carbohydrate bonds. This reduction in rotational freedom is associated with a small entropic cost that makes ΔG slightly less negative. Monosaccharide-lectin binding is determined by the above enthalpic and entropic interactions.4 Oligosaccharides and molecules that present multiple copies of a saccharide have a more favourable binding to lectins due to the multivalent effect.

1.2.2 Multivalent Carbohydrate Binding to Lectins

The increased binding of oligosaccharides, glycopolymers, glycoproteins, and glycolipids in biological systems may offer an explanation for why many key binding interactions rely on molecules displaying multiple carbohydrates. One reason multivalent carbohydrate binding moieties may have stronger interactions with lectins, is that lectins and some other proteins contain multiple binding sites.13 For example, in the binding of glycopolymers, an entropic cost is initially paid when one of the saccharides adapts the required binding conformation; flexible and freely rotating glycopolymers have more entropy than bound glycopolymers.13 Other saccharides on the glycopolymer are now free to bind to another site on the lectin without paying the same initial entropic cost, increasing the favourability of the second saccharide binding event. Upon binding of a multivalent carbohydrate there may also be a large local concentration of saccharides, contributing to the multivalent effect. After a single saccharide binds to the complementary lectin, many saccharides populate the local environment, shifting the equilibrium to favour binding. It can be imagined that either interactions with another binding site, or interaction with the same binding site, after disassociation, would be possible.5,13 The multivalent effect on binding is expected to be driven by a combination of entropic and concentration–based effects.4 Due to the increased binding and
prevalence of polyvalent carbohydrates in nature, many therapeutic scaffolds taking advantage of the multivalent effect have been proposed over the years.

1.3 Carbohydrate Presenting Scaffolds for use in Therapeutics

1.3.1 Naturally Occurring Glycopolymers

Scaffolds presenting polyvalent carbohydrates are often designed to replicate carbohydrate presentation in nature. A natural glycopolymer that has been shown to have many therapeutic applications is hyaluronan, a derivative of hyaluronic acid (Figure 1.3). Hyaluronan is a glycopolymer found in many living organisms and in the ECM of cartilage in humans. It has applications in ophthalmology, treatment of osteoarthritis, and wound healing, where the hyaluronan often acts as a lubricant or moisturizer. Hyaluronan can be modified through semi-synthetic methods to alter the properties. However, synthetic glycopolymers offer distinct advantages over natural or semi-synthetic glycopolymers.

![Hyaluronic Acid](image)

Figure 1.3. Structure of Hyaluronic Acid, a natural glycopolymer.
1.3.2 Synthetic Glycopolymers

Synthetic glycopolymer scaffolds have been developed to control structural properties including molar mass and the presented saccharide. A high degree of variability in molar mass (number of presented saccharides) within a particular glycopolymer sample, or a polydisperse sample, increases the variability of action for biological applications. In contrast, monodisperse samples, or samples with a low degree of variability in molar mass, have reproducible properties and less therapeutic variability.5,18 Glycopolymers with a molar mass under 100,000 g/mol have been shown to avoid stimulating parts of the immune system, creating greater specificity of action.10 The carbohydrate presented often determines the application of a glycopolymer. For example, the Influenza A virus is coated in proteins that specifically bind to sialic acid.5,19,20 A natural glycopolymer containing sialic acid residues, mucin, can neutralize a virus as seen in Figure 1.4 (a). Tsuchida and co-workers took advantage of this and designed a synthetic glycopolymer with sialic acid residues to neutralize the infectious capability of viral particles as shown in Figure 1.4.20 Short synthetic glycoproteins, or glycosylated polypeptide sequences, have been shown to have similar neutralization potential to viral particles.21

Figure 1.4. (a) Neutralization of an influenza virus with mucin, a natural glycoprotein containing sialic acid groups. The mucin inhibits binding of the virus to the cell,
preventing invasion. Modified and reprinted with permission.19 (b) Structure of sialic acid glycopolymer derivative used to neutralize Influenza A.

1.3.3 Glycopeptides

Glycopeptides are synthetic glycopolymers based on peptide linkages between glycosylated amino acid derivatives. Peptide synthesis involves sequential deprotection and protection steps leading to discrete peptide sequences which improves the reproducibility of experimental results.22 Control over the peptide sequencing allows for the fine tuning of distances between binding groups and can change the presented carbohydrate patterns.23 For example cyclic glycopeptides present carbohydrates in a unique manner (Figure 1.5).21 Synthetic glycoproteins, as a class of scaffolds, are generally highly biocompatible due to the fact that most organisms possess the enzymes to break down peptide linkages.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{glycopeptide.png}
\caption{(a) Sialylated lactose cyclic glycopeptide shown to neutralize Influenza A.21 (b) Pentasaccharide core of N-glycans.24}
\end{figure}
1.3.4 Glycoconjugates

Glycoconjugates are another biocompatible scaffold that use glycosylated proteins, antibodies, or antigens as therapeutics. The term glycoconjugate refers to any protein or antibody that has a glycopolymer, oligosaccharide, or glycopeptide covalently bound, or conjugated, to its surface to improve its targeted delivery.\(^5\) \(N\)-glycans are an example of naturally occurring glycoconjugates. \(N\)-Glycans have the same pentasaccharide core as shown in figure 1.5 with functionalization of the hydroxyls observed.\(^{24}\) Although glycoconjugates show potential for a wide variety of applications, available synthetic transformations are limited to reaction conditions that will not destroy the biological activity of the protein.\(^{24,25}\) Glycosylation reactions often require anhydrous conditions which are incompatible with many proteins.\(^{23}\) The present synthesis of glycoconjugates, like \(N\)-glycans, relies on enzymatic transformations which have issues of site-specific reactivity.\(^{24,25}\) Despite difficulties with synthesis, glycoconjugate therapeutics have been developed. For example, branched glycoproteins conjugated to a protease that could cleave a specific receptor on a bacterial pathogen. The glycoconjugate of the protease showed an improvement in efficacy by \(10^3\) over the protease.\(^5\)

1.3.5 Glycodendrimers

Glycodendrimers are a class of branched glycopolymers that are both well-defined and present carbohydrates in a multivalent manner.\(^{26}\) The molecule typically branches away from a central point with selected reactive or functional groups at the outer terminus.\(^{26}\) Dendrimers are often synthesized generationally using a series of protection, coupling, and deprotection steps similar to polypeptides.\(^{7,27}\) Each growth step increases the generation and branching of dendrimers, where \(G0\) is the initial generation and the third generation, \(G3\), has had at least three growth steps increasing the branching. These discrete generational synthetic steps lead to high degrees of control over the size and consequently the size dependent properties. The effect of dendrimer generation and number of presented saccharide units was observed in a study by André et al. where they tested lactose functionalized glycodendrimers as an inhibitor of \((AB)2\)-toxic agglutinin, a
toxic lectin found in mistletoe. Glycodendrimers of generation G3-G5, displayed 32 (Figure 1.6) to 128 lactose molecules, which showed a 10 to 100 fold increase in relative inhibition potency over lower generation dendrimers, G0-G2, which displayed 4 to 16 lactose molecules. A high-density of terminal functional groups increases binding affinity for certain systems.

Figure 1.6. Structure of the lactose–functionalized starburst glycodendrimer synthesized by André et al. 28
1.3.6 Carbohydrate Functionalized Nanoparticles

Functionalized nanoparticles composed of gold, iron oxide, and other semi-conductive metal nuclei have been functionalized with carbohydrates creating the field of glyconanoparticles.29 The metallic nucleus of a glyconanoparticle gives the particle inherent magnetic and electrochemical properties, and the use of a radionuclide makes a glyconanoparticle a multimodal imaging scaffold.29 Goldnanoparticles (GNP) functionalized with lactose, Figure 1.7, showed strong binding to galectin-1, a mammalian β-galactoside-specific lectin.30 An overcrowding effect was observed with the lacto-GNP, where a decreased binding to the lectin was associated with 100 percent surface functionalization.30 Similar lacto-GNP were applied in anti-adhesion therapy in mice.31,32 The metastasis of a melanoma cell line in mice treated with lacto-GNP was inhibited up to 70\% in comparison to untreated mice.32 Cationic glycopolymer functionalized GNP\s have shown potential as gene delivery vehicles. The particles had a transfection efficiency of approximately 55 \%.33
Figure 1.7. Simplified representation of a lactose–functionalized goldnanoparticle.30

1.4 Carbohydrate Presenting Assemblies and their Applications

1.4.1 Micelles

Nano-assemblies composed of amphiphilic molecules have been of interest to scientists for many years due to their abilities to encapsulate a variety of hydrophilic and hydrophobic cargo and their ability to mimic cell membranes.34 Amphiphilic molecules can spontaneously self-assemble to form unique morphologies, usually determined by the hydrophilic weight fraction of the molecule.34 Micellar morphologies have been observed from the self-assembly of amphiphilic glycopolymers. For example, Suriano \textit{et al.} synthesized a galactose–functionalized polycarbonate block copolymer using ring
opening polymerization (Figure 1.8 (a)). From the block copolymer they were able to form micelles that could be loaded with doxorubicin, an anti-cancer drug. The galactose-functionalized micelles showed specific uptake into liver carcinoma cells (HepG2) over glucose functionalized analogues. The results therefore indicated the potential for targeted delivery of anti-cancer drugs using glyco-assemblies. The micellar morphology allows for the loading of hydrophobic cargo, however hydrophilic cargo may be loaded into a variety of other assembly morphologies.

Figure 1.8. (a) Self–assembly of galactose-functionalized amphiphilic polycarbonate-based polymer into a micelle loaded with hydrophobic cargo. (b) Self–assembly of PGalSMA amphiphilic block copolymer or a twin-twin amphiphilic glycodendrimer into a vesicle loaded with hydrophobic and hydrophilic cargo.

1.4.2 Polymersomes

A vesicle morphology is observed when a bi-layer is formed during the self-assembly of amphiphilic molecules. Vesicles have been observed to result from the self-assembly of lipids, dendrimers, and block copolymers. Polymethacrylate block copolymers
conjugated with galactose (PGalSMA) have been synthesized using reversible addition–
fragmentation chain–transfer (RAFT) polymerization. RAFT is a method of controlled
polymerization that can afford monodisperse polymer samples, or samples that contain
described polymer chains all of similar molecular weight.\(^{40}\) Monodisperse polymer samples are
important for self–assembly due to the sensitive nature of the hydrophilic–hydrophobic
ratio that determines assembly morphology. It is common for amphiphilic block
copolymers used in therapeutic scaffolds, PGalSMA for example, to be synthesized using
RAFT polymerization to improve reproducibility and reliability.\(^{41}\) PGalSMA has been
shown to assemble into vesicles (Figure 1.8 (b)).\(^{36}\) A hydrophilic rhodamine-based dye
that cannot normally undergo cellular uptake was loaded into the PGalSMA vesicles.
Staining of internal cellular organelles indicated cellular uptake and successful cargo
delivery.\(^{36}\)

1.4.3 Dendrimersomes

Percec and coworkers have synthesized Janus glycodendrimers using a modular strategy
that allowed the authors to produce vast libraries of glycodendrimers.\(^{38}\) The libraries
enabled them to determine the effects of crystallinity, saccharide, and linker lengths on
assembly morphology.\(^{37}\) Glycodendrimers with a variety of saccharides were able to form
giant glycodendrimersomes, which are assemblies of micrometer-scale. Due to their size,
double-layer membrane, and multivalent presentation of surface carbohydrates, the
glycodendrimersomes were presented as a new potential cellular mimic.\(^{38}\) Gillies and co-
workers synthesized α-galactose-presenting glycodendrimers which could self–assemble
into vesicles. These α-galactose glycodendrimersomes were able to stimulate invariant
natural killer T (iNKT) cells.\(^{27}\) iNKT cells are normally stimulated by α-galactose
presented in a multivalent manner, which is associated with pathogenesis.\(^{27}\) Self-
assemblies displaying carbohydrates in a multivalent manner provide a unique
opportunity to act as delivery agents and biological mimics for use in therapeutics and the
study of biological activity.
1.5 Thesis Objectives

1.5.1 Project Background

In previous work by the Gillies group, polymersomes were functionalized with dendrimers using a copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction.39,42,43 It was determined that post-assembly modification of polymersomes using CuAAC did not disrupt the assembly morphology.42 Varying degrees of surface functionalization were possible by altering the ratio of azide-functionalized to unfunctionalized amphiphilic polymer used to form the polymersomes.39,42,43 The Gillies group successfully functionalized polybutadiene-\textit{b}-poly(ethylene oxide) (PBD-\textit{b}-PEO) polymersomes with sialic acid derivatized glycodendrimers.7 These glycodendrimer functionalized assemblies were shown to bind well to complimentary lectin but the ability of the assemblies to prevent the binding of influenza A viruses to mammalian cells was found to be limited. This was believed to result from the rigidity of the glycodendrimer structures. It can be imagined, that when surrounding a spherical virus with other spheres, the area of contact would be relatively limited. Because of the previous results, it was speculated that an improvement in binding could be achieved by introducing flexible linear glycopolymers to the surfaces of the polymersomes. This would instead allow octopus-like structures to surround the virus. Given the role of carbohydrates in numerous biological processes, it was proposed that glycopolymer-functionalized polymersomes could potentially serve as multivalent inhibitors of viral infection, vaccines, or targeted drug delivery vehicles that would resemble cell membranes. In addition, they could simultaneously serve as carriers for hydrophobic and hydrophilic cargo such as drugs or imaging agents. The surface functionalization density and glycopolymer chain length may also give important information about the optimal surface structure for lectin binding.

In unpublished Gillies group work, the successful polymerization of an acrylamide functionalized β-galactose monomer using RAFT had been achieved.44 Small quantities
of alkyne terminated low molecular weight polymer, high molecular weight polymer, and monomer were previously synthesized and available for test reactions. The alkyne end-group of the polymer could potentially undergo a CuAAC reaction with azide functionalized PBD-\textit{b}-PEG polymersomes (Figure 1.9). PBD-\textit{b}-PEG was chosen as the amphiphilic block co-polymer because it has previously been used to produced vesicles using the film-hydration method.42 Film hydration was selected as a method of self-assembly because it allows for the facile encapsulation of both hydrophobic and hydrophilic cargo, while generally avoiding bio-incompatible organic solvents. Preliminary experiments had been performed to investigate the coupling of the linear polymers onto the vesicles.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{schematic.png}
\caption{Schematic showing the method for functionalizing polymersomes with glycopolymers.}
\end{figure}

\subsection*{1.5.2 Project Objectives}
For this thesis, it was proposed to prepare and study four different functionalized polymersome systems to examine the effects of both glycopolymer chain length and density on binding to lectin. Low and high densities of short and long polymers were
proposed (Figure 1.10). Efficacy of the CuAAC reaction between the polymersomes and glycopolymers needed to be quantified to make accurate conclusions about the effect of glycopolymer density on binding.39,42,43 It was proposed that this could be accomplished using a similar method as shown in Figure 1.9 above, but with dye-labeled glycopolymers. This thesis describes the progress towards these goals.

\textbf{Figure 1.10.} Diagram showing the four degrees of glycopolymer functionalization targeted.
Chapter 2

2 Results and Discussion

2.1 Synthesis and Characterization of Glycopolymers

In prior work by the Gillies group, polyacrylamides with terminal alkynes and pendant galactose moieties had been synthesized with two different degrees of polymerization (DP$_n$) and consequently two different number average molar masses (M$_n$). A RAFT polymerization approach had been used to provide glycopolymers with low dispersities (\bar{D}). 200 mg of PAGal$_9$ (DP$_n$ ~9, M$_n$ = 2,400 g/mol, \bar{D} = 1.2, based on size exclusion chromatography (SEC) in water) and 100 mg of PAGal$_{19}$ (DP$_n$ ~19, M$_n$ = 5,200 g/mol, \bar{D} = 1.3) were available for test reactions on polymer vesicle surfaces.44 To quantify the extent of reaction with the vesicle surface, a fluorescent dye was conjugated to each of PAGal$_9$ and PAGal$_{19}$ (Scheme 2.1). This was accomplished using a N-(3-dimethylaminopropyl)-N'‑ethylcarbodiimide hydrochloride (EDC·HCl) coupling reaction in the presence of 4-dimethylaminopyridine (DMAP) to react the carboxylic acid group of rhodamine B with a small number of the hydroxyl groups of the pendant β-galactose moieties. It was desirable to modify only a small fraction of the sugars to minimize the structural modification of the polymer and therefore reduce any impact of the dye molecules on the properties of the conjugated glycopolymers. The product was purified by dialysis against water using a 1,000 g/mol molecular weight cut-off (MWCO) membrane.
Scheme 2.1. Synthetic scheme for the coupling of rhodamine B onto PAGal.

The 1H NMR spectra of the rhodamine functionalized polymers PAGal_9-Rh and PAGal_{19}-Rh had a new broad peak in the aromatic proton region that were characteristic of the rhodamine dye, indicating the successful coupling of rhodamine onto the polymer (Figure 2.1). Based on the relative integrations of peaks at ~7.5 ppm and ~4.3 ppm in the 1H NMR spectra, the rhodamine was conjugated in ~7% molar equivalents for PAGab-Rh and ~9% molar equivalents for PAGal_{19}-Rh, compared to the individual repeat units.
Figure 2.1. 1H NMR spectra of PAGal$_9$-Rho showing the characteristic rhodamine dye peak (600 MHz, DMSO-d$_6$).

Polymers PAGal$_9$ and PAGal$_{19}$ were suitable for test quantification reactions but for the lectin binding tests more of these polymers were required. Consequently, more of monomer needed to be synthesized and polymerized. To accomplish this, replication of the synthesis shown in Scheme 2.2 was attempted.44 First, the pentaacetate-protected D-galactose was synthesized by the reaction of D-galactose refluxing acetic anhydride in the presence of sodium acetate. The D-galactose pentaacetate was then selectively glycosylated with azido ethanol using boron trifluoride etherate to afford the β-anomer of compound 1. A saccharide-based impurity, < 10% by H NMR, suspected to be D-galactose pentaacetate, was observed in a 1H NMR spectrum of ‘purified’ compound 1. After multiple attempts to purify compound 1 further using column chromatography, the synthesis was continued with the hope that purification at a later step would be possible.
The azide group in compound 1 was reduced using Lindlar’s catalyst, Pt on CaCO$_3$ poisoned with 5% Pb, suspended in ethanol in a hydrogen gas environment. To avoid a reaction of the newly formed amine group and the acetyl protecting group, para-toluene sulphonie acid was used as a temporary protecting group by forming the ammonium salt, compound 2. In the final step, to afford monomer AAcGal, the ammonium group was deprotonated with excess N,N-diisopropylethylamine (DIPEA) allowing for the formation of the amide with the acryloyl chloride.

Scheme 2.2. Synthesis of monomer AAcGal, β-D-galactose pentaacetate functionalized acrylamide monomer.

A high degree of difficulty with the synthesis and purification at the final step of synthesizing monomer AAcGal was experienced. The TLC of crude AAcGal showed multiple products with 3 spots staining with ninhydrin, indicating the presence of an amine or amide. After collecting what seemed to be the product containing fractions from column chromatography, the 1H NMR spectrum still indicated the presence of impurities which were not removed upon re-purification with column chromatography. It should be
noted that after the first column, the yield dropped from ~14 g of crude product to ~ 4 g. It had been previously reported in unpublished Gillies group work that this acrylamide monomer was exceptionally reactive and could auto polymerize. Butylate hydroxytoluene (BHT), a radical inhibitor, was added to the eluent to prevent auto-polymerization, but the drastic decrease in yield could still be attributed to auto-polymerization of the monomer on the column and removal of the impurities present in the crude product. The vinyl proton shifts in the \(^1\)H NMR spectrum under-integrated relative to what was expected for the product, supporting the hypothesis that auto-polymerization could have occurred. The final synthetic step for monomer AAcGal was repeated two more times with freshly distilled acryloyl chloride, DIPEA, and CH\(_2\)Cl\(_2\). It has previously been stated in the literature that “The synthesis, isolation, and purification of glycomonomers is notoriously difficult.”

Due to the difficulty with replicating the synthesis of monomer AAcGal, synthesis of a new styrenic monomer, SAcGal, was explored (Scheme 2.3). In the first step, propargyl alcohol was deprotonated with sodium hydride in anhydrous tetrahydrofuran (THF) and substituted for the chlorine of 4-vinylbenzyl chloride, 3, to afford compound 4. Crude compound 1 underwent a CuAAC reaction with pure compound 4 to yield SAcGal. Based on \(^1\)H NMR spectroscopy, SAcGal was pure after purification using a simple silica plug (Figure 2.2). IR spectroscopy showed no peak at ~2095 cm\(^{-1}\) indicating that there was no free azide remaining. The first step in the synthesis of SAcGal had a quantitative yield and the second step had a yield of 55%. SAcGal was stored with BHT to prevent auto-polymerization. The BHT inhibitor was removed using a silica plug immediately before polymerization.
Scheme 2.3. Synthesis of the monomer SAcGal, a β-D-galactose pentaacetate functionalized styrenic monomer.

Figure 2.2. \(^1\)H NMR spectrum of SAcGal (400 MHz, CDCl\(_3\)).
RAFT polymerization was selected because it enabled control over important glycopolymer properties including the molecular weight, dispersity, and end-groups. Exemplified by PAGal₀ and PAGal₁₉, where the RAFT chain transfer agent (CTA) 5 contained an alkyne group (Scheme 2.4). Due to the nature of RAFT polymerization, the alkyne functionalized portion of the CTA would be incorporated into one of the glycopolymer terminal ends. This alkyne end-group could undergo CuAAC with the azide on the surface of the polymersomes to conjugate the glycopolymer to the polymersomes. The RAFT-mediated polymerization was initiated with azobisisobutyronitrile (AIBN), 6, a thermal radical initiator. All free radical polymerization reactions are highly sensitive to O₂(g), which can react with radicals. To remove oxygen, two methods were explored: Freeze-pump-thaw and bubbling N₂ gas through the polymerization mixture. Freeze-pump-thaw yielded the most consistent polymerization results likely due to inconsequential changes in concentration during the process. When bubbling N₂ gas through a polymerization mixture an ice bath is commonly used to reduce evaporation of the solvent, but a change in concentration and rate of polymerization was observed. To improve consistency freeze-pump-thaw was used. After degassing the polymerization mixture, it was heated at 70 °C to initiate the polymerization.
Scheme 2.4. RAFT-mediated polymerization of SAcGal and the subsequent deprotection and functionalization with Rhodamine B.

Similar to the initial glycopolymers PAAcGal₉ and PAAcGal₁₉, two glycopolymers with different lengths were synthesized (Table 2.1). Mₙ, DPₙ, and D of the polymers were determined from SEC in THF relative to polystyrene standards, where calculating DPₙ involved dividing the Mₙ by the molar mass of the repeat unit, 560 g/mol. End-group analysis by ¹H NMR spectroscopy was also used to determine a DPₙ of the polymers. To determine DPₙ the integration value of the CH₂ group next to the trithiocarbonate group (set to 2.0) was compared to the integration value of the saccharide’s anomeric proton (Figure 2.3). The short protected glycopolymer PSAcGal₈ had an Mₙ of 4,700 g/mol, DPₙ of ~8, and D of 1.1 based on SEC, and an Mₙ of 6,700 g/mol and DPₙ of ~12 based on ¹H NMR. The long protected glycopolymer PSAcGal₁₈ had an Mₙ of 10,000 g/mol, DP of ~18, and D of 1.1 based on SEC, and an Mₙ of 21,000 and DPₙ of ~38 based on ¹H NMR. The low dispersities determined by SEC demonstrate that the polymerizations were well controlled (Figure 2.4). It is unclear whether the Mₙ values determined by SEC or ¹H NMR are more representative of the true average molar mass for each polymer sample.
The values determined by SEC are limited by how similar the solvated conformation of \textbf{PSAcGal} is to the polystyrene calibration standards in THF. The \(M_n \) calculated using \(^1\)H NMR spectroscopy is limited by the accuracy of the integration values, which are highly dependent on the conditions and parameters used to obtain the \(^1\)H NMR spectrum and the subsequent data processing. The important conclusion that can be drawn based on the relative \(DP_n \)s from SEC and \(^1\)H NMR spectroscopy, is that a shorter polymer, \textbf{PSAcGal}_8, and a longer polymer, \textbf{PSAcGal}_18, were successfully synthesized. Based on thermal analysis of \textbf{PSAcGal}_8, onset of decomposition temperature, \(T_o \), was determined to be 315 ºC using thermogravimetric analysis (TGA), and the glass transition temperature was determined to be 70 ºC using differential scanning calorimetry (DSC).

\textbf{Table 2.1}. Summarized characterization results for short and long protected glycopolymer \textbf{PSAcGal}. Determined by \(^a\) SEC, \(^b\) TGA, \(^c\) DSC, \(^d\) \(^1\)H NMR spectroscopy.

<table>
<thead>
<tr>
<th>Polymer Sample</th>
<th>(M_n) (g/mol) (^a)</th>
<th>(DP_n) (^a)</th>
<th>(D) (^a)</th>
<th>(T_o) (ºC) (^b)</th>
<th>(T_g) (ºC) (^c)</th>
<th>(M_n) (g/mol) (^d)</th>
<th>(DP_n) (^d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textbf{PSAcGal}_8</td>
<td>4,700</td>
<td>8</td>
<td>1.1</td>
<td>315</td>
<td>70</td>
<td>6,700</td>
<td>12</td>
</tr>
<tr>
<td>\textbf{PSAcGal}_18</td>
<td>10,000</td>
<td>18</td>
<td>1.1</td>
<td>315</td>
<td>70</td>
<td>21,000</td>
<td>38</td>
</tr>
</tbody>
</table>
Figure 2.3. 1H NMR spectrum (400 MHz, CDCl3) of PSAcGal$_8$ with the reference peaks for end-group analysis labelled.

Figure 2.4. SEC traces of PSAcGal$_8$ and PSAcGal$_{18}$ in THF with refractive index detection.
The galactose functional groups on P SACGal8 and P SACGal18 were then deprotected, post-polymerization, using sodium methoxide in anhydrous methanol. 1H NMR spectroscopy showed the disappearance of the acetyl protecting groups at ~2 ppm, which indicated successful deprotection of the hydroxy groups, yielding PSGal8 and PSGal18. A small percentage of the exposed hydroxy groups, on each polymer PSGal8 and PSGal18, were then functionalized with rhodamine B using the conditions described above for PAGal9 and PAGal19 (Scheme 2.4). The dye labeled glycopolymers, PSGal8-Rho and PSGal18-Rho had broad stryenic backbone peaks in aromatic region of the 1H NMR spectrum, making it difficult to determine the exact number of conjugated rhodamine molecules.

2.2 Azide Functionalized PBD-PEO Polymersomes

The Gillies group has previously reported the preparation of azide-functionalized polymersomes from azide-terminated polybutadiene-b-poly(ethylene glycol) (PBD-PEG) block copolymers.42 As previously reported, coupling of hydroxyl-terminated PBD-PEG (PBD-PEG-OH) with azidoacetic acid, 7, using N,N'-dicyclohexylcarbodiimide (DCC) and DMAP allowed for the synthesis of PBD-PEG-N3 (Scheme 2.5). The polymersomes were assembled using an optimized thin-film hydration method. By varying the ratio of PBD-PEG-OH and PBD-PEG-N3, the density of azides on the polymersome surface could be tuned. The PBD-PEG-OH and PBD-PEG-N3 were weighed out in the targeted ratio and dissolved in CHCl3. The solvent was evaporated under a stream of nitrogen, then the vial was put under high-vacuum for 16 hours to yield a thin-film. The film was hydrated with Milli-Q water at 46 °C overnight, then stirred rapidly at 46 °C for 16 hours to afford polymersomes. The initial compositions tested were 10% and 100% PBD-PEG-N3, with the remainder being PBD-PEG-OH. Polymersomes were imaged using confocal laser scanning microscopy (CLSM) by incorporating nile red, a fluorescent probe, into the hydrophobic membrane of the polymersome. This was accomplished by the addition of 0.1 weight percent (wt%) of nile red to the polymer in CHCl3 during the polymer film
preparation. CLSM images of the PBD-PEG assemblies confirmed the vesicle morphology (Figure 2.5 (a)). The polymersomes were approximately 3-5 µm in size.

![Scheme 2.5. Synthesis of azide functionalized PBD-PEG (PBD-PEG-N₃).](image)

Scheme 2.5. Synthesis of azide functionalized PBD-PEG (PBD-PEG-N₃).

![Figure 2.5. CLSM images of 100% PBD-PEG-N₃ polymersomes: a) loaded with nile red and (b) with rhodamine functionalized glycopolymer, PAGal₁₉-Rho, conjugated to the surface.](image)

Figure 2.5. CLSM images of 100% PBD-PEG-N₃ polymersomes: a) loaded with nile red and (b) with rhodamine functionalized glycopolymer, PAGal₁₉-Rho, conjugated to the surface.

Next, polymersomes containing 10% and 100% PBD-PEG-N₃ were assembled without nile red. These assemblies were reacted with rhodamine functionalized polymers using
CuAAC by adding CuSO₄, (+)-sodium L-ascorbate, bathophenanthroline disulfonic acid disodium salt hydrate (BPS), and either PAGal₉-Rho or PAGal₁₉-Rho to the polymersome solution (Scheme 2.6). After the CuAAC reaction, unreacted glycopolymer, CuSO₄, (+)-sodium L-ascorbate, and DPS were removed by dialysis against water using a 50,000 MWCO membrane. A control experiment, where no CuSO₄ was added to the reaction mixture, was conducted to confirm that any unreacted dyed glycopolymer was removed using dialysis. The glycopolymer coated assemblies were imaged using CLSM. Images indicated that the vesicle morphology was retained post-functionalization with PAGal₉-Rho or PAGal₁₉-Rho at 10% and 100% surface functionalization densities (Figure 2.5 (b)). PSGal-Rho polymers were conjugated to PBD-PEG-N₃ polymersomes using the same methods above. CLSM images similarly indicate that vesicle morphology was retained post-functionalized with PSGal₅-Rho at 10% and 100% surface functionalization densities (Figure 2.6). PSGal₁₉-Rho functionalized assemblies were not able to be successfully imaged at either surface density.

Figure 2.6. CLSM image of (a) 10% PBD-PEG-N3 and (b) 100% PBD-PEG-N3 polymersomes conjugated with PSGal-Rho.
2.3 Quantification of CuAAC with Azide Functionalized PBD-PEO Polymersomes

PBD-PEG polymersomes functionalized with dye labelled glycopolymers were used to determine the percent of surface functionalization for PAGal₉-Rho, PAGal₁₉-Rho, and PSGal₈-Rho. Fluorescence spectroscopy was used to determine the concentration of rhodamine labelled glycopolymer present after the reaction and purification of the polymersomes by dialysis. This was determined by comparing the fluorescence counts of the decorated polymersomes in dimethyl sulfoxide (DMSO) to the fluorescence counts of a calibration curve for the corresponding dye labelled polymer PAGal₉-Rho, PAGal₁₉-Rho, and PSGal₈-Rho in DMSO. A calibration curve was created for each PAGal₉-Rho, PAGal₁₉-Rho, and PSGal₈-Rho because they had different percentages of dye functionalization. The results indicated that polymersome samples prepared from 10 wt% of PBD-PEG-N₃ had a higher degree of N₃ groups functionalized with dye labelled glycopolymers PAGal₉-Rho and PAGal₁₉-Rho (Table 2.2). The lower degree of N₃ groups functionalized on the 100 wt% of PBD-PEG-N₃ polymersome samples may be due to the steric hindrance that is associated with functionalizing every N₃ group. Glycopolymer length appeared to have no significant effect on the percentage of functionalized azide groups. It should be noted that 100% functionalization would mean that 50% of all present azide groups had reacted. The reference of 50% is selected because it is assumed that 50% of the azide groups would be on the surface of the interior cavity of the polymersome and unavailable to react with the glycopolymer. A previous study on the amount of azide groups available to react on the surface of PBD-PEG polymersomes indicated that the above assumption is reasonable.³⁹,⁴²
Table 2.2. Table summarizing the percentage of functionalized azide groups relative to the total number of available azide groups.

<table>
<thead>
<tr>
<th></th>
<th>10% of PBD-PEG-N₃ (%)</th>
<th>100% of PBD-PEG-N₃ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAGal₉-Rho</td>
<td>82</td>
<td>74</td>
</tr>
<tr>
<td>PAGal₁₉-Rho</td>
<td>90</td>
<td>70</td>
</tr>
<tr>
<td>PSGal₈-Rho</td>
<td></td>
<td>89</td>
</tr>
</tbody>
</table>

2.4 Difficulties in the reproducibility of polymersome preparation

At this stage in the project, difficulties arose with the reproducibility of the self-assembled polymersomes. The irreproducible nature of the polymersome formation may be attributed to the potential crosslinking of free double bonds in the PBD block of the PBD-PEG block copolymers. The recent 1H NMR spectrum of the PBD-PEG block copolymer appeared similar to the spectrum recorded a year earlier. A large decrease in the integration of the vinyl peaks at around 5.4 ppm would have been a clear indication of crosslinking. However small decreases, or a small amount of crosslinking, couldn’t be accurately assessed due to the broad nature of polymer 1H NMR peaks. Minor changes in the chemical properties of the polymer sample, even by small amounts of crosslinking or oxidation, could disrupt the self-assembly of polymersomes. It should be noted that small, unidentifiable changes to the self-assembly technique, could also be responsible for the change in observed morphology. Polymer Source, the polymer provider, discontinued the exact polymer sample the Gillies group had previously used, so a fresh batch of polymer could not be ordered. Ultimately, due to the issues with reproducibility and availability, a more robust system for forming polymersomes using a polymer we could make in the lab was selected for future studies.
2.5 Azide Functionalized PEG-PEtG-PEG Polymersomes

Poly(ethyl glyoxylate) (PEtG) is a hydrophobic polymer that has been shown to self-assemble when coupled with PEG. The Gillies group has previously shown that MeO-PEG-PEtG-PEG-OMe triblock polymers self-assembled into vesicle morphologies when the length of each terminal PEG was 750 g/mol and the PEtG block was ~63,000 g/mol.\(^{45}\) In order to produce functionalizable polymersomes of PEtG and PEG, azides were incorporated onto the triblock termini (N\(_3\)-PEG-PEtG\(_{UV}\)-PEG-N\(_3\)). To vary the degree of surface functionalization, a similar triblock copolymer with methyl ether terminal groups was also prepared (MeO-PEG-PEtG\(_{UV}\)-PEG-OMe) (Figure 2.7).

Figure 2.7. Structures of the target triblock copolymers (a) MeO-PEG-PEtG\(_{UV}\)-PEG-OMe (550) and (b) N\(_3\)-PEG-PEtG\(_{UV}\)-PEG-N\(_3\) (600) and N\(_3\)-PEG-PEtG\(_{UV}\)-PEG-N\(_3\) (1000).
The first step in the synthesis of the triblocks was making the PEG portions. Compound 8 (M_n = 550 g/mol) and 11 (M_n = 600 g/mol) and 12 (M_n = 1,000 g/mol), were reacted with mesyl chloride, 9, to convert the alcohol into a good leaving group (Scheme 2.7). The mesylated PEGs, 10, 13, and 14, were then reacted with sodium azide to afford the corresponding azide-terminated PEGs MeO-PEG-N_3 (550), N_3-PEG-N_3 (600), and N_3-PEG-N_3 (1000). ¹H NMR spectroscopy indicated the successful substitution of the mesyl group with an azide group in all cases. The substitution was indicated by the disappearance of the methyl peak of the mesyl group at 3.1 ppm. In addition, IR spectroscopy confirmed the presence of an azide peak in MeO-PEG-N_3 (550), N_3-PEG-N_3 (600), and N_3-PEG-N_3 (1000) at ~2098 cm⁻¹. Two PEG di-azide compounds of different lengths were made to test the effect of PEG length on self-assembly. Previous examples of MeO-PEG-PETG-PEG-OMe that could form polymersomes used PEG with an M_n of 750 g/mol, but a diol form with a similar M_n was not commercially available.

Scheme 2.7. Synthesis of (a) mono-azide terminated PEG, MeO-PEG-N_3, and (b) di-azide terminated PEG, N_3-PEG-N_3.
The PEtG portion of the triblock, PEtG_{UV} (Scheme 2.8) with alkyne terminal groups was previously prepared and had an M_n of 72,000 and D of 1.9. It is important to note that the end-cap used is reactive with UV light, and this could be taken advantage of to trigger polymer degradation. However, it was not the goal of the current work to take advantage of the degradable properties. CuAAC was used to couple the PEGs to the PEtG_{UV} (Scheme 2.8). For the reaction between PEtG and both N_3-PEG-N_3 compounds, a molar excess of up to 100 times was used. It would have required a multi-step synthesis to form a unilaterally functionalized PEG moiety. Instead, by using a large excess of N_3-PEG-N_3, a statistical mixture favouring the exclusive reaction of N_3-PEG-N_3 and PEtG_{UV} alkyne was used. This approach minimized the reaction of a single N_3-PEG-N_3 with two different alkyne terminated PEtG_{UV} polymers, which prevented the potential formation of a copolymer containing five or more blocks. The resulting triblock polymers were characterized using 1H NMR spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), and SEC. 1H NMR spectroscopy indicated that the coupling of all three PEG compounds to PEtG_{UV} was successful, based on the appearance of the expected PEG peaks at around 3.64 ppm (Figure 2.8). FT-IR did not show any sharp peaks at ~2098 cm$^{-1}$, which are expected if there is unreacted PEG azide in the sample (Figure 2.9). However, the lack of an azide related peak could have been due to the relatively small amount of azide compared to the amount of polymer, thus, SEC was used to confirm that only trace amounts of PEG were present and the respective peaks in the 1H NMR spectrum are not from excess unreacted PEG (Figure 2.10). It was concluded that the CuAAC reaction and subsequent purification was successful.
Scheme 2.8. Synthesis of MeO-PEG-PEtG_{UV}-PEG-OMe (550) and (b) N₃-PEG-PEtG_{UV}-PEG-N₃ (600).
Figure 2.8. 1H NMR spectrum (400 MHz, CDCl3) of MeO-PEG-PETG$_{UV}$-PEG-MeO (550).

Figure 2.9. FT-IR spectrum of MeO-PEG-PETG$_{UV}$-PEG-MeO (550).
Various ratios of polymers MeO-PEG-PETGUV-PEG-MeO (550) and N3-PEG-PETGUV-PEG-N3 (600) were self-assembled to alter the surface azide density. In order to visualize the resulting assemblies, they were loaded with perylene, a hydrophobic fluorescent probe that excites at 410 nm. This probe was selected because the excitation and emission curves do not overlap with the respective curves of the rhodamine labelled glycopolymers, PSGal-Rho, allowing for direct quantification by fluorescence microscopy after imaging with CLSM. Unfortunately, the self-assembly of MeO-PEG-PETGUV-PEG-MeO (550), N3-PEG-PETGUV-PEG-N3 (600), or PEG-PETGUV-PEG-N3 (1000) at any ratio (10%, 20%, or 50%) initially lead to small particles could be imaged by CLSM, but no distinguishable membrane structure typical of vesicle morphology was observed (Figure 2.11). Transmission electron microscopy (TEM) is commonly used to visualize the morphology of smaller particles, but unfortunately the instrument was unavailable for an extended period of time, which prevented analysis by TEM. The self-
assembly of samples containing exclusively polymer MeO-PEG-PET\textsubscript{UV}-PEG-MeO (550), N\textsubscript{3}-PEG-PET\textsubscript{UV}-PEG-N\textsubscript{3} (600), or PEG-PET\textsubscript{UV}-PEG-N\textsubscript{3} (1000) were tested to determine if large polymersomes could be formed by a single triblock, rather than a mixture. The results indicated that small particles formed for all three triblock samples. The z-average diameter of the assemblies MeO-PEG-PET\textsubscript{UV}-PEG-MeO (550) and N\textsubscript{3}-PEG-PET\textsubscript{UV}-PEG-N\textsubscript{3} (600) were determined to be 182 nm with a PDI of 0.06 and 155.9 with a PDI of 0.143 by DLS. The PDI for a sample to be considered monodisperse must be less than 0.2. Thus, the assemblies of MeO-PEG-PET\textsubscript{UV}-PEG-MeO (550) and N\textsubscript{3}-PEG-PET\textsubscript{UV}-PEG-N\textsubscript{3} (600) are both monodisperse and could be useful for functionalization depending on the morphology determined by TEM imaging in the future.

![CLSM images of the PEG-PET\textsubscript{UV}-PEG-N\textsubscript{3} (1000) suspension, showing that small particles were obtained.]

Figure 2.11. CLSM images of the PEG-PET\textsubscript{UV}-PEG-N\textsubscript{3} (1000) suspension, showing that small particles were obtained.
A MeO-PEG-PEtGThermo-PEG-OMe triblock polymer containing a PEtGThermo block with an M_n of 63,000 g/mol and PEG with an M_n of 750 g/mol, and a thermos-responsive end-cap (Figure 2.12) was shown by the Gillies group to form large polymersomes that could be visualized by CLSM. To take advantage of this polymersome forming triblock polymer and form large easily visualized polymersomes coated with azide groups, MeO-PEG-PEtGThermo-PEG-OMe was mixed with PEG-PEtGUV-PEG-N$_3$ (1000). The ratios selected were 10%, 30%, and 50% PEG-PEtGUV-PEG-N$_3$ (1000) to MeO-PEG-PEtGThermo-PEG-OMe. Preliminary CLSM images of the mixed suspensions indicated larger vesicle and smaller particles morphologies were present (Figure 2.13). Similar mixed morphologies were observed for all polymer ratios. By optimizing both the mixing ratios and methods used to form the assemblies, mixing MeO-PEG-PEtGThermo-PEG-OMe and PEG-PEtGUV-PEG-N$_3$ (1000) may present a viable route to achieving reproducible and functionalizable polymersomes.

![Chemical structure of MeO-PEG-PEtGThermo-PEG-OMe](image)

Figure 2.12. Chemical structure of MeO-PEG-PEtGThermo-PEG-OMe.
Figure 2.13. (a) Large vesicle morphology and (b) small particles observed within the same 10 wt% N3-PEG-PetG_{UV}~PEG-N3 (1000) 90 wt% MeO-PEG-PetG_{Thermo}~PEG-OMe (750) nanoparticle suspension.
Chapter 3

3 Experimental

General Procedures and Methods. Compounds 146, 2, 5, 744, 447, 1048, 1348 and 1448 were prepared as previously reported. PEtG\textsubscript{UV} had an M\textsubscript{n} = 54,000 g/mol and \(\bar{D} = 2.2\) by SEC in THF. PEtG\textsubscript{Thermo} had an M\textsubscript{n} = 63,000 g/mol and \(\bar{D} = 2.0\) by SEC in THF. DIPEA and dichloromethane were distilled from calcium hydride before use. Anhydrous THF was obtained from a solvent purification system using aluminum oxide columns. All other solvents were purchased from Caledon Labs. All the other chemicals were reagent grade and used without further purification. NMR spectra were obtained on 400 or 600 MHz Varian Inova spectrometers (Agilent Tech., Santa Clara, CA). NMR chemical shifts (\(\delta\)) are reported in ppm and are calibrated against the residual solvent signals of CDCl\textsubscript{3} (\(\delta\) 7.27; 77.4), CD\textsubscript{3}CN (\(\delta\) 1.94; 116.4), d6-DMSO (\(\delta\) 2.50; 40.8), or D\textsubscript{2}O (\(\delta\) 4.75). Size exclusion chromatography (SEC) was performed using a Viscotek GPC Max VE2001 solvent module (Agilent Tech.), a Viscotek VE3580 RI detector operating at 30 °C, two Agilent Polypore (300 × 7.5 mm) columns connected, and a Polypore guard column (50 × 7.5 mm). THF (glass distilled grade) was used as the eluent. A calibration curve was obtained from polystyrene standards. Dialysis was performed using Spectra/Por 6 regenerated cellulose membranes from Spectrum Laboratories (Rancho Dominguez, CA, USA). Fourier-transform infrared (FT-IR) spectra were obtained in attenuated total reflectance (ATR) mode using a PerkinElmer UATR Spectrum Two, with bulk material deposited on the diamond. Ultrapure water was obtained from a Barnstead EASYpure II system. The Z-average diameters of the polymersome assemblies were measured by dynamic light scattering (DLS) using a Zetasizer Nano Series ZS instrument from Malvern Instruments, at room temperature (25 °C) in a 1 cm path length low volume (1 mL) polystyrene cuvette at a polymer concentration of 0.8 mg/mL. Fluorescence spectra were obtained using a QM-SE spectrometer from Photon Technology International (PTI). Thermogravimetric analyses (TGA) were performed on a TGA Q50 from TA Instruments. The heating rate was 10 °C/min between 15-1000 °C under N\textsubscript{2} (g).
Differential scanning calorimetry (DSC) was performed using a Q2000 from TA Instruments. The heating/cooling rate was 10 °C/min from -70 to +150 °C. Glass transition temperatures (T_g) were obtained from the third heating cycle.

Synthesis of SAcGal. 1-O-2-Azidoethyl-β-D-galactose tetraacetate\(^4\) (19 g, 46 mmol, 1.0 equiv.) was dissolved in minimal dimethylformamide (DMF) with stirring. Sequentially, CuSO\(_4\) (0.90 g, 4.6 mmol, 0.10 equiv.), (+)-Sodium L-ascorbate (2.7 g, 4.6 mmol, 0.10 equiv.), and compound 4 (9.4 g, 55 mmol, 1.2 equiv.) dissolved in minimal DMF, were added to the flask. 450 mL of 4:1 DMF:water was added to the mixture and it was heated with rapid stirring at 50 °C overnight. The reaction mixture was concentrated in vacuo and the crude product dissolved in CH\(_2\)Cl\(_2\) (500 mL), washed with water, brine (300 mL each). The organic layer was dried with MgSO\(_4\), filtered and concentrated. The crude mixture was precipitated twice from minimal THF into cold pentane and residual solvent removed under high vacuum to yield SAcGal (14.5 g, 55%). 1 g of BHT in 20 mL of dichloromethane was added to the SAcGal and the solution was stored in a -20 °C freezer to prevent polymerization. \(^1\)H NMR (400 MHz, CD\(_3\)CN): δ ppm 7.52 (s, 1H), 7.24 (d, 2H, $J = 8.0$ Hz), 7.13 (d, 2H, $J = 8.0$ Hz), 6.56 (dd, 1H, $J = 12.0$, 16.0 Hz), 5.60 (d, 1H, $J = 16.0$ Hz), 5.12 (d, 1H, $J = 4$ Hz), 5.05 (d, 1H, $J = 12.0$ Hz), 4.83-4.75 (m, 2H), 4.40-4.30 (m, 8H), 3.99-3.91 (m, 2H), 1.70 (s, 6H), 1.87 (s, 3H), 1.79 (s, 3H), 1.71 (s, 6H). FT-IR (cm\(^{-1}\), film from CH\(_2\)Cl\(_2\)): 2867, 1743, 1368, 1218, and 1046 cm\(^{-1}\).

Synthesis of PSAcGals and the general procedure for the polymerization of SAcGal. Before use, SAcGal containing BHT was dissolved in CH\(_2\)Cl\(_2\) and loaded onto a silica plug. BHT was eluted with CH\(_2\)Cl\(_2\) and discarded. The monomer was then eluted with 100% methanol. The methanol was removed in vacuo and the purified SAcGal (1.2 g, 2.2 mmol, 13 equiv.), CTA (compound 5) (50 mg, 170 µmol, 1.0 equiv.), and AIBN, 6, (9.4 mg, 57 µmol, 0.33 equiv.) were deposited in a reaction tube and dissolved in acetonitrile (1 mL). The polymerization mixture was subjected to four cycles of freeze-pump-thaw. A freeze-pump-thaw cycle began with freezing the polymerization mixture using liquid nitrogen under a positive pressure of N\(_2\) (g). Once the sample was frozen, the flask was placed under active high vacuum for 5 min, with the flask remaining in liquid nitrogen. The flask was removed from the liquid nitrogen and placed under static vacuum, until the
sample was thawed. The sample would then be re-frozen, and the cycle repeated the desired number of times. After being placed under positive pressure of N\textsubscript{2} (g), the mixture was heated to 75 °C and stirred rapidly for 36 h. The polymerization mixture was allowed to cool to room temperature and concentrated. The crude polymer was dissolved in DMF (2 mL) and dialyzed against 1 L of DMF using a 2,000 g/mol MWCO membrane for 18 h. The solution was concentrated yielding PSAcGal\textsubscript{8} (910 mg, 76%). 1H NMR (400 MHz, CDCl\textsubscript{3}): \(\delta\) ppm 7.65 (br s, 1H), 7.23-6.30 (br, 4H), 5.38 (br s, 1H), 5.19 (br, 1H), 5.00 (br s, 1H), 4.76-4.35 (br, 7H), 4.26 (s, 1H), 4.26 (m, 2H), 3.94 (br s, 2H), 2.15-1.96 (m, 13H), 1.72-1.30 (br, 4H), 0.89 (br s, 1H). SEC: \(M_n = 4,700\) g/mol, \(M_w = 5,300\) g/mol, \(D = 1.1\).

Synthesis of PSAcGal\textsubscript{18}. The polymer was synthesized by the same procedure described for PSAcGal\textsubscript{8} except for the following changes. Purified SAcGal (1.2 g, 2.2 mmol, 45 equiv.), CTA (compound 5) (14 mg, 48 \(\mu\)mol, 1.0 equiv.), and AIBN (2.6 mg, 16 \(\mu\)mol, 0.33 equiv.) were deposited in a reaction tube and dissolved in acetonitrile (1 mL). The polymerization mixture was heated at 75 ºC with rapid stirring for 6 days. Purification yielded PSAcGal\textsubscript{18} (690 mg, 57%). 1H NMR (400 MHz, CDCl\textsubscript{3}): \(\delta\) ppm 7.65 (br s, 1H), 7.15-6.15 (br, 4H), 5.37 (br s, 1H), 5.15(br, 1H), 4.98 (br s, 1H), 4.67-4.28(br, 7H), 4.23 (s, 1H), 4.12 (m, 2H), 3.92 (br s, 2H), 2.18-1.77 (m, 13H), 1.75-1.09 (br, 4H), 1.25 (m, 4H), 0.83 (br s, 1H). SEC: \(M_n = 10,000\) g/mol, \(M_w = 11,000\) g/mol, \(D = 1.1\).

Synthesis of PSGal\textsubscript{8} and the general procedure for the deprotection of PSAcGal. PSAcGal\textsubscript{8} (350 mg, 75 \(\mu\)mol, 1.0 equiv.) was deposited in a flame dried round bottom flask and dissolved in 10 mL of anhydrous methanol. The reaction flask was placed in a 0 ºC ice bath and sodium methoxide (200 mg, 3.7 mmol, 50 equiv.) solid was added to the flask slowly. The flask was removed from the ice bath after 30 min and allowed to warm to room temperature. The reaction mixture was stirred for 16 h and checked by thin layer chromatography (TLC) (100% Methanol) to confirm complete deprotection. The pH of the resulting solution was adjusted to 7 using NH\textsubscript{4}Cl and concentrated. The resulting crude compound was dissolved in 2 mL of DI water and purified by dialysis against DI water using a 2,000 MWCO membrane. The water was removed using a freeze dryer
affording \(\text{PSGal}_8 \) (190 mg, 72\%). \(^{1}\)H NMR (400 MHz, \(\text{D}_2\text{O} \)): \(\delta \text{ppm} \) 7.91-7.32 (br), 7.10-5.83 (br), 4.25-2.91 (br), 2.89-2.62 (br), 1.55-1.37 (br), 1.24-1.05 (br), 0.84-0.20 (br).

Synthesis of \(\text{PSGal}_{18} \). The polymer was deprotected by the same procedure described for \(\text{PAcGal}_8 \) except for the following amounts were used. \(\text{PSAcGal}_{18} \) (500 mg, 50 \(\mu \)mol, 1.0 equiv.) and sodium methoxide (200 mg, 3.7 mmol, 74 equiv.). Purification yielded \(\text{PSGal}_{18} \) (230 mg, 63\%). \(^{1}\)H NMR (600 MHz, \(\text{D}_2\text{O} \)): \(\delta \text{ppm} \) 8.27-7.74 (br), 7.43-6.02 (br), 4.75-3.14 (br).

Synthesis of \(\text{PSGal}_8\)-Rho and the general procedure for the Rhodamine labelling \(\text{PSGal}_8 \). \(\text{PSGal}_8 \) (150 mg, 48 \(\mu \)mol, 1.0 equiv.) was dissolved in minimal DMF. EDC \(\cdot \) HCl (16 mg, 100 \(\mu \)mol 2.1 equiv.), DPTS (3.6 mg, 17 \(\mu \)mol, 0.35 equiv.), and DMAP (2 mg, 20 \(\mu \)mol, 0.4 equiv.) were added to the stirring solution simultaneously. Rhodamine B (3.2 mg, 6.7 \(\mu \)mol, 0.14 equiv.) was then added to the solution slowly. The solution was stirred overnight. The crude reaction mixture was dialyzed against 1L of DI water using 2,000 MWCO dialysis tubing for 48 h, with the dialysate being changed twice. The polymer solution was concentrated yielding \(\text{PSGal}_8\)-Rho. The polymer was used as-is and was not fully characterized. \(\lambda_{\text{max}} \) Absorbance = 510 nm. \(\lambda_{\text{max}} \) Emission = 584 nm. Extinction Coefficient = 618,000 mL/mg at 584 nm.

Synthesis of \(\text{PSGal}_{18}\)-Rho. The polymer was labelled by the same procedure described for \(\text{PAcGal}_8\)-Rho except for the following amounts were used. \(\text{PSGal}_{18} \) (100 mg, 10 \(\mu \)mol, 1.0 equiv.), EDC \(\cdot \) HCl (3.6 mg, 23 \(\mu \)mol, 2.3 equiv.), DPTS (0.82 mg, 3.8 \(\mu \)mol, 0.38 equiv.), DMAP (0.5 mg, 4 \(\mu \)mol, 0.40 equiv.), and Rhodamine B (3.2 mg, 1.5 \(\mu \)mol, 0.15 equiv.) The polymer solution was concentrated yielding \(\text{PSGal}_{18}\)-Rhodamine. The polymer was used as-is and was not fully characterized. \(\lambda_{\text{max}} \) Absorbance = 510 nm. \(\lambda_{\text{max}} \) Emission = 574 nm. Extinction Coefficient = 813,000 mL/mg at 574 nm.

Synthesis of \(\text{MeO-PEG-N}_3 \) (550) and the general procedure for the synthesis of PEG-N\(_3\) compounds. Compound \(10^{48} \) (20 g, 33 mmol, 1.0 equiv.) was dissolved in DMF. Sodium azide (21 g, 320 mmol, 9.7 equiv.) was added with stirring. An air condenser was added to the flask, which was then heated to 80 °C and stirred overnight.
The DMF was removed in vacuo and the crude product was dissolved in 500 mL of dichloromethane, filtered, and then washed with DI water (30 mL x2). The organic phase was concentrated, then water was removed using a toluene wash (3 x 200 mL). The product was dissolved in minimal dichloromethane and precipitated into cold diethyl ether. The ether was decanted, the precipitate collected, and dried on high vacuum to yield MeO-PEG-N₃ (550) (14 g, 75%). ¹H NMR (400 MHz, CDCl₃): δ ppm 3.68-3.62 (m, 49H), 3.56-3.52 (m, 2H), 3.40-3.35 (m, 5H). FT-IR: 2865, 2103, 1456, 1348, 1293, 1249, 1100 cm⁻¹. SEC: Mₙ = 380 g/mol, Mₜ = 490 g/mol, D = 1.3.

Synthesis of N₃-PEG-N₃ (600). The azide was substituted by the same procedure described for MeO-PEG-N₃ (550) except for the following amounts were used. Compound 13 (18 g, 25 mmol, 1.0 equiv.) and sodium azide (18 g, 280 mmol, 11 equiv.). Purification yielded N₃-PEG-N₃ (600) (14 g, 75%). ¹H NMR (400 MHz, CDCl₃): δ ppm 3.66-3.59 (m, 57H), 3.36 (t, J = 12 Hz, 4H). FT-IR: 2865, 2098, 1456, 1347, 1287, 1249, 1100 cm⁻¹. SEC: Mₙ = 470 g/mol, Mₜ = 571 g/mol, D = 1.2.

Synthesis of N₃-PEG-N₃ (1000). The azide was substituted by the same procedure described for MeO-PEG-N₃ (550) except for the following amounts were used. Compound 14 (20 g, 20 mmol, 1.0 equiv.) and sodium azide (11 g, 170 mmol, 8.5 equiv.). Purification yielded N₃-PEG-N₃ (1000) (14 g, 75%). ¹H NMR (600 MHz, CDCl₃): δ ppm 3.59-3.51 (m, 91H), 3.29 (t, J = 6 Hz, 4H). FT-IR: 2865, 2098, 1456, 1347, 1287, 1249, 1100 cm⁻¹. SEC: Mₙ = 1,400 g/mol, Mₜ = 1,500 g/mol, D = 1.1.

Synthesis of MeO-PEG-PEtGUV-PEG-OMe and the general procedure for the coupling of PEG to PEtG. MeO-PEG-N₃ (550) (30 mg, 52 µmol, 19 equiv.) was dissolved in 2 mL of DMF. 10 mg of CuSO₄, 10 mg of (+)-sodium L-ascorbate, and PEtGUV (150 mg, 2.8 µmol, 1.0 equiv.) were subsequently added to the solution. The solution was heated with stirring for 18 h at 40 ºC. The resulting solution was dialyzed against 1L DI water, using a 3,500 g/mol MWCO membrane, overnight. The water was removed using a freeze dryer to yield MeO-PEG-PEtG-OMe (120 mg, 78%). ¹H NMR (400 MHz, CDCl₃): δ ppm 5.70-5.52 (m, 833H), 4.21 (br s, 1705), 3.67-3.52 (br,
100H), 1.30-1.27 (m, 2591H). FT-IR: 2984, 2917, 2850, 1750, 1215, 1013, and 957 cm\(^{-1}\). SEC: \(M_n = 65,000\) g/mol, \(M_w = 271,000\) g/mol, \(D = 4.2\).

Synthesis of \(N_3\)-PEG-PEtG\(_{UV}\)-PEG-N\(_3\) (600). \(N_3\)-PEG-N\(_3\) (600) was coupled to PEG\(_{UV}\) by the same procedure described for MeO-PEG-PETG\(_{UV}\)-PEG-OME except for the following amounts were used. \(N_3\)-PEG-N\(_3\) (600) (120 mg, 190 \(\mu\)mol, 68 equiv.), 10 mg of CuSO\(_4\), 10 mg of (+)-sodium L-ascorbate, and PEG\(_{UV}\) (150 mg, 2.8 \(\mu\)mol, 1.0 equiv.). Purification yielded \(N_3\)-PEG-PETG\(_{UV}\)-PEG-N\(_3\) (600) (120 mg, 78%). \(^1\)H NMR (600 MHz, CDCl\(_3\)): \(\delta_{ppm} 5.73-5.46\) (m, 868H), 4.22 (br s, 1757), 3.67-3.54 (br, 109H), 1.30-1.27 (m, 2788H). FT-IR: 2984, 2917, 2850, 1750, 1215, 1013, and 957 cm\(^{-1}\). SEC: \(M_n = 60,000\) g/mol, \(M_w = 162,000\) g/mol, \(D = 2.7\).

Synthesis of \(N_3\)-PEG-PETG\(_{UV}\)-PEG-N\(_3\) (1000). \(N_3\)-PEG-N\(_3\) (1000) was coupled to PEG\(_{UV}\) by the same procedure described for MeO-PEG-PETG\(_{UV}\)-PEG-OME except for the following amounts were used. \(N_3\)-PEG-N\(_3\) (1000) (300 mg, 270 \(\mu\)mol, 96 equiv.), 10 mg of CuSO\(_4\), 10 mg of (+)-sodium L-ascorbate, and PEG\(_{UV}\) (150 mg, 2.8 \(\mu\)mol, 1.0 equiv.). Purification yielded \(N_3\)-PEG-PETG\(_{UV}\)-PEG-N\(_3\) (1000) (120 mg, 78%). \(^1\)H NMR (600 MHz, CDCl\(_3\)): \(\delta_{ppm} 5.71-5.46\) (m, 965H), 4.22 (br s, 1952H), 3.67-3.54 (br, 184H), 1.30-1.27 (m, 3028H). FT-IR: 2984, 2917, 2850, 1750, 1215, 1013, and 957 cm\(^{-1}\). SEC: \(M_n = 108,000\) g/mol, \(M_w = 492,000\) g/mol, \(D = 4.6\).

PBD-PEG Nanoparticle Preparation. The procedure was adapted from a previously reported method.\(^{42}\) In a 3-mL dram vial, 5.0 mg of polymer (PBD-PEG-OH, PBD-PEG-N\(_3\), or a mixture) was mixed with 50 \(\mu\)g of the hydrophobic dye Nile Red in 0.5 mL of chloroform and then the solvent was evaporated under a stream of nitrogen gas. The resulting thin film was further dried under high vacuum overnight to remove traces of solvent. The thin film was then hydrated overnight with 0.5 mL of filtered Ultrapure water and kept at 46 °C. A stir bar was then added to the vial and it was rapidly stirred (1000 rpm or greater) overnight. The vesicles were then imaged by confocal laser scanning microscopy (see below).

PEG-PETG-PEG Nanoparticle Preparation. 8 \(\mu\)L of 0.1 mg/mL perylene in dichloromethane solution was added to a dram vial and the solvent was evaporated using
a stream of nitrogen gas. 100 µL of 8 mg/mL triblock in THF (MeO-PEG-PETG-PEG-OMe or N3-PEG-PETG-PEG-N3, or a mixture of both) triblock in THF was added to the vial along with a small magnetic stir bar. The solution was stirred for 5 min, then at a stir rate of 400 rpm, 0.9 mL of DI water was added dropwise (~1 drop per second). After stirring for another 20 min, the suspension was transferred to a 50,000 MWCO dialysis membrane and dialyzed against 1L of DI water to remove the THF. The resulting suspension was stored in a 4 °C fridge.

Confocal Laser Scanning Microscopy (CLSM). 10 µL of the aqueous suspension of polymersomes was dropped onto a glass slide, a glass coverslip was placed on top, and the outside edges of the coverslip were sealed with nail polish. The slides were stored at 4 °C for 2 h prior to imaging. Images were obtained using a confocal laser scanning microscope (LSM 510, Carl Zeiss Inc.) using a 63X (Nanoparticles suspensions which contained Nile Red) and 100X (Nanoparticles suspensions which contained PAGal-Rhodamine, PSGal-Rhodamine, or perylene) oil immersion objective, and an excitation wavelength of 543 nm (Nanoparticles suspensions which contained Nile Red, PAGal-Rhodamine, or PSGal-Rhodamine) and 405 nm (Nanoparticles suspensions which contained perylene).

Fluorescence Calibration Curves. PAGal-Rhodamine and PSGal-Rhodamine were dissolved in dimethyl sulfoxide (DMSO) to achieve a concentration of 0.25 mg/mL. The solution was then diluted with DMSO to obtain measurements at a minimum of four different concentrations ranging from 0.05 mg/mL to 0.25 mg/mL. Acquisition settings were as follows: Excitation @ 562 nm, Emission from 565 to 610 nm, Length = 45 nm, Step Size = 0.25 nm, Integration = 1 s, Averages = 1. The 3 mL glass cuvette was rinsed 3 times with 1.5 mL of DMSO between samples. All measurements were taken in triplicate and then averaged to obtain the values used for the calibration curve.

Fluorescence Spectroscopy to Quantify Azide-Alkyne Click. Each nanoparticle suspension had the water removed using a freeze dryer to yield a powdered sample. The sample was then dissolved in 1 mL of DMSO. The fluorescence counts were then measured using the same parameters used to create the calibration curves. All
measurements were taken in triplicate and then averaged to obtain the concentration values.

Method to Calculate the Percentage of Functionalized Azide Groups. To calculate the percentage of functionalized N\textsubscript{3} groups, first the theoretical yield of the click reaction was determined. The mass of the **PBD-PEG** was adjusted for the relative amount of azide density, where polymer samples containing 10% **PBD-PEG-N\textsubscript{3}** were multiplied by 0.1 and 100% azide functionalized **PBD-PEG-N\textsubscript{3}** were multiplied by 1. The mass was then adjusted for the amount of available azide due to the nature of vesicles. **PBD-PEG-N\textsubscript{3}** will be on the inside of the polymersome, with the expected ratio being 50:50 inside:outside. To make the appropriate adjustment, the mass was multiplied by 0.5. The moles of azide were calculated by dividing the mass of available azide by the molar mass of the **PBD-PEG-N\textsubscript{3}** which was approximately 10000 g/mol. The moles of azide were assumed to be equal to the moles of alkyne functionalized glycopolymer as they react in a 1:1 ratio. Multipling the moles of alkyne functionalized glycopolymer by the molar mass of the respective polymer, short glycopolymer = 2,400 g/mol or long glycopolymer = 5,200 g/mol, the expected or theoretical mass of dyed glycopolymer was determined. The experimental yield or mass of dyed glycopolymer, determined using the calibration curve, was divided by the theoretical yield to determine the percent functionalization of the azide groups on the vesicles.
Chapter 4

4 Conclusions and Future Work

The work in this thesis provided progress towards producing glycopolymer functionalized polymersomes and quantifying their degree of functionalization. It was shown that the degree of PBD-PEG polymersome surface functionalization could be quantified by measuring the fluorescence of a glycopolymer, PAGal, labelled with rhodamine B. Difficulty with the synthesis of the PAAcGal led to the development and synthesis of a second glycopolymer with pendent β-D-galactose moieties, PSAcGal. PSAcGal having two different DP_n values were synthesized, deprotected, and labelled with rhodamine B.

The shorter dye-labelled glycopolymer was conjugated to the surface of PBD-PEG polymersomes, yielding similar surface functionalization as the previous glycopolymer, PAGal. The relative amount of functionalization that could be achieved when the polymersomes had 10% compared to 100% of the surface containing an azide group, was determined for each length of dye-labelled glycopolymer. The results indicated that the length of the glycopolymer did not significantly affect the yield of the CuAAC reaction, but that a higher yield was obtained at lower azide densities. It is speculated that the high degree of steric hindrance associated with functionalizing every azide group on the surface of the polymersome decreased CuAAC reaction yields for 100% azide coated polymersomes.

Although initial conjugation experiments were performed, there were subsequently issues with the reproducibility of the PBD-PEG polymersomes. The issues of reproducibility lead to the proposal of an alternative block copolymer platform. A triblock polymer, MeO-PEG-PetG_{UV}-PEG-OMe, previously shown to reproducibly form polymersomes, that could be functionalized with azide groups. A new MeO-PEG-PetG_{UV}-PEG-OMe (550) triblock and two azide functionalized triblock polymers, N_3-PEG-PetG_{UV}-PEG-N_3 (600) and PEG-PetG_{UV}-PEG-N_3 (1000), were produced and characterized. The self-
assembly of MeO-PEG-PETG$_{UV}$-PEG-OMe and N$_3$-PEG-PETG$_{UV}$-PEG-N$_3$ triblock polymers individually and in mixtures led to the formation of nanoparticles that were too small to be imaged by CLSM. However, the mixture of a thermo-responsive analog triblock, MeO-PEG-PETG$_{Thermo}$-PEG-OMe, and N$_3$-PEG-PETG$_{UV}$-PEG-N$_3$ yielded suspensions containing large polymersomes that could be imaged with CLSM along with smaller particles. CLSM could not be used to determine if the smaller particles were polymersomes or not.

In terms of future work, the self-assembly protocol of MeO-PEG-PETG$_{Thermo}$-PEG-OMe and N$_3$-PEG-PETG$_{UV}$-PEG-N$_3$ mixtures must be optimized to achieve monodisperse samples of large polymersomes. These large polymersomes could then be functionalized with dye-labelled glycopolymers to determine the relative functionalization densities. The binding of the glycopolymer functionalized polymersomes could then be determined with lectin binding assays. Alternatively, if the small nanoparticles produced by N$_3$-PEG-PETG$_{UV}$-PEG-N$_3$ can be imaged with TEM and a vesicle morphology is observed, then they would be another candidate for further functionalization with glycopolymers. The next steps towards optimizing a PETG containing triblock that can be self-assembled into polymersomes and functionalized with glycopolymers involves synthesizing triblock polymers with lower dispersities. Triblock polymers with lower dispersities would likely increase the reproducibility of polymersome formation by making the hydrophilic weight fraction more consistent within a polymer sample. Since hydrophilic weight fraction affects the morphology achieved with self-assembly, lower dispersities should make the self-assembly results more consistent. Reproducibly producing functionalizable polymersomes would create opportunities to take advantage of the tuneable degradation of the PETG block. A system can be imagined where glycopolymers on the outside of a polymersome allow for specific targeting of a pathogen. After binding the pathogen, an enzyme, change in pH, or the presence of reducing agents at the surface of the pathogen could cause the degradation of the polymersome, releasing an anti-viral or anti-bacterial drug.
References

(11) Houghton, B. A. N. Cancer Antigens : Immune Recognition of Self and Altered

Glycopeptides, Toward a Tailored Blocker of Influenza Virus Hemagglutinin.

(38) Sherman, S. E.; Xiao, Q.; Percec, V. Mimicking Complex Biological Membranes and Their Programmable Glycan Ligands with Dendrimersomes and

Figure A.0.1. 1H NMR Spectrum of PAGal$_{19}$-Rho. (DMSO-d$_6$, 400 MHz)
Figure A.0.2. 1H NMR Spectrum of crude AAceGal. (CDCl$_3$, 600 MHz)

Figure A.0.3. 1H NMR Spectrum of PSaceGal$_{18}$. (CDCl$_3$, 600 MHz)
Figure A.0.4. 1H NMR Spectrum of PSGal$_8$-Rho. (D$_2$O, 600 MHz)

Figure A.0.5. 1H NMR spectrum of PBD-PEG-OH. (CDCl$_3$, 400 MHz)
Figure A.0.6. 1H NMR spectrum of PBD-PEG-N$_3$. (CDCl$_3$, 600 MHz)

Figure A.0.7. 1H NMR spectrum of N$_3$-PEG-PEtG$_{UV}$-PEG-N$_3$ (600). (CDCl$_3$, 600 MHz)
Figure A.0.8. 1H NMR spectrum of N$_3$-PEG-PeG$_{UV}$-PEG-N$_3$ (1000). (CDCl$_3$, 600 MHz)

Figure A.0.9. FT-IR spectrum of SAcGal.
Figure A.0.10. FT-IR spectrum of N\textsubscript{3}-PEG-PEtG-PEG-N\textsubscript{3} (1000).

Figure A.0.11. SEC overlay of N\textsubscript{3}-PEG-PEtG-PEG-N\textsubscript{3} (600) and N\textsubscript{3}-PEG-N\textsubscript{3} (600).
Figure A.0.12. TGA trace of PSAcGal₈.

Figure A.0.13. DSC trace for PSAcGal₈.
Figure A.0.14. Fluorescence Calibration Curve for PSGal₈-Rho.

Figure A.0.15. Fluorescence Calibration Curve for PSGal₁₈-Rho.
This Agreement between Joshua Jadischke ("You") and John Wiley and Sons ("John Wiley and Sons") consists of your license details and the terms and conditions provided by John Wiley and Sons and Copyright Clearance Center.

License Number 4338621402321
License date Apr 30, 2018
Licensed Content Publisher John Wiley and Sons
Licensed Content Publication Angewandte Chemie International Edition
Licensed Content Title Polyanient Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors
Licensed Content Author Mathai Mammen, Seok-Ki Choi, George M. Whitesides
Licensed Content Date Dec 17, 1998
Licensed Content Volume 37
Licensed Content Issue 20
Licensed Content Pages 41
Type of use Dissertation/Thesis
Requestor type University/Academic
Format Print and electronic
Portion Figure/table
Number of figures/tables 1
Original Wiley figure/table number(s) Figure 17
Will you be translating? No
Title of your thesis / dissertation Glycopolymere Functionaization of Polymersomes
Expected completion date May 2018
Expected size (number of pages) 90
Requestor Location Joshua Jadischke
1151 Richmond St.
London, ON N6A3K7
Canada
Attn: Joshua Jadischke
Publisher Tax ID EU826007151
Total 0.00 CAD
Terms and Conditions

Figure A.0.16. Rights and Permission to reprint Figure 1.4.
Curriculum Vitae

Josh Jadischke

Education

M.Sc. Synthetic Organic Chemistry
University of Western Ontario, London, ON, Canada
Thesis: Glycopolymer Functionalization of Polymersomes
May 2016 – April 2018

B.Sc. Chemistry
University of Western Ontario, London, ON, Canada
Thesis: Self-healing Phosphonium Polymer Networks
April 2016

Awards

Highly Commended Entrant
- Award included invitation to present at a conference in Ireland, along with recognition by ‘The Undergraduate Awards’.
Nov. 2016

Summer Company Grant
- A grant and training program offered by the Ontario government to support new and high growth potential small businesses.
Summer 2015

Scholarship of Excellence
- Entrance scholarship based on application average – granted by the University of Western Ontario.
Sept. 2012

Teaching Experience

TA, Organic Chemistry III, Chemistry Department, 70 h
Fall 2017

TA, Organic Chemistry for Life Sciences,
Fall 2017
Chemistry Department, 140 h
TA, Organic Chemistry of Biological Sciences, Winter 2017
Chemistry Department, 140 h
TA, Organic Chemistry for Life Sciences, Fall 2016
Chemistry Department, 70 h
TA, Organic Chemistry I, Chemistry Fall 2016
Department, 70 h

Publications

Presentations
