
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

4-23-2018 1:15 PM

A Framework for Modelling User Activity Preferences A Framework for Modelling User Activity Preferences

Roberto Barboza Junior, The University of Western Ontario

Supervisor: Miriam A.M. Capretz, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Master of Engineering

Science degree in Electrical and Computer Engineering

© Roberto Barboza Junior 2018

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Barboza Junior, Roberto, "A Framework for Modelling User Activity Preferences" (2018). Electronic Thesis
and Dissertation Repository. 5332.
https://ir.lib.uwo.ca/etd/5332

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F5332&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Fetd%2F5332&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/5332?utm_source=ir.lib.uwo.ca%2Fetd%2F5332&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract

The availability of location data increases every day and brings the opportunity to mine these

data and extract valuable knowledge about human behaviour. More specifically, these data may

contain information about users’ activities, which can enable, for example, services to improve

advertising campaigns or enhance the user experience of a mobile application. However, sev-

eral techniques ignore the fact that users’ context other than location and time, such as weather

conditions, influences their behaviour. Moreover, several studies focus only on a single data

source, addressing either data collected without any type of user interaction, such as GPS data,

or data spontaneously shared by the user, for instance, from location-based social networks

(LBSNs), but not both.

This thesis proposes a framework that aims to predict users’ current activity preferences

(UCAP). UCAP handles data gathered from different sources. It takes into account users’

historical data, their current context, and other external contexts such as weather conditions.

The framework was evaluated on five real-world datasets. The results demonstrated the

accuracy of the proposed solution, which was on average 12.3% more accurate than a state-of-

the-art technique. Moreover, the experiments evaluated the impact of the main components on

the prediction results and showed that UCAP is not constrained by dataset size.

Keywords: Location-Based Services, Location-Based Social Networks, Location-Data

Preprocessing, Context Aware, User Behaviour Prediction, Location-Based User Clustering

i

Acknowlegements

First, I would like to thank my supervisor Dr. Miriam Capretz. Dr. Capretz believed in my

potential and gave me the opportunity to study under her guidance. Without her support, this

thesis would not become a reality. Thank you for your patience, time and effort to make this

whole experience possible.

I will never truly be able to express how thankful I am to my father, Roberto Barboza, and

my mother, Cecilia Leite de Araujo Barboza, for being there whenever I needed it, and even

when I thought I did not need it. Thank you for helping me find my own way. I would never

have made it this far without you. I love you both. I would also like to extend my heartfelt

appreciation to my brother Vinicius, who is always willing to talk with me about anything and

supporting me no matter what. I am blessed to be a part of this family.

I would not be here without the support of my wife, Andrea Okuda, who left everything

behind to join me in this challenge. You have inspired me to strive to be the best version of

myself. Thank you for being with me. Love you.

My sincere thanks must also go to my former and current laboratory colleagues and friends:

Wander Queiroz, Alex L’Heureux, Will Aguiar, José Miguel Alves, Rafael Aguiar, Daniel

Berhane Araya, Dr. Wilson Higashino, Dr. Katarina Grolinger and Dr. Ahmed Eltahawi, who

helped throughout this research. Special thanks to Dr. Hany ElYamany and Dr. Mahmoud

ElGayyar for lending me their expertise to my research, spending countless hours reviewing

my work, and for believing in my work even when I had questions about it. Thank you.

I cannot forget my old-time friends, Mauro Ribeiro and Dennis Bachmann, who did every-

thing in their power to assist me since I decided to come to Canada. Thanks for being nearby

and for all the discussions about life, the universe and everything.

Last but not least, thanks to my family, my friends, and all my colleagues who accompanied

me during life, and for all of those that will never forgive me for not mentioning them here.

ii

Contents

Abstract i

Acknowlegements ii

List of Figures vi

List of Tables vii

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution . 3

1.3 Organization of the Thesis . 4

2 Background and Literature Review 6

2.1 Background . 6

2.1.1 Data Preprocessing . 6

2.1.2 Machine Learning . 10

2.2 Literature Review . 13

2.3 Summary . 18

3 UCAP Framework 19

3.1 Preprocessing Layer . 19

3.1.1 Events Merger . 22

3.1.2 Inactive Users Filter . 24

iii

3.1.3 Context Merger . 25

3.1.4 Data Splitter . 25

3.2 Feature Engineering Layer . 26

3.2.1 Clusterer Feature Extractor . 26

3.2.2 Clusterer . 28

3.2.3 Feature Enhancer . 29

3.3 Prediction Layer . 30

3.3.1 Prediction Engine . 31

3.3.2 Evaluator . 31

3.3.3 Tuner . 32

3.4 Presentation Layer . 32

3.4.1 Storage . 34

3.4.2 Model Handler . 34

3.5 Summary . 35

4 Case Studies 36

4.1 Implementation and Experiments . 36

4.1.1 Data Analysis . 38

4.1.2 Experiment 1: Impact of the UCAP Components 39

4.1.3 Experiment 2: Comparison with a Different Approach 44

4.1.4 Experiment 3: Comparison between Different Datasets 45

4.2 Discussion . 46

4.3 Summary . 48

5 Conclusions and Future Work 49

5.1 Conclusions . 49

5.2 Future Work . 50

Bibliography 52

iv

Curriculum Vitae 57

v

List of Figures

1.1 A scenario showing a user and two different locations. 3

2.1 Data Preprocessing Categories . 7

3.1 Data flow of the UCAP Framework . 20

3.2 UCAP inputs example. 21

3.3 User Events dataset before and after the Events Merger 23

3.4 Example of: (a) External Context dataset; (b) Context Merger being performed 25

3.5 Tuning process flow. 33

4.1 Probability distribution of the events per user 40

4.2 Number of events along time . 41

4.3 Number of activities per event . 42

4.4 UCAP variations prediction results . 44

4.5 UCAP and STAP comparison . 45

4.6 UCAP prediction results on different datasets 47

vi

List of Tables

3.1 Features with domain . 30

4.1 XGBoost Parameters . 37

4.2 Datasets Description . 39

4.3 Experiment 1 Results . 43

4.4 Experiment 2 Results . 45

4.5 Experiment 3 Results . 46

vii

Chapter 1

Introduction

1.1 Motivation

Information about an individual’s location can tell a lot about that person. For example, it can

indicate what they like, what they are doing or what they are going to do. Using location infor-

mation has always been part of human history. Over the years, it evolved from maps carved in

stone to fully functional navigation systems that fit into our pockets. Some technological break-

throughs were essential to make these innovations a reality. First, the emergence of navigation

systems such as the GPS1 as stand-alone devices enabled applications that were focussed on

finding a route to a location and also finding points of interest (POI) in an area. Later, GPS

modules started to be embedded in other electronic devices (e.g., tablets and smartphones).

These electronic devices coupled with the popularization of mobile Internet stimulated the de-

velopment of a number of innovative applications. These new applications can gather personal

location information either actively or passively. In active data gathering, users spontaneously

share their location, for example through a check-in. In contrast, passive data collection gathers

location data without user interaction.

In Location-Based Social Networks (LBSNs) [1] such as Facebook and Foursquare, users

1GPS stands for Global Positioning System and is a common embedded navigation system found in mobile
devices. The term GPS will be used as a metonym for this type of system.

1

2 Chapter 1. Introduction

can share their current location with their friends by checking in to a certain POI. The check-in

generates an event. An event includes a user identifier, a specific POI (e.g., a Pizzeria), and a

timestamp. From these data, a current activity can be inferred [2, 3, 4], such as eating pizza.

Aggregating users’ check-ins can provide a better understanding of their spatial-temporal ac-

tivity preferences. For example, an advertiser might have a campaign targeting people willing

to eat pizza. By knowing that a user is interested in eating a pizza at a particular moment, the

advertiser has more confidence that the campaign could convert into a sale. This understanding

would also enhance the user experience because the advertisement would be relevant to the

user.

Other applications depend on background services to capture user location without any type

of interaction other than the user’s permission. The collected location data can help enhance

application usability. For instance, suppose that a user stores a shopping list in a mobile appli-

cation. The application could detect that the user is near a grocery store, check whether any

product on the list is on sale and push a notification to the mobile device.

Prior work using location data as input to prediction models uses either LBSN check-ins [5,

6] or GPS information [7, 8]. Each of these types of data sources presents its issues, and using

the same approach for both types is even more challenging and has not been tried.

When the data come from user input, such as check-ins, duplicates may be generated [9].

For example, the user may click quickly on the check-in button multiple times, recording sev-

eral events with the same user, the same timestamp, and the same location.

On the other hand, when the data source relies on GPS information, the data contain

uncertainty[10]. The location information gathered from GPS devices is composed of the de-

vice’s coordinates (latitude and longitude) and the precision of these coordinates. For instance,

Fig. 1.1 depicts a hypothetical scenario where the circle represents the GPS coordinates and

their precision. Note that the user could be anywhere within the circle radius. The user can be

reported being either in the bank or the grocery store. The background process could record

events with the same user and the same timestamp, but different locations.

1.2. Contribution 3

Figure 1.1: A scenario showing a user and two different locations.

Moreover, the context surrounding an individual is usually restricted to the location, the

timestamp at which an activity happens, and the time between activities. It does not take into

consideration events such as severe weather conditions, which are not unusual, or even more

special occasions such as the Olympic Games. These external contexts can influence human

behaviour in the location they occur and should be incorporated into the models.

1.2 Contribution

The main contribution of this thesis is a framework to predict users’ current activity preferences

(UCAP). The prediction is based on users historical event patterns, their current context, and

other external contexts such as weather conditions. This thesis explains all the framework

components in detail, including their functions and relationships. The framework components

accommodate a set of novel ideas that can be considered as additional research contributions.

First, the UCAP framework can handle location data collected from LBSN check-ins or

background GPS services. It solves the duplicated entries and GPS uncertainty issues. Second,

UCAP integrates external contexts such as weather conditions and special occasions into its

prediction model.

Finally, UCAP uses clustering techniques to group users with similar behaviour to enhance

4 Chapter 1. Introduction

individual predictions. Intuitively, a cluster has more data than an individual. Accordingly, a

cluster-based prediction model will perform better than one trained with individual data.

The proposed framework was evaluated in three experiments using five real-world datasets:

two LBSN check-in datasets and three datasets gathered through GPS modules. The first ex-

periment investigated the impact of the main UCAP components on the prediction results. The

second experiment compared UCAP with a state-of-the-art approach. It is important to un-

derline that the same datasets and scenario were used to make the comparison valid, not to

undermine the results of the other approach. The third experiment evaluated the performance

of UCAP on distinct datasets that had different data sources and sizes.

The results obtained highlight the following observations:

• The main UCAP components have a direct impact on prediction results.

• UCAP outperforms a state-of-the-art approach under the evaluated metric.

• UCAP is not constrained by dataset size.

1.3 Organization of the Thesis

The remainder of this thesis is organized as follows:

• Chapter 2 provides background information that is useful in understanding this work as

well as a literature review of related studies. This chapter first provides an introduction

to the technical terms and concepts that are used throughout this thesis. Second, the

chapter presents a review of current studies that attempt to model user behaviour based

on location data. Finally, it contrasts the contribution of this thesis with existing work.

• Chapter 3 discusses the layers of the UCAP framework. The UCAP framework consists

of four layers: the Preprocessing Layer, the Feature Engineering Layer, the Prediction

Layer, and the Presentation Layer. This chapter illustrates the components of each layer.

1.3. Organization of the Thesis 5

In addition, this chapter describes the relationships and interactions among these com-

ponents.

• Chapter 4 presents an evaluation of the UCAP framework. It starts with a description of

the evaluation environment. Next, the characteristics of the datasets used are presented,

analyzed, and discussed. Then the chapter presents three experiments that evaluated the

UCAP framework. Finally, a discussion of the experiemental results is provided.

• Chapter 5 presents the conclusions of this work, as well as a discussion of areas for future

work involving the UCAP framework.

Chapter 2

Background and Literature Review

The objective of this chapter is two-fold: first, it introduces the background terminology and

concepts related to the topics discussed in this thesis; second, it gives an overview of existing

research done on topics related to modelling user behaviour based on location data.

2.1 Background

This section defines and discusses the concepts of data preprocessing and machine learning,

which are the foundation for understanding the work presented in this thesis.

2.1.1 Data Preprocessing

Real-world datasets are highly influenced by negative factors such as the presence of noise,

missing values, inconsistencies, and redundancies. These imperfections affect data quality,

which influences the performance of data mining algorithms [11, 12]. The goal of data pre-

processing is to improve data quality according to algorithm requirements. If data are not

preprocessed, the algorithm may not work correctly, or in the best-case scenario, it will work,

but the results will not be accurate. Another aspect of data preprocessing is that it can give

the dataset a structure that enables more than one machine learning algorithm to be executed.

6

2.1. Background 7

Figure 2.1: Data Preprocessing Categories

However, not all techniques may need to be used, depending on the data domain. Data pre-

processing can be grouped into four categories, as shown in Figure2.1: data cleaning, data

transformation, data integration, and data reduction.

Data Cleaning

Data cleaning focusses on handling missing, noisy, and inconsistent data. These characteristics

are typical of real-world datasets. Missing values can occur for several reasons. For instance,

an operator filling out a customer information form could skip some fields to make the process

quicker; some fields are simply not applicable to all customers; or an equipment malfunction

could lose a couple of records. Other malfunctioning equipment can record wrong values, or

an issue may happen during data transmission, including some outliers in the dataset. Further-

more, discrepancies in code or naming conventions can result in inconsistencies in the dataset.

Duplicate entries must also be “cleaned”.

8 Chapter 2. Background and Literature Review

Data cleaning techniques try to fill in missing values, smooth noisy data, identify and re-

move outliers, and resolve inconsistencies. Overall, machine learning algorithms can deal with

some level of “dirty” data, but the methods are not very robust, nor do they address all types of

issues. Some of the methods used to address each of these issues are described below.

1. Missing values: Not addressing this issue may lead to inaccurate models [13]. Various

approaches can be used to handle missing values [14]. For example:

• Manually fill in missing values: this can be feasible if there are few missing values;

• Eliminate or ignore missing values [15]: this is straightforward to implement, but

impractical unless most attributes of the entries are missing;

• Estimate missing values: a constant can be used, or the mean of all entries. An-

other option is to use the expected value based on statistical methods [16] or other

prediction approaches.

2. Noise: this is a random error that modifies the original value. Noisy data can generate

outliers as well. This issue has an impact on model accuracy and needs to be tackled [17].

In the case of noisy data, the following methods may be used:

• Inspection: a human operator can check the values after they are detected;

• Binning: sorting all the data values and splitting them into bins with the same

number of entries. Next, the bins are smoothed using the bin values or the values

around them (e.g., using the mean);

• Clustering: clustering the data into normal and anomalous values and removing the

anomalous ones;

• Regression: fitting the data with regression functions to smooth them.

3. Inconsistency: some inconsistencies can be corrected manually. For example, data gath-

ered from scanned documents can be compared with the paper version of the documents.

2.1. Background 9

If there are known constraints, automated tools may find data that do not respect these

constraints.

Data Integration

Data integration is the process of merging data from multiple data sources. This process can

be tricky and must be performed carefully to avoid inconsistency and redundancy. The main

tasks of data integration are identifying and matching attributes, analyzing their correlation,

and detecting any conflict between the various data sources.

Data Transformation

Data transformation is the process of transforming or consolidating data into an appropriate

format for more efficient use. Data transformation techniques can be grouped into:

1. Aggregation: data aggregation can involve merging multiple attributes into a single at-

tribute or combining two or more entries into a single entry. For example, individual

transactions can be aggregated to daily sales;

2. Normalization: Normalization means adjusting attribute values measured on different

scales to a common scale. Normalization attempts to give equal weights to all attributes.

Some machine learning algorithms will not work properly without normalization. Min-

Max, expressed in Eq. (2.1), is a popular normalization method:

min − max =
x − Xmin

Xmax − Xmin
(2.1)

where x is the entry value, Xmin is the minimum value in the dataset, and Xmax is the

maximum value in the dataset;

3. Generalization: involves replacing attributes by higher-level concepts. For example,

annual income could be replaced by social class.

10 Chapter 2. Background and Literature Review

Data Reduction

Data reduction includes various methods to obtain a reduced representation of the original

dataset while maintaining its properties and any existing intrinsic knowledge. Extracting the

same insights from the reduced dataset should also be possible. Usually, data reduction comes

with some degree of loss, and the trade-off must be taken into consideration. The main tech-

niques used are:

1. Feature Selection: not all data features have the same importance, and feature selection

techniques try to select the ones that best represent the data [18];

2. Instance Selection [19]: instead of selecting a subset of the features, instance selection

tries to select a subset of instances to represent the full dataset;

3. Discretization [20]: this technique projects continuous attributes into a discrete domain,

using non-overlapping ranges, for example.

2.1.2 Machine Learning

This section provides an overview of machine learning, focusing on the algorithms used in the

UCAP framework. Initially, a high-level overview of machine learning will be presented. Later

on, the concepts of the K-Means and the Gradient Boosting algorithms are discussed.

Overview

Machine learning is a part of artificial intelligence that explores algorithms that can receive

input data and use statistical analysis to predict an output value within acceptable accuracy.

Machine learning techniques usually share a similar process. It starts with a dataset, which

can be seen as a table where the rows represent observations and the columns are the values of

the observed attributes. The dataset is split into at least two subsets, the training dataset and

the test dataset. A validation dataset may also be created either at this moment or later in the

2.1. Background 11

process. Other dataset splitting schemes [21, 22] exist, but will not be discussed here because

they are out of the scope of this thesis.

In machine learning, the training process involves optimizing the parameters of a function,

called the loss or cost function. The function and the parameters vary depending on the al-

gorithm, but the goal is to minimize or maximize the loss function output when the model is

applied to the training dataset. Once the model is optimized, it is then evaluated using the test

dataset.

Machine learning algorithms are usually classified into three categories, according to the

learning process used: supervised learning, unsupervised learning, and reinforcement learning.

In supervised learning, the algorithm learns from a training set that contains the desired

output values (labels) [23]. The objective is to build a model that can predict the correct output

for unseen data. This is analogous to the process in which a student learns from examples

provided by a teacher. The student must generalize the examples into rules or functions that

are applied when new examples arise.

Supervised learning is used primarily for two types of problems: classification problems

and regression problems. In classification problems, the data have discrete labels. Each label

can be seen as a category or a class, and the goal is to build a model that can assign new data

entries to the most appropriate class. On the other hand, regression problems involve data

with continuous labels, rather than the discrete classes in classification problems. For example,

forecasting the energy consumption of a building is a regression problem.

In unsupervised learning [22], the training dataset does not contain any of the desired

outputs. The algorithm’s objective is to find patterns in the data by itself. It tries to find some

intrinsic logic or rules that structure the training data. This is analogous to an individual who

tries to find similarities between objects or events to organize them into classes or categories

based on the individual’s perception rather than any pre-established categories. These types of

algorithms generate a better understanding of the data and provide insights into them. They

can also generate new and useful inputs for supervised learning algorithms, which is how the

12 Chapter 2. Background and Literature Review

UCAP framework benefits from unsupervised learning.

Reinforcement learning is a type of learning in which the algorithm works as an agent

that interacts with the environment, receiving feedback and adjusting its output accordingly.

It is used mainly in decision-making problems, where the decisions cause consequences. It is

analogous to learning by trial and error.

Next, two algorithms used in this work are detailed.

K-Means Algorithm

The K-means [24] is an unsupervised learning algorithm used to cluster unlabeled data. Its

goal is to assign the data into k clusters based on the available features.

The algorithm’s input is the data itself and the number of clusters k. The data samples are d-

dimensional vectors (x1, x2, . . . , xn) that will be assigned to k ≤ n clusters C1,C2, . . . ,Ck, with

n being the number of samples. The algorithm starts by choosing k centroids for the clusters

(c1, c2, . . . , ck), which are also d-dimensional vectors. The centroids could be, for example,

randomly selected data from the dataset. Then the algorithm iterates between the following

two steps:

1. Data samples are assigned to the cluster with the nearest centroid. Equation (2.2) de-

scribes this step. The dist function computes the distance between two instances of the

data, for example by using Euclidean distance.

Ci = {x j|dist(x j, cp) ≥ dist(x j, ci), 1 ≤ p ≤ k}. (2.2)

2. The centroids are updated by taking the average of all data samples assigned to each

cluster according to Eq. (2.3).

ci =
1
|Ci|

∑
x j∈Ci

x j (2.3)

The algorithm runs until a stopping criterion is met. The stopping criterion could be, for

2.2. Literature Review 13

instance, when no data points change clusters or when some maximum number of iterations is

reached.

Gradient Boosting

Gradient boosting [25] is a boosting algorithm that uses gradient descent [26] to update its

predictors. Boosting is an ensemble approach in which the predictors are built sequentially.

The idea is that subsequent predictors learn from the mistakes of their predecessors. Ensemble

learning is a machine learning technique that uses multiple learners to solve a problem.

Gradient boosting algorithms use a loss function that varies according to the problem. For

instance, the mean squared error can be used as a loss function. Such algorithms also need

an ensemble of learners to make predictions, typically decision trees. Gradient boosting starts

with a single learner. Subsequent models predict the residual error of the previous models. The

prediction is given by the sum of all the models.

2.2 Literature Review

This section provides a literature review of research done on topics related to modelling user

behaviour based on location data.

The increasing amount of available location data has increased interest in building predic-

tion models around these data. One fundamental idea is that human mobility is predictable.

Song et al. [27] explored the limits of this predictability and found in their test population that

93% of human mobility was predictable. To reach this conclusion, they measured user entropy

from 45,000 mobile users.

Some studies have focussed on building models for next location prediction [3, 28, 29, 30,

31, 32].

Ye et al. [3] proposed a framework based on mixed Hidden Markov Models (HMMs) to (1)

predict the next POI category, and (2) predict the next-visited POI based on the distribution of

14 Chapter 2. Background and Literature Review

the predicted category. They clustered users based on the frequency of visits using the K-Means

algorithm and built one prediction model per cluster. The category level captured the semantic

meaning of the user’s activities. After getting the predicted category from the HMM, they used

a ranking scheme to predict the next-visited POI. They evaluated the impact of clustering on

the results and concluded that the clusters improved the results.

Noulas et al. [28] explored the problem of predicting the next-visited POI within 24 hours

using check-in data. They proposed a set of features including user information, such as the

visits that a user has performed and visits performed by the user’s friends; global information

that aggregates data related to the POIs themselves, such as the distance between POIs and

existing transitions; and finally, they also used temporal features. These features were used to

evaluate a linear regression model and an M5 tree model with a dataset consisting of 35 million

check-ins from Foursquare. The M5 trees performed best in the evaluated metrics.

Preoţiuc-Pietro and Cohn [29] studied the check-in patterns in LBSNs. Their features con-

sisted of the transitions that users make when they go from one POI to another. They clustered

the users based on their POI category transitions using the K−Means algorithm. They also built

a model to predict the next POI category, inputting the same set of features to different Markov

models (MMs), and developed methods using the most frequent category over a period. Their

results showed that higher-order MMs did not achieve improvement over lower-order models.

However, they did not merge the clustering with the prediction.

Trasarti et al. [30] proposed a system, called MyWay, to predict users’ exact future position

based on mobility profiles, which are based on the users’ trajectories. These trajectories were

constructed using the users’ raw position. However, the raw position data do not need to be

shared to make the prediction, reducing privacy risks. Moreover, these authors also proposed a

collective strategy to consider more individuals’ data, but this would be applied only with data

shared by users. Besides, they proposed a hybrid approach that mixes both strategies. MyWay

was evaluated with a dataset gathered for insurance purposes and consisting of 9.8 million car

trips. The hybrid strategy was the one that performed best.

2.2. Literature Review 15

Nguyen et al. [31] applied a variety of machine learning methods to the next-visited POI

problem, such as Markov models, Support Vector Machines (SVM), and decision trees. In their

work, they built an Android app to collect GPS data from users. They collected each user’s

position every five minutes. According to their results, the SVM algorithm performed best.

Chen et al. [32] presented three approaches based on Markov models: a global model,

based on all trajectories; a personal model based on a specific user; and a regional model in

which trajectories were clustered to build cluster models. Their data were collected from the

traffic system and represented cars passing specific locations. Their evaluation showed that

their approach outperforms two other methods, VMM and WhereNext.

In contrast with these studies [3, 28, 29, 30, 31, 32], the proposed research focusses on

users’ current activity preferences, not on future locations. Moreover, the UCAP framework

clusters users based on the places they have been and uses this information as a feature for

the prediction model, rather than building one individual prediction model per cluster. Other

studies have focussed either on LBSN data or other types of data, whereas this study proposes

a framework that works with both LBSN and GPS data and uses external context to improve

the prediction model.

Other studies have explored various ideas such as predicting where a user will be at a

specific time with datasets other than LBSN data [6, 33, 34].

Cao et al. [6] presented a framework to predict the probability of a user visiting a specific

location at a given time. They first evaluate the possibility of a user visiting a location and then

checked whether the user would visit a specific location. They evaluated their approach using

data from three different LBSN datasets.

Liu et al. [33] proposed a method to predict where a user will go next at a specific time.

Their method is based on recurrent neural networks, which usually uses a single transition

matrix. However, they used two matrices: a time-specific and distance-specific transition ma-

trices. They have evaluated their model with data from a LBSN dataset and also a dataset of

terrorist incidents. Their method outperformed eight other methods presented.

16 Chapter 2. Background and Literature Review

Lv et al. [34] presented two models: (1) a spatial-temporal model and (2) a next-visited POI

prediction model based on Hidden Markov Models. Their dataset was periodically gathered

from LTE control-plan traffic generated by user equipment, such as mobile phones and other

electronic devices. They clustered nearby locations to reduce oscillation and identified the most

important POIs from users to use in their models. They grouped users into four previously

established clusters based on their daily patterns. Their models outperformed the baseline

methods in the evaluation.

Unlike [6, 33, 34], this study does not try to predict where the user is going at a specific

time and also considers data sources other than LBSNs. Furthermore, it is not restricted by

any sampling periodicity scenario. The UCAP framework can use data with either static or

variable sampling frequency. Also, the number of clusters is optimized when building a new

model, instead of using a previously established value. Moreover, other studies [6, 33, 34] do

not consider the external context, which may influence user behaviour.

Studies of building location recommender systems can be found in [35, 36, 37, 38]. Yao [35]

proposed a POI recommendation model based on Poisson factorization. The model first pro-

files the temporal popularity of the venues within one day and then matches the POI profiles

with users’ preferences and routines. The users’ preferences and routines are gathered from a

LBSN dataset. The model can achieve improved evaluation over other factor-based models.

Yao et al. [36] used a tensor factorization check-in representation, with users, locations,

and time slots as dimensions, to build a recommendation framework. They added social and

spatial regularization terms. The first of these was related to the users’ friends, whereas the

latter was related to the distance between the users’ check-ins. Yao et al. evaluated their work

using two datasets from two LBSNs and achieved better results than 12 other methods which

were used as the baseline.

He et al. [37] presented a model to handle location group recommendations. They took

individual preferences into consideration and then used several factors to select recommended

locations for the group. The process was inspired by an economics principle, the Pareto Op-

2.2. Literature Review 17

timality. They evaluated their idea using two datasets gathered from LBSNs, and their results

showed improvements over baseline models.

Capdevila et al. [38] presented a hybrid recommender system for geolocated data. They

gathered data from Foursquare using a parallel version of the Quadtree algorithm, which was a

clever way to overcome the limitations of the API. They used a hybrid approach, with textual

sentiment analysis for the collaborative-filtering recommendation part and aggregated reviews

by users for the content-based recommendation part.

The UCAP framework could be extended to perform recommendations, but this was not

the main goal of this work, unlike the studies mentioned above [35, 36, 37, 38]. In addition,

these studies did not consider any context other than social relations, location, and time.

Lian et al. [39] presented a problem consisting of two tasks. First, they predicted whether

users are willing to explore unvisited POIs. They evaluated a logistic regression and a classi-

fication and regression tree for this problem. Then, the result is used to choose the approach

taken to predict of the next-visited POI. If the users were willing to explore a POI they have

never visited, the researchers used a recommender system to find the best matches. If the user

was more likely to go to a POI where he/she had already been, a Markov Model and a temporal

regularity model were input into the Hidden Markov Model. Their system considered only

LBSN data, whereas the system proposed here is not restricted to such data.

Finally, Yang et al. [2] considered spatial and temporal dimensions for modelling user

preferences (STAP). They built models for these dimensions separately and then merged them

using a fusion framework. Furthermore, they used a tensor factorization model to exploit the

similarities among users. Their study was similar to this one, and their dataset and results

were used to evaluate the UCAP framework. In addition, UCAP considers not only spatial and

temporal information, but also the external context, such as temperature and wind conditions,

because it may affect user preferences. Moreover, their evaluation was performed based on

LBSNs datasets, whereas this study also considers datasets gathered without any user interac-

tion. STAP outperformed 10 baseline approaches presented in [2], including sequential pattern

18 Chapter 2. Background and Literature Review

mining, temporal, spatial, and spatial-temporal approaches.

2.3 Summary

This chapter provides an overview of the concepts related to various topics that assist in un-

derstanding the UCAP framework. More specifically, an introduction to data preprocessing

terminology has been presented. In addition, an introduction to machine learning and the al-

gorithms that are used in this research has been provided. Finally, current studies on various

topics related to modelling user behaviour based on location data were discussed and contrasted

to the methods used in the UCAP framework, which is the approach presented in this thesis.

These methods are discussed in more detail in the following chapters.

Chapter 3

UCAP Framework

This chapter describes the proposed framework. The primary goal of the UCAP framework

is to build a model for predicting users’ current activity preferences based on their current

context. Figure 3.1 shows the data flow inside the UCAP framework.

The UCAP framework consists of four layers: the Preprocessing Layer, the Feature Engi-

neering Layer, the Prediction Layer and the Presentation Layer. Feature engineering can be

seen as part of the data preprocessing, but as UCAP adjusts the features along with the predic-

tion model, the feature engineering process is represented as a separate layer. The four layers

ensure better separation of responsibilities and help to decouple the functionalities from each

other.

The following sections explain each layer and its components and how each fits into the

framework.

3.1 Preprocessing Layer

The Preprocessing Layer is the framework’s input interface and the first step in training the

prediction model. Two datasets serve as inputs to this layer: a User Event dataset and an

External Context dataset.

The User event dataset contains the following elements:

19

20 Chapter 3. UCAP Framework

Figure 3.1: Data flow of the UCAP Framework

• Unique user identifier (collected according to privacy policies)

• Location

• Timestamp

• Activity

The exact elements of the External context dataset are not enforced by the UCAP frame-

work as it cannot know a priori which and how many external contextual attributes will be

used, but it should contain:

• Location

• Timestamp

• Context 1

• . . .

• Context n

3.1. Preprocessing Layer 21

Figure 3.2: UCAP inputs example.

Figure 3.2 shows two example datasets: a User Event dataset and an External Context

dataset. The External Context dataset contains two contextual attributes: the temperature and

whether a hurricane is present in an area or not, represented as 1 and 0, respectively.

The User Event dataset will most likely be gathered from online interaction with digital

content, either as user input, such as the check-ins or without any user interaction, for example,

by a background process that stores the user location from time to time. The data gathered

with user interaction may contain duplicates, while the data gathered from background location

services may contain uncertainty, as it was shown in Fig. 1.1 and explained in Chapter 1. Both

scenarios are handled by the Preprocessing Layer.

The context from an External Context dataset may consist of numbers or labels. Each data

type is processed differently by the Feature Engineering Layer. The Preprocessing Layer is

concerned only with merging the context with the events according to the location and times-

tamp.

Moreover, this layer filters inactive users based on their usage pattern. This layer is made

22 Chapter 3. UCAP Framework

up of four components: the Events Merger, the Inactive Users Filter, the Context Merger, and

the Data Splitter. These components are detailed below.

3.1.1 Events Merger

The Events Merger component is a data aggregation component data allows that the UCAP

framework to accept as a User Event dataset both LBSN check-in datasets and datasets gathered

using background location services. This component is responsible for dealing with duplicates

generated by user input and multiple entries generated by GPS uncertainty.

Figure 3.3 (a) shows an example of a User Event dataset with both issues. The first two en-

tries have the same user, location, timestamp, and activity. They represent duplicates generated

by user input. The last three entries have the same user, location, and timestamp, but different

activities. They depict entries generated by GPS uncertainty.

The Events Merger component merges all the events from a user with the same location

and the same timestamp into a single event by changing its data representation. First, this

component takes the set of all activities performed by a user in a specific location and at a

specific timestamp. There are no duplicates in a set, which solves the user input duplication

problem.

Next, the Events Merger component changes the activity data representation. The User

Event dataset uses labels to represent activities performed by a user at a specific location and

timestamp, such as the example given in Fig. 3.3 (a). Multiple entries may exist in the dataset

due to GPS uncertainty. Probabilities are a good representation of uncertainty, and the Events

Merger component uses them to represent multiple activities performed by the same user with

the same location and timestamp. All the activities performed in an event have the same prob-

ability, and their sum is one. Fig. 3.3 (b) depicts the output of this component, given Fig. 3.3

(a) as input. This new data representation solves the issue generated by GPS uncertainty.

Finally, a new issue arises with this representation. An event may become irrelevant if

the probabilities are spread among many activities. To handle the issue, if an event has more

3.1. Preprocessing Layer 23

Figure 3.3: User Events dataset before and after the Events Merger

24 Chapter 3. UCAP Framework

activities than a particular threshold n, the component uses a unique activity κ to represent all

the activities. Only this activity is performed in this case. The threshold n is a parameter of the

Events Merger component. Fig. 3.3 (c) gives the output of this component, given Fig. 3.3 (a)

as input and n = 2 as the threshold.

3.1.2 Inactive Users Filter

In this study, users were considered to have two kinds of status: active and inactive. Active

and inactive users were differentiated based on the frequency of each user’s events during a

period. Inactive users provide no value from the application perspective and affect negatively

the dataset as “dirty” data.

The UCAP framework is flexible regarding this frequency because the definition of an

active user may vary depending on the business domain. For example, an application that

shows the daily news can expect to be used daily by active users, but a sports results application

could define a user as active who used it once a week.

The Inactive Users Filter is a component that performs data cleaning by removing events

related to inactive users from the User Event dataset. First, the time during which events

happen is split into time intervals of the same duration, building a set T = {t0, t1, . . . , tl}, where

the duration can be one day or one month, for example. Next, given E, the set containing all

events; U, the set of all users; and Eu,t, the set of events that a user u ∈ U performed during

the time window t ∈ T , the set of active users U′ can be built according to Eq. (3.1). A user

is considered to be active if the user generates m or more events per defined time window. For

example, to apply the equation to the news application example, the time window would be set

to one day, and m = 1. The Inactive Users Filter will remove any event from a user who is not

in U′.

U′ = {u ∈ U | |Eu,t| ≥ m,∀t ∈ T } (3.1)

3.1. Preprocessing Layer 25

Figure 3.4: Example of: (a) External Context dataset; (b) Context Merger being performed

3.1.3 Context Merger

The UCAP framework assumes that users’ activity preferences are not only related to spatial-

temporal attributes, but also to the external context. For example, severe weather conditions

may make outdoor activities challenging to perform. Moreover, special occasions such as the

Olympic Games influence the human behaviour in the place they occur and therefore should

be taken into account. For example, Fig. 3.4 (a) depicts an External Context dataset with

information related to weather.

The Context Merger component integrates the External Context dataset with the User Event

dataset, which has already been preprocessed. It performs a data integration process, merging

them into a unique dataset. For instance, Fig. 3.4 (b) shows this component merging the User

Event dataset from Fig. 3.3 (c) with the External Context depicted by Fig. 3.4 (a).

3.1.4 Data Splitter

The last component of the Preprocessing Layer involves splitting of the data into training and

validation datasets. The training dataset is used to train the prediction model, whereas the

26 Chapter 3. UCAP Framework

validation dataset is used to evaluate this model and help select its parameters.

The Data Splitter orders the data chronologically to represent the most current user be-

haviour and then uses the first q% as training dataset and the last (100 − q)% as validation

dataset, with 0 ≤ q ≤ 100. The split is done this way because the prediction model will be used

along with data that are more recent than the training dataset. Hence, this scenario is replicated

with the validation dataset.

3.2 Feature Engineering Layer

The results of prediction techniques are often improved by using newly generated features

based on existing ones. The Feature Engineering Layer transforms the dataset received from

the Preprocessing Layer by encoding it properly and merging it with newly generated features.

It has two outputs:

• the training dataset with the new set of features themselves; and

• the data transformers that generated these features, i.e., the operations used to generate

the features. Other layers may apply these data transformers in other datasets.

The Feature Engineering Layer is composed of three components: the Clusterer Feature

Extractor, the Clusterer, and the Feature Enhancer. These components are described below.

3.2.1 Clusterer Feature Extractor

The first feature that the UCAP framework generates is related to the cluster to which each

user belongs. The clustering process is described in the next subsection. However, the critical

point, for now, is the fact that the clustering is based on the weighted frequency of activities

performed by each user. This information is not available in the User Event dataset and must

be generated. Hence, the training dataset must go through a data transformation process before

3.2. Feature Engineering Layer 27

being used by the clustering algorithm. The Clusterer Feature Extractor is the component that

performs this task.

The Clusterer Feature Extractor faces two challenges. The first challenge is not knowing

how many events a user u performed. Counting may result in, for example, 5 events from user

u1 and 5,000 from user u2. Because this unknown gap between results can influence the model

training, the numbers will be scaled to a known interval. The second challenge involves the

uncertainty of how often a user performs an activity. For instance, let activity a1 be “having

lunch”, and activity a2 be “going to school”. Almost every user would perform a1, whereas

only a fraction of users would perform a2. Hence, a1 is not a useful feature for distinguishing

users, whereas a2 could distinguish “students” from “non-students”.

To deal with the gap discrepancy between the total number of events and the fact that some

activities may be better metrics than others for distinguishing users, the UCAP uses a weighting

scheme. This weighting scheme is inspired by a widely used technique in information retrieval

and text mining, TF-IDF (Term Frequency-Inverse Document Frequency) [40]. In text classi-

fication, documents have different lengths, and each text is written both with common words,

such as “the”, “and”, “or”, and words that are specific to a topic, for example, “algorithm”,

which would be related to “computer science”. This idea was adapted as follows: each user u

was considered as a document, and each activity a as a word. An event performed by a user at

a specific timestamp eu,t contains a set of activities, Eu representing the set of events generated

by user u with cardinality |Eu|. Equation (3.2) defines the t f function, which can be described

as the ratio of the number of times that user u performed an activity a over all the activities

u has performed. This equation deals with the first challenge described above. The second

challenge is addressed by the function id f (a), shown as Eq. (3.3). In this equation, U is the set

of all users, and Au is the set of activities performed by user u. The t f -id f function, shown in

Eq. (3.4), combines the two previous equations. This equation is used to build the dataset used

by the Clusterer component to segment the users based on their activity preferences.

28 Chapter 3. UCAP Framework

t f (a, u) =
|{eu,t ∈ Eu | a ∈ eu,t}|

|Eu|
(3.2)

id f (a) = log
|U |

|{u ∈ U | a ∈ Au}|
(3.3)

t f -id f (a, u) = t f (a, u) × id f (a) (3.4)

Suppose that user u1 from the example performed activity a1 twice and a2 three times,

whereas user u2 performed activity a2 in all 5,000 events. In this case, the t f function is

calculated as t f (a1, u1) = 2
5 , t f (a2, u1) = 3

5 , t f (a1, u2) = 0, and t f (a2, u2) = 1. Next, the id f

function is computed as id f (a1) = log 2
1 = 0.301 and id f (a2) = log 1 = 0. Finally, the t f -id f

function results are t f -id f (a1, u1) = 0.0602 and t f -id f (a1, u2) = 0. Notice that id f (a2) = 0

means that this activity is not useful to differentiate users.

3.2.2 Clusterer

In addition to the issues regarding the number of events that a user may have performed, there

is the fact that these events may be sparse in time and also may present a data scarcity problem

because the number of activities performed per user is usually only a fraction of all the possible

activities [41]. Time is a fundamental feature of the UCAP framework, and there can be many

gaps in users’ daily routines in the datasets. To fill these gaps, users with similar preferences are

considered to have a similar routine. By clustering these users, their events can be considered

under a single entity, the “group of users”, rather than as individuals. For example, “parents”,

“university students”, and “hikers” could each cluster several individuals. Another advantage

of this approach is that new users can fit into a cluster after a few events and use a model that

is already built and trained.

The Clusterer component groups users based on the weighted frequency with which they

3.2. Feature Engineering Layer 29

perform the existing activities weighted by the Clusterer Feature Extractor component. Users

in the same cluster are supposed to exhibit similar behaviour regarding activities, and for this

reason, the cluster itself is a feature used by the Prediction Layer. This component builds and

outputs a set of tuples with the users and the cluster to which each belongs.

3.2.3 Feature Enhancer

This component receives as input the data from both the Clusterer and the Preprocessing Layer.

The data may contain features that are not encoded appropriately.

The data provided by the Clusterer are composed of tuples with a unique user identifier

and an integer representing the cluster to which this user belongs. The user identifier is used to

merge these data into the feature set, but it is not a feature by itself. The number that identifies

the cluster is a feature to be included in the feature set.

Each cluster represents an entirely independent category of users. This kind of feature is

called a categorical feature. If an integer is used to represent each cluster, the Prediction Engine

can assume, for example, that cluster 1 and 2 are more similar than clusters 1 and 5. Moreover,

it assumes some ordering between clusters, which is not true. The approach taken is to create

one feature per cluster. This way, if there are k clusters, they will be represented by k features.

This representation is called 1-of-K scheme [42], and it is used to encode k mutually exclusive

states, the clusters in this case. For example, if there are three clusters and a user belongs to

cluster 3, this user’s cluster is represented by (0, 0, 1).

The context from the External Context dataset may consist of numeric values or labels.

Numerical values do not need any modifications. Labels are categorical features and use the

1-of-K representation. The Feature Enhancer does not care about what each context is but

simply adjusts the data representation if needed.

Spatial features such as latitude and longitude are numeric values and do not need any

adjustment. These features represent the location where an event occurs and are fundamental

to the functioning of the framework.

30 Chapter 3. UCAP Framework

Table 3.1: Features with domain
Feature Domain
Cluster Categorical
External Context Categorical or Numerical
Latitude Numerical
Longitude Numerical
DayTime{sin, cos} Temporal
WeekDay{sin, cos} Temporal
Week{sin, cos} Temporal
Month{sin, cos} Temporal
Weekend Categorical

Temporal features, based on the events’ timestamps, receive a different treatment. Several

features are generated based on them. The periodic temporal features are projected onto a unit

circle, using their sine and cosine as their representation, to maintain their properties. This

transformation is done using Eq. (3.5). In this equation, t represents the original temporal

feature, and ωt is its frequency.

t̂ =
{

sin
(
2πtωt

)
, cos

(
2πtωt

)}
(3.5)

This approach helps deal with frequency boundaries. For example, a day has 1,440 min-

utes. By using Eq. (3.5), the distance between minute 1,439 and minute 0 is the same as the

difference between minute 0 and minute 1. If the original feature t were used, there would be a

considerable gap between these numbers.

Besides the periodic temporal features, there is a categorical feature indicating whether the

timestamp is on a weekday or a weekend. The set of features is summarized in Table 3.1.

3.3 Prediction Layer

The Prediction Layer deals with training a prediction model, evaluating it, and running the

validation process to tune its parameters. This layer has two types of inputs: data and data

transformers.

3.3. Prediction Layer 31

The Prediction Layer receives the feature set generated by the Feature Engineering Layer

(based on the training dataset) and the validation dataset from the Data Splitter component.

The validation dataset is encoded using the data transformers received from the Feature Engi-

neering Layer. These data transformers are the same as those used on the training dataset.

This layer is composed of three components: the Prediction Engine, the Evaluator, and the

Tuner. These components are described in the following subsections.

3.3.1 Prediction Engine

The Prediction Engine trains a model to predict which activities users will most likely per-

form based on their current context. Its output is the trained prediction model. It receives the

feature dataset built by the Feature Enhancer component and uses it along with the activity

probabilities computed by the Events Merger component.

This trained model outputs predicted activity probabilities â based on the objective function

shown in Eq. (3.6), where l is the loss function, a is the ground truth, i.e., the probability vector

computed by the Events Merger, and Ω is the regularization function, which represents the

complexity of the model. The index n is the size of the training dataset. The function L is to

be minimized.

L(model) =

n∑
i=1

l(ai, âi) + Ω(model) (3.6)

3.3.2 Evaluator

The trained model must be evaluated to tune the training parameters. The Evaluator uses the

data transformation processes generated by the Feature Engineering Layer, the model trained

by the Prediction Engine, and the validation dataset received from the Data Splitter to evaluate

the model. Various evaluation metrics are computed in the experiments for study purposes, but

the one that is used to tune the models in the validation step is the Accuracy. This metric checks

whether the predicted activity with the highest probability corresponds to the ground truth and

32 Chapter 3. UCAP Framework

is computed as the ratio of correct predictions to the total number of predictions made.

3.3.3 Tuner

The Tuner coordinates the prediction model paramater tuning process. This process, depicted

in Fig. 3.5, involves components from both the Feature Engineering Layer and the Prediction

Layer.

The UCAP framework takes into consideration that clustering techniques may have param-

eters that can be tuned. This ends up including both the Clusterer component and the Feature

Enhancer in the tuning process. This process starts when the Clusterer Feature Extractor sends

the clusterer features (step 1). Next, clusters are created by the Clusterer (step 2). The features

are then encoded by the Feature Enhancer (step 3). The enhanced features are sent from the

Feature Engineering Layer to the Prediction Layer and used in the training process by the

Prediction Engine (step 4). The model is evaluated by the Evaluator using the validation data

(step 5). The Tuner component keeps track of the evaluation results. If the stopping criteria

were not met, it sends new parameters either to the Clusterer (step 6) or the Prediction Engine

(step 7). A stopping criterion can be, for example, the number of iterations or the convergence

of a function whose input is the evaluation results. When the process is done, the Tuner sends

the trained model to be stored (step 8). This process is also listed as pseudo-code in Algorithm

1. Notice that this component is generic and does not specify the tuning algorithm to be used,

which is specific to the implementation.

3.4 Presentation Layer

The Presentation Layer stores the trained model and all the data transformation processes

needed by the prediction model; it can also run the prediction model on new data. This layer is

made up of two components: the Storage and the Model Handler, which are described below.

3.4. Presentation Layer 33

Figure 3.5: Tuning process flow.

34 Chapter 3. UCAP Framework

Algorithm 1: Simplified Tuning Process
input : trainData, validData
output: Clusterer Feature Extractor Data Transform
output: Trained Clusterer
output: Prediction Feature Extractor Data Transform
output: Trained Prediction Model
output: Training Results

1 o← Tuner();

2 clFE← ClusterFeatureExtractor(trainData);
3 clData← clFE.getData();
4 while o.clusterStoppingCriteria() is false do
5 cl← Cluster(o.clParams(), clData);
6 PredFE← PredictionFeatureExtractor(trainData, clData, cl);
7 predData← PredFE.getData();
8 while o.predStoppingCriteria() is false do
9 pred← PredictionEngine(o.predParams(), predData);

10 eval← Evaluator(validData, clFE, cl, PredFE, pred);
11 o.EvalResults(eval);
12 end
13 end
14 o.storeModel(clFE, cl, PredFE, pred)

3.4.1 Storage

The Storage component receives and stores the results, data transformations, and trained mod-

els generated by the Feature Engineering Layer and the Prediction Layer. The data transfor-

mations and the trained models will later be used by the application to provide predictions.

The Storage component must be implemented in such a way that when a data transforma-

tion or a trained model is requested, only the most recent version is retrieved.

3.4.2 Model Handler

The Model Handler is the interface between the application and the UCAP framework. It

retrieves the trained data transformations and model and runs them to provide a prediction.

3.5. Summary 35

3.5 Summary

This chapter has introduced the UCAP framework and discussed each of its layers: the Pre-

processing Layer, the Feature Engineering Layer, the Prediction Layer, and the Presentation

Layer. The discussion explained the responsibilities of each layer and the components of the

framework and also explained how they interact.

Chapter 4

Case Studies

This chapter presents the UCAP implementation and the experiments used to evaluate UCAP.

It starts with a description of the experimental environment and implementation details. Next,

the five datasets used in all the experiments are presented, analyzed, and discussed. Then this

chapter presents three experiments that evaluate the UCAP framework. Each experiment has

its objectives detailed, as well as the metrics being used. Moreover, this chapter provides a

discussion of the experimental results. This chapter is organized into two sections. The first

will present the implementation and the experiments, and the second will present a discussion

of the experimental results.

4.1 Implementation and Experiments

The UCAP framework was implemented using Python. The experiments were run on a server

with 24 Intel Xeon CPUs at 2.60 GHz and 96 Gb RAM.

This section describes the shared components; experiment-specific component implemen-

tations are described in the subsection on that experiment.

36

4.1. Implementation and Experiments 37

Table 4.1: XGBoost Parameters
Parameter Value
Minimum Child Weight 50
ETA 0.1
Colsample by Tree 0.9
Maximum Depth 6
Subsample 0.9
Lambda 1.0
Booster gbtree
Objective binary:logitraw
Gamma 0

Clusterer

The Clusterer component uses the K-Means implementation from Scikit-learn [43] with Eu-

clidean distance. The K-Means algorithm was used due to its simplicity and effectiveness.

Other distances could have been used, but studies have shown that for high-dimensional

data spaces, results are similar [44]. Different clustering techniques were initially considered,

but preliminary tests showed that their performance was similar.

Prediction Engine

A gradient-boosting technique called eXtreme Gradient Boosting (XGBoost) [45] was used

as the prediction engine. To the best of the author’s knowledge, this is the first time that this

algorithm has been used in this problem domain.

Overall, tree-based methods are highly accurate and easy to use and to interpret. In partic-

ular, XGBoost was involved in 17 out of 29 challenge-winning solutions at Kaggle1 in 2015

[45]. This algorithm was used to minimize the objective function given in Eq. (3.6). Table 4.1

shows the parameters used by the XGBoost model.

The XGBoost algorithm does not output the required predicted activity probabilities, but

rather scores. These scores are related to how likely each activity is to be performed by the

user, given the context described by the input feature set. To use these scores z as probabilities,

1https://www.kaggle.com

38 Chapter 4. Case Studies

they are input to the softmax function[42] using σ as described by Eq. (4.1). In this equation,

a is an activity, A the set of all existing activities, and za is the score of activity a. The softmax

result for each entry in the dataset is the output of the prediction model. The Prediction Engine

output is the output of Eq. (4.1).

σ(za) =
eza∑

a′∈A eza′
(4.1)

Tuner

A grid-search approach was implemented as the Tuner component, and it helped choosing the

number of clusters for the K-Means algorithm.

4.1.1 Data Analysis

The experiments used five datasets, which are described in Table 4.2. The LDN Small dataset,

the MTL dataset, and the LDN Large dataset were provided by a multi-media company special-

ized in weather-related content and technology. All the data contained anonymized pseudo-

identifiers and were collected in accordance with privacy policies. No personally identifiable

information about users was used. The NYC and the TKY datasets were gathered as described

in [2].

The External Context dataset consisted of temperature, wind speed, and weather condition,

such as “Thunderstorm”, “Clear”, or “Snow Showers”. For London, ON, these data were

extracted from the Canadian Historical Climate Data2. For New York and Tokyo, these data

were obtained through the Weather Undergroung API3.

Figures 4.1, 4.2 and 4.3 were plotted to depict the datasets more clearly. Figure 4.1 shows

the probability distribution of the number of events per user in the datasets. The shape of the

curves is very similar for all datasets, where most users have very few events. A successful

2http://climate.weather.gc.ca/historical
3https://www.wunderground.com/weather/api/

4.1. Implementation and Experiments 39

Table 4.2: Datasets Description
Dataset LDN Small LDN Large MTL NYC TKY

Location London, ON London, ON Montreal New York Tokyo
Canada Canada

Data Source GPS GPS GPS LBSN LBSN
Start Date March 19th June 12th March 19th April 12th April 12th

2017 2017 2017 2012 2012
End Date May 2nd October 19th May 2nd February 16th February 16th

2017 2017 2017 2013 2013
Number of 2,481,358 76,098,559 11,782,099 227,428 573,703

Events
Unique 40,781 129,609 196,100 824 1,939
Users

Unique 77 84 72 251 251
Activities

approach to any problem that uses location data needs to handle this scenario. Figure 4.2

displays the number of events as a time series. Highlighting the different timeframes between

the datasets is good, whereas the NYC and TKY datasets covered about ten months of data, the

other two contained only about two months of data and may seem smoother, although they are

not. Finally, Fig. 4.3 gives the plot of the number of activities per event. Each event is related

to a unique user in a specific timestamp. The difference between the LBSN dataset, which

presents a single activity per event for all the events, and the GPS datasets are noticeable.

4.1.2 Experiment 1: Impact of the UCAP Components

The objective of this experiment was to evaluate the impact of the main components used by

the UCAP framework. The evaluation process used five variations of the framework: UCAP

without the Events Merger, UCAP without the Inactive Users Filter, UCAP without Exter-

nal Context, UCAP without the Clusterer, and finally UCAP with all its components. Each

variation of the framework used in this experiment was trained independently.

The set-up used the LDN Small dataset. The value used for the parameter m from the

Inactive Users Filter was 5, and all the data were placed in the same time window, which

40 Chapter 4. Case Studies

Figure 4.1: Probability distribution of the events per user

4.1. Implementation and Experiments 41

Figure 4.2: Number of events along time

42 Chapter 4. Case Studies

Figure 4.3: Number of activities per event

4.1. Implementation and Experiments 43

Table 4.3: Experiment 1 Results
Model Accuracy RMSE MAE
No Inactive Users filter 0.95 0.09 0.087
No Events Merger 0.89 0.17 0.032
No External Context 0.96 0.08 0.0083
No Clusterer 0.91 0.09 0.0082
UCAP 0.97 0.08 0.0079

meant that any user who performed five or more events was considered active.

The data were ordered chronologically, the first 80% of the data were used as the training

dataset, and the last 20% were used as the test dataset. The Data Splitter separates the training

dataset into a training dataset and a validation dataset during the training process. The test

dataset is used only for the evaluation.

To compare the performance of the models, the following metrics were used: (a) Accuracy,

used by the Evaluator component; (b) the Root Mean Square Error (RMSE), according to Eq.

(4.2); and (c) the Mean Absolute Error (MAE), according to Eq. (4.3).

For Accuracy, the higher the number, the better, and 1 is the highest score. For RMSE (Eq.

(4.2)), the lower the score, the better, and 0 is the best possible value. In this equation, A is the

dataset with all the ground truths, and Â is the dataset with the predictions, a ∈ A, â ∈ Â, and

n = |A| = |Â|. The MAE (Eq. (4.3)) follows the same logic as RMSE: the lower the score, the

better. Both equations used the same parameters.

RMS E(A, Â) =

√√
1
n

n−1∑
i=0

(ai − âi)2 (4.2)

MAE(A, Â) =
1
n

n−1∑
i=0

abs(ai − âi) (4.3)

Figure 4.4 shows the results of this experiment, which are summarized in Table 4.3.

The UCAP framework with all the components and features presented a better performance

than the other models with the missing components in this experiment. It is clear that the Events

Merger is crucial to the result, as would be for a dataset based on GPS data, with a 9.8%

44 Chapter 4. Case Studies

Figure 4.4: UCAP variations prediction results

improvement in Accuracy. Other components also provided relatively smaller improvements

to the result, which gives evidence of their importance to the proposed approach.

4.1.3 Experiment 2: Comparison with a Different Approach

The objective of this experiment was to compare the proposed framework with a current tech-

nique that models the same problem to evaluate its effectiveness. Two datasets from [2] were

used, which were the LBSN datasets described in Table 4.2. The UCAP framework was com-

pared with their model, called STAP, by replicating their experimental set.

The value used for the parameter m from the Inactive Users Filter was 3, and the time

window was one week, meaning that users were considered active if they generated at least

three events per week. The parameters used in the XGBoost model were the same as those in

Experiment 1, as shown in Table 4.1.

The data were ordered chronologically; the first eight months were considered as the train-

4.1. Implementation and Experiments 45

Figure 4.5: UCAP and STAP comparison

Table 4.4: Experiment 2 Results
Model NYC TKY
STAP [2] 0.52 0.54
UCAP 0.59 0.60

ing dataset, the ninth month was used as the validation dataset, and the tenth month was used

as the test dataset. The test dataset is used only for the evaluation.

To compare the performance of the models, the Accuracy measure was used. Table 4.4 and

Fig.4.5 summarize the results of this experiment. The framework proposed here outperformed

the STAP model by 13.5% on accuracy on the NYC dataset and 11.1% on the TKY, or 12.3%

better by averaging these two values.

4.1.4 Experiment 3: Comparison between Different Datasets

The objective of this experiment was to compare the performance of the proposed framework

when applied to different datasets. This experiment used all five datasets described in Table 4.2.

It is good to highlight the LDN Large dataset, which could be considered Big Data concerning

its volume because the number of entries is large enough that the dataset does not fit entirely

in memory [46]. To address the size issue, Dask [47] was used in the Preprocessing Layer.

For the datasets used in the previous experiments (LDN Small, NYC, and TKY), the entire

set-up was kept the same. For the other two datasets, the MTL dataset and the LDN Large

dataset, the value used for m from the Inactive Users Filter is 5, and all the data were placed in

46 Chapter 4. Case Studies

Table 4.5: Experiment 3 Results
Dataset Accuracy RMSE MAE
LDN Small 0.96 0.08 0.0079
LDN Large 0.93 0.11 0.026
MTL 0.98 0.08 0.0088
NYC 0.59 0.06 0.0079
TKY 0.60 0.06 0.008

the same time window, as in Experiment 1. The data were ordered chronologically, and the first

80% of the data were used as the training dataset and the last 20% as the test dataset. The Data

Splitter separates the training dataset into a training dataset and a validation dataset during the

training process. The test dataset is used only for the evaluation.

To compare model performance, Accuracy, RMSE (Eq. (4.2)) and MAE (Eq. (4.3)) were

used. The results of this experiment are shown in Fig. 4.6 and summarized in Table 4.5. The

results were very similar among datasets with the same data source type.

The LDN Large dataset presented a similar RMS E but a higher MAE, which means the

errors are larger, but the variance is smaller. This could be related to the bias-variance trade-

off [48]. To avoid overfitting, the Prediction Engine ended up with a relatively simpler model

when compared with the other datasets. Even though the LDN Large dataset is considerably

larger than the other datasets, the model provided similar accuracy, which is a positive charac-

teristic of the chosen algorithm.

4.2 Discussion

An essential component of the UCAP framework is the Events Merger. In Fig. 4.3, the plots

from the LBSN datasets (NYC and TKY datasets) show that in these datasets, there was only

one activity per recorded event, whereas the others presented a different distribution. An event

with more than one activity is evidence of GPS uncertainty because it is not sure which of the

activities the user was performing at that moment. In the LDN Large dataset, this affected a

small fraction of the data, but in both LDN Small and MTL datasets, more events presented

4.2. Discussion 47

Figure 4.6: UCAP prediction results on different datasets

this characteristic. In the author’s view, this makes the training process much harder. Usually,

this happens in commercial areas with a large number of venues. By using a probability vector

to represent activities and merging the locations under a new activity, the predictor results can

be improved. The Events Merger contributed to a noticeable improvement in the evaluation

result. Furthermore, the Clusterer also improved the results of the proposed framework, which

may indicate that the Preprocessing Layer is on the right track in preparing the data for any

modelling performed later in the process.

Moreover, the comparison with both STAP and different datasets could be considered as

evidence that this work is not biased to a specific type or size of dataset. Finally, because

the STAP approach is different from the one presented here, it is impossible to evaluate if the

difference in the results is related to a group of specific UCAP components. It is good to point

out that STAP was compared to several baselines[2], outperforming all of them. The decision

to compare the UCAP framework only with STAP reflects the fact that it was the most closely

48 Chapter 4. Case Studies

approach found.

The framework presented here would be useful for any location-based service that displays

venues or activities for users because it could highlight what the user is willing to do, instead

of a list of things to do in the vicinity based on distance. It could be helpful to more specific

applications as well, enhancing their usability. For example, a grocery shopping list could

notify the user about the list itself only when the user is within a context he/she is willing to

buy groceries, instead of doing it every time the user is near a grocery store, without any set-up.

The author asserts that the main strengths of this framework are in the Preprocessing Layer

and the Feature Engineering Layer and that these layers could be used in a set of related

problems by changing the features used and the target modelled by the Prediction Engine. The

UCAP is flexible enough to allow variations to be implemented with few changes according to

the desired goal.

4.3 Summary

This chapter has presented an evaluation of the framework described in Chapter 3. Moreover,

the implementation details of the UCAP framework used in the experiments as well as the

results of the three case studies were discussed. Furthermore, the datasets that were used were

analyzed and discussed. In the first case study, variations of UCAP were compared to evaluate

the impact of different components on the final results. In the second case study, UCAP was

compared with a state-of-the-art model. The third case study compared the performance of the

UCAP framework with datasets of different sizes and sources. The results showed that UCAP

preprocessing improves the accuracy of the trained model. In addition, UCAP outperforms a

state-of-the-art model. Finally, it does not lose accuracy with larger datasets.

Chapter 5

Conclusions and Future Work

This chapter presents a concluding summary based on the contributions of the proposed frame-

work for modelling users’ current activity preferences (UCAP). In addition, a description of

possible future research involving UCAP and its components is provided.

5.1 Conclusions

This thesis has presented UCAP, which is a framework for predicting a user’s current activity

preferences based on historical event patterns and current context, including time and location.

This framework is suitable both for data gathered by user interaction, such as check-ins, and

for location data collected by background processes. Moreover, an approach to solve the GPS

uncertainty issue was also presented and incorporated into the framework. This was achieved

through the Events Merger, a data aggregation component. An overview of the architecture has

been presented, including its components, their roles, and their relationships.

To demonstrate the applicability of UCAP, this thesis presented three case studies using five

real-world datasets. The first case study showed the impact of UCAP components by removing

individual components and evaluating the performance loss compared to the complete frame-

work. The second case study compared UCAP with a state-of-the-art approach. The third case

study evaluated the framework’s performance on different datasets. The results supported the

49

50 Chapter 5. Conclusions and FutureWork

assertion that all the components are relevant to UCAP’s performance. They also showed that

UCAP outperforms the state-of-the-art modelling technique by 12.3% on average. Finally, the

results show that UCAP is not limited to a specific dataset.

5.2 Future Work

The scope of this thesis took into consideration the limited time available for its development.

Because of this, many aspects were left open and can be explored in future work.

The UCAP implementation presented in this thesis used a gradient boosting technique as

the Prediction Engine. It would be possible to use other machine learning techniques in its

place. For example, it would be intesting to evaluate the use of deep learning, adapting the

surrounding components as necessary and comparing the results to the work presented in this

thesis.

The same can be done with the Clusterer and the Tuner. For the Clusterer, instead of using

the K-Means, it would be interesting to evaluate the performance of other clustering algorithms

and clustering approaches, such as fuzzy clustering, as the users could belong to more than one

cluster at the same time, with a different weight. Relating to the Tuner, a gradient-based or

Bayesian approach could be taken instead of the grid-search used.

The Preprocessing Layer can be enhanced by using other components. For instance, a

component could check for inconsistencies in the data regarding how distant subsequent events

are in time and space: events with several kilometres of distance in a matter of seconds should

be removed from the dataset. Evaluate the time performance of the framework, studying if

there are relations between time and dataset size, and time and number of features. This could

indicate whether UCAP would benefit from feature or instance selection techniques.

Privacy and security challenges were left out of the scope of this thesis. However, they cer-

tainly must be considered. Access to the datasets and the trained models should be restricted.

Communication between the application and the framework must also be performed through

5.2. FutureWork 51

secure means.

The UCAP implementation evaluated in this thesis used only historical data. Extensions

would be necessary to use this framework in a production environment. Production data come

as a continuous stream that never stops being gathered, bringing several new challenges. For

example, a new layer could be created to handle the interface with the input data stream. There

are also clustering techniques on streaming data that could be evaluated. In this way, the UCAP

framework could be used as presented in this thesis. Moreover, it would be necessary to decide

when a new model should be trained. Furthermore, the amount of data that would be stored

would have to be evaluated.

In this thesis, the problem explored was predicting users’ current activity preferences. The

framework can be extended to cope with other business objectives related to location data. For

example, it could predict the user’s next location. Moreover, the prediction layer could be

leveraged to perform recommendation tasks.

Bibliography

[1] Y. Zheng, “Tutorial on location-based social networks,” in Proceedings of International

Conference on World Wide Web, May 2012.

[2] D. Yang, D. Zhang, V. W. Zheng, and Z. Yu, “Modeling user activity preference by lever-

aging user spatial temporal characteristics in lbsns,” IEEE Transactions on Systems, Man,

and Cybernetics: Systems, vol. 45, pp. 129–142, Jan 2015.

[3] J. Ye, Z. Zhu, and H. Cheng, “What’s your next move: User activity prediction in location-

based social networks,” in Proceedings of the SIAM International Conference on Data

Mining, pp. 171–179, 2013.

[4] T. H. Silva, P. O. V. de Melo, J. M. Almeida, M. Musolesi, and A. A. Loureiro, “A

large-scale study of cultural differences using urban data about eating and drinking pref-

erences,” Information Systems, vol. 72, pp. 95 – 116, 2017.

[5] V. Kounev, “Where will i go next?: Predicting future categorical check-ins in location

based social networks,” in 8th International Conference on Collaborative Computing:

Networking, Applications and Worksharing (CollaborateCom), pp. 605–610, Oct 2012.

[6] J. Cao, S. Xu, X. Zhu, R. Lv, and B. Liu, “Efficient fine-grained location prediction based

on user mobility pattern in lbsns,” in 2017 5th International Conference on Advanced

Cloud and Big Data (CBD), pp. 238–243, Aug 2017.

52

BIBLIOGRAPHY 53

[7] S. Scellato, M. Musolesi, C. Mascolo, V. Latora, and A. T. Campbell, “Nextplace: A

spatio-temporal prediction framework for pervasive systems,” in Pervasive Computing

(K. Lyons, J. Hightower, and E. M. Huang, eds.), (Berlin, Heidelberg), pp. 152–169,

Springer Berlin Heidelberg, 2011.

[8] A. Roy and E. Pebesma, “A machine learning approach to demographic prediction us-

ing geohashes,” in Proceedings of the 2nd International Workshop on Social Sensing,

SocialSens’17, (New York, NY, USA), pp. 15–20, ACM, 2017.

[9] J. Sang, T. Mei, and C. Xu, “Activity sensor: Check-in usage mining for local recommen-

dation,” ACM Transactions on Intelligent Systems and Technology, vol. 6, pp. 41:1–41:24,

Apr 2015.

[10] G. McKenzie and K. Janowicz, “Where is also about time: A location-distortion model to

improve reverse geocoding using behavior-driven temporal semantic signatures,” Com-

puters, Environment and Urban Systems, vol. 54, pp. 1 – 13, 2015.

[11] D. Pyle, Data preparation for data mining, vol. 1. Morgan Kaufmann, 1999.

[12] J. Van Hulse, Data Quality in Data Mining and Machine Learning. PhD thesis, Boca

Raton, FL, USA, 2007.

[13] H. Wang and S. Wang, “Mining incomplete survey data through classification,” Knowl-

edge and Information Systems, vol. 24, no. 2, pp. 221–233, 2010.

[14] J. Luengo, S. Garcı́a, and F. Herrera, “On the choice of the best imputation methods

for missing values considering three groups of classification methods,” Knowledge and

Information Systems, vol. 32, no. 1, pp. 77–108, 2012.

[15] R. J. Little and D. B. Rubin, Statistical analysis with missing data, vol. 333. John Wiley

& Sons, 2014.

54 BIBLIOGRAPHY

[16] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete

data via the em algorithm,” Journal of the Royal Statistical Society. Series B (Method-

ological), pp. 1–38, 1977.

[17] B. Frénay and M. Verleysen, “Classification in the presence of label noise: a survey,”

IEEE Transactions on Neural Networks and Learning Systems, vol. 25, no. 5, pp. 845–

869, 2014.

[18] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” Journal of

Machine Learning Research, vol. 3, pp. 1157–1182, 2003.

[19] H. Liu and H. Motoda, Instance selection and construction for data mining. Springer US,

2001.

[20] S. Garca, J. Luengo, J. A. Sez, V. Lpez, and F. Herrera, “A survey of discretization tech-

niques: Taxonomy and empirical analysis in supervised learning,” IEEE Transactions on

Knowledge and Data Engineering, vol. 25, pp. 734–750, April 2013.

[21] T. Fushiki, “Estimation of prediction error by using k-fold cross-validation,” Statistics

and Computing, vol. 21, pp. 137–146, Apr 2011.

[22] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning, vol. 1.

Springer series in statistics New York, 2001.

[23] S. J. Russell, P. Norvig, J. F. Canny, J. M. Malik, and D. D. Edwards, Artificial Intelli-

gence: A Modern Approach, vol. 2. Prentice Hall Upper Saddle River, 2003.

[24] J. MacQueen, “Some methods for classification and analysis of multivariate observa-

tions,” in Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and

Probability, Volume 1: Statistics, (Berkeley, Calif.), pp. 281–297, University of Califor-

nia Press, 1967.

BIBLIOGRAPHY 55

[25] J. H. Friedman, “Greedy function approximation: A gradient boosting machine,” The

Annals of Statistics, vol. 29, no. 5, pp. 1189–1232, 2001.

[26] A. Cauchy, “Méthode générale pour la résolution des systemes d’équations simultanées,”

Comp. Rend. Sci. Paris, vol. 25, no. 1847, pp. 536–538, 1847.

[27] C. Song, Z. Qu, N. Blumm, and A.-L. Barabási, “Limits of predictability in human mo-

bility,” Science, vol. 327, no. 5968, pp. 1018–1021, 2010.

[28] A. Noulas, S. Scellato, N. Lathia, and C. Mascolo, “Mining user mobility features for next

place prediction in location-based services,” in 2012 IEEE 12th International Conference

on Data Mining, pp. 1038–1043, Dec 2012.

[29] D. Preoţiuc-Pietro and T. Cohn, “Mining user behaviours: A study of check-in patterns

in location based social networks,” in Proceedings of the 5th Annual ACM Web Science

Conference, WebSci ’13, (New York, NY, USA), pp. 306–315, ACM, 2013.

[30] R. Trasarti, R. Guidotti, A. Monreale, and F. Giannotti, “Myway: Location prediction via

mobility profiling,” Information Systems, vol. 64, pp. 350 – 367, 2017.

[31] B. T. Nguyen, N. V. Nguyen, N. T. Nguyen, and M. H. T. Tran, “A potential approach for

mobility prediction using gps data,” in 2017 7th International Conference on Information

Science and Technology (ICIST), pp. 45–50, Apr 2017.

[32] M. Chen, X. Yu, and Y. Liu, “Mining moving patterns for predicting next location,” In-

formation Systems, vol. 54, pp. 156 – 168, 2015.

[33] Q. Liu, S. Wu, L. Wang, and T. Tan, “Predicting the next location: A recurrent model with

spatial and temporal contexts,” in Proceedings of the 30th AAAI Conference on Artificial

Intelligence, AAAI’16, pp. 194–200, AAAI Press, 2016.

56 BIBLIOGRAPHY

[34] Q. Lv, Y. Qiao, N. Ansari, J. Liu, and J. Yang, “Big data driven hidden markov model

based individual mobility prediction at points of interest,” IEEE Transactions on Vehicu-

lar Technology, vol. 66, pp. 5204–5216, Jun 2017.

[35] Z. Yao, “Exploiting human mobility patterns for point-of-interest recommendation,” in

Proceedings of the 11th ACM International Conference on Web Search and Data Mining,

WSDM ’18, (New York, NY, USA), pp. 757–758, ACM, 2018.

[36] L. Yao, Q. Z. Sheng, X. Wang, W. E. Zhang, and Y. Qin, “Collaborative location recom-

mendation by integrating multi-dimensional contextual information,” ACM Transactions

on Internet Technology, vol. 18, pp. 32:1–32:24, Feb 2018.

[37] M. He, W. Gu, and Y. Kong, “Group recommendation: By mining users’ check-in behav-

iors,” in Proceedings of the 2017 ACM International Joint Conference on Pervasive and

Ubiquitous Computing and Proceedings of the 2017 ACM International Symposium on

Wearable Computers, UbiComp ’17, (New York, NY, USA), pp. 65–68, ACM, 2017.

[38] J. Capdevila, M. Arias, and A. Arratia, “Geosrs: A hybrid social recommender system

for geolocated data,” Information Systems, vol. 57, pp. 111 – 128, 2016.

[39] D. Lian, X. Xie, V. W. Zheng, N. J. Yuan, F. Zhang, and E. Chen, “Cepr: A collaborative

exploration and periodically returning model for location prediction,” ACM Transactions

on Internet Technology, vol. 6, pp. 8:1–8:27, Apr 2015.

[40] K. Sparck Jones, “A statistical interpretation of term specificity and its application in

retrieval,” Journal of Documentation, vol. 28, no. 1, pp. 11–21, 1972.

[41] Y. Liu, T.-A. N. Pham, G. Cong, and Q. Yuan, “An experimental evaluation of point-of-

interest recommendation in location-based social networks,” Proceedings of the VLDB

Endowment, vol. 10, pp. 1010–1021, Jun 2017.

BIBLIOGRAPHY 57

[42] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and

Statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.

[43] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,”

Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[44] G. Qian, S. Sural, Y. Gu, and S. Pramanik, “Similarity between euclidean and cosine angle

distance for nearest neighbor queries,” in Proceedings of the 2004 ACM Symposium on

Applied Computing, SAC ’04, (New York, NY, USA), pp. 1232–1237, ACM, 2004.

[45] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, KDD ’16, (New York, NY, USA), pp. 785–794, ACM, 2016.

[46] A. L’Heureux, K. Grolinger, H. F. Elyamany, and M. A. M. Capretz, “Machine learning

with big data: Challenges and approaches,” IEEE Access, vol. 5, pp. 7776–7797, 2017.

[47] Dask Development Team, Dask: Library for dynamic task scheduling, 2016.

[48] C. Sammut and G. I. Webb, Encyclopedia of machine learning. Springer Science &

Business Media, 2011.

Curriculum Vitae

Name: Roberto Barboza Junior

Post-Secondary The University of Western Ontario
Education and London, ON
Degrees 2016 - 2018 MESc

University of Campinas
Campinas, SP - Brazil
2004-2008 BSc Computer Engineering

Related Work Teaching Assistant
Experience: The University of Western Ontario

2016 - 2018

Field Application Engineer
Arrow Electronics (Brazil)
2014 - 2016

Software Developer
Embraer Defense (Brazil)
2011 - 2014

Digital Systems Engineer
Idea! Electronics (Brazil)
2009 - 2011

58

	A Framework for Modelling User Activity Preferences
	Recommended Citation

	tmp.1525105958.pdf.58awg

