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Abstract

Autonomous techniques in the context of planetary exploration can maximize scientific return

and reduce the need for human involvement. This thesis work studies two main problems in

planetary exploration: rock image classification and hyperspectral image classification. Since

rock textural images are usually inhomogeneous and manually hand-crafting features is not

always reliable, we propose an unsupervised feature learning method to autonomously learn

the feature representation for rock images. The proposed feature method is flexible and can

outperform manually selected features. In order to take advantage of the unlabelled rock im-

ages, we also propose self-taught learning technique to learn the feature representation from

unlabelled rock images and then apply the features for the classification of the subclass of rock

images.

Since combining spatial information with spectral information for classifying hyperspectral

images (HSI) can dramatically improve the performance, we first propose an innovative frame-

work to automatically generate spatial-spectral features for HSI. Two unsupervised learning

methods, K-means and PCA, are utilized to learn the spatial feature bases in each decorrelated

spectral band. Then spatial-spectral features are generated by concatenating the spatial fea-

ture representations in all/principal spectral bands. In the second work for HSI classification,

we propose to stack the spectral patches to reduce the spectral dimensionality and generate

2-D spectral quilts. Such quilts retain all the spectral information and can result in less con-

volutional parameters in neural networks. Two light convolutional neural networks are then

designed to classify the spectral quilts. As the third work for HSI classification, we propose

a combinational fully convolutional network. The network can not only take advantage of

the inherent computational efficiency of convolution at prediction time, but also perform as

a collection of many paths and has an ensemble-like behavior which guarantees the robust

performance.

Keywords: autonomous techniques, planetary exploration, rock image classification, unsuper-

vised feature learning, self-taught learning, hyperspectral image classification, spatial-spectral

features, support vector machine (SVM), spectral quilts, convolutional neural network (CNN),

combinational fully convolutional network (CFCN)
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Chapter 1

Introduction

The present work develops new approaches to autonomous science in the context of planetary

exploration. Such missions have produced tremendous amounts of data from the instruments

they carry, requiring autonomous techniques to enhance the efficiency of scientific data analysis

and enlarge the scientific returns. We address two specific problems, rock image classification

and hyperspectral image classification and produce new techniques to automatically model the

feature representation of images and conduct the classification.

1.1 Planetary exploration

The last two decades have seen unprecedented achievements in space missions on Earth and

extraterrestrial planets and we expect the scope of exploration to increase as it is powered by

human’s infinite curiosity. Take surface missions on Mars as examples. Mars Exploration

Rovers (MER) [1] and Mars Science Laboratory (MSL) [2] are two of the most successful

surface missions on Mars by NASA. MER mission (started in 2003) has two Mars rovers,

Spirit and Opportunity, exploring Martian surface and searching for and characterizing a wide

range of rocks and soils that hold clues to past water activity on Mars. MSL mission (began

in 2012) has a car-sized rover, Curiosity, investigating the Martian climate and geology, as

well as assessing the environmental conditions of the selected field site for microbial life in

1
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preparation for human exploration. Figure 1.1 illustrates the artist’s conception of both MER

rovers and MSL rover. In the near future, Mars2020 [3] from NASA and ExoMars [4] from

ESA/RRSC are two Mars rover missions which will be launched both in 2020. Mars2020

is intended to investigate an astrobiologically relevant ancient environment on Mars and the

surface geological processes and history. ExoMars rover is to search for the existence of past

life on Mars.

(a) (b)

Figure 1.1: Artist’s conception of (a) MER rovers (Spirit and Opportunity) and (b) MSL rover
(Curiosity). Photo courtesy of NASA/JPL.

In addition to the surface missions which closely explore the planet, there have been several

successful orbital missions which utilize imaging spectrometers to remotely observe the sur-

face/atmosphere of Earth/Mars without physical contact (this is also called remote sensing).

The spectrometers record the electromagnetic radiation of the materials which can be used

to identify and map the materials. As indicated in Figure 1.2, there are mainly two types of

remote sensing, airborne and spaceborne remote sensing. Following are several successful

remote sensors/imaging systems.

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) [5] is an airborne hyperspectral sen-

sor in the realm of Earth remote sensing. It scans the Earth’s surface and produces calibrated

images of the upwelling spectral radiance in 224 contiguous spectral bands with wavelength

range from 0.4 to 2.5 µm. The main objective of the AVIRIS project is to identify, measure,

and monitor constituents of the Earth’s surface and atmosphere based on molecular absorption

and particle scattering signatures. Research with AVIRIS data is predominantly focused on un-

derstanding processes related to the global environment and climate change. Compact Recon-
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(a) (b)

Figure 1.2: (a) Airborne remote sensing (b) Spaceborne remote sensing.

naissance Imaging Spectrometer for Mars (CRISM) [6] aboard NASA’s Mars Reconnaissance

Orbiter (MRO, launched by NASA in 2005) is a hyperspectral imaging system, operating from

3.62 to 3.92 µm wavelength with 6.55 nm per channel spacing. The best spatial resolution

mapped onto Martian surface is ∼12 m per pixel using along-track oversampled observations.

CRISM is used to map both the surface and atmosphere of Mars with visible and infrared spec-

trometers and has played a significant role in the Mars expeditions, including the confirmation

of the former presence of water on Mars. Observatoire pour la Minéralogie, l’Eau, les Glaces

et l’Activité (OMEGA) [7] aboard Mars Express spacecraft (launched by ESA in 2003) is a

visible and infrared mineralogical mapping spectrometer which provides hyperspectral images

of Mars, with a spatial resolution from 300 m to 4 km, on 256 spectral channels in the near

infrared range (1.0 – 5.2 µm) and 128 channels in the visible range (0.5 – 1.0 µm). The visible

channel will measure the wavelength of incoming radiation to within ∼7 nm and the infrared

channel to within 13 – 20 nm. With the fact that different materials absorb and radiate light at

different wavelengths, OMEGA builds up a map of Martian surface composition by analysing

sunlight that has been absorbed and re-emitted by the surface. As radiation travelling from the

surface to the instrument must pass through the atmosphere, OMEGA also detects wavelengths

absorbed by some atmospheric constituents, in particular dust and aerosols.

A large amount of achievements of planetary exploration is due to the advancement in imag-

ing and observing techniques, which has allowed new insights into the nature of Earth and

extraterrestrial planets such as Mars. Instruments aboard aircrafts, satellites and surface rovers
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have been gathering a huge amount of data from various sensor modalities, such as magnetism,

radar, laser altimetry, spectrum etc. The development and deployment of the exploring plat-

forms will enhance the collection of scientific data. As the exploration missions continue to

expand in scope, the growing volume of recorded data gradually requires more efficient and

effective techniques for data analysis.

Among these scientific data, visual information provided by images in visible and other ad-

jacent bands is particularly significant. Landforms/materials can be identified and interpreted

from images [8]. Images stand in for the eyes of human specialists, acting as an initial and

primary reference for the environment in the viewing field. Over many years, mission tasks

have required interpretations of the image data from visible-wavelength as well as other elec-

tromagnetic spectra. Images from the visible spectrum are the key tools for navigation of

mobile rovers on planetary surface. Rovers are guided towards regions of interest which are

identified by the scientific interpretation of these visible images. The route of safe planning

towards the targets also relies on the visible images. Images from other electromagnetic spec-

tra (multispectral/hyperspectral) can map the distribution of materials/minerals, monitor the

environmental conditions and distinguish the types of land covering. A regional or global geo-

logical map can thereafter be generated. Thus, both operational and scientific use of the images

form fundamental elements of planetary mission operations.

1.2 Autonomous science

The growing volume of scientific data requires efficient and effective techniques for data analy-

sis. Furthermore, the exploration missions on distant planets such as Mars suffer the limitation

of communicating bandwidth and large delay of data transmission. To address these chal-

lenges, a possible strategy is to incorporate artificial intelligence to improve the autonomy on

the process of data analysis. The enhanced autonomy will dramatically increase the scientific

returns and reduce the intervention from human scientists. The high artificial intelligence will

enable the planetary rovers to autonomously identify and react to serendipitous science oppor-

tunities. More concretely, with advanced computer vision and machine learning techniques,
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the rovers can automatically locate rocks, analyze rock properties, and identify rocks that merit

further investigation. Also, by interpreting the scientific data in situ, the rovers will be capable

to make decisions by themselves about which new data to gather, which instruments to use,

and where to go next.

The autonomous techniques will benefit not only the distant missions on Mars, but also the

orbital missions on Earth. Instruments aboard the orbital spacecrafts collect observing data

and send for human analysis. The automated or computer-aided interpretation could speed up

the work of human scientists. The gain can come from three aspects. The first is reliability.

While humans can make mistakes, the computers can provide more reliable investigation on

data and possibly see things that humans overlook. The second is efficiency. The growing

volume of scientific data almost makes it impossible for humans to manually investigate and

analyze the data. However, autonomous techniques can take advantage of high-performance

computers and dramatically improve the efficiency. The last but not least is capability. With

the autonomous techniques, the computers are capable to dig into the huge amount of data and

figure out the hidden patterns, such as learning flexible feature representation for images.

1.3 Research problems

The autonomous interpretation of planetary images can enhance the performance of planetary

exploration missions by reducing the data volume needed for specific observations, and the

task load of scientists analyzing and interpreting image data [9]. Images of a planetary surface,

either in-situ photographed or remotely sensed, provide rich and useful information about that

planetary surface and enable the understanding and investigation of the nature and history of

a geological setting by recognition, classification, and mapping of different types of surface

materials.

The present work addresses two primary problems representative of computer vision tasks

needed for autonomous science in the study of planetary surfaces – autonomous rock image

classification and hyperspectral image classification. Rock image classification is to identify

the specific type of rocks from the in-situ photographs. It allows the understanding of the envi-
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ronment in which the rocks were created and its subsequent geological history. Hyperspectral

image classification attempts to recognize and map different types of surface materials from the

spaceborne or airborne hyperspectral image. It enables the detection and investigation without

any physical contact.

1.3.1 Rock image classification

Rock image classification refers to attempts to identify the specific type of rocks based on

the visual appearance. The rock images are photographed in-situ by robotic platforms on sur-

face missions. More autonomy on the process of detection and identification can dramatically

enhance the exploration performance and the scientific returns by reducing the data volume

needed for specific observation and human scientists’ intervention. The autonomy for extrater-

restrial exploration is especially significant because of the communicating bandwidth limit and

large delay of data transmission. An autonomous geological classifier, even one which works

only for specific rock types or specific environments, would be a very valuable tool for increas-

ing the autonomy and scientific discovery rate of planetary exploration missions.

The identification of rock type is important since rocks provide information as to the environ-

ment in which they were created and the subsequent geological history [10]. For example, the

size of crystals in igneous rocks can be used to estimate cooling rates and provides constraints

on the depth of formation; the grain size and shape of sedimentary rocks provides information

as to the mode of deposition; and the properties of rocks formed by meteorite impact craters

reflects the pressure and temperature of formation and of the environment prior to impact.

Thus, autonomous rock classification has the potential to provide valuable information about

the origin and evolution of rocky planetary bodies throughout the Solar System.

Rock image classification consists of extracting a feature representation for rock images and

conducting classification. The feature representation plays a significantly important role in the

performance of classification. However, rock appearance is seldom homogeneous which makes

the design of the feature representation challenging. Conventional feature modeling methods

utilize hand-engineered features manually/semi-automatically selected for the specific applica-
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Figure 1.3: A hyperspectral image cube. This image was acquired in 1997 over Moffett Field
in California by the Airborne Visible-Infrared Imaging Spectrometer (AVIRIS), developed by
NASA JPL Laboratory. Photo courtesy of NASA.

tions. These features are not flexible and are usually time-consuming to choose. Thus, they are

not good enough to represent inhomogeneous rock images. We will propose an unsupervised

feature learning method in Chapter 3, which can automatically learn the feature representation

for rock images and experiments show that our approach is more flexible and powerful than

hand-crafted feature sets.

The history and current state of the literature with respect to techniques of rock image classifi-

cation is given in section 2.1.

1.3.2 Hyperspectral image classification

A typical hyperspectral image has hundreds of spectral bands with fine spectral resolution (see

Figure 1.3 for an example). Each pixel of the image contains spectral information (absorption,

reflectance and emission of electromagnetic spectrum), which is added as a third dimension

of intensity to the two-dimensional spatial image, generating a three-dimensional image cube.

Since certain objects leave unique spectral signatures in the electromagnetic spectrum, these

spectral signatures in hyperspectral images enable the identification of materials/objects. While

the spectral information identifies the materials in the scene, spatial information provides loca-

tions.

Hyperspectral images (airborne or spaceborne) can cover an enormous area of planetary surface

with rich spectral and spatial information. Over the last decades, many efforts have been di-
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rected toward geological mapping and land cover classification with hyperspectral images [11].

Conventional methods for mapping require tremendous human intervention, such as manually

selecting spectral components for analysis and defining band ratios, and intense geological

knowledge from specialists. Modern methods apply machine learning techniques to improve

the efficiency. As with rock image classification, the feature representation is dramatically

important for hyperspectral image classification. However, previous research work on design-

ing feature representation either relies on heavily hand-crafted features, or is computationally

expensive. We will propose three innovative methods in Chapter 4, 5 and 6 respectively for

hyperspectral image classification, each of which inherently has its own advantage over the

previous work.

The history and current state of hyperspectral image classification is described in section 2.2.

1.4 Research contribution

The work described in the subsequent chapters details several contributions. In particular, these

include:

• A novel technique to autonomously learn feature representations for rock images which

is more flexible and expressive than normal manual feature methods.

• A new technique to model spectral and spatial contextual information for hyperspectral

images and enable high performance of hyperspectral image classification.

• A novel strategy to stack the spectral patches to form spectral quilts which represent the

spectral volume in form of 1-channel grayscale image. The spectral quilts construct new

feature patterns which could be useful to distinguish different materials.

• Two shallow convolutional neural networks which perform well with spectral quilts.

• A combinational fully convolutional network which has an ensemble-like behavior and

is extremely efficient in predicting hyperspectral images in terms of computation and

memory cost.
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Chapter 2

Literature Review and Background

2.1 Rock image classification

2.1.1 Background

Autonomous geological detection is becoming an increasingly important technique for robotic

platforms exploring remote environments such as Mars (e.g. [1, 2]). It can maximize the sci-

entific return and reduce the need for human involvement. In the case of Mars specifically,

the bandwidth limit and large time delay (3 to 22 minutes one-way travel time) of data trans-

mission make autonomous techniques even more critical and valuable. The past two decades

have seen tremendous achievements in Mars exploration. Among them are Mars Exploration

Rovers (MER) and Mars Science Laboratory (MSL) missions. Both missions sent rovers to the

surface of Mars and explored their respective regions of interest with various scientific instru-

ments. Two autonomous onboard systems have been developed for these rovers: the Onboard

Autonomous Science Investigation System (OASIS) [3, 4, 5], and the Autonomous Exploration

for Gathering Increased Science (AEGIS) system [6, 7]. Both systems are actively used and

have enabled the rovers to autonomously identify and react to serendipitous science opportuni-

ties by analyzing imagery onboard with computer vision techniques. Tasks included locating

rocks in the images, analyzing rock properties, and identifying rocks that merit further inves-

11
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tigation through autonomous selection and sequencing of targeted observations. However, the

rovers still heavily rely on explicit instructions given by scientists on Earth, which requires

extensive communication and frequent command cycles. Therefore, there is still a long way

to go before rovers will possess sufficient “intelligence” to reason about science goals, make

informed decisions, and respond to discoveries autonomously [2].

An alternative approach to AEGIS and OASIS is increasingly being used in geosciences in the

form of computer vision. For example, Chanou et al. [8] and Pittarello et al. [9] developed and

applied quantitative image analysis methods to analyze the images of individual rock samples.

In these approaches, components or particles of a rock image are first segmented, which then

allows the measurement and quantification of various properties, such as shape complexity,

preferred orientation, size-frequency, and so on. A different advanced technique that we focus

on here is rock image classification [10]. Instead of the exact quantitative measurement of

particles in rock images, the approach of rock image classification is to identify the specific

type of rock(s) based on visual appearance. The identification of rock type is important as this

provides information as to the environment in which the rock was created and its subsequent

geological history [11].

2.1.2 Related work

A typical framework of image classification (see Figure 2.1) includes extracting feature repre-

sentation for input images and feeding the feature representation into a classifier. In general, the

performance of image classifiers is heavily dependent on the selection of a feature representa-

tion. Unfortunately, rock textures are seldom homogeneous. As a result, the design of a feature

representation is difficult, which makes rock image classification extremely challenging. There

have been a few attempts at developing feature representation for rock image classification to

date. All these previous works use either hand-engineered features manually selected for the

specific application, or features selected with time-consuming methods.

Prior works mostly involve manually selected features. In order to reduce the time-consuming

process of manual identification of rock samples, Slipek et al. [12] and Mlynarczuket al. [13]
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Figure 2.1: The typical framework of image classification.

conducted autonomous classification of microscopic images of rocks by four pattern recog-

nition methods - nearest neighbour, k-nearest neighbours (k-NN), nearest mode, and optimal

spherical neighbourhoods. Sharif et al. [14] built a small library of grayscale images from a

total of 30 hand samples, and used Bayesian analysis to classify them with selected Haralick

textural features [15]. In order to distinguish adjacent outcrops, Francis et al. [1] started with

some fundamental visual “channels” such as colour and difference between colour channels,

then utilized multi-class linear discriminant analysis (MDA) to identify the principal visual

components. Harinie et al. [16] utilized Tamura features [17] to classify hand samples of rocks

into the three major categories, namely, igneous, sedimentary and metamorphic. Dunlop et al.

[18] studied features such as shape, albedo, colour and textures, then conducted rock classifica-

tion with different feature combinations. Singh et al. [19] compared 7 well-established image

texture analysis algorithms for rocks classification and the results suggested that Law’s masks

[20] and co-occurrence matrices [15] were best. Lepisto et al. [21] classified rock images by

methods based on textural and spectral features. The spectral features are some colour parame-

ters and the textural features are calculated from the co-occurrence matrix. In order to improve

the classification accuracy, Lepisto et al. [22] combined colour information in Gabor space

[23] to the texture description. Given that various visual descriptors extracted from images

are often high dimensional and non-homogenous, Lepisto et al. [24] conducted rock images

classification based on k-nearest neighbour voting, which combined k-NN base classifiers for

different descriptors by voting. A similar idea of combining base classifiers was presented by

Lepisto et al. [25]. Each feature descriptor had a corresponding separate base classifier, and

better classification accuracy can be achieved by combining opinions provided by each base

classifier.

Other works have concentrated on feature selection. Chatterjee et al. [26] used the genetic

algorithm to select features, and then classified limestone with multi-class support vector ma-
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chine (SVM). Shang et al. [10] utilized a reliability-based method and mutual information to

select features, then classified rocks images in a more general dataset. Both works showed that

their own feature selection methods worked well in their dataset, but feature selection itself

is time-consuming. When the dataset becomes complicated, one might have to think of what

kind of feature pool to select from, or even devise a brand new feature representation.

2.2 Hyperspectral image classification

2.2.1 Background

Remote sensing can be broadly defined as the collection and interpretation of information about

an object, area, or event without being in physical contact with the object [27]. Aircrafts and

satellites are the common platforms for remote sensing. Though imaging in the visible por-

tion of the electromagnetic wavelength was the original form of remote sensing, technological

development has enabled the acquisition of information at other wavelengths including near

infrared, thermal infrared and microwave. The measurement of the electromagnetic radiation

takes place in spectral bands which are defined as discrete intervals of the electromagnetic

spectrum. For example, the wavelength range of 0.5 µm to 0.6 µm is one spectral band. Based

on different measurements of spectral information, remote sensing can be divided into multi-

spectral imaging (MSI) and hyperspectral imaging (HSI).

Both MSI and HSI utilize optical spectroscopy as an analytical tool. Each pixel of the image

contains spectral information, which is added as a third dimension of intensity to the two-

dimensional spatial image, generating a three-dimensional image cube. Unlike the common

RGB color image, where each pixel has red, green and blue color, a typical multi/hyperspectral

image usually has many more spectral bands. The spectral range can extend beyond the vis-

ible range. Each pixel contains absorption and reflectance electromagnetic spectrum. Since

certain objects leave unique spectral signatures in the electromagnetic spectrum, these spectral

signatures enable the identification of materials/objects. Note that there is difference between

MSI and HSI. MSI contains spectral information at a smalll set of discrete and narrow spectral
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bands, while HSI records spectra over a continuous spectral range and the sampling wave-

lengths are equally distributed with fine resolution. Landsat [28] and ASTER [29] are two

excellent examples of multispectral imaging, AVIRIS [30] is an excellent example of hyper-

spectral imaging.

Given that HSI usually acquires digital images in many continuous and very narrow spectral

bands, it enables the construction of an essentially continuous radiance spectrum for every

pixel in the scene. Thus, HSI makes possible the remote identification of materials of interest

based on their spectral signature [31]. HSI has been widely used in areas such as planetary

science, agriculture, land use classification etc. For example, Combe et al. [32] analyzed the

mineralogical composition of the Martian surface with the hyperspectral data from OMEGA

mineralogical mapping spectrometer onboard Mars Express. Moussaoui et al. [33] studied

the chemical species on surface and the atmosphere of Mars with hyperspectral images also

from OMEGA spectrometer. Since hyperspectral remote sensing provides valuable informa-

tion about vegetation type, leaf area index, biomass, chlorophyll, and leaf nutrient concentra-

tion, it can be used to understand ecosystem functions, vegetation growth, and nutrient cycling

[34] and estimate the biochemical and biophysical parameters of wetland vegetation [35]. HSI

can also be applied to urban area classification [36] and automatic target detection [37].

2.2.2 Related work

Remotely sensed hyperspectral images, either spaceborne or airborne, can cover relatively large

areas of Earth’s surface with rich spectral information and enable the accurate and robust clas-

sification of land cover [38]. Detailed spectral information is helpful to discriminate materials

of interest [39]. Over the last decades, many efforts have been directed toward using machine

learning techniques to automatically classify hyperspectral imagery.

As with rock image classification, the feature representation for hyperspectral image is also

significant. Because of the existence of hundreds of spectral bands, the feature representation

techniques for hyperspectral images are different from the ones for rock images. Conventional

pixel-wise classification methods process each pixel independently without exploiting the spa-
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tial information [40]. However, spatially adjacent pixels usually share similar spectral charac-

teristics and combing spectral information with spatial contextual information can reduce the

uncertainty of the samples. As a result, the spatial contextual information is as important as the

spectral information [41].

There have been significant works on jointly combining spatial and spectral information to

analyze spectral imageries [42]. Early works, such as [43], [44] and [45] have sought to model

spatial contextual information to classify the multispectral imageries. More recently, Coburn

et al. [46] utilized the first and second order statistical textures to model the spatial information

for forest stands. Pesaresi et al. [47] presented the concept of morphological profiles (MPs)

to model the spatial information which has proven to be effective. MPs are constructed by

applying a set of mathematical morphological operations (i.e., opening and closing) [48, 49]

on spectral images. They simultaneously attenuate some spatial details while preserving the

geometric characteristics of the other regions. Based on MP, the derivative of the morphological

profile (DMP) was also proposed in [47]. A DMP is useful for visual inspection of the scene

since it shows the differences between adjacent levels of the MP. Benediktsson et al. [36]

and Fauvel et al. [50] later proposed extended morphological profiles (EMPs) which use MPs

to model the spatial information in the top principal spectral bands after reducing spectral

dimensionality.

As an extension of MPs, attribute profiles (APs)were proposed in [51]. APs provide a mul-

tilevel characterization of an image by using the sequential application of a morphological

attribute filter (AF). AFs are connected morphological operators that process an image by con-

sidering the connected components at different levels in the image. APs model the spatial

information more precisely than MPs, since the input images can be processed according to

many attributes, which can be defined with great flexibility. Dalla et al. [52] proposed the

extended attribute profile (EAP) and the extended multi-attribute profile (EMAP), which rely

on the application of the APs to hyperspectral data and to a straightforward further extension

to a multi-attribute scenario, respectively.

In addition to using morphological operations to generate spatial-spectral features, composite

kernels (CKs) [53, 54, 55] were applied to combine spatial information and spectral informa-
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tion. In the CKs method, a local spatial feature extraction method is used to extract spatial

features (e.g., mean or standard deviation of the pixel intensities in the spatial neighbourhood

of the pixels), then the extracted spatial features and original spectral features are used to com-

pute the spatial and spectral kernels to form a CK. With this CK containing both spatial and

spectral information, classifiers such as support vector machine (SVM) [53], multinomial lo-

gistic regression [54] or extreme learning machine [55] can be used to conduct classification.

Rather than directly generating spatial-spectral features, Markov Random Field (MRF) based

methods first conduct pixel-wise classification, then integrate spatial contextual information to

refine (smooth) the classification [56, 57, 58]. Based on the assumption that the neighboring

pixels have the same class labels as the central pixel, the maximum a posteriori decision rule

is typically formulated as the minimization of a suitable energy function. The pixel-wise clas-

sification can be conducted with probabilistic classifiers, such as probabilistic SVM [56, 59],

subspace Multinomial Logistic Regression [60], or sparse Multinomial Logistic Regression

[61] etc. In order to preserve small structures and edges, Tarabalka et al. [56] proposed to

integrate the edge information into the spatial energy function with a gradient map, Zhang et

al. [62] proposed an adaptive-MRF to adjust the weighting coefficient of the spatial energy and

Sun et al. [61] also presented a weighted MRF.

Although MP-based methods are an effective technique for extracting spatial contextual in-

formation, they are heavily hand-crafted and are therefore less flexible for different datasets.

CK-based methods are a strong competitor, but the spatial features extracted by CKs are usu-

ally so simple that they do not accurately represent complex spatial structures. MRF-based

methods have shown great performance, but the performance heavily depends on the initial

pixel-wise classification which still require manual feature selection. Thanks to the fast de-

velopment of neural networks [63, 64, 65] in image classification in the past few years, a lot

of researchers have been focusing on utilizing neural networks as an end-to-end method to

automatically model the spatial-spectral feature representation for hyperspectral images.

Li et al. [66] first applied principal component analysis (PCA) to preserve the top 3 principal

components of spectral bands, then extracted 7× 7 neighbor regions over the 3 principal bands

as the training samples. After flattening each sample as a column vector, a deep belief network
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(DBN) was utilized for classification. Similarly, Chen et al. [67] stacked the column vector

with the original spectrum vector and fed the stacked spectral-spatial vectors into DBN for

classification. Instead of DBN, Makantasis et al. [68] utilized a convolutional neural network

(CNN) to directly classify the cropped 5 × 5 neighbor regions after the spectral dimensionality

reduction. Other than using the neural network as an end-to-end method to directly classify

the samples, there are some attempts to extract the high-level features with neural networks

and then conduct classification with other classifiers. For example, Zhao et al. [69] and Zhao

et al. [70] applied a logistic regression classifier to classify the extracted features. Zhao et al.

[69] utilized a multiscale convolutional neural network (MCNN) to extract multiscale spatial

features, then fused spatial features with spectral features to obtain the spectral-spatial features.

Zhao et al. [70] applied balanced local discriminant embedding (BLDE) algorithm to extract

the spectral features with lower dimensionality and used a CNN framework to extract spatial-

related deep features. Then the spectral-spatial features are obtained by simply stacking the

BLDE-based spectral features with CNN-based spatial features. All the methods above first

require compression of the hyperspectral image with dimensionality reduction methods such

as PCA. The compression step, however, will inevitably cast away a certain amount of useful

spectral information.

Instead of reducing the spectral dimensionality, Lee et al. [71, 72] proposed a contextual deep

CNN that can jointly exploit spatial and spectral features directly from the original hyperspec-

tral image. Given that usually there are hundreds of spectral bands for a hyperspectral image,

such a neural network will end up with a relatively large amount of parameters (especially the

early layers) and therefore the risk of overfitting is increased. Chen et al. [73] proposed a 3-D

CNN model to extract spectral-spatial features. Basically, the convolution and pooling are con-

ducted in both spatial and spectral dimensions rather than only in the spatial dimensions as in

conventional approaches. This model can have fewer parameters to train but the computation

is tremendously increased because of the convolution along spectral bands.
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2.3 Machine learning

Machine learning is a method of data analysis that can automatically find hidden insights from

data. Machine learning techniques are typically classified into two broad categories - unsu-

pervised learning and supervised learning, depending on whether there is a learning feedback

available to the learning system. In the following subsections, we discuss several techniques

from both categories which we will utilize to solve rock image and hyperspectral image classi-

fication problems in this thesis.

2.3.1 K-means

K-means is by far the most widely used clustering algorithms. It aims to group data points

into K clusters in which each data point belongs to the cluster with the nearest mean [74]. The

main advantage of K-means is that it is fast and easily implemented at large scale. Other than

its use in market segmentation, social network analysis etc., it is also identified as a successful

method to learn feature representation for images by computer vision researchers [75].

The classic K-means algorithm finds cluster centroids that minimize the distance between data

points and the nearest centroid. Given a set of data points {x1, x2, ..., xn}, where each data point

is a d-dimensional vector, K-means aims to partition n data points into K (≤ n) clusters so as

to minimize the optimization objective:

J =
1
n

n∑
i=1

||xi − µci ||2 (2.1)

where µci is the cluster centroid of the cluster to which data point xi has been assigned to,

ci ∈ {1, 2, ...,K} is the cluster number. The entire optimizing process is summarized as follows:

a. Randomly allocate K points as the cluster centroids;

b. Go through each data point and evaluate the distance between the point and every cluster

centroid, then assign the point to the closest cluster;
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c. Move each centroid to the average of the correspondingly assigned data points;

d. Repeat step b and c until convergence.

Note that K-means can converge to different solutions depending on the initialization of cen-

troids. So there is a risk of local optimum. A typical solution is to do multiple random initial-

izations and see if they lead to the same result, since many same results are likely to indicate a

global optimum.

2.3.2 Principal component analysis

Principal component analysis (PCA) is a method for dimensionality reduction [76, 77]. When

the data is redundant, PCA is useful to compress the data into lower dimensional space with

a tiny reconstruction error. Data compression usually leads to efficient computation since the

data volume is reduced. Besides, the compressed data is represented by new features which

could be more abstract and expressive than the original features. Thus, PCA is also used to

extract feature representation in some cases. For example, Turk et al. [78] applied PCA to

extract feature bases (called EigenFaces) from human faces and then represented faces as the

linear combination of the EigenFaces.

Assume X = [x1, x2, ..., xn]T contains all the data points. xi ∈ R
d is a d-dimensional vector. X

is a n × d matrix. Each row of X corresponds to one point and each column of X corresponds

to one feature. The full routine of PCA is summarized as follows:

a. Normalize the data points. X := X−mean(X)
√

var(X)
, where the average and standard deviation are

conducted along the first dimension. This will scale the features into a comparable range

and move the mean of data points to 0.

b. Compute the covariance matrix: Σ = 1
n XT X.

c. Calculate eigenvectors using singular value decomposition: [U, S ,V] = svd(Σ). Columns

of U are eigenvectors.
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d. Select the top P columns (in the case of extracting feature representation, these principal

eigenvectors are the feature bases) in U and use them to project each point xi to the lower

dimensional sub-space RP :

xi := U(:, 1 : P)T ∗ xi (2.2)

2.3.3 PCA-whitening

While PCA is to rotate and compress data points with principal components, PCA-whitening

is to rotate and rescale the data to reduce correlations among features and assure that features

all have the same variance [79]. PCA-whitening is a common method to preprocess the data

points. The full routine of PCA-whitening is summarized here:

a. Center and standardize the data: X := X−mean(X)
√

var(X)
. X is an n × d matrix, where n is the

number of data points and d is the number of features.

b. Compute the covariance matrix: Σ = 1
n XT X.

c. Calculate eigenvectors using singular value decomposition: [U, S ,V] = svd(Σ). Columns

of U are eigenvectors.

d. Rotate the data with eigenvectors: xi := UT ∗ xi. This is to reduce the correlation between

features.

e. Rescale each feature by 1/
√
λi + ε to make it have unit variance, where λi is an eigen-

value of the covariance matrix. A small constant ε is added in case that the eigenvalues

are numerically close to 0.

Fig. 2.2 illustrates the process and effect of PCA-whitening. We see that after rotating and

scaling, both features are less correlated and have the same variance.
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(a) (b) (c)

Figure 2.2: Process and effect of PCA-whitening. (a) unwhitened data, where the two features
are clearly correlated with each other. (b) rotate the data to reduce the correlation. (c) whitened
data, where features are less correlated and both have the same variance.

Figure 2.3: SVM learns a hyperplane with the largest margin.

2.3.4 Support vector machine

Support vector machine (SVM) [80, 81] is one of the most powerful and widely used classifica-

tion algorithms. It learns a hyperplane or set of hyperplanes in high-dimensional space, which

separate data points with the largest margin (see Figure 2.3). For a typical binary classification

problem, assume the learned hyperplane is wT x + b = 0, where x is a d-dimensional vector and

each dimension corresponds to one feature of data points, w and b are the parameters defining

the hyperplane. The distance (margin) from each data point to the hyperplane is

|wT x + b|
||w||

(2.3)
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Intuitively, a good classifier is the one having as large distance to every data point as possible,

i.e., the closest points have as large distance as possible. So, the overall goal is to maximize the

margin. Since the hyperplane and the closest data points will be determined for the set of data

points as long as w (direction of hyperplane) is determined, w is the only unknown variable for

the margin formula. For any hyperplane, we can always have |wT x + b| = 1 for any data point

by dividing a coefficient while having the hyperplane unchanged. So, the margin formula can

be simplified as
1
||w||

(2.4)

with the constraints wT x + b ≥ 1 for positive data and wT x + b ≤ −1 for negative data (or

yi(wT xi + b) ≥ 1 for each data point (xi, yi), where yi is label). In this case, the closest distance

from data points to hyperplane is exactly 1
||w|| . The maximization of margin can be convert to

the minimization of a quadratic function,

min
1
2
||w||2

s.t., yi(wT xi + b) ≥ 1, i = 1, ..., n
(2.5)

To solve this optimization problem efficiently, we can add the constraints into the loss function

with Lagrange duality. Then the loss function becomes

L(w, b, α) =
1
2
‖w‖2 −

n∑
i=1

αi

(
yi(wT xi + b) − 1

)
(2.6)

where αi ≥ 0, i = 1, ..., n. Then the optimization function becomes

min
w,b

max
αi≥0
L(w, b, α) (2.7)

Here, the optimization function is equivalent to the one switching the position of minimization

and maximization, as shown in

max
αi≥0

min
w,b
L(w, b, α) (2.8)
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In order to first get the optimal solution for the minimization of L, we set

∂L

∂w
= 0⇒ w =

n∑
i=1

αiyixi

∂L

∂b
= 0⇒

n∑
i=1

αiyi = 0

(2.9)

Then we have

L(w, b, α) =
1
2

n∑
i, j=1

αiα jyiy jxT
i x j −

n∑
i, j=1

αiα jyiy jxT
i x jb

n∑
i=1

αiyi +

n∑
i=1

αi

=

n∑
i=1

αi
1
2

n∑
i, j=1

αiα jyiy jxT
i x j

(2.10)

Now, our optimization problem is simplified as

max
α

n∑
i=1

αi
1
2

n∑
i, j=1

αiα jyiy j〈xi, x j〉

s.t.,αi ≥ 0, i = 1, . . . , n
n∑

i=1

αiyi = 0

(2.11)

where 〈·, ·〉 indicates the inner product of two vectors. After optimizing the function to get the

hyperplane, the inference is only to compute

f (x) =

 n∑
i=1

αiyixi

T

x + b

=

n∑
i=1

αiyi〈xi, x〉 + b

(2.12)

Since it is the closest points (vectors) who determine the hyperplane and the inference computa-

tion is only related to the closest points (because for all the other points their yi(wT xi+b)−1 > 0,

so their corresponding αi have to be 0 to maximize Formula 2.6), we call the closest points sup-

port vectors.

Above we have derived the optimization formula for linear SVM. Linear SVM only works
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for the data points which are linearly separable. For the data points which are not linearly

separable, we can project the original data points to a higher dimensional space (assume φ(·) is

the projection). Similarly, the new optimization problem becomes

max
α

n∑
i=1

αi
1
2

n∑
i, j=1

αiα jyiy j〈φ(xi), φ(x j)〉

s.t.,αi ≥ 0, i = 1, . . . , n
n∑

i=1

αiyi = 0

(2.13)

where the inner product 〈φ(xi), φ(x j)〉 can be noted as kernel function κ(xi, x j). Compared with

the inner product in the higher dimensional space, kernel function can be more efficiently com-

puted in the lower dimensional space. Thus, kernel functions have been widely used to solve

the nonlinear classification with SVM. With kernel function, the learned hyperplane (classifier)

can be noted as

f (x) =

n∑
i=1

αiyiκ(xi, x) + b (2.14)

One of the most popular kernel functions is Gaussian (radial basis function) kernel, which

projects the original data points to the infinite dimensional space. The Gaussian kernel is noted

as

κ(xi, x j) = exp
(
−
‖xi − x j‖

2

2σ2

)
(2.15)

where σ is standard deviation. It is to control the shape of Gaussian kernel function. Large

σ will make the high order feature components decay fast, which results in the projection to

a approximately low dimensional space. On the other hand, small σ will allow projecting any

data to be linearly separable but have a risk of overfitting.

In order to make the classifier less sensitive to outliers, we can add slack variables to the loss

function to allow the data points to have the authority to move out of their own group a little
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bit. Take the linear SVM as example, the optimization problem can be denoted as

min
1
2
||w||2 +

C
2

n∑
i=1

ξ2
i

s.t. yi(wT xi + b) ≥ 1 − ξi, i = 1, ..., n

ξi ≥ 0, i = 1, ..., n

(2.16)

where ξi is the slack variable and C is the regularization parameter. C is to make a trade-off

between training error and margin size. If C is large, training error will be small. Otherwise,

training error and margin will be large. With the similar derivation indicated above, we can

modify the linear SVM optimization problem as

max
α

n∑
i=1

αi
1
2

n∑
i, j=1

αiα jyiy j〈xi, x j〉

s.t.,0 ≤ αi ≤ C, i = 1, . . . , n
n∑

i=1

αiyi = 0

(2.17)

With careful choice of regularization parameter (e.g., C) and kernel parameter (e.g., σ in Gaus-

sian kernel function), SVM is highly resistant to overfitting. Besides, it is effective in high

dimensional spaces, even in cases where the number of dimensions is greater than the number

of data points (e.g., hyperspectral image classification). Last but not least, it is also memory

efficient since the decision function is only related to the support vectors.

2.3.5 Convolutional neural network

Convolutional neural networks (CNNs) have been fast developed to solve computer vision

problems (e.g., image classification and object detection) in recent years. Among the earliest

work, LeNet [82] is the most popular CNN which was designed for handwritten and machine-

printed character recognition. Although LeNet had achieved great success almost two decades

ago, it has seen a surge of recent interest due to the availability of a large amount of data through

the digitization of society and the rapid development of high performance computing devices
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(e.g., GPU). AlexNet [63] is the first work which combined the innovation of CNN and efficient

computation of GPU. It won the ILSVRC-2012 competition and performed way better than the

second-best method. AlexNet opened a new era for CNNs. Since then, researchers have made

great achievements in designing innovative network structures and developing the state-of-the-

art techniques. For example, Simonyan et al. [65] developed VGG-net which simplified the

neural networks structures and found that deeper networks can lead to better performance. In

order to overcome the problem of vanishing gradient and speed up the training of deep network,

ResNet [83] adds short cuts to the main path of the original convolutional network.

Conventional CNNs consist of alternating convolutional layers and pooling layers and fully

connected layers in the end [84]. Figure 2.4 illustrates a typical framework of CNN.

Figure 2.4: A typical framework of CNN.

2.3.5.1 Convolutional layer

Convolutional layers take the inner product of the linear filters and the underlying receptive

fields followed by a nonlinear activation function at every local portion of the input. Concretely,

during the forward pass, we slide and convolve each filter across the width and height of the

input and compute dot products between the entries of the filter and the input at any position.

As we slide the filter over the width and height of the input we will produce an activation map

which gives the responses of that filter at every spatial position. Intuitively, the network will

learn filters that activate when they see some type of visual patterns such as an edge of certain

orientation. By stacking all the activation maps along the depth dimension, we will get the

output volume for each convolutional layer. If the input is n×n, convolution filter size is f × f ,

padding is p and stride is s, then the size of output will be [n+2p− f
s + 1] × [ n+2p− f

s + 1].

Technically, the convolution in neural networks is actually called cross-correlation, not mathe-
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matically true convolution which needs flipping the filters common in signal processing areas.

Convolutions have two main advantages. The first is parameter sharing. A feature detector

(filter) that is useful in one part of the image is probably useful in another part of the image.

By sharing the parameters, convolutions can detect the shifted objects and make the network

translation invariant. The second is the sparsity of connections. In each layer, each output

value depends only on a small number of inputs from previous layer (within the receptive

fields). This leads the network to remain fewer parameters. As a result, it can be trained with

smaller training datasets and is less prone to overfitting.

The nonlinear activation function is necessary because it is more expressive than the linear

one. With the nonlinear activation function, the overall network can end up to be complicate

enough for complicate classification problem. Rectified linear unit (Relu) is the most common

activation function to use. It allows the network to be trained fast since it is linear when entries

are positive.

2.3.5.2 Pooling layer

Pooling layer is used to downsample the feature maps along the spatial dimensions (width

and height) to reduce the amount of parameters and computation in the network, and hence

to control overfitting. The commonly used pooling method is max-pooling, which retains the

max values within the receptive fields. Because the main features usually correspond to the

max values in feature maps, retaining max values will preserve the main features. In addition

to max-pooling, average-pooling is sometimes used in very deep neural networks to largely

collapse the feature map dimension.

2.3.5.3 Fully-connected layer

While convolutional layers extract feature representations and pooling layers downsample the

feature maps, fully-connected layers work as the classifier. Each neuron in this layer will be

connected to all the activations in the previous layer. The output activations can hence be

computed with a matrix multiplication followed by a bias offset.
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It is worth noting that the only difference between fully-connected layers and convolutional

layers is that the neurons in convolutional layer are connected only to a local region in the

input and many of them share parameters. However, the neurons in both layers still compute

dot products, so their functional form is identical. Therefore, it is possible to convert a fully-

connected layer to a convolutional layer. This conversion is particularly useful in practice since

it allows to build a fully convolutional network which is computationally efficient in prediction.

2.3.5.4 Regularization methods

Neural networks usually have a large amount of model parameters and are prone to overfitting.

There are several techniques to regularize the model and prevent overfitting during training.

Data augmentation means to augment the training data. In the case of computer vision prob-

lems, it is usually difficult to get enough data. The image data augmentation can be done by

flipping, rotating or cropping images. Although data augmentation is not as good as collecting

an additional set of brand new images because of the redundancy, it will still help generalize

the model.

L1/L2-regularization is to penalize the values of the weights in the loss function based on the

assumption that a model with small weights is simpler than a model with large weights (small

weights tend to deactivate many neurons, which makes a simpler neural network). The added

weight penalization term into the loss function can be written as Formula 2.18.


λ

2

∑
i

|wi|, L1-regularization

λ

2

∑
i

w2
i , L2-regularization

(2.18)

wi indicates any weight in the network and λ is the regularization parameter which is to control

the degree of regularization. With such penalty terms, all the weights are driven to be small

during training iteration. Although L1-regularization makes the weights sparse and needs less

memory, L2-regularization is used more often in practice because it is differentiable so that the

updating of weights with gradient descent will have a decay term making the weights smaller
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in each iteration step.

Dropout is to go through each of the layers of the network and eliminate (shut down or set

to zero) each neuron with a probability at each training iteration. The dropped neurons do not

contribute to the training in both forward and backward propagations of the iteration. This

ends up with a smaller and diminished network in each iteration. Since different iteration

dropouts/eliminates a different set of neurons, the network cannot rely on any one specific

feature and have to spread out the weights. This will tend to have effect of shrinking the

weights, which is similar to what L1/L2-regularization does.

Early stopping is to stop the training in half way. As the training iterates, the model might

gradually overfit the data. By stopping the training in a proper position, we can prevent the

overfitting. Unlike L1/L2-regularization, early stopping does not require tuning of the regular-

ization parameter, which makes training computationally efficient. However, it mixes together

two opposite things, optimizing loss function and preventing overfiting, and thus we cannot

deal with these two things independently.

2.4 Summary

In this chapter, we first talked about the background and conventional methods for rock im-

age classification and hyperspectral image classification. Then we talked about the machine

learning techniques which will be utilized in the following chapters.
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Chanussot, David Brie, Sylvain Douté, and Jon Atli Benediktsson. On the decomposition

of mars hyperspectral data by ica and bayesian positive source separation. Neurocomput-

ing, 71(10-12):2194–2208, 2008.

[34] Jungho Im and John R Jensen. Hyperspectral remote sensing of vegetation. Geography

Compass, 2(6):1943–1961, 2008.

[35] Elhadi Adam, Onisimo Mutanga, and Denis Rugege. Multispectral and hyperspectral

remote sensing for identification and mapping of wetland vegetation: a review. Wetlands

Ecology and Management, 18(3):281–296, 2010.

https://landsat.usgs.gov
https://asterweb.jpl.nasa.gov
https://asterweb.jpl.nasa.gov
https://aviris.jpl.nasa.gov/


BIBLIOGRAPHY 35

[36] Jón Atli Benediktsson, Jón Aevar Palmason, and Johannes R Sveinsson. Classification

of hyperspectral data from urban areas based on extended morphological profiles. IEEE

Transactions on Geoscience and Remote Sensing, 43(3):480–491, 2005.

[37] Dimitris Manolakis, David Marden, and Gary A Shaw. Hyperspectral image processing

for automatic target detection applications. Lincoln laboratory journal, 14(1):79–116,

2003.

[38] Philip H Swain. Fundamentals of pattern recognition in remote sensing. Remote Sensing:

The Quantitative Approach, pages 136–187, 1978.

[39] Mathieu Fauvel, Yuliya Tarabalka, Jon Atli Benediktsson, Jocelyn Chanussot, and

James C Tilton. Advances in spectral-spatial classification of hyperspectral images. Pro-

ceedings of the IEEE, 101(3):652–675, 2013.

[40] David A Landgrebe. Signal theory methods in multispectral remote sensing, volume 29.

John Wiley & Sons, 2005.

[41] Pedram Ghamisi, Jon Atli Benediktsson, and Johannes R Sveinsson. Automatic spectral–

spatial classification framework based on attribute profiles and supervised feature extrac-

tion. IEEE Transactions on Geoscience and Remote Sensing, 52(9):5771–5782, 2014.

[42] P Ghamisi, M Dalla Mura, and J A Benediktsson. A Survey on Spectra-Spatial Classi-

fication Techniques Based on Attribute Profiles. IEEE Transactions on Geoscience and

Remote Sensing, 53(5):2335–2353, 2015.

[43] Robert M Haralick and K Sam Shanmugam. Combined spectral and spatial processing of

erts imagery data. Remote Sensing of Environment, 3(1):3–13, 1974.

[44] David A Landgrebe. The development of a spectral-spatial classifier for earth observa-

tional data. Pattern Recognition, 12(3):165–175, 1980.

[45] Philip H Swain, Stephen B Vardeman, and James C Tilton. Contextual classification of

multispectral image data. Pattern Recognition, 13(6):429–441, 1981.



BIBLIOGRAPHY 36

[46] CA Coburn and Arthur CB Roberts. A multiscale texture analysis procedure for improved

forest stand classification. International Journal of Remote Sensing, 25(20):4287–4308,

2004.

[47] Martino Pesaresi and Jon Atli Benediktsson. A new approach for the morphological

segmentation of high-resolution satellite imagery. IEEE Transactions on Geoscience and

Remote Sensing, 39(2):309–320, 2001.

[48] Pierre Soille. Morphological image analysis: principles and applications. Berlin, Ger-

many: Springer-Verlag, 2003.

[49] Pierre Soille and Martino Pesaresi. Advances in mathematical morphology applied to

geoscience and remote sensing. IEEE Transactions on Geoscience and Remote Sensing,

40(9):2042–2055, 2002.

[50] Mathieu Fauvel, Jón Atli Benediktsson, Jocelyn Chanussot, and Johannes R Sveinsson.

Spectral and spatial classification of hyperspectral data using svms and morphological

profiles. IEEE Transactions on Geoscience and Remote Sensing, 46(11):3804–3814,

2008.

[51] Mauro Dalla Mura, Jón Atli Benediktsson, Björn Waske, and Lorenzo Bruzzone. Mor-

phological attribute profiles for the analysis of very high resolution images. IEEE Trans-

actions on Geoscience and Remote Sensing, 48(10):3747–3762, 2010.

[52] Mauro Dalla Mura, Jon Atli Benediktsson, Björn Waske, and Lorenzo Bruzzone. Ex-

tended profiles with morphological attribute filters for the analysis of hyperspectral data.

International Journal of Remote Sensing, 31(22):5975–5991, 2010.

[53] Gustavo Camps-Valls, Luis Gomez-Chova, Jordi Muñoz-Marı́, Joan Vila-Francés, and
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[82] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[83] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for

image recognition. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[84] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint

arXiv:1312.4400, 2013.



Chapter 3

Unsupervised Feature Learning for

Autonomous Rock Image Classification

Published as Shu, L., McIsaac, & K., Osinski, G. R. in Computers & Geosciences, 2017(106),

10-17.

3.1 Introduction

Conventional feature methods for rock images consist either of an entirely manually crafted

feature set or a set of features automatically selected from a set of manually crafted features.

These manual features are not good enough to represent inhomogeneous rock images and are

time-consuming to get. In this chapter, we present an unsupervised feature learning method for

rock image classification. The proposed method can automatically learn the feature represen-

tations. The experimental results demonstrate that the learned feature representations have the

potential to be more flexible and powerful.

We have approached the problem of feature selection for geological classification in two ways

in this chapter. First, we propose an unsupervised feature learning technique [1] to extract fea-

tures for rock images. The approach is to autonomously learn the feature representation from a

40
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large amount of data rather than manually choosing the features. This has the benefit of making

the feature representation much more flexible when using different datasets. The feature learn-

ing method we utilized is based on K-means [2], which is fast and easily implemented. We

applied this method to the classification of rock images with support vector machine (SVM).

The second autonomous feature selection method we propose in this chapter is called self-

taught learning [3, 4]. The concept behind self-taught learning is to learn a feature represen-

tation from unlabelled images of mixed-class and then train a classifier on a subset of the data

that has been labelled to identify certain subclasses represented within the original data set. For

image classification, having enough labelled images is important. Basically, the more images

you have, the better learning you get. However, it is usually difficult and expensive to label

images. Though researchers have resorted to tools such as AMT (Amazon Mechanical Turk)

to have a large number of people help with labelling, there are still financial costs and concerns

about the quality of labelling. Thus the ability to use unlabelled images would greatly enhance

an autonomous feature identification technique. In addition, it is highly unlikely that a partic-

ular dataset will only contain the classes of the images we are interested in. It is much more

likely that a dataset will comprise a mix of all kinds of possible rock classes. Thus, we uti-

lized self-taught learning to directly learn feature representation from unlabelled rock images

of mixed-class and then applied the feature representation to labelled rock images which we

are interested in for classification. In such an approach, the unlabelled images do not have to

follow the same distribution as the labelled images, and the labelled images for classification

can belong to merely subclasses of the unlabelled images [5]. This attribute is particularly

important for applications such as planetary exploration where the potential rock types will be

uncertain.

Below, we first present the rock image dataset. Next we provide background on the set of

manually selected features, the K-means feature learning approach and the self-taught learning

approach. Finally, we show the effects of parameter selection for the feature learning methods

as well as the results of classification with both the manual features and both types of learned

features.
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3.2 Rock image dataset

We photographed 9 different types of rock hand samples to generate a rock image dataset. The

samples are provided by Department of Earth Science in Western University. These rocks are

randomly selected. Table 3.1 lists all these rocks and the brief descriptions. Each type of rock

reveals different appearance such as colour, structure, texture and grain size.

Table 3.1: 9 types of rocks used for classification in this study.

Rock types Description
Limestone It is a sedimentary rock consisting largely of calcium carbonate. It is

light grey and smooth to touch.
Volcanic breccia It is formed from angular gravel and boulder-sized clasts cemented to-

gether in a matrix. The angular nature of the clasts indicates that they
have not been transported very far from their source. The texture is
coarse-grained. Clasts are poorly sorted.

Oolitic limestone It is made up mostly of ooliths which are sand-sized carbonate particles
that have concentric rings of calcium carbonate. The colour is grey and
texture is fine grained and porous.

Dolostone It is a sedimentary carbonate rock that contains a high percentage of the
mineral dolomite. It has a stoichiometric ratio of nearly equal amounts
of magnesium and calcium.

Rhyolite It is a silica-rich volcanic rock. Its texture is porphyritic and very com-
pact. The groundmass with varying amounts of glass is also dense and
fine grained. The colour is light reddish.

Granite It is a felsic plutonic rock. It contains high percentage of light coloured
constituents and low percentage of dark minerals. So the colour is ba-
sically light and texture is phaneritic. The size of the individual con-
stituents is very varied.

Andesite It is an extrusive rock intermediate in composition between rhyolite and
basalt. It is basically grey and lighter coloured than basalt. Texture is
porphyritic and interweaved. The groundmass is fine grained and glassy.

Peridotite It is a very dense and coarse-grained igneous rock. The colour is gen-
erally dark greenish-grey and the texture is phaneritic. It is olivine-rich
and has low silica content and very little feldspar.

Red granite It has an equigranular texture with much pink orthoclase, grey quartz
and biotite. It is coarse grained and the grains are developed enough to
be recognised by the naked eye.

A dataset of approximately 700 textural images was generated from these 9 different types of

rocks. There are roughly 80 images in total for each type of rock. Each image has size of
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128 × 128 × 3 pixels and is between 1 and 2 cm across in reality (Figure 3.1). Note that, the

scale of the rocks was not accurately measured. Thus, we didn’t research on how different

scales will affect the classification in this study.

Figure 3.1: Sample images from dataset. Each sample stands for one class. All images have
size of 128 × 128 × 3 pixels and are between 1 and 2 cm across . From top to bottom, the first
column – rhyolite, volcanic breccia, limestone; the second column – granite, andesite, oolitic
limestone; the third column – red granite, peridotite, dolostone.

3.3 Methods

Our first set of experiments compares the behaviour of SVM classifier using two different

feature sets: Manually selected features, and autonomously learned features. We first present

the two feature sets in this section. The final part of this section presents the needed background

to the concept of self-taught learning, which is used in our second set of experiments.

3.3.1 Feature representations

3.3.1.1 Manual features

Among manual features, texture is commonly used to describe and represent the rock images

[6, 7]. It is determined by the way in which the gray levels are distributed over the pixels and

describes an image as orderly or coarse, smooth or irregular, homogeneous or inhomogeneous

[8]. It has been shown that first and second order statistics of texture can reasonably provide a
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small number of relevant and distinguishable features [9]. Note that, these features do not have

any geological meaning. They are carefully hand-crafted by computer scientists.

First-order statistics describes the pixel intensity distribution of the image. If I(i) stands for

intensity of pixel i in image, and N is the number of pixels in the whole image, then five of the

first-order statistics can be represented as

• Mean

Ī =
1
N

N∑
i=1

I(i) (3.1)

• Median - intensity value which separates the higher half of pixel intensity from the lower

half

• Standard deviation

Isd =

√√
1

N − 1

N∑
i=1

(I(i) − Ī)2 (3.2)

• Skewness

skewness =

1
N

∑N
i=1(I(i) − Ī)3

(
√

1
N

∑N
i=1(I(i) − Ī)2)3

(3.3)

• Kurtosis

kurtosis =

1
N

∑N
i=1(I(i) − Ī)4

(
√

1
N

∑N
i=1(I(i) − Ī)2)4

(3.4)

Here, skewness is used to measure the symmetry of the histogram distribution and kurtosis is

used to describe the flatness of the histogram distribution.

Second-order Statistics describes the information about relative positions of the various in-

tensities. It is calculated from a gray level co-occurrence matrix (GLCM), which describes

how frequently two gray levels of pixels appear [10]. For two-dimensional images, there are

four gray level co-occurrence matrices in total, by orientation of 0◦, 45◦, 90◦, 135◦ respec-

tively. Among the second-order statistics calculated from GLCM, four of them are used in this

chapter,
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• Angular Second Moment(ASM)

AS M =
∑
I1,I2

P(I1, I2)2 (3.5)

• Entropy

Entropy = −
∑
I1,I2

P(I1, I2)logP(I1, I2) (3.6)

• Contrast

Contrast =
∑
I1,I2

|I1 − I2|
2logP(I1, I2) (3.7)

• Correlation

Correlation =
∑
I1,I2

(I1 − µ1)(I2 − µ2)P(I1, I2)
δ1δ2

(3.8)

Here, P(I1, I2) is the frequency of co-occurrence matrix [10]. Four directions(i.e., 0◦, 45◦,

90◦, 135◦) are averaged out, which could make it rotate invariantly. ASM is to measure the

smoothness or uniformity of the image region. Entropy is to measure the disorderliness. Con-

trast is a measure of local level variations which takes high values for image of high contrast.

Correlation is a measure of correlation between pixels in two different directions.

With both first and second order statistics, there will be 9 textural features. If calculated in

all colour channels, there will be 27 features in total for each image. In order to show how

different feature configurations affect classification results, both the whole feature set and 4

subsets were used to represent the images during our experiments. The configurations of these

feature sets are denoted as

• MF I - all first and second order statistics;

• MF II - only first-order statistics;

• MF III - only second-order statistics;

• MF IV - 5 features including Mean, Skewness, Kurtosis, Entropy, Correlation;

• MF V - 5 features including Skewness, Kurtosis, ASM, Entropy, Correlation.
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3.3.1.2 Unsupervised feature learning based on K-means

Among various feature learning methods [11, 12], an approach based on K-means has previ-

ously been identified as fast and easily implemented [2]. The basic framework is as follows.

First, n random sub-patches (i.e., small red squares on Input image in Figure 3.3) are extracted

from the unlabelled dataset. Each sub-patch has a size of w × w × d pixels, where w refers

to receptive field size (width of sub-patch) and d is the number of colour channels. Hence, in

terms of pixel intensity, the extracted patches can be represented as vectors (x1, ..., xn) in RN ,

with N = w · w · d. Next, K-means [13] algorithm is used to generate K centroids C1, ...,CK,

where each centroid Ci is also a vector in RN . All these centroids are the feature filters for

the whole dataset and represent a basis set for all images. Figure 3.2 shows the 60 centroids

learned from training dataset of rock images. The parameter configuration is provided in Table

3.2. It is worthwhile to note here that these extracted features may not intuitively make much

sense, and do not necessarily represent geologically meaningful properties. However, on vi-

sual inspection, some of them (e.g., the one in first row and third column) are clearly to detect

edges, which are fundamental elements for rock textural images.

With K learned centroids, each patch x j can be mapped to a RK vector f (x j), and each element

of the vector can be represented as

fi(x j) = max{0, µ − zi}, 1 ≤ i ≤ K (3.9)

where, zi = ||x j − Ci||2, µ is the mean of all zi. Essentially, this operation represents all image

patches as a weighted combination of the set of identified features. The max operation is used

so patches “too far” from a particular centroid are treated as independent of that centroid.

The above steps explain how to transform an input patch from RN to RK. With this trans-

formation complete, we can now extract a representation of an entire image by applying the

transformation to many sub-patches in the whole image. The framework of this process is

shown in Figure 3.3. The whole image is first cropped into many sub-patches of the same size

(w × w × d) with stride (step size) s. If we assume that the entire image has a size of a × b × d

and stride s is 1, then there will be (a − w + 1) ∗ (b − w + 1) sub-patches in total mapped to RK
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for each image. After reducing the feature dimensionality with pooling (e.g., split the yi j into

four equal-sized quadrants and compute the sum of the yi j in each quadrant), each image will

be represented as a feature vector [φ1, φ2, ..., φ4K]T in the same feature space.

Table 3.2: Parameter configuration for feature learning. stride - step size between two adjacent
sub-patches, rfsize - receptive field size, K - number of centroids, numPatches - number of
sub-patches extracted for training.

stride 1
rfsize 12
K 60
numPatches 50,000

Figure 3.2: 60 centroids learned from training dataset, each centroid has size of 12 × 12 × 3,
configuration of parameters refers to Table 6.1.

Figure 3.3: Framework of representing a rock image with learned features.

3.3.2 Classification method

Support Vector Machine [14, 15] was used to classify rock images with both manual features

and learned features. It is one of the most powerful and widely used methods for classification.
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It learns a hyperplane or set of hyperplanes in high-dimensional space, which separate data

points with the largest margin.

The rock classification here is a multi-class classification problem. Thus, we used one-vs-all

linear SVM in the experiments. The objective function is L2-SVM as shown in formula (3.10),

where w defines the classifier and ξi is the slack variable to deal with outliers of data. We used

L2-SVM regularization term because it is differentiable and imposes a bigger loss for data

which violate the margin [16].

min
1
2
||w||2 +

C
2

n∑
i=1

ξ2
i

s.t. yi(wT xi + b) ≥ 1 − ξi, i = 1, ..., n

ξi ≥ 0, i = 1, ..., n

(3.10)

The regularization parameter C was determined by 5-fold cross-validation. In 5-fold cross-

validation, we first divided the training set into 5 subsets of equal size. Sequentially each subset

was tested using the classifier trained on the remaining 4 subsets. Thus, the cross-validation

accuracy is the percentage of images which are correctly classified in all of the subsets. Various

C values were tried and the one with the best cross-validation accuracy was picked.

3.3.3 Self-taught learning

The method discussed above, using K-means clustering and SVM, requires a fully labelled

data set. Unfortunately, in machine learning settings, labelled datasets are significantly harder

to obtain than unlabelled ones [17, 18]. Thus, our goal in this second part of the work was to

utilize an algorithm (known as self-taught learning) that is able to take as much advantage of

unlabelled data as possible. Self-taught learning consists of two stages [3]. In the first step,

a feature representation is learned from unlabelled images. In the second step, the learned

features are then used to train a classifier on a smaller, labelled data set. Once the general

feature representation has been learned in the first stage, it can be used repeatedly for different

classification tasks. Unlike semi-supervised learning [19], we do not assume that the unlabelled
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images were drawn from the same distribution as labelled images. Hence, self-taught learning

is more general and powerful [4].

As an example, suppose the task is to identify basalt and limestone. It is time-consuming

to gather a large dataset which consists only of basalt and limestone. A more common case

and an easier approach is to collect a dataset containing various types of rocks (e.g., breccia,

gneiss, sandstone, etc.) including basalt and limestone, be it from the internet or manually

photography. Given that labelling images is costly (requires time of a trained geologist), it

would be inefficient to label all images in the dataset if the goal is only the identification of

basalt and limestone. The self-taught learning approach would be to use the entire large initial

data set for feature learning. The large size of the initial data set means that we learn a generic

set of features about rocks of all types. Then, we apply the learned feature representation to

another small labelled dataset containing only basalt and limestone to train a classifier. The

reason why this approach works is that the other types of rocks contain some basic visual

patterns (“basic elements” as mentioned in [3]) similar to ones in basalt and limestone, such as

edges. Therefore, self-taught learning learns how to represent images in terms of these basic

elements. By applying this learned representation to labelled images, we can obtain a higher

level representation of labelled data as well, thus an easier supervised learning task.

The formalism of self-taught learning is as follows. We have unlabelled dataset Xu of n ex-

amples drawn from k classes, Xu = {xC1
1 , ..., x

C j

i , ..., x
Ck
n }. In addition, there is also a set of

m labelled examples Xl = {xCu
1 , ..., x

Cv
i , ..., x

Cw
m }. These labelled examples come from classes

{Cu, ...,Cv, ...,Cw}, which is a subset of original classes, {Cu, ...,Cv, ...,Cw} ∈ {C1, ...,C j, ...,Ck}.

The task is to learn feature representation from Xu, and then apply the feature representation to

Xl for further classification. Figure 3.4 shows the general framework.

3.4 Experimental design

We conducted experiments to test both approaches discussed in this chapter. To test the per-

formance of unsupervised feature learning, we first compared classification performance using

various combinations of manual features (i.e. first and second order statistics) and with classi-
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Figure 3.4: Framework of self-taught learning.

fication performance using a feature set learned using the K-means approach. Figure 3.5 shows

how we separated the dataset into a training set and a testing set. For all manual features and

unsupervised feature learning, the whole dataset was split into 70% as training data and 30%

as testing data.

In the second part of the work, we explore the concept of self-taught learning. In this case,

the whole initial dataset was split half-and-half into a labelled part and an unlabelled part

(“unlabelled” here means we ignored the labels). We used the unlabelled half of the data to

perform the feature identification step. In the labelled half, only samples from rock type #1

∼ rock type #4 (which are rhyolite, volcanic breccia, limestone and granite) were picked to

classify, and this sub-dataset was separated as 60% for training and 40% for testing.

Figure 3.5: Dataset separation. MF-manual features, FL-feature learning, STL-self-taught
learning.
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3.5 Results and Discussion

3.5.1 Parameters for unsupervised feature learning

There are several tunable parameters for unsupervised feature learning, such as the receptive

field size (rfsize), the step size (stride) and the number of centroids (K). Below, we present the

results of experiments that investigated how these parameters affect the performance and how

to choose these parameters.

3.5.1.1 Number of centroids

We extracted feature representations with 10, 15, 20, 30, 45 and 60 centroids and fixed the

receptive field size (6 pixels) and stride (1 pixel). Figure 3.6 clearly shows that the test accuracy

generally goes up as the number of the centroids (K) increases. This is reasonable because

a larger dictionary of feature bases is usually better able to capture structures and patterns

inherent in the images. This is consistent with the work of [1] and [20], who also observed that

learning large numbers of features can substantially improve supervised classification results.

As such, it is best to set K as large as computing resources will allow.
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Figure 3.6: Performance vs. number of centroids, rfsize = 6, stride = 1.
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3.5.1.2 Stride

Stride is the space between sub-patches where features will be extracted (See Figure 3.3). In

this experiment, we fixed the number of centroids (60) and receptive field size (6 pixels), and

then chose the stride over 1, 2, 4 and 8 pixels (Figure 3.7). There is a clear downward trend

in performance with increasing step size as expected. The smaller stride is able to cover more

details in the images, so it will provide a better representation of the images. However, a small

stride is also computationally more expensive. Thus, as with our recommendations for the

number of centroids, it is best to set stride as small as compute resources will allow.
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Figure 3.7: Performance vs. stride, K = 60, rfsize = 6.

3.5.1.3 Receptive field size

Receptive field size represents the size of an area in an image from which the features are

extracted. In general, a larger receptive field size should result in the learning of more complex

features that cover a larger region of the images. However, this will increase the dimensionality

of the feature space (see section 3.1.2) and may require the learning of more feature bases or

require more images in order to get the same performance. We evaluated the effect of receptive

field size by testing it on 6, 8, 10 and 12 pixels. For the other parameters, we used stride of

1 pixel and 60 centroids. Figure 3.8 shows that all the numbers performed similarly and the 6

pixels outperformed others slightly. It is unclear as to whether there is, or could be, a general

rule for choosing the receptive field size. However, given that the small receptive field size

produces a low dimensionality of the feature space, which in turn reduces computation and
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also that our experiment showed the small size can work reasonably well, it is suggested to use

a small receptive field size if the computing resources allow a large K and a small stride.
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Figure 3.8: Performance vs. receptive field size, K = 60, stride = 1.

3.5.2 Performance comparison

We used one group of parameters (Table 3.2) for unsupervised feature learning, and compared

the classification result based on it with the results based on using manual features. Among

the parameters, numPatches is the number of extracted sub-patches for learning features. The

value of it depends on the size of dataset and the size of individual image sample.

Table 3.3 shows the testing accuracy for all the methods. Note that accuracy varies considerably

for different combinations of manual features. MF I has accuracy as high as 96.24%, while

MF III only achieves 66.20%. It is apparent that, for our dataset, pure first order statistics

(MF II) outperforms second order statistics (MF III) considerably in representing rock images

- 95.77% VS 66.20%. However, adding second order statistics to first order statistics can

further improve the performance (from 95.77% (MF II) to 96.24% (MF I). The goal, however,

was not to compare the manual feature combinations and see which one provides the best

result, but rather to show how much variability there is in the results depending on the features

used. As it turns out, even slight changes in feature combinations may cause large difference

in performance, such as MF IV (92.02%) and MF V (74.18%). So, it clearly indicates that

manually selecting appropriate features is difficult.

In this case, one may resort to automatic feature selection methods such as filter and wrapper
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methods [21]. With these feature selection methods, one may know what features contribute

much to representing images. However, there still exist limitations such as what feature se-

lection method to use and what features to choose from. In addition, there is no guarantee

that well-selected features for one image dataset A can be applied to another dataset B. For

example, the dataset we used here appears to yield good results with the first-order statistics,

but there may be other datasets that instead require the second-order statistics. Therefore, one

has to conduct different feature selections for different datasets and to make sure the pool con-

taining the features is large enough. If not, hand-crafting new and complicated features such

as SIFT [22] might be needed.

While selecting manual features is time-consuming, unsupervised feature learning is more

straightforward . The feature learning based on K-means we implemented in this chapter can

autonomously learn feature representation from training data, and get a relatively higher test-

ing accuracy as high as 96.71%. Although we cannot guarantee this feature learning method

would outperform any manual feature setting other than first and second order statistics, this

flexible and easily implemented method is capable of working well.

Table 3.3: Performance of different methods. MF-manual features, FL-feature learning, STL-
self-taught learning.

Features Test accuracy
MF I 96.24%
MF II 95.77%
MF III 66.20%
MF IV 92.02%
MF V 74.18%
FL 96.71%
STL 90.32%

Self-taught learning gets test accuracy as high as 90.32%. Features are learned from “unla-

belled” data (first half of the whole dataset) with the same feature learning method and pa-

rameter configuration as in Table 3.2. The reason why the accuracy for this approach is not

as good as FL is that we are using fewer data to both learn feature representation and train

the classifier. This is not unexpected, because the more data available for learning features

will result in a more generalized representation and more data for training will also result in a

better classifier. Another reason is we are applying the feature representation learned from one
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subset (“unlabelled”) to another subset (“labelled”), rather than to the same subset as in FL,

where learning feature and training classifier share the same subset (70% of the whole dataset).

So, just as classifier typically performs better with the training data than testing data, feature

representation performs better on the same training subset in FL.

3.6 Conclusion

In the first part of the work, we conducted rock image classification with various combina-

tions of manual features as well as unsupervised feature learning. The results of these experi-

ments show that different combinations of manual features affected classification substantially;

whereas unsupervised feature learning based on K-means performed pretty well. While there is

no guarantee that this feature learning method can absolutely outperform any manual features

configuration, it is easily implemented and more flexible than the manual features.

We also explored the use of self-taught learning based on unsupervised feature learning for

classification of rock images. The approach proved promising. It can learn the feature repre-

sentation directly from unlabelled images of mixed rock types, and then repeatedly apply the

feature representation to different sub-classes of rocks. We suggest that the fundamental reason

as to why this approach works is that rock images share some basic visual patterns or elements.

As such, as long as these basic patterns can be learned from the whole mixed dataset, they can

be well utilized for representing the new groups of images belonging to the sub-class.
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Chapter 4

Learning Spatial-spectral Features for

Hyperspectral Image Classification

Published as Shu, L., McIsaac, K., & Osinski, G. R. in IEEE Transactions on Geoscience

and Remote Sensing, 2018. c©2018 IEEE.

4.1 Introduction

As we describe in section 2.2, combining spatial contextual information with spectral infor-

mation can dramatically improve the performance of hyperspectral image classification. There

have been a lot of conventional methods to do so, such as morphological profile (MP) based

methods [1, 2, 3], composite kernel (CK) based methods [4, 5, 6] and Markov random field

(MRF) based methods [7, 8, 9]. However, these methods have their own limits. MP-based

methods are heavily hand-crafted and are therefore less flexible for different datasets. CK-

based methods are a strong competitor, but the spatial features extracted by CKs are usually so

simple that they do not accurately represent complex spatial structures. MRF–based methods

have shown great performance, but the performance heavily depends on the initial pixel-wise

classification which still require manual feature selection.
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In this chapter, we propose a simple but innovative framework to automatically generate spatial-

spectral features. Our approach is more flexible than MP-based feature methods, and can

cover more complicated spatial structures than CK-based methods. Compared with the two

steps on MRF-based methods - pixel-wise classification and smoothing classification, our

approach’s direct classification with spatial-spectral features is more straightforward and the

spatial-spectral features are also more advanced than the features used by MRF’s initial pixel-

wise classification.

The rest of chapter is organized as follows. Section 4.2 presents the proposed framework for

generating the spatial-spectral features. Two different feature sets are proposed. The first is

based on principle component analysis (PCA) and the second is based on K-means clustering.

Section 4.3 presents results from classification experiments and discusses trade-offs between

the different approaches. We present some concluding remarks in Section 4.4.

4.2 Method

A typical process for spectral imagery classification includes extracting feature representation

for the pixels in the spectral imagery and feeding the feature representation into a classifier. In

general, the performance of a classifier is heavily dependent on the selection of the feature rep-

resentation. We first design a flexible and powerful technique for extracting a spatial-spectral

feature representation. In this step, we have investigated two unsupervised learning methods:

K-means and PCA. Once we have learned a set of representative features, we use the radial

basis function kernel support vector machine to conduct the classification.

4.2.1 Spatial-spectral feature representation

Figure 4.1 illustrates the framework for generating the proposed spatial-spectral features. In-

stead of representing each pixel only by its own spectral intensity, we crop a W ×W ×B cuboid

of which the host pixel lies in the middle to extract the feature representation. The patch size -

W - in each band is odd (e.g., 3 or 5). Larger values of W allow capture of more spatial details.
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Figure 4.1: Framework for generating spatial-spectral features. B is the number of spectral
bands, W is the patch size and N is the number of spectral cuboids cropped from the spectral
image. In each cuboid, the host pixel lies in the middle of the W by W neighboring patch.

B is the number of spectral bands. For pixels on the border of the spectral image, we pad the

image with a mirror reflection of itself. With N cropped spectral cuboids, we can use K-means

or PCA as the feature extractor to compress and extract representative spatial features in each

band (The original spectral image will be decorrelated along spectral bands but the dimension-

ality is not necessarily reduced. We discuss the preprocessing of the original spectral image in

Section 4.3). Each band will have its own spatial feature elements (shown as coloured squares

in Figure 4.1). Thus, the whole output for each band in spectral imagery is a feature map,

of which the number of channels equals to the number of Spatial-centroids/Spatial-PCs. By

concatenating the feature elements in all/principal spectral bands, we get the spatial-spectral

feature for each pixel. Assuming that the number of spectral bands is B and the number of

Spatial-centroids/Spatial-PCs is K, then the final spatial-spectral feature for each pixel will be

a vector with B ∗ K dimensions.

Note that the idea of concatenating spatial feature elements (extracted by K-means/PCA) to

generate the spatial-spectral features is actually inspired by the MP-based methods, which

concatenate the multilevel attribute profiles from each spectral band. What is primarily differ-

ent in our work is the method used to extract the spatial features. Our proposed method can

automatically learn the features while the MP-based methods resort to manual morphological

operations and require trial and error for setting the parameters.
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4.2.1.1 Parallel computing

In the proposed framework, the spatial-spectral features are learned independently in each

spectral band. Therefore, parallel computing [10, 11] can be carried out to do the calcula-

tions simultaneously, with the potential of dramatic reductions in computing time. There have

been some works on applying graphics processing unit (GPU) to process hyperspectral images

[12, 13]. In our experiments, we have limited our investigation of parallel computing to mul-

ticore desktop with MATLAB parallel computing toolbox. The toolbox executes calculation

on workers (MATLAB computational engines) which are associated with cores in a multicore

machine. Porting the process to a massively parallel computing unit like a GPU is likely to

lead to a further improvement in processing speed, but we have left this as future work.

4.2.1.2 Feature Extraction Approach #1: Spatial-Kmeans

K-means is a widely used unsupervised feature learning method [14, 15, 16]. In each spectral

band, the patch can be represented as a vector x j in RS , with S = W ·W. We run the K-means

algorithm to generate K centroids from N patches. Each centroid Ci is also a vector in RS .

All these centroids are the spatial feature extractors in each band. The feature representation

for each patch is then extracted by evaluating the Euclidean distance from the patch to these

centroids. Concretely, each patch x j can be mapped to a RK vector f (x j), and each element of

f (x j) can be represented as

fi(x j) = max{0, µ j − zi j}, 1 < i ≤ K (4.1)

here, zi j = ||x j − Ci||2, µ j is the mean of zi j over i. The definitions of mathematical symbols in

Formula (4.1) are summarized as follows: x j stands for jth patch and x j ∈ R
S ; f (x j) ∈ RK, it is

the feature representation of patch x j; fi(x j) is the ith element in f (x j) and 1 < i ≤ K; Ci is the

ith centroid vector learned by K-means; zi j is the Euclidean distance from patch x j to centroid

Ci; µ j is the average distance from patch x j to all the centroids.

For the case of K = 1, where the mean vector is right the centroid vector, we use the reciprocal
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of the distance from each patch to the centroid as the feature element:

fi(x j) =
1

zi j + ε
, i = 1 (4.2)

where ε is a small number (we use 10−6) which is to avoid the risk of distance being zero.

In Figure 4.1, the coloured squares denote the feature elements. By concatenating the feature

elements in all the bands we construct a final spatial-spectral feature representation.

Including preprocessing, the full routine of K-means feature extractor (Spatial-Kmeans) is

summarized here:

a. Normalize spatial patches in each spectral band among the training dataset: X := X−mean(X)
√

var(X)
.

X is N × S matrix, where N is the number of samples (or patches) and S = W ·W.

b. Run K-means to generate K centroids from N patches.

c. Project patches from a RS vector x j to a RK vector f (x j). Each element of f (x j) can be

represented as:

fi(x j)
1≤i≤K

=


1

zi j + ε
, K = 1

max{0, µ j − zi j}, K > 1

Since K-means may be subject to finding a local optimum based on different initialization of

the clustering centroids, we repeat the clustering for 10 times with randomly initialized cluster

centroid positions. The solution adopted is the one with the lowest within-cluster sums of

point-to-centroid distance.

4.2.1.3 Feature Extraction Approach #2: Spatial-PCA

Inspired by the concept of EigenFaces [17], we utilize PCA [18, 19] to generate Spatial-PCs

(we call them EigenPatches) as the feature bases for each band. Just as faces can be represented

as a linear combination of the EigenFaces, the spatial patches in each band can be represented

as a linear combination of the EigenPatches.
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As with our K-means feature extractor, the patches in each spectral band can be represented as

a vector xi in RS , with S = W ·W. We conduct PCA to extract the top P principal components

(Spatial-PCs) in each band, with which each patch xi can be projected from RS to RP. The

coloured squares in Figure 4.1 denote the PCA feature elements.

Including preprocessing, the full routine of PCA feature extractor (Spatial-PCA) is summarized

here:

a. Normalize spatial patches in each spectral band among the training dataset: X := X−mean(X)
√

var(X)
.

X is N × S matrix, where N is the number of training data (or patches) and S = W ·W.

b. Compute the covariance matrix: Σ = 1
N XT X.

c. Calculate eigenvectors using singular value decomposition: [U, S ,V] = svd(Σ). Columns

of U are eigenvectors.

d. Select the top P columns (eigenvectors) in U as the Spatial-PCs and use them to project

each patch xi to the lower space RP :

xi := U(:, 1 : P)T ∗ xi (4.3)

4.2.2 Classifier

Support vector machine (SVM) is a well-known classifier which learns a hyperplane or set of

hyperplanes in high-dimensional space to separate the data points with the largest margin [20].

SVM has been particularly preferred in the field of hyperspectral analysis due to its capability

to generalize from a limited amount of training samples [21]. The SVM with Gaussian radial

basis function (RBF) kernel is utilized to conduct the classification with LIBSVM tool [22] in

our experiments. The regularization parameters are determined by 5-fold cross-validation. In

5-fold cross-validation, we first divide the training set into 5 subsets of equal size. Sequentially

each subset is tested using the classifier trained on the remaining 4 subsets. Thus, the cross-

validation accuracy is the percentage of images which are correctly classified in all of the
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subsets. Various parameter values are tried and the one with the best cross-validation accuracy

is picked.

4.3 Experiments and results

4.3.1 Hyperspectral datasets

4.3.1.1 Indian pines

The hyperspectral data of Indian pines was acquired by Airborne Visible/Infrared Imaging

Spectrometer (AVIRIS) to support soils research in 1992 over Purdue University Agronomy

farm northwest of West Lafayette and the surrounding area in Indiana, USA [23]. The area is a

mixed agricultural/forest area, where some of the crops present, corn, soybeans, were in early

stages of growth.

Figure 4.2a shows a false-color composition of the AVIRIS Indian Pines scene. This dataset

consists of 145 × 145 pixels covering a 2 mile by 2 mile area at 20 m spatial resolution and

224 spectral bands covering the spectral range from 400 nm to 2.5 µm. Several spectral bands

were removed from the dataset due to noise and water absorption phenomena, leaving a total

of 200 bands to be used in the experiments. The ground-truth of the Indian Pines scene has

been designated into sixteen classes (see Figure 4.2b). Table 4.1 shows the specific classes and

the respective number of samples.

4.3.1.2 Pavia University

The hyperspectral data of Pavia University was acquired by Reflective Optics System Imaging

Spectrometer (ROSIS) during a flight campaign over Pavia, nothern Italy. Figure 4.3 illustrates

the true-color image of Pavia Univeristy. It contains 610 × 340 pixels and the geometric reso-

lution is 1.3 m. There are 103 spectral bands covering the spectral range from 430 to 860 nm.

The groud-truth map differenciates 9 classes as shown in Table 4.2.
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(a) (b)

Figure 4.2: Indian Pines dataset. (a) False-color composition of bands 50, 27 and 17. (b)
Ground-truth map. The specific classes denoted by different colors refer to Table 4.1.

Table 4.1: Classes for the Indian Pines scene and their respective number of samples.

# Class Num. of samples
1 Alfalfa 46
2 Corn-notill 1428
3 Corn-mintill 830
4 Corn 237
5 Grass-pasture 483
6 Grass-trees 730
7 Grass-pasture-mowed 28
8 Hay-windrowed 478
9 Oats 20
10 Soybean-notill 972
11 Soybean-mintill 2455
12 Soybean-clean 593
13 Wheat 205
14 Woods 1265
15 Buildings-Grass-Trees-Drives 386
16 Stone-Steel-Towers 93

Total 10249

From both Table 4.1 and Table 4.2 we see that two datasets have unbalanced numbers of la-

belled samples per class. Therefore, the classification is challenging. To investigate the per-

formance of the proposed methods, we randomly select 5% of the labelled samples per class

for training (minimum 10 samples for the classes with extremely limited numbers of samples).

The rest of the labelled samples are used for testing. The classification performance is mea-

sured by the overall accuracy (OA), average accuracy (AA) and Kappa coefficient (κ). Cohen’s
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(a) (b)

Figure 4.3: Pavia University scene. (a) True-color composition of bands 53, 31 and 8. (b)
Ground-truth map. The specific classes denoted by different colors refer to Table 4.2.

Table 4.2: Classes for the Pavia University scene and their respective number of samples.

# Class Num. of samples
1 Asphalt 6631
2 Meadows 18649
3 Gravel 2099
4 Trees 3064
5 Painted metal sheets 1345
6 Bare Soil 5029
7 Bitumen 1330
8 Self-Blocking Bricks 3682
9 Shadows 947

Total 42776

Kappa [24] is a metric that measures how much better the classifier is performing over the

performance of a classifier that simply guesses at random according to the frequency of each

class. It is considered a good metric for imbalanced and multi-class classification problems. A

higher Kappa score indicates better performance. Since the performance varies with different

selection of limited training samples, the mean and standard deviation of OA, AA and κ over

10 Monte Carlo runs are recorded for evaluating the performance.
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4.3.2 Analysis and discussion

In the rest of this section, we first show our approach to preprocessing the spectral image to

enhance the performance. We then show that a parallel computing scheme can dramatically

accelerate the calculation of the proposed spatial-spectral features. Next we illustrate two sets

of feature bases that have been automatically learned by our two proposed methods as long as

the parameters are well set. After that, two tunable parameters (i.e., patch size and number of

Spatial-centroids/Spatial-PCs) are analyzed with experiments on different parameter settings.

Last but not least, we carry out a performance comparison between our methods and seven

other methods taken from prior work.

4.3.2.1 Preprocessing the spectral image

More often than not, the spectral bands of hyperspectral image are highly correlated. Though

there have been some works on band selection [25, 26], using a dimensionality reduction

method (e.g., PCA) to compress the spectral bands is more common [27, 28, 29]. With PCA,

the spectral dimensionality can be dramatically reduced with tiny errors by selecting the top

principal components. This can decrease computation and resolve the problem of ‘curse of

dimensionality’. However, since reducing dimensionality will inevitably cast away a small

amount of useful spectral information, as our experiments will show, it is not necessary to

do so if computing resources allow. Our proposed methods use Gaussian kernel SVM as the

classifier, which projects the features into an infinite high-dimensional space. It is powerful to

generalize the features as long as the model parameters are carefully tuned [21]. As a matter

of fact, our experiments show that performance improves with the inclusion of more principal

components.

Table 4.3 and Figure 4.4 show the performance of different ways of preprocessing the original

spectral image of Indian Pines. Raw means the original spectral data with 200 bands is intact;

the other settings correspond to retaining different numbers of spectral principal components

(Spectral-PCs) after decorrelating with Spectral-PCA. The spatial-spectral feature extraction

method used here is Spatial-PCA. The number of Spatial-PCs is set to 5 and the patch size is
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set to 15. We can see that as the number of the retained Spectral-PCs increases, the perfor-

mance is generally improved (the mean of OA, AA and κ goes up and the standard deviation

goes down). From 10 to 40 spectral-PCs, the performance dramatically bumps up. After that,

the performance slightly ramps up since the rest of the spectral components preserve a tiny

portion of variance. We note, however, that although the mean of the three measurements are

almost saturating near the end, the standard deviation continues to trend downwards. What

can be taken away from this phenomenon is that even small amounts of variance in the last

tens of spectral principal components can contribute to the classification and make the feature

representations more robust. Of course, retaining more Spectral-PCs will lead to more expen-

sive computation. Therefore, one can make a compromise between the higher performance and

faster computation in a specific situation. If computing resources will allow, it is better not to

reduce the spectral dimensionality since compressing the data will always inevitably cast away

useful information.

Another thing to note is that using PCA to decorrelate the spectral bands as preprocessing

before calculating features is better than directly calculating features with the raw spectral

bands (see the comparison between Raw and 200 Spectral-PCs in Table 4.3). We believe this

is because that decorrelating spectral bands can highlight the spatial-spectral features which

are useful to distinguish the classes.

(We make a brief aside here. This preprocessing step uses principle component analysis (PCA),

but it should not be confused with the use of PCA to extract a feature representation as dis-

cussed above. In an attempt to avoid confusion of terms, in what follows, we will use the term

Spectral-PCA to refer to the preprocessing of spectral bands and Spatial-PCA to refer to the

feature extraction step.)

4.3.2.2 Parallel computing

Since the proposed features can be learned independently in each spectral band, computing

can simply be done in parallel. We run MATLAB 2015b on a desktop with Intel Core i7-

3930K 3.20GHz CPU and 32 GB memory. The MATLAB parallel computing toolbox creates



Chapter 4 70

Table 4.3: Performance of different ways of preprocessing the original spectral image of Indian
Pines.

10 Spectral-PCs 40 Spectral-PCs 90 Spectral-PCs 120 Spectral-PCs
OA 91.26 ± 1.59 94.22 ± 1.24 95.15 ± 0.87 95.54 ± 0.82
AA 91.14 ± 1.79 93.34 ± 1.62 94.16 ± 1.33 94.51 ± 1.35

κ × 100 89.98 ± 1.83 93.39 ± 1.43 94.45 ± 1.00 94.89 ± 0.94
150 Spectral-PCs 180 Spectral-PCs 200 Spectral-PCs Raw

OA 95.65 ± 0.76 95.55 ± 0.70 95.65 ± 0.66 88.15 ± 1.15
AA 94.63 ± 1.28 94.58 ± 1.27 94.69 ± 1.16 87.41 ± 2.15

κ × 100 95.02 ± 0.88 94.91 ± 0.81 95.02 ± 0.76 86.40 ± 1.34
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Figure 4.4: (a) Mean and (b) standard deviation of three measurements - OA, AA and κ - over
10 random runs with different number of Spectral-PCs retained for Indian pines dataset.

a parallel pool with 6 computational engines in the multicore machine. The running time of

both serial computing and parallel computing has been recorded in Table 4.4. In this experi-

ment, 150 Spectral-PCs are retained in preprocessing, patch size for both Spatial-Kmeans and

Spatial-PCA is 15 and the number of Spatial-centroids/Spatial-PCs is 2. Clearly, the parallel

computing can dramatically speed up the computation of the spatial-spectral features. Since

calculating Spatial-PCA features is not an iterative process, Spatial-PCA is much faster than

Spatial-Kmeans.

Table 4.4: Time cost of serial/parallel computing for Spatial-Kmeans and Spatial-PCA for
Indian pines.

Serial Parallel
Spatial-Kmeans 665 s 352 s

Spatial-PCA 32 s 18 s
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4.3.2.3 Feature bases

With patch size fixed to 15 pixels, we show the feature bases of 5 bands of Indian pines (i.e.,

#10, #20, #30, #50 and #100) for both Spatial-Kmeans and Spatial-PCA feature methods in

Figure 4.5. These feature bases are automatically learned as long as the parameters are well

set, providing more flexibility than the conventional feature methods. It is fascinating that

the feature bases appear similar between different bands. For example, the first Spatial-PCs

(the first column in Figure 4.5b) in all 5 bands are all blob shaped. Also worth noting is that

Spatial-Kmeans features are similar to Spatial-PCA features to some extent.

(a) (b)

Figure 4.5: Feature bases learned from Indian Pines dataset by both Spatial-Kmeans and
Spatial-PCA feature methods. The patch size is set to 15 pixels. From top to bottom, each
row corresponds to one spectral band and 5 rows correspond to the top 5 Spectral-PCs. (a)
K-means features bases - Spatial-centroids. Each row lists 5 centroids for one certain band. (b)
PCA feature bases - Spatial-PCs. Each row lists top 5 Spatial-PCs for one certain band.

4.3.2.4 Parameter sensitivity analysis

There are two tunable parameters for Spatial-Kmeans and Spatial-PCA, i.e., patch size and

number of Spatial-centroids/PCs. We first evaluate the effect of patch size by fixing the number

of Spatial-centroids/PCs to 5 and varying patches from 3 × 3 to 15 × 15. Figure 4.6 and Table

4.5 show the results. Evidently, the performance improves as the patch size increases. This is

what we would expect because larger patches are better able to capture more complex features

that cover a larger region of the images.
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Figure 4.6: Performance with different patch size for Indian pines. Spatial-centroids/Spatial-
PCs is set to 5 and top 150 Spectral-PCs are retained. The measurements refer to Table 4.5.

Table 4.5: Performance with different patch size for Indian pines. Spatial-centroids/PCs is set
to 5 and top 150 Spectral-PCs are retained.

Patch size 3 5 7 9 11 13 15

Spatial-
Kmeans

OA 83.15 ± 0.93 91.62 ± 0.80 95.26 ± 0.51 96.04 ± 0.56 96.42 ± 0.47 96.33 ± 0.68 96.53 ± 0.54
AA 84.96 ± 1.78 91.86 ± 0.92 94.64 ± 0.51 95.03 ± 0.98 95.44 ± 1.09 95.27 ± 1.35 95.81 ± 0.92

κ × 100 80.66 ± 1.08 90.42 ± 0.91 94.58 ± 0.58 95.47 ± 0.64 95.9 ± 0.54 95.81 ± 0.77 96.04 ± 0.62

Spatial-
PCA

OA 71.63 ± 1.00 83.36 ± 0.62 89.74 ± 0.67 92.84 ± 0.84 94.24 ± 0.78 95.06 ± 0.77 95.65 ± 0.76
AA 73.52 ± 1.69 84.72 ± 1.14 89.76 ± 1.22 91.76 ± 1.40 93.10 ± 1.39 93.95 ± 1.40 94.63 ± 1.28

κ × 100 67.22 ± 1.22 80.91 ± 0.72 88.25 ± 0.76 91.8 0± 0.97 93.41 ± 0.90 94.35 ± 0.88 95.02 ± 0.88

We then conduct experiments by fixing the patch size to 15 and varying the number of Spatial-

centroids/PCs from 1 to 7. In Figure 4.7, we see the performance of Spatial-PCA goes all

the way down as the number of Spatial-PCs increases and the performance of Spatial-Kmeans

also slowly ramps down after a sudden bumping up from 1 to 2. This phenomena is abnormal

since intuitively more feature bases should be better able to capture structures and patterns

inherent in the image which would lead to a better performance. Given that we are retaining top

150 Spectral-PCs during preprocessing and using Gaussian RBF kernel SVM as the classifier,

we wonder whether this downgrade trend is due to overfitting. Thus, we conduct another

experiment with more training samples (20%) and a simpler classifier (Linear-SVM) and fewer

Spectral-PCs (top 10). As it turns out, the performance does goes up as the number of Spatial-

centroids/PCs increases in such a situation (see Figure 4.8 and Table 4.6), which proves that

overfitting really is the reason of performance’s downgrade in previous experimental setting.

Therefore, if the training samples are sufficient enough, it is better to learn more spatial feature
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bases. If not, it is better to learn a small number of spatial feature bases for the benefit of

computing efficiency and avoiding overfitting.
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Figure 4.7: Performance with different number of Spatial-centroids/Spatial-PCs for Indian
pines. Patch size is set to 15 and top 150 Spectral-PCs are retained.

1 2 3 4 5 6 7

Number of Spatial-centroids/Spatial-PCs

75

80

85

90

95

100

M
e

a
n

 (
%

)

OA,Spatial-Kmeans

AA,Spatial-Kmeans

κ×100,Spatial-Kmeans

OA,Spatial-PCA

AA,Spatial-PCA

κ×100,Spatial-PCA

Figure 4.8: Performance with different number of Spatial-centroids/Spatial-PCs for Indian
pines. Patch size is set to 15 and top 10 Spectral-PCs are retained. 20% samples are randomly
selected for training with linear-SVM. Measurements refer to Table 4.6.

Table 4.6: Performance with different number of Spatial-centroids/Spatial-PCs for Indian
pines. Patch size is set to 15 and top 10 Spectral-PCs are retained. 20% samples are randomly
selected for training with linear-SVM.

# of Spatial-centroids/PCs 1 2 3 4 5 6 7

Spatial-
Kmeans

OA 79.70 ± 0.82 93.63 ± 0.59 94.00 ± 0.48 96.22 ± 0.26 97.54 ± 0.45 97.61 ± 0.29 97.98 ± 0.29
AA 77.10 ± 1.45 93.77 ± 1.69 94.86 ± 1.06 96.07 ± 1.19 97.07 ± 0.96 97.29 ± 0.52 97.55 ± 0.64

κ × 100 76.59 ± 0.96 92.73 ± 0.67 93.15 ± 0.55 95.68 ± 0.29 97.19 ± 0.51 97.27 ± 0.34 97.70 ± 0.33

Spatial-
PCA

OA 87.37 ± 0.70 93.30 ± 0.66 95.06 ± 0.42 96.02 ± 0.31 96.69 ± 0.30 96.91 ± 0.46 96.86 ± 0.45
AA 89.68 ± 0.98 94.41 ± 0.62 95.93 ± 0.75 96.71 ± 0.55 96.73 ± 0.84 96.71 ± 0.71 96.55 ± 0.90

κ × 100 85.58 ± 0.80 92.35 ± 0.76 94.36 ± 0.48 95.45 ± 0.36 96.22 ± 0.34 96.47 ± 0.53 96.42 ± 0.51
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4.3.2.5 Performance comparison

We compared our two proposed methods with 7 other methods. They are Spectral (use only

spectral bands as the features), LADA [30], LBP [8], EMAP [3, 2], GCK [5], 3DDWT [31]

and SMLR-SpATV [32]. As with previous experiments, 5% training samples are randomly

selected for 10 Monto Carlo runs. The number of Spatial-centroids is set to 2 for Spatial-

Kmeans and the number of Spatial-PCs is set to 1 for Spatial-PCA. Patch size is set to 15.

For the other methods, all the corresponding parameter setting is the same as stated in the

references. Preprocessing spectral bands with PCA decorrelation is applied for all the methods.

Table 4.7 illustrates the performance with different methods for Indian pines. We see that

Spectral performs badly since it misses the spatial information. By modeling pixels in neigh-

bor regions, LADA performs slightly better than Spectral. Due to the more advanced ways of

combining spatial and spectral information, the other methods perform dramatically better than

the previous two. Although the overall accuracy of 3DDWT is high, the average accuracy is

relatively low and the accuracy for class #4 and #7 is quite variant over 10 Monto Carlo runs.

This indicates that 3DDWT is not robust. The proposed Spatial-Kmeans and Spatial-PCA can

outperform all the other methods, nearly about 2%∼6% improvement. Figure 4.9 shows the

classified maps of all the methods. Both Spatial-Kmeans and Spatial-PCA have fewest misclas-

sified pixels. Spatial-Kmeans is slightly better than Spatial-PCA in terms of the classification

accuracy, but it is much more computationally expensive than Spatial-PCA. Hence, one can

make selection among two of them by compromising between the higher performance and

faster computation in a specific situation.

Table 4.8 illustrates the performance with different methods for Pavia University dataset. Since

there are more training samples in Pavia University and the data is cleaner than Indian pines,

the classification accuracies of all the methods are all higher than 93%. Among all the meth-

ods, LBP, 3DDWT and two proposed methods perform very close to each other and the overall

accuracies are all above 98%. Though 3DDWT’s numbers indicate that 3DDWT performs the

best in Pavia University dataset, experiment on Indian pines has shown that its performance

is not stable when there are fewer training samples and data is less clean. It is interesting to

see that both Spatial-Kmeans and Spatial-PCA seem bad at identifying the 9th class - shadows
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Table 4.7: Performance comparison for Indian pines with different methods - Spectral, LADA
[30], LBP [8], EMAP [3, 2], GCK [5], 3DDWT [31] and SMLR-SpATV [32], Spatial-Kmeans
and Spatial-PCA. Top 150 Spectral-PCs are retained for both Spatial-Kmeans and Spatial-PCA.

Class
# of samples

Spectral LADA LBP EMAP GCK 3DDWT SMLR SpTV Spatial-Kmeans Spatial-PCA
train test

1 10 36 56.94 ± 27.22 75.69 ± 10.78 95.83 ± 1.96 95.56 ± 1.43 92.95 ± 4.21 95.83 ± 5.28 98.06 ± 2.29 97.22 ± 3.93 96.94 ± 3.06
2 72 1356 66.33 ± 3.18 72.38 ± 2.16 88.35 ± 3.23 88.04 ± 2.61 89.51 ± 1.69 92.21 ± 2.71 93.17 ± 2.60 97.26 ± 1.41 96.84 ± 1.47
3 42 788 50.56 ± 8.41 56.30 ± 3.79 78.83 ± 5.77 91.15 ± 2.99 91.62 ± 3.00 92.98 ± 2.85 91.27 ± 7.17 97.12 ± 1.89 96.65 ± 1.60
4 12 225 31.82 ± 9.77 42.22 ± 8.89 66.18 ± 23.58 70.44 ± 13.18 86.44 ± 6.67 76.62 ± 28.34 85.33 ± 9.63 91.82 ± 8.10 91.69 ± 7.42
5 25 458 81.44 ± 5.60 84.31 ± 5.75 88.49 ± 4.71 91.86 ± 3.49 92.99 ± 2.95 91.53 ± 4.19 91.29 ± 4.20 96.29 ± 2.60 97.23 ± 2.04
6 37 693 95.05 ± 1.20 96.01 ± 0.79 99.80 ± 0.25 98.74 ± 0.54 98.79 ± 1.03 97.53 ± 1.13 97.98 ± 0.86 96.75 ± 2.94 96.35 ± 3.12
7 10 18 86.11 ± 5.40 90.28 ± 3.93 98.89 ± 2.34 91.11 ± 5.97 96.88 ± 3.29 57.78 ± 49.84 100.00 ± 0.00 98.33 ± 3.75 98.89 ± 3.51
8 24 454 92.47 ± 5.19 93.28 ± 3.41 99.34 ± 1.02 99.74 ± 0.25 99.50 ± 0.25 99.52 ± 0.82 100.00 ± 0.00 97.95 ± 2.84 97.84 ± 2.62
9 10 10 100.00 ± 0.00 98.75 ± 3.54 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 98.00 ± 6.32 100.00 ± 0.00 100.00 ± 0.00 99.00 ± 3.16
10 49 923 59.12 ± 9.06 52.51 ± 8.67 86.57 ± 5.27 86.61 ± 2.29 89.30 ± 2.61 84.02 ± 7.11 90.52 ± 4.26 95.83 ± 1.51 95.75 ± 1.56
11 123 2332 83.74 ± 3.08 83.62 ± 2.41 93.61 ± 2.02 94.42 ± 1.65 96.63 ± 1.12 96.44 ± 2.21 98.20 ± 0.44 98.62 ± 0.83 98.48 ± 0.80
12 30 563 57.02 ± 8.03 68.36 ± 5.83 90.98 ± 4.12 84.72 ± 5.11 89.19 ± 3.14 88.15 ± 8.10 92.72 ± 2.58 94.37 ± 2.81 94.65 ± 3.12
13 11 194 91.08 ± 4.05 94.85 ± 1.97 99.54 ± 0.29 98.92 ± 0.66 99.45 ± 0.16 93.25 ± 7.09 99.02 ± 0.82 93.45 ± 3.73 92.89 ± 4.28
14 64 1201 95.78 ± 1.33 96.09 ± 2.09 97.29 ± 1.75 97.60 ± 1.44 98.01 ± 2.73 96.73 ± 2.60 99.81 ± 0.28 99.45 ± 0.53 99.53 ± 0.40
15 20 366 48.39 ± 6.65 59.12 ± 7.38 70.87 ± 6.65 87.73 ± 5.43 88.56 ± 4.02 91.37 ± 7.04 86.20 ± 6.57 94.43 ± 4.11 94.86 ± 4.08
16 10 83 86.39 ± 4.65 85.54 ± 5.54 89.88 ± 5.09 90.96 ± 6.33 84.71 ± 9.38 82.41 ± 8.14 96.27 ± 3.38 91.08 ± 5.54 89.76 ± 6.51

OA 74.87 ± 0.95 77.25 ± 1.04 90.39 ± 1.43 92.04 ± 0.80 93.81 ± 0.70 93.02 ± 0.89 95.08 ± 0.95 97.14 ± 0.41 97.02 ± 0.42
AA 73.89 ± 1.84 78.08 ± 1.37 90.28 ± 1.60 91.73 ± 1.41 93.41 ± 1.02 89.65 ± 4.45 94.99 ± 0.83 96.25 ± 0.72 96.09 ± 0.86

κ × 100 70.97 ± 1.12 73.70 ± 1.27 88.99 ± 1.65 90.91 ± 0.92 92.94 ± 0.80 92.01 ± 1.03 94.37 ± 1.10 96.73 ± 0.47 96.60 ± 0.49

Table 4.8: Performance comparison for Pavia University with different methods - Spectral,
LADA [30], LBP [8], EMAP [3, 2], GCK [5], 3DDWT [31] and SMLR-SpATV [32], Spatial-
Kmeans and Spatial-PCA. All the Spectral-PCs are retained for both Spatial-Kmeans and
Spatial-PCA.

Class
# of samples

Spectral LADA LBP EMAP GCK 3DDWT SMLR SpTV Spatial-Kmeans Spatial-PCA
train test

1 332 6299 93.03 ± 1.25 94.63 ± 0.44 98.96 ± 0.35 98.57 ± 0.55 98.64 ± 0.41 99.40 ± 0.45 97.91 ± 0.51 97.71 ± 0.62 97.47 ± 0.69
2 933 17716 97.59 ± 0.31 97.64 ± 0.34 99.88 ± 0.09 98.99 ± 0.24 99.27 ± 0.10 99.79 ± 0.13 100.00 ± 0.00 99.90 ± 0.08 99.93 ± 0.06
3 105 1994 76.16 ± 2.81 77.39 ± 2.48 84.73 ± 3.79 91.97 ± 1.77 92.01 ± 1.55 86.24 ± 1.62 91.44 ± 3.49 96.49 ± 1.34 94.72 ± 1.58
4 154 2910 93.48 ± 1.00 94.54 ± 1.24 96.22 ± 1.21 96.98 ± 1.05 96.50 ± 0.85 97.62 ± 0.81 85.10 ± 2.38 92.56 ± 1.40 94.55 ± 1.33
5 68 1277 99.03 ± 0.32 99.25 ± 0.35 99.22 ± 0.40 99.70 ± 0.15 99.27 ± 0.09 99.26 ± 0.51 99.74 ± 0.27 98.78 ± 0.94 99.63 ± 0.29
6 252 4777 88.08 ± 0.89 89.13 ± 0.99 99.25 ± 0.76 94.07 ± 1.62 97.48 ± 0.78 99.37 ± 0.65 100.00 ± 0.00 100.00 ± 0.00 99.99 ± 0.03
7 67 1263 81.49 ± 3.30 82.17 ± 1.37 92.57 ± 2.18 94.80 ± 1.70 94.96 ± 1.31 95.06 ± 1.89 97.36 ± 1.56 99.26 ± 0.45 99.05 ± 0.89
8 185 3497 89.80 ± 0.72 89.13 ± 1.53 96.74 ± 1.28 96.25 ± 1.44 95.89 ± 0.90 96.61 ± 1.44 98.08 ± 0.65 95.04 ± 1.29 94.35 ± 1.23
9 48 899 99.82 ± 0.12 99.77 ± 0.12 99.71 ± 0.36 99.86 ± 0.07 99.69 ± 0.08 99.47 ± 0.38 92.78 ± 3.33 87.95 ± 1.86 89.81 ± 2.30

OA 93.34 ± 0.27 93.84 ± 0.14 98.14 ± 0.27 97.54 ± 0.32 97.99 ± 0.21 98.42 ± 0.16 97.77 ± 0.27 98.14 ± 0.23 98.17 ± 0.27
AA 90.94 ± 0.46 91.52 ± 0.19 96.36 ± 0.47 96.80 ± 0.42 97.08 ± 0.33 96.98 ± 0.30 95.82 ± 0.69 96.41 ± 0.38 96.61 ± 0.55

κ × 100 91.15 ± 0.35 91.81 ± 0.18 97.53 ± 0.37 96.73 ± 0.43 97.40 ± 0.28 97.90 ± 0.21 97.04 ± 0.37 97.54 ± 0.30 97.58 ± 0.36

(testing accuracy is less than 90%), which drags down the average accuracy for both meth-

ods. We believe this is due to the surrounding areas of Shadows are less consistent than the

other classes and have more variant neighboring structures, which is exactly what the proposed

methods value more on than the other methods. However, it does not downgrade the overall

performance of the proposed methods since their Kappa metrics are still in a high level. Figure

4.10 depicts the classified maps with all the methods. The maps classified by two proposed

methods are among the maps with the fewest misclassified pixels.
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(a) Spectral (b) LADA (c) LBP

(d) EMAP (e) GCK (f) 3DDWT

(g) SPTV (h) S-Kmeans (i) S-PCA

Figure 4.9: Classified maps of Indian Pines with different methods. S-Kmeans is Spatial-
Kmeans and S-PCA is Spatial-PCA.

4.4 Conclusion

This chapter proposes a simple but innovative framework to automatically learn spatial-spectral

features for hyperspectral image classification. Two unsupervised learning methods - K-means

and PCA - are utilized to learn the spatial feature bases in each retained spectral band after

decorrelation. Then the spatial feature representations are extracted with these spatial feature



Chapter 4 77

bases. By concatenating the spatial feature representations in all/principal spectral bands, we

get the spatial-spectral features.

Decorrelating the spectral bands as the preprocessing step can dramatically enhance the per-

formance. Retaining more Spectral-PCs also results in better performance since even the small

amount of variance in the last tens of spectral principal components can contribute to the clas-

sification and make the feature representations more robust. However, this comes with the cost

of increased computation time. As the proposed features can be learned independently in each

spectral band, a simple parallel computing scheme is conducted and the computing time is sig-

nificantly reduced. An even more dramatic reduction in computation time should be possible

with the use of GPU processing. The proposed features are automatically learned. As a result,

the feature set is more flexible compared with the features used in other methods and can cover

more complicated spatial structures. Moreover, the proposed feature methods can outperform

the other state-of-the-art methods as shown in experiments.



Chapter 4 78

(a) Spectral (b) LADA (c) LBP

(d) EMAP (e) GCK (f) 3DDWT

(g) SPTV (h) S-Kmeans (i) S-PCA

Figure 4.10: Classified maps of Pavia University with different methods. S-Kmeans is Spatial-
Kmeans and S-PCA is Spatial-PCA.
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[8] Jun Li, José M Bioucas-Dias, and Antonio Plaza. Spectral–spatial classification of hyper-

spectral data using loopy belief propagation and active learning. IEEE Transactions on

Geoscience and Remote Sensing, 51(2):844–856, 2013.

[9] Gabriele Moser and Sebastiano B Serpico. Combining support vector machines and

markov random fields in an integrated framework for contextual image classification.

IEEE Transactions on Geoscience and Remote Sensing, 51(5):2734–2752, 2013.

[10] George S Almasi and Allan Gottlieb. Highly parallel computing. 1988.

[11] David B Kirk and W Hwu Wen-Mei. Programming massively parallel processors: a

hands-on approach. Morgan Kaufmann, 2016.

[12] Kun Tan, Junpeng Zhang, Qian Du, and Xuesong Wang. Gpu parallel implementation of

support vector machines for hyperspectral image classification. IEEE Journal of Selected

Topics in Applied Earth Observations and Remote Sensing, 8(10):4647–4656, 2015.

[13] Lucheng Wu, Xiaoming Xie, Wei Li, and Qian Du. Parallel collaborative representa-

tion for hyperspectral image classification on gpus. In Geoscience and Remote Sensing

Symposium (IGARSS), 2016 IEEE International, pages 2438–2441. IEEE, 2016.

[14] Adam Coates, Honglak Lee, and Andrew Y Ng. An analysis of single-layer networks in

unsupervised feature learning. Ann Arbor, 1001(48109):2, 2010.

[15] Adam Coates and Andrew Y Ng. Learning feature representations with k-means. In

Neural Networks: Tricks of the Trade, pages 561–580. Springer, 2012.

[16] Lei Shu, Kenneth McIsaac, Gordon R. Osinski, and Raymond Francis. Unsupervised

feature learning for autonomous rock image classification. Computers & Geosciences,

106:10–17, 2017.

[17] Matthew Turk and Alex Pentland. Eigenfaces for recognition. Journal of Cognitive

Neuroscience, 3(1):71–86, 1991.



BIBLIOGRAPHY 81

[18] Ian Jolliffe. Principal component analysis. Wiley Online Library, 2002.

[19] Jonathon Shlens. A tutorial on principal component analysis. arXiv preprint

arXiv:1404.1100, 2014.

[20] Christopher JC Burges. A tutorial on support vector machines for pattern recognition.

Data Mining and Knowledge Discovery, 2(2):121–167, 1998.

[21] Giorgos Mountrakis, Jungho Im, and Caesar Ogole. Support vector machines in remote

sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3):247–

259, 2011.

[22] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines.

ACM Transactions on Intelligent Systems and Technology (TIST), 2(3):27, 2011.

[23] M Baumgardner, L Biehl, and D Landgrebe. 220 band aviris hyperspectral image data

set: June 12, 1992 indian pine test site 3. Purdue University Research Repository, 2015.

[24] J Richard Landis and Gary G Koch. The measurement of observer agreement for cate-

gorical data. Biometrics, pages 159–174, 1977.

[25] Qi Wang, Jianzhe Lin, and Yuan Yuan. Salient band selection for hyperspectral image

classification via manifold ranking. IEEE Transactions on Neural Networks and Learning

Systems, 27(6):1279–1289, 2016.

[26] Yuan Yuan, Jianzhe Lin, and Qi Wang. Hyperspectral image classification via multitask

joint sparse representation and stepwise mrf optimization. IEEE Transactions on Cyber-

netics, 46(12):2966–2977, 2016.

[27] Jón Atli Benediktsson, Jón Aevar Palmason, and Johannes R Sveinsson. Classification

of hyperspectral data from urban areas based on extended morphological profiles. IEEE

Transactions on Geoscience and Remote Sensing, 43(3):480–491, 2005.

[28] Yushi Chen, Zhouhan Lin, Xing Zhao, Gang Wang, and Yanfeng Gu. Deep learning-

based classification of hyperspectral data. IEEE Journal of Selected Topics in Applied

Earth Observations and Remote Sensing, 7(6):2094–2107, 2014.



BIBLIOGRAPHY 82

[29] Wenzhi Zhao and Shihong Du. Spectral–spatial feature extraction for hyperspectral image

classification: A dimension reduction and deep learning approach. IEEE Transactions on

Geoscience and Remote Sensing, 54(8):4544–4554, 2016.

[30] Qi Wang, Zhaotie Meng, and Xuelong Li. Locality adaptive discriminant analysis for

spectral–spatial classification of hyperspectral images. IEEE Geoscience and Remote

Sensing Letters, 14(11):2077–2081, 2017.

[31] Xiangyong Cao, Lin Xu, Deyu Meng, Qian Zhao, and Zongben Xu. Integration of 3-

dimensional discrete wavelet transform and markov random field for hyperspectral image

classification. Neurocomputing, 226:90–100, 2017.

[32] Le Sun, Zebin Wu, Jianjun Liu, Liang Xiao, and Zhihui Wei. Supervised spectral–spatial

hyperspectral image classification with weighted markov random fields. IEEE Transac-

tions on Geoscience and Remote Sensing, 53(3):1490–1503, 2015.



Chapter 5

Hyperspectral Image Classification with

Stacking Spectral Patches and

Convolutional Neural Networks

Published as Shu, L., McIsaac, K., & Osinski, G. R. in IEEE Transactions on Geoscience

and Remote Sensing, 2018(99), 1-10. c©2018 IEEE.

5.1 Introduction

Previous methods for hyperspectral image classification typically consist of two separated parts

- modeling spatial-spectral feature representation and conducting classification. In this chapter,

we discuss how to use the neural network as an end-to-end method to classify hyperspectral

image. In the past few years, the techniques of neural networks (e.g., convolutional neural net-

works) have been dramatically developed [1, 2, 3]. Researchers have been focusing on utilizing

neural networks as the end-to-end methods to automatically model the feature representation

and conduct classification as well.

In the area of hyperspectral image classification, there have been some attempts of applying

83
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convolutional neural networks, such as [4, 5, 6]. However, those methods require compres-

sion of hyperspectral image with dimensionality reduction methods (e.g., PCA), which will

inevitably cast away a certain amount of useful spectral information. Although some methods

apply no dimensionality reduction, such as [7, 8], they either have ended up with a relatively

large amount of network parameters or have increased the convolutional computation.

In order to retain all the spectral information and simultaneously reduce the computational

complexity, this chapter proposes an innovative strategy to compress the data dimensionality.

In the proposed approach, we stack the spectral patches to form a 1-channel spectral quilt.

Subsequently, two shallow neural networks are proposed for classification.

The chapter is organized as follows. Section 5.2 presents the proposed framework for pre-

processing HSI as well as two neural networks. Section 5.3 presents the experimental results.

Section 5.4 presents some concluding remarks.

5.2 Method

Fig. 5.1 illustrates the proposed framework of hyperspectral image classification, including the

preprocessing strategy and two neural networks. In order for the neural network to classify the

hyperspectral image, the neighbor region within a certain patch size W of each pixel is extracted

as a training sample. Here, we call the training sample a spectral cuboid. The spectral cuboid is

first preprocessed by PCA whitening, then all the spectral patches are stacked to form a spectral

quilt. The spectral quilt is then input to two neural networks for classification. CNN-1 (Fig.

5.1.a) is inspired by VGG-16, a conventional convolutional neural network [3], while CNN-2

(Fig. 5.1.b) is inspired by ResNet which adds a shortcut path to the hidden layers [9]. The

details of the networks will be discussed in Section 5.2.2.
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(a)

(b)

Figure 5.1: Framework of hyperspectral image classification. (a) CNN-1, (b) CNN-2.

5.2.1 Preprocessing hypespectral data

5.2.1.1 PCA whitening

The raw hyperspectral data is largely redundant, since adjacent spectral bands are highly corre-

lated. One useful preprocessing strategy to reduce the correlation is by whitening (also called

“sphering”). Whitening rotates and rescales the data to reduce correlations among features and

ensures that features all have the same variance [10]. A simple choice of whitening transform

is the PCA whitening transform. The full routine of PCA whitening is summarized here:

a. Center and standardize the data: X := X−mean(X)
√

var(X)
. X is an N × B matrix, where N is the

number of spectral pixels and B is the number of spectral bands.

b. Compute the covariance matrix: Σ = 1
N XT X.

c. Calculate eigenvectors using singular value decomposition: [U, S ,V] = svd(Σ). Columns

of U are eigenvectors.

d. Rotate the data with eigenvectors: xi := UT ∗xi. This step reduces the correlation between

features.
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e. Rescale each feature by 1/
√
λi + ε to make it have unit variance, where λi an eigen-

value of the covariance matrix. A small constant ε is added in case the eigenvalues are

numerically close to 0.

Fig. 5.2 illustrates the process and effect of PCA whitening. We see that after rotating and

scaling, the data is less correlated and both features have the same variance.

(a) (b) (c)

Figure 5.2: Process and effect of PCA whitening. (a) unwhitened data, where the two features
are clearly correlated with each other. (b) rotate the data to reduce the correlation. (c) whitened
data, where features are less correlated and both have the same variance.

5.2.1.2 Stacking spectral patches

Hyperspectral images usually have hundreds of spectral bands and these spectral bands are re-

dundant. Conventional methods either conduct band selection [11, 12] or compress the spectral

bands with a dimensionality reduction method [13, 14] to reduce the spectral dimensionality.

However, such methods will inevitably cast away useful spectral information. In order to retain

all the spectral bands without increasing the computational cost, we stack together the spectral

patches of each spectral cuboid to form a spectral quilt with one single color channel. As long

as the spectral patches of all the spectral cuboids are stacked in the same order consistently, the

spectral quilt will not only retain the spatial and spectral features in each original band, but also

incorporate novel textural patterns between the adjacent spectral bands, which will be useful to

separate classes.

The spectral band patches are stacked in such a way that the number of vertical and horizontal

patches is identical. Hence, if the number of the original spectral bands is not the square of an
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integer, we augment the number to the closest perfect square by interpolating a set of spectral

bands at random spectral wavelengths. To the best of our knowledge, this is the first proposal

for stacking spectral patches to consistently rebuild the spectral features of hyperspectral im-

ages.

Fig. 5.3 shows the benefits of stacking spectral patches. Fig. 5.3.a lists three ways of con-

volutional operation in the first layer of CNN. They are 1) 2-D convolution with the number

of channels of convolution kernel matching the number of spectral bands, 2) 3-D convolution

with fewer channels of convolution kernel and 3) 2-D convolution on spectral quilts. Due to the

mechanism of the convolutional layer in CNN, there will be f 2B parameters for conventional

2-D convolution in one single filter in the first layer. The parameter sets are large because hy-

perspectral images typically have hundreds of spectral bands. 3-D convolution will have fewer

parameters as long as the size of the kernel is small, but it will have f times more multiplica-

tions and additions. With spectral quilts, the 2-D convolution has the fewest parameters (only

f 2) and the computational complexity remains the same. Table 5.1 shows the detailed numbers.

Above we have shown that 2-D convolution on spectral quilts results in fewer parameters in

the first convolutional layer. However, the total number of parameters of a CNN also depends

on the other layers especially the fully connected layers if there are. Concretely, if the spatial

size of the feature maps adjacently ahead of the fully connected layers were large, the network

would end up with a large number of parameters (most of them may come from the fully

connected layers). Given that the spectral quilt has bigger spatial size than the original spectral

cuboid, we can downsample the feature maps with multiple pooling layers to make the spatial

size small before the fully connected layers. For simplicity, suppose the number of spectral

bands B = 22n, each convolution kernel size is f , each convolutional layer only has one kernel

and is followed by a pooling layer with stride 2 × 2. The spatial size of spectral quilt will

be 2nw × 2nw. To get a feature map with the same spatial size (i.e., w × w) as the one got

from convoluting the original spectral cuboid, we need n pairs of alternating convolutional and

pooling layers. While the convolutional layer on the spectral cuboid has 22n f 2 parameters, the

group of convolutional layers on the spectral quilt only has n f 2 parameters. Here, we have just

proved that the spectral quilt can lead to an overall smaller sized neural network (in terms of

the overall number of parameters) but with richer architecture (more convolutional layers).
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Table 5.1: The number of parameters and computational complexity for three ways of convo-
lutional operation (with “same” padding) for one filter in the first layer of CNN illustrated in
Fig. 5.3.a. SQ is short for spectral quilts.

# of parameters computational complexity
conventional 2-D conv. f 2B w2 f 2B

3-D conv. f 3 w2 f 3B
2-D conv. with SQ f 2 w2 f 2B

Fig. 5.3.b indicates that new textural patterns (in red squares) can be created between the

adjacent spectral bands by stacking spectral patches. The spatial and spectral features for the

same class are similar to some extent, then as long as the spectral patches of all the spectral

cuboids are stacked in the same order, the new textural patterns will reappear in the spectral

quilts for the same class consistently. Such new textural patterns are effective at separating

classes.

(a) (b)

Figure 5.3: The benefits of stacking spectral patches. (a) three ways of convolutional operation
in the first layer of CNN, namely 1) 2-D convolution with the number of channels of convolu-
tion kernel matching the number of spectral bands, 2) 3-D convolution with fewer channels of
convolution kernel and 3) 2-D convolution on spectral quilts. Table 5.1 shows that the proposed
stacking spectral patches has fewer convolution parameters and is computationally efficient.
(b) new patterns (see the red squares) can be found in the spectral quilt and are effective at
separating classes.



Chapter 5 89

5.2.2 Convolutional neural networks

5.2.2.1 CNN-1

The network architecture of CNN-1 is similar to VGG-16 [3], but has much fewer layers. Table

5.2 illustrates the detailed configuration. It consists of four convolutional layers and two fully-

connected layers. The second and fourth convolutional layers are followed by max-pooling

layers which select the max values within the receptive fields to downsample the feature maps.

Two fully-connected layers, each with 1024 nodes, are followed by a softmax classifier. In

order to prevent overfitting during training, we apply Dropout [15] to some hidden layers,

especially the fully-connected layers. Dropout randomly shuts down the neurons with certain

probability during each training step. In this way, the network cannot rely on any one specific

feature and is forced to spread out the weights. This will tend to have the effect of shrinking

the weights and thus regularizes the network.

Table 5.2: Architecture of CNN-1.

Layer No. Name Configuration Stride
1 Conv. + Relu 3 × 3 × 32 (1,1)
2 Conv. + Relu 3 × 3 × 64 (1,1)
3 Max-pooling 2 × 2 (2,2)
4 Dropout 25% N/A
5 Conv. + Relu 3 × 3 × 128 (1,1)
6 Conv. + Relu 3 × 3 × 128 (1,1)
7 Max-pooling 2 × 2 (2,2)
8 Dropout 25% N/A
9 Fully-connected 1024 N/A
10 Dropout 50% N/A
11 Fully-connected 1024 N/A
12 Dropout 50% N/A
13 Softmax # of classes N/A

5.2.2.2 CNN-2

The detailed architecture of CNN-2 is illustrated in Table 5.3. It has the same residual block as

ResNet [9]. For the conventional CNN, such as CNN-1 described before, the speed of learning
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usually decreases very rapidly for the early layers as the network trains. This is the so-called

vanishing gradient problem. However, by adding a shortcut to the main path of the original

convolutional network, the residual block is better able to learn the identity function. Thus the

network with shortcut connections overall trains fast enough without the vanishing gradient

problem [9].

Table 5.3: Architecture of CNN-2. Note that *.out stands for the output of *th layer. Two bold
layers are the shortcuts in residual blocks.

Layer No. Name Configureation Stride
1 Conv. + Relu 3 × 3 × 64 (2,2)
2 Max-pooling 3 × 3 (2,2)
3 Conv. + Relu 1 × 1 × 64 (1,1)
4 Conv. + Relu 3 × 3 × 64 (1,1)
5 Conv. 1 × 1 × 256 (1,1)
6 2.out→ Conv. 1 × 1 × 256 (1,1)
7 Add(5.out, 6.out) + Relu N/A N/A
8 Conv. + Relu 1 × 1 × 64 (1,1)
9 Conv. + Relu 3 × 3 × 64 (3,3)
10 Conv. 1 × 1 × 256 (1,1)
11 Add(10.out, 7.out) + Relu N/A N/A
12 Average-pooling 3 × 3 N/A
13 Softmax # of classes N/A

5.3 Experiments and results

5.3.1 Hyperspectral datasets

The performance of our proposed methods was evaluated on two public datasets: Indian Pines

and Pavia University.

5.3.1.1 Indian pines

The hyperspectral data of Indian pines was acquired by Airborne Visible/Infrared Imaging

Spectrometer (AVIRIS) to support soils research in 1992 over Purdue University Agronomy



Chapter 5 91

farm northwest of West Lafayette and the surrounding area in Indiana, USA [16]. The area is a

mixed agricultural/forest area, where some of the crops present, corn, soybeans, were in early

stages of growth.

Fig. 5.4a shows a false-color composition of the AVIRIS Indian Pines scene. This dataset

consists of 145 × 145 pixels covering a 2 mile by 2 mile area at 20 m spatial resolution and

224 spectral bands covering the spectral range from 400 nm to 2.5 µm. Several spectral bands

were removed from the dataset due to noise and water absorption phenomena, leaving a total

of 200 bands to be used in the experiments. The ground-truth of the Indian Pines scene has

been designated into sixteen classes (see Fig. 5.4b). Table 5.4 shows the specific classes and

the respective number of samples.

(a) (b)

Figure 5.4: Indian Pines dataset. (a) False-color composition of bands 50, 27 and 17. (b)
Ground-truth map. The specific classes denoted by different colors refer to Table 5.4.

5.3.1.2 Pavia University

The hyperspectral data of Pavia University was acquired by Reflective Optics System Imaging

Spectrometer (ROSIS) during a flight campaign over Pavia, northern Italy. Figure 5.5 illus-

trates the true-color image of Pavia University. It contains 610 × 340 pixels and the geometric

resolution is 1.3 m. There are 103 spectral bands covering the spectral range from 430 to 860

nm. The ground-truth map differentiates 9 classes as shown in Table 5.5.

From both Table 5.4 and Table 5.5 we see that both datasets have unbalanced numbers of

labelled samples per class. To investigate the performance of the proposed methods, we ran-

domly select 10% of the labelled samples per class for training (minimum 10 samples for the

classes with extremely limited numbers of samples). Cross-validation is conducted with train-
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Table 5.4: Classes for the Indian Pines scene and their respective number of samples.

# Class Num. of samples
1 Alfalfa 46
2 Corn-notill 1428
3 Corn-mintill 830
4 Corn 237
5 Grass-pasture 483
6 Grass-trees 730
7 Grass-pasture-mowed 28
8 Hay-windrowed 478
9 Oats 20
10 Soybean-notill 972
11 Soybean-mintill 2455
12 Soybean-clean 593
13 Wheat 205
14 Woods 1265
15 Buildings-Grass-Trees-Drives 386
16 Stone-Steel-Towers 93

Total 10249

(a) (b)

Figure 5.5: Pavia University scene. (a) True-color composition of bands 53, 31 and 8. (b)
Ground-truth map. The specific classes denoted by different colors refer to Table 6.2.

ing data to tune the hyperparameters of the networks, such as learning rate, number of epochs

etc. The rest of the labelled samples are used for testing. The classification performance is

measured by the overall accuracy (OA), average accuracy (AA) and Kappa coefficient (κ). Co-

hen’s Kappa [17] is a metric that measures how much better the classifier is performing over the

performance of a classifier that simply guesses at random according to the frequency of each
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Table 5.5: Classes for the Pavia University scene and their respective number of samples.

# Class Num. of samples
1 Asphalt 6631
2 Meadows 18649
3 Gravel 2099
4 Trees 3064
5 Painted metal sheets 1345
6 Bare Soil 5029
7 Bitumen 1330
8 Self-Blocking Bricks 3682
9 Shadows 947

Total 42776

Table 5.6: Image size after stacking spectral patches over different patch size.

patch size 7 9 11 13 15
Indian Pines 105 × 105 135 × 135 165 × 165 195 × 195 225 × 225

Pavia University 77 × 77 99 × 99 121 × 121 143 × 143 165 × 165

class. It is considered a good metric for imbalanced and multi-class classification problems.

A higher Kappa score indicates better performance. Since the performance varies along with

variation of our selection of training samples, the mean and standard deviation of OA, AA and

κ over 10 Monte Carlo runs are recorded for evaluating the performance.

5.3.1.3 Stacking spectral patches

Indian Pines dataset has 200 spectral bands available after eliminating some bands due to noise

and water absorption phenomena. As discussed above, we augment the data set by interpolating

25 bands at randomly chosen positions. After interpolation, we have 225 bands in total. If

we set the spectral patch size to 7, for example, we will get the grayscale images with size

of (15 ∗ 7) × (15 ∗ 7) after SSP. Similarly, we interpolate 18 spectral bands into the Pavia

University dataset to bring its 103 bands to 121. If the spectral patch size is 7, the image size

will be (11 ∗ 7) × (11 ∗ 7). Table 5.6 illustrates the image size after SSP over different options

of patch size for both datasets. After stacking spectral patches to generate the spectral quilts,

the spectral quilts are input to the neural networks for classification.
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5.3.2 Analysis of PCA whitening

The spectral bands are highly correlated in hyperspectral images. We use the Pearson correla-

tion coefficient [18] to evaluate the correlation between the spectral bands. Figure 5.6 depicts

the normalized distribution of pairwise Pearson correlation coefficient between each pair of

spectral bands as well as the corresponding Gaussian kernel density estimate. We see that

while the spectral bands of both Indian Pines and Pavia University datasets are highly cor-

related, the Pavia University dataset is less correlated than Indian Pines since it has a larger

number of correlation coefficients close to zero.

Figure 5.6: Normalized pairwise correlation distribution of Indian Pines and Pavia University
scene.

We compared the performance with PCA whitening and without PCA whitening for both

datasets. The results, shown in Table 5.7 and Fig. 5.7, demonstrate that PCA whitening has a

dramatic effect on the Indian Pines dataset but only a slight effect on Pavia University dataset.

Fig. 5.7 (a) and (b) illustrate the performance for the Indian Pines dataset with CNN-1 and

CNN-2 respectively. The height of the bars stands for the averaged classification accuracy and

the vertical lines on the top stand for the standard deviation through the 10 Monto Carlo runs.

We see that PCA whitening has a salient boost of performance for both networks in Indian

pines dataset (Fig. 5.7 (a) and (b)). However, the enhancement of performance for Pavia Uni-

versity dataset is quite small (Fig. 5.7 (c) and (d)). We believe that is because Pavia University

dataset is less correlated than Indian Pines as shown in Figure 5.6. Hence, PCA whitening is

effective as a preprocessing step for hyperspectral image classification and the effectiveness
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Figure 5.7: Performance with PCA whitening and without PCA whitening. (a) CNN-1 &
Indian Pines, (b) CNN-2 & Indian Pines, (c) CNN-1 & Pavia University, (d) CNN-2 & Pavia
University.

increases with increased prior correlation.

Table 5.7: Performance with PCA whitening and without PCA whitening. The patch size is set
to 15. Oui stands for with PCA whitening and Non stands for without PCA whitening.

Indian Pines Pavia University
Oui Non Oui Non

CNN-1
OA 98.16 ± 0.35 92.96 ± 1.19 99.40 ± 0.16 99.11 ± 0.42
AA 97.99 ± 0.52 93.97 ± 1.43 98.87 ± 0.21 98.55 ± 0.51

κ × 100 97.90 ± 0.40 91.95 ± 1.37 99.21 ± 0.14 98.82 ± 0.56

CNN-2
OA 97.79 ± 0.22 93.77 ± 1.71 98.85 ± 0.12 98.65 ± 0.72
AA 97.84 ± 0.48 93.31 ± 2.91 97.77 ± 0.19 97.32 ± 1.32

κ × 100 97.48 ± 0.25 92.89 ± 1.95 98.48 ± 0.16 98.21 ± 0.96
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Table 5.8: Performance over different patch sizes of spectral cuboid.

Patch size 7 9 11 13 15

Indian Pines

CNN-1
OA 97.33 ± 0.50 98.01 ± 0.30 98.11 ± 0.24 98.02 ± 0.33 98.16 ± 0.35
AA 97.66 ± 0.23 97.95 ± 0.41 97.97 ± 0.84 98.00 ± 0.41 97.99 ± 0.52

κ × 100 96.95 ± 0.57 97.73 ± 0.34 97.85 ± 0.27 97.75 ± 0.38 97.90 ± 0.40

CNN-2
OA 93.33 ± 0.41 96.43 ± 0.25 97.15 ± 0.44 97.71 ± 0.31 97.79 ± 0.22
AA 94.26 ± 0.67 96.58 ± 0.63 97.25 ± 0.52 97.40 ± 0.44 97.84 ± 0.48

κ × 100 92.38 ± 0.47 95.93 ± 0.29 96.75 ± 0.51 97.38 ± 0.35 97.48 ± 0.25

Pavia University

CNN-1
OA 98.69 ± 0.21 99.04 ± 0.14 99.32 ± 0.13 99.38 ± 0.21 99.40 ± 0.16
AA 97.93 ± 0.24 98.43 ± 0.24 98.72 ± 0.20 98.80 ± 0.30 98.87 ± 0.21

κ × 100 98.26 ± 0.28 98.72 ± 0.19 99.10 ± 0.17 99.18 ± 0.13 99.21 ± 0.14

CNN-2
OA 96.90 ± 0.62 97.74 ± 0.26 98.15 ± 0.16 98.50 ± 0.19 98.85 ± 0.12
AA 95.54 ± 0.65 96.43 ± 0.48 96.82 ± 0.28 97.26 ± 0.33 97.77 ± 0.19

κ × 100 95.89 ± 0.81 97.00 ± 0.34 97.55 ± 0.21 98.01 ± 0.25 98.48 ± 0.16

5.3.3 Analysis of patch size

Both CNN-1 and CNN-2 require the patch size of input spectral cuboids to be specified before

preprocessing. Therefore we conducted experiments to evaluate how the patch size affects the

performance. As shown in Table 5.8 and Figure 5.8, the performance generally improves as

the patch size increases. This is what we would expect because larger patches are better able

to capture more complex features that cover a larger region of the images. Note that CNN-1

works well even with a small patch size. Thus, as the patch size increases, the improvement

of performance of CNN-1 is quite limited. Whereas CNN-2’s performance is more correlated

with patch size. Its improvement with a larger patch size is remarkable.

5.3.4 Performance comparison

Though CNN-1 has only four convolutional layers, it has many more trainable parameters than

CNN-2 (Table 5.9 lists the number of trainable parameters in CNN-1 and CNN-2 when patch

size is set to 7) because of the two fully-connected layers each with 1024 nodes in CNN-

1. Hence it is harder to train CNN-1. We add Dropout layers into CNN-1 to prevent the

overfitting problem. After carefully fine-tuning the hyperparameters, CNN-1 can work better

than CNN-2. But its training loss converges slower than the one of CNN-2 (Fig. 5.9) because

of the large amount of trainable parameters and the fact that Dropout layers have added noise

into the network.
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Figure 5.8: Performance over different patch sizes of spectral cuboid. (a) CNN-1 & Indian
Pines, (b) CNN-2 & Indian Pines, (c) CNN-1 & Pavia University, (d) CNN-2 & Pavia Univer-
sity.

Table 5.9: The number of trainable parameters in CNN-1 and CNN-2 when patch size is set to
7.

Indian Pines Pavia University
CNN-1 70,644,368 34,854,537
CNN-2 476,816 227,977
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Figure 5.9: Training rate over the epochs for two networks. (a) Indian Pines, (b) Pavia Uni-
versity. For both datasets, the training loss of CNN-2 converges faster than the one of CNN-1.

As shown in Table 5.8, CNN-1 works consistently better than CNN-2 over different patch sizes

of spectral cuboids for both Indian pines and Pavia University datasets. CNN-1’s performance

is less dependent on the patch size, which is to say that it can perform reasonably well even with

a small patch size. This is because CNN-1 has more parameters so that it is more expressive

than CNN-2 and can extract more complicated features. The price is that techniques such as

Dropout are required to prevent overfitting during training which adds more hyperparameters to

tune and increases training time. While CNN-1 performs better, CNN-2 is much lighter and is

faster to train. Fig. 5.8 indicates that the gap of performance between the two networks shrinks

as the patch size increases (for example, the gap of the overall accuracy is decreasing from 4%

to 0.3% in Indian Pines scene as shown in Table 5.8). Hence, CNN-2 is still competitive with

a relatively large patch size of the spectral cuboids.

We have also compared the performance of the proposed methods with seven other state-of-the-

art methods. They are EMAP [19], GCK [20], SMLR-SpATV [21], 3DDWT [22], Chen2016

[23], Lee2017 [8], Cao2017 [24]. Lee2017 is a fully convolutional network consisting mostly

of 1× 1 convolutional layers and as is claimed in [8] patch size 5 is the best for Lee2017’s net-

work architecture. Chen2016 is a shallow 2-D CNN which takes as input the cropped patches

from the first principal spectral component. Cao2017 is also a CNN which takes as input the

original spectral cuboids. For Cao2017, CNN-1 and CNN-2, the patch size of cropped spectral

cuboids is set to 15. For Chen2016, the patch size is set to 27 as is fixed in [23]. For Lee2017,

the patch size is set to 5 as is also fixed in [8]. As with previous experiments, 10% training
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samples are randomly selected for 10 Monto Carlo runs. All the other corresponding parameter

setting is the same as stated in the references.

Table 5.10 indicates the performance of all the methods. Among these 9 methods, CNN-1

performs the best for both datasets (the performance gap between CNN-1 and the compared

methods is around 0.4%∼8% for Indian Pines and 0.2%∼3% for Pavia University). CNN-2 is

very close to SMLR-SpATV but remarkably outperforms EMAP, GCK and Lee2017. Although

3DDWT, Chen2016 and Cao2017 all slightly outperform CNN-2 in Pavia University scene

(+0.2%∼+0.4%), CNN-2 dramatically outperforms these three methods in Indian Pines scene

(+1%∼+3%). That indicates CNN-2 is relatively more robust when there are fewer training

samples.

Table 5.10: Performance comparison with different methods - EMAP [19], GCK [20], SMLR-
SpATV [21], 3DDWT [22], Chen2016 [23], Lee2017 [8], Cao2017 [24], CNN-1 and CNN-2.

EMAP GCK SMLR-SpATV 3DDWT Chen2016 Lee2017 Cao2017 CNN-1 CNN-2

Indian Pines
OA 92.78 ± 0.70 94.81 ± 0.60 97.80 ± 0.31 95.16 ± 0.79 94.51 ± 0.59 90.63 ± 1.40 96.79 ± 0.51 98.16 ± 0.35 97.79 ± 0.22
AA 93.73 ± 1.02 95.41 ± 0.96 97.23 ± 0.62 93.59 ± 1.57 93.81 ± 1.19 90.01 ± 2.00 95.05 ± 0.70 97.99 ± 0.52 97.84 ± 0.48

κ × 100 92.35 ± 0.72 94.94 ± 0.80 97.49 ± 0.36 94.47 ± 0.90 93.73 ± 0.67 89.30 ± 1.61 96.34 ± 0.58 97.90 ± 0.40 97.48 ± 0.25

Pavia University
OA 97.94 ± 0.34 98.32 ± 0.25 98.73 ± 0.14 99.05 ± 0.11 99.23 ± 0.17 96.26 ± 0.72 99.05 ± 0.15 99.40 ± 0.16 98.85 ± 0.12
AA 97.04 ± 0.45 97.46 ± 0.38 97.59 ± 0.28 98.07 ± 0.23 98.37 ± 0.41 94.15 ± 0.72 98.33 ± 0.28 98.87 ± 0.21 97.77 ± 0.19

κ × 100 96.98 ± 0.32 97.69 ± 0.43 98.32 ± 0.19 98.75 ± 0.15 98.97 ± 0.22 95.04 ± 0.96 98.74 ± 0.20 99.21 ± 0.14 98.48 ± 0.16

5.4 Conclusion

This chapter proposes a simple but innovative framework to classify hyperspectral image with

two shallow convolutional neural networks. First, principal component analysis (PCA) whiten-

ing is applied to decorrelate hundreds of spectral bands. Instead of selecting the principal com-

ponents to reduce the spectral dimensionality, we retain all the spectral bands but compress

the image cuboid into 1-channel spectral quilt by stacking spectral patches. In this way, not

only is all the spectral information retained, but also the computational complexity of training

a neural network is reduced compared with conventional networks which directly input the

spectral cuboids. Moreover, the spectral quilts will contain some novel textural patterns which

are effective at separating classes.

Two shallow convolutional neural networks (CNN-1 and CNN-2) are then applied to classify

the spectral quilts. As shown in the experiments, CNN-1 works better than CNN-2 since it has
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a larger set of trainable parameters, making it more expressive and better able to extract more

complicated features. The downside of CNN-1 is that the large parameter set increases the risk

of overfitting and causes the requirement for Dropout to regularize the network. While CNN-1

has higher accuracy, CNN-2 is much lighter and is faster to train. As long as the patch size of

spectral cuboids is large enough, CNN-2 is still a powerful competitor. The performance of the

proposed methods is compared with seven other state-of-the-art methods. The experimental

results show that CNN-1 can remarkably outperform all the other state-of-the-art methods and

CNN-2 can outperform most of the methods and appears more robust.

The future work will include testing the methodology on more hyperspectral images to classify

the land cover and study the geosciences of planetary surface. An extended application can be

classifying multispectral images which have less spectral information but more detailed spatial

contextual information.
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Chapter 6

Hyperspectral Image Classification with

Combinational Fully Convolutional

Network

Submitted for review by IEEE Transactions on Geoscience and Remote Sensing as Shu,

L., McIsaac, K., & Osinski, G. R.

6.1 Introduction

Since neural networks provide the capability to automatically extract the spatial-spectral fea-

ture representations as well as the capability to flexibly generate higher level features with

deeper layers, neural networks have achieved better performance on hyperspectral image clas-

sification than conventional methods. Last chapter has described a framework of applying

convolutional neural network to hyperspectral image classification. This chapter will continue

with another innovative network - combinational fully convolutional network.

Conventional convolutional neural networks consist of alternating convolutional layers and

pooling layers and fully connected layers in the end [1]. In order for neural networks to jointly
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model spectral and spatial contextual information, we need to crop neighbor regions of a cer-

tain size as patch samples with a sliding-window and then conduct patchwise classification

to compute an entire pipeline for each window of the input one at a time. Intuitively, areas

around nearby pixels are duplicated. Larger cropped patch sizes lead to more duplication. The

duplication of data will inevitably require more computing resources, i.e., computing time and

memory. Usually, larger patches are better able to capture more spatial contextual information

which will result in better performance. Therefore, there may need to be a tradeoff between

performance and computing resources, especially for the real-time applications.

Figure 6.1: The mechanism of FCN and its efficiency for predicting a map. During training,
a FCN produces only one single output (top) corresponding to the central pixel in the input
patch. When applied at prediction time over a larger patch, it produces a spatial map, e.g. 2× 2
map (bottom) corresponding to the central 2 × 2 pixels in the input patch. Because all layers
are applied convolutionally, the extra computation required for the lager patch is limited to the
yellow regions. This diagram omits the feature dimension for simplicity.

Convolutional layers take the inner product of the linear filter and the underlying receptive

field followed by a nonlinear activation function at every local portion of the input. Clearly,

nearby patches on hyperspectral images share a large amount of convolutional computations.

Therefore, we propose a fully convolutional network (FCN) [2, 3] for hyperspectral image

classification. Sermanet et al. [4] demonstrated the efficiency of a convolutional implemen-

tation of the sliding-window for object detection. Similarly, our FCN will also be inherently

efficient when applied in a sliding fashion because the computation is highly amortized over
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the overlapping regions of spectral patches. Fig. 6.1 diagrams the efficiency of FCN for pre-

dicting a map. The FCN can take input of arbitrary size, thus we can directly input the whole

hyperspectral image to predict the whole map with one single forward-propagation.

Since the early days of neural networks, researchers have arranged an ensemble of neural net-

works in a simple voting scheme to improve performance [5]. Networks with a collection

of many paths can have ensemble-like behavior to some extent. For example, Veit et al. [6]

showed that using identity mapping as the skip connections allows the residual network [7] to

behave like ensembles of relatively shallow networks. One critical trait of ensembles is that

their performance depends smoothly on the number of members. In particular, the performance

improvement from additional ensemble members gets smaller with increasing ensemble size.

Since ensembles of networks usually show robustness and high performance, our aim is to de-

sign a network which is a collection of many shallow paths and shows ensemble behavior while

taking advantage of the inherent computational efficiency of fully convolutional networks.

Fully convolutional computation has been exploited for sliding window object detection [4],

semantic segmentation [3] and image restoration [8] and has been proved to be efficient and

effective in such scenarios. To our knowledge, Lee et al. [9] is the only application of a fully

convolutional network on hyperspectral image classification. However, their proposed network

can only input patches with limited spatial size (e.g., 5 × 5). Such patches are too small to

incorporate much spatial contextual information and the network’s stacked 1 × 1 convolutions

are less able to extract deep features than larger convolution kernels.

In this chapter,we propose a combinational fully convolutional network (CFCN) for hyperspec-

tral image classification. The FCN for typical semantic segmentation contains subsampling and

upsampling layers, which make it difficult for the network to capture detailed structures of ob-

jects. Hyperspectral image classification places more value on pixelwise accuracy. Thus, our

proposed network consists of only convolutional layers. Training is still patchwise, but predic-

tion is performed on the entire image at one time. The detailed characteristics of the CFCN are

summarized here:

a. Utilizes a 1 × 1 convolutional layer to learn overcomplete spectral feature maps which
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can enhance the performance;

b. Transforms fully connected layers into two 1× 1 convolutional layers to enable convolu-

tional implementation of sliding window;

c. The collection of paths demonstrates ensemble behavior to guarantee robust and high

performance;

d. No subsampling and upsampling layers, which allows predictions for consecutive pixels

and capturing more detailed spatial structures;

e. Takes input of arbitrary size, so given input of the whole hyperspectral image, it can

directly predict the whole map.

The rest of the chapter is organized as follows. Section 6.2 presents the proposed combina-

tional fully convolutional network. Section 6.3 describes the experimental results. Section 6.4

presents some concluding remarks.

6.2 Method

In order to take advantage of FCN’s computational efficiency, we propose a fully convolutional

network for hyperspectral image classification and its architecture is shown in Fig. 6.2. It

consists of three 1 × 1 convolutional layers at the two ends and a set of conjunct 3 × 3 and/or

5 × 5 convolutional layers in the middle. The FCN for typical semantic segmentation contains

subsampling and upsampling layers, which make it difficult for the network to capture detailed

structures of objects. Since hyperspectral image classification places more value on pixelwise

accuracy, our proposed network consists of only convolutional layers. For simplicity, Fig. 6.2

shows the architecture of the proposed network for input patch size 15, but the size is definitely

not constrained to 15. It is straightforward to adjust network architecture according to the patch

size as we will show later.
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Figure 6.2: The architecture of the proposed family of FCNs. It consists of three 1 × 1
convolutional layers at the two ends (inside the red rectangles) and a set of conjunct 3 × 3
and/or 5 × 5 convolutional layers in the middle (inside the green rectangle). The first 1 × 1
convolutional layer is used to learn overcomplete feature maps, which in some sense increases
the spectral bands of hyperspectral images and the last two work in the same way as fully
connected layers do. Suppose we crop the 15× 15 neighbor regions as the training samples for
the central pixels. There will be 21 different architectures with sets of conjunct 3 × 3 and/or
5 × 5 convolutional layers (with valid padding) to shrink the patch size from 15 down to 1.

6.2.1 1 × 1 convolutional layers

As shown in Fig. 6.2, there are three 1 × 1 convolutional layers. The first one, coming right

after the input layer, is used to learn overcomplete spectral feature maps, which will increase

the number of spectral bands of hyperspectral images in some sense. As we will see in experi-

ments, this 1 × 1 convolutional layer plays a significant role on the overall network.

The last two 1 × 1 convolutional layers work in the same way as the fully connected layers in

conventional convolutional neural networks. They are the classifier of the network and have

exactly the same weights as two fully connected layers do. By using 1 × 1 convolutional

layers instead of fully connected layers, we can input an image of any size into the network at

prediction time. Thereafter, one forward-propagation of the whole hyperspectral image can get

all the computations for each neighbor patch.

6.2.2 Combinational fully convolutional network

Suppose we crop the 15×15 neighbor regions as the training samples for the central pixels. As

shown in Fig. 6.2, we can apply a set of conjunct 3 × 3 and/or 5 × 5 convolutional layers (with
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valid padding) to shrink the patch size down to 1. The resulting outputs from convolutional

layers are called feature maps. We only consider 3 and 5 as the convolutional kernel size

because smaller kernel sizes are better able to capture fine details of the image. Depending

on how to combine the convolutional layers, there will be 21 different network architectures.

For example, we can use seven consecutive 3 × 3 convolutions to form the deepest network,

or one 3 × 3 and two 5 × 5 convolutions to make the shallowest one. Note that there are no

pooling layers here because otherwise the network would not be able to make predictions for

consecutive pixels. This is another difference from conventional convolutional neural networks

other than the 1 × 1 convolutional layers.

Training all the 21 possible networks and making model selection is tedious and exhausting.

Instead, we have proposed the combinational fully convolutional network (CFCN) which can

be viewed as a collection of many paths as shown in Fig. 6.3. By adding the skip-connections

with 5 × 5 convoluional layers onto the main path, CFCN contains all the 21 possible paths

listed in Fig. 6.2. Because only two consecutive 3 × 3 convolutions can end up with the same

feature map size as one 5 × 5 convolution does, the proposed CFCN turns out to be the unique

combination of all the 21 paths. In the experiment below, we will show that the CFCN has an

ensemble-like behavior which guarantees robustness and high performance.

Figure 6.3: The combinational fully convolutional network (CFCN) is the unique combination
of all the 21 networks listed in Figure 6.2.
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6.3 Experiments and results

6.3.1 Hyperspectral datasets

We carry out experiments on three hyperspectral datasets: Indian Pines, Pavia University and

Salinas scene. These datasets are widely used to test the algorithms for hyperspectral image

classification.

6.3.1.1 Indian pines

The hyperspectral data of Indian pines was acquired by Airborne Visible/Infrared Imaging

Spectrometer (AVIRIS) to support soils research in 1992 over Purdue University Agronomy

farm northwest of West Lafayette and the surrounding area in Indiana, USA [10]. The area is a

mixed agricultural/forest area, where some of the crops present, corn, soybeans, were in early

stages of growth.

Figure 6.4a shows a false-color composition of the AVIRIS Indian Pines scene. This dataset

consists of 145 × 145 pixels covering a 2 mile by 2 mile area at 20 m spatial resolution and

224 spectral bands covering the spectral range from 400 nm to 2.5 µm. Several spectral bands

were removed from the dataset due to noise and water absorption phenomena, leaving a total

of 200 bands to be used in the experiments. The ground-truth of the Indian Pines scene has

been designated into sixteen classes (see Figure 6.4b). Table 6.1 shows the specific classes and

the respective number of samples.

6.3.1.2 Pavia University

The hyperspectral data of Pavia University was acquired by Reflective Optics System Imaging

Spectrometer (ROSIS) during a flight campaign over Pavia, northern Italy. Figure 6.5 illus-

trates the true-color image of Pavia University. It contains 610 × 340 pixels and the geometric

resolution is 1.3 m. There are 103 spectral bands covering the spectral range from 430 to 860
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(a) (b)

Figure 6.4: Indian Pines dataset. (a) False-color composition of bands 50, 27 and 17. (b)
Ground-truth map. The specific classes denoted by different colors refer to Table 6.1.

Table 6.1: Classes for the Indian Pines scene and their respective number of samples.

# Class Num. of samples
1 Alfalfa 46
2 Corn-notill 1428
3 Corn-mintill 830
4 Corn 237
5 Grass-pasture 483
6 Grass-trees 730
7 Grass-pasture-mowed 28
8 Hay-windrowed 478
9 Oats 20
10 Soybean-notill 972
11 Soybean-mintill 2455
12 Soybean-clean 593
13 Wheat 205
14 Woods 1265
15 Buildings-Grass-Trees-Drives 386
16 Stone-Steel-Towers 93

Total 10249

nm. The ground-truth map differentiates 9 classes as shown in Table 6.2.

6.3.1.3 Salinas scene

Salinas scene was also collected by the 224-band AVIRIS sensor. It is over Salinas Valley, Cal-

ifornia, and the spatial resolution is relatively high (3.7-meter per pixel). The image contains
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(a) (b)

Figure 6.5: Pavia University scene. (a) True-color composition of bands 53, 31 and 8. (b)
Ground-truth map. The specific classes denoted by different colors refer to Table 6.2.

Table 6.2: Classes for the Pavia University scene and their respective number of samples.

# Class Num. of samples
1 Asphalt 6631
2 Meadows 18649
3 Gravel 2099
4 Trees 3064
5 Painted metal sheets 1345
6 Bare Soil 5029
7 Bitumen 1330
8 Self-Blocking Bricks 3682
9 Shadows 947

Total 42776

512 × 217 pixels. As with the Indian Pines scene, 20 water absorption bands were discarded,

leaving a total of 204 bands for experiments. The area covered includes vegetables, bare soils,

and vineyard fields. The ground-truth contains 16 classes (see Table 6.3).
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(a) (b)

Figure 6.6: Salinas scene dataset. (a) False-color composition of bands 50, 27 and 17. (b)
Ground-truth map. The specific classes denoted by different colors refer to Table 6.3.

6.3.1.4 Data splitting

The labelled samples of Indian Pines are limited, so we randomly select 10% of the labelled

samples per class for training (minimum 10 samples for the classes with extremely limited

numbers of samples) and the rest of data is used for testing. For both Pavia University and

Salinas scene, we randomly select 200 samples per class for training and the rest of data is

used for testing. Table 6.4 indicates the amount of samples split for training and testing.

From Table 6.1, Table 6.2 and Table 6.3 we see that three datasets have unbalanced numbers

of labelled samples per class. Therefore, the classification is challenging. The 3-fold cross-

validation is conducted with training data to tune the hyperparameters of the network, such as

learning rate, number of epochs etc. The classification performance is measured by overall ac-
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Table 6.3: Classes for Salinas scene and their respective number of samples.

# Class Num. of samples
1 Brocoli green weeds 1 2009
2 Brocoli green weeds 2 3726
3 Fallow 1976
4 Fallow rough plow 1394
5 Fallow smooth 2678
6 Stubble 3959
7 Celery 3579
8 Grapes untrained 11271
9 Soil vinyard develop 6203
10 Corn senesced green weeds 3278
11 Lettuce romaine 4wk 1068
12 Lettuce romaine 5wk 1927
13 Lettuce romaine 6wk 916
14 Lettuce romaine 7wk 1070
15 Vinyard untrained 7268
16 Vinyard vertical trellis 1807

Total 54129

Table 6.4: Data splitting for three datasets.

Class
Indian Pines Salinas Pavia Uni.
train test train test train test

1 10 36 200 1809 200 6431
2 143 1285 200 3526 200 18449
3 83 747 200 1776 200 1899
4 24 213 200 1194 200 2864
5 49 434 200 2478 200 1145
6 73 657 200 3759 200 4829
7 10 18 200 3379 200 1130
8 48 430 200 11071 200 3482
9 10 10 200 6003 200 747

10 98 874 200 3078 - -
11 246 2209 200 868 - -
12 60 533 200 1727 - -
13 21 184 200 716 - -
14 127 1138 200 870 - -
15 39 347 200 7068 - -
16 10 83 200 1607 - -

curacy (OA), average accuracy (AA) and Kappa coefficient (κ). Cohen’s Kappa [11] is a metric

that measures how much better the classifier is performing over the performance of a classifier
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that simply guesses at random according to the frequency of each class. It is considered a good

metric for imbalanced and multi-class classification problems. A higher Kappa score indicates

better performance.

The spectral bands are highly correlated in hyperspectral images. Thus, we applied PCA-

whitening [12] to preprocess the spectral data. It can decorrelate the spectral bands and assure

that each band has the same variance. This preprocessing step turns out to be effective. Neural

networks are stochastic models. They make use of randomness by design, such as weights

initialization and stochastic optimization. Thus, in order to properly evaluate the networks, we

train the networks up to 10 times and use statistic mean and standard deviation to evaluate the

performance.

6.3.2 Analysis of PCA-whitening

The spectral bands are highly correlated in hyperspectral images. We use the Pearson correla-

tion coefficient [13] to evaluate the correlation between the spectral bands. Fig. 6.7 depicts the

normalized distribution of pairwise Pearson correlation coefficient between each pair of spec-

tral bands as well as the corresponding Gaussian kernel density estimate. We see that while

the spectral bands of all three datasets are highly correlated, Pavia University is less correlated

than the other two since it has a larger amount of correlation coefficients close to zero.

We compared the performance of the proposed network on three datasets with/without PCA-

whitening. The results, shown in Table 6.5 and Fig. 6.8, demonstrate that PCA-whitening can

enhance the performance, especially for Indian Pines and Salinas dataset. The enhancement

of performance for Pavia University is relatively small because the spectral bands of Pavia

University is less correlated than the other two.

6.3.3 The first 1 × 1 convolutional layer

The first 1 × 1 convolutional layer results in a feature map cube which has the same spatial

size but different channel size with the input spectral cube. The number of kernels of the
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Figure 6.7: Normalized pairwise correlation distribution of three datasets.

Table 6.5: Performance with/without PCA-whitening. The patch size of spectral cubes is set
to 15. Yes stands for with PCA-whitening and No stands for without PCA-whitening.

Indian Pines Pavia University Salinas
Yes No Yes No Yes No

OA 98.59 ± 0.20 96.07 ± 0.35 99.31 ± 0.11 98.88 ± 0.19 99.13 ± 0.22 96.52 ± 2.73
AA 98.02 ± 0.37 96.48 ± 0.53 99.22 ± 0.14 99.06 ± 0.07 99.68 ± 0.07 97.44 ± 2.34

κ × 100 98.40 ± 0.22 95.51 ± 0.40 99.08 ± 0.15 98.50 ± 0.25 99.02 ± 0.25 96.12 ± 3.05
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Figure 6.8: Performance with/without PCA-whitening for (a) Indian Pines, (b) Pavia Univer-
sity and (c) Salinas. The bars and the vertical lines on the top stand for the average and the
standard deviation of performance metrics over 10 runs, respectively. The detailed performance
refers to Table 6.5.

convolutional layer equals the number of channels of the feature map cube. Each feature map

in the cube is simply a linear combination of the original spectral bands together with non-

linear activations. Thus, from the aspect of channel size of feature cube, we can say that the

first 1 × 1 convolutional layer will either decrease or increase the spectral dimensionality. We

have discovered that the first 1×1 convolutional layer with a large number of kernels (resulting

in a large number of channels for the feature map cube) can enhance the performance of the

network.

Table 6.6 shows the performance in Indian Pines dataset with different number of kernels in

the first 1 × 1 convolutional layer, as well as the performance without the 1 × 1 convolutional

layer. We see that the performance increases as the number of kernels increases. However,

only when the number is big enough (e.g., more than 200) can the network outperform the one
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without the 1×1 convolutional layer. The hyperspectral image of Indian pines has 200 spectral

bands. Thus, the kernel number larger than 200 leads to an overcomplete set of spectral feature

maps. We believe these overcomplete feature maps can enhance the performance of the overall

network.

Table 6.6: Performance in Indian pines over different number of kernels in the first 1 × 1
convolutional layer. None is the network without the 1 × 1 convolutional layer. None+128 is
the network without 1 × 1 convolutional layer but increasing the kernel sizes of the first three
convolutional layers from 64 to 128. The input patch size is set to 17 for all the networks.

# of kernels None None+128 64 128 200 300 512 1024
OA 98.27 ± 0.25 98.28 ± 0.17 95.94 ± 0.42 97.51 ± 0.33 97.85 ± 0.30 98.53 ± 0.25 98.76 ± 0.12 98.87 ± 0.21
AA 97.62 ± 0.59 97.79 ± 0.41 94.57 ± 0.67 96.71 ± 0.68 96.95 ± 0.40 98.08 ± 0.57 98.29 ± 0.31 98.52 ± 0.40

κ × 100 98.03 ± 0.29 98.04 ± 0.19 95.36 ± 0.48 97.16 ± 0.38 97.55 ± 0.35 98.33 ± 0.29 98.59 ± 0.14 98.71 ± 0.24

In order to prove that the enhanced performance with a larger kernel number is not simply

due to the increased trainable parameters in the network, we also trained another network

(None+128 in Table 6.6) which has no such a 1 × 1 convolutional layer but enlarges the kernel

number of the first three convolutional layers from 64 to 128. This network has ∼ 5.6 million

trainable parameters in total which is more than the networks with 300 and 512 kernels in

the 1 × 1 convolutional layer (∼ 4.8 and ∼ 5.3 million respectively). However, the latter two

networks can still outperform the former one. Moreover, None+128 performs almost the same

as None even with increased parameters. That is to say, the enhanced performance with a

kernel number larger than the number of spectral bands is due to the overcompleteness of

feature maps.

Adding such a 1 × 1 convolutional layer in front can not only enhance the performance of the

proposed network, but also enhance the performance at least for Lee2017 [9] and Cao2017

[14], as we see in Table 6.7. Lee2017 is a fully convolutional network consisting mostly

of 1 × 1 convolutional layers and the patch size 5 is the best for its architecture as stated

in [9]. Cao2017 is a convolutional network which takes input as 17 × 17 patches. While

most of previous hyperspectral image classification methods, both neural networks and non-

neural-network methods, seek to compress the spectral cube with either band selection [15, 16]

or dimensionality reduction [17, 18], our experiments provide a novel insight, i.e., enlarging

the spectral dimensionality by learning overcomplete spectral feature maps can enhance the

performance.
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Table 6.7: Performance enhancement in Indian Pines by adding 1 × 1 convolutional layer in
front for Lee2017 [9] and Cao2017 [14]. *-Plus stands for the enhanced network. Patch size is
5 for Lee2017 and 17 for Cao2017.

Lee2017 Lee2017-Plus Cao2017 Cao2017-Plus

Indian Pines
OA 90.72 ± 1.37 91.26 ± 0.33 97.83 ± 0.18 98.17 ± 0.22
AA 90.35 ± 1.89 91.16 ± 0.62 95.76 ± 0.30 97.44 ± 0.30

κ × 100 89.36 ± 1.58 89.97 ± 0.39 97.52 ± 0.19 97.91 ± 0.25

Pavia University
OA 91.73 ± 0.98 93.90 ± 0.40 98.81 ± 0.05 99.10 ± 0.07
AA 93.52 ± 0.55 95.16 ± 0.25 98.50 ± 0.09 98.92 ± 0.10

κ × 100 89.05 ± 1.24 91.91 ± 0.51 98.38 ± 0.07 98.79 ± 0.09

Salinas
OA 93.00 ± 1.01 94.88 ± 0.39 98.09 ± 0.13 98.39 ± 0.22
AA 96.96 ± 1.37 97.90 ± 0.12 99.33 ± 0.05 99.45 ± 0.07

κ × 100 92.17 ± 1.12 94.26 ± 0.43 97.86 ± 0.15 98.20 ± 0.24

6.3.4 Characteristics of CFCN

In order to analyze the characteristic of CFCN, we delete different skip-connections to test

the prediction performance of a well-trained model. Deleting the skip-connections will delete

some of the paths in the network. The indices of all 6 skip-connections are denoted in Fig.

6.9(a). Table 6.8 shows the number of paths deleted by the removal of each individual skip-

connection. We first trained a CFCN model on the Indian Pines dataset and then deleted each

individual skip-connection to predict the testing data. The corresponding results are shown

in Table 6.8 and Fig. 6.9(b). As shown, deleting the first skip-connection will dramatically

downgrade the prediction performance, while deleting the other skip-connections has a small

impact on performance. This indicates that the first 5×5 convolutional layer is more important

to network than the others and the paths through the other skip-connections do not strongly

depend on each other although they are trained jointly.

Another experiment we conducted is to test the prediction performance after deleting various

number of skip-connections among the later 5 ones (i.e., #2, #3, #4, #5 and #6). CFCN can be

seen as a collection of many paths. This experiment is to see whether the collection of paths

shows ensemble-like behavior. One critical trait of ensembles is that their performance depends

smoothly on the number of members [6]. In particular, the performance improvement from

additional ensemble members gets smaller with increasing ensemble size. If the collection of

paths were to behave like an ensemble, we would expect the prediction performance of CFCN
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to smoothly correlate with the number of valid paths. This is indeed what we observe in Fig.

6.9(c): deleting increasing numbers of skip-connections from the later 5 ones downgrades the

performance smoothly. This implies CFCN behaves like an ensemble to some extent.

The records in Fig. 6.9 and Table 6.8 are from experiments on Indian Pines dataset. Similar

phenomena is also observed in both Pavia University and Salinas scene. To summarize, CFCN

shows ensemble-like behavior to some extent in the sense that removing paths by deleting some

skip-connections only has a modest and smooth impact on performance.

Table 6.8: Predicting performance on Indian Pines after deleting each individual skip-
connection. intact stands for the full network.

index 1 2 3 4 5 6 intact
# of paths removed 8 5 6 6 5 8 0

OA 68.50 97.46 98.44 98.19 98.66 97.47 98.90
AA 45.61 95.16 97.88 96.94 97.83 93.18 98.33

κ × 100 63.88 97.10 98.22 97.93 98.48 97.11 98.75

6.3.5 Patch size

In order to test out how the patch size affects the performance, we conduct experiments on vari-

ous patch sizes (7, 9, 11, 13, 15, 17). Each different patch size requires a different architecture.

Other than the architecture for patch size 15 (as illustrated in Fig. 6.3, we show the similar

architectures for the other patch sizes in Fig. 6.10. For any architecture, the first three convolu-

tional layers have 64 kernels and the remaining convolutional layers all have 128 kernels. Such

architectures can flexibly adjust to different patch sizes.

The performance of different patch size is shown in Table 6.9. As expected, there is a upward

trend of performance as the patch size increases, since larger patches are better able to capture

more complex features that cover a larger region of the images.
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(b) performance after deleting each of skip-
connections.
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(c) performance after deleting various number of
skip-connections among #2, #3, #4, #5 and #6.

Figure 6.9: Analyzing the characteristic of CFCN. (a) indicates the index of each skip-
connection, (b) illustrates the predicting performance after deleting each individual skip-
connection, (c) shows the performance after deleting various number of skip-connections
among the later 5 ones.
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Figure 6.10: CFCN with different input patch sizes.

Table 6.9: Performance of CFCN over different patch sizes.

patch size 7 9 11 13 15 17

Indian Pines
OA 93.69 ± 0.50 96.77 ± 0.39 97.97 ± 0.21 98.51 ± 0.14 98.59 ± 0.20 98.87 ± 0.21
AA 93.09 ± 0.66 96.36 ± 0.35 97.47 ± 0.27 98.14 ± 0.18 98.02 ± 0.37 98.52 ± 0.40

κ × 100 92.78 ± 0.58 96.31 ± 0.44 97.69 ± 0.24 98.31 ± 0.16 98.40 ± 0.22 98.71 ± 0.24

Pavia University
OA 97.46 ± 0.32 98.35 ± 0.20 98.80 ± 0.17 99.09 ± 0.19 99.31 ± 0.11 99.38 ± 0.08
AA 97.24 ± 0.18 98.16 ± 0.08 98.63 ± 0.15 99.02 ± 0.13 99.22 ± 0.14 99.28 ± 0.12

κ × 100 96.59 ± 0.43 97.78 ± 0.27 98.39 ± 0.23 98.77 ± 0.26 99.08 ± 0.15 99.16 ± 0.11

Salinas
OA 94.77 ± 0.22 96.51 ± 0.49 97.92 ± 0.43 98.86 ± 0.24 99.13 ± 0.22 99.33 ± 0.17
AA 98.01 ± 0.09 98.73 ± 0.16 99.23 ± 0.15 99.57 ± 0.10 99.68 ± 0.07 99.73 ± 0.06

κ × 100 94.15 ± 0.15 96.10 ± 0.55 97.67 ± 0.49 98.72 ± 0.27 99.02 ± 0.25 99.25 ± 0.20

6.3.6 Process at prediction time

With the well-trained CFCN, the whole process of predicting a hyperspectral map is straight-

forward. We can simply feed the whole original image into the network. With convolutional

implementation of sliding window, the network can directly output a whole predicted map.

Figure 6.11 illustrates the whole process of predicting.
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Figure 6.11: The whole process of predicting a map with combinational fully convolutional
network.

6.3.7 Computational cost and performance comparison

We compared the proposed network with five other state-of-the-art networks. They are Chen2016

[19], Cao2017 [14], Cao2017-Plus, Paoletti2017 [20] and SSRN [21]. Chen2016 is a shallow

2-D CNN with input patches cropped from the first principal spectral component and its archi-

tecture is designed only for patch size 27. Cao2017-Plus is the enhanced version of Cao2017

with 1 × 1 convolutional layer added in front. Both Paoletti2017 and SSRN are 3-D con-

volutional networks. We did not add the 1 × 1 convolutional layer for these two networks

because it would dramatically increase the computation and risk of overfitting. Except for

Chen2016, all the other methods take input of 17 × 17 patches. For CFCN, we use the Adam

optimizer and the corresponding hyperparameters after grid-search with 3-fold cross-validation

are {learning rate = 10−4, batch size = 16, epochs = 30 (Indian Pines & Salinas) or 20 (Pavia

University), β1 = 0.9, β2 = 0.999, ε = 10−8}. The experimental settings for the other networks

are the same as stated in the references. As before, we train every network 10 times and use

statistic mean and standard deviation to evaluate the performance. For fair comparison, PCA-

whitening is conducted for all the baseline methods and the data splitting is all the same as

well.

6.3.7.1 Computational cost

One of the motivations of applying fully convolutional network for hyperspectral image clas-

sification is to take advantage of its computational efficiency. Our computing environment is

Intel Core i7-3930K CPU @ 3.20GHz×12 and one NVIDIA GeForce GTX 960 with Ubuntu
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16.04. The IDE is PyCharm-professional-2018.1 with Keras and Tensorflow backend. We have

seen in Fig. 6.1 that, at prediction time the convolutional implementation of the sliding window

can dramatically reduce duplicated computation. This has been proved in experiments. Table

6.10 indicates the consumption of computing resources (time and memory) for different meth-

ods. Clearly, with convolutional implementation of sliding window, the proposed network can

remarkably reduce the memory need and predicting time. Among the comparable methods,

CFCN can save roughly 10 ∼ 20 times prediction time and 50 ∼ 100 times data storage. This

strongly supports the computational efficiency of the proposed fully convolutional network.

The computational efficiency will have significant impact for a large hyperspectral image.

Table 6.10: The computing resource consumption (time and memory) for different methods.
Memory cost is simply the size of data ready to input to network. The data type is npy float16.
CFCN-Yes stands for the proposed network with convolutional implementation of sliding win-
dow at predicting time and CFCN-No stands for the proposed network without convolutional
implementation of sliding window.

Chen2016 Cao2017 Cao2017-Plus Paoletti2017 SSRN CFCN-No CFCN-Yes

Indian Pines
Training time (s) 19.87 20.1 61.1 71.2 522.4 93.9 93.9

Predicting time (s) 0.94 7.7 15.5 15.1 63.9 12.7 1.2
Memory (megabytes) 14.9 1184.8 1184.8 1184.8 1184.8 1184.8 10.1

Pavia University
Training time (s) 28.7 28.12 99.9 224.8 556.6 154.3 154.3

Predicting time (s) 3.8 21.13 50.8 71.9 143.7 48.6 5.91
Memory (megabytes) 62.4 2546.6 2546.6 2546.6 2546.6 2546.6 45.1

Salinas
Training time (s) 42.1 66.4 192.6 221.8 1569.4 285.1 285.1

Predicting time (s) 4.8 49.5 82.7 80.7 341.9 68.4 4.2
Memory (megabytes) 78.9 6382.3 6382.3 6382.3 6382.3 6382.3 49.0

Fig. 6.12 illustrates the process of loss convergence during training in Indian Pines for all

the methods. All the methods converge within 30 epochs. Though CFCN is not the fastest

to converge over the epochs, its time cost for each epoch is relatively small. Thus the entire

training time is not much compared to the other methods.

6.3.7.2 Performance comparison

Table 6.11 presents the performance for all the methods and Fig. 6.13 illustrates the classi-

fied maps. Paoletti2017 and SSRN are the most comparable baselines. Although both Pao-

letti2017 and SSRN slightly outperform CFCN in Salinas scene, CFCN performs better than

all the baselines in both Indian Pines and Pavia University. Even if Chen2016 cropped 27 × 27

patches as training samples, which intuitively incorporates more complicated spatial structures,
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Figure 6.12: Loss convergence over epochs during training in Indian Pines.

it performs badly since it compresses the spectral dimension with principal component analy-

sis which must have cast away some useful spectral information. Cao2017 is a light network

which contains only two convolutional layers. It performs much better than Chen2016. How-

ever, two convolutional layers are too shallow to extract deep features as the proposed network

does. Therefore the proposed network can outperform it.

Table 6.11: Performance comparison with the other state-of-the-art networks.

Chen2016 (27 × 27) Cao2017 Cao2017-Plus Paoletti2017 SSRN CFCN

Indian Pines
OA 95.38 ± 0.29 97.83 ± 0.18 98.17 ± 0.22 98.56 ± 0.26 98.68 ± 0.12 98.87 ± 0.21
AA 94.28 ± 0.47 95.76 ± 0.30 97.44 ± 0.30 98.16 ± 0.37 97.97 ± 0.43 98.52 ± 0.40

κ × 100 94.73 ± 0.33 97.52 ± 0.19 97.91 ± 0.25 98.36 ± 0.29 98.61 ± 0.14 98.71 ± 0.24

Pavia University
OA 94.48 ± 2.86 98.81 ± 0.05 99.10 ± 0.07 99.33 ± 0.38 99.20 ± 0.96 99.38 ± 0.08
AA 96.55 ± 1.92 98.50 ± 0.09 98.92 ± 0.10 99.21 ± 0.29 98.48 ± 1.04 99.28 ± 0.12

κ × 100 92.71 ± 3.61 98.38 ± 0.07 98.79 ± 0.09 99.10 ± 0.51 98.92 ± 0.89 99.16 ± 0.11

Salinas
OA 93.19 ± 1.48 98.09 ± 0.13 98.39 ± 0.22 99.53 ± 0.09 99.42 ± 0.06 99.33 ± 0.17
AA 96.53 ± 1.02 99.33 ± 0.05 99.45 ± 0.07 99.84 ± 0.03 99.80 ± 0.04 99.73 ± 0.06

κ × 100 92.38 ± 1.66 97.86 ± 0.15 98.20 ± 0.24 99.37 ± 0.10 99.27 ± 0.07 99.25 ± 0.20

6.4 Conclusion

In this chapter, we propose a combinational fully convolutional network (CFCN) for hyper-

spectral image classification. The network can take advantage of the inherent computational

efficiency of convolution at prediction time, i.e., the prediction is performed on the whole image

at a time and the computation is highly amortized over the overlapping regions of patches. The

FCN for typical semantic segmentation contains subsampling and upsampling layers, which

make it difficult for the network to capture detailed structures of objects. Hyperspectral image
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Indian Pines 94.95% 97.85% 98.34% 98.32% 98.86% 98.99%

Pavia Uni-
versity

95.22% 98.94% 99.18% 99.43% 99.35% 99.48%

(a) Salinas (b) 93.56% (c) 98.36% (d) 98.51% (e) 99.41% (f) 99.28% (g) 99.16%

Figure 6.13: Classified maps with different methods. The first row is for Indian Pines, the
second row is for Pavia University and the third row is for Salinas scene. The columns are
(a) the ground-truth maps, (b) Chen2016, (c) Cao2017, (d) Cao2017-Plus, (e) Paoletti2017, (f)
SSRN, and (g) CFCN.

classification places more value on pixelwise accuracy. Thus, our proposed network consists

of only convolutional layers which can capture detailed spatial structures. In addition, the

combinational network can be seen as a collection of many paths. Experimental results show

ensemble-like behavior to some extent in the sense that removing paths from CFCN by deleting

some skip-connections only has a modest and smooth impact on performance. Further experi-

ments on three hyperspectral datasets indicate that CFCN is computationally efficient and can

outperform other state-of-the-art methods.
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Conclusion

Planetary exploration continues to advance. By maximizing the scientific return and reducing

the need for human involvement, robotic autonomy is increasingly playing an important role. In

some cases, autonomous techniques will be the essential enabling tools for missions that cannot

be achieved without them. This research work studies two problems in planetary exploration

- rock image classification and hyperspectral image classification. Autonomous rock image

classification can enhance the capability of robotic devices on surface mission for geological

detection and autonomous hyerspectral image classification enables the detection on planetary

surface without any physical contact and avoids labored human investigation.

For surface missions, geology will continue to be a core focus. Rocks can provide information

as to the environment in which the rocks were created and the subsequent geological history,

and unveil the origin and evolution of rocky planetary bodies throughout the Solar system. In

the first part of this thesis work, we proposed an unsupervised feature learning method for

representing the inhomogeneous rock texture and conducted rock image classification. For

comparison, several sets of manual features were utilized as well. We found that different

combinations of manual features affected classification substantially, whereas our proposed

feature learning method performed well. While there is no guarantee that this feature learning

method can absolutely outperform any manual feature configuration, it is easily implemented

and more flexible than the manual features. We also explored the use of self-taught learning

130



Chapter 7 131

based on unsupervised feature learning for rock image classification. It can learn the feature

representation directly from unlabelled images of mixed rock types, and then repeatedly apply

the feature representation to different sub-classes of rocks. We suggest that the fundamental

reason as to why this approach works is that rock images share some basic visual patterns

or elements. Therefore, as long as these basic patterns can be learned from the whole mixed

dataset, they can be well utilized for representing the new groups of images belonging to the

sub-classes. The proposed feature learning method can also be applied to geological image

archive (e.g., autonomous labelling) or image retrieval etc.

The rest of the thesis work was focused on hyperspectral image classification. We proposed

a framework of modeling spectral information together with spatial contextual information to

generate spatial-spectral features, two light convolutional neural networks with stacking spec-

tral patches and a combinational fully convolutional network in Chapter 4, 5 and 6, respectively.

In Chapter 4, two unsupervised learning methods - K-means and PCA - are utilized to learn

the spatial feature bases in each retained spectral band after decorrelation. Then the spatial fea-

ture representations are extracted with these spatial feature bases. By concatenating the spatial

feature representations in all/principal spectral bands, we get the spatial-spectral features. The

spatial-spectral features are more flexible compared with the conventional feature methods and

can cover more complicated spatial structures. We also found that decorrelating the spectral

bands as the preprocessing step can dramatically enhance the performance. Retaining more

Spectral-PCs results in better performance since even the small amount of variance in the last

tens of spectral principal components can contribute to the classification and make the feature

representations more robust. However, this comes with the cost of increased computation time.

Thus, one can compromise between higher performance and faster computation in a specific

situation.

Chapter 5 proposed an innovative framework to classify hyperspectral image with two light

convolutional neural networks. First, PCA whitening is applied to decorrelate hundreds of

spectral bands. Instead of selecting the principal components to reduce the spectral dimension-

ality, we retain all the spectral bands but compress the image cuboid into 1-channel spectral

quilt by stacking spectral patches. In this way, not only is all the spectral information retained,

but also the computational complexity of training a neural network is reduced compared with
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conventional methods. Moreover, the spectral quilts will contain some brand new textural pat-

terns which could be useful for distinguishing classes. Two light convolutional neural networks

are then applied to classify the spectral quilts. The performance of the proposed networks is

compared with two conventional methods which model the HSI with hand-crafted features

and the results show that the proposed methods can dramatically outperform the conventional

methods.

Last but not least, Chapter 6 proposed a combinational fully convolutional network (CFCN)

for hyperspectral image classification. The network can take advantage of the inherent com-

putational efficiency of convolution at prediction time, i.e., the prediction is performed on the

whole image at a time and the computation is highly amortized over the overlapping regions

of patches. The fully convolutional network for typical semantic segmentation contains sub-

sampling and upsampling layers, which make it difficult for the network to capture detailed

structures of objects. Hyperspectral image classification places more value on pixelwise ac-

curacy. Thus, our proposed network consists of only convolutional layers which can capture

detailed spatial structures. In addition, the combinational network can be seen as a collection

of many paths. Experimental results show ensemble-like behavior to some extent in the sense

that removing paths from CFCN by deleting some skip-connections only has a modest and

smooth impact on performance. Further experiments on three hyperspectral datasets indicate

that CFCN is computationally efficient and can outperform the other state-of-art baselines.

Two problems in planetary exploration have been well addressed, for each of which several

autonomous techniques have been proposed. Of course, there are still a lot of work to do in the

future. For rock image classification, the feature learning method should be generalized and

tested on a larger and more general rock image dataset. As such, techniques for hyperspectral

image classification need to be improved and tested on more real spectral datasets. An extended

application can be studied on multispectral images which have less spectral information but

more detailed spatial information.
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