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Abstract
Fast algorithms for integer and polynomial multiplication play an important role in scientific
computing as well as other disciplines. In 1971, Schönhage and Strassen designed an algorithm
that improved the multiplication time for two integers of at most n bits to O(log n log log n). In
2007, Martin Fürer presented a new algorithm that runs in O

(
n log n · 2O(log∗ n)

)
, where log∗ n

is the iterated logarithm of n.
We explain how we can put Fürer’s ideas into practice for multiplying polynomials over a

prime field Z/pZ, which characteristic is a Generalized Fermat prime of the form p = rk + 1
where k is a power of 2 and r is of machine word size. When k is at least 8, we show that mul-
tiplication inside such a prime field can be efficiently implemented via Fast Fourier Transform
(FFT). Taking advantage of Cooley-Tukey tensor formula and the fact that r is a 2k-th primitive
root of unity, we obtain an efficient implementation of FFT over Z/pZ. This implementation
outperforms comparable implementations either using other encodings of Z/pZ or other ways
to perform multiplication in Z/pZ.

Keywords: Fürer’s algorithm, Fast Fourier Transform, Generalized Fermat prime, polyno-
mial multiplication
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Chapter 1

Introduction

Asymptotically fast algorithms for exact polynomial and matrix arithmetic play a central role in
scientific computing. Among others, the discoveries of Karatsuba [21], Cooley and Tukey [6],
Strassen [27], and Schönhage and Strassen [25] have initiated an intense activity in both numer-
ical computing and symbolic computation. The implementation of asymptotically fast algo-
rithms is, on its own, a research direction. Often the theoretical analysis of asymptotically fast
algorithms focuses on arithmetic operation counts, thus ignoring important hardware details, in
particular costs of memory accesses. On modern hardware architectures, these theoretical sim-
plifications are questionable and other complexity measures, such as cache complexity [14],
are needed to better analyze algorithms.

In the past two decades, several software for performing symbolic computations have put
a great deal of effort in providing outstanding performance, including successful implemen-
tation of asymptotically fast arithmetic. As a result, the general-purpose computer algebra
system Magma [5] and the Number Theory Library NTL [26] have set world records for poly-
nomial factorization and determining orders of elliptic curves. The book Modern Computer
Algebra [17] has also contributed to increase the general interest of the computer algebra com-
munity for these algorithms. As for linear algebra, in addition to Magma, let us mention the
C++ template library LinBox [20] for exact, high-performance linear algebra computation with
dense, sparse, and structured matrices over the integers and over finite fields. A cornerstone
of this library is the use of BLAS libraries such as ATLAS to provide high-speed routines for
matrices over small finite fields, through floating-point computations [11].

The algorithm of Schönhage and Strassen [25] is an asymptotically fast algorithm for mul-
tiplying integers in arbitrary precision. It uses the fast Fourier transform (FFT) and, for two
integers of at most n bits, it computes their product in O(n log n · log log n) bit operations. This
result remained the best known upper bound until the celebrated paper of Martin Fürer [15].
His integer multiplication algorithm runs in O

(
n log n · 2O(log∗ n)

)
bit operations, where log∗ n

is the iterated logarithm of n, defined as:

log∗ n :=

0 if n ≤ 1;
1 + log∗(log n) if n > 1

(1.1)

A detailed analysis suggests that Fürer’s algorithm is expected to outperform that of Schönhage
and Strassen for n ≥ 2264

.

1



2 Chapter 1. Introduction

The practicality of Fürer’s algorithm is an open question. And, in fact, the work reported in
this thesis is a contribution responding to this open question. Before presenting our approach,
we observe that the ideas of Fürer are not specific to integer multiplication and can be used
for multiplying polynomials with coefficients in the field of complex numbers or in a finite
field. In [9, 10] Anindya De, Piyush P. Kurur, Chandan Saha and Ramprasad Saptharishi gave
a similar algorithm which relies on finite field arithmetic and achieves the same running time
as Fürer’s algorithm. Working with polynomials with coefficients in a finite field will be our
framework. Hereafter, we explain the “main trick” of Fürer’s algorithm. To this end, we follow
an analysis reported by Liangyu Chen, Svyatoslav Covanov, Davood Mohajerani and Marc
Moreno Maza in [4].

1.1 Fürer’s trick
Consider a prime field Z/pZ and N, a power of 2, dividing p − 1. Then, the finite field Z/pZ
admits an N-th primitive root of unity1. Denote such an element by ω. Let f ∈ Z/pZ[x] be a
polynomial of degree at most N − 1. Then, computing the DFT of f at ω via an FFT produces
the values of f at the successively powers of ω, that is, f (ω0), f (ω1), . . . f (ωN−1). Using an
asymptotically fast algorithm, namely a fast Fourier transform (FFT), this calculation amounts
to:

1. N log(N) additions in Z/pZ,
2. (N/2) log(N) multiplications by a power of ω in Z/pZ.

If the size of p is k machine words, then
1. each addition in Z/pZ costs O(k) machine-word operations,
2. each multiplication by a power of ω costs O(M(k)) machine-word operations,

where n 7−→ M(n) is a multiplication time as defined in Section 2.3 Therefore, multiplication
by a power of ω becomes a bottleneck as k grows. To overcome this difficulty, we consider the
following trick proposed by Martin Fürer in [15, 16]. We assume that N = Ke holds for some
“small” K, say K = 32 and an integer e ≥ 2. Further, we define η = ωN/K , with J = Ke−1

and assume that multiplying an arbitrary element of Z/pZ by ηi, for any i = 0, . . . ,K − 1,
can be done within O(k) machine-word operations. Consequently, every arithmetic operation
(addition, multiplication) involved in a DFT on K points, using η as a primitive root, amounts
to O(k) machine-word operations. Therefore, such DFT of size K can be performed with
O(K log(K) k) machine-word operations. instead of O(K log(K) M(k)) without the assumption.
Since the multiplication time n 7−→ M(n) is necessarily super-linear, the former estimate is
asymptotically smaller than the latter one. As we shall see in Chapter 3, this result holds
whenever p is a so called generalized Fermat number.

Returning to the DFT of size N at ω and using the factorization formula of Cooley and
Tukey [6], we have

DFTJK = (DFTJ ⊗ IK)DJ,K(IJ ⊗ DFTK)LJK
J , (1.2)

see Section 5.1. Hence, the DFT of f at ω is essentially performed by:
1. Ke−1 DFT’s of size K (that is, DFT’s on polynomials of degree at most K − 1),
2. N multiplications by a power of ω (coming from the diagonal matrix DJ,K) and

1See Section 2.1.1 for this notion.



1.2. Thesis organization and contributions 3

3. K DFT’s of size Ke−1.
Unrolling Formula (1.2) so as to replace DFTJ by DFTK and the other linear operators involved
(the diagonal matrix D and the permutation matrix L) one can see that a DFT of size N = Ke

reduces to:
1. e Ke−1 DFT’s of size K, and
2. (e − 1) N multiplications by a power of ω.

Recall that the assumption on the cost of a multiplication by ηi, for 0 ≤ i < K, makes the cost
for one DFT of size K to O(K log2(K) k) machine-word operations. Hence, all the DFT’s of
size K together amount to O(e N log2(K)k) machine-word operations. That is, O(N log2(N) k)
machine-word operations. Meanwhile, the total cost of the multiplication by a power of ω is
O(e N M(k)) machine-word operations, that is, O(N logK(N) M(k)) machine-word operations.
Indeed, multiplying an arbitrary element of Z/pZ by an arbitrary power of ω requires O(M(k))
machine-word operations. Therefore, under our assumption, a DFT of size N at ω amounts to

O(N log2(N) k + N logK(N) M(k)) (1.3)

machine-word operations. When using generalized Fermat primes, we have K = 2k and the
above estimate becomes

O(N log2(N) k + N logk(N) M(k)). (1.4)

The second term in the big-O notation dominates the first one. Without our assumption, as
discussed earlier, the same DFT would run in O(N log2(N) M(k)) machine-word operations.
Therefore, using generalized Fermat primes brings a speedup factor of log(K) w.r.t. the direct
approach using arbitrary prime numbers.

In this thesis, we are addressing two questions. First, can we observe this speedup fac-
tor on a serial implementation written in the programming language C and run on modern
multicore processors. Indeed, the authors of [4] answered a similar question in the case of a
CUDA implementation targeting GPUs (Graphics Processing Units). Such architectures offer
to programmers a finer control of hardware resources than multicore processors, thus more
opportunities to reach high performance. Hence, this first question is a natural challenge.

Second, can we use FFT to implement multiplication in Z/pZ and obtain better perfor-
mance than using plain multiplication in Z/pZ? This was not attempted in the GPU implemen-
tation of [4]. However this is a natural question in the spirit of the algorithms of Schönhage
and Strassen [25] and Fürer [15], where fast multiplication is achieved by “composing” FFTs
operating on different vector sizes. The experimental results reported in Section 6 give positive
answers to both questions.

1.2 Thesis organization and contributions
This thesis is organized as follows. Chapter 2 is a brief review of the concepts of a prime
field and a multiplication time, the discrete Fourier transform, the fast Fourier Transform and
its application to polynomial multiplication. Chapter 3 presents our implementation of prime
fields of the form Z/pZ where p is a Generalized Fermat prime number; this is based on and
extends the work reported in [4].

Consider a Generalized Fermat prime number of the form p = rk+1, where k is a power of 2
and r is of machine-word size. As mentioned above, as well as in [4], multiplying by a power of



4 Chapter 1. Introduction

r modulo p can be done in O(k) machine-word operations. However, multiplying two arbitrary
elements of Z/pZ is a non-trivial operation. Note that we encode elements of Z/pZ in radix r
expansion. Thus, multiplying two arbitrary elements of Z/pZ requires to compute the product
of two univariate polynomials in Z[X], of degree less than k, modulo Xk + 1. In [4], this is done
by using plain multiplication, thus Θ(k2) machine-word operations. In Chapter 4, we explain
how to multiply two arbitrary elements x, y of Z/pZ via FFT. We give a detailed analysis of
the algebraic complexity of our procedure. A natural alternative to our approach would be to
compute (xy) mod p where the product xy is an integer computed after converting the radix r
expansion of x, y to integers (say in binary expansions). We show that this alternative approach
is theoretically and practically less efficient than the one via FFT.

In order to verify experimentally the benefits of Fürer’s trick, we need to perform FFT
computations over a Generalized Fermat prime field Z/pZ, for different implementations of
that prime field. One should be able to assume that the elements of Z/pZ are in radix r ex-
pansion (when p writes rk + 1 where k is a power of 2) or one should simply be able to use
traditional radix 2 expansions. Moreover, we consider multiplying two arbitrary elements of
Z/pZ via FFT. Overall, we need an implementation of FFT running over a variety of prime
fields. Chapter 5 reports on a generic implementation of FFT over finite fields in the BPAS
library [3]. This part is a joint work with Colin Costello and Davood Mohajerani.

Finally, Chapter 6 gathers experimental results which yield positive answers to the research
questions stated above. This part is also a joint work with Colin Costello and Davood Moha-
jerani.



Chapter 2

Background

2.1 Prime field arithmetic

Arithmetic operations for polynomials and matrices over prime fields play a central role in
computer algebra. It supports the computation over Galois fields that are essential to cryptog-
raphy algorithms as well as coding theory. In symbolic computation, the implementation of the
so-called modular methods, prime fields are often using machine word size characteristic. In-
creasing the arithmetic to greater precision can be done using the Chinese Remainder Theorem
(CRT).

However, using these small prime numbers can cause problems in some certain modular
methods. In particular, the so-called unlucky primes are to be avoided [1, 8]. Because of
the limitation of using small prime numbers, arithmetic over prime fields, where the primes
are multi-precision numbers, is desired for some problems, for instance, polynomial system
solving.

In algebra, a non-empty set A is a ring whenever A is endowed with two binary operations
denoted additively and multiplicatively such that
• both addition and multiplication are associative,
• both addition and multiplication admit a neutral element, denoted respectively 0 and 1,
• addition must be commutative and every x ∈ A admits a symmetric element w.r.t. the

addition, denoted −x.
• the multiplication is distributive w.r.t. the addition.

The ring A is commutative if its multiplication is commutative. The commutative ring A is a
field if every non-zero x ∈ A admits a symmetric element w.r.t. the multiplication, denoted x−1.
Examples of fields are the set Q of rational numbers, the set A of real numbers and the set C of
complex numbers. Examples of rings that are not fields are the set Z of integer numbers, the set
of 2 × 2 matrices with coefficients in R and the set of univariate polynomials with coefficients
in Q.

A Galois field, also known as finite field, is a field with finitely many elements. The residue
classes modulo p, where p is a prime number, form a field (unique up to isomorphism) called
the prime field with p elements and denoted by GF(p) or Z/pZ. Single-precision and multi-
precision primes are referred to as small primes and big primes respectively.

Let a, b be integers and p a prime number. The residue class of a in GF(p) is denoted by a

5



6 Chapter 2. Background

mod p. The sum and the product of a mod p and b mod p are given by (a + b) mod p and
a·b mod p, respectively. If b mod p is not zero, then the quotient of a mod p by b mod p
is given by a · b−1 mod p, where b−1 mod p is the inverse of b in GF(p). The element b−1

mod p can be computed in different ways, for instance via the Extended Euclidean Algorithm,
see Chapter 5 in [17]. The maps (a, b, p) 7−→ a + b mod p, (a, b, p) 7−→ a · b mod p
and (a, b, p) 7−→ ab−1 mod p are often called modular addition, modular multiplication and
modular division.

2.1.1 Primitive root of unity

Primitive roots of unity are a special kind of elements in a field that are used by some algo-
rithms, such as Fast Fourier transforms. For a field F and an integer n ≥ 1, an element ω ∈ F is
an n-th primitive root of unity, if it meets the following two requirements [17].

(i) ω is an n-th root of unity, that is, we have ωn = 1.
(ii) we have ωi , 1 for all 1 < i < n.

This definition generalizes to the case where F is a commutative ring by adjusting the second
requirement as follows: for all 1 < i < n, the element ωi − 1 is not a zero-divisor.

It follows from a classical result in group theory, see [17], that the field GF(p) admits an
n-th primitive root of unity if and only n divides p − 1. Assume from now on that that this
latter condition holds. Then, we can derive a simple probabilistic algorithm to compute an n-th
primitive root of unity in GF(p). By assumption, there exists an integer q such that p = qn + 1
holds. According to Fermat’s little theorem, for all a ∈ GF(p) with a , 1 and a , 0, we have
ap−1 = 1 which means aqn = 1. This implies that aq can be a candidate of n-th primitive root of
unity. If aq is not a n-th primitive root of unity, we would have aqn/2 = 1. Since aqn/2 = −1 or
aqn/2 = 1 must hold, we know that if aqn/2 = −1 holds then aq is a n-th primitive root of unity
in GF(p). This trick is certainly well-known. As far as we know, it was first proposed by Xin
Li in [12] and used in the modpn library [22].

Hence, we have Algorithm 2.1 for computing a n-th primitive root of unity in GF(p). In
our implementation of finite field arithmetic in the BPAS library [3], this algorithm has always
found an n-th primitive root of unity after a few tries and has never become a performance
bottleneck.



2.1. Prime field arithmetic 7

Algorithm 2.1 Computing the n-th primitive root of unity over GF(p)
1: input:

- a prime number p,
- an integer n which is a power of 2 dividing p − 1.

2: output:
- an n-th primitive root of unity over GF(p)

3: procedure PrimitiveRootOfUnity(p, n)
4: q := (p − 1)/n
5: d := qn/2
6: c := 0
7: while cd , −1 mod p do
8: c := randomnumber()
9: end while

10: return cd

11: end procedure

2.1.2 Montgomery multiplication
Montgomery multiplication is an algorithm for performing modular multiplication. It was pre-
sented by Peter L. Montgomery in 1985 [23]. This algorithm can speed up modular multiplica-
tion by avoiding division by the modulus without affecting modular addition and subtraction.

For a modulo p, let R be a number greater than p that is coprime to p. Assume also
that R is some power of 2; hence multiplication and division by R can be done by shifting
(on a computer using binary expansions for numbers); thus, they can be seen as inexpensive
operations to perform. Since gcd(R, p) = 1 holds, there exists a unique pair (R′, p′) of integers
satisfying the following relation:

RR′ − pp′ = 1 (2.1)

with 0 < R′ < p and 0 < p′ < R. So that we have p′ = −p−1 mod R.
For a non-negative integer a, where 0 ≤ a < Rp, Montgomery reduction computes c :=

aR−1 mod p without division modulo p. Indeed, we have:

m = ap′ mod R for 0 ≤ m < R
c = (a + mp)/R (2.2)

if c ≥ p holds, then c := c − p is performed.
To prove the correctness of c = aR−1 mod p, firstly, we have mp ≡ app′ ≡ −a mod R,

which means there exits an integer h such that mp = hR−a. Secondly, we have c = (a+mp)/R =

(a+hR−a)/R = h, which means c is an integer. Also, cR = a+mp ≡ a mod p, so that c ≡ aR−1

mod p. Lastly, since 0 ≤ a,mp < Rp, we have 0 ≤ a + mp < 2Rp, which gives us 0 ≤ c < 2p,
that is either c = aR−1 or c = aR−1 + p holds.

Let x, y ∈ GF(p). We “represent” x (or map x to) x̃ := xR mod p. Similarly, we repre-
sent y with ỹ := yR mod p. Montgomery multiplication uses Montgomery reduction on the
representatives x̃ and ỹ of x and y. Indeed, we have:

x̃ ỹR−1 = (xRyR)R−1 = (xy)R mod p. (2.3)
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Hence, computing (x̃ ỹ)R−1 via Montgomery reduction produces the representative

x̃y = (xy)R mod p (2.4)

of xy. We observe that ˜x + y = x̃ + ỹ mod p holds. Hence, x 7−→ x̃ defines a 1-to-1 map from
GF(p) to itself, which is:

1. compatible with addition, and
2. via Montgomery reduction, compatible with multiplication.

Therefore, if a sequence of arithmetic operations (addition, multiplication) is to be performed
in GF(p), it can be advantageous to:

1. map the input x, y, . . . to x̃, ỹ, . . .,
2. compute with x̃, ỹ, . . . instead of x, y, . . .,
3. revert the mapping on the output.

This is the strategy that we follow with discrete Fourier transforms over prime fields.

2.2 The discrete Fourier transform and the fast Fourier Trans-
form

Let A be a ring, and ω ∈ A is an n-th primitive root of unity. The Discrete Fourier Transform
(DFT) evaluates a univariate polynomial over A with degree at most n at the successive powers
of ω. For a polynomial f (x) =

∑n−1
i=0 fi xi ∈ A[x], the Discrete Fourier Transform is defined as

follows[17]:

Definition 1 The A-linear map

DFTω =

{
An → An

f → ( f (1), f (ω), . . . , f (ωn−2), f (ωn−1))

which evaluates a polynomial at the power of ω is called the Discrete Fourier Transform at
ω.

A Fast Fourier Transform (or FFT for short) is an algorithm which computes the DFT in
an efficient way. FFTs were (re-)discovered by Cooley and Tukey [6] in 1965. We present
below a popular example of the FFT, based on a 2-way divide-and-conquer strategy. Write
f (x) =

∑n−1
i=0 fi xi ∈ A[x]. Let q0 and m0 (resp. q1 and m1) be the quotient and the reminder of

f divided by xn/2 + 1 (resp. xn/2 − 1). Hence, we have:

f = q0 (xn/2 − 1) + m0 (2.5)

and
f = q1 (xn/2 + 1) + m1. (2.6)

Note that since the degree of f is less than n, the degrees of q0, q1,m0,m1 are less than n/2.
Observe that we compute q0, q1,m0,m1 easily. Indeed, let A, B ∈ A[x] be two polynomials with
degrees less than n/2 and

f = A xn/2 + B (2.7)
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Then we can re-write Equation (2.5) and (2.6) as

f = A (xn/2 − 1) + B + A (2.8)

and
f = A (xn/2 + 1) + B − A (2.9)

Hence, we have
m0 = B + A (2.10)

and
m1 = B − A (2.11)

Now we use equation 2.5 to evaluate f at ω2i for 0 ≤ i < n/2, we have

f (ω2i) = q0(ω2i) ((ω2i)n/2 − 1) + m0(ω2i) = q0(ω2i) (ωni − 1) + m0(ω2i) = m0(ω2i) (2.12)

since ωn = 1.
Similarly we use equation 2.6 to evaluate f at ω2i+1 for 0 ≤ i < n/2

f (ω2i+1) = q1(ω2i+1) ((ω2i+1)n/2+1)+m1(ω2i+1) = q1(ω2i+1) (ωni ωn/2+1)+m1(ω2i+1) = m1(ω2i+1)
(2.13)

since ωn/2 = −1. Indeed, since ω is a n-th primitive root of unity, we have ωn = (ωn/2)2 = 1
and ωn/2 , 1.

Now we can safely say that evaluating f at (1, ω, . . . , ωn−1) is the same as
• evaluating m0 at ω2i for 0 ≤ i < n/2
• and evaluating m1 at ω2i+1 for 0 ≤ i < n/2
To make things simple, we define m′1(x) = m1(ω x) so that we can evaluate m0 and m′1 at the

same points that are all the even powers of ω.
The FFT algorithm is described as follow.

Algorithm 2.2 The Fast Fourier Transform
1: input:

- n = 2k ∈ N
- a polynomial f =

∑n−1
i=0 fi xi ∈ A,

- (1, ω, . . . , ωn−1) powers of ω ∈ A where ω is a n-th primitive root of unity.
2: output:

- DFTω = ( f (1), f (ω), . . . , f (ωn−1))
3: procedure FastFourierTransform( f , ω, n)
4: if n = 1 then
5: return f0

6: end if
7: m0 :=

∑n/2−1
i=0 ( fi + fi+n/2)xi

8: m′1 :=
∑n/2−1

i=0 ( fi − fi+n/2)ωi xi

9: call the algorithm recursively to evaluate m0 and m′1 at the first n/2 powers of ω2

10: return (m0(1),m′1(1), . . . ,m0(ωn−2,m′1(ωn−2))
11: end procedure
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2.3 Multiplication time
Throughout this thesis, we discuss many algorithms that are based on fast polynomial and
integer multiplication algorithms. In order to simplify the notation for these multiplication
algorithms in our analysis, we follow the definition of multiplication time in [17](Definition
8.26) that is:

Definition 2 Let M : N → R be a function satisfying M(n) ≥ n and M(m + n) ≥ M(m) + M(n)
for all n,m ∈ N. We say that M : N → R is a multiplication time for polynomials if, for
every commutative ring A, for every non-negative integer n, any two polynomials in A[x] of
degree less than n can be multiplied using at most M(n) operations in A. Similarly, we say that
M : N→ R is a multiplication time for integers if, for non-negative integer n, any two integers
of bit-size less than n can be multiplied using at most M(n) word operations.

In the next section, we give multiplication times based on well-known polynomial multi-
plication algorithms.

2.4 Dense univariate polynomial multiplication
Multiplication between dense univariate polynomials is a widely used procedure in computer
algebra. As the degree of the polynomials increase, the complexity grows significantly such
that different fast multiplication algorithms are proposed for polynomials with different fea-
tures. Here we give a brief introduction on these algorithms and the comparison among them.

Classical algorithm
We have learned the most classic and naive polynomial multiplication algorithm in public
school. It is given by the definition of polynomial multiplication. For two polynomials f (x)
and g(x), we simply multiply each term in f (x) with each term in g(x) and use addition to
normalize the final result. Given deg( f ) = n and deg(g) = m, we have the following general
equation

f (x) · g(x) =

n−1∑
i=0

m−1∑
j=0

fi g j xi+ j (2.14)

we need mn multiplications and mn additions in total. Hence, to multiply two polynomials
with degree less than n, we have the multiplication time of the classic algorithm as

M(n) = O(n2) (2.15)

Karatsuba’s algorithm
Karatsuba’s algorithm is a fast multiplication algorithm, discovered in 1962 by Karatsuba [21].
It increases the total number of operations but using more addition and subtraction to reduce
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the number of multiplications. For example, we want to compute f = a + b times g = c + d,
using the classic multiplication we have

f g = ac + bc + ad + bd (2.16)

which requires four multiplication and three addition operations. But if using the following
method

f g = ac + e + bd, e = (a + b)(c + d) − ac − bd = bc + ad (2.17)

we only need three multiplications and some additions and subtractions. Since multiplication
is more expensive than addition and subtraction, the total cost decreases.

Now, let’s say we have two polynomials f =
∑n−1

i=0 fi xi and g =
∑n−1

j=0 g j x j with degree less
than n. We rewrite them using the following representation

f = F1 xn/2 + F0 (2.18)
g = G1 xn/2 + G0 (2.19)

with the degree of F1, F0,G1,G0 less than n/2. We compute f times g by

f g = F1 G1 xn + ((F1 + F0) (G1 + G0) − F1 G1 − F0 G0) xn/2 + F0 G0 (2.20)

We only need three multiplications of polynomials with degree less than n/2 and some addi-
tions. By using the above equation recursively on smaller degrees, we will save the total cost
significantly.

Here is an algorithm using this idea.

Algorithm 2.3 Karatsuba Multiplication
1: input:

- n = 2k ∈ N
- two polynomials f , g ∈ A[x] with degree less than n where A is a commutative ring

with 1.
2: output:

- f ∗ g ∈ A[x]
3: procedure KaratsubaMultiplication( f , g, n)
4: Let f = F1 xn/2 + F0 with deg(F1), deg(F0) < n/2
5: Let g = G1 xn/2 + G0 with deg(G1), deg(G0) < n/2
6: F := F1 + F0

7: G := G1 + G0

8: Compute F1 G1, F G and F0 G0 by calling this procedure recursively
9: return F1 G1 xn + (F G − F1 G1 − F0 G0) xn/2 + F0 G0

10: end procedure

Algorithm 2.3 computes the multiplication between two polynomials with degree less than
n with at most 9nlog 3 operations over a ring (see [17] Section 8.1 for more details). Hence, the
multiplication time of Karatsuba’s algorithm is

M(n) = O(nlog 3/ log 2) = O(n1.59) (2.21)
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There is a further generalization of Karatsuba’s algorithm, known as Toom-Cook algorithm,
that can be even faster with n large enough, which splits the polynomials into k parts, for k ≥ 3
and k ∈ Z.

FFT-based algorithm
To multiply two polynomials with degree less than n on a ring A[x], the convolution w.r.t n is
commonly used[17].

Definition 3 The convolution w.r.t n of polynomials f =
∑n−1

i=0 fi xi and g =
∑n−1

j=0 g j x j is

h =

n−1∑
k=0

hk xk (2.22)

where each hk is
hk =

∑
i+ j≡k mod n

fi g j (2.23)

We use f ∗n g to represent the convolution of two polynomials with degree less than n. If n is
clear from content we can simple use f ∗ g instead.

Notice that f ∗ g ≡ f (x) g(x) mod (xn − 1), which means that the convolution of f and g in
ring A[x] is equivalent to multiplying f and g in A[x]/ 〈xn − 1〉

We know from [17] that

DFTω( f ∗ g) = DFTω( f ) DFTω(g) (2.24)

hence, the convolution of two polynomials can be computed using the following algorithm.

Algorithm 2.4 Fast Convolution
1: input:

- n = 2k ∈ N
- two polynomials f , g ∈ A[x] with degree less than n,
- a n-th primitive root of unity ω ∈ A.

2: output:
- f ∗ g ∈ A[x]

3: procedure FastConvolution( f , g, ω, n)
4: compute the first n powers of ω
5: α := DFTω( f )
6: β := DFTω(g)
7: γ := α β . Component-wise multiplication
8: return (DFTω)−1(γ) := 1

n DFTω−1(γ)
9: end procedure

Recall from Section 2.2 that the Fast Fourier Transform can compute the Discrete Fourier
Transform quickly. Figure 2.1 shows the FFT-based polynomial multiplication inA[x]/ 〈xn − 1〉.
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Figure 2.1: FFT-based univariate polynomial multiplication

The whole procedure needs 9
2n log n + O(n) arithmetic operations in A (see [17] Theorem

8.18 for details) so that the multiplication time of FFT-based multiplication is

M(n) = O(n log n) (2.25)

Table2.1 gives the multiplication time for some popular fast multiplication algorithms.

Table 2.1: Multiplication time of different algorithms.
Algorithm M(n)

Classic Algorithm O(n2)

Karatsuba’s Algorithm O(n1.585)

Toom-3 O(n1.465)

Toom-4 O(n1.404)

FFT-based Algorithm O(n log n)

Schönhage-Strassen’s Algorithm O(n log n log log n)

2.5 Big O and Θ notations

When analyzing the complexity of algorithms, we use the big O and the Θ notations, where
big O gives a asymptotic upper bound of a function and Θ gives an order of magnitude of a
function.

Let f and g be functions from N to R.
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Definition 4 We say that g(n) is in the order of magnitude of f (n) and write f (n) ∈ Θ(g(n)) if
there exists two strictly positive constants c1 and c2 such that for n big enough we have

0 ≤ c1g(n) ≤ f (n) ≤ c2g(n)

Definition 5 We say that g(n) is an asymptotic upper bound of f (n) and write f (n) ∈ O(g(n))
if there exists a strictly positive constant c2 such that for n big enough we have

0 ≤ f (n) ≤ c2g(n)

The bigO (and Θ) can also be used with multiple variables as follows. Let f , g be functions,
with positive real values, and depending on a vector ~n = (n1, . . . , nq) of non-negative integers.
We write f (~n) ∈ O(g(~n)) whenever there exits two strictly positive constant M and C, such that
for all ~n satisfying ni ≥ M for all 1 ≤ i ≤ q we have 0 ≤ f (~n) ≤ Cg(~n) [7].

For us the multivariate version of bigO given above is too strong. We define the multivariate
big O as follows for two integer variables w, n.

Definition 6 f (w, n) ∈ O(g(w, n)) means that there exist three positive integer constants w1,
w2, n1, with w1 < w2, and a positive real constant c such that for all positive integers w, n, if
w1 ≤ w ≤ w2 and n ≥ n1 both hold, then we have f (w, n) ≤ cg(w, n).

2.6 Syntax of pseudo-code
We use the following syntax in all the pseudo-code of the algorithms:
• a := b assigns value b to variable a
• a = b returns true if a is equal to b, otherwise returns false
• ~x is a vector
• xi is the i-th element in ~x

Here are some notations for the C code we present in the paper:
• usfixn64 is the type of unsigned 64-bit integer
• sfixn is the type of signed 64-bit integer
• U64 MASK is defined as 264 − 1
• U128 MASK is defined as 2128 − 1



Chapter 3

Generalized Fermat prime field arithmetic

Small prime field arithmetic has been implemented in different computer algebra systems. With
the help of tricks like Montgomery’s reduction, this can be done efficiently, but the small char-
acteristic restricts the precision to a single machine word. Multi-precision numbers can be
handled using the Chinese Remainder Theorem. Nevertheless, for certain algorithms in com-
puter algebra, like modular methods for polynomial systems [1, 8, 2] it is desirable to use prime
fields of large characteristic, thus computing modulo prime numbers with size on the order of
several machine words.

Since modular methods for polynomial systems rely on polynomial arithmetic, those large
prime numbers must support FFT-based algorithms, such as FFT-based polynomial multiplica-
tion. This leads us to consider the so-called Generalized Fermat prime numbers.

The n-th Fermat number can be denoted by Fn = 22n
+ 1. This sequence of numbers plays

an essential role in number theory. Arithmetic operations on fields based on Fermat numbers
are simpler than those of other arbitrary prime numbers since 2 is the 2n+1-th primitive root of
unity modulo Fn. But, unfortunately, the largest Fermat prime number known now is F4. This
triggered the interests of finding Fermat-like numbers. Generalized Fermat numbers are one of
these kinds.

Numbers that are in the form of a2n
+ b2n

with a, b any co-prime integers, where a > b > 0
and n > 0 hold, are called generalized Fermat numbers. Among all, those with b = 1 are of the
most interest; we commonly write generalized Fermat numbers of the form a2n

+1 as Fn(a). For
a generalized Fermat number p, we use Z/pZ to represent the finite field GF(p). In particular,
in the field Z/Fn(a)Z, a is a 2n+1-th primitive root of unity. But with the binary representation
of numbers on computers, the arithmetic operations on such fields are not as simple as those
of Fermat numbers. To solve this problem, a special kind of generalized Fermat number is
defined in the previous work of our research group [4].

Any integer in the form of Fn(r) = (2w±2u)k + 1 is called a sparse radix generalized Fermat
number, where w > u ≥ 0. Table 3.1 lists some sparse radix generalized Fermat numbers that
are primes. For each prime p = Fn(r), k is some power of 2 and the prime writes as p = rk + 1.
In the same table, the number 2e is the largest power of 2 that divides p − 1, which gives the
maximum length of a vector to which we can apply a 2-way FFT algorithm.

In Section 3.1, we will introduce how we can use the radix-r representation to represent the
elements in Z/pZ. Section 3.2 will introduce the special primitive roots of unity that can benefit
us when computing FFT over Z/pZ, and will give an algorithm on how to get those primitive

15
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Table 3.1: SRGFNs of practical interest.
p max{2e s.t. 2e | p − 1}

(263 + 253)2 + 1 2106

(264 − 250)4 + 1 2200

(263 + 234)8 + 1 2272

(262 + 236)16 + 1 2576

(262 + 256)32 + 1 21792

(263 − 240)64 + 1 22560

(264 − 228)128 + 1 23584

roots. Next, in Section 3.3, we will show the algorithm for doing addition and subtraction in
Z/pZ. In Section 3.4, we will discuss how we can multiply any elements with a power of r
efficiently. This idea fits in Fürer’s algorithm that, for DFT on certain points, multiplication by
the particular primitive roots can be done in a very cheap way. Last, in Section 3.5, we give the
basic algorithm on multiplication between two arbitrary elements in Z/pZ.

3.1 Representation of Z/pZ

In the finite prime field Z/pZ, where p = rk + 1, each element x is represented by a vector
~x = (xk−1, . . . , x0) of length k. We restrict all the coefficients to be non-negative integers so that
we have

X ≡ xk−1 rk−1 + xk−2 rk−2 + · · · + x1 r + x0 mod p (3.1)

The following two cases make the representation unique for each element:
1. When x ≡ p − 1 mod p holds, we have xk−1 = r and xk−2 = · · · = x0 = 0.
2. When 0 ≤ x < p − 1 holds, we have 0 ≤ xi < r for i = 0, . . . , k − 1.

We can also use a univariate polynomial fx ∈ Z[R] to represent x: we write fx =
∑k−1

i=0 xi Ri,
such that x ≡ fx(r) mod p.

When computing the representation ~x of a number x < p, the case where x = p−1 is trivial,
since we can directly set xk−1 to r and xk−2, . . . , x0 to 0. Consider the case 0 ≤ x < p − 1. Let
qk = 0 and sk = x. Then, for 0 ≤ i < k, qi and si are the quotient and the remainder in the
Euclidean division of si+1 by ri so that we have xi = qi, for 0 ≤ i < k.

3.2 Computing the primitive root of unity in Z/pZ

Recall that for any n that divides p − 1, we can use algorithm 2.1 to find an n-th primitive root
of unity in Z/pZ. Now we want to consider the case of finding an N-th primitive root of unity
ω in Z/pZ such that ωN/2k = r holds. Indeed, computing a DFT at such ω on a vector of size
N would take advantage of the fact that multiplying by a power of r can be done in linear time,
see Section 3.4.

In Algorithm 3.1, the input N is a power of 2 that divides p − 1 and the input g is a N-th
primitive root of unity in Z/pZ.
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Algorithm 3.1 Primitive N-th root ω ∈ Z/pZ such that ωN/2k = r
1: procedure BigPrimeFieldPrimitiveRootOfUnity(N, r, k, g)
2: a := gN/2k

3: b := a
4: j := 1
5: while b , r do
6: b := a b
7: j := j + 1
8: end while
9: ω := g j

10: return (ω)
11: end procedure

From the definition of generalized Fermat prime numbers we know that r is a 2k-th primi-
tive root of unity in Z/pZ, where p = rk + 1. While gN/2k is a 2k-th root of unity, it must equal
to some power of r, say rt mod p for some 0 ≤ t < 2k. Let j be a non-negative integer, q and
s are the quotient and the remainder of j in the Euclidean division by 2k, so we have

j = q · 2k + s (3.2)

and

g jN/2k = g2kq+s gN/2k = gs gN/2k = (gN/2k)s = rts (3.3)

By the definition of primitive root of unity, the powers rts are pairwise different for 0 ≤ s <
2k and for some si, rtsi = r holds. Hence, for some ji = qi · 2k + si, we will have (gN/2k) ji = r.
Then ω = g ji is the primitive root of unity that we want.

3.3 Addition and subtraction in Z/pZ

Let x, y ∈ Z/pZ represented by vectors ~x and ~y. The following algorithm 3.2 computes −−−→x + y
that represents the sum of x and y in Z/pZ. We firstly compute the component-wise addition
of ~x and ~y with carry. If there’s no carry beyond the last component uk−1, then u0, . . . , uk−1 is
the vector representation of x + y in Z/pZ. If there is a carry, then the sum is over rk and we
need to do a subtraction of carry by the vector ~u, since rk ≡ p − 1 ≡ −1 mod p.
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Algorithm 3.2 Computing x + y ∈ Z/pZ for x, y ∈ Z/pZ
1: procedure BigPrimeFieldAddition(~x, ~y, r, k)
2: compute zi = xi + yi in Z/pZ, for i = 0, . . . , k − 1,
3: let zk = 0,
4: for i = 0, . . . , k − 1, compute the quotient qi and the remainder si in the Euclidean

division of zi by r, then replace (zi+1, zi) by (zi+1 + qi, si),
5: if zk = 0 then return (zk−1, . . . , z0),
6: if zk = 1 and zk−1 = · · · = z0 = 0, then let zk−1 = r and return (zk−1, . . . , z0),
7: let i0 be the smallest index, 0 ≤ i0 ≤ k, such that zi0 , 0, then let zi0 = zi0 − 1, let

z0 = · · · = zi0−1 = r − 1 and return (zk−1, . . . , z0).
8: end procedure

In this theoretical algorithm, we use a Euclidean division to compute the carry and the
remainder of xi + yi, which requires a division and a subtraction operation. But in practical
implementation, we can avoid the expensive division. The following lists the C code we used
in the BPAS library.

According to the method in 3.1, each component of ~x and ~y is in the range of [0, k − 1] for
0 ≤ i ≤ k− 2 and xk−1, yk−1 ∈ [0, k], so that we can safely say that the results of the component-
wise addition will not be greater than 2r − 2 for the first k − 1 pairs of component. Hence, if
the sum is greater than r, we can simply subtract the result by r and set the carry to 1, instead
of using an Euclidean division. For the last pair xk−1 and yk−1, the two special cases are one of
them is equal to r and both of them are equal to r. For the first case, the maximum sum of xk−1

and yk−1 is 2r − 1, there is no difference from the previous method.
Now, let’s consider the second case where both xk−1 and yk−1 are equal to r. And all of

the other components in the vectors are 0, such that both x and y are equal to rk. When we
add the two components together uk−1 is equal to 2r and by using line 9 to 11 from listing
3.1, we have uk−1 = r and carry = 1. Then uk−1 is the first ui that is not 0. In line 33, we
have uk−1 = uk−1 − 1 = r − 1 and in line 31 we set ui = r − 1 for 0 ≤ i < k − 1. The
result we get is ui = r − 1 for 0 ≤ i < k, that is equal to u ≡ −2 mod p, indeed that
x + y ≡ rk + rk ≡ 2(p − 1) ≡ 2p − 2 ≡ −2 mod p. So far we have proved that our algorithm
works correctly and efficiently for all of the cases.
1 sfixn* addition (sfixn * x, sfixn *y, int k, sfixn r) {
2 short c = 0;
3 short post = 0;
4 sfixn sum = 0;

5 int i = 0;
6
7 for (i=0;i < k;i++) {
8 sum = x[i] + y[i] + c;

9 if (sum >= r ) {
10 c = 1;

11 x[i] = sum - r;

12 }

13 else {
14 x[i] = sum;

15 c = 0;

16 }
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17 }

18
19 if (c > 0){
20 post = -1;

21
22 for (i = 0; i < k; i++) {
23 if (x[i] != 0){
24 post = i;

25 break;
26 }

27 }

28
29 if (post >= 0){
30 for (i = 0; i < post; i++) {
31 x[i] = r - 1;

32 }

33 x[post]--;

34 }

35 else {
36 x[k-1] = r;

37 for (i = 0;i < k-1; i++){
38 x[i] = 0;

39 }

40 }

41 }

42
43 return x;
44 }

Listing 3.1: Addition in a Generalized Fermat Prime Field

Similarly, we have an algorithm BigPrimeFieldSubtraction(~x, ~y, r, k) for computing ←−−→x − y
represents (x − y) ∈ Z/pZ.

3.4 Multiplication by power of r in Z/pZ

Multiplication between two arbitrary elements in Z/pZ can be very complicated and expensive,
and Chapter 4 will explain that process in greater detail. Now, let us consider the case of
multiplication between elements x, y ∈ Z/pZ, where one of them is a power of r. We assume
that y = ri for some 0 ≤ i ≤ 2k. The cases that i = 0 and i = 2k are trivial, since r is a 2k-th
primitive root of unity in Z/pZ, we have r0 = r2k = 1. Also we have rk = −1 in Z/pZ, so that
for i = k, we have x = −x and for k < i < 2k, ri = −ri−k holds. Now let us only consider the
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case that 0 < i < k, we have the following equation:

xri ≡ (xk−1 rk−1+i + · · · + x0 ri) mod p

≡
j=k−1∑

j=0
x jr j+i mod p

≡
h=k−1+i∑

h=i
xh−irh mod p

≡ (
h=k−1∑

h=i
xh−irh −

h=k−1+i∑
h=k

xh−irh−k) mod p

We see that for all 0 ≤ i ≤ 2k, x · ri is reduced to some shift and a subtraction. We call this
process cyclic shift. The following gives the C implementation in the BPAS library.
1 sfixn* MulPowR(sfixn *x,int s, int k, sfixn r){
2 sfixn *a =(sfixn*)calloc(sizeof(sfixn),k);
3 sfixn *b =(sfixn*)calloc(sizeof(sfixn),k);
4 sfixn *c =(sfixn*)calloc(sizeof(sfixn),k);
5 s = s%(2 * k);

6 if (s == 0)
7 return x;
8 else if (s == k)
9 return BigPrimeFieldSubtraction(c,x,k,r);

10 else if ((s > k) && (s < (2 * k))){
11 s = s - k;

12 x = BigPrimeFieldSubtraction(c,x,k,r);

13 }

14 int i;
15 for (i = 0; i < (k - s); i++)
16 b[i + s] = x[i];

17 for (i = k - s; i < k; i++)
18 a[i - (k - s)] = x[i];

19 if(x[k-1] == r){
20 a[s-1] -=r;

21 a[s] ++;

22 }

23 return BigPrimeFieldSubtraction(b,a,k,r);
24 }

Listing 3.2: Multiplication by power if r in a Generalized Fermat Prime Field

3.5 Multiplication between arbitrary elements in Z/pZ

According to Section 3.1, we use the univariate polynomials fx, fy ∈ Z[R] to represent input
elements x, y ∈ Z/pZ respectively. Algorithm 3.3 computes the product x · y ∈ Z/pZ. In the
first step, we multiply the two polynomials over Z and compute the remainder fu of the product
modulo Rk + 1. Then, we convert all the coefficients of fu into the radix-r representation in
Z/pZ. Finally we multiply each coefficient with the corresponding power of r using the “cyclic
shift” operation from Section 3.4 and add all the results together.
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Algorithm 3.3 Computing x · y ∈ Z/pZ for x, y ∈ Z/pZ
1: input:

- an integer k and radix r,
- two polynomials fx and fy whose coefficient vectors are ~x, ~y.

2: output:
- a vector ~u

3: procedure BigPrimeFieldMultiplication( fx, fy, r, k)
4: fu(R) := fx(R) · fy(R) . computing fx times fy in Z[R]
5: fu(R) := fu(R) mod (Rk + 1) . we get fu(R) =

∑k−1
i=0 ui · Ri

6: ~u is the coefficient vector of fu

7: for 0 ≤ i < k do
8: ~ui := ui ∈ Z/pZ . compute a radix representation of each ui using method in 3.1
9: end for

10: ~u := ~u0 . add all the ui together using the algorithm 3.2
11: for 1 ≤ i < k do
12: ~u :=BigPrimeFieldAddition(~u, ~ui, k, r)
13: end for
14: return ~u
15: end procedure

In the following chapter, we will discuss the multiplication between arbitrary elements in
more detail, and we analyze the different implementations of the algorithm.



Chapter 4

Optimizing multiplication in Generalized
Fermat prime fields

In this chapter, we will discuss how to multiply two arbitrary elements in Z/pZ efficiently
using FFT, when p is a Generalized Fermat prime. Firstly, in Section 4.1, we outline two
algorithms that we can use for this multiplication: one is based on polynomial multiplication
(see Section 4.1.1) and the other one is based on integer multiplication by means of the GMP
library [18] (see Section 4.1.2). Then, in Section 4.2 we provide detailed complexity analysis
on the two approaches. Finally, in Section 4.3, we present the implementation of the FFT-based
polynomial-based multiplication. We break down the algorithm into sub-routines and explain
in details for each part. The C functions that we use can be found in Appendix A.

4.1 Algorithms

Let p be a Generalized Fermat prime. When actually implementing the multiplication of two
arbitrary elements in the field Z/pZ, we use two different approaches. In the first approach, we
follow the basic idea explained in Chapter 3 (see Algorithm 3.3) which treats any two elements
x, y in the field as polynomials fx, fy and uses polynomial multiplication algorithms to compute
the product xy. The other approach involves converting the elements x, y from their radix-r
representation into GMP integer numbers and letting the GMP library [18] do the job.

4.1.1 Based on polynomial multiplication

In Section 3.5 we gave the basic algorithm for multiplying two arbitrary elements of Z/pZ
based on polynomial multiplication. In practice, there are more details to be considered in
order to reach high-performance. For instance, how do we efficiently convert a positive integer
in the range (o, r3) into radix-r representation.

Let us consider how to calculate u = x y mod p with x, y, u ∈ Z/pZ. Here we want to use
the polynomial representation of the elements in the field, that is, fx(R) = xk−1 Rk−1 + · · ·+x1 R+

x0 and fy(R) = yk−1 Rk−1 + · · · + y1 R + y0. The first step is to multiply the two polynomials fx

and fy. We can use different polynomial multiplication algorithms depending on the value of

22
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k. Let us look at the expansion of fu. Recall that taking a polynomial modulo by Rn + 1 means
replacing every occurrence of Rn by −1.

fu(R) = fx(R) · fy(R) mod (Rk + 1)

=

2 k−2∑
m=0

i+ j=m∑
0≤i, j<k

xi y j Rm mod (Rk + 1)

= (xk−1 y0 + xk−2 y1 + xk−3 y2 + · · · + x1 yk−2 + x0 yk−1) Rk−1

+ (xk−2 y0 + xk−3 y1 + · · · + x1 yk−3 + x0 yk−2 − xk−1 yk−2) Rk−2

+ (xk−3 y0 + xk−4 y1 + · · · + x0 yk−3 − xk−1 yk−2 − xk−2 yk−1) Rk−2

. . .

+ (x1 y0 + x0 y1 − xk−1 y2 − · · · − x2 yk−1) R
+ (x0 y0 − xk−1 y1 − · · · − x1 yk−1)

=

k−1∑
m=0

(
i+ j=m∑
0≤i, j<k

xi y j −

i+ j=k+m∑
0≤i, j<k

xi y j) Rm

Each coefficient ui of fu is the combination of k monomials, so the absolute value of each
ui is bounded over by k · r2 which implies that it needs at most blog k + 2 log rc + 1 bits to
be encoded. Since k is usually between 4 to 256, a radix r representation of ui of length 3 is
sufficient to encode ui. Hence, we denote by [ci, hi, li] the 3 integers uniquely given by:

1. ui = cir2 + hir + li,
2. 0 ≤ hi, li < r.
3. ci ∈ [−(k − 1), k],
4. ciui ≥ 0 holds.

Then, we can rewrite:

fu(R) = fx(R) · fy(R) mod (Rk + 1)
= (c0R2 + h0R + l0) + (c1R2 + h1R + l1)R + (c2R2 + h2R + l2)R2 + · · ·

+(ck−2R2 + hk−2R + lk−2)Rk−2 + (ck−1R2 + hk−1R + lk−1)Rk−1

=

k−1∑
i=0

(ci R2+i + hi R1+i + li Ri)

Now we obtain three vectors~c = [c0, c1, . . . , ck−1],~h = [h0, h1, . . . , hk−1] and~l = [l0, l1, . . . , lk−1]
with k coefficients each. As we shift ~c to the right twice and ~h to the right once, we deduce
three numbers c, h, l in the radix-r representation.

c = ck−3 rk−1 + ck−4 rk−2 + · · · + c0 r2 + ck−2 r + ck−1

h = hk−2 rk−1 + hk−3 rk−2 + · · · + h1 r2 + h0 r + hk−1

l = lk−1 rk−1 + lk−2 rk−2 + · · · + l2, r2 + l1 r + l0
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At last we need two additions in Z/pZ to compute the result u = c + h + l = x y mod p
with x, y, u ∈ Z/pZ.

Now we consider the question of how to calculate [l, h, c] quickly. Because of the special
structure of r, where only two bits are 1, we can use some shift operations to reduce the bit
complexity and save on the cost of divisions. Different r’s have different non-zero bits, but for
clarity of presentation we use a particular radix r, namely r = 263 +234, for the prime P = rk +1
with k = 8.

Let xi, y j be any two digits in the radix r representation of x, y ∈ Z/pZ. Since 0 ≤ xi, y j ≤ r
holds, we have

xi y j = (xi0 + xi1 r) (y j0 + y j1 r)
= xi0 y j0 + (xi0 y j1 + xi1 y j0) r + xi1 y j1 r2

where 0 ≤ xi0, y j0 < r, and xi1, y j1 ∈ {0, 1}. Hence, we have 0 ≤ xi0y j1, xi1y j0, xi1 y j1 < r. We
only need to consider the case of xi0 y j0, where 0 ≤ xi0 y j0 < r2 < 2127. We can rewrite

xi0y j0 = (a0 + a1232)(b0 + b1232)
= a0b0 + a0b1232 + a1b0232 + a1b1264

= c0 + c1264.

Notice that a0, a1, b0, b1 are in [0, 232), using addition and shift operation, we can rewrite
xi0y j0 into the form c0 + c1264, where c0 < 264 and c1 < 263. Then, we have:

xi0y j0 = c0 + c1264

= c0 + c′1263 where c′1 = 2 c1, 0 ≤ c′1 < 264

= c0 + c′1(263 + 234) − c′1234

= c0 + c′1r − c′1234,

where the part c0 + c′1r can be rewritten into the form of l + hr + cr2 easily.
For c′1234, where 0 ≤ c′1 < 264 holds, we observe:

c′1234 = (d0 + d1229)234 with 0 ≤ d0 < 229, 0 ≤ d1 < 235

= d0234 + d1263

= d0234 + d1(263 + 234) − d1234

= (d0 − d1)234 + d1r
= (e0 + e1229)234 + d1r with |e0| < 229, |e1| < 26

= (e0 − e1)234 + e1r + d1r.

Since |(e0−e1)234| < r holds, the number c′1234 can easily be rewritten into the form of l+hr+cr2.
We add the (l, h, c)-representations of each part together, with some normalization we can get
the result we need where xi y j = l + h r + c r2.

To summarize, the algorithm below uses only addition and shift operation to compute the
(l, h, c)-representation of xiy j. for 0 ≤ x,y j < 264, and 0 ≤ l, h < r, and c ∈ {0, 1}.
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Algorithm 4.1 An algorithm for rewriting xiy j into l + hr + cr2

1: procedure Rewrite([l, h, c] = [xi, y j])
2: if xi ≥ r then
3: xi1 := 1
4: xi0 := xi − r
5: else
6: xi1 := 0
7: xi0 := xi

8: end if . xi = xi0 + xi1r
9: if yi ≥ r then

10: yi1 := 1
11: yi0 := yi − r
12: else
13: yi1 := 0
14: yi0 := yi

15: end if . yi = yi0 + yi1r
16:
17: [v1, v2, v3] := [0, xi0 yi1, 0]; . xi0yi1r
18: [v4, v5, v6] := [0, xi1 yi0, 0]; . xi1yi0r
19: [v7, v8, v9] := [0, 0, xi1 yi1]; . xi1yi1r2

20:
21: c0 := xi0 yi1 − 264

22: c1 := (xi0 yi1) >> 64
23: c′1 := 2 c1 . xi0yi0 = c0 + c1264 = c0 + c′1 263

24: if c0 ≥ r then
25: [v10, v11, v12] := [c0 − r, 1, 0]
26: else
27: [v10, v11, v12] := [c0, 0, 0]
28: end if . c0 = v10 + v11r + v12r2

29: if c′1 ≥ r then
30: [v13, v14, v15] := [0, c′1 − r, 1]
31: else
32: [v13, v14, v15] := [0, c′1, 0]
33: end if . c′1 r = v13 + v14r + v15r2;
34:
35: d1 := c′1 >> 29;
36: d0 := c′1 − d1 << 29;
37: e1 := (d0 − d1) >> 29;
38: e0 := (d0 − d1 − e1 << 29);
39: [v16, v17, v18] := [(e0 − e1) << 34, e1 + d1, 0];
40:
41: [l, h, c] := [v1 + v4 + · · · + v16, v2 + v5 + · · · + v17, v3 + v6 + · · · + v18];
42: return [l, h, c];
43: end procedure
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The following algorithm is to calculate u = x y mod p.

Algorithm 4.2 Computing u = x y ∈ Z/pZ for x, y ∈ Z/pZ using polynomial multiplication
1: procedure PolynomialMultiplication(~x, ~y, r, k)
2: Multiply fu(R) = fx(R) · fy(R) mod (Rk + 1)
3: for m from 0 to k - 1 do
4: [li, hi, ci] =

∑i+ j=m
0≤i, j<k xi y j −

∑i+ j=k+m
0≤i, j<k xi y j

5: end for
6: . The above k clauses can be executed in parallel
7:
8: S hi f tToRight[c0, c1, . . . , ck−1]
9: S hi f tToRight[ck−1, c0, . . . , ck−2]

10: S hi f tToRight[h0, h1, . . . , hk−1]
11: u = c + h + l mod p
12: return u
13: end procedure

4.1.2 Based on integer multiplication
This approach is more straight forward. For two numbers x and y in our radix r representation,
we map the vectors ~x and ~y to two polynomials fx, fy ∈ Z[R]. Then we evaluate the two
polynomials at r, which gives us two integers X and Y , using integer multiplication and modulo
operation gives the result U = X Y mod p. At last, we only need to convert the product back
to the radix r representation. See Algorithm 4.3.

Algorithm 4.3 Computing x y ∈ Z/pZ for x, y ∈ Z/pZ using integer multiplication
1: procedure IntegerMultiplication(~x, ~y, r, k, p)
2: X := 0 Y := 0 . X and Y are GMP integers
3: for i from k − 1 to 0 do
4: X := X · r + xi

5: Y := Y · r + yi

6: end for
7: U := (X · Y) mod p
8: return GeneralizedFermatPrimeField(U)
9: end procedure

4.2 Analysis
Here we want to analyze the complexity of multiplication in Z/pZ, for p = rk + 1, with radix
r representation. Since any number in our representation multiplied by any power of r is
just a cyclic shift, we now only consider the case that multiplication is between two arbitrary
numbers, where both of them are not powers of r.
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In the following analysis, we compute u = x · y, where x = xk−1rk−1 + · · · + x0 and
y = yk−1rk−1 + · · · + y0 are two numbers in our Generalized Fermat Prime Field, with radix
r representation. Let M be a multiplication time and let ω be the number of bits in a machine
word. We want to analyze the complexity of multiplication with different approaches.

4.2.1 Based on polynomial multiplication
We view x and y as polynomials fx and fy in a variable R with integer coefficients x0, . . . , xk−1

and y0, . . . yk−1, whose bit sizes are at most that of one machine word. First step in our mul-
tiplication is to multiply fx and fy in Z[R], obtaining fu = u2k−2R2k−2 + · · · + u0. The multi-
plication time of multiplying two polynomials of degree less than k is M(k). The complexity
of multiplying each pair of coefficients is M(ω) and the largest bit size of the coefficients of
fu is ω + k, so the maximum complexity of each operation in the polynomial multiplication is
max(M(ω),Θ(ω + k)), which gives us the total complexity of this step:

M(k) max(M(ω),Θ(ω + k)) (4.1)

In the next step, we compute the remainder of fu w.r.t Rk + 1. We should notice that
computing the remainder here is the same as computing fu mod (Rk + 1) that is using −1 to
replace every Rk. So, for each term in fu, if the degree is greater than k − 1, reduce the degree
by k and reverse the sign for the coefficient. Combining the terms with the same degree gives
the final result of this step, fu = fx fy mod (Rk + 1) = uk−1Rk−1 + · · · + u0. The total number of
operations that we need to compute the remainder is in the order of Θ(k), the bit complexity of
each operation is Θ(ω + k), thus the complexity of this step is:

Θ(kω) (4.2)

Next, we want to write each ui as li + hir + cir2 with 0 ≤ li, hi, ci < r using two divisions
(one by r2 and one by r), we get three vectors [l0, . . . lk−1], [h0, . . . hk−1] and [c0, . . . ck−1]. Using
cyclic shift on the three vectors, we obtain three numbers in radix r format: zl, zh, zc. We need
2 k divisions in machine word size and three cyclic shifts for this step in total. So the complexity
is:

Θ(k M(ω)) (4.3)

The last step in this approach is to add three numbers, zl, zh, zc, together using two additions
in Z/pZ. The complexity is:

Θ(kω) (4.4)

We can see that the second step has the greatest complexity 4.2. Thus, the total complexity
of the approach based on polynomial multiplication is in the order of:

Θ(M(k)) max(M(ω),Θ(ω + k)) (4.5)
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4.2.2 Based on reduction to integer multiplication

In this approach, we convert two numbers in our radix r representation x and y into two big
integers X and Y . Then we multiply them together as integers and convert the product to radix-
r representation. All of the operations we use in this method can be performed with the GMP
library [18].

The GMP library chops the numbers into several parts which are called “limbs”. For
numbers with different numbers of limbs, GMP uses different multiplication algorithms. Let
us consider the case of multiplication between two equal size numbers with N limbs each.
For the base case with no threshold, the naive long multiplication is used with complexity of
O(N2). With the minimum of 10 limbs, GMP uses Karatsuba’s algorithm with complexity of
O(N log 3/ log 2). Furthermore, multi-way Toom multiplication algorithms are introduced. Toom-
3 is asymptotically O(N log 5/ log 3), representing 5 recursive multiplies of 1/3 original size each
while Toom-4 has the complexity of O(N log 7/ log 4). Though there seems an improvement over
Karatsuba, Toom does more evaluation and interpolation so it will only show its advantage
above a certain size. For higher degree Toom ‘n’ half is used. Current GMP uses both Toom-6
‘n’ half and Toom-8 ‘n’ half. At large to very large sizes, GMP uses a Fermat style FFT multi-
plication, following Schönhage and Strassen. Here k is a parameter that controls the split, with
FFT-k splitting the number into 2k pieces, leading the complexity to O(Nk/(k−2)). It means k = 7
is the first FFT that is faster than Toom-3. Practically, the threshold for FFT in the GMP library
is found in the range of k = 8, somewhere between 3000 and 10000 limbs(See more in GMP
library [18] manual).

Firstly, we reduce x and y to X and Y using the following method.

X = (((xk−1 ∗ r) + xk−2) ∗ r · · · + x1) ∗ r + x0 (4.6)

which needs k − 1 additions and k − 1 multiplications with at most kω bits. Here, we still
use M to represent the multiplication time. So, the complexity of this step is:

Θ(k M(kω)) (4.7)

Then we multiply X and Y using operation from the GMP library. Let U = X · Y . The
complexity is

M(kω) (4.8)

At last, U writes u = uk−1rk−1 + · · ·+u0 using k−1 divisions (by rk−1, . . . , r). The complexity
is:

Θ(k M(kω)) (4.9)

The total complexity of this approach is

Θ(k M(kω)) (4.10)

https://gmplib.org/
https://gmplib.org/
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4.3 Implementation with C code

In this section we give some details of how we actually implement the multiplication between
two arbitrary elements in Z/pZ. We follow the basic idea of algorithm 4.2 but there are more
problems we need to solve.

Let fx(R), fy(R) represent x, y ∈ Z/pZ respectively. In the first step of the multiplication,
we need to compute fu(R) = fx(R) · fy(R) mod (Rk + 1) in Z/pZ, which is a Negacyclic
convolution. In Section 2.4, we introduced a fast algorithm to compute convolution, which is
computing f (x) · g(x) mod (xn − 1) for two polynomials f and g with degree less than n. A
similar approach can be used for computing the negacyclic convolution.

Let q be a prime, ω be an n-th primitive root of unity in Z/qZ, and θ be a 2n-th primitive
root of unity in Z/qZ. Also we have two polynomials f (x) and g(x) with degree less than n, we
use ~a and ~b to represent the coefficient vector of the f and g. First, we need to compute two
vectors

~A = (1, θ, . . . , θn−1) (4.11)

and

~A′ = (1, θ−1, . . . , θ1−n) (4.12)

The negacyclic convolution of f and g can be compute as follow

~A′ · InverseDFT(DFT(~A · ~a) · DFT(~A · ~b)) (4.13)

All the dot multiplication between vectors are point-wise multiplication. The InverseDFT
and DFTs are all n-point. We use unrolled inline DFTs in the implementation. The details of
the DFTs are given in Chapter 5. This equation gives the following algorithm.

Algorithm 4.4 is to compute fx(R) · fy(R) mod (Rk +1) over a finite field Z/qZ with q being
a machine word size prime and fx(R), fy(R) being two polynomials of degree k − 1. ~x and ~y are
the coefficient lists of fx and fy.
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Algorithm 4.4 Computing fx(R) · fy(R) mod (Rk + 1) in Z/qZ using Negacyclic Convolution
1: input:

- a prime number q and k is a power of 2 with k|(q − 1),
- two vectors ~x and ~y of k elements,contain the coefficients of polynomials fx(R) and

fy(R).
2: output:

- a vector ~u that contains the coefficients of polynomial fu(R) = fx(R)· fy(R) mod (Rk+

1)
3: procedure NegacyclicConvolution(~x, ~y, q, k)
4: ω := PrimitiveRootOfUnity(q, k); . ω is the kth primitive root of unity of q
5: θ := PrimitiveRootOfUnity(q, 2 k); . θ is the 2kth primitive root of unity of q
6: for 0 ≤ i ≤ k − 1 do
7: Ai := θi mod q;
8: xi := xi · Ai mod q;
9: yi := yi · Ai mod q;

10: end for
11:
12: ~x := DFT(~x, ω, q, k);
13: ~y := DFT(~y, ω, q, k);
14:
15: for 0 ≤ i ≤ k − 1 do
16: ui := xi · yi mod q;
17: end for
18: ~u := DFT(~u, ω−1 mod q, q, k)
19: for 0 ≤ i ≤ k − 1 do
20: A′i := θ−i mod q;
21: ui := 1

k (ui · A′i) mod q;
22: end for
23: return ~u
24: end procedure

Notice that for fx and fy in our Generalized Fermat Prime Field Z/pZ, each coefficient is at
most 63 bits. When computing fu(R) = fx(R) · fy(R) mod (Rk + 1), the size of the coefficients
of fu can be at most log k + (2 · 63) = 126 + log k, which is more than one machine word,
so that we cannot do the computation using single-precision arithmetic. But, multi-precision
arithmetic can be very expensive and would make the algorithm inefficient. So we use two
machine word negacyclic convolution in stead of one using big numbers. Hence, we need to
apply the Chinese Remainder Theorem (CRT) to get the result that we want.

Let p1 and p2 be two machine word size prime numbers, so that we have GCD(p1, p2) = 1.
Then we use the extended Euclidean division to get m1 and m2 that satisfy the following relation

p1 m1 + p2 m2 = 1 (4.14)
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Let a be an integer and we have

a1 ≡ a mod p1 (4.15)
a2 ≡ a mod p2 (4.16)

Then we compute a mod (p1 p2) by

a ≡ a2 p1 m1 + a1 p2 m2 mod (p1 p2) (4.17)
= ((a2 m1) mod p2) p1 + ((a1 m2) mod p1) p2 (4.18)

Hence, for x, y ∈ Z/pZ, we compute u1 = x · y mod p1 and u2 = x · y mod p2, then use
4.18 to compute u = x · y mod (p1 p2). With some normalization we will get u = x · y ∈ Z.
Let R = k r2 be the upper bound of (|u0|, . . . , |uk−1|) ∈ Z. To get the correct answer, we need the
following restrictions:

1. R ≤ p1 p2−1
2

2. the results we get from the CRT should be normalized so that they fall into the range of
[− p1 p2−1

2 , p1 p2−1
2 ]

If p1 p2−1
2 < R, any result that is in the range of ( p1 p2−1

2 ,R) and (−R,− p1 p2−1
2 ) will be inaccu-

rate since the modular operation will make it in the range of [− p1 p2−1
2 , p1 p2−1

2 ].
As we mentioned before, all the results are in the range of (−R,R) in Z, which means

−
p1 p2−1

2 < ui <
p1 p2−1

2 hold. Hence, after all the normalization we will have all the results in Z
without losing any accuracy.

The small primes p1 and p2 are hard coded into the algorithm for now, where both p1 =

4179340454199820289 and p2 = 2485986994308513793 are 61-bit numbers. So, when choos-
ing the Generalized Fermat prime, we should be very careful because of the two restrictions.
For these two primes p1 and p2, the size of the chosen Generalized Fermat prime number
p = rk + 1 should be as follows:

log
p1 p2 − 1

2
> log(k r2) (4.19)

121 > log k + 2 log r (4.20)
log r < 59 when k = 8 (4.21)

log r < 58 when k = 16 (4.22)
log r < 58 when k = 32 (4.23)
log r < 57 when k = 64 (4.24)

As we know, the modular operation in 4.18 is expensive, so in the implementation we use
what is called reciprocal division to reduce the cost of the modular operations.

Let’s say we want to compute a mod n, instead of doing one single modular operation, we
pre-compute the value of ninv = 1/n. Then we compute the result by

a − n · a · ninv ≡ a mod n (4.25)

Here, we only keep the integer part of a · ninv, so that n · a · ninv gives the quotient of the
Euclidean division of a by n.

The following C code give the function of an efficient modular operation using the recisp-
rocal division method.
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1 void u64_mod_u64(usfixn64 &a, const usfixn64 &n){
2 //a = a % n;

3 double ninv = 1 / (double) n;
4 usfixn64 q = (usfixn64) ((((double) a)) * ninv);
5 usfixn64 res;

6 res = a - q * n;

7 a = res & (U64_MASK);

8 }

Listing 4.1: Modular funtion using reciprocal division

Unlike modular operation, multiplication between two machine word size number some-
times can cause overflow, but using multi-precision numbers such as the ones given in the GMP
library [18] decreases the efficiency. To avoid that, we use two 64-bit numbers to represent the
result of multiplication since the size of the result will be at most 128 bits. Let’s say the sizes
of a and b are at most 64 bits, we compute the multiplication between a and b by

s = a · b = s1 · 264 + s0 (4.26)

where both of s1 and s0 are less than 264.
To make the process even more efficient, we use assembly language in the following func-

tion.
1 void __inline__ mult_u64_u64(const usfixn64 & a, const usfixn64 & b,
2 usfixn64& s0, usfixn64 &s1){

3 // __int128 mult = (__int128) a * (__int128) b;

4 // s0 = mult & (U64_MASK);

5 // s1 = mult >> 64;

6
7 __asm__ (

8 "movq %2, %%rax;\n\t" // rax = a

9 "mulq %3;\n\t"// rdx:rax = a * b

10 "movq %%rax, %0;\n\t"// s0 = rax

11 "movq %%rdx, %1;\n\t"// s1 = rdx

12 : "=rm" (s0),"=rm"(s1)

13 : "rm"(a), "rm"(b)

14 : "%rax", "%rdx");

15 }

Listing 4.2: Multiplication between two 64-bit numbers

We use function 4.2 to compute the [t0, t1] = a1 m2 in equation 4.18. Then we need to do
the modular by p1. We can use a similar method as function 4.1, but all the numbers will be in
the size of 128 bits, so we use the representation of s1 264 + s0.

To keep 1/p1 in the correct precision, we multiply it by 2128, and then we get

2128

p1
= p1 q 264 + p1 m (4.27)

We have a function mult u128 u128 hi128(see Appendix A, function A.1) to multiply
[t0, t1] and [p1 q, p1 m] keeping the higher 64 bits only, which give the quotient q0 of a1 m2
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divided by p1. Then we have

a1 m2 mod p1 = a1 m2 − q0 p1 (4.28)

Again we use function 4.2 to get the result of (a1 m2 mod p1) · p2. Then use the same
process to compute (a2 m1 mod p2) · p1. Adding the two parts together gives us the final result
of equation 4.18.

Using the same notation as above, the following algorithm (by Mr. Davood Mohajerani)
computes equation 4.18 without using any multi-precision number. The corresponding C code
can be found in Appendix A.

Algorithm 4.5 Chinese Remainder Algorithm computing equation 4.18
1: input:

- two machine word size prime numbers p1 and p2,
- m1 and m2 such that p1 m1 + p2 m2 = 1 holds,
- a1 and a2 such that a1 ≡ a mod p1 and a2 ≡ a mod p2 hold.

2: output:
- a mod (p1 p2) = s1 264 + s0 represented by [s0, s1].

3: procedure CRT(p1, p2,m1,m2, a1, a2)
4: [p1 q, p1 m] := 2128

p1

5: [p2 q, p2 m] := 2128

p2

6: [t0, t1] := multi u64 u64(a1,m2)
7: [t2, t3] := multi u64 u64(a2,m1)
8: q0 := mult u128 u128 hi128(t0, t1, p1 q, p1 m)
9: q1 := mult u128 u128 hi128(t2, t3, p2 q, p2 m)

10: [b0, b1] := multi u64 u64(q0, p1)
11: [b2, b3] := multi u64 u64(q1, p2)
12: c1 := [t0, t1] − [b0, b1]
13: c2 := [t2, t3] − [b2, b3]
14: [s0, s1] := multi u64 u64(c0, p2) + multi u64 u64(c1, p1)
15: Normalization [s0, s1] ∈ [− p1 p2−1

2 , p1 p2−1
2 ]

16: return [s0, s1]
17: end procedure

After the negacyclic convolutions and the Chinese Remainder algorithm, we have fu = fx· fy

mod (Rk + 1) ∈ Z. Next, we need to convert the coefficients of fu into the (l, h, c) representation
as we discussed in Section 4.1.1.

Let ui = s1 264 + s0 and r be the radix of our Generalized Fermat Prime Field, we use a
function div by const R (see Appendix A function A.3) to get [m0, q0], [m1, q1] and [m2, q2]
that satisfy the following relation

s0 = q0 r + m0 with q0,m0 < r (4.29)
s1 = q1 r + m1 with q1,m1 < r (4.30)

264 = q2 r + m2 with q2,m2 < r (4.31)



34 Chapter 4. Optimizing multiplication in Generalized Fermat prime fields

Then we compute the [l, h, c] by

[l, h, c] = (q0 r + m0) + (q1 r + m1) (q2 r + m2) (4.32)
= q1 q2 r2 + (m1 q2 + m2 q1 + q0) r + (m0 + m1 m2) (4.33)
= c′ r2 + h′ r + l′ (4.34)

Notice that the [l′, h′, c′] we get here is not the final result yet since h′ = m1 q2 + m2 q1 + q0

and l′ = m0 + m1 m2can be greater than r. We call function div by const R on h′ and l′ to
normalize the result and give us [l′, h′, c′] = [l1, h1, c1]r + [l0, h0, c0]. We use addition with
carry to get the final result [l, h, c] = [l1, h1, c1] + [l0, h0, c0].

The following algorithm takes two numbers [s0, s1] less than 64 bits as input, and output
the [l, h, c] as we defined in Section 4.1.1. The corresponding C code can be found in Appendix
A function A.4.

Algorithm 4.6 Computing s1 264 + s0 = l + h r + c r2

1: input:
- two machine word size numbers s1 and s0,
- the radix r.

2: output:
- [l, h, c] such that s1 264 + s0 = l + h r + c r2.

3: procedure LHC(s1, s0, r)
4: [q0,m0] := div by const R(s0, r)
5: [q1,m1] := div by const R(s1, r)
6: [q2,m2] := div by const R(264, r)
7: [l′, h′, c′] := (q0 r + m0) + (q1 r + m1) (q2 r + m2)
8: [l0, l1] := div by const R(l′, r)
9: [h0, h1] := div by const R(h′, r)

10: [c0, c1] := div by const R(c′, r)
11: [l, h, c] := [l0, h0, c0] + [l1, h1, c1]
12: return [l, h, c]
13: end procedure

Now, we have all the coefficients of fu in the form of [l, h, c]. Rearranging the k [l, h, c]
vectors gives us three vectors ~l = [l0, . . . , lk−1],~h = [h0, . . . , hk−1] and ~c = [c0, . . . , ck−1]. Then
we use function 3.2 to multiply ~c by r2 and ~h by r. Finally, we use function 3.1 to add ~l,~h, ~c
together to get the final result of x y ∈ Z/pZ.

We call the this approach of multiplying two arbitrary elements in Z/pZ the FFT-based
multiplication in the Generalized Fermat Prime Field (FFT-based multiplication). The com-
plete algorithm is as follow.
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Algorithm 4.7 FFT-based multiplication for two arbitrary elements in Z/pZ
1: input:

- two vectors x̃ and ỹ representing the two elements x and y in Z/pZ,
- two number r and k such that p = rk + 1 is a generalized Fermat number.

2: output:
- a vector ũ representing the result of x · y ∈ Z/pZ.

3: constant value:
- two machine word size primes p1 and p2,
- two numbers m1 and m2 such that p1 m1 + p2 m2 = 1 holds.

4: procedure FFT-basedMultiplication(~x, ~y, r, k)
5: ~z1 := NegacyclicConvolution(~x, ~y, p1, k)
6: ~z2 := NegacyclicConvolution(~x, ~y, p2, k)
7: for 0 ≤ i < k do
8: [s0i, s1i] := CRT(p1, p2,m1,m2, z1i, z2i)
9: end for

10: for 0 ≤ i < k do
11: [li, hi, ci] := LHC(s0i, s1i, r)
12: end for
13: ~c := MulPowR(~c, 2, k, r)
14: ~h := MulPowR(~h, 1, k, r)
15: ~u := BigPrimeFieldAddition(~l,~h, k, r)
16: ~u := BigPrimeFieldAddition(~u, ~c, k, r)
17: return ~u
18: end procedure

There are a lot of single-precision modular multiplication in Algorithm 4.7, these modular
arithmetic can be very expensive and decrease the efficiency of the whole algorithm, so we
decide to use Montgomery multiplication [23] inside this process.

As introduced in Section 2.1.2, Montgomery multiplication requires a special representa-
tion of the elements that is for an element a ∈ Z/qZ where q is a machine word size prime,
we rewrite a into (aR mod q) where R is the next power of 2 that is larger than q. In this
form, multiplication can be performed efficiently without effect addition and subtraction. The
Montgomery multiplication algorithm we use is as follow, supposing the machine word size is
64 bits.
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Algorithm 4.8 Montgomery Multiplication in Z/qZ
1: input:

- two numbers a and b in Z/qZ,
- the machine word size prime q,
- a number q′ = −q−1 mod 264

2: output:
- a vector ũ representing the result of x · y ∈ Z/pZ.

3: constant value:
- c = a b R−1 mod q

4: procedure MontgomeryMultiplication(a, b, q, q′)
5: R := 264 − 1
6: c := a b
7: d := c q′

8: c := c + q (d&R) . & is the bit-wise and operation
9: c := c >> 64 . >> x is shift x bits to the right

10: if c ≥ q then
11: c := c − q
12: end if
13: return c
14: end procedure

The C code of the Montgomery multiplication for 64-bit numbers in the BPAS library can
be found in Appendix A function A.5 (by Svyatoslav Covanov).

Once we have the Montgomery multiplication function, the “convert-in” and “convert-out”
process can be very simple. Let a be an element in Z/qZ, converting a to the Montgomery
representation can be done using the following equation

a R ≡
a · R2

R
mod q = MontgomeryMultiplication(a,R2, q, q′) (4.35)

and the converting out from the Montgomery representation can be done by

a ≡
a R · 1

R
mod q = MontgomeryMultiplication(a R, 1, q, q′) (4.36)

So far, we have the full implementation of FFT-based multiplication between two arbitrary
elements in the Generalized Fermat Prime Field. As we mentioned before, we also have an im-
plementation based on integer multiplication using the GMP library[18] following Algorithm
4.3. The experiment results comparing the two implementations can be found in Chapter 6.



Chapter 5

A generic implementation of FFT over
finite fields in the BPAS library

In Section 5.1, we first review the tensor algebra formulation of FFT, following the presentation
of [13]. In the same section, we also recall how one can transform the recursive formulation of
the six-step DFT to an iterative version, where all DFTs are then performed on a fixed base-case
size. In the context of Generalized Fermat prime fields, this reduction allows to take advantage
of the “cheap” multiplication introduced in Section 3.4. Section 5.2 introduces the different
finite fields that are implemented in the Basic Polynomial Algebra Subprograms, also known
as the BPAS library [3]. For efficiency reasons and convenience purposes, fields with the same
functionalities are implemented in both C and C++ languages. In Section 5.3, we explain how
we implemented the FFT in the BPAS library following the method in Section 5.1. We show
the template functions for different steps in the FFT which can adapt to all the finite fields in
the BPAS library. Also, we will explain how we implement the DFT base-cases for 8, 16, 32
and 64 points. This chapter is a joint work with Colin Costello and Davood Mohajerani.

5.1 The tensor algebra formulation of FFT
In the section we review the tensor formulation of FFT. First we define the tensor product of
two matrices over a field[24].

Definition 7 Let n,m, q, s be positive integers and let A, B be two matrices over h with respec-
tive formats m× n and q× s. The tensor (or Kronecker) product of A by B is an mq× ns matrix
is denoted by A ⊗ B and defined by

A ⊗ B =


a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 (5.1)

For example, we have two matrices

A =

[
0 1
2 3

]
B =

[
1 2
3 4

]

37
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Then we have

A ⊗ B =

[
0 · B 1 · B
2 · B 3 · B

]
=


0 0 1 2
0 0 3 4
2 4 3 6
6 8 9 12


Definition 8 For matrices A and B, operator ⊕ is defined as follow

A ⊕ B =

[
A 0
0 B

]
For n matrices A0 . . . An−1, the ⊕ sum of them is defined as

n−1⊕
i=0

Ai = A0 ⊕ A1 ⊕ · · · ⊕ An−1 =


A0

A1
. . .

An−1

 . (5.2)

In a ring R, an n-point DFTn can be seen as a linear map of Rn 7→ Rn. In the BPAS library,
we use the six-step recursive FFT algorithm presented in [13]. It can be represented by the
following equation

DFTN = LN
K (IJ ⊗ DFTK)LN

J DK,J (IK ⊗ DFTJ) LN
K with N = J K (5.3)

which uses the divide-and-conquer idea of Fürer’s algorithm. For the part of IK ⊗DFTJ, we can
further expand it to using the base-case DFTK . Hence, if we have an efficient implementation
of the base-case, we will have an efficient algorithm for FFT.

In equation 5.3, LN
K is called a stride permutation and DK,J is called a twiddle factor. They

are defined as follow.

Definition 9 The stride permutation Lmn
m permutes an input vector ~x of length mn as follows

~x[in + j] 7→ ~x[ jm + i] (5.4)

Basically what the stride permutation does is, for an input vector ~x with length mn, it treats
the vector as a n × m matrix and does a transposition on it.

Lmn
m (Mn×m) = (Mn×m)T (5.5)

For example, the input vector is ~x8 = [0, 1, 2, 3, 4, 5, 6, 7], with m = 2 and nm = 8, the n×m
matrix is

MT
n×m =


0 1
2 3
4 5
6 7


T

=

[
0 2 4 6
1 3 5 7

]

So Lmn
m (~x) = [0, 2, 4, 6, 1, 3, 5, 7]
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Definition 10 The twiddle factor DK,J is a matrix of the powers of ω.

DK,J =

K−1⊕
j=0

diag (1, ω j
i , . . . , ω

j(J−1)
i ) (5.6)

We can compute all the twiddle factor multiplication with Algorithm 4.7, but as is intro-
duced in Fürer’s paper[16], we want to compute the base-case DFTK using a cheaper multipli-
cation with some K-th primitive roof of unity.

Now, we want to compute DFTKe by computing DFTK . The twiddle factor here should be
DK,Ke−s where ωi = ωK s−1

for (1 ≤ s < e). And we know from Chapter 3 that for a Generalized
Fermat prime p = rk + 1, r is a 2k-th primitive root of unity, then we have ωN = r2k = 1
mod p. Hence, we can using following method to compute the twiddle factor multiplication
y = x · ωi(N/K)+ j.

y = (x · ωiN/K) · ω j (5.7)
= (x · r2ki/K) · ω j (5.8)
= (x · ri) · ω j (5.9)

We use Algorithm 3.2 to compute the multiplication with ri which is very cheap, and only
compute the twiddle factor multiplication with ω j using Algorithm 4.7. We can pre-compute
all the power of ω j for 0 ≤ j < N/K to further reduce the complexity of the algorithm. In
conclusion, to compute DFT on Ke points, we need to pre-compute the power of ω j for all
0 ≤ j < Ke−1 − 1.

We can see that once we have an efficient implementation of the base-case DFTK , we can
compute DFTN at any size where N is some power of 2. In Section 5.3, we will explain how
we implement the efficient base-case in the BPAS library.

5.2 Finite fields in the BPAS library
In order to provide both efficiency and convenience, we implemented the following finite fields
in the BPAS library using either the C or C++ language.

SmallPrimeField C++ Class: C++ implementation in the BPAS library of a prime field
of the form GF(p) where p is an arbitrary prime number of machine word size.

SmallPrimeField in C: Set of C functions in the BPAS library implementing arithmetic
operations in a prime field of the form GF(p) where p is an arbitrary prime number of machine
word size.

BigPrimeField C++ Class: C++ implementation in the BPAS library of a prime field of
the form GF(p) where p is an arbitrary prime number without any restrictions on its size.

BigPrimeField in C: Set of C functions (provided by the GMP library) implementing arith-
metic operations in a prime field of the form GF(p) where p is an arbitrary prime number
without any restrictions on its size.
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GeneralizedFermatPrimeField C++ Class: C++ implementation in the BPAS library
of a prime field of the form GF(p) where p is a Generalized Fermat prime, see Chapter 3.

GeneralizedFermatPrimeField in C (GMP-based): Set of C functions implementing
arithmetic operations in a prime field of the form GF(p) where p is a Generalized Fermat
prime, see Chapter 3.

GeneralizedFermatPrimeField in C (FFT-based): Set of C functions implementing arith-
metic operations in a prime field of the form GF(p) where p is a Generalized Fermat prime,
see Chapter 3. Note that in this case, the multiplication of two elements of the field is done by
FFT as we described in 4.3.

Both of the SmallPrimeField implementations use machine word size primes (the long
long int type in C and C++) and have the same functionalities. And all the arithmetic is
done using Montgomery representation, see Section 2.1.2. In the C++ class, we convert all the
objects into Montgomery representation in the constructor and convert out when users call the
convert out method or printing method. The C version has functions for converting in and out,
the users should call these functions before and after doing any computations.

Inside the SmallPrimeField class, we overload the arithmetic operators +,−, ∗, / as well
as the Boolean operators ==, ! =, >, <, >=, <=; we also have methods for computing the inverse
of an elements in the finite field as well as for exponentiation by any integer exponent. For
multiplication, we use Algorithm 4.8. Finally, we follow the method introduced in [19] (see
Algorithms 2.23 and 2.25) for the Montgomery-based inversion.

The calling sequence of the SmallPrimeField class is as follows.

1 #include "bpas.h"
2 int main(){
3 int p = 257;
4 SmallPrimeField::setPrime(p);

5 //set the prime to 257

6 int n = 234;
7 SmallPrimeField a(n);

8 //create an object that equal to n mod p

9 SmallPrimeField b(100);

10 //create an object that equal to 100 mod p

11 SmallPrimeField a;

12 //create a 0 object

13 c = a + b;

14 c = a - b;

15 c = a * b;

16 c = a.inverse();

17 c = aˆ5;

18 cout << c << endl;

19 }

Listing 5.1: Calling sequence of SmallPrimeField class in the BPAS library

An example of using the C implementation of SmallPrimeField follows.
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1 #include "bpas.h"
2 int main(){
3 long int p = 257;
4 long int Pp = getPp(p,R);
5 //R can be computed as 2ˆ64 mod p

6 long int a = 100;
7 long int b = 576;
8 a = covert_in(a, p,R);

9 b = covert_in(b, p,R);

10 a = add(a,b,p);

11 //a = a + b mod p

12 a = sub(a,b,p);

13 //a = a - b mod p

14 a = multi(a,b,p,R,Pp);

15 //a = a*b/R mod p;

16 a = covert_out(a, p,R);

17 }

Listing 5.2: Calling sequence of SmallPrimeField macro in the BPAS library

Chapter 6 shows the experimental data of FFT over SmallPrimeField in C and C++.

The BigPrimeField class has the same functionality as the SmallPrimeField class,
except that all the arithmetic is done using GMP integers (type mpz class). So users can choose
prime numbers of any size.

The GeneralizedFermatPrimeField Class and GeneralizedFermatPrimeField C
functions follow the representation and arithmetic we introduced in Chapter 3. We imple-
mented multiplication between two arbitrary element using both FFT-based method and GMP-
based method in the C version. The default one for overloading the operator ∗ in the class is
the GMP-based one.

5.3 BPAS implementation of the FFT
In the BPAS library, we implemented an FFT algorithm using the six-step FFT we described
in Section 5.1. Recall the six-step FFT formula

DFTN = LN
K (IJ ⊗ DFTK)LN

J DK,J (IK ⊗ DFTJ) LN
K with N = J K

where L is the stride permutation, and D is the twiddle factor multiplication.
Other than the three steps of the permutation and one call of twiddle factor multiplication,

we still need to perform the the base-case DFTK as we explained in Section 5.1. Inside the
BPAS library, we implemented base-cases for K = 8, 16, 32, 64 and reduced them into DFT2.
First, let us see the function for computing DFT2(x0, x1)

DFT2(x0, x1) = (x0 + x1, x0 − x1) (5.10)

For K = 2n, we reduce DFTK to DFT2 by

DFT2n = L2n

2 (I2n−1 ⊗ DFT2) L2n

2n−1 D2,2n−1 (I2 ⊗ DFT2n−1) L2n

2 (5.11)
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We follow Algorithm 5.1 to compute a N-point DFTs where N = Ke and e is a positive
integer.

Algorithm 5.1 Computing DFT on Ke points in Z/pZ
1: input:

- size of the base-case K(8,16,32 or 64), a positive integer e,
- a vector ~x of size Ke,
- ω which is a Ke-th primitive root of unity in Z/pZ.

2: output:
- the final result stored in ~x

3: procedure DFT general(~x,K, e, ω,)
4: for 0 ≤ i < e − 1 do
5: for 0 ≤ j < Ki do
6: stride permutation(&x jKe−i ,K,Ke−i−1)
7: end for
8: end for . Step 1
9: ωa := ωKe−1

10: for 0 ≤ j < Ke−1 do
11: idx := jK
12: DFT K(&xidx, ωa)
13: end for . Step 2
14: for e − 2 ≥ i ≥ 0 do
15: ωi := ωKi

16: for 0 ≤ j < Ki do
17: idx := j Ke−i

18: twiddle(&xidx,Ke−i−1,K, ωi) . Step 3
19: stride permutation(&xidx,Ke−i−1,K) . Step 4
20: end for
21: for 0 ≤ j < Ke−1 do
22: idx := jK
23: DFT K(&xidx, ωa)
24: end for . Step 5
25: for 0 ≤ j < Ki do
26: idx := jKe−i

27: stride permutation(&xidx,K,Ke−i−1)
28: end for
29: end for . Step 6
30: end procedure

The same code for stride permutation (function stride permutation in Algorithm 5.1) is
used for all BPAS finite fields. Indeed that part is independent of the finite field used for the
FFT. The C code of the stride permutation is listed below.

1 void stride_permutation(ELEMENTS* A,int m, int n){
2 int blocksize=mˆ((mˆn)&(-(m>n)));
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3 blocksize=BLOCKSIZEˆ((BLOCKSIZEˆblocksize)&(-(BLOCKSIZE >

blocksize)));

4 ELEMENTS* B = new ELEMENTS[m*n];

5 for (int i = 0; i < n; i += blocksize) {
6 for (int j = 0; j < m; j += blocksize) {
7 // transpose the block beginning at [i,j]

8 for (int k = i; k < i + blocksize; ++k) {
9 for (int l = j; l < j + blocksize; ++l)

{

10 B[k+l*n] = A[l+k*m];

11 }

12 }

13 }

14 }

15 for (long int i=0;i<m*n;i++)
16 A[i]=B[i];

17 }

Listing 5.3: Stride permutation for FFT

The same template code for twiddle factor multiplication (function twiddle in Algorithm
5.1) is used for all BPAS finite fields. This template code has 4 specializations

• one for both SmallPrimeField (C and C++); switching between C and C++ is done
by compilation directive

• one for each of BigPrimeField (C and C++);
• one for GeneralizedFermatPrimeField (C and C++); switching between C and C++

is done by compilation directive.

The C code of the twiddle template function is as follows. The only difference for different
prime fields is the multiplication used in line 5 and 6.

1 void twiddle(ELEMENTS* vector, int m, int n, ELEMENTS omega_w){
2 for (int j=0;j<n;j++){
3 for(int i=0;i<m;i++){
4 ELEMENTS t;

5 t=POW(omega_w ,(i*j));

6 vector[j*m+i]=vector[j*m+i]*(t);

7 }

8 }

9 }

Listing 5.4: Twiddle factor multiplication for FFT

For the base-case, that is, DFT K in Algorithm 5.1, the same template code for is used
for all BPAS finite fields. Similarly to the function twiddle, specializations are provided for
each BPAS finite field. Three specializations differ by their calls to functions doing addition,
subtraction and multiplication. Note that for multiplication by a power of the primitive root, in
the case of GeneralizedFermatPrimeField, we use the techniques described in Section 3.4
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Now, let us consider the base-case of K = 8, where ω is an 8-th primitive root in GF(p).

DFT8 = L8
2 (I4 ⊗ DFT2) L8

4 D2,4 (I2 ⊗ DFT4) L8
2 (5.12)

DFT4 = L4
2 (I2 ⊗ DFT2) L4

2 D2,2 (I2 ⊗ DFT2) L4
2 (5.13)

DFT8 = L8
2 (I4 ⊗ DFT2) L8

4 D2,4 (I2 ⊗ (L4
2 (I2 ⊗ DFT2) L4

2 D2,2 (I2 ⊗ DFT2) L4
2) L8

2 (5.14)

where

D2,4 = (1, 1, 1, 1, ω0
0, ω

1
0, ω

2
0, ω

3
0) (5.15)

D2,2 = (1, 1, ω0
1, ω

1
1) (5.16)

For a prime field with an arbitrary p, we have for DFT8, ω0 = ωN/K = ω and for DFT4,
ω1 = ω(N/K)2

= ω2.

For a Generalized Fermat prime field where the prime is p = r4 + 1 we have for DFT8,
ω0 = ωN/K = r2k/K = r and for DFT4, ω1 = ω(N/K)2

= r2. Then, the twiddle factors are

D2,4 = (1, 1, 1, 1, 1, r, r2, r3) (5.17)
D2,2 = (1, 1, 1, r2) (5.18)

Hence, multiplication with the twiddle factors can be done by cyclic shift from Section 3.4.

Now, we follow Equation (5.14) from right to left and get the following unrolled algorithm
for DFT8.
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Algorithm 5.2 Unrolled DFT base-case when K = 8
1: procedure DFT8(~a, ωi)
2: DFT2(&a0,&a4);
3: DFT2(&a2,&a6);
4: DFT2(&a1,&a5);
5: DFT2(&a3,&a7); . dft on permutated indexes
6:
7: a6 := a6 ω

2;
8: a7 := a7 ω

2; . twiddle
9:

10: DFT2(&a0,&a2);
11: DFT2(&a4,&a6);
12: DFT2(&a1,&a3);
13: DFT2(&a5,&a7); . dft on permutated indexes
14:
15: a5 := a5 ω

1;
16: a3 := a3 ω

2;
17: a7 := a7 ω

2; . twiddle
18:
19: DFT2(&a0,&a1);
20: DFT2(&a4,&a5);
21: DFT2(&a2,&a3);
22: DFT2(&a6,&a7); . dft on permutated indexes
23:
24: swap(&a1,&a4);
25: swap(&a3,&a6); . final permutation
26: return ~a;
27: end procedure

The swap function swap the value of of its two parameters. The other DFT base-case codes
are relatively long so we only show the number of lines here. The numbers of lines for unrolled
DFTK are shown in Table 5.1 (not counting comments). The C code can be found in the BPAS
library.

K 8 16 32 64

number of lines 19 55 141 359

Table 5.1: Numbers of lines in n-point unrolled FFT.

Finally, and consequently, the same template code for Algorithm 5.1 is used for all BPAS
finite fields.
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Experimentation

In this chapter, we present experimental data of FFT over the finite fields in the BPAS library.
In Section 6.1, we compare our implementation of FFT over SmallPrimeField Class and
C functions as well as another highly optimized FFT implementation from the BPAS library.
Also, we compare the two implementations of the multiplication in Z/pZ introduced in Chap-
ter 4; the results are in Section 6.2.

In Section 6.3, we report results of FFT over over BigPrimeField, GeneralizedFermat-
PrimeField using GMP-based multiplication and GeneralizedFermatPrimeField using
FFT-based multiplication written in C. Clearly, the latter scenario gives better running tines
than the other two.

All the experimental results have been verified using Maple, Python and GMP [18]. This
chapter is a joint work with Colin Costello and Davood Mohajerani.

6.1 FFT over small prime fields
Before the work reported in this thesis, various implementations of FFT over small finite fields
were developed in the BPAS library. In particular, a highly optimized version by Svyatoslav
Covanov is presented in [3]. For this latter, the source code of the FFT is generated at compile
time: it takes into account the characteristics of the targeted hardware and it is specialized for
a particular prime field. This latter feature allows compiler optimization strategies which are
not possible for a generic implementation like the one presented in Chapter 5.

Nevertheless, it is interesting to compare our generic implementation (over the SmallPrime-
Field class and SmallPrimeField in C) against the highly optimized FFT produced by Co-
vanov’s code generator.

As introduced in Section 5.3, our implementation of FFT is based on an unrolled code
for the base-case DFT functions DFTK , where K can be 8,16,32 or 64. In the following re-
sults, we refer to Svyatoslav Covanov’s implementation as Svyatoslav, and refer to our imple-
mentation of FFT using base-case DFTK as DFTK C + + and DFTK C depending on which
SmallPrimeField (C++ class or C functions) it uses.

Figures 6.1, 6.2 and 6.3 show the time spending on FFT over large vectors using base-case
size of 8, 16 and 32 respectively. The x-axis gives the size of the vectors. The y-axis is time in
seconds. All the results are based on average time of 50 trails. We can see that the C++ class

46
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is slower than the C functions with the implementation of the same algorithm.
Our best result is still slower than Svyatoslav’s by the factor of 5. As mentioned above, this

is because his code is specialized at the prime number together with embedded assembly code.
All the experimental results in this chapter were realized on an Intel(R) Core(TM) 2.90GHz
i5-528U CPU.

Figure 6.1: FFT over small prime field with DFT8

Figure 6.2: FFT over small prime field with DFT16
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Figure 6.3: FFT over small prime field with DFT32

6.2 Multiplication in generalized Fermat prime fields

As in Chapter 4, we have two multiplication algorithms between two arbitrary elements of the
generalized Fermat prime field Z/pZ. One of them is based on negacyclic convolution using
unrolled DFT base-case 4.1.1 (referred to as FFT-based in the figures and tables), the other
one is based on GMP integer multiplication 4.1.2 (referred to as GMP-based in the figures and
tables). We want to compare the time cost of these two approaches. Also we want to see where
we are comparing with big integer modular multiplication using GMP library, where we don’t
use radix representation of the numbers but use the integer type provided by the GMP library.

We gave the same input to the three multiplication functions, and verified the results against
each other. Table 6.1 shows the time costs of one multiplication operation using the three
different approaches with regard to k (where p = rk + 1). The time given is in 10−6 second
scale. We can see clearly that the FFT-based multiplication is faster than the GMP-based one.
And the speedup is more obvious when k increases. But both of our approaches are slower
than using pure GMP functions.

Figure 6.4 shows the cost ratio of FFT-based and GMP-based multiplication versus GMP
multiplication.
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k FFT-based GMP-based GMP

8 1303.38 1443.05 224.03

16 2602.56 2886.63 471.45

32 5500.56 6865.14 1282.36

64 10656.10 17649.23 3032.44

Table 6.1: Time cost of one multiplication operation using FFT-based, GMP-based and GMP ap-
proaches.

Figure 6.4: FFT-based multiplication vs. GMP-based multiplication vs. GMP multiplication

As introduced in Section 4.3, the FFT-based multiplication (in the generalized Fermat prime
field) takes several steps:

Step 1 convert the input elements into Montgomery representation
Step 2 negacyclic convolution
Step 3 convert the result out from Montgomery representation
Step 4 Chinese Remainder Theorem Algorithm
Step 5 LHC algorithm
Step 6 cyclic shift and addition to get the final result.

Figure 6.5 shows the time costs of the above 6 steps w.r.t k. Table 6.2 shows the percentage
of running time for each step over the total time of the multiplication operation. Convolution
takes the dominate part of the cost which fits in the analysis we made in Section 4.2.1
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Figure 6.5: Time spends in different parts of the FFT-based multiplication

k ConvertIn Convolution ConvertOut CRT LHC Final step

8 11.17 18.98 10.44 30.88 17.65 10.89

16 9.77 26.20 8.84 26.51 19.34 9.34

32 8.06 36.59 6.97 20.86 20.37 7.16

64 6.32 46.83 5.14 15.83 20.40 5.48

Table 6.2: Time cost in different parts of the FFT-based multiplication in percentage.

6.3 FFT over big prime fields
In this section, we provide experiment data for FFT over big prime fields. The FFT function we
use is that of Algorithm 5.1, except that we pre-compute all the power of ω and passed them
as input to the algorithm; this is a standard optimization in FFT code over finite fields [24].

We compare FFT computation using the arithmetic over the following finite fields:
• GeneralizedFermatPrimeField in C functions (FFT-based)5.2
• GeneralizedFermatPrimeField in C functions (GMP-based)5.2
• BigPrimeField in C functions (GMP) 5.2

where K is the base-case size and Ke is the input vector size. We should notice that for a prime
number p = rk + 1, the base-case size we choose should always satisfy K = 2k. Table 6.3 gives
the prime numbers we use for different base-cases.

Table 6.4 gives the time cost of FFT on vector with size Ke over the three prime fields.
Figure 6.6 shows the cost ratio of GMP-based and GMP versus FFT-based. We can clearly see
that FFT over GeneralizedFermatPrimeField using FFT-based multiplication is faster than the
other two while BigPrimeField using GMP C functions beats the GMP-based one as the vector
size increasing.
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K k r

16 8 259 + 216

32 16 258 + 210

64 32 256 + 221

Table 6.3: Primes used for different base-cases

K e FFT-based GMP-based GMP

16 2 0.211 0.281 0.348

16 3 5.961 8.287 8.669

32 2 1.819 2.49 2.47

32 3 109.681 152.877 140.342

64 2 15.775 22.688 22.912

64 3 1995.939 2865.527 2626.658

Table 6.4: Time cost of FFT on vector size Ke over different prime fields

Figure 6.6: FFT of size Ke where K = 16

Table 6.5 gives the high-level profiling data on different steps in the FFT algorithm for K =

64 and e = 3. For both FFT-based and GMP-based implementations of GeneralizedFermatPrimeField,
most of the time is spent on twiddle factor multiplication where we need to multiply two arbi-
trary elements in the fields. Comparing with the GMP one, we spent less time in the base-case
DFTS, since we only use shift for the multiplication inside the base-case code and that is where
we gain our speed up. This profiling result agrees with our original thought of using the trick
from Fürer’s paper[15] as we explained in Section 1.1.

We can see from Figure 6.4 that for multiplication between two arbitrary elements in a
big prime field, the two implementations of ours (FFT-based and GMP-based) are both slower
than pure GMP arithmetic. But Figure 6.6 shows that for computing a FFT over big vectors,
using GeneralizedFermatPrimeField arithmetic with FFT-based multiplication can be more ef-
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time(ms) permutation DFTK Twiddle

FFT-based 8.08 1400.53 3460.98

GMP-based 7.84 1307.23 6996.69

GMP 721.98 6418.14 1551.41

Table 6.5: Time spend in different parts of the FFT function when K = 64, e = 3

ficient than using pure GMP arithmetic. The main reason is that most of the multiplications are
done by the cheap (actually linear time) multiplication, see Section 3.4 in the GeneralizedFer-
matPrimeField while for pure GMP arithmetic all the multiplications are done using the same
algorithm.

Table ?? shows the average time spending in one modular multiplication operation in FFT
on vectors with size Ke. Figure 6.7 gives the radio of GMP-based and GMP versus FFT-based.
We can see that, when computing FFT over Generalized Fermat prime fields, the average time
of multiplication operation is less than that of GMP arithmetic. Now we can prove that by
using the cheap multiplication with the power of r, we can lower the average time spent in
multiplication, and further speed up the FFT process.

K e FFT-based GMP-based GMP

16 2 0.000179 0.000299 0.00018

16 3 0.000197 0.000287 0.000221

32 2 0.00031 0.000417 0.000389

32 3 0.000354 0.00048 0.000415

64 2 0.000553 0.000816 0.001095

64 3 0.000652 0.000972 0.001157

Table 6.6: Average multiplication time of FFT over big prime fields (Time is in ms)

Figure 6.7: Average time of one multiplication operation in FFT
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Conclusion

In thesis, we have proved that FFT can be used effectively to improve the multiplication arith-
metic inside big prime fields. Also, we can see that Fürer’s trick can lower the average time of
the multiplication operations in the FFT of large vectors over such big prime fields.

In Chapter 3 we discussed Generalized Fermat prime numbers which are prime numbers in
the form of p = rk +1, where r is a sparse radix and k is a power of 2. Then we gave algorithms
on how to do arithmetic over Generalized Fermat prime fields. Note that multiplying any
elements in the fields with some power of r can be done efficiently using a so-called cyclic
shift operation. Since r is a 2k-th primitive root of unity in the prime field, according to Fürer’s
trick, for a DFT on a vector size of 2k, all the multiplication can be done via this cyclic shift.

In Chapter 4, we gave the details on how we implement the multiplication between two
arbitrary elements in a Generalized Fermat prime field. We gave the algorithm and analy-
sis of the two approaches, FFT-based multiplication and GMP-based multiplication. In the
FFT-based one, we used the negacyclic convolution, the Chinese Remainder Theorem and the
(l, h, c)-approach to make the algorithm more efficient. And in Chapter 5, we gave a brief
overview on the generic FFT implementation in the BPAS library, where we unfold the big
DFT down to base-case DFT on 2k points.

At last, in Chapter 6, our experimental result shows that, the FFT-based multiplication
algorithm is more efficient than the GMP-based one. And by using Fürer’s trick, the average
time spent on multiplication operations in a FFT process is reduced.

Now we see that, with Fürer’s trick, where we use cheap operations to replace some of
the multiplication operations, we can improve the performance of FFT of large vectors over
big prime fields. Meanwhile, the multiplication between arbitrary elements in a field is still a
bottle-neck. So our future work lies in how to improve the multiplication over a big prime field.
And whether we can put the whole Fürer’s algorithm into practice is still an open question.
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Appendix A

C Functions for Multiplication in
Generalized Fermat Prime Field

1 //mult_u128_u128_hi128: returns ((x0+x1.u64)*(y0+y1.u64))>>128

2 void __inline__ mult_u128_u128_hi128(const usfixn64 & x0, const usfixn64
& x1,

3 const usfixn64 & y0, const usfixn64 & y1, usfixn64 & q)
4 {

5 usfixn64 s0, s1, s2;

6 usfixn64 c1;

7
8 q = 0;

9
10 // s0 = (__int128) x0 * (__int128) y0;

11 // s0>>=64;

12 __asm__ (

13 "movq %1, %%rax;\n\t" // rax = a

14 "mulq %2;\n\t"// rdx:rax = a * b

15 "movq %%rdx, %0;\n\t"// s1 = rdx

16 : "=rm" (s0)

17 : "rm"(x0), "rm"(y0)

18 : "%rax", "%rdx");

19
20 // s1 = (__int128) x1 * (__int128) y0;

21 // c1 = (s1 >> 64);

22 // s1 = s1 & (U64_MASK);

23
24 __asm__ (

25 "movq %2, %%rax;\n\t" // rax = a

26 "mulq %3;\n\t"// rdx:rax = a * b

27 "movq %%rax, %0;\n\t"// s1 = rdx

28 "movq %%rdx, %1;\n\t"// s1 = rdx

29 : "=rm" (s1),"=rm"(c1)

30 : "rm"(x1), "rm"(y0)

31 : "%rax", "%rdx");

32
33 // s2 = (__int128) x0 * (__int128) y1;

34 // c2 = (s2 >> 64);

35 // s2 = s2 & (U64_MASK);

56
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36
37 __asm__ (

38 "movq %2, %%rax;\n\t" // rax = a

39 "mulq %3;\n\t"// rdx:rax = a * b

40 "movq %%rax, %0;\n\t"// s1 = rdx

41 // "movq %%rdx, %1;\n\t"// s1 = rdx

42 "addq %%rdx, %1;\n\t"// s1 = rdx

43 : "=rm" (s2),"=rm"(c1)

44 : "rm"(x0), "rm"(y1)

45 : "%rax", "%rdx");

46
47 // c1+=c2;

48 q += c1;

49 // s3 = (__int128) x1 * (__int128) y1;

50 q += x1 * y1;

51
52 __asm__ (

53 "movq %1, %%rax;\n\t" // rax = a

54 "addq %2, %%rax;\n\t"// rdx:rax = a * b

55 "adcq $0x0, %0;\n\t"

56 "addq %3, %%rax;\n\t"// rdx:rax = a * b

57 "adcq $0x0, %0;\n\t"

58 // "movq %%rax, %0;\n\t"// s1 = rdx

59 : "+rm"(q)

60 : "rm" (s0), "rm"(s1), "rm"(s2)

61 : "%rax");

62 }

Listing A.1: Multiplication between two 128-bit numbers

1 void crt_mult_sub_u192_with_reduction(const usfixn64 &a1, const usfixn64
&a2,

2 const crt_u192_data & data, usfixn64 &s0, usfixn64 & s1)
3 {

4 usfixn64 t[4];

5 usfixn64 q[2];

6 __int128 r[2];

7
8 mult_u64_u64(a1, data.m2, t[0], t[1]);

9 mult_u64_u64(a2, data.m1, t[2], t[3]);

10
11 mult_u128_u128_hi128(t[0], t[1], data.p1_inv_m, data.p1_inv_q , q

[0]);

12 mult_u128_u128_hi128(t[2], t[3], data.p2_inv_m, data.p2_inv_q , q

[1]);

13 usfixn64 m0, m1;

14
15 __asm__ (

16 "movq %2, %%rax;\n\t" // rax = a

17 "mulq %3;\n\t"// rdx:rax = a * b

18 "movq %%rax, %0;\n\t"// s1 = rdx

19 "movq %%rdx, %1;\n\t"// s1 = rdx

20 : "=rm" (m0),"=rm"(m1)
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21 : "rm"(q[0]), "rm"(data.p1)

22 : "%rax", "%rdx");

23
24 m0 = U64_MASK - m0;

25 m1 = U64_MASK - m1;

26
27 __asm__ (

28 "addq %2, %0; \n\t"

29 "adcq %3, %1; \n\t"

30 "addq $0x1, %0; \n\t"

31 "adcq $0x0, %1; \n\t"

32 : "+rm" (t[0]),"+rm"(t[1])

33 : "rm"(m0), "rm"(m1)

34 : );

35
36 ///////////////////////////////////

37
38 m0 = 0;

39 m1 = 0;

40
41 __asm__ (

42 "movq %2, %%rax;\n\t" // rax = a

43 "mulq %3;\n\t"// rdx:rax = a * b

44 "movq %%rax, %0;\n\t"// s1 = rdx

45 "movq %%rdx, %1;\n\t"// s1 = rdx

46 : "=rm" (m0),"=rm"(m1)

47 : "rm"(q[1]), "rm"(data.p2)

48 : "%rax", "%rdx");

49
50 m0 = U64_MASK - m0;

51 m1 = U64_MASK - m1;

52
53 __asm__ (

54 "addq %2, %0; \n\t"

55 "adcq %3, %1; \n\t"

56 "addq $0x1, %0; \n\t"

57 "adcq $0x0, %1; \n\t"

58 : "+rm" (t[2]),"+rm"(t[3])

59 : "rm"(m0), "rm"(m1)

60 : );

61
62 ///////////////////////////////////

63
64 if (t[0] >= data.p1)
65 t[0] -= data.p1;

66 if (t[2] >= data.p2)
67 t[2] -= data.p2;

68
69 // r[0] = (__int128) t[0] ;///+ ((__int128) t[1] << 64);

70 // r[1] = (__int128) t[2] ;//+ ((__int128) t[3] << 64);

71
72 mult_u64_u64(t[0], data.p2, t[0], t[1]);

73 mult_u64_u64(t[2], data.p1, t[2], t[3]);

74
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75 m0 = t[0];

76 m1 = t[1];

77 __asm__ (

78 "addq %2, %0; \n\t"

79 "adcq %3, %1; \n\t"

80 // "addq $0x1, %0; \n\t"

81 // "adcq $0x0, %1; \n\t"

82 : "+rm" (t[0]),"+rm"(t[1])

83 : "rm"(t[2]), "rm"(t[3])

84 : );

85 if ((t[1] > data.p1p2_q) || ((t[1] == data.p1p2_q) && (t[0] >
data.p1p2_m)))

86 {

87 m0 = U64_MASK - data.p1p2_m;

88 m1 = U64_MASK - data.p1p2_q;

89 __asm__ (

90 "addq %2, %0; \n\t"

91 "adcq %3, %1; \n\t"

92 "addq $0x1, %0; \n\t"

93 "adcq $0x0, %1; \n\t"

94 : "+rm" (t[0]),"+rm"(t[1])

95 : "rm"(m0), "rm"(m1)

96 : );

97
98 }

99 s0 = t[0];

100 s1 = t[1];

101 }

Listing A.2: Chinese Remainder Algorithm

1 void __inline__ div_by_const_R(const usfixn64 x0_u64, const usfixn64
x1_u64,

2 const usfixn64 r0, const usfixn64 r1, usfixn64 & q, usfixn64 & m)
3 {

4 // r_inv= (u128/r_in);

5 // r1,r0=[r_inv/u64, r_inv%u64];

6 // x1,x0=[x/u64, x%u64];

7 // v0=x0*r0;

8 // v1=x0*r1;

9 // v2=x1*r0;

10
11 __int128 v0, v1, v2, q0;

12 usfixn64 x0 = x0_u64;

13 usfixn64 x1 = x1_u64;

14 v0 = 0;

15 v1 = 0;

16 v2 = 0;

17
18 v0 = (__int128) x0 * (__int128) r0;

19 v1 = (__int128) x0 * (__int128) r1;

20 v2 = (__int128) x1 * (__int128) r0;

21
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22 v0 >>= 64;

23 v1 += (v0);

24 v2 += v1;

25 v2 >>= 64;

26
27 // q0 = 0;

28 q0 = (__int128) x1 * (__int128) r1;

29 q0 += v2;

30
31 // m0=x-(q0*r_in);

32 __int128 m0;

33 m0 = (__int128) (1L << 64);

34 m0 *= (__int128) x1;

35 m0 += (__int128) x0;

36
37 m0 = m0 - q0 * (__int128) (R);

38
39 if (m0 >= (__int128) (R))
40 {

41 printf("carry\n");

42 m0 -= (__int128) R;

43 q0 += 1;

44 }

45
46 m = (usfixn64) (m0 & U64_MASK);

47 q = (usfixn64) (q0 & (U64_MASK));

48
49 if ((q0 >> 64) > 0)
50 {

51 printf("WARNING: q >= u64!\n");

52 }

53 }

Listing A.3: Computing the quotient and remainder of a machine word size number divided
by a radix r

1 void lhc_by_R_u128(const usfixn64 x0, const usfixn64 x1, const usfixn64
& r0,

2 const usfixn64 & r1, const usfixn64 & u64_mod_R_q ,
3 const usfixn64 & u64_mod_R_m , usfixn64 & s0, usfixn64 &s1, usfixn64 &s2)
4 {

5 //def div_by_R_u128(x0,x1,x2=0,v=1):

6 //

7 // usfixn64 x2 = 0;

8 usfixn64 qb, mb;

9 usfixn64 m0, q0;

10 usfixn64 m1, q1;

11 // ### should be precomputed

12 // [mb,qb]=div_by_const_R(u64);

13 // div_by_const_R(0, 1, r0, r1, qb, mb);

14
15 qb = u64_mod_R_q;

16 mb = u64_mod_R_m;



61

17 // [m0,q0]=div_by_const_R(x0);

18 div_by_const_R(x0, 0, r0, r1, q0, m0);

19
20 // # q1=x1/R;

21 // # m1=x1%R;

22 // [m1,q1]=div_by_const_R(x1);

23
24 div_by_const_R(x1, 0, r0, r1, q1, m1);

25
26 __int128 l0, l1;

27 __int128 h0, h1;

28 __int128 c0, c1;

29
30 l0 = m0;

31 l1 = (__int128) m1 * (__int128) mb;

32 // #l2=0;#x2*R0_u128;

33
34 h0 = (__int128) q0;

35 h1 = (__int128) q1 * (__int128) mb + (__int128) qb * (__int128)

m1;

36 // #h2=0;#x2*R1_u128;

37
38 c0 = 0;

39 c1 = (__int128) q1 * (__int128) qb;

40 // #c2=0;#x2*R2_u128

41
42
43 usfixn64 lhc_l0h0c0[3] =

44 { l0, h0, c0 };

45 // lhc_l0h0c0=[l0,h0,c0];

46
47 usfixn64 lhc_l1c1[3] =

48 { 0, 0, c1 };

49 usfixn64 lhc_l2c2[3] =

50 { 0, 0, 0 };

51 usfixn64 lhc_h1h2[3] =

52 { 0, 0, 0 };

53 usfixn64 lhc_ans[3] =

54 { 0, 0, 0 };

55
56 div_by_const_R(l1 & U64_MASK , l1 >> 64, r0, r1, lhc_l1c1[1],

lhc_l1c1[0]);

57 div_by_const_R(h1 & U64_MASK , h1 >> 64, r0, r1, lhc_h1h2[2],

lhc_h1h2[1]);

58
59 // lhc_ans=add_lhc(lhc_l0h0c0 ,lhc_l1c1)

60 // lhc_ans=add_lhc(lhc_ans,lhc_l2c2)

61
62 add_lhc(lhc_l0h0c0 , lhc_l1c1, lhc_ans);

63 add_lhc(lhc_ans, lhc_h1h2, lhc_ans);

64
65 // printf("l=%lu, h=%lu, c=%lu\n", lhc_ans[0], lhc_ans[1],

lhc_ans[2]);

66
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67 s0 = lhc_ans[0];

68 s1 = lhc_ans[1];

69 s2 = lhc_ans[2];

70
71 }

Listing A.4: (l,h,c) Algorithm

1 inline sfixn MontMulModSpe_OPT3_AS_GENE_INLINE(sfixn a,sfixn b,sfixn

MY_PRIME , sfixn INV_PRIME){

2 asm("mulq %2\n\t"

3 "movq %%rax,%%rsi\n\t"

4 "movq %%rdx,%%rdi\n\t"

5 "imulq %3,%%rax\n\t"

6 "mulq %4\n\t"

7 "add %%rsi,%%rax\n\t"

8 "adc %%rdi,%%rdx\n\t"

9 "subq %4,%%rdx\n\t"

10 "mov %%rdx,%%rax\n\t"

11 "sar $63,%%rax\n\t"

12 "andq %4,%%rax\n\t"

13 "addq %%rax,%%rdx\n\t"

14 : "=d" (a)

15 : "a"(a),"rm"(b),"b"((sfixn) INV_PRIME),"c"((sfixn) MY_PRIME)

16 :"rsi","rdi");

17 return a;
18 }

Listing A.5: Montgomery multiplication for 64-bit numbers
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