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Abstract 

A commodity market participant trading via her inventory has access to both spot and forward 

markets. To liquidate her inventory, she can sell at the spot price, take a short forward position, or 

do a combination of both. A trade is proposed in which there is always a hedging forward contract, 

which can be considered a dynamic cash and carry arbitrage. The trader can adjust the maturity of 

the forward contract dynamically until the inventory is depleted or a time constraint is reached. 

In the first setup, the storage contract (to carry the inventory) is assumed to have a constant cost 

and a flexible duration. The risk and return characteristics of an Approximate Dynamic 

Programming (ADP) and a Forward Dynamic Optimization solution are compared. The trade is 

contrasted with an optimal spot sale among other alternative liquidation strategies. Independent 

from the underlying stochastic forward price model, it is proved and verified numerically that a 

partial sale strategy is not optimal. The optimally selected forward maturities are limited to the 

subset comprising the immediate, next, and last timesteps. 

Under a more realistic storage contract, which assumes a stochastic cost and a fixed duration, a 

new ADP approach is developed. The optimal policy shows the tanker rent decision is 

accompanied by a buy order since the loss from an empty tanker is more than the gain of renting 

it cheaply yet early. Given the nonadjustable duration of the rent contract, a longer contract 

generates a higher value by benefiting from a tanker refill option. 

 

Keywords: Real Options, Cash and Carry Arbitrage, Oil Storage, Forward Trading, Markov 

Decision Process, Approximate Dynamic Programming, Least Squares Monte Carlo 
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Chapter 1 

 

This thesis introduces and investigates a novel trading strategy using forward contracts, which can 

be considered a dynamic extension of the cash and carry arbitrage. The standard cash and carry 

arbitrage is set up once, at which point the profit is known and to be derived from the gap between 

the forward-spot spread and the costs associated with carrying the inventory. The trader holds a 

short forward position and can add value by adjusting the maturity of the contract at each timestep. 

Compared to the storage valuation literature, the stochastic processes are under the physical (rather 

than risk-neutral) measure here, which makes trading in the forward market a potentially profitable 

choice. Another important distinction of the present research with the storage valuation literature 

is that the inventory must be hedged while it is carried through time. The constraint does not permit 

to speculate on the future (spot or forward) prices by carrying an inventory without securing a 

buyer through a (forward) contract since initiation. The constraint requires holding a short forward 

position at all times, the maturity of which is subject to optimization to maximize added value. 

Commodity owners liquidating an existing inventory or producers hedging an expected production 

quantity are faced with similar challenges as they utilize financial contracts (e.g. forwards) to 

reduce risks and increase profits (Bertocchi, Consigli, & Dempster, 2011; Fackler & Livingston, 

2002). 

This thesis contributes theoretically by proving, in the constant storage cost framework, that 

independent of the underlying stochastic forward price model, a ‘partial sale’ decision (dividing 

the inventory sold between the spot and forward markets) is not optimal. Also, it is proved (using 

certain linearity assumptions) that the optimally selected forward maturity is limited to three 

choices; the immediate time, the next timestep, or the last timestep. These theoretical results imply 

that the optimal action set is considerably smaller than the feasible set, incorporating which in the 

algorithms, allows one to compute the optimal policies much faster. 

Different computational solutions are developed and compared; an Approximate Dynamic 

Programming (ADP) method based on the Least-Squares Monte Carlo (LSM) provides the optimal 
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policy, while a myopic solution is offered by the Forward Dynamic Optimization (FDO) approach. 

Despite the near optimal performance of FDO in the valuation literature, also known as the Rolling 

Intrinsic policy, it does not accomplish comparatively good results here. The underperformance of 

the FDO compared to the ADP method in terms of the expected profit depends on the market 

conditions as the FDO policy always takes less risk. Employing the ADP technique, the risk and 

return characteristics of the dynamic cash and carry trade are compared with alternative strategies 

to liquidate an inventory. While highly speculative methods such as ‘optimally selling on the spot 

price’ or ‘protective put’ achieve higher values, the present method demonstrates attractive risk 

attributes. 

Finally, a more realistic framework is considered where both commodity prices and storage costs 

are stochastic. Determining the trade initiation time and, independently, inventory refill decisions 

are among the unique contributions of this new setting. In this new context, the numerical results 

support the previously proven theoretical propositions asserting the nonoptimality of partial sales 

and optimality of a small subset of the maturities. A new ADP approach is developed to solve this 

problem having six stochastic drivers (two for the oil and four for the storage cost prices). The 

novel algorithm exploits the structure of the one-time rent decision and the state variable evolution 

in continuation function approximation, where the state variable dictates which of the six 

stochastic factors are used in the LSM regression. 

1 Introduction 

This chapter provides an introduction to commodity markets in Section 1.1. It is followed by 

presenting the motivation of the proposed research in Section 1.2 and a simple two-period model 

illustrating the concept in Section 1.3. The related literature is reviewed Section 1.4. The structure 

of the thesis and the chapter summary are discussed in sections 1.5 and 1.6 respectively. 

1.1 An Introduction to Commodity Markets 

Commodity markets are very volatile. For example, during the 2008 financial crisis, in the period 

July 3, 2008 to December 3, 2008, the Brent crude oil price fell 69%. This will create opportunities 

as well as challenges for a wide range of market players. The significant economic impact of 

commodities in the world from production to consumption involving different players such as 
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hedgers, speculators and arbitrageurs, has been long recognized. Therefore, development and 

understanding of optimal channels, through which players can transact or manage their risk 

efficiently has been an ongoing effort.   

One important aspect of the commodity markets is that they consist of a physical market and a 

financial market. In the physical, or ‘spot’ market, players buy or sell the physical commodity for 

immediate delivery. Although operational constraints often impose a minimum lag before delivery 

(Hull, 2014). On the other hand, in the financial market, the players take positions i derivative 

contracts developed based on the spot market. Some of these contracts are futures, forwards, and 

options, which are essential for risk management and efficient transactions. When the lag between 

the transaction time and the delivery time is larger than the minimal time mentioned above, the 

trade becomes a forward agreement. The relation between the physical market and financial market 

is very important to the participants in the two markets. 

A forward contract is an agreement between a buyer and a seller at time 𝑡, according to which the 

seller must deliver, at a fixed future time 𝑇, an underlying asset, and the buyer must pay on that 

date an amount fixed at time 𝑡, shown by 𝐹(𝑡, 𝑇), which is called the time 𝑡 forward price for date 

𝑇. Also, let 𝑆(𝑡) denote the spot price at time 𝑡. If there exists a liquid market for the underlying 

asset, at maturity of the forward contract, 𝑇, it can be argued based on the no-arbitrage principle 

that 𝐹(𝑇, 𝑇) = 𝑆(𝑇), since an inequality leads to an arbitrage opportunity, in which the cheaper 

side can be bought in one market and sold in the other market simultaneously. This condition 

allows the long forward position to realize a profit or loss equal to 𝐹(𝑇, 𝑇) − 𝐹(𝑡, 𝑇) = 𝑆(𝑇) −

𝐹(𝑡, 𝑇) when she closes out her position at time 𝑇. 

In case of storable commodities, the theory of storage tries to connect the spot and forward prices 

through explaining why a market player holds an inventory. This leads to the notion of convenience 

yield, which is the benefit deriving from owning the physical asset in the inventory as opposed to 

a long forward position (Kaldor, 1939; Working, 1948). This benefit is comparable to the dividend 

that is received by a stock owner but not by the holder of a contract on that stock. From a practical 

point of view, it is not difficult to see the benefits of having the physical asset at one’s disposal, 

which mitigates the risks of not having the asset available at the right time due to, for instance, 
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production disruptions. In the following, some of the main consequences of the theory of storage 

are listed (Geman, 2005): 

• The higher the level of global inventories of a commodity, the lower the commodity price, 

and vice versa. 

• The higher the level of global inventories of a commodity, the lower the volatility of 

commodity price, and vice versa. 

• It can be concluded from the first two points that the price of a commodity and its volatility 

have a positive correlation, a feature known as inverse leverage effect. This is easy to verify 

in a condition where a commodity becomes scarce, when both price and the volatility 

increase. Interestingly, the relation between a stock price and its volatility is the opposite. 

• Volatility of 𝐹(𝑡, 𝑇) usually decreases with 𝑇, ceteris paribus, a feature known as the 

Samuelson effect. This is due to the higher sensitivity of short-term maturities to the arrival 

of news. 

• The convenience yield derived from holding an inventory depends (stochastically) on the 

inventory levels. Usually when inventory levels are low, the convenience yield is high.  

Using no-arbitrage principle arguments1, it can be easily shown that the relation between the spot 

price at time 𝑡, 𝑆(𝑡), and the forward price, 𝐹(𝑡, 𝑇) for a storable commodity is as in Eq. 1.1. 

 𝐹(𝑡, 𝑇) = 𝑆(𝑡)𝑒(𝑟+𝑐−𝑦1)(𝑇−𝑡) = 𝑆(𝑡)𝑒(𝑟−𝑦)(𝑇−𝑡) Eq. 1.1 

Here 𝑟 is the continuously compounded interest rate, 𝑐 is the continuously compounded storage 

cost, 𝑦1 is the continuously compounded convenience yield, and 𝑦 is the continuously compounded 

‘net’ convenience yield. The underlying assumption is that 𝑟 and 𝑦 are constant in the interval 

[𝑡, 𝑇]. Also, the fact that the commodity under consideration is storable allows one to assume such 

a 𝑦1 exists. To highlight the similarities between this case and the dividend-paying stock, 𝐹(𝑡, 𝑇) 

is the cost of buying the asset at time 𝑡 and carrying it to time 𝑇, where 𝑒(𝑟+𝑐−𝑦1)(𝑇−𝑡) represent 

the financing (principle and interest) and storage cost net of the accrued benefit, be it dividends or 

convenience yield. Briefly speaking, the no-arbitrage principle arguments lead to taking advantage 

                                                 

1 No-arbitrage arguments result in inequalities in this setting, where the ‘convenience yield’ term is added to allow to 

generate an equation. 
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of any mispricing by a ‘cash-and-carry’ arbitrage if 𝐹(𝑡, 𝑇) > 𝑆(𝑡)𝑒(𝑟−𝑦)(𝑇−𝑡), and by a ‘reverse-

cash-and-carry’ arbitrage if 𝐹(𝑡, 𝑇) < 𝑆(𝑡)𝑒(𝑟−𝑦)(𝑇−𝑡). It is worth mentioning that when it is not 

possible to carry a commodity through the interval [𝑡, 𝑇], i.e. when dealing with a non-storable 

commodity such as electricity, the above no-arbitrage arguments no longer work! 

The relationship shown between 𝑆(𝑡) and 𝐹(𝑡, 𝑇) is important; it establishes the relation between 

the spot price and a portfolio of forwards maturing at different 𝑇s. In other words, it gives the 

‘forward curve’. This is also helpful if there is not a liquid spot market, is which 𝑆(𝑡) is known 

immediately. Since, if there exist two different (liquid) maturities, say 𝐹(𝑡, 𝑇1) and 𝐹(𝑡, 𝑇2), one 

can infer the values of 𝑆(𝑡) and 𝑦. 

If 𝑟 + 𝑐 < 𝑦1, which means an environment with low interest rate, low storage cost, and high 

benefit of holding the physical commodity, the forward curve will be downward sloping. This 

condition is known as backwardation. For instance, in the case of crude oil, the forward curve has 

often historically been in backwardation, due to the belief among participants, who value the 

physical commodity highly in the face of insufficient oil supplies. On the contrary, if  𝑟 + 𝑐 > 𝑦1, 

which means an environment with where there is no or little value of holding the physical 

commodity, or with sufficiently large interest rate or storage cost, the forward curve will be upward 

sloping. This condition is known as contango. In the case of oil, usually a bearish sentiment, where 

there is a weak demand for the spot cargos, is accompanied with an upward-sloping curve (“The 

Forward Curve for Oil Prices Suddenly Looks Awful for OPEC,” 2017). Therefore, it can be 

concluded that for storable commodities, the shape of the forward curve, i.e. upward- vs 

downward-sloping, is directly tied to the magnitude of convenience yield. Forecasting how the 

shape, or convenience yield, will change is crucial for the market players; it can cause them to 

switch their positions between long- and short-end maturities. 

The futures contracts are similar forward contracts fundamentally, however, there are some 

differences.  They are standardized in terms of maturity, quantity, and quality of the underlying 

commodity. Futures trade on an exchange to which participants post ‘margin’, greatly reducing 

any counterparty credit risk. For more details of the way in which margin functions see Hull 

(2014). Despite these differences, it can be shown that in the absence of stochastic interest rates 
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and credit risk, the futures and forward on the same underlying commodity and similar maturity 

are equal, an assumption that will be adapted throughout the present study. 

So far, the relation between the spot price, 𝑆(𝑡), and the forward price, 𝐹(𝑡, 𝑇), was explored. 

However, there is the question of the relation between the expected value of the future spot price, 

𝐸[𝑆(𝑇)|ℱ𝑡], and the forward price, 𝐹(𝑡, 𝑇).  In 𝐸[𝑆(𝑇)|ℱ𝑡], the expectation is conditional on the 

information available at time 𝑡, ℱ𝑡, and under the physical measure. In other words, does forward 

price help to predict future spot price? The Rational Expectations Hypothesis of Keynes and Lucas 

(Sargent, 1986), postulates that the forward price is a non-biased predictor of the future spot price, 

i.e. 𝐸[𝑆(𝑇)|ℱ𝑡] = 𝐹(𝑡, 𝑇).  However, empirical studies showed that the equality does not often 

hold (at least under the real or physical measure ℙ). When 𝐸[𝑆(𝑇)|ℱ𝑡] < 𝐹(𝑡, 𝑇), it can be 

contributed to risk-averse players who are willing to pay more to secure a delivery at time 𝑇 instead 

of buying it on the spot at time 𝑇. When 𝐹(𝑡, 𝑇) < 𝐸[𝑆(𝑇)|ℱ𝑡], it may be contributed by a belief 

by players that there is an oversupply of the commodity to be delivered at time 𝑇. The latter case 

is supported by the theory of normal backwardation, which postulates Eq. 1.2. 

 𝐹(𝑡, 𝑇) < 𝑆(𝑡) < 𝐸[𝑆(𝑇)|ℱ𝑡] Eq. 1.2 

The theory argues that the difference 𝐸[𝑆(𝑇)|ℱ𝑡] − 𝐹(𝑡, 𝑇) is a risk-premium, which the producers 

pay to lock in a price at time 𝑡, i.e. to hedge, and the speculators earn due to taking the risk. Because 

this theory assumes that the hedgers are net short as a group, it does not hold in all markets. 

Ultimately, the existence of a normal backwardation, and thus the sign of the risk-premium, rest 

on the particular commodity and its inventory levels (Geman, 2005). Another view is to embed 

the risk-premium in the probability measure, and then compute the conditional expectation of the 

future spot price, which yields the famous risk-neutral probability measure ℚ and the forward price 

as in Eq. 1.3. 

 𝐹(𝑡, 𝑇) = 𝐸𝑄[𝑆(𝑇)|ℱ𝑡] 
Eq. 1.3 

1.2 Motivation of the Present Research 

We are motivated by studying and optimizing the off-shore oil storage trade observed in contango 

markets, i.e. upward-sloping forward curve. In the crude oil context, this trade is also known as 
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Contango and Carry Trade (Diaz-Rainey et al., 2017), where crude oil is bought cheap on the 

spot, sold using a forward contract at a higher price, and stored in a tanker until delivery. The trade 

can be profitable if the gap between the forward and spot price is higher than the costs associated 

with the storage. Depending on the assumptions made, the problem can take slightly various forms, 

however, we are mainly interested in understanding, expanding, and optimizing the trading 

strategies. At each timestep, the trader has the option to sell the oil on the spot or adjust the maturity 

of her short position, or do both on partial quantities. Undertaking these actions successively until 

the oil is sold or a deadline is reached generates a sequence of cash flows, the sum of which will 

define the total profit from this trade. 

The storage trade was prevalent during the super contango of late 2008 to early 2009 when oil 

prices hit a low point. For instance, on Feb 12, 2009, there was a very steep 12-month contango 

between March 2009 ($33.98/barrel) and March 2010 ($55.95/barrel) futures contracts. Some 

recent historical futures curves based on WTI crude oil contracts are shown in Fig. 1.1.a. This 

 

 
 

 

(a) (b) 

Fig. 1.1. (a) Historical CME NYMEX WTI Crude Oil Futures (CL#1 to CL#12) showing contango 

(upward) and backwardation (downward) states in the market at different points in time, (b) Slope 

of the forward curve at time 𝑡𝑖, Holding Cost (HC), and trade direction. 
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figure highlights various shapes in the one-year futures curve at different points in time, as well as 

the recent shift towards an upward sloping curve. Fig. 1.1.b shows how the storage trade and the 

slope of the forward curve are related. The slope of the forward curve, 

(𝐹(𝑡𝑖, 𝑡2) − 𝐹(𝑡𝑖, 𝑡1)) (𝑡2 − 𝑡1)⁄ , is essentially a measure that captures the change in value 

between two delivery points in time. Like storage cost, this slope has a unit of dollar per year per 

barrel, and is closely related to the storage cost. If the slope is greater than the storage cost, there 

is incentive to long the front-end (buy oil) and short the far-end (contract to sell forward). Indeed, 

the direction of the trade is reversed if the cost is higher than the slope. So, the spread between, 

rather than the absolute value of, the forward prices plays a critical role in this argument, where 

for simplicity, the time value of money is ignored. 

Fig. 1.2 illustrates the historical one-year futures spread 𝐹(𝑡, 𝑇2) − 𝐹(𝑡, 𝑇1) (or the slope since 

𝑇2 − 𝑇1 = 1) based on WTI crude oil contracts, where the near end of the spread is the front-month 

contract. The figure shows a positive spread (upward sloping curve) in the period late 2008 to early 

2009. When the storage trade is profitable, most of the cheaper onshore storage capacities are 

exhausted, and traders resort to “floating storage” using offshore oil tankers. Very Large Crude 

Carriers (VLCC) with capacity of around 2 million barrels are popular for this purpose. The tanker 

shipping market is very volatile as tanker demand is heavily influenced by the market dynamics 

of the oil and related products among other factors (Alizadeh et al., 2015). Fig. 1.2 also shows the 

historical VLCC one-year Time-Charter rates (BIMCO, 2016; “Charles R. Weber Company, Inc.”, 

2016) which are annualized on a per barrel basis. The sharp drop in the VLCC charter prices in 

the late-2008 to 2009 period, combined with large futures spreads, triggered the wide use of 

offshore storage trades in this period. The slope has stayed positive since the beginning of 2015, 

which perhaps reflects the new era of abundant crude oil production. Tanker rates declined from 

$9.31 to $5.47 per barrel in the first half of 2016, another positive signal for the storage trade. 

Commodity owners or producers intending to liquidate an existing inventory optimally are faced 

with a similar challenge (Fackler and Livingston, 2002). The standard static cash and carry 

arbitrage suggests a set-and-forget strategy, which means that no further changes are made to the 

position after the trade is initiated. In this research, the static cash and carry strategy is expanded 

into a dynamic approach where the trader updates the maturity  
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Fig. 1.2. Historical One-year Crude Oil Futures Spread and VLCC Time-Charter Rates; the spread 

data is based on CME NYMEX WTI contracts, while the VLCC data is from The Baltic and 

International Maritime Council (BIMCO, 2016) for Time-Charter Rates 1, and Charles Weber 

Company (“Charles R. Weber Company, Inc.”, 2016) for Time-Charter Rates 2 (per barrel per 

year). 

of the short contract periodically until she delivers the oil. Starting from a full inventory, this can 

be viewed as a liquidation strategy. Subsequently, the impact of additional flexibilities is also 

studied, which include a partial sale on the spot and forward markets, optimal buying time rather 

than starting with a full inventory from the beginning, and an inventory refill option. 

1.3 A Simple Two-Period Model 

Fig. 1.3 depicts a very simple model of the dynamic cash and carry trading with only two periods. 

Let 𝑅𝑖 and 𝑇𝑖 respectively denote the inventory level and the maturity of the short forward position 

at 𝑡𝑖. Also, 𝑎𝑖 denote the action (maturity) chosen at 𝑡𝑖. At 𝑡𝑖, selecting 𝑎𝑖 = 𝑡𝑖 is equivalent to an 

immediate sale on the spot market. For simplicity assume the interest rate is zero. Starting from 

𝑅0 = 1 (full inventory) and 𝑇0 = 0 (no initial contract), there are five feasible decision paths as 

listed in Table 1.1. Here, 𝑐𝑃 and 𝑐𝐻 denote the pumping cost and the holding cost (per unit of time) 

respectively. 

Starting from the last timestep, there is no decision to be made at 𝑡2 since any inventory must be 

always sold. Moving backward in time, at 𝑡1, if the optimization over action 𝑎1 is expressed in  



10 

 

 

Fig. 1.3 Decision tree of a simple two-period model; actions are only taken at times 𝑡0 and 𝑡1 

terms of maximizing the rewards of the corresponding possibilities, one can combine the sub-

branch groups, as listed in Table 1.2. Now define Λ(𝑡𝑖, 𝑡1, 𝑡2) = 𝐹(𝑡𝑖, 𝑡1) − 𝐹(𝑡𝑖, 𝑡2) +

𝑐𝐻(𝑡2 − 𝑡1); this is equivalent to the payoff (spread) that is generated if the trader decides at 𝑡𝑖 to 

switch her contract maturing at 𝑡2 with a contract maturing at 𝑡1. Similarly, −Λ(𝑡𝑖, 𝑡1, 𝑡2) is the 

payoff from the reverse action. Finally, moving backward to 𝑡0 yields Eq. 1.4 for 𝑉0, the optimal 

value at 𝑡0. Here, (𝑥)+ = max{𝑥, 0}, and 𝔼0[. ] = 𝔼[. |ℱ𝑡0]  denotes the expectation under the 

physical measure with respect to ℱ𝑡0, the filtration generated by the stochastic price processes. 

  

Notes Decisions path Total reward 

Sell the inventory at 𝑡0 ❶: 𝑎0 = 𝑡0 𝐹(𝑡0, 𝑡0) − 𝑐𝑃 

Short 𝐹(𝑡0, 𝑡1) at 𝑡0, and 

keep the contract at 𝑡1 
❷: 𝑎0 = 𝑡1 and 𝑎1 = 𝑡1 𝐹(𝑡0, 𝑡1) − 𝑐𝑃 − 𝑐𝐻Δ𝑡 

Short 𝐹(𝑡0, 𝑡1) at 𝑡0, and 

postpone the sale by 

choosing the longer 

maturity at 𝑡1 

❸: 𝑎0 = 𝑡1 and 𝑎1 = 𝑡2 
𝐹(𝑡0, 𝑡1) − 𝐹(𝑡1, 𝑡1) + 𝐹(𝑡1, 𝑡2) − 𝑐𝑃

− 2𝑐𝐻Δ𝑡 

Short 𝐹(𝑡0, 𝑡2) at 𝑡0, and 

sell immediately on the 

spot at 𝑡1 

❹: 𝑎0 = 𝑡2 and 𝑎1 = 𝑡1 
𝐹(𝑡0, 𝑡2) − 𝐹(𝑡1, 𝑡2) + 𝐹(𝑡1, 𝑡1) − 𝑐𝑃

− 𝑐𝐻Δ𝑡 

Short 𝐹(𝑡0, 𝑡2) at 𝑡0, and 

keep the contract at 𝑡1 
❺: 𝑎0 = 𝑡2 and 𝑎1 = 𝑡2 𝐹(𝑡0, 𝑡2) − 𝑐𝑃 − 2𝑐𝐻Δ𝑡 

Table 1.1 All possible decision paths at 𝑡0 and 𝑡1. 
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Notes Decisions path Total reward 

Sell the inventory at 𝑡0 ❶: 𝑎0 = 𝑡0 𝐹(𝑡0, 𝑡0) − 𝑐𝑃 

Short 𝐹(𝑡0, 𝑡1) at 𝑡0, and 

decide whether to keep the 

contract at 𝑡1 or postpone 

the sale by choosing the 

longer maturity at 𝑡1 

❷&❸: 𝑎0 = 𝑡1 
𝐹(𝑡0, 𝑡1) − 𝑐𝑃 − 𝑐𝐻Δ𝑡 

+max{−𝐹(𝑡1, 𝑡1) + 𝐹(𝑡1, 𝑡2) − 𝑐𝐻Δ𝑡, 0} 

Short 𝐹(𝑡0, 𝑡2) at 𝑡0, and 

decide whether to sell 

immediately on the spot at 

𝑡1 or to keep the contract at 

𝑡1 

❹&❺: 𝑎0 = 𝑡2 
𝐹(𝑡0, 𝑡2) − 𝑐𝑃 − 2𝑐𝐻Δ𝑡 

+max{𝐹(𝑡1, 𝑡1) − 𝐹(𝑡1, 𝑡2) + 𝑐𝐻Δ𝑡, 0} 

Table 1.2 All possible decision paths expressed explicitly at 𝑡0. 

Eq. 1.4 compares selling the inventory on the spot market at 𝑡0 with the forward market using 

either of the two available maturities (𝑡1 and 𝑡2), with an option to readjust the maturity later.  

𝑉0 = 𝐹(𝑡0, 𝑡0) − 𝑐𝑃 +𝑚𝑎𝑥{0, 

−Λ(𝑡0, 𝑡0, 𝑡1) + 𝔼0 [(−Λ(𝑡1, 𝑡1, 𝑡2))
+
] , −Λ(𝑡0, 𝑡0, 𝑡2) + 𝔼0 [(Λ(𝑡1, 𝑡1, 𝑡2))

+
]} 

Eq. 1.4 

It suggests that the forward positions could potentially result in a higher value than an initial spot 

sale at 𝐹(𝑡0, 𝑡0) − 𝑐𝑃, unless the maximization is always trivially solved to zero. The value 

𝔼0 [(Λ(𝑡1, 𝑡1, 𝑡2))
+
] is like a call option on the underlying asset price Λ(𝑡, 𝑡1, 𝑡2). It provides an 

option to advance the forward maturity from 𝑡2 to 𝑡1. Similarly, 𝔼0 [(−Λ(𝑡1, 𝑡1, 𝑡2))
+
] is like a put 

option with the same underlying asset price and provides an option to postpone the forward 

maturity from 𝑡1 to 𝑡2. Both options have a strike price of zero. From another perspective, given 

the form expressed in Eq. 1.5, one may interpret the right-hand side as an exchange option on 

𝔼0 [(Λ(𝑡1, 𝑡1, 𝑡2))
+
] = 𝑐𝐻Δ𝑡 + 𝔼0[max{𝐹(𝑡1, 𝑡1) − 𝐹(𝑡1, 𝑡2),−𝑐𝐻Δ𝑡}] 

Eq. 1.5 

𝐹(𝑡1, 𝑡1) and 𝐹(𝑡1, 𝑡2) with a non-zero strike price of −𝑐𝐻Δ𝑡. No closed form solution is available 

for this option (unless 𝑐𝐻 = 0) although some approximations do exist (Bjerksund and Stensland 

2014; Kirk 1995; Margrabe 1978) in the European case of just two periods. When more than two 
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periods are present, the analogous option starts to combine challenges of moving exercise 

boundaries and even the approximations fail. To compare the relative performance of the two 

choices, suppose the second and third arguments of the maximum in Eq. 1.4 were equal. After 

simplification, it would lead to 𝔼0[Λ(𝑡1, 𝑡1, 𝑡2)] = Λ(𝑡0, 𝑡1, 𝑡2); it would hold if Λ(𝑡, 𝑡1, 𝑡2) process 

is a martingale process. However, it is known that Λ(𝑡, 𝑡1, 𝑡2), as a linear combination of forward 

prices, is a martingale under the risk-neutral measure and not necessarily under the physical 

measure. Thus, the attempt to show that the last two arguments of the maximum are equal fails. 

The problem does not seem to have a trivial solution, and Eq. 1.4 should be solved by evaluating 

the maximum. In this thesis, the above trade is modeled in a general multiperiod setting, and 

computational solutions are presented. 

1.4 Existing Literature 

In this study, we extend the static storage trade into a dynamic one by allowing subsequent trading, 

and investigate the important underlying factors. The problems in the literature relevant to the 

current research are mainly concerned with the storage asset valuation, where the value of a 

physical asset is estimated with monetizing the operational flexibilities by making optimal trading 

decisions. In the following section, the differences and similarities between the existing literature 

and the present problem will be highlighted. Although the focus of this study is optimal decision 

making, the decision algorithm requires us to characterize the dynamics of the oil forward term 

structure. Therefore, the models used to simulate oil prices are reviewed briefly as well. 

1.4.1 Commodity Storage Valuation and Optimal Trading 

The shape of the futures curves contains important information about the relation between spot 

and forward prices and the corresponding trading opportunities in the financial markets. At the 

same time, there is a market for the underlying physical commodity, and these two markets are 

connected via storage. Particularly, since the recent oil price decline starting in mid-2014, oil 

inventories have attracted more attention because they reflect fundamental supply-demand factors, 

which can be exploited in discovering arbitrage opportunities (Ye and Karali, 2016). In this regard, 

the decision to sell the oil at the spot price, or to store it and use futures contract to deliver at a 

later point in time is a simple yet important question, especially for the participants in the supply 
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chain of oil and oil products as well as traders. When the futures curve is in backwardation 

(downward-sloping), producers may hold the commodity in storage for different reasons; 

convenience yield as suggested by the classical theory of storage (Kaldor, 1939; Working, 1948), 

price uncertainty in the framework of a real option to extract oil from a reserve (Litzenberger and 

Rabinowitz, 1995), or both (Considine and Larson, 2001), where the producer sells the oil by either 

extracting from the reserve or by pumping from above ground inventory. On the other hand, when 

the crude oil futures curve is in contango (upward-sloping), it may present a profitable trading 

opportunity (Ghafouri and Davison, 2017; Jafarizadeh and Bratvold, 2013). Traditionally, the 

trading strategy involves buying oil on the spot, storing it, and taking a short position in a longer-

term futures contract.  This means the oil is “bought low” today and a contract to “sell it high” is 

made to guarantee a later delivery. Of course, the oil must be stored which is not free. But if 

storage, pumping, and other related costs are outweighed by the difference between the spot and 

forward prices, this strategy can be profitable. 

There is well established evidence in the commodity storage literature about the relation between 

forward curve shape and storage. By the no-arbitrage principle, as mentioned earlier, the forward 

price is as given by the following equation. 

 𝐹(0, 𝑇) =  𝑆0exp[(𝑟 + 𝑐 − 𝑦1)𝑇] Eq. 1.6 

Here, 𝑆0 is the spot price, 𝑟 is the interest rate, 𝑐 is the storage cost, and 𝑦1 is the convenience 

yield. In the case of crude oil, Geman and Ohana (2009) verified that the slope of the forward 

curve can be a good proxy for inventory levels. Using a dataset of inventories and futures prices 

in the US, they documented the relationship among interest-adjusted spread and inventory levels. 

They defined interest-adjusted spread between spot and forward prices as [𝐹(0, 𝑇) −

𝑆0exp(𝑟𝑇)]/𝑆0. When inventory levels are high, convenience yield (𝑦1) is low because any change 

in demand can be absorbed through inventories. Thus, 𝑟 + 𝑐 − 𝑦1  >  0, and the forward curve is 

upward sloping. Under these conditions, Geman and Ohana (2009) showed that interested-adjusted 

spread is high, which inspires a cash-and-carry strategy, i.e. long the spot and short the forward. 

The spot-forward relation has been studied by investigating the cointegration between spot and 

forward prices. It is found that conclusions about the efficiency of crude oil market is influenced 
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by the existence of structural breaks (Chen et al., 2014; Chinn et al., 2005; Maslyuk and Smyth, 

2009). For instance, Chen et al. (2014) found evidence ‘against’ market efficiency characterized 

by the no-arbitrage rule for subsamples 1986-2012 and 1986-2004 within WTI data.  

The question is how to exploit the potential arbitrage opportunities, beyond the simple cash and 

carry approach. The storage trade may be regarded as a strategy to monetize the operational 

flexibilities of storage assets by making optimal decisions and so is best viewed through the real 

options lens. Similarly, the storage asset risk-neutral valuation is based on computing the cash 

flows resulting from an optimal trading strategy under certain operational constraints, where the 

expected value of the discounted cash flows under the risk-neutral measure will be the asset value. 

However, in the present problem, the attempt is made to capture a positive expected profit by 

optimal trading under the physical measure. 

In the context of gas storage valuation (Eydeland and Wolyniec, 2003; Gray and Khandelwal, 

2004a, 2004b; Maragos, 2002), there are two heuristic approaches popular among the practitioners; 

(i) basket of spread options valuation, and (ii) rolling intrinsic valuation, also known as Forward 

Dynamic Optimization (FDO). Intrinsic value is the value that can be secured today by hedging a 

forward position using the storage facility, which means finding the optimal plan of injections and 

withdrawals based on the present forward curve. On the other hand, extrinsic value is derived from 

the flexibility to readjust the position in response to forward curve realizations in the future. Each 

of the two heuristic methods capture the intrinsic and part of the extrinsic value. Re-optimizing at 

each time step as new information becomes available gives rise to the names ‘rolling’ or ‘dynamic’ 

in both methods (Lai et al., 2010). 

The rolling basket of spread options approach estimates the extrinsic value by the value of a 

portfolio of calendar-spread options, where the two legs of the spread represent the injection and 

withdrawal times (Secomandi, 2016). It involves linear programming and spread option valuation. 

The spread option is on the difference between 𝐹(𝑡𝑖, 𝑡𝑖) and 𝐹(𝑡𝑖, 𝑡𝑗), where 𝑡𝑖 and 𝑡𝑗 (𝑡𝑖 < 𝑡𝑗) 

represent the injection and withdrawal times respectively. In the case of storage valuation, the 

strike price, 𝐾, will be the marginal costs of injection and withdrawal operations, whereas if the 

storage facility is rental, one must add the storage cost to those as well. Let 𝑆𝑃0
𝑖,𝑗

 denote the value 
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of the (spread) option at time 𝑡0 to buy one unit of the commodity at time 𝑡𝑖, and carry it until time 

𝑡𝑗 to fulfill the short forward position 𝐹(𝑡𝑖, 𝑡𝑗) entered at time 𝑡𝑖.  

 𝑆𝑃0
𝑖,𝑗
= 𝑒−𝑟𝑖Δ𝑡𝐸[𝑚𝑎𝑥{𝑒−𝑟(𝑗−𝑖)Δ𝑡𝐹(𝑡𝑖, 𝑡𝑗) − 𝐹(𝑡𝑖, 𝑡𝑖) − 𝐾, 0}|ℱ0] 

Eq. 1.7 

Here Δ𝑡 is the discretization time step, and ℱ0 is the information available at 𝑡0. Many such options 

are possible, formed by considering the combination of all injection times 𝑡𝑖, and withdrawal times 

𝑡𝑗. As soon as all option values are computed, the next step is to maximize the value of the portfolio, 

which is constructed by all the options, by choosing the optimal position quantity in each option 

subject to the inventory and operational constraints formulated as a linear program (Lai et al., 

2010). As mentioned earlier, it is also possible to repeat the optimization at each time step to take 

advantage of the new information that becomes available with the passage of time. Lai et al (2010) 

reported that this method provides suboptimal results. This is not surprising because at each time 

the policy is limited to a series of spread trades, and is devised only based on a deterministic 

optimization of the intertemporal optionality. Therefore, it does not benefit from the full inherent 

flexibility. Secomandi (2015) reports that in some cases the rolling basket of spread options 

significantly underperforms the FDO method. Since this method requires computation of all the 

spread option values, while it is still suboptimal, only the FDO method among the heuristic 

approaches is considered for implementation in the present thesis. 

Forward Dynamic Optimization (FDO) captures all the intrinsic value as well as part of the 

extrinsic value. Capturing the full extrinsic value involves a trade-off between risk and reward, 

where a higher value comes with the risk of larger variations. In comparison to other valuation 

method, FDO is very intuitive and is favored by practitioners (Secomandi, 2015; Secomandi et al., 

2015; Ware, 2013). This is due to transparency, ease of communication with management, and 

consistency with the methods used by companies to monetize the flexibility of their storage assets. 

In the context of crude oil storage trade, to profit from an upward sloping forward curve, 

Jafarizadeh and Bratvold (2013) explored the Forward Maximization strategy, a static trade where 

the trader buys oil and simultaneously sells it using the profit-maximizing forward contract. They 

also attempted to study the dynamic version of this trade, which should lead to the FDO strategy 
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introduced before; the trader tries to profit from favorable shifts in the forward curve by readjusting 

her (net) short position at subsequent timesteps. However, there are some issues with their 

approach, which will be revisited later in this thesis. 

In the FDO algorithm, the subsequent adjustments are risk-free, as trades happen only if profitable. 

Therefore, the trader following FDO is exposed to a very limited downside risk. Between inception 

and delivery, the portfolio stays neutral by including equal long and short positions in the 

commodity inventory and futures contract respectively. Although FDO has a low downside risk, 

it is a myopic strategy which fails to capture the future consequences of present actions.  

To avoid the sub-optimality of FDO or basket of spread options, a forward-looking optimal trading 

algorithm considering the expected impact of the current decisions on the generated value should 

be used. The literature employing optimal strategies can be divided into two categories based on 

the price models used; spot vs forward prices. Although the spot models neglect the dynamics of 

the forward curve, which is indeed very important for the present research, the inherent simplicity 

(low-dimensionality) has led to their frequent and fruitful use (Bjerksund et al., 2011; Boogert and 

de Jong, 2008, 2011; Carmona and Ludkovski, 2010; Chen and Forsyth, 2007; Felix and Weber, 

2012; Secomandi, 2010; Thompson et al., 2009). Although spot models manage to maintain a low-

dimensional optimization problem, the reliability of basing trading decision solely on the spot 

prices is questionable (Lai et al., 2010).  Another reason to use the forward market over the spot 

market is that transaction costs (bid-ask spread) are lower in the former. Taking advantage of this, 

Secomandi and Kekre (2014) studied the optimal policy for natural gas procurement to meet a 

random demand at a fixed future time, 𝑇, using the forward market. They assume no storage 

possibilities. Thus, the procurement can be partially done through either shorting a forward 

contract at time zero for delivery at time 𝑇, or waiting and buying on the spot at time 𝑇. In 

Secomandi and Kekre (2014), while energy procurement is done on the forward market, the 

forward maturity is fixed at a constant time 𝑇. If the forward contract maturity can be chosen by 

the decision maker, the time gap, between entering the contract and the physical delivery, leads to 

complications and excessive state space dimensions in the dynamic programming framework, 

which may easily yield an intractable problem. 
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Lai et al (2010) considered a high-dimensional forward curve for the natural gas prices using the 

multivariate Black model, and developed an ADP approach by reducing the problem to a low-

dimensional MDP avoiding the intractability of the full information stochastic dynamic program. 

They derived lower and upper bounds for the storage value to assess heuristic-based approaches 

such as FDO and basket of spread options. On a set of realistic instances, they concluded that the 

lower bounds resulting from both heuristics and the ADP approach (reoptimized versions) are all 

nearly optimal when compared to the upper bound (in the sense of information relaxation and 

duality approach developed by Brown et al (2010)). In comparison among the three, the FDO 

approach was found to provide the best compromise between optimality and computational 

expense. Also, they (artificially) removed the seasonality from the NYMEX natural gas forward 

curves used, to test their findings in the case of other commodities such as crude oil, which does 

not exhibit noticeable seasonality. They found that the result does not change structurally, which 

validates the application of the methods for non-seasonal commodities.      

To reduce the problem dimension, Lai et al (2010) made some assumptions about the information 

and value function approximation, e.g. the forward curve object 𝐹(𝑡𝑖, 𝑡𝑗; 𝑖 ≤ 𝑗) is reduced to the 

spot price, 𝐹(𝑡𝑖, 𝑡𝑖), and next timestep forward price, 𝐹(𝑡𝑖, 𝑡𝑖+1). Their reward function 

determining the decision payoff at each time stage is based on the spot price only. In the same 

formulation, the information contained in the whole forward curve to compute the conditional 

expectation of the next stage value function is used.  However, this proves unwieldy and so, after 

some simplifications, this is reduced to being conditional only on 𝐹(𝑡𝑖, 𝑡𝑖+1). Also, Lai et al. (2010) 

did not consider trading on the forward market since, as Nadarajah et al. (2015) stated, it does not 

add value if the expectation is under the risk-neutral measure and the reward function is linear with 

respect to the transacted price. Similarly in other studies, considering term structure of the forward 

prices is merely for informational purposes in making (spot market trade) decisions, and trading 

on the forward market is precluded (Nadarajah et al., 2015, 2017). In the absence of forward 

trading, the one-dimensional action is summarized by 𝑎 ∈ ℝ representing withdraw-and-sell (𝑎 >

0), buy-and-inject (𝑎 < 0), or do-nothing (𝑎 = 0). In the current study, not using a risk-neutral 

measure prompts trading on the forward market leading to a two-dimensional action corresponding 

to the spot and forward markets. We allow taking positions for future delivery, which is not 
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immediately reflected in the inventory level. Thus, the action set involves choosing the contract 

maturity 𝑇, and the reward function depends on 𝐹(𝑡, 𝑇). 

Similar to Lai et al (2010), Nadarajah et al (2015) observe that ADP methods deliver performances 

that are not much better than FDO (for further theoretical support see Secomandi et al (2015)). 

Löhndorf and Wozabal (2017) attribute this to “low-dimensional relaxations of the otherwise high-

dimensional stochastic optimization problem”. Avoiding these relaxations, the current research 

sheds light on the relative performance of suboptimal and optimal methods, which may depend on 

the measure; suboptimal methods may provide near-optimal results under the risk-neutral measure 

(Lai et al., 2010) and far from it under the historical one (Löhndorf and Wozabal, 2017). Lohndorf 

and Wozabal (2017) studied natural gas storage contract pricing in an incomplete market setting 

under a risk measure based on the indifference pricing method. They found that the optimal 

indifference pricing algorithm results in profits 40% higher than that of FDO (also known as rolling 

intrinsic valuation), which further highlights the importance of studying optimal approaches. 

Another feature of the present problem is that the trader is always “flat” oil (no exposure to oil 

prices by balancing the short contracts with the long ones and the inventory). In other words, the 

inventory is carried while hedged until the delivery is concluded.  

A real option involving multiple decisions by the option holder, such as optimal operation of a 

storage asset, leads to a potentially intractable MDP due to the curse of dimensionality by (i) the 

high dimensions of the exogenous part of the state space, and (ii) issues associated with estimating 

expectations of the value function with respect to the exogeneous part of the state in the next stage 

(Powell, 2011, sec. 4.1). The endogenous part of the state refers to the variables defining the 

functional state of the system (or option), which are characterized by the inherent flexibility of the 

system. These are impacted by operational decisions made and are usually low dimensional. On 

the other hand, the exogenous part of the state is unaffected by the decisions made, and usually 

involve a term-structure, e.g. a yield or forward curve, explained by a high dimensional stochastic 

process. The transition function determines evolution of the endogenous state, whereas the 

exogenous state evolves according to a stochastic process independent both of the endogenous 

parts of the states and of the decision that is made. To solve the present problem, an ADP technique 

based on the Least Square Monte Carlo (LSM) approach (Carriere, 1996; Longstaff and Schwartz, 
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2001; Tsitsiklis and Roy, 2001) will be used, which (perhaps) allows to overcome the curse of 

dimensionality when the MDP is expressed as a SDP (Stochastic Dynamic Program). This method 

offers a cost-effective approach to compute the lower bound of the MDP value, whereas computing 

the upper bound is more involved and can be computationally expensive (Glasserman, 2003, 

section 8.7; Nadarajah et al., 2017). 

1.4.2 Price Models 

To simulate prices, the simplest type of the stochastic models are stochastic differential equations 

with a single random driver: the so-called one-factor models. Unfortunately, it has been shown 

that the one-factor models are not able to completely capture the oil price dynamics, and therefore 

multiple factor models have been introduced (Hilliard and Reis, 1998; Schwartz, 1997). Especially 

important in the present research, one drawback of one-factor models is that is that they capture 

neither changes in the forward curve’s slope and curvature nor the difference in volatility across 

various forward maturities.  

Hahn et al (2014) studied different approaches to model and forecast oil prices while focusing on 

stochastic process models. They investigate the suitability of these models after they show that oil 

prices may exhibit a stationary or non-stationary behavior depending on the time period. They 

cited this as evidence supporting the use of a two-factor model, where one factor is mean-reverting 

(stationary) and the other factor is non-stationary. Bhattacharya (1978); Dixit and Pindyck (1994), 

and Dias (2005) reviewed different mean-reverting processes with the goal of modeling oil prices. 

One may classify two-factor models into two categories; the first class is essentially a Geometric 

Brownian Motion (GBM) with a mean-reverting process nested within the drift term of the GBM 

to model the convenience yield (Gibson and Schwartz, 1990; Ribeiro and Hodges, 2004; Schwartz, 

1997). Pindyck (1999) proposes that a more realistic model could include a mean-reverting process 

added to a stochastically evolving trend line. This suggestion forms the basis for the second class 

of the two-factor models, where the long-term component is modeled with a GBM process, and is 

combined with the short-term deviations modeled with a mean-reverting process (Schwartz and 

Smith, 2000). While Schwartz and Smith (2000) show that the short-term/long-term model can be 

equivalent to the two-factor model based on the stochastic convenience yield developed in Gibson 
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and Schwartz (1990), the former is computationally easier and provides a more direct way to 

separate the two factors. 

There are other complex models with more than two factors or with jump processes (Casassus and 

Collin-Dufresne, 2005; Schwartz, 1997), however, two factor models are the most common ones 

from a capability versus practicality point of view. For instance, Schwartz (1997) suggests a three-

factor model, in which he adds a third factor to the two-factor model of Gibson and Schwartz 

(1990). The third factor assumes the interest rate follows a Vasicek mean-reverting process 

(Vasicek, 1977). However, Carmona and Ludkovski (2004) show the addition of the third factor 

does not improve the model performance greatly because convenience yield volatility is much 

larger than that of the interest rate. 

One consideration for the present research is the computational burden associated with additional 

numbers of stochastic drivers. The required solution techniques rely on Dynamic Programming 

(DP), where additional stochastic drivers increase the state space, and the associated computational 

expense. Although a lower number of stochastic factors is preferred, the developed solution can 

accommodate (at least in theory) extra stochastic drivers if they are required from a price modeling 

perspective. Additionally, the simplicity of the two-factor model allows the optimal policy 

boundary to be nicely presented in the two-dimensional space of the model’s two stochastic 

factors. Finally, as will be discussed in Chapter 5, additional stochastic factors will be incorporated 

in the problem via introduction of a stochastic storage cost, which is another reason why using a 

low-dimensional oil forward curve is advantageous. Considering all the above arguments, 

Schwartz and Smith (2000) short-term/long-term model will be used in this thesis to model the 

crude oil prices, for which the details will be provided later. 

1.5 Structure of the Thesis  

In Chapter 2, The Price Model and Simulation, Schwartz and Smith (2000) two-factor model is 

reviewed in detail. Derivation of futures prices, simulation of prices, as well as the corresponding 

parameter estimates are presented. 
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Chapter 3, Forward Dynamic Optimization, is devoted to the sub-optimal yet simple FDO method. 

The performance and properties of this approach are studied in detail within the most basic 

problem setting. Here, the trader optimally selects the forward maturity, 𝑎𝑖
𝑇, at each time 𝑡𝑖 while 

from a quantity perspective, the decision is applied to the whole inventory. 

Chapter 4, Optimal Solution with Dynamic Programming,  focuses on finding the optimal policy 

within the same problem setting as Chapter 3 with the additional option to sell the inventory on 

the spot and forward markets partially. However, it is shown theoretically that this partial sale is 

not optimal, and the structure of the optimal policy is established analytically. The decision 

variables which the trader selects optimally at each time 𝑡𝑖 are the quantity of oil to be sold on the 

spot market, 𝑎𝑖
𝑅, and the forward maturity, 𝑎𝑖

𝑇. In this chapter, the main approach to solve the 

problem optimally is ADP, where an exact Dynamic Programming (backward induction) method 

is also implemented to verify the presented ADP method. Finally, the problem is solved by FDO 

and the results are compared. The significance of forward curve slope in decision-making is 

highlighted by illustrating optimal policy with respect to the slope and spot price. 

It should be noted that the solution by the exact Dynamic Programming (DP) method used in this 

thesis is not and should not be mistaken with the true (theoretically exact) solution of the presented 

optimization problems. The distinction between the exact DP and the ADP method is that the 

former is only based on nested simulations and does not make any assumptions about the structure 

of the continuation functions (as opposed to the latter). In this sense, the exact DP is also an 

approximation but with fewer assumptions. In summary, both the exact DP and ADP methods only 

provide an approximation to the true optimal policy and a low-biased estimate to the true optimal 

value 

In Chapter 5, A Trading Model Considering Stochastic Storage Costs, the problem setting is 

expanded completely to reflect a more realistic framework. Most notable expansions consist of 

optimally initiating the trade, inclusion of buy decisions (rather than a sale-only liquidation setup), 

a storage refill option, and a stochastic storage cost. The decision variables which the trader selects 

optimally at each time 𝑡𝑖 are the quantity of oil to be sold on the spot market (𝑎𝑖
𝑅), the forward 

maturity (𝑎𝑖
𝑇), and the binary decision (𝑎𝑖

𝐼) of whether or not to initiate the storage rent at 𝑡𝑖. Based 
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on the structure of the new MDP, the ADP method developed in Chapter 4 is modified to 

accommodate the new setting. More specifically, the basis functions used in Continuation Function 

Approximation are shown to be dependent upon the endogenous state (more specifically, whether 

the storage has been rented or not yet). To highlight the effect the stochastic cost, comparisons 

with a similar case in which the storage cost is not stochastic are also made. 

 

1.6 Summary 

While most of the literature are concerned with risk-neutral pricing of gas storage contracts, the 

crude oil storage trade has not received much attention. The reason is the former enjoyed 

widespread use in practice, while in the latter case, the trade has seemed to attract the opportunists 

since the 2009 financial crisis. One may attribute this to the often downward-sloping shape of the 

oil forward curve, which is not suitable for the subject trade of this research. However, the fraction 

of the times when the forward curve is upward-sloping has increased in the last decade, possibly 

due to structural changes in the market. For instance, the spread between the first and the seventh 

WTI contracts during the period from 2005 to 2014 indicates a contango condition more than 70 

percent of the time, which is contrast to their tendency to be in backwardation in the previous 

period more than 70 percent of the time (Kemp, 2016). 

Fundamentally, demand for natural gas, and consequently the prices, are very seasonal due to 

weather conditions, while the gas supply is nearly constant. This motivates developing natural gas 

storage facilities for the underlying engineering and economic reasons. In the case of crude oil, 

both consumption and production exhibit much less seasonality. Thus, a dedicated oil storage 

facility would only be built either for strategic reasons, e.g. United States Strategic Petroleum 

Reserve, or logistics. The economic drivers for storing crude oil apply only a small fraction of the 

times. Subsequently, an oil tanker provides a way to store crude oil temporarily. We examine the 

proposed trade first by considering oil tanker rents to be fixed and later, in the final chapter, to be 

expressed by a stochastic model. 
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Another feature distinguishing the present research from the existing literature is studying the 

performance of a trading strategy under the historical measure as opposed to the pricing under the 

risk-neutral measure. As highlighted in the literature review, the respective performance of 

different methods, i.e. suboptimal vs optimal, may deviate from what is known and established 

under the risk-neutral measure. More importantly, it prompts the use of forward contracts in 

trading in addition to the trades on spot market. 

Most of the research in the literature studies natural gas trading on the spot market. Few studies 

included a simplified version or a complete term structure of the forward prices in the problem, 

however, it was only for the informational purposes (nested in the conditional expectation of the 

value function). Nevertheless, the forward maturity is not considered as a decision variable, 

because the actions are in the form of withdraw-and-sell, buy-and-inject, or do-nothing. There is 

only one contribution (Löhndorf and Wozabal, 2017) which models the situation in which a trader 

takes positions and selects the quantity of natural gas in each of the available maturities in the 

forward market. However, they are concerned with a specific incomplete market setting and 

pricing framework, which leads to an intractable problem for ADP solutions and requires 

employing complex techniques (Löhndorf and Wozabal, 2017). 

Furthermore, another distinction of the present research with the storage pricing literature is that 

we are concerned with optimal trading of an asset under a critical constraint. That is the inventory 

should be carried while hedged until the delivery is concluded. This is a risk-averting assumption 

rooted in how the cash and carry arbitrage works. Constantly holding a hedging forward position 

is what leads to the periodic optimization of the contract maturity. The joint optimization of the 

inventory and a financial contract specification (e.g. maturity) is the salient character of this 

research. 

We contribute to the literature by studying optimal sale (purchase and sale in Chapter 5) of a 

storable commodity under some risk-reducing assumptions. It also investigates and compares 

suboptimal but simple approaches. In doing so, it considers the full term structure of the forward 

curve, both from an informational as well as operational (trading) perspective, where forward 

maturities can be selected as decision variables. Although the very popular long-term/short-term 
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price model of Schwartz and Smith (2000) is used in this research, the MDPs developed here are 

independent from any particular price model. Similarly, the optimization algorithms can easily 

accommodate other price models. Finally, the introduction of a stochastic storage cost allows to 

progress toward a more realistic and comprehensive framework, in which most aspects of the trade 

are incorporated in the MDP as decision variables to be selected optimally by the trader. 
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Chapter 2 

 

2 The Price Model and Simulation 

In Section 2.1, the price model used throughout the thesis is introduced in detail. Section 2.2 

reviews the parameter estimates of the model and the simulation process. By simulating the prices, 

Section 2.3 provides an overview of the dynamics of forward prices and the environment in which 

the subject trades occur. Section 2.4 offers a summary of the chapter. 

2.1 The Model 

Throughout this thesis, the Schwartz and Smith (2000) model is used to simulate the evolution of 

both oil spot prices and the oil forward curve through time. The Schwartz-Smith model has two 

stochastic factors or state variables. The first state variable 𝜒𝑡 is the short-term factor representing 

short-term deviations from a long-term trend, which is represented by the second state variable 𝜉𝑡, 

i.e. the long-term factor. The spot price is given in terms of these state variables by Eq. 2.1. Note 

that we retain, except where minor changes cause no confusion, the original model notation as we 

review the model.  

 ln (𝑆𝑡) = 𝜒𝑡 + 𝜉𝑡 Eq. 2.1 

Under the physical or ℙ measure, the two factors are governed by the SDEs Eq. 2.2 and Eq. 2.3. 

 𝑑𝜒𝑡 = −𝑘𝜒𝑡𝑑𝑡 + 𝜎𝜒𝑑𝑊𝜒(𝑡) Eq. 2.2 

 𝑑𝜉𝑡 = 𝜇𝜉𝑑𝑡 + 𝜎𝜉𝑑𝑊𝜉(𝑡) Eq. 2.3 

Where 𝑑𝑊𝜒 and 𝑑𝑊𝜉 are two correlated processes with correlation coefficient 𝜌𝜒𝜉 , as expressed 

in Eq. 2.4.  

 𝑑𝑊𝜒𝑑𝑊𝜉 = 𝜌𝜒𝜉𝑑𝑡 Eq. 2.4 

Eq. 2.2 describes a (mean reverting) Ornstein-Uhlenbeck process with a mean-reversion level of 

zero. Eq. 2.3 describes an arithmetic Brownian motion with drift. To compute the forward prices 
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from this spot price it is, as discussed in Chapter 1, essential to operate under the risk neutral 

measure ℚ. Under this measure the two processes have the following representation. 

 𝑑𝜒𝑡 = (−𝑘𝜒𝑡 − 𝜆𝜒)𝑑𝑡 + 𝜎𝜒𝑑𝑊̃𝜒(𝑡) 
Eq. 2.5 

 𝑑𝜉𝑡 = (𝜇𝜉 − 𝜆𝜉)𝑑𝑡 + 𝜎𝜉𝑑𝑊̃𝜉(𝑡) 
Eq. 2.6 

 𝑑𝑊̃𝜒𝑑𝑊̃𝜉 = 𝜌𝜒𝜉𝑑𝑡 
Eq. 2.7 

Here, 𝜆𝜒and 𝜆𝜉 denote respectively the short- and the long-term market price of risk, or risk 

premia. Thus, under the risk-neutral measure, the short-term process 𝜒𝑡 reverts to −𝜆𝜒/𝑘. 

Similarly, the drift of the long-term process 𝜉𝑡 becomes 𝜇𝜉
∗ = 𝜇 𝜉 − 𝜆𝜉. It can be shown that given 

initial values (𝜉0, 𝜒0) under the risk-neutral measure ℚ, (𝜉𝑡, 𝜒𝑡) follow a bivariate normal 

distribution with the following mean and covariance structure. 

 𝐸ℚ[𝜉𝑡, 𝜒𝑡] = [𝜉0 + 𝜇𝜉
∗𝑡 , 𝑒−𝑘𝑡𝜒0 −

𝜆𝜒

𝑘
(1 − 𝑒−𝑘𝑡)] Eq. 2.8 

 𝐶𝑜𝑣ℚ(𝜉𝑡, 𝜒𝑡) = 𝐶𝑜𝑣(𝜉𝑡, 𝜒𝑡) = [

𝜎𝜉
2𝑡

𝜎𝜒𝜎𝜉𝜌𝜒𝜉

𝑘
(1 − 𝑒−𝑘𝑡)

𝜎𝜒𝜎𝜉𝜌𝜒𝜉

𝑘
(1 − 𝑒−𝑘𝑡)

𝜎𝜒
2

2𝑘
(1 − 𝑒−2𝑘𝑡)

] Eq. 2.9 

Therefore, 

 𝐸[𝐿𝑜𝑔(𝑆𝑡)] = 𝑒
−𝑘𝑡𝜒0 + 𝜉0 + 𝜇𝜉𝑡 

Eq. 2.10 

 𝐸ℚ[𝐿𝑜𝑔(𝑆𝑡)] = 𝑒
−𝑘𝑡𝜒0 + 𝜉0 −

𝜆𝜒

𝑘
(1 − 𝑒−𝑘𝑡) + 𝜇𝜉

∗𝑡 
Eq. 2.11 

In the long term (𝑡 → ∞), Eq. 2.10 and Eq. 2.11 representing the two expectations can be 

considered and compared as two lines in which the slopes (𝜇𝜉 and 𝜇𝜉
∗) differ by 𝜆𝜉 and the 

intercepts (𝜉0 and 𝜉0 − 𝜆𝜒 𝑘⁄ ) differ by 𝜆𝜒 𝑘⁄ . The risk premia reduce the expected log of the spot 

price as expressed in Eq. 2.12. 

 𝐸[𝐿𝑜𝑔(𝑆𝑡)] − 𝐸
ℚ[𝐿𝑜𝑔(𝑆𝑡)] =

𝜆𝜒

𝑘
(1 − 𝑒−𝑘𝑡) + 𝜆𝜉𝑡 Eq. 2.12 
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We can now derive the forward price as the expected value of the spot price under the risk neutral 

measure by 𝐹(𝑡, 𝑇) = 𝐸𝑡
ℚ[𝑆𝑇]. Let 𝐹(𝑡, 𝑇) denote the forward price at time 𝑡 for delivery at time 

𝑇 (for the relationship between forward and futures prices please see Chapter 1). Based on the 

Schwartz-Smith model, 𝐹(𝑡, 𝑇) can be written as in Eq. 2.13, where ‘𝑇 − 𝑡’ is the time-to-maturity 

of this contract, and 𝐴(𝑇 − 𝑡), expressed in Eq. 2.14, is a deterministic term depending only on 

the time-to-maturity. 

𝐹(𝑡, 𝑇) = exp[ 𝑒−𝑘(𝑇−𝑡)𝜒𝑡 + 𝜉𝑡 + 𝐴(𝑇 − 𝑡)] Eq. 2.13 

𝐴(𝑇 − 𝑡) = (𝜇𝜉 − 𝜆𝜉)(𝑇 − 𝑡) −
𝜆𝜒

𝑘
(1 − 𝑒−𝑘(𝑇−𝑡))

+
1

2
[𝜎𝜉

2(𝑇 − 𝑡) +
𝜎𝜒
2

2𝑘
(1 − 𝑒−2𝑘(𝑇−𝑡))

+ 2
𝜎𝜒𝜎𝜉𝜌𝜒𝜉

𝑘
(1 − 𝑒−𝑘(𝑇−𝑡))] 

Eq. 2.14 

To examine the forward curve in terms of being upward- or downward-sloping, let us compute the 

derivative of the forward price with respect to the time-to-maturity, denoted by 𝑧 ∶= 𝑇 − 𝑡, as 

expressed in Eq. 2.15. If time-to-maturity is very large (𝑧 → ∞), the sign of the derivative matches 

the sign of 𝜇𝜉
∗ +

1

2
𝜎𝜉
2, which is independent from time 𝑡. 

𝜕𝐹(𝑡, 𝑡 + 𝑧)

𝜕𝑧
= exp[ 𝑒−𝑘𝑧𝜒t + 𝜉t + 𝐴(𝑧)] [𝜇𝜉

∗ +
1

2
𝜎𝜉
2

+ (𝜎𝜒𝜎𝜉𝜌𝜒𝜉 − 𝜆𝜒 − 𝑘𝜒t)𝑒
−𝑘𝑧 +

1

2
𝜎𝜒
2𝑒−2𝑘𝑧] 

Eq. 2.15 

However, for small time-to-maturities 𝑧, the sign depends on the long-term as well as the short-

term factor parameters, and it is stochastic due to the presence of 𝜒t. This is why the forward curve 

can (and does) switch from backwardation (downward) to contango (upward) stochastically. At a 

fixed time 𝑡, the sign can also change as time-to-maturity 𝑧 varies.  

As mentioned earlier, based on the risk-neutral pricing framework, computing 𝐹(𝑡, 𝑇) is done 

under the risk-neutral measure. However, the goal of the present research is to evaluate the 
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performance of an optimal trading strategy and the extent of its profit or loss, which falls in the 

risk management realm, and thus requires simulating state variables under the physical (historical) 

measure.  

Luckily, the forward curve 𝐹(𝑡, 𝑇) is fully explained by the above closed-form solution in terms 

of the only two state variables (𝜒t, 𝜉t). When the price has a closed form solution, one can simulate 

the underlying risk drivers, (𝜒t, 𝜉t), under the physical measure, and feed them into 𝐹(𝑡, 𝑇) to 

compute future exposures (Schoftner, 2008). In contrast to the present research, simulation under 

the physical measure has not been considered in previous studies aiming at evaluation of trading 

strategies such as the suboptimal FDO (Jafarizadeh and Bratvold, 2013), or storage asset valuation 

(Lai et al., 2010). 

2.2 Parameter Estimates and Simulation  

In order to simulate the prices, we use the model parameters estimated by Hahn et al (2014) as 

listed in Table 2.1. The parameters used by Jafarizadeh and Bratvold (2013) were not based on 

actual estimation of the model and only represented a hypothetical assumption of a favorable 

condition for this trade. Hahn et al (2014) estimated the parameters in the Schwartz-Smith two-

factor model employing the Kalman filter (Kalman, 1960) method using 1990–2013 WTI futures 

data. This data included several major developments in crude oil markets, compared to Schwartz 

and Smith (2000) that only included 1990–1996 data. Using the same period data, Hahn et al 

(2014) found that the results are in good overall agreement with those of Schwartz and Smith 

(2000). 

 

𝜎𝜒 0.3116 𝑘 1.0880 𝜆𝜒 0.3733 𝜇𝜉 0.0818 

𝜎𝜉 0.2053 𝜌𝜒𝜉  0.0823 𝜆𝜉 0.1070 𝜇𝜉
∗ = 𝜇𝜉 − 𝜆𝜉  -0.0252 

Table 2.1. Parameters estimated by Hahn et al (2014) 

Accordingly, the following discretized version of the SDE’s under the physical measure, i.e. Eq. 

2.2 to Eq. 2.4,  are used to simulate the prices. These discretized equations are the exact forms that 

can be obtained by integrating the corresponding SDE’s (if the exponential functions are replaced 

by their corresponding first order Taylor expansion, these equations will become equivalent to the 

Euler approximation of the SDE’s). 
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 𝜒𝑡 = 𝜒𝑡−1𝑒
−𝑘Δ𝑡 + 𝜎𝜒√

1 − 𝑒−2𝑘Δ𝑡

2𝑘
𝑍𝜒 

Eq. 2.16 

 𝜉𝑡 = 𝜉𝑡−1 + 𝜇𝜉Δ𝑡 + 𝜎𝜉√Δ𝑡𝑍𝜉  Eq. 2.17 

 Z𝜉~N[0,1], Z𝜒~N[0,1], 𝐶𝑜𝑟𝑟(𝑍𝜒, 𝑍𝜉) = 𝜌𝜒𝜉  Eq. 2.18 

2.3 Dynamics of the Forward Curve  

To provide an overview of the environment in which the trades occur and the optimization 

algorithms operate, the dynamics of the forward curve is studied. Let a 𝑇 = 1 year time horizon 

be divided by timesteps of Δ𝑡 into 𝑁 = 𝑇/Δ𝑡 periods. This 𝑁 determines the number of timesteps 

at which trading decisions are made. Although 𝑁 might not be very large, e.g. 𝑁 = 12 to represent 

monthly trading, the number of underlying periods used in the simulation is much larger than 𝑁 to 

ensure a high-quality simulation of the SDE based on Euler approximation. 

 

 
(a) 

  
(b) 

Fig. 2.1. Two sample realizations (a and b) of the spot price 𝑆(𝑡) (dotted line) and forward curve 

with monthly increments. At each timestep (month) the one-year forward curve, 𝐹(𝑡, 𝑡 ≤ 𝑇 ≤
𝑡 + 1) is shown for 𝑡 = 0, 1 12⁄ , 2 12⁄ ,… , 12 12⁄  using Table 2.1 parameters, and (𝜒0, 𝜉0) = 

(-0.639,4.637). 
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Consistent with the previous notation, let 𝐹(𝑡1, 𝑡2) denote the forward price at time 𝑡1 for delivery 

at time 𝑡2. Using 𝑁 = 12, Fig. 2.1 shows two sample realizations of the spot prices and their 

corresponding forward curves. Here, (𝜒0, 𝜉0) = (-0.639,4.637), which corresponds to a spot price 

of $54.45 per barrel and a long-term price of $103.19 simulating forward prices based on May 

2009 market conditions. Various slopes and curvatures are observed among the realizations. 

Usually, if the spot price is around the lower-end of the range, the forward curve is upward-sloping. 

However, if the spot price is around the higher-end of the range, it is downward-sloping. This is 

induced by the mean-reverting nature of the short-term deviation generated by the 𝜒𝑡 factor. 

Since it is not possible to illustrate visibly many forward curve realizations on the same plot, and 

to have a statistically better representation of the forward curve dynamics, a different approach is 

taken. 𝑀 = 10,000 sample paths are simulated using 𝑁 = 4, i.e. quarterly Δ𝑡’s, and the following 

quantities are computed at times 𝑡 = 0, 0.25, 0.5, and 0.75; (i) the mean of the forward prices, and 

(ii) the slope of the line fitted to the forward curve. Fig. 2.2.a shows the mean of forward prices 

 

(a) 

 

(b) 

Fig. 2.2. Characteristics of the forward curve based on the parameters of Table 2.1, 𝑇 = 1 year, 

Δ𝑡 = 0.25, 𝑀 = 10,000, and (𝜒0, 𝜉0) = (-0.639,4.637); (a) Slope versus mean price at 𝑡 = 0, 

0.25, 0.5, and 0.75. (b) Change in the slope versus change in the mean price over each period. 

Period 1 represents the time from 𝑡 = 0 to 0.25, Period 2 represents the time from 𝑡 = 0.25 to 0.5, 

and Period 3 represents the time from 𝑡 = 0.5 to 0.75. 
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versus the slope at all the four timesteps. Both positive and negative slopes are seen, while the 

mean prices vary mostly between $40 and $140. Generally, it can be said that low spot prices relate 

to high slopes, and high spot prices relate to lower (or even negative) slopes, which has important 

implications for the storage trade. Moreover, the change in the spot price and the change in the 

slope are negatively correlated. The likelihood of having a negative slope increases with the 

passage of time. Percentage of paths with a negative slope is computed as ratio of the number of 

the paths with a negative slope to the total number of the paths. This ratio increases from 10.4% at 

𝑡 = 0.25 to 54% at 𝑡 = 0.75. In other words, the forward curve tends to move toward 

backwardation (down-ward sloping). However, within the one-year time frame, the forward curve 

is upward sloping most of the time; only 33.5% of the cases across all paths and all times have a 

negative slope. 

To demonstrate the dynamics of the forward curve in terms of parallel shifts and changes in the 

slope, the change in the mean of forward prices and the change in the slope of the forward curve 

are calculated for two consecutive times, i.e. the change over a period. Period 1 represents the time 

from 𝑡 = 0 to 0.25, Period 2 represents the time from 𝑡 = 0.25 to 0.5, and Period 3 represents the 

time from 𝑡 = 0.5 to 0.75. The result is illustrated in Fig. 2.2.b. Regardless of the period, it is seen 

that usually a decrease (increase) in the slope is accompanied by an increase (decrease) in the mean 

forward prices. The only impact of period is that the magnitude of the change (dispersion around 

the origin) increases with the passage of time. Across the three periods, 62.3% of the cases fall in 

the second quadrant, where a decrease in the slope occurs simultaneously with an increase in the 

mean price. 

2.4 Summary 

The Schwartz and Smith (2000) model is reviewed in detail. It is a two-factor model, which 

includes a long-term factor determining the long-term trend (equilibrium price) and short-term 

factor capturing the temporary deviations from the long-term trend. Many different forward curve 

shapes can be replicated with this model. Higher spot prices are accompanied with steeper 

downward-sloping forward curves, and vice versa. A series of sample paths are simulated using 

the initial condition (𝜒0, 𝜉0) = (-0.639,4.637), which corresponds to the condition in May 2009. 
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This is equivalent to the spot price 𝑆0 = $54.45 and a long-term equilibrium price of $103.19. 

Simulations indicate that as the prices approach the long-term (higher) level, they increase through 

each period, and the initial upward sloping forward curve tilts downward. 

In the next chapter, the first (and simplest) framework for the proposed trade is presented, which 

is formulated as an MDP model. The Schwartz-Smith model provides the exogenous state 

variables in the MDP model, which determines the forward prices at each timestep. The proposed 

trade will result in a profit-maximizing optimization problem, which will be solved by a 

suboptimal yet simple approach in the next chapter, Chapter 3, and an optimal method in Chapter 

4. 
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Chapter 3 

 

3 Forward Dynamic Optimization 

In this chapter, we study the Forward Dynamic Optimization (FDO) method, also known as the 

Rolling Intrinsic policy. This simple and intuitive strategy is suboptimal, although it may lead to 

near-optimal results under some circumstances, e.g. gas storage valuation, as discussed in the 

literature review. 

Section 3.1 discusses the assumptions and establishes the MDP formulation of the model. Section 

3.2 explains theoretically the intuition behind the FDO policy in terms of the slope of forward 

curve. Section 3.3 reports the values of parameters used to achieve the numerical results. Sections 

3.4 and 3.5 contain the computational results and the chapter summary respectively. 

3.1 Model 

Assume a trader owns 𝑅̅ barrels (or 𝑅̅ units as quantity of oil is described in barrels) of crude oil 

stored in a tanker. All 𝑅̅ barrels of oil must be delivered by time 𝑇̅, perhaps because the tanker 

must be returned to its owner by that date. The oil could be delivered earlier however. If the market 

is in contango and the forward price is higher than the spot price, it would be profitable to buy the 

oil at 𝐹(𝑡0, 𝑡0)  =  𝑆(𝑡0) and immediately sell it forward for 𝐹(𝑡0, 𝑇̅), thereby locking in a profit 

of 𝑅̅[𝐹(𝑡0, 𝑇̅) − 𝑆(𝑡0)]. Assuming the oil is already owned at time 𝑡0, this strategy involves a short 

position in a single contract (for 𝑅̅ barrels) with delivery at time 𝑇̅. There may, depending on the 

evolution of the forward curve, be better opportunities. For instance, if at time 𝑠 > 𝑡0 and delivery 

time 𝑇1 < 𝑇̅,  𝐹(𝑠, 𝑇1) > 𝐹(𝑠, 𝑇̅), it would be easy for the investor to buy back their time 𝑇̅ delivery 

contract and short a 𝑇1 delivery contract. This would add a profit per barrel of 𝐹(𝑠, 𝑇1) − 𝐹(𝑠, 𝑇̅) 

with no risk. Forward Dynamic Optimization is the idea of taking all such immediately profitable 

contract modifications to profit from fluctuations in the forward market.   

We need to introduce some notation before studying this problem in detail. First, we assume (in 

this chapter) that physical delivery is irrevocable, in the sense that refilling the inventory is not 



34 

 

permitted. However, any pair of long/short contracts (with maturity before or at 𝑇̅) may be added 

to the trading strategy at any time, provided that the net exposure of all contracts is short one unit 

of the asset, to balance the long position in physical oil stored in the tanker. Therefore, the 

inventory will remain constantly hedged until delivery. Second, we assume that the time horizon 

is discretized into 𝑁 equal periods by timesteps 𝑡0 = 0, 𝑡1, 𝑡2, … , 𝑡𝑁 = 𝑇̅. Subsequently, let 𝛿 =

exp(−𝑟(𝑡𝑖+1 − 𝑡𝑖)) = exp(−𝑟Δ𝑡) denote the constant time-discount factor for one period. We 

need to account for two types of operational costs. First set of operational costs, denoted by 𝑐𝑃, 

lumps together the cost of physically transferring the oil from the tanker to the delivery point 

(“pumping costs”) and any location discount to WTI futures. It is because physical delivery will 

take place at a port rather than Cushing, Oklahoma, which is the pricing point of the WTI contracts. 

The second set of operational costs combines the cost of renting the tanker with the cost of 

crewing/operating it. This “holding cost” is denoted by 𝑐𝐻. We assume that pumping costs must 

be paid at delivery time of the oil, while holding costs must be paid up front at 𝑡0. We also assume 

that if the trader delivers the oil earlier than the end of the tanker rental agreement she will be 

refunded the unused portion of the holding costs. 

At 𝑡0 = 0, the trader faces the following set of alternative decisions. One is to sell the oil on the 

spot market and receive a payoff of 𝑆0 − 𝑐𝑃. This will lead to an immediate termination of the 

decision-making process and zero added value. However, there might exist more profitable 

alternatives by selling the oil using a forward contract for delivery at a later date. The trader must 

choose an optimal contract from those available, subject to the time constraints. Of course, the sale 

at 𝑡0 will be the optimal choice if none of the forward contracts can provide additional value 

relative to the sale at 𝑡0. To formalize the problem, we first consider a discrete-time dynamic 

optimization framework based on the following components: 

1. The State Variables (𝒙𝒊 and 𝑾𝒊): At any stage 𝑖, the trader owns an inventory level of 𝑅̅, which 

is sold forward with a contract that has a maturity of 𝑇𝑖. In other words, the portfolio of the trader 

consists of a long asset position with a quantity of  𝑅̅, and a short forward position with a maturity 

of 𝑇𝑖 and the same quantity. Let 𝑥𝑖 denote the endogenous component of the state variable at time 

𝑡𝑖. So, the state can be defined by 𝑥𝑖 = (𝑅𝑖, 𝑇𝑖), which determines the amount of oil in the 
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inventory, 𝑅𝑖, and the promised delivery date 𝑇𝑖. Also, the stage-𝑖 forward curve, 𝐹(𝑡𝑖, 𝑇), where 

𝑇 ∈ {𝑡𝑖, 𝑡𝑖+1, … , 𝑡𝑁}, is fully specified by 𝑊𝑖 = (𝜒𝑖, 𝜉𝑖), which are treated as exogenous state 

variables. This indicates that the distribution of 𝑊𝑖+1 is not affected by the 𝑥𝑖, or the decision 

made. So, the current state is fully explained by (𝑥𝑖,𝑊𝑖) ∈  𝒳𝑖 ×ℝ
2, where 𝒳𝑖 is the state space 

defined as in Eq. 3.1. 

 𝒳𝑖 = {{0} × {0}} ∪ {{𝑅̅} × {𝑡𝑖, 𝑡𝑖+1, 𝑡𝑖+2, … , 𝑡𝑁}} 
Eq. 3.1 

The state 𝑥𝑖 = (0,0) is an absorbing state corresponding to an empty inventory condition, from 

which there will be no further decision making. At 𝑡0, the initial state is 𝑥0 = (𝑅̅, 0) and 𝑊0 =

(−0.6393, 4.6366). This indicates 𝑅0 = 𝑅̅ and 𝑇0 = 0 meaning that the trader starts with 𝑅̅ units 

in the tanker, and no forward contract at hand (one that matures today). 

2. The Decisions (actions) (𝒂𝒊): At stage 𝑖 and state (𝑥𝑖, 𝑊𝑖), the decisions to be made is to select 

𝑎𝑖, which is the maturity of the short forward position. 

 𝑎𝑖 𝜖 𝒜𝑖(𝑥𝑖) for 𝑖 ∈  {0, 1, 2, … ,𝑁 − 1} Eq. 3.2 

𝒜𝑖(𝑥𝑖) is the feasible set, which depends on the current state and defined by Eq. 3.3. 

 𝒜𝑖(𝑥𝑖) = {
{0}                                               𝑖𝑓 𝑅𝑖 = 0
{𝑡𝑖 , 𝑡𝑖+1, 𝑡𝑖+2, … , 𝑡𝑁}                𝑖𝑓 𝑅𝑖 > 0

   Eq. 3.3 

If 𝑅𝑖 > 0, the trader can choose a new maturity from 𝑡𝑖 (corresponding to sale on the spot) to 𝑡𝑁 

(latest possible delivery date). The new maturity 𝑎𝑖 can be 𝑎𝑖 > 𝑇𝑖 or 𝑎𝑖 ≤ 𝑇𝑖, which represents 

postponing or advancing the current contract maturity respectively. 

3. State Transition Function 𝒇𝒊(𝒙𝒊, 𝒂𝒊 ): Given the current state (𝑥𝑖,𝑊𝑖) and the action 𝑎𝑖, the 

endogenous part of the next state 𝑥𝑖+1 = 𝑓𝑖(𝑥𝑖, 𝑎𝑖) follows (in a deterministic fashion) using the 

state transition function as expressed in Eq. 3.4. 

 𝑥𝑖+1 = (𝑅𝑖+1, 𝑇𝑖+1) = 𝑓𝑖(𝑥𝑖 , 𝑎𝑖) = {
(0,0)             𝑖𝑓  𝑎𝑖 = 𝑡𝑖  𝑜𝑟 𝑅𝑖 = 0
(𝑅𝑖, 𝑎𝑖)                             𝑖𝑓   𝑎𝑖 > 𝑡𝑖

 Eq. 3.4 
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The exogenous part of the state, 𝑊𝑖, evolves based on the stochastic processes of Eq. 2.2 and Eq. 

2.3 independently from 𝑥𝑖 and 𝑎𝑖. 

 4. Reward Function 𝒓𝒊(𝒂𝒊, 𝒙𝒊,𝑾𝒊): Given the state 𝑥𝑖 = (𝑅𝑖, 𝑇𝑖) and the action 𝑎𝑖 at stages 𝑖 ∈

{0, 1, 2, … ,𝑁 − 1}, there will be a reward generated by going short 𝑅𝑖 barrels through choosing 

the contract with maturity 𝑎𝑖, i.e. shorting 𝐹(𝑡𝑖, 𝑎𝑖) contract. Assume that the trader enters time 𝑡𝑖, 

at which time she holds a short position in a contract that matures at time 𝑇𝑖 (𝑡𝑖 ≤ 𝑇𝑖). According 

to the assumptions, the tanker rent has already been paid up to time 𝑇𝑖.  

Three elements of the payoff are as the following. Firstly, the current contract held must be offset 

by going long the 𝐹(𝑡𝑖 , 𝑇𝑖) contract, which results in a cash outflow of −𝑒−𝑟(𝑇𝑖−𝑡𝑖)(𝐹(𝑡𝑖, 𝑇𝑖) − 𝑐𝑃). 

Secondly, there is the payoff due to entering the newly chosen short position with maturity 𝑎𝑖, 

which results in the cash inflow of 𝑒−𝑟(𝑎𝑖−𝑡𝑖)(𝐹(𝑡𝑖, 𝑎𝑖) − 𝑐𝑃). Finally, there is the payoff from the 

rental time adjustment, which is 𝑐𝐻(𝑎𝑖 − 𝑇𝑖). If 𝑎𝑖 > 𝑇𝑖, the trader must pay extra rent for the 

additional time beyond 𝑇𝑖. If 𝑎𝑖 < 𝑇𝑖, the trader will receive a refund equal to the rent for the 

unused portion. Fig. 3.1 highlights the new long and short contracts being considered if 𝑇𝑖 < 𝑎𝑖. 

All the three payoff elements are combined in Eq. 3.5. 

 

Fig. 3.1. New positions to capture any potential gains 

 

𝑟𝑖(𝑎𝑖, 𝑥𝑖 ,𝑊𝑖) = 

𝑅𝑖[𝑒
−𝑟(𝑎𝑖−𝑡𝑖)(𝐹(𝑡𝑖, 𝑎𝑖) − 𝑐𝑃) − 𝑒

−𝑟(𝑇𝑖−𝑡𝑖)(𝐹(𝑡𝑖, 𝑇𝑖) − 𝑐𝑃) − 𝑐𝐻(𝑎𝑖 − 𝑇𝑖)] 

Eq. 3.5 

Note that 𝑎𝑖 = 𝑇𝑖 is equivalent to a ‘hold’ decision with a zero payoff. At the terminal time, 𝑡𝑁 =

𝑇̅, there is no decision making and 𝑟𝑁(𝑥𝑁 ,𝑊𝑁) = 𝑟0 = 0, because by 𝑡𝑁 = 𝑇̅ either the oil has 
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been already sold, or an existing short contract with 𝑇𝑁 = 𝑇̅ will be fulfilled by delivering the 

inventory. 

The optimization problem, which gives the real option value at 𝑡0, is expressed by Eq. 3.6. The 

optimization is over the class Π, where Π is the set of all feasible policies 𝜋. A policy 𝜋 is defined 

as the set of decision functions {𝐴0
𝜋, 𝐴1

𝜋, 𝐴2
𝜋, … , 𝐴𝑁−1

𝜋 }, where 𝐴𝑖
𝜋(𝑥𝑖,𝑊𝑖): 𝒳𝑖 × ℝ

2 → 𝒜𝑖(𝑥𝑖) for 

∀𝑖 ∈ {0, 1, 2, … ,𝑁 − 1}. 

𝑉0(𝑥0,𝑊0) = max
𝜋∈Π

𝐸 [∑ 𝛿𝑖  𝑟𝑖(𝐴𝑖
𝜋(𝑥𝑖

𝜋,𝑊𝑖), 𝑥𝑖 ,𝑊𝑖)

𝑁−1

𝑖=0

| (𝑥0,𝑊0)] 
Eq. 3.6 

The expectation is under the physical measure as the goal is to capture the performance of the 

trading strategy. Also, 𝑥𝑖
𝜋 denotes the random endogenous part of the state at stage 𝑖 when policy 

𝜋 is implemented. The Bellman equation associated with the above problem is expressed by Eq. 

3.7, where 𝑉𝑖(𝑥𝑖,𝑊𝑖) is the value function at timestep 𝑖 and state (𝑥𝑖,𝑊𝑖). 

𝑉𝑖(𝑥𝑖,𝑊𝑖) = max
𝑎∈𝒜𝑖(𝑥𝑖)

{𝑟𝑖(𝑎, 𝑥𝑖 ,𝑊𝑖) + 𝛿E[𝑉𝑖+1(𝑓𝑖(𝑥𝑖 , 𝑎),𝑊𝑖+1)| 𝑊𝑖]}, 

∀(𝑥𝑖,𝑊𝑖) ∈ 𝒳𝑖 ×ℝ
2, ∀𝑖 ∈ {0, 1, 2, … ,𝑁 − 1}, 

𝑉𝑁(𝑥𝑁 ,𝑊𝑁) = 𝑟𝑁(𝑥𝑁 ,𝑊𝑁) = 0,   ∀(𝑥𝑁 ,𝑊𝑁) ∈ 𝒳𝑁 ×ℝ
2 

Eq. 3.7 

The myopic approach to solve Eq. 3.7 advised by the FDO method is to ignore 

𝛿E[𝑉𝑖+1(𝑓𝑖(𝑥𝑖, 𝑎),𝑊𝑖+1)| 𝑊𝑖] and to maximize 𝑟𝑖(𝑎, 𝑥𝑖 ,𝑊𝑖) by searching for the optimal action 

𝑎 ∈ 𝒜𝑖(𝑥𝑖). Accordingly, the FDO algorithm prescribes the following policy; Eq. 3.8 to be 

followed sequentially at 𝑖 = 0, 1, 2, … , 𝑁 − 1, which leads to stage-wise deterministic payoffs of 

Eq. 3.9. According to this policy, the trader only maximizes the immediate profit from any present 

opportunity, where 𝑣𝑖(𝑥𝑖,𝑊𝑖) represents the total value generated by such trade at 𝑡𝑖. This policy 

does not take into account the impact of an action today on the value potentially harvested in the 

future. We can argue that 𝑣𝑖(𝑥𝑖,𝑊𝑖) ≥ 0, ∀𝑖, 𝑥𝑖 ,𝑊𝑖 because we know that in the maximization of 

Eq. 3.9 one can always choose to hold the same maturity, i.e. 𝑎𝑖 = 𝑇𝑖, leading to a zero payoff. 

The way that the above algorithm performs explains why it is called FDO; at 𝑡0, 𝑡1, 𝑡2, … , 𝑡𝑁−1, the 

trader performs a Forward Dynamic Optimization, which is to readjust her position given the most 
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recently realized forward prices. This readjustment captures any favorable shift in the forward 

curve, which can only add non-negative value. 

𝐴𝑖
𝐹𝐷𝑂(𝑥𝑖,𝑊𝑖) = argmax

𝑎𝑖∈𝒜𝑖(𝑥𝑖)
𝑟𝑖(𝑎𝑖, 𝑥𝑖 ,𝑊𝑖) for 𝑖 ∈ {0, 1, 2, … ,𝑁 − 1}  Eq. 3.8 

𝑣𝑖(𝑥𝑖,𝑊𝑖) = max
𝑎𝑖∈𝒜𝑖(𝑥𝑖)

𝑟𝑖(𝑎𝑖, 𝑥𝑖 ,𝑊𝑖) for 𝑖 ∈ {0, 1, 2, … ,𝑁 − 1} Eq. 3.9 

Total value achieved by following the FDO policy can be computed based on in Eq. 3.10. 

𝑉0
𝐹𝐷𝑂(𝑥0,𝑊0) = 𝐸 [∑ 𝛿𝑖  max

𝑎𝑖∈𝒜𝑖(𝑥𝑖)
𝑟𝑖(𝑎𝑖, 𝑥𝑖 ,𝑊𝑖) 

𝑁−1

𝑖=0

| (𝑥0,𝑊0)]

= 𝐸 [∑ 𝛿𝑖 𝑣𝑖(𝑥𝑖, 𝑊𝑖)

𝑁−1

𝑖=0

| (𝑥0,𝑊0)] 

Eq. 3.10 

Eq. 3.10 can be written more explicitly as Eq. 3.11. The expectations in Eq. 3.10 or Eq. 3.11 can 

be calculated using Monte Carlo simulations by computing the payoffs along each path in a 

forward-moving fashion. 

𝑉0
𝐹𝐷𝑂(𝑥0,𝑊0) = 𝐸𝑡0 [∑ 𝛿𝑖  max

𝑎𝑖∈𝒜𝑖(𝑥𝑖)
𝑅𝑖[𝑒

−𝑟(𝑎𝑖−𝑡𝑖)(𝐹(𝑡𝑖, 𝑎𝑖) − 𝑐𝑃)

𝑁−1

𝑖=0

− 𝑒−𝑟(𝑇𝑖−𝑡𝑖)(𝐹(𝑡𝑖, 𝑇𝑖) − 𝑐𝑃) − 𝑐𝐻(𝑎𝑖 − 𝑇𝑖)] ] 

Eq. 3.11 

3.2 Theoretical Interpretation and Comparison 

To shed light on the intuition behind the FDO policy, let us re-write Eq. 3.9 as Eq. 3.14, where the 

interim steps are expressed explicitly. 

𝑣𝑖
∗(𝑥𝑖 ,𝑊𝑖) = max

𝑎𝑖∈𝒜𝑖(𝑥𝑖)
𝑟𝑖(𝑎𝑖, 𝑥𝑖 ,𝑊𝑖) = 

𝑅𝑖 max
𝑎𝑖∈{𝑡𝑖,𝑡𝑖+1,𝑡𝑖+2,…,𝑡𝑁}

[𝑒−𝑟(𝑎𝑖−𝑡𝑖)(𝐹(𝑡𝑖, 𝑎𝑖) − 𝑐𝑃) − 𝑒
−𝑟(𝑇𝑖−𝑡𝑖)(𝐹(𝑡𝑖, 𝑇𝑖) − 𝑐𝑃)

− 𝑐𝐻(𝑎𝑖 − 𝑇𝑖)] 

Eq. 3.12 
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For simplicity in exposition, assume that 𝑟 = 0; this constraint can easily be removed at the cost 

of more complicated notation. 

𝑣𝑖
∗(𝑥𝑖,𝑊𝑖) = 𝑅𝑖 max

𝑎𝑖∈{𝑡𝑖,𝑡𝑖+1,𝑡𝑖+2,…,𝑡𝑁}
[𝐹(𝑡𝑖, 𝑎𝑖) − 𝑐𝑃 − 𝐹(𝑡𝑖, 𝑇𝑖) + 𝑐𝑃 − 𝑐𝐻(𝑎𝑖 − 𝑇𝑖)] Eq. 3.13 

= 𝑅𝑖  max
𝑎𝑖∈{𝑡𝑖,𝑡𝑖+1,𝑡𝑖+2,…,𝑡𝑁}

[𝐹(𝑡𝑖, 𝑎𝑖) − 𝐹(𝑡𝑖, 𝑇𝑖) − 𝑐𝐻(𝑎𝑖 − 𝑇𝑖)] 

= 𝑅𝑖  max
𝑎𝑖∈{𝑡𝑖,𝑡𝑖+1,𝑡𝑖+2,…,𝑡𝑁}

(𝑎𝑖 − 𝑇𝑖) [
𝐹(𝑡𝑖, 𝑎𝑖) − 𝐹(𝑡𝑖 , 𝑇𝑖)

𝑎𝑖 − 𝑇𝑖
− 𝑐𝐻] 

= 𝑅𝑖  max

{
 
 

 
 max
𝑡𝑖≤𝑎𝑖<𝑇𝑖

(𝑎𝑖 − 𝑇𝑖) [
𝐹(𝑡𝑖, 𝑎𝑖) − 𝐹(𝑡𝑖, 𝑇𝑖)

𝑎𝑖 − 𝑇𝑖
− 𝑐𝐻]                    𝑎𝑖 < 𝑇𝑖

       0                                                                                           𝑎𝑖 = 𝑇𝑖 

max
𝑇𝑖<𝑎𝑖≤𝑡𝑁

(𝑎𝑖 − 𝑇𝑖) [
𝐹(𝑡𝑖, 𝑎𝑖) − 𝐹(𝑡𝑖 , 𝑇𝑖)

𝑎𝑖 − 𝑇𝑖
− 𝑐𝐻]                   𝑇𝑖 < 𝑎𝑖

 

= 𝑅𝑖  max

{
 
 

 
 max
𝑡𝑖≤𝑎𝑖<𝑇𝑖

(𝑇𝑖 − 𝑎𝑖) [𝑐𝐻 −
𝐹(𝑡𝑖, 𝑎𝑖) − 𝐹(𝑡𝑖, 𝑇𝑖)

𝑎𝑖 − 𝑇𝑖
]                    𝑎𝑖 < 𝑇𝑖

       0                                                                                           𝑎𝑖 = 𝑇𝑖 

max
𝑇𝑖<𝑎𝑖≤𝑡𝑁

(𝑎𝑖 − 𝑇𝑖) [
𝐹(𝑡𝑖, 𝑎𝑖) − 𝐹(𝑡𝑖 , 𝑇𝑖)

𝑎𝑖 − 𝑇𝑖
− 𝑐𝐻]                   𝑇𝑖 < 𝑎𝑖

 

This can be summarized as Eq. 3.14. The term (𝐹(𝑡𝑖, 𝑎𝑖) − 𝐹(𝑡𝑖, 𝑇𝑖)) (𝑎𝑖 − 𝑇𝑖)⁄  is the slope of the 

forward curve across the two legs of the spread. The trader can always choose 𝑎𝑖 = 𝑇𝑖, i.e. ‘hold’, 

which results in the zero payoff, i.e. 𝑣𝑖
∗(𝑥𝑖, 𝑊𝑖) = 0. So, for any choice 𝑎𝑖 ≠ 𝑇𝑖 to be optimal, it 

must generate a positive payoff. Thus, the third line of Eq. 3.14 indicates that the trader will search  

𝑣𝑖
∗(𝑥𝑖 ,𝑊𝑖) = Eq. 3.14 

𝑅𝑖  max

{
 
 

 
 max
𝑡𝑖≤𝑎𝑖<𝑇𝑖

(𝑇𝑖 − 𝑎𝑖) [𝑐𝐻 −
𝐹(𝑡𝑖, 𝑎𝑖) − 𝐹(𝑡𝑖, 𝑇𝑖)

𝑎𝑖 − 𝑇𝑖
]                    𝑎𝑖 < 𝑇𝑖 (advancing)

       0                                                                                           𝑎𝑖 = 𝑇𝑖     (holding)

max
𝑇𝑖<𝑎𝑖≤𝑡𝑁

(𝑎𝑖 − 𝑇𝑖) [
𝐹(𝑡𝑖, 𝑎𝑖) − 𝐹(𝑡𝑖, 𝑇𝑖)

𝑎𝑖 − 𝑇𝑖
− 𝑐𝐻]                   𝑎𝑖 > 𝑇𝑖  (postponing)
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for any maturity 𝑎𝑖 > 𝑇𝑖 such that it maximizes the slope of the forward curve above 𝑐𝐻. In the 

first line in Eq. 3.14, the trader will search for any maturity 𝑎𝑖 < 𝑇𝑖, which minimizes (maximizes 

the negative of) the slope below 𝑐𝐻. This is equivalent to searching over the postponing (𝑇𝑖 < 𝑎𝑖) 

opportunity set and the advancing (𝑎𝑖 < 𝑇𝑖) opportunity set, respectively, compared to the existing 

maturity 𝑇𝑖. 

In the following, the FDO algorithm presented in this chapter is compared with the literature 

(Jafarizadeh and Bratvold, 2013); Jafarizadeh and Bratvold (2013) defined Forward Maximization 

as the present value (as of time 𝑡𝑖) of the profit from selling the oil by entering the most profitable 

forward contract considering pumping and storage costs, as stated in Eq. 3.15. It is assumed that 

the cost of storage has been paid up to 𝑡𝑖, and 𝐹̅(𝑡𝑖) denotes the forward curve vector at 𝑡𝑖. We are 

no longer assuming that 𝑟 = 0. 

𝐹𝑀(𝐹̅(𝑡𝑖), 𝑐𝐻, 𝑐𝑃 , 𝑡𝑖) = 

max
𝑡𝑖≤𝑡𝑗≤𝑡𝑁

{𝑒−𝑟(𝑡𝑗−𝑡𝑖)(𝐹(𝑡𝑖, 𝑡𝑗) − 𝑐𝑃) − 𝑐𝐻(𝑡𝑗 − 𝑡𝑖) , 0} 

Eq. 3.15 

According to Jafarizadeh and Bratvold (2013), which followed the formulation given by Eydeland 

and Wolyniec (2003) for storage valuation, the FDO algorithm is formulated as in Eq. 3.16. 

𝑉0
𝐹𝐷𝑂,2  = 𝐹𝑀(𝐹̅(𝑡0), 𝑐𝐻, 𝑐𝑃, 𝑡0) + 

𝐸𝑡0 [∑max {𝐹𝑀(𝐹̅(𝑡𝑖), 𝑐𝐻, 𝑐𝑃, 𝑡𝑖) − 𝐹𝑀(𝐹̅(𝑡𝑖−1), 𝑐𝐻, 𝑐𝑃, 𝑡𝑖−1), 0}

𝑁

𝑖=1

] 

Eq. 3.16 

One issue with the above formula is that 𝐹𝑀(𝐹̅(𝑡𝑖), 𝑐𝐻, 𝑐𝑃, 𝑡𝑖) and 𝐹𝑀(𝐹̅(𝑡𝑖−1), 𝑐𝐻, 𝑐𝑃, 𝑡𝑖−1) are 

net present values associated with times 𝑡𝑖 and 𝑡𝑖−1, respectively, and thus cannot be subtracted 

without appropriate time discounting. The other issue is that each element of the summation must 

be discounted back to time 𝑡 = 𝑡0 to be consistent with 𝐹𝑀(𝐹̅(𝑡0), 𝑐𝐻, 𝑐𝑃, 𝑡0). Finally and most 

importantly, the difference 𝐹𝑀(𝐹̅(𝑡𝑖), 𝑐𝐻, 𝑐𝑃, 𝑡𝑖) − 𝐹𝑀(𝐹̅(𝑡𝑖−1), 𝑐𝐻, 𝑐𝑃, 𝑡𝑖−1) does not correspond 

to any possible explicit trade in forward contracts to capture the favorable shifts in forward curves. 
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This formulation is essentially an impossible trade. Consider the following simplified case, where 

𝑁 = 2, i.e. a two-period problem with timesteps 𝑡0 = 0, 𝑡1 = 0.5, and 𝑡2 = 1. Furthermore, 

assume that in Eq. 3.16, the expression in the maximum operator is positive at 𝑡1 and 𝑡2, which is 

equivalent to the existence of a profitable trade at both 𝑡1 and 𝑡2. According to Eq. 3.16, all but 

one term will be cancelled out in the telescoping sum, and the resulting expression will be 

𝑉0
𝐹𝐷𝑂,2 = 𝐸𝑡0[𝐹𝑀(𝐹̅(𝑡2), 𝑐𝐻, 𝑐𝑃, 𝑡2)]. This outcome is equivalent to selling the oil at the spot price 

at time 𝑡2, 𝐹(𝑡2, 𝑡2), because 𝑡2 = 1 is the problem time constraint for delivery of the oil. Selling 

the oil at the spot price at the problem time horizon requires to carry the long oil position unhedged 

through time, which is not allowed in the present setup. If the trader were to enter a position at 

𝑡0 = 0, then she could only “re-adjust” her position at timesteps 𝑡1 and 𝑡2, which would only 

generate incremental gains not necessarily summing to a sale price equivalent to 𝐹(𝑡2, 𝑡2). In 

contrast, the formulation presented in the current research in Eq. 3.10, there is a clear 

correspondence to trades in the forward contracts. 

Another fundamental difference between the present approach and the previous studies, as 

highlighted in Eq. 3.11 and Eq. 3.16, is as follows; at any time 𝑡𝑖, the decision-making only 

depends on the time 𝑡𝑖 information, 𝑊𝑖 or 𝐹̅(𝑡𝑖), as seen in Eq. 3.11. However, in Eq. 3.16, the 

optimal decision at time 𝑡𝑖 incorporates 𝐹̅(𝑡𝑖) as well as 𝐹̅(𝑡𝑖−1). The method of Eq. 3.16 computes 

the incremental gain at 𝑡𝑖 incorrectly, because it subtracts the old prices as opposed to new prices 

to account for entering a new long position to offset the existing short position. 

3.3 Parameters 

We generated 𝑀 = 10000 paths by simulating the state variables with Δ𝑡 = 1 10080⁄  year using 

Eq. 2.16, Eq. 2.17, and Eq. 2.18. The number of partitions in a year (10,080 = 25 × 32 × 5 × 7) 

is chosen such that it allows perfect divisibility to many larger Δ𝑡’s: e.g. it allows to discretize a 

year into 2, 3, 4, 5, 6, 7, …, etc. periods, using which corresponding prices from the underlying 

fine discretization can be extracted. For consistency, the same Δ𝑡 = 1 10080⁄  year is used for 

simulating prices in all cases in this chapter. 



42 

 

The value of trading frequency is set to Δ𝑡 = 0.25 (quarterly), which is equivalent to 𝑁 = 4 

periods based on the 𝑇̅ = 1 year time horizon. The case with 𝑁 = 4 time periods, 𝑀 = 10,000 

simulations, storage cost of 𝑐𝐻 = $6.57 per barrel per year, and initial condition of (𝜒0, 𝜉0) = (-

0.639,4.637) will be referred to as the base case, and will serve as a basis in all of the investigations, 

as listed in Table 3.1. 

 

Description Parameter Value 

Number of periods 𝑁 4 

Storage cost 𝑐𝐻 $6.57/barrel.year 

Pumping cost 𝑐𝑃 $3.75/barrel 

Number of simulated path 𝑀 10,000 

Initial condition of state variables 𝑊0 = (𝜒0, 𝜉0) (-0.639,4.637) 

Initial Spot Price 𝑆0 = exp (𝜒0 + 𝜉0) $54.45 

Time Horizon (constraint) 𝑇̅ 1 year 

Table 3.1. Problem parameters as specified by the base case for FDO analysis. 

The chosen initial condition and storage cost represents the corresponding values on May-3-2009, 

as an example of a favorable period of time for this type of trade. The initial condition, (𝜒0, 𝜉0) = 

(-0.639,4.637), can be translated into 𝑆0=$54.45/barrel and a long-term equilibrium price of 

$103.19/barrel based on the price model. In regard with the storage and pumping cost, Jafarizadeh 

and Bratvold (2013) assumed a tanker rent (𝑐𝐻) of $0.7M/year with a pumping cost (𝑐𝑃) of $1M. 

Their assumed tanker rent is equivalent to $1,918/day for the whole tanker, which is very low 

compared to actual prices. Based on actual time charter prices of a 2 million barrel VLCC around 

May 2009, as shown in Fig. 1.2, we assume the tanker rent to be about $36,000/day, which is 

equivalent to the chosen 𝑐𝐻 = ($36,000×365)/2,000,000 = $6.57 per barrel per year, which is much 

higher than the $3.5 per barrel per year assumed by Jafarizadeh and Bratvold (2013). Also, we 

consider a pumping cost of 𝑐𝑃 = $3.75/barrel. Occasionally, we focus on the impact of a particular 

parameter and an alternative value relative to the base case is employed, where in such cases, the 

specific range of the parameter will be provided accordingly. 

3.4 Computational Results 
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Different aspects of the results are studied using the following metrics of value; Added Value ($) 

of the FDO strategy is the gain relative to selling the oil on the spot price at time zero, and is equal 

to 𝑉0
𝐹𝐷𝑂(𝑥0,𝑊0), or 𝑉0

𝐹𝐷𝑂 in short. Added Value (%) is useful when comparing the added value 

under two different initial spot prices or initial conditions. 

 Added Value ($) ≔ 𝑉0
𝐹𝐷𝑂 ,    Added Value (%) ≔

Added Value ($)

𝑆0
 Eq. 3.17 

In the base case, the 95% confidence interval for Added Value ($) is $8.94-$9.05. For a two-

million-barrel capacity VLCC tanker, this is equivalent to $17.88-$18.10 million. Fig. 3.2 shows 

the histogram of payoffs across 𝑀 = 10K paths; the strategy guarantees $6.19 since it is the 

minimum achieved value. It is worth noting that this $6.19 is generated by the spread between 

𝐹(0,1) and 𝐹(0,0)  =  𝑆(0) (after subtracting the storage cost). The payoffs are significantly 

skewed to the right. The Added Value ($) of $8.99 can be broken down into two parts; (i) $6.19 

generated by selling the oil forward using 𝐹(0,1), and (ii) $2.80 obtained by all the subsequent 

trades. At 𝑡 = 0, part (i) is known (certain), whereas part (ii) is uncertain. Although most of the 

value is captured by the initial trade 𝐹(0,1) − 𝑆(0), the subsequent trades are necessary to capture 

the remaining 31% of the Added Value ($). The contribution of the subsequent trades to Added 

Value ($) will increase if the initial forward curve is less steep, i.e. in a less favorable environment 

to start the trading. So, a trader still has an incentive to start although the initial part of the added 

value is not very high. 

3.4.1 Decision-making analysis at the path level  

In the analysis of the following section, the slope of forward curve will often be used. To provide 

intuition about the slope, a symbolic forward curve at t = 0.25, F(0.25, T), is shown in Fig. 3.3. 

Recall in Fig. 3.1, the long and short positions, i.e. the two legs, involved in a trade were explained. 

Fig. 3.3 demonstrates how the slope between the selected legs of the trade depends on the 

maturities considered. An approximate ‘slope’ of the forward curve can be estimated using the 

regression line. 

To focus on the impact of the forward curve slope, payoffs are presented in terms of slopes at the 

current and the preceding timesteps. Realizations of slope and its consequences on the decisions 
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Fig. 3.2. Histogram of payoffs ($) (i.e. generated cashflow relative to selling on the spot price 

along each path) over 𝑀 = 10K paths using base case parameters. 

 

 

Fig. 3.3. A sample forward curve at t=0.25. 

and payoffs at each timestep are tracked. Fig. 3.4 shows the payoff at 𝑡 = 0.25, where all paths 

have the same history because the algorithm starts by shorting 𝐹(0,1) at 𝑡 = 0 in the base case. 

As listed in Fig. 3.4, there are four selected contracts, which correspond to four different decision 

regions labeled A through D, depending on the slope realized at 𝑡 = 0.25. Region A is where the 
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realized slope is too high, and 𝐹(0,1) is held as the optimal contract because there is no profitable 

choice. Region B is where the slope is slightly lower, and 𝐹(0.25,0.75) is selected accordingly. 

As the slope falls further, 𝐹(0.25,0.5) is selected in regions C. If the slope decreases to the lowest 

part of the range, region D, 𝐹(0.25,0.25) is chosen as optimal. As the slope of forward curve 

decreases more, the maturity date of the new contract is moved from 𝑡 = 1 (hold existing contract) 

to 𝑡 = 0.25 (sell on the spot), to generate a larger payoff.  

 

Fig. 3.4. Payoff and selected contract at 𝑡 = 0.25 as a function of slope at 𝑡 = 0 and 𝑡 = 0.25. The 

trader holds 𝐹(0,1), or advances the maturity one, two, or three periods based on the realized slope 

at 𝑡 = 0.25. All the parameters are per the base case as specified in Table 2.1 and Table 3.1. 

Note that the intervals identifying the regions have a small overlap since the slope of the forward 

curve is computed as the slope of the fitted line approximating the forward curve. Although this 

approximation works very well, it is not completely accurate due to the inherent curvature of the 

forward curve. When the algorithm searches for a potential contract to short, it considers each 

spread trade (long one and short another contract) individually, leading to a slightly different slope 
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from the fitted line. The dashed lines, which illustrate the concept by dividing the regions, are 

based on the midpoint of the overlap area. 

Subsequently, the contracts holding which the trader may start trading at 𝑡 = 0.5 fall into one of 

the three types; 𝐹(0,1), 𝐹(0.25,0.5), and 𝐹(0.25,0.75) (listed under the existing contracts in Fig. 

3.5). Fig. 3.5 shows the payoff at 𝑡 = 0.5 as a function of the slope at 𝑡 = 0.25 and 𝑡 = 0.5, where 

seven regions are identified, and labeled A through F. For each region, the existing contracts are 

determined based on the corresponding slope at 𝑡 = 0.25. Conditional on an existing contract, the 

realized slope at 𝑡 = 0.5 will determine the new optimal contract. 

 

 

Fig. 3.5. Payoff and selected contract at 𝑡 = 0.5 as a function of slope at 𝑡 = 0.25 and slope at 𝑡 =
0.5. Starting with an existing contract based on the slope at 𝑡 = 0.25, the trader acts by choosing 

a new contract based on the realized slope at 𝑡 = 0.5. All the parameters are per the base case as 

specified in Table 2.1 and Table 3.1. 
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In regions A and B, 𝐹(0,1) is the existing contract. If the slope realized at 𝑡 = 0.5 is very high, 

𝐹(0,1) will be held (region A). Otherwise, 𝐹(0.5,0.75) or 𝐹(0.5,0.5) will be chosen (region B) 

depending on how much the slope decreases; if the slope decreases to a large extent, 𝐹(0.5,0.5) is 

preferred to 𝐹(0.5,0.75). 

In regions C, D and E, the existing contract is 𝐹(0.25,0.75). If there is a sufficiently large increase 

in the slope (region C), the new contract will be 𝐹(0.5,1). If there is a sufficiently large decrease 

in the slope (region E), the new contract will be 𝐹(0.5,0.5). Alternatively, if the change in the 

slope is neither large- nor small-enough (region D), the existing contract, 𝐹(0.25,0.75), will be 

held.  

In regions F and G, 𝐹(0.25,0.5) is the existing contract. If the slope does not increase enough, the 

existing contract, 𝐹(0.25,0.5), will be held (region G), and the trade will conclude with delivery 

of the oil. If the slope increases largely, the net short position will be postponed by choosing 

𝐹(0.5,0.75) or 𝐹(0.5,1) (region F) depending on how much the slope increases, where 𝐹(0.5,1) 

is preferred to 𝐹(0.5,0.75) at the larger end of the slopes. 

If the paths with a zero payoff in region G are considered, the selected optimal maturity at 𝑡 =

0.25 was 𝑡 = 0.5, which is the next time step. So, regardless of how much the slope falls by 𝑡 =

0.5, it is not possible to advance the trade any further. Thus, a small gain at 𝑡 = 0.25 deprived 

these paths from a larger potential gain at 𝑡 = 0.5. A similar argument for the paths in region A 

with an existing 𝐹(0,1) contract can be given; regardless of how large the increase in the slope at 

𝑡 = 0.5 is, it is not possible to postpone this maturity anymore. To conclude, it might have been 

better to make less profit (or incur some loss) at 𝑡 = 0.25 by avoiding the 𝐹(0.25,0.5) or 𝐹(0,1) 

contracts. This observation highlights the short-sighted nature of FDO trading policy. 

At 𝑡 = 0.75, existing contracts are comprised of four different types; 𝐹(0.25,0.75), 𝐹(0.5,0.75), 

𝐹(0.5,1), and 𝐹(0,1). They can be categorized into two maturity dates, 𝑡 = 0.75 and 𝑡 = 1, which 

are sufficient for tracking the subsequent actions. Fig. 3.5 shows that if the slope at 𝑡 = 0.5 exceeds 

8.25, the selected maturity time is 1, and it is 0.75 otherwise, which is reflected in Fig. 3.6. 
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In Fig. 3.6, the maturity of the existing contracts is 𝑡 = 1 in regions A and B. If the slope realized 

at 𝑡 = 0.75 is greater than a threshold, the existing contract, 𝐹(0.5,1) or 𝐹(0,1), will be held 

(region A). However, if it is less than the threshold (6.97), 𝐹(0.75,0.75) will be chosen (region 

B).  

 

Fig. 3.6. Payoff and selected contract at 𝑡 = 0.75 as a function of slope at 𝑡 = 0.5 and slope at 𝑡 =
0.75. Starting with an existing contract based on the slope at 𝑡 = 0.5, the trader acts by choosing 

a new contract based on the realized slope at 𝑡 = 0.75. All the parameters are according to the 

base case as specified in Table 2.1 and Table 3.1. 

In regions C and D, the existing maturity date is 𝑡 = 0.75. If the slope realized at 𝑡 = 0.75 is 

greater than 6.97, 𝐹(0.75,1) will be chosen (region C) to effectively postpone the net short 

position, while a smaller slope at 𝑡 = 0.75 implies the existing contract, 𝐹(0.25,0.75) or 

𝐹(0.5,0.75), will be held (region D), and the trade will terminate without a profit. 

Fig. 3.4, Fig. 3.5, and Fig. 3.6 signify the critical role of the forward curve slope in explaining the 

rationale for selecting new contracts; the realized slope is constantly compared against the storage 

cost to detect any sufficiently large spread between the two, which may trigger a 
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postponing/advancing decision if the currently held maturity permits. In the following, we discuss 

how there is a threshold of around 𝑐𝐻 = $6.57/barrel.year, which governs the decisions. 

In Fig. 3.4, Fig. 3.5, and Fig. 3.6, the slope marked by the dashed line between regions A and B, 

i.e. hold 𝐹(0,1) or advance respectively, is 9.46, 8.25, and 6.97. Although there is variation among 

the three values, they get closer to 𝑐𝐻 = $6.57, which is due to the slight difference between the 

slope based on which the trades are made and the slope of the line fitted to the forward curve. With 

the passage of time, the length of the forward curve decreases due to a lower number of available 

contracts to a point. At 𝑡 = 0.75, the forward curve is comprised of only two contracts, and the 

curve coincide with the fitted line. Therefore, the values, 9.46, 8.25, and 6.97, get closer to 𝑐𝐻 =

$6.57. The remaining discrepancy is because the slope considers neither the time value of pumping 

cost nor discounting the forward prices both of which are, in contrast, reflected in the selection of 

the optimal decision-making. 

In Fig. 3.7, the realized payoffs at 𝑡 = 0.25, 0.5, and 0.75 are overlaid on a plot whose axes show 

the change in the slope of forward curve and the change in mean forward prices through each 

period. A decrease (increase) in the slope is usually accompanied by an increase (decrease) in the 

mean forward prices such that over the three timesteps, 62% of the cases falls in the second 

quadrant; low spot prices relate to high slopes, and high spot prices to low (or even negative) 

slopes. The magnitude of the change (dispersion around origin) increases with the passage of time. 

Fig. 3.7.a shows at 𝑡 = 0.25 the larger the change in the slope, the higher the payoff, whereas the 

change in mean forward prices has no effect on the result. Payoff levels at 𝑡 = 0.5 and 0.75, 

exhibits a weaker dependence on the change in the slope than 𝑡 = 0.25. At 𝑡 = 0.5 and 𝑡 = 0.75, 

unlike 𝑡 = 0.25, both positive and negative changes in the slope may lead to non-zero payoffs.  

In panels (b) and (c) of Fig. 3.7, positive-payoff points are spread around the Y-axis 

asymmetrically. The cluster of the points on the right-hand side generate value by postponing, and 

the one on the left by advancing. The left cluster is more populated than the right one, indicating 

the higher likelihood of advancing since the trade started with a 𝐹(0,1) position. 
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(a) 𝑡 = 0.25 

 
(b) 𝑡 = 0.5 

 
(a) 𝑡 = 0.75 

Fig. 3.7. Payoff levels at (a) 𝑡 = 0.25, (b) 𝑡 = 0.5, and (c) 𝑡 = 0.75 in terms of change in the slope 

and mean forward prices. Payoffs magnitude is divided into five different levels at each time, and 

for clarity, two plots are provided in parts (b) and (c). All the parameters are according to the base 

case as specified in Table 2.1 and Table 3.1. 
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3.4.2 Impact of the Initial Condition 

In this section, (𝜒0, 𝜉0) pairs are chosen based on a 21×21 uniform grid of a 𝜒0_𝜉0 domain, where 

the domain is the rectangle defined by −0.7 ≤ 𝜒0 ≤ −0.3 and 3.8 ≤ 𝜉0 ≤  5.2. This generates 

441 different initial conditions. The results are shown in Fig. 3.8.a, where the (𝜒0, 𝜉0) rectangular 

region is mapped into the corresponding “price” region in terms of 𝑆0 = exp(𝜒0 + 𝜉0) and long-

term price = exp(𝜉0) transformations. Some of the historical values of (𝜒0, 𝜉0) from the period 

between August 2008 and October 2011 are extracted from Figure 4 in Hahn et al (2014), which 

shows the estimated evolution of the oil prices in terms of (𝜒𝑡, 𝜉𝑡). These are the 21 black squares 

shown on Fig. 3.8.a, 15 of which lead to a positive Added Value (%). The figure shows that for 

instance, at 𝑆0 = $60, the long-term price should be greater than $90 to have a steep-enough initial 

slope, and thus a non-zero profit. 

 

(a) Added Value (%) 

 

(b) Certain vs Uncertain Added Value ($) 

 Fig. 3.8. (a) Added Value (%) as a function of the initial prices; transformation of different (𝜒0, 𝜉0) 
to the prices lead to $22.20 ≤ 𝑆0 ≤ $134.29 and long-term price in the range $44.7-$181.27. (b) 

Certain Added Value ($) vs Uncertain Added Value ($) colored by the initial slope; each (𝜒0, 𝜉0) 
implies an initial slope and a unique decomposition of Added Value ($) into certain and uncertain 

parts. The solid and dashed black lines represent 𝑋 + 𝑌 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (i.e. total value) and 𝑌 = 𝑋 

lines respectively. The parameters (other than the initial conditions) are per the base case as 

specified in Table 2.1 and Table 3.1. 
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Fig. 3.8.b shows the relation between Certain Added Value ($) and Uncertain Added Value ($), 

where the former is generated by the initial forward maximization, and the latter by all the 

subsequent trades. In Fig. 3.8.b, both values are computed for each initial condition and are shown 

on the x- and y-axis. Also, the figure is colored by the initial slope of the forward curve implied 

by each of the initial conditions. A decrease in  𝜒0, i.e. a larger initial deviation in the spot price 

from the long-term value, or an increase in ξ0, i.e. higher long-term price, increases the initial slope 

of the forward curve. As seen on the plot, the initial slope is a good determinant of Certain Added 

Value ($). The solid black lines represent 𝑋 + 𝑌 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, where the constant is Added Value 

($) equal to $5, $10, $15 and $20. The dashed black line is 𝑌 = 𝑋 line. As the initial condition 

becomes profitable, the uncertain portion is higher than the certain portion, in the area under the 

𝑌 = 𝑋 line. However, the situation reverses as we move into the higher Added Value ($) region. 

Under very unfavorable conditions the algorithm does not start due to lack of a profitable trade at 

𝑡 = 0. However, as soon as an opportunity for the initial trade presents itself, the trading process 

will begin, where the uncertain portion of profits plays a prominent role. It suggests the trader may 

consider breaking even on the very first trade, while being more concerned about the opportunities 

that may arise through future trades by letting the game to initiate. 

3.4.3 Impact of the Number of Periods 

Different values of 𝑁, selected according to the divisibility of the number of timesteps simulated, 

are chosen to study the impact of the frequency of trading on the results; 2 through 10, 12, 14, 16, 

18, 20, 24, 32, 36, 63, 96, and 120. In addition to the base case storage cost, the analysis is repeated 

for two other values of storage cost; double the base case at 𝑐𝐻 = 6.57×2 = 13.14, and half of the 

base case at 𝑐𝐻 = 6.57/2 = 3.285.  

Fig. 3.9.a represents return (reward) and risk by Added Value ($) and its standard deviation 

respectively; both decreasing as 𝑁 increases, although at a diminishing rate. However, the trend 

of the 𝑐𝐻 = 13.14 is different from 𝑐𝐻 = 6.57 or 3.28, where 𝑁 = 2 or 3 are inferior to higher 

choices of 𝑁 from a risk-return perspective. Fig. 3.9.b illustrates the Sharpe ratio defined as Added 

Value ($) divided by its standard deviation. Observing that Sharpe ratio increases with 𝑁, it might 

be said that the decrease in the risk more than justifies the decrease in the returns. Also, an increase 
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in 𝑁 benefits Sharpe ratio more at a lower storage cost. Ultimately, the choice of 𝑁 will depend 

on the risk-return preferences of the trader.  

 

(a) Added Value ($) vs standard deviation 

 

(b) Sharpe ratio vs number of periods 

Fig. 3.9. Impact of N on risk-return characteristics and Sharpe ratio; (a) Added Value ($) and its 

standard deviation as a function of 𝑁 for three different 𝑐𝐻 (b) Sharpe ratio as a function of 𝑁 for 

three different 𝑐𝐻. All the parameters are according to the base case as specified in Table 2.1 and 

Table 3.1. 

The figure suggests that extra trading hurts Added Value ($), unless the costs are very high, in 

which case the changes are small (except for 𝑁 = 2 and 3). The reason is frequent trading causes 

earlier termination of the paths (delivery of oil), while waiting would have been more profitable 

on average because the likelihood of having a negative slope increases with the passage of time. 

Because the simulation started with 𝑆0=$54.45/barrel and a long-term equilibrium price of 

$103.19/barrel, the prices tend to increase toward the long-term level, and the initial upward 

sloping forward curve tilts flat or downward. Therefore, a sample path would capture larger gains 

in the future if it remains in existence longer. In can be concluded that the algorithm performs 

shortsightedly by opting out for smaller gains sooner in the process. However, frequent trading has 

tremendous risk reduction effect, as may already be seen even by going from 𝑁 = 2 to 𝑁 = 4. 
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3.4.4 Impact of the Storage Cost 

The impact of 𝑐𝐻 is studied by considering different values of 𝑐𝐻 from $0 to $20, and the analysis 

is repeated for 𝑁 = 2, 4, 8, and 16. Fig. 3.10.a shows the Added Value ($) versus 𝑐𝐻 colored by 

maturity of the initial forward position. It shows Added Value ($) decreases as 𝑐𝐻 increases for all 

values of 𝑁. As 𝑁 increases, the number of jumps increases but their size shrinks, to the point at 

which the graphs seem almost smooth at 𝑁 = 16. The lower the 𝑁, the sooner Added Value ($) 

touches zero due to lack a suitable maturity at 𝑡0. For 𝑁 = 2, three regimes are evident in Fig. 

3.10.a; (i) 𝑐𝐻 < 10, (ii) 10 ≤ 𝑐𝐻 < 16, and (iii) 16 ≤ 𝑐𝐻. They correspond to an initial short 

position in 𝐹(0,1), 𝐹(0,0.5), and 𝐹(0,0), respectively. As 𝑐𝐻 increases, the longer-term maturity 

will become unprofitable; it is seen 𝐹(0,1) contract is switched to 𝐹(0,0.5), where the quick drop 

at 𝑐𝐻 around 10 occurs. Under regime (iii), the problem finishes trivially by selling the oil at 𝑡0. 

 

(a) Added Value ($) vs storage cost 

 

(b) Added Value ($) vs its standard deviation 

Fig. 3.10. Impact of storage cost (𝑐𝐻) on; (a) Added Value ($) colored by maturity of the initial 

contract. (b) Added Value ($) versus its standard deviation for different values of 𝑐𝐻, where only 

certain 𝑐𝐻 labels are shown for clarity. All the parameters (other than 𝑐𝐻 and 𝑁) are per the base 

case as specified in Table 2.1 and Table 3.1. 

In Fig. 3.10.b, Added Value ($) is graphed versus its standard deviation, labeled with 𝑐𝐻 values. 

The general trend for 𝑁 = 4, 8, and 16 is that both return and risk increase as storage cost 
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decreases. However, for 𝑁 = 2, the graph has two disjoint segments; in the right segment 

corresponding to 0 ≤ 𝑐𝐻 < 10, as return increases, risk decreases. The left segment corresponding 

to 10 ≤ 𝑐𝐻 ≤ 20 has a behavior consistent with the general notion that a higher risk is 

accompanied with a higher reward. A change in 𝑐𝐻 from 9.5 to 10 has a profound impact on the 

performance of 𝑁 = 2 case, and causes Added Values ($) to suddenly drop well below the other 

𝑁s. Further investigations revealed that it is due to a sharp decline in Uncertain Added Value ($); 

as 𝑐𝐻 increases above 9.5, the initially selected maturity becomes 6 months shorter. So, the period 

for which a potential refund of 𝑐𝐻 exists shortens considerably, which translates into a substantial 

loss for advancing trades, whereas the gains of postponing trades do not increase sufficiently to 

offset the loss. 

In Fig. 3.10.a, most of the difference in results across different values of 𝑁 originates from the 

difference in Uncertain Added Value ($) as the variation in the Certain Added Value is limited 

(<$0.50). Under a favorable storage cost (𝑐𝐻 < 10), a contract 𝐹(0, 𝑇1) is selected initially such 

that 𝑇1 is equal or very close to one. Under these conditions, the profit is mainly made by advancing 

the trade when the forward curve becomes less steep or downward sloping. The payoff comprises 

of a “refund” of storage cost and a (positive or negative) forward spread such that the sum is 

positive. The price dynamics moves in general towards a better spread, and that is why waiting is 

on average rewarding. Thus, a smaller 𝑁 leads to a higher profit due to waiting for a later time (not 

trading myopically soon). Under very unfavorable conditions (𝑐𝐻 ≥ 15), the trading process starts 

by shorting 𝐹(0, 𝑇1), where 𝑇1 << 1. In this case, most of the value is generated by the trades 

triggered by positive forward spreads, and this is when a larger 𝑁 is beneficial because it increases 

the opportunity of subsequent trading. For moderate values of 𝑐𝐻 (10 ≤ 𝑐𝐻 < 15), the results are 

mixed as the two forces compete. 

To shed further light on the subject, Fig. 3.11.a show the contribution of Advancing and 

Postponing trades to Uncertain Added Value ($) separately at different values of Refund Ratio. 

This ratio is defined as the proportion of the storage cost paid to the trader as a refund if she selects 

an advancing trade, i.e. she decides that she no longer needs the storage. The refund ratio 

introduces an asymmetric friction by penalizing the refund transaction. The ratio is set to five 
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values in the range of [0,1], where 0 corresponds to no-refund, and 1 to full-refund. The four 

regimes based on the initially selected forward contract, 𝐹(0,1) to 𝐹(0,0.25), can be seen visibly 

in Fig. 3.11.a. Regardless of the Refund Ratio, advancing trades (red) contribute more than the 

postponing ones (blue) when 𝑐𝐻 ≤ 10.5. When 𝑐𝐻 ≥ 11, the contributions of postponing trades 

begin to overcome the advancing ones with a complete dominance in the 𝑐𝐻 ≥ 14.5 range. 

If the Refund Ratio <1, the trader receives only a partial refund. Based on the shortsighted FDO 

policy, the trader does not consider this fact when initially deciding to postpone the position, which 

may have a detrimental effect on the value. Fig. 3.11.b demonstrates the impact of storage cost 

(𝑐𝐻) on Added Value ($) colored by the Uncertain Added Value ($). It illustrates that as 

𝑐𝐻 increases Added Value ($) decreases at all refund ratios. Added Value ($) decreases as refund  

 

(a) Uncertain Added Value ($) vs storage cost 

 

(b) Added Value ($) vs storage cost 

Fig. 3.11. Separate contribution of advancing or postponing trades to value, and the impact of 

Refund Ratio. (a) Uncertain Added Value ($) generated by Advancing (A) or Postponing (P) trades 

for different values of Refund Ratio versus storage cost. (b) Added Value ($) as a function of 

storage cost (𝑐𝐻) for different values of Refund Ratio. All the parameters (other than 𝑐𝐻 and Refund 

Ratio) are per the base case as specified in Table 2.1 and Table 3.1.  

ratio drops from 1 to 0 at all 𝑐𝐻 levels, where the difference is most pronounced in the mid-range 

𝑐𝐻 values. 
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Focusing on the zero-refund case in Fig. 3.11.a, any trade is solely triggered by a profitable spread. 

Given the initial condition and the environment dynamics, the spread is usually in favor of the 

advancing trades. In the first regime, the initial contract is 𝐹(0,1) and most profits are due to 

advancing trades. The contribution of advancing trades under a zero refund (red triangle) is almost 

constant with respect to 𝑐𝐻, but it becomes increasing as Refund Ratio increases to one. Because 

the 𝐹(0,1) position cannot be postponed further, an opportunity for postponing trades can only 

occur after an advancing trade has been executed. This is reflected in the trend of the postponing 

trades, which resembles the increasing trend of the advancing trades at any Refund Ratio. 

The second regime starts with 𝐹(0,0.75), where one-period postponing opportunities are possible 

relative to the previous 𝐹(0,1) regime, while advancing opportunities are reduced by one period. 

This results in the step-like change in the trends of both types. Within a regime, postponing is 

increasingly more expensive as 𝑐𝐻 rises, and thus a declining trend is observed. There is a link 

between postponing and advancing trades; as the number of one type of the trades increases 

(decreases), the number of the other type increases (decreases) as well because each type shifts the 

net short position in the opposite direction of the other type through time, which creates potential 

trading opportunities. However, a large enough refund ratio provides advancing trades with a big 

profit advantage. Accordingly, advancing trades exhibit a declining trend for low refund ratios and 

an increasing one for high refund ratios.  

In the third regime, the conditions are like the second one, except that postponing trades are more 

important than before due to the shorter initial maturity (𝐹(0,0.5) instead of 𝐹(0,0.75)). In the 

fourth and last regime, postponing trade is the dominant type because the initial contract maturity 

is only 0.25. This regime represents an unfavorable environment, where a small number of trades 

happens at marginally small profits due to extremely high storage costs. Across all refund cases, 

even under the full refund, both types of contributions decrease as 𝑐𝐻 rises. 

3.5 Summary 

We explore the trading opportunities that arise from an upward sloping forward curve using the 

FDO algorithm. The transparency and simplicity of FDO makes it attractive for risk-averse sellers, 

however, the myopic nature of the policy makes it vulnerable to underperformance depending on 
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the circumstances. The deficiencies in the existing FDO policy formulations are addressed and an 

explicit trading method using forwards is suggested. Given the pivotal role of forward curve 

dynamics in the storage trade, the results are interpreted in terms of the changes in mean forward 

prices (shifting), and forward curve slope (tilting). The impact of the curvature (bending) is not 

directly illustrated since within short time horizons the effect should be insignificant. The slope of 

the forward curve, approximated with a line, seems to explain the decisions reasonably well (there 

was only a narrow overlap at the decision boundaries), and thus illustrating the decisions as a 

function of the curvatures is not considered. Nevertheless, since all the maturities are considered 

in the optimization, any potential impact of the curvature is captured in decision-making. Mean 

forward prices does not contribute in explaining the payoff level or selected maturity because the 

trades are based on the spreads rather than the absolute values. The change in the realized slope 

through each period explains the behavior of the algorithm well. The decision-making process at 

each timestep can be summarized based on the slope realized at that time and the slope at the 

preceding time step. The impact of all previous slopes is embedded in the maturity of the contract 

currently held, shaping possible future choices. 

Given the initial conditions, the forward curve evolution through time is mainly characterized by 

an increase in price levels and a decrease in the slope. Initial condition of the state variables is 

found to have a significant effect on the added value. We decompose the total added value into 

two parts, certain value (due to the trade at 𝑡0) and uncertain value (due to the trades after 𝑡0), 

where it is verified that the initial slope can approximate the certain part very well. The Added 

Value ($) is maximized when the gap between a high long-term price and a low spot price 

increases. However, the ‘Uncertain’ Added Value ($) is maximized at the highest long-term price 

but a moderate deviation of spot from it because a moderately-sloped forward curve can offer more 

future trading opportunities. 

The impact of number of trading periods, 𝑁, on the added value is intertwined with the storage 

cost, 𝑐𝐻, regime. If the storage cost is low enough such that the longest maturity is selected initially, 

additional trading hurts; it is due to the suboptimality of FDO policy where opting for small gains 

sooner is preferred to waiting for larger gains in the future. If the storage cost is extremely high, a 
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larger 𝑁 performs better because it offers a better ability in extracting uncertain added value when 

the initial maturity is short. However, for 𝑐𝐻 in the mid-range, there is not a clear best performer 

and the difference among the results is smaller generally. It is found that changes in 𝑁 strongly 

influences standard deviation, seen a risk measure. In conclusion, to choose an appropriate 𝑁, one 

should consider the regime based on the prevailing storage cost and risk-return preferences. 

The contribution of advancing and postponing trades to Uncertain Added Value ($) is studied 

under different Refund Ratios. Generally, the dominant type of trades influences the other one 

through the interlink between advancing and postponing opportunity creation. Which trade type is 

dominant is determined based on the regime, i.e. which initial maturity (1, 0.75, 0.5 or 0.25) is 

resulted by the prevailing 𝑐𝐻. As 𝑐𝐻 increases, the initial maturity becomes shorter, which provides 

less advancing opportunities and more postponing opportunities. Therefore, moving from regime 

one to four, the overall level of postponing trades is increasing, while the overall level of advancing 

trades exhibits a decreasing trend. To measure the impact of Refund Ratio on the total Added 

Value ($), the difference between full- and no-refund cases is studied; it is found to be around $1.4 

at maximum, which occurs at 𝑐𝐻 = 10.5. 

In Chapter 3, a myopic solution is provided by the FDO approach to solve the optimization 

problem resulted from the proposed trading methodology. In the next chapter, Chapter 4, we will 

study the optimal solution to this problem. The optimal solution will be obtained using an ADP 

and an exact dynamic programming technique (backward induction with nested simulations). In 

Chapter 4, the problem framework is the same Chapter 3, except that the trader is allowed to sell 

part of her inventory on the spot market while the rest of her inventory can be sold on the forward 

market. In addition, tests with and without the partial sale feature are conducted and compared. In 

fact, it will be shown computationally and theoretically that permitting the partial sale does not 

add value.   
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Chapter 4 

 

4 Optimal Solution with Dynamic Programming 

This chapter is structured as follows; the main objectives of this chapter are introduced in Section 

4.1. In Section 4.2, the framework is formulated as a Markov Decision Process (MDP). Section 

4.3 presents the theoretical findings about the structure of the optimal policy and value function. 

Section 4.4 reviews the algorithmic solutions and Section 4.5 reports the parameter values used in 

this chapter. In Section 4.6, the computational results, including the optimal value and policy, are 

discussed. Section 4.7 compares the risk and reward of the proposed cash and carry trade with 

those of other strategies such as a sale on the spot or a covered call position. Sensitivity of the 

results to the parameter estimates are studied in Section 4.8. The chapter summary is included in 

Section 4.9. 

4.1 Introduction 

In this chapter, we study the dynamic programming approach, which can provide the optimal 

solution to the optimization problem introduced in the previous chapter (Eq. 3.6). In this chapter, 

the problem framework is the same as in the previous chapter. The only difference is that the 

previous framework is expanded by allowing to sell the oil partially on the spot market and 

partially on the forward market. This dynamic cash and carry (or contango and carry in the context 

of oil trading) problem will be solved optimally using dynamic programming, and sub-optimally 

using FDO for comparison. 

4.2 The Model 

The assumptions, which are the same as in the problem set up in the previous chapter, are reviewed; 

• The asset must be sold on the spot or must be hedged by a short forward position. 

• Refilling the inventory is not permitted. 

• Buying contracts for speculation is not permitted; long contracts may only be purchased to 

offset existing short contracts. Thus, if the inventory is not empty, the net exposure of all 

contracts entered must always be “short” with a quantity equal to the existing inventory. 
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• If the trader delivers the oil before the end of the term of the current rental agreement of the 

tanker, she will be reimbursed the unused portion of the term. At any time, it is also possible 

to buy additional rental time if the trader wishes to do so. So, early termination or extending 

the rental term can be done without any friction or penalty throughout the problem time 

horizon at a fixed rental rate. 

Assume the trader has 𝑅̅ units of a commodity in storage. This inventory must be sold either via 

the spot market or the forward market, by time 𝑇̅. The problem time horizon, [0, 𝑇̅], is discretized 

into 𝑁 equidistant stages by 𝑡𝑖 = 𝑖Δ𝑡 for 𝑖 ∈ ℐ = {0, 1, 2, … ,𝑁}, where Δ𝑡 = 𝑇̅ 𝑁⁄ . At time 𝑡𝑖, the 

maturities 𝑇 ∈ {𝑡𝑖 , 𝑡𝑖+1, … , 𝑡𝑁} are available for the forward contract 𝐹(𝑡𝑖, 𝑇). At any time 𝑡𝑖, the 

portfolio of the trader consists of a long inventory position with a quantity of 𝑅𝑖, and a short 

forward contract position with a maturity of 𝑇𝑖 and a quantity equal to the long inventory position. 

The inventory level can be the range of [0, 𝑅̅], which can be discretized uniformly into 𝐿 levels by 

Δ𝑅 = 𝑅̅/𝐿, which determines the selling batches allowed as 0, Δ𝑅, 2Δ𝑅,… . , 𝑅̅. We consider a 

discrete-time dynamic optimization framework based on the following components: 

1. The State Variables (𝒙𝒊 and 𝑾𝒊): The endogenous component of the state variable is 𝑥𝑖 =

(𝑅𝑖, 𝑇𝑖), expressing the inventory level and the maturity of the short forward contract (contracted 

delivery date). The endogenous variables only depend on operational decisions made. Stochastic 

factors specifying the forward curve constitute the exogenous component of the state variable 𝑊𝑖

= (𝜒𝑖, 𝜉𝑖), which is unaffected by the decisions made. The current state is fully explained by 

(𝑥𝑖,𝑊𝑖) ∈ 𝒳𝑖 ×ℝ
2, in which 𝒳𝑖 is the state space defined as in Eq. 4.1. 

 𝒳𝑖 = {{0} × {0}} ∪ {(0, 𝑅̅] × {𝑡𝑖, 𝑡𝑖+1, 𝑡𝑖+2, … , 𝑡𝑁}} 
Eq. 4.1 

The state 𝑥𝑖 = (𝑅𝑖 = 0, 𝑇𝑖 = 0) is an absorbing state in the present MDP. Practically, this 

corresponds to an empty inventory condition, and 𝑇𝑖 = 0 is set for notational convenience because 

contract maturity is meaningless at an empty-tanker state. The initial state is specified by 𝑥0

= (𝑅0 = 𝑅̅, 𝑇0 = 0) and 𝑊0 = (𝜒0, 𝜉0). Respectively, 𝑅0 = 𝑅̅ and 𝑇0 = 0 indicate that the trader 

starts with a full tanker and no forward contract at hand (immediate maturity). 
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2. The actions (𝒂𝒊): At any stage 𝑖 ∈ ℐ ∖ {N} and state (𝑥𝑖,𝑊𝑖), the decision is 𝑎𝑖 = (𝑎𝑖
𝑅 , 𝑎𝑖

𝑇) ∈

𝒜𝑖(𝑥𝑖) ⊆ ℝ
2, where 𝑎𝑖

𝑅 denotes the quantity of commodity to be sold in the spot market, and 𝑎𝑖
𝑇 

refers to the new maturity of the forward contract to short the remaining inventory after transacting 

on the spot (𝑅𝑖 − 𝑎𝑖
𝑅). Here, 𝒜𝑖(𝑥𝑖) is the feasible set given by Eq. 4.2. 

 

(𝑎𝑖
𝑅 , 𝑎𝑖

𝑇) ∈ 𝒜𝑖(𝑥𝑖) = 

{
{0} × {0}                                                                            𝑖𝑓 𝑅𝑖 = 0

{[0, 𝑅𝑖) × {𝑡𝑖+1, 𝑡𝑖+2, 𝑡𝑖+3, … , 𝑡𝑁}} ∪ {{𝑅𝑖} × {0}}    𝑖𝑓 𝑅𝑖 > 0
   

Eq. 4.2 

If 𝑅𝑖 = 0, the only feasible action is (0,0). If 𝑅𝑖 > 0, the trader can choose to sell a quantity 

between 𝑎𝑖
𝑅 = 0 (do not sell) and 𝑎𝑖

𝑅 = 𝑅𝑖 (sell the entire inventory). The action 𝑎𝑖
𝑅 = 𝑅𝑖 excludes 

the possibility for selling a forward contract; hence 𝑎𝑖 = (𝑅𝑖, 0) is feasible, as captured by the 

{𝑅𝑖} × {0} term. For actions 𝑎𝑖
𝑅 < 𝑅𝑖, the trader can update the maturity of her contract to a new 

one chosen from {𝑡𝑖+1, 𝑡𝑖+2, 𝑡𝑖+3, … , 𝑡𝑁}.  

3. State Transition Function 𝒇𝒊(𝒙𝒊, 𝒂𝒊 ): Given the current state (𝑥𝑖,𝑊𝑖) and an action 𝑎𝑖, the 

next endogenous state 𝑥𝑖+1 = (𝑅𝑖+1, 𝑇𝑖+1) is determined by the state transition function 𝑥𝑖+1 =

𝑓𝑖(𝑥𝑖, 𝑎𝑖) defined in Eq. 4.3 to Eq. 4.5. 

 𝑥𝑖+1 = 𝑓𝑖(𝑥𝑖 , 𝑎𝑖) = (𝑅𝑖+1, 𝑇𝑖+1) 
Eq. 4.3 

 
𝑅𝑖+1 = {

0                       𝑖𝑓   𝑅𝑖 = 0

𝑅𝑖 − 𝑎𝑖
𝑅          𝑖𝑓   𝑅𝑖 > 0

 Eq. 4.4 

 
𝑇𝑖+1 = {

0                        𝑖𝑓  𝑅𝑖 = 0

𝑎𝑖
𝑇                    𝑖𝑓   𝑅𝑖 > 0

 Eq. 4.5 

The exogenous part of the state, 𝑊𝑖, evolves based on the stochastic processes of Eq. 2.16 and Eq. 

2.17 independently from 𝑥𝑖 and 𝑎𝑖. 

4. Reward Function 𝒓𝒊(𝒂𝒊, 𝒙𝒊,𝑾𝒊): Given an action 𝑎𝑖 = (𝑎𝑖
𝑅 , 𝑎𝑖

𝑇) at time step 𝑖, 𝑖 < 𝑁, the stage 

reward includes three components generated by: (i) selling 𝑎𝑖
𝑅 barrels of oil on the spot, (ii) selling 

𝑅𝑖 − 𝑎𝑖
𝑅 barrels through shorting the 𝐹(𝑡𝑖, 𝑎𝑖

𝑇) contract, and (iii) offsetting the current contract held 
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by taking a long position in 𝐹(𝑡𝑖, 𝑇𝑖). Eq. 4.6 combines all these elements to express the reward 

function. It is assumed that 𝜕𝑟𝑖/𝜕𝑎𝑖
𝑇 and 𝜕𝑟𝑖/𝜕𝑎𝑖

𝑅 are not always zero (𝑟𝑖 is not a constant). 

𝑟𝑖(𝑎𝑖, 𝑥𝑖, 𝑊𝑖) = 𝑎𝑖
𝑅[𝐹(𝑡𝑖, 𝑡𝑖) − 𝑐𝑃 − 𝑐𝐻(𝑡𝑖 − 𝑇𝑖)] + (𝑅𝑖 − 𝑎𝑖

𝑅) [𝑒−𝑟(𝑎𝑖
𝑇−𝑡𝑖)(𝐹(𝑡𝑖, 𝑎𝑖

𝑇) −

𝑐𝑃) − 𝑐𝐻(𝑎𝑖
𝑇 − 𝑇𝑖)] − 𝑅𝑖𝑒

−𝑟(𝑇𝑖−𝑡𝑖)(𝐹(𝑡𝑖, 𝑇𝑖) − 𝑐𝑃) for 𝑖 ∈ ℐ ∖ {𝑁} 

and 𝑟𝑖(𝑥𝑖 ,𝑊𝑖) = 𝑟0 = 0, for 𝑖 = 𝑁 

Eq. 4.6 

Here, 𝑐𝑃 denotes the deterministic costs due at delivery of the oil, such as pumping cost and any 

location discount to WTI futures. The holding cost, denoted by a deterministic constant 𝑐𝐻, 

summarizes all the costs associated with operating the tanker including the rent, assumed payable 

at the start of each rental period. The payoffs from rental time adjustment assume that the rental 

cost is charged on a per barrel per year basis. Note that, given 𝑊𝑖, all the forward prices and thus 

𝑟𝑖(𝑎𝑖, 𝑥𝑖, 𝑊𝑖) are deterministic. The terminal reward at the final stage 𝑖 = 𝑁 is 𝑟𝑁(𝑥𝑁,𝑊𝑁) = 0. 

By 𝑡𝑁 = 𝑇̅ either the oil has been already sold, or an existing short contract with 𝑇𝑁 = 𝑇̅ will be 

fulfilled by delivering all the remaining inventory. 

Lemma 4.I: The reward function 𝑟𝑖 is neither concave nor convex with respect to 𝑎𝑖 = (𝑎𝑖
𝑅 , 𝑎𝑖

𝑇). 

The proof is provided in Appendix A. 

The dynamic optimization problem of the trader to maximize the total expected reward given the 

initial state (𝑥0,𝑊0) is expressed by Eq. 4.7. 

 𝑉0(𝑥0,𝑊0) = max
𝜋∈Π

  𝐸 [∑ 𝛿𝑖 𝑟𝑖(𝐴𝑖
𝜋(𝑥𝑖

𝜋,𝑊𝑖), 𝑥𝑖 ,𝑊𝑖)

𝑁−1

𝑖=0

| (𝑥0,𝑊0)] 
Eq. 4.7 

The optimization is over the class Π of all feasible policies 𝜋. A policy 𝜋 is a set of decision rules 

{𝐴0
𝜋, 𝐴1

𝜋, … , 𝐴𝑁−1
𝜋 }, where 𝐴𝑖

𝜋(𝑥𝑖,𝑊𝑖): 𝒳𝑖 × ℝ
2 → 𝒜𝑖(𝑥𝑖) for ∀𝑖 ∈ ℐ ∖ {𝑁}. Here, 𝛿 = 𝑒−𝑟Δ𝑡 

denotes the discount factor per stage, and 𝑥𝑖
𝜋 refers to the random (endogenous) state at stage 𝑖 

when policy 𝜋 is implemented. The expectation is taken with respect to the physical measure. Let 

𝑉𝑖(𝑥𝑖,𝑊𝑖) denote the optimal value function starting from state (𝑥𝑖, 𝑊𝑖). The Bellman equation 

associated with the problem is expressed by Eq. 4.8. 
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𝑉𝑖(𝑥𝑖,𝑊𝑖) = max
𝑎∈𝒜𝑖(𝑥𝑖)

{𝑟𝑖(𝑎, 𝑥𝑖 ,𝑊𝑖) + 𝛿E[𝑉𝑖+1(𝑓𝑖(𝑥𝑖 , 𝑎),𝑊𝑖+1)| 𝑊𝑖]}, 

∀(𝑥𝑖,𝑊𝑖) ∈ 𝒳𝑖 ×ℝ
2, ∀𝑖 ∈ ℐ ∖ {𝑁}, 

𝑉𝑁(𝑥𝑁 ,𝑊𝑁) = 𝑟𝑁(𝑥𝑁 ,𝑊𝑁) = 0,   ∀(𝑥𝑁 ,𝑊𝑁) ∈ 𝒳𝑁 ×ℝ
2 

Eq. 4.8 

The goal is to find the optimal policy, 𝜋∗ that maximizes Eq. 4.7. To do so, Eq. 4.8 can be directly 

employed to compute all optimal value functions at all possible states by discretizing the two-

dimensional domain of the continuous random variable 𝑊𝑖; it requires stepping backward in time, 

looping through all possible states (𝑥𝑖,𝑊𝑖), and searching for the optimal action. At each 𝑡𝑖 and 

(𝑥𝑖,𝑊𝑖), an optimal action is obtained by Eq. 4.9. This approach will lead to the Exact Dynamic 

Programming, which will be examined in the Algorithmic Solutions section. 

 𝑎𝑖
∗ ∈ argmax

𝑎∈𝒜𝑖(𝑥𝑖)
{𝑟𝑖(𝑎, 𝑥𝑖 ,𝑊𝑖) + 𝛿𝐸[𝑉𝑖+1(𝑓𝑖(𝑥𝑖, 𝑎),𝑊𝑖+1)| 𝑊𝑖]} Eq. 4.9 

The high dimensionality of the state space and the required large number of conditional 

expectation estimation and optimizations (one per each state and each time step) renders this 

approach computationally prohibitive. This phenomenon is known as the curse of dimensionality 

for dynamic programming (Bertsekas, 2012; Powell, 2011). To overcome this phenomenon, an 

alternative approach, known as Approximate Dynamic Programming (ADP), will be presented in 

Algorithmic Solutions section. 

Before finishing this section, it might be helpful to compare the problem setups between the present 

and the previous chapter. The following table compares the assumptions and the corresponding 

MDP formulations of the problem presented above and those of Chapter 3. As summarized in 

Table 4.1, the framework is the same except for allowing to sell the inventory partially on the spot 

and partially on the forward markets. The impact of this change is reflected in the MDP 

formulations. 
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Model Features Chapter 3 Chapter 4 

Initiation time Fixed at 𝑡0 Same 

Staring inventory level Full (𝑅̅ filled at 𝑡0) Same 

Inventory refill option Not allowed Same 

Rental contract duration 

Optimally chosen (matching 

the selected forward 

maturity) 

Same 

Extension, or early 

termination of the rental 

contract 

Allowed Same 

Refund of storage cost if 

contract terminated early 
Allowed Same 

Quantity basis for charging 

the rent 
Per inventory level (𝑅𝑖) Same 

Storage cost value Known constant Same 

Partial sale on spot/forward Not allowed Allowed 

Endogenous state variables 1. Inventory level (𝑅𝑖) 
2. Forward maturity (𝑇𝑖) 

1. Inventory level (𝑅𝑖) 
2. Forward maturity (𝑇𝑖) 

State Space, 𝒳𝑖 {{0} × {0}} ∪ 

{{𝑅̅} × {𝑡𝑖 , 𝑡𝑖+1, 𝑡𝑖+2, … , 𝑡𝑁}} 

{{0} × {0}} ∪ 

{(0, 𝑅̅] × {𝑡𝑖, 𝑡𝑖+1, 𝑡𝑖+2, … , 𝑡𝑁}} 

Decision variables, 𝑎𝑖 1. Forward maturity (𝑎𝑖) 1. Quantity sold on the spot (𝑎𝑖
𝑅) 

2. Forward maturity (𝑎𝑖
𝑇) 

Feasible action space, 

𝒜𝑖(𝑥𝑖) 
If 𝑅𝑖 = 0: 

{0} 
If 𝑅𝑖 > 0: 
{𝑡𝑖, 𝑡𝑖+1, 𝑡𝑖+2, 𝑡𝑖+3, … , 𝑡𝑁} 

If 𝑅𝑖 = 0: 

{0} × {0} 
If 𝑅𝑖 > 0: 

{[0, 𝑅𝑖) × {𝑡𝑖+1, 𝑡𝑖+2, 𝑡𝑖+3, … , 𝑡𝑁}}

∪ {{𝑅𝑖} × {0}} 

 Table 4.1. Comparison of assumptions and MDP formulation between Chapter 3 and 4 problems. 

4.3 Theoretical Results 

The following propositions and Lemma 4.II (used to prove Proposition 4.I) summarizes the 

structural results. The proofs are provided in Appendix A. 

Lemma 4.II: The lemma has two parts; 

(i) the value function can be written in form of 𝑉𝑖(𝑥𝑖,𝑊𝑖) = 𝑅𝑖𝑣𝑖(𝑇𝑖,𝑊𝑖) (a multiple of 𝑅𝑖), ∀𝑖 ∈

ℐ ∖ {𝑁}, and 
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(ii) if 𝑉𝑖+1(𝑥𝑖+1,𝑊𝑖+1) = 𝑅𝑖+1𝑣𝑖+1(𝑇𝑖+1,𝑊𝑖+1), then at stage 𝑖 any action (𝑎𝑖
𝑅 , 𝑎𝑖

𝑇) =

(0 < 𝑎𝑖
𝑅 < 𝑅𝑖, 𝑎𝑖

𝑇) is dominated by either (0, 𝑎𝑖
𝑇) or (𝑅𝑖, 0). 

Proposition 4.I: In the SDP problem set out by Eq. 4.7 (subject to Eq. 4.1 to Eq. 4.6), partial sale 

of the inventory is never optimal. That is for ∀𝑖 ∈ ℐ ∖ {𝑁}, any action (𝑎𝑖
𝑅 , 𝑎𝑖

𝑇) =

(0 < 𝑎𝑖
𝑅 < 𝑅𝑖, 𝑎𝑖

𝑇) ∈ 𝒜𝑖(𝑥𝑖) is dominated by the action (0, 𝑎𝑖
𝑇) or (𝑅𝑖, 0). 

Proposition 4.II: Assume that the difference between the ‘adjusted’ forward prices can be written 

as expressed in Eq. 4.10 (the validity of this assumption, denoted as Assumption 4.I, is examined 

in Appendix A). Then, the value function and optimal actions structure for ∀𝑖 ∈ ℐ ∖ {𝑁} is 

expressed by Eq. 4.11. Here, 𝐸𝑖[. ] denotes 𝐸[. |𝑊𝑖]. 

𝑒−𝑟(𝑡1−𝑡𝑖)[𝐹(𝑡𝑖, 𝑡1) − 𝑐𝑃] − 𝑒
−𝑟(𝑡2−𝑡𝑖)[𝐹(𝑡𝑖, 𝑡2) − 𝑐𝑃] ≈ 𝑚𝑖(𝑡1 − 𝑡2) Eq. 4.10 

𝑉𝑖(𝑥𝑖,𝑊𝑖) = 𝑅𝑖(𝑚𝑖 − 𝑐𝐻)(𝑡𝑖 − 𝑇𝑖) + Δ𝑡𝑅𝑖𝑢𝑖, 

𝑢𝑖 = 𝑚𝑎𝑥{0, 𝐴𝑖, 𝐵𝑖} 

(𝑎𝑖
𝑅 , 𝑎𝑖

𝑇) = {

(𝑅𝑖, 0)                        If 𝐴𝑖 < 0    𝑎𝑛𝑑 𝐵𝑖 < 0
(0, 𝑡𝑁)                       If 𝐵𝑖 > 𝐴𝑖  𝑎𝑛𝑑 𝐵𝑖 > 0
(0, 𝑡𝑖+1)                      If 𝐴𝑖 > 𝐵𝑖  𝑎𝑛𝑑 𝐴𝑖 > 0

 

𝐴𝑖 =𝑚𝑖 − 𝑐𝐻 + 𝛿𝐸𝑖[𝑢𝑖+1], 

 𝐵𝑖 = (𝑁 − 𝑖)(𝑚𝑖 − 𝑐𝐻) +  𝛿𝐸𝑖[𝑢𝑖+1 − (𝑁 − 𝑖 − 1)(𝑚𝑖+1 − 𝑐𝐻)] 

 

Eq. 4.11 

 

The implication of Eq. 4.10 is that at each 𝑡𝑖, the expression on the left-hand side can be expressed 

by a line with a slope of 𝑚𝑖, regardless of the two maturities 𝑡1 and 𝑡2. Note that for 𝑖 = 𝑁 − 1, 

(0, 𝑡𝑁) = (0, 𝑡𝑖+1), and  𝐴𝑖 = 𝐵𝑖; that is the second and third arguments merge, and the 

maximization reduces to 𝑚𝑎𝑥{0, 𝐴𝑖}. To shed some light on the intuition behind the above results, 

let us focus on 𝑉𝑖(𝑥𝑖 ,𝑊𝑖) expression in Eq. 4.11; the term 𝑅𝑖(𝑚𝑖 − 𝑐𝐻)(𝑡𝑖 − 𝑇𝑖) represents 

offsetting the current short contract and selling the inventory on the spot as well as the associated 

storage cost adjustment, i.e. the action pair (𝑅𝑖, 0). In the term, Δ𝑡𝑅𝑖𝑢𝑖 , 𝑢𝑖 weighs two other actions 

against (𝑅𝑖, 0). The three arguments of the maximum operator correspond respectively to actions 
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(𝑅𝑖, 0), (0, 𝑡𝑁), or (0, 𝑡𝑖+1), which reduce the possible optimal actions to a much smaller subset of 

the feasible action set 𝒜𝑖(𝑥𝑖). 

The maximization in Eq. 4.11 states that (0, 𝑡𝑖+1) is chosen over (𝑅𝑖, 0) if 𝐴𝑖 > 0; that is 

postponing the sale to 𝑡𝑖+1 is preferred to a sell out at 𝑡𝑖 if the total value generated from postponing 

the sale one period, 1 × (𝑚𝑖 − 𝑐𝐻), plus the value (always non-negative) from keeping the option 

alive, 𝛿𝐸𝑖[𝑢𝑖+1], is greater than zero, i.e. 𝑚𝑖 − 𝑐𝐻 + 𝛿𝐸𝑖[𝑢𝑖+1] = 𝐴𝑖 > 0. 

Similarly, (0, 𝑡𝑁) is chosen over (𝑅𝑖, 0) if 𝐵𝑖 > 0; it means postponing the sale from 𝑡𝑖 to 𝑡𝑁 is 

preferred to a sell out at 𝑡𝑖 if the total value generated from postponing the sale 𝑁 − 𝑖 periods, 

(𝑁 − 𝑖)(𝑚𝑖 − 𝑐𝐻), minus the “foregone optionality” to do a similar postponing next 

period, (𝑁 − 𝑖 − 1)𝐸𝑖[𝑚𝑖+1 − 𝑐𝐻], plus the gain from keeping the option alive, 𝛿𝐸𝑖[𝑢𝑖+1], is 

greater than zero. The expression −(𝑁 − 𝑖 − 1)𝐸𝑖[𝑚𝑖+1 − 𝑐𝐻] can also be thought of as the 

expected value from advancing the next period sale from 𝑡𝑁 to 𝑡𝑖+1. 

Finally, (0, 𝑡𝑖+1) is preferred to (0, 𝑡𝑁) if 𝐴𝑖 > 𝐵𝑖, which can be simplified to Eq. 4.12. This 

equation states that if it is expected that the slope differential will increase in the next stage, 

(0, 𝑡𝑖+1) is preferred to (0, 𝑡𝑁) since the payoff from postponing the sale is proportional to the 

slope differential. In this case, shorting 𝑡𝑖+1 maturity today places the trader in a better position 

tomorrow, which allows her to take advantage of the more significant long-term postponing 

opportunity. In other words, choosing 𝑡𝑖+1 enables the trader to keep the option alive by ‘minimally 

reducing’ the future upside potential. 

 𝑚𝑖 − 𝑐𝐻 < 𝛿𝐸𝑖[𝑚𝑖+1 − 𝑐𝐻] 
Eq. 4.12 

4.4 Algorithmic Solutions 

4.4.1 Exact Dynamic Programming 

Table 4.2 shows the pseudocode of the exact approach assuming that the 𝜒_ξ domain is discretized 

into an 𝐻 × 𝐻 grid. The inventory state variable 𝑅𝑖 can be discretized to approximate the 

conditional expectation by simulation and sample averaging. The initial inventory 𝑅̅ is discretized 
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equally into 𝐿 levels by Δ𝑅 = 𝑅̅ 𝐿⁄ , which determines the permissible batches to be sold as 0, 

Δ𝑅, 2Δ𝑅,… . , 𝑅̅. 

To achieve a computationally tractable approach, particularly for higher dimensional forward 

curve models, alternative approaches are considered. Even in the current setting, as will be shown 

in the following sections, the computational time of the exact method can approach 30 hours. Two 

possible avenues considered in the following are the ADP and FDO methods.  The ADP approach 

is the focus of this chapter since FDO techniques are studied in the previous chapter and in 

Ghafouri and Davison (2017). 

 

1. Initialize 𝑉̂𝑁(𝑥𝑁 ,𝑊𝑁) = 0, ∀𝑥𝑁 ,𝑊𝑁. 

2. For 𝑖 = (𝑁 − 1), (𝑁 − 2), (𝑁 − 3),… , 0 

 3. For each 𝑥𝑖 = (𝑅𝑖, 𝑇𝑖) ∈ {Δ𝑅, 2Δ𝑅,… , 𝐿Δ𝑅} × {𝑡𝑖, 𝑡𝑖+1, 𝑡𝑖+2, … , 𝑡𝑁} 

  4. For each 𝑊𝑖
ℎ ∈ {𝜒1, 𝜒2, … , 𝜒𝐻} × {𝜉1, 𝜉2, … , 𝜉𝐻} 

 

   5.I. For each 𝑥𝑖+1 = (𝑅𝑖+1, 𝑇𝑖+1) ∈ {Δ𝑅, 2Δ𝑅,… , 𝐿Δ𝑅} × {𝑡𝑖+1, 𝑡𝑖+2, … , 𝑡𝑁} 

                                             5.I.a. Simulate 𝑊𝑖+1
𝑏 , 𝑏 = 1,… , 𝐵, all initiated from 𝑊𝑖

ℎ 

                                             5.I.b. Compute 𝑉̂𝑖+1(𝑥𝑖+1,𝑊𝑖+1
𝑏 ) by bilinear or nearest neighbor 

                                                       interpolation of the existing 𝑉̂𝑖+1(𝑥𝑖+1,𝑊𝑖+1) on 𝜒_ξ grid 

                                             5.I.c. Estimate 

                                                        𝐸̂[𝑉̂𝑖+1(𝑥𝑖+1,𝑊𝑖+1)| 𝑊𝑖
ℎ] = ∑ 𝑉̂𝑖+1(𝑥𝑖+1,𝑊𝑖+1

𝑏 )𝐵
𝑏=1 /𝐵 

          End 

 

 

   5.II. Compute the optimal value function and actions by 

 

                                    𝑉̂𝑖(𝑥𝑖,𝑊𝑖
ℎ) = max

𝑎∈𝒜𝑖(𝑥𝑖)
{𝑟𝑖(𝑎, 𝑥𝑖 ,𝑊𝑖

ℎ) + 𝛿𝐸̂[𝑉̂𝑖+1(𝑓𝑖(𝑥𝑖, 𝑎),𝑊𝑖+1)| 𝑊𝑖
ℎ]} 

                                   𝐴̂𝑖
𝜋(𝑥𝑖, 𝑊𝑖

ℎ) = argmax
𝑎∈𝒜𝑖(𝑥𝑖)

{𝑟𝑖(𝑎, 𝑥𝑖, 𝑊𝑖
ℎ) + 𝛿𝐸̂[𝑉̂𝑖+1(𝑓𝑖(𝑥𝑖, 𝑎),𝑊𝑖+1)| 𝑊𝑖

ℎ]} 

  

  End 

 End 

End 

Table 4.2. Pseudocode of the exact approach on a 𝐻 ×𝐻 grid of 𝜒_ξ. 
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4.4.2 Approximate Dynamic Programming (ADP) 

Approximate Dynamic Programming (ADP) is a broad group of algorithmic strategies and 

modelling techniques that offers several methodologies for tackling the curses of dimensionality 

in large, multiperiod, stochastic (or deterministic) optimization problems (Powell, 2011). An ADP 

technique based on the Least Square Monte Carlo (LSM) approach (Carriere, 1996; Longstaff and 

Schwartz, 2001; Tsitsiklis and Roy, 2001) is used here. This method offers a cost-effective 

approach to compute the lower bound of 𝑉0(𝑥0,𝑊0) (Glasserman, 2003, sec. 8.7; Nadarajah et al., 

2017). Approximation architectures are employed to estimate the expectation of the value function, 

also known as the continuation function, as used in Nadarajah et al. (2017) consistent with the 

pioneering LSM works mentioned above. For each 𝑥𝑖+1 possible, a continuation value 

approximation is adopted. The approximation assumes that the continuation value is a linear 

combination of 𝐾 basis functions of the exogenous part of the state at stage 𝑖, i.e. 𝑊𝑖, as expressed 

by Eq. 4.13. Here, 𝐴′ denotes the transpose of 𝐴. 

𝐸[𝑉𝑖+1(𝑥𝑖+1,𝑊𝑖+1)| 𝑊𝑖] = Θ′(𝑖, 𝑥𝑖+1)Φ(𝑊𝑖) = ∑ 𝜃𝑘(𝑖, 𝑥𝑖+1)
𝐾
𝑘=1 φ𝑘(𝑊𝑖),  ∀𝑖, 𝑥𝑖+1 Eq. 4.13 

Polynomials are very common in linear approximation architectures (Lagoudakis and Parr, 2003; 

Longstaff and Schwartz, 2001). Given the two-dimensional domain of 𝑊𝑖, considering the 

polynomials of degree three leads to 𝐾 = 10 basis functions according to Eq. 4.13. These ten basis 

functions are summarized in the vector Φ(𝑊𝑖) defined by Eq. 4.14. 

 Φ′(𝑊𝑖) = [1 𝜒𝑖 𝜉𝑖 𝜒𝑖
2 ξi

2 𝜒𝑖ξi 𝜒𝑖
3 𝜉𝑖

3 𝜒𝑖
2ξi 𝜒𝑖𝜉𝑖

2] , ∀𝑖 Eq. 4.14 

Determining the continuation value is reduced to estimating the vector of weights Θ(𝑖, 𝑥𝑖+1), which 

is found by the least squares regression. Table 4.3 shows the pseudocode of the ADP approach. In 

step 1, 𝑀 price paths are simulated. In step 2, initialization is done using the fact that, at stage 𝑁, 

the value function is zero for all states (by the deterministic reward function). Step 3 includes the 

loop moving stage-wise backward in time. In step 4, 𝐸̂[𝑉̂𝑖+1(𝑥𝑖+1,𝑊𝑖+1)| 𝑊𝑖
𝑚] is computed for all 

possible states in the next stage, i.e. 𝑥𝑖+1. The continuation value for any 𝑥𝑖 and 𝑎𝑖 is computed 

based on 𝑥𝑖+1 = 𝑓𝑖(𝑥𝑖 , 𝑎𝑖). This comprised of solving for the regression coefficients in step 5.I, 
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and computing the estimated continuation value (fitted value of the regression) in step 5.II. Finally, 

in step 6, the optimal action for each state 𝑥𝑖 and path 𝑚 is computed. 

 

1. Simulate 𝑀 sample paths of the 𝑊𝑖 process for 𝑖 = 0, 1, 2, … ,𝑁; denoted by {𝑊𝑖
𝑚}𝑚=1

𝑀 . 

2. Initialize 𝑉̂𝑁(𝑥𝑁 ,𝑊𝑁) = 0, ∀𝑥𝑁 ,𝑊𝑁. 

3. For 𝑖 = (𝑁 − 1), (𝑁 − 2), (𝑁 − 3),… , 1, 0∗ 

 4. For each 𝑥𝑖+1 = (𝑅𝑖+1, 𝑇𝑖+1) ∈ {Δ𝑅, 2Δ𝑅, … , 𝐿Δ𝑅} × {𝑡𝑖+1, 𝑡𝑖+2, … , 𝑡𝑁} 

  5.a Compute the regression coefficients, Θ̂(𝑖, 𝑥𝑖+1), using the 𝑀 sample paths 

𝑉̂𝑖+1(𝑥𝑖+1,𝑊𝑖+1
𝑚 ) ~∑𝜃𝑘(𝑖, 𝑥𝑖+1)

𝐾

𝑘=1

φ𝑘(𝑊𝑖
𝑚), 𝑚 = 1, … ,𝑀 

 

  5.b. Compute the CFA (as the fitted value of the regression) using Θ̂(𝑖, 𝑥𝑖+1) 

𝐸̂[𝑉̂𝑖+1(𝑥𝑖+1,𝑊𝑖+1)| 𝑊𝑖
𝑚] = ∑𝜃𝑘(𝑖, 𝑥𝑖+1)

𝐾

𝑘=1

φ𝑘(𝑊𝑖
𝑚) 

 End 

 6. For each 𝑥𝑖 = (𝑅𝑖, 𝑇𝑖) ∈ {Δ𝑅, 2Δ𝑅,… , 𝐿Δ𝑅} × {𝑡𝑖, 𝑡𝑖+1, 𝑡𝑖+2, … , 𝑡𝑁}, compute the 

                optimal value function and actions by 

𝑉̂𝑖(𝑥𝑖,𝑊𝑖
𝑚) = max

𝑎∈𝒜𝑖(𝑥𝑖)
{𝑟𝑖(𝑎, 𝑥𝑖,𝑊𝑖

𝑚) + 𝛿𝐸̂[𝑉̂𝑖+1(𝑓𝑖(𝑥𝑖, 𝑎),𝑊𝑖+1)| 𝑊𝑖
𝑚]} 

𝐴̂𝑖
𝜋(𝑥𝑖,𝑊𝑖

𝑚) = argmax
𝑎∈𝒜𝑖(𝑥𝑖)

{𝑟𝑖(𝑎, 𝑥𝑖 ,𝑊𝑖
𝑚) + 𝛿𝐸̂[𝑉̂𝑖+1(𝑓𝑖(𝑥𝑖, 𝑎),𝑊𝑖+1)| 𝑊𝑖

𝑚]} 

 

 End 

End 

 

*At 𝑖 = 0, the regression will be replaced with a sample average due to the absence of 

multiple sample paths at 𝑡 = 0, which means 𝐸̂[𝑉̂1(𝑥1,𝑊1)| 𝑊0] =
1

𝑀
∑ 𝑉̂1(𝑥1,𝑊1

𝑚)𝑀
𝑚=1 . 

Table 4.3. Pseudocode of ADP (LSM) approach. 

4.4.3 Forward Dynamic Optimization (FDO) 

As discussed in detail in the previous chapter, the myopic decision rule adopted by FDO just 

maximizes the immediate reward but ignores any corresponding change in the continuation value. 

The treatment of the problem in Eq. 4.7 by the FDO strategy is reviewed as a reminder since 

Chapter 3 is devoted to this method. FDO policy is expressed by its decision rule in Eq. 4.15. The 
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value is generated by following these actions as expressed by Eq. 4.16. FDO presents a 

(suboptimal) solution by sequentially maximizing the reward at each timestep while moving 

forward in time. 

𝐴𝑖
𝐹𝐷𝑂(𝑥𝑖,𝑊𝑖) = argmax

𝑎𝑖∈𝒜𝑖(𝑥𝑖)
𝑟𝑖(𝑎𝑖, 𝑥𝑖, 𝑊𝑖) Eq. 4.15 

𝑉0
𝐹𝐷𝑂(𝑥0,𝑊0) = 𝐸 [∑ 𝛿𝑖  max

𝑎𝑖∈𝒜𝑖(𝑥𝑖)
𝑟𝑖(𝑎𝑖, 𝑥𝑖,𝑊𝑖) 

𝑁−1

𝑖=0

| (𝑥0,𝑊0)] Eq. 4.16 

4.5 Parameters 

In the following numerical simulation, the price model parameters are exactly as before, provided 

in Table 2.1. We generated 𝑀 = 100000 (50K + 50K antithetic) price paths in the ADP method 

by simulating the state variables with Δ𝑡 = 1 480⁄  year using the Schwartz and Smith (2000) 

model, Eq. 2.16, Eq. 2.17, and Eq. 2.18. This allows price series discretized on different time 

intervals (Δ𝑡s) to be extracted. 

The initial conditions and time horizon also match those defined in the base case in Table 3.1. 

Recall that the specified 𝑊0 corresponds to a spot price of $54.45 and a long-term price of $103.19 

simulating forward prices based on May 2009 market conditions, which was a favorable period 

for this type of trade (Diaz-Rainey et al., 2017; Kemp, 2016). Based on actual time-charter rates 

of a 2 million barrel VLCC around May 2009 (Ghafouri and Davison, 2017), the tanker rent is 

assumed to be about $36,000/day, equivalent to the chosen 𝑐𝐻 = $6.57 per barrel per year, and 

higher than the $3.5 per barrel per year assumed by Jafarizadeh and Bratvold (2013). The Pumping 

Cost is assumed to be 𝑐𝑃 = $3.75/barrel, which results in a total cost of $10.32/barrel, and higher 

than the $8.5/barrel cost assumed by Jafarizadeh and Bratvold (2013). The parameters for optimal 

policy analysis using the ADP algorithm, as well as a comparison between the ADP and the FDO 

are set based on Case A of Table 4.4. In addition, Case B is defined to provide a basis for 

comparison between the exact and the ADP algorithms, as well as studying the impact of 

Propositions 4.I and 4.II. The reason behind introducing Case B (𝑁 = 16) is that using Case A 

(𝑁 = 60) in the exact dynamic programming approach will be very computationally expensive. 
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4.6 Computational Results 

In the following subsections, the numerical results studying several aspects of the problem are 

presented. Unless stated otherwise, all the results are based on the out-of-sample lower-bound (or 

more accurately a downward-biased) estimate of the value function at time zero, denoted by 𝑉0. It 

should be noted that all the computations in this thesis are performed on a desktop computer with 

an i7-6700@3.41GHz CPU. 

 

Description Parameter Case A Case B 

Initial inventory (barrels) 𝑅̅ 1 same as A 

Time Horizon (constraint) 𝑇̅ 1 year same as A 

Number of time stages (Δ𝑡 = 𝑇̅/𝑁) 𝑁 60 16 

Storage discretization increment Δ𝑅 1 1, and 1 3⁄  

Storage cost 𝑐𝐻 $6.57 same as A 

Pumping cost 𝑐𝑃 $3.75 same as A 

Initial condition of the exogenous state variables 𝑊0 = (𝜒0, 𝜉0) (-0.639,4.637) same as A 

Initial condition of the endogenous state variables 𝑥0 = (𝑅0, 𝑇0) (1, 0) same as A 

Total number of simulated antithetic paths in the ADP 

algorithm (Table 4.3) 
𝑀 100,000 same as A 

Total number of simulated antithetic paths for out-of-

sample estimation 
𝑀2 10,000 same as A 

Total number of simulated antithetic 𝑊𝑖+1
𝑏  in the exact 

algorithm (Table 4.2) 
B N/A 200 

Number of grids points in 𝜒_ξ domain for the exact 

algorithm (Table 4.2) 
𝐻 N/A 43 

Table 4.4. Problem parameters defined as Case A and Case B for the exact or ADP analysis. 

4.6.1 The Optimal Value 

The lower-bound estimate of the optimal value is investigated in this section. The impact of 

considering Propositions 4.I and 4.II is examined by limiting the partial sale and feasible action 

set respectively. If one believes that the partial sale is not optimal, Δ𝑅 can be set to 𝑅̅ = 1, which 

avoids any inventory discretization, and thus partial sale. For comparison, a Δ𝑅 =1/3 is also tested. 

Proposition 4.II is implemented by limiting the feasible actions to the following subset of 𝒜𝑖(𝑥𝑖). 

 𝒜𝑖
𝐼𝐼(𝑥𝑖) ∶= {(𝑅𝑖, 0), (0, 𝑡𝑁), (0, 𝑡𝑖+1)} 

Eq. 4.17 
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In Table 4.5, the performance of ADP algorithm is compared to that of FDO using Case A of the 

parameters. The value generated by ADP is 𝑉0 = $10.70 (per barrel) with a standard deviation of 

$4.58 (standard error of $0.014), which is equivalent to $21.4 million for the (2 million barrels) 

VLCC tanker. The FDO algorithm generates 𝑉0
𝐹𝐷𝑂 = $7.85. In the ADP case, using 𝑀2 =10K 

instead of 𝑀2 =100K changes the estimate less than 2%, while reducing the computational time 

by 50%. In FDO case, it is even more computationally beneficial to use 𝑀2 =10K. The 𝑉0 or 𝑉0
𝐹𝐷𝑂 

is the ‘added value’ which the trader captures by following the corresponding policy ‘relative to’ 

selling her inventory on the spot at 𝑡0. While the ADP algorithm generates36% more value than 

FDO, its computation time is 17 (1.12/0.066) times longer. Employing 𝒜𝑖
𝐼𝐼(𝑥𝑖) can reduce the 

ADP computation time by about 80% to only 3.4 (0.23/0.066) times longer than that of FDO. 

 

Method 
Number of 

Paths (𝑀) 

Number of Out-

of-Sample Paths 

(𝑀2) 

Mean 

($) 

Standard 

Deviation ($) 

Computatio

n Time 

(hours) 

ADP 100K 100K 10.70 4.58 2.08 

ADP 100K 10K 10.68 4.56 1.12 

ADP using 

𝒜𝑖
𝐼𝐼(𝑥𝑖) 

100K 10K 10.68 4.56 0.23 

FDO 100K N/A 7.854 0.989 0.69 

FDO 10K N/A 7.848 0.986 0.066 

Table 4.5. Optimal value and computational time of the FDO and ADP approaches using Case A 

of the parameters. 

Table 4.6 shows the optimal values and computational times of the exact and ADP algorithms 

using Case B of the parameters. The number of time stages, 𝑁, of Case B is smaller than that of 

Case A, which allows to examine the computationally expensive exact algorithms, and the impact 

of partial sales. The optimal value generated by the exact and ADP methods differ only about 1%, 

which validates the results. However, the fastest exact case still takes a longer time than the slowest 

ADP one. Comparing the two exact variants, it is observed that the (slightly slower) Bilinear 

variant leads to a slightly higher value estimate than the nearest neighbor approach. 

Although there is a small difference among all the computed mean values in Table 4.6, as they fall 

in the range $10.60-$10.70, there are significant differences among the computation times; the 

computationally slowest case is about 940 (30.10/0.032) times slower than the fastest one. The 
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computation time variation is due to three factors; (i) the algorithm; ADP vs exact (two variations), 

(ii) partial sale consideration (Δ𝑅 = 1 or 1/3), and (iii) limiting the feasible action set to 𝒜𝑖
𝐼𝐼(𝑥𝑖). 

Focusing on one factor and keeping all other factors the same, the ADP algorithm takes between 

39-170 times (1.21/0.032-30.10/0.17) less computation time than the exact method. Also, factor 

(ii) can decrease the computation time between 2-6 times (0.063/0.032-28.2/4.64), while factor 

(iii) can decrease it between 1.7-10 times (0.055/0.032-28.2/2.75). 

 

Method 
Interpolation 

Technique 
Mean ($) 

Standard 

Deviation ($) 

Storage 

Discretization Δ𝑅 

(Proposition 4.I) 

Feasible Set 

Limited to 

𝒜𝑖
𝐼𝐼(𝑥𝑖)? 

(Proposition 4.II) 

Computation 

Time (hours) 

Exact 
Nearest 

Neighbor 
10.63 4.33 1/3 NO 28.20 

Exact 
Nearest 

Neighbor 
10.60 4.32 1 NO 4.64 

Exact 
Nearest 

Neighbor 
10.68 4.40 1/3 YES 2.75 

Exact 
Nearest 

Neighbor 
10.70 4.43 1 YES 1.21 

Exact Bilinear 10.66 4.39 1/3 NO 30.10 

Exact Bilinear 10.65 4.41 1 NO 5.12 

Exact Bilinear 10.70 4.46 1/3 YES 3.16 

Exact Bilinear 10.70 4.47 1 YES 1.24 

ADP 10.64 4.39 1/3 NO 0.17 

ADP 10.64 4.39 1 NO 0.055 

ADP 10.63 4.38 1/3 YES 0.063 

ADP 10.64 4.39 1 YES 0.032 

Table 4.6. Optimal value and computational time of exact and ADP approaches using Case B of 

the parameters. 

These numerical experiments corroborate Proposition 4.I’s result that the opportunity of partial 

sale creates no additional value for this problem over either selling no inventory or selling all 

inventory. In other words, the optimal decision with respect to the maturity, 𝑎𝑖
𝑇, is applied to all 

the inventory. The reason might be that the whole inventory can be emptied during one timestep 

without being limited by any constraints, outside those considered here, such as a maximum 

pumping rate or an illiquid market. Also, this numerical experiment verified Proposition 4.II (and 
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Assumption 4.I by extension) by showing that limiting the feasible set to 𝒜𝑖
𝐼𝐼(𝑥𝑖) does not change 

the values. 

To estimate a confidence interval for 𝑉0 using the ADP method, the computations are repeated for 

150 times using different sample and out-of-sample paths. Fig. 4.1 shows the histogram of such 

computed values. The mean from 150 repeated simulations is $10.678 and the 95% confidence 

intervals is [$10.674, $10.682], which confirms that the values found earlier are within the 

confidence bounds.  

 

Fig. 4.1. Histogram of value using the ADP method computed for 150 times. The solid line 

represents the mean of the histogram. Case A parameters (Δ𝑅 = 1) as per Table 4.4 are used. 

4.6.2 The Optimal Policy 

The optimal policy is shown on Fig. 4.2 and Fig. 4.3 by illustrating the evolution of the (𝜒𝑖, 𝜉𝑖) 

state variables through time on the 𝜒𝑖_𝜉𝑖 plane, and the associated optimal decisions 𝑎𝑖 = (𝑎𝑖
𝑅 , 𝑎𝑖

𝑇) 

overlying on that plane. Fig. 4.2 and Fig. 4.3 show the optimal actions 𝑎𝑖 obtained by the two 

methods respectively at 𝑡 = 0.25 and 𝑡 = 0.75. For comparison purposes, the optimal decisions 

for both the exact and ADP methods are overlaid; the ADP results appears in the dense cluster of 

simulated paths, which becomes more dispersed as time passes, while the exact method results are 

reflected on the domain rectangular grid. In addition to the initial condition set per Case B, a 
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different initial condition, 𝑊0 = (−1.2,4.2), is also used with the ADP method, which causes the 

cluster of the simulated paths to move toward the bottom-left of the cluster generated by Case B. 

This allows further exploration of the ADP policy’s responsiveness. 

Comparing optimal values and computational times of ADP and the exact approach indicates that 

the ADP method gives the best and fastest result. The downside is the optimal policy and value 

function are “locally” calculated, i.e. centered around the evolution of the initial condition. If 

another initial condition is to be considered, the computation must be repeated in the ADP method, 

whereas the exact approach has already solved the program for all initial conditions within the 𝜒_ξ 

domain selected from the beginning. 

Comparing Fig. 4.2 to Fig. 4.3, as time passes, the exercise boundary (red-blue boundary within 

the cluster of simulated points) moves from right to left, which corresponds to a flattening forward 

curve, as will be seen later. The realizations on the right side of the line indicate a sale on the spot 

decision, i.e. (𝑎𝑖
𝑅 , 𝑎𝑖

𝑇) = (𝑅𝑖, 0), and most of the ones on the left show a hold decision, i.e. 

(𝑎𝑖
𝑅 , 𝑎𝑖

𝑇) = (0, 𝑎𝑖
𝑇), where 𝑎𝑖

𝑇 = 1 across most of the realized domain, and in 𝑎𝑖
𝑇 = 𝑡𝑖+1 in a small 

region for the ADP. The points for which 𝑎𝑖
𝑇 = 𝑡𝑖+1, are in a small minority relative to the paths 

simulated in the ADP method (<1% of the 100K). The results of the exact method show that there 

is a (different) region in the 𝜒𝑖_𝜉𝑖 plane, where this apparently rare policy suggested by the ADP 

method is optimal. 

The interim policies suggested by the ADP and the exact method should not be compared globally 

with one another since the ADP provides a solution based on the initial condition, which is accurate 

in the area around the evolution of the stochastic factors. Fig. 4.2 and Fig. 4.3 show that the optimal 

policies suggested by the two methods often agree.  However, as one deviates from the densely-

populated areas and gets closer to the extremities, the regression results become weak and thus the 

obtained policies are not dependable. For instance, consider the minority region (colored in orange) 

representing an optimal choice 𝑎𝑖
𝑇 = 0.8125(= 0.75 + Δ𝑡) in Fig. 4.3. A discrepancy is observed 

between the location of the 𝑎𝑖
𝑇 policy prescribed by the two methods; the optimal choice of 𝑎𝑖

𝑇 =

0.8125 indicated by the exact method is seen in a region situated left of the area suggested by 

ADP. We believe that this the result of poor regression approximation in an area far from most  
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Fig. 4.2. Optimal decision 𝑎𝑖
𝑅 (left) and 𝑎𝑖

𝑇 (right) at 𝑡𝑖 = 0.25 (𝑖 = 4) and state 𝑥𝑖 = (𝑅𝑖, 𝑇𝑖) =
(1, 0.25). The parameters are per Case B in Table 4.4 (𝑀 = 100𝐾, 𝑁 = 16, Δ𝑅 = 1/3, 𝐻 = 43). 

Different 𝑊0 = (𝜒0, 𝜉0) are used with the ADP; 𝑊0 = (−0.639,4.637) per Case B (top), and 

𝑊0 = (−1.2,4.2) (bottom). 

data points used to build the regression coefficients (the results are best where they matter the 

most). Also, the magnitude of the difference in payoffs between choices 𝑎𝑖 = (0, 1) and (1, 0) 

considered over all paths is much larger (~10 times) than that of choices 𝑎𝑖 = (0, 1) and 

(0, 0.8125). We believe this is another reason that when searching for the optimal action 𝑎 ∈ 
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Fig. 4.3. Optimal decision 𝑎𝑖
𝑅 (left) and 𝑎𝑖

𝑇 (right) at 𝑡𝑖 = 0.75 (𝑖 = 12) and state 𝑥𝑖 = (𝑅𝑖, 𝑇𝑖) =
(1, 0.75). The parameters are per Case B in Table 4.4 (𝑀 = 100𝐾, 𝑁 = 16, Δ𝑅 = 1/3, 𝐻 = 43). 

Different 𝑊0 = (𝜒0, 𝜉0) are used with the ADP; 𝑊0 = (−0.639,4.637) per Case B (top), and 

𝑊0 = (−1.2,4.2) (bottom). 

𝒜𝑖(𝑥𝑖) in the ADP algorithm (Step 6 in Table 4.3), a small error can lead to an incorrect decision. 

However, because the proportion of these points are very small (<1%) they don’t impact the results 

significantly, as confirmed by the similar values in Table 4.6. Given the initial 𝑊0, the general 

theme of the optimal policy is to short 𝐹(0,1) at stage 𝑖 = 0, corresponding to the decision 𝑎𝑖 =
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(𝑎𝑖
𝑅 , 𝑎𝑖

𝑇) = (0,1). Then the decision is to hold this contract until all inventory is sold on the spot 

at some point depending on the (𝜒𝑖, 𝜉𝑖) realization. In other words, on most simulated paths the 

optimal decision, (𝑎𝑖
𝑅 , 𝑎𝑖

𝑇), changes from (0, 1) to (1, 0). As highlighted in the theoretical 

discussion of the optimal policy in Section 4.3, the optimally selected maturity, 𝑎𝑖
𝑇, is not always 

equal to 1 or 0. This can be seen in Fig. 4.2 and Fig. 4.3, respectively depicted in light blue and 

orange. This is consistent with the theoretical results of the Proposition 4.II, where at time stage 𝑖, 

𝑎𝑖
𝑇 = 𝑡𝑖+1 may be optimal under certain conditions. 

4.6.3 Comparison of ADP and FDO 

Fig. 4.4 shows the histogram of the value generated using the same set of sample paths for the 

ADP and FDO methods. The optimal ADP policy generates 𝑉0 = $10.71 on average, which can 

be broken down into two parts; (i) $6.19 generated by selling the oil forward using 𝐹(0,1), and 

(ii) $4.52 obtained by all of the subsequent trades. At 𝑡0, part (i) is known (certain), whereas part 

(ii) is uncertain. Although most of the value is captured by the first part, the subsequent trades are 

necessary to capture the remaining 42% of the value. The contribution of the subsequent trades to 

value will increase if the initial forward curve is less steep, which is a less favorable environment 

to start the trading. Thus, a trader still has an incentive to start although the certain part of the 

added value is not very high. Also, Fig. 4.4 shows that the lower- and upper-end of the outcomes 

generated by the ADP algorithm are respectively lower and higher than those given by the FDO; 

a range of $1.44-$34.13 vs $6.19-$16.38 is observed for ADP and FDO respectively. So, the higher 

value of the ADP algorithm comes at the price of higher volatility and risk (i.e., standard 

deviation). 

Fig. 4.4.b displays the histogram of the time stage at which the algorithm reaches the absorbing 

state 𝑥𝑖 = (𝑅𝑖 = 0, 𝑇𝑖 = 0), where the inventory is sold and trading terminates. It is seen that ADP 

is more patient than FDO; while there is a peak in the first half on the FDO histogram, most ADP 

paths indicate that deliveries occur during the second half (at the end) of the time horizon. 

To compare the detailed performance of ADP and FDO on the same path, two representative paths 

are studied here; Fig. 4.5 depicts a sample path in which ADP performs better than FDO, whereas  
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(a) Histogram of Added Value 
(b) Histogram of delivery time stage (the 

stopping time when trading terminates) 

Fig. 4.4. Results of simulating 𝑀2 =100K new paths using Case A parameters and comparing 

ADP vs FDO statistics. 

Fig. 4.6 exhibits another sample path on which FDO performs better. In both figures, panel (a) 

shows the forward curve including its slope, when a trade happens, while panel (b) shows the 

incremental gain and the maturity of the newly taken short position. In Fig. 4.5, ADP waits until 

𝑡 = 0.68 year, at which time there is a sufficiently negative slope of -9.62, and it cashes out the 

position with an incremental payoff of $5.3. However, in Fig. 4.6, ADP can only collect $1.2 by 

cashing out at 𝑡 = 0.9 year, whereas the incremental gains of FDO sums up to $3.65 by the time 

it terminates trading a 𝑡 = 0.3 year. It should be noted that for both paths, the two strategies 

generate $6.20 from the initial 𝐹(0,1) contract and the differences arise from the subsequent 

trading decisions. 
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(a) Forward curve and its slope (label) at each 

trading time 

 

(b) Generated value (top label) and chosen 

maturity (bottom label) at each trading time 

Fig. 4.5. Evolution of the spot price and performance comparison on a sample path, where $9.35 =
𝑉0
𝐹𝐷𝑂 < 𝑉0

𝐴𝐷𝑃 = $11.44  

 

(a) forward curve and its slope (label) at each 

trading time 

 

(b) Generated value (top label) and chosen 

maturity (bottom label) at each trading time 

Fig. 4.6. Evolution of the spot price and performance on a sample path, where $7.36 = 𝑉0
𝐴𝐷𝑃 <

𝑉0
𝐹𝐷𝑂 = $9.84. 
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4.6.4 Mapping the Decisions 

To explain the financial intuition behind the optimal decisions, the estimated optimal decisions on 

the 𝜒𝑡_𝜉𝑡 plane are mapped into the 𝑆𝑡_𝑏𝑡 plane, where 𝑆𝑡 is the spot price, and 𝑏𝑡 is the slope 

defined as (𝐹(𝑡, 𝑇̅) − 𝑆𝑡) (𝑇̅ − 𝑡)⁄ . The results in this section are based on the ADP algorithm 

using Case B of parameters. The results are shown in Fig. 4.7 at 𝑡𝑖 = 0.125, 0.375, 0.875, and 

0.9375, corresponding to 𝑖 = 2, 6, 14, and 15. The red line represents the 𝑦 = 𝑐𝐻(= 6.75) line. 

For any given 𝑆𝑡, the optimal decision most often prescribes a sale on the spot when the slope is 

below (a typically negative) threshold. To analyze the subject more thoroughly, three sources of 

value affecting the decision are identified as follows. 

The first element of the value, 𝑉𝐼, is generated by the immediate reward from the trade, in which 

the oil is sold at 𝑆𝑡 and bought at 𝐹(𝑡, 𝑇̅) to offset the existing contract, i.e. −(𝐹(𝑡, 𝑇̅) − 𝑆𝑡) =

−𝑏𝑡(𝑇̅ − 𝑡). Because 𝑉𝐼 is generated by a trade, the payoff can be positive (profit) or negative 

(loss). For instance, a negative slope of 𝑏𝑡 translates into a profit of 𝑉𝐼 = −𝑏𝑡(𝑇̅ − 𝑡), which 

decreases as ‘𝑡’ increases assuming 𝑏𝑡 remains constant. The correlation between 𝑆𝑡 and 𝑏𝑡 is 

usually negative, as low spot prices tend to be occurring with steep forward curves, and vice versa. 

The second element, 𝑉𝐼𝐼 ≥ 0, is the refund of the storage cost for the time remaining, 𝑇̅ − 𝑡. As 

the oil is sold on the spot, this amounts to 𝑐𝐻(𝑇̅ − 𝑡) dollars (𝑐𝐻 = $6.57), which also decreases 

with time. The third element, 𝑉𝐼𝐼𝐼 ≥ 0, is the continuation value foregone as the trader terminates 

the position, which is indeed decreasing with time. Due to the geometric nature of the price 

process, the option value is decreasing as the spot price decreases. It is worth noting that the FDO 

approach only includes 𝑉𝐼 since it is a myopic method. 

The trader is indifferent between selling the inventory completely, 𝑎𝑖
𝑅 = 1, or holding the 

inventory, 𝑎𝑖
𝑅 = 0, right at the (red-blue) boundary in Fig. 4.7. Quantitatively speaking, the 

continuation value, 𝑉𝐼𝐼𝐼, is equal to the sum of the immediate profits or losses, 𝑉𝐼, and storage cost 

refund, 𝑉𝐼𝐼. This is demonstrated on panel (b) of Fig. 4.7 equivalently as 𝑉𝐼𝐼𝐼/(1 − 𝑡) = 𝑉𝐼/(1 −

𝑡) + 𝑉𝐼𝐼/(1 − 𝑡), which can be reformulated as 𝑉𝐼𝐼𝐼/(1 − 𝑡) = −𝑏𝑡 + 𝑐𝐻. Now, two interesting 

questions can be answered. The first question is why the boundary is decreasing in 𝑆𝑡. Note that 
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the refund of storage cost does not change with 𝑆𝑡. However, when 𝑆𝑡 is very small, the 

continuation value is very low, i.e. small 𝑉𝐼𝐼𝐼/(1 − 𝑡). Thus, the trader can afford to exercise at 

‘small’ negative slopes, i.e. small −𝑏𝑡 > 0. She can even exercise at small positive slopes (i.e. at 

a losing trade) if she still makes a profit by receiving the storage cost refund, i.e. small enough 

−𝑏𝑡 < 0 such that −𝑏𝑡 + 𝑐𝐻 > 0. As 𝑆𝑡 increases, the continuation value increases. Therefore, the 

trader requires a larger immediate reward to exercise at a higher 𝑆𝑡, which in turn implies a larger 

(negative) slope. 

 
(a) Optimal policy 𝑎𝑖

𝑅 (left) and 𝑎𝑖
𝑇 (right) at timestep 𝑖 = 2 

 

 

(b) Optimal policy 𝑎𝑖
𝑅 (left) and 𝑎𝑖

𝑇 (right) at timestep 𝑖 = 6 
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(c) Optimal policy 𝑎𝑖
𝑅 (left) and 𝑎𝑖

𝑇 (right) at timestep 𝑖 = 14 

 

 

(d) Optimal policy 𝑎𝑖
𝑅 (left) and 𝑎𝑖

𝑇 (right) at timestep 𝑖 = 15 

 

Fig. 4.7. Optimal decision (inventory on the left, and maturity on the right) in terms of spot price 

(𝑆𝑡) and slope ((𝐹(𝑡, 𝑇) − 𝑆𝑡) (𝑇 − 𝑡)⁄ ) at times 0.125, 0.375, 0.875, and 0.9375, corresponding 

to time stages 𝑖 =2, 6, 14, and 15. The red line represents 𝑦 = 𝑐𝐻 line. 

The second question is why the boundary moves upward with the passage of time. As time passes, 

𝑉𝐼𝐼𝐼 and even 𝑉𝐼𝐼𝐼/(1 − 𝑡) decreases, and thus, all else being equal, the boundary moves up since 
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𝑉𝐼𝐼𝐼/(1 − 𝑡) = −𝑏𝑡 + 𝑐𝐻. Since 𝑉𝐼𝐼𝐼 is larger on the right side compared to the left (due to a larger 

𝑆𝑡), the right side moves up at a faster rate than the left. As shown in panel (d), at the last timestep 

at which a decision can still be made, 𝑡𝑖 = 0.9375 (𝑖 = 15), there is no continuation value (𝑉𝐼𝐼𝐼 =

0). Therefore, a positive slope 𝑏𝑡 (a loss) is acceptable if −𝑏𝑡 + 𝑐𝐻 = 0 holds. This means the 

optimal boundary is the line 𝑦 = 𝑐𝐻, which is well approximated by the numerical simulation. 

4.7 Comparative Characteristics of the Present Trade 

The performance of the ADP approach is compared with several other strategies in this section. 

Note that the FDO method provides a myopic solution to the same liquidation problem that is 

solved optimally by the ADP approach, where both techniques provide policies to hedge and 

liquidate the inventory using forward contracts. To put the characteristics of trading in the forward 

markets into perspective, the total value derived from FDO and ADP is compared with other 

alternatives; (i) sell the inventory on the spot market at 𝑡0, (ii) the static cash and carry arbitrage, 

which is to sell the inventory forward using the most profitable forward contract at 𝑡0, in this case 

𝐹(0,1), (iii) a covered call strategy, (iv) a protective put strategy, and (v) a strategy based on 

selling the inventory optimally on the spot market. 

Note that each of these strategies, except for selling forward using 𝐹(0,1), does not provide a 

constant hedge of the inventory (as required by the cash and carry arbitrage) similar to what is 

offered by FDO or ADP. While covered call and protective put strategies could potentially reduce 

the risk, the optimal sale on the spot strategy does not benefit from any risk reduction. To set up 

the covered call strategy, the trader (inventory owner) receives the premium by shorting a call 

option, and delivers the inventory if the call owner decides to exercise. If the call is not exercised 

at all, the trader liquidates the inventory at the terminal time. To set up the protective put strategy, 

the trader buys a put option, and she sells the inventory by selling it on the spot market directly or 

by exercising the put, whichever that is more profitable. 

Both the call and put options are assumed to have a strike price of 𝐾 = 𝑆0 = $54.45 and an expiry 

of one year. Also, both options are assumed to be American style, which allows the owner to 

exercise at any time during [0, 𝑇̅], which is similar to the timeframe during which the trader is 
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allowed to take action in the original problem (based on the forward trading). The price of the call 

and the put are respectively computed to be $16.51 and $3.71 using a least-squares Monte Carlo 

(by simulating the prices under the risk-neutral measure). In all strategies, there is the pumping 

cost due at delivery, and the storage cost for one year paid at 𝑡0. If the inventory is delivered at 𝑡𝑖, 

there will be a refund of the storage cost, (𝑇̅ − 𝑡𝑖)𝑐𝐻. 

In the covered call position, the call owner decides when to exercise the option, and assuming this 

occurs at 𝑡𝑖, the payoff to the trader (inventory owner) is 𝐾 − 𝑐𝑃 + (𝑇̅ − 𝑡𝑖)𝑐𝐻. If he does not 

exercise the call before it expires at 𝑇̅, the trader liquidates the inventory at 𝑇̅, which generates 

𝑆𝑇̅ − 𝑐𝑃. 

In the protective put position, the trader owns both the inventory and the option. She decides when 

to sell her inventory and whether she exercises her put. Specifically, selling the inventory at 𝑡𝑖 

yields max{𝐾, 𝑆𝑡𝑖} − 𝑐𝑃 + (𝑇̅ − 𝑡𝑖)𝑐𝐻, where the first argument (𝐾) represents a sale by exercising 

the put, and the second argument (𝑆𝑡𝑖) characterizes a sale of the inventory directly on the spot 

market. Both the covered call and protective put positions are solved by employing an approximate 

dynamic programming method similar to the ADP approach used in the original problem. 

In what follows the results and intuition of the problem, cast as a Markov Decision Process (MDP), 

are reviewed. The corresponding elements of the MDPs are summarized in Table 4.7. The MDP 

formulation allows the strategies to be evaluated using an ADP method based on the least-square 

Monte Carlo. The parameters are based on Case B in Table 4.4 (Δ𝑅 = 1). 

Fig. 4.8 shows the histogram of values resulted from implementing different strategies. Table 4.8 

summarizes the histogram information and compares the return and risk features of the above 

methods. For consistency, all the results are computed using the same paths; the same sample set 

to build the policy and the same out-of-sample set to test the performance. The difference between 

the price dynamics under the physical and risk-neutral measure as captured by 𝔼0
𝑃[𝑆𝑇̅] = $94.61 

and 𝔼0
𝑄[𝑆𝑇̅] = 𝑒

𝑟𝑇̅𝐹(0, 𝑇̅) = $67.88 is clearly evident. There is a large upside in spot prices from 
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MDP Element  Covered Call Protective Put 

Endogenous state 

variables 
𝑥𝑖 = 𝑅𝑖 (inventory level) 𝑥𝑖 = 𝑅𝑖 (inventory level) 

State Space (𝑥𝑖 ∈ 𝒳𝑖) 𝒳𝑖 = {0, 𝑅̅} 𝒳𝑖 = {0, 𝑅̅} 

Exogenous state 

variables 
𝑊𝑖 = (𝜒𝑖, 𝜉𝑖) ∈ ℝ

2 𝑊𝑖 = (𝜒𝑖, 𝜉𝑖) ∈ ℝ
2 

Decision variable 

Call owner decides to exercise 

(𝑎𝑖 = 1) or not to exercise (𝑎𝑖 =

0) 

Inventory (and put) owner 

decides to sell the inventory 

(𝑎𝑖 = 1) or not to sell (𝑎𝑖 = 0). 

She always chooses the higher 

payoff between exercising the 

put and selling directly on the 

spot market. 

Feasible action space 𝒜𝑖(𝑥𝑖) = {
{0}      If 𝑅𝑖 = 0

{0,1}   If 𝑅𝑖 = 𝑅̅
 𝒜𝑖(𝑥𝑖) = {

{0}      If 𝑅𝑖 = 0

{0,1}   If 𝑅𝑖 = 𝑅̅
 

State transition function 

𝑥𝑖+1 = 𝑓𝑖(𝑥𝑖, 𝑎𝑖) 
𝑅𝑖+1 = {

0                    if 𝑅𝑖 = 0

𝑅𝑖𝕀(𝑎𝑖 = 0)  if  𝑅𝑖 = 𝑅̅
 𝑅𝑖+1 = {

0                    if 𝑅𝑖 = 0

𝑅𝑖𝕀(𝑎𝑖 = 0)  if  𝑅𝑖 = 𝑅̅
 

Reward function (for 

computing the optimal 

policy of the decision 

maker) 

𝑟𝑖(𝑎𝑖, 𝑥𝑖 ,𝑊𝑖) = 

𝑎𝑖𝑅𝑖max{exp(𝜒𝑖 + 𝜉𝑖) − 𝐾, 0} 

𝑟𝑖(𝑎𝑖, 𝑥𝑖,𝑊𝑖) = 

𝑎𝑖𝑅𝑖[max{𝐾, exp(𝜒𝑖 + 𝜉𝑖)}

− 𝑐𝑃
+ (𝑇̅ − 𝑡𝑖)𝑐𝐻] 

Auxiliary reward 

function to compute the 

payoff to the covered 

call position which does 

not have any influence 

on decision-making 

𝑟𝑖
aux(𝑎𝑖, 𝑥𝑖, 𝑊𝑖) = 

𝑎𝑖𝑅𝑖[𝐾 − 𝑐𝑃 + (𝑇̅ − 𝑡𝑖)𝑐𝐻] 

for 𝑖 = 0,1,2, … ,𝑁 − 1 

𝑟𝑖
aux(𝑎𝑖, 𝑥𝑖, 𝑊𝑖) = 

𝕀(exp(𝜒𝑖 + 𝜉𝑖) < 𝐾)𝑅𝑖[exp(𝜒𝑖
+ 𝜉𝑖) − 𝑐𝑃] 

for 𝑖 = 𝑁 

Not Applicable 

Table 4.7. The elements of the MDP describing the covered call and protective put positions. 

which to benefit if the inventory was carried unhedged into the future; this is reflected in the 

histograms and high values achieved under the protective put and spot sale strategies. While the 

protective put position provides an insurance against price falls, it can gain from the upside 

potential fully. It is seen that the cost of the put ($3.71) was not entirely recovered when the value 

of the protective put is compared to the sale at 𝑆𝑡 since adverse events did not occur frequently. 

On the other hand, in the covered call position, the call is exercised very often which leads to the  
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spike in the histogram of the covered call position.  

 

(a) Histogram of FDO and ADP 

 

(a) Histogram of Spot Sale, Protective Put, 

and Covered Call 

Fig. 4.8. Histogram of the values obtained on each path using different strategies. The histograms 

are based on the same set of 10K out-of-sample paths. The parameters are based on Case B in 

Table 4.4 (Δ𝑅 = 1). 

 

Method 

Sell on 

the spot 

at 𝑆0 

Sell forward 

using 

𝐹(0,1) 

Forward 

Hedging 
Option Hedging 

No 

Hedge; 

Sell 

optimally 

at 𝑆𝑡 
FDO ADP 

Covered 

Call 

Protective 

Put 

Total value ($) 50.70 56.89 59.06 61.50 60.11 80.53 83.92 

Extra value 

relative to 

selling at 𝑆0 

0.00 6.19 8.36 10.80 9.41 29.83 33.22 

99% VaR 50.70 56.89 56.89 56.89 50.07 40.16 33.53 

95% VaR 50.70 56.89 57.08 56.89 60.38 41.44 44.44 

Range of values 50.70 56.89 
[56.8, 

69.46] 

[53.48,

83.14] 

[30.10, 

64.64] 

[40.16, 

231.08] 

[14.63, 

234.80] 

Table 4.8. Comparing the return and risk characteristics of different strategies. The parameters are 

based on Case B in Table 4.4 (Δ𝑅 = 1). 
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In ADP and FDO, the trader has a short forward position and, in the covered call strategy, she has 

a short option position. The ADP method generates a higher value relative to the covered call. It 

could be due to the dynamic updating of the short forward position in the ADP approach compared 

to maintaining the same short call position in the latter strategy. From an uncertainty perspective, 

focusing on the 99% value-at-Risk (VaR), ADP ties with FDO, both having 99% VaR of $56.89. 

The covered call strategy achieves the second best 99% VaR with a value of $50.07. It is not 

surprising that the spot sale strategy has the lowest 99% VaR. 

To test the performance of the strategies under a different and unfavorable initial condition, i.e. a 

downward-sloping initial forward curve, the computations are repeated for 𝑊0 = (𝜒0, 𝜉0) =

(−0.2,4.2) corresponding to 𝑆0 = $54.60 and a long-term price of $66.69. The results are 

summarized in Table 4.9. In this case, selling forward statically at 𝐹(0, 𝑇), ∀𝑇 ∈ (0, 𝑇̅], is not 

profitable; it can be seen in the table that selling at 𝐹(0,1) leads to a lower value than selling at 𝑆0. 

For the same reason, the FDO strategy does not start trading and it sells the inventory at 𝑡0. Among 

the four remaining methods, the ADP ranks first in terms of risk, while selling optimally on the 

spot price generates the highest value. In summary, if the price starts from a negative 𝜒0, i.e. it is 

initially deviated below the long-term trend, there might be an incentive to engage into a trade  

 

Method 

Sell 

on 

the 

spot 

at 𝑆0 

Sell 

forward 

using 

𝐹(0,1) 

Forward Hedging Option Hedging No Hedge; 

Sell 

optimally 

at 𝑆𝑡 

FDO 

(Rolling 

Intrinsic) 

ADP 
Covered 

Call 

Protective 

Put 

Total 

value ($) 
50.85 40.05 50.85 51.44 48.29 54.15 61.32 

99% VaR 50.85 40.05 50.85 40.15 28.82 34.74 22.81 

95% VaR 50.85 40.05 50.85 42.74 36.69 34.74 30.84 

Table 4.9. Unfavorable condition for the storage trade; downward-sloping initial forward curve 

induced by the stochastic factors initial condition set at 𝑊0 = (𝜒0, 𝜉0) = (−0.2,4.2), while the rest 

of the parameters are based on Case B in Table 4.4 (Δ𝑅 = 1).There is not any maturity 𝑇 ∈ (0, 𝑇̅] 
to set up a profitable short 𝐹(0, 𝑇) contract, and thus the static cash and carry and FDO strategies 

opt out to sell at 𝑡0. 
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postponing the sale of the inventory. However, the degree of risk and the expected profit depends 

both on the strategy and on the initial condition 𝜒0. Note that 𝑆0 = $54.49 and $54.60 in Table 4.8 

and Table 4.9 respectively. However, ADP achieves $61.50 and $51.44 under the two scenarios 

respectively although the spot prices are very close. Comparing (𝜒0, 𝜉0) = (-0.639,4.637) and 

(𝜒0, 𝜉0) = (-0.2,4.20), the difference in values can be attributed to a deeper initial deviation, 𝜒0, 

and a higher long-term price, 𝜉0, in the former case. 

4.8 Sensitivity Analysis 

Fig. 4.9 shows sensitivity of the estimated 𝑉0 by illustrating the percent change in 𝑉0 in response 

to the percent change in a parameter, i.e. 100(𝑥 − 𝑥0)/𝑥0 with 𝑥0 denoting the initial value of the 

parameter 𝑥. ADP method and Case B of parameters in Table 4.4 with Δ𝑅 = 1 is used as the 

benchmark for the relative assessment.  

Among the stochastic factors in Fig. 4.9.a, the result is most sensitive to 𝑘 and 𝜆𝜒, and least 

sensitive to 𝜇𝜉 and 𝜌𝜒𝜉 . Generally, the sensitivity to the short-term factor (𝜒) parameters is higher 

than to the long-term factor (𝜉), with the exception of the initial condition. Moreover, the only two 

parameters with a decreasing trend are 𝜆𝜒 and 𝜆𝜉; this results from their negative sign as part of 

the drift term of the risk-neutral SDE’s, as seen in Eq. 2.5 and Eq. 2.6. Fig. 4.9.b exhibits increasing 

and decreasing response to changes in 𝑇̅ and 𝑐𝐻, respectively, which are consistent with the 

optionality of value with respect to time horizon and cost. Fig. 4.9.d indicates that the effect of the 

number of Monte Carlo paths 𝑀 is insignificant as long as it is greater than about 75K. The number 

of time stages, 𝑁, influence is mainly limited to its lower range, and 𝑉0 does not change drastically 

for 𝑁 > 16 (the default value in Case B). 

Fig. 4.9, panels (b) and (c) indicate that the value is more sensitive to changes in 𝜉0 than 𝜒0 since 

the former sets the long-term price level exponentially whereas the latter is the (temporary and 

mean-reverting) short-term deviation from this long-term price. From 𝐹(𝑡, 𝑇) as expressed in Eq. 

2.13, the slope of the curve at time 𝑡 between maturities 𝑇1 and 𝑇2 is computed by Eq. 4.18. This 

explains the observed sensitivity of value with respect to 𝜉0; which occurs because the (initial) 

slope increases exponentially with 𝜉0. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 4.9. % change in 𝑉0 versus % change in different parameters; (a) stochastic factors parameters, 

(b) time horizon 𝑇̅, storage cost 𝑐𝐻, and initial condition (𝜒0, 𝜉0), (c) this panel completes panel 

‘b’ by further extending the y-axis further, (d) number of paths 𝑀, and time stages 𝑁. 
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𝐹(𝑡, 𝑇2) − 𝐹(𝑡, 𝑇1)

𝑇2 − 𝑇1
= 

𝑒𝜉𝑡

𝑇2 − 𝑇1
 {𝑒𝜒𝑡exp[−𝑘(𝑇2−𝑡)]+𝐴(𝑇2−𝑡) − 𝑒𝜒𝑡exp[−𝑘(𝑇1−𝑡)]+𝐴(𝑇1−𝑡)} 

Eq. 4.18 

Although the impact of 𝜉0 is more significant than that of 𝜒0, from a factor volatility standpoint, 

𝜎𝜒 is more important than 𝜎𝜉 for generating value. Further investigation via numerical simulation 

shows that a high 𝜎𝜉/low 𝜎𝜒 translates into a much lower volatility in the slope and curvature of 

the forward curve compared to a low 𝜎𝜉/high 𝜎𝜒. The reason is volatility in the spot price is more  

 

(a) (𝜎𝜒, 𝜎𝜉) = (0.70, 0.07) 

 

(b) (𝜎𝜒, 𝜎𝜉) = (0.07, 0.70) 

Fig. 4.10. Two sample realizations of the simulated spot price, 𝑆(𝑡), and forward curve, 𝐹(𝑡, 𝑇), 

with monthly increments base on parameters in Table 2.1 except (𝜎𝜒, 𝜎𝜉) = (0.70, 0.07) in (a), 

and (𝜎𝜒, 𝜎𝜉) = (0.07, 0.70) in (b). 

important than volatility in the long-term price in driving changes in forward curve slope and/or 

curvature.  Because 𝜎𝜒 affects the near-end of the curve, its impact is immediately seen in a forward 

curve switching between contango and backwardation through time. However, 𝜎𝜉 affects the price 

at a distant future point, the impact of which is not significant on the near-end of the curve. The 
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concept is illustrated in Fig. 4.10, in which two realizations with 𝜎𝜉 = 0.07/𝜎𝜒 = 0.70 (left), and 

𝜎𝜉 = 0.70/𝜎𝜒 = 0.07 (right) are compared. 

4.9 Summary 

A profit-maximizing dynamic cash and carry arbitrage problem is formulated as a Markov 

Decision Process (MDP) (Puterman, 2005). The trader decides on a two-dimensional action 

(𝑎𝑅 , 𝑎𝑇); 𝑎𝑅 reflects the ‘quantity’ of oil to be sold on the spot, and 𝑎𝑇 denotes the ‘maturity’ of 

the short contract hedging the remaining inventory. Unlike many studies limited to the liquidation 

on the spot, the second decision variable allows the trader to benefit from the forward market while 

optimizing over the contract maturity. Simultaneous optimization of the storage management and 

the financial contract specification, i.e. maturity, is the salient characteristic of this problem. 

To investigate the optimal liquidation of a storable commodity, the full term-structure of the 

forward curve is utilized in the MDP both informationally and as a trading instrument. It is shown 

that the stage reward function is neither convex nor concave. It is also proved that a partial sale, 

splitting the quantity between the spot and forward markets, is not optimal. This result does not 

depend on the underlying stochastic model of forward prices. Moreover, under certain 

assumptions, it is established that optimal actions are restricted to a small subset of the feasible 

set: (i) spot sale, (ii) short the forward maturing at the next timestep, or (iii) short the forward 

maturing at the end of time horizon. Subsequently, the above theoretical propositions are verified 

using algorithmic solutions, and their significant impact on the computation times are 

demonstrated. 

An approximate dynamic programming (ADP) approach based on Continuation Function 

Approximation (CFA) with the Least-squares Monte Carlo (LSM) is developed. This approach is 

benchmarked by the exact optimal solution computed from discretizing the exogenous state space. 

Both the estimated optimal values and the associated optimal policy obtained using the two 

methods are in good agreement, except in a limited region in which they differ only with respect 

to the maturity decision. The errors are believed to be due to the approximation introduced by CFA 

and the regression process. However, the discrepancy does not greatly impact the estimated 

optimal value since it only occurs among some minority outliers (<1% of the paths) in the ADP 
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approach. The computation times show that ADP is at least 39 times faster than the exact method. 

Moreover, characterizing the decision boundary in the domain of the slope of forward curve and 

the spot price highlights the critical role of the slope in the optimal action selection. 

Furthermore, the ADP method is compared with the simple suboptimal Forward Dynamic 

Optimization (FDO) approach. While ADP values found to be 36% higher than that of the FDO, 

it is at least 3.4 times slower. From a risk perspective, the FDO method offers a lower standard 

deviation, a narrower range, and a guaranteed limited down-side. The histogram of the stopping 

times shows that the ADP method performs more patiently than FDO in liquidation. To sum up, 

the added expected profit of the ADP-generated strategies over the myopic FDO strategies comes 

at a cost of increased risk, whether that risk is measured via standard deviation, range of outcomes 

or downside. One may consider both methods in an initial analysis, as both can be easily computed 

using the provided algorithms, since the result will also depend on market details and the way it is 

parameterized. 
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Chapter 5 

 

5 A Trading Model Considering Stochastic Storage Costs 

In this chapter, a more realistic framework relative to Chapter 4 is introduced. Although the same 

forward curve model as Chapter 4 is used, a model for stochastic tanker rental costs (independent 

of the forward model, as will be justified) is added. Nevertheless, taking a comprehensive view in 

Chapter 5, it contains the solutions based on both stochastic and constant storage cost (the constant 

cost is similar to Chapter 4 but within the updated framework).  

The corresponding optimization problems are solved by a similar methodology. However, a new 

proposition improving the continuation value estimation (Proposition 5.I) is proved and 

investigations using the ADP method are performed. It is found that – for the same parameters as 

used before – while the stochastic storage cost may add value relative to the constant storage cost, 

the new framework leads to a less value compared to Chapter 4 model due to the non-refundability 

of storage cost. The changes in the framework and the storage cost does indeed alter the optimal 

behavior relative to the Chapter 4 model. 

The rest of this chapter is organized as follows; Section 5.1 reviews the key assumptions of Chapter 

4 framework and presents the suggested modifications. Section 5.2 provides a general introduction 

on the oil tanker vessels. Section 5.3 reviews the literature on the tanker freight rates. Section 5.4 

presents the details of the model used here for stochastic storage costs. Section 5.5 covers 

formulation of the new framework as a Markov Decision Process (MDP). Section 5.6 states 

Proposition 5.I, which lays the foundation necessary to build the algorithmic solution (ADP) 

presented in Section 5.7. General parameters of the problem and experiments establishing the 

benchmark computational parameters (e.g. number of simulated paths) are reported in Section 5.8. 

The computational results are studied in Section 5.9, followed by a chapter summary in Section 

5.10. 
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5.1 Introduction 

A set of assumptions has been used in the previous chapter. Each assumption and suggestions for 

improvement are reviewed in the following. This will lead to the new model that will be utilized 

in this chapter, which reflects a more realistic framework. 

‣ The trader has a full tanker at 𝑡0, which implies that she has already started the cash and carry 

trade, and the problem focus is how to liquidate optimally. 

The problem has been structured based on the assumption that the trade is initiated at some fixed 

point in time with known initial conditions. Then we determine the optimal policy and calculate 

the value generated given the initial condition. However, a very important practical question is 

when to start the trade. Considering the “trade initiation” is more consistent with the practice, 

where the trader monitors the oil and the tanker rental market and decides optimally when to 

initiate the trade. This indeed requires a model for stochastic storage costs which leads to the next 

point. 

‣ The storage cost throughout the problem time horizon is fixed (not varying with time). 

In a simple setup, in which a trader starts the trade at a fixed point in time, assuming a fixed storage 

cost would be reasonable if there is no need to refer to the tanker rates in the future. However, 

tanker rates do fluctuate, and incorporating a variable one allows to study many dynamic aspects 

of the problem. 

‣ If the trader decides to return the tanker early, she will receive a pro-rata refund based on the 

remaining time. The terms of the rental contract may only allow for a fraction of the pro-rata 

refund. 

This assumption allows the trader to terminate the rental contract and to recover her costs if she 

decides to sell the inventory earlier than the end of the rental contract. However, it can be imagined 

that the tanker owner may not accept to pay a (full) refund based on the original rate because, for 

instance, the tanker rates or demand for them have decreased. This can be (deterministically) 
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addressed through refunding only a fraction of the pro-rata amount, where the fraction can be 0% 

representing a worst-case scenario. Although considering a variable tanker rate can improve the 

issue from a modeling standpoint, availability of the refund may not be still a good assumption 

from a realistic standpoint. For instance, the SEC (Securities and Exchange Commission) filings 

of an oil shipping company with a fleet of VLCC tankers state the circumstances under which 

charterers may terminate charter contracts early: “The events or occurrences that will cause a 

charter [contract] to terminate or give the charterer the option to terminate the charter generally 

include a total or constructive total loss of the related vessel, the requisition1 for hire of the related 

vessel, the vessel becoming subject to seizure for more than a specified number of days or the 

failure of the related vessel to meet specified performance criteria.”(“SEC Amendment No.5 to 

Form F-1,” n.d.). Therefore, it may be more accurate to exclude any refunds from an early 

termination of the contract. 

‣ In case of a partial sale of the inventory, the refund of the storage cost will be based on the 

quantity sold, which implies that the storage cost is charged per barrel per year. 

Even if the refund provision is excluded, it is more realistic to compute the storage cost based on 

a per tanker per year setting, rather than per barrel per year. This means that as long as there exists 

a physical or forward position with a non-zero quantity (even smaller than the tanker capacity), 

the trader has to rent the ‘whole’ tanker because this type of storage facility cannot be shared 

simultaneously among several users. 

In summary, the above adjustments lead to the new set of assumptions defining a novel framework; 

the trader monitors the oil prices and (stochastic) tanker rates, and decides when to initiate the 

trade subject to a time horizon. The duration of the rental contract is fixed, and there is no refund 

if the contract is terminated early. As soon as the tanker is rented, she can select to take a position 

                                                 

1 Compulsory acquisition of the vessel by states during wartime, where a state forces the owner to charter the vessel 

to the state at a dictated hire rate.  
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in the oil market, or wait for another time while she continues to monitor the oil term structure. 

Therefore, the times to rent a tanker and to initiate the oil trading are chosen optimally and 

independently (the latter time must be greater than or equal to the former one). Furthermore, the 

trader has the option to refill the tanker multiple times within the contract duration. Therefore, one 

key question is how to model the storage costs. 

5.2 Oil Tanker Vessels Background 

Before developing a stochastic model, we provide a short introduction to tanker markets. Freight 

rate is the cost of transporting one barrel of oil from port A to port B. One important type of oil 

tanker vessels used for this purpose is the VLCC (Very Large Crude Carrier) with a capacity of 

200,000 to 320,000 DWT (Dead Weight Tonnage). DWT is the maximum permitted weight of the 

sum of the weights of the vessel, cargo, fuel, fresh water, crew, etc. in tons. Another important 

class is the Suezmax; it is named after the Suez Canal and characterizes the largest allowable tanker 

to pass via the canal. The Suezmax vessels, as mid-sized tankers, have a capacity in the range of 

120,000 to 200,000 DWT. The most standard capacities in barrels of oil are about 2 and 1 million 

barrels for VLCC (260000 DWT) and Suezmax (130000 DWT) tankers respectively (the 

conversion depends slightly on the specific gravity of the oil). There exist the smaller Panamax 

vessels with a capacity in the range of 60,000 to 80,000 DWT, which are consistent with the size 

limits of the Panama Canal. 

There are two main types of agreements to employ a tanker; Time Charter (TC) and voyage charter 

contracts. Based on a TC contract the vessel is hired for a specific period, while the vessel owner 

manages the vessel. However, the charterer directs the vessel which ports to visit and in what order. 

The charterer is responsible for fuel costs consumed by the vessel, port charges, a daily hire of the 

vessel crew, and commissions. TC agreements exist for 3, 6, and 9 months as well as 1, 3, 5, and 

7 years. Of these the 1-year contract is the most commonly traded one. Usually, TC agreements 

are traded about one month before chartering commences. TC contracts are also used by tanker 

owners as risk management tools because when a tanker is chartered for a term, the owners are not 

faced with the fluctuations in the spot market. 
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Although TC agreements seem like the most suitable type of arrangement for the present problem, 

they are not the most frequently used ones. The most common type of contracts involves a ‘voyage’ 

because tankers are mainly used for transportation (rather than as floating storage). In a voyage 

charter the charterer pays the vessel owner on a lump-sum, or on a per-ton (or per barrel) basis, 

known as the freight rate. In return, the vessel owner is responsible for the voyage between a 

loading and a discharging port, as well as the port, fuel and crew costs. This freight rate is the basis 

for the spot prices in the tanker market. It is not surprising that most of the research in the marine 

transportation literature is concerned with the spot freight rate rather than TC rate. The two main 

methods to negotiate/quote the spot freight rate are WS and TCE as explained in the following.  

The Worldwide Tanker Normal Freight Scale, also known as ‘Worldscale’ (WS)  is a baseline rate, 

which provides a convenient way to negotiate the freight across many routes. The ‘Worldscale’ 

index or WS 100 is updated annually based on the preceding year costs, and serves as a basis to 

compute tanker spot freight rates. WS 100, quoted in $/(metric ton), is the cost of transporting a 

metric ton of cargo using the standard vessel on a round-trip voyage on each tanker route. In a 

negotiation, the charterers and tanker owners agree on some percentage of WS. For instance, if a 

charterer and an owner agree on WS 80, then 80% of the published WS 100 on the corresponding 

route will be the contracted price. This payment includes all related costs like fuel, crew, and port 

costs, however, the cost of insurance is not included.  

The other measure for quoting the spot prices is Time Charter Equivalent (TCE) rate. This rate, 

quoted in $/day, is a measure showing the operating performance of a vessel in terms of daily 

revenues, and is computed by the gross revenue of the tanker minus the expenses (port, canal, and 

fuel costs) all based on a particular round-trip voyage divided by the round-trip duration in days. 

So, the main distinction of TCE and WS is that TCE does not include voyage expenses, which are 

collected by the ship owner, but are merely payments for fuel and port expenses made on behalf 

of the charterer. Also, it can be said that if the vessel does not incur any depreciation (capital 

expenses), TCE will be the break-even hire rate. TCE, like WS, is a spot rate measure. However, 

one can compare TCE rate with Time Charter (TC) rates, which reflects expectations about the 

future spot freight rates (prices). For instance, if TCE rates are high and the tanker owner expects 
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TCE rates to increase, she would prefer to charter out the tanker on the spot market rather than 

using a TC agreement.    

One of the important indices in the tanker market is the Baltic Dirty Tanker Index (BDTI), which 

represents the freight rates of vessels carrying mainly crude oil and other lower distillates of oil 

such as fuel oil, and is reported daily on the Baltic Exchange based on the settled voyage charter 

agreements. The routes include tankers sized from VLCC and Suezmax to other smaller sizes. 

Table 5.1 lists the 18 routes (sub-indices) underlying the BDTI index. In addition to the departure 

and destination ports, each route specifies the tanker class and capacity (in DWT) to standardize 

each sub-index. Considering a specific sub-index, e.g. TD5, it is interesting to note that the tanker 

class, e.g. Suezmax, does not necessarily mean that the route passes through the geographical 

region implied by the class, e.g. Suez Canal. 

Code Cargo From To Size (DWT) Class 

TD1 Crude Persian Gulf US Gulf 280,000 VLCC 

TD2 Crude Persian Gulf Singapore 260,000 VLCC 

TD3 Crude Persian Gulf Japan 250,000 VLCC 

TD4 Crude West Africa US Gulf 260,000 VLCC 

TD5 
Crude and/or Dirty 

Products Heat 135F 
West Africa US Atlantic Coast 130,000 Suezmax 

TD6 Crude Black Sea Mediterranean 135,000 Suezmax 

TD7 Crude North Sea Continental Europe 80,000 Aframax 

TD8 Crude Kuwait Singapore 80,000 Aframax 

TD9 Crude Caribbean US Gulf 70,000 Panamax 

TD10D Fuel Oil (double hull) Caribbean US Atlantic Coast 50,000 Panamax 

TD11 Crude Mediterranean Mediterranean 80,000 Aframax 

TD12 Fuel Oil Antwerp US Gulf 55,000 Panamax 

TD14 No-heat Crude South East Asia 
East Coast 

Australia 
80,000 Aframax 

TD15 No-heat Crude West Africa China 260,000 VLCC 

TD16 Fuel Oil Heat 135F Black Sea Mediterranean 30,000 Handysize 

TD17 Crude Baltic 
UK or Continental 

Europe 
100,000 Aframax 

TD18 Crude Baltic 
UK or Continental 

Europe 
30,000 Handysize 

Table 5.1 Baltic Dirty Tanker Index (BDTI) composition as of November 2008. All vessel must 

have oil necessary approvals.  
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From a physical trade point of view, the most notable routes are TD3, TD5, and TD7 (Alizadeh 

and Nomikos, 2009), which are shown on Fig. 5.1. The TD3 sub-index corresponds to the price of 

a voyage from Persian Gulf (Ras Tanura, Saudi Arabia) to Japan using a VLCC (250,000 DWT) 

tanker. The TD5 sub-index corresponds to a Suezmax (130,000 DWT) tanker class route from 

Bonny (Nigeria) to Philadelphia, and the TD7 sub-index represents an Aframax (80,000 DWT) 

class route from Sullom Voe (North Sea, UK) to Wilhelmshaven (Germany). 

 

Fig. 5.1. Approximate tanker routes; (i) TD3 from 1 (Ras Tanura, Saudi Arabia) to 2 (Chiba, 

Japan), (ii) TD5 from 3 (Bonny, Nigeria) to 4 (Philadelphia, USA), (iii) TD7 from 5 (Sullom Voe, 

UK) to 6 (Wilhelmshaven, Germany).     

5.3 Literature on Tanker Freight Rates 

It is intuitively reasonable that the shape of the forward curve would be related to the cost of tanker 

rental, as discussed earlier. A first step to developing a stochastic storage cost model is to review 

the existing literature relating the crude oil market to the freight rate. It is then followed by the 

freight rate modeling leading to a variable time charter rate for the tanker.  

Alizadeh and Nomikos (2004) explore the causality and arbitrage opportunity between WTI 

futures contracts and physical crude oil in both the Brent and Bonny physical markets. They use 
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the fact that six different types of imported crude oil can be used in delivery against the WTI 

futures contracts. To make this cross-market delivery, they consider the freight rates on the 

corresponding routes between the physical market and Cushing OK, which is the delivery point 

for WTI futures contracts. They find that WTI futures Granger1 cause freight rates. Also, the level 

of freight rates does not impact WTI futures, Brent, or Bonny spot prices. More importantly, they 

find that the spread between WTI futures and either Brent or Bonny spot price “does not affect” 

the freight rates, which is the key to their proposed cash-and-carry arbitrage. They explain that 

cash-and-carry arbitrage is not impacted by the convenience yield. That is because this type of 

arbitrage occurs when the futures spread is more than the full cost of carry, which is the cost of 

buying on the spot at time 𝑡1 and delivering it at time 𝑡2 > 𝑡1. This condition automatically implies 

the absence of convenience yield. Alizadeh and Nomikos (2004) provide many instances of 

evidence where the arbitrage trade exists using back-testing the historical data. The type of trade 

they consider is to buy Brent or Bonny low on the spot physically, and short WTI futures at a 

higher price with a maturity of 3 to 5 weeks, during which the oil is transported from its origin to 

Cushing, Oklahoma. To put this trade into perspective within the strategies discussed in the present 

research, this is a one-time forward maximization trade without any maturity adjustment or 

quantity flexibility. Also, the proposed trades are studied through backtesting, where unlike the 

present work, there is no stochastic model for simulation. 

Many studies try to investigate the relation between the spot freight rate and underlying factors 

such as the oil market. Poulakidas and Joutz (2009) studied the relation between tanker spot prices 

(West Africa to US Gulf route), WTI spot, WTI Nymex 3-month futures contract, and the amount 

of oil in inventories, for the period 1998-2006. They find that a high 3-month futures spread, or a 

low inventory put upward pressure on the tanker spot prices. The correlation between the spot 

freight rates and oil prices can be ambiguously positive or negative, which is due to demand and 

supply of oil (Glen and Martin, 2004). If the demand for oil increases, both oil prices and demand 

                                                 

1 A time series U is said to Granger cause V if lagged values of U contain information that helps predict V beyond the 

information contained in lagged values of V alone (Granger, 1969). 
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for tankers increase, which creates a positive correlation. However, if the supply of oil decreases, 

oil prices increase, while demand for oil transportation decreases. This in turn generates a 

downward pressure on expected spot freight rates and hence a negative correlation with oil prices 

is created. Sun et al (2014) investigate the relation between spot freight rates, represented by Baltic 

Dirty Tanker Index (BDTI), and oil prices. Using Ensemble Empirical Model Decomposition, they 

decompose each time series into a high-frequency, a low-frequency, and a residual term 

characterizing the long-term trend. They notice that the decomposition is necessary to explain the 

correlations of multiscale components of freight rates and oil prices, and they find strong 

correlation between the two in medium and long term when the relevance structure is taken into 

account. 

Yang et al (2015) study the spillover effect from the crude oil market on the tanker market using 

data from 2006 to 2014. They find that volatility in the Brent market has a more pronounced impact 

on the tanker market than the volatility in WTI market. Also, they find that they can classify their 

sample into two subsamples; June 2006 – April 2009, and April 2009 – April 2014, where the 

impact of the oil markets on the tanker market is stronger in the former than the latter subsample. 

They explain the difference via unexpected demand for oil and scarcity of tankers in the first 

subsample, which prevented a new tanker market equilibrium from being reached rapidly. In the 

second subsample, excess capacity and intense competition characterizes the tanker market and 

freight rates.  

Shi et al (2013) studied the effect of crude oil price on the tanker market using a structural vector 

autoregressive (VAR) model. They used monthly time series data from 2002 to 2011, which 

include oil production in the world (barrel/day), averaged price of WTI and Brent as a proxy for 

crude oil prices, and Baltic Dirty Tanker Index (BDTI) reflecting the crude oil tanker spot levels. 

Using impulse response analysis, they investigate the effect of different shocks to the tanker 

market; as for contemporaneous relationship, while crude oil supply shocks have significant effect 

on the tanker market, non-supply shocks impact is insignificant. This finding is in agreement with 

Alizadeh and Nomikos (2004), which finds no evidence indicating that the tanker freight rates are 

related to the spread between WTI futures and Brent or Bonny physical spot prices, which was the 
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key to the cash-and-carry arbitrage. They also mention that the effect of crude oil price shocks on 

the tanker freight market is limited.  

Adland et al (2016) study the impact of charterer and owner heterogeneity as well as charterer-

owner match effects using 2863 VLCC fixtures (transaction contracts) between 2011 and 2014 

reported by brokerage houses. Their empirical method is based on the estimation of fixed effect 

models and variance decomposition. They find that although market conditions and routes are the 

two main influential factors on the spot freight rates, characteristics of charterers, owner, and of 

their matches are also crucial. This is important since it highlights that the spot freight rates are 

influenced by many determinants and the market conditions and routes alone are not sufficient to 

explain them. 

In conclusion from the above literature, it can be stated that although there is a relation between 

the freight rates and oil prices, it is heavily impacted by many other factors such as the route 

(freight index), the geographical location of the oil market, (world) oil inventory levels, supply 

and demand forces, short-term versus long-term perspective, heterogeneity in the contracts 

(transaction-specificity), and time period considerations. Since considering all these components 

explicitly in a model is impractical, representing the freight prices in a standalone model, i.e. one 

that incorporates the effect of all underlying determinants implicitly, might be justified. The model 

can still benefit from a multifactor stochastic structure. 

There is several research to model the shipping spot freight rates in a continuous-time framework. 

Usually, the continuous-time models imply a simpler freight price dynamics compared to the 

empirical discrete-time models (Alizadeh and Nomikos, 2009). For instance, geometric Brownian 

motion (Koekebakker et al., 2007), and Ornstein-Uhlenbeck (Jørgensen and de, 2010; Sødal et al., 

2008, 2009) processes have been used to model the freight spot prices. These have been used in 

vessel valuation in a real option context (Sødal et al., 2008; Tvedt, 1997) as well as pricing 

derivatives based on the freight rate (Jørgensen and de, 2010; Koekebakker et al., 2007). 

More complicated models incorporating stochastic volatility model of Barndorff-Nielsen and 

Shephard (2001), or even using Levy process based dynamics are suggested by others (Benth et 
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al., 2015). It should be mentioned that the freight service as an asset is non-storable, and thus a 

simple cost-of-carry calculation cannot be applied to value the associated forward contracts, which 

makes it necessary to use other valuation methods. Also, the non-storability of the asset makes 

valuing and trading forward contracts crucial because of the need to manage delivery of the asset 

at a future time efficiently. Taib (2016) derives the price of forward freight contracts using different 

stochastic models for the underlying freight spot rates (prices) by employing the spot-forward risk-

neutral relationship, where she considered the freight spot models studied by Benth et al. (2015) 

as the underlying models. 

Prokopczuk (2011) tests the one-factor models of Black (1976) and Schwartz (1997), and the two-

factor models of Schwartz and Smith (2000) and Korn (2005), as well as the three-factor model of 

Cortazar and Naranjo (2006) in the dry bulk freight market using the futures contracts data from 

Imarex1 Freight Futures Market, and finds that the Schwartz and Smith (2000) model provides the 

best results. 

5.4 Stochastic Storage Cost Modeling 

In line with the Schwartz and Smith (2000), Mirantes et al. (2012) developed a four-factor 

stochastic model for natural gas, where the logarithm of the freight spot price is equal to the sum 

of a long-term factor, a short-term one, and a seasonal factor, where the seasonal factor is 

complemented by a fourth factor. Poblacion (2015) estimates the four-factor model of Mirantes et 

al. (2012) using two sets of maritime data, and shows that there is stochastic seasonality in the 

freight rate dynamics. For the present research, the four-factor stochastic model of Mirantes et al. 

(2012) will be adapted because of the evidence provided in the literature for its performance, and 

the availability of the estimated parameters in a relevant setting; both VLCC and Suezmax tankers 

can be used as floating storage, and the latter tanker is studied by Poblacion (2015). More 

specifically, the parameters of the four-factor model are estimated using the Time Charter 

                                                 

1 Imarex (International Maritime Exchange) is an exchange based in Oslo for trading shipping derivatives. 
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Equivalent (TCE) rates by Poblacion (2015) for the Suezmax tanker on the TD5 route, which is a 

suitable choice as floating storage. 

The Mirantes et al. (2012) four-factor stochastic model, similar to the Schwartz and Smith (2000) 

model, expresses the logarithm of the freight spot price as the sum of a long-term factor, 𝜉𝑡
′, a 

short-term factor, 𝜒𝑡
′, and a seasonal one, 𝛼𝑡. The SDE of the seasonal factor, 𝛼𝑡, is coupled by a 

fourth factor, 𝛼𝑡
∗, since they associate with the real and imaginary parts of a complex factor. It 

should be noted that this model is originally presented in terms of a notation with factors similar 

to those of Schwartz and Smith (2000), i.e. 𝜒𝑡 and 𝜉𝑡. However, to avoid any confusions, the 

stochastic factors of Mirantes et al. (2012) model are shown with 𝜒𝑡
′ and 𝜉𝑡

′, denoting the short- 

and long-term factors respectively. For the same reason, the coefficients notation are also altered 

in the SDEs with the addition of a “prime” in Mirantes et al. (2012) model. Here, the logarithm of 

the freight spot price is denoted by 𝑆𝑡
′. 

𝑙𝑛 (𝑆𝑡
′) = 𝜉𝑡

′ + 𝜒𝑡
′ + 𝛼𝑡 

Eq. 5.1 

𝑑𝜉𝑡
′ = 𝜇𝜉′𝑑𝑡 + σ𝜉′𝑑𝑊𝜉′ 

Eq. 5.2 

𝑑𝜒𝑡
′ = −𝑘′𝜒𝑡

′𝑑𝑡 + σ𝜒′𝑑𝑊𝜒′  
Eq. 5.3 

𝑑𝛼𝑡 = 2𝜋𝜑𝛼𝑡
∗𝑑𝑡 + σ𝛼𝑑𝑊𝛼 

Eq. 5.4 

𝑑𝛼𝑡
∗ = −2𝜋𝜑𝛼𝑡𝑑𝑡 + σ𝛼𝑑𝑊𝛼∗ 

Eq. 5.5 

Here the long-term drift, 𝜇𝜉′, the speed of mean reversion, 𝑘′, the seasonal period, 𝜑, factor 

volatilities, σ𝜉′ , σ𝜒′ , and σ𝛼 are constants. Also 𝑑𝑊𝜉′ , 𝑑𝑊𝜒′ , 𝑑𝑊𝛼, and 𝑑𝑊𝛼∗ are correlated 

Brownian motion increments, except 𝑑𝑊𝛼 and 𝑑𝑊𝛼∗, which must be uncorrelated (so, there are 

𝐶(4,  2) − 1 = 5 pairs of correlated increments). 𝑑𝑊𝛼 and 𝑑𝑊𝛼∗ are uncorrelated since the last 

two real SDEs with the same variance are resulted from the SDE of a complex trigonometric 

component, say 𝑎𝑡 = 𝛼𝑡 + 𝑖𝛼𝑡
∗, in the form of 𝑑𝑎𝑡 = −𝑖2𝜋𝜑𝑎𝑡𝑑𝑡 + 𝜎𝑎𝑑𝑊𝑎. The risk-neutral 

version of the Mirantes et al. (2012) model, which is needed for derivative pricing, is as follows. 

𝑑𝜉𝑡
′ = (𝜇𝜉′ − 𝜆𝜉′)𝑑𝑡 + σ𝜉′𝑑𝑊𝜉′

⋄  
Eq. 5.6 
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𝑑𝜒𝑡
′ = (−𝑘′𝜒𝑡

′ − 𝜆𝜒′)𝑑𝑡 + σ𝜒′𝑑𝑊𝜒′
⋄  

Eq. 5.7 

𝑑𝛼𝑡 = (2𝜋𝜑𝛼𝑡
∗ − 𝜆𝛼)𝑑𝑡 + σ𝛼𝑑𝑊𝛼

⋄ 
Eq. 5.8 

𝑑𝛼𝑡
∗ = (−2𝜋𝜑𝛼𝑡 − 𝜆𝛼∗)𝑑𝑡 + σ𝛼𝑑𝑊𝛼∗

⋄  
Eq. 5.9 

Here 𝜆𝜉′, 𝜆𝜒′, 𝜆𝛼, and 𝜆𝛼∗ are the risk premiums, and 𝑑𝑊𝜉′
⋄ , 𝑑𝑊𝜒′

⋄ , 𝑑𝑊𝛼
⋄, and 𝑑𝑊𝛼∗

⋄  are the 

increments of the Brownian motion under the risk-neutral measure. The price of freight forward 

contracts at time 𝑡 with a time-to-maturity of (𝑇 − 𝑡) is derived from the expected value of the 

freight spot price at time 𝑇 under the risk-neutral measure 𝑄. Mirantes et al. (2012) derived the 

freight forward prices as expressed by Eq. 5.10 and Eq. 5.11. 

𝐹′(𝑡, 𝑇) = 

exp(𝜉𝑡
′ + 𝑒−𝑘

′(𝑇−𝑡)𝜒𝑡
′ + cos(2𝜋𝜑(𝑇 − 𝑡)) 𝛼𝑡 + sin(2𝜋𝜑(𝑇 − 𝑡)) 𝛼𝑡

∗ + 𝐴4(𝑇 − 𝑡)) 

Eq. 5.10 

𝐴4(𝑇 − 𝑡) = (𝜇𝜉′ − 𝜆𝜉′ + 0.5𝜎𝜉′
2 + 0.5𝜎𝛼

2) (𝑇 − 𝑡) 

−(𝜆𝜒′ − 𝜎𝜉′𝜎𝜒′𝜌𝜉′𝜒′)(1 − 𝑒
−𝑘′(𝑇−𝑡)) 𝑘′⁄  

+0.25𝜎𝜒′
2 (1 − 𝑒−2𝑘

′(𝑇−𝑡)) 𝑘′⁄  

−
𝜆𝛼∗ + 𝜆𝛼 sin(2𝜋𝜑(𝑇 − 𝑡)) − 𝜆𝛼∗ cos(2𝜋𝜑(𝑇 − 𝑡))

2𝜋𝜑
 

+
𝜎𝜉′𝜎𝛼𝜌𝜉′𝛼(1 − cos(2𝜋𝜑(𝑇 − 𝑡))) + 𝜎𝜉′𝜎𝛼∗𝜌𝜉′𝛼∗ sin(2𝜋𝜑(𝑇 − 𝑡))

2𝜋𝜑
 

+
𝜎𝜒′𝜎𝛼𝜌𝜒′𝛼

𝑘′2 + (2𝜋𝜑)2
(𝑘′ − 𝑒−𝑘(𝑇−𝑡)(𝑘′cos(2𝜋𝜑(𝑇 − 𝑡)) + 2𝜋𝜑sin(2𝜋𝜑(𝑇 − 𝑡)))) 

+
𝜎𝜒′𝜎𝛼∗𝜌𝜒′𝛼∗

𝑘′2 + (2𝜋𝜑)2
(2𝜋𝜑 + 𝑒−𝑘(𝑇−𝑡)(𝑘′sin(2𝜋𝜑(𝑇 − 𝑡)) − 2𝜋𝜑cos(2𝜋𝜑(𝑇 − 𝑡)))) 

Eq. 5.11 

To simulate the stochastic factors, Eq. 5.2 to Eq. 5.5 are discretized, which results in the following 

equations.     
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 𝜒𝑡
′ = 𝜒𝑡−1

′ 𝑒−𝑘
′𝛥𝑡 + 𝜎𝜒′√

1 − 𝑒−2𝑘
′Δ𝑡

2𝑘′
𝑍𝜒′ 

Eq. 5.12 

 𝜉𝑡
′ = 𝜉𝑡−1

′ + 𝜇𝜉′𝛥𝑡 + 𝜎𝜉′√Δ𝑡𝑍𝜉′ 
Eq. 5.13 

 𝛼𝑡 = 𝛼𝑡−1 + (2𝜋𝜑Δ𝑡)𝛼𝑡
∗ + σ𝛼√Δ𝑡𝑍𝛼 

Eq. 5.14 

 𝛼𝑡
∗ = 𝛼𝑡−1

∗ + (−2𝜋𝜑Δ𝑡)𝛼𝑡 + σ𝛼√Δ𝑡𝑍𝛼∗  
Eq. 5.15 

To have the form suitable for simulating the stochastic factors, the last two equations, Eq. 5.14 and 

Eq. 5.15, must be solved jointly to obtain 𝛼𝑡 and 𝛼𝑡
∗ in terms of 𝛼𝑡−1 and 𝛼𝑡−1

∗ , The result is as 

follows. 

𝛼𝑡 = {𝛼𝑡−1 + (2𝜋𝜑Δ𝑡)𝛼𝑡−1
∗ + σ𝛼√Δ𝑡[(2𝜋𝜑Δ𝑡)𝑍𝛼∗ + 𝑍𝛼]}/{1 + (2𝜋𝜑Δ𝑡)

2} Eq. 5.16 

𝛼𝑡
∗ = {𝛼𝑡−1

∗ + (−2𝜋𝜑Δ𝑡)𝛼𝑡−1 + σ𝛼√Δ𝑡[(−2𝜋𝜑Δ𝑡)𝑍𝛼 + 𝑍𝛼∗]}/{1 + (2𝜋𝜑Δ𝑡)
2} Eq. 5.17 

Poblacion (2015) estimates the four-factor model of Mirantes et al. (2012) using two sets of data 

based on Word Scale (WS) and Time Charter Equivalent (TCE) as proxies for freight rate on 

different routes employing the Kalman filter method. The data includes weekly observations of 

freight spot and forward TCE and WS prices from Jan 2009 to Feb 2014 across five routes. The 

freight forward prices are the current month forward, and 1st, 2nd, 3rd, 4th, and 5th months after 

the current month, in addition to the 3rd, 4th, and 5th quarters after the current quarter. The routes 

are TC2, TC14, TC6, TD5, and TD16 as defined by the Baltic Exchange. It should be reminded 

that TC (Tanker-Clean) refers to sub-indices that characterize carrying light or middle distillates 

such as gasoline or naphtha, and therefore are irrelevant to the crude storage trade. On the other 

hand, TD (Tanker-Dirty) specifies the sub-indices for heavy condensates such as crude oil. 

However, between TD5 and TD16, only routes TD5 has a sufficient capacity to be used in the 

crude oil storage; TD5 characterizes a 1 million-barrel Suezmax tanker, whereas the capacity on 

the TD16 route is specified as 0.25 million barrels (please see Table 5.1 for dirty tanker sub-index 

capacities). Table 5.2 lists the parameters estimated by Poblacion (2015). It shows Mirantes et al. 

(2012) model parameter estimates on the TD5 route using the TCE data. Fig. 5.2 illustrates three 
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different sample realizations of the freight spot and forward prices using the parameter estimates 

in Table 5.2. 

 

Parameter Estimate Standard Error 

𝜇𝜉′ 1.1049∗∗ 0.4071 

𝑘′ 4.8854∗∗∗ 0.2584 

𝜑 0.8426∗∗∗ 0.0000 

𝜎𝜉′ 0.4134∗∗∗ 0.0605 

𝜎𝜒′ 1.9123∗∗∗ 0.1141 

𝜎𝛼 0.2285∗∗∗ 0.0229 

𝜌𝜉′𝜒′ −0.3849∗∗∗ 0.1071 

𝜌𝜉′𝛼 −0.2769 0.1745 

𝜌𝜉′𝛼∗ 0.5984∗∗∗ 0.1098 

𝜌𝜒′𝛼 −0.2453∗∗ 0.0967 

𝜌𝜒′𝛼∗ −0.7586∗∗∗ 0.0554 

𝜆𝜉′ 1.2014∗∗ 0.4273 

𝜆𝜒′ −1.4337 1.3257 

𝜆𝛼 −0.0291 0.1939 

𝜆𝛼∗ 0.5587∗∗ 0.1942 

Table 5.2. The Mirantes et al. (2012) model parameters estimated by Poblacion (2015) on the TD5 

route using the TCE data. Note  x∗, x∗∗, and x∗∗∗  show the estimated values are significant at 10%, 

5%, and 1%, respectively. 

Koekebakker and Adland (2004) study the forward freight rate dynamics; in addition to the freight 

spot price, Time Charter (TC) rates of maturities 6, 12, and 36 months are used to construct a 

smooth term structure on a daily basis. They derive the TC rates as a function of 𝐹′(𝑡, 𝑇), where 

𝐹′(𝑡, 𝑇) is a model for the continuous term-structure of the freight rates. Let 𝑇𝐶(𝑡, 𝑇) denote the 

TC rate at time 𝑡 for chartering the vessel from time 𝑡 to 𝑇. Note that TC is a constant rate that 

must be paid to the tanker owner on each instant in [𝑡, 𝑇], i.e. per unit of time. They argue that 

because there is no initial cost for entering a forward contract, the value generated by the difference 

between the instantaneous freight spot rate and the constant TC must be zero under the risk-neutral 

measure, as expressed by Eq. 5.18. 
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Fig. 5.2. Three sample realizations of 𝐹′(𝑡, 𝑇) ($/tanker per day) using the parameters of Table 5.2 

and initial condition (𝜒0
′ , 𝜉0

′ , 𝛼0, 𝛼0
∗) = (0.3,9,0.3,0.3). 
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𝐸𝑡
𝑄 [
∫ 𝑒−𝑟(𝑢−𝑡)(𝐹′(𝑢, 𝑢) − 𝑇𝐶(𝑡, 𝑇))𝑑𝑢
𝑇

𝑡

𝑇 − 𝑡
] = 0 

Eq. 5.18 

Based the above risk-neutral argument, Koekebakker and Adland (2004) compute 𝑇𝐶(𝑡, 𝑇) as the 

following equation as a function of 𝐹′(𝑡, 𝑇). 

𝑇𝐶(𝑡, 𝑇) ≈
∫ 𝐹′(𝑡, 𝑢)𝑑𝑢
𝑇

𝑡

𝑇 − 𝑡
 

Eq. 5.19 

Using the 𝑇𝐶(𝑡, 𝑇) equation, Eq. 5.19, and the Mirantes et al. (2012) closed form formula of 

𝐹′(𝑡, 𝑇), Eq. 5.10, we can compute the integral to calculate 𝑇𝐶(𝑡, 𝑇). Due to the difficult nature of 

the integrand, the integral is computed numerically given any 𝑡 and 𝑇. Therefore, it can be assumed 

that for any given (𝜉𝑡
′, 𝜒𝑡

′ , 𝛼𝑡, 𝛼𝑡
∗), 𝐹′(𝑡, 𝑇), and subsequently 𝑇𝐶(𝑡, 𝑇) can be treated as known 

(deterministic). 

5.5 Markov Decision Process (MDP) Model 

The problem time horizon is [0, 𝑇̅], and is discretized into 𝑁 equidistant stages by 𝑡𝑖 = 𝑖Δ𝑡 for 𝑖 ∈

ℐ = {0, 1, 2, … ,𝑁}, where Δ𝑡 = 𝑇̅ 𝑁⁄ . The trader is allowed to rent a tanker only once. The rent 

contract covers a fixed charter period of 𝑇′ (< 𝑇̅), and the trader can initiate a tanker rent contract 

in the period [0, 𝑇̅ − 𝑇′], which ensures that the charter period does not exceed the problem time 

horizon. Assuming that 𝑁′ = 𝑇′ Δ𝑡⁄ , i.e. the length of the rent contract is 𝑁′ periods, the trader 

may decide to start the rent contract at any 𝑡𝑖 = 𝑖Δ𝑡 for 𝑖 ∈ ℐ′ = {0, 1, 2, … ,𝑁 − 𝑁′}. At time 𝑡𝑖, 

the tanker time charter (TC) rate for renting the vessel from 𝑡𝑖 to 𝑡𝑖 + 𝑇
′ is denoted by 

𝑇𝐶(𝑡𝑖, 𝑡𝑖 + 𝑇
′). 

The oil forward contract at time 𝑡𝑖, 𝐹(𝑡𝑖, 𝑇), can have the following maturities 𝑇 ∈ {𝑡𝑖, 𝑡𝑖+1, … , 𝑡𝑁}. 

The inventory level can be the range of [0, 𝑅̅], which is discretized uniformly into 𝐿 levels by 

Δ𝑅 = 𝑅̅ 𝐿⁄ , which determines the selling batches allowed as 0, Δ𝑅, 2Δ𝑅, … . , 𝑅̅. We consider a 

discrete-time dynamic optimization framework based on the following components. 
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1. The State Variables (𝒙𝒊 and 𝑾𝒊): At any stage 𝑖, the trader owns an inventory level of 𝑅𝑖 ≥ 0, 

and if 𝑅𝑖 > 0, she also has a short position in a forward contract maturing at time 𝑇𝑖. The quantity 

of the short position is equal to the quantity of the long inventory position. There is a state variable 

𝐼𝑖, which denotes the time when the tanker time charter contract expires. The expiry date of a valid 

(non-expired) contract, 𝐼𝑖 must satisfy 𝑡𝑖 ≤ 𝐼𝑖 ≤ 𝑇̅, i.e. it can be neither in the past nor exceeding 

the problem time horizon 𝑇̅. If we are at time 𝑡𝑖, the rent may have been started at 

{𝑡0, 𝑡1, 𝑡2, … , 𝑡𝑖−1}, which corresponds to expiry times {𝑡𝑁′ , 𝑡𝑁′+1, 𝑡𝑁′+2, … , 𝑡𝑁′+𝑖−1} respectively. 

As shown in Fig. 5.3, if 𝑡𝑖 ≤ 𝑇
′, it is not possible to have an expired contract since sufficient time 

has not elapsed since any contract initiation time. However, if 𝑡𝑖 > 𝑇′, it is possible to have an 

“expired” state. The ‘0’ indicates the tanker has not been rented yet, and the sign ‘∅’ indicates that 

it has been rented but the contract has expired (rental period ended). Eq. 5.20 summarizes the 

above arguments by formulating the set of feasible expiry dates, 𝒳𝑖
𝐼, at time 𝑡𝑖. 

 𝐼𝑖 ∈ 𝒳𝑖
𝐼 = {

{0, 𝑡𝑁′ , 𝑡𝑁′+1, … ,min(𝑡𝑖−1+𝑁′ , 𝑇̅)}                    𝑖𝑓 0 < 𝑡𝑖 ≤ 𝑇′

{0, ∅, 𝑡𝑖 , 𝑡𝑖+1, … ,min(𝑡𝑖−1+𝑁′ , 𝑇̅)}                             𝑖𝑓 𝑡𝑖 > 𝑇′
 Eq. 5.20 

The endogenous component of the state variable will be 𝑥𝑖 = (𝐼𝑖, 𝑅𝑖 , 𝑇𝑖). The stage-𝑖 forward curve 

 

(a) An expired contract cannot exist if time elapsed is less than 𝑇′ 

 

(b) An expired contract may exist if time elapsed is more than 𝑇′ 

Fig. 5.3. Maximum time elapsed since the initiation of a rental contract; (a) if 𝑡𝑖 ≤ 𝑇
′: it is not 

possible to have an expired contract. (b) if 𝑇′ < 𝑡𝑖: the contract is expired if it is initiated within 

the red interval, [𝑡0, 𝑡𝑖 − 𝑇
′). 
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𝐹(𝑡𝑖, 𝑇), is fully specified by (𝜒𝑖, 𝜉𝑖), and the time-charter (TC) term structure, 𝑇𝐶(𝑡𝑖, 𝑡𝑖 + 𝑇
′), is 

fully specified by (𝜒𝑖
′, 𝜉𝑖

′, 𝛼𝑖, 𝛼𝑖
∗). Let 𝑊𝑖 = (𝜒𝑖, 𝜉𝑖, 𝜒𝑖

′, 𝜉𝑖
′, 𝛼𝑖, 𝛼𝑖

∗) denote the exogenous component 

of the state variable. Therefore, the current state is fully explained by (𝑥𝑖,𝑊𝑖), where (𝑥𝑖,𝑊𝑖) ∈

𝒳𝑖 × ℝ
6, in which 𝒳𝑖 is the state space defined as in Eq. 5.21. 

𝑥𝑖 = (𝐼𝑖, 𝑅𝑖, 𝑇𝑖)  ∈ 

𝒳𝑖 = {
(𝐼𝑖, 0,0)                                                                         𝑖𝑓 𝐼𝑖 = 0 𝑜𝑟 𝐼𝑖 = ∅

(𝐼𝑖, 0,0) ∪ {𝐼𝑖 × (0, 𝑅̅] × {𝑡𝑖, 𝑡𝑖+1, … , 𝐼𝑖}}                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Eq. 5.21 

𝒳𝑖 ensures that the trader must have a valid tanker charter contract, i.e. 𝐼𝑖 ≠ ∅ and 𝐼𝑖 ≠ 0, to be 

able to either have a non-zero inventory and/or hold a forward position. Also, the expression 

𝐼𝑖 × (0, 𝑅̅] × {𝑡𝑖, 𝑡𝑖+1, … , 𝐼𝑖} ensures that the maturity of the forward contract held does not exceed 

the expiry of the tanker charter contract, i.e. 𝑇𝑖 ≤ 𝐼𝑖 when 𝐼𝑖 ≠ ∅, 0. 

The state (0,0,0) refers to the case where the tanker has never been rented. The state (∅, 0,0) refers 

to the case where the tanker was rented but the rent contract ended. The initial state is defined by 

𝑥0 = (𝐼0 = 0, 𝑅0 = 0, 𝑇0 = 0) and 𝑊0 = (𝜒0, 𝜉0, 𝜒0
′ , 𝜉0

′ , 𝛼0, 𝛼0
∗), which indicates that the trader 

starts without any tanker charter contract, and subsequently zero inventory and no forward 

positions. 

2. The Decisions (actions) (𝒂𝒊): At stage 𝑖 and state (𝑥𝑖, 𝑊𝑖), the decisions to be made consist of 

𝑎𝑖 = (𝑎𝑖
𝐼 , 𝑎𝑖

𝑅 , 𝑎𝑖
𝑇). Here, 𝑎𝑖

𝐼 represents the decision to rent the tanker. If the tanker has not been 

rented yet, i.e. 𝐼𝑖 = 0, the trader can decide to rent it by choosing 𝑎𝑖
𝐼 = 1, or decide to wait by 

choosing 𝑎𝑖
𝐼 = 0. However, if 𝐼𝑖 ≠ 0, meaning the tanker has been already rented (either still valid 

or expired), the only feasible decision is 𝑎𝑖
𝐼 = 0 showing a decision not to be able to rent again. 

In addition, 𝑎𝑖
𝑅 denotes the quantity of oil to be bought (𝑎𝑖

𝑅 > 0) or sold (𝑎𝑖
𝑅 < 0) on the spot, 

where 𝑎𝑖
𝑅 ∈ [−𝑅𝑖, 𝑅̅ − 𝑅𝑖]; −𝑅𝑖 is the maximum amount that could be sold, limited by the 

available inventory, and 𝑅̅ − 𝑅𝑖 is the maximum amount that can be bought, limited by the 

maximum capacity. After selecting 𝑎𝑖
𝑅, the decision maker chooses 𝑎𝑖

𝑇 which shows the maturity 

of the forward contract to short, which hedges the new inventory 𝑅𝑖 + 𝑎𝑖
𝑅 . Of course, if 𝑅𝑖 + 𝑎𝑖

𝑅 =
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0, selecting the forward contract maturity 𝑎𝑖
𝑇 is meaningless because the inventory is empty, and 

thus, the only feasible 𝑎𝑖
𝑇 is set to 0 for tractability. Note that decisions are made only at stages 

𝑖 ∈ ℐ ∖ {𝑁} = {0, 1, 2, … ,𝑁 − 1}. The actions and the feasible set, 𝒜𝑖(𝑥𝑖),  can be formalized as 

follows. 

𝑎𝑖 = (𝑎𝑖
𝐼 , 𝑎𝑖

𝑅 , 𝑎𝑖
𝑇) ∈ 𝒜𝑖(𝑥𝑖) = 

Eq. 5.22 

{
 
 

 
 
(0,0,0)                                                                                                                                    𝑖𝑓 𝐼𝑖 ∈ {∅, 𝑡𝑖}

{{1} × (0, 𝑅̅] × {𝑡𝑖+1, 𝑡𝑖+2, . . . , 𝑡𝑖+𝑁′}} ∪ (1,0,0) ∪ (0,0,0)            𝑖𝑓 𝐼𝑖 = 0 𝑎𝑛𝑑 0 ≤ 𝑡𝑖 ≤ 𝑇̅ − 𝑇′

(0,0,0)                                                                                                     𝑖𝑓 𝐼𝑖 = 0 𝑎𝑛𝑑 𝑇̅ − 𝑇′ < 𝑡𝑖 ≤ 𝑇̅

{{0} × (−𝑅𝑖, 𝑅̅ − 𝑅𝑖] × {𝑡𝑖+1, 𝑡𝑖+2, . . . , 𝐼𝑖}} ∪ (0,−𝑅𝑖, 0)               𝑖𝑓𝐼𝑖 ∈ {𝑡𝑖+1, 𝑡𝑖+2, … , 𝑡𝑖−1+𝑁′}

 

In Eq. 5.22, the first line refers to the occasion, where a storage contract has been already expired 

or expires today, and there will not be any feasible (nontrivial) action. The second line refers to 

the case where the tanker has not been rented yet, but the trader has still the option to do so. If she 

decides to rent, she can also take position in the oil market. The third line represents the instance, 

in which a tanker has not been rented yet, and it is now too late to do so. Thus, it is not possible to 

take any (nontrivial) action. The fourth line characterizes the circumstances, where the trader holds 

a valid rent contract and, therefore, she has the possibility of adjusting her position in the oil 

market.     

3. State Transition Function 𝒇𝒊(𝒙𝒊, 𝒂𝒊 ): Given the current state (𝑥𝑖,𝑊𝑖) and the decisions made 

𝑎𝑖, the endogenous part of the next state, 𝑥𝑖+1, will be determined by the function 𝑓𝑖(𝑥𝑖 , 𝑎𝑖) as 

defined in Eq. 5.23. It reflects the transition of the inventory through the immediate action, 𝑎𝑖
𝑅, as 

well as substitution of the newly selected forward position, 𝑎𝑖
𝑇. If the next stage inventory, 𝑅𝑖+1, 

is zero, the maturity choice will automatically be set to 𝑎𝑖
𝑇 = 0 according to the feasible set 

described earlier, and so 𝑇𝑖+1 = 0. Given that 𝐼0 = 0, the evolution of 𝐼𝑖 via the specified transition 

function guarantees that 𝐼𝑖 changes from zero as soon as the decision maker selects 𝑎𝑖
𝐼 = 1, and it 

stays the same for 𝑁′ periods until it becomes ∅ for the rest of the time. The exogenous part of the 

state, 𝑊𝑖, evolves based on the stochastic processes of Eq. 2.16 and Eq. 2.17 independently from 

𝑥𝑖 and 𝑎𝑖. 
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𝑥𝑖+1 = 𝑓𝑖(𝑥𝑖, 𝑎𝑖) = (𝐼𝑖+1, 𝑅𝑖+1, 𝑇𝑖+1), 

where 

(i) 𝐼𝑖+1 =

{
 
 

 
 ∅                                                  𝑖𝑓 𝐼𝑖 ∈ {∅, 𝑡𝑖}  

𝐼𝑖                       𝑖𝑓 𝐼𝑖 ∈ {𝑡𝑖+1, 𝑡𝑖+2, … , 𝑡𝑖−1+𝑁′}

𝑡𝑖+𝑁′                               𝑖𝑓 𝐼𝑖 = 0 𝑎𝑛𝑑 𝑎𝑖
𝐼 = 1

𝐼𝑖                                     𝑖𝑓 𝐼𝑖 = 0 𝑎𝑛𝑑 𝑎𝑖
𝐼 = 0

 

(ii) 𝑅𝑖+1 = 𝑅𝑖 + 𝑎𝑖
𝑅 

(iii) 𝑇𝑖+1 = 𝑎𝑖
𝑇 

Eq. 5.23 

4. Reward Function 𝒓𝒊(𝒂𝒊, 𝒙𝒊,𝑾𝒊): Given the action 𝑎𝑖 = (𝑎𝑖
𝐼 , 𝑎𝑖

𝑅 , 𝑎𝑖
𝑇) at stages 𝑖 ∈

{0, 1, 2, … ,𝑁 − 1}, there will be a reward as shown by Eq. 5.24, which is the sum of four parts. 

The first component is −𝑎𝑖
𝑅[𝐹(𝑡𝑖, 𝑡𝑖) − 𝑐𝑃

−𝐼(𝑎𝑖
𝑅 < 0) + 𝑐𝑃

+𝐼(𝑎𝑖
𝑅 > 0)], which is the payoff 

generated by buying (𝑎𝑖
𝑅 > 0) or selling (𝑎𝑖

𝑅 < 0) oil on the spot market. Here, 𝐼(∗) denotes the 

indicator function. Note that the pumping costs associated with buying and selling are respectively 

set to 𝑐𝑃
+ and 𝑐𝑃

−. The second component,  (𝑅𝑖 + 𝑎𝑖
𝑅)𝑒−𝑟(𝑎𝑖

𝑇−𝑡𝑖)𝐹(𝑡𝑖, 𝑎𝑖
𝑇), is the payoff generated 

by short selling 𝑅𝑖 + 𝑎𝑖
𝑅 barrels through 𝐹(𝑡𝑖, 𝑎𝑖

𝑇) contract. The third component, 

−𝑅𝑖𝑒
−𝑟(𝑇𝑖−𝑡𝑖)𝐹(𝑡𝑖, 𝑇𝑖), is due to offsetting the current short contract held (maturing at 𝑇𝑖) by going 

long the 𝐹(𝑡𝑖, 𝑇𝑖) contract. 

𝑟𝑖(𝑎𝑖, 𝑥𝑖 ,𝑊𝑖) = Eq. 5.24 

{
 
 

 
 −𝑎𝑖

𝑅[𝐹(𝑡𝑖, 𝑡𝑖) − 𝑐𝑃
−𝐼(𝑎𝑖

𝑅 < 0) + 𝑐𝑃
+𝐼(𝑎𝑖

𝑅 > 0)] + (𝑅𝑖 + 𝑎𝑖
𝑅)𝑒−𝑟(𝑎𝑖

𝑇−𝑡𝑖)𝐹(𝑡𝑖, 𝑎𝑖
𝑇) −

𝑅𝑖𝑒
−𝑟(𝑇𝑖−𝑡𝑖)𝐹(𝑡𝑖, 𝑇𝑖) − 𝑅̅𝑇

′𝑇𝐶(𝑡𝑖, 𝑡𝑖+𝑁′)𝐼(𝐼𝑖 = 0 ∧ 𝑎𝑖
𝐼 = 1)                  𝑖𝑓 𝐼𝑖 ≠ 𝑡𝑖

 

−𝑅𝑖𝑐𝑃
−                                                                                                                 𝑖𝑓 𝐼𝑖 = 𝑡𝑖

 

∀𝑖 ∈ {0, 1, 2, … ,𝑁 − 1} 

and, 𝑟𝑁(𝑥𝑁,𝑊𝑁) = −𝑅𝑁𝑐𝑃
− 
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The fourth and last component is −𝑅̅ × 𝑇′ × 𝑇𝐶(𝑡𝑖, 𝑡𝑖+𝑁′) × 𝐼(𝐼𝑖 = 0 ∧ 𝑎𝑖
𝐼 = 1), which is the one-

time tanker rent based on the assumption that the time-charter cost, 𝑇𝐶(𝑡𝑖, 𝑡𝑖+𝑁′), is charged ‘once’ 

for the ‘whole’ vessel (𝑅̅) covering the period [𝑡𝑖, 𝑡𝑖+𝑁′]. The trader decides whether to rent from 

𝑡𝑖 to 𝑡𝑖+𝑁′ = 𝑡𝑖 + 𝑇′ with no refund possibility. The term 𝐼(𝐼𝑖 = 0 ∧ 𝑎𝑖
𝐼 = 1), where “∧” denotes 

logical “and”, guarantees the rental charge is computed based on time 𝑡𝑖 if 𝐼𝑖 = 0, i.e. tanker has 

not been rented yet, and 𝑎𝑖
𝐼 = 1, the decision to charter the tanker has been just made. 

It is worth mentioning that in the above formulation it is assumed that the existing short contract, 

𝐹(𝑡𝑖, 𝑇𝑖), is always offset through the market. This is true even if the maturity indicates a current 

period delivery, i.e. 𝑇𝑖 = 𝑡𝑖. In this case, if the trader intends to fulfill a physical delivery, she 

selects 𝑎𝑖
𝑅 = −𝑅𝑖 subsequently. This argument is the reason why in the reward function the only 

term with the pumping cost is the first term, which associates with the transaction in the physical 

market. The pumping cost represents all costs related to the physical delivery of the oil, such as 

pumping cost and any location discount to WTI futures. 

When 𝐼𝑖 = 𝑡𝑖, there is no decision making, remember (𝑎𝑖
𝐼 , 𝑎𝑖

𝑅 , 𝑎𝑖
𝑇) = (0,0,0) in this case, which is 

the reason why 𝑟𝑖(𝑎𝑖, 𝑥𝑖 ,𝑊𝑖) = −𝑅𝑖𝑐𝑃
−. Since by 𝑡𝑖 (end of rent contract) an existing short contract 

with 𝑇𝑖 = 𝑡𝑖 will be fulfilled by delivering all the remaining inventory, a pumping charge is 

triggered. If the oil has been already delivered, i.e. 𝑅𝑖 = 0, the reward is simply zero. 

A policy 𝜋 is set of decision functions {𝐴0
𝜋, 𝐴1

𝜋, 𝐴2
𝜋, … , 𝐴𝑁−1

𝜋 }, where 𝐴𝑖
𝜋(𝑥𝑖,𝑊𝑖): 𝒳𝑖 × ℝ

6 →

𝒜𝑖(𝑥𝑖) for ∀𝑖 ∈ {0, 1, 2, … ,𝑁 − 1}. The optimization is over the class Π, which is the set of all 

feasible policies 𝜋. The dynamic optimization problem, which gives the real option value at 𝑡0, 

will be given by Eq. 5.25. Here 𝛿 ∈ (0,1] denotes the constant time-discount factor for one stage, 

i.e. 𝛿 = 𝑒−𝑟Δ𝑡. The expectation is under the physical measure as the goal is to capture the 

performance of the trading strategy. Also, 𝑥𝑖
𝜋 denotes the random endogenous part of the state at 

stage 𝑖 when policy 𝜋 is implemented. 
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 𝑉0(𝑥0,𝑊0) = max
𝜋∈Π

𝐸 [−𝛿𝑁𝑅𝑁𝑐𝑃
− +∑ 𝛿𝑖 𝑟𝑖(𝐴𝑖

𝜋(𝑥𝑖
𝜋,𝑊𝑖), 𝑥𝑖 ,𝑊𝑖)

𝑁−1

𝑖=0

| (𝑥0,𝑊0)] 
Eq. 5.25 

 

 

Model Features Chapter 4 Chapter 5 

Initiation time Fixed at 𝑡0 Optimally determined 

Staring inventory level Full (filled at 𝑡0) Empty 

Inventory refill option Not allowed Allowed 

Rental contract duration Optimally chosen Fixed (e.g. one year) 

Extension, or early 

termination of the rental 

contract 

Allowed Not allowed 

Refund of storage cost if 

contract terminated early 
Allowed 

Not applicable since early 

termination not allowed 

Rent charge quantity basis Per inventory level Per whole tanker 

Rent charge value basis Known constant  Stochastically evolving 

Endogenous state variables 

• Inventory level 
(𝑅𝑖) 

• Forward 

maturity (𝑇𝑖) 

• Inventory level (𝑅𝑖) 
• Forward maturity (𝑇𝑖) 
• Rental contract expiry (𝐼𝑖) 

Decision variables 

• Quantity sold on 

the spot (𝑎𝑖
𝑅) 

• Forward 

maturity (𝑎𝑖
𝑇) 

• Quantity bought or sold on 

the spot (𝑎𝑖
𝑅) 

• Forward maturity (𝑎𝑖
𝑇) 

• Rent the tanker or not (𝑎𝑖
𝐼) 

Table 5.3. Highlight of the differences between the model used in Chapter 4 and Chapter 5 (the 

present model). 

To enhance understanding of the framework, it will be helpful to compare the present model with 

the model introduced in Chapter 4. As summarized in Table 5.3, the comparison displays the richer 

and more realistic nature of the new model. 

5.6 Theoretical Proposition 

An Approximate Dynamic Programming (ADP) technique will be employed to solve the above 

problem. At first, it may seem that the new algorithm is a simple expansion of the ADP algorithm 

introduced in the previous chapter, where the exogenous state variable, 𝑊𝑖, has a higher dimension 
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due to the addition of the group of stochastic factors corresponding to the storage cost. Such an 

algorithm will not be correct because of the intricacies involving the continuation function 

approximations. Before presenting the new algorithm, let us state the following proposition, which 

will provide the basis required for the necessary changes in the new algorithm. A proof is presented 

in the appendix (please see Proof of Proposition 5.I section). 

Proposition 5.I: Let 𝐼𝑖
−(0)

 denote any state 𝐼𝑖 ∈ 𝒳𝑖
𝐼 such that 𝐼𝑖 ≠ 0, and 𝑥𝑖 = (𝐼𝑖

−(0),∗,∗) denote 

any state 𝑥𝑖 = (𝐼𝑖, 𝑅𝑖, 𝑇𝑖) ∈ 𝒳𝑖 in which 𝐼𝑖 ≠ 0. 𝑖 ∈ {0, 1, 2, … ,𝑁 − 1}, 𝑉𝑖 ((𝐼𝑖
−(0),∗,∗),𝑊𝑖) is not 

a function of the storage cost stochastic factors, (𝜒𝑖
′, 𝜉𝑖

′, 𝛼𝑖 , 𝛼𝑖
∗), while 𝑉𝑖((0,0,0),𝑊𝑖) is a function 

of them. 

To explain the intuition behind the proposition, note that 𝑉𝑖 ((𝐼𝑖
−(0),∗,∗),𝑊𝑖) reflects the value 

function in a state where the tanker has been already rented. Thus, the determinants of the storage 

cost, (𝜒𝑖
′, 𝜉𝑖

′, 𝛼𝑖, 𝛼𝑖
∗), do not impact the value function at this time, and vice versa for 

𝑉𝑖((0,0,0),𝑊𝑖). 

5.7 Algorithmic Solution (ADP) 

Similar to the previous chapter, the ADP is developed based on Continuation Function 

Approximation (CFA) by estimating a vector of weights corresponding to a linear combination of 

the basis function (see Eq. 5.30). The vector of weights Θ(𝑖, 𝑥𝑖+1) is computed by least squares 

regression. The 𝐾 basis functions are shown with Φ(𝑊𝑖). Let us assume that the basis functions 

are formed by the polynomials up to degree 3 (the procedure is the same for other degrees). Since 

𝑊𝑖 = (𝜒𝑖, 𝜉𝑖, 𝜒𝑖
′, 𝜉𝑖

′, 𝛼𝑖, 𝛼𝑖
∗), all the basis functions will be as explained in Eq. 5.26. 

Φ̅′(𝑊𝑖) = Eq. 5.26 

[1 𝜒𝑖 𝜉𝑖 𝜒𝑖
′ 𝜉𝑖

′ 𝛼𝑖 𝛼𝑖
∗ 𝜒𝑖

2 … 𝜒𝑖𝜉𝑖
′ … 𝛼𝑖

∗2 𝜒𝑖
3 … 𝜒𝑖

2𝜉𝑖
′ … 𝛼𝑖𝛼𝑖

∗2 𝛼𝑖
∗3] 

Let Φ1
′ (𝑊𝑖) denote all the basis functions exclusively with respect to the oil factors, (𝜒𝑖, 𝜉𝑖), as 

expressed by Eq. 5.27. 
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 Φ1
′ (𝑊𝑖) = [1 𝜒𝑖 𝜉𝑖 𝜒𝑖

2 𝜉𝑖
2 𝜒𝑖𝜉𝑖 𝜒𝑖

3 𝜉𝑖
3 𝜒𝑖

2𝜉𝑖 𝜒𝑖𝜉𝑖
2] Eq. 5.27 

Let Φ2
′  denote all the basis function included in Φ̅′ but not included in Φ1

′  (i.e. {Φ2
′ } = {Φ̅′}\{Φ1

′ } 

in a set subtraction notation). Now, let us reorganize vector Φ̅′ and write it as a block vector such 

that the first block is Φ1
′  and the second block is Φ2

′ . Let Φ denote this reorganized vector as 

expressed below. The vector of coefficients Θ′(𝑖, 𝑥𝑖+1) is expressed in terms of Θ1
′ (𝑖, 𝑥𝑖+1) and 

Θ2
′ (𝑖, 𝑥𝑖+1), which represent the coefficients corresponding to Φ1 and Φ2 respectively. 

 Φ(𝑊𝑖) = [
 Φ1(𝑊𝑖)

 Φ2(𝑊𝑖)
] 

Eq. 5.28 

 Θ′(𝑖, 𝑥𝑖+1) = [Θ1
′ (𝑖, 𝑥𝑖+1) Θ2

′ (𝑖, 𝑥𝑖+1)] 
Eq. 5.29 

Now, the CFA can be written in terms of Φ1 and Φ2 and the corresponding coefficients as 

expressed in Eq. 5.30. 

 
𝐸[𝑉̂𝑖+1(𝑥𝑖+1,𝑊𝑖+1)| 𝑊𝑖] = Θ

′(𝑖, 𝑥𝑖+1)Φ(𝑊𝑖)

= Θ1
′ (𝑖, 𝑥𝑖+1)Φ1(𝑊𝑖) + Θ2

′ (𝑖, 𝑥𝑖+1)Φ2(𝑊𝑖) 

Eq. 5.30 

The reason for separating the basis functions into two groups can be explained using the 

Proposition 5.I; depending on the state 𝑥𝑖+1,  the expectation 𝐸[𝑉̂𝑖+1(𝑥𝑖+1,𝑊𝑖+1)| 𝑊𝑖] can be a 

function of (𝜒𝑖, 𝜉𝑖, 𝜒𝑖
′, 𝜉𝑖

′, 𝛼𝑖, 𝛼𝑖
∗) or just (𝜒𝑖, 𝜉𝑖), which leads to using different basis functions as 

regressors. As proved in the Proposition 5.I, the expectation is only a function of (𝜒𝑖, 𝜉𝑖) if 𝑥𝑖+1 =

(𝐼𝑖+1
−(0),∗,∗), according to which one can rewrite Eq. 5.30 in a state-dependent form. 

 𝐸[𝑉̂𝑖+1(𝑥𝑖+1,𝑊𝑖+1)| 𝑊𝑖] = {
Θ1
′ (𝑖, 𝑥𝑖+1)Φ1(𝑊𝑖)            𝑖𝑓 𝑥𝑖+1 = (𝐼𝑖+1

−(0),∗,∗)

Θ′(𝑖, 𝑥𝑖+1)Φ(𝑊𝑖)                     𝑖𝑓 𝑥𝑖+1 = (0,0,0)
 Eq. 5.31 

The form expressed by Eq. 5.31 is suitable for performing the least squares regression using the 

relevant basis functions only. Obviously, Eq. 5.31 is a specific case of Eq. 5.30 if one sets the 

coefficients of the irrelevant basis functions to zero, as expressed by Eq. 5.32. Employing the 

above CFA methodology, it is now possible to develop the ADP algorithm as presented in Table 

5.4. 
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 Θ2
′ (𝑖, 𝑥𝑖+1) = 0, ∀𝑖, 𝑥𝑖+1 = (𝐼𝑖+1

−(0),∗,∗) Eq. 5.32 

 

1. Simulate 𝑀 sample paths of the 𝑊𝑖 process for 𝑖 = 0, 1, 2, … ,𝑁; denoted by {𝑊𝑖
𝑚}𝑚=1

𝑀 . 

2. Initialize Θ(𝑖, 𝑥𝑖+1) = 0, ∀𝑖, 𝑥𝑖+1 and 𝑉̂𝑁(𝑥𝑁 ,𝑊𝑁) = −𝑅𝑁𝑐𝑃
−, ∀𝑥𝑁 ,𝑊𝑁. 

3. For 𝑖 = (𝑁 − 1), (𝑁 − 2), (𝑁 − 3),… , 1, 0∗ 
 4. For ∀𝑥𝑖 = (𝐼𝑖, 𝑅𝑖 , 𝑇𝑖) ∈ 𝒳𝑖 
 Solve for the optimal action based on 

𝑉̂𝑖(𝑥𝑖,𝑊𝑖
𝑚) = max

𝑎∈𝒜𝑖(𝑥𝑖)
{𝑟𝑖(𝑎, 𝑥𝑖,𝑊𝑖

𝑚) + 𝛿𝐸̂[𝑉̂𝑖+1(𝑓𝑖(𝑥𝑖, 𝑎),𝑊𝑖+1)| 𝑊𝑖
𝑚]} 

𝐴̂𝑖
𝜋(𝑥𝑖,𝑊𝑖

𝑚) = argmax
𝑎∈𝒜𝑖(𝑥𝑖)

{𝑟𝑖(𝑎, 𝑥𝑖 ,𝑊𝑖
𝑚) + 𝛿𝐸̂[𝑉̂𝑖+1(𝑓𝑖(𝑥𝑖, 𝑎),𝑊𝑖+1)| 𝑊𝑖

𝑚]} 

 where CFA is computed using the previously calculated Θ̂(𝑖, 𝑥𝑖+1) as (except for 𝑉̂𝑁) 

𝐸̂[𝑉̂𝑖+1(𝑥𝑖+1,𝑊𝑖+1)| 𝑊𝑖
𝑚] = Θ′(𝑖, 𝑥𝑖+1)Φ(𝑊𝑖

𝑚) 

 End 

 5. Solve for the prior stage regression coefficients, Θ̂(𝑖 − 1, 𝑥𝑖), by 

{
𝑉̂𝑖(𝑥𝑖,𝑊𝑖

𝑚)~Θ′(𝑖 − 1, 𝑥𝑖)Φ(𝑊𝑖−1
𝑚 )                                                           If 𝑥𝑖+1 = (0,0,0)

𝑉̂𝑖(𝑥𝑖,𝑊𝑖
𝑚)~Θ1

′ (𝑖 − 1, 𝑥𝑖)Φ1(𝑊𝑖−1
𝑚 ) and Θ2

′ (𝑖 − 1, 𝑥𝑖) = 0             If 𝑥𝑖 = (𝐼𝑖
−(0),∗,∗)

 

End 

 

*At 𝑖 = 0, the regression will be replaced with sample average due to the absence of multiple 

sample paths at 𝑡 = 0, which means 𝐸̂[𝑉̂1(𝑥1,𝑊1)| 𝑊0] = ∑ 𝑉̂1(𝑥1,𝑊1
𝑚)𝑀

𝑚=1 /𝑀. 

Table 5.4. Pseudocode for ADP (LSM) approach. 

5.8 Parameters and Computational Setting 

In Section 5.8.1, the benchmark values of parameters used in this chapter are introduced. Sections 

5.8.2, 5.8.3 and 5.8.4 respectively study the accuracy of the choices made for the basis functions, 

the number of simulated paths, and the inventory discretization size.  

5.8.1 Benchmark Parameters 

In the following computational results, 𝑀 = 100000 (50K + 50K antithetic) sample paths are 

generated by simulating the (exogenous) state variables with a timestep of 1 480⁄  year. This 
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represents a fine time-scale discretization from which the required (coarser) samples are later 

extracted. For simulating the oil price factors, (𝜒𝑖, 𝜉𝑖), Eq. 2.12, Eq. 2.13, and Eq. 2.14 together 

with the parameters provided in Table 2.1 are used, which is the same setting as in the previous 

chapters. For simulating the storage cost stochastic factors, (𝜒𝑖
′, 𝜉𝑖

′, 𝛼𝑖, 𝛼𝑖
∗), Eq. 5.12, Eq. 5.13, Eq. 

5.16, Eq. 5.17, and the parameters listed in Table 5.2 are used. 

The initial conditions of the oil forward curve match those defined in the base case in previous 

chapters; (𝜒0, 𝜉0) = (-0.639,4.637), which corresponds to a spot price of $54.45 per barrel and a 

long-term price of $103.19 simulating forward prices based on May 2009 market conditions. The 

time horizon is set to 𝑇̅ = 2 years, and the duration of the tanker rent contract is set to 𝑇′ = 1 year. 

All the parameters used to obtain the computational results of this chapter are summarized under 

in Table 5.5.  

 

Description Parameter Value 

Time horizon (constraint) 𝑇̅ 2 

Duration (length) of the 

storage rent contract  
𝑇′ 1 

Timestep size 

(Δ𝑡 = 𝑇̅/𝑁 = 𝑇′/𝑁′) 
Δ𝑡 1 12⁄  

Inventory capacity (barrels) 𝑅̅ 1 

Storage discretization 

increment 
Δ𝑅 1 

Pumping cost (𝑐𝑃
+, 𝑐𝑃

−) (1.875, 1.875) 

Initial condition of the oil 

state variables 
(𝜒0, 𝜉0) (-0.639, 4.637) 

Initial condition of the storage 

cost state variables 
(𝜒0

′ , 𝜉0
′ , 𝛼0, 𝛼0

∗) (3.39, 8.4, 0.3, 0.4) 

Initial condition of the 

endogenous state variables 
𝑥0 = (𝐼0, 𝑅0, 𝑇0) (0, 0, 0) 

Total number of simulated 

antithetic sample paths 
𝑀 100,000 

Total number of simulated 

antithetic out-of-sample paths 
𝑀2 25,000 

Degree of polynomial basis 

functions 
𝑝 3 

Table 5.5. Table of the general problem parameters establishing the benchmark setting.  
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The initial conditions of the stochastic storage cost factors are selected such that the one-year time 

charter rate at 𝑡0 is 𝑇𝐶(0,1) = $8.23 per barrel per year, which is higher than $6.57 used in the 

previous chapters (although $6.57 is also tested in Section 5.9.5). The main purpose of such a 

choice is to establish an unfavorable cost condition at 𝑡0 to encourage the algorithm to search for 

optimal starting times 𝑡 > 𝑡0. In the three following subsections, we run numerical experiments to 

test what “computational” parameters, e.g. 𝑀, 𝑀2, etc., are needed to get sufficiently accurate 

numerical results. 

5.8.2 Basis Functions 

Polynomial basis functions are used in the ADP algorithm. In the following, the polynomial degree 

(𝑝) is set to 2, 3, or 4, and confidence intervals of 𝑉 and 𝑉𝑐 are computed by repeating each 

simulation 30 times. Note that 𝑉 is the estimate of the value function at time zero assuming the 

stochastic storage cost, while 𝑉𝑐 represents the value achieved under the assumption that the 

storage cost will remain ‘constant’ and equal to its initial value at 𝑡0. It is seen that the values 

increase with 𝑝 slightly and at a diminishing rate. This is not surprising given that it is the result 

of obtaining a better fit to the continuation value. However, the computational time almost doubles  

 

Polynomial degree (𝑝) 2 3 4 

Total number of basis functions (Φ elements)  28 84 210 

Number of basis functions containing oil 

factors only (Φ1 elements in Eq. 5.30) 
6 10 15 

Computational time (minutes) 13.65 24.33 45.55 

Confidence Interval of 𝑉 [6.138,6.158] [6.177,6.196] [6.188,6.206] 

𝑉 (mean) 6.148 6.186  6.197 

% change in 𝑉 relative to the smaller 𝑝 NA +0.62% +0.18% 

Confidence Interval of 𝑉𝑐 [3.854,3.866] [3.869,3.881] [3.873,3.885] 

𝑉𝑐(mean) 3.860 3.875 3.879 

% change in 𝑉𝑐 relative the smaller 𝑝 NA +0.39% +0.10% 

Table 5.6. Impact of the degree of the polynomial basis functions generated using 
(𝜒𝑡, 𝜉𝑡, 𝜒𝑡

′ , 𝜉𝑡
′, 𝛼𝑡, 𝛼𝑡

∗). The confidence intervals are computed by using 30 repetitions for each 

degree. The other parameters are as per Table 5.5. 
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with each increase in the polynomial power. As a result, 𝑝 = 3 has been used in the benchmark 

case, as specified in Table 5.5, which is also consistent with the degree used in the previous 

chapter. 

5.8.3 Number of Paths 

The number of sample paths, 𝑀 = 100K, and out-of-sample paths, 𝑀2 = 25K, are specified 

together with other parameters in Table 5.5. By testing other choices of 𝑀 and 𝑀2, it is shown that 

these values provide relatively good estimates. Fig. 5.4 shows 𝑉 (panel a) and 𝑉𝑐 (panel b) 

resulting from the out-of-sample and in-sample (solve the problem forward in time after computing 

the estimate of Θ backward in time) simulations, where values of 𝑀 ∈ {25𝐾, 50𝐾, 100𝐾, 200𝐾} 

and 𝑀2 ∈ {0.05𝑀, 0.12𝑀, 0.25𝑀} are employed. The plots clearly show the convergence 

behavior in the estimates. Setting 𝑀2 equal to 0.25𝑀 reduces the variability and leads to narrower 

confidence intervals. Also, 𝑀 = 200K does not provide greatly superior results as compared to 

𝑀 = 100K given that the computational time doubles (24 vs 59 minutes). The confidence intervals 

are computed by repeating the simulations 30 times for all combinations of 𝑀 and 𝑀2. However,  

 
(a) 

 
(b) 

Fig. 5.4. Impact of the number of sample paths (𝑀) and out-of-sample paths (𝑀2) on 𝑉 (panel a) 

and 𝑉𝑐 (panel b). The confidence intervals are computed by using 30 repetitions at each (𝑀,𝑀2) 
pair. The parameters are as per Table 5.5. 
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there exist 90 repeated simulations for in-sample calculations (since the sample paths are already 

simulated for the out-of-sample tests), which explains why the in-sample confidence intervals are 

relatively narrow. 

5.8.4 Inventory Discretization 

According to the parameters in Table 5.5, Δ𝑅 = 1, which means that partial sale is not considered 

inevitably. The tests in this section show that using a smaller value, which enables partial sales, 

does not lead to higher values. For instance, setting Δ𝑅 = 1/10 results in 𝑉 = $6.185 and 𝑉𝑐 =

$3.881, which matches values generated by Δ𝑅 = 1. It is noteworthy that the computation times 

for Δ𝑅 = 1 and 1/10 are respectively about 24 and 327 minutes. Therefore, Δ𝑅 = 1 is used in the 

benchmark case as specified in Table 5.5. It suffices to explore Δ𝑅 = 1 and not consider more 

fine-grained tanker discretization. This is similar to the previous chapter (Chapter 4) problem, 

where it was shown theoretically that a partial sale is not optimal. We believe that the partial sale 

is not optimal in the Chapter 5 framework although it is not proved in the wider setting here. But 

experimental approaches suggest it makes no difference and offers strong support for this 

conjecture. 

5.9 Computational Results 

In the following subsections, the computational results exploring various aspects of the problem 

are presented; the optimal value and policy are respectively examined in sections 5.9.1 and 5.9.2. 

Impact of the initial condition of stochastic factors on the option value and the optimal policy are 

studied next; Section 5.9.3 discusses the impact of (𝜒0, 𝜉0), and Section 5.9.4 investigates the 

impact of (𝜒0
′ , 𝜉0

′ , 𝛼0, 𝛼0
∗) on 𝑇𝐶(0,1) (the one year storage cost at 𝑡0). Section 5.9.5 presents the 

impact of (𝜒0
′ , 𝜉0

′ , 𝛼0, 𝛼0
∗) on the option value while maintaining 𝑇𝐶(0,1) constant, and finally 

Section 5.9.6 does the same without maintaining 𝑇𝐶(0,1) constant. The effects from the level of 

pumping costs and time horizons are reviewed in sections 5.9.7 and 5.9.8 respectively. The 

computational results conclude with the sensitivity analysis in Section 5.9.9. 

Unless stated otherwise, all the results are based on the out-of-sample (lower-bound) estimation of 

the value function at time zero, denoted by 𝑉. In addition to 𝑉, 𝑉𝑐 is computed, which denotes the 
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value achieved under the assumption that the storage cost will remain ‘constant’ and equal to its 

initial value at 𝑡0. 𝑉𝑐 is computed using the non-stochastic 𝑇𝐶(0,1) and the exact same oil forward 

curve realizations. Computation of 𝑉𝑐 is done via an ADP algorithm similar to 𝑉 only with 

stochastic oil factors. 

5.9.1 Optimal Value 

To calculate the optimal value and its confidence intervals, both 𝑉 and 𝑉𝑐 are computed 150 times 

using different (independent) samples and out-of-sample paths. The histograms of the obtained 

values are illustrated in Fig. 5.5. In each plot, three histograms are shown; one is based on the 

“Out-of-sample” computations, which leads to the regularly reported lower-bounds. The 

remaining two histograms are based on in-sample computations; “In-sample 1” indicates the case 

in which, the sample paths and the resulting Θ (the basis functions coefficients) are utilized in 

conjunction with each other in a time-forward optimal decision making on each path. This leads 

to computing the average payoffs across all paths, which is similar to the out-of-sample 

computations (except the same set of paths are used again). “In-sample 2” is an approach in which, 

the sample paths are used to compute Θ, after which the value is obtained by solving Bellman 

equation at the first timestep. “In-sample 2” approach leads to value being directly dependent 

upon Θ through the continuation value approximation, and thus more prone to in-sample bias, 

whereas in “In-sample 1”, the bias can only penetrate via the incorporated policy and the payoffs 

remain intact based on actual cash flows. The mean values computed (and shown by the solid line 

on the plots) from each approach confirm the above arguments. 

In Table 5.7, the confidence intervals of the estimated 𝑉 and 𝑉𝑐 are reported. It is seen that  

𝑉 is much larger than 𝑉𝑐; it is because the initial condition of the storage cost is unfavorable (it is 

too expensive at 𝑡0 but it will most likely decline later). This point will be investigated in great 

detail in the subsequent sections. 

𝑉 [6.181, 6.189] 𝑉𝑐 [3.878, 3.883] 

Table 5.7. Confidence intervals (95%) of 𝑉 and 𝑉𝑐 resulted from the out-of-sample testing. The 

parameters are as per Table 5.5. 
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(a) 𝑉 

 

(b) 𝑉𝑐 
Fig. 5.5. Histogram of 𝑉 (panel a) and 𝑉𝑐 (panel b) formed by computing the values 150 times. 

Values are derived from three different methods; Out-of-sample, In-sample 1 (solve optimally 

forward in time by implementing the computed Θ), and In-sample 2 (approximate the value 

function at 𝑡0 by solving Bellman equation). The solid lines represent the mean of the histograms. 

The parameters are as per Table 5.5. 

5.9.2 Optimal Policy 

The optimal policy determines, at each timestep 𝑖 and state (𝑥𝑖, 𝑊𝑖), what action 𝑎𝑖 = (𝑎𝑖
𝐼 , 𝑎𝑖

𝑅 , 𝑎𝑖
𝑇) 

should be taken. Recall that 𝑎𝑖
𝐼 = 1 represents the decision to rent the tanker (if not already rented), 

and 𝑎𝑖
𝐼 = 0 indicates the decision not to rent it. Additionally, 𝑎𝑖

𝑅 ∈ [−𝑅𝑖, 𝑅̅ − 𝑅𝑖] denotes the 

quantity of oil to be bought (𝑎𝑖
𝑅 > 0) or sold (𝑎𝑖

𝑅 < 0) on the spot. Furthermore, 𝑎𝑖
𝑇 shows the 

maturity of the forward contract to short if the new inventory is not empty, i.e. 𝑅𝑖 + 𝑎𝑖
𝑅 ≠ 0.  

In the following, the optimal policy at some timesteps 𝑖 and states 𝑥𝑖 is presented in the domain of 

𝑊𝑖 = (𝜒𝑖, 𝜉𝑖, 𝜒𝑖
′, 𝜉𝑖

′, 𝛼𝑖, 𝛼𝑖
∗) across the sample paths. It is difficult to illustrate the policy with respect 

to 𝑊𝑖 ∈ ℝ
6 in a two-dimensional space. However, it will be seen that each of the six elements of 

𝑊𝑖 does not bear the same degree of influence on the policy. Let us consider the state 𝑥𝑖 =

(𝐼𝑖, 𝑅𝑖 , 𝑇𝑖) = (0,0,0), i.e. the tanker has not been rented yet, as the benchmark state in Fig. 5.6;  
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(a) 𝜒𝑖_𝜉𝑖 plane, 𝑡 = 𝑡1 = 1/12 

 

(b) 𝜒𝑖
′_𝜒𝑖 plane, 𝑡 = 𝑡1 = 1/12 

 

(c) 𝜒𝑖_𝜉𝑖 plane, 𝑡 = 𝑡4 = 4/12 

 

(d) 𝜒𝑖
′_𝜒𝑖 plane, 𝑡 = 𝑡4 = 4/12 

Fig. 5.6. Optimal decision with respect to renting, 𝑎𝑖
𝐼, at 𝑡 = 𝑡1 = 1 12⁄  (a and b) and 𝑡 = 𝑡4 =

4 12⁄ = 1 3⁄  (c and d). State: at both 𝑡1 and 𝑡4 the tanker has not yet been rented, i.e. 𝑥𝑖 =
(𝐼𝑖, 𝑅𝑖 , 𝑇𝑖) = (0,0,0). 

panel (a) shows the 𝑎𝑖
𝐼 decision at 𝑡 = 𝑡1 = 1 12⁄  in the 𝜒𝑖_𝜉𝑖 plane, while panel (b) displays the 

same decision in the 𝜒𝑖
′_𝜒𝑖 plane, where it is seen that the latter pair explains the decision more 
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distinctively (in separate regions). In Fig. 5.6, panel (c) and (d), the same information is repeated 

except at 𝑡 = 𝑡4 = 4 12⁄ . With the passage of time from 𝑡1 = 1 12⁄  to 𝑡4 = 4 12⁄ , 𝜒𝑖_𝜉𝑖 has 

become better in explaining the 𝑎𝑖
𝐼 decision while 𝜒𝑖

′_𝜒𝑖 has not changed much. One possible 

explanation might be as follows; the optimal policy is built on and demonstrated via the evolving 

Monte Carlo sample paths from the initial condition. While the initial condition (at 𝑡0) of oil 

forward curve is favorable, the storage cost initial condition is unfavorable. With the passage of 

time, e.g. at 𝑡1, a better storage cost condition is realized on some of the paths. Comparing Fig. 

5.6.a and b, this is the reason why 𝜒𝑖 and 𝜒𝑖
′ (rather than 𝜉𝑖) are needed to exhibit the decision 

boundary at 𝑡1. After more time has elapsed, at 𝑡4, it seems that 𝜒𝑖 is the most important factor in 

generating a clear boundary between the “rent” or “don’t rent” paths. Further investigations reveal 

that this trend continues in subsequent timesteps, which is consistent with other findings (in the 

following subsections) suggesting that the oil forward dynamics is more impactful than the storage 

cost. Table 5.8 summarizes the percentage of the paths on which the decision is to rent the tanker, 

i.e. 𝑎𝑖
𝐼 = 1, at different timesteps. At all timesteps, it is assumed that the state is 𝑥𝑖 = (𝐼𝑖, 𝑅𝑖, 𝑇𝑖) =

(0,0,0), i.e. the tanker has not yet been rented. This highlights the time varying nature of the 

optimal policy with respect the evolving 𝑊𝑖 = (𝜒𝑖, 𝜉𝑖, 𝜒𝑖
′, 𝜉𝑖

′, 𝛼𝑖, 𝛼𝑖
∗). 

 

𝑡𝑖 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 𝑡10 𝑡11 𝑡12 

% 44.69 71.61 76.10 70.39 60.1 48.6 39.12 31.54 25.61 20.99 17.56 19.07 

Table 5.8. Percentage of the paths on which the decision is to rent the tanker at different timesteps. 

It is assumed the state is that the tanker has not been rented yet, i.e. 𝑥𝑖 = (𝐼𝑖, 𝑅𝑖 , 𝑇𝑖) = (0,0,0). 

In Fig. 5.7, the goal is to examine the optimal policy given different states at a single point in time, 

𝑡7 = 7/12. Three different states are assumed; the state at panels (a) and (b) is that the tanker has 

not been rented yet, i.e. 𝑥7 = (𝐼7, 𝑅7, 𝑇7) = (0,0,0). The state at panels (c) and (d) is that the tanker 

was rented at the previous timestep, i.e. 𝑡6 = 6/12, but it is currently empty, i.e. 𝑥7 =

(𝐼7, 𝑅7, 𝑇7) = (1.5,0,0). The state at panels (e) and (f) is that the tanker was rented at the previous 

timestep, i.e. 𝑡6 = 6/12, it is currently full, and the inventory was hedged with a forward contract 

maturing today, i.e. 𝑥7 = (𝐼7, 𝑅7, 𝑇7) = (1.5,1, 7 12⁄ ).  
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The optimal policies with respect to the quantity bought/sold, 𝑎𝑖
𝑅, and the maturity, 𝑎𝑖

𝑇, are shown 

respectively on the left and right columns of Fig. 5.7. Although the general structure of the policies 

corresponding to the three different states are relatively similar, it is interesting to clarify their 

distinguishing features given these states. In particular, the main decision boundary seems to move 

to the right as the state changes from (0,0,0) to (1.5,0,0), and finally to (1.5,1, 7 12⁄ ). 

Accordingly, it is seen that the ‘buy’ decision in (0,0,0) (red dots in Fig. 5.7.a) requires a more 

attractive condition (smaller 𝜒𝑖’s) compared to (1.5,0,0) (red dots in Fig. 5.7.c) since there is not 

a tanker still rented in the former while there is one already rented in the latter. Similarly, it is seen 

that the ‘buy’ decision at (1.5,0,0) (red dots in Fig. 5.7.c) to fill up the tanker, requires a more 

attractive condition compared to a ‘hold’ decision at (1.5,1, 7 12⁄ ) (green dots in Fig. 5.7.e) to just 

keep the tanker full. Additionally, the less sharp (noisy) boundary line in the state (0,0,0), 

compared to either of (1.5,0,0) and (1.5,1, 7 12⁄ ) is the result of the decision being dependent on 

𝑊𝑖 = (𝜒𝑖, 𝜉𝑖, 𝜒𝑖
′, 𝜉𝑖

′, 𝛼𝑖, 𝛼𝑖
∗) in state (0,0,0) versus just (𝜒𝑖, 𝜉𝑖) in states (1.5,0,0) and (1.5,1, 7 12⁄ ), 

as discussed theoretically in the earlier sections. 

 

 

(a) Decision on quantity bought/sold on the 

spot, 𝑎𝑖
𝑅. State: Tanker not yet rented, 

(𝐼7, 𝑅7, 𝑇7) = (0,0,0). 

 

(b) Decision on forward maturity, 𝑎𝑖
𝑇. State: 

Tanker not yet rented, (𝐼7, 𝑅7, 𝑇7) = (0,0,0). 
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(c) Decision on quantity bought/sold on the 

spot, 𝑎𝑖
𝑅. State: Tanker rented but empty, 

(𝐼7, 𝑅7, 𝑇7) = (1.5,0,0). 

 

(d) Decision on forward maturity, 𝑎𝑖
𝑇. State: 

Tanker rented but empty, (𝐼7, 𝑅7, 𝑇7) =
(1.5,0,0). 

 

(e) Decision on quantity bought/sold on the 

spot, 𝑎𝑖
𝑅. State: Tanker rented and full, 

(𝐼7, 𝑅7, 𝑇7) = (1.5,1, 7 12⁄ ). 

 

(f) Decision on forward maturity, 𝑎𝑖
𝑇. State: 

Tanker rented and full, (𝐼7, 𝑅7, 𝑇7) =
(1.5,1, 7 12⁄ ). 

Fig. 5.7. Optimal policy at 𝑡 = 𝑡7 = 7 12⁄  with respect to the quantity bought/sold on the spot, 𝑎𝑖
𝑅, 

is displayed on the left column (a, c, & e), and with respect to the maturity of the forward contract, 

𝑎𝑖
𝑇, on the right column (b, d, & f). 
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One important point observed in both Fig. 5.6 and Fig. 5.7 is that the optimal policy regarding the 

forward maturity, 𝑎𝑖
𝑇, has a similar behavior to that of the problem solved in Chapter 4, where it 

was shown in Proposition 4.II that the optimal policy belongs to a small subset of the feasible set, 

i.e. {(𝑅𝑖, 0), (0, 𝑡𝑁), (0, 𝑡𝑖+1)}. Although this has not been proved here, the computational results 

do match this proposition. 

So far, the optimal policy has been presented based on the sample path realizations in the 𝑊𝑖 

domain. In the following, the actual trades resulted from adopting the optimal policy on three out-

of-sample paths are presented in Fig. 5.8. Both stochastic and constant storage cost assumptions 

are tested, which, for brevity, will be referred to as “problem 𝑉” and “problem 𝑉𝑐” respectively. 

Accordingly, any variable with a superscript “c” refers to the problem 𝑉𝑐. The trades executed on 

each of the three paths are shown on the three rows of Fig. 5.8. The panels on the left demonstrate 

the evolution of the forward curve, 𝐹(𝑡, 𝑇), overlaid with the one-year time-charter rate, 𝑇𝐶(𝑡, 𝑡 +

1), on a second y-axis. The panels on the right present the same information in a different fashion; 

on a single y-axis, they display the evolution of the one-year time-charter rate, 𝑇𝐶(𝑡, 𝑡 + 1), 

overlaid with the forward-spot spread, 𝐹(𝑡, 𝑇) − 𝐹(𝑡, 𝑡), which has a direct association with the 

underlying trades. 

The first set of panels, Fig. 5.8.a and b, show that in problems 𝑉 and 𝑉𝑐 rent (and buy oil) action 

occurs at 𝑡0 and 𝑡2 respectively, since the former anticipates a lower storage cost, while the latter 

is faced with a constant cost. However, they both sell the inventory at 𝑡11 when there is a favorable 

(for cashing out) downward-sloping forward curve. The sum of the rewards is respectively $8.67 

(4.78+3.89) and $2.87 (2.64+0.23) in problems 𝑉 and 𝑉𝑐. In comparison to problem 𝑉, problem 

𝑉𝑐’s value suffered from two things; the obvious one is the more expensive storage cost at the 

trade initiation. The other factor hurting the value is the shorter time-to-maturity at the sell-out. 

More precisely, the maturity state variables at the time of sale, 𝑡11, are 𝑇11
𝑐 = 𝑡12 = 1 and 𝑇11 =

𝑡14 = 1.17 in problems 𝑉𝑐 and 𝑉 respectively. Therefore, the time-to-maturity of the new long 

forward position (offsetting the existing short position when cashing out) is one month in problem 

𝑉𝑐 (𝑇11
𝑐 − 𝑡11 = 𝑡12 − 𝑡11 = 1/12) and three months in problem 𝑉 (𝑇11 − 𝑡11 = 𝑡14 − 𝑡11 =

3/12). Subsequently, when the one- and three-month time spreads are translated into spot-forward 
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price spreads (𝐹(𝑡, 𝑡) − 𝐹(𝑡, 𝑇)) using the same forward curve slope, the latter generates a larger 

profit since essentially the price spread (rise) is equal to the slope times the time spread (run). This 

difference is because problem 𝑉𝑐 starts trading 2 periods sooner than problem 𝑉. 

The second set of panels, Fig. 5.8.c and d, show that the algorithm buys and sells twice in problem 

𝑉. The tanker is rented at 𝑡3 = 3/12, which sets the expiry of the rent contract at 𝑡15 = 𝑡3 + 1 =

15/12. The first purchase and sale occurs at 𝑡3 = 3/12 and 𝑡9 = 9/12 respectively. The second 

purchase and sale occurs at 𝑡11 = 11/12 and 𝑡14 = 14/12, one period before the expiry of rental 

contract. The total reward from the first buy and sell is $16.83, while the second one results in 

$0.04. It is noteworthy that during both trades, an optimal maturity of 𝑇𝑡 = 𝑡15 is preferred, i.e. the 

maximum maturity permitted. Similar to the previous path, the trade starts at 𝑡0 in problem 𝑉𝑐. In 

fact, across all paths, trading starts at 𝑡0 in 𝑉𝑐 problem since the initial oil forward curve is 

favorable and the storage cost will be fixed throughout the problem. 

 

 
(a) Path #1, 𝐹(𝑡, 𝑇) view 

 
(b) Path #1, 𝐹(𝑡, 𝑇) − 𝐹(𝑡, 𝑡) view 
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(c) Path #2, 𝐹(𝑡, 𝑇) view 

 
(d) Path #2, 𝐹(𝑡, 𝑇) − 𝐹(𝑡, 𝑡) view 

 
(e) Path #3, 𝐹(𝑡, 𝑇) view 

 
(f) Path #3, 𝐹(𝑡, 𝑇) − 𝐹(𝑡, 𝑡) view 

Fig. 5.8. Three sample paths and the trades executed on them based on the optimal policy. The 

one-year time-charter rate, 𝑇𝐶(𝑡, 𝑡 + 1), is overlaid with the forward curve, 𝐹(𝑡, 𝑇), on the left 

panels, and is overlaid with the forward-spot spread, 𝐹(𝑡, 𝑇) − 𝐹(𝑡, 𝑡), on the right panels. The 

vertical lines specify the decision times to ‘rent’, ‘buy’, or ‘sell’. The forward and spread curves 

are plotted in colors associated to ‘buy’ (red) and ‘sell’ (blue) at the corresponding times. 𝑇𝑡 is the 

state variable at time 𝑡 indicating the maturity of the contract held (if any). 𝑟𝑡 is the reward ($) of 

the action taken at time 𝑡. Superscript “c” represents the respective variables under the constant 

storage cost assumption (𝑉𝑐) rather than the stochastic storage cost (𝑉). 
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The third set of panels, Fig. 5.8.e and f, show that the algorithm in 𝑉 problem starts trading at the 

very last permittable time, 𝑡12. It seems that, until that point, no sufficiently upward-sloping 

forward curve was observed at the same time as a sufficiently low storage cost. Even at the rent/buy 

decision time, the slope is very small leading to a payoff 𝑟12 = −5.44. However, a very steep 

downward sloping curve compensate this initial loss very well with a payoff of 𝑟16 = 14.85. 

The policy can accommodate a decision to rent the tanker but not to buy oil immediately, i.e. 𝑎𝑖
𝐼 =

1 and 𝑎𝑖
𝑅 = 0 at some 𝑖. However, it is observed that such a decision never happens; when the 

algorithm decides to rent the tanker (𝑎𝑖
𝐼 = 1), it is invariably accompanied by a buy order (𝑎𝑖

𝑅 >

0). This is because it rents the tanker when there is a trading opportunity, i.e. a steep forward curve, 

to maximize the time during which the tanker is utilized, rather than to wait for an opportunity 

while holding an empty tanker (even if it is rented at a relatively cheaper cost). 

5.9.3 Impact of oil factors initial condition 

The initial conditions for the oil factors, 𝜒0 and 𝜉0, significantly influence option values, 𝑉 and 

𝑉𝑐, by setting the initial price, exp(𝜒0 + 𝜉0), and the long-term price, exp(𝜉0). In the following, 

the impact of 𝜒0 and 𝜉0 is studied by computing 𝑉 and 𝑉𝑐 for a range of (𝜒0, 𝜉0) ∈

{−0.7, −0.6, −0.5, … ,−0.1} × {3.8, 4, 4.2, … ,5.2}. For instance, (𝜒0, 𝜉0) = (−0.1, 4) 

corresponding to spot and long-term prices of $49.40 and $54.60 represents an unfavorable initial 

condition. While (𝜒0, 𝜉0) = (−0.7, 4.4) corresponding to spot and long-term prices of $40.45 and 

$81.45 respectively, represents a very favorable initial condition.  

In Fig. 5.9 panels (a) and (b), by moving towards the top-left corner, a favorable initial condition 

(highly upward-sloping forward curve) unsurprisingly increases the option values from zero on 

the bottom-right corner to 𝑉=$19.02 and 𝑉𝑐=$18.16 on the top-left corner. Fig. 5.9.(d) illustrates 

the difference 𝑉 − 𝑉𝑐, which, unlike 𝑉 and 𝑉𝑐,  does not change uniformly with an improving 

initial condition. It can be explained by observing three regimes; there are not many profitable 

opportunities in the ‘very bad’ initial condition region and thus 𝑉 − 𝑉𝑐 is minute because both 
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(a) 𝑉 

 
(b) 𝑉𝑐 

 
(c) Sample Time-Charter Rate Trajectories 

 
(d) 𝑉 − 𝑉𝑐 

Fig. 5.9. Impact of oil factors initial conditions on the value; 𝑉 and 𝑉𝑐 with respect to 𝜒0 and 𝜉0 

for (𝜒0
′ , 𝜉0

′ , 𝛼0, 𝛼0
∗) = (3.39, 8.4, 0.3, 0.4), which are the benchmark values specified in Table 5.5, 

and represent an unfavorable initial condition (𝜒0
′ ≫ 0). 

values are close to zero. On the other hand, in the ‘very good’ initial condition region, both optimal 

policies imply a buying decision. Here, entering into the storage contract almost immediately 

leading to large 𝑉 and 𝑉𝑐. In this regime, the small 𝑉 − 𝑉𝑐 is attributed to occasional trades (when 

the storage cost is stochastic) in which the trader rents the tanker at some 𝑡 > 𝑡0 at a lower cost 

than the initial cost.  
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In the third (middle) region, the initial condition is only moderately attractive. Under the stochastic 

storage cost case, better results, i.e. 𝑉 − 𝑉𝑐 ≫ 0, are achieved by waiting and renting a tanker at a 

lower cost level, which frequently occurs due to the unfavorable initial condition of storage cost 

(𝜒0
′ ≫ 0), as seen in panel (c) of  Fig. 5.9. However, under the constant storage cost, this expensive 

initial storage cost persists. For instance, detailed investigations for (𝜒0, 𝜉0) = (−0.6, 5.1), where 

a large difference between 𝑉 and 𝑉𝑐 (𝑉 − 𝑉𝑐 = $1.27) exists, shows that when stochastic storage 

cost is considered, the storage is rented at 𝑡 = 𝑡1 on 78% of the paths, and at 𝑡 > 𝑡1 on 22% of the 

paths. However, under the fixed storage cost assumption the storage is rented at 𝑡 = 𝑡0 on all paths. 

The above arguments indicate that the relative behavior of 𝑉 and 𝑉𝑐 as quantified by 𝑉 − 𝑉𝑐 in 

response to changes in (𝜒0, 𝜉0) should be interpreted considering the initial condition of storage 

cost factors, (𝜒0
′ , 𝜉0

′ , 𝛼0, 𝛼0
∗). Therefore, in the following, the above experiment is repeated under 

a favorable storage cost initial condition. In panels (a) and (b) of Fig. 5.10, by moving towards the 

top-left corner, a favorable initial condition (highly upward-sloping forward curve) causes both 

values to increase significantly from zero to 𝑉 = 𝑉𝑐 = $25.29. This is similar to the earlier 

observations made about Fig. 5.9. However, 𝑉 − 𝑉𝑐 in Fig. 5.10.d  shows a different pattern from 

Fig. 5.9.d due to the favorable storage cost at 𝑡0, which can be explained as follows. On the top-

left corner of Fig. 5.10.d, where the (oil) initial condition is favorable, the optimal policies 

corresponding to 𝑉 and 𝑉𝑐 coincide because they both indicate a rent decision at 𝑡0. However, 

when the (oil) initial condition is unfavorable, there is no immediate rent decision (at 𝑡 = 𝑡0), and 

the two cases behave differently. To further clarify this, let us continue with a detailed investigation 

using (𝜒0, 𝜉0) = (−0.2,4.8), as an example of an unfavorable initial condition. Under the 

stochastic cost assumption, because the storage cost will mostly likely increase in the future, the 

rent decision may be made in the early stages despite the unfavorable oil forward curve. The trader 

may or may not wait for a suitable condition to ‘buy oil’. If she does, this will reduce the effective 

time during which the storage is utilized. Alternatively, the rent can be made at a higher price in 

the subsequent timesteps when a profitable oil forward curve presents itself, when the condition is 

suitable for filling up the tanker. All scenarios will hurt the value under the stochastic storage cost. 

However, under the constant cost assumption, the trader can rent the tanker at the constant (low)  



137 

 

 
(a) 𝑉 

 
(b) 𝑉𝑐 

 
(c) Sample Time-Charter Rate Trajectories 

 
(d) 𝑉 − 𝑉𝑐 

Fig. 5.10. Impact of oil factors initial conditions on the value; 𝑉 and 𝑉𝑐 with respect to 𝜒0 and 𝜉0 

for (𝜒0
′ , 𝜉0

′ , 𝛼0, 𝛼0
∗) = (−3.39, 8.4, 0.3, 0.4), a favorably deviated initial condition (𝜒0

′ ≪ 0). 

cost at any future time when the oil forward curve is suitable for the trade. 

Fig. 5.11.a shows the histogram of the timestep at which the decision to rent the tanker is made. 

First, it is seen that the number of paths with a rent decision falls from 52% (13103) of the 25K 

total paths under the constant cost to 45% (11238) under the stochastic storage cost. Second, it is 

seen that, under the stochastic cost, more than half (6620 of 11238) of the paths have rent decisions 
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made at the early stages (𝑡1 and 𝑡2). However, under the constant cost the frequency of immediate 

rentals is relatively much smaller (just 3866 paths at 𝑡1 and 𝑡2 from 13103 paths on which renting 

occurred), with many (2275 paths) of the decisions to rent being made at the last possible timestep, 

𝑡12. 

 

 
(a) 

 
(b) 

Fig. 5.11. (a) Histogram of the timestep at which the rent decision is made (if any at all) for 
(𝜒0, 𝜉0) = (−0.2, 4.8), an unfavorable oil initial condition, and (𝜒0

′ , 𝜉0
′ , 𝛼0, 𝛼0

∗) =
(−3.39, 8.4, 0.3, 0.4), a favorable storage cost initial condition (b) Mean of the profits or losses 

(reward) made over the 25000 out-of-sample paths at each timestep with parameters similar to part 

(a). 

5.9.4 Impact of Storage Cost Factors Initial Condition on the Initial Storage Cost 

The storage cost, 𝑇𝐶(𝑡, 𝑡 + 𝑇), is the time-charter rate for renting the tanker at time 𝑡 for a period 

of 𝑇 years. The process 𝑇𝐶(𝑡, 𝑡 + 𝑇) is driven by the four stochastic factors (𝜒𝑡
′, 𝜉𝑡

′, 𝛼𝑡, 𝛼𝑡
∗) of the 

storage cost model introduced earlier. The initial storage cost, 𝑇𝐶(𝑡0, 𝑡0 + 𝑇
′) or in short 𝑇𝐶(0,1), 

is the time-charter rate for renting the tanker at 𝑡0 = 0 for a period of 𝑇′ = 1 year. Before studying 

how changes in the initial condition of storage cost factors, (𝜒0
′ , 𝜉0

′ , 𝛼0, 𝛼0
∗), impacts the option 

value, 𝑉 and 𝑉𝑐, it would be informative to know how (𝜒0
′ , 𝜉0

′ , 𝛼0, 𝛼0
∗)  influences 𝑇𝐶(0,1) since 

it is expected that at least part of the impact of (𝜒0
′ , 𝜉0

′ , 𝛼0, 𝛼0
∗) on option value is transmitted via 
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𝑇𝐶(0,1). Fig. 5.12 shows 𝑇𝐶(0,1) as a univariate function of each factor initial condition, 

(𝜒0
′ , 𝜉0

′ , 𝛼0, 𝛼0
∗), while keeping the other three constant. It is seen that 𝑇𝐶(0,1) is an increasing 

function of all the factors. Also, 𝑇𝐶(0,1) is very sensitive to 𝜉0
′  since an increase in the long-term 

factor increase the area under the storage cost forward curve significantly (recall that 

𝑇𝐶(𝑡0, 𝑡0 + 𝑇
′) is the integral of the storage cost forward from 𝑡0 to 𝑡0 + 𝑇

′ divided by 𝑇′).  

To study 𝑇𝐶(0,1) as a multivariable function of (𝜒0
′ , 𝜉0

′ , 𝛼0, 𝛼0
∗), many possible combinations of 

𝜒0
′ ∈ [−4,4], 𝜉0

′ ∈ [8,9.5], 𝛼0 ∈ [−1,1], and 𝛼0
∗ ∈ [−1,1] are selected by discretizing these 

intervals and considering all the combinations (𝜒0
′ , 𝜉0

′ , 𝛼0, 𝛼0
∗) ∈ {−4,−3.5, −3,… ,4} ×

{8, 8.25,8.5, … ,9.5} × {−1,−0.75, −0.5, … ,1} × {−1,−0.75,−0.5, … ,1}. Since the quantity 

exp(𝜒0
′ + 𝜉0

′ + 𝛼0 + 𝛼0
∗) represents the tanker spot prices, to be in the range of reasonable values, 

we limit (𝜒0
′ , 𝜉0

′ , 𝛼0, 𝛼0
∗) combinations by requiring them to satisfy 2000 < exp(𝜒0

′ + 𝜉0
′ + 𝛼0 +

𝛼0
∗) < 60000. The result is about 4000 qualified combinations, which subsequently leads to the 

corresponding initial storage costs computed in the range of $0.95 ≤ 𝑇𝐶(0,1) ≤ $15.46 per 

barrel per day. 

To illustrate 𝑇𝐶(0,1) as a function of four variables in two dimensions, two variables, e.g. 𝜒0
′  and 

𝜉0
′  as in Fig. 5.13.a, are selected for X and Y axes. Focusing on a fixed (𝜒0

′ , 𝜉0
′) point, all the 

𝑇𝐶(0,1) values resulted from changes in the remaining variables, i.e. 𝛼0 and 𝛼0
∗ in Fig. 5.13.a, are 

reflected around the corresponding (𝜒0
′ , 𝜉0

′) point by jittering the dots to avoid overlaps1. A similar 

process is repeated in Fig. 5.13.b by choosing 𝛼0 and 𝛼0
∗ for the X and Y axes respectively. Fig. 

5.13 (a) and (b) show that changes in the 𝜒0
′  and 𝜉0

′  impacts 𝑇𝐶(0,1) more significantly than 𝛼0 

and 𝛼0
∗ within the studied range. Fig. 5.13.a illustrates that 𝑇𝐶(0,1) is an increasing function of 𝜒0

′  

such that it will increase faster at higher levels of 𝜉0
′ .  

                                                 

1 Jittering is achieved by replacing (𝑥, 𝑦) coordinate of a point with (𝑥 + 𝑢, 𝑦 + 𝑣), where 𝑢 and 𝑣 are uniform random 

variables from 𝑢~𝑈[−𝑎, 𝑎] and 𝑣~𝑈[−𝑏, 𝑏]. Here, (𝑎, 𝑏) = (0.18,0.04) in Fig. 5.13.a and (𝑎, 𝑏) = (0.08,0.08) in 

Fig. 5.13.b. The values for (𝑎, 𝑏) are chosen such that it leads to an illustration in which the points are sufficiently 

dispersed within each cluster but the clusters do not overlap with each other.  
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(a) 𝜒0
′  

 

(b) 𝜉0
′  

 

(c) 𝛼0 

 

(d) 𝛼0
∗ 

Fig. 5.12. Percentage change (decimal notation) in the initial storage cost 𝑇𝐶(0,1) as a univariate 

function of 𝜒0
′ , 𝜉0

′ , 𝛼0, or 𝛼0
∗ while keeping the other three fixed. The change is relative to the 

benchmark values specified in Table 5.5; (𝜒0
′ , 𝜉0

′ , 𝛼0, 𝛼0
∗) = (3.39,8.4,0.3,0.4). The red solid lines 

show the benchmark values. 
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(a) 𝜒0
′_𝜉0

′  

 

(b) 𝛼0_𝛼0
∗ 

Fig. 5.13. Initial storage cost 𝑇𝐶(0,1) as a multivariable function of (𝜒0
′ , 𝜉0

′ , 𝛼0, 𝛼0
∗); (a) 

highlighting changes with respect to 𝜒0
′  and 𝜉0

′ , (b) highlighting changes with respect to 𝛼0 and 

𝛼0
∗. 

5.9.5 Impact of storage cost factors initial condition while ‘keeping the initial cost constant’ 

Impact of the storage cost initial conditions on the option values 𝑉 is studied using different 

(𝜒0
′ , 𝜉0

′ , 𝛼0, 𝛼0
∗). However, (𝜒0

′ , 𝜉0
′ , 𝛼0, 𝛼0

∗) are selected such that the initial one-year time-charter 

rate 𝑇𝐶(0,1) = $6.57 in all cases, which is equal to the non-stochastic value used in the previous 

chapters. To do so, (𝜉0
′ , 𝛼0, 𝛼0

∗) is chosen from {8, 8.25,8.5, … ,9.5} × {−1,−0.75,−0.5, … ,1} ×

{−1,−0.75,−0.5, … ,1}, and 𝜒0
′  is then computed by numerically solving 𝑇𝐶(0,1) = 6.57 with 

respect to 𝜒0
′ , as expressed by Eq. 5.19. Since 𝑉𝑐 represents the value under a constant storage cost 

equal to the initial value, 𝑉𝑐 will be the same for all (𝜒0
′ , 𝜉0

′ , 𝛼0, 𝛼0
∗) combinations and equal to 

𝑉𝑐 = $5.53. Recall that the option value under the constant storage cost computed in the previous 

chapter was higher, $10.80, since the framework assumptions were different (more relaxed). 

The plots in Fig. 5.14 show that although for all the (𝜒0
′ , 𝜉0

′ , 𝛼0, 𝛼0
∗) combinations 𝑇𝐶(0,1) = 6.57, 

the resulting values can vary from $5.53 to $7.79. Larger 𝑉’s are usually achieved when a large 

𝜒0
′  is paired with a small 𝜉0

′ . This represents a temporarily expensive storage cost condition that  
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(a) 𝜒0

′  
 

(b) 𝜉0
′  

 
(c) 𝛼0 

 
(d) 𝛼0

∗ 

Fig. 5.14. 𝑉 as a (univariate) function of (a) 𝜒0
′ , (b) 𝜉0

′ , (c) 𝛼0, and (d) 𝛼0
∗. The black solid line 

represents the 𝑉𝑐 = $5.53 associated with the constant cost case. The rest of the parameters are 

set based on the benchmark values specified in Table 5.5. The initial conditions, (𝜒0
′ , 𝜉0

′ , 𝛼0, 𝛼0
∗), 

are selected such that their combination leads to a constant 𝑇𝐶(0,1) = $6.57 per barrel per year. 

will revert to its lower normal levels in subsequent periods, leading to capturing a higher value. 

Thus, given a constant 𝑇𝐶(0,1) at 𝑡0, 𝑉 is relatively higher if this 𝑇𝐶(0,1) is the result of a short-
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term (expensive) deviation from the long-term (lower) trend, rather than a short-lived cheap period 

reverting to higher storage costs. 

The univariate relationships illustrated in Fig. 5.14 are combined and demonstrated jointly in Fig. 

5.15, where 𝑉 is shown on  𝜒0
′_𝜉0

′  plane (panel a) and, 𝜒0
′_𝛼0 plane (panel b). Fig. 5.15.a clearly 

shows a higher 𝑉 is generated when a large 𝜒0
′  is paired with a small 𝜉0

′ , i.e. a short-term expensive 

period reverting to a cheap long-term trend. Interestingly, a similar observation can be made in 

Fig. 5.15.b in a seasonality context; Fig. 5.15.b shows by fixing 𝜒0
′  at for example 4, increasing 𝛼0 

increases 𝑉. It means that given a fixed short-term deviation (𝜒0
′ ), if the currently prevailing storage 

cost is the result of a seasonal increase in prices, there are better chances of achieving a higher 

value as the prices reverts to seasonally lower levels later. Similarly, if one accounts for seasonality 

by fixing 𝛼0, a larger 𝜒0
′  increases value.  

 
(a) 𝜒0

′_𝜉0
′  (jittered 𝜉0

′  values for clarity) 
 

(b) 𝜒0
′_𝛼0 

Fig. 5.15. V as a (bivariate) function of (a) 𝜒0
′_𝜉0

′ , where 𝜉0
′  values are randomly jittered for better 

demonstration, and (b) 𝜒0
′_𝛼0. The rest of the parameters are set based on the benchmark values 

specified in Table 5.5. The initial conditions, (𝜒0
′ , 𝜉0

′ , 𝛼0, 𝛼0
∗), are selected such that their 

combination leads to a constant 𝑇𝐶(0,1) = $6.57 per barrel per year. 

Before making a comparison between the observed 𝑉 and 𝑉𝑐 values, it should be reminded that 

the oil forward curve initial condition is favorable in the above cases (as it is set based on the 

benchmark values specified in Table 5.5). The optimal policy under the constant storage cost 



144 

 

assumption (𝑉𝑐) is to start the trade immediately since the oil forward curve condition is favorable 

and storage cost is fixed. Under the stochastic storage cost, when 𝜒0
′  is large enough, waiting for a 

few timesteps before renting the tanker is optimal because the savings from a lower cost of storage 

is more than the potential loss from an unfavorable oil forward curve, which results in a 𝑉 > 𝑉𝑐 =

$5.53, as seen in Fig. 5.14.a. On the other hand, if 𝜒0
′  is small (indicating the storage cost will most 

probably increase in the future), the optimal decision will imply to rent the storage and start the 

trade early, a policy similar to what is advised under the constant storage cost assumption. This 

explains the observation that 𝑉 = 𝑉𝑐 = $5.53 in those cases. Fig. 5.16 verifies the above 

arguments by detail examination of two extreme (𝜒0
′ , 𝜉0

′ , 𝛼0, 𝛼0
∗) cases selected from those tested 

in Fig. 5.14 and Fig. 5.15. Recall that all (𝜒0
′ , 𝜉0

′ , 𝛼0, 𝛼0
∗) combinations result in 𝑇𝐶(0,1) = $6.57. 

The first set of values is (−3.63,9.5,−1,1) leading to 𝑉 = 𝑉𝑐 = $5.53, and the second set is 

(3.91,8,0.5,−0.5) resulting in a 𝑉 = $7.79 > 𝑉𝑐 = $5.53. The former set is used in the left panels 

(a, c and e), while the latter is used in the right panels (b, d, and f). Switching from the first set to 

the second set, it is seen that how most of renting decisions shifts from 𝑡0 to 𝑡1 (and 𝑡2 to some 

extent). In Fig. 5.16 panels (c) and (d), mean of profits and losses at each timestep shows that the 

performance of 𝑉 and 𝑉𝑐 cases match on the left column. On the right column however, the 

stochastic case performs better by waiting for one period and taking advantage of a lower storage 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 5.16. Comparing storage cost factors (𝜒0
′ , 𝜉0

′ , 𝛼0, 𝛼0
∗) set to (−3.63,9.5, −1,1) and 

(3.91,8,0.5, −0.5) in the left and right columns respectively. (a)/(b): histogram of the time step at 

which the rent decision is made (if any at all), (c)/(d): mean of the profits or losses (reward) made 

over the 25000 out-of-sample paths at each timestep, (e)/(f): sample time-charter rate trajectories. 

The rest of the parameters are set based on the benchmark values specified in Table 5.5. 

cost at 𝑡1; the average profit increases from about $4.40 (at 𝑡0) in the constant case to $5.50 (at 𝑡1) 

in the stochastic case. Panels (e) and (f) show some sample time-charter rate paths, which 

illustrates how the storage cost in the subsequent periods increases on the left and decreases on the 

right. 
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5.9.6 Impact of storage cost factors initial condition 

In this section, we generate 100 random storage cost initial conditions by selecting the values 

independently in the following intervals; 𝜒0
′ ∈ [−4,4], 𝜉0

′ ∈ [8,9.5], 𝛼0 ∈ [−1,1], and 𝛼0
∗ ∈

[−1,1]. Subsequently, the one-year time-charter rate at 𝑡0, 𝑇𝐶(0,1), is computed using the selected 

(𝜒0
′ , 𝜉0

′ , 𝛼0, 𝛼0
∗). Fig. 5.17 shows 𝑉, 𝑉𝑐, and 𝑉 − 𝑉𝑐 using the above process under a favorable oil 

initial condition fixed at (𝜒0, 𝜉0) = (−0.6393, 4.6366) (the benchmark values in Table 5.5), while 

Fig. 5.18 shows the results under an ‘unfavorable’ oil initial condition fixed at (𝜒0, 𝜉0) =

(−0.3, 4.3). 

In both Fig. 5.17 and Fig. 5.18, as seen on panels (a.i) and (b.i), it is evident that both 𝑉 and 𝑉𝑐 

mostly depend on  𝜒0
′_𝜉0

′  pair; a low 𝜉0
′  coupled with a low 𝜒0

′  provides the cheapest storage cost 

and highest values. This is the result of cheap long-term costs combined with a short-term deviation 

(to even cheaper costs) from the long-term trend. In Fig. 5.19, 𝑉 and 𝑉𝐶 are plotted with respect 

to the initial one-year time-charter rates 𝑇𝐶(0,1) implied by the same (𝜒0
′ , 𝜉0

′ , 𝛼0, 𝛼0
∗) 

combinations. This figure confirms that both 𝑉 and 𝑉𝑐 decrease with 𝑇𝐶(0,1), which can be 

mainly attributed to an increase in 𝜒0
′ . 

The relative behavior of 𝑉 and 𝑉𝑐 in Fig. 5.19 indicate different characteristics comparing panels 

(a) and (b). The same observation can be made by comparing 𝑉 − 𝑉𝑐 in panels (c) of Fig. 5.17 and 

Fig. 5.18. Focusing on a ‘favorable’ oil initial condition in Fig. 5.17.c and Fig. 5.19.a, if the initial 

storage cost (or equivalently 𝜒0
′ ) is not too large, the optimal decision will be to rent the storage 

and start trading early, a policy similar to what is advised under the constant storage cost 

assumption, which inevitably results in 𝑉 = 𝑉𝑐. However, when the initial storage cost (or 

similarly 𝜒0
′ ) is large enough, waiting for a few timesteps before renting the tanker is optimal in 

problem 𝑉, because the savings from a lower storage cost is more than a potential loss from an 

unfavorable oil forward curve. Under the constant storage cost (problem 𝑉𝑐), as 𝜒0
′  increases, the 

trader must rent the tanker at an increasingly more expensive initial cost without a possibility to 

revert to cheaper levels unlike in problem 𝑉. These result in a divergence between 𝑉 and 𝑉𝑐 (𝑉 >

𝑉𝑐) at higher storage costs. In summary, the gap 𝑉 − 𝑉𝑐 starts from zero at cheaper storage cost 

initial conditions, and will increase as 𝑇𝐶(0,1) rises (or 𝜒0
′  increases). Note that in this case 𝑉, 𝑉𝑐 ∈ 
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(a.i) 𝜒0

′_𝜉0
′  plane 

 
(a.ii) 𝜒0

′_𝛼0 plane 
 

(a.iii) 𝜒0
′_𝛼0

∗ plane 

(a) 𝑉 
 

 
(b.i) 𝜒0

′_𝜉0
′  plane 

 
(b.ii) 𝜒0

′_𝛼0 plane 
 

(b.iii) 𝜒0
′_𝛼0

∗ plane 

(b) 𝑉𝑐 
 

 
(c.i) 𝜒0

′_𝜉0
′  plane 

 
(c.ii) 𝜒0

′_𝛼0 plane 
 

(c.iii) 𝜒0
′_𝛼0

∗ plane 

(c) 𝑉 − 𝑉𝑐 
Fig. 5.17. Random storage cost initial condition (𝜒0

′ , 𝜉0
′ , 𝛼0, 𝛼0

∗) ∈ [−4,4] × [8,9.5] × [−1,1] ×
[−1,1] under a favorable oil initial condition fixed at (𝜒0, 𝜉0) = (−0.6393,4.6366) (benchmark). 
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(a.i) 𝜒0

′_𝜉0
′  

 
(a.ii) 𝜒0

′_𝛼0 
 

(a.iii) 𝜒0
′_𝛼0

∗ 

(a) 𝑉 

 
(b.i) 𝜒0

′_𝜉0
′  

 
(b.ii) 𝜒0

′_𝛼0 
 

(b.ii) 𝜒0
′_𝛼0

∗ 

(b) 𝑉𝑐 

 
(c.i) 𝜒0

′_𝜉0
′  

 
(c.ii) 𝜒0

′_𝛼0 
 

(c.iii) 𝜒0
′_𝛼0

∗ 

(c) 𝑉 − 𝑉𝑐 
 

Fig. 5.18. Random storage cost initial condition (𝜒0
′ , 𝜉0

′ , 𝛼0, 𝛼0
∗) ∈ [−4,4] × [8,9.5] × [−1,1] ×

[−1,1] under an unfavorable oil initial condition fixed at (𝜒0, 𝜉0) = (−0.3,4.3). 
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Fig. 5.19. 𝑉 or 𝑉𝑐 as a function 

of the one-year time-charter rate 

at 𝑡0, 𝑇𝐶(0,1). Different storage 

cost factors initial conditions 
(𝜒0

′ , 𝜉0
′ , 𝛼0, 𝛼0

∗) are used to 

compute 𝑇𝐶(0,1), where 
(𝜒0

′ , 𝜉0
′ , 𝛼0, 𝛼0

∗)   ∈    [−4,4] ×
[8,9.5] × [−1,1] × [−1,1] are the 

same as utilized in Fig. 5.17 and 

Fig. 5.18. Panel (a) shows a 

favorable oil initial condition; 
(𝜒0, 𝜉0) = (−0.639,4.637), i.e. 

the benchmark values specified 

in Table 5.5, and Panel (b) 

demonstrates an ‘unfavorable’ 

oil initial condition, (𝜒0, 𝜉0) =
(−0.3,4.3). 

 

 
(a) favorable initial oil forward curve 

 
(b) unfavorable initial oil forward curve 
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[0,11), and 0 ≤ 𝑉 − 𝑉𝑐 < 5. 

Now, turning the focus to an ‘unfavorable’ oil initial condition in Fig. 5.18.c and Fig. 5.19.b, 

waiting for a few timesteps before renting the tanker is optimal since it allows to exploit a 

potentially favorable oil forward curve realization. If the initial storage cost is unfavorably high, it 

has a chance to revert to lower levels with the passage of time under the stochastic cost scenario, 

while it stays fixed (expensive) under the constant storage cost assumption, and therefore 𝑉 > 𝑉𝑐 

in this case. 

On the other hand, if the initial storage cost is favorable (low), it may revert to higher levels with 

the passage of time under the stochastic cost scenario, but the trader cannot take advantage of this 

initially low storage cost due to the initially unfavorable oil forward curve. However, under the 

constant storage cost assumption, the trader has access to the same (low) storage cost later. 

Therefore, it is seen in the range 𝑇𝐶(0,1) < 6 that  𝑉𝑐 > 𝑉. 

In summary, increasing the initial storage cost (or 𝜒0
′ ) lowers 𝑉𝑐 more than it does 𝑉, and 

decreasing it boosts 𝑉𝑐 more than it does 𝑉. In other words, when waiting is optimal from an oil 

perspective, having access to a (fixed) cheap storage leads to 𝑉 < 𝑉𝑐, while a locked-in expensive 

storage results in 𝑉 > 𝑉𝑐. Note that in this case 𝑉, 𝑉𝑐 ∈ [0,1.4) and −0.7 < 𝑉 − 𝑉𝑐 < 0.4. 

5.9.7 Impact of the level of pumping costs 

In Fig. 5.20, the impact of the pumping costs, 𝑐𝑃
+ (when buying oil) and 𝑐𝑃

− (when selling oil), are 

studied. Panels (a) and (b) confirm that as the pumping costs increase, there is indeed a decrease 

in both 𝑉 and 𝑉𝑐, which is symmetric with respect to 𝑐𝑃
+ and 𝑐𝑃

−. However, 𝑉 and 𝑉𝑐 vary over 

different ranges, specifically 1.49 ≤ 𝑉 ≤ 9.86 and 0.24 ≤ 𝑉𝑐 ≤ 7.69. In both cases, the 

maximum value is attained when 𝑐𝑃
+ = 𝑐𝑃

− = 0 and the minimum when 𝑐𝑃
+ = 𝑐𝑃

− = 5. In panel (c), 

𝑉 − 𝑉𝑐 is always positive and varies somewhat nonuniformly across the domain. The relative 

difference (𝑉 − 𝑉𝑐) 𝑉⁄  illustrated in panel (d), indicates that 𝑉 outperforms 𝑉𝑐 at all (𝑐𝑃
+, 𝑐𝑃

−) 

points and the measure increases as the pumping costs increases. In other words, under an ideal 

condition, i.e. 𝑐𝑃
+ = 𝑐𝑃

− = 0, 𝑉 outperforms 𝑉𝑐 by only 22% since both 𝑉 and 𝑉𝑐 lead to relatively 
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high values. Whereas under the severely adverse conditions, i.e. 𝑐𝑃
+ = 𝑐𝑃

− = 5, 𝑉 outperforms 𝑉𝑐 

by 84%.  

 

 
(a) 𝑉 

 
(b) 𝑉𝑐 

 
(c) 𝑉 − 𝑉𝑐 

 
(d) (𝑉 − 𝑉𝑐) 𝑉⁄  

 

Fig. 5.20. Impact of the pumping costs, 𝑐𝑃
+ (cost when buying) and 𝑐𝑃

− (cost when selling). All the 

other parameters are set based on the benchmark values specified in Table 5.5. 
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Fig. 5.21 shows the detailed analysis of the trades for (𝑐𝑃
+ , 𝑐𝑃

− ) = (3, 3), where 𝑉 = $4.13 and 

𝑉𝑐 = $1.63, i.e. a 61% difference. It indicates that 𝑉 takes advantage of a cheaper rental cost by 

initiating rental agreements mainly at 𝑡1, 𝑡2, and 𝑡3, compared to 𝑉𝑐 initiating at 𝑡0. That is why 

some losses are observed in Fig. 5.21.b at times 𝑡13, 𝑡14, and 𝑡15 for 𝑉, and at 𝑡12 for 𝑉𝑐; these 

losses stem from the rent contract nearing to its end and forcing the trader to make unattractive 

inventory sales. It is interesting to note that for 𝑉 valuation problem, a decision to rent is made on 

a smaller number of paths compared to 𝑉𝑐 (20865 vs 25000 respectively), however, Fig. 5.21.b 

shows that the average profit and loss over all paths are higher generally for 𝑉. 

 

 
(a) 

 
(b) 

Fig. 5.21. Performance of the algorithms at (𝑐𝑃
+ , 𝑐𝑃

− ) = (3, 3) leading to 𝑉 = $4.13 and 𝑉𝑐 =
$1.63; (a) histogram of the time step at which the rent decision is made, (b): mean of the profits 

or losses (reward) made over the 25000 out-of-sample paths at each timestep. The rest of the 

parameters are set based on the benchmark values specified in Table 5.5. 

5.9.8 Impact of the time horizons 

Table 5.9 summarizes the impact of changing the main problem time horizon 𝑇, and the duration 

(length) of the storage contract, 𝑇′ on both 𝑉 and 𝑉𝑐. As expected, it is seen that expanding the 

time horizon 𝑇 increases the option value generally. Interestingly, extending the length of the rent 

contract, 𝑇′, increases the value significantly. Part of this substantial increase can be explained  
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 𝑉 𝑉𝑐 

𝑇′\𝑇 1.5 2 2.5 3 4 1.5 2 2.5 3 4 

1 6.123 6.194 6.218 6.240 6.228 3.865 3.882 3.882 3.868 3.856 

1.5 - 11.634 11.668 11.632 11.676 - 10.123 10.127 10.120 10.105 

2 - - 18.408 18.451 18.503 - - 17.122 17.164 17.199 

Table 5.9. Impact of the problem time horizon, 𝑇 (years), and duration of the storage contract, 𝑇′ 
(years). All the other parameters are set based on the benchmark values specified in Table 5.5. 

by Fig. 5.22; panel (a) presents the term structure of the initial time-charter rate, 𝑇𝐶(0, 𝑇), which 

is dollar per barrel per year units, and panel (b) provides the same information in units of dollar 

per barrel, by factoring in the contract term 𝑇 and computing the total cost. The benefit of the 

latter form is that it allows to study the additional rental cost per barrel if the rental contract 

duration is increased. More specifically, the graph shows there is an additional cost of $1.62/barrel  

 

 
(a) Time-charter rate at 𝑡 = 0, 𝑇𝐶(0, 𝑇), for 

different rental contract durations (maturities) 

𝑇 quoted in “$ per barrel per year”.   

 
(b) Time-charter rate at 𝑡 = 0 times the 

contract duration, 𝑇𝐶(0, 𝑇) × 𝑇, for different 

maturities 𝑇, quoted in “$ per barrel”.  
 

Fig. 5.22. The term structure of the initial time-charter rate (panel a), and the same structure when 

it is multiplied by the rent duration (T) to represent the actual cost of storage in “$ per barrel” 

(panel b). The basis for the parameters are Table 5.2 for the storage cost model and Table 5.5 for 

the general assumptions. 
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if the contract duration is increased from 1 to 1.5 years, and an additional $0.90/barrel if it is 

increased from 1.5 to 2 years. On the other hand, the initial oil forward prices are 𝐹(0,1) = $67.53, 

𝐹(0,1.5)= $70.44, and 𝐹(0,2) = $72.09, which result in respective spreads of $2.91 and $1.65. 

Therefore, at 𝑡 = 0, comparing the additional value generated from a longer forward maturity 

versus the additional cost from extending the rental contract duration indicates that the value 

increases noticeably. Note that analysis ignores all the extrinsic value generated from future 

trading possibilities because of having the tanker available for a longer time. 

To shed further light on the impact of extending the time horizon, 𝑇, and contract length, 𝑇′, a 

detailed comparison between two cases are provided in Fig. 5.23; (𝑇, 𝑇′) = (2, 1), i.e. the 

benchmark values specified in Table 5.5, and (𝑇, 𝑇′) = (3, 2). Under the stochastic cost 

assumption, it is found that the number of paths on which a rent decision is made increases from 

23,415 to 24,961 (out of the 25,000 out-of-sample paths) by extending (2, 1) to (3, 2). Panels (a) 

and (b) illustrate the histogram of the timestep at which the rent decision is made, which seem to 

indicate a tendency toward an earlier start when (𝑇, 𝑇′) = (3, 2). Therefore, the more attractive 

setup, (𝑇, 𝑇′) = (3, 2), leads to trading more often and earlier. 

Fig. 5.23, panels (c) and (d), show mean of the profits or losses made over the 25000 out-of-sample 

paths at each time step. The higher profits ($4 vs $2.5) observed at the early times confirm the 

arguments above that the gain from the initial oil forward curve outweigh the cost of a longer-term 

storage contract. In addition, the graphs show that the average profit, and the time period over 

which it is possible have the profits is higher in the case of (𝑇, 𝑇′) = (3, 2). 

More importantly, detailed investigations revealed that the number of paths on which the tanker is 

filled more than one time increases from 5 to 340 under the stochastic storage cost, and from 1 to 

249 under the constant storage cost assumption when (𝑇, 𝑇′) = (2, 1) is extended to (3, 2). While 

340 might not seem to be very many paths (just 1.36% of the total 25K simulated), but this is a 

“rent-free” trade opportunity on those path after the first trade occurred. Consequently, the average 

profit on these 340 paths is much higher, at $39.97, in comparison to rest of the paths (ranging in 

[−0.5,4.4]). Table 5.10 summarizes the information corresponding to the number paths with 
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(a) 𝑇 = 2 years and 𝑇′ = 1 year 

 
(b) 𝑇 = 3 years and 𝑇′ = 2 years 

 
(c) 𝑇 = 2 years and 𝑇′ = 1 year 

 

 
(d) 𝑇 = 3 years and 𝑇′ = 2 years 

 

Fig. 5.23. Impact of extending the main problem time horizon, 𝑇, and the duration (length) of the 

storage contract, 𝑇′. (𝑇, 𝑇′) is increased from (2, 1) (i.e. the benchmark values specified in Table 

5.5) to (3, 2), and the corresponding results are presented on the left and right columns 

respectively. Panels (a) and (b) show the histogram of the timestep at which the rent decision is 

made (if any at all). Panels (c) and (d) illustrate mean of the profits or losses (reward) made over 

the 25000 out-of-sample paths at each timestep. 

multiple fill ups and the average profit (or loss) on those paths for both stochastic and constant 

storage cost cases. 
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 𝑉 𝑉𝑐 

(𝑇, 𝑇′) (2, 1) (3, 2) (2, 1) (3, 2) 

Number of paths with multiple fill up 5 340 1 249 

Average profit or loss over the above paths ($) 13.31 39.97 14.53 39.08 

Table 5.10. Impact of extending the main problem time horizon, 𝑇, and the duration (length) of 

the storage contract, 𝑇′, on the paths with multiple fill ups. 

5.9.9 Sensitivity Analysis 

In this section, the goal is to study sensitivity of 𝑉 and 𝑉𝑐 to the parameters of the stochastic 

differential equations modeling oil prices (Schwartz and Smith (2000)) and storage cost prices 

(Mirantes et al. (2012)). Sensitivity is computed as the percentage change in 𝑉 or 𝑉𝑐 in response 

to the percent change in a single parameter. The basis for the parameters are Table 2.1 for the oil 

model, Table 5.2 for the storage cost model, and Table 5.5 for the general framework assumptions. 

For brevity, the sensitivity of 𝑉 and 𝑉𝑐 are reported simultaneously, where 𝑉 results are shown 

with solid lines and 𝑉𝑐 results are illustrated with dashed lines, and the impact of a particular 

parameter can be identified via the symbol specified in the legend. Fig. 5.24 shows the sensitivity 

with respect to the risk-premium and drift rate parameters. Firstly, it seems that the impact of oil-

related parameters, namely 𝜆𝜒, 𝜆𝜉, and 𝜇𝜉, is more pronounced than that of the storage cost 

parameters. The same observation is made across all parameters including the initial condition 

(𝜒0, 𝜉0, 𝜒0
′ , 𝜉0

′ , 𝛼0, 𝛼0
∗). Secondly, 𝑉𝑐 is more sensitive than 𝑉 across all parameters. Recall that 𝑉𝑐 

is computed under a constant storage cost (equal to the initial value, 𝑇𝐶(0,1)) in the absence of 

any future stochasticity. Thus, the only way 𝑉𝑐 is affected by the storage model parameters is via 

𝑇𝐶(0,1), which involves integration of the storage cost forward curve. It might be suggested that 

𝑉𝑐 is more sensitive than 𝑉 since when a parameter influence 𝑇𝐶(0,1), it remains fixed (certain) 

for the duration of the problem time horizon in the case of 𝑉𝑐, whereas the stochasticity 

(uncertainty) in the variable storage cost case relaxes some of that effect through time. 
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Fig. 5.24. Sensitivity of 𝑉 (solid lines) and 𝑉𝑐 (dashed lines) to risk-premium and drift rate 

parameters. The basis for the parameters are Table 2.1 for the oil model, Table 5.2 for the storage 

cost model, and Table 5.5 for the general assumptions. 

Fig. 5.25.a shows the sensitivity to the volatility parameters. The previous observations hold here 

as well; 𝑉𝑐 is more sensitive than 𝑉, and oil-related parameters are more influential that the storage 

cost. The graph indicates that a higher 𝜎𝜒 and 𝜎𝜉 increases the value, while a higher 𝜎𝜒′ hurts the 

value. It might be explained by the fact that the former is the source of value, while the latter is a 

cost. Fig. 5.25 panel (b) shows the sensitivity to the speed of mean reversion, which indicates that 

the values are very sensitive to these parameters (still more sensitive to 𝑘𝜒 than 𝑘𝜒′). Panel (c) 

shows the sensitivity to the correlation parameters; it indicates that the results are relatively not 

very sensitive to these parameters as the graph ranges between -6% to +7%. The two most 

influential correlations are  𝜌𝜒𝜉  and 𝜌𝜒′𝜉′  with the value being more sensitive to 𝜌𝜒𝜉  than 𝜌𝜒′𝜉′. 

Panel (d) displays the sensitivity to the seasonality period parameter ϕ; reducing it leads to a 

decrease in the value which is due to higher storage costs since further investigations reveal that  
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(a) Volatility parameters 

 

(b) Speed of mean-reversion parameters 

 

(c) Correlation parameters 

 

(d) Seasonality period parameter (ϕ) 

 

Fig. 5.25. Sensitivity of 𝑉 (solid lines) and 𝑉𝑐 (dashed lines) to different parameters. The basis for 

the parameters are Table 2.1 for the oil model, Table 5.2 for the storage cost model, and Table 5.5 

for the general assumptions. 
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a smaller ϕ means a weaker seasonal pattern (resulting in a faster increase to the long-term higher 

prices), and higher time-charter rates. 

Although in the previous sections the impact of the initial conditions, (𝜒0, 𝜉0, 𝜒0
′ , 𝜉0

′ , 𝛼0, 𝛼0
∗), on 𝑉 

and 𝑉𝑐 was studied, in this part the sensitivity of 𝑉 and 𝑉𝑐 to these parameters are revisited in a 

fashion consistent with the sensitivity analysis. In Fig. 5.26, percentage change in 𝑉 (or 𝑉𝑐) in 

terms of percentage change in one parameter is illustrated. It should be noted that the percentage 

change in the parameter refers to the absolute value and ignores the sign (important for 𝜒0). Fig. 

5.26.a shows that while both initial conditions are impactful,  𝜉0 is more influential than 𝜒0, which 

can be explained by the fact that the latter is a mean-reverting factor. Also, it is seen that 𝑉𝑐 more 

sensitive than 𝑉, which may be due to fact that it has a smaller range of values. Similarly, Fig. 

5.26.b shows that 𝜉0
′  affect 𝑉 and 𝑉𝑐 more significantly than 𝜒0

′  does, and both of which have more 

 

(a) Oil factors initial conditions (𝜒0, 𝜉0) 

 

(b) Storage cost factors initial conditions 

(𝜒0
′ , 𝜉0

′ , 𝛼0, 𝛼0
∗) 

Fig. 5.26. Sensitivity of 𝑉 (solid lines) and 𝑉𝑐 (dashed lines) to the initial conditions, 𝜒0 and 𝜉0. 

The parameters are based on Table 5.5, where accordingly the benchmark values are (𝜒0, 𝜉0) = (-

0.639, 4.637) and (𝜒0
′ , 𝜉0

′ , 𝛼0, 𝛼0
∗)= (3.39, 8.4, 0.3, 0.4). 
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dominant impacts compared to 𝛼0 and 𝛼0
∗. The direction of change is the opposite comparing 

(𝜒0, 𝜉0) and (𝜒0
′ , 𝜉0

′) since the latter represents a cost. 

5.10 Summary 

In this chapter a more realistic problem framework is studied. To do so, a stochastically varying 

storage cost is implemented, which permits to examine the optimal decision making regarding the 

initiation of a fixed-term time-charter contract, 𝑎𝑖
𝐼, the quantity to buy/sell on the spot, 𝑎𝑖

𝑅, and the 

forward contract maturity, 𝑎𝑖
𝑇. A modified version of the ADP approach is used to solve the 

resulting optimization problem. The modification is based on adjusting the basis functions present 

in the Continuation Function Approximation (CFA) linear structure based on the corresponding 

endogenous state, 𝑥𝑖, for which the theoretical ground is provided in Proposition 5.I. 

To be able to isolate the impact of a stochastic storage cost, the result of a constant storage cost is 

also provided under the exact same conditions alongside, denoted by 𝑉 and 𝑉𝑐 respectively. In-

sample and out-of-sample (lower-bound) values are calculated and compared. The computed 

optimal values show that given an unfavorable initial storage cost condition, e.g. benchmark values 

in Table 5.5, the stochastic storage cost algorithm can indeed take advantage of a potential later 

drop in the cost; the confidence intervals are [6.181, 6.189] and [3.878, 3.883] for 𝑉 and 𝑉𝑐 

respectively. Similar to the previous chapter, it is found that a partial sale does not change the 

optimal value achieved. The optimal policies in regard with (𝑎𝑖
𝐼 , 𝑎𝑖

𝑅 , 𝑎𝑖
𝑇) are investigated by 

presenting them in a two-dimensional domain of exogenous state variables, and by showing out-

of-sample trading decisions. Subsequently, the role of the 𝜒𝑖 or equivalently, the forward curve 

slope in the optimal policy is found to be crucial. 

If the storage cost initial condition is unfavorable, i.e. the storage cost is high but will most likely 

experience a decline in the future, the optimal policy lead to 𝑉𝑐 = 𝑉 when the oil forward curve 

initial condition is also unfavorable as both yield little profits. However, when the oil forward 

curve initial condition is favorable 𝑉 > 𝑉𝑐 since 𝑉𝑐 suffers from a locked-in expensive storage 

cost while 𝑉 benefits from its decline. On the other hand, if the storage cost initial condition is 

favorable, i.e. the storage cost will most likely increase in the future, the optimal policy lead to 
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𝑉𝑐 = 𝑉 when the oil forward curve initial condition is favorable since both start trading early. 

However, 𝑉𝑐 > 𝑉 when the oil forward curve initial condition is unfavorable since 𝑉𝑐 enjoys from 

a locked-in cheap storage cost while they both wait for a better oil forward realization. In 

conclusion, the relative impact of the initial conditions on 𝑉 and 𝑉𝑐 significantly depends on the 

policy, specifically, when a decision to rent is advised. 

It is shown that increasing the degree of the polynomial basis function increases the optimal value 

marginally, however, to avoid excessive computational costs, the third degree is selected as the 

benchmark. Furthermore, investigating the impact of the pumping costs shows that under severely 

adverse conditions, i.e. high pumping costs, the algorithm with the stochastic storage cost performs 

significantly better than the one with constant storage cost. In addition, it is found that the term 

(duration) of the tanker time-charter contract has a significant effect on the values achieved 

regardless of the storage cost stochasticity assumption. 
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Chapter 6 

 

6 Conclusions and Future Research 

6.1 Conclusions 

The objective of the present research is to explain the off-shore oil storage trade observed in a 

contango market and aims to present an improved oil trading strategy directly based on transacting 

in the forward markets. Finding an optimal strategy to exploit a cash and carry arbitrage using both 

spot and forward markets is an important real options question. The underlying operational 

flexibilities impact both the problem and its MDP formulation. To study a range of assumptions, 

two main different frameworks are introduced. In the first framework, studied in Chapter 3 and 

Chapter 4, the duration of the storage rental contract is flexible, matching the optimally chosen 

maturity, and the storage cost is constant. In the second framework, examined in Chapter 5, the 

duration of the storage rental contract is fixed and the storage cost is stochastic (a constant storage 

cost is also considered in parallel). The additional level of complexity in the second framework 

allows for a richer and more realistic setup. Furthermore, the above advancements in the 

framework are accompanied with investigating, comparing, and identifying reliable solution 

approaches. The three solution methods studied are Forward Dynamic Optimization (Chapter 3), 

exact Dynamic Programming (Chapter 4), and Approximate Dynamic Programming (Chapter 4 

and Chapter 5). 

We contribute to the real options literature by studying the optimal decision making with respect 

to forward contract maturity for delivering an oil inventory, while the seller wishes to always stay 

hedged with a short position in the forward market. The decision maker can also sell her inventory 

partially on the spot market, and sell the rest of the inventory forward. There exists extensive 

literature concerned with natural gas storage valuation. However, a computationally tractable 

setting like this one in which forward trading decisions do not immediately impact the inventory 

level has not yet been studied. The present novel setting permits the trader to optimize the maturity 

of the forward contract for delivering the remaining inventory. This framework does not depend 
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on a specific price dynamics, and it can accommodate forward curve models with a higher number 

of stochastic drivers while being tractable. 

In Chapter 3, the Forward Dynamic Optimization (FDO) solution method is studied. This heuristic 

strategy (also known as the Rolling Intrinsic policy) is myopic in the sense that it does not consider 

the continuation value of a position in evaluating an action. Instead, it just maximizes the 

immediate reward. Because, as such, FDO considers only those trades with an immediate positive 

payoff, it cannot initiate any trades under unfavorable initial conditions such as a downward (or 

insufficiently upward) sloping initial forward curve. It will not consider such trades even if they 

position the trader for excellent future profits. It should be noted that this apparent disadvantage 

renders this method to be very low risk (it never accepts any losses) and to have a policy that is 

completely model independent (no model for what might happen in the future is needed, as the 

future isn’t really considered). To conclude, FDO is simple, transparent, and easy for practitioners 

to understand. It has attractive risk characteristics. However, it is suboptimal on an expected profit 

basis. 

To mitigate this suboptimality, in Chapter 4, Optimal Solution with Dynamic Programming, 

optimal solution approaches are studied. The two optimal approaches examined are the exact and 

Approximate Dynamic Programming (ADP). A comparison with FDO results is also presented. 

We show that using an ADP strategy, it is possible to increase the added value of FDO strategy by 

about 36% from $7.85 to $10.73. In contrast to FDO, the ADP algorithm can initiate under an 

adverse initial condition even if this implies an initial loss. Although ADP increases the expected 

profits relative to FDO, the former leads to a much higher risk with a larger standard deviation (4.6 

times) and range (3.2 times). Interestingly, ADP tends to adjust the maturity of the forward contract 

much less frequently than FDO since it does not trade to capture every (small) profit. 

The optimal value of the ADP method is validated against the exact Dynamic Programming 

method. Compared to the exact method, ADP estimates the option value accurately (less than 1% 

difference) and 39-170 times faster. The optimal decision is characterized in the two-dimensional 

domain of 𝜒_ξ using both ADP and exact methods, and a good match is observed. In the region 

containing most realizations, the decision boundary is nearly vertical. This indicates that 𝜒 is the 
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more important factor in determining the decision. The reason is that 𝜒 has a stronger relationship 

with the forward curve slope. Mapping the optimal decision into the domain of the spot price and 

the forward curve slope allows to uncover the financial intuition behind the policy. It reveals that 

the trade is often terminated by selling out the inventory on the spot market when the slope is 

smaller than a usually negative threshold, i.e. make a profit by receiving the high spot price and 

paying the low forward price. 

It is shown theoretically in Proposition 4.I that a partial sale (splitting the quantity sold between 

the spot and forward markets) is never optimal. Thus, this flexibility neither adds any value nor 

changes the optimal policy. The intuition behind this proposition might be explained by the 

absence of a constraint on the amount of oil that can be sold from the inventory within one period. 

The proposition is also verified computationally via both the exact and ADP methods. The results 

of allowing the potential for partial sale (Δ𝑅 =1/3 vs 1) support the proposition, and show a 

reduction of 2-6 times in computational time. Furthermore, it is proved in Proposition 4.II that the 

optimal actions are limited to a much smaller subset of the feasible set, (𝑎𝑖
𝑅 , 𝑎𝑖

𝑇) ∈

{(𝑅𝑖, 0), (0, 𝑡𝑁), (0, 𝑡𝑖+1)}. Accordingly, the corresponding Bellman’s equation is expressed in 

terms of this smaller feasible action set and the forward curve slope. Using Proposition 4.II, the 

computation time is further reduced between 1.7-10 times. Chapter 4 concludes that the ADP 

approach can be the workhorse solution technique for the MDP’s under consideration, and paves 

the road for the next chapter. 

In Chapter 5, the problem framework is fundamentally expanded, which permits to formulate a 

richer and more realistic framework. Among the contributions of this chapter are studying a 

stochastic storage cost, the decision regarding the time of renting the storage, and the decisions 

with respect to time and quantity for buying/selling the oil (independent from the storage rental 

time). 

The impact of the stochastic storage cost is quantified by computing the value under an assumption 

that the storage cost remains ‘constant’ and equal to the initial value at 𝑡0. In both constant and 

stochastic storage cost cases, the trader is faced with the exact same oil forward curve realizations. 

Comparison of the optimal values under the constant and stochastic storage cost, denoted by 𝑉 and 
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𝑉𝑐 respectively, leads to the following conclusions; (i) the initial condition of the stochastic storage 

cost, (𝜒0
′ , 𝜉0

′ , 𝛼0, 𝛼0
∗), impacts the direction in which it evolves dynamically, (ii) the direction in 

which the storage cost evolves affects the optimal decision of when to rent the storage, and (iii) 

the opportunities arising in the oil storage and forward markets are considered concurrently in 

decision-making to balance the tradeoffs between the two sides. 

In Chapter 5, many (𝜒0
′ , 𝜉0

′ , 𝛼0, 𝛼0
∗) combinations are selected that result in the same such non-

stochastic one-year time-charter rate of Chapter 4, i.e. 𝑇𝐶(0,1) = $6.57. It is interesting to find 

that the option value in Chapter 4 (respectively $10.73 and $9.29 with full and zero refund of 

storage cost) is higher than the value under a constant storage cost in Chapter 5, 𝑉𝑐 =$5.53, since 

the framework assumptions are more relaxed in Chapter 4 (specifically the refund of storage cost 

at an early discharge). Using these different (𝜒0
′ , 𝜉0

′ , 𝛼0, 𝛼0
∗) combination under the stochastic 

storage cost result in $5.53 ≤ 𝑉 ≤ $7.79 in Chapter 5. 

Although the ADP approach developed in the previous chapter is the foundation of the solution 

technique used in the present chapter, Chapter 5 also contributes to the development of an ADP 

approach via a novel Continuation Function Approximation (CFA) structure, for which the 

theoretical foundation is established in Proposition 5.I. This proposition exploits the irreversibility 

of the rent decision in the MDP state/action construct. It establishes that the value function depends 

on only the oil factors among all the stochastic factors comprising 𝑊𝑖 if the state, 𝑥𝑖, indicates an 

‘already-rented’ status. Consequently, the basis functions used in the CFA linear structure are 

adjusted according to 𝑥𝑖, which is an innovation of this research. The impact of the above 

arguments is also seen on the optimal policies; the decision boundary in 𝜒_𝜉 plane may be sharp 

or blurry depending on 𝑥𝑖. 

Finally, the sensitivity analysis of 𝑉 and 𝑉𝑐 to different parameters demonstrates that firstly 𝑉𝑐 is 

more sensitive than 𝑉 in general since any change will be persistent in time (will not evolve 

through the stochastic cost dynamics). This highlights the importance of including stochastic 

storage costs to be able to monitor the storage costs in search of an optimal initiation time. 

Secondly, oil-related parameters are more influential that the storage cost (other than the initial 
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condition) potentially since the rent decision is made once as opposed to being revisited 

periodically, i.e. as soon as there is a tanker in place the profit is derived by oil-related trades. 

6.2 Principal Contributions 

The main contributions of this thesis are summarized as follows: 

I. Extending the spot market trading to both the spot and forward markets in real options 

involving storage assets, which leads to a joint optimization of the forward maturity and 

inventory management decisions 

II. Establishing underperformance of the suboptimal heuristic known to perform well in the 

gas storage valuation context (Chapter 3 and Chapter 4), and offering the optimal trading 

strategies (Chapter 4 and Chapter 5) 

III. Quantifying the risk and reward characteristics of liquidation under a constantly hedging 

forward contract compared to other possibilities, e.g. an optimal sale on the spot market 

(Chapter 4)  

IV. Formulating a realistic framework by introducing stochastic storage costs, which allows 

studying optimal timing of initiating the trade with storage refill options, and comparing 

the impact of stochastic versus constant storage costs (Chapter 5) 

V. Characterizing the following properties of the optimal policy; a partial sale of the inventory 

on the spot and forward market is not optimal, and the optimally selected maturities belong 

to a small subset of the feasible set (proved in Chapter 4 and numerically observed in 

Chapter 5) 

6.3 Future Work 

One avenue for future research is considering a model that incorporates all the stochastic factors 

corresponding to oil prices and storage costs jointly in a single framework. Such a model can be 

beneficial in understanding the impact of any correlation between the oil and tanker markets on 

the trading policy. However, as it was mentioned in the literature review, developing such model 

would be challenging since the relationship between the oil and tanker market is influenced by 

many other variables.  

It is found that the ADP method is provides riskier policies comparing to FDO approach. 

Accordingly, another perspective to the existing (or similar) problems is through the use of a 

different objective function. For instance, as opposed to solely maximize the profits in dollar terms, 
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a risk measure could be minimized, or risk-aversion can be introduced via a utility function of the 

profits.  

Ultimately, considering other commodities would be another promising avenue for further 

research; for instance in the case of agricultural commodities, Fackler and Livingston (2002) study 

optimal storage for Illinois soybeans. In particular, a setting where a producer (farmer) anticipates 

some random (potentially climate-related) crop production level periodically would be interesting. 

The producer maximizes the profits or minimizes periodic revenue volatilities by optimally 

selecting the time and quantity of the inventory sold. These actions can impact the prices if the 

market impact of producers is large such as in an oligopoly. For example, on a collective basis, the 

efforts and market power of producers aiming for such an outcome has led to the formation of The 

Federation of Quebec Maple Syrup Producers, called “the OPEC of the maple syrup world” by 

The Economist (“Sticky fingers,” 2013, “The Great Canadian Maple Syrup Heist,” 2013). Their 

inventory capacity is about 165,000 barrels each valuing US$1200 approximately. 
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8 Appendix A 

This appendix presents the detailed proofs of the lemmas and propositions discussed in the paper. 

8.1 Proof of Lemma 4.I: 

Lemma 4.I: The reward function 𝑟𝑖(𝑎𝑖, 𝑥𝑖,𝑊𝑖), Eq. 8.1, is neither concave nor convex with respect 

to (𝑎𝑖
𝑅 , 𝑎𝑖

𝑇). 

Proof: 

The reward function is expressed by the following equation.  

𝑟𝑖(𝑎𝑖, 𝑥𝑖, 𝑊𝑖) = 𝑎𝑖
𝑅[𝐹(𝑡𝑖, 𝑡𝑖) − 𝑐𝑃 − 𝑐𝐻(𝑡𝑖 − 𝑇𝑖)]

+ (𝑅𝑖 − 𝑎𝑖
𝑅) [𝑒−𝑟(𝑎𝑖

𝑇−𝑡𝑖)[𝐹(𝑡𝑖, 𝑎𝑖
𝑇) − 𝑐𝑃] − 𝑐𝐻(𝑎𝑖

𝑇 − 𝑇𝑖)]

− 𝑅𝑖𝑒
−𝑟(𝑇𝑖−𝑡𝑖)[𝐹(𝑡𝑖, 𝑇𝑖) − 𝑐𝑃] 

= 𝑎𝑖
𝑅 [𝐹(𝑡𝑖, 𝑡𝑖) − 𝑐𝑃 − 𝑒

−𝑟(𝑎𝑖
𝑇−𝑡𝑖)[𝐹(𝑡𝑖, 𝑎𝑖

𝑇) − 𝑐𝑃] + 𝑐𝐻(𝑎𝑖
𝑇 − 𝑡𝑖)]

+ 𝑅𝑖 [𝑒
−𝑟(𝑎𝑖

𝑇−𝑡𝑖)[𝐹(𝑡𝑖, 𝑎𝑖
𝑇) − 𝑐𝑃] − 𝑐𝐻(𝑎𝑖

𝑇 − 𝑇𝑖)]

− 𝑅𝑖𝑒
−𝑟(𝑇𝑖−𝑡𝑖)[𝐹(𝑡𝑖, 𝑇𝑖) − 𝑐𝑃] 

Eq. 8.1 

The partial derivatives of 𝑟𝑖 can be computed as follows, where 𝐹′ ∶= 𝜕𝐹(𝑡𝑖, 𝑎𝑖
𝑇) 𝜕𝑎𝑖

𝑇⁄  and 𝐹′′

∶= 𝜕2𝐹(𝑡𝑖, 𝑎𝑖
𝑇) 𝜕(𝑎𝑖

𝑇)2⁄ . 

 
𝜕𝑟𝑖
𝜕𝑎𝑖

𝑅
= 𝐹(𝑡𝑖, 𝑡𝑖)− 𝑐𝑃−𝑒

−𝑟(𝑎𝑖
𝑇−𝑡𝑖)[𝐹(𝑡𝑖, 𝑎𝑖

𝑇)− 𝑐𝑃]+ 𝑐𝐻(𝑎𝑖
𝑇− 𝑡𝑖) 

Eq. 8.2 

 
𝜕𝑟𝑖
𝜕𝑎𝑖

𝑇
= (𝑅𝑖−𝑎𝑖

𝑅) [𝑒−𝑟(𝑎𝑖
𝑇−𝑡𝑖) [−𝑟(𝐹(𝑡𝑖, 𝑎𝑖

𝑇)− 𝑐𝑃)+𝐹
′
]− 𝑐𝐻] 

Eq. 8.3 

 
𝜕2𝑟𝑖

𝜕(𝑎𝑖
𝑅)

2 = 0 
Eq. 8.4 
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𝜕2𝑟𝑖

𝜕(𝑎𝑖
𝑇)

2 = (𝑅𝑖−𝑎𝑖
𝑅)𝑒−𝑟(𝑎𝑖

𝑇−𝑡𝑖) [𝑟2(𝐹(𝑡𝑖, 𝑎𝑖
𝑇)− 𝑐𝑃)−2𝑟𝐹

′+𝐹′′] Eq. 8.5 

 
𝜕2𝑟𝑖

𝜕𝑎𝑖
𝑅𝜕𝑎𝑖

𝑇
=

𝜕2𝑟𝑖
𝜕𝑎𝑖

𝑇𝜕𝑎𝑖
𝑅
= − [𝑒−𝑟(𝑎𝑖

𝑇−𝑡𝑖) [−𝑟(𝐹(𝑡𝑖, 𝑎𝑖
𝑇)− 𝑐𝑃)+𝐹

′
]− 𝑐𝐻] 

Eq. 8.6 

According to Eq. 8.1, 𝑟𝑖 is linear with respect to 𝑎𝑖
𝑅 ∈ [0, 𝑅𝑖], and it can be maximized as follows; 

if 𝜕𝑟𝑖 𝜕𝑎𝑖
𝑅⁄ > 0, then 𝑎𝑖

𝑅 = 𝑅𝑖 is optimum, and the only feasible choice for the other decision 

variable is 𝑎𝑖
𝑇 = 0. On the other hand, if 𝜕𝑟𝑖 𝜕𝑎𝑖

𝑅⁄ ≤ 0, then 𝑎𝑖
𝑅 = 0 is optimum, and 𝑎𝑖

𝑇 must be 

chosen optimally by solving 𝜕𝑟𝑖 𝜕𝑎𝑖
𝑇⁄ = 0, which is the solution of Eq. 8.7. 

𝐹′ − 𝑟(𝐹(𝑡𝑖, 𝑎𝑖
𝑇) − 𝑐𝑃) = 𝑒𝑟(𝑎𝑖

𝑇−𝑡𝑖)𝑐𝐻 
Eq. 8.7 

The Hessian matrix at stage 𝑖 can be written as in Eq. 8.8. 

𝐻𝑖 = [
0 𝑏
𝑏 𝑑

] ∶=

[
 
 
 
 0

𝜕2𝑟𝑖
𝜕𝑎𝑖

𝑅𝜕𝑎𝑖
𝑇

𝜕2𝑟𝑖
𝜕𝑎𝑖

𝑇𝜕𝑎𝑖
𝑅

𝜕2𝑟𝑖

𝜕(𝑎𝑖
𝑇)

2
]
 
 
 
 

= 

[
0 𝑒−𝑟(𝑎𝑖

𝑇−𝑡𝑖)[𝑟(𝐹(𝑡𝑖 , 𝑎𝑖
𝑇) − 𝑐𝑃) − 𝐹

′] + 𝑐𝐻

𝑒−𝑟(𝑎𝑖
𝑇−𝑡𝑖)[𝑟(𝐹(𝑡𝑖 , 𝑎𝑖

𝑇) − 𝑐𝑃) − 𝐹
′] + 𝑐𝐻 (𝑅𝑖 − 𝑎𝑖

𝑅)𝑒−𝑟(𝑎𝑖
𝑇−𝑡𝑖)[𝑟2(𝐹(𝑡𝑖 , 𝑎𝑖

𝑇) − 𝑐𝑃) − 2𝑟𝐹
′ + 𝐹′′]

] 

Eq. 8.8 

By computing the eigen-values of 𝐻𝑖, Eq. 8.9, it might be shown that 𝑟𝑖(𝑎𝑖, 𝑥𝑖, 𝑊𝑖) is neither 

concave or convex by Eq. 8.10. 

𝜆1 =
1

2
[−√4𝑏2 + 𝑑2 + 𝑑] , 𝜆2 =

1

2
[√4𝑏2 + 𝑑2 + 𝑑] Eq. 8.9 

So, 𝜆1𝜆2 can be expressed by Eq. 8.10. 

𝜆1𝜆2 = −𝑏2 ≤ 0 
Eq. 8.10 

Therefore, 𝑟𝑖 is neither concave nor convex. Furthermore, Table 8.1 summarizes all possible 

scenarios regarding the signs of 𝜆1 and 𝜆2, and discusses the corresponding solutions (if any) based 

on Eq. 8.9. 
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𝜆1 > 0 No solution 

𝜆1 = 0 𝑏 = 0 and 𝑑 ∈ ℝ+ 

𝜆1 < 0 𝑏 = 0 and 𝑑 ∈ ℝ−, or 𝑏 ≠ 0 and 𝑑 ∈ ℝ 

𝜆2 > 0 𝑏 = 0 and 𝑑 ∈ ℝ+, or 𝑏 ≠ 0 and 𝑑 ∈ ℝ 

𝜆2 = 0 𝑏 = 0 and 𝑑 ∈ ℝ− 

𝜆2 < 0 No solution 

Table 8.1. Solution to inequalities based on Eq. 8.9. 

From the table, it is deduced that the condition 𝜆1 ≥ 0 and 𝜆2 ≥ 0 can hold when 

𝑏 = 0 and 𝑑 ∈ ℝ+ (resulting in 𝜆1 = 0 and 𝜆2 > 0), 
Eq. 8.11 

and, the condition 𝜆1 ≤ 0 and 𝜆2 ≤ 0 can hold when 

𝑏 = 0 and 𝑑 ∈ ℝ− (resulting in 𝜆1 < 0 and 𝜆2 = 0). 
Eq. 8.12 

Either of the two above cases requires 𝑏 to be constantly zero. This is not possible because 𝑏 = 0 

together with Eq. 8.3 and Eq. 8.6 imply that 
𝜕𝑟𝑖

𝜕𝑎𝑖
𝑇 = 0, which is in contrast to the stage reward 

function assumptions (the reward function is not constant with respect to 𝑎𝑖
𝑅 and 𝑎𝑖

𝑇).∎ 

8.2 Proof of Lemma 4.II: 

Lemma 4.II lemma has two parts: 

(i) The value function 𝑉𝑖(𝑥𝑖,𝑊𝑖) can be written the form of 𝑅𝑖𝑣𝑖(𝑇𝑖,𝑊𝑖), i.e. a multiple of 𝑅𝑖, ∀𝑖 ∈

ℐ ∖ {𝑁}. 

(ii) If 𝑉𝑖+1(𝑥𝑖+1,𝑊𝑖+1) = 𝑅𝑖+1𝑣𝑖+1(𝑇𝑖+1,𝑊𝑖+1), then at stage 𝑖 any action (𝑎𝑖
𝑅 , 𝑎𝑖

𝑇) =

(0 < 𝑎𝑖
𝑅 < 𝑅𝑖, 𝑎𝑖

𝑇) is dominated by either (0, 𝑎𝑖
𝑇) or (𝑅𝑖, 0). 

Proof: 

We will prove part (i) of the lemma by backward induction, and as part of this process, we will 

prove part (ii) as well. Let us consider the Bellman equation, Eq. 4.8, at time stage 𝑖 = 𝑁 − 1, 

where the continuation value is zero.  
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𝑉𝑁−1(𝑥𝑁−1,𝑊𝑁−1) = max
𝑎∈𝒜𝑁−1(𝑥𝑁−1)

𝑟𝑁−1(𝑎, 𝑥𝑁−1,𝑊𝑁−1) = 

max
𝑎∈𝒜𝑁−1(𝑥𝑁−1)

𝑎𝑁−1
𝑅 [𝐹(𝑡𝑁−1, 𝑡𝑁−1) − 𝑐𝑃 − 𝑐𝐻(𝑡𝑁−1 − 𝑇𝑁−1)]

+ (𝑅𝑁−1 − 𝑎𝑁−1
𝑅 ) [𝑒−𝑟(𝑎𝑁−1

𝑇 −𝑡𝑁−1)[𝐹(𝑡𝑁−1, 𝑎𝑁−1
𝑇 ) − 𝑐𝑃]

− 𝑐𝐻(𝑎𝑁−1
𝑇 − 𝑇𝑁−1)]

− 𝑅𝑁−1𝑒
−𝑟(𝑇𝑁−1−𝑡𝑁−1)[𝐹(𝑡𝑁−1, 𝑇𝑁−1) − 𝑐𝑃] 

Eq. 8.13 

To solve the maximization, the reward function 𝑟𝑁−1 can expressed as the following, which shows 

that it is linear with respect to 𝑎𝑁−1
𝑅 . 

𝑟𝑁−1(𝑎𝑁−1, 𝑥𝑁−1,𝑊𝑁−1) = 

𝑎𝑁−1
𝑅 [𝐹(𝑡𝑁−1, 𝑡𝑁−1) − 𝑐𝑃 − 𝑒

−𝑟(𝑎𝑁−1
𝑇 −𝑡𝑁−1)[𝐹(𝑡𝑁−1, 𝑎𝑁−1

𝑇 ) − 𝑐𝑃]

+ 𝑐𝐻(𝑎𝑁−1
𝑇 − 𝑡𝑁−1)]

+ 𝑅𝑁−1 [𝑒
−𝑟(𝑎𝑁−1

𝑇 −𝑡𝑁−1)[𝐹(𝑡𝑁−1, 𝑎𝑁−1
𝑇 ) − 𝑐𝑃]

− 𝑐𝐻(𝑎𝑁−1
𝑇 − 𝑇𝑁−1)]

− 𝑅𝑁−1𝑒
−𝑟(𝑇𝑁−1−𝑡𝑁−1)[𝐹(𝑡𝑁−1, 𝑇𝑁−1) − 𝑐𝑃] 

Eq. 8.14 

Because 𝑟𝑁−1 is linear with respect to 𝑎𝑁−1
𝑅 ∈ [0, 𝑅𝑁−1], 𝑎𝑁−1

𝑅 = 0 if 𝜕𝑟𝑁−1 𝜕𝑎𝑁−1
𝑅⁄ ≤ 0, and 

𝑎𝑁−1
𝑅 = 𝑅𝑁−1 if 𝜕𝑟𝑁−1 𝜕𝑎𝑁−1

𝑅⁄ > 0, respectively generating the payoffs 𝑝0 and 𝑝1 defined by Eq. 

8.16 and Eq. 8.17. Note that the feasible set is (𝑎𝑁−1
𝑅 , 𝑎𝑁−1

𝑇 ) ∈ [0, 𝑅𝑁−1) × {𝑡𝑁} ∪ {𝑅𝑁−1} × {0}. 

If 𝑎𝑁−1
𝑅 = 0 is optimal the only feasible 𝑎𝑁−1

𝑇  will be 𝑡𝑁, whereas if 𝑎𝑁−1
𝑅 = 𝑅𝑁−1 is optimal the 

only feasible 𝑎𝑁−1
𝑇  will be 0. The condition 𝜕𝑟𝑁−1 𝜕𝑎𝑁−1

𝑅⁄ > 0 can be written in terms of the more 

intuitive slope parameter 𝑚𝑁−1 as expressed by Eq. 8.15. 

𝑚𝑁−1 ∶=
𝑒−𝑟(𝑎𝑖

𝑇−𝑡𝑖)[𝐹(𝑡𝑖, 𝑎𝑖
𝑇) − 𝑐𝑃] − [𝐹(𝑡𝑖, 𝑡𝑖) − 𝑐𝑃]

𝑎𝑖
𝑇 − 𝑡𝑖

< 𝑐𝐻 
Eq. 8.15 

Rewrite the payoff when 𝑚𝑁−1 ≥ 𝑐𝐻 as 
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𝑝0 ∶= 𝑟𝑁−1((0, 𝑡𝑁), 𝑥𝑁−1,𝑊𝑁−1) 

= 𝑅𝑁−1[𝑒
−𝑟Δ𝑡[𝐹(𝑡𝑁−1, 𝑡𝑁) − 𝑐𝑃] − 𝑐𝐻(𝑡𝑁 − 𝑇𝑁−1)]

− 𝑅𝑁−1𝑒
−𝑟(𝑇𝑁−1−𝑡𝑁−1)[𝐹(𝑡𝑁−1, 𝑇𝑁−1) − 𝑐𝑃] 

= 𝑅𝑁−1 [𝑒
−𝑟Δ𝑡[𝐹(𝑡𝑁−1, 𝑡𝑁) − 𝑐𝑃] − 𝑐𝐻(𝑡𝑁 − 𝑇𝑁−1)

− 𝑒−𝑟(𝑇𝑁−1−𝑡𝑁−1)[𝐹(𝑡𝑁−1, 𝑇𝑁−1) − 𝑐𝑃]] 

Eq. 8.16 

and, when 𝑚𝑁−1 < 𝑐𝐻 

𝑝1 ∶= 𝑟𝑁−1((𝑅𝑁−1, 0), 𝑥𝑁−1,𝑊𝑁−1) 

= 𝑅𝑁−1[𝐹(𝑡𝑁−1, 𝑡𝑁−1) − 𝑐𝑃 − 𝑐𝐻(𝑡𝑁−1 − 𝑇𝑁−1)]

− 𝑅𝑁−1𝑒
−𝑟(𝑇𝑁−1−𝑡𝑁−1)[𝐹(𝑡𝑁−1, 𝑇𝑁−1) − 𝑐𝑃] 

= 𝑅𝑁−1 [𝐹(𝑡𝑁−1, 𝑡𝑁−1) − 𝑐𝑃 − 𝑐𝐻(𝑡𝑁−1 − 𝑇𝑁−1) − 𝑒
−𝑟(𝑇𝑁−1−𝑡𝑁−1)[𝐹(𝑡𝑁−1, 𝑇𝑁−1) −

𝑐𝑃]]. 

Eq. 8.17 

Now, 𝑉𝑁−1(𝑥𝑁−1,𝑊𝑁−1) can be written in terms of 𝑝0 and 𝑝1 as in Eq. 8.18, which subsequently 

implies that 𝑉𝑁−1(𝑥𝑁−1,𝑊𝑁−1) is a multiple of 𝑅𝑁−1 just like both terms of the sum. 

𝑉𝑁−1(𝑥𝑁−1,𝑊𝑁−1) = 𝑝0𝕀(𝑚𝑁−1 ≥ 𝑐𝐻) + 𝑝1𝕀(𝑚𝑁−1 < 𝑐𝐻) 
Eq. 8.18 

Now, assume that at stage 𝑖 + 1, the value function can be written in the form of  

𝑉𝑖+1(𝑥𝑖+1,𝑊𝑖+1) = 𝑉𝑖+1((𝑅𝑖+1, 𝑇𝑖+1),𝑊𝑖+1) = 𝑅𝑖+1𝑣𝑖+1(𝑇𝑖+1,𝑊𝑖+1). Eq. 8.19 

We want to show that the same holds true at stage 𝑖; that is 𝑉𝑖(𝑥𝑖,𝑊𝑖) = 𝑅𝑖𝑣𝑖(𝑇𝑖,𝑊𝑖). The Bellman 

equation at stage 𝑖 yields 

𝑉𝑖(𝑥𝑖,𝑊𝑖) = max
𝑎∈𝒜𝑖(𝑥𝑖)

{𝑟𝑖(𝑎, 𝑥𝑖 ,𝑊𝑖) + 𝛿𝔼[𝑉𝑖+1(𝑓𝑖(𝑥𝑖, 𝑎),𝑊𝑖+1)| 𝑊𝑖]} Eq. 8.20 
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= max
𝑎∈𝒜𝑖(𝑥𝑖)

{𝑎𝑖
𝑅[𝐹(𝑡𝑖 , 𝑡𝑖) − 𝑐𝑃 − 𝑐𝐻(𝑡𝑖 − 𝑇𝑖)] + (𝑅𝑖 − 𝑎𝑖

𝑅) [𝑒−𝑟(𝑎𝑖
𝑇−𝑡𝑖)[𝐹(𝑡𝑖, 𝑎𝑖

𝑇) −

𝑐𝑃] − 𝑐𝐻(𝑎𝑖
𝑇 − 𝑇𝑖)] − 𝑅𝑖𝑒

−𝑟(𝑇𝑖−𝑡𝑖)[𝐹(𝑡𝑖, 𝑇𝑖) − 𝑐𝑃] + (𝑅𝑖 −

𝑎𝑖
𝑅)𝛿𝔼[𝑣𝑖+1(𝑇𝑖+1,𝑊𝑖+1)| 𝑊𝑖]}. 

In the following, we argue that that any action (𝑎𝑖
𝑅 , 𝑎𝑖

𝑇) = (0 < 𝑎𝑖
𝑅 < 𝑅𝑖 , 𝑎𝑖

𝑇) is dominated by 

either (0, 𝑎𝑖
𝑇) or (𝑅𝑖, 0). 

I. The payoff from (𝑎𝑖
𝑅 , 𝑎𝑖

𝑇) = (0, 𝑎𝑖
𝑇) is 

𝑝1(𝑎𝑖
𝑇) ∶= 𝑅𝑖 [𝑒

−𝑟(𝑎𝑖
𝑇−𝑡𝑖)[𝐹(𝑡𝑖, 𝑎𝑖

𝑇) − 𝑐𝑃] − 𝑐𝐻(𝑎𝑖
𝑇 − 𝑇𝑖)] − 𝑅𝑖𝑒

−𝑟(𝑇𝑖−𝑡𝑖)[𝐹(𝑡𝑖, 𝑇𝑖) −

𝑐𝑃] + 𝑅𝑖𝛿𝔼[𝑣𝑖+1(𝑎𝑖
𝑇 ,𝑊𝑖+1)| 𝑊𝑖]. 

Eq. 8.21 

II. The payoff from (𝑎𝑖
𝑅 , 𝑎𝑖

𝑇) = (𝑅𝑖, 0) is 

𝑝2 ∶= 𝑅𝑖[𝐹(𝑡𝑖 , 𝑡𝑖) − 𝑐𝑃 − 𝑐𝐻(𝑡𝑖 − 𝑇𝑖)] − 𝑅𝑖𝑒
−𝑟(𝑇𝑖−𝑡𝑖)[𝐹(𝑡𝑖, 𝑇𝑖) − 𝑐𝑃]. Eq. 8.22 

III. The payoff from (𝑎𝑖
𝑅 , 𝑎𝑖

𝑇) = (0 < 𝑎𝑖
𝑅 < 𝑅𝑖, 𝑎𝑖

𝑇) is 

𝑝3(𝑎𝑖
𝑅 , 𝑎𝑖

𝑇) ∶= 𝑎𝑖
𝑅[𝐹(𝑡𝑖, 𝑡𝑖) − 𝑐𝑃 − 𝑐𝐻(𝑡𝑖 − 𝑇𝑖)] + (𝑅𝑖 − 𝑎𝑖

𝑅) [𝑒−𝑟(𝑎𝑖
𝑇−𝑡𝑖)[𝐹(𝑡𝑖, 𝑎𝑖

𝑇) −

𝑐𝑃] − 𝑐𝐻(𝑎𝑖
𝑇 − 𝑇𝑖)] − 𝑅𝑖𝑒

−𝑟(𝑇𝑖−𝑡𝑖)[𝐹(𝑡𝑖, 𝑇𝑖) − 𝑐𝑃] + (𝑅𝑖 −

𝑎𝑖
𝑅)𝛿𝔼[𝑣𝑖+1(𝑎𝑖

𝑇 ,𝑊𝑖+1)| 𝑊𝑖]. 

Eq. 8.23 

One can compute the payoff differences as 

𝑝1(𝑎𝑖
𝑇) − 𝑝3(𝑎𝑖

𝑅 , 𝑎𝑖
𝑇) = 

−𝑎𝑖
𝑅[𝐹(𝑡𝑖, 𝑡𝑖) − 𝑐𝑃 − 𝑐𝐻(𝑡𝑖 − 𝑇𝑖)] + 𝑎𝑖

𝑅 [𝑒−𝑟(𝑎𝑖
𝑇−𝑡𝑖)[𝐹(𝑡𝑖, 𝑎𝑖

𝑇) − 𝑐𝑃] − 𝑐𝐻(𝑎𝑖
𝑇 − 𝑇𝑖)]

+ 𝑎𝑖
𝑅𝛿𝔼[𝑣𝑖+1(𝑎𝑖

𝑇 ,𝑊𝑖+1)| 𝑊𝑖] = 

𝑎𝑖
𝑅 {−[𝐹(𝑡𝑖, 𝑡𝑖) − 𝑐𝑃 − 𝑐𝐻(𝑡𝑖 − 𝑇𝑖)] + 𝑒

−𝑟(𝑎𝑖
𝑇−𝑡𝑖)[𝐹(𝑡𝑖, 𝑎𝑖

𝑇) − 𝑐𝑃] − 𝑐𝐻(𝑎𝑖
𝑇 − 𝑇𝑖) +

𝛿𝔼[𝑣𝑖+1(𝑎𝑖
𝑇 ,𝑊𝑖+1)| 𝑊𝑖]} = 𝑎𝑖

𝑅𝐶𝑖. 

Eq. 8.24 

Here, 𝐶𝑖 is defined as follows, and can be positive or negative depending on 𝑎𝑖
𝑇 (and other variables 

such as 𝑊𝑖). 
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𝐶𝑖 ∶= −[𝐹(𝑡𝑖, 𝑡𝑖) − 𝑐𝑃 − 𝑐𝐻(𝑡𝑖 − 𝑇𝑖)] + 𝑒
−𝑟(𝑎𝑖

𝑇−𝑡𝑖)[𝐹(𝑡𝑖, 𝑎𝑖
𝑇) − 𝑐𝑃] − 𝑐𝐻(𝑎𝑖

𝑇 − 𝑇𝑖)

+ 𝛿𝔼[𝑣𝑖+1(𝑎𝑖
𝑇 ,𝑊𝑖+1)| 𝑊𝑖] 

Eq. 8.25 

The other payoff difference is computed as 

𝑝2 − 𝑝3(𝑎𝑖
𝑅 , 𝑎𝑖

𝑇) = 

(𝑅𝑖 − 𝑎𝑖
𝑅)[𝐹(𝑡𝑖, 𝑡𝑖) − 𝑐𝑃 − 𝑐𝐻(𝑡𝑖 − 𝑇𝑖)] − (𝑅𝑖 − 𝑎𝑖

𝑅) [𝑒−𝑟(𝑎𝑖
𝑇−𝑡𝑖)[𝐹(𝑡𝑖, 𝑎𝑖

𝑇) − 𝑐𝑃] −

𝑐𝐻(𝑎𝑖
𝑇 − 𝑇𝑖)] − (𝑅𝑖 − 𝑎𝑖

𝑅)𝛿𝔼[𝑣𝑖+1(𝑎𝑖
𝑇 ,𝑊𝑖+1)| 𝑊𝑖] = −(𝑅𝑖 − 𝑎𝑖

𝑅)𝐶𝑖. 

Eq. 8.26 

In summary, for any (𝑎𝑖
𝑅 , 𝑎𝑖

𝑇) ∈ [0, 𝑅𝑖) × {𝑡𝑖+1, 𝑡𝑖+2, 𝑡𝑖+3, … , 𝑡𝑁}, we have  

𝑝1(𝑎𝑖
𝑇) − 𝑝3(𝑎𝑖

𝑅 , 𝑎𝑖
𝑇) = 𝑎𝑖

𝑅𝐶𝑖, Eq. 8.27 

𝑝2 − 𝑝3(𝑎𝑖
𝑅 , 𝑎𝑖

𝑇) = −(𝑅𝑖 − 𝑎𝑖
𝑅)𝐶𝑖. Eq. 8.28 

Thus, action III, i.e. (𝑎𝑖
𝑅 , 𝑎𝑖

𝑇) = (0 < 𝑎𝑖
𝑅 < 𝑅𝑖 , 𝑎𝑖

𝑇), is never optimal because 𝑝1 ≥ 𝑝3 ≥ 𝑝2 if 𝐶𝑖 ≥

0, and 𝑝2 > 𝑝3 > 𝑝1 if 𝐶𝑖 < 0. Given that the three possible actions I, II, and III partition the 

feasible set 𝒜𝑖(𝑥𝑖) = [0, 𝑅𝑖) × {𝑡𝑖+1, 𝑡𝑖+2, 𝑡𝑖+3, … , 𝑡𝑁} ∪ {𝑅𝑖} × {0} into disjoint subsets, we can 

rewrite Eq. 8.20, i.e. Bellman equation at stage 𝑖, as below.  

𝑉𝑖(𝑥𝑖,𝑊𝑖) = 

max
𝑎𝑖
𝑇∈{𝑡𝑖+1,𝑡𝑖+2,𝑡𝑖+3,…,𝑡𝑁}

𝑝1(𝑎𝑖
𝑇)𝕀 (0 ≤ 𝐶𝑖(𝑎𝑖

𝑇)) + 𝑝2𝕀(𝐶𝑖(𝑎𝑖
𝑇) < 0) = 

max
𝑎𝑖
𝑇∈{𝑡𝑖+1,𝑡𝑖+2,𝑡𝑖+3,…,𝑡𝑁}

{𝑅𝑖 [𝑒
−𝑟(𝑎𝑖

𝑇−𝑡𝑖)[𝐹(𝑡𝑖, 𝑎𝑖
𝑇) − 𝑐𝑃] − 𝑐𝐻(𝑎𝑖

𝑇 − 𝑇𝑖)]

− 𝑅𝑖𝑒
−𝑟(𝑇𝑖−𝑡𝑖)[𝐹(𝑡𝑖, 𝑇𝑖) − 𝑐𝑃] + 𝑅𝑖𝛿𝔼[𝑣𝑖+1(𝑎𝑖

𝑇 ,𝑊𝑖+1)| 𝑊𝑖]} 𝕀 (0

≤ 𝐶𝑖(𝑎𝑖
𝑇))

+ {𝑅𝑖[𝐹(𝑡𝑖, 𝑡𝑖) − 𝑐𝑃 − 𝑐𝐻(𝑡𝑖 − 𝑇𝑖)]

− 𝑅𝑖𝑒
−𝑟(𝑇𝑖−𝑡𝑖)[𝐹(𝑡𝑖, 𝑇𝑖) − 𝑐𝑃]}𝕀(𝐶𝑖(𝑎𝑖

𝑇) < 0) = 

Eq. 8.29 
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𝑅𝑖 max
𝑎𝑖
𝑇∈{𝑡𝑖+1,𝑡𝑖+2,𝑡𝑖+3,…,𝑡𝑁}

{𝑒−𝑟(𝑎𝑖
𝑇−𝑡𝑖)[𝐹(𝑡𝑖, 𝑎𝑖

𝑇) − 𝑐𝑃] − 𝑐𝐻(𝑎𝑖
𝑇 − 𝑇𝑖)

− 𝑒−𝑟(𝑇𝑖−𝑡𝑖)[𝐹(𝑡𝑖, 𝑇𝑖) − 𝑐𝑃] + 𝛿𝔼[𝑣𝑖+1(𝑎𝑖
𝑇 ,𝑊𝑖+1)| 𝑊𝑖]} 𝕀 (0

≤ 𝐶𝑖(𝑎𝑖
𝑇))

+ {𝐹(𝑡𝑖, 𝑡𝑖) − 𝑐𝑃 − 𝑐𝐻(𝑡𝑖 − 𝑇𝑖)

− 𝑒−𝑟(𝑇𝑖−𝑡𝑖)[𝐹(𝑡𝑖, 𝑇𝑖) − 𝑐𝑃]}𝕀(𝐶𝑖(𝑎𝑖
𝑇) < 0) 

If we define, 

𝑣𝑖(𝑇𝑖,𝑊𝑖) ≔ 

max
𝑎𝑖
𝑇∈{𝑡𝑖+1,𝑡𝑖+2,𝑡𝑖+3,…,𝑡𝑁}

{𝑒−𝑟(𝑎𝑖
𝑇−𝑡𝑖)[𝐹(𝑡𝑖, 𝑎𝑖

𝑇) − 𝑐𝑃] − 𝑐𝐻(𝑎𝑖
𝑇 − 𝑇𝑖)

− 𝑒−𝑟(𝑇𝑖−𝑡𝑖)[𝐹(𝑡𝑖, 𝑇𝑖) − 𝑐𝑃] + 𝛿𝔼[𝑣𝑖+1(𝑎𝑖
𝑇 ,𝑊𝑖+1)| 𝑊𝑖]} 𝕀 (0

≤ 𝐶𝑖(𝑎𝑖
𝑇))

+ {𝐹(𝑡𝑖, 𝑡𝑖) − 𝑐𝑃 − 𝑐𝐻(𝑡𝑖 − 𝑇𝑖)

− 𝑒−𝑟(𝑇𝑖−𝑡𝑖)[𝐹(𝑡𝑖, 𝑇𝑖) − 𝑐𝑃]}𝕀(𝐶𝑖(𝑎𝑖
𝑇) < 0) 

Eq. 8.30 

By substituting Eq. 8.30 into Eq. 8.29, it is proved that 

𝑉𝑖(𝑥𝑖,𝑊𝑖) = 𝑅𝑖𝑣𝑖(𝑇𝑖,𝑊𝑖). Eq. 8.31 

∎ 

8.3 Proof of Proposition 4.I:  

Proposition 4.I: In the SDP problem set out by Eq. 4.7, partial sale of the inventory is never 

optimal. That is for ∀𝑖 ∈ ℐ ∖ {𝑁}, any action (𝑎𝑖
𝑅 , 𝑎𝑖

𝑇) = (0 < 𝑎𝑖
𝑅 < 𝑅𝑖 , 𝑎𝑖

𝑇) ∈ 𝒜𝑖(𝑥𝑖) is 

dominated by the action (0, 𝑎𝑖
𝑇) or (𝑅𝑖, 0). 

Proof: 

By Lemma 4.II part (i), the value function 𝑉𝑖(𝑥𝑖,𝑊𝑖) is a multiple of 𝑅𝑖, ∀𝑖 ∈ ℐ ∖ {𝑁} =

{0,1,2, … ,𝑁 − 1}. We also know that 𝑉𝑁(𝑥𝑁 ,𝑊𝑁) = 0, and thus a multiple of 𝑅𝑁. By part (ii) of 

Lemma 4.II, if 𝑉𝑖+1(𝑥𝑖+1,𝑊𝑖+1) is a multiple of 𝑅𝑖+1, then at the stage 𝑖 any action (𝑎𝑖
𝑅 , 𝑎𝑖

𝑇) =

(0 < 𝑎𝑖
𝑅 < 𝑅𝑖, 𝑎𝑖

𝑇) is dominated by either (0, 𝑎𝑖
𝑇) or (𝑅𝑖, 0). Combining parts (i) and (ii), it is 
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concluded that for ∀𝑖 ∈ {0,1,2, … ,𝑁 − 1} any action (𝑎𝑖
𝑅 , 𝑎𝑖

𝑇) = (0 < 𝑎𝑖
𝑅 < 𝑅𝑖, 𝑎𝑖

𝑇) is dominated 

by either (0, 𝑎𝑖
𝑇) or (𝑅𝑖, 0).∎ 

In the following, Proposition 4.II is proved, which formulates the structural form of the value 

function and optimal decisions. To prove this proposition, we assume that Assumption 4.I (stated 

below) holds. 

8.4 Assumption 4.I: 

In the following section, Proposition II is proved, which formulates the structural form of the value 

function and optimal decisions. To prove this proposition, Assumption 4.I is used, according to 

which it is assumed that one can estimate the following spread linearly using a coefficient 𝑚𝑖. 

𝑒−𝑟(𝑎−𝑡𝑖)[𝐹(𝑡𝑖, 𝑎) − 𝑐𝑃] − 𝑒
−𝑟(𝑏−𝑡𝑖)[𝐹(𝑡𝑖, 𝑏) − 𝑐𝑃] ≈ 𝑚𝑖(𝑎 − 𝑏), 𝑎, 𝑏 ∈ [0, 𝑇̅] Eq. 8.32 

Let 𝑍 = 𝑇 − 𝑡 denote the time-to-maturity and let 𝑓(𝑧) = 𝑒−𝑟𝑧[𝐹(𝑡𝑖, 𝑡𝑖 + 𝑧) − 𝑐𝑃]. Using the 

forward curve model, Eq. 2.13, the first order Taylor expansion of 𝑓(𝑧) around 𝑧 = 0, equivalent 

to small time-to-maturities 𝑇 − 𝑡 ≤ 1, is expressed in Eq. 8.33. 

𝑓(𝑧) ≈ 𝑆𝑡 − 𝑐𝑃 + 

𝑧 [𝑆𝑡 (−𝑘𝜒𝑡 +
𝜎𝜒
2

2
+ 2𝜎𝜒𝜎𝜉𝜌𝜒𝜉 +

𝜎𝜉
2

2
− 𝜆𝜒 + 𝜇𝜉 − 𝜆𝜉 − 𝑟) + 𝑟𝑐𝑃] + 𝑂(𝑧

2) 

Eq. 8.33 

Using Eq. 8.33, the spread can be approximated by Eq. 8.34. According to this equation, the spread 

at time 𝑡𝑖 is proportional to the time gap, 𝑎 − 𝑏, the spot price 𝑆𝑡𝑖 = 𝑒𝑥𝑝(𝜒𝑡𝑖 + 𝜉𝑡𝑖), and the short-

term factor 𝜒𝑡𝑖. 

𝑒−𝑟(𝑎−𝑡𝑖)[𝐹(𝑡𝑖, 𝑎) − 𝑐𝑃] − 𝑒
−𝑟(𝑏−𝑡𝑖)[𝐹(𝑡𝑖, 𝑏) − 𝑐𝑃] ≈ 

(𝑎 − 𝑏) [𝑆𝑡𝑖 (−𝑘𝜒𝑡𝑖 +
𝜎𝜒
2

2
+ 2𝜎𝜒𝜎𝜉𝜌𝜒𝜉 +

𝜎𝜉
2

2
− 𝜆𝜒 + 𝜇𝜉 − 𝜆𝜉 − 𝑟) + 𝑟𝑐𝑃] 

Eq. 8.34 
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To test the accuracy of the above formula in a worst-case scenario, let 𝑎 = 𝑡𝑖 and 𝑏 = 𝑇̅ = 1; it is 

the largest possible spread at each time 𝑡𝑖, where a linear approximation causes the maximum 

error. The actual spread (left-hand side of Eq. 8.34) and the approximated spread (right-hand side 

of Eq. 8.34) are computed for 10,000 sample paths at 𝑡0, 𝑡1,…, 𝑡𝑁−1 based on the parameters in 

Table 2.1 and Case B of Table 4.4. Panel (a) in Fig. 8.1 shows the actual versus the approximated 

spread for each path at each 𝑡𝑖. In the plot, each color represents a timestep, and the solid line is 

𝑌 = 𝑋 line. The points are generally close to the 𝑌 = 𝑋 line although there are some deviations 

when the actual spread is positive. It is noteworthy that as 𝑡𝑖 approaches 𝑇̅ = 1, the time gap of 

the spread shrinks and the approximation becomes usually more accurate. 

Panel (b) in Fig. 8.1 shows the histogram of the error (approximate spread minus the actual spread) 

over all paths and timesteps. It is seen that over the majority of the cases the error is small; it is 

found that the mean and median of the error is $1.71 and $1.33 respectively. Large errors typically 

occur at large positive spread (down-ward sloping forward curve). It is noteworthy that the 

approximate spread has a correct sign 87% of the times. 

Moreover, to illustrate the degree of linearity, Fig. 8.2 shows two sample realizations of 

𝑒−𝑟(𝑇−𝑡)[𝐹(𝑡, 𝑇) − 𝑐𝑃] versus 𝑇 at different 𝑡. The linear regression line at each 𝑡 is also computed 

and overlaid on the corresponding curve. The graphs as well as the regression 𝑅2 and standard 

error indicate that the linearity assumption can be reasonable. This is particularly true for the later 

time stages since when 𝑡 approaches to 1 year (problem time horizon) the length of the curve 

decreases. 
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(a) Approximate (left-hand side of Eq. 8.34) 

versus actual spread (right-hand side of Eq. 

8.34) at each path and each timestep. The solid 

black line represents 𝑌 = 𝑋 line. 

 
(b) Histogram of errors, defined by the 

approximate spread minus the actual spread, 

over all paths and all timesteps. The mean 

(median) of the histogram is $1.71 ($1.33). 

Fig. 8.1. Testing the accuracy of estimating the spread via a linear approximation, i.e. with 𝑎 = 𝑡𝑖 
and 𝑏 = 𝑇̅ = 1, using 10,000 sample paths over 𝑡0, 𝑡1,…, 𝑡𝑁−1 timesteps, shown in different 

colors. All simulation parameters are based on Table 2.1 and Case B of Table 4.4. 

  
Fig. 8.2. Simulated 𝑒−𝑟(𝑇−𝑡)[𝐹(𝑡, 𝑇) − 𝑐𝑃] curves where 0 ≤ 𝑡 ≤ 1 and 𝑡 ≤ 𝑇 ≤ 1 year using 

Table 2.1 parameters, where temporal discretization is set to 𝑁 =16 time stages to match that of 

Case B in Table 4.4. 𝑅2 and standard error of the regression is listed for each curve fitted with a 

line. 
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8.5 Proof of Proposition 4.II: 

Proposition 4.II: If it is assumed that the difference between the ‘adjusted’ forward prices can be 

written as Eq. 8.35 (i.e. Assumption 4.I holds), then the value function and optimal actions 

structure for ∀𝑖 ∈ ℐ ∖ {𝑁} are expressed by Eq. 8.36 and Eq. 8.37. It can be seen easily that Eq. 

8.37 is a particular case of Eq. 8.36 (for 𝑖 = 𝑁 − 1) which is written explicitly. Here 𝔼𝑖[. ] denotes 

𝔼[. |𝑊𝑖].  

 𝑒−𝑟(𝑡1−𝑡𝑖)[𝐹(𝑡𝑖, 𝑡1) − 𝑐𝑃] − 𝑒
−𝑟(𝑡2−𝑡𝑖)[𝐹(𝑡𝑖, 𝑡2) − 𝑐𝑃] = 𝑚𝑖(𝑡1 − 𝑡2) 

Eq. 8.35 

 

• If  𝟎 ≤ 𝒊 ≤ 𝑵 − 𝟐 

 

𝑉𝑖(𝑥𝑖,𝑊𝑖) = 𝑅𝑖(𝑚𝑖 − 𝑐𝐻)(𝑡𝑖 − 𝑇𝑖) + Δ𝑡𝑅𝑖𝑢𝑖,     𝑢𝑖 = 𝑚𝑎𝑥{0, 𝐴𝑖 , 𝐵𝑖} 

(𝑎𝑖
𝑅 , 𝑎𝑖

𝑇) = {

(𝑅𝑖, 0)                        If 𝐴𝑖 < 0    𝑎𝑛𝑑 𝐵𝑖 < 0
(0, 𝑡𝑁)                       If 𝐵𝑖 > 𝐴𝑖 𝑎𝑛𝑑 𝐵𝑖 > 0
(0, 𝑡𝑖+1)                      If 𝐴𝑖 > 𝐵𝑖  𝑎𝑛𝑑 𝐴𝑖 > 0

 

𝐴𝑖 ∶= 𝑚𝑖 − 𝑐𝐻 + 𝛿𝐸𝑖[𝑢𝑖+1] 

𝐵𝑖 ∶= (𝑁 − 𝑖)(𝑚𝑖 − 𝑐𝐻) +  𝛿𝔼𝑖[𝑢𝑖+1 − (𝑁 − 𝑖 − 1)(𝑚𝑖+1 − 𝑐𝐻)] 

Eq. 8.36 

• If 𝒊 = 𝑵 − 𝟏 

 

𝑉𝑁−1(𝑥𝑁−1,𝑊𝑁−1) = 𝑅𝑁−1(𝑚𝑁−1 − 𝑐𝐻)(𝑡𝑁−1 − 𝑇𝑁−1) + Δ𝑡𝑅𝑁−1𝑢𝑁−1 

𝑢𝑁−1 = 𝑚𝑎𝑥{0, 𝐴𝑖} 

(𝑎𝑁−1
𝑅 , 𝑎𝑁−1

𝑇 ) = {
(𝑅𝑁−1, 0)         If     𝐴𝑁−1 < 0
(0, 𝑡𝑁)              If     𝐴𝑁−1 > 0

 

𝐴𝑁−1 ∶= 𝑚𝑁−1 − 𝑐𝐻 

Eq. 8.37 

Proof:  

We prove Eq. 8.37 individually, and Eq. 8.36 by backward induction. To show Eq. 8.36, we solve 

the Bellman equation at 𝑖 = 𝑁 − 1 as follows. At this time stage, the continuation value is zero, 

and the maximization is performed over the only two available actions (𝑅𝑁−1, 0) and (0, 𝑡𝑁). 
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𝑉𝑁−1(𝑥𝑁−1,𝑊𝑁−1) = max
𝑎∈𝒜𝑁−1(𝑥𝑁−1)

𝑟𝑁−1(𝑥𝑁−1,𝑊𝑁−1, 𝑎) = 

max
𝑎∈𝒜𝑁−1(𝑥𝑁−1)

(𝑚𝑁−1 − 𝑐𝐻)[𝑎𝑁−1
𝑅 (𝑡𝑁−1 − 𝑎𝑁−1

𝑇 ) + 𝑅𝑁−1(𝑎𝑁−1
𝑇 − 𝑇𝑁−1)] 

= 𝑚𝑎𝑥{(𝑚𝑁−1 − 𝑐𝐻)𝑅𝑁−1(𝑡𝑁−1 − 𝑇𝑁−1), (𝑚𝑁−1 − 𝑐𝐻)𝑅𝑁−1(𝑡𝑁 − 𝑇𝑁−1)} 

= 𝑅𝑁−1𝑚𝑎𝑥{(𝑚𝑁−1 − 𝑐𝐻)(𝑡𝑁−1 − 𝑇𝑁−1), (𝑚𝑁−1 − 𝑐𝐻)(𝑡𝑁 − 𝑇𝑁−1)} 

= 𝑅𝑁−1(𝑚𝑁−1 − 𝑐𝐻)(𝑡𝑁−1 − 𝑇𝑁−1) + 𝑅𝑁−1𝑚𝑎𝑥{0, Δ𝑡(𝑚𝑁−1 − 𝑐𝐻)} 

= 𝑅𝑁−1(𝑚𝑁−1 − 𝑐𝐻)(𝑡𝑁−1 − 𝑇𝑁−1) + Δ𝑡𝑅𝑁−1𝑚𝑎𝑥{0,𝑚𝑁−1 − 𝑐𝐻} 

Eq. 8.38 

Let us define 

 𝑢𝑁−1 ∶= 𝑚𝑎𝑥{0,𝑚𝑁−1 − 𝑐𝐻}. 
Eq. 8.39 

So, 𝑉𝑁−1(𝑥𝑁−1,𝑊𝑁−1) can be written as 

 𝑉𝑁−1(𝑥𝑁−1,𝑊𝑁−1) = 𝑅𝑁−1(𝑚𝑁−1 − 𝑐𝐻)(𝑡𝑁−1 − 𝑇𝑁−1) + Δ𝑡𝑅𝑁−1𝑢𝑁−1. 

Eq. 8.40 

 

From the order of the arguments in the maximum operator of Eq. 8.39, we deduce the conditions 

under which each action is optimal, as expressed in Eq. 8.41. This concludes the proof of Eq. 8.36. 

 (𝑎𝑁−1
𝑅 , 𝑎𝑁−1

𝑇 ) = {
(𝑅𝑁−1, 0)         If     𝑚𝑁−1 − 𝑐𝐻 < 0
(0, 𝑡𝑁)              If     𝑚𝑁−1 − 𝑐𝐻 > 0

 
Eq. 8.41 

To prove Eq. 8.37 using backward induction, we first show that the structure holds for stage 𝑖 =

𝑁 − 2. Let us consider the Bellman equation, Eq. 17, at time stage 𝑖 = 𝑁 − 2. For notational 

brevity, let 𝐸𝑖[X] denote 𝐸[𝑋| 𝑊𝑖]. 

𝑉𝑁−2(𝑥𝑁−2,𝑊𝑁−2) = 

max
𝑎∈𝒜𝑁−2(𝑥𝑁−2)

𝑟𝑁−2(𝑥𝑁−2,𝑊𝑁−2, 𝑎) + 𝛿𝔼[𝑉𝑁−1(𝑓𝑁−2(𝑥𝑁−2, 𝑎),𝑊𝑁−1)| 𝑊𝑁−2] 

= max
𝑎∈𝒜𝑁−2(𝑥𝑁−2)

(𝑚𝑁−2 − 𝑐𝐻)[𝑎𝑁−2
𝑅 (𝑡𝑁−2 − 𝑎𝑁−2

𝑇 ) + 𝑅𝑁−2(𝑎𝑁−2
𝑇 − 𝑇𝑁−2)]

+ 𝛿𝔼𝑁−2[𝑉𝑁−1(𝑥𝑁−1,𝑊𝑁−1)] 

Eq. 8.42 
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The candidates for the optimal decision are studied by replacing them into the objective function, 

and compare the resulting payoffs. Here, we use Proposition I by eliminating the partial sale 

choices. The candidates can be classified as the following: 

0. Choice #0:  (𝑎𝑁−2
𝑅 , 𝑎𝑁−2

𝑇 ) = (𝑅𝑁−2, 0), i.e. sell everything on the spot and exit, in which case 

there is not any continuation value. 

 𝑃0
𝑁−2 ∶= (𝑚𝑁−2 − 𝑐𝐻)𝑅𝑁−2(𝑡𝑁−2 − 𝑇𝑁−2) 

Eq. 8.43 

1. Choice #1: (𝑎𝑁−2
𝑅 , 𝑎𝑁−2

𝑇 ) = (0, 𝑡𝑁), i.e. sell nothing on the spot and short the longest maturity 

𝑡𝑁. 

𝑃1
𝑁−2 ∶= (𝑚𝑁−2 − 𝑐𝐻)𝑅𝑁−2(𝑡𝑁 − 𝑇𝑁−2)

+ 𝛿𝔼𝑁−2[𝑅𝑁−2(𝑚𝑁−1 − 𝑐𝐻)(𝑡𝑁−1 − 𝑡𝑁) + Δ𝑡𝑅𝑁−2𝑢𝑁−1] 

= (𝑚𝑁−2 − 𝑐𝐻)𝑅𝑁−2(𝑡𝑁 − 𝑇𝑁−2) + 𝛿𝔼𝑁−2[−Δ𝑡𝑅𝑁−2(𝑚𝑁−1 − 𝑐𝐻) + Δ𝑡𝑅𝑁−2𝑢𝑁−1] 

= (𝑚𝑁−2 − 𝑐𝐻)𝑅𝑁−2(𝑡𝑁 − 𝑇𝑁−2) + 𝛿Δ𝑡𝑅𝑁−2𝔼𝑁−2[−(𝑚𝑁−1 − 𝑐𝐻) + 𝑢𝑁−1] 

Eq. 8.44 

2. Choice #2: (𝑎𝑁−2
𝑅 , 𝑎𝑁−2

𝑇 ) = (0, 𝑡𝑁−1), i.e. sell nothing on the spot and short 𝑡𝑁−1, rather than 

the longest maturity 𝑡𝑁. 

𝑃2
𝑁−2 ∶= (𝑚𝑁−2 − 𝑐𝐻)𝑅𝑁−2(𝑡𝑁−1 − 𝑇𝑁−2)

+ 𝛿𝔼𝑁−2[𝑅𝑁−2(𝑚𝑁−1 − 𝑐𝐻)(𝑡𝑁−1 − 𝑡𝑁−1) + Δ𝑡𝑅𝑁−2𝑢𝑁−1] 

= (𝑚𝑁−2 − 𝑐𝐻)𝑅𝑁−2(𝑡𝑁−1 − 𝑇𝑁−2) + 𝛿Δ𝑡𝑅𝑁−2𝔼𝑁−2[𝑢𝑁−1] 

 

Eq. 8.45 

The following summarizes the values generated by taking all potentially optimal actions. 

 𝑃0
𝑁−2 = (𝑚𝑁−2 − 𝑐𝐻)𝑅𝑁−2(𝑡𝑁−2 − 𝑇𝑁−2) 

Eq. 8.46 

 
𝑃1
𝑁−2 = (𝑚𝑁−2 − 𝑐𝐻)𝑅𝑁−2(𝑡𝑁 − 𝑇𝑁−2)

+ 𝛿Δ𝑡𝑅𝑁−2𝔼𝑁−2[−(𝑚𝑁−1 − 𝑐𝐻) + 𝑢𝑁−1] 

Eq. 8.47 

 𝑃2
𝑁−2 = (𝑚𝑁−2 − 𝑐𝐻)𝑅𝑁−2(𝑡𝑁−1 − 𝑇𝑁−2) + 𝛿Δ𝑡𝑅𝑁−2𝔼𝑁−2[𝑢𝑁−1] 

Eq. 8.48 
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Therefore, by substituting Eq. 8.46 to Eq. 8.48 into Eq. 8.42, we get the following. 

𝑉𝑁−2(𝑥𝑁−2,𝑊𝑁−2) = 

max
𝑎∈𝒜𝑁−2(𝑥𝑁−2)

(𝑚𝑁−2 − 𝑐𝐻)[𝑎𝑁−2
𝑅 (𝑡𝑁−2 − 𝑎𝑁−2

𝑇 ) + 𝑅𝑁−2(𝑎𝑁−2
𝑇 − 𝑇𝑁−2)]

+ 𝔼[𝑉𝑁−1(𝑥𝑁−1,𝑊𝑁−1)| 𝑊𝑁−2] 

= 𝑚𝑎𝑥{𝑃0
𝑁−2, 𝑃1

𝑁−2, 𝑃2
𝑁−2} 

= 𝑅𝑁−2𝑚𝑎𝑥{(𝑚𝑁−2 − 𝑐𝐻)(𝑡𝑁−2 − 𝑇𝑁−2), (𝑚𝑁−2 − 𝑐𝐻)(𝑡𝑁 − 𝑇𝑁−2)
+ 𝛿Δ𝑡𝔼𝑁−2[−(𝑚𝑁−1 − 𝑐𝐻) + 𝑢𝑁−1], (𝑚𝑁−2 − 𝑐𝐻)(𝑡𝑁−1 − 𝑇𝑁−2)
+ 𝛿Δ𝑡𝔼𝑁−2[𝑢𝑁−1]} 

= 𝑅𝑁−2(𝑚𝑁−2 − 𝑐𝐻)(𝑡𝑁−2 − 𝑇𝑁−2) + 𝑅𝑁−2 × 

𝑚𝑎𝑥{0,2Δ𝑡(𝑚𝑁−2 − 𝑐𝐻) + 𝛿Δ𝑡𝔼𝑁−2[−(𝑚𝑁−1 − 𝑐𝐻) + 𝑢𝑁−1], Δ𝑡(𝑚𝑁−2 − 𝑐𝐻)
+ 𝛿Δ𝑡𝔼𝑁−2[𝑢𝑁−1]} 

= 𝑅𝑁−2(𝑚𝑁−2 − 𝑐𝐻)(𝑡𝑁−2 − 𝑇𝑁−2) + Δ𝑡𝑅𝑁−2 × 

𝑚𝑎𝑥 {

0,
2(𝑚𝑁−2 − 𝑐𝐻) + 𝛿𝔼𝑁−2[−(𝑚𝑁−1 − 𝑐𝐻) + 𝑢𝑁−1],

(𝑚𝑁−2 − 𝑐𝐻) + 𝛿𝔼𝑁−2[𝑢𝑁−1]
} 

Eq. 8.49 

Let us define 

 𝑢𝑁−2 ∶= 𝑚𝑎𝑥 {

0,
2(𝑚𝑁−2 − 𝑐𝐻) + 𝛿𝔼𝑁−2[−(𝑚𝑁−1 − 𝑐𝐻) + 𝑢𝑁−1],

(𝑚𝑁−2 − 𝑐𝐻) + 𝛿𝔼𝑁−2[𝑢𝑁−1]
} 

Eq. 8.50 

Thus, by substituting Eq. 8.50 into Eq. 8.49, we have 

 𝑉𝑁−2(𝑥𝑁−2,𝑊𝑁−2) = 𝑅𝑁−2(𝑚𝑁−2 − 𝑐𝐻)(𝑡𝑁−2 − 𝑇𝑁−2) + Δ𝑡𝑅𝑁−2𝑢𝑁−2 
Eq. 8.51 

From the order of the arguments in the maximum operator, we deduce the conditions under which 

each action is optimal as specified in Eq. 8.52. 

 (𝑎𝑁−2
𝑅 , 𝑎𝑁−2

𝑇 ) = {

(𝑅𝑁−2, 0)                   If 𝐴𝑁−2 < 0          𝑎𝑛𝑑 𝐵𝑁−2 < 0
(0, 𝑡𝑁)                       If 𝐵𝑁−2 > 𝐴𝑁−2  𝑎𝑛𝑑 𝐵𝑁−2 > 0
(0, 𝑡𝑁−1)                   If 𝐴𝑁−2 > 𝐵𝑁−2  𝑎𝑛𝑑 𝐴𝑁−2 > 0

 
Eq. 8.52 

Here, 
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𝐴𝑁−2 ∶= (𝑚𝑁−2 − 𝑐𝐻) + 𝛿𝔼𝑁−2[𝑢𝑁−1] 

𝐵𝑁−2 ∶= 2(𝑚𝑁−2 − 𝑐𝐻) + 𝛿𝔼𝑁−2[−(𝑚𝑁−1 − 𝑐𝐻) + 𝑢𝑁−1] 

 

Eq. 8.53 

The above verifies the value function structure, Eq. 8.37, for time stage 𝑖 = 𝑁 − 2. Now, we 

present the remaining part of the backward induction argument.  

Suppose 

 

𝑉𝑖(𝑥𝑖,𝑊𝑖) = 𝑅𝑖(𝑚𝑖 − 𝑐𝐻)(𝑡𝑖 − 𝑇𝑖) + Δ𝑡𝑅𝑖𝑢𝑖 

𝑢𝑖 = 𝑚𝑎𝑥 {

0,
(𝑁 − 𝑖)(𝑚𝑖 − 𝑐𝐻) +  𝛿𝔼𝑖[𝑢𝑖+1 − (𝑁 − 𝑖 − 1)(𝑚𝑖+1 − 𝑐𝐻)],

𝑚𝑖 − 𝑐𝐻 + 𝛿𝔼𝑖[𝑢𝑖+1]
} 

(𝑎𝑖
𝑅 , 𝑎𝑖

𝑇) = {

(𝑅𝑖, 0)                        If 𝐴𝑖 < 0    𝑎𝑛𝑑 𝐵𝑖 < 0
(0, 𝑡𝑁)                       If 𝐵𝑖 > 𝐴𝑖 𝑎𝑛𝑑 𝐵𝑖 > 0
(0, 𝑡𝑖+1)                      If 𝐴𝑖 > 𝐵𝑖  𝑎𝑛𝑑 𝐴𝑖 > 0

 

𝐴𝑖 ∶= 𝑚𝑖 − 𝑐𝐻 + 𝛿𝔼𝑖[𝑢𝑖+1] 

𝐵𝑖 ∶= (𝑁 − 𝑖)(𝑚𝑖 − 𝑐𝐻) +  𝛿𝔼𝑖[𝑢𝑖+1 − (𝑁 − 𝑖 − 1)(𝑚𝑖+1 − 𝑐𝐻)] 

Eq. 8.54 

We need to show that 

 

𝑉𝑖−1(𝑥𝑖−1,𝑊𝑖−1) = 𝑅𝑖−1(𝑚𝑖−1 − 𝑐𝐻)(𝑡𝑖−1 − 𝑇𝑖−1) + Δ𝑡𝑅𝑖−1𝑢𝑖−1 

𝑢𝑖−1 = 𝑚𝑎𝑥 {

0,
(𝑁 − 𝑖 + 1)(𝑚𝑖−1 − 𝑐𝐻) +  𝛿𝔼𝑖−1[𝑢𝑖 − (𝑁 − 𝑖)(𝑚𝑖 − 𝑐𝐻)],

𝑚𝑖−1 − 𝑐𝐻 + 𝛿𝔼𝑖−1[𝑢𝑖]
} 

(𝑎𝑖−1
𝑅 , 𝑎𝑖−1

𝑇 ) = {

(𝑅𝑖−1, 0)                    If 𝐴𝑖−1 < 0        𝑎𝑛𝑑 𝐵𝑖−1 < 0
(0, 𝑡𝑁)                        If 𝐵𝑖−1 > 𝐴𝑖−1  𝑎𝑛𝑑 𝐵𝑖−1 > 0
(0, 𝑡𝑖)                          If 𝐴𝑖−1 > 𝐵𝑖−1  𝑎𝑛𝑑 𝐴𝑖−1 > 0

 

𝐴𝑖−1 ∶= 𝑚𝑖−1 − 𝑐𝐻 + 𝛿𝔼𝑖−1[𝑢𝑖] 

𝐵𝑖−1 ∶= (𝑁 − 𝑖 + 1)(𝑚𝑖−1 − 𝑐𝐻) +  𝛿𝔼𝑖−1[𝑢𝑖 − (𝑁 − 𝑖)(𝑚𝑖 − 𝑐𝐻)] 

Eq. 8.55 



194 

 

We start by writing the Bellman equation at stage 𝑖 − 1, and by substituting 𝑉𝑖(𝑥𝑖,𝑊𝑖) with the 

appropriate expression from the backward induction assumption, i.e. Eq. 8.54, as detailed in Eq. 

8.56. 

𝑉𝑖−1(𝑥𝑖−1,𝑊𝑖−1) 

= max
𝑎∈𝒜𝑖−1(𝑥𝑖−1)

(𝑚𝑖−1 − 𝑐𝐻)[𝑎𝑖−1
𝑅 (𝑡𝑖−1 − 𝑎𝑖−1

𝑇 ) + 𝑅𝑖−1(𝑎𝑖−1
𝑇 − 𝑇𝑖−1)]

+ 𝛿𝔼[𝑉𝑖(𝑥𝑖,𝑊𝑖)| 𝑊𝑖−1] 

= max
𝑎∈𝒜𝑖−1(𝑥𝑖−1)

(𝑚𝑖−1 − 𝑐𝐻)[𝑎𝑖−1
𝑅 (𝑡𝑖−1 − 𝑎𝑖−1

𝑇 ) + 𝑅𝑖−1(𝑎𝑖−1
𝑇 − 𝑇𝑖−1)]

+ 𝛿𝔼𝑖−1[𝑅𝑖(𝑚𝑖 − 𝑐𝐻)(𝑡𝑖 − 𝑇𝑖) + Δ𝑡𝑅𝑖𝑢𝑖] 

Eq. 8.56 

There are 𝑁 − 𝑖 + 2 candidates for the optimal decision, which are replaced in the objective 

function to compute the corresponding payoffs. Here, we use Proposition I by eliminating the 

choices involving a partial sale. The candidates can be classified as the following: 

Choice #0:  (𝑎𝑖−1
𝑅 , 𝑎𝑖−1

𝑇 ) = (𝑅𝑖−1, 0): 

 𝑃0
𝑖−1 ∶= 𝑅𝑖−1(𝑚𝑖−1 − 𝑐𝐻)(𝑡𝑖−1 − 𝑇𝑖−1) 

Eq. 8.57 

Choice #1: (𝑎𝑖−1
𝑅 , 𝑎𝑖−1

𝑇 ) = (0, 𝑡𝑁): 

𝑃1
𝑖−1 ∶= (𝑚𝑖−1 − 𝑐𝐻)𝑅𝑖−1(𝑡𝑁 − 𝑇𝑖−1)

+ 𝛿𝔼𝑖−1[𝑅𝑖−1(𝑚𝑖 − 𝑐𝐻)(𝑡𝑖 − 𝑡𝑁) + Δ𝑡𝑅𝑖−1𝑢𝑖] 

= (𝑚𝑖−1 − 𝑐𝐻)𝑅𝑖−1(𝑡𝑁 − 𝑇𝑖−1) + 𝛿𝔼𝑖−1[−(𝑁 − 𝑖)Δ𝑡𝑅𝑖−1(𝑚𝑖 − 𝑐𝐻) + Δ𝑡𝑅𝑖−1𝑢𝑖] 

= 𝑅𝑖−1(𝑚𝑖−1 − 𝑐𝐻)(𝑡𝑁 − 𝑇𝑖−1) + 𝛿Δ𝑡𝑅𝑖−1𝔼𝑖−1[−(𝑁 − 𝑖)(𝑚𝑖 − 𝑐𝐻) + 𝑢𝑖] 

Eq. 8.58 

Choice #2: (𝑎𝑖−1
𝑅 , 𝑎𝑖−1

𝑇 ) = (0, 𝑡𝑁−1): 

𝑃2
𝑖−1 ∶= (𝑚𝑖−1 − 𝑐𝐻)𝑅𝑖−1(𝑡𝑁−1 − 𝑇𝑖−1)

+ 𝛿𝔼𝑖−1[𝑅𝑖−1(𝑚𝑖 − 𝑐𝐻)(𝑡𝑖 − 𝑡𝑁−1) + Δ𝑡𝑅𝑖−1𝑢𝑖] 

= (𝑚𝑖−1 − 𝑐𝐻)𝑅𝑖−1(𝑡𝑁−1 − 𝑇𝑖−1)
+ 𝛿𝔼𝑖−1[−(𝑁 − 𝑖 − 1)Δ𝑡𝑅𝑖−1(𝑚𝑖 − 𝑐𝐻) + Δ𝑡𝑅𝑖−1𝑢𝑖] 

= 𝑅𝑖−1(𝑚𝑖−1 − 𝑐𝐻)(𝑡𝑁−1 − 𝑇𝑖−1) + 𝛿Δ𝑡𝑅𝑖−1𝔼𝑖−1[−(𝑁 − 𝑖 − 1)(𝑚𝑖 − 𝑐𝐻) + 𝑢𝑖] 

Eq. 8.59 

… 
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Choice #(𝑵− 𝒊 + 𝟏): (𝑎𝑖−1
𝑅 , 𝑎𝑖−1

𝑇 ) = (0, 𝑡𝑖) (recall that we are at 𝑡𝑖−1): 

𝑃𝑁−𝑖+1
𝑖−1 ∶= (𝑚𝑖−1 − 𝑐𝐻)𝑅𝑖−1(𝑡𝑖 − 𝑇𝑖−1)

+ 𝛿𝔼𝑖−1[𝑅𝑖−1(𝑚𝑖 − 𝑐𝐻)(𝑡𝑖 − 𝑡𝑖) + Δ𝑡𝑅𝑖−1𝑢𝑖] 

= 𝑅𝑖−1(𝑚𝑖−1 − 𝑐𝐻)(𝑡𝑖 − 𝑇𝑖−1) + 𝛿Δ𝑡𝑅𝑖−1𝔼𝑖−1[𝑢𝑖] 

Eq. 8.60 

 

Substituting the payoffs from different actions in the Bellman equation, Eq. 8.56, yields the 

following expression. 

𝑉𝑖−1(𝑥𝑖−1,𝑊𝑖−1) = max{𝑃0
𝑖−1, 𝑃1

𝑖−1, 𝑃2
𝑖−1, … , 𝑃𝑁−𝑖+1

𝑖−1 } 

= max

{
 
 

 
 

𝑅𝑖−1(𝑚𝑖−1 − 𝑐𝐻)(𝑡𝑖−1 − 𝑇𝑖−1),

𝑅𝑖−1(𝑚𝑖−1 − 𝑐𝐻)(𝑡𝑁 − 𝑇𝑖−1) + 𝛿Δ𝑡𝑅𝑖−1𝔼𝑖−1[−(𝑁 − 𝑖)(𝑚𝑖 − 𝑐𝐻) + 𝑢𝑖],

𝑅𝑖−1(𝑚𝑖−1 − 𝑐𝐻)(𝑡𝑁−1 − 𝑇𝑖−1) + 𝛿Δ𝑡𝑅𝑖−1𝔼𝑖−1[−(𝑁 − 𝑖 − 1)(𝑚𝑖 − 𝑐𝐻) + 𝑢𝑖],
…

𝑅𝑖−1(𝑚𝑖−1 − 𝑐𝐻)(𝑡𝑖 − 𝑇𝑖−1) + 𝛿Δ𝑡𝑅𝑖−1𝔼𝑖−1[𝑢𝑖] }
 
 

 
 

 

= 𝑅𝑖−1max

{
 
 

 
 

(𝑚𝑖−1 − 𝑐𝐻)(𝑡𝑖−1 − 𝑇𝑖−1),
(𝑚𝑖−1 − 𝑐𝐻)(𝑡𝑁 − 𝑇𝑖−1) + 𝛿Δ𝑡𝔼𝑖−1[−(𝑁 − 𝑖)(𝑚𝑖 − 𝑐𝐻) + 𝑢𝑖],

(𝑚𝑖−1 − 𝑐𝐻)(𝑡𝑁−1 − 𝑇𝑖−1) + 𝛿Δ𝑡𝔼𝑖−1[−(𝑁 − 𝑖 − 1)(𝑚𝑖 − 𝑐𝐻) + 𝑢𝑖],
…

(𝑚𝑖−1 − 𝑐𝐻)(𝑡𝑖 − 𝑇𝑖−1) + 𝛿Δ𝑡𝔼𝑖−1[𝑢𝑖] }
 
 

 
 

 

= 𝑅𝑖−1(𝑚𝑖−1 − 𝑐𝐻)(𝑡𝑖−1 − 𝑇𝑖−1)

+ 𝑅𝑖−1max

{
 
 

 
 

0,
(𝑚𝑖−1 − 𝑐𝐻)(𝑡𝑁 − 𝑡𝑖−1) + 𝛿Δ𝑡𝔼𝑖−1[−(𝑁 − 𝑖)(𝑚𝑖 − 𝑐𝐻) + 𝑢𝑖],

(𝑚𝑖−1 − 𝑐𝐻)(𝑡𝑁−1 − 𝑡𝑖−1) + 𝛿Δ𝑡𝔼𝑖−1[−(𝑁 − 𝑖 − 1)(𝑚𝑖 − 𝑐𝐻) + 𝑢𝑖],
…

(𝑚𝑖−1 − 𝑐𝐻)(𝑡𝑖 − 𝑡𝑖−1) + 𝛿Δ𝑡𝔼𝑖−1[𝑢𝑖] }
 
 

 
 

 

= 𝑅𝑖−1(𝑚𝑖−1 − 𝑐𝐻)(𝑡𝑖−1 − 𝑇𝑖−1)

+ 𝑅𝑖−1max

{
 
 

 
 

0,
(𝑚𝑖−1 − 𝑐𝐻)(𝑁 − 𝑖 + 1)Δ𝑡 + 𝛿Δ𝑡𝔼𝑖−1[−(𝑁 − 𝑖)(𝑚𝑖 − 𝑐𝐻) + 𝑢𝑖],
(𝑚𝑖−1 − 𝑐𝐻)(𝑁 − 𝑖)Δ𝑡 + 𝛿Δ𝑡𝔼𝑖−1[−(𝑁 − 𝑖 − 1)(𝑚𝑖 − 𝑐𝐻) + 𝑢𝑖],

…
(𝑚𝑖−1 − 𝑐𝐻)Δ𝑡 + 𝛿Δ𝑡𝔼𝑖−1[𝑢𝑖] }

 
 

 
 

 

Eq. 8.61 
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= 𝑅𝑖−1(𝑚𝑖−1 − 𝑐𝐻)(𝑡𝑖−1 − 𝑇𝑖−1)

+ Δ𝑡𝑅𝑖−1max

{
 
 

 
 

0,
(𝑁 − 𝑖 + 1)(𝑚𝑖−1 − 𝑐𝐻) + 𝛿𝔼𝑖−1[−(𝑁 − 𝑖)(𝑚𝑖 − 𝑐𝐻) + 𝑢𝑖],
(𝑁 − 𝑖)(𝑚𝑖−1 − 𝑐𝐻) + 𝛿𝔼𝑖−1[−(𝑁 − 𝑖 − 1)(𝑚𝑖 − 𝑐𝐻) + 𝑢𝑖],

…
(𝑚𝑖−1 − 𝑐𝐻) + 𝛿𝔼𝑖−1[𝑢𝑖] }

 
 

 
 

 

= 𝑅𝑖−1(𝑚𝑖−1 − 𝑐𝐻)(𝑡𝑖−1 − 𝑇𝑖−1) + 𝛿Δ𝑡𝑅𝑖−1𝔼𝑖−1[𝑢𝑖]

+ Δ𝑡𝑅𝑖−1max

{
 
 

 
 

−𝛿𝔼𝑖−1[𝑢𝑖],
(𝑁 − 𝑖 + 1)(𝑚𝑖−1 − 𝑐𝐻) − (𝑁 − 𝑖)𝛿𝔼𝑖−1[𝑚𝑖 − 𝑐𝐻],
(𝑁 − 𝑖)(𝑚𝑖−1 − 𝑐𝐻) − (𝑁 − 𝑖 − 1)𝛿𝔼𝑖−1[𝑚𝑖 − 𝑐𝐻],

…
(𝑚𝑖−1 − 𝑐𝐻) }

 
 

 
 

 

= 𝑅𝑖−1(𝑚𝑖−1 − 𝑐𝐻)(𝑡𝑖−1 − 𝑇𝑖−1) + 𝛿Δ𝑡𝑅𝑖−1𝔼𝑖−1[𝑢𝑖] + Δ𝑡𝑅𝑖−1(𝑚𝑖−1 − 𝑐𝐻)

+ Δ𝑡𝑅𝑖−1max

{
 
 

 
 

−𝛿𝔼𝑖−1[𝑢𝑖] − (𝑚𝑖−1 − 𝑐𝐻),
(𝑁 − 𝑖)(𝑚𝑖−1 − 𝑐𝐻) − (𝑁 − 𝑖)𝛿𝔼𝑖−1[𝑚𝑖 − 𝑐𝐻],

(𝑁 − 𝑖 − 1)(𝑚𝑖−1 − 𝑐𝐻) − (𝑁 − 𝑖 − 1)𝛿𝔼𝑖−1[𝑚𝑖 − 𝑐𝐻],
…
0 }

 
 

 
 

 

= 𝑅𝑖−1(𝑚𝑖−1 − 𝑐𝐻)(𝑡𝑖−1 − 𝑇𝑖−1) + 𝛿Δ𝑡𝑅𝑖−1𝔼𝑖−1[𝑢𝑖] + Δ𝑡𝑅𝑖−1(𝑚𝑖−1 − 𝑐𝐻)

+ Δ𝑡𝑅𝑖−1max

{
 
 

 
 

−𝛿𝔼𝑖−1[𝑢𝑖] − (𝑚𝑖−1 − 𝑐𝐻),
(𝑁 − 𝑖)(𝑚𝑖−1 − 𝑐𝐻 − 𝛿𝔼𝑖−1[𝑚𝑖 − 𝑐𝐻]),

(𝑁 − 𝑖 − 1)(𝑚𝑖−1 − 𝑐𝐻 − 𝛿𝔼𝑖−1[𝑚𝑖 − 𝑐𝐻]),
…
0 }

 
 

 
 

 

The last 𝑁 − 𝑖 + 1 arguments of the above maximum operator are all multiples of 
(𝑚𝑖−1 − 𝑐𝐻 − 𝛿𝔼𝑖−1[𝑚𝑖 − 𝑐𝐻]). Due to this linear dependence, we can simplify the maximization 

as follows. 

𝑉𝑖−1(𝑥𝑖−1,𝑊𝑖−1)
= 𝑅𝑖−1(𝑚𝑖−1 − 𝑐𝐻)(𝑡𝑖−1 − 𝑇𝑖−1) + 𝛿Δ𝑡𝑅𝑖−1𝔼𝑖−1[𝑢𝑖]
+ Δ𝑡𝑅𝑖−1(𝑚𝑖−1 − 𝑐𝐻)

+ Δ𝑡𝑅𝑖−1max {
−𝛿𝔼𝑖−1[𝑢𝑖] − (𝑚𝑖−1 − 𝑐𝐻),

(𝑁 − 𝑖)(𝑚𝑖−1 − 𝑐𝐻 − 𝛿𝔼𝑖−1[𝑚𝑖 − 𝑐𝐻]),
0

} 

= 𝑅𝑖−1(𝑚𝑖−1 − 𝑐𝐻)(𝑡𝑖−1 − 𝑇𝑖−1) + Δ𝑡𝑅𝑖−1𝑢𝑖−1 

Eq. 8.62 

Here,  
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 𝑢𝑖−1 = 𝑚𝑎𝑥 {

0,
(𝑁 − 𝑖 + 1)(𝑚𝑖−1 − 𝑐𝐻) +  𝛿𝔼𝑖−1[𝑢𝑖 − (𝑁 − 𝑖)(𝑚𝑖 − 𝑐𝐻)],

𝑚𝑖−1 − 𝑐𝐻 + 𝛿𝔼𝑖−1[𝑢𝑖]
} 

Eq. 8.63 

The three arguments in the maximum correspond to the (𝑎𝑖−1
𝑅 , 𝑎𝑖−1

𝑇 ) decision to be (𝑅𝑖−1, 0), 

(0, 𝑡𝑁), or (0, 𝑡𝑖), and thus 

 

(𝑎𝑖−1
𝑅 , 𝑎𝑖−1

𝑇 ) = {

(𝑅𝑖−1, 0)                    If 𝐴𝑖−1 < 0        𝑎𝑛𝑑 𝐵𝑖−1 < 0
(0, 𝑡𝑁)                        If 𝐵𝑖−1 > 𝐴𝑖−1  𝑎𝑛𝑑 𝐵𝑖−1 > 0
(0, 𝑡𝑖)                          If 𝐴𝑖−1 > 𝐵𝑖−1  𝑎𝑛𝑑 𝐴𝑖−1 > 0

 

𝐴𝑖−1 ∶= 𝑚𝑖−1 − 𝑐𝐻 + 𝛿𝔼𝑖−1[𝑢𝑖] 

𝐵𝑖−1 ∶= (𝑁 − 𝑖 + 1)(𝑚𝑖−1 − 𝑐𝐻) +  𝛿𝔼𝑖−1[𝑢𝑖 − (𝑁 − 𝑖)(𝑚𝑖 − 𝑐𝐻)] 

Eq. 8.64 

The above completes the backward induction argument by showing that the value function 

structure at time stage 𝑖 − 1 is indeed in the form of Eq. 8.55.∎ 

8.6 Proof of Proposition 5.I 

Proposition 5.I: Let 𝐼𝑖
−(0)

 denote any 𝐼𝑖 ∈ 𝒳𝑖
𝐼 such that 𝐼𝑖 ≠ 0, and 𝑥𝑖 = (𝐼𝑖

−(0),∗,∗) denote any 

𝑥𝑖 = (𝐼𝑖, 𝑅𝑖, 𝑇𝑖) ∈ 𝒳𝑖 in which 𝐼𝑖 ≠ 0. ∀𝑖 ∈ {0, 1, 2, … ,𝑁 − 1}, 𝑉𝑖 ((𝐼𝑖
−(0),∗,∗),𝑊𝑖) is not a 

function of the storage cost stochastic factors, (𝜒𝑖
′, 𝜉𝑖

′, 𝛼𝑖, 𝛼𝑖
∗), while 𝑉𝑖((0,0,0),𝑊𝑖) is a function 

of them. 

Intuitively, 𝑉𝑖 ((𝐼𝑖
−(0)

,∗,∗),𝑊𝑖) reflects the value function in a state where the tanker has been 

already rented. Thus, the determinants of the storage cost, (𝜒𝑖
′, 𝜉𝑖

′, 𝛼𝑖, 𝛼𝑖
∗), do not impact the value, 

however, (𝜒𝑖
′, 𝜉𝑖

′, 𝛼𝑖 , 𝛼𝑖
∗) do impact 𝑉𝑖((0,0,0),𝑊𝑖) since the tanker has not been rented yet. 

Proof: 

Suppose 𝑖 = 𝑁 − 1, then 

 𝐼𝑁−1 ∈ 𝒳𝑁−1
𝐼 = {0, ∅, 𝑡𝑁−1, 𝑡𝑁} 

Eq. 8.65 
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𝑥𝑁−1 ∈ 𝒳𝑁−1 = {(0,0,0), (∅, 0,0), (𝑡𝑁−1, 0,0), (𝑡𝑁, 0,0)} 

∪ {𝑡𝑁−1} × (0, 𝑅̅] × {𝑡𝑁−1} ∪ {𝑡𝑁} × (0, 𝑅̅] × {𝑡𝑁−1, 𝑡𝑁} 

Eq. 8.66 

Bellman’s equation ∀𝑥𝑁−1 = (𝐼𝑁−1, 𝑅𝑁−1, 𝑇𝑁−1) ∈ 𝒳𝑁−1 will be as per Eq. 8.67 and Eq. 8.68. 

Given the reward function 𝑟𝑖(𝑎𝑖, 𝑥𝑖 ,𝑊𝑖), the value function depends on the stochastic factors  

(𝜒𝑖
′, 𝜉𝑖

′, 𝛼𝑖, 𝛼𝑖
∗) through the term ‘𝑅̅𝑇′𝐶𝑖

𝐻(𝑡𝑖, 𝑡𝑖+𝑁′)𝐼(𝐼𝑖 = 0 ∧ 𝑎𝑖
𝐼 = 1)’, which is only non-zero if 

𝐼𝑖 = 0, and subsequently 𝑥𝑖 = (0,0,0). For 𝑉𝑁−1 in Eq. 8.68, since 𝐼𝑁−1 = 𝐼𝑁−1
−(0)

, the value function 

does not depend on (𝜒𝑁−1
′ , 𝜉𝑁−1

′ , 𝛼𝑁−1, 𝛼𝑁−1
∗ ). However, 𝑉𝑁−1 in Eq. 8.67 does depend on 

(𝜒𝑁−1
′ , 𝜉𝑁−1

′ , 𝛼𝑁−1, 𝛼𝑁−1
∗ ). 

 

1. For 𝑥𝑁−1 = (0,0,0): 

 

𝑉𝑁−1((0,0,0),𝑊𝑁−1) = max
𝑎∈𝒜𝑁−1(𝑥𝑁−1)

𝑟𝑁−1(𝑎, (0,0,0),𝑊𝑁−1) + 𝛿(−𝑅𝑁𝑐𝑃
−)

= 𝑉𝑁−1((0,0,0), (𝜒𝑁−1, 𝜉𝑁−1, 𝜒𝑁−1
′ , 𝜉𝑁−1

′ , 𝛼𝑁−1, 𝛼𝑁−1
∗ )) 

Eq. 8.67 

2. For any 𝑥𝑁−1 = (𝐼𝑁−1
−(0),∗,∗): 

 

𝑉𝑁−1 ((𝐼𝑁−1
−(0),∗,∗),𝑊𝑁−1)

= max
𝑎∈𝒜𝑁−1(𝑥𝑁−1)

𝑟𝑁−1 (𝑎, (𝐼𝑖
−(0),∗,∗),𝑊𝑁−1) + 𝛿(−𝑅𝑁𝑐𝑃

−)

= 𝑉𝑁−1 ((𝐼𝑖
−(0),∗,∗), (𝜒𝑁−1, 𝜉𝑁−1)) 

Eq. 8.68 

Before moving to the previous timestep, 𝑖 = 𝑁 − 2, let us examine the functional dependence of 

the expectations of 𝑉𝑁−1 to the stochastic factors since they will appear in the Bellman’s equations. 

The expectation in Eq. 8.69 is obviously a function of all the six stochastic factors included in 

𝑊𝑁−2. However, the expectation in Eq. 8.70 is only a function of (𝜒𝑁−2, 𝜉𝑁−2) since 𝑉𝑁−1 is only 

a function of (𝜒𝑁−1, 𝜉𝑁−1), and (𝜒𝑖, 𝜉𝑖) and (𝜒𝑖
′, 𝜉𝑖

′, 𝛼𝑖, 𝛼𝑖
∗) are independent ∀𝑖 ∈ ℐ. Here 𝑓1 and 𝑓2 

denote generic functions. 
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𝐸[𝑉𝑁−1((0,0,0),𝑊𝑁−1)| 𝑊𝑁−2] = 𝑓1(𝜒𝑁−2, 𝜉𝑁−2, 𝜒𝑁−2
′ , 𝜉𝑁−2

′ , 𝛼𝑁−2, 𝛼𝑁−2
∗ ) 

Eq. 8.69 

𝐸 [𝑉𝑁−1 ((𝐼𝑁−1
−(0),∗,∗),𝑊𝑁−1) | 𝑊𝑁−2] = 

𝐸 [𝑉𝑁−1 ((𝐼𝑁−1
−(0),∗,∗), (𝜒𝑁−1, 𝜉𝑁−1)) | (𝜒𝑁−2, 𝜉𝑁−2, 𝜒𝑁−2

′ , 𝜉𝑁−2
′ , 𝛼𝑁−2, 𝛼𝑁−2

∗ )] = 

𝑓2(𝜒𝑁−2, 𝜉𝑁−2) 

Eq. 8.70 

At 𝑖 = 𝑁 − 2, 𝒳𝑁−2
𝐼  and 𝒳𝑁−2 are as follows. 

 𝐼𝑁−2 ∈ 𝒳𝑁−2
𝐼 = {0, ∅, 𝑡𝑁−2, 𝑡𝑁−1, 𝑡𝑁} 

Eq. 8.71 

𝑥𝑁−2 ∈ 𝒳𝑁−2 = {(0,0,0), (∅, 0,0), (𝑡𝑁−2, 0,0), (𝑡𝑁−1, 0,0), (𝑡𝑁 , 0,0)} 

∪ {𝑡𝑁−2} × (0, 𝑅̅] × {𝑡𝑁−2} 

∪ {𝑡𝑁−1} × (0, 𝑅̅] × {𝑡𝑁−2, 𝑡𝑁−1} 

∪ {𝑡𝑁} × (0, 𝑅̅] × {𝑡𝑁−2, 𝑡𝑁−1, 𝑡𝑁} 

Eq. 8.72 

At 𝑖 = 𝑁 − 2, Bellman’s equation ∀𝑥𝑁−2 ∈ 𝒳𝑁−2 will be 

1. For 𝑥𝑁−2 = (0,0,0):  

 

𝑉𝑁−2((0,0,0),𝑊𝑁−2) = 

max
𝑎∈𝒜𝑁−2(𝑥𝑁−2)

𝑟𝑁−2(𝑎, (0,0,0),𝑊𝑁−2) + 𝛿𝐸[𝑉𝑁−1(𝑥𝑁−1,𝑊𝑁−1)| 𝑊𝑁−2]

= 𝑉𝑁−2((0,0,0), (𝜒𝑁−2, 𝜉𝑁−2, 𝜒𝑁−2
′ , 𝜉𝑁−2

′ , 𝛼𝑁−2, 𝛼𝑁−2
∗ )) 

Eq. 8.73 

In this case, 𝑟𝑁−2(𝑎, (0,0,0),𝑊𝑁−2) is a function of (𝜒𝑁−2
′ , 𝜉𝑁−2

′ , 𝛼𝑁−2, 𝛼𝑁−2
∗ ), and 

𝐸[𝑉𝑁−1(𝑥𝑁−1,𝑊𝑁−1)| 𝑊𝑁−2] may or may not be a function of (𝜒𝑁−2
′ , 𝜉𝑁−2

′ , 𝛼𝑁−2, 𝛼𝑁−2
∗ ) 

depending on the action taken and the resulting 𝑥𝑁−1. Therefore, 𝑉𝑁−2 is a function of all six 

stochastic factors.    

2. For 𝑥𝑁−2 = (𝐼𝑁−2
−(0),∗,∗):  
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𝑉𝑁−2 ((𝐼𝑁−2
−(0),∗,∗),𝑊𝑁−2) = 

max
𝑎∈𝒜𝑁−2(𝑥𝑁−2)

𝑟𝑁−2 (𝑎, (𝐼𝑁−2
−(0),∗,∗),𝑊𝑁−2) + 𝛿𝐸[𝑉𝑁−1(𝑥𝑁−1,𝑊𝑁−1)| 𝑊𝑁−2]

= 𝑉𝑁−2 ((𝐼𝑁−2
−(0),∗,∗), (𝜒𝑁−2, 𝜉𝑁−2)) 

Eq. 8.74 

In Eq. 8.74, 𝑟𝑁−2(𝑎, (1,∗,∗),𝑊𝑁−2) is ‘not’ a function of (𝜒𝑁−2
′ , 𝜉𝑁−2

′ , 𝛼𝑁−2, 𝛼𝑁−2
∗ ). Also, 

𝐸[𝑉𝑁−1(𝑥𝑁−1,𝑊𝑁−1)| 𝑊𝑁−2] is ‘not’ a function of (𝜒𝑁−2
′ , 𝜉𝑁−2

′ , 𝛼𝑁−2, 𝛼𝑁−2
∗ ), no matter what 

action is undertaken, since the resulting 𝑥𝑁−1 is always in the form of (𝐼𝑁−1
−(0),∗,∗). Therefore, 𝑉𝑁−2 

is only a function of (𝜒𝑁−2, 𝜉𝑁−2). 

Thus, the above arguments prove the proposition for 𝑖 = 𝑁 − 1 (in Eq. 8.67, Eq. 8.68) and 𝑖 =

𝑁 − 2 (in Eq. 8.73, and Eq. 8.74). Now suppose the proposition holds for stage 𝑖; that is 

𝑉𝑖 ((𝐼𝑖
−(0)

,∗,∗),𝑊𝑖) is not a function of the storage cost stochastic factors, (𝜒𝑖
′, 𝜉𝑖

′, 𝛼𝑖 , 𝛼𝑖
∗), while 

𝑉𝑖((0,0,0),𝑊𝑖) is a function of them. To complete the proof by backward induction, one needs to 

show the same holds at stage 𝑖 − 1. First, let us express the functionality of the expectations with 

respect to the stochastic factors at stage 𝑖 − 1, as written in Eq. 8.75 and Eq. 8.76. The fact that 

(𝜒𝑖, 𝜉𝑖) and (𝜒𝑖
′, 𝜉𝑖

′, 𝛼𝑖 , 𝛼𝑖
∗) are independent ∀𝑖 ∈ ℐ is used in Eq. 8.76. Here, 𝑓3 and 𝑓4 denote 

generic functions. 

𝐸[𝑉𝑖((0,0,0),𝑊𝑖)| 𝑊𝑖−1] = 𝑓3(𝜒𝑖−1, 𝜉𝑖−1, 𝜒𝑖−1
′ , 𝜉𝑖−1

′ , 𝛼𝑖−1, 𝛼𝑖−1
∗ ) 

Eq. 8.75 

𝐸 [𝑉𝑖 ((𝐼𝑖
−(0),∗,∗),𝑊𝑖) | 𝑊𝑖−1] = 

𝐸 [𝑉𝑖 ((𝐼𝑖
−(0),∗,∗), (𝜒𝑖, 𝜉𝑖)) | (𝜒𝑖−1, 𝜉𝑖−1, 𝜒𝑖−1

′ , 𝜉𝑖−1
′ , 𝛼𝑖−1, 𝛼𝑖−1

∗ )] = 

= 𝑓4(𝜒𝑖−1, 𝜉𝑖−1) 

Eq. 8.76 

Bellman’s equation ∀𝑥𝑖−1 ∈ 𝒳𝑖−1 will be 

1. For 𝑥𝑖−1 = (0,0,0): 
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𝑉𝑖−1((0,0,0),𝑊𝑖−1) = 

max
𝑎∈𝒜𝑖−1(𝑥𝑖−1)

𝑟𝑖−1(𝑎, (0,0,0),𝑊𝑖−1) + 𝛿𝐸[𝑉𝑖(𝑥𝑖,𝑊𝑖)| 𝑊𝑖−1]

= 𝑉𝑖−1((0,0,0), (𝜒𝑖−1, 𝜉𝑖−1, 𝜒𝑖−1
′ , 𝜉𝑖−1

′ , 𝛼𝑖−1, 𝛼𝑖−1
∗ )) 

Eq. 8.77 

In this case, 𝑟𝑖−1(𝑎, (0,0,0),𝑊𝑖−1) is a function of (𝜒𝑖−1
′ , 𝜉𝑖−1

′ , 𝛼𝑖−1, 𝛼𝑖−1
∗ ), and 𝐸[𝑉𝑖(𝑥𝑖,𝑊𝑖)| 𝑊𝑖−1] 

may or may not be a function of (𝜒𝑖−1
′ , 𝜉𝑖−1

′ , 𝛼𝑖−1, 𝛼𝑖−1
∗ ) depending on the action taken and the 

resulting 𝑥𝑖. So, 𝑉𝑖−1((0,0,0),𝑊𝑖−1) is a function of (𝜒𝑖−1, 𝜉𝑖−1, 𝜒𝑖−1
′ , 𝜉𝑖−1

′ , 𝛼𝑖−1, 𝛼𝑖−1
∗ ). 

2. For 𝑥𝑖−1 = (𝐼𝑖−1
−(0),∗,∗): 

 

𝑉𝑖−1 ((𝐼𝑖−1
−(0),∗,∗),𝑊𝑖−1) = 

max
𝑎∈𝒜𝑖−1(𝑥𝑖−1)

𝑟𝑖−1 (𝑎, (𝐼𝑖−1
−(0),∗,∗),𝑊𝑖−1) + 𝛿𝐸[𝑉𝑖(𝑥𝑖,𝑊𝑖)| 𝑊𝑖−1]

= 𝑉𝑖−1 ((𝐼𝑖−1
−(0),∗,∗), (𝜒𝑖−1, 𝜉𝑖−1)) 

Eq. 8.78 

In this case, 𝑟𝑖−1 (𝑎, (𝐼𝑖−1
−(0),∗,∗),𝑊𝑖−1) is ‘not’ a function of (𝜒𝑖−1

′ , 𝜉𝑖−1
′ , 𝛼𝑖−1, 𝛼𝑖−1

∗ ). Also, 

𝐸[𝑉𝑖(𝑥𝑖,𝑊𝑖)| 𝑊𝑖−1] is ‘not’ a function of (𝜒𝑖−1
′ , 𝜉𝑖−1

′ , 𝛼𝑖−1, 𝛼𝑖−1
∗ ), no matter what action is chosen, 

since the resulting 𝑥𝑖 is always in the form of (𝐼𝑖
−(0),∗,∗). So, 𝑉𝑖−1 ((𝐼𝑖−1

−(0),∗,∗),𝑊𝑖−1) is just a 

function of (𝜒𝑖−1, 𝜉𝑖−1).∎ 
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9 Appendix B 

This appendix incudes the R codes used in Chapter 5, which is built on the stochastic storage cost 

framework. It also provides the solution assuming that the storage cost is constant. In the following, 

the code is divided into different parts using subsections with headings for further clarity. Each 

subsection includes a function or specific pieces of the code that are focused on a narrow task. 

9.1 Function Simulating Oil and Storage Cost Prices 

# This function generates a sample of (chi, ksi, chi_prime, ksi_prime, alpha, 

# alpha_star) of length N.out  

sample.fcn=function(M, M2, T1, T2, N.out, N.prim, rz_ksi.ksip, rz_chi.chip,    

                    chi_0, ksi_0, chi2_0, ksi2_0, alp_0, alps_0, r, 

                    #Oil parameters (Hahn et al)  

                    mu.ksi,k,lambda.chi,sig.chi,sig.ksi,rho,mu.ksi.star, 

                    lambda.ksi, 

                    #storage cost parameters 

                    mu.ksi2,K2,Phi,sig.ksi2,sig.chi2,sig.alp,lambda.ksi2, 

                    lambda.chi2,lambda.alp,lambda.alps, 

                    #correlation matrix of the storage stochastic factors 

                    r2.chiksi,r2.chialp,r2.chialps,r2.ksialp,r2.ksialps    ){ 

   

 

  # Function that simulates two antithetic sample of the evolution of chi-ksi  

  # from t=0 to t=T, given the initial values 

  W.process=function(chi_t0,ksi_t0,Z){ 

    #number of periods: N.out 

    #number of partition points: N.out+1 

    #problem time horizon: T1 

    #problem delta t: dt=T1/N.out 

     

    #there will be N periods and N+1 partition points for SDE discretization 

    # so, N is the number of simulations from t to t+1 

    N=N.dis / N.out  

    #internal dt for SDE discretization 

    dt1=dt / N  

     

    #Nt is the total number of steps required 

    Nt=N.dis 

     

    #First pair----------------------------------------------------------- 

    Z1=Z 

    #Generate correlated Brownian increments  

    dW.ksi=Z1[1:Nt] 

    dW.chi=rho*Z1[1:Nt]+sqrt(1-rho^2)*Z1[(Nt+1):(2*Nt)] 

     

    ksi=rep(ksi_t0,Nt+1) 

    chi=rep(chi_t0,Nt+1) 

     

    #SDE UNDER PHYSICAL MEASURE 
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    #ksi SDE coefficients  

    a1=1 

    b1=mu.ksi*dt1 

    c1=sig.ksi*sqrt(dt1) 

     

    #chi SDE coefficients 

    a2=exp(-k*dt1) 

    b2=0 

    c2=sig.chi*sqrt((1-exp(-2*k*dt1))/(2*k)) 

     

     

    #loop to calculate ksi and chi   

    for ( i in 2:(Nt+1)){ 

      ksi[i]=   ksi[i-1]+b1+c1*dW.ksi[i-1] #a1=1 not written to speed up 

      chi[i]=a2*chi[i-1]+c2*dW.chi[i-1] 

    } 

     

    res=cbind(chi[seq(1,Nt+1,by=N)],ksi[seq(1,Nt+1,by=N)]) 

     

    #Second pair, which is the antithetic pair------------------------------- 

    Z1=-Z 

    dW.ksi=Z1[1:Nt] 

    dW.chi=rho*Z1[1:Nt]+sqrt(1-rho^2)*Z1[(Nt+1):(2*Nt)] 

     

    #SDE's coefficients UNDER PHYSICAL MEASURE are already computed 

     

    #loop to calculate ksi and chi   

    for ( i in 2:(Nt+1)){ 

      ksi[i]=   ksi[i-1]+b1+c1*dW.ksi[i-1] #a1=1 not written 

      chi[i]=a2*chi[i-1]+c2*dW.chi[i-1] 

    } 

     

    return( cbind(res,  cbind(chi[seq(1,Nt+1,by=N)],ksi[seq(1,Nt+1,by=N)])  ) 

) 

     

  } 

  #-------------------------------------------------------------------------- 

   

  #-------------------------------------------------------------------------- 

  #Function that simulates two antithetic evolutions of chi, ksi, alpha, and 

  # alpha_star (storage cost stochastic factors) from t=0 to t=T, given the  

  # initial values 

  W2.process=function(chi2_t0,ksi2_t0,alp_t0,alps_t0,Z){ 

    #number of periods: N.out 

    #problem time horizon: T1 

    #problem delta t: dt=T1/N.out 

     

    #there will be N periods and N+1 partition points for SDE discretization 

    # so N is the number of simulations from t to t+1 

    N=N.dis / N.out  

    #internal dt for SDE discretization 

    dt1 = dt / N  

 

    #total number of steps required 
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    Nt=N.dis    

     

    #First pair----------------------------------------------------------- 

    dW.chi2=Z[1,]   

    dW.ksi2=Z[2,] 

    dW.alp=Z[3,] 

    dW.alps=Z[4,] 

     

    #Initialize the arrays 

    chi2=rep(chi2_t0,Nt+1) 

    ksi2=rep(ksi2_t0,Nt+1) 

    alp=rep(alp_t0,Nt+1) 

    alps=rep(alps_t0,Nt+1) 

         

    #SDE UNDER PHYSICAL MEASURE 

    #chi2 SDE coefficients 

    a2=exp(-K2*dt1) 

    #b2=0 

    c2=sig.chi2*sqrt((1-exp(-2*K2*dt1))/(2*K2)) 

     

    #ksi2 SDE coefficients 

    #a1=1 

    b1=mu.ksi2*dt1 

    c1=sig.ksi2*sqrt(dt1) 

     

    #alpha and alpha_star SDE coeff 

    cof=2*pi*Phi*dt1 

    a3=1+cof^2 

    c3=sig.alp*sqrt(dt1) 

     

    #loop to calculate ksi2 and chi2 and alpha, and alpha_star   

    for ( i in 2:(Nt+1)){ 

      chi2[i]=a2*chi2[i-1]+c2*dW.chi2[i-1] 

      ksi2[i]=   ksi2[i-1]+b1+c1*dW.ksi2[i-1] #a1=1 not written 

      alp[i]=(  alp[i-1] +  cof*alps[i-1] + c3*(cof*dW.alps[i-1]+dW.alp[i-1]) 

)/a3 

      alps[i]=( alps[i-1] - cof*alp[i-1] +  c3*(dW.alps[i-1]-cof*dW.alp[i-1]) 

)/a3 

    } 

     

    res=cbind(chi2[seq(1,Nt+1,by=N)],ksi2[seq(1,Nt+1,by=N)],alp[seq(1,Nt+1,by

=N)],alps[seq(1,Nt+1,by=N)]) 

     

    #Second pair----------------------------------------------------------- 

    Z=-1*Z 

     

    dW.chi2=Z[1,]   

    dW.ksi2=Z[2,] 

    dW.alp=Z[3,] 

    dW.alps=Z[4,] 

     

    #SDEs coefficients UNDER PHYSICAL MEASURE are already computed 

     

    #loop to calculate ksi2 and chi2 and alpha, and alpha_star   
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    for ( i in 2:(Nt+1)){ 

      chi2[i]=a2*chi2[i-1]+c2*dW.chi2[i-1] 

      ksi2[i]=   ksi2[i-1]+b1+c1*dW.ksi2[i-1] #a1=1 not written 

      alp[i]=(  alp[i-1] +  cof*alps[i-1] + c3*(cof*dW.alps[i-1]+dW.alp[i-1]) 

)/a3 

      alps[i]=( alps[i-1] - cof*alp[i-1] +  c3*(dW.alps[i-1]-cof*dW.alp[i-1]) 

)/a3 

    } 

     

     

    return( cbind(res,  cbind(chi2[seq(1,Nt+1,by=N)],ksi2[seq(1,Nt+1,by=N)],a

lp[seq(1,Nt+1,by=N)],alps[seq(1,Nt+1,by=N)])  ) ) 

     

  } 

  #-------------------------------------------------------------------------- 

   

  #-------------------------------------------------------------------------- 

  #Function that computes storage cost futures price given ttm=T-t (time to m

aturity), chi_t, and ksi_t 

  fut2.price=function(ttm,chi2_t,ksi2_t,alp_t,alps_t){ 

     

    #------------------------------------------------------------------ 

    #function A(ttm) 

    A2=function(ttm,temp0,temp){ 

      return( 

         

        (mu.ksi2-lambda.ksi2+0.5*sig.ksi2^2+0.5*sig.alp^2)*ttm 

         

        -(1-exp(-K2*ttm))*(lambda.chi2-sig.ksi2*sig.chi2*r2.chiksi)/K2 

         

        +0.25*(1-exp(-2*K2*ttm))*sig.chi2^2/K2 

         

        -(lambda.alps+lambda.alp*sin(temp)-lambda.alps*cos(temp))/temp0 

         

        +sig.ksi2*sig.alp*(r2.ksialp*(1-cos(temp)) + r2.ksialps*sin(temp) )/t

emp0 

         

        +sig.chi2*sig.alp*r2.chialp*(K2-exp(-K2*ttm)*(K2*cos(temp)+temp0*sin(

temp)))/(K2^2+temp0^2) 

         

        +sig.chi2*sig.alp*r2.chialps*(temp0+exp(-K2*ttm)*(K2*sin(temp)-temp0*

cos(temp)))/(K2^2+temp0^2) 

      ) 

    } 

    #------------------------------------------------------------------ 

    temp0=2*pi*Phi 

    temp=temp0*ttm 

    fut=ksi2_t +exp(-K2*ttm)*chi2_t + cos(temp)*alp_t + sin(temp)*alps_t + A2

(ttm=ttm,temp0=temp0,temp=temp) 

    return(exp(fut)) 

     

  } 

  #-------------------------------------------------------------------------- 
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  #-------------------------------------------------------------------------- 

  #Function that computes Time-Charter rate from time t to T (ttm=T-t; actual 

  # time) given chi2_t, ksi2_t, etc 

  TC.fcn=function(ttm,chi2_t,ksi2_t,alp_t,alps_t){ 

     

    f.integral=function(ttm,chi2_t,ksi2_t,alp_t,alps_t){ 

      return( 

        integrate(function(x) fut2.price(x,chi2_t=chi2_t,ksi2_t=ksi2_t,alp_t=

alp_t,alps_t=alps_t),lower = 0, upper = ttm)[[1]]/ttm 

      ) 

    }  

     

    # convert whole vessel per day to barrel pey year: 

    # TD5 Suezmax capacity is 130,000 Metric Tons or 1,000,000 barrels 

    #vectorized computation 

    return( (365/1000000)*Vectorize(f.integral)(ttm,chi2_t,ksi2_t,alp_t,alps_

t)  ) 

       

  } 

  #-------------------------------------------------------------------------- 

   

  # Parameters 

  ########################################################################### 

   

  #end of time horizon 

  #T1 

  #rental period length 

  #T2 

  #how many timesteps the rental contract length is: N.prim=T2/dt 

 

   

  #Total number of Euler discretization of the period T1 

  N.dis=(2^5)*(3^2)*5 

 

  #make sure there is perfect divisibility 

  if( (N.dis/N.out)!=round(N.dis/N.out) ) stop() 

  if( (N.dis/N.prim)!=round(N.dis/N.prim) ) stop() 

   

  dt=T1/N.out 

   

  D=exp(-r*dt)  #one-period discount factor 

 

  sig2=array(c(1,r2.chiksi,r2.chialp,r2.chialps, 

               r2.chiksi,1,r2.ksialp,r2.ksialps, 

               r2.chialp,r2.ksialp,1,0, 

               r2.chialps,r2.ksialps,0,1) 

             ,dim=c(4,4)) 

   

  #Construct a block-diagonal matrix by diagonally binding the two covariance                           

  # matrices. Row or columns in the 6x6 matrix are respectively; chi ksi chi' 

  # ksi' alpha alpha* 

  library(Matrix) #for block diagonal binding 

  sig3=bdiag( matrix(c(1,rho,rho,1),ncol=2), sig2 ) 

   



207 

 

  #set a correlation for ksi and ksi' 

  sig3[2,4]=rz_ksi.ksip  

  sig3[4,2]=rz_ksi.ksip  

  #set a correlation for chi and chi' 

  sig3[1,3]=rz_chi.chip  

  sig3[3,1]=rz_chi.chip  

   

   

  #Make sure the covariance matrix is positive semi-definite 

  if( any(eigen(sig3)$values<0) ) stop() 

   

  ########################################################################### 

   

  #prepare for parallel computing 

  #----------------------------------------------- 

  #find the number of cores 

  n.cores=detectCores() 

  cl <- makeCluster(n.cores) 

  # RNG seed will be set to 123 

  clusterSetRNGStream(cl,123) 

  clusterExport(cl,c("n.cores", "chi2_0", "ksi2_0", "alp_0", "alps_0", "mu.ks

i2", "K2", "Phi", "sig.ksi2", "sig.chi2", "sig.alp","lambda.ksi2", "lambda.ch

i2", "lambda.alp", "lambda.alps", "r2.chiksi","r2.chialp","r2.chialps","r2.ks

ialp","r2.ksialps", "sig3", "T1","T2","N.out","N.prim","N.dis","dt","r","D","

M","M2","mu.ksi","k","lambda.chi","sig.chi","sig.ksi","rho","mu.ksi.star","la

mbda.ksi","fut2.price","TC.fcn","W.process","W2.process","rnd.fcn"),envir = e

nvironment()  ) 

  # register the cluster 

  registerDoParallel(cl)  

  #----------------------------------------------- 

   

   

#generate M (sample) + M2 (out-of-sample) antithetic sample paths and compute 

# TC rates in parallel 

  #----------------------------------------------- 

  sample.state3= foreach (m = seq(1,M+M2,by=2), .combine = rbind ) %dopar% { 

     

    #generate all the required random numbers (oil & storage) for path m 

    Z=rnd.fcn(N.dis) 

     

    #oil price: first 2 rows of Z 

    W2=W.process(chi_t0=chi_0,ksi_t0=ksi_0,Z[1:2,]) 

    #output:  

    sample.core = rbind( W2[,1:2], W2[,3:4]) 

     

     

    #storage cost: second 4 rows of Z 

    W2=W2.process(chi2_0,ksi2_0,alp_0,alps_0,Z[3:6,]) 

    #output:  

    sample.core2 = rbind( W2[,1:4], W2[,5:8])  

     

    cbind(sample.core,sample.core2) 

     

  } 
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  #----------------------------------------------- 

   

     

  #reshape the sample.state matrix:  

  # change the dimension to c(N.out+1,2 or 4,M+M2) 

  #----------------------------------------------- 

  sample.state=array(0,dim = c(N.out+1,2,M+M2)) 

  sample.state.2=array(0,dim = c(N.out+1,4,M+M2)) 

 

  for (t in 1:(N.out+1)){ 

    t.ind=seq(t, (M+M2)*(N.out+1), by=(N.out+1) )  

    #oil price 

    sample.state[t,1,]=sample.state3[t.ind,1] #chi 

    sample.state[t,2,]=sample.state3[t.ind,2] #ksi 

    #storage cost 

    sample.state.2[t,1,]=sample.state3[t.ind,3] #chi2 

    sample.state.2[t,2,]=sample.state3[t.ind,4] #ksi2 

    sample.state.2[t,3,]=sample.state3[t.ind,5] #alpha 

    sample.state.2[t,4,]=sample.state3[t.ind,6] #alpha_star 

  } 

  rm(sample.state3) 

 

  #Separate out-of-sample paths from the in-sample paths 

  #out-of-sample 

  sample.path2 = sample.state[,,(M+1):(M+M2)] 

  sample.path2.storage = sample.state.2[,,(M+1):(M+M2)] 

  #in-sample 

  sample.state = sample.state[,,(1):(M)] 

  sample.state.2= sample.state.2[,,(1):(M)] 

 

 

  #Pre-compute all the needed Time-Charter Rates (TC, storage costs, or HC) 

  sample.TC.both = foreach (t = 1:(N.out+1-N.prim), .combine = rbind ) %dopar

% { 

    res1=TC.fcn( T2, chi2_t=sample.state.2[t,1,],ksi2_t=sample.state.2[t,2,],

alp_t=sample.state.2[t,3,],alps_t=sample.state.2[t,4,]) 

    res2=TC.fcn( T2, chi2_t=sample.path2.storage[t,1,],ksi2_t=sample.path2.st

orage[t,2,],alp_t=sample.path2.storage[t,3,],alps_t=sample.path2.storage[t,4,

]) 

    matrix(c(res1,res2),ncol=(M+M2),nrow=1) 

  } 

  sample.TC=sample.TC.both[,1:M] 

  sample.TC.2=sample.TC.both[,(M+1):(M+M2)] 

  #----------------------------------------------- 

   

  # shut down the cluster 

  stopCluster(cl) 

   

   

  return(list("a"=sample.state,"b"=sample.state.2,"c"=sample.TC, 

              "d"=sample.path2,"e"=sample.path2.storage,"f"=sample.TC.2 )) 

   

} 
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9.2 Function Computing Oil Futures Prices 

#function that computes futures prices given ttm=T-t (time-to-maturity),  

# chi_t, and ksi_t 

fut.price=function(ttm,chi_t,ksi_t){ 

   

  #------------------------------------------------------------------ 

  #function A(ttm) 

  A=function(ttm){ 

    return(mu.ksi.star*ttm-(1-exp(-k*ttm))*lambda.chi/k +0.5*((1-exp(-2*k*ttm

))*sig.chi^2/(2*k) + sig.ksi^2*ttm + 2*(1-exp(-k*ttm))*rho*sig.chi*sig.ksi/k)

) 

  } 

  #------------------------------------------------------------------ 

   

  fut=exp(-k*ttm)*chi_t + ksi_t + A(ttm=ttm) 

  return(exp(fut)) 

   

} 

9.3 Function Computing the Endogenous State Space 

#set of Possible States at time t 

statespace.fcn=function(t){ 

   

  #SPECIAL STATES: no tanker has been rented (0,1,1) 

  pos.states=c(0,1,1) 

   

  # the tanker rent contract cannot be expired yet 

  if (t<=(N.prim+1)) { 

    if (t!=1) { 

      # when tanker is empty: R_t=1: (I_t,1,1) 

      foreach ( I_t=(N.prim+1):min(t-1+N.prim,N.out+1) )%:%foreach ( R_t=1 )%

:%foreach ( T_t=1 ) %do% { 

        pos.states=rbind(pos.states,c(I_t,R_t,T_t))  

      } 

       

      # when tanker is Not empty: R_t>1: (I_t,R_t,T_t) 

      foreach ( I_t=(N.prim+1):min(t-1+N.prim,N.out+1) )%:%foreach ( R_t=2:(R

.out+1) )%:%foreach ( T_t=t:I_t ) %do% { 

        pos.states=rbind(pos.states,c(I_t,R_t,T_t))  

      } 

    } 

  } 

   

  # there is the possibility that tanker was rented but contract expired (123

4,1,1) 

  if (t>(N.prim+1)) { 

    pos.states=rbind(pos.states,c(1234,1,1)) 

     

    # when tanker is empty: R_t=1: (I_t,1,1) 

    foreach ( I_t=t:min(t-1+N.prim,N.out+1) )%:%foreach ( R_t=1 )%:%foreach ( 

T_t=1 ) %do% { 

      pos.states=rbind(pos.states,c(I_t,R_t,T_t))  
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    } 

     

    # when tanker is Not empty: R_t>1: (I_t,R_t,T_t) 

    foreach ( I_t=t:min(t-1+N.prim,N.out+1) )%:%foreach ( R_t=2:(R.out+1) )%:

%foreach ( T_t=t:I_t ) %do% { 

      pos.states=rbind(pos.states,c(I_t,R_t,T_t))  

    } 

     

  } 

   

  return(pos.states) 

   

} 

#set of Possible States at time t 

statespace.sub.fcn=function(t){ 

  #not include the expired state c(1234,1,1) since it is an absorbing state w

ith zero value 

  #not include the not-rented-yet state c(0,1,1) if t>N-N'+1 since it is an a

bsorbing state with zero value 

  #not include the state c(t,1,1), just expiring with 0 inventory, since it i

s an absorbing state with zero value 

   

  #SPECIAL STATES: tanker not-rented-yet (0,1,1) 

  if(t<=(N.out+1-N.prim)){ 

    pos.states=c(0,1,1) 

  }else{ 

    pos.states=NULL 

  } 

   

   

  # the tanker rent contract cannot be expired yet 

  if (t<(N.prim+1)) { 

    if (t!=1) { 

      # when tanker is empty: R_t=1: (I_t,1,1) 

      foreach ( I_t=(N.prim+1):min(t-1+N.prim,N.out+1) )%:%foreach ( R_t=1 )%

:%foreach ( T_t=1 ) %do% { 

        pos.states=rbind(pos.states,c(I_t,R_t,T_t))  

      } 

       

      # when tanker is Not empty: R_t>1: (I_t,R_t,T_t) 

      foreach ( I_t=(N.prim+1):min(t-1+N.prim,N.out+1) )%:%foreach ( R_t=2:(R

.out+1) )%:%foreach ( T_t=t:I_t ) %do% { 

        pos.states=rbind(pos.states,c(I_t,R_t,T_t))  

      } 

    } 

   

     

     

  # the tanker rent contract cannot be expired yet 

  }else if (t==(N.prim+1)) { 

      if (t!=1) { 

        # when tanker is empty: R_t=1: (I_t,1,1) 

        foreach ( I_t=(N.prim+2):min(t-1+N.prim,N.out+1) )%:%foreach ( R_t=1 

)%:%foreach ( T_t=1 ) %do% { 
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          pos.states=rbind(pos.states,c(I_t,R_t,T_t))  

        } 

         

        # when tanker is Not empty: R_t>1: (I_t,R_t,T_t) 

        foreach ( I_t=(N.prim+1):min(t-1+N.prim,N.out+1) )%:%foreach ( R_t=2:

(R.out+1) )%:%foreach ( T_t=t:I_t ) %do% { 

          pos.states=rbind(pos.states,c(I_t,R_t,T_t))  

        } 

      } 

       

     

       

  # there is the possibility that tanker was rented but contract expired (123

4,1,1) 

  }else if (t>(N.prim+1)) { 

    # when tanker is empty: R_t=1: (I_t,1,1) 

    foreach ( I_t=(t+1):min(t-1+N.prim,N.out+1) )%:%foreach ( R_t=1 )%:%forea

ch ( T_t=1 ) %do% { 

      pos.states=rbind(pos.states,c(I_t,R_t,T_t))  

    } 

     

    # when tanker is Not empty: R_t>1: (I_t,R_t,T_t) 

    foreach ( I_t=t:min(t-1+N.prim,N.out+1) )%:%foreach ( R_t=2:(R.out+1) )%:

%foreach ( T_t=t:I_t ) %do% { 

      pos.states=rbind(pos.states,c(I_t,R_t,T_t))  

    } 

     

  } 

   

  return(pos.states) 

   

} 

9.4 Function Computing the Action Space 

#action set (in integers):  

#does not include xT_t=t b/c selling on the spot is done separately via xR_t 

action.set=function(t,I_t,R_t){ 

   

  #(xI_t, xR_t, xT_t) 

   

  if( I_t==t | I_t==1234 ){  

    return(matrix(c(0,-(R_t-1),1),nrow = 1))  #must sell any existing invento

ry, we set xT_t=0 (=1 in integer) 

     

     

  }else if( I_t==0 & t<=(N.out+1-N.prim) ) { #no tanker but can rent it now (

implies R_t=1) 

    res=NULL 

    for (xR_t in (-(R_t-1)+1):(R.out+1-R_t) ){ # in continous form -R_t+dR<=x

R_t<=R1-R_t 

      for(xT_t in (t+1):(t+N.prim)  ){         # maximum allowed maturity is 

limitted by the rental contract expiry (t+N.prim)  

        res=rbind(c(1,xR_t,xT_t),res) 
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      } 

    } 

     return(rbind(res, 

                 c(1,-(R_t-1),1),#decide to rent the tanker but not buy any o

il, then xT_t is meaningless, and we set xT_t=0 (=1 in integer) 

                 c(0,-(R_t-1),1) #decide not to rent the tanker at all 

                 ))  

     

     

     

  }else if(I_t==0 & t>(N.out+1-N.prim) ) {  #no tanker but can not rent anymo

re 

    return(matrix(c(0,0,1),nrow = 1))  #we set xT_t=0 (=1 in integer) 

     

     

  }else{ #already a tanker rent contract in place with expiry at I_t. All xI_

t=0 

    res=NULL 

    for (xR_t in (-(R_t-1)+1):(R.out+1-R_t) ){ # in continous form -R_t+dR<=x

R_t<=R1-R_t 

      for(xT_t in (t+1):I_t  ){         # maximum allowed maturity is limitte

d by the exiting rental contract expiry I_t  

        res=rbind(c(0,xR_t,xT_t),res) 

      } 

    } 

    #if decide to sell everything, then xT_t is meaningless, and we set xT_t=

0 (=1 in integer) 

    return(rbind(res,c(0,-(R_t-1),1)))  

  }  

} 

9.5 Function Representing the Transition Function   

#state transition function (in integers) 

#Note about xR_t: R_i=(i-1)d  R_j=(j-1)d  so R_j-R_i=(j-i)d  

S.transition=function(t,I_t,R_t,xI_t,xR_t,xT_t){ 

   

  if( I_t==1234 | I_t==t ){ #it means a delivery must conclude the trading 

    #I_2=1234 

    #R_2 = 1  

    #T_2 = 1      

    return(cbind(1234,1,1)) 

     

     

  }else if( I_t==0 & xI_t==1 ){ #just rented the tanker 

    #I_2=t+N.prim 

    #R_2 = R_t + xR_t  

    #T_2 = xT_t    

    return(cbind( t+N.prim, R_t+xR_t, xT_t )) 

     

  }else if( I_t==0 & xI_t==0 ){ #no tanker and decided not to rent it 

    #I_2=0 

    #R_2 = R_t + xR_t: we can igoner xR_t b/c it is zero by the action set   

    #T_2 = xT_t   
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    return(cbind(0, R_t, xT_t)) 

     

  }else{ #there is already an active rent contract in place 

    #I_2=I_t 

    #R_2 = R_t + xR_t  

    #T_2 = xT_t  

    return(cbind(I_t, R_t + xR_t, xT_t)) 

     

  }  

} 

9.6 Function Formulating the Reward Function   

#payoff function based on the spread (in integers) VECTORIZED with respect to 

chi and ksi 

reward.fcn=function(t,I_t,R_t,T_t,xI_t,xR_t,xT_t,chi_t,ksi_t,TC_t){ 

  #excluded ,chi_t,ksi_t,chi2_t,ksi2_t,alp_t,alps_t from the inputs of the re

ward function 

   

  # t current time 

  # R_t level of oil in storage 

  # T_t initial maturity 

  # x_t new maturity chosen 

  # trader considers to transfer maturity frim T_t to x_t 

   

  if( I_t==t | I_t==1234 ){ 

    return( 

      -(R_t-1)*dR*PC2 

    ) 

     

     

  }else{ 

    # compute potential storage cost payment for period [t,T1] 

    if((I_t==0)&(xI_t==1)){ 

      storage.cost=-R1*N.prim*dt*TC_t #TC==HC, TC.fcn((N.out+1-t)*dt,chi2_t,k

si2_t,alp_t,alps_t) 

    }else{ 

      storage.cost=0 

    } 

     

    return( 

      # sell on spot price 

      -xR_t*dR * ( fut.price(ttm = 0 ,chi_t,ksi_t)+PC1*(xR_t>0)-PC2*(xR_t<0)  

)   

      # short forward 

      +(R_t+xR_t-1)*dR*exp( -r*(xT_t-t)*dt ) * fut.price((xT_t-t)*dt, chi_t, 

ksi_t) 

      # long existing maturity to offset the current contract held 

      -(R_t-1)*dR*exp( -r*(T_t-t)*dt ) * fut.price((T_t-t)*dt, chi_t, ksi_t) 

      # potential storage cost payment 

      +storage.cost 

    ) 

     

  } 
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} 

9.7 Auxiliary Function – Array Index Mapping  

#Map real I_t to an integer index: 

It.indexer.fcn=function(I_t){ 

  #Other than I_t=0 or 1234 ; 

  #Minimum real I_t is T2, which is N.prim+1 in discrete (assume entering at 

t=0) 

  #Maximum real I_t is T1, which is N.out+1 in discrete (assume entering at t

=T1-T2) 

  #We consider index 1 for I_t=0, index 2 for I_t=1234, 

  # and 3,4,...,3+(N.out-N.prim) for N.prim+1,...,N.out+1. 

  #This reduces the size of the Theta array.   

   

  if (I_t==0){ 

    return(1) 

     

  }else if (I_t==1234) 

    return(2) 

   

  else{ 

    return(I_t-N.prim+2) #Note that I_t will be always greater than or equal 

to N.prim+1 

     

  } 

   

} 

9.8 Auxiliary Function – Polynomial Feature Mapping  

#polynomial feature mapping function: (NOT including the intercept) 

fmap.fcn=function(a,p){ 

  # a is the array of features; each feature in a colmun  

  #p= 2 or 3 #maximum power of the polynomial 

  n=ncol(a) 

   

  if(p==2){ 

    #all power 2 combos 

    ind2=cbind(getall(iterpc(n,2,replace = TRUE)),0) 

    #all power 1 combos 

    ind1=cbind(getall(iterpc(n,1,replace = TRUE)),0,0) 

    #all combos 

    ind=rbind(ind2,ind1) #ind3, 

     

    n.factor=nrow(ind) 

     

    res=matrix(0,nrow=nrow(a),ncol=n.factor) 

     

    for(i in 1:n.factor){# loop over all combos each generating one (new) fac

tor 

      if ( length(which(ind[i,]!=0)) > 1 ){ 
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        res[,i]=rowProds(a[,ind[i,]])  #,method = "direct"         

      }else{ 

        res[,i]=a[,ind[i,]] 

      } 

    } 

     

  } 

   

  if(p==3){ 

    #all power 3 combos 

    ind3=getall(iterpc(n,3,replace = TRUE)) 

    #all power 2 combos 

    ind2=cbind(getall(iterpc(n,2,replace = TRUE)),0) 

    #all power 1 combos 

    ind1=cbind(getall(iterpc(n,1,replace = TRUE)),0,0) 

    #all combos 

    ind=rbind(ind3,ind2,ind1) 

     

    n.factor=nrow(ind) 

     

    res=matrix(0,nrow=nrow(a),ncol=n.factor) 

     

    for(i in 1:n.factor){# loop over all combos each generating one (new) fac

tor 

      if ( length(which(ind[i,]!=0)) > 1 ){ 

        res[,i]=rowProds(a[,ind[i,]]) #,method = "direct" 

         

      }else{ 

        res[,i]=a[,ind[i,]] 

      } 

    } 

     

  } 

   

  return( res  ) 

   

} 

#polynomial feature mapping function: (NOT including the intercept) 

fmap.singlerow.fcn=function(a,p){ 

  # a is the array of features; each feature in a colmun  

  #p= 2 or 3 #maximum power of the polynomial 

  n=ncol(a) 

   

  if(p==2){ 

    #all power 2 combos 

    ind2=cbind(getall(iterpc(n,2,replace = TRUE)),0) 

    #all power 1 combos 

    ind1=cbind(getall(iterpc(n,1,replace = TRUE)),0,0) 

    #all combos 

    ind=rbind(ind2,ind1) #ind3, 

     

    n.factor=nrow(ind) 

     

    res=matrix(0,nrow=nrow(a),ncol=n.factor) 
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    for(i in 1:n.factor){# loop over all combos each generating one (new) fac

tor 

      if ( length(which(ind[i,]!=0)) > 1 ){ 

        res[,i]=prod(a[,ind[i,]])           

      }else{ 

        res[,i]=a[,ind[i,]] 

      } 

    } 

     

  } 

   

  if(p==3){ 

    #all power 3 combos 

    ind3=getall(iterpc(n,3,replace = TRUE)) 

    #all power 2 combos 

    ind2=cbind(getall(iterpc(n,2,replace = TRUE)),0) 

    #all power 1 combos 

    ind1=cbind(getall(iterpc(n,1,replace = TRUE)),0,0) 

    #all combos 

    ind=rbind(ind3,ind2,ind1) 

     

    n.factor=nrow(ind) 

     

    res=matrix(0,nrow=nrow(a),ncol=n.factor) 

     

    for(i in 1:n.factor){# loop over all combos each generating one (new) fac

tor 

      if ( length(which(ind[i,]!=0)) > 1 ){ 

        res[,i]=prod(a[,ind[i,]]) 

         

      }else{ 

        res[,i]=a[,ind[i,]] 

      } 

    } 

     

  } 

   

  return( res  ) 

   

} 

9.9 Function Computing the Optimal Action Given Stochastic Storage Costs 

#function that gets a sate and finds the optimal action pair that generates 

# the maximum value ( OPtimal POlicy finder)  

oppo.fcn=function(t,I_t,R_t,T_t,theta,TC_t,mydata.t){ 

   

  chi_t  = mydata.t[,main.col[1]] 

  ksi_t  = mydata.t[,main.col[2]] 

 

  # feasible action set 

  X=action.set(t,I_t,R_t) 
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  #initialize temporary value function for every possible action 

  q=array(0, dim = c(nrow(X), length(chi_t) ) ) #M=length(chi_t) 

   

  #loop over all actions x in the feasible set of actions 

  for (j1 in 1:nrow(X)) { 

     

    #choose the j1-th feasible action 

    xI_t=X[j1,1] 

    xR_t=X[j1,2] 

    xT_t=X[j1,3] 

     

    #compute the reward of the chosen action 

    C_t = reward.fcn(t,I_t,R_t,T_t,xI_t,xR_t,xT_t,chi_t,ksi_t,TC_t) 

     

    #compute the next state given the current state and the chosen action 

    S2 = S.transition(t, I_t,R_t,xI_t,xR_t,xT_t) 

     

    # CV: expected value of V1[t+1,S2] based on S2 

     

    #continuation value: V2=V[t+1, S2[1], S2[2], ] recover from the list cont

.val 

    # S2[1]+1: +1 is the adjustment to transform to array index 

    if(t==N.out){ 

      v.hat=-(S2[2]-1)*dR*PC2 

    }else{ 

      #storage cost functionality is considered (I_t2==0) and # CV is not a f

cn of storage cost if I_t2!=0 

      v.hat=theta[t, It.indexer.fcn(S2[1]) ,S2[2],S2[3],]%*%t(mydata.t) 

       

    } 

     

    #total value from the j1-th pair of actions: current payoff + discounted 

value function 

    q[j1,] = C_t + D*v.hat   

     

  } 

   

  #for any sample path, choose the optimal action pair 

  return( apply(q,2,max) )  

} 

 

#function that receives a sample sate and finds the Optimal Action pair that 

generates 

# the maximum value ( OPtimal POlicy finder)  

oppo.c.fcn=function(t,I_t,R_t,T_t,theta,TC_t,mydata.t){ 

   

  chi_t  = mydata.t[,main.col.c[1]] 

  ksi_t  = mydata.t[,main.col.c[2]] 

   

  # feasible action set 

  X=action.set(t,I_t,R_t) 

   

  #initialize temporary value function for every possible action 

  q=array(0, dim = c(nrow(X), length(chi_t) ) ) #M=length(chi_t) 
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  #loop over all actions x in the feasible set of actions 

  for (j1 in 1:nrow(X)) { 

     

    #choose the j1-th feasible action 

    xI_t=X[j1,1] 

    xR_t=X[j1,2] 

    xT_t=X[j1,3] 

     

    #compute the reward of the chosen action 

    C_t = reward.fcn(t,I_t,R_t,T_t,xI_t,xR_t,xT_t,chi_t,ksi_t,TC_t) 

     

    #compute the next state given the current state and the chosen action 

    S2 = S.transition(t, I_t,R_t,xI_t,xR_t,xT_t) 

     

    # CV: expected value of V1[t+1,S2] based on S2 

     

    #continuation value: V2=V[t+1, S2[1], S2[2], ] recover from the list cont

.val 

    # S2[1]+1: +1 is the adjustment to transform to array index 

    if(t==N.out){ 

      v.hat=-(S2[2]-1)*dR*PC2 

    }else{ 

      #storage cost functionality is considered (I_t2==0) and # CV is not a f

cn of storage cost if I_t2!=0 

      v.hat=theta[t, It.indexer.fcn(S2[1]) ,S2[2],S2[3],]%*%t(mydata.t) 

       

    } 

     

    #total value from the j1-th pair of actions: current payoff + discounted 

value function 

    q[j1,] = C_t + D*v.hat   

     

  } 

   

  #for any sample path, choose the optimal action pair 

  return( apply(q,2,max) )  

} 

9.10 Specify the Parameters and Simulate the Prices 

#Global parameters: part one (fixed ones)  

#############################################################################

#### 

#Oil parameters (Hahn et al)  

mu.ksi=0.0818 

k=1.0880  #MAKE SURE YOU DON NOT USE SMALL "k" LETTER 

lambda.chi=0.3733 

sig.chi=0.3116 

sig.ksi=0.2053 

rho=0.0823 

mu.ksi.star=-0.0252 

lambda.ksi=0.107 #based on lambda.ksi=mu.ksi-mu.ksi.star=0.0818-(-0.0252) 
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#storage cost parameters 

mu.ksi2=1.1049 

K2=4.8854 

Phi=0.8426  # we expect the seasonality period to be one year  

sig.ksi2=0.4134 

sig.chi2=1.9123 

sig.alp=0.2285 #zero means deterministic seasonality 

 

lambda.ksi2=1.2014 

lambda.chi2=-1.4337 

lambda.alp=-0.0291 

lambda.alps=0.5587 

 

#correlation matrix of the storage stochastic factors 

r2.chiksi=-0.3849 

r2.chialp=-0.2453 

r2.chialps=-0.7586 

r2.ksialp=-0.2769 

r2.ksialps=0.5984 

 

#IC 

chi_0=-0.63932 

ksi_0=4.6366 

 

chi2_0=3.39    #log(46000)-(alp_0+alps_0+ksi2_0) 

ksi2_0=8.4    #log(36000)-chi2_0-alp_0-alps_0 

alp_0=0.3      #if we set to 0, it'll stay so if the variance is 0 too 

alps_0=0.4     #if we set to 0, it'll stay so if the variance is 0 too 

 

#end of time horizon 

T1=2 

 

#rental period length (T.prime) 

T2=1 

 

#total number of trading periods (16 or 12 per year) 

N.out=12*T1 

dt=T1/N.out 

 

#how many time steps the rental length is: 

N.prim=T2/dt 

 

R1=1 #tanker capacity 

R.out=1 #Number of tanker discretization intervals: 1<=R_t<=R.out+1 

dR=R1/R.out #discretization step size for R (storage capacity)  

r=0.005 

D=exp(-r*dt)  #one-period discount factor 

 

#HC=6.57 $per barrel per year in constant case  

PC1=3 #3.75/2   #PC^+  buying   #$3.75/2 per barrel 

PC2=3 #3.75/2     #PC^-  selling 

 

p.1=3 #polynomial degree for oil and storage cost stochastic prices 
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library(parallel) 

library(doParallel) 

## Loading required package: foreach 

## Loading required package: iterators 

library(MASS) #for correlated rnd generation 

library(iterpc) #combinatorics for feature mapping 

library(matrixStats) #for row Product of fmap 

temp1=cbind(1,fmap.fcn(rbind(c(2.1,3.2,4.3,5.4,6.5,7.6),c(2.1,3.2,4.3,5.4,6.5

,7.6)), p.1)) 

temp2=cbind(1,fmap.fcn(rbind(c(2.1,3.2),c(2.1,3.2)), p.1)) 

temp3=rbind(c(2.1,3.2,4.3,5.4,6.5,7.6),c(2.1,3.2,4.3,5.4,6.5,7.6)) 

temp4=rbind(c(2.1,3.2),c(2.1,3.2)) 

n.basis=ncol(temp1) # 83 + 1 (intercept) 27+1 (for 2nd order) 

# columns 1,2,7,22,23 are exclusively associated with the oil factors 

oil.col=which( temp1[1,] %in% temp2[1,]) 

n.basis.sub=ncol(temp2) #number of columns of the subset data 

# these columns are the pure factors of oil and storage(i.e. power one) 

main.col=which( temp1[1,] %in% temp3[1,]) 

# these columns are the pure factors of oil only (i.e. power one) within thei

r own ploy transformation 

main.col.c=which( temp2[1,] %in% temp4[1,]) 

rm(temp1,temp2,temp3,temp4) 

 

#initial state (non-integer) 

I_0=0 # no tanker still rented at time 0 I_0=0 

R_0=0 # the tanker is empty R_0=0 

T_0=0 # at time zero, the maturity of the contract held is t=0 (equivalent to 

i=1) 

 

#Correlations 

rz_ksi.ksip=0 #range: -/+ 0.7 

rz_chi.chip=0 #range: -/+ 0.55 

 

#Numbers of sample paths 

M=100000 

M2=20000 

#############################################################################

#### 

 

   

#Global parameters: part two (variables ones) 

#############################################################################

#### 

initial.time=Sys.time() 

 

mu.ksi.star=mu.ksi-lambda.ksi 

 

#Generate both samples 

sample.input=sample.fcn(M, M2, T1,T2,N.out,N.prim,rz_ksi.ksip,rz_chi.chip,chi

_0,ksi_0,chi2_0,ksi2_0,alp_0,alps_0,r, 

  #storage cost parameters 

  mu.ksi,k,lambda.chi,sig.chi,sig.ksi,rho,mu.ksi.star,lambda.ksi, 

  #storage cost parameters 
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  mu.ksi2,K2,Phi,sig.ksi2,sig.chi2,sig.alp,lambda.ksi2,lambda.chi2,lambda.alp

,lambda.alps, 

  #correlation matrix of the storage stochastic factors 

  r2.chiksi,r2.chialp,r2.chialps,r2.ksialp,r2.ksialps    ) 

 

sample.time=Sys.time()-initial.time 

print(c('sample computation time',sample.time)) 

 

#import the generated sample 

sample.state         =sample.input$a 

sample.state.2       =sample.input$b 

sample.TC            =sample.input$c 

sample.path2         =sample.input$d 

sample.path2.storage =sample.input$e 

sample.TC.2          =sample.input$f 

rm(sample.input) 

#############################################################################

#### 

9.11 Backward Induction 

#prepare for parallel computing 

n.cores=detectCores() #find the number of cores 

cl <- makeCluster(n.cores) 

clusterSetRNGStream(cl) 

clusterExport(cl,c("n.cores", 

                   "chi2_0", "ksi2_0", "alp_0", "alps_0", 

                   "mu.ksi2", "K2", "Phi", "sig.ksi2", "sig.chi2", "sig.alp", 

                   "lambda.ksi2", "lambda.chi2", "lambda.alp", "lambda.alps", 

                   "r2.chiksi","r2.chialp","r2.chialps","r2.ksialp","r2.ksial

ps", 

                   "I_0","R_0","T_0","chi_0","ksi_0", 

                   "p.1", 

                   "PC1", 

                   "PC2", 

                   "T1","T2", 

                   "N.out","N.prim", 

                   "oil.col","main.col","main.col.c", 

                   "dt", 

                   "R1", 

                   "R.out", 

                   "dR",  

                   "r", 

                   "D", 

                   "n.basis", 

                   "n.basis.sub", 

                   "M","M2", 

                   "mu.ksi", 

                   "k", 

                   "lambda.chi", 

                   "sig.chi", 

                   "sig.ksi", 

                   "rho", 

                   "mu.ksi.star", 
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                   "lambda.ksi", 

                   "action.set", 

                   "fmap.fcn","fmap.singlerow.fcn", 

                   "fut.price", 

                   "oppo.fcn","oppo.c.fcn", 

                   "reward.fcn", 

                   "S.transition", 

                   "v.op.fcn", 

                   "It.indexer.fcn", 

                   "statespace.sub.fcn", 

                   "statespace.fcn", 

                   "getall", #from iterpc library 

                   "iterpc", #from iterpc library 

                   "rowProds" #from matrixstatistics library 

),envir = environment()  ) 

registerDoParallel(cl) # register the cluster 

  

#Solve backward in time 

#initialize theta to zero: Maximum real I_t=N.out+1 

#Assuming Stochastic Storage Cost 

Theta = array(0,dim=c(N.out, It.indexer.fcn(N.out+1), R.out+1, N.out+1, n.bas

is    ) ) 

#Assuming Constant Storage Cost 

Theta.c=array(0,dim=c(N.out, It.indexer.fcn(N.out+1), R.out+1, N.out+1, n.bas

is.sub    ) ) 

 

#Initialize data of time t; intercept (1) included manually 

t=N.out 

mydata.t.input=cbind(1, fmap.fcn(cbind(sample.state[t,1,],sample.state[t,2,],

sample.state.2[t,1,],sample.state.2[t,2,],sample.state.2[t,3,],sample.state.2

[t,4,]), p.1) ) 

 

# looping backward starting from one-to-last to 2 

for( t in (N.out):2 ){  

  print(c("t",t)) 

   

  #set of Possible States at time t: 

  pos.states=statespace.sub.fcn(t) 

 

  #regression data: map chi_t, ksi_t, chi2_t, ksi2_t, alp_t, and alp2_t into 

83 polynomial feature vectors   

  #intercept (1) included manually 

  mydata=cbind(1, fmap.fcn(cbind(sample.state[t-1,1,],sample.state[t-1,2,],sa

mple.state.2[t-1,1,],sample.state.2[t-1,2,],sample.state.2[t-1,3,],sample.sta

te.2[t-1,4,]), p.1) ) 

   

  #Find the optimal action pair and value for each possible state (I_t,R_t,T_

t) 

  #(in parallel), and for each sample path (in vectorized computation) 

  theta.par=foreach ( i=1:nrow(pos.states),.combine = rbind ) %dopar% { 

    

     

    #Assuming Stochastic Storage Cost 

    V = oppo.fcn(t, 
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                 I_t=pos.states[i,1], 

                 R_t=pos.states[i,2], 

                 T_t=pos.states[i,3], 

                 theta  = Theta, 

                 #TC is not defined beyond N.out+1-N.prim, i.e. T1-T2 

                 TC_t = sample.TC[min(t,N.out+1-N.prim),], 

                 mydata.t = mydata.t.input 

                 ) 

 

    #Assuming Constant Storage Cost 

    V.c = oppo.c.fcn(t, 

                     I_t=pos.states[i,1], 

                     R_t=pos.states[i,2], 

                     T_t=pos.states[i,3], 

                     theta  = Theta.c, 

                     TC_t = sample.TC[1,],#since TC=TC0 is kept constant at a

ll times 

                     mydata.t = mydata.t.input[,oil.col] 

                     ) 

     

    #Compute theta(t-1): Continuation Function Approximation 

    # It gives continuation value at stage t-1 of the value function for the 

next state 

    # to be S(t) as a function of chi(t-1) and ksi(t-1) 

 

    if(pos.states[i,1]==0){ #need to use the storage cost data as well 

       

      #Assuming Stochastic Storage Cost 

      #regression coefficients 

      fit.coef=as.numeric( lm.fit(mydata,V)$coefficients ) 

             

      #Assuming Constant Storage Cost 

      fit.c.coef=as.numeric( lm.fit(mydata[,oil.col],V.c)$coefficients ) 

       

      #export all results 

      list( c(fit.coef, fit.c.coef) ) 

       

    }else{ #regress on the oil price columns only (doesn’t need storage cost) 

       

      #Assuming Stochastic Storage Cost 

      #regression coefficients 

      fit=lm.fit(mydata[,oil.col],V)$coefficients 

 

      #Theta: update the associated columns and adjust the number of coeffici

ents to 

      # n.basis to match with the dimension of Theta 

      fit.coef=rep(0,n.basis) 

      temp=as.numeric(fit)  

      fit.coef[oil.col]=temp #add the intercept coefficient to the associated 

oil columns  

       

             

      #Assuming Constant Storage Cost 

      fit.c.coef=as.numeric( lm.fit(mydata[,oil.col],V.c)$coefficients ) 
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      #export all results 

      list( c(fit.coef, fit.c.coef) ) 

    } 

     

  } 

     

  #non-parallel: update the Theta matrix using the recently computed coeffici

ents 

  for (i in 1:nrow(pos.states) ){ 

    #I_t=pos.states[i,1], R_t=pos.states[i,2], T_t=pos.states[i,3] 

    #For I_t, a transformation to a compatible integer for array indexing is 

done   

    Theta  [t-1, It.indexer.fcn(pos.states[i,1]), pos.states[i,2], pos.states[

i,3], ]=unl     ist(theta.par[i,1])[1:n.basis] 

    Theta.c[t-1, It.indexer.fcn(pos.states[i,1]), pos.states[i,2], pos.states[

i,3], ]=unlist(theta.par[i,1])[(n.basis+1):(n.basis+n.basis.sub)] 

  } 

   

  #data(t-1) computed at time 't', will be data(t) at the previous time step, 

't-1' 

  mydata.t.input = mydata 

} 

 

#Theta(t=1) has some NA's, replace them with 0 

Theta[which(is.na(Theta))]=0 

Theta.c[which(is.na(Theta.c))]=0 

 

theta.time=Sys.time()-initial.time 

print(c('Theta computation time',theta.time-sample.time)) 

 

print(c('Total time so far',theta.time)) 

 

#In-sample estimate of the value function at t0 

t=1 

m=1:2 

mydata.t.input=cbind(1, fmap.fcn (cbind(sample.state[t,1,m],sample.state[t,2,

m],sample.state.2[t,1,m],sample.state.2[t,2,m],sample.state.2[t,3,m],sample.s

tate.2[t,4,m]), p.1) ) 

v.is=oppo.fcn(t=1,I_t=I_0,R_t=R_0/dR+1,T_t=T_0/dt+1,theta=Theta,TC_t=sample.T

C[1,m],mydata.t=mydata.t.input)[1] 

v.c.is=oppo.c.fcn(t=1,I_t=I_0,R_t=R_0/dR+1,T_t=T_0/dt+1,theta=Theta.c,TC_t=sa

mple.TC[1,m],mydata.t=mydata.t.input[m,oil.col] )[1] 

 

9.12 Out-of-Sample Performance  

#Analyze of the detailed out-of-sample performance using the computed Theta a

nd Theta.c 

#It will compute the state/action at each timestep for each path 

 

#Assuming Stochastic Storage Cost 

v.detail=foreach (m = 1:M2, .combine = cbind)%dopar% { 
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  #initialize (in integer form) 

  I_t=I_0 

  R_t=R_0/dR+1 

  T_t=T_0/dt+1 

   

   

  #cumulative value for each path 

  temp=0 

  #payoff at each time step 

  V=array(0,dim=c(N.out+1,1)) 

  #state variables at each time step 

  S=array(0,dim=c(N.out+1,3)) 

  #initialize the state variables 

  S[1,]=c(I_t,R_t,T_t) 

   

  for (t in 1:N.out) { 

     

    #intercept (1) included manually 

    mydata.t.input = cbind(1, fmap.singlerow.fcn(cbind(sample.path2[t,1,m],sa

mple.path2[t,2,m],sample.path2.storage[t,1,m],sample.path2.storage[t,2,m],sam

ple.path2.storage[t,3,m],sample.path2.storage[t,4,m]), p.1) ) 

    TC_t=sample.TC.2[min(t,N.out+1-N.prim),m]#TC is not defined beyond N.out+

1-N.prim  

     

    # feasible action set 

    X=action.set(t,I_t,R_t) 

     

    #initialize temporary value function for every possible action 

    q=array(0, dim=c(1,nrow(X))) 

    C_t=array(0, dim=c(1,nrow(X))) 

     

    #loop over all actions x in the feasible set of actions 

    for (j1 in 1:nrow(X)) { 

       

      #choose the j1-th feasible action 

      xI_t=X[j1,1] 

      xR_t=X[j1,2] 

      xT_t=X[j1,3] 

       

      #compute the reward of the chosen action 

      C_t[j1]=reward.fcn(t,I_t,R_t,T_t,xI_t,xR_t,xT_t, 

                         chi_t=sample.path2[t,1,m], 

                         ksi_t=sample.path2[t,2,m], 

                         TC_t) 

       

      #compute the next state given the current state and the chosen action 

      S2=S.transition(t,I_t,R_t,xI_t,xR_t,xT_t) 

       

      # Continuation Value (CV): expected value of V1[t+1,S2] based on S2 

      if(t==N.out){ 

        v.hat=-(S2[2]-1)*dR*PC2 

      }else{ 

        # CV is a function of the storage cost factors only if I_t2=0, and CV 

is not a 
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        #function of storage cost factors if I_t2!=0 by setting all the corre

sponding 

        #coefficients to zero 

        v.hat=Theta[t, It.indexer.fcn(S2[1]), S2[2],S2[3],]%*%t(mydata.t.inpu

t) 

         

      } 

       

      #total value from the j1-th pair of actions:  

      # It is equal to the current payoff + discounted value function 

      q[j1] = C_t[j1] + D*v.hat # D stage discount factor   

       

    } 

     

    #find the optimal action 

    optimal.id=which.max(q) 

     

    #the payoff ONLY comes from the immediate reward function 

    temp = temp + (D^(t-1))*C_t[optimal.id] 

     

    #time step t payoff 

    V[t]=C_t[optimal.id] 

     

    #compute the next state using the transition function 

    S2=S.transition(t, I_t, R_t, X[optimal.id,1], X[optimal.id,2], X[optimal.

id,3]) 

    I_t=S2[1] 

    R_t=S2[2] 

    T_t=S2[3] 

     

    S[t+1,]=c(I_t,R_t,T_t) 

     

    if(I_t==1234){ 

      S[(t+1):(N.out+1),1]=I_t 

      S[(t+1):(N.out+1),2]=R_t 

      S[(t+1):(N.out+1),3]=T_t 

      break 

    }  

     

  } 

   

  #add the last time stage (N.out+1) inventory left-over penalty (reward)  

  temp=temp-(S2[2]-1)*dR*PC2 

  V[N.out+1]=-(S2[2]-1)*dR*PC2 

   

  #export value 

  list("value"=temp,"stage.value"=V,"states"=S) 

   

   

} 

 

#Assuming Constant Storage Cost 

v.c.detail=foreach (m = 1:M2, .combine = cbind)%dopar% { 
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  #initialize ( in integer form) 

  I_t=I_0 

  R_t=R_0/dR+1 

  T_t=T_0/dt+1 

   

   

  #cumulative value for each path 

  temp=0 

  #payoff at each time step 

  V=array(0,dim=c(N.out+1,1)) 

  #state variables at each time step 

  S=array(0,dim=c(N.out+1,3)) 

  #initialize the state variables 

  S[1,]=c(I_t,R_t,T_t) 

   

  for (t in 1:N.out) { 

     

    #intercept (1) included manually 

    mydata.t.input=cbind(1, fmap.singlerow.fcn(cbind(sample.path2[t,1,m],samp

le.path2[t,2,m]), p.1) ) 

    # The storage cost is constant for all paths and equal to the initial val

ue 

    TC_t=sample.TC.2[1,1]  

     

    # feasible action set 

    X=action.set(t,I_t,R_t) 

     

    #initialize temporary value function for every possible action 

    q=array(0, dim=c(1,nrow(X))) 

    C_t=array(0, dim=c(1,nrow(X))) 

     

    #loop over all actions x in the feasible set of actions 

    for (j1 in 1:nrow(X)) { 

       

      #choose the j1-th feasible action 

      xI_t=X[j1,1] 

      xR_t=X[j1,2] 

      xT_t=X[j1,3] 

       

      #compute the reward of the chosen action 

      C_t[j1]=reward.fcn(t,I_t,R_t,T_t,xI_t,xR_t,xT_t, 

                         chi_t=sample.path2[t,1,m], 

                         ksi_t=sample.path2[t,2,m], 

                         TC_t) 

       

      #compute the next state given the current state and the chosen action 

      S2=S.transition(t,I_t,R_t,xI_t,xR_t,xT_t) 

       

      # Continuation Value (CV): expected value of V1[t+1,S2] based on S2 

      if(t==N.out){ 

        v.hat=-(S2[2]-1)*dR*PC2 

      }else{ 

        # CV is a function of the storage cost factors only if I_t2=0, and CV 

is not a 
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        #function of storage cost factors if I_t2!=0 by setting all the corre

sponding 

        #coefficients to zero 

        v.hat=Theta.c[t, It.indexer.fcn(S2[1]), S2[2],S2[3], ]%*%t(mydata.t.i

nput) 

         

      } 

       

      #total value from the j1-th pair of actions: 

      #It is equal to the current payoff + discounted value function 

      q[j1] = C_t[j1] + D*v.hat #Dont forgot D discount   

       

    } 

     

    #find the optimal action 

    optimal.id=which.max(q) 

     

    #the payoff ONLY comes from the immediate reward function 

    temp = temp + (D^(t-1))*C_t[optimal.id] 

     

    #time step t payoff 

    V[t]=C_t[optimal.id] 

     

    #compute the next state using the transition function 

    S2=S.transition(t, I_t, R_t, X[optimal.id,1], X[optimal.id,2], X[optimal.

id,3]) 

    I_t=S2[1] 

    R_t=S2[2] 

    T_t=S2[3] 

     

    S[t+1,]=c(I_t,R_t,T_t) 

     

    if(I_t==1234){ 

      S[(t+1):(N.out+1),1]=I_t 

      S[(t+1):(N.out+1),2]=R_t 

      S[(t+1):(N.out+1),3]=T_t 

      break 

    }  

     

  } 

   

  #add the last time stage (N.out+1) inventory left-over penalty (reward)  

  temp=temp-(S2[2]-1)*dR*PC2 

  V[N.out+1]=-(S2[2]-1)*dR*PC2 

   

  #export value 

  list("value"=temp,"stage.value"=V,"states"=S) 

   

   

} 

 

#Saving the data in an intuitive way for the stochastic storage cost 

total.values=unlist(v.detail[seq(1,3*M2,by=3)]) #total value over each path 

#generated payoff at each path and each timestep 
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stage.values=matrix(unlist(v.detail[seq(2,3*M2,by=3)]),ncol=M2) 

stage.states=matrix(unlist(v.detail[seq(3,3*M2,by=3)]),ncol=3*M2) 

S1=stage.states[,seq(1,3*M2,by=3)] #The I_t state at each path and each times

tep 

S2=stage.states[,seq(2,3*M2,by=3)] #The R_t state at each path and each times

tep 

S3=stage.states[,seq(3,3*M2,by=3)] #The T_t state at each path and each times

tep 

 

#Saving the data in an intuitive way for the stochastic storage cost 

total.values.c=unlist(v.c.detail[seq(1,3*M2,by=3)]) #total value over each pa

th 

stage.values.c=matrix(unlist(v.c.detail[seq(2,3*M2,by=3)]),ncol=M2) 

#generated payoff at each path and each timestep 

stage.states.c=matrix(unlist(v.c.detail[seq(3,3*M2,by=3)]),ncol=3*M2) 

S1.c=stage.states.c[,seq(1,3*M2,by=3)] #The I_t state at each path and each t

imestep 

S2.c=stage.states.c[,seq(2,3*M2,by=3)] #The R_t state at each path and each t

imestep 

S3.c=stage.states.c[,seq(3,3*M2,by=3)] #The T_t state at each path and each t

imestep 

 

 

#find the time step when the decision to rent the tanker is made 

myfun=function(X){ 

  temp=which(X!=0) 

  if (length(temp)>0){ 

    return(min(temp)-1) # -1 is b/c S1 is the state, while the decision is ma

de in the prior timestep  

  } else { 

    return(NA) 

  } 

} 

my.storage.rent.timestep=apply(S1, 2,  myfun) 

my.storage.rent.timestep.c=apply(S1.c, 2,  myfun) 

 

#find the time step when the decision to buy oil is made 

myfun=function(X){ 

  temp=which( diff(X) > 0 ) 

  return( (temp) ) #add min() to return 'inf' if which() returns empty 

} 

my.fill.timestep=apply(S2, 2,  myfun) 

my.fill.timestep.c=apply(S2.c, 2,  myfun) 

 

#find the time step when the decision to sell oil is made 

myfun=function(X){ 

  temp=which( diff(X) < 0 ) 

   

  temp2=which( diff(X) > 0 ) 

   

  #if the trader must sell at the very end 

  if( length(temp)!=length(temp2) ) temp=c(temp,N.out+1) 

  return( temp ) 

} 
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my.sell.timestep=apply(S2, 2,  myfun) 

my.sell.timestep.c=apply(S2.c, 2,  myfun) 

 

#find how many times we have a fill (buy) decision 

myfun=function(X){ 

  temp=length(unlist(X)) 

  return(temp) 

} 

my.fillnumbers=apply(as.array(my.fill.timestep),1,  myfun) 

my.fillnumbers.c=apply(as.array(my.fill.timestep.c),1,  myfun) 

 

#find the paths numbers on which there is more than one fill (buy) decision 

which(my.fillnumbers>1) 

which(my.fillnumbers.c>1) 

 

outofsample.time=Sys.time()-initial.time 

print(c('Out-of-sample computation time',outofsample.time-theta.time)) 

print(c('Total time',outofsample.time)) 

 

# shut down the cluster 

stopCluster(c) 
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