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Abstract

We explore the approximation formulas for the inverse function of Γ. The inverse function

of Γ is a multivalued function and must be computed branch by branch. We compare

three approximations for the principal branch Γ̌0. Plots and numerical values show that

the choice of the approximation depends on the domain of the arguments, specially for

small arguments. We also investigate some iterative schemes and find that the Inverse

Quadratic Interpolation scheme is better than Newton’s scheme for improving the initial

approximation. We introduce the contours technique for extending a real-valued function

into the complex plane using two examples from the elementary functions: the log and

the arcsin functions. We show that, using the contours technique, the principal branch

Γ̌0(x) has the extension Γ̌0(z) to the branch cut C\]−∞,Γ(ψ0)] and the branch Γ̌−1(x)

has the extension Γ̌−1(z) to the branch cut C\]0,Γ(ψ0)], where ψ0 is the positive zero of

Γ′(x).

Keywords: Gamma function, inverse function, branch points, branch cut, extension,

contours, Stirling formula, Ramanujan formula, Lambert function
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Chapter 1

Fundamental Properties of

the Γ function

1.1 Introduction

The Γ function1 is one of the most important special functions in mathematics and has

numerous applications, including combinatorics, statistics, probability theory, quantum

mechanics, and solid-state physics. The Gamma function is defined in different ways in

the literature; there are equivalences between the definitions, and some of the equiva-

lences are trivial to prove, while others need more elaboration. We shall introduce a few

fundamental definitions of the Γ function and refer the reader to the literature for other

definitions and proofs. The first definition of Γ started from the idea of extending the

positive integer factorial n = n(n − 1)(n − 2) . . . 2.1 to real numbers. The Γ function is

an extension of the factorial function with an argument shifted by 1, to real numbers and

complex numbers.

Γ(z) = (z − 1)! =

∫ ∞
0

tz−1e−tdt , <(z) > 0 . (1.1)

1Some authors write “the Gamma function” and some just refer to it with the Greek letter Γ.

1



2 Chapter 1. Fundamental Properties of the Γ function

The above definition of Γ by an improper integral converges absolutely for <(z) > 0 and

one can use integration by parts to show the recurrence or functional relation

Γ(z + 1) = zΓ(z) . (1.2)

Inverting the relation, we have

Γ(z) =
Γ(z + 1)

z
. (1.3)

The above equation is important as it’s used to extend the Γ(z) defined in (1.1) to a

meromorphic and more general Γ function for all complex numbers, except the negative

integers. The Γ function is singular at negative integers z = −1,−2, . . . with simple

poles and the residues at these points are

Res(Γ,−n) =
(−1)n

n!
, n ∈ N . (1.4)

Another definition of the Γ function is sometimes called the Weierstrass form and defined

by

1

Γ(z)
= zeγz

∏
k≥1

(1 +
z

k
)e−z/k , z ∈ C \ {−1,−2,−3, . . . } , (1.5)

where γ ≈ 0.577721 . . . is called the Euler-Mascheroni constant.

Another property of the Γ function is the reflection formula

Γ(1− z)Γ(z) =
π

sin πz
, z /∈ Z . (1.6)

The Γ function does not have a closed form and must be approximated. For generations,

many researchers, including mathematicians, physicists, numbers theorists and statisti-

cians, have proposed numerous approximations for the computation of the Γ function.

The rest of this chapter will be devoted to the review of some of the most recent numer-

ical approximations of Γ. First, we shall, in the following paragraphs, remind the reader
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of some of the most fundamental functional properties of the function that make it a very

special function. For a full review of the properties of Γ and related functions, see [1].

1.2 Functional properties of the Γ function

1.2.1 Notation

Most books and references adopted the convention of writing Γ(x) when referring to

real-valued Γ and Γ(z) when referring to the complex-valued Γ. We will adopt the same

convention in this thesis.

1.2.2 Real-valued of Γ function

Figure 1.1 shows the real-valued plot of Γ(x). Poles occur at negative integers. The

dots points are the extrema of Γ. The derivation Γ′(x) can be defined in terms of the

logarithm derivation or digamma or psi function.

Ψ(x) =
d

dx
ln Γ(x) . (1.7)

The n-order logarithmic derivation, also called the polygamma function is defined as

Ψ(n, x) =
dn

dxn
ln Γ(x) . (1.8)

Table 1.1 shows the 10 extrema of the Γ function and the values Γ at these points. A

few particular values of the Γ function can be computed using the reflection formula

Γ(
1

2
) =
√
π

by replacing z by 1/2 in the reflection

Γ(0) = 0! = 1
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Γ(x)

x

Figure 1.1: Real-valued plot of Γ.The dot points denote the extrema of Γ

x Γ(x)
1.46163 0.885603
−0.50408 −3.544644
−1.57349 2.302407
−2.61072 −0.888136
−3.63529 0.245127
−4.65323 −0.052780
−5.66716 0.009324
−6.67841 −0.001397
−7.68778 0.000181
−8.68576 −0.000020

Table 1.1: 10 extrema points of Γ
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Γ(−1

2
) = −2

√
π

Using the reflection formula Γ(3
2
)Γ(−1

2
) = −

√
π and the recurrence relation Γ(z + 1) =

zΓ(z)

1.2.3 Complex-valued Γ

The graph of a complex function in one variable produces a surface in 4-dimensional

space and this is difficult to picture in our minds because we can only picture 3-D objects.

The development of mathematical tools and software environments in recent years has

encouraged many visualization techniques, see [25]. But the plot of the modulus, also

called analytical plot, and the portrait phase plot still remain the technique wildly used

for the visualization of complex-valued functions. Figure 1.2 and 1.3 show respectively

the modulus and the phase plot of Γ(z). On figure 1.3, the colours represent the points

that have the same argument.

1.2.4 The log Γ function

The monotonicity and the convexity of the Γ and functions related to the Γ has attracted

the attention of many authors and are discussed in many papers, see [9, 2, 4]. And it is

known that the Γ function is convex only for positive real arguments and is logarithmically

convex on the whole R domain. A practical way to verify this is to use the fact that:

• The derivative of a convex function g of one real variable on the interval [α, β] ⊆ R

is monotonically increasing

• The second-derivative of a convex function g of one real variable on the interval

[α, β] ⊆ R is positive ∀x1, x2 ∈ [α, β].

For Γ function, the derivative is given by

d

dx
Γ(x) = Ψ(x)Γ(x) (1.9)
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Figure 1.2: Modulus plot of Γ(z).

and the second derivative is given by

d2

dx2
Γ(x) = Ψ(1, x)Γ(x) + Ψ(x)2Γ(x) (1.10)

Figure 1.4 plots the derivative and second derivative of the real-valued Γ. The graph of

dΓ/dx is not that much informative but the graph d2Γ/dx2 clearly shows d2Γ/dx2 > 0

∀x ∈ R+.

For the log-convex property of the Γ function, we use the Weierstrass form

1

Γ(x)
= xeγx

∞∏
n=1

(1 +
x

n
)e−x/n (1.11)
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Figure 1.3: A phase plot of Γ(z). The colours represent the points that have the same
argument

(a) (b)

Figure 1.4: (a) dΓ/dx. (b) d2Γ/dx2
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log Γ(x) = − log x− γx+
∞∑
n=1

(x
n
− log(1 +

x

n
)
)

(1.12)

The derivative of log Γ(x) is exactly what is called the digamma function

d

dx
(log Γ(x)) = Ψ(x) =

Γ′(x)

Γ(x)
= −γ +

∞∑
n=0

(
1

n+ 1
− 1

x+ n

)
(1.13)

and the second derivative of the log Γ(x) is

d2

dx2
(log Γ(x)) = Ψ(1, x) =

∞∑
n=0

1

(x+ n)2
(1.14)

Figure 1.5 (a) shows the plot of the d(log Γ)/dx. It has vertical asymptotes at the points

−n. On each interval (−n,−n + 1), n ≥ 1, the function Ψ increases strictly. Figure 1.5

(a) also shows the unique points xn ∈ (−n,−n + 1), n ≥ 1, such that Ψ(xn) = 0 or

equivalently Γ′(xn) = 0. Also, figure 1.5 (b) shows d2 log Γ/dx2 > 0,∀x ∈ R

(a) (b)

Figure 1.5: (a) d log Γ/dx. (b) d2 log Γ/dx2
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1.3 Numerical approximations of the Γ function

The numerical computation of the Γ function has attracted the attention of many re-

searchers for generations, all trying to establish the approximation formula that best

computes the Γ function. Many approximation methods have been proposed so far in

the scientific literature. See, [12, 22, 21, 6, 17, 18]. Software libraries and computing envi-

ronments use combinations of these approximations formulas to implement their routines

for Γ. In the following sections, we give a brief overview of the approximations of the Γ

function. Most approximations treat the real-valued Γ.

1.3.1 Stirling formula

The Stirling approximation is, so far, the most well-known and most-cited approximation

for the Γ function and it is defined as

Γ(x+ 1) ∼
√

2πx
(x

e

)x
exp

(
∞∑
m=1

B2m

2m(2m− 1)x2m−1

)

=
√

2πx
(x

e

)x
exp

[
1

12x
− 1

360x3
+

1

1260x5
− 1

1680x7
+ . . .

]
, x→∞

(1.15)

where the Bn are the Bernoulli numbers.

Other formulas that are related to the Stirling formula are the Laplace formula, see [24]

Γ(x+ 1) ∼
√

2πx
(x

e

)x [
1 +

1

12x
+

1

288x2
− 139

51840x3
− 571

2488320x4
+ . . .

]
, x→∞

(1.16)

and the Ramanujan formula, see [24]

Γ(x+ 1) ∼
√

2πx
(x

e

)x [
1 +

1

2x
+

1

8x2
+

1

240x3
− 11

1920x4
+

79

26880x5
. . .

]1/6

, x→∞

(1.17)
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In [17], the author finds an explicit formula for the computation of the coefficients of the

expansion in the series of the expression

exp

(
∞∑
m=1

B2m

2m(2m− 1)x2m−1

)
(1.18)

and gives the following asymptotic approximation

Γ(x+ 1) ∼
√

2πx
(x

e

)x [
1 +

1

12x2
+

1

1440x3
+

239

36288x6
+ . . .

]x
, x→∞ (1.19)

We compare the four approximations mentioned above with the Γ routine implemented in

Maple. Maple guarantees that every built-in function will return numerical values accu-

rate to 0.6ULP 2 at the current setting of the environmental variable Digits; ULP means

Units in the Last Place. In what follows we shall assume that Maple’s approximation

satisfies their promise.

Figure 1.6 shows Maple’s values and the four approximation formulas, where the

number that follows the name of the approximation is the exponent of (1/x) of the last

term kept in the series expansion. As expected, the graphs of the approximations overlap

for larger values of the argument x because they are all asymptotic approximations.

It is almost impossible to see the different colours used to depict the graph of each

approximation.

For small values of x, the difference between the approximations starts to appear and

if we zoom the figure 1.6 in the range x ∈ [0, 0.5], we get figure 1.7 and figure 1.8.

Figure 1.7 (a) shows that Laplace-1 gives a better approximation than Ramanujan-

1 and Nemes-2, however figure 1.7 (b) and figure 1.8 (a) show that Ramanujan-2 and

Ramanujan-3 outperform the corresponding Laplace-2 and Laplace-3, and Nemes-4. In

all cases, Ramanujan approximation seems to be the approximation that closely agrees

with the Maple Γ built-in function for small values. Another interesting remark is that

the slope of the graph of Nemes and Ramanujan approximations have almost no change

2ULP is discussed in chapter 3 of [5]
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Γ(x)

x

Figure 1.6: Γ(x) and others asymptotic approximations

as more terms are added in the series expansion. Numerically, it suggests these approx-

imations are more stable than Laplace’s and Stirling’s. We access the stability of the

approximations by computing and plotting their condition numbers. For the evaluation

of a function y = f(x), the condition number is given in [5]

C(x) =
xf ′(x)

f(x)
(1.20)

Figure 1.9 plots the condition number of the five approximations and we can see that

Maple, Ramanujan and Nemes approximations are well conditioned for small values of

x as the condition is constant C(x)→ −1 as x→ 0. Note that the condition number of
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(a) (b)

Figure 1.7: Γ(x) and other approximations for small values

(a) (b) b

Figure 1.8: Γ(x) and other approximations for small values

Ramanujan approximation is shadowed by the red colour of the Maple approximations

suggesting that the Maple routine is based on the Ramanujan approximation. The Stir-

ling and Laplace approximations are poorly conditioned for small values of x and their

condition number values change sporadically and becomes huge.
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C(x)

x

Figure 1.9: The condition number Eq. (1.20) of Γ(x) and other approximation for small
values.

1.3.2 Lanczos approximation

Another well-known and well-cited approximation of the Γ function is the Lanczos ap-

proximation introduced in 1964 in the paper [12] defined as

Γ(x+ 1) ≈
√

2π(z + r +
1

2
)z+1/2e−(z+r+1/2)Sr(z) (1.21)

where

Sr(z) =
1

2
a0(r) + a1(r)

z

z + 1
+ a2(r)

z(z − 1)

(z + 1)(z + 2)
+ . . . (1.22)

A comprehensive study of the Lanczos approximation can be found in [20].
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1.3.3 Spouge approximation

Another approximation of the Γ function is the Spouge formula [22]. It is defined by

Γ(x+ 1) ≈
√

2πe−(z+a)(z + 1)z+1/2

(
c0 +

N∑
k=0

Ck
z + k

+ ε(z)

)
(1.23)

where <(z + a) > 0 and a ∈ R, N = dae − 1, and ck(a) is defined by the recurrence

c0(a) = 1

ck(a) =
1√
2π

(−1)k−1

(k − 1)!
(−k + a)k−1/2e−k+a

(1.24)

1.3.4 Other approximations of Γ

There are many approximations of the Γ function. A comprehensive list of these ap-

proximations can be found in [14]. Most of the approximations are asymptotic, meaning

they accurately compute Γ function for large values of x in the real case and |z| in the

complex case. Also, most of the approximations have the similar algebraic form and can

be described by more general formulas. This is the work of [16, 15] who introduced a

couple of family of approximations.

Γ(x+ 1) ∼
√

2πe.e−a
(
x+ a

e

)x+ 1
2

, x→∞ (1.25)

where a ∈ R and a ∈ [0, 1]. Recently, [24] proposed two general approximations and

showed that other approximations are just special cases of his proposed approximation.

Γ(x+ 1) ∼
√

2πx
(x
e

)x 1

ea

(
1 +

b

x

)cx+d
(
∞∑
n=0

αn
(x+ h)n

)xl

r
+q

, x→∞ (1.26)

Γ(x+ 1) ∼
√

2πx
(x
e

)x 1

ea

(
1 +

b

x

)cx+d

exp

(
∞∑
n=0

ψn
(x+ h)n

)
, x→∞ (1.27)

where the coefficients αn and ψn are obtained by recurrences.
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1.4 Approximations for negative arguments

Stirling’s formula and related approximations apply to positive real arguments. Approxi-

mations for negative arguments are not usually considered, but can be constructed easily.

We rewrite the reflection formula (1.6) using x = −X, so that X > 0, as

Γ(x) = Γ(−X) =
π

sin(−πX)Γ(1 +X)
. (1.28)

We now approximate Γ(1 +X) using Stirling’s approximation (1.15) and obtain

Γ(x) ≈ π

sin(−πX)
√

2πXXXe−X
=

√
π

2

( e
X

)X −1√
X sin(πX)

. (1.29)

Plots of Γ(x) and its approximation are shown in figure 1.10.

Figure 1.10: Γ(x) and approximation (1.29). The red dashed lines are the approximation,
and the blue dotted lines show Γ(x).
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1.5 Approximations for complex arguments

The many publications concerning Stirling’s and similar formulas discuss only real pos-

itive arguments of the function. We have checked its validity in the complex plane as

well. We compare the real and imaginary parts of Γ(z) and Stirling’s approximation on a

contour parallel to the imaginary axis. Figure 1.11 plots Γ(2 + iy) and the corresponding

Stirling’s formula for |y| ≤ 10. Even so close to the imaginary axis, the approximation is

very good. Further from the imaginary axis, the approximation is even better.

(a) Comparison of real parts. (b) Comparison of imaginary parts.

Figure 1.11: A comparison of the Gamma function and Stirling’s formula in the complex
plane.

1.6 Conclusion

In this chapter, we reviewed some of the fundamental properties of the Gamma function.

We also covered some approximations of the Γ function. An important challenge that

must be addressed, while suggesting an approximation formula for the Γ function is that

the approximation method must be optimized for small values of the argument. In the

next chapter, we shall use some of the approximation of the Γ for the computation of the

Inverse function of Γ.



Chapter 2

Real Inverse function of Γ

2.1 Introduction

The Inverse function of Γ has applications in computer science [8]. It is a multivalued

function. In a recent review of Γ in [1] the authors have pointed out that the Inverse

function of Γ has received less attention. Some of the basic properties of the Inverse

function of Γ were studied in [19]. In the papers [23] and [19], the authors showed that

the Principal branch or the Principal Inverse of the Inverse function of Γ has an extension

to a Pick function 1 in the cut plane C\]−∞,Γ(ψ0)], where ψ0 ≈ 1.4616 . . . . But there

is no study of the numerical and symbolic computation of the Inverse function of Γ.

In this chapter and the next, we intend to explore some numerical procedures for the

computation of the branches of the Inverse function of Γ.

2.2 Notation and branches definition

We denote the Inverse function of Γ(x) by w = Γ̌k(x), where k labels the branch. The

extrema of the Γ function defined by

d

dx
Γ(x) = Γ(x)Ψ(x) = 0 (2.1)

1See reference [19] for the definition of Pick functions

17
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and we denote these points (ψi, γi)
Ψ(ψ0) = 0 where ψ0 > 0

Ψ(ψk) = 0 where k < 0 and k < ψk < k + 1

Numerical values of these points are displayed in table 2.1. The branches Γ̌k are defined

k ψk γk = Γ(ψ0)
0 1.461632 0.885603
−1 −0.504083 −3.544644
−2 −1.573498 2.302407
−3 −2.610720 −0.888136
−4 −3.635293 0.245127
−5 −4.653237 −0.052780

Table 2.1: Critical values or turning points for branches of Γ̌k

by the interval or the domain of the arguments and the range of Γ̌k is displayed in table

2.2. Using the notation x = Γ(y), and y = Γ̌k(x), if x falls outside the intervals shown

above, Γ̌ becomes complex-valued. The numbering is chosen so that k = 0 corresponds

k Arguments Intervals Range of Γ̌k
0 x ≥ γ0 ψ0 ≤ Γ̌0

−1 x > γ0 0 < Γ̌−1 < ψ0

x ≤ γ−1 ψ−1 ≤ Γ̌−1 < 0

−2 x < γ−1 −1 < Γ̌−2 < ψ−1

x > γ−2 ψ−2 ≤ Γ̌−2 < −1

Table 2.2: Branches of Γ̌k and their range

to the principal branch or principal Inverse and the remaining branches receive negative

numbers so that the labels follow roughly the range taken by the branches. We notice

some special values, since Γ(2) = 1! = Γ(1) = 0! = 1, the corresponding Inverse must

lie on different branches. This requires Γ̌0(1) = 2 and Γ̌−1(1) = 1. Some other special

values of interest are Γ̌0(
√
π/2) = 3/2, which lies very close to the branch point and
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Γ̌−1(
√
π) = 1/2. In this chapter, we will denote the approximations of the Inverse

function of Γ by y(x), where x is the real argument.

2.3 Visualization of the Inverse function of Γ

We can plot the real-valued Inverse function of Γ using the known procedure for Γ. Recall

that the plot command in Maple for x = Γ(y), given an input y, is

plot([y,GAMMA(y),y = a..b],discont=true,view =[a..b,c..d])

The plot of the Inverse function of Γ(y) is obtained by exchanging x and y, that is

y = Γ̌k(x) and the Maple command becomes

plot([GAMMA(x),x,x=c..d],discont=true,view = [a..b,c..d])

(a) (b)

Figure 2.1: (a) Real-valued Γ.(b) Real-valued Inverse of Γ. Note the poles in Γ at non-
positive integers become the critical points in Γ̌ where the branch changes.The ranges of
the branches are shown labelled with k.

Figure 2.2 compares the principal branch to the ln function. The Inverse Gamma

function grows even more slowly than the log function.
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Figure 2.2: The principal branch Γ̌0(red) compared to the ln function(blue). The ln
function grows faster than the principal branch. Note that the log function is placed
below the principal branch, but will eventually overtake the Inverse Gamma function.

2.4 The condition number of the Inverse function

The condition number is a well-known parameter used to compare the stability of the

evaluation of a function. In this section we show a method to plot the condition number

of the Inverse of a function only using the function itself. Given any function g(x), and

a point x,the condition number C at x is defined [5] by

C(g, x) =
xg′(x)

g(x)
(2.2)
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Assume we know a function f and we want to plot, or calculate, the condition number

for evaluating its inverse f̌ . We write the function and its inverse as a pair of equations:

y =f̌(x) , (2.3)

x =f(y) . (2.4)

In our case, we want C(Γ̌, x). We begin by recalling an elementary result. Differentiate

the above equations w.r.t. x.

dy

dx
=
df̌(x)

dx
(2.5)

1 =
df

dy

dy

dx
(2.6)

From the pair above and equation

f̌ ′(x) =
df̌(x)

dx
=

1

df(y)/dy
(2.7)

Therefore we have a parametric representation for the condition number:

C(f̌ , x) =
xf̌ ′(x)

f̌(x)
=

x

(df/dy)f̌(x)
(2.8)

=
f(y)

(df/dy)y
= 1/C(f, y) (2.9)

From this we see we can treat y as a parameter, and specify the condition number using

y as a parameter. Specializing this to the Γ function, we have

C(Γ̌, x) =1/C(Γ, y) =
1

yΨ(y)
, (2.10)

x =Γ(y) . (2.11)

To plot a parametric representation in Maple we use
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plot([x(t),y(t),t=a..b])

So in the present case we have

plot([GAMMA(y),1/(y*Psi(y)),y=0.1..1.45])

Figure 2.3 shows the condition number for branch Γ̌0. It is clear on the figure that the

Inverse function is well conditioned except near the branch points.

C(x)

x

Figure 2.3: The condition number of the inverse function of Γ. Eq. (2.10)

2.5 Estimates for the principal branch Γ̌0

In this section, we explore and compare different approximation formulas for the principal

branch Γ̌0. We shall group the approximations based on the approximation of the Γ
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function that is inverted to obtain the Inverse function of Γ. Following the branch

numbering system we adopted earlier, the Principal branch Γ̌0 of the Inverse function

of Γ is defined for the real arguments in the interval x > γ0 and the corresponding real

range is [ψ0,∞].

2.5.1 Stirling-based approximation

One of the first asymptotic approximation for the computation of Γ̌0 is proposed in [1]

and is based on the inversion of the original Stirling formula. It is defined by

y(x) ∼ 1

2
+

ln(x/
√

2π)

W0(e−1 ln(x/
√

2π))
(2.12)

This expression becomes complex for x < e−1
√

2π ≈ 0.92, but delivers a good starting

approximation for x > 1 as we can see on figure 2.4. For x < 1, the approximation

becomes poor and get worse as the argument gets closer to the turning point.

Another asymptotic approximation derived from the Stirling formula and suggested in

(a) (b)

Figure 2.4: (a) Γ̌0(x)(red solid) and the approximation (2.12)(blue solid) for larger argu-
ment range.(b) For small argument range.
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[1] is

y(x) ∼ 1

2
+

1

24u0(1 + w)
− (5 + 10(1 + w) + 14(1 + w)2)

5760(1 + w)3u3
0

+ . . . (2.13)

where u0 = ln(x
√

2π)/w with w = W0(ln(x/
√

2π)/e). Here again, the expression (2.13)

(a) (b)

Figure 2.5: (a) Γ̌0(x)(red solid ) and the approximation (2.13) (blue) .(b) For small
argument range

delivers a good starting approximation for x > 1 as we can see on figure 2.5. Table

2.3 compares the approximation (2.13) and (2.12) for a few known arguments with the

corresponding relative error Γ̌0−y
Γ̌0

. The error decreases for both approximations as the

arguments becomes larger, but the error for (2.13) is much smaller than the that of

the approximation (2.12) until value x < 1. It’s around the turning point γ0 that the

expression (2.12) is better than the expression (2.13).

x Γ̌0 Eq. (2.12)/error Eq. (2.13)/error
√
π

2
= 0.88623. 3/2 complex complex

Γ(1.8) = 0.93138 1.8 1.64452./8.6% 1.60325./10.8%
Γ(1.92321) = 0.96992 1.92321 1.83429./3.6% 1.91500/0.4%

1 2 1.92884./3.6% 1.99700./0.2%
3
√
π

4
= 1.32934. 5/2 2.47003/1.2% 2.49989./ 4.2× 10−5%

15
√
π

8
= 3.32335. 7/2 3.48741./0.4% 3.49999./1.5× 10−6%

24 5 4.99386./0.1% 4.99999./0%

Table 2.3: Numerical values of Γ̌0(x), approximation (2.12) and (2.13)
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2.5.2 Ramanujan-based approximation

In this section, we intend to derive a closed form estimate for the principal branch of the

Inverse function of Γ by inverting the Ramanujan formula, [24]. The Ramanujan formula

is defined by

Γ(y) ∼
√

2π

y

(
y

e

)y [
1 +

1

2y
+

1

8y2
+

1

240y3
− 11

1920y4
+

79

26880y5
. . .

]1/6

, x→∞

(2.14)

inverting the above formula is not simple; we follow the method used in [1]. Applying ln

function to the above equation gives:

ln Γ(y) ∼ y ln y − y + ln
√

2π − 1

2
ln y +

1

6
lnK (2.15)

where K = 1 + 1
2y

+ 1
8y2

+ 1
240y3

. . . The series expansion of lnK in Maple using the

command Series(ln K,x,2), is

lnK ∼ − ln(240) + ln(1/y3) (2.16)

The above equation becomes

ln Γ(y) ∼ y ln y − y + ln
√

2π − ln y − ln 240/6 (2.17)

We want to solve

x = Γ(y) (2.18)

for y when x becomes large. Posing v = x/
√

2π, and K1 = − ln 240/6, the equation

(2.18) becomes

y ln y − y − ln y = ln v −K1 (2.19)
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Dropping the term ln y, the equation (2.19) becomes

y ln y − y = ln v −K1 (2.20)

y

e
ln
y

e
=

1

e
(ln v −K1) (2.21)

(ln
y

e
)eln y/e =

1

e
(ln v −K1) (2.22)

Using the Lambert W function,

ln
y

e
= W

(1

e
(ln v −K1)

)
(2.23)

and

y

e
= e

W

(
1
e

(ln v−K1)

)
=

1
e
(ln v −K1)

W
(

1
e
(ln v −K1)

) (2.24)

given

y =
ln(x/

√
2π)−K1

W
(

1
e
(ln(x/

√
2π)−K1)

) (2.25)

Figure 2.6 shows that the expression (2.25) is far from delivering a good starting value

for the principal branch Γ̌0 even asymptotically as it was the case for the two previous

approximations. But at least, the graph of the approximation (2.25) seemed to have the

same slope as the graph of Γ̌0, suggesting that any simple iterative scheme might help to

improve the solution.

2.6 Iterative Schemes

The three approximations formulae we investigated so far are obtained by inverting a

particular Γ approximation, by solving the equation Γ(y) = x for y. This suggests that

an iterative scheme can be used to improve the solution given an initial estimate. In this

section we test a few, well-known iterative schemes and compare the solution for small

arguments x. Some considerations we shall keep in mind that affect the efficiency of any
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(a) Large arguments (b) Small arguments

Figure 2.6: (a) Γ̌0(x)( red solid) the approximation (2.25)(blue solid).(b) For small argu-
ment range.

iterative schemes are:

• Cost of initial estimate. More time spent on obtaining a better estimate can reduce

the number of iterations.

• Cost of an iteration. This is affected by the choice of the function used for the

iteration, and the order. Maple has implemented both a GAMMA function and a

lnGAMMA function. Either could be used for the iteration.

• The order of the iteration scheme. By using a higher-order scheme, one can reduce

the number of iterations.

2.6.1 Newton Schemes

To solve Γ(y) − x = 0 for y, given an initial approximation y, the Newton procedure in

Maple is

Newton:= proc(y,x) local Gtmp,f,fprime;

Gtmp:= G(y);

f:= Gtmp - x;
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fprime := Psi(y)*Gtmp;

return y-f/fprime;

end proc:

Below, we rewrite the three closed form formula for the Principal branch Γ̌0

y(x) ∼ 1

2
+

ln(x/
√

2π)

W0(e−1 ln(x/
√

2π))
(2.26)

y(x) ∼ 1

2
+

1

24u0(1 + w)
− (5 + 10(1 + w) + 14(1 + w)2)

5760(1 + w)3u3
0

+ . . . (2.27)

where u0 = ln(x
√

2π)/w with w = W0(ln(x/
√

2π)/e).

y(x) ∼ ln(x/
√

2π)−K1

W
(

1
e
(ln(x/

√
2π)−K1)

) (2.28)

We solve the Γ(y) − x = 0 for two arguments range, for x = 0.93 and x = 1 given an

initial estimate from the three above formulas. Table 2.4 and 2.5 shows the backward

error at each iteration. The error decreases for all three approximates of Γ̌0 but the

k Eq. (2.26) Eq. (2.27) Eq. (2.28)
0 3.2× 10−2 4.2× 10−2 5.4× 10−1

1 2.1× 10−2 2.1× 10−1 1.5× 10−1

2 1.7× 10−3 4.6× 10−2 3.0× 10−2

3 1.5× 10−5 5.9× 10−3 3.1× 10−3

4 1.3× 10−9 1.7× 10−4 4.9× 10−5

5 0 1.7× 10−7 1.4× 10−8

6 0 0 0

Table 2.4: Error for solving Γ(y)− 0.93 for y given an initial y0

approximation (2.26) outperform the other two by reducing the error by a factor of be-

tween 10 to 104 within 4 iterations for x = 0.93. But for x = 1, the approximation (2.27)

gives a better approximates of Γ̌0. In table 2.4, the initial error of the approximation

(2.26) is err ∼ 0.032, which is slightly smaller than the err ∼ 0.042 of the approximation

2.27, resulting in less iterations. This confirms the result we had in the last section while
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k Eq. (2.26) Eq. (2.27) Eq. (2.28)
0 2.8× 10−2 1.3× 10−3 5.6× 10−1

1 2.4× 10−3 3.7× 10−6 1.4× 10−1

2 1.3× 10−5 0 2.2× 10−2

3 0 0 9.5× 10−4

4 0 0 2.1× 10−6

5 0 0 0

Table 2.5: Error for solving of Γ(y)− 1 for y given an initial y0

using the relative error (Γ̌0−y)/Γ̌0 as a comparison parameter, that is the approximation

(2.27) is better than the approximation (2.26) for all argument except around the turning

point x ∼ e−1
√

2π where (2.26) does better. In both argument interval, the expression

(2.28) demands more iterations. The estimate to choose from depends on the arguments

range. The iterative scheme is effective to reduce the number of iteration only when a

better starting estimate is given.

2.6.2 Inverse Quadratic Interpolation

Inverse Quadratic Interpolation is an iterative scheme like Muller’s scheme, [26],2 that

uses three previous points to extrapolate the next point. But unlike Muller’s method,

Inverse Quadratic Interpolation interpolates the three points with a quadratic inverse

function. To solve Γ(y) − x = 0, for y given three initial estimates y0 , y1 , y2 , the IQI

iteration is

IQI:= proc(y0,y1,y2,y3) local x;

f := G(y) - x;

y:= polyinterp([f(y0),f(y1),f(y2)],[y0,y1,y2],0);

y0 := y1;

y1 := y2;

y2 := y;

return y;

2Page 50 of the reference
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k Newton IQI
0 4.2× 10−2 4.2× 10−2

1 2.1× 10−1 1.9× 10−2

2 4.6× 10−2 3.2× 10−3

3 5.9× 10−3 4.0× 10−4

4 1.7× 10−4 1.3× 10−6

5 1.7× 10−7 1.2× 10−10

6 0 0

Table 2.6: Newton and Inverse Quadratic Interpolation for solving Γ(y)− 0.93 for y

end proc:

The problem with IQI is that it requires f(y0),f(y1),f(y2) to be distinct. The only

approximation of Γ̌0 that can guarantee that is the expression (2.27). The three starting

points will be set as follows

y0 =
1

2
+ u0

y1 = y0 +
1

24u0(1 + w)

y2 = y1 +
(5 + 10(1 + w) + 14(1 + w)2)

5760(1 + w)3u3
0

(2.29)

where u0 = ln(y/
√

2π)/w, with w = W0(ln(y/
√

2π)/e).

Table 2.6 compared the IQI and the Newton’s schemes for solving Γ(y) − 0.93 given an

initial estimate (2.27). Starting from the same value, ε ≈ 4.2 × 10−2, the error of IQI

scheme is 10 times smaller than that of Newton’s scheme for the first iterations. And

from the fourth iteration, the error becomes 100 to 1000 times smaller. This shows that

the choice of the iteration scheme can drastically impact the error rate or the number of

iterations before convergence, assuming we have a good initial estimate.

2.6.3 Improving the estimates for small arguments

We saw earlier that all the approximations deliver good starting values for x > 1 but do

poorly for x < 1 and around the turning points γ0 = Γ(ψ). A simple method will be to
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use a Taylor series around the turning point x = γ0. For γ0 ≤ x ≤ 1 the Taylor series

around γ0 is

Γ(y) = γ0 +
1

2
γ0Ψ(1, ψ0)(y − ψ0)2 +O((y − ψ0)3) , (2.30)

where the linear term is absent because we expand around a stationary point. Given a

specific value x of Γ(y) = x for which we need the inverse, we solve the equation (2.30)

for y by dropping the error term and solving the quadratic equation:

y ∼ Γ̌0(x) = ψ0 +

√
2(x− γ0)

Ψ(1, ψ0)γ0

. (2.31)

The principal branch is given by the positive square root. As we can see on figure

2.7, there more agreement between the approximation (2.31) and Γ̌0 than (2.26) and Γ̌0.

Numerical values in table 2.7 shows that around the turning point γ0, the Taylor equation

gives a better starting approximation than both the expression 2.26 and 2.27.

(a) (b)

Figure 2.7: (a) Estimates around the turning point γ0 for approximation (2.26),(b) Esti-
mates around the turning point γ0 for approximation (2.31)
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x Γ̌0 Eq. (2.26)/error Eq. (2.27)/error Eq. (2.31) /error
√
π

2
≈ 0.886 3/2 complex complex 1.5003/0.02%

Γ(1.8) ≈ 0.9314 1.8 1.6445/8.6% 1.603/10.8% 1.788/0.63%
Γ(1.92321) ≈ 0.9699 1.923 1.8343/3.6% 1.915/0.4% 1.9052/0.94%

1 2 1.9288/3.6% 1.9970/0.2% 1.9783/1.1%
3
√
π

4
≈ 1.3293 5/2 2.4700/1.2% 2.4999/ 4.2× 10−5% 2.4793/0.83%

15
√
π

8
≈ 3.3234 7/2 3.4874/0.4% 3.4999/1.5× 10−6% 3.8468/10%
24 5 4.9939/0.1% 4.9999/0% 8.8063/76%

Table 2.7: Numerical values of approximation (2.12) and approximation (2.13)

2.6.4 The rate of convergence near the turning point γ0

It is well known that near a stationary point, Newton’s method degrades from quadratic

convergence to linear convergence. Consequently, near x = γ0, we explore a quadratic

scheme 3. We expand around an initial estimate:

Γ(a) + Ψ(a)Γ(a)(x− a) + 1/2Γ(a)(Ψ′(a) + Ψ(a)2)(x− a)2 +O((x− a)3) (2.32)

where Ψ′ is the derivative of the Ψ function. Solving for x gives the iterative scheme

below. To solve Γ(y)− x = 0, given an initial estimate y, the Maple iteration is

QS := proc (y, x) local dx, a, b, c;

a := (1/2)*(Psi(1, y) + Psi(y)^2*G(y);

b := Psi(y)*G(y);

c := G(y)-x;

dx := (1/2)*(-b + sqrt(b^2 - 4*a*c))/a;

return y + dy;

end proc:

Table 2.8 shows the number of iterations needed by Newton’s method and the quadratic

scheme near the stationary point x = γ0. There is a gain of, at most, two iterations for

3Note that we are not using a similar scheme called Muller’s method, nor the Inverse Quadratic
Iteration, which do not require the evaluation of derivatives [26]
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x NM QS
1.000 4 2
0.950 3 2
0.900 3 2
0.890 3 2
0.886 3 1

Table 2.8: Number of iterations near x = γ0 for branch k = 0. The starting estimate
was based on Eqn (2.31). The columns correspond to Newton’s method (NM) and our
quadratic scheme (QS). The iteration was continued until the relative error was less than
10−16

the quadratic scheme over the Newton scheme, but this comes with a drawback in that

one must explicitly evaluate the second derivative of Γ(y)− x and extract a square root.

2.7 Estimates for the branch Γ̌−1

The branch k = −1 or Γ̌−1(x) has two real domains and two associated ranges: The pos-

itive real domain [γ0,∞] and its positive range [0, ψ0]; and the negative domain ]∞, γ−1]

has its negative range ]ψ−1, 0[ The first approximation for positive domain of this branch

is proposed in [1] who uses the second branch of the Lambert W function

y(x) ∼ 1

2
+

ln
(
x/
√

2π
)

W−1(e−1 ln(x/
√

2π))
(2.33)

Another approximation is proposed in [7]

y(x) ∼ 1

x
(2.34)

Figure 2.8 shows the branch Γ̌−1(x) and the two approximation. The estimate (2.12)

seemed to be a better starting point for the branch for small arguments range than the

estimate (2.34), but it’s only defined for x ∈ [
√

2π
e
,
√

2π]. The approximation (2.34),

on the other hand is defined on the whole real line. It agrees with the branch as the

arguments become larger. As with the principal branch Γ̌0, one can use the Taylor series
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Figure 2.8: Γ̌−1(x)(solid red), the approximation 2.33(blue solid) and 2.34(solid green)

in the interval γ0 ≤ x ≤ 1 to have a better starting estimate. The Taylor series is defined

by

y = Γ̌−1(x) = ψ0 −

√
2(x− γ0)

Ψ(1, ψ0)γ0

(2.35)

Table 2.9 shows some particular numerical values of the expression (2.12), (2.34) and

(2.35).

x Γ̌−1 Eq. (2.33)/error Eq.(2.34)/error Eq.(2.35)/error
γ0 ψ0 complex 1.1292 /22% 1.4616 / 0%
1 1 1.1254 /11% 1 / 0% 0.945/5.5%

Γ(0.8) = 1.1642 0.8 0.900/ 12.5% 0.8589 / 7.4% 0.6552 / 18%√
π 1/2 0.6072 / 21% 0.5641 /12% 0.0229/96%

Table 2.9: Numerical values of the approximation (2.12), (2.34) and (2.35)
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2.8 Estimates for other branches Γ̌k

The other branches of Γ̌k can be obtained with the same procedure.

• Expand Γ(y) around the singular point.

• Keep only one term of the expansion.

• Invert the expansion, by solving Γ(y) − x = 0 for y. The result is the initial

approximation of the branch

• Use an iterative scheme to improve the solution

Figure 2.9 shows the approximation of the branch Γ̌−2 and Γ̌−3 The question is how many

(a) (b)

Figure 2.9: (a) The branch Γ̌−2(x). The branch Γ̌−3(x)

branches can we really compute? Not many. As we seek to compute more branches, the

turning points γk = Γ(ψk) become smaller and the and as a consequence Γ̌k(x) → the

pole of Γ(x)

2.9 Conclusion

In this chapter, we explored three different approximations for the numerical computa-

tion of real-valued Γ̌k(x). Numerical values and the plots show that these approximations
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deliver good starting points for the branches Γ̌k(x) for large argument range but underper-

formed for small arguments. We also show that, once we have a good starting estimate,

an iterative scheme can be used to improve the solution and we compared two iterative

schemes for that matter. Finally, we showed that the estimate to choose from depends

on the arguments range. In the next chapter, we will focus on the extension of Γ̌k(z) in

the complex plane.



Chapter 3

Complex Inverse function of Γ

3.1 Introduction

The idea of extending the Inverse function of Γ(x) in the complex plane was first in-

troduced by M. Uchiyama in his paper, [23]. He the proved that the principal inverse

of Γ restricted to the interval [α,∞] denoted as Γ−1(x) has the holomorphic extension

Γ−1(z) to the cut plane C\] −∞,Γ(α)], where α is the unique zero of the logarithmic

derivative Ψ of Γ(x) on the positive half real line. Moreover, [23] showed the extension

Γ−1(z) is a Pick function. In [19], the authors got the same result as [23] but on the

decreased interval [0, α]. Both [23] and [19] based their proof on the Löwner theorem

that relates the positive semi-definite Löwner kernel to a Pick function. In the last Chap-

ter, we reviewed some properties of the Inverse function of Γ(x) in the real domain. In

this chapter, we shall extend the Inverse function Γ(x) in the complex plane using the

technique introduced by David J. Jeffrey in [11].

3.2 Notation

Throughout this chapter, the Inverse function of Γ(x) will be denoted by Γ̌k(x) in real

domain and by Γ̌k(z) in the the complex plane, where k denotes the branch number.

37
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3.3 The extension of Γ̌k(x) to the complex plane

We shall extend the Γ̌k(x) function in the complex plane using the technique in [11].

We describe the general technique first. Let us say we want to extend the real-valued

function y = f(x) in the complex plane. The technique in [11] can be summarized as

follows.

• Denote the desired extension by w = f(z).

• Plot side by side, the real z-domain and the real w-range of f .

• Starting from the real line in the w-range of f , draw a series of lines parallel to the

imaginary axis.

• Map these parallel lines into the z-domain of f using the map w 7→ g(w), where

g(w) is the inverse function of f(z).

• Trim the parallel lines in w-range so that their images do not collide in z-domain,

but at the same time fill the z-domain.

• The line along which the images collide in the z-domain is a candidate for the

branch cut.

• Note the range of f(z) in the complex plane. Figure 3.1 shows the z-domain and

the w-range of the mapping in the complex plane.

In the next section, we shall prepare the use of the technique in [11] with the examples

of the log(x) function and the arcsin(x) function.

3.3.1 The extension of the log function in the complex plane

It’s well-known that the log z function is a multivalued function and its inverse is the

exp(z) function. We also know as a fact that log(x) defined on [0,∞] has a holomorphic

extension log(z) to the cut plane A = C\]−∞, 0].
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w = f(z)
→

←
z = g(w)

(a) z-domain (b) w-range

Figure 3.1: Domain and range for complex function mapping in the complex plane

The log z function is defined as

log(z) = log |z|+ i arg(z) z 6= 0

= log |z|+ iArg(z) + 2πim, m = 0,±1,±2, . . . , −π < Arg(z) ≤ π
(3.1)

The value of log z are complex numbers w, such that z = exp(w).

The principal value is defined as

Log(z) = log |z|+ iArg(z) , −π < Arg(z) < π . (3.2)

To extend log(x) to the complex plane with the technique described in [11], starting from

the real line, we extend the range ]−∞,∞[ of log(x) into the complex domain by drawing

a series of the straight contours parallel to the imaginary axis. The straight contours are

mapped back to the z-domain using the map w 7→ ew. The image of the straight lines

collide along the negative real axis in the z-domain. The intersection is not visible on

figure 3.2 because the principal value and the other branches of the log(z) function have

the same algebraic form, they only differ by ±2π.

Although [11] uses lines parallel to the imaginary axis, this is not necessary. If we

use instead lines that slope, we can see the process more clearly. This is shown in figure
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(a) z-domain (b) w-range

Figure 3.2: Extending the log(x) function into the complex plane. The straight contours
are trimmed in w-range so that their images do not collide in the z-domain

3.3, where the collisions can be seen because the contours (now spirals) are passing

themselves. To obtain the principal value of log(z), we must trim them on the imaginary

(a) z-domain (b) w-range

Figure 3.3: Extending the log(x) function into the complex plane. The straight contours
are trimmed in w-range so that their images do not collide in z-domain. Adding the
slight slope to the lines makes the collision easier to see.

axis at a point such that −π < =(w) < π. Figure 3.4, shows the range of the principal

value defined as {<(w) = log |z|, π < =(w) < π}. The other branches of log(z) are now
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(a) z-domain (b) w-range

Figure 3.4: The range of the Principal value log z in the complex plane.

denoted [10] by lnk z, where k is the branch number. In algebraic terms, the definition is

lnk(z) = Log(z) + 2πik . (3.3)

In graphical terms, the procedure now is to remove from the w plane the region assigned

to the principal branch, and repeat the construction of the two sets of contours in the

remaining space. Figure 3.5 shows the range of ln1 z, where the contours have been

trimmed to the region defined by π < <(z) ≤ 3π.

3.3.2 The extension of the arcsin function in the complex plane

In this section we show another aspect of using contours to visualize branches. The inverse

sine function is periodic in the real direction, different from the logarithm function which

is periodic in the imaginary direction. If we use straight lines parallel to the imaginary

axis, we do not get collisions. The sine function has a period of 2π, but an antiperiod1

[13] of π radians. Therefore we start with the real interval in the w-range [−π/2, π/2].

We obtain the plots in figure 3.6. The branch cuts are clearly |x| ≥ 1. The definition

1f(x + T ) = −f(x).
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(a) z-domain (b) w-domain

Figure 3.5: The range of the branch k = 1 of log(z) in the complex plane, denoted ln1 z.

of the branch cuts can also be seen using colliding contours, as was done for logarithm.

This is shown in figure 3.7, where contours parallel to the real axis are used.

(a) z-domain (b) w-range

Figure 3.6: Extending the arcsin(x) function into the complex plane. The straight con-
tours do not need to be trimmed in w-range, and yet the images show the branch cuts
clearly.
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(a) z-domain (b) w-range

Figure 3.7: Extending the arcsin(x) function into the complex plane. The straight con-
tours above the real axis in the z-domain have been slightly offset relative to those below
the axis, so that the collisions are easily seen.

3.3.3 The extension of the Γ̌0 in the complex plane

The real domain of the principal branch Γ̌0 is the interval [γ0,∞] and the range [ψ0,∞],

where γ0 = Γ(ψ0) and ψ0 is the positive zero of Γ′(x). Following the same process and

using the map w 7→ Γ(w), we get figure 3.8 that shows the images colliding on the

negative real line in the interval [−∞,Γ(ψ0)]. Figure 3.9 is a zoom of figure 3.8(a) so

(a) z-domain (b) w-range

Figure 3.8: Extending the Principal branch of the inverse of Γ(z) into the complex plane
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Figure 3.9: Zoom of 3.8(a)

that we can clearly see the intersection in the z-domain. Continuing with the process,

the straight contours must be trimmed in the w-domain. The question is at what point

w to trim in w-range. This is purely done, at this level, by a simple experimentation.

The contours are trimmed at some random imaginary points and then mapped into the

z-domain. If the image crosses the line of discontinuity, the line are shorten further in the

w-range. This is not an automatic way of doing things but it does help in appreciating

the range of the branches. Figure 3.10 shows the range of the principal branch Γ̌0 in the

complex plane. The interval [−∞, γ0] = [−∞,Γ(ψ0)] is the branch cut. Figure 3.10 also

shows that as the argument z becomes larger, the parallel lines become shorter. That’s

Γ̌0(z)→ <(Γ̌0(z)) as z becomes large. For complex numbers, z larger means the modulus

of z is larger. This give three possible scenarios, the first is <(z) is a big real number and

<(z) � =(z), the second is both the <(z) and =(z) are big real numbers of the same

order and the last scenario is the =(z) is big real number and =(z) � <(z). Table 3.1

shows the computation of the Γ̌0(z) for large arguments.
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(a) z-domain (b) w-domain

Figure 3.10: The range of the Principal branch of the Inverse function of Γ(z) in the
complex plane

z Γ̌0(z)
1045000 + 1045i 2309.20162 + 0.i

10450000 + 10450i 98685.55560 + 0.i
1045000 + 1045000i 12309.23842 + 0.08339.i

10450000 + 10450000i 98685.58564 + 0.06829.i
1045 + 1045000i 12309.20162 + 0.16678.i

10450 + 10450000i 98685.55560 + 0.13659.i

Table 3.1: Numerical computation of Γ̌0 for larger arguments

And as we can see in the table 3.1, the contribution of the imaginary part of Γ̌0(z)

becomes negligible for larger arguments z and Γ̌0(z)→ <(w).

When the contours shown in figure 3.8(b) are mapped using Γ into 3.8(a), they do

not cover all points in the z-plane. It is necessary for the range to be in one-to-one

correspondence with all of the domain, or else there will be values of z that have no

Γ̌0(z) . Therefore, we need to search for contours that fill in the drop-shaped region

surrounding the origin in the z-plane, which is not yet filled. The required contours

cannot start from the real axis, because the unused portion of the real axis has been

assigned to other branches. This is a new feature of this function, relative to the log and

arcsine functions above.
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In constructing the contours shown in figure 3.11, we have to trim at both the lower

end, which determines the right hand end of the drop shape, and the upper end which

determines the left end. As we have seen, the values of Γ̌0 tend to zero exponentially for

large z, and so the contours crowd together at the origin. The trimming of the upper end

of the contours therefore required a lot of magnification, but this is not shown, since the

idea is shown already. When we combine the different sets of contours, we obtain figure

3.12. To complete the figure, it would be good to have expressions for the boundary of

the region. Since the branch cut in the z-plane is along the negative real axis (and part of

the positive real axis), we can easily say that the boundary is Γ̌(−t) for t > 0. Then after

one has written a program to evaluate complex values of Γ̌, we can plot the boundary.

The plot, however, will be entirely numerical, and we prefer a closed-form approximate

method. From Stirling’s approximation, which was shown in figure 1.11 to be accurate in

the complex plane, we have the approximation given above in (2.12) and repeated here

for convenience.

Γ̌ ∼ 1

2
+

ln(z/
√

2π)

W0(e−1 ln(z/
√

2π))
.

Plotting this approximation for z = −t and t > 0 gives the dotted curve added to figure

3.12. Finally, we have added numerical points on the boundaries to show how the region

extends for values having negative real parts. The range of the principal branch clearly

extends to negative infinity, but since it corresponds to arguments exponentially close to

the origin, it does not need further detail.

Finally, we can ask what happens to the range as z → −∞ implying that |Γ̌(z)| → ∞.

Since we know that Lambert W has the asymptotic limit W (z) ≈ ln z − ln ln z, we can

show that the range narrows, very slowly, so that the width parallel to the imaginary

axis tends to zero.
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(a) z-domain (b) w-range

Figure 3.11: Extending the Principal branch of the inverse of Γ(z) into the complex
plane. Contours not starting from the real axis.

Figure 3.12: The range of the principal branch. The dotted line shows an approximation
to the boundary. The large dots are points on the boundary showing how it extends for
values with negative real part.

3.3.4 The extension of the other branches Γ̌k in complex plane

In this section, we shall repeat the process for other branches Γ̌k(z) starting with Γ̌−1(z).

The branch Γ̌−1(x) has two real domains and two associated ranges: the positive real
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domain [γ0,∞] and its positive range [0, ψ0], and the negative domain ]∞, γ−1] its negative

range ]ψ−1, 0[. Following the same process, still using the map w 7→ Γ(w), figure 3.13 and

3.14 show the straight contours. The contours have already been trimmed so as to define

(a) z-domain (b) w-range

Figure 3.13: The extension of the positive Γ̌−1(x) into the complex plane

(a) z-domain (b) w-range

Figure 3.14: The extension of the negative Γ̌−1(x) into the complex plane

the range of the branch k = −1. As with the principal branch, there remains a small

region which has not yet been filled during the mapping process. Again we must split

the contours, because the remainder of the real line has been assigned to other branches.
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The split contours and the remaining region are shown in figure 3.15. We now combine

the various contours in figure 3.16 The process just described can be repeated for the

(a) z-domain (b) w-range

Figure 3.15: The extension of the positive Γ̌−1(x) into the complex plane

other branches. Since the principles are unchanged and the results are similar, we do

not show more results explicitly. Instead we present a schematic illustration (an artistic

impression) of the overall branch structure in figure 3.17. Note that the region outside

the principal branch has not been studied, but we expect that branches with positive

labels exist there.

3.4 Conclusion

In this chapter, we have used a contour technique to extend the Γ̌k in the complex plane.

We only covered the principal branch Γ̌0 and the positive domain of the branch Γ̌−1 to

set the motivation for a more rigorous approach for the other branches. New approxi-

mations formulas for Γ̌k should be proposed in the future. Finding more applications for

the Γ̌k is the key to attract more interest from the research community. Other recent

research interest is the extensions that are Stieltjes and Pick function and their inte-

gral representation. In [3], the author shows that the three holomorphic functions in
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Figure 3.16: The range of the branch Γ̌−1 in the complex plane.

C\]−∞, 0]

log Γ(z + 1)

zLogz

log Γ(z + 1)

z

z − log Γ(z + 1)

Logz

are all Pick functions and found their integral representations. It will be interesting to

find the integral representation of

Γ̌0 ∼
1

2
+

log(z/
√

2π)

W0(e−1 log(z/
√

2π))
z ∈ A
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Figure 3.17: A schematic presentation of the ranges of the branches of Γ̌k in the complex
plane, for k ≤ 0.

where A = C\] − ∞, e−1
√

2π] and compare it with the numerical values of Newton’s

scheme result we got.
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