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ABSTRACT 

Steel reinforced concrete (RC) framed structures are seismically designed for safety, 

where the earthquake energy is dissipated through yielding of the steel bars. During 

strong earthquakes, high inelastic deformations are allowed to take place.  This allowance 

results in significant residual deformations. Thus, following an earthquake, the structure 

might be deemed irreparable, requiring its demolishing and replacement. If the frame can 

be designed to regain its original shape following an earthquake, then the structure will 

be repairable. This kind of design can be achieved by using smart materials such as Shape 

Memory Alloys (SMAs). 

SMAs have unique properties, which make them distinctive when compared to other 

metals and alloys. These properties give them the ability to undergo large deformations 

and return to their undeformed shape upon unloading (superelasticity). Under cyclic 

loading, the flag shape stress-strain relationship of SMA provides the ability to dissipate 

large amounts of energy. In addition, they have good corrosion and fatigue resistance. 

These unique properties of SMAs have motivated researchers to utilize them as 

reinforcing bars in RC structures. 

The first part of this study aims at providing in-depth understanding of the flexural 

behaviour of SMA RC beams. A sectional analysis method, that predicts the flexural 

behaviour of SMA RC beams during both loading and unloading stages, is adopted and 

validated using available experimental data. A parametric study is then carried out to 
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investigate the effect of different geometrical properties. Recommendations for the 

optimum amount and length of SMA bars are drawn based on results of this study. 

Retrofitting RC structures can be needed to minimize the seismic residual deformations 

occurring in the structure following an earthquake event. It can also be needed to upgrade 

their capacities and/or address the deterioration happening overtime. Innovative and cost 

effective retrofitting techniques are continuously being developed. In the second part of 

this study, a new technique for retrofitting RC beams in flexure is introduced. The 

technique is based on using external unbonded superleastic SMA bars. The technique is 

first assessed using the Finite Element (FE) method. A simplified sectional analysis 

approach is then presented, validated, and used to conduct a parametric study. Results of 

the parametric study are used to develop equations to predict changes in the beam 

behaviour covering its residual displacement, stiffness, and the dissipated energy because 

of the suggested retrofitting technique.  

Beam-column joints (BCJs) or RC framed structures are designed to satisfy the strong 

column-weak beam concept, where severe inelastic deformations are allowed to occur in 

the beam. Minimizing these inelastic deformations can be needed to make the structure 

repairable. In addition, one of the problems for existing RC structures designed per older 

standards (pre 1970s) is the inadequate anchorage for the beam reinforcement in the joint 

area. In the third part of this study, the applicability of using external unbonded SMA 

bars to retrofit RC BCJs is investigated. A FE model is first developed and validated. A 

simplified model is then proposed and validated using the developed FE model. The 
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simplified model is used to conduct a parametric study to investigate the behaviour of 

SMA retrofitted RC BCJs. Results of the parametric study are used to develop equations 

to decide the optimum length and amount of the SMA bars.    

Superelastic SMA bars can be used to minimize the inelastic deformations happening in 

RC frame structures after seismic events. Minimizing these inelastic deformations make 

the structure repairable. In the fourth part of this study, the seismic performance of RC 

frames retrofitted using external superleastic SMA bars is investigated and compared to 

the behaviour of a regular steel RC frame structure. Nonlinear time history analysis is 

performed for a six storey RC frame structure located in high seismic region. After 

performing the analysis, two retrofitted frames are assumed. Analysis is performed again 

for the two frames at the load intensities causing failure of the steel RC frame. The 

performance of the retrofitted frames is compared to the steel RC frame. The retrofitted 

frames showed lower level of damage at failure and they tolerated higher earthquake 

intensities. The suggested retrofitting technique reduced the maximum drifts by 10% to 

15%, and the residual drifts by 50% to 70%. 

Keywords: reinforced concrete (RC), shape memory alloys (SMAs), flexural behaviour, 

retrofitting, sectional analysis, beam-column Joint, frame structure, seismic performance 

 

 



 

iv 
 

CO-AUTHORSHIP 

This doctoral thesis has been prepared in accordance with the regulation of manuscript 

format stipulated by the School of Graduate and Postdoctoral Studies at The University 

of Western Ontario. Substantial parts of this thesis are submitted for publication to peer-

reviewed technical journals and international conferences. All data analysis, modelling 

process, and writing the initial version of all publications are carried out by the candidate 

himself. The contribution of his research advisor consisted of either providing advice, 

and/or helping in the development of final versions of publications: 

Submitted Journals Publications 

Chapter 3 Elbahy, Y.I. and Youssef, M.A. “Flexural Behaviour of Superleastic Shape 

Memory Alloy Reinforced Concrete Beams During Loading and 

Unloading Stages.” Engineering Structures Journal, Submitted April 

2018. 

Chapter 4 Elbahy, Y.I. and Youssef, M.A. “Flexural Behaviour of Reinforced 

Concrete Beams Retrofitted Using External Unbonded Superleastic Shape 

Memory Alloy Bars.” Journal of Building Engineering, Submitted April 

2018. 



 

v 
 

Chapter 5 Elbahy, Y.I. and Youssef, M.A. “Flexural Behaviour of Reinforced 

Concrete Beam-Column Joints Retrofitted Using External Unbonded 

Superleastic Shape Memory Alloy Bars.” Engineering Structures Journal, 

Submitted April 2018. 

Chapter 6 Elbahy, Y.I. and Youssef, M.A. “Seismic Performance of Reinforced 

Concrete Frames Retrofitted Using External Superelastic Shape Memory 

Alloy Bars.” Bulletin of Earthquake Engineering Journal, Submitted April 

2018. 

 

 

 

 

  

  

 

 



 

vi 
 

To:   My father AHMED, 

 My mother AMIRA, 

 My brother HESHAM 

 My sister Yusra, and 

 My fiancee Toka 

 

 

 

 

 

 

 

 

 



 

vii 
 

ACKNOWLEDGEMENT 

The author would like to convey his sincere appreciation and gratitude to his advisor, Dr. 

Maged A. Youssef for his guidance, advice and encouragement throughout the course of 

this research. His mentorship, support and patience was a great essence and is greatly 

acknowledged. 

Special thanks are due to fiancée, Dr. Toka S. Mostafa, for her help with the statistical 

modeling part and for her continuous and endless support during this long term of study. 

The author would also like to thank all staff at The Department of Civil and 

Environmental Engineering who contributed directly or indirectly to the accomplishment 

of this thesis.  

Finally, the author would like to express his genuine gratitude and appreciation for his 

father, mother, brother, and sister for their continuous support and encouragement. 

 

 

 

 



 

viii 
 

TABLE OF CONTENT 

Abstract ............................................................................................................................ i 

Co-Authorship ............................................................................................................... iv 

ACKNOWLEDGEMENT ............................................................................................ vii 

Table of Content .......................................................................................................... viii 

List of Tables ............................................................................................................... xiv 

List of Figures .............................................................................................................. xvi 

List of Abbreviation, Symbols, and Nomenclature .................................................... xxii 

Chapter 1  Introduction .................................................................................................. 1 

1.1  General ........................................................................................................... 1 

1.2  Research Needs and Motivation .................................................................... 3 

1.3  Specific Research Objectives ......................................................................... 3 

1.4  Thesis Outline ................................................................................................ 4 

1.5  References ...................................................................................................... 7 

Chapter 2  Literature Review ........................................................................................ 9 

2.1  Introduction .................................................................................................... 9 

2.2  Canadian Infrastructure Status ..................................................................... 10 

2.2.1  Canadian Infrastructure Vulnerability to Damage ....................................... 11 

2.2.2  Risk to Transportation Systems ................................................................... 12 

2.2.3  Risk to Schools and Hospitals ...................................................................... 13 

2.3  Retrofitting RC Structures ........................................................................... 13 

2.3.1  Historical Background ................................................................................. 13 

2.3.2  External Unbonded Reinforcement .............................................................. 15 

2.4  Failure OF Beam-Column Joints During Past Earthquakes ........................ 16 

2.4.1  Introduction .................................................................................................. 16 

2.4.2  Seismic Deficiencies of the Pre-1970 BCJs ................................................. 19 

2.4.3  Bond Slip Failure Mode of Unconfined BCJs ............................................. 20 

2.5  Retrofitting of Seismic Deficient BCJs ........................................................ 21 

2.6  Shape Memory Alloys ................................................................................. 21 



 

ix 
 

2.6.1  Introduction .................................................................................................. 21 

2.6.2  Mechanical Behaviour of SMAs .................................................................. 22 

2.6.3  Behaviour of SMAs Under Cyclic Loading ................................................. 24 

2.6.4  Modelling of SMAs ..................................................................................... 25 

2.6.5  Strain Rate Effect ......................................................................................... 26 

2.6.6  Applications of SMA Reinforcing Bars ....................................................... 28 

2.6.6.1 Reinforcement for concrete elements................................................................. 28 

2.6.6.2 Prestressing concrete elements ........................................................................... 32 

2.6.7  SMA in Retrofitting of Existing Structures ................................................. 35 

2.6.7.1 SMAs as bracing members ................................................................................ 36 

2.6.7.2 Prestressing ........................................................................................................ 38 

2.6.7.3 Dampers ............................................................................................................. 39 

2.7  Summary and Conclusions .......................................................................... 41 

2.8  References .................................................................................................... 42 

Chapter 3  Flexural Behaviour of Superelastic Shape Memory Alloys Reinforced 

Concrete Beams During Loading and Unloading Stages ....................... 53 

3.1  Introduction .................................................................................................. 53 

3.2  Analysis Method .......................................................................................... 55 

3.2.1  Concrete under Compression ....................................................................... 55 

3.2.2  Concrete under Tension ............................................................................... 56 

3.2.3  Steel Bars ..................................................................................................... 56 

3.2.4  Superelastic SMA Bars ................................................................................ 58 

3.3  Deflection Calculations ................................................................................ 59 

3.4  Experimental Validation .............................................................................. 59 

3.5  Parametric Study .......................................................................................... 63 

3.6  Results and Discussion ................................................................................ 66 

3.6.1  Reinforcement Ratio (ρSMAs) ........................................................................ 66 

3.6.2  Ratio between the Amount of SMA Bars and the Amount of Steel Bars 

(ASMAs/As) ................................................................................................................... 69 

3.6.3  Cross-section Height-to-Width Ratio (h/b) .................................................. 74 

3.6.4  Beam Span-to-Depth Ratio (L/h) ................................................................. 77 



 

x 
 

3.6.5  Concrete Compressive Strength (f’
c) ............................................................ 82 

3.7  Choice of SMA length ................................................................................. 83 

3.8  Conclusions .................................................................................................. 91 

3.9  References .................................................................................................... 93 

Chapter 4  Flexural Behaviour of Reinforced Concrete Beams Retrofitted using 

External Unbonded Superelastic Shape Memory Alloy Bars ................ 96 

4.1  Introduction .................................................................................................. 96 

4.2  Finite Element Simulation ........................................................................... 97 

4.2.1  Concrete under Compression ....................................................................... 97 

4.2.2  Concrete under Tension ............................................................................... 98 

4.2.3  Steel Bars ..................................................................................................... 98 

4.2.4  Superelastic SMA Bars ................................................................................ 99 

4.3  Experimental VALIDATION .................................................................... 101 

4.4  Suggested Retrofitting Technique.............................................................. 111 

4.5  Simplified Analysis Method ...................................................................... 114 

4.6  Deflection Calculations .............................................................................. 118 

4.7  Program Validation .................................................................................... 118 

4.8  Parametric Study ........................................................................................ 119 

4.9  Results and Discussions ............................................................................. 120 

4.9.1  ASMA/As Parameter ...................................................................................... 120 

4.9.2  Load Level Parameter (δmax/δy) .................................................................. 122 

4.9.3  LSMA/L Parameter ........................................................................................ 124 

4.10  Choice of SMA Bars .................................................................................. 129 

4.11  Conclusions ................................................................................................ 136 

4.12  References .................................................................................................. 137 

Chapter 5  Flexural Behaviour of Reinforced Concrete Joints Retrofitted Using 

External Superelastic Shape Memory Alloy Bars................................. 139 

5.1  Introduction ................................................................................................ 139 

5.2  Finite Element Simulation ......................................................................... 141 

5.3  Experimental Validation ............................................................................ 141 



 

xi 
 

5.4  Proposed Retrofitting Technique ............................................................... 150 

5.5  Retrofitted BCJ .......................................................................................... 151 

5.6  Simplified Model ....................................................................................... 155 

5.7  Parametric Study ........................................................................................ 157 

5.8  Results and Discussions ............................................................................. 158 

5.8.1  ASMAs/As Parameter .................................................................................... 158 

5.8.2  LSMAs/L Parameter ....................................................................................... 159 

5.8.3  Drift Ratio Parameter ................................................................................. 162 

5.9  Choice of SMA Bars Length...................................................................... 164 

5.10  Conclusions ................................................................................................ 170 

5.11  References .................................................................................................. 172 

Chapter 6  Seismic Performance of Reinforced Concrete Frames Retrofitted Using 

External Superelastic Shape Memory Alloys Bars ............................... 175 

6.1  Introduction ................................................................................................ 175 

6.2  Proposed Retrofitting Technique ............................................................... 176 

6.3  Simplified Model ....................................................................................... 178 

6.4  Steel RC Frame Characteristics and Modeling .......................................... 180 

6.5  SMA RC Frames ........................................................................................ 182 

6.6  Local Failure and Collapse Limits ............................................................. 183 

6.7  Dynamic Analyses ..................................................................................... 183 

6.7.1  Eigen Value Analysis ................................................................................. 183 

6.7.2  Selection of Ground Motion Records ........................................................ 184 

6.7.3  Incremental Dynamic Analysis (IDA) ....................................................... 186 

6.7.4  Time History Analysis at Collapse ............................................................ 186 

6.8  Results and Discussions ............................................................................. 186 

6.8.1  Incremental Dynamic Analysis .................................................................. 186 

6.8.2  Damage Schemes ....................................................................................... 193 

6.8.3  Maximum and Residual Drifts ................................................................... 200 

6.9  Conclusions ................................................................................................ 202 

6.10  References .................................................................................................. 204 



 

xii 
 

Chapter 7  Conclusions and Recommendations ....................................................... 206 

7.1  Summary and Conclusions ........................................................................ 206 

7.1.1  Flexural Behaviour of Superelastic Shape Memory Alloy Reinforced 

Concrete Beams during Loading and Unloading Stages ........................................ 206 

7.1.2  Flexural Behaviour of Reinforced Concrete Beams Retrofitted using 

External Unbonded Superelastic Shape Memory Alloy Bars. ................................ 208 

7.1.3  Flexural Behaviour of Reinforced Concrete Joints Retrofitted Using 

External Superelastic Shape Memory Alloy Bars. ................................................. 210 

7.1.4  Seismic Performance of Reinforced Concrete Frames Retrofitted Using 

External Superelastic Shape Memory Alloy Bars .................................................. 212 

7.2  Major Research Contribution ..................................................................... 213 

7.3  Recommendations for Future Studies ........................................................ 214 

Appendix I: Details of the Sectional Analysis Method Developed in Chapter 3 ..... 215 

I.1 Stage I ................................................................................................................ 217 

I.2 Stage II:.............................................................................................................. 218 

I.3   Concrete Stress-Strain Model Under Compression ............................................. 221 

I.4   Concrete Stress-Strain Model Under Tension ..................................................... 224 

I.5   Steel Stress-Strain Model .................................................................................... 225 

I.6   SMA Stress-Strain Model .................................................................................... 227 

I.4   References ........................................................................................................... 231 

Appendix II: Validation of The Sectional Analysis Method Developed in Chapter 3

.................................................................................................................... 233 

Appendix III: Validation of the Sectional Analysis Method Developed in Chapter 4

.................................................................................................................... 241 

Appendix IV: Flexural Behaviour of RC Beams Externally Reinforced with SMA 

Bars (internal steel is not cut) ................................................................. 248 

IV.1   ASMAs/As Parameter ............................................................................................ 248 

IV.2   Load Level Parameter ....................................................................................... 250 

IV.3   LSMA/L Parameter .............................................................................................. 252 



 

xiii 
 

Appendix V: Regression Analysis for RC Beams Externally Reinforced with SMA 

Bars (internal steel is not cut) ................................................................. 260 

Appendix VI: Regression Analysis for RC Beams Externally Reinforced with Steel 

Bars (internal steel is not cut) ................................................................. 267 

VITA …………………………………………………………………………….277 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 



 

xiv 
 

LIST OF TABLES 

Table 2-1: Properties of structural steel and Ni-Ti SMAs ................................................ 23 

 

Table 3-1: Details of beams tested by Abdulridha (2013) ................................................ 60 

Table 3-2: Details of studied beams and cross-sections ................................................... 65 

Table 3-3: Descriptive statistics of the used data .............................................................. 84 

Table 3-4: Correlation coefficients between all variables ................................................ 85 

Table 3-5: Regression model for δr/δmax when LSMAs/L ≤ 0.14 .......................................... 88 

Table 3-6: Regression model for δr/δmax when LSMAs/L > 0.14.......................................... 88 

Table 3-7: Regression model for δy-s /δcr-SMAs when LSMAs/L ≤ 0.14 .................................. 89 

Table 3-8: Regression model for δy-s /δcr-SMAs when LSMAs/L > 0.14 .................................. 89 

Table 3-9: Regression model for ENSMAs/ENs when LSMAs/L ≤ 0.14 ................................. 90 

Table 3-10: Regression model for ENSMAs/ENs when LSMAs/L > 0.14 ............................... 90 

 

Table 4-1: Details of the tested beams by Abdulridha et al. (2013) ............................... 102 

Table 4-2: Properties of the tested beams by Saiidi et al. (2007) ................................... 107 

Table 4-3: Descriptive statistics of the used data ............................................................ 130 

Table 4-4: Correlation coefficients between all variables .............................................. 131 

Table 4-5: Regression model for δr/δmax ......................................................................... 133 

Table 4-6: Regression model for Mrt/Morg ...................................................................... 134 

Table 4-7: Regression model for STrt/STorg .................................................................... 134 

Table 4-8: Regression model for δy-rt/δy-org ..................................................................... 135 

Table 4-9: Regression model for δmax-rt/δmax-org ............................................................... 135 

 

Table 5-1: Properties of the beams tested by Saiidi et al. (2007) ................................... 146 

Table 5-2: Descriptive statistics of the used data ............................................................ 165 

Table 5-3: Correlation coefficients between all variables .............................................. 167 

Table 5-4: Regression model for δr/δmax ......................................................................... 168 

Table 5-5: Regression model for Mrt/Morg ...................................................................... 168 



 

xv 
 

Table 5-6: Regression model for STrt/STorg .................................................................... 169 

Table 5-7: Regression model for ENrt/ENorg ................................................................... 169 

 

Table 6-1: Chosen earthquake records ............................................................................ 185 

Table 6-2: Comparison between the seismic performance of the three frames .............. 201 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xvi 
 

LIST OF FIGURES 

Fig. 2-1: Failure of the Kaiser Permanente Building during the 1994 Northridge 

earthquake (Hassan 2011) ................................................................................................. 17 

Fig.  2-2: Partial building collapse during the 1999 Izmit earthquake in Turkey (NISEE 

2010) ................................................................................................................................. 18 

Fig.  2-3: Partial collapse of a 15-storey building in the 1999 Chi-Chi earthquake in 

Taiwan (Uang et al. 1999) ................................................................................................ 19 

Fig.  2-4: Stress -strain relationship of SMA .................................................................... 23 

Fig.  2-5: Typical axial stress–strain relationship of superelastic SMA (austenite) under 

cyclic loading (Dolce and Cardone 2001). ....................................................................... 24 

Fig.  2-6: One-dimensional phenomenological model of SMAs (ANSYS 2018) ............ 26 

Fig.  2-7: Details of the tested specimen (Saiidi and Wang 2006) ................................... 29 

Fig.  2-8: Cracking behaviour of SMA mortar beams (Sakai et al. 2003) ........................ 30 

Fig. 2-9: Test setup (Saiidi et al. 2007) ............................................................................. 31 

Fig.  2-10: Details of the tested BCJ by Youssef et al. (2008) ......................................... 32 

Fig.  2-11: Using SMA in pre-tensioning concrete beams (Li et al. 2007) ....................... 33 

Fig.  2-12: Using SMA in post-tensioning concrete beams (El-Tawil and Ortega 2004) 34 

Fig.  2-13: SMA self-healing (Opara and Naaman 2000) ................................................. 35 

Fig.  2-14: Retrofitting of a two storey RC frame using SMAs (Dolce et al. 2004) ......... 36 

Fig.  2-15: Retrofitting of the Trignano Giorgio ancient church in Italy using SMAs 

(Indirli et al. 2001) ............................................................................................................ 39 

Fig.  2-16: SMA based dampers (Clark et al. 1995) ......................................................... 40 

 

Fig. 3-1: Stress-strain models during loading and unloading stages ................................ 57 

Fig. 3-2: Idealized stress-strain models for steel and SMAs bars. .................................... 61 

Fig. 3-3: Moment-curvature analysis for steel and SMAs RC cross-sections. ................. 61 

Fig. 3-4: Experimental vs. Analytical load-displacement relationships ........................... 62 

Fig. 3-5: Sketch of the studied beams ............................................................................... 63 



 

xvii 
 

Fig. 3-6: Effect of varying the cross-section reinforcement ratio on the load-displacement 

relationships of steel and SMA RC beams for LSMAs = 0.00 L, 0.05 L, 0.25 L, 0.50 L, and 

1.0 L .................................................................................................................................. 67 

Fig. 3-7: Effect of varying the cross-section reinforcement ratio on: (a) residual 

displacements; (b) flexural stiffness; (c) dissipated energy .............................................. 68 

Fig. 3-8: Effect of varying the ASMAs/As ratio on the load-displacement relationships of 

steel and SMA RC beams for LSMAs = 0.00 L, 0.05 L, 0.25 L, 0.50 L, and 1.0 L .............. 71 

Fig. 3-9: Effect of varying the ASMAs/As ratio on: (a) residual displacements; (b) flexural 

stiffness; (c) dissipated energy .......................................................................................... 72 

Fig. 3-10: Effect of varying the h/b ratio on the load-displacement relationships of steel 

and SMA RC beams for LSMAs = 0.00 L, 0.05 L, 0.25 L, 0.50 L, and 1.0 L ...................... 75 

Fig. 3-11: Effect of varying the cross-section height-to-width ratio (h/b) on: (a) residual 

displacements; (b) flexural stiffness; (c) dissipated energy .............................................. 76 

Fig. 3-12: Effect of varying the L/h ratio on the load-displacement relationships of steel 

and SMA RC beams for LSMAs = 0.00 L, 0.05 L, 0.25 L, 0.50 L, and 1.0 L ...................... 78 

Fig. 3-13: Effect of varying the beam span-to-depth ratio (L/h) on: (a) residual 

displacements; (b) flexural stiffness; (c) dissipated energy .............................................. 79 

Fig. 3-14: Effect of varying the concrete compressive strength on the load-displacement 

relationships of steel and SMA RC beams for LSMAs = 0.00 L, 0.05 L, 0.25 L, 0.50 L, and 

1.0 L .................................................................................................................................. 80 

Fig. 3-15: Effect of varying the ASMAs/As ratio on: (a) residual displacements; (b) flexural 

stiffness; (c) dissipated energy .......................................................................................... 81 

 

Fig. 4-1:  Stress-strain models during loading and unloading stages; (a) Concrete in 

compression; (b) Concrete in tension; (c) Steel in tension/compression; (d) SMA in 

tension/compression. ....................................................................................................... 100 

Fig. 4-2: Mesh sensitivity analysis for the FE model. .................................................... 103 

Fig. 4-3: Experimental vs. numerical load-displacement results of steel RC beams tested 

by Abdulridha (2013); (a) B1-SM results; (b) B2-SC results; (c) B3-SR results. .......... 104 



 

xviii 
 

Fig. 4-4: Experimental vs. numerical load-displacement results of SMA RC beams tested 

by Abdulridha (2013); (a) B4-NM results; (b) B6-NR results; (c) B7-NCM results. .... 105 

Fig. 4-5: Dimensions and test setup of beams tested by Saiidi et al. (2007). ................. 107 

Fig. 4-6: Mesh sensitivity analysis for beam BNH1. ...................................................... 108 

Fig. 4-7: Experimental vs. analytical load-displacement results of the SMA RC beams 

tested by Saiidi et al. (2007); (a) BNH1 results; (b) BNH2 results; (c) BNL1 results; (d) 

BNL2 results. .................................................................................................................. 109 

Fig. 4-8: Experimental vs. analytical load-displacement results of the steel RC beams 

tested by Saiidi et al. (2007); (a) BSH1 results; (b) BSH2 results; (c)  BSL1 results; (d) 

BSL2 results. ................................................................................................................... 110 

Fig. 4-9: Suggested strengthening technique. ................................................................. 111 

Fig. 4-10: FE model of half the strengthened beam ........................................................ 112 

Fig. 4-11: Load displacement results of the retrofitted beam vs. the original beam. ...... 113 

Fig. 4-12: Fibre Model. ................................................................................................... 114 

Fig. 4-13: Flow chart of the developed program; (a) Loading stage; (b) Unloading stage.

......................................................................................................................................... 116 

Fig. 4-14: Load-displacement relationship of the FE method vs. the developed program.

......................................................................................................................................... 119 

Fig. 4-15: Effect of varying the ASMAs/As ratio on the retrofitted beam behaviour; (a) 

Residual displacements; (b) Moment capacity; (c) Initial stiffness. ............................... 121 

Fig. 4-16: Effect of varying the applied load level on the retrofitted beam behaviour ; (a) 

Residual displacements; (b) Moment capacity; (c) Initial stiffness. ............................... 123 

Fig. 4-17: Effect of varying the LSMA/L ratio on the amount of residual displacements in 

the strengthened beams at ASMA/As =3.0. ......................................................................... 125 

Fig. 4-18: Effect of varying the LSMA/L ratio on the amount of residual displacements in 

the retrofitted beams at load level = 5.0 δy. ..................................................................... 125 

Fig. 4-19: Effect of varying the LSMA/L ratio on the moment capacity of the retrofitted 

beams at ASMAs/As = 3.0. .................................................................................................. 126 

Fig. 4-20: Effect of varying the LSMA/L ratio on the initial stiffness of the retrofitted 

beams. ............................................................................................................................. 126 



 

xix 
 

Fig. 4-21: Effect of varying the LSMA/L ratio on the displacement at which yielding in the 

external SMA bar starts to occur in the retrofitted beams. ............................................. 128 

Fig. 4-22: Effect of varying the LSMA/L ratio on the maximum displacement of the 

retrofitted beams. ............................................................................................................ 128 

 

Fig. 5-1: Stress-strain relationships for an SMA bar (McCormick et al., 2006)............. 140 

Fig. 5-2: Details of the two BCJs tested by Youssef et al. (2008) .................................. 142 

Fig. 5-3: Mesh sensitivity analysis for the FE analysis of the BCJ; (a) BCJ1; and (b) 

BCJ2 ................................................................................................................................ 144 

Fig. 5-4: Experimental vs. FE load-displacement results for the BCJs tested by Youssef et 

al. (2008); (a) BCJ1; and (b) BCJ2 ................................................................................. 145 

Fig. 5-5: Beams dimensions and test setup ..................................................................... 146 

Fig. 5-6: Mesh sensitivity analysis for beam BNH1 ....................................................... 147 

Fig. 5-7: Experimental vs. analytical results for SMA RC beams; (a) BNH1; (b) BNH2; 

(c) BNL1; and (d) BNL2 ................................................................................................. 148 

Fig. 5-8: Experimental vs. analytical results for steel RC beams; (a) BSH1; (b) BSH2; (c) 

BSL1; and (d) BSL2 ....................................................................................................... 149 

Fig. 5-9: Proposed retrofitting technique ........................................................................ 150 

Fig. 5-10: sketch of the retrofitted BCJ .......................................................................... 153 

Fig. 5-11: FE Model of the retrofitted BCJ ..................................................................... 153 

Fig. 5-12: FE load-displacement relationship for the original BCJ vs. the retrofitted BCJ

......................................................................................................................................... 154 

Fig. 5-13: FE load-displacement relationship for the original BCJ vs. the retrofitted BCJ 

with internal steel bars are cut ........................................................................................ 154 

Fig. 5-14: Sketch of the simplified model ...................................................................... 156 

Fig. 5-15: Load-displacement results of the ABAQUS model vs. the simplified 

Seismostruct model ......................................................................................................... 156 

Fig. 5-16: Effect of varying the ASMA/As ratio on: (a) residual displacement; (b) moment 

capacity; (c) initial stiffness; and (d) dissipated energy. ................................................. 160 



 

xx 
 

Fig. 5-17: Effect of varying the LSMA/L ratio on: (a) residual displacement; (b) moment 

capacity; (c) initial stiffness; and (d) dissipated energy. ................................................. 161 

Fig. 5-18: Effect of varying the drift ratio on: (a) residual displacement; (b) moment 

capacity; (c) initial stiffness; and (d) dissipated energy. ................................................. 163 

 

Fig. 6-1: Proposed retrofitting technique ........................................................................ 177 

Fig. 6-2: Sketch of the simplified model ........................................................................ 179 

Fig. 6-3: Load-displacement results of the ABAQUS model vs. the simplified 

Seismostruct model ......................................................................................................... 179 

Fig. 6-4: Six-storey RC building Plan and Elevation (Youssef and Elfeki 2012) .......... 181 

Fig. 6-6: Modeling of beam column joints (Youssef and Elfeki 2012) .......................... 182 

Fig. 6-7: First four mode shapes of the six-storey RC building (Youssef and Elfeki 2012)

......................................................................................................................................... 184 

Fig. 6-8: Spectral acceleration diagrams ......................................................................... 185 

Fig. 6-9: Incremental dynamic analysis of the three frames - Imperial Record ............. 188 

Fig. 6-10: Incremental dynamic analysis of the three frames - Loma Prieta Record ..... 189 

Fig. 6-11: Incremental dynamic analysis of the three frames - Northridge Record ....... 190 

Fig. 6-12: Incremental dynamic analysis of the three frames - San Fernando Record ... 191 

Fig. 6-13: Incremental dynamic analysis of the three frames - Whittier Record ............ 192 

Fig. 6-14: Damage scheme for different frames when subjected to Imperial earthquake 

record; (a) Frame 1 (Steel Only); (b) Frame 2 (First Floor Only); and (c) Frame 3 (First 

and Fourth Floors)........................................................................................................... 195 

Fig. 6-15: Damage scheme for different frames when subjected to Loma Prieta 

earthquake record; (a) Frame 1 (Steel Only); (b) Frame 2 (First Floor Only); and (c) 

Frame 3 (First and Fourth Floors) ................................................................................... 196 

Fig. 6-16: Damage scheme for different frames when subjected to Northridge earthquake 

record; (a) Frame 1 (Steel Only); (b) Frame 2 (First Floor Only); and (c) Frame 3 (First 

and Fourth Floors)........................................................................................................... 197 



 

xxi 
 

Fig. 6-17: Damage scheme for different frames when subjected to San Fernando 

earthquake record; (a) Frame 1 (Steel Only); (b) Frame 2 (First Floor Only); and (c) 

Frame 3 (First and Fourth Floors) ................................................................................... 198 

Fig. 6-18: Damage scheme for different frames when subjected to Whittier earthquake 

record; (a) Frame 1 (Steel Only); (b) Frame 2 (First Floor Only); and (c) Frame 3 (First 

and Fourth Floors)........................................................................................................... 199 

Fig. 6-19: Maximum and residual drift ratios of the studied frames; (a) MID; (b) MRID; 

(c) MRDR; and (d) RRDR .............................................................................................. 200 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xxii 
 

LIST OF ABBREVIATION, SYMBOLS, AND NOMENCLATURE 

A’
s Cross-sectional area of the internal compressive reinforcement 

Adj R2 
An adjustment of the R-squared that penalizes the addition of extraneous 
predictors to the model 

Ai Area of layer i 
As Cross-sectional area of the internal tensile reinforcement 

ASMAs/As 
Ratio between the amounts of SMAs reinforcement to the amount of 
steel reinforcement. 

BCJs Beam-column joints 
df Degrees of Freedom 
E Modulus of elasticity 

Ecr-SMA SMAs austenite modulus of elasticity. 
ENorg Amount of dissipated energy by the original BCJ 
ENrt Amount of dissipated energy by the retrofitted BCJ 
ENs Amount of dissipated energy by the steel RC beam. 

ENSMAs Amount of dissipated energy by the SMAs RC beam. 

ENSMAs/ENs 
Ratio between the amount of dissipated energy by the SMAs RC beam 
and the amount of dissipated energy by the steel RC beam. 

Ep1 
SMAs modulus of elasticity during the stress induced transformation 
from austenite to martensite phase. 

Ep2 SMAs martensite modulus of elasticity. 
Eu-s Post-yielding modulus of elasticity of steel. 

Eu-SMA Post-yielding modulus of elasticity of SMAs. 
Ey Modulus of elasticity 
Ey-s Pre-yielding modulus of elasticity of steel. 

F(  a,  b) 
F-statistic is the Mean Square Model (MS of model) divided by the 
Mean Square Residual (MS residuals) yielding F=xx.  The numbers in 
parentheses are the Model and Residual degrees of freedom 

fc Concrete compressive stress. 
fcr Concrete cracking stress. 

fcr-SMA 
SMAs critical stress at which stress induced transformation from 
austenite to martensite phase. 

FE finite element 

fp1 
SMAs stress after complete stress induced transformation from austenite 
to martensite phase 

FRPs Fibre Reinforced Polymers 
ft Concrete tensile stress. 

fu-s Steel ultimate stress 



 

xxiii 
 

fu-SMAs SMAs ultimate (rupture) stress 
fy Reinforcement yielding stress. 
fy-s Steel yielding stress 

fy-SMAs SMAs real yielding stress 
h/b Cross-section height-to-width ratio. 
L Full length of the beam 

L/h Beam span-to-depth ratio. 
LSMAs SMAs bars length LSMAs. 

LSMAs/L Ratio between the SMAs bar length and the total cantilever beam length. 
M Cross-section moment 

Morg Moment capacity of the original beam or BCJ 
Mrt Maximum moment capacity of the retrofitted beam or BCJ 
MS Mean Squares 
N.A. Neutral axis 
Ni-Ti Nickel-Titanium. 
NSM Near Surface Mounted 

Number of obs Number of observations used in the regression analysis 
P Applied load 

Prob > F P-value associated with the F-statistic. 

R2 
The proportion of variance in the dependent variable (science) which 
can be explained by the independent variables (math, female, socst and 
read) 

RC Reinforced Concrete 

RMSE 
The standard deviation of the error term, and is the square root of the 
Mean Square Residual (or Error) 

SMAs Shape Memory Alloys 
SS Sum of Squares 

STorg Initial stiffness of the original beam or BCJ 
STrt Initial stiffness of the retrofitted beam or BCJ 

yi 
Distance between the centre of gravity of layer i and the centre of 
gravity of the concrete cross-section. 

Z Slope of compressive strain softening branch. 

δcr-SMAs 
SMAs RC beam critical displacement - at which SMAs bars reach their 
critical stress value. 

δmax Maximum applied displacement at the cantilever beam free end. 
δmax /L drift ratio 

δmax/δy 
Ratio between the maximum applied displacement at the beam tip and 
the displacement at which beam reinforcement starts to yield. 

δmax-org Maximum displacement applied to the original beam 



 

xxiv 
 

δmax-rt Maximum displacement applied to the retrofitted beam 
δr Amount of residual displacement at complete unloading 

δr/δmax 
Ratio between residual displacement and maximum applied 
displacement. 

δy Beam displacement at which reinforcement starts to yield 

δy-org 
Displacement at which internal steel bars started to yield in the original 
beam. 

δy-rt 
Displacement at which yielding in the external SMAs bars starts to 
occur 

δy-s 
Steel RC beam yielding displacement - at which steel bars reach their 
yielding stress limit. 

δy-s /δcr-SMAs 
Inverse of the ratio between the SMAs RC beams critical displacement 
and the steel RC beams yielding displacement. 

ε0 Concrete strain at maximum compressive loading stress f’
c. 

εc Concrete compressive strain. 
εcr Concrete cracking strain. 

εcr-SMA SMAs critical strain. 
εc-top Strain of the top compressive concrete layer 
εcu Ultimate concrete compressive strain. 

εp 
Concrete strain at which first zero-stress value is achieved after 
unloading starts. 

εp1 
SMAs strain after complete stress induced transformation from austenite 
to martensite phase. 

εr Concrete strain at which unloading starts. 
εSMAs-ex Unbonded SMAs bars strain 
εun Strain at which unloading start. 
εu-s Steel rupture strain. 
εu-SMA SMAs ultimate (rupture) strain 
εy Yielding strain 
εy-s Yielding strain of steel. 
εy-SMA SMAs real yielding strain. 
ρb Balanced cross-section reinforcement ratio. 
ρint Intermediate cross-section reinforcement ratio (ρint = 0.5 ρb). 
ρmin Minimum cross-section reinforcement ratio. 
ρs-b Reinforcement ratio of balanced steel RC cross-section. 
ρSMAs Reinforcement ratio of SMAs RC cross-section. 

ρSMAs / ρs-b 
Ratio between the reinforcement ratio of the SMAs RC cross-section 
and the reinforcement ratio of the balanced steel RC cross-section steel. 

ρSMAs / ρs-min the ratio between the SMAs reinforcement ratio and the minimally 



 

xxv 
 

reinforced cross-section steel reinforcement ratio 
ρs-min Minimum reinforcement ratio of steel RC cross-section. 
ϕ Cross-section curvature 

 



 

1 
 

Chapter 1    Introduction 

1.1 GENERAL 

Most of the modern reinforced concrete (RC) framed structures are seismically designed for 

safety. This allows high inelastic deformations to occur when exposed to moderate or strong 

earthquakes. These inelastic deformations allow dissipating the seismic energy on the cost of 

residual deformations. Severe structural damage is expected in the case of strong earthquakes, 

which may make the structure irreparable and must be demolished. Thus, there is a need to 

retrofit exisitng structures to minimize seismic residual deformations, which will make the 

structure repairable.  

Pre-1970s designed and built structures are considered non-ductile, and, thus seismicaly deficient 

(Hassan et al. 2010). One of the main problems of these structures is the short anchorage of the 

beam reinforcing bars into the joint area. Retrofitting these structures is needed to achieve safety 

and ductility considering seismic loads. 

There are different methods available in the literature for flexural retrofitting of RC elements 

(Klaiber et al. 1987). The main retrofitting concept to improve the strength and stiffness of the 

RC element by adding reinforcement to the concrete tensile surface. Examples are: (i) enlarging 

the element cross-section by using steel RC (Julio et al. 2005); (ii) attachimg a Steel plate 

(Aboutaha et al. 1996); (iii) using external post-tensioning; and (iv) applying Fibre Reinforced 
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Polymer (FRP) sheets or near surface mounted bars (Sharif and Bluch 1996, Castro et al. 1996). 

New techniques are still being developed and introduced to the market. For example, recent 

research on Shape Memory Alloys (SMAs) highlighted their potential use as a retrofitting 

material for RC structures (Alam et al. 2007, Janke et al. 2005). 

SMAs are types of alloys with unique properties, which make them distinctive when compared 

to other metals and alloys (Alam et al. 2007; Janke et al. 2005). Superelasticity, which gives the 

material the ability to undergo large deformations and return to their undeformed shape upon 

unloading, is one of these unique properties. SMAs have a flag shaped stress-strain relationship, 

which gives them the ability to dissipate substantial amounts of energy and release them upon 

unloading. They also have good resistance to corrosion and fatigue, which make them potential 

candidates to be used as reinforcing bars.  

The unique properties of SMAs have motivated researchers to utilize them as reinforcing bars in 

RC structures. Saiidi et al. (2007) and Abdulridha et al. (2013) experimentally investigated the 

use of SMAs as reinforcing bars for RC beams. Elbahy et al. (2008, 2009, 2010a, 2010b) studied 

the flexural behaviour of SMA RC sections and developed design guidelines and equations for 

strength and serviceability requirements. Using SMAs in plastic hinge regions of reinforced RC 

beam-column joints (BCJs) was experimentally investigated by Youssef et al. (2008).  
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1.2 RESEARCH NEEDS AND MOTIVATION 

Recent strong earthquakes showed that public infrastructure can be severely damaged by a strong 

earthquake. These infrastructures are not expected to be available for a long period of time. This 

situation leads to health risks, severe business disruptions and closure. Canada should work on 

reducing the risks associated with severe earthquakes to avoid such situation. One of the methods 

to achieve this is by minimizing the degree of seismic damage. This can be achieved by 

retrofitting these structures using smart materials such as SMAs. 

SMAs have a great ability to eliminate or reduce the amount of residual deformations upon 

unloading (superelasticity). If SMA is used as a retrofitting material, it will lead to a structure 

that can regain its original shape, while minimizing the seismic damage. This study investigates 

the applicability of using external SMA bars to retrofit RC beams, beam-column joints, and 

framed structures. It also provides design tools to design such a retrofitting technique.  

1.3 SPECIFIC RESEARCH OBJECTIVES 

This research program aims at exploring the applicability of using external SMA bars to retrofit 

RC elements. The specific research goals are: 

(1) Investigate the behaviour of RC beams internally reinforced with SMA bars during the 

loading and unloading stages. 
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(2) Investigate the behaviour of RC beams retrofitted using external SMA bars during 

loading and unloading stages. 

(3) Investigate the behaviour of RC BCJs retrofitted using external SMA bars during loading 

and unloading. 

(4) Develop equations to determine the optimum number and length of SMA bars for the 

suggested retrofitting technique. 

(5) Investigate the seismic performance of RC frames retrofitted using external SMA bars as 

compared to regular steel RC frames. 

1.4 THESIS OUTLINE 

This dissertation has been prepared according to the integrated-article format predefined by the 

Faculty of Graduate studies at Western University, London, Ontario, Canada. It consists of seven 

chapters covering the scope of this study:  

Chapter 1 provides a brief introduction along with the research motivation and objectives. 

Chapter 2 provides a brief literature review that discusses the Canadian Infrastructures status, 

deficiency of the pre-1970s concrete structures to seismic loads, different retrofitting techniques, 

and the unique properties of SMAs and their applications. 
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Chapter 3 investigates the behaviour of RC beams internally reinforced with SMA bars. A 

sectional analysis method is developed and validated using available experimental results. An 

extensive parametric study is then carried out to investigate the effect of different geometrical 

properties. Recommendations for the optimum amount and length of SMA bars are drawn based 

on results of this study. 

Chapter 4 introduces a new technique for retrofitting RC beams in flexure by using external 

unbonded SMA bars. First, a Finite element (FE) model is developed using ABAQUS software. 

After validating the model using available experimental results, the model is then used to capture 

the behaviour of the retrofitted beams. A simplified sectional analysis approach is then presented 

and validated. An extensive parametric study is then carried out to investigate the optimum 

amount and length of the added SMA bars. Results of the parametric study are used to develop 

equations that are capable of predicting the changes in the beam behaviour because of the 

suggested retrofitting technique.  

Chapter 5 investigates the applicability of using external unbonded SMA bars to retrofit RC 

BCJs. A finite elements (FE) model is first developed using ABAQUS software. After validating 

the model with available experimental results, a simplified model is assumed and validated. A 

parametric study is then carried out to investigate the behaviour of retrofitted RC BCJs. Results 

of the the parametric study are used to develop equations that are capable of predicting the 

changes in the BCJ behaviour because of the suggested retrofitting technique  
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Chapter 6 investigates the seismic performance of RC frames retrofitted using external 

superleastic SMA bars as compared to regular steel RC frames.  Two retrofitting schemes are 

suggested to retrofit a six storey RC frame. The frames are then subjected to seismic excitations 

scaled to different intensities. The performance of the retrofitted frames is compared to the steel 

RC frame in terms of the damage level, the Maximum Inter-storey Drift (MID) ratio, Maximum 

Residual Inter-storey Drift (MRID), Maximum Roof Drift Ratio (MRDR), Residual Roof Drift 

Ratio (RRDR), and the earthquake intensity at collapse. 

Chapter 7 summarizes the research conclusions.  
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Chapter 2    Literature Review 

2.1 INTRODUCTION 

Most of the modern reinforced concrete (RC) structures are seismically designed for safety. The 

design goal is to achieve an economical design by allowing inelastic deformations under 

moderate to strong earthquakes. These inelastic deformations allow the structure to dissipate the 

earthquake energy, but it results in significant residual deformations. If excessive residual 

deformations occur, the structure may become irreparable. Thus, there is a need to eliminate or 

minimize these residual deformations. One way to achieve this goal might use smart materials 

such as Shape Memory Alloys (SMAs).  

Several methods for the flexural retrofitting of concrete elements have been introduced (Klaiber 

et al. 1987).  They improve the strength and stiffness of the elements by reinforcing the concrete 

tensile surface. A simple example is enlarging the cross-section using jacketing (Julio et al. 2005, 

Julio and Branco 2008, Vandoros and Dritsos 2006a, Julio et al. 2003). Steel plate bending and 

external steel post-tensioning are widely used techniques (Aboutaha et al. 1996, Belal et al. 2014, 

He et al. 2016). Fibre Reinforced Polymers (FRPs) are also used in retrofitting concrete 

structures in the form of plates (externally bonded systems) or bars (near surface mounted 

systems) (Sharif and Bluch 1996, Castro et al. 1996). New techniques are still being developed 

and introduced to the construction market. 
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SMAs have a unique ability to undergo large deformations and return to their undeformed shape 

upon unloading. They can also dissipate substantial amounts of energy when subjected to cyclic 

loading. Their good resistance to corrosion and fatigue give them high potential to be used as 

reinforcing bars in RC structures. 

Researchers explored utilizing SMAs in structural engineering applications. This include using 

SMAs as: anchors for columns (Tamai et al. 2003), restrainers for steel beam-columns joints 

(Ocel et al. 2004), dampers (Clark et al. 1995, Krumme et al. 1995), ties (Auricchio et al. 2001), 

and bracing members (Mazzolani et al. 2004). Using SMAs as primary reinforcement in concrete 

flexural members was experimentally investigated by Saiidi et al. (2007) and Abdulridha et al. 

(2013). Elbahy et al. (2008, 2009, 2010a, 2010b) studied the flexural behaviour of SMA 

reinforced concrete (RC) sections and developed design guidelines and equations for strength 

and serviceability requirements. Using SMAs in plastic hinge regions of reinforced RC beam-

column joints (BCJs) was experimentally investigated by Youssef et al. (2008).  

2.2 CANADIAN INFRASTRUCTURE STATUS 

Most of the Canadian Infrastructure, including roads, bridges, schools, and hospitals, were 

constructed between the 1950s and 1970s (Mirza and Sipos 2009). Because of aging, over 

exposure to environmental factors, and underinvestment in maintenance, the conditions of these 

infrastructure is rapidly deteriorating. This fact makes them vulnerable to major hazards, such as 

earthquakes. This puts Canada’s economy and quality of life at high risk. 



 

11 
 

2.2.1 Canadian Infrastructure Vulnerability to Damage 

Cost of repairing the Canadian infrastructure was estimated in 2009 to be CAD $400 billion 

(Mirza and Sipos 2009). Deferring the maintenance of these infrastructures increases the 

maintenance cost to exceed five trillion dollars (The Canadian Council for Public-Private 

Partnership 2009). These estimated costs do not include the additional costs if a strong 

earthquake strikes. The upward trend in infrastructures deficiency over the last two decades 

warns a crisis for our cities and communities (The Federation of Canadian Municipalities 2007). 

Lately, the Canadian government started to address these deteriorations by establishing its 

Building Canada and Economic Action Plan initiatives (See Infrastructure Canada 2007, Finance 

Canada 2010). However, the deferred maintenance program has been growing for decades. 

During the period 1950s up to early 1970s, the Canadian government investments in 

maintenance of infrastructure were mainly dependent on economy growth and inflation. Starting 

mid-1970s, the government specified investment of zero to 2% of initial construction cost (See 

Infrastructure Canada 2007, Finance Canada 2010). However, this percent is far less than the 

appropriate level which is 2 to 4% of the initial construction cost. Thus, more spending is 

required to maintain infrastructure systems to achieve the level of service established in 1970s. 

According to the Canadian Society of Civil Engineering 2003 report, almost 60% of the 

Canadian infrastructure were constructed before 1960 (The Canadian Society of Civil 

Engineering 2003). This means that most of the Canadian infrastructure are vulnerable to seismic 
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damage, because they were designed and built before modern knowledge of earthquake 

engineering. This vulnerability is likely to be higher in older communities such as Montreal, than 

in newer communities such as Vancouver. 

Recent strong earthquakes, such as Haiti and Chile earthquakes, showed that public 

infrastructure can be severely damaged by a strong earthquake. Some of the infrastructure can be 

restored in a short period. However, many systems like transportation systems (i.e. bridges) will 

probably not be available for a longer period of time following an earthquake. This in turn causes 

health risks, severe business disruptions and closure. Canada should learn from Haiti and Chile 

experiences, and work on reducing the risks associated with severe earthquakes. This can simply 

be achieved by increasing the investment to restore the health of the public infrastructure. 

2.2.2 Risk to Transportation Systems 

Transportation systems in Vancouver, Montreal, and Ottawa undergo high stress levels because 

of the huge traffic loads in these areas. A major earthquake would severely disrupt them for a 

long period, could reach months (Mirza and Sipos 2009). New systems are expected to perform 

well because they were designed and constructed after the major developments in earthquake 

engineering. However, old systems, particularly bridges, are expected to be vulnerable to severe 

damages as these systems were designed and built without good knowledge of earthquake 

engineering. 
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2.2.3 Risk to Schools and Hospitals 

Newer versions of the National Building Code of Canada assigned higher safety levels for 

schools and hospitals. Older schools and hospitals do not include these safety levels (National 

Building Code of Canada 2015). The Canadian government directed some funds to retrofit 

schools and hospitals in British Columbia and Quebec. For example, in 2010, the Government of 

Quebec decided to replace the hospital in Baie-St.-Paul and retrofit the hospital in Malbaie 

because they are not ductile enough to stand for a strong earthquake (CBC News 2010). In 2008, 

the Government of British Columbia launched a School Seismic Retrofit Program with secured 

fund of CAD $ 1.5 billion (Office of the Auditor General of British Columbia 2008). This gives 

a simple example of the governmental investments to reduce the vulnerability of public 

infrastructures to earthquake damage. 

2.3 RETROFITTING RC STRUCTURES 

2.3.1 Historical Background 

Retrofitting an existing concrete structure is usually a more economical solution than 

demolishing the old structure and replacing it with a new one. Several retrofitting techniques of 

concrete structures have been developed during the last few decades. They aim at extending the 

service life of existing concrete structures. Klaiber et al. (1987) summarized the most popular 

retrofitting techniques for retrofitting concrete structures including: external prestressing, 

shotcrete, and injection techniques. In mid 1960’s, retrofitting concrete structures using external 

bonded steel plates was first developed and introduced to the market. Steel plates are bonded to 
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the concrete surface using epoxy and/or anchors. This technique gained much popularity because 

of its ease in installation and low cost. Beber et al. (2001) reported that steel plates glued using 

epoxy are still functioning well for retrofitted structures in Europe. 

Investigating the feasibility of using FRPs as a retrofitting material started in early 1990’s. FRPs 

have high tensile strength, light weight, and high resistance to corrosion, which make them a 

potential candidate for replacing steel in retrofitting applications. Different types of FRPs are 

available in the market such as: Aramid (AFRP), Carbon (CFRP), and glass (GFRP) (Kachlakev 

and McCurry 2000). FRPs are adequate for retrofitting application because of the ease and speed 

in installation. FRPs can be used to retrofit concrete flexural elements. They can also be used for 

shear retrofitting (Kachlakev and McCurry 2000). FRPs can extend to include non flexural 

elements, such as columns. FRPs can be used in the form of wraps to increase the ductility of 

concrete columns in seismic areas. FRPs differ in their strength, stiffness, and durability. 

Selecting the type resin is dependent on many factors such as environmental exposure and FRP 

manufacturing. 

Retrofitting of concrete flexural elements and slabs can be performed using unbounded steel 

prestressing tendons and bars. External prestressing using steel tendons was first used in concrete 

structures in 1930’s in Germany, Belgium, and France (Virlogeux, 1990). Prestressing is 

considered an effective retrofitting technique (Klaiber et al. 1985). It was widely used to retrofit 

25 concrete bridges in Germany (Falkner et al., 1995). In France, more than fifty box girder 

bridges were retrofitted using unbounded prestressed tendons (Godart, 1995). 
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2.3.2 External Unbonded Reinforcement 

Concrete members are usually designed to satisfy both: serviceability and strength requirements. 

The design capacities may be inadequate because of a deficient design, an increase in applied 

loads, or a decrease in load carrying capacity. The flexural capacity is mainly dependent on the 

tensile reinforcement in these members. Thus, to restore the load-carrying capacity of the 

damaged members, additional reinforcement may be required. Numerous techniques are 

available for retrofitting flexural members. Some of these techniques are used in practice, while 

others are still under research.  

Retrofitted beams with unbonded external reinforcement are shown to gain much increase in 

their ultimate strength (Cairns and Zaho 1993, Cairns and Watson 1993). Retrofitting using 

external reinforcement can also increase shear strength of the retrofitted element (Cairns and 

Watson 1993). Since the externally added reinforcement is totally unbounded, no campsite action 

is expected between the added reinforcement and concrete. The usual design equations of 

flexural members available in design standards are not applicable to the strengthened members. 

Retrofitting concrete flexural members using external unbounded reinforcement has many 

advantages over other retrofitting techniques such as: speed and simplicity of installation, and 

minimal disruption to users during installation (Cairns and Zaho 1993). For a simply supported 

beam, yokes are installed at the end of the beam to anchor the threaded bars on both sides of the 

beam. Advantage of this technique over external prestressing technique is: eliminating the time 

of the prestressing operation, eliminating the clearance required around anchorage for prestress 
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jack, and reducing the cost of the retrofitting process. When compared to externally bonded 

plates retrofitting techniques, much less surface preparation is required and less impact on the 

environment as no epoxy is required. 

Durability (i.e. corrosion) of this retrofitting system is a major drawback which may limit its use 

in certain situations. Moreover, steel is a heavy material which requires significant effort for 

transportation and heavy equipment for placemat. Despite of the drawbacks of this strengthening 

method, it has successfully used in many field applications (Cairns and Zaho 1993). 

2.4 FAILURE OF BEAM-COLUMN JOINTS DURING PAST EARTHQUAKES 

2.4.1 Introduction 

Beam-Column Joints (BCJs) in concrete structures play a critical role in ensuring the structural 

integrity of the building performance during an earthquake event. Failure of a BCJ during an 

earthquake event can result in a partial or full collapse of the structure (Moehle and Mahin 

1991). Many earthquakes involved damage of BCJs such as: El-Ansam earthquake (Algeria 

1980), Northridge earthquake (California 1994), Tehuacan earthquake (Mexico 1999), Izmit 

earthquake (Turkey 1999), Athens earthquake (Greece 1999), Chi-Chi earthquake (Taiwan 

1999), and Haiti earthquake (Haiti 2010). 

An example of a building collapse is the collapse of the Kaiser Permanente building during the 

1994 Northridge earthquake, Fig. 2-1. The building lateral resisting system was a moment 

resisting frame with anchored infill walls. The building was designed according to the pre-1970 
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design standards. Failure of the building occurred as a result of failure of multiple corner BCJs 

(Hassan et al. 2010). 

 

  

(a) Full view of the building (b) Close up view of the failed BCJs 

Fig. 2-1: Failure of the Kaiser Permanente Building during the 1994 Northridge earthquake 

(Hassan 2011) 

Damage of BCJs can be accompanied by failure of other members in the structure. Fig.  2-2 

shows the partial collapse of a concrete frame building during the 1999 Izmit earthquake in 

Turkey. The partial collapse occurred due to the damage of BCJs as well as columns. Another 

example of partial building collapse is shown in Fig.  2-3. The buildings failed during the 1999 

Chi-Chi earthquake in Taiwan, because of both column and BCJ failure.  



 

18 
 

 

 

(b) Close up view of the third-level BCJ 

 

(a) Full view of the building (c) Close up view of the second-level BCJ 

Fig.  2-2: Partial building collapse during the 1999 Izmit earthquake in Turkey (NISEE 2010)  
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(a) Full view of the building (b) Close up view of the failed BCJs 

Fig.  2-3: Partial collapse of a 15-storey building in the 1999 Chi-Chi earthquake in Taiwan 

(Uang et al. 1999) 

2.4.2 Seismic Deficiencies of the Pre-1970 BCJs 

Design of structures to behave in a ductile manner during an earthquake event was first 

introduced in California in the 1960s. First informal design standards of ductile frames was 

introduced by the Structural Engineers Association of California (SEAOC) Blue Book in 1963 

and 1965. SEAOC Blue Book included shear strength calculations and joint transverse 

reinforcement. However, these design provisions were specified for 13 storey (48.80 m) 

buildings or more (Moehle 1998). Following the 1967 Caracas earthquake and the 1971 San 

Fernando earthquake, the SEAOC Blue book was modified in 1971 to include the ductile details 
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requirements of buildings less than 13 stories (48.80 m) in height. The continuous development 

of the SEAOC during the 1970s helped in developing the first Uniform Building Code (UBC) in 

1976. UBC (1976) can be considered as the first official standards of modern design for seismic 

loads. In other words, it can be considered as the transition from a non-ductile behaviour to a 

ductile behaviour during an earthquake event (Moehle 1998). With continuous development, the 

concept of capacity design (i.e. strong column-weak beam) was introduced. This concept is 

widely used in seismic design in modern design standards. 

Since the first UBC was issued in 1976, structures built before this date were not enforced to 

follow special ductility requirements. Thus it is reasonable to assume that the behaviour of 

structures designed and built before the 1980s is not ductile. Inelastic mechanisms and 

inadequate detailing of joints can be considered main deficiencies of these structures. Detailing 

deficiencies can include insufficient anchorage of the beam reinforcement into the joint. 

2.4.3 Bond Slip Failure Mode of Unconfined BCJs 

Anchorage failure results from the bond slip failure of the beam bottom reinforcement. Because 

of the short unhooked embedment length of the beam bottom reinforcement, the reinforcement 

pullouts from the joint (Hassan 2011). In this failure mode, the full capacity of the joint is not 

developed. The insufficient embedded length of the beam bottom reinforcement into the joint 

eliminate the formations of the joint strut in one loading direction, which results in the premature 

failure of the whole joint. In case of excessive beam rotation due to reinforcement pullout, global 

instability of the structure becomes an issue of concern.  
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2.5 RETROFITTING OF SEISMIC DEFICIENT BCJS 

Different methods of retrofitting BCJs were suggested in the literature to retrofit deficient BCJs 

constructed before the recent development in seismic design guidelines (Engindeniz 2008). 

Suggested strengthening techniques include: (i) epoxy injection; (ii) reinforced or prestressed 

concrete jacketing; (iii) concrete masonry unit jacketing or partial masonry infills; (iv) steel 

jacketing and/or addition of external steel elements; and (v) FRPs. Retrofitting techniques are 

different in the materials used, detailing requirements, labour demand, cost, and disruption to 

building occupancy. However, the main objective of all retrofitting techniques is to enforce the 

formation of plastic hinge into the beam rather than into the column. Yielding of the beam 

reinforcement and formation of plastic hinge ensure a ductile behaviour and eliminate the 

probability of sudden failure through plastic hinge formation in the column or joint shear failure.  

2.6 SHAPE MEMORY ALLOYS 

2.6.1 Introduction 

SMAs are set of alloys with unique properties. These unique properties give them the ability to 

undergo large deformations and return to their original undeformed shape upon unloading 

(superelastic effect). This significantly increased their use in many applications including 

structural engineering ones. The following subsections introduce the basic characteristics and 

applications from the structural engineering perspective. 
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2.6.2 Mechanical Behaviour of SMAs 

Several types of SMAs have been developed and introduced to the market in the last decades. 

Among these different types, superelastic Ni-Ti alloys are the most suitable for structural 

applications because of their high recoverable strain, durability, and being stable at the austenite 

phase at ambient temperature (Janke et al 2005).  

Ni-Ti stress-strain relationship under tension and/or compression loading consists of four linear 

branches that are connected by smooth curves, Fig.  2-4(a).  As a simplification, the smooth 

curves can be ignored and the linear branches are assumed to intersect as shown in Fig.  2-4(a) 

and Fig.  2-4(b) (Alam et al. 2007). The alloy behaves elastically with a modulus of elasticity 

Ecr-SMA until reaching the SMA critical stress fcr-SMA, which represents the start of the martensite 

variant reorientation. As the strain εSMA exceeds the SMA critical strain εcr-SMA, the modulus of 

elasticity Ep1 becomes 10% to 15% of Ecr-SMA. For strains above the martensite stress induced 

strain εp1, the material becomes stiffer and the modulus of elasticity Ep2 reaches about 50 to 60% 

of Ecr-SMA. The final linear branch starts at the SMA yield point with a modulus of elasticity Eu-

SMA that is 3 to 8% of Ecr-SMA. Typical ranges for young’s modulus, critical stress, ultimate 

strength, and elongation at failure are summarized in Table 2-1. 

As shown in Fig.  2-4(b), the SMA bar can recover its full deformations upon unloading if the 

strain εSMA is less than the martensite stress induced strain εp1 (superelasticity). Reaching the 

yielding stress fy-SMA results in losing the material superelasticity. For structural applications, it is 
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recommended to design SMA RC sections to behave within the superelastic range (Youssef et al. 

2008). 
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(a) Stress-strain relationship of SMAs 

under tension or compression 
(Alam et al. 2007) 

(b) Stress-strain relationship of SMAs: 
Loading and unloading profiles 

Fig.  2-4: Stress -strain relationship of SMA 

Table 2-1: Properties of structural steel and Ni-Ti SMAs 

Property Structural Steel NiTi SMA 
   

Density (g/cm3) 7.85 6.45 

Elastic modulus (GPa) 200 30-83 

Poisson’s ratio 0.27-0.30 0.33 

Yield strength (MPa) 248-517 195-690 

Ultimate tensile strength (MPa) 448-827 895-1900 

Elongation at failure (%) 20 5-50 

Recoverable elongation (%) 0.20% up to 8% 
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2.6.3 Behaviour of SMAs Under Cyclic Loading 

The behaviour of SMAs under cyclic loading makes them very attractive for many engineering 

applications. An extensive research was performed to investigate the behaviour of SMAs under 

cyclic loading (Dolce and Cardone 2001). Typical behaviour of SMAs in the austenitic phase 

under cyclic axial loading is illustrated in Fig.  2-5.  

 

Fig.  2-5: Typical axial stress–strain relationship of superelastic SMA (austenite) under cyclic 

loading (Dolce and Cardone 2001). 

When an SMA sample undergoes a cycle of loading within its superelastic range, it dissipates a 

certain amount of energy without keeping any permanent deformations. This is attributed to the 

phase transformation from austenite to martensite during loading and the reverse transformation 

during the unloading, Fig.  2-5. These forward and reversed transformations ensure full release 

of the dissipated energy during loading.  
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Although austenitic SMAs (i.e. superelastic) dissipate less amounts of energy when compared to 

martensitic SMAs, their dominant advantage is dissipating considerable amounts of energy under 

repeated cyclic loading with negligible residual strains. 

2.6.4 Modelling of SMAs 

SMAs are of a great potential for seismic design and retrofitting applications of structures 

because of: (i) their ability to undergo large deformations and return to their undeformed shape 

upon unloading or through heating; (ii) their ability to dissipate certain amount of energy under 

repeated cyclic loading without keeping permanent deformations; and (iii) their recentring 

capability.  To facilitate using SMAs in real structures, accurate models need to be introduced. 

Several studies have been performed to investigate the behaviour of SMAs. According to these 

studies, three types of models can describe the behaviour of SMAs which are: 

phenomenological, thermomechanic, and micromechanic models. Only the phenomenological 

model is explained in this section. 

Phenomenological models tend to use a small set of parameters such as: the elastic young’s 

modulus, slope of the plateau, stress at the start and end of the forward and reverse 

transformations obtained from the experimental test results. Some phenomenological models of 

SMAs were developed by: Tanaka (1986), Liang and Rogers (1997), Auricchio and Sacco 

(1997), Lexcellent et all. (2000), Devobsek (2001), Malovrh and Gandhi (2001), and Tamai and 

Kitagawa (2002). 
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One-dimensional phenomenological models are considered appropriate for civil engineering 

applications, because most of these applications use SMA wires and bars. Because of the demand 

on using SMAs in engineering applications, finite element packages implemented SMA models 

in their material libraries such as ANSYS (ANSYS Inc. 2018) and Seismostruct (2018). The one 

dimensional superelastic model implemented in ANSYS is shown in Fig.  2-6. 

 

Fig.  2-6: One-dimensional phenomenological model of SMAs (ANSYS 2018) 

2.6.5 Strain Rate Effect 

Earthquake ground motions usually occur at frequencies ranging between 0.01 Hz to 15.0 Hz. 

The dominant frequency of the earthquake usually lies between 0.5 Hz to 5.0 Hz. Thus, there is a 

need to understand the effect of the strain rate on the behaviour of SMAs before using them in 

seismic applications.  
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Earlier studies focused on investigating the strain rate effect on the tensile properties of SMAs. 

Small diameter wires are used in these tests. Tobushi et al. (1998) and Leo et al. (1993) reported 

an increase in the loading plateau and decrease in the unloading plateau with increasing the 

cycling rate to 100% strain/min and 50.0 mm/min, respectively. As a result, the amount of 

dissipated energy is increased with the increase in the strain rate. This increase can be attributed 

to the increase happening in the wire temperature which cause shift in the transformation stresses 

(Leo et al. 1993). Tobushi et al. (1998) attributes this increase in the dissipated energy to the 

increase in the hysteretic area resulting from the high loading speed that does not allow for 

relaxation during interface movement during the transformation.  

For large diameter bars, test results showed increase in the initial modulus of elasticity from 29.7 

GPa for the case of quasi-static loading to 32.8 GPa for the case of 1.0 Hz dynamic loading at 

2% strain cycles (DesRoches 2004). For the 6% strain cycle, the modulus of elasticity increased 

by 42%. This increase shows that SMA material will stiffen during seismic loading. 

Similarly, the forward transformation stress increases with the increase in the loading rate. 

Continuous cyclic decreases the forward transformation stress (DesRoches 2004). The overall 

reduction in the forward transformation stress from the 2% strain cycle to the last 6% strain cycle 

is found to be 33% for the quasi-static loading, and 24% for the 1.0 Hz dynamic loading. 

Applying dynamic cyclic load to the test specimen also causes degradation to the transformation 

stress. 
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Residual strain is found to be larger (0.88% and 0.83%) under dynamic loading (1.0 Hz and 0.5 

Hz) than residual strain observed under quasi-static loading (0.63%). Although applying a 

dynamic cyclic loading lead to higher residual strain, the value shows a good recentering 

capability of the SMA following a seismic event. 

2.6.6 Applications of SMA Reinforcing Bars 

2.6.6.1 Reinforcement for concrete elements 

Using the SMAs as longitudinal reinforcing bars in the plastic hinge regions of RC columns was 

investigated experimentally by Saiidi and Wang (2006). Two quarter-scale spiral RC columns, 

one with SMA longitudinal reinforcement in the plastic hinge area while the second with 

conventional steel reinforcement, were designed, constructed, and tested using a shaking table. 

Details of the tested specimen are shown in Fig.  2-7. Test results indicated superior performance 

of SMA RC columns compared to conventional steel RC columns in limiting relative column top 

displacement and column residual displacement. The damaged SMA RC column specimen was 

repaired with engineering cementations composites. The repaired specimen was retested using 

the same approach as the initial test. Test results showed better performance for the repaired 

specimen compared to the original specimen in terms of force-displacement capacity and 

ductility. 
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Fig.  2-7: Details of the tested specimen (Saiidi and Wang 2006) 

The applicability of using superelastic SMA bars for self-restoration of bridge decks and girders 

was investigated by Sakai et al. (2003). Three mortar beams, two of them were reinforced with 

SMA wires while the third was reinforced with steel wires, were tested under static one-point 

load up to the inelastic range. Test results showed that the SMA reinforced beams were able to 

return to one-tenth of their maximum deflection. The SMA RC beams reached deflections more 

than seven times the deflection of the steel RC beams, which indicates much higher ductility. 

Cracks of the SMA RC beams were almost closed after unloading, Fig.  2-8.  
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(a) Cracks at maximum deflection (b) Cracks after unloading 

Fig.  2-8: Cracking behaviour of SMA mortar beams (Sakai et al. 2003) 

The possibility of producing RC beams with variable stiffness and strength was investigated by 

Czoderski et al. (2005). The experimental program consisted of two RC beams. One beam was 

reinforced with SMA wires while the second was reinforced with steel wires. The two beams 

were tested under four-point loading. Heating the SMA wires resulted in phase transformation of 

the SMAs, and as a result an increase of the beam strength and stiffness. This technique can help 

designing smart structures, which can intelligently respond to the applied loading.    

Saiidi et al. (2007) experimentally investigated the ability of Ni-Ti reinforcement to recover 

deformations and dissipate energy under cyclic loading. Eight beams that have the same 

dimensions but differ in the reinforcement type and amount were used in the experimental 

program. To use the SMA bars with more than one beam, the beams were externally reinforced 

(Fig. 2-9). Test results showed that the average residual deformations in SMA RC beams were 

much smaller than steel RC beams (one-fifth). Moreover, the SMA bars showed superelastic 

behaviour when used as longitudinal reinforcement in the beam specimen, as the bars almost 

recovered the full deformations. 
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Fig. 2-9: Test setup (Saiidi et al. 2007) 

The use of superelastic SMA bars in the critical regions of the beams-column joints was 

experimentally investigated by Youssef et al. (2008). Two three-quarter scale BCJs were tested 

under reversed cyclic loading. One of the two joints was reinforced with superelastic SMA bars 

in the plastic hinge region (Fig.  2-10), while the other was reinforced with conventional steel. 

Test results showed very small residual displacement in case of SMA reinforcement compared to 

the steel reinforcement case. After the test, the residual strains in the SMA longitudinal bars were 

negligible, while the longitudinal steel bars experienced much larger strains compared to the 

SMA bars.   
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Fig.  2-10: Details of the tested BCJ by Youssef et al. (2008) 

2.6.6.2 Prestressing concrete elements 

Extensive research has been conducted on utilizing the SMA tendons/wires in prestressing 

concrete elements. Both pre-tensioning and post-tensioning techniques can be performed using 

SMAs. Some benefits are associated with using the SMAs in the prestressing process such as: (i) 

active control on the amount of prestressing, (ii) the absence of jacking or strands cutting 

process, and (3) elimination of losses associated with elastic shortening, friction, and anchorage 

losses.  

Maji and Negret (1998) utilized the shape memory effect of Ni-Ti strands for prestressing 

concrete. The SMA strands were elongated beyond their plastic limit, and embedded in the beam 
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forms. After casting of concrete, the strands were heated to recover the deformations (Fig.  

2-11). This resulted in a significant prestressing force in concrete. The strands showed good 

bonding behaviour with concrete.  

 

Fig.  2-11: Using SMA in pre-tensioning concrete beams (Li et al. 2007) 

El-Tawil and Ortega (2004) studied the availability of using SMAs in permanent prestressing of 

concrete using post-tensioning technique. Mortar beams with 380 mm x 25mm x 38 mm were 

used (Fig.  2-12). Two types of SMAs were used, Ni-Ti and Ni-Ti-Nb alloys. The second type 

showed better solution for permanent prestressing as the first type lost the recovery stresses after 

turning the electric current source off (i.e. temperature drop). The beams were tested under four-

point testing, and the test results showed that a significant prestressing was achieved 

Opara and Naaman (2000) studied the ability of SMAs to prestress concrete elements by utilizing 

their ability to recover plastic deformations (Fig.  2-13). Plate shaped samples were used in the 

experimental work. Two of the samples were plain mortar, five were reinforced with steel, and 
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two were reinforced with SMA. The results from the tests showed that the SMA deformations 

were fully recovered, and that cracks were fully closed.  

 

(a) SMA Martensite Phase 

 

(b) Pre-stretch SMA at room temperature and transport to construction site 

 

(c) Pour concrete, and after hardening, install tendon in post-tensioning ducts. 
Alternatively, tendon could be installed in formwork prior to concrete placement. 

 

(d) Anchor and trigger tendons using electrical source 

Fig.  2-12: Using SMA in post-tensioning concrete beams (El-Tawil and Ortega 2004) 
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Fig.  2-13: SMA self-healing (Opara and Naaman 2000) 

2.6.7 SMA in Retrofitting of Existing Structures 

Structures usually need to be retrofitted or rehabilitated because of errors in design and/or 

construction, changes in structures use or increased loading. Many retrofitting materials have 

been introduced for strengthening and rehabilitating different kinds of structures such as 

conventional and high strength steel, and FRPs. FRP is a very brittle material when compared to 

steel. However, its high resistance to corrosion creates significant advantage over conventional 

steel reinforcement. Conventional steel has higher modulus of elasticity (i.e. stiffer behaviour) 

and a yielding plateau, which produces warning prior to failure. Unique properties of SMAs 

make them potential material for retrofitting and strengthening of existing structures. 

The recentring capability and formation of loading plateaus give SMAs the ability to limit the 

force transfer from the SMA RC member to other members in the structure. The flag shape 
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stress-strain hysteresis provides high damping ability. The stiffening occuring at high strain 

levels because of the phase transformation, gives SMAs the ability to support high loads. SMAs 

have excellent fatigue properties and high resistance to corrosion. All of these properties make 

SMAs potential candidate for retrofitting applications, especially earthquake retrofitting 

applications.     

2.6.7.1 SMAs as bracing members 

Dolce et al. (2004) tested an existing two storey RC frame with SMA bracing members, Fig.  

2-14. The frame has dimensions of: 3.30 m long, 5.60 m wide, and 3.00 m storey height and is 

designed according to the 1970’s standards. Dolce et al. (2004) aimed at assessing the behaviour 

of the frame after retrofitting with SMAs bracings. The design of the retrofitting braces was 

based on the recentring capability. Test results showed an enhanced recentring capability of the 

frame, increased safety against collapse, and better displacement control.  

 

 

Fig.  2-14: Retrofitting of a two storey RC frame using SMAs (Dolce et al. 2004) 
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The advantages of using superelastic SMAs braces over soft iron braces in controlling structure 

vibrations were experimentally investigated by Ma et al. (2004). A metal frame structure was 

tested using a shake table simulating the 1994 Northridge earthquake. Shape memory effect was 

utilized during the test to ensure full recovery of the deformations of the SMA braces. This was 

achieved by applying an electric current to heat the braces. Test results showed an increase in the 

first mode frequency with increasing the applied current, which indicates full transformation 

from the martensitic to austenitic phase. Both austenitic and martensitic SMA braces showed 

lower top floor displacement and higher acceleration when compared to soft iron steel braces. 

However, permanent deformation can be recovered in case of martensitic SMA braces by 

applying an electrical current to the braces. Permanent deformations of soft iron braces can not 

be recovered. 

An analytical investigation was carried out by McCormik and DesRoches (2003) to investigate 

the efficiency of using large diameter superelastic SMA bars as bracing members in retrofitting 

RC moment resisting frames. Reduction in inter-storey drifts and column rotation was observed 

in case of SMA bracing when compared to conventional steel case. 

Cortes and Palermo (2018) developed SMA model to simulate the seismic retrofit of squat 

concrete shear walls with tension-only SMA braces. The model follows a tri-linear envelop to 

model the flag-shaped behaviour of SMAs. Response of SMA braces is modelled with tension-

only truss elements. Results showed satisfactory predictions of strength, drift, damage, energy, 

and displacement recovery. Moreoer, the effect of the axial load and the size of the SMA on the 

performance of the retrofitted walls is investigated. 
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A recently developed Shape Memory Alloy (SMA) model is implemented to simulate the 

seismic retrofit of squat concrete shear walls with novel tension-only SMA braces. The model 

follows a tri-linear envelope that captures the flag-shaped behaviour of superelastic SMAs and 

the accumulation of plastic straining at large strains. The response of the SMA braces is 

modelled with tension-only truss elements that are assigned the stress-strain parameters obtained 

from bare brace testing. The results provide satisfactory predictions of strength, drift, damage, 

energy, and displacement recovery. The effect of axial load and size of the SMA on the 

performance of the retrofitted walls is assessed through a parametric study.  

2.6.7.2 Prestressing 

Indirli et al. (2001) used SMAs to rehabilitate the Trignano Giorgio ancient church in Italy. In 

October 1996, a 4.8 Richter scale earthquake occurred in Italy. As a result, the bell tower of the 

Trignano Giorgio church was seriously damaged and needed to be retrofitted. The suggested 

retrofitting system was to use four vertical prestressed steel tie bars at the four corners of the bell 

tower. Four post-tensioned SMA devices connected in series were attached to the steel tie bars 

(Fig.  2-15). The prestressed steel tie bars were anchored to the foundation and roof of the tower. 

The steel tie bars function was to increase the flexural resistance of the tower. The SMA devices 

function was to keep the applied axial load on the tower at the maintained level. This innovative 

retrofitting technique proved its applicability by supporting the church tower to undergo a 4.5 

Richter magnitude earthquake with almost no noticeable damage. 
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Fig.  2-15: Retrofitting of the Trignano Giorgio ancient church in Italy using SMAs (Indirli et al. 

2001) 

2.6.7.3 Dampers 

Dampers are usually used to limit structural damage during earthquakes. There are several types 

of dampers such as rubber based dampers, viscous fluid dampers, friction dampers, and 

viscoelastic dampers. However, many limitations arise on using these types of dampers. 

Durability, maintenance, and geometry restoration are examples of these limitations (Dolce et al. 

2000). SMA based dampers can overcome many of these limitations. 

An SMA based device for energy dissipation was first introduced by Clark et al. (1995). The 

device is mainly composed of two cylindrical posts wrapped by superelastic nitinol wires, Fig.  
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2-16. The device was first experimentally tested. An initial prestressing was applied at 2.75% 

strain, then the device was subjected to in plan cyclic loading. Experimental results showed good 

hysteresis results. The device was then used in an analytical model simulating the response of a 

six storey steel frame. Analytical results showed reduction in the displacement and acceleration 

responses by one third to one half of the original structure undergoing earthquake event. 

 

 

 

 

Fig.  2-16: SMA based dampers (Clark et al. 1995) 

Another SMA based damper was developed by Mao and Li (2004). The developed device (180 

cm x 180 cm in plan x 415 cm in height) was attached to five storey steel frame. The frame was 

tested using a shaking table. Test results showed huge reduction in the storey drift by values up 

to 28%.  

The damping capacity of SMA wires in the martensitic, austenitic, and martensitic-austentic co-

exist phases were measured experimentally by Ma and Song (2005). Test results showed better 
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performance for the austenitic-martensitic co-exist phases in suppressing repeated vibration 

compared to other phases. 

2.7 SUMMARY AND CONCLUSIONS  

Most of the Canadian civil infrastructures are constructed between 1950s and 1970s. Because of 

aging, fatigue, over exposure to environmental factors, and underinvestment in maintenance, 

these structures rapidly deteriorate and become more vulnerable to catastrophic failure. In 

addition, structures built before the 1970s are not designed for ductility requirements, and thus 

can be considered deficient when subjected to seismic loads. Thus, these structures need to be 

retrofitted to keep them at the accepted performance level and to follow the current design 

standards. Several methods for retrofitting of RC elements have been introduced, while others 

are still being developed. For example, recent research on SMA bars highlighted the potential of 

using them as retrofitting material for RC structures.  

SMAs are set of alloys with unique properties when compared to other metals and alloys. They 

can undergo large deformations and return to their undeformed shape upon unloading 

(superelasticity). When subjected to cyclic loading, they have the ability to dissipate large 

amounts of energy and release them upon unloading. They also have good resistance to fatigue 

and corrosion. All of these unique properties motivated researchers to utilize them in structural 

engineering applications. They have been used as anchors for columns, restrainers for BCJs, 

dampers, and bracing members. This study focuses on using SMAs as a retrofitting material. 

They have been used to replace regular steel bars in critical regions of the structure.   
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Chapter 3 Flexural Behaviour of Superelastic Shape Memory Alloys 

Reinforced Concrete Beams During Loading and Unloading Stages 

3.1 INTRODUCTION 

As a part of a moment resisting frame, Reinforced Concrete (RC) beams can be subjected to 

reversed cyclic bending moments during earthquake events. These moments can lead to 

permanent deformations and rotations, which complicate future retrofit efforts or make the 

damaged structure irreparable.  

Superelastic Shape Memory Alloys (SMAs) are set of smart alloys that can undergo large 

deformations and return to their undeformed shapes upon unloading. They also have exceptional 

behaviour under cyclic loads (i.e. flag shaped stress-strain). They can undergo large number of 

inelastic loading/unloading cycles, while keeping zero or very small residual deformations upon 

load removal (Alam et al. 2007). In addition, SMAs have exceptional resistance to corrosion and 

fatigue loads (Janke et al. 2005). These unique properties have motivated researchers to utilize 

SMAs in different engineering applications. Yet, the use of SMAs in the structural engineering 

field is considered relatively new. 

The use of SMAs as primary reinforcing bars in RC structures is a potential application. Up to 

now, this application is mainly covered in the research field with few field applications. For 

example, Saiidi et al. (2007) tested simply supported beams that have external SMA 
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reinforcement in the mid-span region. Test results showed that the use of SMA bars led to 

significantly reduced residual deformations upon unloading as compared to conventional steel 

bars. Elbahy et al. (2008, 2009, 2010a, 2010b) conducted extensive analytical studies to develop 

design equations of SMA RC members. The developed equations serve both strength and 

serviceability requirements. In real applications, SMAs have been used in the rehabilitation of 

the S. Giorgio Church Bell-Tower in Italy (Indirli et al. 2001) and a RC bridge in Michigan. 

(Soroushian 2001). 

The high cost of SMAs as compared to conventional steel bars and the large size of civil 

structures limit their use as primary reinforcement. To overcome this problem, researchers 

suggested limiting the length and position of SMA bars to critical regions of the structure 

(Youssef et al. 2008; Abdulridha et al. 2013). This suggestion facilitates using SMA bars in real 

applications. However, there are no guidelines or standards to estimate the needed amount and 

length of the SMA reinforcement. Thus, the aim of this study is to develop such guidelines. 

In this study, a sectional analysis method is developed to predict the flexural behaviour of SMA 

RC beams during loading and unloading stages. Results of the developed analysis method are 

then validated through comparison with available experimental work. A parametric study is 

carried out. Results of the parametric study are used in multiple linear regression analysis do 

develop equations that can predict the optimum amount and length os the used SMA bars/  
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3.2 ANALYSIS METHOD 

The flexural behaviour of steel and SMA RC cross-sections is analytically investigated in this 

chapter. The analysis method is based on the sectional analysis approach, which uses fibre 

modelling (Youssef and Rahman 2007; Elbahy et al. 2009). The main idea lies in dividing the 

studied cross-section into discrete number of horizontal fibres. Utilizing the one-dimensional 

constitutive relationship of each fibre, and taking into account the cross-section equilibrium and 

kinematics, the mechanical behaviour of the cross-section is obtained.  

A displacement-controlled loading technique is used in the analysis, where the cross-section is 

subjected to curvature values in an incremental way. During the unloading stage, the load is also 

incrementally removed. Two main assumptions are made: (i) plane sections remain plane (i.e. 

linear strain distribution); and (ii) perfect bond exists between concrete and the reinforcement. 

More details about the developed analysis method are given in Appendix I. 

Four different materials models are implemented in the developed program. These models 

represent the behaviour of concrete, steel, and SMA under tensile and compressive loadings. 

Brief description of these models is introduced in the following subsections. 

3.2.1 Concrete under Compression 

The model developed by Scott et al. (1982), Fig. 3-1(a), is used to model the concrete behaviour 

under compression. This model represents a good balance between accuracy and simplicity. 

During the unloading stage, behaviour of concrete is assumed to follow the model proposed by 
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Karsan and Jirsa (1969). When unloading starts, the material follows linear straight path that 

connects the strain at the unloading start, εr, to the unloading strain at zero-stress, εp. After 

reaching εp, the strains continue to reduce while keeping the stress value equal to zero. This 

continues till reaching the point of zero strain.  

3.2.2 Concrete under Tension 

Behaviour of concrete under tension is assumed to follow the model proposed by Stevens et al. 

(1987) and simplified by Youssef and Ghobarah (1999), Fig. 3-1(b). In the pre-cracking zone, 

the concrete behaves in a linear fashion up to the cracking stress fcr. This is followed by 

significant reduction in the stress values.  

If unloading starts before reaching fcr, the concrete behaves in a linear fashion similar to the 

loading stage. If unloading starts after reaching fcr, the material follows a linear path with a slope 

equal to the modulus of elasticity of concrete. After reaching the zero-stress point, the strain 

continues to decrease while the stress is kept equal to zero. This continues until reaching the 

point of zero-strain.  

3.2.3 Steel Bars 

The behaviour of the steel material is assumed to follow a bilinear stress-strain relationship under 

both tension and compression loadings, Fig. 3-1(c). The material behaves elastically until 

reaching its yielding strain, εy-s. Then, the modulus of elasticity is significantly reduced to around 

10% of its original value. 
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If unloading starts within the pre-yielding zone, the material behaves in an elastic manner similar 

to the loading stage with no residual deformations at complete unloading. If the unloading starts 

within the post-yielding zone, the material follows a linear unloading path until yielding on the 

other side (tension or compression).  
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Fig. 3-1: Stress-strain models during loading and unloading stages 
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3.2.4 Superelastic SMA Bars 

The stress-strain model of Nickel-Titanium (Ni-Ti) SMAs consists of four linear branches that 

are connected by smooth curves (Alam et al. 2007), Fig. 3-1(d). To simplify the modelling 

process, the smooth curves are ignored and the linear branches are assumed to directly intersect. 

The material behaves elastically until reaching the SMA critical stress fcr-SMAs, which represents 

the start of the martensite stress induced transformation. Exceeding this limit, the material 

stiffness significantly reduces to about 10% of its initial value. If loading continues until full 

transformation to martensite phase occurs, the material regains about 50% of its initial stiffness. 

Then another significant reduction in the material stiffness occurs at yielding.  

The behaviour of SMAs during the unloading stage is illustrated in Fig. 3-1(d). If unloading 

starts before reaching SMA critical stress, the material behaves in an elastic manner similar to 

the loading stage (i.e. unloading path 1).  If unloading starts when the stress in the material is in 

between the critical and yielding stresses, the material follows a flag shaped stress-strain 

relationship (i.e. unloading path 2). If unloading starts after the material reaches its yielding 

limit), the material follows a linear unloading path (i.e. unloading path 3). More details about the 

material models and their equations are given in Appendix I. 

It is clear from the figure that allowing the SMA material to reach yielding results in eliminating 

one of its main advantages, which is superelasticity. Thus, it is not practical to allow SMAs to 

yield. In the following sections, the SMA critical stress fcr-SMAs is referred to as yielding. 
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3.3 DEFLECTION CALCULATIONS 

The moment-area method is utilized to calculate the rotation and deflection values. Steps 

involved in this method include: (i) perform moment-curvature analysis of the different cross-

sections; (ii) obtain the curvature distribution along the length of the member; (iii) calculate 

rotation by integrating the area under the curvature distribution and deflection by calculating the 

moment of the integrated area. 

3.4 EXPERIMENTAL VALIDATION 

The experimental work performed by Abdulridha (2013) and Abdulridha et al. (2013) is used to 

validate the accuracy of using the developed program to predict the flexural behaviour of SMA 

RC beams. The beams have similar dimensions: 2800 mm length, 2400 mm span, 125 mm cross-

section width, and 250 mm cross-section height. The beams differ in the type of flexural 

reinforcement at the mid-span section (steel or SMAs), and the type of applied loading 

(monotonic or cyclic). The SMA RC beams are reinforced with SMA bars over a length of 600 

mm centred at the mid-span, and 15M steel bars elsewhere. Mechanical couplers connect the 

steel and SMA bars. The diameter of the middle 300 mm of the SMA bars is reduced to 9.50 

mm. Details of the tested beams are summarized in Table 3-1. All beams are tested under two 

central point loads spaced at 125 mm around mid-span. The average concrete compressive 

strength is 32.7 MPa for the SMAs RC beams and 34.6 MPa for the steel RC beam. Envelopes of 

SMA and steel stress-strain tests results are used to develop idealized stress-strain relationships 

as shown in Fig. 3-2. 
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Table 3-1: Details of beams tested by Abdulridha (2013) 

Specimen Loading type 
Reinforcement 

type 
Longitudinal Reinforcement 
Bottom Top 

B1-SM Monotonic Steel 2 bars, 10M 2 bars, ϕ = 6.35 mm 
B2-SC Cyclic Steel 2 bars, 10M 2 bars, ϕ = 6.35 mm 
B3-SR Cyclic Steel 2 bars, 10M 2 bars, 10M 
B4-NM Monotonic SMAs 2 bars, ϕ = 9.5 mm 2 bars, ϕ = 6.35 mm 
B6-NR Cyclic SMAs 2 bars, ϕ = 9.5 mm 2 bars, ϕ = 9.5 mm 

B7-NCM Cyclic SMAs 2 bars, ϕ = 9.5 mm 2 bars, ϕ = 9.5 mm 
 

The developed program is used to perform moment-curvature analysis of the different cross-

sections of the studied beams. The moment-curvature diagrams for three different cross-sections 

of B6-NR are shown in Fig. 3-3: (i) 2-9.5mm SMA RC cross-section; (ii) 2-12.7 mm SMA RC 

cross-section; and (iii) 2-15M steel RC cross-section. The moment-curvature analysis of each 

cross-section is performed up to the experimental unloading moment. Experimental load-

displacement results are plotted versus the analytically obtained results for all beams in Fig. 3-4 

Very good agreement between the experimental and analytical results is obtained for all beams. 

Other experimental validations are discussed in Appendix II. 
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Fig. 3-2: Idealized stress-strain models for steel and SMAs bars. 
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Fig. 3-4: Experimental vs. Analytical load-displacement relationships 
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3.5 PARAMETRIC STUDY 

A parametric study is carried out to investigate the effect of different geometrical and cross-

sectional parameters on the overall behaviour of SMA RC beams during loading/unloading 

stages. Studied parameters include: (i) cross-section reinforcement ratio (ρSMAs); (ii) ratio 

between the amount of SMA reinforcement to the amount of steel reinforcement (ASMAs/As); (iii) 

cross-section height-to-width ratio (h/b); (iv) beam span-to-depth ratio (L/h); and (v) concrete 

compressive strength (f’
c). Fig. 3-5 shows a sketch of the studied beams.  

h

b

L

ASMA AS

ASMA AS
' '

ASMA
'

ASMA

 

Fig. 3-5: Sketch of the studied beams 

The parametric study is performed on cantilever beams. The beams are reinforced with SMA 

bars at the fixed end of the beams and regular steel bars elsewhere. For each of the studied 

parameters, nine different lengths are considered for the SMA bars. The considered lengths are: 

L/20, L/10, L/8, L/6, L/4, L/3, L/2, and L/1, where L is the full length of the studied beam. The 

beams are loaded with single point loads applied at their free ends. Details of the studied beams 

and cross-sections are given in Table 3-2. 
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The amount of compression reinforcement is chosen equal to the amount of the tensile 

reinforcement, so that the cross-section is capable of resisting the reversed moment. Effect of 

concrete confinement is considered in the analysis. It is calculated from the equations of the 

concrete stress-strain model. The number of layers is chosen equal to the height of the beam (i.e. 

each layer is 1 mm in height).  

For each of the studied beams, the developed program is used to obtain the moment-curvature 

relationships of its cross-sections. The moment-area method is then used to obtain the load-

displacement relationship. Results are then assessed based on: (i) load-displacement relationship; 

(ii) amount of residual deformations; (iii) change in flexural stiffness; and (iv) amount of 

dissipated energy. Detailed discussion of the parametric study results is given in the following 

section. 
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Table 3-2: Details of studied beams and cross-sections 
Studied 

parameter 
L/h h/b f’

c ASMAs/As ρSMAs / ρs-min ρSMAs / ρs-b 
Loading level 

(δmax/δy) 

ρSMAs 

4 2.0 40 1.0 1.0 0.09 10 

4 2.0 40 1.0 5.5 0.50 10 

4 2.0 40 1.0 11.0 1.0 10 

ASMAs/As 

3 2.3 50 0.5 0.88 0.075 6 

3 2.3 50 1.0 1.76 0.15 8 

3 2.3 50 2.0 3.52 0.30 8 

3 2.3 50 4.0 7.04 0.60 8 

h/b 

5 1.0 35 1.0 1.4 0.13 6 

5 2.0 35 1.0 2.8 0.27 6 

5 3.0 35 1.0 4.2 0.40 6 

L/h 

3 3.5 30 1.0 4.0 0.42 7 

6 3.5 30 1.0 4.0 0.42 7 

9 3.5 30 1.0 4.0 0.42 7 

f’
c 

6 1.5 20 1.0 7.0 0.88 5 

6 1.5 45 1.0 7.0 0.88 5 

6 1.5 65 1.0 7.0 0.88 5 

Where: ρSMAs / ρs-min = ratio between the SMAs reinforcement ratio and the minimally reinforced 

cross-section steel reinforcement ratio; ρSMAs / ρs-b = ratio between the reinforcement ratio of the 

SMAs RC cross-section and the reinforcement ratio of the balanced steel RC cross-section; 

δmax/δy = the ratio between the maximum applied displacement at the beam tip and the 

displacement at which reinforcement starts to yield. 
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3.6 RESULTS AND DISCUSSION 

3.6.1 Reinforcement Ratio (ρSMAs) 

Three different cross-section reinforcement ratios are used: (i) minimum reinforcement ratio 

(ρmin); (ii) balanced reinforcement ratio (ρb); and (iii) intermediate value between the ρmin and ρb 

(ρint = 0.5 ρb). Values of the ρmin and ρb are determined using the Canadian standards (CSA-

A23.3-14 2014) for steel RC cross-sections.  

Obtained load-displacement relationships of the three beams are shown in Fig. 3-6. Similar 

behaviour is observed for the three ρSMAs. As expected, a significant increase in the cross-section 

yield and maximum capacity is achieved by increasing the cross-section reinforcement ratio. 

Residual displacement at complete unloading is shown Fig. 3-7(a). Ratio of residual 

displacement to maximum applied displacement (δr/δmax) is plotted on the Y-axis versus the ratio 

of the SMA bar length to the total cantilever beam length (LSMAs/L) on the X-axis. Increasing in 

the SMA bar length reduces the amount of residual displacement at complete unloading. 

However, the rate of reduction is not constant. For example, significant reduction in the residual 

displacement (80%) can be observed with the increase of the SMA bar length from 0.00 L to 

0.167 L. Increasing the SMA bar length beyond the 0.167 L has very minor effect on the amount 

of residual deformations. 
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Fig. 3-6: Effect of varying the cross-section reinforcement ratio on the load-displacement 

relationships of steel and SMA RC beams for LSMAs = 0.00 L, 0.05 L, 0.25 L, 0.50 L, and 1.0 L 
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Fig. 3-7: Effect of varying the cross-section reinforcement ratio on: (a) residual displacements; 
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Effect of varying the SMA bar length on the intial flexural stiffness of the SMA RC cantilever 

beams is shown in Fig. 3-7(b). The flexural stiffness of the SMA RC beams relative to the steel 

RC beams is represented by the ratio δy-s to δcr-SMAs. As the SMA bar length increases, flexural 

stiffness of the cantilever beams decreases. For example, increasing the SMA bar length from 

0.00 L to 0.50 L decreased the flexural stiffness of the SMA RC beam by 60% compared to the 

steel RC beam. This significant reduction in stiffness is attributed to the difference between the 

modulus of elasticity of steel and SMAs.  

Effect of replacing steel bars with SMAs bars on the amount of dissipated energy is shown in 

Fig. 3-7(c). Ratio between the amount of dissipated energy by the SMA RC beam to the amount 

of dissipated energy by the steel RC beam (ENSMAs/ENs) is plotted on the Y-axis, while the ratio 

of the SMA bar length to the total cantilever beam length (LSMA/L) is plotted on the X-axis. 

Significant reduction in the amount of dissipated energy (40%) is observed when the SMA bar 

length increases from 0.00 L to 0.20 L. The rate of reduction in amount of dissipated energy is 

then reduced. Changing the SMAs bar length from 0.20 L to 1.00 L (80%) results in only 15% 

additional reduction in the amount of dissipated energy. 

3.6.2 Ratio between the Amount of SMA Bars and the Amount of Steel Bars (ASMAs/As) 

Four cantilever beams with four different ASMAs/As ratios (0.5, 1.0, 2.0, and 4.0) were considered 

in the analysis. Obtained load-displacement relationships of the four beams are presented in Fig. 

3-8. Varying the ASMAs/As ratio significantly affects the load-displacement behaviour. The effect 
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is more pronounced during the unloading stage.  Flexural capacity of the steel RC beam (LSMAs = 

0.0) is the highest. As the length of the SMA bar increases, the flexural capacity decreases.  

Different load-displacement behaviour is observed when ASMAs/As = 2.0 and ASMAs/As = 4.0 values 

are used, Fig. 3-8. Yielding load of the beam increases when the length of the SMA bar 

increases. This different trend in behaviour as compared to cases of ASMAs/As = 0.5 and ASMAs/As = 

1.0 is attributed to the significant increase in the amount of SMA reinforcement in the maximum 

moment area near the support.  
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Fig. 3-8: Effect of varying the ASMAs/As ratio on the load-displacement relationships of steel and 
SMA RC beams for LSMAs = 0.00 L, 0.05 L, 0.25 L, 0.50 L, and 1.0 L 

 



 

72 
 

LSMA /L

0.0 0.2 0.4 0.6 0.8 1.0 1.2

 r


m
a

x

0.0

0.2

0.4

0.6

0.8

1.0
ASMAs /As = 0.5
ASMAs /As = 1.0
ASMAs /As = 2.0
ASMAs /As = 4.0

 
(a) Residual displacements 

LSMA /L

0.0 0.2 0.4 0.6 0.8 1.0 1.2

 y
-s


cr
-S

M
A

s 

0.0

0.2

0.4

0.6

0.8

1.0

1.2
ASMAs /As = 0.5
ASMAs /As = 1.0
ASMAs /As = 2.0
ASMAs /As = 4.0

 
(b) Flexural stiffness 

LSMA /L

0.0 0.2 0.4 0.6 0.8 1.0 1.2


S

M
A

s



s

0.0

0.5

1.0

1.5

2.0

2.5

ASMAs /As = 0.5
ASMAs /As = 1.0
ASMAs /As = 2.0
ASMAs /As = 4.0

 
(c) Dissipated energy 

Fig. 3-9: Effect of varying the ASMAs/As ratio on: (a) residual displacements; (b) flexural stiffness; 
(c) dissipated energy  
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Amount of residual displacement at complete unloading is significantly affected by varying the 

ASMAs/As value as shown in Fig. 3-9(a). SMA RC beams with ASMAs/As = 0.5 recover high portion 

of the maximum applied displacement at complete unloading. When 0.05 L of the steel bars are 

replaced with SMA bars, residual displacement is reduced by 88%. This reduction is attributed to 

the intense yielding (i.e. critical stress) happening in the SMA bars at ASMAs/As = 0.5. For higher 

ASMAs/As ratio, the percentage decrease in the residual displacement is reduced.   

Flexural stiffness of the studied beams is also affected by changing the ASMAs/As ratio. As shown 

in Fig. 3-9(b), significant reduction in the flexural stiffness of the beams is observed when the 

ASMAs/As = 0.5 and ASMAs/As = 1.0 ratios are used. For example, using SMA bar length equal to 

0.33 L causes a 300% reduction in the flexural stiffness in case of ASMAs/As = 0.5 and a 240% in 

case of ASMAs/As = 1.0.  

As shown in Fig. 3-9(b), increasing ASMAs/As ratio significantly lowers the reduction in the 

flexural stiffness of the beams. For example, using SMAs bar length equal to 0.33 L reduces the 

flexural stiffness by 55% in case of ASMAs/As = 2.0 and by 15% in case of ASMAs/As = 4.0. 

Effect of varying the ASMAs/As ratio on the amount of dissipated energy is illustrated in Fig. 

3-9(c). As shown in the figure, the amount of dissipated energy significantly decreases with the 

increase in the SMA bars length for ASMAs/As = 0.5 and ASMAs/As = 1.0. Reduction in dissipated 

energy reaches a value of almost 50% when the steel bars are replaced with full length SMA 

bars. For ASMAs/As = 2.0, the amount of dissipated energy is increased by increasing the length of 

SMA bars up to 0.33 L. After reaching 125% increase in the amount of dissipated energy when 
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using SMA bars length of 0.33 L, amount of dissipated energy started to decrease with further 

increase in the SMA bars length. It reached a value of 105% at SMA bars length equal to 0.5 L 

and 90% at 1.0 L SMA bars length. Similar behaviour is observed for ASMAs/As = 4.0. The 

increase in the amount of dissipated energy in case of ASMAs/As = 2.0 and ASMAs/As = 4.0 is 

attributed to the increase in the area bounded by the load-displacement curve at small lengths of 

SMA bars.  

3.6.3 Cross-section Height-to-Width Ratio (h/b) 

Three beams with three different h/b values are used in this study: h/b = 1.0, h/b = 2.0, and h/b = 

3.0. Calculated load-displacement relationships of the three beams considering different SMA 

bar lengths are shown in Fig. 3-10. It is clear from the figures that changing the cross-section 

dimensions (b or h) do not have a noticeable effect on the unloading behaviour of the beams. 

Residual displacement at complete unloading is almost identical for the three beams, Fig. 

3-11(a). This is because the amount of residual displacement is mainly dependent on the number 

and length of the SMA bars. Increasing the SMA bar length significantly reduces the amount of 

residual displacements. For example, residual displacement at complete unloading is reduced 

from 80% to 10% of the maximum applied displacement when the length of the SMA bars 

increased from 0.0 L to 0.167 L. Extending the SMA bars beyond the 0.167 L length limit has a 

very minor effect on the residual displacement. 
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Fig. 3-10: Effect of varying the h/b ratio on the load-displacement relationships of steel and 

SMA RC beams for LSMAs = 0.00 L, 0.05 L, 0.25 L, 0.50 L, and 1.0 L 
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Fig. 3-11: Effect of varying the cross-section height-to-width ratio (h/b) on: (a) residual 
displacements; (b) flexural stiffness; (c) dissipated energy 
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Effect of increasing the SMA bar length on the flexural stiffness of the beams is shown in Fig. 

3-11(b). Increasing the length of the SMA bars reduces the flexural stiffness of the cantilever 

beams. This is attributed to the difference in the modulus of elasticity value between steel and 

SMA materials. Beams with h/b = 2.0 and h/b = 3.0 have almost identical change in stiffness 

with the change in the SMA bar length. For h/b = 1.0, similar trend in stiffness is observed. 

However, more pronounced reduction in flexural stiffness is observed when the steel bars are 

replaced with full length SMA bars. When SMA bar length of 1.0 L is used, flexural stiffness 

reduction of 400% is observed in case of h/b = 1.0 compared to 300% and 310% in case of h/b = 

3.0 and h/b = 2.0, respectively.   

Trend of variation in the amount of dissipated energy with the increase in the length of the SMA 

bars is plotted in Fig. 3-11(c). Increasing the length of the SMA bars decreases the amount of 

dissipated energy. Trend of reduction is identical for the three studied beams. Increasing the 

SMA bar length from 0.0 L to 0.20 L decreases the amount of dissipated energy by 40%. 

Replacing steel bars with full length (1.0 L) SMA bars results in 55% reduction in the amount of 

dissipated energy. 

3.6.4 Beam Span-to-Depth Ratio (L/h) 

Three cantilever beams with: L/h = 3.0, L/h = 6.0, and L/h = 9.0 are considered. Fig. 3-12 

illustrates the load-displacement response of the three beams when different lengths of the SMA 

bars are considered. Increasing the L/h ratio significantly reduces the yielding and maximum 

capacity of the beams.  
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Fig. 3-12: Effect of varying the L/h ratio on the load-displacement relationships of steel and 

SMA RC beams for LSMAs = 0.00 L, 0.05 L, 0.25 L, 0.50 L, and 1.0 L 
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Fig. 3-13: Effect of varying the beam span-to-depth ratio (L/h) on: (a) residual displacements; 

(b) flexural stiffness; (c) dissipated energy 
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Fig. 3-14: Effect of varying the concrete compressive strength on the load-displacement 
relationships of steel and SMA RC beams for LSMAs = 0.00 L, 0.05 L, 0.25 L, 0.50 L, and 1.0 L 
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Fig. 3-15: Effect of varying the ASMAs/As ratio on: (a) residual displacements; (b) flexural 
stiffness; (c) dissipated energy 
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Fig. 3-13(a) shows that increasing the length of the SMA bars significantly reduces the amount 

of residual displacements. Since the reduction in the amount of residual displacement is similar 

for the three beams, it can be concluded that varying the L/h ratio has no effect on changing the 

amount of residual displacements at complete unloading. Using SMA bar length of 0.167 L 

reduces the amount of residual displacement at complete unloading by 90%. Increasing the SMA 

bar length beyond 0.167 L is found to have a negligible effect on the residual displacements. 

Increasing the length of the SMA bar significantly decreases the flexural stiffness as shown in 

Fig. 3-13(b). The increased SMA bar length significantly reduces the effect of L/h ratio. 

Replacing the steel bars with full length (1.0 L) SMA bars reduces the flexural stiffness by 

200%. Increasing the SMA bar length significantly reduces the effect of L/h ratio on the amount 

of dissipated energy, Fig. 3-13(c). SMA bar length is the main controlling parameter of the 

reduction occurring in the amount of dissipated energy. For example, the amount of dissipated 

energy is reduced by 55% when the steel bars are replaced with a full length (1.0 L) SMA bars. 

3.6.5 Concrete Compressive Strength (f’
c) 

Three cantilever beams with: f’
c = 20 MPa, f’

c = 45 MPa, and f’
c = 65 MPa are used. Load-

displacement responses of the three beams with different lengths of SMA bars are plotted in Fig. 

3-14. Varying the concrete compressive strength has a minor effect on the yielding and 

maximum capacities of the beams. Maximum displacement is reduced by almost 15% when the 

f’
c value increased from 20 MPa to 65 MPa. The amount of residual displacement is also not 

affected by varying the f’
c as shown in Fig. 3-15(a). The residual displacement changes when the 
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length of the SMA bars is increased. Trend of change is identical for the three beams. Increasing 

the length of the SMA bars from 0.0 L to 0.167 L reduces the residual displacements by 90% 

Fig. 3-15(b) shows that varying the f’
c value has no effect on the reduction happening in the 

flexural stiffness. As shown in the figure, using SMA bars with length 0.5 L reduces the flexural 

stiffness by 60%, while replacing the steel bars with length L SMA bars reduces the flexural 

stiffness by 65%. 

Fig. 3-15(c) clearly indicates the negligible effect of changing the f’
c value on the amount of 

dissipated energy. The three beams have a sudden drop (40%) in the amount of dissipated energy 

when the SMA bar length increased from 0.0 L to 0.167 L. Increasing the SMA bar length 

beyond the 0.167 L has minor effect on the amount of dissipated energy. For instance, replacing 

the steel bars with full length SMA bars results in only 63% reduction in the amount of 

dissipated energy as compared to the steel RC beams. 

3.7 CHOICE OF SMA LENGTH 

There are only few real applications that utilized SMA bars as primary reinforcing bars. This 

section provides equations that can predict the residual displacements at complete unloading, the 

change in the beam stiffness, and the dissipated energy when regular steel bars are replaced with 

SMA bars. Multiple linear regression technique is used to determine these equations. Linear, 

quadratic power and logarithmic models are examined.  
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The backward elimination stepwise regression is adopted (Dunlop and Smith 2003). All 

explanatory variables (inputs) are included at the beginning. The non-significant variables are 

then eliminated one at a time. By the end of the analysis, the remaining variables are only the 

statistically significant ones.      

The database used in the analysis is created from the results obtained from the parametric study. 

The inputs used in the analysis are: LSMAs/L, ASMAs/As, ρSMAs / ρs-min, ρSMAs / ρs-b, f
’
c, h/b, LL, L/h. 

The outputs used in the analysis are: δr/δmax, (δy-s/δcr-SMAs), and ENSMAs/ENs. Descriptive statistics 

of the used data are presented in Table 3-3. 

Table 3-3: Descriptive statistics of the used data 

Variable 
Number of 

Observations 
Mean 

Standard 
Deviation 

Minimum 
value 

Maximum 
value 

δr/δmax 144 0.2455369 0.2872124 0.0228764 0.8367937 

δy-s /δcr-SMAs 144 0.7231725 0.2538049 0.3590281 2.156095 

ENSMAs/ENs 144 0.5904093 0.2191969 0.1694713 1.058578 

LSMAs/L 144 0.2805556 0.2937315 0 1 

ASMAs/As 144 1.21875 0.7726051 0.5 4 

ρSMAs / ρs-min 144 4.112833 2.506175 0.83077 10.958 

ρSMAs / ρs-b 144 0.4028801 0.2516064 0.07538 1 

f’
c 144 40.3125 10.71269 20 65 

h/b 144 2.270833 0.7429741 1 3.5 

Load level 
(δmax/δy) 

144 6.6 1.0209 5 8 

L/h 144 4.6875 1.614916 3 9 
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Table 3-4: Correlation coefficients between all variables 

δr/δmax δy-s /δcr-SMAs ENSMAs/ENs LSMAs/L ASMAs/As ρSMAs / ρs-min ρSMAs / ρs-b f’
c h/b LL L/h 

δr/δmax 1.00 

δy-s /δcr-SMAs 0.79 1.00 
         

ENSMAs/ENs 0.83 0.60 1.00 
        

LSMAs/L -0.46 -0.38 -0.76 1.00 
       

ASMAs/As 0.51 0.70 0.23 0.00 1.00 
      

ρSMAs / ρs-min 0.10 0.09 0.10 0.00 0.27 1.00 
     

ρSMAs / ρs-b 0.07 0.04 0.08 0.00 0.21 0.97 1.00 
    

f’
c 0.16 0.25 0.06 0.00 0.26 -0.18 -0.32 1.00 

   
h/b 0.05 0.04 0.02 0.00 0.02 -0.02 -0.02 -0.3 1.00 

  
LL 0.32 0.42 0.08 0.00 0.47 0.00 -0.08 0.06 0.52 1.00 

 
L/h -0.21 -0.32 -0.06 0.00 -0.30 0.09 0.17 -0.36 0.09 -0.44 1.00 
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The analysis starts with investigating the correlation between each pair of the variables. Highly 

correlated pairs and their signs are noted. Correlation matrix is determined and is shown in Table 

3-4. Table 3-5 to Table 3-10 present the final regression models for the three outputs. All the 

variable coefficients reported in these tables are statistically significant from zero at 95% 

confidence level because the associated p-values of all the coefficients are less than 0.05. 

Regression results also include standard errors (Std. Err.) associated with each coefficient, the t-

statistics (t) that is used to evaluate whether the estimated coefficients are significantly different 

from zero or not, and the 2-tailed p-values (p>t) used to test the null hypothesis that the 

coefficient is zero using an alpha of 0.05 (i.e. 95% confidence level). Analysis of variance 

(ANOVA) results are also summarized in each table reporting the variance breakdown of the 

output explained by the model and the residuals. ANOVA results include the sum of squares 

(SS), degrees of freedom (df) and mean square (MS) associated with three sources of variance: 

Model, residuals, and total variances. 

The overall model fitness is also reported with the model results. F-test is used to test the null 

hypothesis that all model coefficients are statistically significant from zero. Prob>F=0 indicates 

that all model coefficients are statistically significant from zero. R-squared is the coefficient of 

determination that represents the proportions of the variance in the dependent variable explained 

by the independent variables. R-squared is used to assess the overall model goodness-of-fit. The 

closer the R-squared value to 1.0 the better the model fitness is.  

Adjusted R-squared is an adjustment of the R-squared to account for the addition of the 

explanatory variables and their effect on the model fitness. Root Mean Square Error (Root MSE) 
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is another measure of the model goodness-of-fit. It is the standard deviation of residuals to 

indicate how close the linear regression model is to the measured data points. The smaller the 

Root MSE is, the closer the model fit to the observed data. All the reported models are 

considered to be with very good fit as their R-squared values vary from 0.7 to 0.9. Furthermore, 

the values of MSE range from 0.05 to 0.39 confirming also a very good model fit (Montgomery 

et al. 2012).  

For example, Table 3-5 presents a linear regression model of δr/δmax when LSMAs/L ≤ 0.14. The 

model defines the linear relationship between the dependent variable δr/δmax and the second order 

transformation of the three independent variables (LSMAs/L, ASMAs/As, and L/h). The coefficient for 

each independent variable is estimated. The final suggested regression models are summarized in 

Equations [3-1] to [3-3]. 

δr/δmax = -9.38644 x (LSMAs/L) + 35.56246 x (LSMAs/L)2 + 0.6020821 x (ASMAs/As) - 0.0932349 x 

(ASMAs/As)
2 - 0.1102018 x (L/h) + 0.0085443 x (L/h)2 + 0.5670711    LSMAs/L ≤ 0.14  

            [3-1a] 

ln(δr/δmax) = -0.9008659 x (LSMAs/L) + 1.213188 x (ASMAs/As) - 0.4609012 x (L/h) + 0.0353669 x 

(L/h)2 - 1.027448  LSMAs/L > 0.14       [3-1b] 

ln(δy-s /δcr-SMAs) = -2.871903 x (LSMAs/L) + 0.3076423 x (ASMAs/As) - 0.0438487 x (ASMAs/As)
2 - 

0.0896358 x (L/h) + 0.0066686 x (L/h)2 - 0.0422848   LSMAs/L ≤ 0.14  [3-2a] 
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Table 3-5: Regression model for δr/δmax when LSMAs/L ≤ 0.14 

Source       SS df MS Number of obs = 64 

Model 5.40512271 6 0.900853784 
F(  6,    57) = 86.64 

Prob > F = 0 

Residual 0.592698607 57 0.010398221 
R-squared = 0.9012 

Adj R-squared = 0.8908 

Total 5.99782131 63 0.095203513 Root MSE = 0.10197 

δr/δmax Coef. Std. Err. t P>t [95% Conf. Interval] 

LSMAs/L -9.38644 1.010386 -9.29 0 -11.4097 -7.363177 

(LSMAs/L)2 35.56246 7.852247 4.53 0 19.83861 51.28632 

ASMAs/As 0.6020821 0.0976462 6.17 0 0.406549 0.7976151 

(ASMAs/As)
2 -0.0932349 0.0205793 -4.53 0 -0.1344443 -0.0520255 

L/h -0.1102018 0.0431388 -2.55 0.013 -0.1965858 -0.0238178 

(L/h)2 0.0085443 0.0038105 2.24 0.029 0.0009139 0.0161747 

Constant 0.5670711 0.1381184 4.11 0 0.2904937 0.8436485 

Table 3-6: Regression model for δr/δmax when LSMAs/L > 0.14 

Source SS df MS Number of obs = 80 

Model 32.2004529 4 8.05011323 
F(  4,    75) = 52.44 

Prob > F = 0 

Residual 11.5134861 75 0.153513148
R-squared = 0.7366 

Adj R-squared = 0.7226 

Total 43.713939 79 0.553341 Root MSE = 0.39181 

ln(δr/δmax) Coef. Std. Err. t P>t [95% Conf. Interval] 

LSMAs/L -0.9008659 0.1478548 -6.09 0.000 -1.195408 -0.606324 

ln(ASMAs/As) 1.213188 0.1097809 11.05 0.000 0.9944934 1.431883 

L/h -0.4609012 0.14432 -3.19 0.002 -0.7484014 -0.1734009 

(L/h)2 0.0353669 0.0128571 2.75 0.007 0.0097542 0.0609796 

Constant -1.027448 0.3825008 -2.69 0.009 -1.789429 -0.2654676 
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Table 3-7: Regression model for δy-s /δcr-SMAs when LSMAs/L ≤ 0.14 

Source SS df MS Number of obs = 64 

Model 1.85713726 5 0.371427452 
F(  5,    58) = 56.64 

Prob > F = 0 

Residual 0.380350649 58 0.00655777 
R-squared = 0.83 

Adj R-squared = 0.8154 

Total 2.23748791 63 0.035515681 Root MSE = 0.08098 

ln(δy-s /δcr-SMAs) Coef. Std. Err. t P>t [95% Conf. Interval] 

LSMAs/L -2.871903 0.2108541 -13.62 0 -3.293974 -2.449833 

ASMAs/As 0.3076423 0.077545 3.97 0 0.1524191 0.4628655 

(ASMAs/As)
2 -0.0438487 0.0163429 -2.68 0.009 -0.0765626 -0.0111347

L/h -0.0896358 0.0342584 -2.62 0.011 -0.1582114 -0.0210602

(L/h)2 0.0066686 0.0030261 2.2 0.032 0.0006112 0.012726 

Constant -0.0422848 0.1092839 -0.39 0.7 -0.2610404 0.1764707 

 

Table 3-8: Regression model for δy-s /δcr-SMAs when LSMAs/L > 0.14 

Source SS df MS Number of obs = 80 

Model 7.16349661 4 1.79087415 
F(  4,    75) = 133.48 

Prob > F = 0 

Residual 1.00627315 75 0.013416975
R-squared = 0.8768 

Adj R-squared = 0.8703 

Total 8.16976976 79 0.103414807 Root MSE = 0.11583 

ln(1/(δcr-SMAs/δy-s)) Coef. Std. Err. t P>t [95% Conf. Interval] 

(LSMAs/L)2 -0.2967487 0.035693 -8.31 0 -0.3678527 -0.2256447

ASMAs/As 0.3830598 0.0181175 21.14 0 0.3469678 0.4191518 

ρSMAs / ρs-b -0.7221479 0.1910504 -3.78 0 -1.10274 -0.341556 

(ρSMAs / ρs-b)
2 0.4479831 0.1747933 2.56 0.012 0.099777 0.7961892 

Constant -0.6942598 0.0418022 -16.61 0 -0.777534 -0.6109856
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Table 3-9: Regression model for ENSMAs/ENs when LSMAs/L ≤ 0.14 

Source SS df MS Number of obs = 64 

Model 1.47433386 3 0.49144462 
F(  3,    60) = 172.52 

Prob > F = 0 

Residual 0.17091711 60 0.002848619
R-squared = 0.8961 

Adj R-squared = 0.8909 

Total 1.64525097 63 0.026115095 Root MSE = 0.05337 

ENSMAs/ENs Coef. Std. Err. t P>t [95% Conf. Interval] 

LSMAs/L -4.246152 0.528841 -8.03 0 -5.303991 -3.188312 

(LSMAs/L)2 10.20425 4.109903 2.48 0.016 1.983215 18.42528 

(ASMAs/As)
2 0.0130695 0.0018159 7.2 0 0.0094371 0.0167019 

Constant 0.9730266 0.0137205 70.92 0 0.9455814 1.000472 

 

 

Table 3-10: Regression model for ENSMAs/ENs when LSMAs/L > 0.14 

Source SS df MS Number of obs = 80 

Model 0.866746838 4 0.21668671 
F(  4,    75) = 74.75 

Prob > F = 0 

Residual 0.217402194 75 0.002898696
R-squared = 0.7995 

Adj R-squared = 0.7888 

Total 1.08414903 79 0.013723405 Root MSE = 0.05384 

ENSMAs/ENs Coef. Std. Err. t P>t [95% Conf. Interval] 

LSMAs/L -0.8652805 0.1159677 -7.46 0 -1.0963 -0.634261 

(LSMAs/L)2 0.4895451 0.0946956 5.17 0 0.3009019 0.6781883 

(ASMAs/As)
2 0.0141995 0.0016721 8.49 0 0.0108685 0.0175305 

ρSMAs / ρs-b 0.057189 0.0245013 2.33 0.022 0.0083799 0.1059981 

Constant 0.6334503 0.0280425 22.59 0 0.5775868 0.6893138 
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ln(δy-s /δcr-SMAs) = -0.2967487 x (LSMAs/L)2 + 0.3830598 x (ASMAs/As) - 0.7221479 x (ρSMAs / ρs-b) + 

0.4479831 x (ρSMAs / ρs-b)
2 - 0.6942598  LSMAs/L > 0.14    [3-2b] 

ENSMAs/ENs = -4.246152x (LSMAs/L) + 10.20425 x (LSMAs/L)2 + 0.0130695 x (ASMAs/As)
2 + 

0.9730266  LSMAs/L ≤ 0.14        [3-3a] 

ENSMAs/ENs = -0.8652805x (LSMAs/L) + 0.4895451x (LSMAs/L)2 + 0.0141995 x (ASMAs/As)
2 + 

0.057189 x (ρSMAs / ρs-b) + 0.6334503   LSMAs/L > 0.14     [3-3b]    

For example, if only 10% of the length of the steel bars of a cantilever beam (L/h = 5.0) is 

replaced with SMA bars (i.e. LSMAs/L =0.10), and the cross-sectional areas of the bars are the 

same (ASMAs/As = 1.0), then this beam will keep only 15.5% of the applied displacement (i.e. 

δr/δmax = 15.5%). The stiffness of the beam will be reduced by 29.3% (i.e. δy-s /δcr-SMAs = 70.7%), 

while the amount of dissipated energy by the beam will be reduced by 33.6% (i.e. ENSMAs/ENs = 

66.4%) compared to the steel RC beam. 

3.8 CONCLUSIONS 

In this study, flexural behaviour of SMA RC beams during loading/unloading stages is 

investigated. Analysis method, that is based on the sectional analysis approach, is used to 

investigate the flexural behaviour of steel and SMA RC beams. First, the applicability of using 

the moment-area method with SMA RC beams is validated using available experimental results. 

An extensive parametric study is then carried out to investigate the effect of different geometrical 

and cross-sectional parameters on the flexural behaviour of SMA RC beams. Studied parameters 
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are: (i) cross-section reinforcement ratio; (ii) ratio between the amounts of SMA reinforcement 

to the amount of steel reinforcement; (iii) cross-section height-to-width ratio; (iv) beam span-to-

depth ratio; and (v) concrete compressive strength. For each of the studied parameters, nine load-

displacement responses are calculated assuming different lengths of the SMA bars. 

Increasing the SMA bar length up to 0.167 L significantly reduces the amount of residual 

displacements at complete unloading. In addition, the flexural stiffness is found to decrease 

significantly by increasing the SMA bar length. Amount of dissipated energy is also found to be 

dependent on the length of the SMA bars.  However, it is noted that the rate of reduction of the 

flexural stiffness and the dissipated energy reduces as the length of SMA bars increase. 

Four out of the five considered parameters in the parametric study are found to have minor or 

negligible effect on the beams behaviour. The ratio between the amounts of SMA reinforcement 

to the amount of steel reinforcement is the only parameter that caused a significant change in 

behaviour in terms of amount of residual displacement, change in flexural stiffness, and change 

in amount of dissipated energy. 

All results of the parametric study are then used for multiple linear regression analysis. Results 

of the regression analysis are used to develop equations to help designers address the change 

occurring in the beam behaviour when regular steel reinforcing bars are replaced with SMA 

reinforcing bars. Changes in the amounts of residual displacements, flexural stiffness and 

dissipated energy can be estimated using the developed equations. 
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Chapter 4 Flexural Behaviour of Reinforced Concrete Beams 

Retrofitted using External Unbonded Superelastic Shape Memory 

Alloy Bars 

4.1 INTRODUCTION 

The civil infrastructure systems constitute a large portion of the national wealth. Because of 

ageing and exposure to the environment, they rapidly deteriorate and become more vulnerable to 

catastrophic failure. Therefore, these structures might need retrofitting to extend their service 

life. Retrofitting might also be needed to correct design and/or construction errors and to allow 

changing the structure function.  

Examples of available retrofitting techniques for Reinforced Concrete (RC) sections are: (i) 

concrete jacketing; (ii) attaching steel plates; (iii) applying external post-tensioning; and (iv) 

using Fibre Reinforced Polymers (FRPs). Flexural retrofitting of RC beams using superelastic 

Shape Memory Alloy (SMA) bars is another potential technique. Main advantages of 

superelastic SMA bars are: (i) ability to undergo large deformations and return to their 

undeformed shape upon unloading (i.e. superelasticity); (ii) ability to dissipate large amounts of 

energy and release them upon unloading (i.e. flag shape stress-strain relationship) (iii) high 

resistance to corrosion; and (iv) high resistance to fatigue (Alam et al. 2007, Janke et al. 2005).  
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In this study, the possibility of using unbonded SMA bars to retrofit RC beams is analytically 

investigated. A Finite element (FE) model is first developed and validated using ABAQUS 

software (ABAQUS 2018). A simplified sectional method is then introduced. Results of the 

suggested method are validated using the FE model. A parametric study is then carried out using 

the simplified method. Results of the parametric study are used to develop design equations that 

can capture the change in the flexural behaviour of beams retrofitted using external unbonded 

SMA bars. 

4.2 FINITE ELEMENT SIMULATION 

Three-dimensional FE models are developed in this study to investigate the behaviour of RC 

beams retrofitted using external SMA bars during the loading/unloading stages. Analysis is 

performed using the commercial FE program ABAQUS Version 6.9 (ABAQUS 2018).  

Hexahedral (8-node) isoparametric linear solid elements with reduced integration (C3D8R) are 

used to model the RC beams. Same element type is used to model the internal and external 

reinforcement, and external angles.  

4.2.1 Concrete under Compression 

The model developed by Scott et al. (1982), Fig. 4-1(a), is used to model the concrete behaviour 

under compression loading. This model represents a good balance between accuracy and 

simplicity. During the unloading stage, behaviour of concrete in compression is assumed to 

follow the model proposed by Karsan and Jirsa (1969). When unloading starts, the material 
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follows linear straight path that connects the strain at the unloading start, εr, to the unloading 

strain at zero-stress, εp. After reaching εp, the strains continue to reduce while keeping the stress 

value equal to zero. This continues till reaching the point of zero strain.  

4.2.2 Concrete under Tension 

Behaviour of concrete under tension loading is assumed to follow the model proposed by 

Stevens et al. (1987) and simplified by Youssef and Ghobarah (1999), Fig. 4-1(b). In the pre-

cracking zone, the concrete behaves in a linear fashion up to the cracking stress fcr. This is 

followed by significant reduction in the stress value.  

If unloading starts before reaching fcr, the concrete behaves in a linear fashion similar to the 

loading stage. If unloading starts after reaching fcr, the material follows a linear path with a slope 

equal to the modulus of elasticity of concrete. After reaching the zero-stress point, the strain 

continues to decrease while the stress is kept equal to zero. This continues until reaching the 

point of zero-strain.  

4.2.3 Steel Bars 

The behaviour of the steel material is assumed to follow a bilinear stress-strain relationship under 

both tension and compression loadings, Fig. 4-1(c). The material behaves elastically until 

reaching its yielding strain, εy-s. Then, the modulus of elasticity is significantly reduced. 
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If unloading starts within the pre-yielding zone, the material behaves in an elastic manner similar 

to the loading stage with no residual deformations at complete unloading. If the unloading starts 

within the post-yielding zone, the material follows a linear unloading path until yielding on the 

other side (tension or compression).  

4.2.4 Superelastic SMA Bars 

The stress-strain model of SMA consists of four linear branches that are connected by smooth 

curves (Alam et al. 2007), Fig. 4-1(d). To simplify the modelling process of the SMA material, 

the smooth curves are ignored and linear branches are assumed to directly intersect. The material 

behaves elastically until reaching the SMA critical stress fcr-SMA which represents the start of the 

martensite stress induced transformation. Exceeding this limit, the material stiffness significantly 

reduces to about 10% of its initial value. If loading continues until full transformation to 

martensite phase occurs, the material regains about 50% of its initial stiffness. If loading 

continues to the real yielding limit, another significant reduction in the material stiffness occurs.  

The behaviour of SMAs during the unloading stage is illustrated in Fig. 4-1(d). If unloading 

starts before reaching SMAs critical stress, the material behaves in an elastic manner similar to 

the loading stage (i.e. unloading path 1).  If unloading starts when the stress in the material is in 

between the critical and yielding stresses, the material follows a flag shaped stress-strain 

relationship (i.e. unloading path 2). If unloading starts after the material reaches its yielding 

limit), the material follows a linear unloading path (i.e. unloading path 3).  
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(g) Steel in tension/compression (h) SMA in tension/compression 

Fig. 4-1:  Stress-strain models during loading and unloading stages; (a) Concrete in compression; 
(b) Concrete in tension; (c) Steel in tension/compression; (d) SMA in tension/compression. 
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4.3 EXPERIMENTAL VALIDATION 

The experimental work performed by Abdulridha (2013) and Abdulridha et al. (2013) is used to 

validate the developed model. Six simply supported beams with dimensions of 2800 mm length, 

2400 mm span, 125 mm cross-section width, 250 mm cross-section height, and reinforced with 

SMA and/or steel bars are experimentally tested. All beams are tested under two central point 

loads spaced at 125 mm around mid-span.  

The clear concrete cover of the beams is 20 mm. The average concrete compressive strength is 

32.7 MPa for the SMA RC beams and 34.6 MPa for the steel RC beam. The beams are 

transversely reinforced with 6.35 mm wires spaced at 100 mm.  

The length of the SMA bars is 600 mm centred at the mid-span of the beams. The diameter of the 

middle 300 mm of the SMA bars is reduced to 9.50 mm. M15 steel bars connected the SMA bar 

using mechanical couplers are used to reinforce the remaining length of the beam. Reinforcement 

details of the tested beams are summarized in Table 4-1. 
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Table 4-1: Details of the tested beams by Abdulridha et al. (2013) 

Specimen Loading type 
Reinforcement 

type at mid-span 
Longitudinal reinforcement at mid-span 

Bottom Top 

B1-SM Monotonic Steel 2 bars, 10M 2 bars, ϕ = 6.35 mm 

B2-SC Cyclic Steel 2 bars, 10M 2 bars, ϕ = 6.35 mm 

B3-SR Cyclic Steel 2 bars, 10M 2 bars, 10M 

B4-NM Monotonic SMAs 2 bars, ϕ = 9.5 mm 2 bars, ϕ = 6.35 mm 

B6-NR Cyclic SMAs 2 bars, ϕ = 9.5 mm 2 bars, ϕ = 9.5 mm 

B7-NCM Cyclic SMAs 2 bars, ϕ = 9.5 mm 2 bars, ϕ = 9.5 mm 

 

Mesh sensitivity analysis is performed to determine the appropriate element size. Four element 

different sizes (61.25, 43.75, 26.25 and 17.5 mm) are examined considering beam B6-NR, Fig. 

4-2. It is found that element size of 17.5 mm is appropriate for the analysis. Obtained load-

displacement relationships are compared with the experimental results in case of monotonic 

loading, and with experimental envelopes in case of cyclic and reversed-cyclic loading. 

Experimental load-displacement results are plotted versus the numerically obtained results in 

Fig. 4-3 and Fig. 4-4 for steel and SMA RC beams, respectively. As shown in the figure, very 

good agreement between experimental and analytical results is obtained for all beams. 
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Fig. 4-2: Mesh sensitivity analysis for the FE model. 
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(b) B2-SC results 
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(c) B3-SR results 
Fig. 4-3: Experimental vs. numerical load-displacement results of steel RC beams tested by 

Abdulridha (2013); (a) B1-SM results; (b) B2-SC results; (c) B3-SR results. 
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(c) B7-NCM results 
Fig. 4-4: Experimental vs. numerical load-displacement results of SMA RC beams tested by 

Abdulridha (2013); (a) B4-NM results; (b) B6-NR results; (c) B7-NCM results. 
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The experimental work by Saiidi et al. (2007) is also used to validate the FE model. They tested 

eight RC beams under quasi-static loading. The beams have the same dimensions. Four beams 

are reinforced with SMA bars at mid-span, while the other four are reinforced with conventional 

steel bars. Details of the types and amounts of reinforcement used in the eight beams are 

summarized in Table 4-2. 

The beams are 1530 mm long. The beams have cross-sectional dimensions of 127x152 mm at 

mid-span and 127x305 mm at the ends, Fig. 4-5.  The main external reinforcement is attached to 

the beam using external angles. The beams are tested under two point loads.  

Mesh sensitivity analysis is first performed to determine the appropriate element size. Four 

element sizes are examined, Fig. 4-6. It is found that reducing the element size beyond 25.4 mm 

has negligible effect on the predicted results. Results of the analysis are plotted in Fig. 4-7 for 

the SMA RC beams and in Fig. 4-8 for the steel RC beams. As shown in the figures, good 

agreement between the experimental and analytical results is observed for both steel and SMA 

RC beams. 
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Table 4-2: Properties of the tested beams by Saiidi et al. (2007) 

Specimen 
Mid-span 

reinforcement 
εy 

(mm/mm) 
fy 

(MPa) 
E 

(MPa) 

BNL1 1 ϕ 6.40 mm 0.013 400 34078 

BNL2 2 ϕ 6.40 mm 0.013 400 34078 

BNH1 1 ϕ 9.50 mm 0.013 510 39245 

BNH2 2 ϕ 9.50 mm 0.013 510 39245 

BSL1 1 # 3 bars 0.0021 440 209524 

BSL2 2 # 3 bars 0.0021 440 209524 

BSH1 1 # 4 bars 0.0009 420 466667 

BSH2 2 # 4 bars 0.0009 420 466667 

 

 

 

Fig. 4-5: Dimensions and test setup of beams tested by Saiidi et al. (2007). 
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Fig. 4-6: Mesh sensitivity analysis for beam BNH1. 
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(c) BNL1 results (d) BNL2 results 

Fig. 4-7: Experimental vs. analytical load-displacement results of the SMA RC beams tested by 
Saiidi et al. (2007); (a) BNH1 results; (b) BNH2 results; (c) BNL1 results; (d) BNL2 results. 
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(c) BSL1 results (d) BSL2 results 

Fig. 4-8: Experimental vs. analytical load-displacement results of the steel RC beams tested by 
Saiidi et al. (2007); (a) BSH1 results; (b) BSH2 results; (c)  BSL1 results; (d) BSL2 results. 
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4.4 SUGGESTED RETROFITTING TECHNIQUE 

Fig. 4-9 shows the suggested retrofitting technique. Two angles are first attached to the ends of 

the beam using steel bolts. The angles are then connected with SMA-steel bars. Each bar is made 

of a middle SMA bar connected using two mechanical couplers to two steel bars. The use of steel 

bars minimizes the length of the SMA bars, and, thus their cost. Hold down angles can be used 

along the length of the beam to enforce the external bars follow the curvature of the beam. 

 

S M A  b a r s
S t e e l  b a r sR i g i d  s t e e l  a n g l e

 

Fig. 4-9: Suggested strengthening technique. 

 The modulus of elasticity of steel is about 4 times the modulus of elasticity of SMAs. Thus, 

attaching a small or moderate ratio of SMA will improve the beam strength, but is not expected 

to reduce the residual deformations. Thus, it is proposed to cut the internal tensile steel at the 

mid-span section as it is being replaced by the external SMA bars.   

To investigate the structural performance of the proposed system, a RC beam is assumed to have 

a cross-section of 125x250 mm and a span of 1200 mm, Fig. 4-10. The beam is internally 

reinforced with 2-10M steel bars at top and bottom. The concrete compressive strength is 
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assumed to be 32.70 MPa. An external angle with dimensions of 110x110x40 mm is attached to 

the beam near the support section using 3 bolts. The bolts are assumed to be 91 mm in length and 

12.7 mm in diameter. Another angle with the same size is used as a deflector near the mid-span 

section to have the external bar follow the beam as it deflects when loaded. External SMA bars 

are coupled to steel bars with larger cross-section and attached to the external angles using end 

couplers.  

Fig. 4-10: FE model of half the strengthened beam 

FE analysis is performed for the retrofitted beam. Four element different sizes (61.25, 43.75, 

26.25, and 17.5 mm) are first considered to determine the appropriate mesh size. It is found that 

element size of 17.5 mm gives good results and further refinement of the mesh does not 

noticeably change the behaviour.  

Fig. 4-11 shows the load-displacement relationship of the retrofitted beam vs. the original beam. 

The maximum moment capacity of the beam increased from 20 kN.m to 24 kN.m. The pre-

yielding stiffness of the beam reduced significantly due to replacing the internal steel bars with 
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SMA bars. Suggested retrofitting technique reduced the amount of residual displacement from 

32 mm to 5 mm (84%). Thus, it is clear that SMA can be used to reduce seismic residual 

deformations. However, such use affects the stiffness and strength of the retrofitted element. The 

following sections present a simplified method that is used to conduct a parametric study and 

develop simplified equations to evaluate effects of the suggested retrofitting technique. 
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Fig. 4-11: Load displacement results of the retrofitted beam vs. the original beam. 
 

 



 

114 
 

4.5 SIMPLIFIED ANALYSIS METHOD  

A simplified method is introduced in this section. A computer program is first developed using 

JAVA programming to predict the flexural behaviour of RC beams retrofitted using unbonded 

superelastic SMAs bars. The program is based on the sectional analysis methodology, where the 

cross-section of the retrofitted beam is divided into a discrete number of horizontal layers, Fig. 

4-12. Using the predefined stress-strain relationship of each layer, and considering the cross-

section equilibrium and kinematics, the flexural behaviour of the retrofitted beam can be 

predicted (Youssef and Rahman 2007; Elbahy et al. 2008, 2009, 2010a, and 2010b). Two main 

assumptions are proposed in the suggested analysis procedure: (i) plane sections remain plane 

(i.e. linear strain distribution); and (ii) perfect bond exists between concrete and internal 

reinforcement layers.  
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Fig. 4-12: Fibre Model. 
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(a) Loading stage 
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(b) Unloading stage 

Fig. 4-13: Flow chart of the developed program; (a) Loading stage; (b) Unloading stage. 
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Fig. 4-13(a) illustrates a flow chart of the developed program during the loading stage. Steps of 

the analysis are: (i) The analysis starts by assuming an initial strain for the unbonded SMA bars; 

(ii) using the predefined SMA stress-strain relationship, the force in the unbonded SMA bars is 

then calculated; (iii) a compressive strain value, εc-top, is assumed for the top concrete layer; (iv) 

cross-section curvature, ϕ, is then iterated until equilibrium is achieved; (v) the corresponding 

cross-section moment, M, is then calculated; (vi) analysis is repeated for a range of top 

compressive strains εc-top until reaching a moment value that corresponds to the assumed εSMA-ext. 

The final moment and curvature represent one point on the desired moment-curvature 

relationship. This procedure is repeated for different strain values εSMA-ext.  

Fig. 4-13(b) shows a flow chart of the program during the unloading stage. Steps of the analysis 

are: (i) read the values corresponding to the point of unloading from the loading program (εSMA-

ext, moment, curvature, layer stress, layer strain); (ii) unloading analysis starts by assuming a 

smaller εSMA-ext in the unbonded SMA bar; (iii) using the predefined unloading stress-strain 

relationship of the SMA bar, the force in the unbonded SMA bar is calculated; (iv) the 

compressive strain value in the top layer εc-top   recorded at the maximum loading level is used as 

an initial top strain value for the unloading analysis; (v) using the predefined stress-strain 

relationship of each layer and the recorded stress and strain of each layer, the cross-section 

curvature ϕ is iterated until the cross-section equilibrium is achieved; and (vi) the corresponding 

cross-section moment and curvature are calculated and recorded. Analysis is then repeated for a 

range of smaller top compressive strains εc-top and εSMA-ext.  
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The Four material models introduced in the Finite Element simulation section are implemented 

in the developed program. These models represent the behaviour of concrete, steel, and SMA 

materials under tensile and compressive loadings.  

4.6 DEFLECTION CALCULATIONS 

The moment-area method is utilized to calculate the rotation and deflection values. Steps 

involved in this method includes: (i) perform moment-curvature analysis of different cross-

sections defining the structural element; (ii) the bending moment distribution is used in 

conjunction with the moment-curvature relationship to obtain the curvature distribution along the 

length of the member;  (iii) rotation of any part of the element can be calculated by integrating 

the area under the curvature distribution, while deflection can be obtained by calculating the 

moment of the integrated area about the target location. 

4.7 PROGRAM VALIDATION 

The FE model is used in this section to validate the results obtained using the simplified sectional 

analysis method. The load-displacement relationship of the ABAQUS model is plotted versus the 

load-displacement relationship obtained using the simplified sectional analysis method in Fig. 

4-14. The FE model showed good agreement with the simplified method. Therefore, the 

simplified method is used in the analysis of the following sections of the paper. Additional 

validations of the developed program are given in Appendix III. 
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Fig. 4-14: Load-displacement relationship of the FE method vs. the developed program. 

4.8 PARAMETRIC STUDY 

A parametric study is carried out in this section to investigate the behaviour of RC beams 

retrofitted using unbonded SMA bars. Analysis is performed for the loading and unloading 

stages. Three parameters are investigated: (i) the ratio between the added external SMA 

reinforcement to the amount of internal steel reinforcement in the beam (ASMA/As); (ii) applied 

load level (ratio between the maximum applied displacement to the displacement at which 

yielding of the external reinforcement occurs δmax/δy); and (iii) ratio between the length of the 

used SMA bars to the span of the beam (LSMA/L).   

The parametric study is performed on simply supported beams with cross-sectional dimensions 

of 300 mm by 700 mm and span of 7,000 mm. The beams are loaded/unloaded under either one 

or two point loads. For each of the studied parameters, the parameter under investigation is 
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varied within the desired range while keeping all other parameters constant during the analysis. 

While varying ASMA/As and load level, the length of the SMA bars is assumed equal to the full 

length of the beam. For the third parameter (LSMA/L), nine different lengths of the SMA bars are 

investigated (0.05 L, 0.10 L, 0.125 L, 0.167 L, 0.25 L, 0.33 L, 0.50 L, 0.67 L, and 0.75 L; where L 

is the span of the studied beams). The parametric study is repeated two times: (i) assuming the 

beams are externally reinforced with SMA bars and the internal steel bars are not cut; and (ii) 

assuming the beams are externally reinforced with steel bars and the internal steel bars are not 

cut. Results of the two cases are provided in Appendices IV, V and VI.  

4.9 RESULTS AND DISCUSSIONS 

4.9.1  ASMA/As Parameter 

Seven different ASMA/As ratios are used in the analysis. These ratios are: ASMA/As = 0.5, 1.0, 2.0, 

3.0, 4.0, 5.0, and 6.0. Fig. 4-15(a) shows the effect of increasing the ASMA/As on the amount of 

residual displacement upon unloading. It is clear from the figure that the amount residual 

displacement is independent of increasing the ASMA/As ratio at different load levels. The ratio 

δr/δmax varies from 0% to 3% when the ASMA/As ratio increased from 0.50 to 6.0. This negligible 

δr/δmax is attributed to the full deformation recovery of the SMA bars after load removal. 

Increasing the ASMA/As ratio resulted in significant increase in the maximum moment capacity 

ratio Mrt/Morg, Fig. 4-15(b). The increase happens in a linear fashion. However, it should be 

noted that using ASMA/As less than 1.0 results in reduction in the maximum moment capacity of 

the beam compared to the original one. 
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(c) Initial stiffness 
Fig. 4-15: Effect of varying the ASMAs/As ratio on the retrofitted beam behaviour; (a) Residual 

displacements; (b) Moment capacity; (c) Initial stiffness. 
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Initial stiffness decreases to less than 25% of its original value if ASMA/As ratio of 0.5 is used, Fig. 

4-15(c). Increasing ASMA/As ratio to 3.0 can help the beam to regain its initial stiffness. Increasing 

ASMA/As ratio beyond this limit results in a more stiff behaviour of the retrofitted beam compared 

to the original one. 

4.9.2 Load Level Parameter (δmax/δy) 

The effect of varying the applied load level (δmax/δy) on the behaviour of RC beams retrofitted 

using external SMA bars is investigated in this subsection. The analysis is performed for 

different values of ASMA/As ratios. Fig. 4-16 shows the results of the analyzed beams.    

Fig. 4-16(a) shows that the effect of increasing the load level on the amount of residual 

deformations is negligible. This is because the overall behaviour of the beam is controlled by the 

behaviour of the external SMA bars at all ASMA/As ratios. 

Increasing the load level shows increase in the moment capacity of the beams, Fig. 4-16(b). This 

is attributed to the strain hardening in SMA stress-strain models. Significant reduction (33% to 

65%) in the overall moment capacity of the beams with low ASMA/As ratio (i.e. ASMA/As = 0.50 to 

2.0) can be observed.  

Fig. 4-16(c) confirms that the initial stiffness of the beams are not affected by the applied load 

level. However, the initial stiffness of the beams with low ASMA/As ratio (i.e. ASMA/As = 0.50 to 

ASMA/As = 2.0) is much lower than the initial stiffness value of the original beam. 
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Fig. 4-16: Effect of varying the applied load level on the retrofitted beam behaviour ; (a) 
Residual displacements; (b) Moment capacity; (c) Initial stiffness. 
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4.9.3 LSMA/L Parameter  

The effect of varying the external SMA bar length on the behaviour of the retrofitted beams is 

investigated in this subsection. SMA bar length is represented by the ratio (LSMA/L). Nine 

different SMA bar lengths are assumed in the analysis. Each length is analyzed at different 

ASMA/As ratios and at different load levels.  

Fig. 4-17 and Fig. 4-18 show the effect of varying the LSMA/L ratio on the amount of residual 

displacements upon unloading for different ASMA/As ratios and for different load levels. The 

amount of residual displacement is significantly reduced (i.e. 2% to 5%). The dependency of 

LSMA/L on the ASMA/As ratio and the load level is eliminated. Fig. 4-19 shows that the retrofitted 

beam strength is not affected by increasing the LSMA/L ratio. The reason behind this is that the 

SMA bars are coupled to regular steel bars with bigger cross-sectional area to ensure that most of 

the deformations and failure occur in the SMA region. Thus, the maximum strength of the beam 

is equal to the strength of SMA RC section and is independent of the SMA bar length. 

The effect of varying the LSMA/L ratio on the initial stiffness of the beam is also studied. As 

shown in Fig. 4-20, increasing the length of the SMA bars reduces the initial stiffness of the 

beam. This reduction is very significant (700%) in case of low ASMA/As ratios, and less significant 

(100%) at high ASMA/As values.  
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Fig. 4-17: Effect of varying the LSMA/L ratio on the amount of residual displacements in the 
strengthened beams at ASMA/As =3.0. 
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Fig. 4-18: Effect of varying the LSMA/L ratio on the amount of residual displacements in the 
retrofitted beams at load level = 5.0 δy. 
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Fig. 4-19: Effect of varying the LSMA/L ratio on the moment capacity of the retrofitted beams at 

ASMAs/As = 3.0. 
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Fig. 4-20: Effect of varying the LSMA/L ratio on the initial stiffness of the retrofitted beams. 
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The effect of varying the length of the external SMA bars on the displacement at which yielding 

in the external SMA bars starts is also introduced in this study. Increasing the length of the SMA 

bars resulted in increasing the δy-rt/δy-org ratio, Fig. 4-21. This increase is insignificant at the small 

LSMA/L values, and increases as the length of the SMA bars increase. The rate of increasing is 

higher for beams with low ASMA/As. The ratio δy-rt/δy-org is independent of the load level, and, thus 

the load level effect is not investigated.  

The effect of varying the length of the external SMA bars on the maximum displacement of the 

retrofitted beam is shown in Fig. 4-22. Increasing the length of the SMA bars increases the δmax-

rt/δmax-org ratio. This increase is more pronounced in case of low ASMA/As. Similar trend is 

observed at different loading levels. Similar to the yielding displacements, the rate of increase in 

δmax-rt/δmax-org is more significant in case of low ASMA/As.  
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Fig. 4-21: Effect of varying the LSMA/L ratio on the displacement at which yielding in the 
external SMA bar starts to occur in the retrofitted beams. 
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Fig. 4-22: Effect of varying the LSMA/L ratio on the maximum displacement of the retrofitted 
beams. 
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4.10 CHOICE OF SMA BARS 

Multiple linear regression is used to model the relationship between the outputs and the inputs 

obtained from the parametric study. After trying numerous number of models that utilize 

different transformations (i.e. linear transformation, quadratic power transformation, and 

logarithmic transformation), the best five models for the five outputs are noted and presented in 

this section.   

In the used backward elimination stepwise regression (Dunlop and Smith 2003), all explanatory 

variables (inputs) are included in the model at the beginning. Then, the non-significant variables 

are eliminated one at a time. At the end of the analysis, the reported remaining variables are only 

the statistically significant ones.   

The data used in this analysis are the data obtained from the parametric study. A total of 350 data 

sets are used in the models. All parameters (i.e. inputs and outputs) are non-dimensional 

parameters. The inputs are: LSMA/L, ASMA/As, and load level. The outputs of the parametric study 

are: δr/δmax, Mrt/Morg, STrt/STorg, δy-rt/δy-org, and δmax-rt/δmax-org. Descriptive statistics of the used 

data are presented in Table 4-3. Analysis of the data starts with investigating the correlation 

between each pair of the variables and noting the highly correlated pairs and their signs. 

Correlation matrix is determined using the STATA software V.12 (STATA 2018) and is shown 

in Table 4-4.  
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Table 4-3: Descriptive statistics of the used data 

Variable 
Number of 

Observations
Mean 

Standard 

Deviation 

Minimum 

value 

Maximum 

value 

LSMAs/L 700 0.3942 0.3056 0.0500 1.0000 

ASMAs/As 700 3.0714 1.8993 0.5000 6.0000 

Load level (δy) 700 5.0000 2.8305 1.0000 9.0000 

δr/δmax (%) 700 22.1472 30.0816 0.0246 93.3457 

Mrt/Morg (%) 700 301.4610 162.5948 40.0022 622.2005 

STrt/STorg (%) 700 264.9297 200.8122 9.5681 899.7625 

δy-rt/δy-org (%) 700 58.1500 39.4430 1.0000 127.0000 

δmax-rt/δmax-org (%) 700 280.9829 193.6878 1.0000 622.0000 
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Table 4-4: Correlation coefficients between all variables 

 
LSMA/L ASMA/As 

Load 
level 

δr/δmax Mrt/Morg STrt/STorg δy-rt/δy-org δmax-rt/δmax-org

LSMA/L 1.00 

ASMA/As 0.00 1.00 

Load level 0.00 0.00 1.00 

δr/δmax 0.08 -0.43 0.13 1.00 

Mrt/Morg 0.00 0.96 0.11 -0.22 1.00 

STrt/STorg -0.63 0.55 0.00 -0.08 0.61 1.00 

δy-rt/δy-org -0.20 -0.16 0.00 0.08 -0.15 -0.24 1.00 

δmax-rt/δmax-org -0.05 -0.29 0.01 0.08 -0.30 -0.50 0.74 1.00 
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Table 4-5 to Table 4-9 present the final regression models for the five outputs. These models are 

the most statistically significant models. All the variable coefficients reported in these tables are 

statistically significant from zero at 95% confidence level because the associated p-values of all 

the coefficients are less than 0.05.  Measures of model goodness-of-fit (represented by R-

squared, Adj R-squared, and Root Mean Square Error (MSE)) are also reported in each table. All 

the reported models are considered to be with very good fit as their R-squared values vary from 

0.67 to 0.99. Furthermore, the values of MSE range from 0.24 to 9.60 confirming also a very 

good model fit (Montgomery et al. 2012).  

Equations [4-1] to [4-5] represent the summary of the final regression models for the five 

outputs.    

δr/δmax = -0.14318 x ASMAs/As + 0.061737 x (ASMAs/As)
2 + 0.013083 x (Load level)2 + 0.751673 

        [4-1]          

Mrt/Morg = 82.72809 x (ASMAs/As) + 5.773622 x (Load level) -23.0628    

        [4-2] 

ln(STrt/STorg) = -0.71767 x ln(LSMAs/L) + 0.88563 x ln(ASMAs/As) + 3.210665   

        [4-3] 

ln(δy-rt/δy-org) = 8.336842 x (LSMAs/L) – 11.2 x (LSMAs/L)2 + 0.408727 x (ASMAs/As) – 0.06615 x 

(ASMAs/As)
2 + 2.603485     [4-4] 

ln(δmax-rt/δmax-org) = 14.02687 x (LSMAs/L) - 17.2568 x (LSMAs/L)2 - 0.14746 x (ASMAs/As) + 

4.255832       [4-5] 
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For example, if a simply supported beam is to be retrofitted using the suggested technique. If the 

amount of external SMA reinforcement is equal to the amount of internal steel reinforcement 

(ASMAs/As = 1.0), the SMA bars covers only 20% of the span (LSMAs/L = 0.20), and the beam is 

loaded to a displacement that is equal to six times the yielding displacement, then the amount of 

residual deformation of the retrofitted beam will be equal to 1.14% of the maximum applied 

displacement. The moment capacity of the retrofitted beam will be 94% of the original beam. 

The initial stiffness will be reduced by 21%. Yielding of the SMA bars will start at a 

displacement equal to 64% of the yielding displacement of the original beam. 

 

Table 4-5: Regression model for δr/δmax 

Source SS df MS Number of obs = 350 

Model 141.1401 3 47.0467 
F(  3,   346) = 243.48 

Prob > F = 0 

Residual 66.85632 346 0.193226 
R-squared = 0.6786 

Adj R-squared = 0.6758 

Total 207.9964 349 0.595978 Root MSE = 0.43958 

δr/δmax Coef. Std. Err. t P>t [95% Conf. Interval] 

ASMAs/As -0.14318 0.052947 -2.7 0.007 -0.24732 -0.03904 

(ASMAs/As)
2 0.061737 0.008069 7.65 0 0.045866 0.077608 

(Load level)2 0.013083 0.000808 16.18 0 0.011493 0.014673 

Constant 0.751673 0.074234 10.13 0 0.605666 0.89768 
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Table 4-6: Regression model for Mrt/Morg 

Source SS df MS Number of obs = 350 

Model 8721587 2 4360793 
F(  2,   347) = 47192.31 

Prob > F = 0 

Residual 32064.44 347 92.40474 
R-squared = 0.9963 

Adj R-squared = 0.9963 

Total 8753651 349 25082.1 Root MSE = 9.6127 

Mrt/Morg Coef. Std. Err. t P>t [95% Conf. Interval] 

ASMAs/As 82.72809 0.270732 305.57 0 82.19561 83.26057 
Load level 5.773622 0.181664 31.78 0 5.416322 6.130923 

Constant -23.0628 1.334355 -17.28 0 -25.6872 -20.4384 

 

 

Table 4-7: Regression model for STrt/STorg 

Source SS df MS Number of obs = 350 

Model 349.8711 2 174.9356
F(  2,   347) = 2911.59 

Prob > F = 0 

Residual 20.84864 347 0.060083
R-squared = 0.9438 

Adj R-squared = 0.9434 

Total 370.7198 349 1.062234 Root MSE = 0.24512 

ln(STrt/STorg) Coef. Std. Err. t P>t [95% Conf. Interval] 

ln(LSMAs/L) -0.71767 0.01408 -50.97 0 -0.74536 -0.68997 

ln(ASMAs/As) 0.88563 0.015595 56.79 0 0.854957 0.916303

Constant 3.210665 0.02609 123.06 0 3.159351 3.261978
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Table 4-8: Regression model for δy-rt/δy-org 

Source SS df MS Number of obs = 350 

Model 529.6073 4 132.4018 
F(  4,   345) = 231.82 

Prob > F = 0 

Residual 197.0443 345 0.571143 
R-squared = 0.7288 

Adj R-squared = 0.7257 

Total 726.6516 349 2.082096 Root MSE = 0.75574 

ln(δy-rt/δy-org) Coef. Std. Err. t P>t [95% Conf. Interval] 

LSMAs/L 8.336842 0.527699 15.8 0 7.298929 9.374754 
(LSMAs/L)2 -11.2 0.51597 -21.71 0 -12.2148 -10.1851 

ASMAs/As 0.408727 0.09103 4.49 0 0.229683 0.58777 

(ASMAs/As)
2 -0.06615 0.013873 -4.77 0 -0.09343 -0.03886 

Constant 2.603485 0.149139 17.46 0 2.310149 2.896821 

 

Table 4-9: Regression model for δmax-rt/δmax-org 

Source SS df MS Number of obs = 350 

Model 971.7832 3 323.9277
F(  3,   346) = 572.24 

Prob > F = 0 

Residual 195.8593 346 0.566067
R-squared = 0.8323 

Adj R-squared = 0.8308 

Total 1167.643 349 3.345681 Root MSE = 0.75237 

ln(δmax-rt/δmax-org) Coef. Std. Err. t P>t [95% Conf. Interval] 

LSMAs/L 14.02687 0.525349 26.7 0 12.99359 15.06015 
(LSMAs/L)2 -17.2568 0.513672 -33.59 0 -18.2671 -16.2465 

ASMAs/As -0.14746 0.02119 -6.96 0 -0.18914 -0.10578 

Constant 4.255832 0.117638 36.18 0 4.024456 4.487209 
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4.11 CONCLUSIONS 

The use of external unbonded SMA bars to retrofit RC beams is investigated in this study. A FE 

model is first developed to simulate the behaviour of the retrofitted beams and validated using 

available experimental results. Experimental results included RC beams that are internally and 

externally reinforced using SMA and steel bars. Good agreement between experimental and 

analytical results is observed. A simplified method is then developed to capture the flexure 

behaviour of the retrofitted beams. The method is based on the sectional analysis technique for 

unbonded bars. Results obtained from the developed program/method are validated using FE 

results.  

An extensive parametric study is then carried out to investigate the flexural behaviour of RC 

beams retrofitted using SMA bars. Effect of varying three different parameters is studied. These 

parameters are: ASMA/As, load level (δmax/δy), and LSMA/L. For each of the studied parameters, the 

load-displacement relationship is constructed using the moment-area method. Out of the different 

load-displacement relationships, δr/δmax, Mrt/Morg, STrt/STorg, δy-rt/δy-org, and δmax-rt/δmax-org are used 

to highlight the changes happening in the behaviour due to varying one of the parameters.  

Results of the parametric study are then used in multiple linear regression analysis. Numerous 

number of models are first developed for the five outputs. Best five models for the five outputs 

are then reported. The five models are summarized in the form of simple equations to help 

engineers decide the optimum amount and length of needed SMA bars. 
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Chapter 5 Flexural Behaviour of Reinforced Concrete Joints Retrofitted 

Using External Superelastic Shape Memory Alloy Bars  

5.1 INTRODUCTION 

It is acceptable to assume that pre-1970s Reinforced Concrete (RC) structures are deficient under 

seismic loads. These structures are not designed for ductile behaviour. Insufficient anchorage of 

the beam reinforcement into the beam-column joint (BCJ) can be considered a main deficiency 

for these structures. Thus, there is an urgent need to retrofit these structures to ensure safety of 

the occupants. 

Newly built structures may also need to be retrofitted to accommodate changes in their use or 

loading. Different retrofitting materials and techniques are suggested in the literature to retrofit 

RC BCJs such as: (i) epoxy repairs (Mohle and Mahin 1991, French et al. 1990, Beres et al. 

1992, Filiatrault and Lebrub 1996); (ii) concrete jackets (Corazao and Durrani 1989, Alcocer and 

Jirsa 1993); (iii) reinforced masonary blocks (Bracci et al. 1995); (iv) steel jackets and steel 

elements (Corazao and Durrani 1989, Ghobarah et al. 1997, Biddah et al. 1997); and (v) fibre 

reinforced polymers (FRP) (Antonopoulous and Triantafillou 2002, Ghobarah and Said 2002, 

Gergely et al. 1998, karayannis and Sirjelis 2002, clyde and Pantelides 2002). Although steel is a 

commonly used material, it has a major disadvantage, which is the large permanent seismic 

deformations.  
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Superelastic Shape Memory Alloys (SMAs) can undergo large strains and return to their 

undeformed shape upon unloading. The flaged shape stress-strain hysteresis gives them some 

damping ability, Fig. 5-1. Also, SMAs have excellent fatigue properties and high corrosion 

resistance. All of these unique properties make them potential candidate for retrofitting RC BCJs 

(Janke et al. 2005, Alam et al. 2007). 

 

 

Fig. 5-1: Stress-strain relationships for an SMA bar (McCormick et al., 2006) 

In this study, the applicability of retrofitting RC BCJs using external unbonded SMA bars is 

investigated. First, a Finite Element (FE) model is developed and validated using available 

experimental results. Then, a simplified model is suggested and validated using the FE model. 

An extensive parametric study is then carried out to investigate the behaviour of retrofitted RC 

BCJs. Results of the parametric study are used to develop equations that address the change in 

the behaviour of the retrofitted BCJs.  
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5.2 FINITE ELEMENT SIMULATION 

Three-dimensional FE models are developed to investigate the behaviour of RC BCJs retrofitted 

using external SMA bars during the loading/unloading stages. Analysis is performed using the 

commercial FE program ABAQUS Version 6.9 (ABAQUS 2018). 8-node hexahedral 

isoparametric linear solid elements with reduced integration (C3D8R) are used in the modelling 

process of the concrete, internal and external reinforcement, and external angles. Different 

element sizes are first considered to determine the appropriate mesh size.  

5.3 EXPERIMENTAL VALIDATION 

Results of the experimental work performed by Youssef et al. (2008) are used to validate the 

accuracy of the developed FE model. Two large scale BCJs are constructed and tested under 

reversed-cyclic loading. The two joints are identical in dimensions and reinforcement details 

except the type of reinforcement. In the plastic hinge region, one joint (BCJ1) is reinforced with 

regular steel bars, while the second (BCJ2) is reinforced with superelastic SMA bars.  

As shown in Fig. 5-2, the beams of the two joints have a length of 1830 mm, 400 mm cross-

section height, and 250 mm cross-section width. Amounts and arrangements of transverse 

reinforcement are also identical for the two beams. Stirrups are 10M in diameter and are spaced 

at 80 mm for the 800 mm length adjacent to the column and spaced at 120 mm elsewhere.  The 

longitudinal top and bottom steel for the beam of BCJ1 is 2-20M. For BCJ2, Two superelastic 

SMAs bars (20.6 mm diameter) are used to replace the top and bottom steel bars at the plastic 
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hinge region. Regular 2-20M steel bars are used outside the plastic hinge region of BCJ2 beam. 

Steel couplers are used to connect the SMA bars to the steel bars.   
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Fig. 5-2: Details of the two BCJs tested by Youssef et al. (2008) 

Average concrete compressive strength is 53.50 MPa for BCJ1 and 53.70 MPa for BCJ2. 

Average split cylinder tensile strength is 3.50 MPa for BCJ1 and 2.80 MPa for BCJ2. Steel 

Reinforcing bars of BCJ1 have yield strength of 520 MPa, ultimate strength of 653 MPa, and a 

modulus of elasticity of 198 GPa. Steel reinforcing bars of BCJ2 have yield strength of 450 MPa, 

ultimate strength 650 MPa, and a modulus of elasticity of 193 GPa. Stirrups have a yield strength 

of 422 MPa and ultimate strength of 682 MPa. 
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Youssef et al. (2008) determined the mechanical properties of the superelastic SMA bars by 

experimentally testing them under cyclic loading. It is reported that the SMA bars critical stress 

is 401 MPa at a critical strain of 0.75%. The modulus of elasticity is evaluated as 62.5 GPa. The 

residual strain is determined as 0.73%, when the SMA bar was loaded up to 6.0% strain. 

Different element sizes (46.88, 39.07, 31.25, 25.40 and 19.05 mm) are first considered to 

determine the appropriate mesh size for the two BCJs. As shown in Fig. 5-3, element size of 25.4 

mm gives good results and further refinement of the mesh does not noticeably change the 

behaviour. As shown in Fig. 5-4, good agreement between the experimental and analytical 

results can be observed for the two BCJs. 

The work done by Saiidi et al. (2007) is used to validate the model accuracy in predicting the 

behaviour of RC beams externally reinforced with steel or SMA bars. Saiidi et al. (2007) tested 

eight reinforced concrete beams under quasi-static loading. The eight beams are different in the 

type and amount of reinforcement at the mid-span as summarized in Table 5-1. Four beams are 

reinforced with SMA bars at mid-span, while the other four are reinforced with conventional 

steel bars.  

The beams are 1530 mm long. They have cross-sectional dimensions of 127x152 mm at mid-

span and 127x305 mm at the ends (i.e. outer-sections), Fig. 5-5.  The beams are tested under two 

point symmetric loads that are placed 152 mm apart. The reinforcement at mid-span is attached 

to the beam using external angles. The internal reinforcement is cut at the mid-span section to 

ensure that the behaviour is controlled by the external reinforcement. 
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Fig. 5-3: Mesh sensitivity analysis for the FE analysis of the BCJ; (a) BCJ1; and (b) BCJ2 
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(b) BCJ2 

Fig. 5-4: Experimental vs. FE load-displacement results for the BCJs tested by Youssef et al. 
(2008); (a) BCJ1; and (b) BCJ2 
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Table 5-1: Properties of the beams tested by Saiidi et al. (2007) 

Specimen 
Mid-span 

reinforcement 

εy 

(mm/mm) 

fy 

(MPa) 

Ey 

(MPa) 

BNL1 1 Φ 6.40 mm 0.013 400 34,078 

BNL2 2 Φ 6.40 mm 0.013 400 34,078 

BNH1 1 Φ 9.50 mm 0.013 510 39,245 

BNH2 2 Φ 9.50 mm 0.013 510 39,245 

BSL1 1 Φ 9.53 mm 0.0021 440 209,524 

BSL2 2 Φ 9.53 mm 0.0021 440 209,524 

BSH1 1 Φ 12.70 mm 0.0009 420 466,667 

BSH2 2 Φ 12.70 mm 0.0009 420 466,667 

 

 

 

Fig. 5-5: Beams dimensions and test setup 
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Mesh sensitivity analysis is performed to determine the appropriate element size. As shown in 

Fig. 5-6, four element sizes are used in the analysis. It is found that reducing the element size 

beyond the 25.4 mm has negligible effect on the predicted results. Results of the analysis are 

plotted in Fig. 5-7 for the SMA RC beams and in Fig. 5-8 for the steel RC beams. As shown in 

the figures, good agreement between the experimental and analytical results is observed for both 

steel and SMA RC beams. 
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Fig. 5-6: Mesh sensitivity analysis for beam BNH1 
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Fig. 5-7: Experimental vs. analytical results for SMA RC beams; (a) BNH1; (b) BNH2; (c) 

BNL1; and (d) BNL2 
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Fig. 5-8: Experimental vs. analytical results for steel RC beams; (a) BSH1; (b) BSH2; (c) BSL1; 

and (d) BSL2 
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5.4 PROPOSED RETROFITTING TECHNIQUE 

The proposed retrofitting technique is based on attaching external SMA bars to the RC BCJ. As 

shown in Fig. 5-9, the bars are attached to the BCJ using external steel angles. The steel angles 

are attached to the BCJ using steel bolts. One angle is attached to the BCJ joint area, while the 

second angle is attached to the beam. Hold down angles can be used for big lengths of the SMA 

bars to enforce the bars to follow the beam deflection. 

SMA bars

Steel Angle

SMA bars

Steel Angle

End couplers

Elevation view

Plan view
 

Fig. 5-9: Proposed retrofitting technique 
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5.5 RETROFITTED BCJ 

A RC BCJ is assumed for the analysis in this section. The beam of the BCJ has a cross-section of 

250x400 mm and a span of 1830 mm. The column has similar cross-section dimensions and is 

1200 mm in height. The BCJ is supported using top and bottom plates representing roller and 

hinge supports, respectively. The plates have dimensions equal to 250x400x100.The external 

angles have dimensions of 90x90x20 mm and are attached to the BCJ using 8 bolts. The bolts are 

assumed to be 71 mm in length and 12.7 mm in diameter. The external SMA bars are attached to 

the external angles using end couplers. The added external SMA bars are equal to the internal 

steel reinforcement.  

FE analysis is performed for the retrofitted BCJ. Fig. 5-10 shows a sketch of the retrofitted BCJ 

while Fig. 5-11 shows the FE model of the retrofitted BCJ. Fig. 5-12 shows the load-

displacement relationship of the retrofitted BCJ vs. the original BCJ. The maximum moment 

capacity of the beam increased from 70 kN to 85 kN due to retrofitting. The initial stiffness of 

the beam is almost not affected by retrofitting. The amount of residual displacement is reduced 

from 72 mm to 60 mm. Amount of dissipated energy is increased. 

It is clear from the figure that adding external SMA bars reduced the amount of residual 

displacement by 17%. This small effect is attributed to the low modulus of elasticity for the 

SMA bars that is much lower (1/5 to 1/3) than that of the regular steel. Thus, attaching a small to 

moderate ratio of SMA will improve the strength of the BCJ, but it is not expected to reduce the 

residual deformations. Thus, it is proposed to cut the internal steel bars of the beam at the face of 
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the column and replace them with the external SMA bars. This ensures that the BCJ behaviour is 

governed by the external SMA bars rather than the internal steel bars.  

FE analysis is performed again for the BCJ assuming cutting the internal steel reinforcement. 

Analysis of the results is illustrated in Fig. 5-13. As shown in the figure, significant reduction in 

the amount of residual displacement (98%) is observed in this case. On the other hand, the total 

moment capacity of the beam is reduced by 31% due to the cut of the internal steel bars. Initial 

stiffness of the beam is also significantly reduced. These disadvantages can be overcome by 

increasing the amount of the external SMA bars as will be investigated in the following sections.   
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Fig. 5-10: sketch of the retrofitted BCJ 

Fig. 5-11: FE Model of the retrofitted BCJ 
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Fig. 5-12: FE load-displacement relationship for the original BCJ vs. the retrofitted BCJ 
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Fig. 5-13: FE load-displacement relationship for the original BCJ vs. the retrofitted BCJ with 
internal steel bars are cut 
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5.6 SIMPLIFIED MODEL 

Modelling the retrofitted BCJ using ABAQUS is a complex process. Thus, a simplified model 

for the retrofitted BCJ is proposed in this section. The simplified model is developed using 

Seismostruct software v.6 (Seismostruct 2018). The special technique used to model the 

connection include: (i) modelling the SMA bars using inelastic truss elements; (ii) modelling the 

superelastic behaviour of the SMA bars using the uniaxial material model proposed by Auricchio 

and Sacco (1997); (iii) modelling the concrete beam and column using displacement based 

inelastic frame elements; and (iv) modelling the external angles that supports the SMA bars 

using rigid arms connected to the concrete beam and column. 

As shown in Fig. 5-14, the beam and the column of the BCJ are modelled using frame elements. 

Two rigid arms are connected to the beam near the face of the column representing the angle 

supported in the joint area. Another two rigid arms are connected to the beam at a distance equal 

to the length of the required SMA bars. The SMA bars are connected between the rigid arms and 

are modelled using truss elements. The reinforcement in the beam element is cut in between the 

rigid arms to eliminate any contribution from it to the strength, stiffness and residual deformation 

of the joint.   

To validate the assumed simplified model, a comparison between the load-displacement results 

of the simplified model developed using Seismostruct software and the actual model developed 

using ABAQUS is shown in Fig. 5-15. Very good agreement between the two results is 

achieved.   
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Fig. 5-14: Sketch of the simplified model 
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Fig. 5-15: Load-displacement results of the ABAQUS model vs. the simplified Seismostruct 

model 
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5.7 PARAMETRIC STUDY 

A parametric study is carried out in this section to further investigate the behaviour of RC BCJs 

retrofitted using external SMA bars. The analysis is performed using the developed simplified 

model for both loading and unloading stages. Three different parameters are investigated in this 

study: (i) the ratio between the added external SMA reinforcement to the amount of internal steel 

reinforcement in the beam (ASMA/As); (ii) ratio between the length of the used SMA bars to the 

length of the beam (LSMA/L); and (iii) drift ratio (δmax /L).   

The parametric study is performed on BCJs with geometrical dimensions similar to that 

presented in the Finite Element Simulation section. The beams are loaded/unloaded using a point 

load applied at the cantilever tip. For each of the studied parameters, the parameter under 

investigation is varied within the desired range while keeping all other parameters constant 

during the analysis. Four different outputs are used to compare the results of the parametric 

study. These outputs are: (i) the ratio between the amount of residual displacement upon 

complete unloading (δr) and the maximum displacement applied to the beam tip (δmax); (ii) the 

ratio between the maximum moment capacity of the retrofitted BCJ (Mrt) to the moment capacity 

of the original BCJ (Morg); (iii) the ratio between the secant stiffness of the retrofitted BCJ (STrt) 

to the secant stiffness of the original BCJ (STorg); and (iv) the amount of dissipated energy by the 

retrofitted BCJ (ENrt) to the amount of dissipated energy by the original BCJ (ENorg). Internal 

steel reinforcement is assumed to be cut in all of the studied BCJs. Detailed results of the 

parametric study are introduced in the following section. 



 

158 
 

5.8 RESULTS AND DISCUSSIONS 

5.8.1 ASMAs/As Parameter 

Ten different ASMAs/As ratios are used in the analysis. These ratios are: ASMA/As = 0.5, 1.0, 1.5, 

2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0. The analysis is performed for nine SMA lengths ranging 

between 0.125L to 1.0L. Results of the analysis are plotted in Fig. 5-16.  

The amount of residual displacement at complete unloading from the failure point is found to be 

negligible at small ASMAs/As ratios. As the ASMAs/As ratio increased from 2.0 to 3.0, the δr/δmax 

ratio increased from 1.0% to almost 53% in case of LSMAs/L = 0.125. For LSMAs/L = 0.25, the 

increase in the amount of residual displacement (30%) occurred when the ASMAs/As ratio 

increased from 3.0 to 3.5. This increase in the amount of residual displacements can be attributed 

to the change happening in the cross-section status from an under reinforced section to an over 

reinforced section. For LSMAs/L = 0.50 and higher, the amount of residual displacement is kept 

minimum at δr/δmax = 2.0%.  

The moment capacity of the BCJ is found to increase with the increase in the ASMAs/As ratio. The 

rate of increase significantly varies with the LSMAs/L ratio. Higher rate of increase in case of 

LSMAs/L = 0.125 and 0.25 is observed. For case of LSMAs/L = 0.125, the increase occurred to 

Mrt/Morg ratio of almost 200%. Further increase in the ASMAs/As ratio does not increase the 

moment capacity. This means that the failure in the BCJ is governed by the concrete crushing 

rather than the yielding of the SMA bars.  
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The initial stiffness of the BCJ is found to increase with the increase in the ASMAs/As ratio for all 

LSMAs/L ratios. However, the rate and amount of increase significantly varies with the length of 

the SMA bars. It can also be noted from the figure that the initial stiffness is smaller than that of 

the original BCJ except for small LSMAs/L ratios (0.125 and 0.25).  

Amount of dissipated energy is found to slightly increase with the increase in the ASMAs/As ratio. 

For case of LSMAs/L = 0.125 and 0.25, there is a sudden change in the amounts of dissipated 

energy at ASMAs/As values ranging between 2.0 and 3.5. This sudden change is attributed to the 

mode of failure of the cross-section which changed from SMA bars yielding to concrete 

crushing.  

5.8.2 LSMAs/L Parameter  

SMA bars length is represented by the ratio (LSMAs/L), which is the ratio between the length of 

the used SMA bars to the total length of the beam. Nine different SMA bar lengths are assumed 

in the analysis. These lengths are: LSMAs/L = 0.125, 0.167, 0.20, 0.25, 0.333, 0.50, 0.667, 0.75, 

and 1.0. Each length is analyzed at different ASMAs/As ratios (ASMAs/As = 0.50, 1.0, 1.5, 2.0, 2.5, 

3.0, 3.5, 4.0, 4.5, and 5.0). Results of the analysis are presented in Fig. 5-17. 
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Fig. 5-16: Effect of varying the ASMA/As ratio on: (a) residual displacement; (b) moment capacity; 

(c) initial stiffness; and (d) dissipated energy. 
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Fig. 5-17: Effect of varying the LSMA/L ratio on: (a) residual displacement; (b) moment capacity; 

(c) initial stiffness; and (d) dissipated energy. 
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Increasing the length of the SMA bars results in significant reduction in the amount of residual 

deformations. The ratio δr/δmax reduced from 70% to 3% when the SMA bars length ratio 

increased from 0.125 to 0.333 in case of ASMAs/As = 3.0. For ASMAs/As = 1.0 and 2.0, almost no 

change in the amount of residual deformation is noted. The moment capacity of the retrofitted 

BCJs is found to decrease with the increase in the LSMAs/L ratio. The reduction occurred for all 

ratios of ASMAs/As. However, the rate and amount of reduction varies with the ASMAs/As values. For 

example, the moment capacity is reduced from 220% to almost 100% in case of ASMAs/As = 5.0, 

while it is reduced only from 80% to 30% in case of ASMAs/As = 1.0. 

The initial stiffness of the retrofitted BCJ is found to decrease with the increase in the LSMAs/L 

ratio. Similar behaviour is observed for all values of the ASMAs/As. The STrt/STorg ratio is reduced 

from 120% to 50% when the LSMAs/L ratio increased from 0.125 to 1.0 in case of ASMAs/As =5.0 

and from 70% to 10% in case of ASMAs/As = 1.0. Amount of dissipated energy is found to 

significantly decrease with the increase in the LSMAs/L ratio. The ENrt/ENorg is decreased from 

160% to 30% when the LSMAs/L ratio increased from 0.125 to 1.0 in case of ASMAs/As = 5.0, and 

from 40% to 0% in case of ASMAs/As = 1.0. 

5.8.3 Drift Ratio Parameter 

The effect of varying the drift ratio on the behaviour of RC BCJs retrofitted using external SMA 

bars is investigated in this subsection. The analysis is performed for different values of ASMAs/As 

ratios at different drift ratios. The drift ratio is represented by the ratio between the beam-tip 
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maximum deflection (δmax) to the length of the beam (L). The analysis is performed for three 

different drift ratios. Fig. 5-18 illustrates the results of the analysis. 
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Fig. 5-18: Effect of varying the drift ratio on: (a) residual displacement; (b) moment capacity; (c) 

initial stiffness; and (d) dissipated energy. 
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The amount of residual displacements is found to significantly increase (60%) with the increase 

in the drift ratio for ASMAs/As = 4.0 and 5.0. The increase is smaller (15%) in case of ASMAs/As 

=3.0. For cases with low ASMAs/As ratios (i.e. 1.0 and 2.0), no change in the amount of residual 

displacement is observed. Slight increase in the BCJ moment capacity occurs with the increase in 

the drift ratio. This slight increase is attributed to the strain hardening of the SMA bars. The 

initial stiffness of the BCJ is found to be independent of the drift ratio. Amount of dissipated 

energy increases with the increase in the drift ratio. The rate and amount of increase in the 

dissipated energy is dependent on ASMAs/As ratio. The higher the ASMAs/As ratio, the larger the 

amount of dissipated energy. 

5.9 CHOICE OF SMA BARS LENGTH 

After performing the parametric study, the results are then arranged in a database format with all 

records of the study. Multiple linear regression technique is then used to determine the 

relationships between the inputs and outputs of the study. Numerous number of models based on 

different transformations (i.e. linear transformations, quadratic power transformation, and 

logarithmic transformation) are first tried. The best models that relate the parametric study inputs 

to outputs are then chosen and reported in this study. A total of four models for the four outputs 

are reported. 

The used regression analysis methodology is called backward elimination stepwise regression 

(Dunlop and Smith 2003). In this technique, all explanatory variables (inputs) are included in the 

model at the beginning. Then, the non-significant variables are eliminated one at a time in each 
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trial. At the end of the analysis, the reported remaining variables are only the statistically 

significant ones.   

A total of 524 data sets are used in establishing the statistical models. These data represents all 

the data obtained from the parametric study. All inputs and outputs of this study are kept 

dimensionless. The inputs of the models are: (i) internal reinforcement status (bars are cut or not 

cut); (ii) ASMAs/As ratio; (iii) LSMAs/L ratio; and (iv) drift ratio. The outputs of the parametric study 

are: δr/δmax, Mrt/Morg, STrt/STorg, and ENrt/ENorg. Descriptive statistics of the used data are 

presented in Table 5-2.  

 

Table 5-2: Descriptive statistics of the used data 

Variable Obs Mean Std. Dev. Min Max 

RFT Status 524 0.51 0.50 0 1 

δmax /L 524 2.70 1.11 1.37 4.10 

LSMAs/L 524 0.44 0.28 0.13 1 

ASMA/As 524 2.74 1.44 0.5 5 

δr/δmax 524 31.07 28.61 -1.42E-13 83 

Mrt/Morg 524 181.42 67.76 14.77 354.78 

STrt/STorg 524 97.61 44.57 7.20 180.74 

ENrt/ENorg 524 100.82 69.90 0.03 260.50 
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Correlation analysis is first used with the data to determine the correlation between each pair of 

the variables and noting the highly correlated ones and their signs. The correlation matrix is 

determined using the STATA software V.12 and is shown in Table 5-3. Table 5-4 to Table 5-7 

present the final regression models for the four outputs. These models are the most statistically 

significant models. All the variable coefficients reported in these tables are statistically 

significant from zero at 95% confidence level because the associated p-values of all the 

coefficients are less than 0.05.  Measures of model goodness-of-fit (represented by R-squared, 

Adj R-squared, and Root Mean Square Error (MSE)) are also reported in each table. All the 

reported models are considered to be with very good fit as their R-squared values vary from 0.72 

to 0.98. Furthermore, the values of MSE range from 0.16 to 15.0 confirming also a very good 

model fit (Montgomery et al. 2012). Equations [5-1:5-4] represent the summary of the final 

statistical models for the four outputs.    

(δr/δmax) = -43.8554 x (Reinforcement status) - 3.05824 x (δmax /L)2 + 24.97149 x  (δmax /L) + 

48.73263 x  ( LSMAs/L)2 -   63.5142 x (LSMAs/L) + 0.299076 x  (ASMA/As)
2 + 23.85597  [5-1] 

 

ln (Mrt/Morg) = 0.351534 x (δmax /L) - 0.03753 x (δmax /L)2 - 0.70269 x (LSMAs/L)2 + 0.736527 x ln 

(ASMA/As) + 3.829082           [5-2]    

 

 (STrt/STorg) = 63.86686 x (LSMAs/L) + 24.46517 x (LSMAs/L)2 - 1.92955 x (ASMAs/As)
2 + 56.02788 

            [5-3] 
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ln (ENrt/ENorg) = 2.085338 x (δmax /L) - 0.25739 x (δmax /L)2 - 4.36291 x (LSMAs/L) + 0.985633 x 

(LSMAs/L)2  + 1.194 x ln (ASMAs/As) + 0.415448           [5-4] 

Let’s assume a steel RC BCJ is to be retrofitted with the suggested retrofitting technique. If the 

length of the SMA bars is limited to 0.20 of the full beam length (LSMAs/L = 20%), the ratio 

between the added external SMA reinforcement to the internal steel reinforcement is 1.50 

(ASMAs/As = 150%), and the BCJ is loaded to a drift ratio equal to 2.0% (δmax/L = 2.0%), then this 

BCJ will keep residual displacement at complete unloading that is equal to only 7% of the 

maximum applied displacement. The moment capacity of the BCJ will be improved by 5%, and 

the initial stiffness of the BCJ will be reduced to 66% of its original value. The amount of 

dissipated energy by the BCJ will be reduced to 25% of its original value. 

 

Table 5-3: Correlation coefficients between all variables 

 
RFT 

Status 
δmax /L LSMAs/L ASMA/As δr/δmax Mrt/Morg STrt/STorg ENrt/ENorg 

RFT 

Status 
1 

       

δmax /L 0.02 1 

LSMAs/L 0.03 -0.01 1 

ASMA/As 0.00 -0.01 -0.01 1 

δr/δmax -0.76 0.31 -0.14 0.07 1 

Mrt/Morg -0.48 0.21 -0.22 0.66 0.47 1 

STrt/STorg -0.83 -0.02 -0.16 0.40 0.74 0.79 1 

ENrt/ENorg -0.75 0.35 -0.22 0.30 0.90 0.71 0.85 1 
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Table 5-4: Regression model for δr/δmax 

Source SS df MS Number of obs = 524 

Model 311799.6 6 51966.6 F(  6,   517) = 230.77 
Prob > F = 0 

Residual 116419.6 517 225.183 
R-squared = 0.7281 

Adj R-squared = 0.725 
Total 428219.2 523 818.7748 Root MSE = 15.006 

δr/δmax Coef. Std. Err. t P>t [95% Conf. Interval] 

RFT Status -43.8554 1.312181 -33.42 0 -46.4333 -41.2775 

(δmax /L)2 -3.05824 0.743889 -4.11 0 -4.51965 -1.59682 

(δmax /L) 24.97149 4.095759 6.1 0 16.92511 33.01787 

 ( LSMAs/L)2 48.73263 9.739459 5 0 29.59885 67.86641 

 (LSMAs/L) -63.5142 10.60582 -5.99 0 -84.35 -42.6784 

 (ASMA/As)
2 0.299076 0.081117 3.69 0 0.139717 0.458436 

Constant 23.85597 5.454152 4.37 0 13.14094 34.57099 

 

Table 5-5: Regression model for Mrt/Morg 

Source SS df MS Number of obs = 268 

Model 90.04619 4 22.51155 F(  4,   263) = 853.29 
Prob > F = 0 

Residual 6.938488 263 0.026382 
R-squared = 0.9285 

Adj R-squared = 0.9274 
Total 96.98468 267 0.363238 Root MSE = 0.16243 

ln (Mrt/Morg) Coef. Std. Err. t P>t [95% Conf. Interval] 

(δmax /L) 0.351534 0.062099 5.66 0 0.229259 0.473809 

(δmax /L)2 -0.03753 0.011257 -3.33 0.001 -0.0597 -0.01536 

(LSMAs/L)2 -0.70269 0.031461 -22.34 0 -0.76464 -0.64075 

ln (ASMA/As) 0.736527 0.014268 51.62 0 0.708432 0.764621 

Constant 3.829082 0.076069 50.34 0 3.679301 3.978863 
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Table 5-6: Regression model for STrt/STorg 

Source SS df MS Number of obs = 268 

Model 216748.4 4 54187.1 F(  4,   263) = 3315.53 
Prob > F = 0 

Residual 4298.316 263 16.34341 
R-squared = 0.9806 

Adj R-squared = 0.9803 
Total 221046.7 267 827.8903 Root MSE = 4.0427 

STrt/STorg Coef. Std. Err. t P>t [95% Conf. Interval] 

(LSMAs/L) -137.331 3.967807 -34.61 0 -145.144 -129.518 

(LSMAs/L)2 63.86686 3.612979 17.68 0 56.75282 70.98091 

(ASMA/As) 24.46517 0.766933 31.9 0 22.95506 25.97528 

(ASMA/As)
2 -1.92955 0.136156 -14.17 0 -2.19764 -1.66146 

Constant 56.02788 1.221183 45.88 0 53.62334 58.43242 

 

Table 5-7: Regression model for ENrt/ENorg 

Source SS df MS Number of obs = 268 

Model 585.3854 5 117.0771 F(  5,   262) = 300.65 
Prob > F = 0 

Residual 102.0269 262 0.389415 
R-squared = 0.8516 

Adj R-squared = 0.8487 
Total 687.4122 267 2.574578 Root MSE = 0.62403 

ln (ENrt/ENorg) Coef. Std. Err. t P>t [95% Conf. Interval] 

(δmax /L) 2.085338 0.238586 8.74 0 1.615549 2.555128 

(δmax /L)2 -0.25739 0.043251 -5.95 0 -0.34255 -0.17222 

(LSMAs/L) -4.36291 0.612504 -7.12 0 -5.56897 -3.15686 

(LSMAs/L)2 0.985633 0.557721 1.77 0.078 -0.11255 2.083819 

ln (ASMA/As) 1.194 0.05482 21.78 0 1.086056 1.301944 

Constant 0.415448 0.316043 1.31 0.19 -0.20686 1.037756 
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5.10 CONCLUSIONS 

Retrofitting RC BCJs using external unbonded SMA bars is investigated. A three-dimensional 

FE model using ABAQUS is first developed and validated using available experimental results. 

Experimental results included RC BCJs internally reinforced with steel and SMA bars, and RC 

beams externally reinforced with unbonded steel and SMA bars. Good agreement between 

experimental and analytical results is observed.  

A retrofitted BCJ is assumed and analyzed using the developed FE model. Obtained results of 

the retrofitted BCJ are compared to the results of the original BCJ. An increase of 22% in the 

beam strength is observed. Residual displacement reduced by only 17% due to retrofitting. This 

small recovery is attributed to the big difference in the modulus of elasticity between steel and 

SMA. To increase the amount of recovered displacement at complete unloading, it is proposed to 

cut the internal steel bars at the face of the column and replace them with external SMA bars. 

The analysis is performed again for the retrofitted beam after cutting the internal bars. It is found 

that the residual displacement at complete unloading is only 2% of the maximum applied 

displacement. Disadvantage of the proposed technique is the reduction in the beam strength and 

stiffness. 

Since it is a complicated process to model the BCJ in ABAQUS, a simplified model using the 

Seismostruct software is then developed to capture the behaviour of RC BCJs externally 

reinforced with SMA bars. Results of the simplified model are first validated using the results of 

the FE model. After validating the simplified model, it is used to carry out an extensive 
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parametric study to investigate the behaviour of RC BCJs retrofitted using external SMA bars. 

Three parameters are investigated in this study. These parameters are: (i) ratio between the 

external SMA reinforcement to the internal steel reinforcement (ASMA/As); (ii) ratio between the 

length of the SMA bars and the full length of the beam (LSMAs/L), and (iii) applied drift ratio (δmax 

/L). Four outputs are used in the parametric study to capture the change happening in the 

behaviour due to varying of the parameters. These outputs are: (δr/δmax), (Mrt/Morg), (STrt/STorg), 

and (ENrt/ENorg).  

Results of the parametric study are then used to perform multiple linear regression analysis. 

Different models with different transformations of the inputs are developed for the four outputs. 

Results of the regression analysis are then summarized in the form of simple equations to 

determine the optimum amount and length of the used SMA bars. 
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Chapter 6 Seismic Performance of Reinforced Concrete Frames 

Retrofitted Using External Superelastic Shape Memory Alloys Bars 

6.1 INTRODUCTION 

Reinforced Concrete (RC) frame structures designed and built prior to the 1970s lack ductility, 

and, thus are unsafe under seismic loads (Hassan 2011). The beam-column joints (BCJs) of these 

structures are poorly detailed and are considered deficient under lateral loads. Beam 

reinforcement is insufficiently anchored into the joint area of these structures.  

Newly built RC frame structures are designed to dissipate the energy of moderate and strong 

earthquakes through allowing some inelastic deformations (Engindeni 2008). These inelastic 

deformations result in permanent deformations in the structure, and in some cases may require 

demolishing the damaged structure. Thus, there is a need to retrofit the pre-1970s structures to be 

able to resist the seismic loads, and to reduce the permanent deformations of the newly built 

structures. One of the methods to achieve this goal is by utilizing smart materials such as 

superelastic Shape Memory Alloys (SMAs) (Alam et al. 2009, Youssef and ElFeki 2012). 

Superleastic SMA bars have unique properties compared to the usual steel reinforcement. They 

have the ability to undergo large deformations and return to their undeformed shape upon 

unloading (Alam et al. 2007). They also have good resistance to fatigue and corrosion and high 
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damping ability (Janke et al. 2005). So using superleastic SMA bars to enhance the seismic 

performance of these structures can be ideal (Alam et al. 2009, Youssef and ElFiki 2012). 

Youssef and Elfeki (2012) studied the behaviour of RC frame structures internally reinforced 

with SMA bars at the critical locations of the structure. Seven different arrangements for the 

SMA bars are selected resulting in seven different frames. Nonlinear dynamic analyses are 

performed to select the frames with the best seismic performance. It is found that the frames with 

SMA reinforcement in the BCJs of the first floor, and in the BCJs of the first and fourth floors 

give the best seismic performance.  

This paper investigates the seismic performance of RC frame structures retrofitted using external 

superleastic SMA bars. A six storey steel RC frame located in high seismic region is used as the 

reference frame. Two potential retrofit schemes that utilize superelastic SMA bars are assumed. 

Nonlinear dynamic analyses are performed for the three frames using Seismistruct software 

(Seismostruct 2018). Results of the analysis are then used to compare the seismic performance of 

the three frames in terms of the damage level, the Maximum Inter-storey Drift (MID) ratio, 

Maximum Residual Inter-storey Drift (MRID), Maximum Roof Drift Ratio (MRDR), Residual 

Roof Drift Ratio (RRDR), and the earthquake intensity at collapse.  

6.2 PROPOSED RETROFITTING TECHNIQUE 

The idea of the proposed retrofitting technique is based on attaching external SMA bars to the 

RC BCJ. As shown in Fig. 6-1, the bars are attached to the BCJ using external steel angles. The 
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steel angles are attached to the BCJ using steel bolts. One angle is attached to the BCJ joint area, 

while the second angle is attached to the beam. Hold down plates can be used for big lengths of 

the SMA bars to enforce the bars to deform with the beam. 

SMA bars

Steel Angle

SMA bars

Steel Angle

End couplers

Elevation view

Plan view
 

Fig. 6-1: Proposed retrofitting technique 

The modulus of elasticity of SMA is much lower (1/5 to 1/3) than that of the regular steel. Thus, 

attaching a small to moderate ratio of SMA will improve the strength and the stiffness of the 

BCJ, but it is not expected to reduce the residual deformations at complete unloading. Thus, it is 

proposed to cut the internal steel bars of the beam at the face of the column and replace it with 
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the external SMA bars. This ensures that the BCJ behaviour is governed by the external SMA 

bars rather than the internal steel bars, and thus minimum residual deformations are expected at 

complete unloading.  

6.3 SIMPLIFIED MODEL 

A simplified model for the retrofitted BCJ is proposed. The simplified model is developed using 

Seismostruct software v.6 (Seismostruct 2018). The special technique used to model the 

connection include: (i) modelling the SMA bars using inelastic truss elements; (ii) modelling the 

superelastic behaviour of the SMA bars using the uniaxial material model proposed by Auricchio 

and Sacco (1997); (iii) modelling the concrete beam and column using displacement based 

inelastic frame elements; and (iv) modelling the external angles that supports the SMA bars 

using rigid arms connected to the concrete beam and column. 

As shown in Fig. 6-2, the beam and the column of the BCJ are modelled using frame elements. 

Two rigid arms are connected to the beam near the face of the column representing the angle 

supported in the joint area. Another two rigid arms are connected to the beam at a distance equal 

to the length of the required SMA bars. The SMA bars are connected between the rigid arms and 

are modelled using truss elements. The reinforcement in the beam element is cut in between the 

rigid arms to eliminate any contribution from it to the strength, stiffness and residual deformation 

of the joint.   
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To validate the assumed simplified model, a comparison between the load-displacement results 

of the simplified model developed using Seismostruct software and the actual model developed 

using ABAQUS (ABAQUS 2018) is shown in Fig. 6-3. Very good agreement between the two 

results is achieved.   

SMA bars

Beam modeled as

Rigid arms

SMA bars

frame element
Column modeled as

frame element

Rigid arms

(representing the

attached angles)

(representing the
attached angles)

 
Fig. 6-2: Sketch of the simplified model 
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Fig. 6-3: Load-displacement results of the ABAQUS model vs. the simplified Seismostruct 
model 
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6.4 STEEL RC FRAME CHARACTERISTICS AND MODELING 

The steel RC frame structure designed by Youssef and Elfeki (2012) is used as the reference 

frame. The frame (Frame 1) is a symmetric six-storey RC office building located in California 

(high seismic region). The layout and dimensions of the building are shown in Fig. 6-4. It is 

designed to satisfy the requirements of the International Building Code (IBC 2006) and the 

American Concrete Institute code (ACI 318 2005). The lateral load resisting system is composed 

of special moment frames. The cross-section dimensions and the reinforcement details of the 

frame are shown in Fig. 6-5. 

Only one special moment frame is selected for the analysis because of the geometrical 

symmetry. The frame is modeled using Seismostruct software (Seismostruct 2018). The beams 

and columns are modeled using cubic elasto-plastic elements. The beams are divided in six 

elements, while the columns are divided in three. The beams are modeled as T-sections, while 

the beam-column joints are modeled using rigid elements, Fig. 6-6. The concrete compressive 

strength is assumed to be 28 MPa while the steel yielding stress is 400 MPa. 
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Fig. 6-4: Six-storey RC building Plan and Elevation (Youssef and Elfeki 2012)  

8  29 8  29 

8  25 8  25

8  19 

12@20012@15012@15012@150 12@200

12@15012@20012@15012@15012@150 12@200











 





 

Beam 1

Beam 2

12@150

 

Fig. 6-5: Six-storey RC building cross-sections of beams and columns (Youssef and Elfeki 2012)  
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a) Interior beam-column joint b) Edge beam-column joint 

Fig. 6-6: Modeling of beam column joints (Youssef and Elfeki 2012) 

6.5 SMA RC FRAMES 

Superleastic SMA bars are added to the steel RC frames to enhance their seismic performance. 

The SMA bars are added to the beam-column joints of the first floor for one frame (Frame 2) and 

to the beam-column joints of the first and fourth floors of the other frame (Frame 3). The choice 

of these locations is based on the recommendations made by Youssef and Elfeki (2012).The 

internal steel reinforcement of the retrofitted BCJ is cut at the locations of the added SMA bars. 

This ensures that the behaviour of the retrofitted BCJs and frame is controlled by the superleastic 

SMA bars rather than the internal steel bars.  

The amount of SMA reinforcement is chosen equal to the amount of internal steel reinforcement. 

The critical stress, critical strain, modulus of elasticity of the SMA bars is equal to 401 MPa, 

0.007, 62.5 GPa respectively. The SMA bars are attached to the frame using external rigid steel 

angles and bolts. The retrofitted BCJs are modelled in the Seismostruct software using the 

simplified model.   

Column 

Beam

Rigid  arms
Rigid Links

Beam

Column
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6.6 LOCAL FAILURE AND COLLAPSE LIMITS 

Local yielding of the RC element is assumed to happen when the reinforcement reaches its 

yielding strain. Yielding strain is defined as 0.002 for steel and as 0.007 for SMAs. Researchers 

are suggesting different definitions for the failure of concrete. In this paper, Crushing of concrete 

is assumed to occur either when the confined concrete reaches a value of 0.015 or when the 

stirrups reach their fracture strain as proposed by Pauley and Priestley (1992). Collapse of the 

structure is assumed to occur when four of the columns located in the same storey reach their 

crushing strain (Youssef and Elfeki 2012).  

6.7 DYNAMIC ANALYSES 

6.7.1 Eigen Value Analysis 

Eigen value analysis is performed for the steel RC frame by Youssef and Elfeki (2012). The 

fundamental period of vibration of the structure is found to be 0.501. The Eigen value analysis is 

repeated for the two retrofitted frames to investigate the effect of adding external SMA bars on 

the fundamental period of vibration. No or negligible effect is observed. Fig. 6-7 shows the first 

four mode shapes of the studied frames. 
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Fig. 6-7: First four mode shapes of the six-storey RC building (Youssef and Elfeki 2012) 

6.7.2 Selection of Ground Motion Records 

The five ground motion records used by Youssef and Elfeki (2012) are used in this study to 

perform the dynamic analysis of the frames. The ratio between the peak ground acceleration and 

the peak ground velocity (A/v) is used to classify the intensity of the used records.  These records 

cover a wide range of ground motion frequencies. A summary of the record characteristics are 

given in Table 6-1. The 5% damped spectral acceleration at the fundamental period of the 

structure [Sa(T1,5%)] is used to scale the used earthquake records. Fig. 6-8 shows the scaled 

earthquake records. 

 

 

T=0.501 sec T=0.177  sec.

T= 0.104 sec. T=0.075 sec.

Mode 1 Mode 2 

Mode 3 Mode 4 
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Table 6-1: Chosen earthquake records 

Earthquake Date 
Ms 

Magnitude 
Station PGA (g) A/v 

Northridge  USA 17/1/94 6.7 Arleta-Nordhoff 0.340 Inter. 

Imperial Valley  USA 15/10/79 6.9 
El Centro Array #6 

(E06) 
0.439 Low 

Loma Prieta  USA 18/10/89 7.1 Capitola (CAP) 0.530 High 

Whittier USA 1/10/87 5.7 Whittier Dam 0.316 High 

San Fernando 9/2/71 6.6 Pacoima Dam 1.230 Inter. 
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Fig. 6-8: Spectral acceleration diagrams 
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6.7.3 Incremental Dynamic Analysis (IDA) 

Incremental Dynamic analysis is performed for the three frames to observe the effect of 

increasing the spectral acceleration on the behaviour of the frames. 

6.7.4 Time History Analysis at Collapse 

The analysis is first performed for Frame 1 (steel RC frame) to determine the intensities for the 

five earthquakes defining collapse. The analysis is then performed for the other two frames at the 

defined intensities. Performance of the three frames is illustrated in the following section.  

6.8 RESULTS AND DISCUSSIONS 

6.8.1 Incremental Dynamic Analysis 

Fig. 6-9 to Fig. 6-13 show the results obtained from the incremental dynamic analysis. Fig. 6-9 

illustrates the behaviour of the three frames when subjected to Imperial record.  It is clear from 

the figure that the three frames experienced similar MID and MRDR at low values of Sa (T1, 

5%). At high values of Sa (T1, 5%), Frame 1 experienced much higher MID and MRDR values. 

This shows the effect of the suggested retrofitting technique on limiting the MID and MRDR 

values. MRID and RRDR behaviour is similar at low Sa (T1, 5%). However, at high values of Sa 

(T1, 5%), the suggested retrofitting technique showed much less values of residual drifts. 

Furthermore, Frame 3 (SMA at first floor only) showed lower residual drifts than Frame 2, 

which means better arrangement for the SMA bars.  
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Fig. 6-10 shows the response of the three frames to the Loma Prieta record. In this case, the three 

frames showed similar values of MID at all levels of Sa (T1, 5%). Frames 2 and 3 showed less 

values of MRDR close to failure. Frame 3 showed less residual drifts (MRID and RRDR) than 

frames 1 and 2. Frame 2 has MRID and RRDR values that are almost an average of the two other 

frames. Fig. 6-11 shows the response of the three frames to the Northridge record. MID and 

MRDR values are similar for the three frames at all levels of Sa (T1, 5%). Residual drift (MRID 

and RRDR) values of frames 2 and 3 are much lower than frame 1 (steel RC frame). Frame 2 

shows less MRID value at collapse, while Frame 3 shows less RRDR value at collapse. 

Response of the three frames to the San Fernando record is shown in Fig. 6-12. The three frames 

have similar maximum and residual drift ratios at small levels of Sa (T1, 5%).  At high levels of 

Sa (T1, 5%), Frames 1 and 3 show less MID values than frame 2. The difference increases as the 

Sa (T1, 5%) value increase. MRDR value is similar for the three frames at all levels of Sa (T1, 

5%). For residual drifts (MRID and RRDR), the response of the three frames is similar at low 

values of Sa (T1, 5%) and at collapse. At intermediate values of Sa (T1, 5%), frame 1 shows 

higher residual drifts than frames 2 and 3.  

Fig. 6-13 shows the response of the three frames to Whittier record. Similar response of the three 

frames is observed for MID and MRDR. At collapse, frame 1 shows higher MID value. Frames 2 

and 3 show much less residual drifts at collapse. However, comparable values are observed at 

low levels of  Sa (T1, 5%). 
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Fig. 6-9: Incremental dynamic analysis of the three frames - Imperial Record 

 

 

 



 

189 
 

0

1

2

3

4

5

6

0 2 4 6 8 10

Sa
(T
1
,5
%
) (
g)

MID (%)

Steel Only First Floor Only First and Fourth Floors  

0

1

2

3

4

5

6

0 2 4 6 8

Sa
(T
1
,5
%
) (
g)

MRID (%)

Steel Only First Floor Only First and Fourth Floors  

(a) Maximum Inter-storey Drift (b) Maximum Residual Inter-storey Drift 

0

1

2

3

4

5

6

0 1 2 3 4 5

Sa
(T
1
,5
%
) (
g)

MRDR (%)

Steel Only First Floor Only First and Fourth Floors  

0

1

2

3

4

5

6

0 1 2 3 4

Sa
(T
1
,5
%
) (
g)

RRDR (%)

Steel Only First Floor Only First and Fourth Floors  

(c) Maximum Roof Drift Ratio (d) Residual Roof Drift Ratio 

Fig. 6-10: Incremental dynamic analysis of the three frames - Loma Prieta Record 
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Fig. 6-11: Incremental dynamic analysis of the three frames - Northridge Record 
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Fig. 6-12: Incremental dynamic analysis of the three frames - San Fernando Record 
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Fig. 6-13: Incremental dynamic analysis of the three frames - Whittier Record 
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6.8.2 Damage Schemes 

The damage schemes of the three frames under the five earthquake records are illustrated in Fig. 

6-14 to Fig. 6-18. Fig. 6-14 shows the damage scheme of the three frames when subjected to the 

Imperial Valley record. It is clear from the figure that Frame 1 (steel RC frame) reached its 

collapse limit due to the concrete crushing of the lower ends of the first storey columns. Frames 

2 and 3 did not reach the collapse limit and can sustain higher loads as only three columns 

reached their crushing limit. No crushing is observed at higher storey columns. Most of the 

beams and columns of the three frames reached their yielding limit. First and second floor beams 

of Frame 1 sustained yielding at their mid-span. All beams of Frame 3 did not reach yielding at 

their mid-spans.  

Fig. 6-15 shows the damage schemes of the three frames when subjected to the Loma Prieta 

earthquake record. Frame 1 reached its collapse limit by crushing of the lower four ends of the 

first storey columns. Frames 2 and 3 did not reach their collapse limit and can sustain higher 

loads. Most of the columns and beams reached their yielding limit. Most of the beams also 

reached their yielding limit at mid-span.  

Damage schemes of the three frames when subjected to Northridge earthquake are shown in Fig. 

6-16. The three frames reached their collapse limit due to concrete crushing of first storey 

columns. Three columns of the third storey of Frame 1 reached their crushing limits. Only two 

out of the three columns reached their crushing limits in Frames 2 and 3. Yielding of beams at 
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their mid-spans is concentrated at the first two stories of Frame 1, and at the second, third and 

fourth stories of the other two frames. 

The effect of the San Fernando earthquake on the three frames is shown in Fig. 6-17. Crushing 

occurred for first storey columns of Frame 1. In addition, two beams in the first storey reached 

their crushing limit. Frames 2 and 3 did not reach their collapse limit and resist higher levels of 

loads. Two columns in the third storey of Frame 2 reached their crushing limit, while only one 

column in the same location reached its crushing limit in Frame 3. Severe yielding of the beams 

and columns of the three frames can be observed. Mid-span yielding of the beams of the three 

frames is also observed. 

The damage schemes of the three frames due to the Whittier earthquake are shown in Fig. 6-18. 

Collapse of the three frames occurred due to crushing of the first storey columns. Severe yielding 

of the beams and columns can be observed. One beam and one column in the second storey of 

Frame 3 reached their crushing limit. Mid-span yielding of the beams is more pronounced in case 

of Frames 1 and 2 than the case of Frame 3. 
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Steel yielding
Concrete core crushing

(a) Frame 1 (Steel Only) 

Steel yielding
Concrete core crushing

 
(b) Frame 2 (First Floor Only) 

Steel yielding
Concrete core crushing

 
(c) Frame 3 (First and Fourth Floors) 

Fig. 6-14: Damage scheme for different frames when subjected to Imperial earthquake record; 
(a) Frame 1 (Steel Only); (b) Frame 2 (First Floor Only); and (c) Frame 3 (First and Fourth 

Floors) 
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Steel yielding
Concrete core crushing

 
(a) Frame 1 (Steel Only) 

Steel yielding
Concrete core crushing

 
(b) Frame 2 (First Floor Only) 

Steel yielding
Concrete core crushing

 
(c) Frame 3 (First and Fourth Floors) 

Fig. 6-15: Damage scheme for different frames when subjected to Loma Prieta earthquake 
record; (a) Frame 1 (Steel Only); (b) Frame 2 (First Floor Only); and (c) Frame 3 (First and 

Fourth Floors) 
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Steel yielding
Concrete core crushing

 
(a) Frame 1 (Steel Only) 

Steel yielding
Concrete core crushing

 
(b) Frame 2 (First Floor Only) 

Steel yielding
Concrete core crushing

 
(c) Frame 3 (First and Fourth Floors) 

Fig. 6-16: Damage scheme for different frames when subjected to Northridge earthquake record; 
(a) Frame 1 (Steel Only); (b) Frame 2 (First Floor Only); and (c) Frame 3 (First and Fourth 

Floors) 
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Steel yielding
Concrete core crushing

 
(a) Frame 1 (Steel Only) 

Steel yielding
Concrete core crushing

 
(b) Frame 2 (First Floor Only) 

Steel yielding
Concrete core crushing

 
(c) Frame 3 (First and Fourth Floors) 

Fig. 6-17: Damage scheme for different frames when subjected to San Fernando earthquake 
record; (a) Frame 1 (Steel Only); (b) Frame 2 (First Floor Only); and (c) Frame 3 (First and 

Fourth Floors) 
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Steel yielding
Concrete core crushing

 
(a) Frame 1 (Steel Only) 

Steel yielding
Concrete core crushing

 
(b) Frame 2 (First Floor Only) 

Steel yielding
Concrete core crushing

 
(c) Frame 3 (First and Fourth Floors) 

Fig. 6-18: Damage scheme for different frames when subjected to Whittier earthquake record; 
(a) Frame 1 (Steel Only); (b) Frame 2 (First Floor Only); and (c) Frame 3 (First and Fourth 

Floors) 
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6.8.3 Maximum and Residual Drifts 

MID, MRID, MRDR, and RRDR values at failure are used in this section to compare the 

behaviour of the three frames. Results of the three frames are given in Table 6-2 and are 

illustrated in Fig. 6-19. The average MID for Frame 1 (steel RC frame) is found to be 8.40%. 

Frames 2 and 3 have lower average MID values 7.46 and 7.43, respectively. This shows the 

improvement in the frame behaviour by reducing the MID ratio. 
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Fig. 6-19: Maximum and residual drift ratios of the studied frames; (a) MID; (b) MRID; 
(c) MRDR; and (d) RRDR 
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Table 6-2: Comparison between the seismic performance of the three frames 

Earthquake Record 
Frame1 (Steel Only) Frame2 (1st Floor Only) Frame3 (1st and 4th) 

MID MRID MRDR RRDR MID MRID MRDR RRDR MID MRID MRDR RRDR

Imperial (1.12 g) 7.83 2.77 3.50 0.53 4.01 0.81 2.33 0.08 3.68 1.17 2.29 0.31 

Loma Prietta (5.00 g) 8.41 7.25 4.60 3.68 8.60 5.66 3.01 1.96 8.02 3.89 3.21 0.88 

Northridge ( 2.80 g) 9.18 7.56 3.85 3.15 8.43 1.05 3.37 0.44 8.45 1.47 3.23 0.01 

San Fernando (8.40 g) 7.33 3.77 3.04 1.42 9.04 5.52 3.61 1.97 9.43 5.64 3.71 1.83 

Whietter (5.00 g) 9.26 5.43 2.89 1.17 7.22 0.36 3.05 0.18 7.55 1.08 3.04 0.09 

Average Value 8.40 5.36 3.57 1.99 7.46 2.68 3.08 0.93 7.43 2.65 3.10 0.62 

Percent of Change NA NA NA NA -11.20 -50.00 -13.96 -53.49 -11.63 -50.51 -13.40 -68.63 
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The improvement in the MRID value for frames 2 and 3 is found to be significant. The average 

MRID values of Frames 2 and 3 are 2.68% and 2.65% which are much lower (50.00% and 

50.51%) of that of Frame 1 (5.36%). These values illustrate the significant improvement in the 

frame behaviour by adding the external SMA bars to the frame at the right locations. 

 The average MRDR is found to be 3.57% for Frame 1. This value is reduced by 13.96% for 

Frame 2 and by 13.40% for Frame 3. This confirms the reduction occurred in the MRID value of 

the frames. The RRDR significantly improved by adding the external SMA bars. The RRDR 

reduced from 1.99% for the steel RC frame to 0.93% and 0.62% for frames 2 and 3 respectively. 

These values correspond to percents of change equal to 53.49% and 68.63% for Frames 2 and 3, 

respectively. 

These drift results in addition to the previously introduced damage schemes show that retrofitting 

an existing RC frame by adding external SMA bars at the right locations can lead to: (i) lower 

level of damage; (ii) small reduction in the MID and MRDR values (10%-15%); (iii) significant 

(50%-70%) reduction in the residual deformations represented by MRID and RRDR; and (iv) 

tolerating higher intensity earthquakes.  

6.9 CONCLUSIONS 

This chapter investigates the applicability of using external SMA bars to enhance the seismic 

performance of steel RC frames. A six-storey steel RC frame building is used as a reference for 

this study. The frame is assumed to be located in high seismic zone and is subjected to five 
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different scaled earthquake records. After determining the collapse intensity for each record, the 

analysis is performed again for other two retrofitted frames. The two frames are retrofitted using 

the proposed retrofitting technique. The first frame is retrofitted at its first floor, while the second 

frame is retrofitted at the first and fourth floors.  

The performance of the three frames is compared based on the: (i) maximum tolerated 

earthquake intensity; (ii) level of damage; (iii) maximum drifts represented by MID and MRDR; 

and (iv) residual drifts represented by MRID and RRDR. The retrofitted frames showed lower 

level of damage at failure and higher tolerated earthquake intensities.  The suggested retrofitting 

technique reduced the maximum drifts of the frame by 10% to 15%, and reduced the residual 

drifts by 50% to 70%. The two frames showed a similar behaviour. Thus, it is more economical 

to use the retrofit scheme of Frame 2, where the BCJs of the first floor only are retrofitted.   
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Chapter 7 Conclusions and Recommendations 

7.1 SUMMARY AND CONCLUSIONS 

Shape Memory Alloys (SMAs) have a unique ability to undergo large deformations and return to 

their undeformed shape upon unloading (superelasticity). Under cyclic loading, they have the 

ability to dissipate large amounts of energy and release them upon unloading. This is attributed 

to the flag shape stress-strain behaviour of SMA. In addition, they have good corrosion and 

fatigue resistance. These unique properties of SMAs have motivated researchers to utilize them 

as a retrofitting material in structural engineering applications. 

This study aimed at proposing new flexural retrofitting technique for Reinforced Concrete (RC) 

elements. The idea of the proposed technique is based on attaching external unbonded SMA bars 

to the RC element. Investigation for the behaviour of the members and equations for deciding the 

optimum amount and length of the SMA bars is addressed in this study.  

7.1.1 Flexural Behaviour of Superelastic Shape Memory Alloy Reinforced Concrete 

Beams during Loading and Unloading Stages  

In Chapter 3, the flexural behaviour of SMA RC beams during loading/unloading stages is 

investigated. Analysis method that is based on the sectional analysis technique is used. The 

analysis method is first validated using available experimental results. An extensive parametric 
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study is then carried out to investigate the effect of different geometrical and cross-sectional 

parameters on the flexural behaviour of SMA RC beams. The studied parameters are: (i) cross-

section reinforcement ratio (ρSMAs); (ii) ratio between the amount of SMA reinforcement to the 

amount of steel reinforcement (ASMAs/As); (iii) cross-section height to width ratio (h/b); (iv) beam 

span-to-depth ratio (L/h); and (v) concrete compressive strength (f’
c). 

The parametric study is performed on cantilever beams that are reinforced with SMA bars at the 

fixed end of the beams and regular steel bars elsewhere. For each of the studied parameters, nine 

different lengths are considered for the SMA length. These lengths are: L/20, L/10, L/8, L/6, L/4, 

L/3, L/2, and L/1, where L is the full length of the studied beam. For each of the studied beams, 

the developed sectional analysis method is used to obtain the moment-curvature relationships of 

its cross-sections. The moment-area method is utilized to obtain the load-displacement behaviour 

of the beams. 

Results of the parametric study are compared based on: (i) load-displacement response; (ii) 

amount of residual deformations; (iii) change in flexural stiffness; and (iv) amount of dissipated 

energy. Results of the parametric study are then used in performing multiple linear regression 

analysis. A database is first created using the 144 beams analyzed in the parametric study. Inputs 

are chosen as: LSMAs/L, ASMAs/As, ρSMAs / ρs-min, ρSMAs / ρs-b, f
’
c, h/b, LL, L/h. Outputs are chosen as: 

δr/δmax, (δy-s/δcr-SMAs), ENSMAs/ENS. Correlation matrix is first determined to get the correlation 

between each pair of the variables. The final suggested regression models are reported and 

summarized in the form of simple equations. Changes in the amounts of residual displacements, 

flexural stiffness and dissipated energy can be estimated using the developed equations. 
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The use of the developed regression models is limited to slender cantilever beams with equal top 

and bottom reinforcement. 

7.1.2 Flexural Behaviour of Reinforced Concrete Beams Retrofitted using External 

Unbonded Superelastic Shape Memory Alloy Bars.  

In chapter 4, a new retrofitting technique for retrofitting RC beams using external unbonded 

SMA bars is proposed. The main idea is attaching the external bars to the beam using two 

external angles. Analysis started with developing a Finite Element (FE) model for the retrofitted 

beams. The FE model is validated using available experimental results. The experimental results 

included six internally reinforced RC beams and eight beams that are externally reinforced with 

steel and SMA bars. Good agreement between the developed FE model and the experimental 

results is obtained. 

The suggested retrofitting technique is expected to improve the beam stiffness and strength, but 

not expected to reduce the amount of residual displacement at complete unloading. This is 

attributed the big difference in the modulus of elasticity value of internal steel bars and external 

SMA bars. Thus it is proposed to cut the internal steel bars and replace them with external SMA 

bars. Analysis of the original and retrofitted beam shows a reduction in the amount of residual 

deformations from 32 mm to 5 mm (84%) after cutting the internal steel reinforcement. 

A simplified analysis method is then developed to capture the behaviour of the retrofitted beam. 

The method is based on the sectional analysis technique. The method is capable of analyzing 
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beams that are internally and/or externally reinforced with steel and/or SMA bars during the 

loading and unloading stages. Results of the proposed simplified method are first validated using 

the developed FE model. After validating the results, the simplified method is used to conduct an 

extensive parametric study. 

The parametric study is carried out to investigate the behaviour of RC beams retrofitted using 

external unbonded SMA bars. The investigated parameters are: (i) the ratio between the added 

external SMA reinforcement to the amount of internal steel reinforcement in the beam (ASMA/As); 

(ii) applied load level (δmax/δy); and (iii) the ratio between the length of the used SMA bars to the 

span of the beam (LSMA/L). The first two parameters are studied assuming that the length of the 

SMA bars is equal to the span of the beam. Nine different lengths are considered for the LSMA/L.  

Results of the parametric study are then put in a database format and used to perform multiple 

linear regression analysis. The database consisted of a total of 350 data sets (inputs and outputs). 

The inputs are: LSMA/L, ASMA/As, and load level, while the outputs are: δr/δmax, Mrt/Morg, STrt/STorg, 

δy-rt/δy-org, and δmax-rt/δmax-org. Correlation analysis is first performed to note the highly correlated 

parameters and their signs. The most statistically significant models are presented and 

summarized in the form of simple equations. These equations will help in determining the 

amount of residual displacement, change in beam strength and capacity, and the yielding and 

maximum displacements of the retrofitted beams. These equations can be used for simply 

supported slender beams with equal external top and bottom SMA reinforcement.  
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7.1.3 Flexural Behaviour of Reinforced Concrete Joints Retrofitted Using External 

Superelastic Shape Memory Alloy Bars.  

Pre-1970s designed and built RC structures are deficient under seismic loads. Insufficient 

anchorage of the beam reinforcement into the joint area of the BCJ can be considered a main 

deficiency of these structures. Thus, there is an urgent need to retrofit these structures to ensure 

safety of the occupants. In addition, newly built structures may need to be retrofitted to minimize 

the seismic residual deformations in these structures. In chapter 5, the applicability of using the 

proposed retrofitting technique to retrofit beam-column joints (BCJs) is investigated. 

A three-dimensional FE model is first developed using ABAQUS to simulate the behaviour of 

the retrofitted BCJ during the loading/unloading stages. Results of the developed model are first 

validated using available experimental results. Experimental results included the results of two 

experimentally tested BCJs that are internally reinforced with steel and SMA bars and eight 

externally reinforced concrete beams. Good agreement between experimental and analytical 

results is observed. 

A retrofitted BCJ is assumed and analyzed using the developed FE model. The obtained results 

are compared to the results of the original BCJ. Results of the retrofitted beam show increase in 

the beam strength by 22% due to retrofitting. The amount of residual displacement is reduced by 

only 17% due to retrofitting. This small difference is attributed to the big difference in the 

modulus of elasticity value between steel and SMA. To improve the contribution of the SMA 

bars, it is proposed to cut the internal steel bars at the face of the column and replace them with 
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external SMA bars. The analysis is performed again for the retrofitted beam after cutting the 

internal bars. It is found that the residual displacement is reduced by 98%. The disadvantage of 

the proposed technique is the reduction in the beam strength (31%) and initial stiffness. This 

disadvantage can be overcome by increasing the amount of external SMA reinforcement.  

Since it is a complicated process to model the BCJ in ABAQUS, a simplified model for the 

retrofitted BCJ is proposed. The proposed simplification is implemented in the Seismostruct 

software. The beams and the columns are modelled using frame elements. Two rigid arms are 

connected to each column to represent the angle connected in the joint area. Another two rigid 

arms representing the other angle are connected to the beam at a distance equal to the desired 

SMA length. The SMA bars are modeled between the rigid arms using truss elements. The 

reinforcement in the beam between the two rigid arms is cut to eliminate its contribution to the 

strength, stiffness, and residual deformations. Results obtained using the simplified model is 

validated using the ABAQUS model. Good agreement is observed between the two models. The 

simplified model is then used to conduct an extensive parametric study. 

Results of the parametric study are then arranged in the form of a database. A total of 524 data 

sets are used in establishing the database. The database is then used to perform multiple linear 

regression analysis. After trying numerous models, the best four models for the four outputs 

(δr/δmax, Mrt/Morg, STrt/STorg, and ENrt/ENorg) are presented. The four models are also summarized 

in the form of four simple equations to determine the optimum amount and length of the used 

SMA bars. The developed equations can be used for BCJs with equal column and beam 

dimensions, and equal top and bottom external SMA reinforcement. 
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7.1.4 Seismic Performance of Reinforced Concrete Frames Retrofitted Using External 

Superelastic Shape Memory Alloy Bars 

In chapter 6, enhancing the seismic performance of RC framed structures using the suggested 

retrofitting technique is investigated. The simplified model previously described and validated in 

Chapter 5 is used to model the retrofitted BCJ of the frame structure. The steel RC frame 

designed by Youssef and Elfeki (2012) is used as the reference frame (Frame 1).  The frame is a 

symmetric six-storey RC office building located in California, which is a high seismic region. 

The frame is modelled using the Seismostruct software. 

Two potential retrofitting schemes are assumed for the retrofitted frames. The SMA bars are 

added to the BCJs of the first floor in one frame (Frame 2), and to the BCJs of the first and fourth 

floors of the other frame (Frame 3). The internal steel reinforcement of these BCJs is cut. The 

amount of SMA external reinforcement is chosen similar to the amount of internal steel 

reinforcement. 

Eigen value analysis is first performed for the two retrofitted frames and compared to the results 

of the steel RC frame. No or negligible effect of the retrofitting technique on the fundamental 

period of the frame structure is observed. Incremental dynamic analysis is then performed for the 

three frames to observe the effect of increasing the spectral acceleration on the behaviour of the 

frames. The five earthquake records used by Youssef and Elfeki (2012) are used in the analysis. 
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 Time history analysis is then performed for Frame 1 (steel RC frame) to determine the 

intensities of the five earthquakes at which collapse occur. The analysis is then repeated for the 

other two frames (Frames 2 and 3) at these collapse intensities. The performance of the three 

frames is then compared in terms of the damage scheme and the maximum and residual drifts. 

7.2 MAJOR RESEARCH CONTRIBUTION 

Developed new technique to retrofit RC frames to ensure ductility and reduced seismic 

deformations. This development was achieved through the following steps: 

1- The flexural behaviour of RC beams internally reinforced with SMA bars during the 

loading and unloading stages is investigated. 

2- A simple sectional analysis method to analyze RC beams internally and/or externally 

reinforced with SMA bars during loading and unloading stages is developed. 

3- A new flexural retrofitting technique for RC beams and BCJs using external  

SMA bars is proposed. 

4- A simplified FE model to model the behaviour of RC BCJs retrofitted using external 

SMA bars is developed. 

5- Simple equations that can predict the changes in the flexural behaviour of beams and 

BCJs due to the suggested retrofitting technique are proposed. 
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6- The seismic performance of RC frames retrofitted using external SMA bars is 

investigated.   

7.3 RECOMMENDATIONS FOR FUTURE STUDIES 

1- Experimental investigations for RC cantilever beams internally reinforced with SMA bars 

in the maximum moment area. 

2- Extending the developed sectional analysis method to investigate the behaviour of RC 

beams internally reinforced with SMA bars in conjunction with Fibre Reinforced 

Polymer (FRP) bars.   

3- Experimental investigations for RC beams and BCJs retrofitted using external SMA bars. 

4- Extending the developed simplified analysis method to investigate the behaviour of FRP 

RC beams and BCJs retrofitted using external SMA bars.   

5- Experimental investigations for RC frames retrofitted using external SMA bars using 

shake table tests. 

6-  Investigating the behaviour of FRP RC frames retrofitted using external SMA bars. 
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Appendix I: Details of the Sectional Analysis Method Developed in Chapter 3 

The flexural behaviour (moment-curvature) of steel and Shape Memory Alloy (SMA) 

Reinforced Concrete (RC) cross-sections is analytically investigated using a FORTRAN program 

developed by the authors. The program is based on the sectional analysis technique and it uses 

the fibre model methodology (Youssef and Rahman 2007; Elbahy et al. 2009). The main idea is 

dividing the cross-section into discrete number of horizontal fibres, Fig. I-1. Utilizing the one-

dimensional constitutive relationship of each fibre, and taking into account the cross-section 

equilibrium and kinematics, the mechanical behaviour of the cross-section can be obtained.  
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Fig. I-1: Fibre model 
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The developed program is capable of analyzing the cross-section under axial and/or flexural 

loading. Two different loading techniques can be used in the program: displacement-controlled 

loading and/or load-controlled loading. For both techniques, the load is applied in an incremental 

way. The analysis continues until one of the following conditions is achieved: (i) the desired 

loading level is reached; (ii) the concrete fibre in maximum compression reaches its crushing 

strain limit; or (iii) the used reinforcing bars reach their rupture strain limit. The relationship 

between the axial strain, the curvature, the moment, and the axial force can be written as:  
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where: ΔM =incremental increase in the moment acting on the cross-section, ΔP = incremental 

increase in the axial load force acting on the cross-section (equal to zero), ΔΦ = incremental 

increase in cross-section curvature, Δεc = incremental increase in the cross-section central axial 

strain, Ei = modulus of elasticity of layer i, Ai = area of layer i, and yi = distance between the 

centre of gravity of layer i and the centre of gravity of the concrete cross-section. 

The load is applied into two different stages. In the first stage (Fig. I-2), the axial load is applied 

in an incremental way while the moment is kept equal to zero. After reaching the specified axial 

load, stage II (Fig. I-3) starts by applying displacement load (curvature) in an incremental way 
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while keeping the axial load equal to the specified value. The steps involved in these stages can 

be summarized as follows. 

I.1 Stage I 

1) The initial axial load, concrete strain, and curvature are set to zero, 

2) The initial Ei values for the concrete and steel layers are calculated, 

3) A suitable load increment ∆P is chosen and applied to the cross section, 

4) The incremental increase in the strain Δεc is calculated using Equation [3-5], 

5) The modified Ei values are calculated using the modified axial strain (εc = εc-previous + 

Δεc), 

6) If the axial load is equal to the specified load, the values of εc and Ei are recorded and 

analysis of stage II starts, and 

7) Analysis proceeds by repeating steps 4 to 6. 
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Fig. I-2: Flow chart for stage I of the fibre model analysis 

I.2 Stage II: 

The axial load is kept constant at the desired value recorded in stage I and the applied curvature 

is increased from zero to a specified value. A displacement approach is selected to capture the 

sectional behaviour after reaching the maximum compressive strength. The steps involved in this 
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stage have to be conducted twice to define the sectional behaviour when subjected to positive 

and negative curvatures and are summarized below: 

1) The values of εc and Ei are set equal to those recorded in step 6 of analysis stage I, 

2) A suitable curvature increment ΔΦ is chosen and applied to the section, 

3) The modified Ei values are calculated using the axial strain of each layer (εci = εc-previous ± 

ΔΦ yi), 

4) Δεci is calculated from Equation [3-5], such that ΔP is equal to zero (εc = εc-previous + Δεc), 

5) Δεc is checked against a predefined tolerance. If the error is higher than the tolerance, 

steps 3 and 4 are repeated, 

6) The value of ∆M is calculated from Equation [3-5]. The total moment on the section is M 

= MPrevious +ΔM. At this moment stage, the total concrete compressive forces, the forces 

in the steel layer and the centre of gravity of these forces are recorded, and 

7) The analysis is repeated by applying a curvature increment ΔΦ and repeating steps 3 to 6. 
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(a) Stage II 

Fig. I-3: Flow chart for stage II of the fibre model analysis 
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Two main assumptions are used in the developed program: (i) plane sections remain plane (i.e. 

linear strain distribution); and (ii) perfect bond exists between concrete and the reinforcement. 

The program can analyze the behaviour of cross-sections reinforced with steel bars, SMA bars, 

or both steel and SMA bars. 

For analysis performed in this study, displacement-controlled flexural loading (i.e. curvature) is 

used. The load is incrementally applied on the studied cross-sections while keeping the applied 

axial load equal to zero. Using similar technique during the unloading stage, the load (curvature) 

is incrementally removed from the cross-section. 

I.3   CONCRETE STRESS-STRAIN MODEL UNDER COMPRESSION  

Different stress-strain models are available to model the concrete behaviour under both 

compression and tension loadings. These models vary in their accuracy and complexity. Thus, a 

good balance between the desired accuracy and the model complicity is desired to achieve 

optimum performance. The model developed by Scott et al. (1982),   Fig. I-2, is used to model 

the concrete behaviour under compression loading. The model represents a good balance 

between simplicity and accuracy (Youssef and Ghobarah 1999). As shown in Fig. I-2 and given 

by Eq. I-2, the model consists of three parts: (i) pre-peak parabolic ascending part; (ii) post-peak 

linear descending part; and (iii) post-peak constant-stress part. Highly confined concrete is 

assumed in this study to allow the SMA bars to undergo large deformations before concrete 

crushing in compression.  
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Fig. I-2: Stress-strain model for concrete in compression during loading/unloading 

stages. 
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where: fc = concrete compressive stress, Z = slope of compressive strain softening branch, εc = 

concrete compressive strain, Kh = confinement factor, h’ = width of the concrete core measured 

to the outside of ties, Sh = centre-to-centre spacing of the ties or hoop sets, ρstirrups = ratio of 

volume of stirrup reinforcement to volume of concrete core measured to outside of the stirrups, 

and fy = reinforcement yielding stress. 

Behaviour of concrete in compression during the unloading stage is assumed to follow the model 

proposed by Karsan and Jirsa (1969), Fig. I-2. This model relates the normalized loading strains 

to the strains at complete unloading through a quadratic formula, Eq. [I-3a].When unloading 

starts, the unloading path follows a straight line. This line connects the unloading start strain, εr, 

to the first zero-stress strain value, εp. At high compression strains, Eq. [I-3a] exhibits 

unreasonable behaviour. Thus, Eq. [I-3b] is added to the model to ensure positive value of the 

unloading modulus of elasticity at high compressive levels. After reaching εp, the strains 

continue to reduce while keeping the stress value equal to zero. This continues till reaching the 

point of zero strain. 
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where: εp = concrete strain at which unloading stress first reaches zero,  ε0 = concrete strain at 

maximum compressive loading stress f’
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I.4   CONCRETE STRESS-STRAIN MODEL UNDER TENSION 

Behaviour of concrete under tension loading is assumed to follow the model proposed by 

Stevens et al. (1987), Fig. I-3. As shown in the figure, the model is divided into two main parts: 

Pre-cracking zone, and post-cracking zone. For the pre-cracking zone, the concrete behaves in a 

linear fashion up to the cracking stress fcr. As soon as the cracking stress is reached, significant 

reduction in the stress value is observed. Post-cracking behaviour follows the softening 

relationship given by Eq. [I-4]. This relationship is adjusted to include the simplification 

proposed by Youssef and Ghobarah (1999). This simplification eliminates the effect of both the 

amount of reinforcement and its inclination.  
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Fig. I-3: Stress-strain model for concrete in tension during loading/unloading stages. 
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where: ft = concrete tensile stress, fcr = concrete cracking stress, εc = concrete strain, and εcr = 

concrete cracking strain. 

If unloading starts before reaching fcr, the concrete behaves in a linear fashion exactly as the 

loading stage. If unloading starts after reaching fcr, the unloading path is assumed to follow a 

straight line connecting the strain at which unloading starts, εr, to the point at which zero-stress 

value is first reached, εp. The unloading path slope is assumed to have a value equal to the 

modulus of elasticity of concrete. After reaching the zero-stress point, the strain continues to 

decrease while the stress is kept equal to zero. This continues until reaching the point at which 

zero-stress corresponds to zero-strain. It should be noted that the significant drop in the stress 

value after cracking makes the contribution of the concrete tensile resistant to the overall all 

behaviour is very minor. 

I.5   STEEL STRESS-STRAIN MODEL 

The behaviour of steel material is assumed to follow bilinear stress-strain under both tension and 

compression loading, Fig. I-4. The model is divided into two main regions: pre-yielding and 

post-yielding regions. In the pre-yielding region, the material behaves elastically with a modulus 

of elasticity Ey-s until reaching its yielding strain, εy-s. As soon as the strain exceeds εy-s (i.e. post-

yielding region), the modulus of elasticity the material is significantly reduced Eu-s. The material 

continues to behave with Eu-s until reaching its rupture strain, εu-s. 



 

226 
 

Strain

S
tr

es
s

syf 

U
nl

oa
di

ng
 1

U
nl

oa
di

ng
 2

su

suf 

sy

 

Fig. I-4: Stress-strain model for steel during loading/unloading stages. 

If unloading starts with the pre-yielding zone, the material behaves elastically with a modulus of 

elasticity Ey-s with no residual deformations at complete unloading, Fig. I-4. If the unloading 

starts at strain greater than εy-s (i.e. post-yielding zone), the material will follow a linear 

unloading path that also has a slope equal to Ey-s. The material will keep following this unloading 

path until either unloading stops or yielding on the other side of the stress-strain relationship 

occurs (i.e. tension unloading up to compression yielding or compression unloading up to tension 

unloading). If yielding occurs on the other side, a significant reduction in the material modulus 

of elasticity is observed (i.e. Eu-s). Residual deformations are expected in this case. The amount 

of residual deformations is proportional to the strain value at which unloading starts. 
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I.6   SMA STRESS-STRAIN MODEL 

There are different types of SMAs available in the market. These types differ in their chemical 

composition, which in turns changes their mechanical properties. Among these different types of 

SMAs, Nickel-Titanium (Ni-Ti) based SMA is found to be the most appropriate type for 

structural engineering applications. This is attributed to: (i) its high recoverable strain (i.e. big 

superelastic range); (ii) its unique behaviour under cyclic loading; (iii) its good resistance to 

fatigue and corrosion; and (iv) its austenite phase stability at ambient temperature (Janke et al. 

2005) . Although Ni-Ti is relatively considered an expensive type of SMAs, The suggestion 

made by researchers to use SMA only in critical areas of the structure helps in reducing the 

overall cost. Thus, the term SMA in this study refers to Ni-Ti based SMA.   

The stress-strain model of SMA consists of four linear branches that are connected by smooth 

curves (Alam et al. 2007), Fig. I-5. To simplify the modelling process of the SMA material, the 

smooth curves connecting the linear branches are ignored. Linear branches are assumed to 

directly intersect. As the loading starts, the material behaves elastically with a modulus of 

elasticity Ecr-SMA until reaching the SMA critical stress fcr-SMA. fcr-SMA is a critical stress value as it 

represents the start of the martensite stress induced transformation. If loading continues beyond 

this critical limit (i.e. strain exceeds the critical strain value, εcr-SMA), the material stiffness 

significantly reduces and it behaves with a modulus of elasticity Ep1. Ep1 value is typically within 

the range of 10% to 15% of Ecr-SMA. As the applied strain continues to increase, the material 

keeps behaving with Ep1 until reaching the martensite stress-induced strain εp1. If loading exceeds 

this strain limit, the material regains some of its initial stiffness because of the phase 
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transformation to martensite. The new stiffened modulus of elasticity Ep2 value typically lies 

within the range of 50% to 60% of Ecr-SMA. If loading continues beyond this limit, the material 

strain is expected to reach another critical strain value εy-SMA which represents real yielding of 

SMA. If the SMA material yields, another significant reduction in the material stiffness is 

observed. At this stage, the material behaves with a modulus of elasticity Eu-SMA, which has a 

value typically as low as 3% to 8% of Ecr-SMA. 
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Fig. I-5: Stress-strain model for SMAs during loading/unloading stages. 

The behaviour of SMA during the unloading stage is considered unique when compared to steel. 

Its behaviour during unloading can be divided into three main unloading paths, Fig. I-5. The 

unloading path the material will follow is mainly dependent on strain value at which unloading 
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starts. If unloading starts before reaching εcr-SMA, the material behaves elastically with Ecr-SMA 

similar to the loading stage (i.e. unloading path 1). If unloading starts between εcr-SMA and εy-SMA, 

the material will follow unloading path 2. The main advantage of SMA is clear during this stage 

(i.e. unloading path 2). The material almost recovers full deformations and return to their 

undeformed shape upon unloading (i.e. superelasticity property). This recovery is attributed to 

the reverse transformation from martensite to austenite phase.  

The material will either recover the full deformations or it will keep some minor residual 

deformations. This can be decided from the experimental results obtained during the cyclic 

testing of the SMAs bars. Thus, this needs to be accounted for in the analysis.  In the developed 

program, three values are used to define the amount of residual deformations: (i) maximum 

unloading strain at which zero residual deformations are obtained; (ii) maximum unloading strain 

at which maximum residual deformations are obtained; and (iii) maximum residual strain. Based 

on the strain level reached in the analysis, a linear interpolation is performed using the above 

mentioned three values to determine the amount of residual deformations in the analysis.  

If unloading starts after reaching the SMAs real yielding, significant residual deformations are 

expected to be observed (i.e. unloading path 3). This is similar to the case of yielded steel. As 

shown in the figure, the material follows a linear unloading path that connects the point at which 

unloading starts to the point at which zero-stress is reached. It is very clear from the figure that 

loading the material beyond its real yielding limit results in full loss of the material superelastic 

behaviour. This causes significant undesired residual deformations. Thus, in order to benefit 

from the SMA superelastic behaviour, the SMs should be loaded to strain levels smaller than it is 
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real yielding strain. In this study, the authors ensured that the analysis performed on the SMA 

RC beams did not reach the real yielding limit of SMA.  
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Appendix II: Validation of The Sectional Analysis Method Developed in 

Chapter 3 

Results of the experimental work performed by Youssef et al. (2008) are used to validate the 

accuracy of the results obtained by the developed method. Two large scale Beam-Column Joints 

(BCJs) are constructed and tested under reversed-cyclic loading applied at the free beam tip. The 

two joints are identical in dimensions and reinforcement details except the type of reinforcement 

used in the plastic hinge region, Fig. II-1. At the plastic hinge region, one of the two joints 

(BCJ1) is reinforced with regular steel bars, while the second joint (BCJ2) is reinforced with 

superelastic SMA bars. Since the purpose of this section is validating the accuracy of the 

developed program and the accuracy of using of moment-area method with SMA RC beams, the 

BCJs are simplified and modelled as cantilever beams. This simplification is based on the results 

obtained from the finite element model developed by Elbahy et al. (2010). This model is built for 

BCJ2 using the Seismostruct software (Seismosoft 2018), where static push-over analysis is 

performed for the joint.  

Vertical deformation at the beam tip can be divided into three components that are associated 

with: (i) column flexural rotation; (ii) beam-column joint shear deformation; and (iii) beam 

flexural rotation. Results obtained from the finite element model showed that the column 

behaved in an elastic manner and had no cracks. Its rotation at the beam-column joint reached an 

estimated maximum value of 0.00018 rad. The joint was detailed according to the current 
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seismic standards and its shear deformations reached a maximum value of 0.00045 rad. The 

maximum contribution of those two components to the beam tip deformation is 1.14 mm which 

is about 3.00% of the maximum measured deformation. This insignificant contribution of the 

two components validates the assumption of modelling the BCJs as cantilever beams. 

Fig. II-1: Reinforcement details of tested BCJs (Youssef et al 2008). 
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The geometry of the two joints beams are identical, Fig. II-1. The beams have 1765 mm span, 40 

mm cross-section height, and 250 mm cross-section width. Amounts and arrangements of 

transverse reinforcement are also identical for the two beams. Stirrups are 10M in diameter and 

are spaced at 80 mm for 800 mm length adjacent to the support and spaced at 120 mm elsewhere.  

The type of longitudinal reinforcement in the plastic hinge regions of the two beams is different. 

Two superelastic SMAs bar (20.6 mm diameter) are used at the top and bottom of the plastic 

hinge region of BCJ2 beam, while 2-20M steel bars are used at the top and bottom of BCJ1 

beam. The plastic hinge region length is calculated as 360 mm from the face of the column (i.e. 

fixed support). Regular 2-20M steel bars are used outside the plastic hinge region of BCJ2 beam. 

Steel couplers are used to connect the SMA bars to the steel bars.   

Average concrete compressive strength is found to be 53.50 MPa for BCJ1 and 53.70 MPa for 

BCJ2. Average split cylinder tensile strength is found to be 3.50 MPa for the BCJ1 and 2.80 MPa 

for BCJ2. Steel Reinforcing bars of JBC1 beam have yield strength of 520 MPa, ultimate 

strength of 653 MPa, and a modulus of elasticity of 198 GPa. Steel reinforcing bars of JBC2 

beam have yield strength of 450 MPa, ultimate strength 650 MPa, and a modulus of elasticity of 

193 GPa. Steel of the stirrups has a yield strength of 422 MPa and ultimate strength of 682 MPa. 

Youssef et al. (2008) determined the mechanical properties of the superelastic SMAs bars by 

experimentally testing them under cyclic loading. The SMA bars critical stress is 401 MPa at a 

critical strain of 0.75%. The modulus of elasticity is calculated as 62.5 GPa. The residual 

deformation is determined as 0.73% when the SMA bar was loaded up to 6.0% strain. In this 

study, envelop of the SMA test results is used to obtain an idealized stress-strain relationship, 
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Fig. II-2. The idealized relationship is then used in the developed program to accurately model 

the behaviour of the SMA bars.  
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Fig. II-2: Idealized stress-strain model for SMAs bars. 

Moment-curvature analysis is first performed for different cross-sections of the two beams. 

Considering the type of longitudinal reinforcement and taking into account the effect of concrete 

confinement (i.e. stirrups spacing), moment-curvature analysis is performed for two cross-

sections of BCJ1 beam and for three different cross-sections of BCJ2 beam. Results of BCJ2 

beam are shown in Fig. II-3. Obtained results are then utilized in the moment-area method to 

predict the load-displacement response of the two beams.  
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Fig. II-3: Moment-curvature analysis for steel and SMAs RC cross-sections. 

Load-displacement results of BCJ1 beam are shown in Fig. II-4, while the load-displacement 

results of BCJ2 are shown in Fig. II-5. Good agreement can be observed for the two samples. 



 

238 
 

Displacement (mm)

-100 -50 0 50 100

Lo
ad

 (
kN

)

-100

-50

0

50

100

Experimental
Analytical with Ft

Analytical without Ft

 

Fig. II-4: Load-displacement relationship for BCJ1. 
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Fig. II-5: Load-displacement relationship for BCJ2. 
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Alam et al. (2008) reported that the significant reduction in initial stiffness at the tension side is 

attributed to SMA bar slip into the coupler. The load-slip relationship reported by Alam et al. 

(2008) is used in this study and converted to beam tip load-displacement relationship. The effect 

of bar slip is then subtracted from the analytical load-displacement relationship, Fig. II-5. As 

shown in the figure, a significant reduction in the initial stiffness of the analytical load-

displacement relationship is observed.  
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Appendix III: Validation of the Sectional Analysis Method Developed in 

Chapter 4 

The work done by Saiidi et al. (2007) is used to validate the accuracy of the results obtained by 

the developed program. Saiidi et al. (2007) tested eight reinforced concrete beams under quasi-

static loading. The beams have the same dimensions. The differences between the eight beams 

are the type and amount of reinforcement at the mid-span. Four beams are reinforced with SMA 

bars at mid-span, while the other four are reinforced with conventional steel bars. Details of the 

types and amounts of reinforcement used in the eight beams are summarized in Table III-1. 

Idealized stress-strain relationships of the used reinforcement materials are introduced in Fig. 

III-1. 

Table III-1: Properties of the tested beams 

Specimen 
Mid-span SMAs 

reinforcement 
Yielding (Critical) 
Strain (mm/mm) 

Yielding (critical 
stress) (MPa) 

Modulus of 
Elasticity (MPa) 

BNL1 1 ϕ 6.40 mm 0.013 400 34078 

BNL2 2 ϕ 6.40 mm 0.013 400 34078 

BNH1 1 ϕ 9.50 mm 0.013 510 39245 

BNH2 2 ϕ 9.50 mm 0.013 510 39245 

BSL1 1 # 3 bars 0.0021 440 209524 

BSL2 2 # 3 bars 0.0021 440 209524 

BSH1 1 # 4 bars 0.0009 420 466667 

BSH2 2 # 4 bars 0.0009 420 466667 
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Fig. III-1: Experimental versus idealized stress-strain curves of the materials used as 

external reinforcement. 

Fig. III-2 illustrates the details of the tested beams. The beams are 1530 mm long. The beams 

have cross-sectional dimensions of 127x152 mm at mid-span (i.e. mid-sections) and 127x305 

mm at the ends (i.e. outer-sections).  The beams are tested under two point symmetric loads that 

are placed 152 mm apart. This ensures subjecting the mid-span cross-sections to constant 

flexure. 
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Fig. III-2: Beams dimensions and test setup 

It is also shown in the figure that the reinforcement at mid-span is attached to the beam using 

external angles. In addition to the external reinforcement, two internal longitudinal bars are 

placed at the top and bottom of the mid-sections to avoid beam damage during handling. 

However, to ensure avoiding any contribution of the internal bars to the tensile strength, the 

internal bottom bar is cut before the test. 

The developed program is used in this section to predict the moment-curvature and load-bar 

strain behaviours of the tested beams. Fig. III-3 shows the experimental moment-curvature 

results of the SMA RC beams plotted versus the analytical results obtained using the developed 

program, while Fig. III-4 shows the experimental and analytical load-external bar strain at mid-

span. As shown in the figures, good agreements between the experimental and analytical results 

are observed. It should be noted that the load-bar strain results of BNH1 are not available, as the 

measuring strain gauge was damaged during the test (Saiidi et al.2007). 

 



 

244 
 

0

1.5

3

4.5

6

0 0.01 0.02 0.03 0.04 0.05

M
o
m
e
n
t 
(k
N
.m

)

Curvature (rad/m)

Experimental Analytical

0

3

6

9

12

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

M
o
m
e
n
t 
(k
N
.m

)

Curvature (rad/m)

Experimental Analytical

(a) BNL1 (b) BNL2 

0

1

2

3

4

5

6

7

8

9

10

0 0.05 0.1 0.15 0.2

M
o
m
e
n
t 
(k
N
.m

)

Curvature (rad/m)

Experimental Analytical

0

5

10

15

20

25

0 0.05 0.1 0.15 0.2

M
o
m
e
n
t 
(k
N
.m

)

Curvature (rad/m)

Experimental Analytical

(c) BNH1 (d) BNH2 
Fig. III-3: Experimental versus analytical moment-curvature results for the SMA RC beams 
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Fig. III-4: Experimental versus analytical load-bar strain results for the SMA RC beams 

The program capability to predict the behaviour of RC beams strengthened using external steel 

bars is also investigated using the results of the other four tested beams. Similar procedure is 

used in the analysis (i.e. two analytical curves). Figs. III-5 and III-6 show the comparison 

between the experimental and analytical moment-curvature and load-bar strain results. As shown 

in the figures, good agreement between the experimental and analytical results is observed.  

 

  



 

246 
 

0

3

6

9

12

0 0.015 0.03 0.045 0.06

M
o
m
e
n
t 
(k
N
.m

)

Curvature (rad/m)

Experimental Analytical

0

4

8

12

16

20

0 0.01 0.02 0.03 0.04

M
o
m
e
n
t 
(k
N
.m

)

Curvature (rad/m)

Experimental Analytical

(a) BSL1 (b) BSL2 

0

4

8

12

16

0 0.02 0.04 0.06 0.08

M
o
m
e
n
t 
(k
N
.m

)

Curvature (rad/m)

Experimental Analytical

0

10

20

30

0 0.02 0.04 0.06 0.08 0.1

M
o
m
e
n
t 
(k
N
.m

)

Curvature (rad/m)

Experimental Analytical

(c) BSH1 (d) BSH2 

Fig. III-5: Experimental versus analytical moment-curvature results for the steel RC beams 
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Fig. III-6: Experimental versus analytical load-bar strain results for the steel RC beams 

 

 

 

 

 



 

248 
 

Appendix IV: Flexural Behaviour of RC Beams Externally Reinforced with 

SMA Bars (internal steel is not cut) 

IV.1   ASMAS/AS PARAMETER 

The effect of varying the ratio between the external SMA reinforcement to the internal steel 

reinforcement is investigated in this subsection. Seven different ASMA/As ratios are used in the 

analysis. These ratios are: ASMA/As = 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, and 6.0. Fig. IV-1(a) shows the 

effect of increasing the value of the ASMA/As ratio on the amount of residual displacement at 

complete unloading. Dramatic reduction in the amount of residual deformations can be obtained 

by increasing the ASMA/As ratio. Increasing the ASMA/As ratio from 0.50 to 6.0 resulted in reducing 

the amount of residual displacements from 95% to 5%. It is also clear from the figure that 

increasing the load level does not significantly change this trend. Same trend is observed when 

the load level increased from 1.0 δy to 9.0 δy.  

Increasing the ASMA/As ratio resulted in significant increase (400%) in the moment capacity of the 

beam at different loading levels, Fig. IV-1(b). The increase in moment capacity occurred in a 

linear fashion and is not significantly affected by the loading level. Initial stiffness of the beam is 

also significantly increased by increasing the ASMA/As ratio, Fig. IV-1(c). Increasing the ASMA/As 

from 0.50 to 6.0 resulted in 150% increase in the stiffness ratio.   
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Fig. IV-1: Effect of varying the ASMA/As ratio on the strengthened beam behaviour 
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IV.2   LOAD LEVEL PARAMETER 

The effect of varying the applied load level on the behaviour of RC beams strengthened using 

external SMA bars is investigated in this subsection. The analysis is performed for different 

values of ASMA/As ratios. Fig. IV-2 shows the results of the analyzed beams. It is clear from the 

figure that increasing the load level for low ratios of ASMA/As (i.e. 0.5, 1.0 and 2.0) increases the 

amount of residual deformations, Fig. IV-2(a). The δr/δmax values increased from 40%-50% at 

load level = 1.0 δy to almost 90% at load level = 9.0 δy. This is attributed to the significant 

yielding occurs in the internal steel bars. Since the behaviour of the internal steel bars is more 

significant than the external SMA bars, significant residual displacements are obtained at 

complete unloading. Increasing the ASMA/As ratio beyond this limit (i.e. 4.0 to 6.0) eliminated the 

significant effect of increasing the load level. The reason behind this is that the overall behaviour 

of the beam is controlled by the external SMA bars, the beam is capable of recovering almost all 

of the residual deformations.    
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Fig. IV-2: Effect of varying the applied load level on the strengthened beam behaviour 
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IV.3   LSMA/L PARAMETER  

The effect of varying the external SMA bars length on the behaviour of the retrofitted beams is 

investigated in this subsection. SMA bars length is represented in this study by the ratio (LSMA/L) 

which is the ratio between the length of the used SMA bars to the total length of the beam. Nine 

different SMA bars length are assumed in the analysis. Each length is analyzed at different 

ASMA/As ratios and at different load levels. Results of the analysis are discussed in this subsection. 

Figs. IV-3 and IV-4 show the effect of varying the LSMA/L ratio on the amount of residual 

displacements upon unloading for different ASMA/As ratios and for different load levels. It is clear 

from the figures that increasing the length of the SMA bars increases the amount of residual 

displacements represented by δr/δmax values for small ASMA/As ratios (i.e. 0.50 to 3.0). This 

increase in residual displacement can be attributed to the significant increase in the beam 

ductility gained by adding the external SMA bars to the beams. This allows the internal steel bars 

to undergo very large deformations beyond their yielding limits. At complete unloading, the 

internal steel bars keep large amounts of residual deformations, and in turns the beam keeps a 

large amount of residual displacement.  

It can also be concluded from the figures that increasing the ASMA/As ratio helps in reducing the 

amount of residual displacement caused by increasing the LSMA/L ratio. For example, increasing 

the ASMA/As ratio from 0.50 to 6.0 reduced the amount of residual displacement δr/δmax from 53% 

to 20% at load level = 1.0 δy, and from 93% to 10% at load level = 9.0 δy.  
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Fig. IV-3: Effect of varying the LSMA/L ratio on the amount of residual displacements in 

the strengthened beams at different ASMA/As ratios 
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Fig. IV-4: Effect of varying the ASMA/As ratio on the amount of residual displacements in the 
strengthened beams at different load levels 
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Fig. IV-5 shows that the retrofitted beams strength is not affected by increasing the LSMA/L ratio. 

The reason behind this is that the SMA bars are coupled to regular steel bars which have double 

the cross-sectional area to ensure that most of the deformations and failure occur in the SMA 

region. Thus, the maximum strength of the beam is equal to the strength of SMA RC section and 

is independent of the SMA bars length. 
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Fig. IV-5: Effect of varying the LSMA/L ratio on the moment capacity of the strengthened beams 

at different ASMA/As ratios 
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The effect of varying the LSMA/L ratio on the initial stiffness of the beam is also studied. As 

shown in Fig. IV-6, increasing the length of the SMA bars reduces the initial stiffness of the 

beam. This reduction is very significant (700%) in case of low ASMA/As ratios, and much less 

significant (100%) at high ASMA/As values. This is attributed to the way the retrofitted beam is 

designed. The SMA bars are coupled to steel bars that have double the cross-sectional area. This 

results in a weaker SMA cross-section. The reason behind this is concentrating the deformations 

within the SMA region.  
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Fig. IV-6: Effect of varying the LSMA/L ratio on the initial stiffness of the retrofitted beams 

The effect of varying the length of the external SMA bars on the displacement at which yielding 

in the external SMA bars starts is also introduced. Increasing the length of the SMA bars resulted 

in increasing the δy-rt/δy-org ratio, Fig. IV-7. This increase is insignificant at the small LSMA/L 

values, and increases as the length of the SMA bars increase. The rate of increasing is higher (i.e. 

40% to 180%) for the cases of low ASMA/As values. The ratio δy-rt/δy-org is independent of the load 

level. 
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Fig. IV-7: Effect of varying the LSMA/L ratio on the displacement at which yielding in the 

external SMA bar starts to occur in the strengthened beams 

 

The effect of varying the length of the external SMA bars on the maximum displacement of the 

retrofitted beam is shown in Fig. IV-8. Increasing the length of the SMA bars increases the δmax-

rt/δmax-org ratio. This increase is more pronounced in case of low ASMA/As ratios. Similar trend is 

observed at different loading levels. Similar to the yielding displacements, the rate of increase in 

the δmax-rt/δmax-org ratio is more significant in case of low ASMA/As ratios. 
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Fig. IV-8: Effect of varying the LSMA/L ratio on the maximum displacement of the 
strengthened beams 
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Appendix V: Regression Analysis for RC Beams Externally Reinforced with 

SMA Bars (internal steel is not cut) 

Tables V-1 to V-10 presents the final regression models developed for the five outputs (δr/δmax, 

Mrt/Morg, STrt/STorg, δy-rt/δy-org, δmax-rt/δmax-org). These models are the most statistically significant 

models achieved after conducting numerous numbers of trials. These trials included trying 

different transformations with different parameters for each output. Equations [V-1:V-5] 

represent the summary of the final regression models for the five outputs. For each output, two 

equations are introduced. The first equation is a general form that accounts for the status of the 

internal steel bars status (cut OR not cut). The second equation is for the case where the internal 

steel bars are not cut.    

ln (δr/δmax) = -3.12743 x (Internal steel bar status) + 0.299072 x (LSMAs/L) - 0.01998 x (ASMAs/As)
2 

+ 0.096038 x (Load Level) +  3.013744   [V-1(a)]  

δr/δmax = 45.95305x (LSMAs/L) – 31.2202 x (LSMAs/L)2 - 13.744 x ASMAs/As + 9.517148 x (Load 

level) – 0.6793 x (Load level)2 + 49.44006   [V-1(b)] 

Mrt/Morg = -83.1246 x (Internal steel bar status) + 82.01286 x (ASMAs/As) + 6.598675 x (Load 

level) + 58.1333      [V-2(a)]     

Mrt/Morg = 81.29762 x (ASMAs/As) + 7.423727 x (Load level) + 56.20484    

        [V-2(b)] 
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ln(STrt/STorg) = -0.63235 x ln(LSMAs/L) + 0.646359 x ln(ASMAs/As) -0.68111 x (internal steel bar 

status) + 4.204217      [V-3(a)] 

STrt/STorg = -1306.05 x (LSMAs/L) + 847.5907 x (LSMAs/L)2 + 74.77563 x (ASMAs/As) - 2.76594 x 

(ASMAs/As)
2 + 432.8192     [V-3(b)] 

ln(δy-rt/δy-org) = 9.278531 x (LSMAs/L) -11.9282 x (LSMAs/L)2 + 0.149841 x (ASMAs/As) - 0.03233 x 

(ASMAs/As)
2 + 2.780991     [V-4(a)] 

ln(δy-rt/δy-org) = 10.22022 x (LSMAs/L) - 12.6565 x (LSMAs/L)2 - 0.09954 x (ASMAs/As) + 2.94872 

        [V-4(b)] 

ln(δmax-rt/δmax-org) =  15.33261 x LSMAs/L - 18.1243 x (LSMAs/L)2 - 0.03061 x (ASMAs/As)
2 + 0.269225 

x (Internal steel bar status) + 3.633697   [V-5(a)] 

ln(δmax-rt/δmax-org) = 16.63835 x (LSMAs/L) - 18.9918 x (LSMAs/L)2 - 0.24879 x (ASMAs/As) +  

3.699835       [V-5(b)] 
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Table V-1: Regression model for δr/δmax – General model 

Source SS df MS Number of obs = 700 

Model 1812.468 4 453.117 
F(  4,   695) = 645.59 

Prob > F = 0 

Residual 487.795 695 0.701863
R-squared = 0.7879 

Adj R-squared = 0.7867 

Total 2300.263 699 3.290791 Root MSE = 0.83777 

ln (δr/δmax) Coef. Std. Err. t P>t [95% Conf. Interval] 

Internal steel 
bar status 

-3.12743 0.06333 -49.38 0 -3.25177 -3.00309 

LSMAs/L 0.299072 0.103674 2.88 0.004 0.09552 0.502623

(ASMAs/As)
2 -0.01998 0.002543 -7.86 0 -0.02497 -0.01499 

Load Level 0.096038 0.011195 8.58 0 0.074057 0.118018

Constant 3.013744 0.088924 33.89 0 2.839151 3.188336

 
Table V-2: Regression model for δr/δmax – Internal steel bars are not cut 

Source SS df MS Number of obs = 350 

Model 275637.5 5 55127.5 
F(  5,   344) = 317.85 

Prob > F = 0 

Residual 59662.16 344 173.4365 
R-squared = 0.8221 

Adj R-squared = 0.8195 
Total 335299.7 349 960.7441 Root MSE = 13.17 

δr/δmax Coef. Std. Err. t P>t [95% Conf. Interval] 

LSMAs/L 45.9530 9.19569 5 0 27.86619 64.0399 

(LSMAs/L)2 -31.2202 8.99130 -3.47 0.001 -48.905 -13.5354 

ASMAs/As -13.744 0.37090 -37.06 0 -14.4735 -13.0145 

Load level 9.51715 1.08076 8.81 0 7.391418 11.64288 

(Load level)2 -0.6793 0.10517 -6.46 0 -0.88616 -0.47244 

Constant 49.4401 2.99753 16.49 0 43.54426 55.33586 
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Table V-3: Regression model for Mrt/Morg – General model 

Source SS df MS Number of obs = 700 

Model 18412437 3 6137479 
F(  3,   696) = 63693.9 

Prob > F = 0 

Residual 67065.83 696 96.3590 
R-squared = 0.9964 

Adj R-squared = 0.9964 

Total 18479502 699 26437.1 Root MSE = 9.8163 

Mrt/Morg Coef. Std. Err. t P>t [95% Conf. Interval] 

Internal steel 

bar status 
-83.1246 0.74204 -112.02 0 -84.5815 -81.6677 

ASMAs/As 82.01286 0.19549 419.53 0 81.62904 82.3967 

Load level 6.598675 0.13118 50.3 0 6.341128 6.85622 

Constant 58.1333 1.03247 56.3 0 56.10616 60.1604 

 

Table V-4: Regression model for Mrt/Morg – Internal steel bars are not cut 

Source SS df MS Number of obs = 350 

Model 8486756 2 4243378 
F(  2,   347) = 49246.65 

Prob > F = 0 

Residual 29899.54 347 86.16581 
R-squared = 0.9965 

Adj R-squared = 0.9965 

Total 8516655 349 24403.02 Root MSE = 9.2826 

Mrt/Morg Coef. Std. Err. t P>t [95% Conf. Interval] 
ASMAs/As 81.29762 0.261432 310.97 0 80.78343 81.81181 

Load level 7.423727 0.175424 42.32 0 7.078699 7.768754 

Constant 56.20484 1.288521 43.62 0 53.67054 58.73913 
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Table V-5: Regression model for STrt/STorg – General model 

Source SS df MS Number of obs = 700 

Model 529.995 3 176.665 
F(  3,   696) = 1710.6 

Prob > F = 0 

Residual 71.8805 696 0.10328 
R-squared = 0.8806 

Adj R-squared = 0.8801 

Total 601.875 699 0.86105 Root MSE = 0.32137 

ln(STrt/STorg) Coef. Std. Err. t P>t [95% Conf. Interval] 

ln(LSMAs/L) -0.63235 0.013053 -48.45 0 -0.65798 -0.60672 

ln(ASMAs/As) 0.646359 0.014458 44.71 0 0.617973 0.674745 

Internal steel  

bar status 
-0.68111 0.024293 -28.04 0 -0.72881 -0.63341 

Constant 4.204217 0.027066 155.33 0 4.151077 4.257356 

 
Table V-6: Regression model for STrt/STorg – Internal steel bars are not cut 

Source SS df MS Number of obs = 350 

Model 12795119 4 3198780 
F(  4,   345) = 707.75 

Prob > F = 0 

Residual 1559288 345 4519.676 
R-squared = 0.8914 

Adj R-squared = 0.8901 

Total 14354407 349 41130.11 Root MSE = 67.229 

STrt/STorg Coef. Std. Err. t P>t [95% Conf. Interval] 

LSMAs/L -1306.05 46.94265 -27.82 0 -1398.38 -1213.72 

(LSMAs/L)2 847.5907 45.89925 18.47 0 757.3131 937.8683 

ASMAs/As 74.77563 8.097761 9.23 0 58.84844 90.70283 

(ASMAs/As)
2 -2.76594 1.234135 -2.24 0.026 -5.19331 -0.33856 

Constant 432.8192 13.26699 32.62 0 406.7248 458.9136 
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Table V-7: Regression model for δy-rt/δy-org – General model 

Source SS df MS Number of obs = 700 

Model 1043.18 4 260.795 
F(  4,   695) = 458.96 

Prob > F = 0 

Residual 394.917 695 0.56823 
R-squared = 0.7254 

Adj R-squared = 0.7238 

Total 1438.10 699 2.05736 Root MSE = 0.75381 

ln(δy-rt/δy-org) Coef. Std. Err. t P>t [95% Conf. Interval] 

LSMAs/L 9.278531 0.372186 24.93 0 8.547788 10.00927 

(LSMAs/L)2 -11.9282 0.363913 -32.78 0 -12.6427 -11.2137 

ASMAs/As 0.149841 0.064203 2.33 0.02 0.023785 0.275896 

(ASMAs/As)
2 -0.03233 0.009785 -3.3 0.001 -0.05154 -0.01312 

Constant 2.780991 0.105188 26.44 0 2.574467 2.987514 

 

Table V-8: Regression model for δy-rt/δy-org – Internal steel bars are not cut 

Source SS df MS Number of obs = 350 

Model 530.4985 3 176.8328 
F(  3,   346) = 338.37 

Prob > F = 0 

Residual 180.8212 346 0.522605 
R-squared = 0.7458 

Adj R-squared = 0.7436 

Total 711.3197 349 2.038165 Root MSE = 0.72291 

ln(δy-rt/δy-org) Coef. Std. Err. t P>t [95% Conf. Interval] 

LSMAs/L 10.2202 0.50478 20.25 0 9.2274 11.2130 

(LSMAs/L)2 -12.6565 0.49356 -25.64 0 -13.6273 -11.6858 

ASMAs/As -0.09954 0.02036 -4.89 0 -0.13958 -0.05949 

Constant 2.94872 0.11302 26.09 0 2.726403 3.17104 
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Table V-9: Regression model for δy-rt/δy-org – General model 

Source SS df MS Number of obs = 700 

Model 1043.18 4 260.795 
F(  4,   695) = 458.96 

Prob > F = 0 

Residual 394.917 695 0.56823 
R-squared = 0.7254 

Adj R-squared = 0.7238 

Total 1438.10 699 2.05736 Root MSE = 0.75381 

ln(δy-rt/δy-org) Coef. Std. Err. t P>t [95% Conf. Interval] 

LSMAs/L 9.278531 0.372186 24.93 0 8.547788 10.00927 

(LSMAs/L)2 -11.9282 0.363913 -32.78 0 -12.6427 -11.2137 

ASMAs/As 0.149841 0.064203 2.33 0.02 0.023785 0.275896 

(ASMAs/As)
2 -0.03233 0.009785 -3.3 0.001 -0.05154 -0.01312 

Constant 2.780991 0.105188 26.44 0 2.574467 2.987514 

 

Table V-10: Regression model for δy-rt/δy-org – Internal steel bars are not cut 

Source SS df MS Number of obs = 350 

Model 530.499 3 176.833 
F(  3,   346) = 338.37 

Prob > F = 0 

Residual 180.8212 346 0.522605 
R-squared = 0.7458 

Adj R-squared = 0.7436 

Total 711.3197 349 2.038165 Root MSE = 0.72291 

ln(δy-rt/δy-org) Coef. Std. Err. t P>t [95% Conf. Interval] 

LSMAs/L 10.22022 0.504778 20.25 0 9.2274 11.21304 

(LSMAs/L)2 -12.6565 0.493558 -25.64 0 -13.6273 -11.6858 

ASMAs/As -0.09954 0.02036 -4.89 0 -0.13958 -0.05949 

Constant 2.94872 0.113032 26.09 0 2.726403 3.171036 
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Appendix VI: Regression Analysis for RC Beams Externally Reinforced with 

Steel Bars (internal steel is not cut) 

After performing the parametric study, the results are then arranged in a database format with all 

records of the study. Multiple linear regression technique is used to determine the relationships 

between the inputs and outputs of the study. Numerous number of models based on different 

transformations (i.e. linear transformations, quadratic power transformation, and logarithmic 

transformation) are first tried. The best models that relate the parametric study inputs to outputs 

are then chosen and reported in this study. A total of eight models for the four outputs are 

reported. 

A total of 207 data sets are used in establishing the statistical models. These data represents all 

the data obtained from the parametric study. All inputs and outputs of this study are kept 

dimensionless. The inputs of the models are: (i) type of reinforcement (steel or SMA); (ii) 

internal reinforcement status (bars are cut or not cut); (iii) AS-ext/As ratio; (iv) LS-ext/L ratio; and (v) 

load level. The outputs of the parametric study are: δr/δmax, Mrt/Morg, STrt/STorg, and ENrt/ENorg. 

Descriptive statistics of the used data are presented in Table VI-1.  

Correlation analysis is first used with the data to determine the correlation between each pair of 

the variables and noting the highly correlated ones and their signs. The correlation matrix is 

determined using the STATA software V.12 and is shown in Table VI-2. Tables VI-3 to VI-10 
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present the final statistical models obtained for the four outputs of the parametric study. 

Equations [VI-1:VI-4] represent the summary of the final statistical models for the four outputs. 

For each output, two equations are introduced. The first equation is a general form that accounts 

for the type of reinforcement (SMA or steel). The second equation is for the case of external steel 

bars.    

(δr/δmax) = -1781.73 x (Type of Reinforcement) + 429.9668 x (LS-ext/L) – 964.33 x (AS-ext/As) + 

350.8894 x (Load Level) + 5758.656       [1(a)] 

 (δr/δmax)
2 =  289.6758  x ln (LS-ext/L) – 518.564 x (AS-ext/As) + 3186.173 x ln (Load Level) + 

1851.773            [1(b)] 

(Mrt/Morg) = -15.1265 x (LS-ext/L) + 40.13077 x (AS-ext/As) + 7.201026 x (Load level) + 133.8786 

           [2(a)] 

 (Mrt/Morg)
2 = -23770 x (LS-ext/L) + 23409.91x (AS-ext/As) - 33875.4 x (Load level) + 3672.185 x 

(Load level)2 + 95517.42        [2(b)] 

 
ln (STrt/STorg)= -43.33771 x (Type of Reinforcement) - 60.6257 x (LS-ext/L) + 56.03033 x (LS-

ext/L)2 + 55.69926 x (AS-ext/As) - 2.513029 x (AS-ext/As)
2 - 149.6919 x (Load level) + 12.76711 x 

(Load level)2 + 566.668        [3(a)] 

 
 

ln (STrt/STorg) = -0.14166 x (LS-ext/L) + 0.286813 x (AS-ext/As) - 0.02229 x (AS-ext/As)
2  - 0.45985 x 

(Load level) + 0.045794 x (Load level)2 + 6.170776     [3(b)] 

 
(ENrt/ENorg)

2 = 10110.78 x (Type of Reinforcement) - 16274.1 x (LS-ext/L)2 + 24381.64 x (AS-

ext/As) - 1386.17 x (AS-ext/As)
2 + 53783.82 x (Load level) - 4497.36 x (Load level)2 - 112920 

           [4(a)] 
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Ln (ENrt/ENorg) = 0.227222 x (AS-ext/As) - 0.01926 x (AS-ext/As)
2 + 0.168883 x (Load level) - 

0.01885 x (Load level)2 + 4.854691              [4(b)] 

 

 

Table VI-1: Descriptive statistics of the used data 

Variable 
Number of 

Observations 
Mean 

Standard 
Deviation 

Minimum 
value 

Maximum 
value 

Internal steel bars 
status 207 0.169082 0.375733 0 1 

Type of 
Reinforcement 

207 0.826087 0.379954 0 1 

LS-ext/L 207 0.328452 0.261934 0.05 0.9333 

AS-ext/As 207 2.879227 1.512859 0.5 5 

Load level (%) 207 3.768116 0.812134 3.333333 5.833333 

δr/δmax (%) 207 51.47028 18.05731 18.83843 80.811 

Mrt/Morg (%) 207 271.5901 62.80061 161.9011 385.8008 

STrt/STorg (%) 207 280.2387 69.36226 121.2801 408.0004 

ENrt/ENorg (%) 207 285.2922 50.92851 148.0198 428.5006 
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Table VI-2: Correlation coefficients between all variables 

 

Internal 
steel bars 

status 

Type of 
Reinforcement 

LS-ext/L AS-ext/As 
Load 
level 

δr/δmax Mrt/Morg STrt/STorg ENrt/ENorg 

Internal steel bars 

status 
1 

        

Type of 

Reinforcement 
0.21** 1 

       

LS-ext/L 0.16** 0.11** 1 

AS-ext/As 0.04* -0.04* -0.00* 1 

Load level -0.24** -0.46*** -0.13** 0.04* 1 

δr/δmax -0.13** -0.40*** 0.02* -0.81†† 0.25** 1 

Mrt/Morg 0.00* -0.08* -0.08* 0.971†† 0.14** -0.77† 1 

STrt/STorg 0.12** -0.05* -0.01* 0.89†† -0.29** -0.75† 0.85†† 1 

ENrt/ENorg -0.10** -0.10** -0.16** 0.87†† 0.34*** -0.65† 0.90†† 0.62† 1 

* None or very weak correlation (-0.1 to 0.1)     

** Weak correlation (-0.3 to -0.1 or 0.1 to 0.3) 

*** Moderate correlation (-0.5 to -0.3 or 0.3 to 0.5)     

† Strong correlation (-0.5 to -0.8 or 0.5 to 0.8)   

†† Very strong correlation (>0.8) 
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Table VI-3: Regression model for δr/δmax for both steel and SMA retrofitted RC beams 

Source SS df MS Number of obs = 207 

Model 5.62E+08 4 1.4E+08 F(  4, 202) = 364.84 
Prob > F = 0 

Residual 77758803 202 384944.6
R-squared = 0.8784 

Adj R-squared = 0.876 
Total 6.4E+08 206 3104488 Root MSE = 620.44 

δr/δmax Coef. Std. Err. t P>t [95% Conf. Interval]

Type of Rft -1781.73 128.4904 -13.87 0 -2035.09 -1528.38 

LS-ext/L 429.9668 166.6478 2.58 0.011 101.3745 758.5591

AS-ext/As -964.33 28.60543 -33.71 0 -1020.73 -907.926 

Load level 350.8894 60.26099 5.82 0 232.0682 469.7107

Constant 5758.656 311.51 18.49 0 5144.427 6372.884

 

Table VI-4: Regression model for δr/δmax for steel retrofitted RC beams 

Source SS df MS Number of obs = 36 

Model 4455916 3 148531 
F(  3, 32) = 75.46 

Prob > F = 0 

Residual 6298652 32 196833 
R-squared = 0.8762 

Adj R-squared = 0.8645 

Total 5085781 35 145308 Root MSE = 443.66 

(δr/δmax)
2 Coef. Std. Err. t P>t [95% Conf. Interval]

ln (LS-ext/L) 289.6758 76.66331 3.78 0.001 133.5177 445.8338

AS-ext/As -518.564 45.28071 -11.45 0 -610.798 -426.33 

ln (Load level) 3186.173 354.1277 9 0 2464.838 3907.507

Constant 1851.773 568.5884 3.26 0.003 693.5962 3009.95 
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Table VI-5: Regression model for Mrt/Morg for both steel and SMA retrofitted RC beams 

Source SS df MS Number of obs = 207 

Model 777458.5 3 259152.8 F(  3, 203) = 1503.58 
Prob > F = 0 

Residual 34988.42 203 
172.3567 R-squared = 0.9569 

Adj R-squared = 0.9563 
Total 812446.9 206 3943.917 Root MSE = 13.128 

Mrt/Morg Coef. Std. Err. t P>t [95% Conf. Interval]

LS-ext/L -15.1265 3.520577 -4.3 0 -22.0681 -8.18493 

AS-ext/As 40.13077 0.605179 66.31 0 38.93753 41.32402 

Load level 7.201026 1.136518 6.34 0 4.960132 9.44192 

Constant 133.8786 4.914939 27.24 0 124.1877 143.5694 

 

Table VI-6: Regression model for Mrt/Morg for steel retrofitted RC beams 

Source SS df MS Number of obs = 36 

Model 5.35E+10 4 1.34E+10 
F(  4, 31) = 295.89 

Prob > F = 0 

Residual 1.40E+09 31 45231786 
R-squared = 0.9745 

Adj R-squared = 0.9712 

Total 5.49E+10 35 1.57E+09 Root MSE = 6725.5 

(Mrt/Morg)
2 Coef. 

Std. 
Err. 

t P>t 
[95% Conf. 

Interval] 
LS-ext/L -23770 6088.94 -3.9 0 -36188.5 -11351.6 

AS-ext/As 23409.91 686.414 34.1 0 22009.96 24809.86

Load level -33875.4 14844.8 -2.28 0.03 -64151.7 -3599.16 

(Load 

level)2 
3672.185 1614.11 2.28 0.03 380.1874 6964.183

Constant 95517.42 33093.9 2.89 0.007 28022.05 163012.8
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Table VI-7: Regression model for STrt/STorg for both steel and SMA retrofitted RC 

beams 

Source SS df MS Number of obs = 207 

Model 934848.14 7 133549.7
F(  5, 165) = 472.53 

Prob > F = 0 

Residual 56243.2405 199 282.6293
R-squared = 0.9433 

Adj R-squared = 0.9413 

Total 991091.382 206 4811.123 Root MSE = 16.812 

ln (STrt/STorg) Coef. Std. Err. t P>t [95% Conf. Interval] 

Type of Rft -43.33771 3.581911 -12.1 0 -50.40108 -36.27434

LS-ext/L -60.6257 15.90945 -3.81 0 -91.99844 -29.25296

(LS-ext/L)2 56.03033 17.00542 3.29 0.001 22.49638 89.56428 

AS-ext/As 55.69926 3.709661 15.01 0 48.38397 63.01455 

(AS-ext/As)
2 -2.513029 0.627414 -4.01 0 -3.750262 -1.275795

Load level -149.6919 23.12186 -6.47 0 -195.2872 -104.0966

(Load level)2 12.76711 2.578975 4.95 0 7.68148 17.85273 

Constant 566.668 50.26954 11.27 0 467.5386 665.7973 
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Table VI-8: Regression model for STrt/STorg for steel retrofitted RC beams 

Source SS df MS Number of obs = 36 

Model 2.424268 5 0.484854 
F(  5, 30) = 373.03 

Prob > F = 0 

Residual 0.038993 30 0.0013 
R-squared = 0.9842 

Adj R-squared = 0.9815 

Total 2.463262 35 0.070379 Root MSE = 0.03605 

ln (STrt/STorg) Coef. Std. Err. t P>t [95% Conf. Interval]
LS-ext/L -0.14166 0.03264 -4.34 0 -0.20832 -0.075 

AS-ext/As 0.286813 0.019471 14.73 0 0.247049 0.326577 

(AS-ext/As)
2 -0.02229 0.003187 -6.99 0 -0.0288 -0.01578 

Load level -0.45985 0.079577 -5.78 0 -0.62236 -0.29733 

(Load level)2 0.045794 0.008653 5.29 0 0.028123 0.063465 

Constant 6.170776 0.178547 34.56 0 5.806134 6.535418 
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Table VI-9: Regression model for ENrt/ENorg for both steel and SMA retrofitted RC 

beams 

Source SS df MS Number of obs = 207 

Model 1.5735e+11 6 2.62E+10 
F(  6, 200) = 239.1 

Prob > F = 0 

Residual 2.1937e+10 200 1.1E+08 
R-squared = 0.8776 

Adj R-squared = 0.874 

Total 1.7929e+11 206 8.7E+08 Root MSE = 10473 

(ENrt/ENorg)
2 Coef. 

Std. 
Err. 

t P>t 
[95% Conf. 

Interval] 

Type of Rft 10110.78 2230.51 4.53 0 5712.439 14509.1 

(LS-ext/L)2 -16274.1 3009.97 -5.41 0 -22209.4 -10338.7 

AS-ext/As 24381.64 2310.97 10.55 0 19824.66 28938.6 

(AS-ext/As)
2 -1386.17 390.852 -3.55 0 -2156.886 -615.447 

Load level 53783.82 14396.7 3.74 0 25395 82172.6 

(Load level)2 -4497.36 1605.97 -2.8 0.006 -7664.167 -1330.56 

Constant -112920 31312.7 -3.61 0 -174664.9 -51174.1 
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Table VI-10: Regression model for ENrt/ENorg for steel retrofitted RC beams 

Source SS Df MS Number of obs = 36 

Model 1.25091 4 0.312728 
F(  4, 31) = 551.92 

Prob > F = 0 

Residual 0.017565 31 0.000567 
R-squared = 0.9862 

Adj R-squared = 0.9844 

Total 1.268475 35 0.036242 Root MSE = 0.0238 

ln (ENrt/ENorg) Coef. Std. Err. t P>t 
[95% 
Conf. 

Interval] 

AS-ext/As 0.227222 0.012855 17.68 0 0.201003 0.253441 

(AS-ext/As)
2 -0.01926 0.002104 -9.15 0 -0.02355 -0.01497 

Load level 0.168883 0.052541 3.21 0.003 0.061725 0.27604 

(Load level)2 -0.01885 0.005713 -3.3 0.002 -0.0305 -0.0072 

Constant 4.854691 0.117746 41.23 0 4.614547 5.094834 
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