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Abstract

The practical and theoretical challenges posed by the ‘large p, small n’ settings are

important issues in contemporary statistics. In this thesis, we propose new methodolo-

gies that target three different areas of high-dimensional statistics: variable screening,

influence measure and post-selection inference.

Variable screening is a general procedure in high dimensional data analysis to en-

sure the applicability of statistical methods. Typically marginal correlation between

the response and each predictor are employed for this role. It is a complicated and

computationally burdensome procedure since spurious correlations commonly exist

among predictor variables, and important predictor variables may not have large

marginal correlations with the response variable. We propose a new estimator for

the correlation between the response and high-dimensional predictor variables, and

based on the estimator we develop a new screening technique termed Dynamic Tilt-

ed Current Correlation Screening (DTCCS) for high dimensional variables screening.

DTCCS is capable of picking up the relevant predictor variables within a finite number

of steps. The DTCCS method includes the widely used sure independence screening

(SIS) method and the high-dimensional ordinary least squares projection (HOLP)

approach as special cases. The DTCCS technique has sure screening and consisten-

cy properties which are demonstrated theoretically and numerically and illustrated

through a real-life example.

Two methods of high-dimensional influence measure have also been explored.

They are from the perspective of the extreme value distribution (EVD) and the robust-

ness of design respectively. For the first method, EVD-type statistics have been shown

to be powerful in measuring high-dimensional influence theoretically and numerically.

From the second method, we propose Hellinger distance for high-dimensional influ-

ence measure (HD-HIM). The inner product of two transformed influence functions

is used to measure the Hellinger distance of two discrete distribution functions from

the whole and deleted dataset. This construction gives power to flag the observations



that have unusual effect on high-dimensional models. The HD-HIM method has been

illustrated theoretically and numerically.

Lastly, we propose a post-selection inference method termed Cosine PoSI that is

numerically feasible in a high-dimensional framework. Cosine PoSI focus on the geo-

metric aspect of Least Angle Regression (LARS). LARS efficiently provides a solution

path along which the entered predictors always have the same absolute correlation

with the current residual. At each step of the LARS algorithm, the proposed Cosine

PoSI method employs an angle from the correlation between the entering variable

and current residual and considers this angle as a random variable from the cosine

distribution. The post-selection inference is then conducted based on the order statis-

tics of this cosine distribution. Given the collection of the possible angles, hypothesis

tests are performed on the limiting distribution of the maximum angle. To confirm

the effectiveness of the proposed method, we conduct simulation studies and a real-life

data analysis to illustrate the usefulness of this post-selection method.

KEYWORDS: High-dimensional statistics, variable screening, deterministic de-

sign matrix, influence measure, post-selection inference.
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Chapter 1

Introduction

1.1 Motivation and Purpose of the Dissertation

With rapid development in technologies, a growing number of research fields en-

counter data with unprecedented size and complexity, such as researches in artificial

intelligence, economy, finance, biology, genetics, engineering and astronomy. The

importance of data and the vitality of data analysis cannot be downplayed in con-

temporary science. As computational power increases and the expense of data collec-

tion and processing decrease significantly, the dimension of datasets is continuously

becoming large. In those dataset, the dimension of predictor variables p can be as

large as or much larger than the sample size n, but very often, among thousands of

available predictor variables only a small number of them are informative and it is

critically important to identify them correctly. High-dimensional data analysis has re-

ceived a tremendous of attention recently. Seminal theories of Least Angle Regression

(LARS, Efron et al. 2004) and Sure Independence Screening (SIS, Fan and Lv 2008)

both proposed to use correlation between predictor variables and response (or current

residual) to solve high-dimensional problems. The high-dimensional correlation can

be viewed as a counterpart to ordinary least square (OLS) estimator of the parameter

and many data-driven methods based on correlation have been studied for years in

high dimensional statistics. In this dissertation, we develop new methodologies and

techniques by centering on correlation learning for high-dimensional sparse modelling.

1



The methodologies proposed in this dissertation is aiming to solve but not limited to

the following high-dimensional problems:

Example 1.1.1. Hastie et al. (2009): Microarrays gene expression data

Microarrays gene expression data is one of the classical high-dimensional data

types. DNA microarrays measure the expression of a gene in a cell by measuring the

amount of mRNA present for that gene. A gene expression data set collects together

the expression values from a sequence of DNA microarray experiments, with each

column representing an experiment. There are therefore several thousand (p) rows

representing individual genes and tens (n) of columns representing samples.

Typical questions about microarray data: certain genes show abnormal expression

for certain cancer sample; certain genes are more important in a certain disease and

et cetera. Traditional statistical methods can not be directly applied to answer those

questions.

Example 1.1.2. Biba and Xhafa (2011): High-dimensional text regression

The design matrix of the bag-of-words (BOW) model consists rows of high dimen-

sional vector whose elements are the frequency of words. The BOW model has been

widely applied in machine learning topics such as email filtering. For more details

see Biba and Xhafa (2011). Statistical diagnostic techniques can be also contribute

to these problems. We measure the influence of the high-dimensional observations

(the email) and expect to automatically flag the email category and give warning to

a suspicious email.

Besides the above two examples, other high-dimensional problems to which the

methods developed in this thesis could be applied are image recognition (pixels of the

high resolution images are large); spatial correlation of home prices (up to 1 million

spatial parameters), retailer real-time pricing (for millions of items), amongst others.

In the rest of this chapter, we provide a review of the literature on the relevant

topics covered in this thesis, which include matrices with applications in statistics,

development in high-dimensional sparse modelling and estimation, robust statistics

and high-dimensional influence measure.

2



1.2 The High-dimensional Design Matrix

Over the past decade, advancement of new technologies in the fields of the natural and

social sciences have improved data collection procedures. This has led to the problem

of high-dimensional data analysis which links to the idea of a complicated large design

matrix, denoted X. For this n× p design matrix, the number of predictor variables,

p, is either on the same order of, or much greater than, the number of observations,

n. For instance, data ascertained from spectra, biomedical imaging, high-frequency

finance and DNA micro-arrays can be of high-dimension. The traditional methods

that perform well for low-dimensional data run into many severe problems in analyzing

such a high-dimensional dataset. The common issues that arise in analyzing a high-

dimensional dataset by using traditional methods include: the non-invertibility of the

matrix XTX, the high correlation among predictors in the model, the non-existence

of the inverse covariance matrix (precision matrix), amongst others.

The high-dimensional dataset with p ≈ n or p > n can be divided into two cases:

high dimension and ultra-high dimension. If the dimensionality p grows polynomially

with the sample size n, i.e., p = O(nα) for some α > 0, we call it high dimension; if the

dimensionality p grows non-polynomially with the sample size n, i.e., p = O(en
ι
) for

some ι ∈ (0, 1), we call it ultra-high dimension or non-polynomial (NP) dimensionality

(Fan and Lv 2008; Shao and Deng 2012).

We begin with the most important and commonly used regression model, the

classical linear regression model. Linear regression model investigates the relation-

ship between a continuous dependent variable (normally referred to as the response

variable), and at least one explanatory variable (also known as predictor or covari-

ate). In classical statistical model setting, the number of observations is typically

denoted as n, while the number of predictors in a model (referred to as the dimension

of the model) is denoted as p. For subject i in a sample of n individuals, let yi be

the response variable and xi = (xi1, xi2, . . . , xip)
T be the p dimensional predictors.

We write Y = (y1, y2, . . . , yn)
T for the response vector of a sample with n subjects,

3



and X =


xT
1

xT
2

...

xT
n

 be the n× p design matrix including the p dimensional predictors

for n subjects. In this thesis, the subset columns or rows of the design matrix are

frequently used. X̃−j denotes the submatrix of deleting the jth predictor variable,

Xj, j = 1, . . . , p. X(−i) denotes the submatrix of deleting the ith observation, xi,

i = 1, . . . , n. To ease the notations, we use Xj, j = 1, . . . , p, for the jth predictor

variable and the its realization in the design matrix. The relationship between the

response y and the predictor variables (X1, . . . ,Xp)
T is given by

y = β1X1 + β2X2 + · · ·+ βpXp + ϵ, (1.1)

where ϵ is the random error. Alternatively, this classical model can be written with

realization in sample size n,

Y = Xβ + ϵ, (1.2)

where β ∈ Rp is the vector of the coefficients and ϵ ∈ Rn is the noise term. Usually,

we assume ϵ ∼ N(0, σ2I). Alternatively, X can be considered as a row of column

vectors: X = (X1,X2, · · · ,Xp), where Xj = (x1j, . . . , xnj)
T for j = 1, . . . , p. Let

row (X) be the linear p−dimensional space which is spanned by the row vectors of

X and col (X) be the linear n−dimensional space which is spanned by the column

vectors of X.

Now, let x be a p dimensional random vector with multivariate distribution with

mean µp×1 and covariance Σp×p defined as follows:

E(x) = µ, cov(x) = Σ.

In traditional statistics, if µ and the covariance matrix Σ are unknown, one can

estimate µ and Σ from the sample. These estimates are known as the sample mean

and sample covariance respectively.

4



Let x̄ and S denote the sample mean and sample covariance matrix, respectively.

Define 1n = (1, . . . , 1)T , an n× 1 vector of ones, so that we have

x̄ =
1

n
XT1n (1.3)

and

S =
1

n
(X− X̄)T (X− X̄), (1.4)

where X̄ is a n×p matrix with each row comprised of x̄T . It must be noted here that

x̄ and S are unbiased and consistent estimators for µ and Σ respectively. The sample

covariance matrix S is a good estimator of the population variance if n ≫ p, but it

performs poorly when p is close to or larger than n (Cai et al. 2016). In the high-

dimensional context, the estimation of the precision matrix (Ω = Σ−1, the inverse

of the covariance matrix) is also a difficult and computational complex question.

Cai et al. (2011) proposed constrained l1−minimization for inverse matrix estimation

(CLIME) to directly calculate Ω by an optimization problem

min ∥Ω∥1 subject to |SΩ− Ip|∞ ≤ λn, (1.5)

where ∥ · ∥1 is the elementwise L1 norm (∥Ω∥1 =
∑

i,j |Ωi,j|), ∥ · ∥∞ is the matrix

elementwise infinity norm (∥Ω∥∞ = max
1≤i,j≤p

|Ωi,j|), and λn = c log(p)
n

for some sufficiently

large constant c. This method has been built in the R package clime, but it is still a

time-consuming computing process to obtain the estimated precision matrix in high-

dimensional statistics.

In the random design setting for linear regression, each pair (xT
i ,yi) is the obser-

vation sampled from the population, where random vector xi = (xi1, . . . , xip)
T ∈ Rp

and random variable yi ∈ R1. If the design matrix X in Eq. (1.2) consists of

random vectors, we call X a random design matrix. The random xi’s are usually

assumed to be independent identically distributed (i.i.d.) and independent of ϵi’s,

and β̂ = [ĉov(xi)]
−1 ̂cov(xi,yi).

The fixed design setting is the opposite of the random design setting, and the

design matrix in this setting is called deterministic design matrix. Let X̃−j be the

submatrix of X which excludes the column Xj, X⊥
j be the projection of Xj to the

5



orthogonal complement of the column space of X̃−j. By using a deterministic design

matrix, the least square estimator can be expressed as β̂j = (X⊥
j
T
Y )/(X⊥

j
T
Xj) for a

linear model without intercept, where X⊥
j
T
Xj ̸= 0 for n > p (Zhang and Zhang 2014).

These two settings of the design matrix bring two views of parameter estimation:

a probabilistic one and a nonprobabilistic one. The goal of both views is to find

coefficients β̂ such that the expected prediction error on a new observation from the

population is small enough. For the past two decades, statisticians extended those two

views to high-dimensional data, and developed many contemporary methodologies

and techniques for large random or deterministic design matrix, see details in Fan

and Lv (2008), Shao and Deng (2012), Lv (2013), Zhang and Zhang (2014) and

Wang and Leng (2016).

The column space (also called the range or image) of a design matrix X is com-

monly used in parameter estimation in the case of n > p. The ordinary least squares

(OLS) estimate projects the response Y onto the linear space col (X) which is spanned

by columns of X. Due to lack of sufficient degrees of freedom, OLS is no longer fea-

sible for high-dimensional statistics. This motivates the idea of variable screening,

i.e., to obtain a subset of features that have significant impact on the response before

building a formal statistical model. In contrast with column space of X, row space of

X has been studied recently under high-dimensional setting. Shao and Deng (2012)

proposes an approach to project the parameter vector β onto the linear space row (X)

which is spanned by the rows of X and show that this projection of β can discriminate

large and small elements efficiently by choosing a proper thresholding value.

For p > n, considering the ridge regression estimator of β (Hoerl and Kennard

1970) under model (1.2),

β̂ridge = (XTX+ λIp)
−1XTY, (1.6)

where λ > 0 is an appropriately chosen regularization parameter. Shao and Deng

(2012) and Wang and Leng (2016) show that the computation of β̂ridge involves only

inverting an n×n matrix since (XTX+λIp)
−1XT = XT (XXT +λIn)

−1 which implies

that the ridge regression estimator β̂ridge is always in row (X).

6



1.3 High-dimensional Linear Regression

1.3.1 Penalized Regression

Due to rapid development of technological advances, modern scientific research very

often encounters datasets with unprecedented size and complexity, such as datasets

in genomics, oncology imagery and finance. In practice, it is common to have huge

number of variables for predicting a particular phenomenon or outcome. Suffering

from high dimensionality, variable selection, which is vitally important in statistical

modelling, encounters a big challenge. Many classical variable selection methods,

for instance, backward elimination, forward selection, stepwise selection, all subsets

selection, may be very computationally expensive or even infeasible. Missing relevant

predictors and/or including irrelevant predictors in a statistical model will decrease

model’s predictive ability and/or increase the difficulty of model interpretation.

The circumvention of the above problem has led to the idea of the penalized regres-

sion. We give some basic notation before introducing some popular penalties which

have been successfully applied to achieve variable selection. For any p−dimensional

vector a, ∥a∥0 =
∑p

j=1 I(aj ̸= 0), ∥a∥∞ = max1≤j≤p |aj| and ∥a∥q = (
∑p

j=1 |aj|q)1/q

for q ≥ 1.

In the regularization framework, consider a sample {(xT
i ,yi)

T , i = 1, . . . , n} of size

n from an unknown population, where xi ∈ Rp and yi ∈ R1. Taking the square loss

function, we can select variables by solving

β̂ = argmin
β

∥Y −Xβ∥22 + λJ(β), (1.7)

where λ is a non-negative tuning parameter, J(·) is a penalty function which is positive

valued for β ̸= 0. A popular choice of the penalty function J(β) is the Lq norm of

the parameters to the qth power (Tibshirani 1996, Zou and Hastie 2005),

J(β) = ∥β∥qq =
p∑

j=1

|βj|q, q ≥ 0. (1.8)

Hoerl and Kennard (1970) proposed ridge regression by using q = 2 in equation
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(1.8). Ridge regression is very similar to least squares, except that the coefficients

are estimated by minimizing a slightly different quantity,

β̂ = argmin
β

∥Y −Xβ∥22 + λ∥β∥22, (1.9)

where λ ≥ 0 is a tuning parameter. Eq.(1.9) is equivalent to the Lagrangian problem

which minimize ∥Y − Xβ∥22 subject to ∥β∥22 ≤ t, where t is a non-negative tuning

parameter. Ridge regression improves the OLS by shrinking all coefficients towards

zero, but it will still include all p predictors in the final model unless λ = ∞. Regular

ridge regression shrinks the variables, but does not select the variables. Shao and

Deng (2012) propose the thresholded ridge regression which uses a threshold value

to select variables from the ridge solution. For the columnwise normalized X, the

estimates solution to the ridge regression is

β̂ridge = (XTX+ λI)−1XTY

=
1

1 + λ



1 ρ̂12
1+λ

. . . . . . ρ̂1p
1+λ

ρ̂21
1+λ

1
. . . ...

... . . . . . . . . . ...

... . . . 1 ρ̂p−1,p

1+λ

ρ̂p1
1+λ

. . . . . .
ρ̂p,p−1

1+λ
1



−1

XTY, (1.10)

where ρ̂ij = corr(Xi,Xj), the sample correlation. The off-diagonal elements of the

correlation matrix XTX are shrunk by the factor 1
1+λ

, which was termed as decorre-

lation by Zou and Hastie (2005). For the special orthonormal design case: XTX = I

where X is the n × p design matrix, we can check that ridge regression solution is
1

1+λ
β̂ols where β̂ols is the ordinary least squares solution. For the non-orthonormal

case, see details in Hoerl and Kennard (1970).

Tibshirani (1996) is the fundamental paper about Least Absolute Shrinkage and

Selection Operator (LASSO) by using L1 penalty which uses q = 1 in equation (1.8),

β̂ = argmin
β

∥Y −Xβ∥22 + λ∥β∥1, (1.11)

where λ ≥ 0 is a tuning parameter.
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LASSO shrinks some coefficients and sets others to 0. Hence, LASSO retains

the good shrinkage feature of ridge regression and selects variables simultaneously.

Comparing Eq. (1.11) to Eq. (1.9), we see that the LASSO and ridge regression

have similar formulations. The only difference is that the LASSO uses an L1 penalty

instead of an L2 penalty. The theoretical properties of LASSO have been well studied

in the literature, see detail in Zhao and Yu (2006), Zhang and Huang (2008), Mein-

shausen and Yu (2009), Bickel et al. (2009), Lockhart et al. (2014) and Lee et al.

(2016). LASSO contributed to the rich literature on the path-based regression meth-

ods. The solution path based on those methods potentially make the high-dimensional

variable screening possible. Regardless of false discoveries, the coefficients selected by

the path-based regression algorithms contains the uniquely defined true model with

large probability. If false discovery is taken into consideration, Li and Barber (2017)

proposed a family of ‘accumulation tests’ to efficiently control the false discovery rate

(FDR) on the high-dimensional solution path.

Through the generalized L1 penalties, extensions and modified versions of LASSO

have been suggested and studied for the past two decades, examples include adaptive

LASSO (Zou 2006), random LASSO (Wang et al. 2011) and generalized LASSO

(Tibshirani and Taylor 2011). Those generalized L1 penalties arise in a wide variety

of areas such as microarray studies and image denoising. By combining a squared

L2 penalty with the L1 penalty, the elastic net was proposed by Zou and Hastie

(2005). The elastic net method uses a linear combination of squared L2 and L1

penalties on the regression coefficients and aims to achieve the grouping effect that

highly correlated feathers will be in or out of the model together. Elastic net can be

formulated as the following penalized least squares problem,

β̂ = argmin
β

∥Y −Xβ∥22 + λ1∥β∥1 + λ2∥β∥22, (1.12)

where λ1, λ2 ≥ 0 are tuning parameters which must be chosen in advance.

Efron et al. (2004) propose the least angle regression (LARS) algorithm with

a modification that can efficiently compute the LASSO solution path. The LARS

algorithm is highly related to the traditional Forward Stepwise Regression (FR) and
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Forward-Stagewise Regression (FSR), but it uses a novel solution direction and step

size for each iteration. LARS can be considered as both a variable screener and a

model selector. The advent of LARS creates an era of correlation learning which

plays an important role in high-dimensional statistics for years. The importance

of correlation learning and the detail of the LARS algorithm will be introduced in

Section 1.3.2.

To achieve an unbiased, sparse and continuous estimator, Fan and Li (2001) de-

signed a smoothly clipped absolute deviation (SCAD) penalty function Jλ(β) with

derivative satisfying

J′
λ(t) = λ

{
I(t ≤ λ) +

(aλ− t) · I(aλ > t)

(a− 1)λ
· I(t > λ)

}
, (1.13)

for t = |β| and some a > 2.

1.3.2 Correlation Learning

Forward-type Regression

Marginal correlation between the individual covariates and response (or current resid-

ual) plays a critical role in both low dimensional and high-dimensional data analysis.

In low dimensional data analysis, the solution path of Forward Stepwise Regression

(FR) and Forward-Stagewise Regression (FSR) are both iteratively calculated by pick-

ing the variable which has the largest absolution correlation with current residual.

In high-dimensional data analysis, a vast amount of literature on correlation research

has been done in recent years, including the LARS algorithm (Efron et al. 2004), the

SIS method (Fan and Lv 2008), the tilting procedure (Cho and Fryzlewicz 2012), and

High-dimensional Ordinary Least squares Projection (HOLP, Wang and Leng 2016).

Comparing with the step size at each iteration, FR is an aggressive fitting tech-

nique and it reaches the OLS solution (which is the longest step size) at each iteration,

while FSR is a conservative fitting technique which uses thousands of tiny moving

to obtain the final model. Hastie et al. (2009) describe the FSR as: starting with

no variables in the initial model, i.e. denoting mean function µ̂1 = 0, initial residual
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Z1 = Y − µ̂1, then the initial marginal correlation is

ĉ1 = c(µ̂1) = XT (Y − µ̂1). (1.14)

Then select variable Xj1 which has the largest absolute correlation with the re-

sponse (the current residual vector) Y , and the corresponding marginal correlation is

Ĉ1 = ∥ĉ1∥∞, sj1 = sign{XT
j1Y }.

The first step is a construction of simple linear regression of Y on Xj1 and it leaves

a residual vector orthogonal to Xj1. After the first step, update the mean function to

µ̂2 = µ̂1 + γ̂1 · sj1 ·Xj1, (1.15)

where γ̂1 is a ‘small’ constant (‘small’ is compared to the ‘big’ choice of Ĉ1 in FR),

then select Xj2 which has the largest absolute correlation between the variables and

the current residual vector Z2(= Y − µ̂2). After kth step, add the predictor Xj k+1

which is most correlated with the (k + 1)th residual vector Zk+1(= Y − µ̂k+1) to

the model. Stop the algorithm at the kth step if the rest predictors have negligible

correlation with the current residual vector Zk.

Similar to FSR, LARS starts with no variables in the initial model, i.e. the active

model set M0 = {∅}. Let c(µ̂k) be the correlation vector of variables and current

residual at the kth stage

ĉk = c(µ̂k) = XTZk = XT (Y − µ̂k), k = 1, 2 . . . , p. (1.16)

At the first stage, LARS selects variable Xj1 which has the biggest correlation with

the initial residual Z1 = Y , then LARS solution path takes the direction of u1 = Xj1

for a step size γ̂1 until some other predictor, say Xj2, has the same correlation with

the current residual Z2, i.e. |⟨Xj1, Z2⟩| = |⟨Xj2, Z2⟩|. Then LARS solution path takes

the direction u2 which bisects Xj1 and Xj2 with step size γ̂2 until a third variable

comes into the model, i.e. |⟨Xj1, Z3⟩| = |⟨Xj2, Z3⟩| = |⟨Xj3, Z3⟩|.

At the beginning of the stage k, we have k − 1 of the variables in the model. We

are going to select variable Xjk which has the largest absolute correlation with the

current residual vector Zk, and the corresponding marginal correlation is Ĉk = ∥ĉk∥∞,

sjk = sign{XT
jkZk}. LARS process terminates when k = min(n− 1, p).
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Sure Independence Screening

The SIS method of Fan and Lv (2008) ranks the absolute value of the marginal

correlations ω = |XTY| = (ω1, . . . , ωp)
T to choose the variables to be kept in the

model. Here, ω is essentially a vector of marginal correlation between the response

and all predictor variables. For any given δ ∈ (0, 1), Fan and Lv (2008) sorted the

p componentwise magnitudes of the vector ω in a decreasing order and defined a

submodel

Mδ = {1 ≤ j ≤ p : |ωj| is among the first [δn] largest |ωj|′s},

where [δn] denotes the integer part of δn. This is a straightforward way to shrink

the full model F to a submodel Mδ with size |Mδ| < n. The SIS method uses each

variable independently to evaluate its correlation with the response and filters out

the variables which have weak marginal correlations with the response variable. The

SIS method is different from the regularized regression as it does not use penalties to

shrink the estimator, but measures the importance of each predictor variable by its

marginal correlation with the response variable. Due to its independence screening

property, the screening can be implemented even when p grows exponentially with the

sample size n, i.e., p = O(en
ι
) for some ι ∈ (0, 1). This property led to SIS method

receiving a large amount of attention in ultra-high dimensional data analysis. Similar

to the Forward-type regression, Fan and Lv (2008) also use an iterative SIS (ISIS)

to screen variables by ranking the correlation between candidate variables and the

current residual for several steps. By using ISIS, important variables that have small

marginal correlation but jointly correlated with the response can be saved since it can

be evaluated again during the next round by using the updated residual. Wang (2009)

used forward regression to find a solution path to reach the minimum residual sum of

square (RSS) at each step, and that variable screening method can also identify all

relevant predictors consistently.

One of the biggest problems one may encounter in high-dimensional variable

screening is the presence of high (most likely spurious) correlations among the predic-

tor variables. Fan and Lv (2008) showed the maximum spurious correlation among
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covariates can be large (see Example 1.3.1) due to the increasing dimensionality. Spu-

rious correlation easily brings the fact that an unimportant predictor can be highly

correlated with the response variable due to the presence of important predictors as-

sociated with that predictor. To circumvent this problem, Cho and Fryzlewicz (2012)

discussed the idea of ‘tilting’ which uses an iterative procedure to reevaluate the im-

portance of predictors. Besides the spurious correlations among the predictors, the

multicollinearity arises when the number of predictor variables becomes comparable

or much larger than the number of observations. (Belsley et al. 1980).

Example 1.3.1. Spurious Correlation (Fan and Lv 2008)

Let x1, x2, . . . , xn be n independent observations of a p-dimensional Gaussian ran-

dom vector X = (X1, . . . , Xp)
T ∼ Np(0, Ip). Repeatedly simulate the data with

n = 60 and p = 1000, 5000 for 1000 times. Consider the empirical distribution of the

maximum absolute sample correlation coefficient between the first variable with the

remaining ones defined as

r̂ = max
2≤j≤p

| ˆCorr(X1, Xj)|.

From Figure 1.1, we can see even though X1 and Xj (2 ≤ j ≤ q) are independently

simulated, the maximum correlation between X1 and other variables can still be very

high in high dimensional data. Figure 1.1 shows that the absolute values of maximum

correlations even under independent assumption can be at least 0.4 for the case of

p = 5000 and at least 0.35 for the case of p = 1000, which are both non-negligible. Due

to presence of spurious correlation, the independence marginal correlation screening

may be violated.

Column normalization is very popular in high-dimensional data analysis, such as

techniques in Efron et al. (2004), Fan and Lv (2008), Wang (2009), Cho and Fryzlewicz

(2012), Wang and Leng (2016) and Fan et al. (2018). After the normalization of the

column of X, each columns of X has a unit norm. We assume error ϵi, i = 1, . . . , n

are independent and identically distributed (iid) random noise following a normal
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Figure 1.1: Distribution of the maximum absolute sample correlation coefficients

between X1 and {Xj}j ̸=1 when n = 60; p = 1000 (dashed curve) and n = 60;

p = 5000 (solid curve).

distribution N(0, σ2) with σ2 < ∞. The marginal correlation between each variable

Xj and the response Y has the decomposition

XT
j Y = XT

j (

p∑
k=1

βkXk + ϵ) = βj +
∑
k ̸=j

βkX
T
j Xk +XT

j ϵ. (1.17)

The signal-to-noise ratio (SNR) is defined as SNR = βTΣβ
σ2 where Σ is the covari-

ance matrix of the random vector x (Wang et al. 2011). If the SNR is assumed suffi-

ciently high, for instance, SNR ≥ 10, then the third term of the above decomposition

is negligible compared to the first two terms. The second term of the above decom-

position
∑
k ̸=j

βkX
T
j Xk shows that (a) unimportant variables that are highly correlated

with the important variables will have a high chance to be selected; (b) an important

variable can be marginally uncorrelated but jointly correlated with the response; (c)

collinearity can exist among the variables in high-dimensional data. Hence, mini-

mizing the effect of
∑
k ̸=j

βkX
T
j Xk is critically important in high-dimensional screening

problem. Recent development in dealing with correlated data can be found in Wang

et al. (2011), Cho and Fryzlewicz (2012), Jin and He (2016), for example.
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Cho and Fryzlewicz (2012) proposed a new tilting procedure which can efficiently

reduce the high correlations (possibly spurious) between the predictor variables in

high dimensional data. This method is tilting each column Xj to X⋆
j such that

the tilted correlation between X⋆
j and Xk is reduced to 0 or negligible and thus

the relationship between the jth covariate and the response can be identified more

accurately. For standardized X, denote the sample correlation matrix of X as C =

XTX = (cj,k)
p
j,k=1. For a threshold value πn ∈ (0, 1), define the subset Cj as Cj =

{k ̸= j : |XT
j Xk| = |cj,k| > πn} separately for each variable Xj. Let X̃j denote a

submatrix of X with Xk as its columns, where k ∈ Cj, and the projection matrix

Πj = X̃j(X̃
T
j X̃j)

−1X̃T
j will project Xj onto the space spanned by Xk’s, where k ∈ Cj.

The tilted variable X⋆
j of each Xj is defined as X⋆

j = (In−Πj)Xj which is orthogonal

to the space that is spanned by Xk’s, where k ∈ Cj. The adjusted correlation between

the tilted variable X⋆
j and Y can still be bounded by 0 and 1 after a proper rescaling.

1.4 Diagnostic Techniques

Many classical statistical methods have been developed and assessed in the context of

assuming a multivariate normal distribution for the predictor vector, denoted by x ∼

Np(µ,Σ). The probability density function for random vector x from the multivariate

normal distribution is defined as,

f(x) = (2π)−p/2|Σ|−1/2 exp(−1

2
(x− µ)TΣ−1(x− µ)),

where |Σ| denotes the determinant of the matrix Σ and |Σ| ̸= 0 for Σ > 0, where > 0

indicates positive definiteness.

The normality assumption can generally be relaxed when applying many robust

methods. An estimator is called robust if it keeps a reasonable efficiency, and reason-

ably small bias, as well as being asymptotically unbiased when the assumptions are

only approximately met for all values of the parameter. Efficiency and robustness are

two underlying fundamental ideas behind parameter estimation. However, a tradeoff

arises when one attempts to achieve both. Also, there are two types of estimators,
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robust and non-robust. An example of a robust estimator is the median, and that

of non-robust is the mean. Over the decades, the importance of robust procedure in

statistical inference have been stressed by statisticians. The contribution by Ham-

pel (1968, 1973) and Huber (1972, 1973) are very important in the field of robust

statistics. Although the methods they proposed are good at dealing with outliers,

they easily suffer from a loss of efficiency1 if there is no contamination in the assumed

model distribution (Beran 1977).

Hampel (1968) introduced the influence function/curve to distinguish these two

kinds of estimators. He pointed out that in general, the influence curve of an efficient

estimator will show unboundedness, while a robust one will always be bounded below

and above.

In many areas of statistical inference, minimum distance approaches yield robust

estimates. There are several methodologies for measuring distance. Among these

methodologies, the Minimum Hellinger Distance (MHD), which is introduced by Be-

ran (1977), is one of the popular distance-type methods.

1.4.1 Classical Influential Diagnostic Measure

One can measure the level of influence of an observation on Eq. (1.2) by the use of

the residuals (ϵi = yi − xT
i β), projection matrix (H = X(XTX)−1XT with diagonal

elements hii = xT
i (X

TX)−1xi), influence functions and et cetera. We limit our discus-

sion in this section to the influence functions since the proposed methods in Chapter

3 are based on the construction of an influence function (IF).

Hampel (1968) introduced the influence function (IF) to measure the influence

of the ith observation, and the IF is defined as follows: let T (·) be a real-valued

functional defined on some subset of the set of all probability measure on R; let F be

a probability measure on R where T is defined. The parameter estimate for a dataset

would be denoted T (F ), and let β denote the true value of a parameter. T (F ) can

be called a robust estimator if ‘small’ changes in F do not produce big fluctuations.

1An unbiased estimator T of a parameter θ ∈ Θ is called efficient if it attains e(T ) = I−1(θ)
var(T ) = 1,

where I(θ) is the Fisher information of the sample.
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The influence function of the ith observation is

Υi(xi, yi;F ;T ) = lim
ϵ→0

T ((1− ϵ)F + ϵδxi,yi)− T (F )

ϵ
, (1.18)

where δxi,yi = 1 at (xi, yi) and 0 otherwise. The discrete version of influence function

is also called sensitivity curve (Tukey 1970), and

Υi(xi;F ;T ) =
T (n−1

n
Fn−1 +

1
n
δxi

)− T (Fn−1)

1/n

= n[Tn(x1, x2, . . . , xn)− Tn−1(x1, . . . , xi−1, xi+1, . . . , xn)], (1.19)

where δxi
is a distribution with a point mass at xi and Tn(x1, x2, . . . , xn) is a statis-

tic based on a random sample {x1, x2, . . . , xn}. The boundedness of the influence

function/curve usually determines the robustness of the parameter estimator. Ro-

bust estimators usually have bounded influence curve, such as median functional of

F . Non-robust estimators usually have unbounded influence curve, such as mean

functional of F .

The common approach of influence analysis based on influence functions is deleting

(or adding) one observation and see how this deletion (or adding) affects the vector

of parameter estimates. Cook (1977) suggested a measure of the squared distance

between the least square estimate based on all n observations, β̂ and the estimate

obtained by deleting the ith point, say β̂(−i). This measure is called Cook’s distance

or Cook’s statistic and it is defined as follows: suppose the parameter of interest is

β̂ = T (F ), where F is a joint CDF of the (p+ 1)-vector (xT , y) with

EF


 x

y

 (xT , y)

 :=

 Σ(F ) σ(F )

σT (F ) τ(F )

 .

The functional corresponding to the least squares estimator of β is T (F ) =

Σ−1(F )σ(F ). The influence function Υi = Tn(F ) − Tn−1(F ) = β̂ − β̂(−i) and it

is a vector which can be normalized to a meaningful way. For appropriate choice of

M and c,

Di(M ; c) =
ΥT

i MΥi

c
. (1.20)
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.

Substituting Υi = β̂ − β̂(−i), M = XTX and c = pσ̂2 in Eq. (1.20) to get the

Cook’s distance,

Di =
(β̂ − β̂(−i))

TXTX(β̂ − β̂(−i))

p σ̂2
, (1.21)

where σ̂2 = 1
n−p

∥Y −Xβ̂∥2, the mean squared residual of the full least squares fit.

Cook’s Distance Eq. (1.21) can be easily computed in low-dimensional data since

we do not need to re-estimate the model for each removed observation, see the algebra

detail in Section 3.1. It is implemented in many statistical software such as R, SAS

and SPSS. Besides Cook’s distance, Hadi’s influence measure, likelihood distance,

modified Cook’s distance, t star (t⋆), and Welsch’s distance are also popular diagnostic

measures for linear regression model (Cook and Sanford 1980). All these methods

share the same underlying principle in determining an influential observation which

is deleting one observation and comparing the results obtained from the same model

with and without the deleted observation.

Johnson (1985) proposed the Kullback−Leibler divergence as a discrepancy mea-

sure for identifying observations which are influential in logistic regression. Pardo

(2005) uses a generalization of the divergence type measure using phi–divergences,

which is equivalent to the classical Cook’s distance and Johnson (1985)’s method with

a specific phi function (a convex function with nonnegative support).

1.4.2 Development of High-Dimensional Influence Measure

The information technology industry has became the fastest growing and most prof-

itable sector of the world economy Hastie et al. 2009. Much of this growth can be

attributed to the development, management and storage of data for medical, engi-

neering, commercial and scientific purposes. Examples include, but not limited to,

medical imaging data, genetic data, financial data and satellite data. Dramatical-

ly increasing dimension of data came along with the above development. In that,

contemporary statistical analysis encounters instances of accessing large samples of
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observations with comparably or even larger number of variables of interest. Tra-

ditional methods used in low dimensional data are usually not applicable in high

dimensional data.

Linear regression continues to be one of the most important statistical tools in

the era of high dimensional data. To handle these high dimensional sparse problems,

we have witnessed a technological explosion in the development of new regression

methodologies during the last 25 years (for instance, Tibshirani 1996, Efron et al.

2004, Fan and Lv 2008, Shao and Deng 2012, Wang and Leng 2016). In light of this,

for an appropriate model to be chosen, a careful study of the individual data points

(observations) is needed; as some of these individual data points can have tremendous

influence on the model and hence could lead to inaccurate interpretation. Thus, an

appropriate method is needed to identify such data points. This has led to the

issue of ‘influence measure’ again in the high dimensional context. High-dimensional

influence measure aims at detecting the data points which have influence on the model

selection process. This diagnostic step is very crucial since the inclusion of influential

data point(s) may lead to a distorted model building and weak prediction accuracy.

The methods introduced in the previous section are only targeting low dimensional

data and do not work appreciably for the high dimensional data. The ability to

compute reliable estimates of parameters and the associated precision matrix are

critical barriers of applying traditional methods in high dimensional data. Besides

these, other barriers may include the computational cost associated with large number

of covariates, statistical inference accuracy and algorithm stability (Fan and Lv 2008).

In the classical linear regression model setup (1.2), an ordinary least squares (OLS)

estimate of β is obtained by minimizing the objective function ∥Y −Xβ∥2, and the

solution requires the calculation of (XTX)−1, which is infeasible when p > n. Recall

Eq. (1.21), we notice that (XTX)−1 and (XT
(−i)X(−i))

−1 should be calculated to get β̂

and β̂(−i), it may not be directly computable if p > n. Note also that Cook’s distance

is approximately close to a F -distributed statistic. In the high-dimensional context,

it does not make sense to have F (p, n − p) with negative degree of freedom for the

denominator. OLS is known to be unstable (or not possible to obtain) for p > n.
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A direct consequence is that Cook’s distance is also unstable. Due to these reasons,

new influence measures for high-dimensional data need to be developed.

Zhao et al. (2013) proposed a diagnosis measure for high-dimensional data which

captures the influence on the marginal correlation. First, they defined the marginal

correlation as ρj = E[
(Xj−µxj)(Y−µy)

σxj σy
], where µxj = E(Xj), µy = E(y), σ2

xj = var(Xj)

and σ2
y = var(y). The sample estimate of ρj is ρ̂j =

∑n
i=1(Xij−µ̂xj)(Yi−µ̂y)

(n−1)σ̂xj σ̂y
, for j =

1, . . . , p. Then, they used the leave-one-out technique2 to compute the marginal

correlation with the kth observation removed as

ρ̂
(k)
j =

∑n
i=1,i̸=k(Xij − µ̂

(k)
xj )(Yi − µ̂

(k)
y )

(n− 2)σ̂
(k)
xj σ̂

(k)
y

, j = 1, . . . , p, k = 1, . . . , n, (1.22)

where µ̂
(k)
xj , µ̂(k)

y , σ̂(k)
xj , σ̂(k)

y are the corresponding sample estimates with the kth obser-

vation removed. They propose a statistic termed high-dimensional influence measure

(HIM) which is based on the estimator of the marginal correlation:

D
(k)
him =

1

p

p∑
j=1

(ρ̂j − ρ̂
(k)
j )2. (1.23)

For establishing the theoretical properties of HIM, the following conditions are re-

quired:

(C.1) For any fixed j = 1, . . . , p, ρj is a constant and does not change as p increases.

(C.2) For the covariance matrix Σ = cov(X), with the eigendecomposition Σ =

QΛQT , the squared L2 norm of the diagonal elements of Λ is assumed as
∑p

j=1 λ
2
j =

O(pr) for some 0 ≤ r < 2.

(C.3) The predictor Xj, j = 1, . . . , p, follows a multivariate normal distribution

and the random noise ϵi follows a normal distribution.

For finding the asymptotic distribution, they assume µxj = µy = 0, σxj = σy = 1

for 1 ≤ j ≤ p and let Kp,ts =
∑

j XtjXsj/p, then D
(k)
him can be decomposed as

B1 + B2 + B3 − 2B4, where B1 = 1
(n(n−1))2

∑n
t=1 Y

2
t Kp,tt, B2 = n−2

pn(n−1)2
Y 2
k ∥Xk∥2 =

n−2
n(n−1)2

Y 2
k Kp,kk, B3 = 1

(n(n−1))2

∑
t ̸=s YtYsKp,ts and B4 = 1

n(n−1)2

∑n
t=1,t̸=k YkYtKp,tk.

Cook’s distance detects influential points by finding high leverage hii and high residual
2leave-one-out technique consists of deleting one observation at each step when finding the esti-

mate for the ρ(k).
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ri simultaneously, while ∥Xk∥2 and Yk in the HIM act the similar roles. In Zhao et al.

(2013)’s Theorem 1, suppose conditions (C.1)-(C.3) hold, when there is no influential

point and min{n, p} → ∞, the asymptotic distribution for n2D
(k)
him is a chi-square

distribution with degree of freedom equal to 1. The p-value, P (χ2(1) > n2D
(k)
him), can

be used to determine the rejection region of this hypothesis test H0 : ith observation

is not an influential one.

Zhao et al. (2013) used the numerical studies to demonstrate that HIM is useful in

models with contamination in both response and predictors. Also, possible extension

to the generalized linear models (GLM) can be expressed as

D
(k)
him =

1

p

p∑
j=1

∥β̂j − β̂
(k)
j ∥22. (1.24)

HIM is a good method to detect the high dimensional influential observation, but

depends only by using the robust estimates of median and least absolute deviation

(LAD) from the sample. Also, the estimate of marginal correlation is not bounded

by 1 since the standardization is not used for each leave-one-out step. As shown in

Example 1.3.1, high dimensionality of the data brings high correlations among the

variables, which results in marginal correlation being unreliable. For those reasons,

new methods are still needed in the high dimensional influence measure.

1.5 Contribution of this Thesis

In high-dimensional sparse modelling, seminal theories of least angle regression (Efron

et al. 2004, LARS) and sure independence screening (Fan and Lv 2008, SIS) both

used correlation between predictor variables and response (or current residual) to

deal with selection and estimation problems. The correlation can be viewed as a

high-dimensional counterpart to the ordinary least square (OLS) estimator of the

parameter vector and many data-driven methods based on correlation have been

studied for years in high dimensional statistics. In this thesis, we contribute to the

high-dimensional correlation learning theory from three important problems: variable

screening for random and deterministic design matrices; influence measure and post-
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selection inference. The novel contributions of this dissertation include:

• We propose a new estimator for the correlation between the response and

high-dimensional predictor variables, and based on the estimator we develop

a new screening technique termed dynamic tilted current correlation screening

(DTCCS) for high dimensional variables screening. DTCCS is also extended to

the deterministic design matrix.

• We propose two new influence measure and diagnostic procedures from two dif-

ferent viewpoints: the extreme value distribution and the robustness of design.

• We propose a new post-selection inference method which is based on a cosine

distribution to deal with high-dimensional inference problem.

The rest of the dissertation is organized as follows. In Chapter 2, we study the

problem of high-dimensional variable screening which is among the most widely stud-

ied applications of sparse modelling and estimation. In the ultra-high dimensional

setting, the SIS method was introduced to significantly reduce the dimensionality to

a moderate scale which is below the sample size and preserve the true model with

probability tending to 1. The performance of SIS must depend on the marginal cor-

relation which is unreliable due to the dimensionality. In reality, the ‘importance’ of

the variables cannot be easily ranked by their marginal correlation and there exists

high (possible spurious) correlation among predictor variables. To overcome them,

we propose a new estimator for high-dimensional correlation and a novel screening

technique which termed dynamic tilted current correlation screening (DTCCS). The

new method reduce high correlation among predictor variables in a data-driven way.

We show that DTCCS is able to discover all relevant predictors within a finite number

of steps when the dimension of true model meets the sparse assumption. DTCCS’s

sure screening property, consistency property and computational complexity are il-

lustrated theoretically and numerically. To confirm the effectiveness of the proposed

methods, we conduct simulation studies and a real-life data analysis to illustrate the

usefulness of DTCCS. We apply the DTCCS method in the random design matrix

and discuss the potential extension to the deterministic design matrices.
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In Chapter 3, we study the problem of high-dimensional influence measure and

diagnostic procedure. Influence diagnosis plays an important role in data analysis.

Some observation can have tremendous influence on the model and hence could lead

to misleading results in regression problems, for instance, distorted variable selection,

inaccurate interpretation. Traditional influence detection methods such as Cook’s

distance measures individual observation’s influence on the least squares regression

coefficient estimates. However, it will have problem when applied to high-dimensional

data. Estimation accuracy and computational cost are two top concerns in high-

dimensional data analysis. Difficulties in detecting the influential observations in high-

dimensional data may lead to distorted analysis and a high computational complexity.

Zhao et al. (2013) propose High-dimensional Influence Measure (HIM) which captures

the influence on the marginal correlations. However, marginal correlation strongly

relies on the independence assumption among predictors which rarely holds in reality.

Also, HIM highly depends on the robust estimator. Inspired by the recent work

of Cai et al. (2014) and Karunamuni et al. (2015), we propose two new methods

to capture the influence on a function of the correlations. The two methods are

from the perspectives of the extreme value distribution and the robustness of design

respectively. They are both constructed from the high-dimensional correlations. The

asymptotic distributions of these proposed influence diagnostic techniques have been

established by letting the dimension of the explanatory variable approach infinity. To

confirm the effectiveness of the proposed methods, simulation studies are conducted

extensively.

In Chapter 4, we use the geometric arguments to discuss the post-selection in-

ference of LARS. The new procedure is based on truncated cosine distribution. At

each step of the LARS algorithm, we get a corresponding angle from the correlation

between entering variable and current residual. In the high-dimensional context, the

angle will be considered as a random variable from cosine distribution, then we can do

post-selection inference based on that. Also, the limiting distribution of the maximum

angle can be used to do an efficient and robust significance test for each predictor

variable. To confirm the effectiveness of the proposed method, we conduct simulation
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studies and a real-life data analysis to illustrate the usefulness of this post-selection

method.

In Chapter 5, we draw connections between these different statistical problems

under the overall theme of this thesis, the correlation learning. It contains the sum-

mary and conclusions on the performance of the methods proposed. We also provide

some directions for further studies.
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Chapter 2

Dynamic Tilted Current Correlation

for High Dimensional Variable

Screening

Variable screening is a general procedure in high dimensional data analysis to ensure

the applicability of statistical methods. It is a complicated and computationally

burdensome procedure since spurious correlations commonly exist among predictor

variables, and important predictor variables may not have large marginal correlations

with the response variable. In this chapter, we propose a new estimator for the

correlation between the response and high-dimensional predictor variables, and based

on the estimator we develop a new screening technique termed dynamic tilted current

correlation screening (DTCCS) for high dimensional variables screening. DTCCS is

capable of picking up the relevant predictor variables within a finite number of steps.

The DTCCS method takes the popular sure independence screening (SIS) method

and the high-dimensional ordinary least squares projection (HOLP) approach as its

special cases. The DTCCS technique has sure screening and consistency properties

which are demonstrated theoretically and numerically and illustrated through a real-

life example.
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2.1 Introduction

As the computational power increases and the cost of data collection decreases, high

dimensional or ultra-high dimensional data are available more than ever. Data with

tens of thousands of variables are frequently seen in modern scientific research, such

as oncology image data, financial data, satellite data and genomics data. In such

datasets, the dimension p of variables is much larger than the sample size n, but

only a small number of variables are believed to be significantly relevant to the re-

sponse of interest. It is imperative to perform a screening stage for relevant variables

before a formal statistical model building procedure in order to extract truly useful

underlying information from the data. For this purpose, Fan and Lv (2008) pro-

posed the sure independent screening (SIS) method for selecting important variables

in ultrahigh-dimensional linear models. The SIS method uses a correlation learning

method to rank the importance of predictors according to their marginal correlation

with the response variable and includes those having strong marginal correlations

with the response variable into the model. Variable screening has received increas-

ing attention in the literature and many new techniques have been investigated in

recent years. For example: Wang (2009) showed that the forward regression vari-

able screening (FRVS) method can also identify all relevant predictors consistently.

Fan and Song (2010) extended the SIS approach to generalized linear models (GLM)

by ranking the maximum marginal likelihood estimates (MMLE). Fan et al. (2011)

extended the correlation learning to marginal nonparametric learning which can be

used in sparse ultra-high dimensional additive models. Zhu et al. (2011) introduced

a screening approach under a unified model framework which covers parametric and

semiparametric models. Merging the idea of the SIS method and the robust estimator

of correlation, Li et al. (2011) and Li et al. (2012a) proposed robust rank SIS (RSIS)

and robust rank correlation screening (RRCS), respectively, to deal with ultra-high

dimensional data. To protect from model misspecification, Li et al. (2012b) developed

a robust SIS procedure based on the distance correlation (DC-SIS) under more gen-

eral settings including linear models. Cho and Fryzlewicz (2012) proposed a tilting
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procedure for variable screening which can efficiently reduce the spurious correlation

among predictors. Wang and Leng (2016) used the Moore-Penrose inverse to form

a new correlation-based screening technique, called high-dimensional ordinary least

squares projection (HOLP).

To reduce high spurious correlation among predictors, we propose a correlation

estimator between the predictor and the current residual to form a path of predic-

tors entering the model, and this path is then used for variable screening. This new

screening technique is termed dynamic tilted current correlation screening (DTCCS).

Our proposed method is appealing in several aspects. It can retain the important

predictors which may have small marginal correlations with the response, and mean-

while, exclude unimportant predictors which may have large correlation with the

response. Like the SIS method, the DTCCS approach makes use of the correlation

learning, and thus, preserves the sure screening property. Unlike the SIS method, our

DTCCS algorithm employs the ‘tilted’ current correlation to measure the importance

of predictors. The DTCCS method uses a path-based regression algorithms like the

forward-type regression, LARS and LASSO. LARS or LASSO adds variables one by

one to build a final model, but DTCCS adds variables one group after another. For

the LASSO method, the number of non-zero variables in the ‘best’ final model only

depend on a single tuning parameter which means that a sequence of ‘knots’ of tuning

parameters determine different final models. For the DTCCS, the candidate model

size is predetermined and a group of monotone value of tuning parameters have been

used to form a final model.

The rest of Chapter 2 is organized as the follows. The relevant notation and the

framework are introduced in Section 2.2. The methodology is presented in Section

2.3. Numerical studies are reported in Section 2.4. Extensions to the deterministic

design matrix are discussed in 2.5. Chapter 2 concludes with discussion and possible

extensions in Section 2.6.
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2.2 The Model and Notations

Recall the linear regression model from Eq (1.2):

y = Xβ + ϵ,

where X ∈ Rn×p (X is a n × p matrix of p dimensional covariates), β ∈ Rp is the

vector of the coefficient of the respective covariates and ϵ ∈ Rn is the noise in the

model. Throughout this chapter, X is assumed to be a full row rank matrix.

Consistent with the common procedure in high-dimensional data analysis (Efron

et al. 2004, Fan and Lv 2008, Wang 2009, Cho and Fryzlewicz 2012, Wang and

Leng 2016, Fan et al. 2018), we now standardize the response vector y using the

transformation y − E(y) and standardize the covariate column vectors Xj by the

transformation {Xj − E(Xj)}{var(Xj)}−1/2. Hence, all covariates are standardized

to have an equal finite norm (Fan et al. 2018). Note that we use (abuse) the same

notation of the random vector and the corresponding realization in the data for ease

the complexity of notations here.

Xj is referred to as a relevant (or irrelevant) predictor if βj ̸= 0 (or βj = 0),

where βj is the jth component of β. Define the full model as F = {1, . . . , p}, and

the true model as T = {1 ≤ j ≤ p : βj ̸= 0}. We have |F | = p and let |T | = t0.

Let Mk = {j1, . . . , jk} be an active set which means that the current model has

Xj1 , . . . ,Xjk as relevant predictors, where 1 < k < n. Let X̃−j be the submatrix of

X which excludes the column Xj. A projection matrix Hj based on ‘ridge regression’

projects Xj to the space spanned by all the column vectors Xk with k ̸= j, given

by Hj = X̃−j(X̃
T
−jX̃−j + λIp−1)

−1X̃T
−j where λ is a tuning parameter defined in

Section 2.3.1. By the spectral decomposition theorem, X̃−jX̃
T
−j = PjD

2
jP

T
j , where

Dj = diag(dj1, . . . , djn) is a diagonal matrix with the diagonal entries dj1 ≥ dj2 ≥

· · · ≥ djn > 0 being the eigenvalues of X̃−jX̃
T
−j, and the column vectors of Pj are the

eigenvectors of X̃−jX̃
T
−j corresponding to the eigenvalues and are orthonormal.
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2.3 Proposed Methodology

2.3.1 Inferential Methods

Multi-stage statistical procedures are more and more important in the high dimen-

sional setting (Wasserman and Roeder 2009). The screening procedure is the crit-

ical first stage before further moderate-scale learning and inference. Fan and Lv

(2008)’s SIS method makes use of the absolute value of the marginal correlation-

s ω = |XTY| = (ω1, . . . , ωp)
T and selects the variables which have relatively high

marginal correlations with the response. However, SIS strongly relies on the assump-

tion that the important variables in the model have large marginal correlations with

the response, which is not always true in reality. Efron et al. (2004)’s LARS gives

a forward solution path by using the equiangular direction of Xj’s and determines

the current step size and next direction simultaneously. To overcome the indepen-

dence violation and reduce the spurious correlation, we propose a novel and simple

screening technique by merging the idea of Forward-type regression and screening

procedure. The proposed method takes the popular used SIS method as its special

case and its other special cases also connect to the ordinary least square estimator

(OLS) and the high-dimensional ordinary least squares projection (HOLP), see details

in the following sections.

High-dimensional Correlation Estimator

In traditional linear regression, the ordinary least squares (OLS) method projects

the response Y onto the linear space col (X) spanned by the column vectors of X.

High-dimensional screening methods, such as forward regression variable screening

(FRVS) (Wang 2009) and tilting (Cho and Fryzlewicz 2012), also project Y onto

col (X). Different from those projections, Shao and Deng (2012) proposed to project

the regression vector β onto the linear space row (X) which is spanned by the row

vectors of X and showed that large and small elements of the projection of β onto

row (X) can be discriminated efficiently with probability tending to 1. One advantage

of using row (X) in high-dimensional screening is that the dimension of row (X) is at
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most n which is much smaller than p in the high-dimensional context.

For p > n, we consider the ridge regression estimator of β (Hoerl and Kennard

1970) under model (1.2),

β̂ridge = (XTX+ λIp)
−1XTY,

where λ > 0 is an appropriately chosen regularization parameter, and Ip is a p × p

identity matrix. Shao and Deng (2012) and Wang and Leng (2016) showed that the

computation of β̂ridge involves only inverting an n× n matrix since

(XTX+ λIp)
−1XT = XT (XXT + λIn)

−1. (2.1)

Equation (2.1) implies that the ridge regression estimator β̂ridge is always in the row

space of X, row (X).

The high-dimensional ordinary least squares projection (HOLP) method by Wang

and Leng (2016) calculated an estimator of β̂:

β̂holp = XT (XXT )−1Y,

= XT (XXT )−1Xβ +XT (XXT )−1ϵ. (2.2)

The projection matrix of the HOLP method, XT (XXT )−1X, is spanned by the row

space of X and diagonally dominant. The HOLP method projects β onto row (X)

to obtain β̂holp. When the sparse parameter vector β has many zero components,

β̂holp may not have any zero component but many of them must be negligible due

to the screening consistency property of the HOLP procedure. Hence, β̂holp can also

be viewed as a generalized sparse vector and can separate the relevant and irrelevant

predictor variables efficiently.

Graybill (1983) suggested an estimator of β from a generalized inverse matrix

point of view:

β̂ = X−Y + (Ip −X−X)h, (2.3)

where X− is a generalized inverse of X and h is a p× 1 vector. If we take h = XTY

in (2.3), then in the cases where n > p, β̂ = (XTX)−1XTY is the OLS estimator;
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in the case with n < p, β̂ = XT (XXT )−1Y is the HOLP estimator. Graybill (1983)

shows that β̂ = XTY if and only if XTX is idempotent.

Motivated by the tilting technique (Cho and Fryzlewicz 2012) and the row space

row (X) introduced by Shao and Deng (2012) and Wang and Leng (2016), we propose

a new correlation estimator for high-dimensional data which efficiently reduces the

‘spurious’ correlation among the predictors. We expect this proposed correlation esti-

mator to rank the important elements of β correctly and thus to screen the important

predictors iteratively.

For the high-dimensional n × p design matrix X, we consider each column Xj,

j = 1, . . . , p, as a ‘response’ variable and the rest (p−1) columns as the corresponding

design matrix. Ridge regression is used to ‘tilt’ Xj such that the effect of other

variables Xk, k ̸= j, on Xj is reduced. The ‘strength’ of tilting can be adjusted by a

tuning parameter λ. The current residual Z is defined to be the ridge residual vector

when regressing Y against the active variables in M with tuning parameter λ. Note

that Z1 = Y for the initial step. Hence, a new measure for the contribution of each

variable to the current residual Z can be expressed as

ρ̂j(λ) =
1

aj
XT

j (In −Hj)Z, (2.4)

where Hj = X̃−j(X̃
T
−jX̃−j + λIp−1)

−1X̃T
−j, and aj is a scaler which rescale the tilted

correlation back to be bounded by 1. We call this estimator the high-dimensional

correlation estimator (HDCE). Let sj = sign{ρ̂j} for j = 1, . . . , p. Noting that

Hj = X̃−j(X̃
T
−jX̃−j + λIp−1)

−1X̃T
−j =

1

λ
X̃−j

Ip−1 +

(
X̃−j√

λ

)T (
X̃−j√

λ

)−1

X̃T
−j

=
1

λ
X̃−j

[
Ip−1 −

X̃T
−jX̃−j

λ
+

X̃T
−jX̃−jX̃

T
−jX̃−j

λ2
− . . .

]
X̃T

−j

=
X̃−jX̃

T
−j

λ
−

X̃−jX̃
T
−jX̃−jX̃

T
−j

λ2
+

X̃−jX̃
T
−jX̃−jX̃

T
−jX̃−jX̃

T
−j

λ3
− . . . ,
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we obtain that

In −Hj = In −
X̃−jX̃

T
−j

λ
+

X̃−jX̃
T
−jX̃−jX̃

T
−j

λ2
−

X̃−jX̃
T
−jX̃−jX̃

T
−jX̃−jX̃

T
−j

λ3
+ . . .

=

(
In +

X̃−jX̃
T
−j

λ

)−1

= λ(X̃−jX̃
T
−j + λIn)

−1. (2.5)

Performing singular value decomposition (SVD) of X̃−j, j = 1, . . . , p,

X̃−j = PjDjQ
T
j , (2.6)

where Pj is an n×n matrix satisfying PT
j Pj = In, Qj is a (p−1)×n matrix satisfying

QT
j Qj = In, Dj is an n × n diagonal matrix of full rank with diagonal entries being

dji, i = 1, . . . , n. Note that the middle matrix in the traditional SVD is an n × p

rectangle. In the high-dimensional statistics, it is more popular to use an n×n square

matrix for the middle matrix in SVD instead of using a very wide n× p matrix with

one block of diagonal and another block of all 0’s, see examples in Fan and Lv (2008),

Wang and Leng (2016) and R function ‘svd’.

Using the eigendecomposition X̃−jX̃
T
−j = PjD

2
jP

T
j where D2

j is an n×n diagonal

matrix with positive elements d2j1 ≥ d2j2 ≥, . . . ,≥ d2jn > 0. We simplify (2.5) to obtain

In −Hj = PjFjP
T
j =

n∑
i=1

λ

λ+ d2ji
Pj,iP

T
j,i, where Fj = diag( λ

λ+d2j1
, . . . , λ

λ+d2jn
).

We then obtain XT
j (In −Hj)Z = XT

j PjFjP
T
j Z = (F

1/2
j PT

j Xj)
T (F

1/2
j PT

j Z) which

is the inner product of X⋆
j = F

1/2
j PT

j Xj and Z⋆ = F
1/2
j PT

j Z. Let aj = ∥X⋆
j∥2 · ∥Z⋆∥2.

The tilted correlation ρ̂j(λ) in (2.4)can be considered as a discrete function of

λ, where λ takes values at ∞ = λ0 ≥ λ1 ≥ · · · ≥ λγ ≥ 0 for a given integer

of γ. By choosing different values of λ, the high (most likely spurious) correlation

among predictors can be efficiently controlled. Theoretically, this property prevents

the irreverent variables from entering the model and thus discriminates relevant and

irrelevant variables successfully. The current residual Z carries the information of the

selected variables which save the relevant variables without a big marginal correlation.

Dynamically reducing the value of λ and updating the current residual Z, we obtain
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a promising high-dimensional variable screening method, and we call it the dynamic

tilted current correlation screening (DTCCS) method.

Dynamic Tilted Current Correlation for High-dimensional Variable Screen-

ing

The key idea of the DTCCS method is to iteratively rank the variables according

to the absolute values of the proposed correlation estimator. For each iteration, we

initially define a step size d, for instance, let d = 1, 2, . . . , log n, a large value of

d can speed up the algorithm. We choose d =
√

p
n
log n for illustrations in this

section. After γ iterations, we reduce the dimension from high p to a moderate

size of m = min(
√

p
n
log nγ, n − 1). Thereafter, the dimension of the covariates is

diverging no faster than the sample size. Hence, many classical variable selection and

estimation methods (for instance, the LARS method) or the model selection criteria

can be implemented easily to obtain the final statistical model.

Suppose we have an active set M which consists of (γ+1) disjoint selected subsets

Mk where 0 ≤ k ≤ γ. The initial set is the null set M0 = {∅}. For each iteration, we

rank the remaining variables by descending the order of the absolute value of ρ̂j(λ)

for j /∈ M, i.e., M1 = {j1, j2, . . . , jd} and M1

∪
M2

∪
· · ·
∪
Mγ = M.

When λ is big enough, Fj is close to I in (??), In−Hj is close to I in (2.5), and ρ̂j

is close XT
j Y in (2.4), which is the case of sure independence screening. When Hj is

close to 0, geometrically, Xj is perpendicular to the space spanned by Xk for k ̸= j.

With some decreasing values λ’s, say, a knot sequence {λk, k = 1, 2, . . . , γ}, each

knot λk marks the entry of Mk which is a group of variables to be included in the

active set M, 0 ≤ k ≤ γ.

When λ is small enough, say, λ is close to 0, Fj is close to 0 in (??), In − Hj is

close to 0 in (2.5) and ρ̂j is close to 0 in (2.4). In this case, Hj is close to I, and

geometrically, Xj is almost in the space spanned by Xk for k ̸= j. Also, as λ → 0,

Hj = X̃−j(X̃
T
−jX̃−j)

−X̃T
−j = X̃−jX̃

T
−j(X̃−jX̃

T
−j)

−1 = I, as shown by Wang and Leng

(2016), where A− denotes the Moore-Penrose generalized inverse of matrix A. The

relationship between DTCCS and HOLP will be discussed in Theorem 2.5.2.

33



For the knot selection in LASSO path, Lockhart et al. (2014) suggested to use

the absolute value of the marginal correlation to determine the knots of the LASSO

path, for example, λj = |XT
j Y|. In our proposed method, we denote the percentage

of remaining variables to be δ, 0 ≤ δ ≤ 1. We take λ = δ
1−δ

which approaches ∞ as

δ is close to 1. The first step of our DTCCS method is the same as that of the SIS

method. The following steps use bounded λ which guarantee the volume of tilting.

Connection to Classical Linear Regression

In this subsection, we discuss the relationship between the new estimator and the

least square estimator in the classical linear models (1.2) with ϵ ∼ N(0, σ2I). We

only consider the case of fixed design setting here, then the design matrix in this

setting is a deterministic design matrix. Hence, Y ∼ N(µ, σ2I) where µ = Xβ.

For n > p, let X⊥
j be the projection of Xj to the orthogonal complement of the

column space of X̃−j. Note that X⊥
j = Xj, j = 1, . . . , p, if X is orthogonal design

matrix. For a linear model without interception, the least square estimates β̂lse
j and

its corresponding ‘true’ parameter value βj can be respectively expressed as

β̂lse
j = (X⊥

j

T
Y)/(X⊥

j

T
Xj), and βj = (X⊥

j

T
µ)/(X⊥

j

T
Xj) (2.7)

where X⊥
j
T
Xj ̸= 0 for n > p (Berk et al. 2013; Zhang and Zhang 2014). Considering

inference for β̂lse
j and its target βj, β̂lse

j ∼ N(βj, σ
2/∥X⊥

j ∥2). Berk et al. (2013)

assumed a valid estimate σ̂2 of σ2 which is independent of all β̂lse
j , and proposed a

post-selection confidence interval from a t-statistic with degree of freedom (n− p),

tj =
(Y − µ)TXj

σ̂∥X⊥
j ∥

. (2.8)

In general, for n > p, X⊥
j = (I − Hj)Xj, where Hj = X̃−j(X̃

T
−jX̃−j)

−1X̃T
−j. β̂lse

j is

the inner product of ⟨ (I−Hj)Xj

XT
j (I−Hj)Xj

, (I −Hj)Y ⟩. The normalized inner product can be

denoted as XT
j (I−Hj)Y

∥(I−Hj)Xj∥2∥(I−Hj)Y ∥2 .

Zhang and Zhang (2014) shows (2.7) is the solution of solving the linear equation

X⊥
j
T
(Y−βjXj) = 0. The vector X⊥

j was termed the ‘score vector’ for the least squares
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estimation of βj in this linear equation. For p > n, X⊥
j cannot be considered as a

score vector anymore and Zhang and Zhang (2014) suggests the orthogonal constraint

of score vector can be relaxed. In our proposed estimator, PjFjP
T
j Xj is the score

vector to solving Xj
TPjFjP

T
j (Y−βjXj) = 0 for high-dimensional data. The solution

is the inner product of ⟨ F
1/2
j PT

j Xj

XT
j (PjFjPT

j )Xj
, F

1/2
j PT

j Y⟩, and the normalized inner product

is HDCE.

Final Model Selection after Screening

Fan and Lv (2008) pointed out that all the screening methods for high-dimensional

data have high type II error due to the nature of high dimensionality and sparse

modeling. A quick and simple remedy is to use a given model selection criterion

after finding a sequence of submodels. Classical model selection criteria such as the

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) are

known to select too many variables than necessary for settings with high dimensional

data (Chen and Chen 2008). Kim and Jeon (2016) proposed a unified framework of

loss functions for selection consistency which is termed quadratically supported risks

(QSR). This unified framework includes quadratic loss, Huber loss, quantile loss and

logistic loss. For pn = O(nα) and a given subset M ⊂ {1, . . . , pn}, a final selected

model is determined by

M̂hn = argmin
M⊂{1,...,pn}

{Rn(β̂) + hnσ
2 |M|}, (2.9)

where Rn(β̂) =
∥Y−Xβ̂∥22

n
is the quadratic loss, and hn is a sequence of positive numbers

termed GIC by Kim and Jeon (2016). Kim and Jeon (2016) showed that different

selections of hn may lead to common model selection criteria, such as AIC, BIC and

extended BIC.

By using the DTCCS method, the solution path in M provides a sequence of

submodels with increasing complexities. The final model can be chosen by using the

QSR framework with the risk inflation criterion (RIC) (Foster and George 1994),

which corresponds to the choice of hn = log pn
n

for RIC.
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2.3.2 Theoretical Results

Conditions, Assumptions and Lemmas

Let us begin with the definitions of orthogonal invariance, spherical symmetry, Stiefel

manifold and Sub-Gaussian tail condition.

Definition 2.3.1. (Orthogonal invariance). Let O(n) be the set of n× n orthogonal

matrices. An n-dimensional random vector z is said to be orthogonally invariant if

Qz
(d)
= z for any orthogonal matrix Q ∈ O(n), where the symbol

(d)
= represents equality

in distribution.

Definition 2.3.2. (Spherical symmetry). A random vector z ∈ Rn is said to be

spherically symmetric around µ ∈ Rn if z − µ is orthogonally invariant. We denote

this as z ∼ Sn(µ).

Definition 2.3.3. (Haar measure). For any orthogonal matrix Q ∈ O(n) and an

n×n random matrix X, the measure µ(·) is called the Haar measure (or the invariant

measure) on O(n) if µ(QX) = µ(XQ) = µ(X).

Definition 2.3.4. (Stiefel manifold, Tropp 2012). The Stiefel manifold Vn(Rp) is

the set of all orthonormal n-frames in a p-dimensional Euclidean space. That is

Vn(Rp) = {X ∈ Rp×n : XTX = In}. The orthogonal group of matrix O(n) can be

considered as a special case of Stiefel manifold which is Vp(Rp). The Stiefel manifold

Vn(Rp) is invariant under a Haar measure which is uniformly distributed on n-frames

in Rp.

Definition 2.3.5. (Sub-Gaussian tail condition, Kim and Jeon 2016.)

In the linear model (1.2), the ϵi are independent random variables whose common

distribution has a sub-Gaussian tail. That is, there is some b > 0 such that for every

t ∈ R, we have E(etϵi) ≤ exp{b2t2/2}, which implies that there exist positive constants

cϵ and dϵ such that

P

(∣∣∣∣∣
n∑

i=1

aiϵi

∣∣∣∣∣ > t

)
≤ cϵ · exp

(
− dϵt

2∑n
i=1 a

2
i

)
(2.10)
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for all a = (a1, . . . , an)
T ∈ Rn and t > 0.

Condition 2.3.1. (Polynomial high-dimensional). p > n and p = O(nα) for some

α > 0.

Condition 2.3.2. (Normality assumption). Assume X follows multivariate normal

distribution and ϵ ∼ N(0, σ2) with variance σ2.

Condition 2.3.3. (Covariance matrix). Let d⋆(A) and d⋆(A) represent the smallest

and the largest eigenvalues of the positive definite covariance matrix A respectively.

We assume that for some 0 ≤ κ ≤ 1 and c1 > 0, the conditional number of Σ,

cond(Σ) = d⋆(Σ)/d⋆(Σ) ≤ c1n
κ.

Condition 2.3.4. (Tilting parameter). Let λ be the tilting parameter introduced in

Section 2.3.1, λ = O(p) for the finite selection of λ.

Recall the linear model Eq. (1.2) Y = Xβ + ϵ, where X ∈ Rn×p, β ∈ Rp is the

vector of the coefficients of the respective covariates and ϵ ∈ Rn is the noise in the

model. In this section, X is the random design matrix with standardized predictors,

x = (x1, . . . , xp)
T is used to denote the random predictor vector, Σp×p = cov(x) is the

covariance matrix of the predictors. Since in model (1.2) we assume all the predictors

are standardized, Σ is the correlation matrix. We define

B = XΣ−1/2 and b = Σ−1/2x. (2.11)

It is easily seen that b has a spherically symmetric distribution and cov(b) = Ip.

Under Condition 2.3.3 and 2.3.4, the diagonal values of Fj are bounded by O(1)

for different selections of λ’s. For each iteration, the only difference is the value of the

diagonal elements of Fj. We will show the proof for the first iteration of the DTCCS

method,

ρ̂j =
1

aj
XT

j PjFjP
T
j Y =

1

aj
eTj X

TPjFjP
T
j Xβ +

1

aj
eTj X

TPjFjP
T
j ϵ :=

1

aj
(ξj + ηj),

where ξj is the signal, ηj is the noise, and ej = (0, . . . , 0, 1, 0, . . . , 0)T is the jth

coordinate vector. We know that for λ ̸= 0, aj is bounded and is of the same order
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of |ξj|. Let ξ = (ξ1, . . . , ξp)
T and η = (η1, . . . , ηp)

T . For showing the boundedness of

∥ξ∥ and ∥η∥, we ease the notation as ξj = eTj Ξjβ, where Ξj = XTPjFjP
T
j X.

Lemma 2.3.1. (Fan and Lv 2008). Let O(n) be the set of n×n orthogonal matrices.

A singular value decomposition of the n× p full row rank matrix B can be expressed

as B = UDV , where U ∈ O(n), V ∈ O(p), and D = [Dij] is an n × p matrix with

Dij = 0 for i ̸= j and D11 ≥ D22 ≥ · · · ≥ Dnn > 0. Let bTi denote the ith row

of B for i = 1, 2, . . . , n. We assume that the bTi are independent and orthogonally

invariant, then the distribution of B is also invariant under O(p), i.e., BQ
(d)
= B for

any Q ∈ O(p).

Proposition 2.3.1. Assume that the conditional number of Σ, cond(Σ) ≤ c1n
κ for

some constants c1 > 0 and κ ∈ [0, 1] and that Σii = 1 for i = 1, 2, . . . , p, then we have

d⋆(Σ) ≥ c−1
1 n−κ and d⋆(Σ) ≤ c1n

κ. (2.12)

Proof. Note that p = tr(Σ) =
∑p

i=1 di where di, i = 1, . . . , p, are the eigenvalues of

Σ, so we obtain that d⋆(Σ) ≤ 1 and d⋆(Σ) ≥ 1. Therefore,

d⋆(Σ) ≥
1

cond(Σ)
and d⋆(Σ) ≤ cond(Σ).

Let vec(X) be the column vector stacked by all the rows of X. Then vec(X) ∼

N(0, In ⊗ Σ) and vec(B) ∼ N(0, In ⊗ Ip), where ⊗ denotes the Kronecker product

of two matrices. That is, all the elements of vec(X) are standard normal random

variables and all the elements of vec(B) are independent and identically distributed

standard normal random variables.

Assumption 2.3.1. We assume that var(Y) = O(1) and λ = O(p) if λ is finite, and

that the true model size t0 = c0n
ν for the sparsity rate ν ∈ [0, 1].

Assumption 2.3.2. (Concentration Property, Fan and Lv 2008)

Assume that each entry of the random matrix B is iid random variables with zero

mean and unit variance and that E|B11|4 < ∞. As n → ∞, we assume that p → ∞
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and n
p
→ r ∈ (0, 1). Matrix B is said to have the concentration property if there exist

constants c, c2 > 1 and C1 > 0 such that

P

(
d⋆(

1

p̃
B̃B̃T ) > c2 and d⋆(

1

p̃
B̃B̃T ) < 1/c2

)
≤ e−C1n

for any n× p̃ submatrix B̃ of B with cn < p̃ ≤ p.

Proposition 2.3.2. (Interlacing inequalities for singular values, Queiró 1987)

Let B be an n× p matrix with rank t = min(n, p), the singular values of B are the

square roots of the non-zero eigenvalues of the positive semidefinite matrix BTB (or

BBT ). The sequence of singular values is σ1(B) ≥ · · · ≥ σt(B) > 0 = · · · = 0. The

relationship between any (n− s)× (p− r) submatrix B̃ and B is

σk(B) ≥ σk(B̃) ≥ σk+r+s(B) for all k ≥ 1.

Lemma 2.3.2. For any n× p̃ submatrix X̃ of X with n < p̃ ≤ p, non-zero eigenvalues

of X̃X̃T (or X̃T X̃) are bounded by c−1
1 n−κd⋆(B̃B̃T ) and c1n

κd⋆(B̃B̃T ).

Proof. Let Σ̃ be a p̃× p̃ submatrix of Σ. By Proposition 2.3.1 and 2.3.2,

c−1
1 n−κd⋆(B̃B̃T )In ≤ X̃X̃T = B̃Σ̃B̃T ≤ c1n

κd⋆(B̃B̃T )In.

Proposition 2.3.3. (Lemma 3 Moderate deviation of Fan and Lv 2008).

Let χ2
1, . . . , χ

2
n be iid χ2

1-distributed random variables. Then,

(i) for any ϵ > 0, we have

P

(
1

n

n∑
i=1

χ2
i > 1 + ϵ

)
≤ e−Aϵn,

where Aϵ = [ϵ− log(1 + ϵ)]/2 > 0.

(ii) for any ϵ ∈ (0, 1), we have

P

(
1

n

n∑
i=1

χ2
i < 1− ϵ

)
≤ e−Bϵn,

where Bϵ = [−ϵ− log(1− ϵ)]/2 > 0.
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Proposition 2.3.4. Let ei = (0, . . . , 0, 1, 0, . . . , 0)T denotes the ith natural base in

the p dimensional space. Assume that the rows of the p × p orthogonal matrix V

are random orthonormal p-frames, hence, V is uniformly distributed on the Stiefel

manifold Vp(Rp). Let ṼT be the top n rows of V with Ṽ ∈ Vn(Rp). Then for any

C > 0, there exist c′1, c′2 with 0 < c′1 < 1 < c′2, such that

P

(
eT1 ṼṼT e1 < c′1

n

p
or eT1 ṼṼT e1 > c′2

n

p

)
≤ 4e−Cn.

Proof. Ṽ = VT

 In

0p−n,n


p×n

, and its transpose ṼT =
(

In 0n,p−n

)
n×p

V.

V e1 is the first column of V and is uniformly distributed on a unit sphere. Let

ωi, i = 1, 2, . . . , p, be independent and identically distributed random variable from

standard normal distribution, we have

Ve1
(d)
=

√√√√ p∑
j=1

ω2
j

−1/2

(ω1, ω2, . . . , ωp)
T

and

ṼT e1
(d)
=

√√√√ p∑
j=1

ω2
j

−1/2

(ω1, ω2, . . . , ωn)
T .

Hence e1ṼṼT e1
(d)
=

ω2
1+···+ω2

n

ω2
1+···+ω2

p
, which is a random variable following a beta distribution

with parameter n/2 and (p− n)/2.

By Proposition 2.3.3, we know that for any C > 0, there exists some ϵ1, ϵ4 ∈ (0, 1),

ϵ2, ϵ3 > 0 such that

P

(
1

n

n∑
i=1

ω2
i < 1− ϵ1

)
≤ e−Cn, P

(
1

p

p∑
i=1

ω2
i > 1 + ϵ2

)
≤ e−Cp < e−Cn,

and

P

(
1

n

n∑
i=1

ω2
i > 1 + ϵ3

)
≤ e−Cn, P

(
1

p

p∑
i=1

ω2
i < 1− ϵ4

)
≤ e−Cp < e−Cn.

Let c′1 =
1−ϵ1
1+ϵ2

and c′2 =
1+ϵ3
1−ϵ4

. By Bonferroni’s inequality, we have

P

(
eT1 ṼṼT e1 < c′1

n

p
or eT1 ṼṼT e1 > c′2

n

p

)
≤ 4e−Cn.
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Lemma 2.3.3. Suppose Assumption 2.3.1 and 2.3.2 hold. Then for C > 0 and for

any unit norm vector v, there exist constants c3 and c4 with 0 < c3 < 1 < c4 such that

P
(
|eTj Ξjv| < c3n

1−κ/2 or |eTj Ξjv| > c4n
1+κ/2

)
≤ 4e−Cn.

Proof. Recall Ξj = XTPjFjP
T
j X, X = BΣ1/2 and Fj =


λ

λ+d2j1
. . .

λ
λ+d2jn

.

There exist two q × q orthogonal matrices Q1 and Q2 that respectively rotate

Σ1/2ej and Σ1/2v to the same direction of e1, i.e., Σ1/2ej = ∥Σ1/2ej∥2Q1e1 and Σ1/2v =

∥Σ1/2v∥2Q2e1. Then we have

|eTj Ξjv| = ∥Σ1/2v∥ · ∥Σ1/2ej∥ · eT1QT
1B

TPjFjP
T
j BQ2e1. (2.13)

By Lemma 2.3.1, rows of B are independent and orthogonally invariant, then

the distribution of B is also invariant under O(p), i.e., BQ
(d)
= B for any Q ∈ O(p).

Rewrite B = U diag(D11, . . . , Dnn)Ṽ
T , where Ṽ T = (In,0n,p−n)n×pV and Ṽ ∈ Vn(R

p).

It is obvious that p · [d⋆(1pBBT )]In ≤ diag(D2
11, . . . , D

2
nn) ≤ p · [d⋆(1

p
BBT )]In.

For the norm of the vector ∥Σ1/2v∥ and ∥Σ1/2ej∥, we have

d⋆(Σ) ≤ vTΣv = ∥Σ1/2v∥2 ≤ d⋆(Σ) and eTj Σej = ∥Σ1/2ej∥2 = 1.

By Assumption 2.3.1, 2.3.2, Proposition 2.3.2 and Lemma 2.3.2, the diagonal of Fj

is bounded by O(1) and 1.

By Proposition 2.3.1 and Assumption 2.3.2, we have c−1
1 n−κ ≤ d⋆(Σ) ≤ d⋆(Σ) ≤

c1n
κ and P

(
d⋆(1

p̃
B̃B̃T ) > c2 and d⋆(

1
p̃
B̃B̃T ) < 1/c2

)
≤ e−C1n. Along with Proposi-

tion 2.3.4 and Bonferroni’s inequality, we obtain

P
(
|eTj Ξjv| < c3n

1−κ/2 or |eTj Ξjv| > c4n
1+κ/2

)
≤ 4e−Cn.

Lemma 2.3.4. If Assumption 2.3.1 and 2.3.2 hold, then for any C > 0, there exists

some c5, c6 > 0 such that for any j = 1, 2, . . . , p,

P
(
|eTj Ξjβ| < c5n

1−κ
)
≤ O(e−Cn),
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and

P
(
|eTj Ξjβ| > c6n

1+κ+ν/2
)
≤ O(e−Cn).

Proof. Let β = β
∥β∥2 · ∥β∥2. Apply the result of Lemma 2.3.3, for v = β

∥β∥2 ,

P

(
|eTj Ξj

β

∥β∥2
| < c3n

1−κ/2

)
≤ O(e−Cn).

With probability at least 1 − O(e−Cn), |eTj Ξj
β

∥β∥2 | ≥ c3n
1−κ/2. By Assumption 2.3.1

and Proposition 2.3.1, var(Y) = O(1) and d⋆(Σ) ≤ c1n
κ. Then we have c1n

κ∥β∥22 ≥

∥β∥22 d⋆(Σ) ≥ βTΣβ = var(Y ) − σ2 ≥ c7 for some constant c7. Therefore, with

probability at least 1 − O(e−Cn), ∥β∥2 ≥ c′7n
−κ/2 and eTj Ξjβ ≥ c5n

1−κ for some

constants c′7 and c5 respectively. Hence, P
(∣∣eTj Ξjβ

∣∣ < c5n
1−κ
)
≤ O(e−Cn).

Apply the result of Lemma 2.3.3, for v = ei, i = 1, 2, . . . , p,

P
(
|eTj Ξjei| < c3n

1−κ/2 or |eTj Ξjei| > c4n
1+κ/2

)
≤ 4e−Cn.

We know that the true model size t0 = c0n
ν from Assumption 2.3.1 and c−1

1 n−κ∥β∥22 ≤

∥β∥22 d⋆(Σ) ≤ βTΣβ = var(Y )− σ2,

|eTj Ξjβ| =

∣∣∣∣∣∑
i∈T

eTj Ξjeiβi

∣∣∣∣∣ ≤∑
i∈T

{|eTj Ξjei| · |βi|}

≤
√∑

i∈T

|eTj Ξjei|2 · ∥β∥2 ≤ c6n
1+κ+ν/2, (2.14)

with probability at least 1 − O(e−Cn). The first inequality in (2.14) is from the

Jensen’s inequality and the second one is from the Cauchy-Schwarz inequality.

Hence, P
(
|eTj Ξjβ| > c6n

1+κ+ν/2
)
≤ O(e−Cn).

Lemma 2.3.5. Suppose Condition 2.3.2, and Assumption 2.3.1, 2.3.2 hold and let ν

be the sparsity rate, i.e., t0 = c0n
ν is the true model size. Assume 1+2κ > α−ν where

α is defined in Condition 2.3.1. Then for any C > 0, there exists some constants c8

and c′8 > 0 such that for any j = 1, 2, . . . , p,

P
(
|ηj| > c8n

1+κ+ν/2
)
≤ cϵ exp{−c′8n

2(1+κ)+ν−α}.
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Also, there exists some small positive c9, c9 = o(nκ−1), such that for any j =

1, 2, . . . , p,

P
(
|ηj| < c9n

1−κ
)
≤ O(e−Cn).

Proof. Define ηj = aϵ, where a = eTj X
TPjFjP

T
j and ϵi ∼ N(0, σ2) for i = 1, 2, . . . , n

where ϵi is the ith element of ϵ.

For the norm square of a, we have, with probability at least 1−O(e−C1n),

∥eTj XTPjFjP
T
j ∥22 = eTj Σ

1/2BTPjFjP
T
j PjFjP

T
j BΣ1/2ej

≤ p · ∥Σ1/2ej∥22 · [d⋆(
1

p
BBT )]

= p · [d⋆(1
p
BBT )]. (2.15)

By Assumption 2.3.2, the lower bound of ∥eTj XTPjFjP
T
j ∥22 is of the same order as

the upper bound.

According to the sub-Gaussian tail assumption, we have P (|aϵ| > t) ≤ cϵ·exp
(
− dϵt2

∥a∥2

)
.

By choosing t = c8n
1+κ+ν/2,

P
(
|aϵ| > c8n

1+κ+ν/2
)
≤ cϵ exp{−c′8n

2(1+κ)+ν−α}, (2.16)

where c′8 ∝ c2c
2
8dϵ.

Since ϵi ∼ N(0, σ2), then aϵ =
∑n

i=1 aiϵi ∼ N(0, ∥a∥2σ2). By the property of

Normal distributions, P (|aϵ| < c9n
1−κ) → 0 as c9n

1−κ → 0. Thus,

P
(
|ηj| < c9n

1−κ
)
≤ O(e−Cn).

Finally, we combine the results obtained in Lemma 2.3.4 and 2.3.5, together with

Bonferroni’s inequality, for some constants c′5, c′6 , C > 0,

P

(
min
j∈T

|ρj| < c′5n
1−κ or ∥ρ∥22 > c′6n

2(1+κ)+ν+α

)
≤ O(exp(−C1n)).
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Main theorems

Theorem 2.3.1. (Accuracy of DTCCS).

Assume that Assumption 2.3.1 and 2.3.2 hold and that there exist positive con-

stants c′8, cϵ and C1 defined previously. Then there exists θn ∈ (0, 1) such that

P (T ⊂ Mθn) = 1− t0cϵ · exp{−c′8n
2(1+κ)+ν−α} −O(t0 · exp(−C1n)).

Proof. Applying Lemmas 2.3.4 and 2.3.5 to all j ∈ T , for t0 = c0n
ν , we have

P

(
min
j∈T

|ξj| < c′5n
1−κ

)
= O(t0 · exp(−C1n)),

and

P

(
max
j∈T

|ηj| > c8n
1+κ+ν/2

)
≤ t0cϵ · exp{−c′8n

2(1+κ)+ν−α}.

If we choose θn ∈ (c′0n
2κ+ν/2, 1), which is a rate between c8n1+κ+ν/2

c′5n
1−κ and 1, then we

have

P

(
min
j∈T

|ρ̂j| < θn

)
= P

(
min
j∈T

|ξj + ηj| < ajθn

)
≤ P

(
min
j∈T

|ξj| < c′′5n
1−κ

)
+ P

(
max
j∈T

|ηj| > c′′8n
1+κ+ν/2

)
≤ O(t0 · exp(−C1n)) + t0cϵ · exp{−c′8n

2(1+κ)+ν−α}.

The first inequality holds since aj is on the same order of |ξj| for λ ̸= 0 and the fact

that if one event implies another, it has a smaller probability. The second inequality

follows from Lemma 2.3.4 and 2.3.5. The detail of the first inequality is

min
j∈T

|ξj + ηj| < ajθn ⇒ min
j∈T

|ξj| −min
j∈T

|ηj| < ajθn

⇒ min
j∈T

|ξj| −max
j∈T

|ηj| < ajθn

⇒ min
j∈T

|ξj| < M or max
j∈T

|ηj| > m,

where M , m can reach c′′5n
1−κ and c′′8n

1+κ+ν/2 respectively.

Hence,

P (T ⊂ Mθn) = 1− t0cϵ · exp{−c′8n
2(1+κ)+ν−α} −O(t0 · exp(−C1n)).
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Theorem 2.3.2. (Asymptotic sure screening).

If Condition 2.3.1-2.3.4, Assumption 2.3.1, 2.3.2, Lemma 2.3.1-2.3.5 hold and

1 + 2κ > α− ν, then

P (T ⊂ Mθn) → 1 as n → ∞, (2.17)

i.e., the asymptotic sure screening property holds for DTCCS.

Proof. Apply Theorem 2.3.1, t0 · exp(−C1n) ≤ (c0n)/(e
C1n) → 0 as n → ∞.

Since 1+2κ > α−ν, we have exp{−c′8n
2(1+κ)+ν−α} → 0 as n → ∞. This completes

the proof of Theorem 2.3.2.

Theorem 2.3.3. (Screening consistency).

Assume that with a large probability, log(p− t0) = o(min{Cn, c′8n
2(1+κ)+ν−α}) for

C and c′8 defined in Lemmas 2.3.4 and 2.3.5. Then with a large probability, we have

P (min
j∈T

|ρ̂j| ≥ θn ≥ max
j /∈T

|ρ̂j|) → 1 as n → ∞, (2.18)

where θn is defined in Theorem 2.3.1.

Proof. The same as Theorem 2.3.1,

P

(
max
j /∈T

|ξj| > c′6n
1+κ+ν/2

)
≤ (p− t0) ·O(e−Cn),

and

P

(
max
j /∈T

|ηj| > c′8n
1+κ+ν/2

)
≤ (p− t0) · exp{−c′8n

2(1+κ)+ν−α}+ (p− t0) · exp(−C1n).

Now, if θn is chosen as the same as in the Theorem 2.3.1, then

P

(
min
j /∈T

|ρ̂j| > θn

)
≤ (p− t0) · exp{−c′8n

2(1+κ)+ν−α}+O((p− t0) · exp(−C1n)).

Then, for log(p−t0) = o(min{Cn, c′8n
2(1+κ)+ν−α}) and combining with Theorem 2.3.1,

we have

P (min
j∈T

|ρ̂j| ≥ θn ≥ max
j /∈T

|ρ̂j|) → 1 as n → ∞. (2.19)
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One practical issue for variable screening is how to determine the size of the

submodel. As shown in the theory, as long as the size of the submodel is larger than

the true model, the DTCCS method preserves the relevant predictors with a large

probability. Thus, for t0 < n, the solution path with increasing complexities can

be transferred to the next stage of final model selection. The less computationally

demanding option for the final model selection is to use a criterion under the QSR

framework (Kim and Jeon 2016). Kim and Jeon (2016) showed the solution path that

includes the true model converges to 1 by using the QSR framework.

2.4 Numerical Studies

Extensive simulation studies are conducted to assess the performance of the proposed

DTCCS method with comparisons to widely used methods in the literature, such as

the ISIS method (Fan and Lv 2008), the tilting approach (Cho and Fryzlewicz 2012)

and the HOLP algorithm (Wang and Leng 2016). For implementation, we make use

of the existing R package SIS for the ISIS procedure and tilting for the tilting method.

For the SIS method, we use the marginal correlation to rank variables, and for the

HOLP procedure, we use ridge-type HOLP with a submodel size n. Similar to the

numerical criterion used in Cho and Fryzlewicz (2012) and Wang and Leng (2016), the

screening accuracy of each method after some replications is defined as the proportion

P (T ⊂ Ms) where Ms denotes the submodel after each screening. We evaluate the

methods by the frequencies of the selected models which contains all the variables of

the true model. The screening accuracy of each method is reported as the proportion

P (T ⊂ Ms) in Table 2.1-2.3.

2.4.1 Simulation Studies

Generally, a strong correlation among the predictors and/or a small signal-to-noise ra-

tio create difficulty in high dimensional variable screening. To assess the performance

of the proposed method, we examine three scenarios. In the first scenario we highlight

the advantage of the proposed DTCCS method in overcoming issues associated with
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strong correlation among predictors, the second scenario examines the ability of the

DTCCS method for dealing with collinearity, and the third scenario demonstrates the

advantage of DTCCS in parsimonious interpretation. 200 replications of simulation

are run for each scenario.

Scenario I: Compound Symmetry Structure of Σ

For the first scenario, we use model (1.2) with true β = (5, 5, 5, 0, . . . , 0)T . In this

model, X1, . . . , Xp are p predictors and ϵ ∼ N(0, σ2In) is the noise that is independent

of the predictors. In this simulation, a sample of (X1, . . . , Xp) with size n was drawn

from a multivariate normal distribution N(0,Σ) with covariance matrix Σ = (1 −

ρ)Ip + ρ11T , where 1 = (1, . . . , 1)T . 16 models are generated by using n = 50, or 70,

p = 100 or 1000, ρ = 0, 0.1, 0.5 or 0.9, respectively. For each model, three different

values of σ2 are chosen to obtain different SNR values defined as SNR = βTΣβ
σ2 .

Three levels of SNR are considered as 10, 20, and 30. This scenario modifies Example

I of Fan and Lv (2008) with smaller values of SNR. Since many screening methods

perform fairly well in a very high SNR setting and almost equally poorly in low SNR

settings, we deliberately choose small SNR values here, for example, SNR = 10, and

report the results in Table 2.1.

Table 2.1 shows that when the signal-to-noise ratio is low or the data are highly

correlated, the DTCCS and HOLP methods outperform the ISIS and tilting approach-

es. All methods perform well when signal is strong or the data are weakly correlated.

Scenario II: Strong Correlation among the Predictors

In this scenario, we use model (1.2) with true β = (5, 5, 5,−15
√
ρ, 0, . . . , 0)T . The

predictors X1, . . . , Xp and the noise ϵ are generated the same as in the first sce-

nario, with the covariance matrix for the predictors being Σ = (σij)p×p which has

the same entries as in the first scenario except for the 4th row and the 4th col-

umn. For the 4th row and the 4th column, we replace (ρ, ρ, ρ, 1, ρ, . . . , ρ)T with

(ρM , ρM , ρM , 1, 1− ρM , . . . , 1− ρM)T where ρM is the correlation of multicollinearity.

Function make.positive.definite in package corpcor is used to guarantee a positive
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Table 2.1: Screening Accuracy for Scenario I

p = 100 p = 1000

n SNR Method ρ=0 ρ=0.1 ρ=0.5 ρ=0.9 ρ=0 ρ=0.1 ρ=0.5 ρ=0.9

50 10 DTCCS 1.000 1.000 0.995 0.885 0.980 0.995 0.965 0.290

ISIS 1.000 0.980 0.890 0.030 0.800 0.860 0.220 0.000

Tilting 1.000 1.000 0.920 0.030 0.980 0.990 0.590 0.000

HOLP 1.000 1.000 1.000 0.930 0.990 1.000 0.960 0.240

20 DTCCS 1.000 1.000 1.000 0.985 0.985 0.995 0.995 0.635

ISIS 1.000 1.000 0.915 0.230 0.890 0.875 0.535 0.005

Tilting 1.000 1.000 0.990 0.140 1.000 0.995 0.920 0.000

HOLP 1.000 1.000 0.995 0.985 0.995 1.000 0.990 0.560

30 DTCCS 1.000 1.000 1.000 1.000 0.990 0.995 0.995 0.795

ISIS 1.000 1.000 1.000 0.450 0.900 0.880 0.630 0.010

Tilting 1.000 1.000 1.000 0.310 1.000 1.000 0.980 0.040

HOLP 1.000 1.000 1.000 0.980 0.990 1.000 1.000 0.760

70 10 DTCCS 1.000 1.000 1.000 0.975 1.000 1.000 1.000 0.585

ISIS 1.000 1.000 1.000 0.130 1.000 0.990 0.770 0.000

Tilting 1.000 1.000 0.990 0.010 1.000 1.000 0.870 0.000

HOLP 1.000 1.000 1.000 0.990 1.000 1.000 1.000 0.540

20 DTCCS 1.000 1.000 1.000 0.995 1.000 1.000 1.000 0.870

ISIS 1.000 1.000 1.000 0.610 1.000 0.995 0.940 0.010

Tilting 1.000 1.000 1.000 0.330 1.000 1.000 0.995 0.015

HOLP 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.825

30 DTCCS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.940

ISIS 1.000 1.000 1.000 0.850 1.000 1.000 0.940 0.170

Tilting 1.000 1.000 1.000 0.700 1.000 1.000 1.000 0.170

HOLP 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.920
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definite covariance matrix. In this example, X4 is uncorrelated with the response Y

or irrelevant predictors but is strongly correlated with important predictors. Multi-

collinearity arises when ρM is close to 1. This example modifies Example II of Fan

and Lv (2008) with greater values of ρ. ρ is set as 0.5, 0.6, 0.7, 0.8 or 0.9 in order to

examine the difficulty induced by the strong correlation among the predictors.

Twenty models are generated by using n = 50 or 70 with p = 100 or 1000 and

different ρ. The results are reported in Table 2.2. With the presence of collinearity,

we found that the ISIS and tilting methods are not stable in dealing with collinearity,

and the HOLP approach does not even work. However, the DTCCS method perform

well. After comparing with the results of SIS, Tilting, HOLP and to the best of our

knowledge, the proposed DTCCS method seems to be the only effective screening

method to handle data with extreme multicollinearity.
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Scenario III: Auto-Regressive Correlation

In the third scenario, we use model (1.2) with true β = (3, 1.5, 0, 0, 2, 0, . . . , 0)T . The

predictors X1, . . . , Xp and the noise ϵ are again generated the same as in the first

scenario, but having different covariance matrix for the predictors. The covariance

matrix Σ has entries σii = 1, i = 1, . . . , p and σij = ρ|i−j|, i ̸= j. This example is mod-

ified from Example 1 of Tibshirani (1996) with ρ set at 0.5, 0.7 or 0.9 and SNR taken

values at 10, 20 or 30. We use a two-stage procedure to show parsimonious interpre-

tation of the DTCCS method. After the variable screening is finished, RIC under the

QSR framework (termed QRIC here) is applied to obtain a final model. We report

the screening accuracy rate (SA) and the final model size (MS) for DTCCS+QRIC,

SIS+QRIC and HOLP+QRIC respectively in Table 2.3. The DTCCS method to-

gether with QRIC is always able to select a parsimonious model with almost perfect

accuracy rate even when the SNR value is small or the data are highly correlated. For

this scenario, the SIS method, the HOLP approach and the DTCCS method are all

good in parsimonious interpretation by using QRIC. Through these three scenarios,

we conclude that DTCCS is an efficient and effective variable screening algorithm in

high-dimensional screening and sparse modeling.
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2.4.2 Real Data Analysis

To illustrate the proposed method, we apply DTCCS method to the leukemia da-

ta which were reported by Golub et al. (1999). The complete dataset is avail-

able from http://portals.broadinstitute.org/cgi-bin/cancer/publications/

pub_paper.cgi?paper_id=43. Part of this microarray data can be found in the R

package plsgenomics with name leukemia which has 3051 genes for 38 leukemia pa-

tients. Among the genes under this study, the expression level on gene CST3 ex-

hibited the most significant difference for different types of leukemia (Sakhinia et al.

2005). The CST3 gene is believed to be linked to only a small number of genes in

the leukemia study (Fang and Grzymala-Busse 2006; Tang et al. 2009). Hence, we

consider CST3 as the effect of leukemia and take it as the continuous response in

linear model (1.2). Our goal of this data analysis is to find other genes (3050 in

total) whose expressions are correlated with that of gene CST3. We firstly apply the

variable screening method, and then build the final model using QRIC criteria. For

variable screening method, we consider the SIS method, the tilting algorithm, and the

HOLP procedure from the literature together with the proposed DTCCS method for

the purpose of comparison. Leave one out (LOO) technique is considered such that

each observation in the sample is used once as the validation data. We obtain the

variables after screening+QRIC procedure on the training set and then obtain the

OLS estimator of those variables via a linear regression. To evaluate the prediction

accuracy, square error (Y − Yi)
2, i = 1, . . . , n, is recorded for each validation obser-

vation. In Table 2.4, we report the means and the standard deviation (SD) of the

square errors for prediction and the mean and median of selected model sizes from n

training sets.

It can be seen from Table 2.4 that models selected by the proposed DTCCS

method and the SIS method have smaller cross-validation error than those selected

by HOLP and Tilting, which justifies that the proposed DTCCS screening method

keeps the useful variables in the screening procedure, while HOLP or Tilting may

screen out some response relevant variables.
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Table 2.4: Data Analysis of Leukemia Data (LOOCV)

Method Mean SD Model size Model size

square errors square errors (mean) (median)

DTCCS 0.8257 1.4419 0.8257 2.0000

SIS 0.8257 1.4419 0.8257 2.0000

Tilting 1.9702 2.4890 1.9702 1.0000

HOLP 1.3410 1.7389 1.3410 2.0000

We also apply the DTCCS method, in contrast to the SIS, Tilting, HOLP

approaches, to obtain a final model from the full data by first applying the screening

methods and then obtaining the final model using QRIC criteria. Table 2.5 reports

the variables (gene ID) selected in the final model using different approaches. The

mean square error (MSE) and R2 obtained after applying an OLS estimator to the

final selected variables are also reported. We see that the proposed DTCCS method

and the SIS method share the same MSE and R2 and outperform the tilting algorithm

and HOLP procedure.

Table 2.5: Final Models for Leukemia Full Data using Different Methods

Method Variables (gene ID) MSE R2

DTCCS D88422, X62055 0.5878 0.7454

SIS D88422, X62055 0.5878 0.7454

Tilting HG1078 1.7558 0.2395

HOLP L05624, U72509, D83920 0.7617 0.6701

2.5 Deterministic Extensions

The high-dimensional problems with random covariates have been studied for decades,

but they are not well developed for the scenario when the covariates are from a

deterministic design matrix. In this section, we extend DTCCS to the deterministic
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design matrix. A key component in DTCCS is the choice of the tuning parameters

λ’s (the amount of tilting). The choice of λ’s is connected with the selection of

the step size d. The principle of the selection criterion has not been discussed for

the random matrix design. We generally give a predetermined value of d and a

sequence of λ’s for different purposes of the data analysis, for instance, the screening

accuracy or the numerical efficiency. Roughly speaking, small selection of d leads

to the screening accuracy while big selection of d leads to the numerical efficiency.

Different selections of d’s and λ’s would greatly influence the performance of the

DTCCS for the random design. Under the deterministic design, we will discuss a

fixed selection of λ’s by a minimax procedure. Under the methodology of DTCCS,

spurious correlation among predictors can be eliminated or minimized before forming

a screening ranking. Our proposed method has the appeal in several aspects for

deterministic design. It can retain the important predictors which have small marginal

correlations with the response, and meanwhile, exclude unimportant predictors which

have large correlation with the response. Thresholded regression is potentially feasible

to determine the solution path of this extension, but it is still difficult to practice at

this moment due to the computational burden. A practical counterpart is simply

reducing the dimensionality from p to a moderate size, say n.

2.5.1 High-dimensional Deterministic Design Matrix

The sparse modeling means that the number of the relevant covariates is much smaller

than n in a high-dimensional design matrix. High-dimensional but sparse vectors are

commonly seen in large dataset. Zhao and Yu (2006) defined the sparseness for

model selection: a model is sparse if only few regression coefficients are nonzero and

those nonzero coefficients are uniformly bounded away from zero at a certain rate.

Sparseness of β roughly guarantees that the model is identifiable (Candes and Tao

2007). Zhang and Huang (2008) gave a more general concept of sparseness: a model

is sparse if most coefficients are small and the absolute sum of these small coefficients

is below a certain level. Under this general sparsity assumption, variable selection is

no longer separating nonzero and zero coefficient estimates, but determining a cut-off
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threshold value of t̂, j = 1, . . . , p, in the sense that all coefficient estimates above t̂

are preserved in the selected model with high probability. sn denotes the generalized

sparsity and its constraint for the property of Lp-consistent has been discussed in

recent literature, see details in Meinshausen and Yu (2009) and Bickel et al. (2009).

The large design matrices can be viewed in two different ways: a probabilistic one

and a nonprobabilistic one. In the probabilistic view, the design matrix is random

and the random matrix theory has been discussed for decades. Most recent articles at

the intersection of random matrix theory and high-dimensional statistics are focused

on the concentration property (Lv 2013). In the seminal work of Fan and Lv (2008),

the concentration property of a random matrix is the key to establish the sure screen-

ing property which means that this screening method keeps all important variables

in the reduced feature space with asymptotic probability one. Fan and Lv (2008)

proved that the concentration property holds when the design matrix is generated

from Gaussian distribution and Lv (2013) proved that the concentration property

holds when the design matrix is from a wide class of elliptical distributions. By us-

ing the concentration property, variable screening methods including SIS, HOLP and

DTCCS have been developed.

Due to the identifiability of the high-dimensional regression parameter vector, es-

timation and variable selection/screening problems with deterministic design matrix

are very different from those in the case with random design matrix. Determin-

istic design matrix did not attract enough attention as the random design matrix

in traditional statistics. However, deterministic design matrix is more common in

the era of high-dimensional statistics, such as modern biological research data and

quantum phenomena data. The most popular deep learning methods, convolutional

neural network (CNN, Rumelhart et al. 1985, Hinton and Salakhutdinov 2006) and

capsule network (CN, Sabour et al. 2017), both use the deterministic design with a

forward structure. Some recent articles discussed the deterministic design matrix in

the high-dimensional context. Shao and Deng (2012) used an approach which focus

on the projection of the regression parameter vector onto the row space generated by

the deterministic design matrix. Lv (2013) derived general bounds on dimensionality
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with some distance constraint on sparse models. Zhang and Zhang (2014) derived

confidence intervals of high-dimensional regression coefficients, by using the flexible

score vector with the residual from the sparse linear regression under deterministic

design.

Consistent with the common procedure in high-dimensional deterministic design

matrix (for instance, Zhang and Huang 2008, Zhang and Zhang 2014, Fan et al. 2018),

we now standardize the response vector Y using the transformation Y − E(Y) and

standardize the covariate column vectors Xj by the transformation
√
nXj/∥Xj∥2.

Hence, all covariates are standardized to have an equal finite norm. Define the full

model as F = {1, . . . , p}. Let (j) be the index of order statistics |β(1)| ≥ · · · ≥ |β(p)|.

Assume
∑p

j=q+1 |β(j)| ≤ C0 where C0 is a constant. Hence, there exists an index set

A0 ⊂ {1, . . . , p} such that #{j ∈ F : j /∈ A0} = q. Under this condition, there

exists at most q ‘large’ coefficients and the rest ‘small’ coefficients are negligible. Let

A1 = Ac
0 be the ‘true’ parameter set and Â1 be the selected sparse set. Xj is referred

to as a relevant (or irrelevant) predictor if j ∈ A1 (or j ∈ A0). Let k = |Â1| denote

the cardinality of Â1 which is the model size. Hence, |F | = p, |A1| = q.

2.5.2 Inferential Methods

Recall that in the linear regression model (1.2) with deterministic design matrix, each

column of X is standardized and assumed to have a norm
√
n. The ϵi’s are assumed

to be independent and identically distributed (iid) random noise following a normal

distribution N(0, σ2) with variance σ2 < ∞.

In this section, we make the link between HDCE and the least square estimator of

the classical linear models and develop DTCCS method to the deterministic design

matrix.
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DTCCS for High-dimensional Variable Screening with Deterministic De-

sign Matrix

We first discuss the connection between HCDE and other classical parameter esti-

mator. For n > p, let X⊥
j be the projection of Xj to the orthogonal complement of

the column space of X̃−j. For a linear model without interaction, the least square

estimator for the jth regression coefficient can be expressed as

β̂lse
j = (X⊥

j

T
Y )/(X⊥

j

T
Xj), (2.20)

for n > p, the scalar X⊥
j
T
Xj ̸= 0, and X⊥

j = (I−Hj)Xj with Hj = X̃−j(X̃
T
−jX̃−j)

−1X̃T
−j

(Zhang and Zhang 2014). β̂lse
j is the inner product ⟨ (I−Hj)Xj

XT
j (I−Hj)Xj

, (I−Hj)Y ⟩. The nor-

malized inner product can be denoted as XT
j (I−Hj)Y

∥(I−Hj)Xj∥2∥(I−Hj)Y ∥2 .

For the high-dimensional case p > n, X⊥
j cannot be easily obtained anymore and

Zhang and Zhang (2014) suggested to relax the orthogonal constraint of the vector

X⊥
j and proposed X⋆

j to solving X⋆
j
T (Y − βjXj) = 0 where X⋆

j is the residual vector

from LASSO when regressing Xj against X̃−j. For the nonzero vector zj that is not

orthogonal to Xj, the corresponding univariate linear regression estimator satisfies

β̂
(lin)
j = (zTj Y )/(zTj Xj) = βj +

∑
k ̸=j z

T
j Xkβk

zTj Xj

+
zTj ϵ

zTj Xj

. (2.21)

Different from traditional linear regression with n > p, the bias is unavoidable in

Eq. (2.21) since it is impossible to have a scalar zTj Xk = 0 for all k ̸= j with nonzero

vector zj and note that β is generalized sparse. In Eq. (2.21), every nonzero zTj Xk,

k ̸= j linearly contributes the bias of βj. To reduce the bias brought by all Xk’s,

k ̸= j, Zhang and Zhang (2014) proposed a low dimensional projection estimator

(LDPE) which uses a non-linear initial estimator β̂(init) to be a bias correction:

β̂j = β̂
(lin)
j −

∑
k ̸=j z

T
j Xkβ̂

(init)
k

zTj Xj

=
zTj Y

zTj Xj

−
∑

k ̸=j z
T
j Xkβ̂

(init)
k

zTj Xj

. (2.22)

We know that Y =
∑p

j=1Xjβj + ϵ, where ϵ is the n× 1 error vector. Combining

Eq. (2.21) and Eq. (2.22), the bias can be decomposed to a noise term and a term
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of approximation errors:

∣∣∣β̂j − βj

∣∣∣ =

∣∣∣∣∣ zTj ϵzTj Xj

+

∑
k ̸=j z

T
j Xk(βk − β̂

(init)
k )

zTj Xj

∣∣∣∣∣
≤ τj ·

(
|zTj ϵ|
∥zj∥2

+ ∥ζj∥∞ · ∥β − β̂(init)∥1

)
, (2.23)

where τj =
∥zj∥2
|zTj Xj |

and vector ζj =
zTj X̃−j

∥zj∥2 .

Since the nonzero vector zj depends on the deterministic matrix X only, zTj ϵ

∥zj∥2 ∼

N(0, σ2). Hence, τj can be considered as the noise factor in Eq. (2.23). ζj can be

considered as the bias factor since ∥ζj∥∞ · ∥β − β̂init∥1 controls the approximation

error in Eq. (2.23). The Dantzig selector β̂D can be used as the non-linear initial

estimator and the boundedness of ∥β − β̂D∥1 will be discussed in Theorem 2.5.1. For

getting the asymptotic normality and efficiency of estimation, we need ζj has a small

infinity norm, ∥β − β̂D∥1 is bounded from above and τj is very small, that is

∥ζj∥∞ · ∥β − β̂D∥1
σ

= o(1) ⇒ β̂j − βj

τjσ

(d)
≈ N(0, 1), (2.24)

where the symbol
(d)
≈ represents approximately identical in distribution.

In the proposed estimator HDCE, zj(λ) = PjFj(λ)P
T
j Xj is an alternative residual

vector for solving Xj
TPjFj(λ)P

T
j (Y − βjXj) = 0 for high-dimensional data. The so-

lution is the inner product ⟨ F
1/2
j (λ)PT

j Xj

XT
j (PjFj(λ)PT

j )Xj
, F

1/2
j (λ)PT

j Y ⟩, and the normalized inner

product is HDCE which can perform high-dimensional variable screening for deter-

ministic design matrix.

An unnormalized version of HDCE with a bias correction can be naturally con-

sidered as a high-dimensional parameter estimator β̂. For getting the asymptotic

normality of β̂j(λj), j = 1, . . . , p we suggest a minimax procedure to determine the

value of λj in a big but finite range, i.e. λj ∈ (0, C1).

λ̂j = argmin
λj∈(0,C1)

{τj · ∥ζj∥∞}

= argmin
λj∈(0,C1)

{∥∥∥∥∥zTj (λj)X̃−j

zTj (λj)Xj

∥∥∥∥∥
∞

}
. (2.25)
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After the minimax procedure, we obtain a general sparse vector β̂. Small but not

exactly zero components of β̂ do not contribute much in estimation but add variability.

β̂ can be viewed as a generalized sparse vector and can separate the relevant and

irrelevant predictor variables efficiently by either choosing a predetermined subset

number, such as n or using a threshold value to determine how small is ‘negligible’.

Thresholded Regression on DTCCS

Recall penalized regression Eq. (1.7), β̂ = argminβ ∥Y −Xβ∥22 + Jλ(|β|). Under the

orthonormal setting, the hard thresholding rule takes the penalty function Jλ(|β|) =

λ2−(|β|−λ)2I(|β| < λ) and obtain the hard thresholding function β̂
(thr)
j = β̂j ·I(|β̂j| >

λ) where β̂j is the jth usual least squares estimate. The soft thresholding rule takes the

L1 penalty function to obtain the soft thresholding function β̂
(thr)
j = sgn(β̂j)(|β̂j|−λ)+

which is the well known LASSO solution. The SCAD penalty brings a continuous

thresholding function which connects the hard and soft thresholding functions (Fan

and Li 2001).

Recently, Zhang and Huang (2008), Shao and Deng (2012), Zhang and Zhang

(2014) and Zheng et al. (2014) performed thresholded regression by using different

thresholding rules. Shao and Deng (2012) proposed thresholded ridge regression to

discriminate large and small elements of β and pointed out that the generalized sparse

model is identifiable if and only if the estimator is lies in a set having a one-to-one

correspondence with row (X). One advantage of using row (X) in high-dimensional

statistics is that the dimension of row (X) is at most n which is much smaller than p.

Wang and Leng (2016)’s HOLP method projects β onto row (X) to obtain β̂holp which

consists of many negligible components. Hence, β̂holp can also be viewed as a sparse

vector and can separate the relevant and irrelevant predictor variables efficiently by

a predetermined subset number, such as n or log(n).

Using a predetermined subset number is an efficient way to do variable screening,

but a more computationally expensive thresholded DTCCS is also theoretically fea-

sible. Thus, we would like to carry out a hard thresholding procedure as defined in

Zhang and Huang (2008) and Zheng et al. (2014), that is, the negligible components
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of β̂ are forced to be 0. Hence, a threshold an is required for discriminating the com-

ponents of β̂. Let β̂j be the jth component of β̂, j = 1, . . . , p. We use an indicator

function to map β̂ to β̃ whose jth component β̃j = β̂j if |β̂j| > an and β̃j = 0 if

|β̂j| ≤ an, where

an = C2n
−γ, 0 < γ ≤ 1/2, C2 > 0, (2.26)

is the thresholding value with constants C2 and γ. This thresholding stage performs

a variable selection procedure to keep the β̂j’s when they are greater than the thresh-

olding value, and force the negligible components to be zero. To apply thresholding,

we need to select the value of C1 in Eq. (2.25) and C2 in Eq. (2.26) and set γ in Eq.

(2.26) be a fixed number in (0, 1/2]. Similar to many high-dimensional problems, C1

and C2 can be viewed as the tuning parameters. Let Ψ(C) be the average prediction

mean squared error when C = (C1, C2) is used in λ and an. It is possible to use a

data-driven method of find values of tuning parameters by minimizing Ψ(C),

Ψ̂(C) =
1

n

n∑
i=1

(Yi − xT
i β̃

(i)(C))2, (2.27)

where β̃(i)(C) is the thresholded estimator of β̂(i)(C) which is based on the dataset

with (xT
i , yi) removed, i = 1, . . . , n. This thresholded DTCCS is connecting to the

classical leave-one-out cross validation (LOOCV), but LOOCV is almost not exe-

cutable due to high-dimensional computation burden. Limited by current computa-

tional ability, we mainly focus on the DTCCS of the deterministic design matrix by

selecting a predetermined subset number.

Conditions and Lemmas

In this subsection, we present regularity conditions and main lemmas.

Condition 2.5.1. (Polynomial high-dimensional). p > n and pn = O(nα) for some

α > 0.
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Condition 2.5.2. (Generalized Sparsity). The generalized sparsity sn satisfies sn ≥

q, sn = o(
√
n) and s2n log pn

n
→ 0 as n → ∞. The positive integer sn plays the role of

an upper bound on the generalized sparsity of a vector of coefficients β.

Condition 2.5.3. (Sub-Gaussian tail condition, Kim and Jeon 2016.). In the linear

model (1.2), the ϵi are independent random variables whose common distribution has

a sub-Gaussian tail. That is, there is some b > 0 such that for every t ∈ R, we have

E(etϵi) ≤ exp{b2t2/2}, which implies that there exist positive constants cϵ and dϵ such

that

P

(∣∣∣∣∣
n∑

i=1

aiϵi

∣∣∣∣∣ > t

)
≤ cϵ · exp

(
− dϵt

2∑n
i=1 a

2
i

)
(2.28)

for all a = (a1, . . . , an)
T ∈ Rn and t > 0.

Condition 2.5.4. (Tilting parameter). Let λ be the tilting parameter introduced in

Section 2.5.2, λ = O(p) for the finite selection of λ.

Definition 2.5.1. (Dantzig selector, Candes and Tao 2007). The Dantzig selector for

linear model (1.2) can be formulated as the solution to the following convex program,

β̂D = argmin
β∈Λ

∥β̂∥1, (2.29)

where where Λ is the set of all β’s which satisfies the Dantzig constraint:∥∥∥∥ 1nXT (Y −Xβ)

∥∥∥∥
∞

≤ r. (2.30)

Let δ = β̂D−β and cδ be a positive constant. Let δA1 denote the vector in Rp that has

the same coordinates as δ on A1 and zero coordinates on the complement of A1 which

is A0. Bickel et al. (2009) proved that ∥δA0∥1 ≤ cδ∥δA1∥1 with a suggestion cδ = 1 for

Dantzig selector when p is large.

Definition 2.5.2. (Rayleigh–Ritz ratio). For a Gram matrix M = 1
n
XTX and nonze-

ro vector V , the Rayleigh–Ritz ratio is defined as:

R(M, V ) =
V TMV

V TV
, (2.31)
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and the Rayleigh–Ritz ratio is bounded by the maximum and minimum eigenvalues

of M. Discussing the value of Rayleigh–Ritz ratio is equivalent to study the value of
∥XV ∥2√
n∥V ∥2 .

The Rayleigh–Ritz ratio and the spiritually similar conditions have been widely

used in sparse modeling in recent articles. Zhang and Huang (2008) defined the sparse

Riesz condition (SRC) which limits the range of the eigenvalues of the Gram matrix

given by the subdesign matrix of a fixed number of covariates. Bickel et al. (2009)

introduced the restricted eigenvalue condition which uses the subvector of V in the

denominator of Eq. (2.31). Zheng et al. (2014) proposed a weaker condition termed

robust spark which set a lower positive bound by using a Gram matrix given by the

subdesign matrix in Eq. (2.31). In this section, we are considering the restricted

eigenvalue condition.

Condition 2.5.5. (Restricted Eigenvalue (RE) Condition, Bickel et al. 2009; Cai

et al. 2017).

For pn, sn defined in Condition (2.5.1) and (2.5.2), and a positive number cδ

introduced in Definition 2.5.1, the following condition holds:

κ(sn, cδ)
△
= min

|A1|≤sn,
δ∈Rp, δ ̸=0,

∥δA0
∥1≤cδ∥δA1

∥1

∥Xδ∥2√
n∥δA1∥2

> 0. (2.32)

For p > n, the Gram matrix 1
n
XTX is degenerate which means min

δ∈Rp, δ ̸=0

∥Xδ∥2√
n∥δ∥2 = 0.

Under the restriction defined in Condition (2.5.4), ∥δA1∥2 < ∥δ∥2. Hence, there exists

positive min
|A1|≤sn,

δ∈Rp, δ ̸=0,
∥δA0

∥1≤cδ∥δA1
∥1

∥Xδ∥2√
n∥δA1

∥2 > min
δ∈Rp, δ ̸=0

∥Xδ∥2√
n∥δ∥2 .

Lemma 2.5.1. For the linear regression model (1.2), Y = Xβ + ϵ, where ϵ ∼

N(0, σ2I) and X is a full row rank deterministic matrix. Let βD (∈ Rp) satisfy the

Dantzig constraint (2.30) with r = cσ
√

log p
n

where c >
√
2. Let δ = β̂D − β. Then,

with probability of at least 1− 2p1−c2/2, we have∥∥∥∥ 1nXTXδ

∥∥∥∥
∞

≤ 2r. (2.33)
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Proof. Consider the event

B =

{∥∥∥∥ 1nXT (Y −Xβ)

∥∥∥∥
∞

≤ r

}
=

{∥∥∥∥ 1nXTϵ

∥∥∥∥
∞

≤ r

}
=

p∩
j=1

{| 1
n
XT

j ϵ| ≤ r}. (2.34)

Applying the sub-Gaussian tail condition for standard normal distribution, we find

that the probability of the complementary event Bc satisfies

P (Bc) ≤
p∑

j=1

P{| 1
n
XT

j ϵ| > r} ≤ p · P{|η| ≥
√
nr

σ
}

≤ 2p · exp
(
−nr2

2σ2

)
= 2p · exp

(
−c2 log p

2

)
= 2p1−c2/2, (2.35)

where η =
XT

j ϵ
√
nσ

∼ N(0, 1) for j = 1, . . . , p. Hence, P (B) ≥ 1− 2p1−c2/2.

Let β̂D be the solution of the Dantzig selector, it satisfies the event with very

large probability

D =

{∥∥∥∥ 1nXT (Y −Xβ̂D)

∥∥∥∥
∞

≤ r

}
. (2.36)

Since event B together with D implies E =
{∥∥ 1

n
XTXδ

∥∥
∞ ≤ 2r

}
, we conclude with

probability of at least 1− 2p1−c2/2, we have
∥∥ 1
n
XTXδ

∥∥
∞ ≤ 2r.

Definition 2.5.3. (Selection Consistency).

Let A1 be the set of indices of ‘large’ components of β, and let Â1 be the set of

indices of components of β selected using a variable selection method. The variable

selection method or Â1 is said to be selection consistent if and only if

lim
n→∞

P (A1 ⊆ Â1) = 1. (2.37)

Shao and Deng (2012) pointed out that for deterministic matrix X, the selection

consistency (2.37) is generally not achievable if β is not identifiable and they propose

a lemma which related to the row space of X to reveal the identifiable β’s.

Lemma 2.5.2. (Identifiability of β, Shao and Deng 2012).

For a full row rank n × p deterministic matrix X defined in model (1.2), p > n

and the rank of X is n. Performing a singular value decomposition of X,

X = PDQT = PDQ̃TD−1
1 , (2.38)
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where P is an n × n matrix satisfying PTP = In, Q is a p × n matrix satisfying

QTQ = In, In denotes the n×n identity matrix, D is an n×n diagonal matrix of full

rank and D1 is an n×n diagonal matrix with all positive entries. D1X is each row of

X multiplying the corresponding diagonal entry in D1. Hence, D1X and X have the

same basis for the row space. Let Q⊥ be a p × (p − n) matrix such that QTQ⊥ = 0

where 0 is a n× (p− n) matrix of all 0’s. Under this design matrix, β is identifiable

if and only if there exists a known function ϕ from Rn to Rp−n such that

G = {β : β = Qξ +Q⊥ϕ(υ), υ ∈ Rn} , (2.39)

which means identifiable β’s must be in a set having a one-to-one correspondence with

the row space row(X) = {Qυ, υ ∈ Rn}).

Shao and Deng (2012) and Wang and Leng (2016) showed ridge estimator, thresh-

olded ridge and HOLP, ridge HOLP are always in row(X). In the next section, we

will show that low dimensional projection estimator (LDPE) of DTCCS is in a set

having a one-to-one correspondence with the row space row(X) = {Qυ, υ ∈ Rn}) by

using the relationship between HOLP and DTCCS.

Main Theorems

Theorem 2.5.1. Let ϵi, i = 1, . . . , n, be independent N(0, σ2) random variables with

finite σ2 > 0, let deterministic design matrix X with equal L2 norm
√
n for each

column. Then, all the diagonal elements of the Gram matrix 1
n
XTX are 1. Let

Condition (2.5.1)- (2.5.4) be satisfied. Consider the Dantzig selector β̂D defined by

Definition (2.5.1) with r = cσ
√

log p
n

where c >
√
2. τj and ζj are defined in Eq.

(2.23). Then with probability at least 1 − 2p1−c2/2, the low dimensional projection

estimator (LDPE) for DTCCS has asymptotic Normal distribution

β̂j − βj

τjσ

(d)
≈ N(0, 1). (2.40)

Proof. Using Lemma 2.5.1, with probability at least 1− 2p1−c2/2,
∥∥ 1
n
XTXδ

∥∥
∞ ≤ 2r.
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Together with restricted eigenvalue condition 2.5.4, we have

κ2(sn, cδ)∥δA1∥22 ≤
1

n
∥Xδ∥22 =

1

n
δTXTXδ

≤ 1

n
∥XTXδ∥∞∥δ∥1

≤ 2r(∥δA1∥1 + ∥δA0∥1)

≤ 2(1 + cδ)r∥δA1∥1

≤ 2(1 + cδ)r
√
sn∥δA1∥2. (2.41)

From Eq. (2.41),

∥δA1∥2 ≤ 2(1 + cδ)r
√
sn/κ

2(sn, cδ), and
1

n
∥Xδ∥22 ≤ 4(1 + cδ)

2r2sn/κ
2(sn, cδ).

Since ∥δA1∥0 ≤ sn, using the relationship of L1 and L2 norm, we have

∥δ∥1 ≤ (1 + cδ)∥δA1∥1 ≤ (1 + cδ)
√
sn∥δA1∥2 ≤ 2(1 + cδ)

2rsn/κ
2(sn, cδ). (2.42)

The LDPE of DTCCS with β̂D as the bias correction can be bounded as∣∣∣β̂j − βj

∣∣∣ ≤ τj ·

(
|zTj ϵ|
∥zj∥2

+ ∥ζj∥∞ · ∥β − β̂D∥1

)

≤ τj ·

(
|zTj ϵ|
∥zj∥2

+ ∥ζj∥∞ · 2(1 + cδ)
2sn

κ2(sn, cδ)
· cσ
√

log p

n

)
. (2.43)

Using the minimax procedure defined in Section 2.5.2 and generalized sparsity sn

defined in Condition (2.5.2),

∥ζj∥∞ · ∥β − β̂D∥1
σ

= o(1).

Hence, with large probability,
∣∣∣β̂j − βj

∣∣∣ ≈ τj ·
|zTj ϵ|
∥zj∥2 which is

β̂j − βj

τjσ

(d)
≈ N(0, 1),

where the symbol
(d)
≈ represents approximately identical in distribution.

Theorem 2.5.2. (Identifiability of HDCE). The high-dimensional correlation esti-

mator (HDCE) is in a set having a one-to-one corresponding with row space of X,

i.e., the HDCE is identifiable.
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Proof. Recall HDCE with tuning parameter λ = 1,

ρ̂j(λ) =
1

aj
XT

j (In −Hj)Y

=
1

aj
XT

j (X̃−jX̃
T
−j + In)

−1Y.

Recall ridge-HOLP with tuning parameter λ = 1,

β̂holp = XT (XXT + In)
−1Y.

X(XXT + In)
−1X is the projection matrix for ridge-HOLP with diagonal entries

hjj = XT
j (XXT + In)

−1Xj for j = 1, . . . , p. Let θj = XT
j (XXT + In)

−1Xβ and θj is

in the row space of X.

For j = 1, . . . , p, XXT + In = X̃−jX̃
T
−j + XjX

T
j + In, apply Sherman-Morrison

formula (Sherman and Morrison 1950):

(X̃−jX̃
T
−j + In)

−1 =
[(
XXT + In

) {
In − (XXT + I)−1XjX

T
j

}]−1

=

(
In +

(XXT + In)
−1XjX

T
j

1−XT
j (XXT + In)−1Xj

)(
XXT + In

)−1

=
(
XXT + In

)−1
+

(XXT + In)
−1XjX

T
j (XXT + In)

−1

1− hjj

.

Hence, XT
j (X̃−jX̃

T
−j + In)

−1Xβ = θj · 1
1−hjj

which means HDCE is in a set having

a one-to-one corresponding with row space of X, i.e., the HDCE is identifiable by

Lemma 2.5.2.

Through Theorem 2.5.1 and 2.5.2 together with Theorems 2.3.1-2.3.3, we conclude

that DTCCS for the deterministic design matrix is reliable and follows sure screening

and consistency properties.

2.5.3 Simulation Studies

In this section, we set n = 100 and p = 1000. We firstly generate initial design

matrix G = (G1, . . . ,Gp) ∈ Rn×p. Although G is assumed to be a deterministic

design matrix, we can only simulate it from a certain known distribution such as the
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normal distribution. Given a particular ρ ∈ (−1, 1), simulate the rows of G from

N(0,Σ) with Σ = (1 − ρ)Ip + ρ11T . The standardized deterministic design matrix

is X with the jth column Xj =
√
nGj/∥Gj∥2. (X,Y) is defined in Eq. (1.2) with

σ = 1. Given a particular α > 1, let βj = 3
√
(2/n) log(p), j = 1, 500, 1000, and

βj = 3
√
(2/n) log(p)/αj for all other j. From Figure 2.1, we found that for different

values of ρ’s, the majority bulk of β
τ

are on or near the QQ-line which verifies the

result of Theorem 2.5.1.
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Figure 2.1: Normal QQ Plot for β/τ with ρ = 0.1, . . . , 0.9.

68



2.6 Discussion

In this chapter, we propose a new estimator HDCE for measuring the correlation

between candidate variables and the response (or current residual), and a simple

and efficient variable screening method, DTCCS, which is developed based on the

new correlation measurement. The proposed method is justified theoretically and

numerically for high dimensional variable screening/selection. Comparing with the

seminal screening method SIS, the DTCCS method does not require the marginal

correlation assumption and can successfully screen covariates with high spurious cor-

relation. Comparing with iterative screening methods such as Tilting, the proposed

DTCCS method can provide more accurate screening results and is less computation-

ally expensive. Comparing with the most recent remarkable HOLP approach, the

DTCCS method works much better when the multicollinearity can not be identified

and removed from the data. Extensive simulation studies show that the performance

of the DTCCS method is competitive and reliable. The DTCCS method enjoys nice

properties of successful variable screening and computational efficiency; it is especially

appealing for handling data which are highly correlated or multicollinearity exists.

A natural extension of the DTCCS method is to make use of the residual vec-

tor from other methods other than the ridge when regressing Xj against all other

variables X̃−j, such as LASSO, SCAD and etc., for identifying accurate relationships

among them. Exploring the DTCCS method under the deterministic design and the

post-selection inference are other valuable directions. A thorough numerical study is

expected to be explored after the breakthrough of the computing ability.
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Chapter 3

Analysis Challenges for High

Dimensional Influence Measure

The main objective of this chapter is to develop new methodologies in high dimen-

sional influence measure and discuss the connection to other widely used influence

measure methods for both low and high dimensional data. For high-dimensional data,

classical methods designed for the low dimensional case either perform poorly or are no

longer applicable. In general, the test statistic for the influence measure is a function

of a distance between the parameter estimator of the complete dataset and the leave-

one-out dataset. This distance captures the effect of individual observations relative

to a specific positive definite matrix. Cook (1977) propose the classical Cook’s dis-

tance which measures each individual observation’s influence by using the difference

of least squares regression coefficient estimate β̂ of the full dataset and β̂(−i) of the ith

deleted dataset relative to the positive definite matrix M = XTX. Note that Cook’s

distance is proportional to ∥M1/2(β̂− β̂(−i))∥22 and M is proportional to the precision

matrix (the inverse of the covariance matrix) of β̂. For i = 1, . . . , n, the real limit-

ing distribution of the Cook’s distance is complicated, but a scaling of this statistics

follows approximately central F-distribution (Cook 1977). Due to the computational

cost associated with large number of covariates as well as the problem of statistical

inference accuracy and algorithm stability, traditional influence detection methods

such as the Cook’s distance do not work well on high-dimensional datasets. Also,
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the high dimensional nature of dataset is likely to amplify the potential observation’s

impact on the analysis. Zhao et al. (2013) suggested to use the marginal correlation

between the response and the predictor variables ρ̂ as a high-dimensional counter-

part of least squares regression coefficient estimate β̂. High-dimensional influence

measure (HIM, Zhao et al. 2013) measures the Euclidean norm (squared distance)

between the marginal correlation estimate based on all n observations, ρ̂, and the

estimate obtained by deleting the ith point, say ρ̂(i). Many other test statistics on in-

fluence measure are based on an estimator of ∥M1/2(Tn−Tn−1)∥22 for a given positive

definite matrix M and a given estimator T of the full dataset and the deleted dataset

respectively, see detail in Cook and Sanford (1980). We shall call these test statistics

‘sum-of-squares type statistics’ as they aim to estimate the squared Euclidean norm

∥M1/2(Tn − Tn−1)∥22. Although sum-of-squares type statistics are widely used in hy-

pothesis tests, many conditions which are required in hypothesis tests are no longer

met in the high dimensional sparse setting. Cai et al. (2014) pointed out that the test

based on the sum-of-squares type statistics are not powerful to distinguish between

the null and the alternative hypothesis, and proposed test statistics of extreme val-

ue distribution (EVD) type. In this chapter, to measure high-dimensional influence,

we first propose an EVD type statistic which is based on a linear transformation of

(Tn − Tn−1) by the precision matrix Ω of T . Suppose for the moment that the pre-

cision matrix Ω = Σ−1 is known. This new statistic is theoretically powerful against

sparse alternatives in the high dimensional setting under dependence. However, in

most cases Ω is unknown and thus needs to be estimated. When Ω is known to be

sparse, the constrained l1−minimization for inverse matrix estimation (CLIME, Cai

et al. 2014) can estimate Ω directly but it is time-consuming. To get another efficient

method for high-dimensional influence measure, we propose a testing statistic from

the perspective of the robustness of design. Similar to the kernel idea in machine

learning, a transformation of the influence function (IF) of marginal correlation is

used to calculate the inner product on the new high-dimensional sphere. This inner

product is measuring the Hellinger distance (HD) of two discrete probability mass

functions which are transformed from the marginal correlations between the respec-
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tive variables or quantities of interest. This construction gives detecting power to flag

the observations that have unusual effect on high-dimensional models. The second

method will be illustrated theoretically and numerically. Note that the design ma-

trix is assumed to be full row rank deterministic throughout this chapter and some

notations will be redefined in this chapter.

3.1 Introduction

In classical regression, an observation is influential if the estimates of β̂ change sub-

stantially when this observation is omitted. The presence of influential observations

could lead to distorted analysis and misleading interpretations in statistical analy-

sis. In formulating linear models Y = Xβ + ϵ, where X ∈ Rn×p, β ∈ Rp and

ϵ ∼ N(0, σ2I), measuring the changes in the individual estimates is the classical ap-

proach of looking at the effect of the observed value on the model. In the work of

Cook (Cook 1977, 1979), the influence of the ith observed value is measured by using

squared distance between the estimated regression coefficient of the dataset with and

without the ith observed value relative to a specific geometry (that is, the plane s-

panned by the explanatory variables, such as XTX). Intuitively, if an observed value

has influence on the model, this distance is expected to be large. The derivation of

Cook’s Distance is based on the above idea.

Without loss of generality (WLOG), we delete the first row of the design matrix X.

Write X =

 xT
1

X(−1)

, XT
(−1)X(−1) = XTX − x1x

T
1 and similarly Y =

 y1

Y(−1)

.

Let a = (XTX)−1x1, b = x1. By applying Sherman-Morrison-Woodbury formula

(I− abT )−1 = I+ abT

1−bT a
(Sherman and Morrison 1950), we obtain

(XT
(−1)X(−1))

−1 = [XTX(I− (XTX)−1x1x
T
1 )]

−1

= (I+
(XTX)−1x1x

T
1

1− xT
1 (X

TX)−1x1

)(XTX)−1

= (XTX)−1 +
(XTX)−1x1x

T
1 (X

TX)−1

1− h11

.

Similarly XT
(−1)Y(−1) = XTY − x1y1, so that the regression coefficients computed
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from the reduced sample are:

β̂(−1) = [XT
(−1)X(−1)]

−1XT
(−1)Y(−1)

= β̂ − (XTX)−1x1

1− h11

e1,

where e1 = y1 − xT
1 β̂; and in general

β̂(−i) = β̂ − (XTX)−1xi

1− hii

ei,

where ei = yi − xT
i β̂.

Then Cook’s distance is

Di =
(β̂ − β̂(−i))

TXTX(β̂ − β̂(−i))

pσ̂2

= (
ei

1− hii

)2
xT
i (X

TX)−1xi

pσ̂2

=
e2i

σ̂2(1− hii)

hii

p(1− hii)

= r̂2i
hii

p(1− hii)
, (3.1)

where r̂i = ei
σ̂
√
1−hii

, i = 1, . . . , n. Note that this statistic does not follow the F (p, n−p)

distribution. However, a F -distributed statistic with degrees of freedom p and (n−p)

can be approximately employed to conduct the hypothesis testing. The magnitude

of Di is assessed by comparing it with Fα(p, n − p) where α is the significance level.

A large value of Di, for instance, Di ≥ F0.5(p, n − p), indicates that deleting the

ith observation would move β̂(−i) to the boundary of an approximate 50% or more

confidence region for β based on the complete dataset (Cook 1977). The Cook’s

Distance is not effective when it is used in high dimensional dataset. In view of

this, Zhao et al. (2013) proposed a method to address the above problem, which is

termed high-dimensional influence measure (HIM). In the work of Zhao et al. (2013),

a proposition of a novel high-dimensional influence measure for regressions with the

number of explanatory variables far exceeding the number of observations is made. In

their work, they considered the distance between the estimated marginal correlation

of the response and individual predictors of the original dataset, say ρ̂, and that of the

response and the individual predictors of the dataset with the single observed value
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deleted, say ρ̂(k) where (k) corresponds to the kth observed value deleted. Inference

is then conducted on this measure by deriving its asymptotic distribution which is

shown to follow a chi-Squared distribution. The resulting conclusion based on this

inference is then used to determine the influence an observation has on the model

under construction. Even though HIM performs appreciably well, there are some

drawbacks:

1. The performance of the method depends on the robustness of the estimate of

mean and variance.

2. Since standardization is not employed in each leave-one-out step, the estimates

of the marginal correlations are not bounded between −1 and 1.

3. The intractability involved in the analysis of high dimensional datasets that

renders the Euclidean norm is not preferable in applications involving high

dimensional data mining.

4. High dimensional datasets mostly induce high correlation among predictors.

These correlations are mostly ‘spurious’, hence marginal correlations based on

this statistical phenomenon may not yield reliable result, and therefore it require

some adjustment.

To overcome the limitations faced by HIM and the deficiency of the test based on

the sum-of-squares type statistics, we discuss the influence diagnosis measure from

the perspectives of test statistics of extreme-value-distribution (EVD) type and of

robustness of design type.

3.2 High-dimensional Influence Measure Based on

EVD Statistics

In traditional linear regression, ordinary least squares (OLS) projects the response

Y onto the linear space col (X) spanned by the column vectors of X. Shao and

Deng (2012) used an approach to project the regression vector β onto the row space
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row (X) and showed that high-dimensional estimate is identifiable if and only if it

lies in a set having a one-to-one correspondence with row (X). One advantage to use

row (X) in high-dimensional screening is that the dimension of row (X) is at most n

for p > n. For p > n, ridge regression estimator and HOLP (Wang and Leng 2016)

are in row (X).

In model (1.2), X is considered to be a full rank deterministic design matrix whose

dimension p is larger than n, hence X has full row rank n and ϵ ∼ N(0, σ2In). From

the singular value decomposition,

X = PDQT , (3.2)

where P is an n × n matrix satisfying PTP = In, Q is a p × n matrix satisfying

QTQ = In, D = diag(D11, . . . , Dnn) is an n × n full rank diagonal matrix with

D11 ≥ D22 ≥ · · · ≥ Dnn > 0. Let D−1 = diag(1/D11, . . . , 1/Dnn).

Recall HOLP by using singular value decomposition,

β̂holp = XT (XXT )−1Y,

= QD−1PTY. (3.3)

Since we are using deterministic design matrix in this chapter, the covariance

matrix of β̂holp,

Σ̂holp = QD−1PT · V ar(Y ) ·PD−1QT ,

= QD−2QTσ2. (3.4)

Combining Eq. (3.3) and (3.4), we obtain β̂holp ∼ N(QQTβ,QD−2QTσ2). The

estimation of the precision matrix Ω̂ = Σ̂
−1

holp can be determined by CLIME.

Using Leave-One-Out technique, denote β̂
(i)

holp, i = 1, . . . , n, the HOLP solution

from the reduced dataset. If there is no influential observation and n → ∞, β̂
(i)

holp is

believed to be identical to β̂holp. We show the distribution of β̂
(i)

holp when n → ∞.

Proposition 3.2.1. Let X be a full row rank deterministic design matrix (n <

p, rank(X) = n) and X = PDQT where P is uniformly distributed on the Stiefel
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manifold Vp(Rp), Q is uniformly distributed on the Stiefel manifold Vn(Rp) and D =

diag(D11, . . . , Dnn) is an n× n diagonal matrix with D11 ≥ D22 ≥ · · · ≥ Dnn > 0. If

there is no influential observation and n → ∞,

β̂
(i)

holp ∼ N(QQTβ,QD−2QTσ2). (3.5)

Proof. Let pTi is the ith row of P, (n − 1) × n matrix P(−i) consists the remaining

(n− 1) rows of P, PT
(−i) ∈ Vn−1(Rn). Hence P(−i)P

T
(−i) = In−1.

Without loss of generality, we use i = 1 in this proof.

P =

 pT1

P(−1)


n×n

, and its transpose PT =
(

p1 PT
(−1)

)
n×n

. Using the same D

and Q as defined in Eq. (3.2), X(−1) = P(−1)DQT , β̂
(1)

holp = QDPT
(−1)P(−1)D

−2PT
(−1)Y

and E(β̂
(1)

holp) = QDPT
(−1)P(−1)D

−2PT
(−1)P(−1)DQTβ. The proof is left to show

PT
(−1)P(−1) → In as n → ∞.

Pe1 is the first column of P and is uniformly distributed on a unit sphere Sn−1.

Let {wi, i = 1, 2, . . . , n} be i.i.d random variable from standard normal distribution,

we have Pe1
(d)
=
(√∑n

j=1w
2
j

)−1/2

(w1, w2, . . . , wn)
T and

P(−1)e1
(d)
=

√√√√ n∑
j=1

w2
j

−1/2

(w1, w2, . . . , wn−1)
T .

Hence, the first diagonal element of PT
(−1)P(−1), eT1PT

(−1)P(−1)e1
(d)
=

w2
1+···+w2

n−1

w2
1+···+w2

n
, is a

random variable which follows a beta distribution with parameter (n− 1)/2 and 1/2.

From Lemma 3 Moderate deviation of Fan and Lv (2008), we know that for any

C > 0, there exists some ϵ1, ϵ4 ∈ (0, 1), ϵ2, ϵ3 > 0 such that

P

(
1

n− 1

n−1∑
i=1

w2
i < 1− ϵ1

)
≤ e−C(n−1), P

(
1

n

n∑
i=1

w2
i > 1 + ϵ2

)
≤ e−Cn < e−C(n−1).

and

P

(
1

n− 1

n−1∑
i=1

w2
i > 1 + ϵ3

)
≤ e−C(n−1), P

(
1

n

n∑
i=1

w2
i < 1− ϵ4

)
≤ e−Cn < e−C(n−1),
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Let c′1 =
1−ϵ1
1+ϵ2

, c′2 =
1+ϵ3
1−ϵ4

and by Bonferroni’s inequalities, we have

P

(
eT1P

T
(−1)P(−1)e1 < c′1

n− 1

n
or eT1P

T
(−1)P(−1)e1 > c′2

n− 1

n

)
≤ 4e−C(n−1).

Then for any C > 0, there exist c′′1, c′′2 with 0 < c′′1 < 1 < c′′2, such that

P
(
eT1P

T
(−1)P(−1)e1 < c′′1 or eT1P

T
(−1)P(−1)e1 > c′′2

)
→ 0 as n → ∞. (3.6)

Since PT
(−1) ∈ Vn−1(Rn), P(−1)P

T
(−1) = In−1. The trace of PT

(−1)P(−1) is the same as

that of P(−1)P
T
(−1), hence tr(PT

(−1)P(−1)) = n − 1. Combining with the result of Eq.

(3.6), we conclude the expectation of the diagonal elements tend to 1 as n → ∞.

Since the Frobenius norm ∥PT
(−1)P(−1) − In∥F = 1 and P is uniformly distributed

on the Stiefel manifold Vp(Rp), we obtain the sparseness of the off-diagonal elements.

That completes the proof of this proposition.

To determine the degree of influence the ith observation has on the HOLP esti-

mate, the sum-of-square type statistic ∥M1/2(β̂holp − β̂
(i)

holp)∥22 and the extreme-value-

distribution (EVD) type statistic ∥M(β̂holp−β̂
(i)

holp)∥∞ are two approaches to measure

the influence measure. In this section, we follow the preference of Cai et al. (2014) to

discuss the EVD type statistics.

For a given invertible p× p matrix M, denote the vector E = M(βholp −β
(i)
holp) =

(E1, E2, . . . , Ep)
T . Let b = (b11, . . . , bpp)

T be the diagonal of the covariance matrix

of Mβholp. We propose to test the null hypothesis ‘H0 : the ith observation is not

influential’ on the basis of the test statistic

DM = max
1≤j≤p

E2
j

bjj
. (3.7)

Let Ω = Σ−1 be the precision matrix of βholp and assume Ω is known. A nature

choice of M is Ω1/2 since the components of Ω1/2β̂holp and Ω1/2β̂
(i)

holp are i.i.d. random

variables following normal distribution, Ω1/2β̂holp ∼ N(QQTβ, Ip) and Ω1/2β̂
(i)

holp ∼

N(QDPT
(−1)P(−1)D

−2PT
(−1)P(−1)DQTβ, Ip). By selecting M = Ω1/2, the test statistic

for the ith influence measure is

DΩ1/2 = max
1≤j≤p

{[Ω1/2(β̂holp − β̂
(i)

holp)]
◦2}j

bjj
= max

1≤j≤p

E2
j

bjj
, (3.8)
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where ◦2 is the Hadamard square of a vector. Eq. (3.8) is termed the extreme value

distribution for high-dimensional influence measure (EVD-HIM) for M = Ω1/2.

Under H0, Ej, j = 1, 2 . . . , p, follows normal difference distribution with mean

0 and variance bjj. Hence, a scaled E2
j

bjj
, j = 1, 2 . . . , p, follows standard chi-squared

distribution. To evaluate the test statistics, we start with the required ‘concentration

condition’ for the high-dimensional covariance matrix.

Condition 3.2.1. C−1
0 ≤ d⋆(Σ) ≤ d⋆(Σ) ≤ C0 for some constant C0 > 0.

Theorem 3.2.1. Let the test statistics DΩ1/2 be defined as in Eq. (3.8) and Condition

3.2.1 holds. Let a0 = o(log(p)) be a prespecified constant which is proportional to the

correlation of Ω1/2βholp and Ω1/2β
(i)
holp. Let constant bp = 2 log p − log(log p) − log π

(p = 2, 3, . . . ), then
a0DΩ1/2−bp

2
has a nondegenerate limit distribution as p → ∞, i.e.,

lim
p→∞

P (
a0DΩ1/2 − bp

2
≤ t) = e−e−t

. (3.9)

Proof. Let χ2
i , i = 1, . . . , p, be a series of iid standard chi-squared random variables.

Since bp = 2 log p − log(log p) − log π (p = 2, 3, . . . ) and bp
a0

→ ∞, P (
aoχ2

i−bp
2

> t) ∼

e−t/p as p → ∞, which is

lim
p→∞

p · (1− F (
bp + 2t

a0
)) = e−t. (3.10)

We want to find the limiting distribution L(t) = limp→∞ F p( bp+2t

a0
) which is equivalent

to logL(t) = limp→∞ p · log(F ( bp+2t

a0
)). We know that from De Haan and Ferreira

(2007), limp→∞
− logF (·)
1−F (·) = 1. Combine this result with (3.10), e−t = − logL(t).

Hence, L(t) = e−e−t .

Theorem 3.2.1 shows the asymptotic null distribution of DΩ1/2 . On the basis of

the limiting null distribution, the asymptotic α−level test can be defined as follows:

Ψα(Ω
1/2) = I[DΩ1/2 ≥

bp + 2qα
a0

], (3.11)

where qα is the (1 − α)-quantile of the the Gumbel distribution (Standard Ex-

treme Value distribution Type-I) with the cumulative distribution function G(t) =

exp{− exp(−t)}, i.e. qα = − log[− log(1− α)].
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The null hypothesis H0 is rejected if and only if Ψ(·) = 1 at test level α. The

α−level test can be defined as Tα = {Ψα : PH0(Ψα = 1) ≤ α}. We will show that the

EVD-HIM’s ability of detecting the influential observation is getting more powerful

as we increase the value of p in Section 3.4.1.

3.3 High-dimensional Influence Measure Based on

Robustness of Design

In the previous section, we propose the EVD-statistics which is theoretically feasible

in the high dimensional setting with known precision Ω. However, Ω is unknown and

difficult to estimate in most cases. In this section, we discuss the influence measure

from another perspective which does not need to compute the precision matrix. We

start with the notion of the sample correlation.

The Sample Analogue of Marginal Correlation

Standardizing the predictors and centering the response are the common procedure to

solve high-dimensional problems, see details in Efron et al. (2004), Fan and Lv (2008),

Wang (2009), Cho and Fryzlewicz (2012), Zhao et al. (2013) Wang and Leng (2016)

and Fan et al. (2018). Zhao et al. (2013) standardized all regressors Xj (columns of

X ∈ Rn×p) and Y (∈ Rn) to find the asymptotic properties of HIM. In this section,

unit length scaling is used to standardize all regressors and the response as well.

Firstly, let S = (sij) denotes the sample covariance matrix such that

(n− 1)S = XT (In − Jn)X, (3.12)

where 1n = (1, . . . , 1)T and Jn = 1
n
1n1

T
n is symmetric and idempotent. Hence, In−Jn

is symmetric and idempotent.

Hence, the design matrix after standardization is

Kn×p =


kT
1

...

kT
n

 =


...

xi1−x̄1√
s11

. . .
xip−x̄p√

spp
...

 , (3.13)
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where ki = (xi1−x̄1√
s11

, . . . ,
xip−x̄p√

spp
)T , i = 1, . . . , n. We have the sample correlation matrix

as

R =
1

n− 1
KTK =



1 ρ̂12 ρ̂13 . . . ρ̂1p

ρ̂12 1 ρ̂23 . . . ρ̂2p

ρ̂13 ρ̂23 1 . . . ρ̂3p
...

...
...

...

ρ̂1p ρ̂2p ρ̂3p . . . 1


, (3.14)

and R can take the form

R = D
−1/2
S SD

−1/2
S , (3.15)

where DS = diag(s11, . . . , spp) is the diagonal matrix of sample variances. From Eq.

(3.3), (3.14) and (3.15), we have K as

K = (In − Jn)XD
−1/2
S . (3.16)

Denote the sample variance of Y as SSy and define

SSy =
1

n
YT (In − Jn)Y.

Similarly Y0 = SS
−1/2
y (In − Jn)Y is the standardized values of Y, so that the linear

square estimate for regression coefficients of Eq. (1.2) is

β̂ = (KTK)−1KTY0 = R−1


ρ̂1Y

ρ̂2Y
...

ρ̂pY

 , (3.17)

where ρ̂jY =
∑n

u=1(xuj−x̄j)(yu−ȳ)

(SjjSSY )1/2
=

nSjY

(SjjSSY )1/2
.

In the presence of multicollinearity, the matrix KTK becomes singular or nearly

singular. In this case, β̂ = (KTK)−1KTY0 does not exist. However, KTY0 is possible

to calculate. This implies that the correlation between X and Y can be ascertained.

By employing the leave-one-out technique, let G(k) = [K(−k)]
TY0(−k), where K(−k)

and Y0(−k) are the matrices obtained by deleting the kth row from K and Y0.
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The Hellinger Distance Setting

Distance or divergence measures are importance in statistics and machine learning.

One of the most important deep learning techniques, convolutional neural network

(CNN, Hinton and Salakhutdinov 2006) uses cross entropy as the criteria to minimize

the loss function, where the cross entropy is derived from Kullback-Leibler divergence.

There are articles regarding the distance or divergence measures in theoretical or ap-

plied statistics. Among them, the minimum Hellinger distance (MHD, Beran 1977)

is believed to be one of the most popular approach for independent and identically

distributed (iid) continuous random variables in parametric or nonparametric models.

MHD estimators have been shown to have excellent robust properties in parametric

models such as the resistance to outliers and robustness with respect to model mis-

specification (Beran 1977; Donoho and Liu 1988). Since the original work of Beran,

MHD estimators have been developed in the literature for various setups and mod-

els including discrete random variables, parametric mixture models, semiparametric

models, nonparametric models and etc. Recent developments in this area and some

important references can be found in the recent articles of Tang and Karunamuni

(2013), Karunamuni et al. (2015).

Let F and G denote two probability measures that are absolutely continuous

with respect to a dominating probability measure µ, denote the densities as f =

dF
dµ

and g = dG
dµ

, respectively, the squared Hellinger distance DH(F,G) between two

probability measures F and G can be expressed as a standard calculus integral

D2
H(F,G) =

1

2

∫
[
√

f −√
g]2dµ, (3.18)

and the choice of µ does not affect the value of DH(F,G) (Shorack 2017). Let Fj

and G
(k)
j , j = 1, . . . , p, be the marginal correlation of jth predictor and the response

from the whole and kth deleted dataset respectively. We apply the dot-product

kernel idea to measure the distance of two p × 1 absolute correlation vectors F =

{|F1|, |F2|, . . . , |Fp|} and G = {|G(k)
1 |, |G(k)

2 |, . . . , |G(k)
p |}. Let θ be the absolute value
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of the marginal correlation, we use the following transformation

ϕ(θ) =
1

p


 0p

1p


2p×1

+

 Ip

−Ip


2p×p

θp×1

 , (3.19)

where θ ∈ Rp, 0p, 1p are two p × 1 vectors of 0’s and 1’s respectively. After the

transformation, two probability mass functions (pmfs) F̃ and G̃(k) are constructed

from F and G(k),

F̃ = ϕ(F ) =
1

p
{|F1|, |F2|, . . . , |Fp|, 1− |F1|, 1− |F2|, . . . , 1− |Fp|}

and

G̃(k) = ϕ(G) =
1

p
{|G(k)

1 |, |G(k)
2 |, . . . , |G(k)

p |, 1− |G(k)
1 |, 1− |G(k)

2 |, . . . , |1− |G(k)
p |}.

Based on the pmfs above, we have the Squared Hellinger distance between F̃ and

G̃(k),

D2
H(F̃ , G̃(k)) =

∥∥√F̃ −
√

G̃(k)
∥∥2
2

=
1

2p

p∑
j=1

{(√
|Fj| −

√
|G(k)

j |
)2

+

(√
1− |Fj| −

√
1− |G(k)

j |
)2
}

= 1− hk, (3.20)

where

hk =
1

p

p∑
j=1

(√
|FjG

(k)
j |+

√
(1− |Fj|)(1− |G(k)

j |)
)
. (3.21)

Considering F as the baseline distribution since the ‘true’ distribution of the

marginal correlations is unknown. We check the Hellinger distance of the trans-

formed pmfs F̃ and G̃(k). If the Hellinger distance between F̃ and G̃(k) is negligible,

then the kth observation is not flagged as influential. Otherwise, the kth observation

is a reasonable candidate of an influential observation. Therefore, hk measures the

closeness of F̃ and G̃(k). This implies that large values of hk indicates that the ob-

servation in question may not be influential. Conversely, small values of hk indicates

that the observation in question may have a potential influence on the model. We

term hk as the Hellinger distance for high-dimensional influence measure (HD-HIM).
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The Population Analogue of IF based on HD

From the sum-of-squares type test statistic for the influence measure as follows,

Di(M, c,Υi) =
ΥT

i MΥi

c
. (3.22)

Di(M, c,Υi) comprises of three components: the influence function Υ of a specific

parameter estimator, a matrix M which captures the space span by the explanatory

variables and a scalar c. (3.22) is applicable to low dimensional datasets, for instance,

the Cook’s Distance. The IF is the regression coefficients in this case. However, in high

dimensional datasets seting, the regression coefficients can not easily be found or may

not be estimable but marginal correlations between the explanatory and the response

variables can always be calculated. (3.22) can then be extended to high dimensions by

choosing IF to be the marginal correlation. Following the similar spirit, techniques of

the correlation learning are widely used as the alternative approach of the traditional

regression coefficients, see details in Section 1.3.

Similar to the construction of influence function for regression coefficients, we need

an appropriate functional T defined on the joint distribution, F of the (p+ 1)-vector

of the x and y with

EF


 x

y

 (xT , y)

 =

 EF (xx
T ) EF (xy)

EF (yx
T ) EF (yy)

 . (3.23)

So that by standardizing the variables x and y we have

EF


 x

y

 (xT , y)

 =

 Ip Γ(F )

ΓT (F ) 1

 , (3.24)

where Ip is a p-dimensional identity matrix. Functional T on F is constructed from

the feature transformation ϕ in Eq. (3.19) which is based on the marginal correlation

between the response y and explanatory variables x,

T (F ) =

1

p

 0p

1p

+

 Ip

−Ip

 |Γ(F )|


◦ 1
2

, (3.25)

where (·)◦ 1
2 is the Hadamard positive square root of (·) and 0p and 1p are vectors of

zeros and ones respectively. Note that Γ(F ) is a p-dimensional vector of absolute
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marginal correlations of x and y. To apply the functional T to the derivation of the

influence function (IF), we define the following:

Υi = Tn(F )− Tn−1(F ), (3.26)

where subscript n corresponds to the sample size. Note that HD-HIM in Eq. (3.21)

coincides with the dot-product kernel of T (F ) and T (G(k)).

3.3.1 Inference of Proposed Method

Asymptotic Properties

In this section, our interest is to discuss the asymptotic property of the proposed test

statistic. We start to present the regularity conditions and definitions.

Condition 3.3.1. (Polynomial high-dimensional). p > n and p = O(nα) for some

α > 0.

Condition 3.3.2. (Normality assumption). Assume X follows the matrix normal

distributions and ϵi ∼ N(0, σ2) with variance σ2 for i = 1, . . . , n.

Definition 3.3.1. (Blended weight chi-squared disparity (BWCS) and blended weight

Hellinger distance (BWHD), (Lindsay, 1994, 2004))

Lindsay (1994) defined the BWCS and BWHD between two p-dimensional discrete

mass function F and G respectively as

BWCS(α) =

p∑
i=1

(Fi − Gi)
2

αFi + (1− α)Gi

, α ∈ [0, 1], (3.27)

and

BWHD(α) =

p∑
i=1

(Fi − Gi)
2

[α
√
Fi + (1− α)

√
Gi]2

, α ∈ [0, 1]. (3.28)

α in Eq. (3.30) and (3.31) adjusts the weight of F and G. α equals 0 and 1 corresponds

to Pearson’s chi-square and Neyman’s chi-square respectively. For α = 1
2

in Eq.

(3.30), it is symmetric chi-square which is a squared distance satisfying the triangle

inequality (Le Cam 1986, Ch. 4). Also, we would need to multiply BWCS(α) by p

in order to obtain the usual chi-squared test statistics (Lindsay 2004).

84



Lemma 3.3.1. (Theorem 2.7 of Van der Vaart 1998)

If An converges in distribution to A and the difference between An and Bn con-

verges in probability to zero, then Bn also converges in distribution to A,

|An −Bn|
p→ 0, and An

d→ A ⇒ Bn
d→ A. (3.29)

Theorem 3.3.1. Assume that Condition 3.3.1 and Condition 3.3.2 hold and BWCS(α)

and BWHD(α) are defined in Definition 3.3.1 with Fi = (fi, 1 − fi)
T and Gi =

(gi, 1− gi)
T . Suppose there is no influential point and p → ∞, the asymptotic distri-

bution of p · BWHD(1
2
) approximately converge to the chi-squared distribution with

degree of freedom of 1.

Proof. Let the elementwise disparities of BWCS and BWHD between F and G be

BWCSp(α) =

p∑
i=1

(Fi − Gi)
2

αFi + (1− α)Gi

, α ∈ [0, 1], (3.30)

and

BWHDp(α) =

p∑
i=1

(Fi − Gi)
2

[α
√
Fi + (1− α)

√
Gi]2

, α ∈ [0, 1]. (3.31)

Note that BWHDp(
1
2
) and BWCSp(

1
2
) can be considered as the two sequences of

random variables since they are both constructed from the probability mass functions.

From Lemma 3.3.1, the proof is left to show

dp = ∥BWHD(
1

2
)−BWCS(

1

2
)∥ p→ 0. (3.32)

F̃ and G̃(k) are defined in Eq. (3.20).
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hk =

p∑
j=1


√

|FjG
(k)
j |

p2
+

√
(1− |Fj |)(1− |G(k)

j |)
p2


=

1

2

p∑
j=1

{√√√√( |Fj |
p

+
|G(k)

j |
p

)2

−

(
|Fj |
p

−
|G(k)

j |
p

)2

+

√√√√(1− |Fj |
p

+
1− |G(k)

j |
p

)2

−

(
1− |Fj |

p
−

1− |G(k)
j |

p

)2}

=
1

2

p∑
j=1

(
|Fj |
p

+
|G(k)

j |
p

)1−

(
|Fj | − |G(k)

j |

|Fj |+ |G(k)
j |

)2


1/2

+
1

2

p∑
j=1

(
1− |Fj |

p
+

1− |G(k)
j |

p

)1−

(
|Fj | − |G(k)

j |

2− |Fj | − |G(k)
j |

)2


1/2

=
1

2

p∑
j=1

(
|Fj |
p

+
|G(k)

j |
p

)1− 1

2

(
|Fj | − |G(k)

j |

|Fj |+ |G(k)
j |

)2

− 1

8

(
|Fj | − |G(k)

j |

|Fj |+ |G(k)
j |

)4

− . . .


+

1

2

p∑
j=1

(
1− |Fj |

p
+

1− |G(k)
j |

p

)1− 1

2

(
|Fj | − |G(k)

j |

2− |Fj | − |G(k)
j |

)2

− 1

8

(
|Fj | − |G(k)

j |

2− |Fj | − |G(k)
j |

)4

− . . .


=

1

2

p∑
j=1


(
|Fj |
p

+
|G(k)

j |
p

)
− 1

4p

p∑
j=1

(
|Fj | − |G(k)

j |
)2

|Fj |+ |G(k)
j |


+
1

2

p∑
j=1


(
1− |Fj |

p
+

1− |G(k)
j |

p

)
− 1

4p

p∑
j=1

(|Fj | − |G(k)
j |)2

2− |Fj | − |G(k)
j |

− ϵ

= 1− 1

2p

p∑
j=1

(|Fj | − |G(k)
j |)2

(|Fj |+ |G(k)
j |)(2− |Fj | − |G(k)

j |)
− ϵ,

where ϵ = o(1). Since BWHD(12) = 8(1 − hk) ≈ 4
p

∑p
j=1

(|Fj |−|G(k)
j |)2

(|Fj |+|G(k)
j |)(2−|Fj |−|G(k)

j |)
. In

this case, BWCS(12) = 4
p

∑p
j=1

(|Fj |−|G(k)
j |)2

(|Fj |+|G(k)
j |)(2−|Fj |−|G(k)

j |)
. As p → ∞, dp = ∥BWHD(12) −

BWCS(12)∥
p→ 0. Hence, the asymptotic distribution of p · BWHD(12) approximately

converge to the chi-squared distribution with degree of freedom of 1.

Lindsay (2004) suggests multiplying BWCS(α) by its dimension in order to obtain

the usual chi-squared test statistics. In this case, p ·BWHD(1
2
) is approximately the

usual chi-squared test statistics which is the same result of Ch. 17.2 (page 558) of
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Le Cam (1986). Hence, 4pBWHD(1
2
) behaves in the same manner as the usual chi-

squared test statistics for p → ∞. An important implication of Theorem 3.3.1 is

that the test statistic approximately follows the chi-square distribution with degree

1. Thus, p−value can be obtained for high dimensional influence diagnosis by given

the test statistic. Specifically, for the hypothesis test ‘H0 : the kth observation is not

influential versus its alternative’, the p-value is P (χ2(1) > 4pBWHD(1
2
)), see detail

in the next subsection.

Hypothesis Testing

Since the absolute value of correlation is bounded by 0 and 1, we construct two

probability mass functions (pmfs), one for that of the entire sample set and the other

for the deleted sample. For simplicity, θ denotes the absolute value of the marginal

correlation and θ = (θ1, . . . , θp)
T ∈ C0, where C0 is a p-dimensional real vector.

Let ϕ : C0 → M0 be a function transforming C0 to a 2p× 1 vector of pmfs in M0.

M0 is given as

M0 = {π = (π1, . . . , π2p)
T : πi ∈ [0, 1], i = 1, . . . , 2p,

2p∑
i=1

πi = 1}. (3.33)

The mapping of ϕ implies that for every element π in M0 there exists an element θ

in C0 such that ϕ(θ) = π.

Now, the null hypothesis can be expressed in two ways,

H0 : θ ∈ C0 or H0 : π ∈ M0. (3.34)

The hypothesis testing of θ ∈ C0 and π ∈ M0 are equivalent, see reason in

Appendix A5 of Read and Cressie (1988). Based on our proposed method, we can

specify function ϕ as follows:

ϕ(θ) =
1

p


 0p

1p

+

 Ip

−Ip

θ

 . (3.35)

Eq. (3.34) implies that to reject H0 means the difference between the pmfs F̃ and

G̃(k) is significant. Conversely, failing to reject H0 means the difference between the
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pmfs F and G(k) is not significant. In this case, the observation in question is not

influential. Let θ∗ be the ‘true’ test statistics, F is given as ϕ(θ∗) = π∗ and that of

G(k) as ϕ(θ) = π.

In general, a critical value will be calculated by 4p[ϕ◦ 1
2 (θ) − ϕ◦ 1

2 (θ⋆)]T [ϕ◦ 1
2 (θ) −

ϕ◦ 1
2 (θ⋆)], and a p-value can be obtained by using the asymptotical properties P (χ2

1 >

4p[ϕ◦ 1
2 (θ)−ϕ◦ 1

2 (θ⋆)]T [ϕ◦ 1
2 (θ)−ϕ◦ 1

2 (θ⋆)]). This means, to test a hypothesis as whether

an observation is influential or not, we first calculate a test statistic based on this

based on this particular observation and then use this statistic as the critical value

to obtain the p-value for the test.

3.4 Numerical Studies

To test the proposed methods, we make use of most popular high-dimensional screen-

ing method, SIS, to check the selection consistency with or without influential ob-

servation. Also, we employed coverage probability (CP) to capture the frequency of

the true variable screening rate. The proposed method, HD-HIM, is used to detect

the observations that are influential in the simulated dataset.

The Least Absolute Shrinkage and Selection Operator (LASSO) for parameter

estimation is employed after the detected influential observations are deleted from

the dataset. To investigate how good the estimates for the regression coefficients β

ascertained by the use of LASSO is, we find the respective associated errors between

the estimated β̂ and the true parameter βT . In this report, the error is defined as

ERR = ∥β̂ − βT ∥.

In order to choose the appropriate variables for the model, we conducted a vali-

dation process to check whether the result based on LASSO is improved or not. We

did this by first assuming a set consisting of the true variables for the model (say A)

and then construct a false positive rate (FPR) as well as a true positive rate (TPR)

based on the selection of the β’s. The following mathematical relation is used to
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ascertain the above rates, FPR = FP
FP+TN

,

TPR = TP
TP+FN

.

(3.36)

Where FP , TN , TP and FN are false positive, true negative, true positive and false

negative respectively and are given as

FP =
∑

j ̸∈A P ({β̂j ̸= 0})

TN =
∑

j ̸∈A P ({β̂j = 0})

TP =
∑

j∈A P ({β̂j ̸= 0}

FN =
∑

j∈A P ({β̂j = 0})

(3.37)

Eq. (3.36) determines the probability of falsely excluding variable(s) in A. To account

for the proportion of the number of observations that are correctly deleted, say nTp,

we find the ratio/proportion of nTp to the number of influential observations among

the entire number of observations, say ninf . This proportion is termed ‘Power of

Detection Influence’ (Power).

3.4.1 Simulation Study of EVD-HIM

In this subsection, we will give a short simulation example to show the EVD-HIM

is good in the high-dimensional influence detection. Due to computational difficulty,

the estimation of the precision matrix Ω̂ = Σ̂
−1

holp can be difficult to obtain even

with the recent R package CLIME (Cai et al. 2011). In this simulation, we are

using a pseudoinverse Ω̂holp = QD2QTσ−2. It is easy to obtain for full row rank

X but Ω̂holpΣ̂holp = QQT ̸= Ip for Q ∈ Vn(Rp). Another computational burden

is to calculate Ω̂1/2. For computing efficiency, we use M = Ω̂holp in Eq. (3.7). Cai

et al. (2014) illustrated DΩ and D
Ω

1/2
holp

has the same extreme value distribution and the

power Ψ(Ω) uniformly dominates those of Ψ(Ω1/2). These two parts of adjustment will

make the proposed EVD-HIM a feasible numerical method under current computing

capability.

We use model (1.2) with true β = (3, 1.5, 0, 0, 2, 0, . . . , 0)T . In this model, X1, . . . ,Xp

are p predictors and ϵ ∼ N(0, σ2In) is the noise that is independent of the predictors.
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In this simulation, a sample of (X1, . . . ,Xp) with size n was drawn from a multivari-

ate normal distribution N(0,Σ) with covariance matrix Σ = ρ|i−j|. Original design

matrix and response variables are generated by using n = 100 and p = 500 or 1000,

ρ = 0.5. But we manually add influence to the first K observations, i.e., xnew
i = κ∗xi,

j = 1, . . . , K. Here, we set κ = 20, K = 1, 3, 5. This scenario modifies Example I of

Tibshirani (1996) with a fixed σ2 = 1. After 100 replication, we report the coverage

probability (CP) of true β’s, ERR, FPR and the ‘Power of the influence detection’

(Power).

Table 3.1: Influence Detection of EVD-HIM

(n,p) K CP(β1) CP(β2) CP(β5) ERR FDR Power

(100,500) 1 0.99 1.00 0.98 0.66 0.04 0.96

3 0.99 0.98 0.99 0.83 0.03 0.94

5 0.99 0.99 0.97 0.97 0.03 0.95

(100,1000) 1 1.00 1.00 0.98 0.70 0.02 0.98

3 0.99 0.97 0.99 0.80 0.02 0.95

5 1.00 0.99 0.99 0.93 0.02 0.96

From Table 3.1, we found that the proposed method, EVD-HIM, is applicable in

solving the problem of high-dimensional influence measure. The results of (100, 500)

and (100, 1000) are both very good, and the ‘Power’ of the influence detection is s-

lightly better in the case of (100, 1000) than the case of (100, 500). In this simulation,

we used an approximate way to obtain the precision matrix and get a promising re-

sults. After the numerical development of calculating the precision matrix efficiently,

a more complete simulation studies of the EVD-HIM can be easily conducted.

3.4.2 Simulation Study of HD-HIM

For this simulation, we set the sample size n = 100, and the number of explanatory

variables p = 1000. K% (K = 1, 2, . . . , 5) of the total observations is set as influential
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so that ñ = K. We consider the model

Y = Xβ + ϵ,

where X is multivariate normal with cov(Xij, Xij′) = 0.5|j−j′|. ϵ follows the multi-

variate standard normal distribution, and β = (3, 1.5, 0, 0, 2, 0, . . . , 0)T . We simulated

n = 100 i.i.d. observations from this model. Next, we reset the first ñ = K data

observations as coming from another model,

Ỹ = X̃β̃ + ϵ.

In our study, three cases are considered in the generation of influential points: When

1. the regression coefficients,

2. covariates,

3. both the regression coefficients and covariates

are subjected to different levels of changes. Let κ be the parameter that dictates the

magnitude of the influential points such that κ = 0 implies that influential point(s)

is/are not present in the dataset. We used κ = 0, 0.4, 0.8, 1.2 and 1.6 in the

experiment. Let now consider the cases above:

Case 1: The regression coefficients are subjected to changes

For i = 1, . . . , ñ, and X̃i = Xi, we have β̃ = (3, 1.5, κ, κ, 2, κ, . . . , κ)T . So that,

the influential observations are generated according to Ỹ = X̃β̃ + κXγ + ϵ, where

γ = (0, 0, 1, 1, 0, 1, 1, . . . , 1)T . In this case, the responses of the influential observations

are contaminated by a random perturbation κXγ. Consequently, the corresponding

responses admit a different pattern, whereas the predictors of influential observations

follow the same distribution as the rest. Table 3.2-3.6 shows the simulation results

for case 1. They show how the performance of the proposed method against HIM.

Figure 3.1 shows that plot of the powers against the contaminated rate for both HIM

and HD-HIM. The graph shows that the HD-HIM performed better than HIM for

contamination rate within 5%.
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Table 3.2: Simulation results for case 1 with K = 1

Method Criterion κ

0 0.4 0.8 1.2 1.6

SIS CP of β1 1.0000 0.9850 0.8700 0.7700 0.6850

CP of β2 1.0000 0.9650 0.8150 0.6950 0.5750

CP of β5 1.0000 0.9150 0.7050 0.4950 0.4200

LASSO ERR 0.4604 0.9584 1.5883 2.0674 2.3924

FPR 0.0181 0.0173 0.0158 0.0135 0.0106

HIM+SIS CP of β1 1.0000 1.0000 1.0000 1.0000 1.0000

CP of β2 1.0000 1.0000 1.0000 1.0000 1.0000

CP of β5 1.0000 1.0000 0.9950 1.0000 1.0000

HIM+LASSO ERR 0.4683 0.5868 0.5338 0.5002 0.4946

FPR 0.0179 0.0187 0.0170 0.0178 0.0172

POWER – 0.0000 0.0000 0.0000 0.0000

HD-HIM+SIS CP of β1 1.0000 1.0000 1.0000 1.0000 1.0000

CP of β2 1.0000 0.9950 1.0000 0.9900 0.9850

CP of β5 1.0000 0.9950 1.0000 1.0000 1.0000

HD-HIM+LASSO ERR 1.0625 1.0035 0.8358 0.7406 0.6791

FPR 0.0231 0.0225 0.0223 0.0200 0.0187

POWER – 0.8050 0.9000 0.9100 0.9400
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Table 3.3: Simulation results for case 1 with K = 2

Method Criterion κ

0 0.4 0.8 1.2 1.6

SIS CP of β1 1.0000 0.9750 0.7950 0.5800 0.5000

CP of β2 1.0000 0.9250 0.6850 0.5150 0.4050

CP of β5 1.0000 0.7850 0.4550 0.2850 0.2200

LASSO ERR 0.4604 1.2517 2.1586 2.7593 3.1131

FPR 0.0181 0.0157 0.0144 0.0112 0.0084

HIM+SIS CP of β1 1.0000 1.0000 1.0000 1.0000 1.0000

CP of β2 1.0000 1.0000 1.0000 0.9950 1.0000

CP of β5 1.0000 0.9950 0.9900 0.9950 1.0000

HIM+LASSO ERR 0.4683 0.6813 0.5953 0.5415 0.5204

FPR 0.0179 0.0170 0.0166 0.0169 0.0174

POWER – 0.3425 0.4500 0.4800 0.4900

HD-HIM+SIS CP of β1 1.0000 1.0000 1.0000 1.0000 1.0000

CP of β2 1.0000 1.0000 0.9950 1.0000 1.0000

CP of β5 1.0000 0.9950 1.0000 0.9950 1.0000

HD-HIM+LASSO ERR 1.0625 0.9597 0.7555 0.6410 0.5811

FPR 0.0231 0.0208 0.0198 0.0187 0.0175

POWER – 0.7900 0.8650 0.8900 0.9050
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Table 3.4: Simulation results for case 1 with K = 3

Method Criterion κ

0 0.4 0.8 1.2 1.6

SIS CP of β1 1.0000 0.9650 0.7050 0.5000 0.3550

CP of β2 1.0000 0.9000 0.5500 0.3550 0.2250

CP of β5 1.0000 0.7250 0.3100 0.1300 0.0750

LASSO ERR 0.4604 1.5705 2.6517 3.2189 3.4897

FPR 0.0181 0.0150 0.0113 0.0076 0.0048

HIM+SIS CP of β1 1.0000 1.0000 1.0000 1.0000 1.0000

CP of β2 1.0000 1.0000 1.0000 1.0000 1.0000

CP of β5 1.0000 0.9750 0.9900 0.9950 1.0000

HIM+LASSO ERR 0.4683 0.7561 0.6463 0.5847 0.5365

FPR 0.0179 0.0158 0.0163 0.0168 0.0159

POWER – 0.4367 0.6033 0.6417 0.6550

HD-HIM+SIS CP of β1 1.0000 1.0000 1.0000 1.0000 1.0000

CP of β2 1.0000 0.9900 1.0000 1.0000 1.0000

CP of β5 1.0000 0.9950 1.0000 0.9950 0.9850

HD-HIM+LASSO ERR 1.0625 0.9474 0.6869 0.6009 0.5781

FPR 0.0231 0.0194 0.0184 0.0171 0.0159

POWER – 0.7617 0.8533 0.8717 0.8817
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Table 3.5: Simulation results for case 1 with K = 4

Method Criterion κ

0 0.4 0.8 1.2 1.6

SIS CP of β1 1.0000 0.9400 0.6200 0.3600 0.2350

CP of β2 1.0000 0.8500 0.4450 0.2550 0.1350

CP of β5 1.0000 0.6100 0.2300 0.0800 0.0400

LASSO ERR 0.4604 1.9348 3.0961 3.6563 3.9806

FPR 0.0181 0.0187 0.0123 0.0086 0.0065

HIM+SIS CP of β1 1.0000 1.0000 1.0000 1.0000 1.0000

CP of β2 1.0000 1.0000 1.0000 1.0000 1.0000

CP of β5 1.0000 0.9850 0.9900 0.9950 1.0000

HIM+LASSO ERR 0.4683 0.8240 0.6768 0.6289 0.5700

FPR 0.0179 0.0177 0.0169 0.0185 0.0182

POWER – 0.4938 0.6738 0.7150 0.7338

HD-HIM+SIS CP of β1 1.0000 1.0000 1.0000 1.0000 1.0000

CP of β2 1.0000 0.9900 1.0000 1.0000 0.9950

CP of β5 1.0000 0.9900 0.9900 0.9900 0.9750

HD-HIM+LASSO ERR 1.0625 0.8984 0.6771 0.6454 0.6698

FPR 0.0231 0.0206 0.0178 0.0186 0.0176

POWER – 0.7588 0.8250 0.8375 0.8425
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Table 3.6: Simulation results for case 1 with K = 5

Method Criterion κ

0 0.4 0.8 1.2 1.6

SIS CP of β1 1.0000 0.9200 0.5350 0.2600 0.1650

CP of β2 1.0000 0.8100 0.3350 0.1600 0.0700

CP of β5 1.0000 0.5050 0.1750 0.0500 0.0300

LASSO ERR 0.4604 2.1555 3.4358 3.9497 4.2881

FPR 0.0181 0.0182 0.0136 0.0084 0.0069

HIM+SIS CP of β1 1.0000 1.0000 1.0000 1.0000 1.0000

CP of β2 1.0000 0.9950 0.9850 0.9950 1.0000

CP of β5 1.0000 0.9750 0.9800 0.9850 1.0000

HIM+LASSO ERR 0.4683 0.9155 0.7321 0.6712 0.6117

FPR 0.0179 0.0177 0.0189 0.0185 0.0175

POWER – 0.4950 0.7040 0.7520 0.7750

HD-HIM+SIS CP of β1 1.0000 1.0000 1.0000 1.0000 1.0000

CP of β2 1.0000 0.9950 1.0000 1.0000 0.9950

CP of β5 1.0000 0.9950 0.9950 0.9750 0.9550

HD-HIM+LASSO ERR 1.0625 0.9053 0.7102 0.7044 0.7617

FPR 0.0231 0.0191 0.0181 0.0164 0.0170

POWER – 0.7430 0.7970 0.8130 0.8160
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Figure 3.1: Power comparison between HIM and HD-HIM of case 1

Case 2: Covariates are subjected to changes

In this case, we assume that explanatory variables are subjected to changes with

the response variable remaining unchange. We set X̃ij = Xij + 30κI{i∈S}, while

Ỹn = Yi, for i = 1, . . . , ñ, and j = 1, . . . , p. In other words, a set S of explanatory

variables admit a different pattern, and its magnitude is controlled by the scalar κ.

We examined S = {1, . . . , K}, and in this case, the first K observations are considered

as the leverage.
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Table 3.7-3.11 show the simulation results of case 2. Similarly to the table results

for case 1, the HD-HIM is compared to the HIM. Figure 3.2 shows plot of power

against the contamination rate. It is shown that the powers ascertained from the

HD-HIM perform better than those of HIM for contamination rate within 3%.

Table 3.7: Simulation results for case 2 with K = 1

Method Criterion κ

0 0.4 0.8 1.2 1.6

SIS CP of β1 1.0000 0.9850 0.9700 0.9750 0.9750

CP of β2 1.0000 0.7300 0.7450 0.7500 0.7650

CP of β5 1.0000 0.4450 0.4800 0.5150 0.5150

LASSO ERR 0.4604 3.8289 3.8633 3.7785 3.6731

FPR 0.0181 0.0005 0.0016 0.0048 0.0091

HIM+SIS CP of β1 1.0000 1.0000 0.9850 0.9750 0.9600

CP of β2 1.0000 0.9500 0.9550 0.9500 0.8950

CP of β5 1.0000 0.9250 0.9300 0.9300 0.8950

HIM+LASSO ERR 0.4683 1.1723 1.0271 1.0662 1.1925

FPR 0.0180 0.0147 0.0161 0.0184 0.0194

POWER – 0.0000 0.0000 0.0000 0.0000

HD-HIM+SIS CP of β1 1.0000 1.0000 1.0000 1.0000 1.0000

CP of β2 1.0000 1.0000 1.0000 1.0000 1.0000

CP of β5 1.0000 1.0000 1.0000 1.0000 1.0000

HD-HIM+LASSO ERR 1.0625 0.6302 0.4938 0.4674 0.4643

FPR 0.0231 0.0177 0.0181 0.0171 0.0170

POWER – 1.0000 1.0000 1.0000 1.0000

98



Table 3.8: Simulation results for case 2 with K = 2

Method Criterion κ

0 0.4 0.8 1.2 1.6

SIS CP of β1 1.0000 0.9800 0.9650 0.9500 0.9600

CP of β2 1.0000 0.7250 0.7400 0.7650 0.8100

CP of β5 1.0000 0.4350 0.5400 0.5250 0.5500

LASSO ERR 0.4604 1.0650 1.0645 1.0879 1.1351

FPR 0.0181 0.0911 0.0980 0.1004 0.1034

HIM+SIS CP of β1 1.0000 0.9900 0.9500 0.9000 0.8800

CP of β2 1.0000 0.8950 0.9150 0.8600 0.8000

CP of β5 1.0000 0.8050 0.8600 0.7700 0.7600

HIM+LASSO ERR 0.4683 1.5783 1.3813 1.5002 1.6536

FPR 0.0179 0.0182 0.0174 0.0189 0.0200

POWER – 0.4675 0.4925 0.4950 0.4950

HD-HIM+SIS CP of β1 1.0000 1.0000 1.0000 0.9950 0.9950

CP of β2 1.0000 0.9300 0.9550 0.9200 0.9200

CP of β5 1.0000 0.8650 0.8850 0.8600 0.8800

HD-HIM+LASSO ERR 1.0625 1.1718 1.2675 1.3671 1.3496

FPR 0.0231 0.0161 0.0138 0.0137 0.0148

POWER – 0.9025 0.8800 0.8650 0.8600
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Table 3.9: Simulation results for case 2 with K = 3

Method Criterion κ

0 0.4 0.8 1.2 1.6

SIS CP of β1 1.0000 0.9550 0.9500 0.9250 0.9350

CP of β2 1.0000 0.7000 0.6800 0.6500 0.6500

CP of β5 1.0000 0.3450 0.4100 0.3850 0.3850

LASSO ERR 0.4604 1.0676 1.0760 1.1119 1.1465

FPR 0.0181 0.0920 0.0984 0.1011 0.1025

HIM+SIS CP of β1 1.0000 0.9800 0.9200 0.8550 0.7950

CP of β2 1.0000 0.8200 0.8100 0.7550 0.6550

CP of β5 1.0000 0.6700 0.7400 0.7200 0.6500

HIM+LASSO ERR 0.4683 1.7865 1.8861 1.8840 2.0630

FPR 0.0180 0.0233 0.0168 0.0175 0.0201

POWER – 0.6133 0.6617 0.6633 0.6650

HD-HIM+SIS CP of β1 1.0000 1.0000 0.9800 0.9800 0.9800

CP of β2 1.0000 0.8250 0.8600 0.8900 0.8950

CP of β5 1.0000 0.7200 0.7550 0.7750 0.7900

HD-HIM+LASSO ERR 1.0625 1.6806 1.6200 1.6022 1.4976

FPR 0.0231 0.0212 0.0241 0.0266 0.0314

POWER – 0.8200 0.8017 0.7917 0.7867
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Table 3.10: Simulation results for case 2 with K = 4

Method Criterion κ

0 0.4 0.8 1.2 1.6

SIS CP of β1 1.0000 0.9500 0.9400 0.9300 0.9400

CP of β2 1.0000 0.7100 0.6850 0.7150 0.7100

CP of β5 1.0000 0.3700 0.4250 0.4300 0.4300

LASSO ERR 0.4604 1.0668 1.0827 1.1387 1.2033

FPR 0.0181 0.0936 0.0989 0.1015 0.1028

HIM+SIS CP of β1 1.0000 0.9450 0.8700 0.7950 0.7950

CP of β2 1.0000 0.7050 0.7200 0.6600 0.6600

CP of β5 1.0000 0.5850 0.6600 0.6350 0.6100

HIM+LASSO ERR 0.4683 2.0711 2.2145 2.2286 2.2653

FPR 0.0180 0.0258 0.0156 0.0173 0.0201

POWER – 0.4938 0.7388 0.7475 0.7488

HD-HIM+SIS CP of β1 1.0000 0.9900 0.9800 0.9750 0.9750

CP of β2 1.0000 0.8000 0.8150 0.8100 0.8000

CP of β5 1.0000 0.5800 0.6450 0.6650 0.6650

HD-HIM+LASSO ERR 1.0625 1.9895 1.9872 1.9680 1.9634

FPR 0.0231 0.0249 0.0311 0.0360 0.0378

POWER – 0.7800 0.7575 0.7475 0.7475
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Table 3.11: Simulation results for case 2 with K = 5

Method Criterion κ

0 0.4 0.8 1.2 1.6

SIS CP of β1 1.0000 0.9550 0.9500 0.9250 0.9300

CP of β2 1.0000 0.6700 0.6450 0.6500 0.6550

CP of β5 1.0000 0.3800 0.4150 0.4050 0.4100

LASSO ERR 0.4604 1.0659 1.0903 1.1519 1.2517

FPR 0.0181 0.0945 0.1002 0.1024 0.1049

HIM+SIS CP of β1 1.0000 0.9100 0.8000 0.7450 0.7500

CP of β2 1.0000 0.6500 0.6200 0.5700 0.5850

CP of β5 1.0000 0.5300 0.5500 0.4950 0.5000

HIM+LASSO ERR 0.4683 2.3097 2.3728 2.5147 2.5182

FPR 0.0180 0.0287 0.0178 0.0191 0.0200

POWER – 0.7460 0.7910 0.7960 0.7980

HD-HIM+SIS CP of β1 1.0000 0.9800 0.9700 0.9650 0.9600

CP of β2 1.0000 0.7450 0.7250 0.7600 0.7300

CP of β5 1.0000 0.4950 0.5700 0.5950 0.5850

HD-HIM+LASSO ERR 1.0625 1.9051 1.8481 1.8325 1.8610

FPR 0.0231 0.0404 0.0466 0.0528 0.0556

POWER – 0.7370 0.7230 0.7170 0.7120
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Figure 3.2: Power comparison between HIM and HD-HIM of case 2

Case 3: Both the regression coefficients and covariates are subjected to

changes

In this scenario, we set β̂ = (3, 1.5, κ, κ, 2, κ, . . . , κ)T and X̃ij = Xij+30κIi∈S. Similar

to case1 and 2, i = 1, . . . , p and j = 1, . . . , p. We considered K% mixed leverage points

and outliers in this analysis.
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Table 3.12: Simulation results for case 3 with K = 1

Method Criterion κ

0 0.4 0.8 1.2 1.6

SIS CP of β1 1.0000 0.9850 0.8350 0.6500 0.5500

CP of β2 1.0000 0.9500 0.7650 0.5750 0.4600

CP of β5 1.0000 0.8800 0.5900 0.4200 0.3200

LASSO ERR 0.4592 1.0117 1.8117 2.4665 2.8606

FPR 0.0176 0.0174 0.0243 0.0345 0.0413

HIM+SIS CP of β1 1.0000 1.0000 1.0000 0.9950 0.9750

CP of β2 1.0000 1.0000 1.0000 0.9900 0.9550

CP of β5 1.0000 0.9950 1.0000 0.9900 0.9600

HIM+LASSO ERR 0.4670 0.5786 0.5462 0.5671 0.7822

FPR 0.0175 0.0174 0.0197 0.0189 0.0204

POWER – 0.0000 0.0000 0.0000 0.0000

HD-HIM+SIS CP of β1 1.0000 1.0000 1.0000 0.9950 1.0000

CP of β2 1.0000 0.9950 0.9950 0.9750 0.9900

CP of β5 1.0000 0.9950 1.0000 0.9900 0.9900

HD-HIM+LASSO ERR 1.0620 0.9801 0.8155 0.7124 0.6111

FPR 0.0232 0.0234 0.0219 0.0202 0.0188

POWER – 0.8200 0.9200 0.9400 0.9700
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Table 3.13: Simulation results for case 3 with K = 2

Method Criterion κ

0 0.4 0.8 1.2 1.6

SIS CP of β1 1.0000 0.9650 0.7000 0.4900 0.3750

CP of β2 1.0000 0.9200 0.6250 0.3950 0.2900

CP of β5 1.0000 0.7450 0.3600 0.2200 0.1650

LASSO ERR 0.4592 1.3334 2.5328 3.2868 3.7328

FPR 0.0176 0.0206 0.0397 0.0446 0.0422

HIM+SIS CP of β1 1.0000 1.0000 0.9950 0.9800 0.9550

CP of β2 1.0000 1.0000 0.9950 0.9800 0.9400

CP of β5 1.0000 0.9950 0.9800 0.9650 0.9300

HIM+LASSO ERR 0.4670 0.6518 0.6182 0.7440 1.0126

FPR 0.0175 0.0174 0.0205 0.0207 0.0216

POWER – 0.3800 0.4725 0.4950 0.5000

HD-HIM+SIS CP of β1 1.0000 1.0000 1.0000 1.0000 1.0000

CP of β2 1.0000 0.9900 0.9950 0.9900 0.9850

CP of β5 1.0000 0.9850 1.0000 0.9850 0.9900

HD-HIM+LASSO ERR 1.0620 0.9578 0.7393 0.6291 0.5729

FPR 0.0232 0.0211 0.0208 0.0207 0.0211

POWER – 0.8000 0.8900 0.9200 0.9375
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Table 3.14: Simulation results for case 3 with K = 3

Method Criterion κ

0 0.4 0.8 1.2 1.6

SIS CP of β1 1.0000 0.9550 0.6200 0.3550 0.2000

CP of β2 1.0000 0.8900 0.4700 0.2400 0.1400

CP of β5 1.0000 0.6700 0.2300 0.0600 0.0350

LASSO ERR 0.4592 1.6528 3.0060 3.7954 4.3189

FPR 0.0176 0.0196 0.0288 0.0306 0.0288

HIM+SIS CP of β1 1.0000 1.0000 0.9900 0.9400 0.8850

CP of β2 1.0000 1.0000 0.9900 0.9150 0.8500

CP of β5 1.0000 0.9950 0.9750 0.9100 0.8500

HIM+LASSO ERR 0.4670 0.7353 0.6853 0.8702 1.1877

FPR 0.0175 0.0179 0.0225 0.0198 0.0202

POWER – 0.4783 0.6367 0.6600 0.6667

HD-HIM+SIS CP of β1 1.0000 1.0000 1.0000 1.0000 1.0000

CP of β2 1.0000 0.9950 1.0000 1.0000 0.9950

CP of β5 1.0000 0.9950 0.9950 0.9850 0.9750

HD-HIM+LASSO ERR 1.0620 0.9306 0.6721 0.5953 0.5939

FPR 0.0232 0.0210 0.0191 0.0222 0.0234

POWER – 0.7867 0.8800 0.8983 0.9067
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Table 3.15: Simulation results for case 3 with K = 4

Method Criterion κ

0 0.4 0.8 1.2 1.6

SIS CP of β1 1.0000 0.9350 0.5050 0.2250 0.1250

CP of β2 1.0000 0.8200 0.3750 0.1450 0.0800

CP of β5 1.0000 0.5850 0.1750 0.0500 0.0350

LASSO ERR 0.4592 2.0268 3.4600 4.2060 4.6360

FPR 0.0176 0.0223 0.0278 0.0238 0.0201

HIM+SIS CP of β1 1.0000 1.0000 0.9900 0.9350 0.8500

CP of β2 1.0000 0.9950 0.9900 0.9250 0.8250

CP of β5 1.0000 0.9850 0.9700 0.9000 0.8050

HIM+LASSO ERR 0.4670 0.7920 0.7395 0.9784 1.4173

FPR 0.0175 0.0188 0.0249 0.0222 0.0218

POWER – 0.5325 0.7138 0.7388 0.7475

HD-HIM+SIS CP of β1 1.0000 1.0000 1.0000 0.9950 0.9900

CP of β2 1.0000 0.9900 1.0000 1.0000 0.9800

CP of β5 1.0000 0.9900 0.9850 0.9600 0.9300

HD-HIM+LASSO ERR 1.0620 0.8959 0.6921 0.6489 0.6872

FPR 0.0232 0.0228 0.0218 0.0240 0.0266

POWER – 0.7712 0.8462 0.8738 0.8812
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Table 3.16: Simulation results for case 3 with K = 5

Method Criterion κ

0 0.4 0.8 1.2 1.6

SIS CP of β1 1.0000 0.9050 0.4300 0.1900 0.1150

CP of β2 1.0000 0.7900 0.2950 0.1100 0.0750

CP of β5 1.0000 0.4850 0.1250 0.0350 0.0200

LASSO ERR 0.4592 2.2324 3.5894 4.2872 4.6531

FPR 0.0176 0.0214 0.0199 0.0168 0.0140

HIM+SIS CP of β1 1.0000 1.0000 0.9950 0.9300 0.8750

CP of β2 1.0000 0.9900 0.9800 0.8950 0.8300

CP of β5 1.0000 0.9850 0.9650 0.8700 0.8000

HIM+LASSO ERR 0.4670 0.8788 0.7817 1.0918 1.4363

FPR 0.0175 0.0196 0.0239 0.0240 0.0235

POWER – 0.5420 0.7460 0.7860 0.7940

HD-HIM+SIS CP of β1 1.0000 1.0000 1.0000 1.0000 0.9900

CP of β2 1.0000 1.0000 0.9950 0.9850 0.9500

CP of β5 1.0000 0.9950 0.9900 0.9450 0.8600

HD-HIM+LASSO ERR 1.0620 0.8953 0.7243 0.7335 0.8011

FPR 0.0232 0.0194 0.0233 0.0271 0.0302

POWER – 0.7550 0.8250 0.8480 0.8560

Table 3.12-3.16 show the simulation results of case 3. Figure 3.3 shows that the

powers of HDHI perform better than those of HIM for contamination rate within 5%.
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Figure 3.3: Power comparison between HIM and HD-HIM of case 3

The comparison of our method (HD-HIM) to HIM shows that the HD-HIM per-

formed better than the latter in detecting the influential observation for contamination

rate from 1% to 5%. Based on the above result, we can conclude that the proposed

method, HD-HIM, is applicable in solving the problem of high-dimensional influence

measure. After conducting the simulation thoroughly, we can conclude that

1. When the regression coefficients are subjected to perturbation holding the covo-

riates constant, we noticed that there was not much difference in the perfor-
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mance of HIM and HD-HIM.

2. The performances of the HD-HIM and HIM are close when the covariates are

subjected to disturbances holding the regression coefficients constant.

3. The performance of HD-HIM is comparable with that of HIM when the pertur-

bation is caused from both the regression coefficient and the covariate predictors.

Also, HD-HIM does yield much better performance than HIM with smaller ERR

values.

4. From Figure 3.1-3.3, we can conclude that HD-HIM has larger power of detect-

ing the influential observation for smaller contamination rate.

3.5 Conclusion and Discussion

In this chapter, we proposed two methods for detecting influential observation(s) in

high-dimensional statistics: one is from the perspective of extreme value distribution;

one is from the perspective of the robustness of design.

For the first method, we propose the EVD-type statistics instead of the sum-of-

squares type statistics ∥M1/2(Tn − Tn−1)∥22 in high-dimensional statistics, and term

it Extreme Value Distribution for High-dimensional Influence Measure (EVD-HIM).

The EVD type statistics is based on a linear transformation of (Tn−Tn−1) by the pre-

cision matrix Ω of T . Suppose for the moment that the precision matrix Ω = Σ−1(T )

is known. This new statistics is theoretically powerful against sparse alternatives in

the high dimensional setting under dependence. We use a short simulation to show

this promising new method by using a quick precision solving. However, in most cases

Ω is unknown and computational expensive to estimate. The possible extension is to

work with a better and quicker prediction of the high-dimensional precision matrix.

Also, comparing α-level test based on different selection of M is another potential

directions for future research.

For the second method, we construct a data driven method, Hellinger Distance

High-dimensional Influence Measure (HD-HIM). The HD-HIM is the test statistic
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which is expressed as the inner product of the transformed marginal correlations

from the whole and deleted dataset. To carry out inference on the proposed method,

we established the asymptotic properties of the HD-HIM. The derivation of these

properties were based on the fact that p ·BWHD(1
2
) behaves in the same manner as

the usual chi-squared test statistics when the dimension of the explanatory variable

approaches infinity. Hence, the hypothesis test based on the HD-HIM are compared

with the chi-square statistics. Possible extensions of the HD-HIM is to apply the

Hellinger-type inner product kernel to the other correlation estimator and the FDR

control in the hypothesis testing.
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Chapter 4

Cosine Distribution in the

Post-Selection Inference of Least

Angle Regression

Statistical inference associated with model selection has been discussed for decades.

Taking traditional linear regression as an example, we first fit a linear model with all

variables included, then preserve the significant ones after drawing the hypothesis test-

ings to all the predictors, and eventually refit the linear model with these significant

variables. As the increasing of the predictor’s dimension, we usually use a multi-stage

procedure and obtain candidate models by a data-driven method. Most data-driven

methods have their roots in two ideas: penalized optimization and correlation learning

both of which build the path towards a parsimonious model. Post-selection inference

about the penalized regression has been discussed recently, for examples, see details in

Lockhart et al. (2014) and Lee et al. (2016). In this chapter, we discuss post-selection

inference on the correlation learning by using a geometric argument in the LARS

solution path.

The rest of this chapter is organized as the follows. The next section introduces

a recent development in post-selection inference. Our proposed methodology is dis-

cussed in Section 4.3. Numerical studies are reported in Section 4.4. This chapter

concludes with a short discussion in Section 4.5. Note that the design matrix is
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assumed to be deterministic throughout this chapter.

4.1 Post-selection Inference

Data-driven methods are widely used in high-dimensional statistical problems, but

methods from classical statistical inference theory maybe invalid due to the stochas-

tic components in the high-dimensional structure. Under the deterministic design

matrix, the response or the current residual bring the stochastic aspects. In this

section, we review some recent development on making inference after variable selec-

tion by LASSO and forward-type regression. The idea of post-selection inference has

appeared in literature for decades. Relatively recent ideas on this topic can be found

in Berk et al. (2013), Lockhart et al. (2014) and Lee et al. (2016). Berk et al. (2013)

produced a valid post-selection inference (PoSI) problem by forming statistical tests

and confidence intervals of linear models after selecting a subset of the predictors in a

data-driven way. Lockhart et al. (2014) and Lee et al. (2016) illustrated post-selection

inference of LASSO by forming exact hypothesis testing and confidence intervals re-

spectively.

Recall the linear model (1.2) and the LASSO solution (1.11). The LASSO solution

β̂(λ) is a continuous and piecewise linear function of a sequence of decreasing knots

λ’s, i.e., λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 where λn is the nth knot (tuning parameter)

on the LASSO solution path. To test the significance of a predictor that enters the

LASSO solution path at a corresponding knot, Lockhart et al. (2014) proposed the

covariance test statistic. Let Mk = {j1, . . . , jk} be the LASSO solution set with

increasing complexity. The corresponding knots (tuning parameters) after each step

are λi, i = 1, . . . , k. Note that λ0 = ∞ corresponds M0 = ∅. Before the jkth (jk ≥ 2)

predictor is added into the model, we have solution set Mk−1. Let the estimates at

the end of the jkth step be β̂(λk). If we refit the LASSO by using just the variables

in Mk−1 with the knot λk, the estimates at the end of this step is β̂Mk−1
(λk). Then

the covariance test statistic of the jkth predictor is defined by

Tjk =
1

σ2
·
(
⟨Y,Xβ̂(λk)⟩ − ⟨Y,XMk−1

β̂Mk−1
(λk)⟩

)
. (4.1)
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The statistic Tjk measures how much contribution Xjk made to improve the fitted

model over the interval (λk−1, λk). At a high probability, large value of Tjk determines

big contribution of variable Xjk in the model Mk−1

∪
{jk}. Under the null hypothesis

that all truly active variables are contained in the model Mk−1

∪
{jk}, Tjk

d→ exp(1),

as n, p → ∞. Post-selection inference does not assume any of the models under

consideration to be correct, but evaluate whether a model with a certain predictor

surpass the previous model without this predictor.

Lee et al. (2016) discussed a general scheme for post-selection inference which

yields exact p-values and confidence intervals in the Gaussian case. Recall the linear

model (1.2) with µ = Xβ and ϵ ∼ N(0,Σ). Under the deterministic design matrix

setting, y ∼ N(µ,Σ). For some matrix M and vector b, a set of linear inequalities in

y, i.e., {My ≤ b} can be used as the selection events. Let M be the current solution

set and η = XM(XT
MXM)−1ej where ej is a vector having 1 for the jth element and

0’s elsewhere. Inferences about ηTµ conditional on the event {My ≤ b} can been

made from a truncated normal distribution. This property gives the possibility of

constructing a 1 − α level selection interval for ηTµ. The confidence bounds of this

interval can be solved by inverting the inequalities ηTµ such that P (ηTµ) ≥ 1− α/2

and P (ηTµ) ≤ α/2 respectively.

The path-based regression algorithms are widely used in high-dimensional statis-

tics (Fan and Lv 2010), such as forward-type regression, LASSO, LARS, SIS and

DTCCS. Forming a final model under these methodologies, variables are added ei-

ther one by one such as in LARS and LASSO or one group after another such as

in DTCCS. For the LASSO method, the number of non-zero variables in the ‘best’

final model only depend on a single tuning parameter which means that a sequence

of ‘knots’ of tuning parameters determine different final models. For the DTCCS,

the candidate model size is predetermined and a group of monotone value of tuning

parameters have been used to form a final model. The nature of high-dimensional

statistics may lead to high false discovery rate (FDR) which is the expected fraction

of false discoveries among all discoveries (Li and Barber 2017). Let Mk = {j1, . . . , jk}

be the active solution set with increasing complexity. To test the model adequacy
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and control the FDR, Li and Barber (2017) develop a family of ‘accumulation test-

s’ to choose a cutoff k̂ to control FDR at level α. In our proposed post-selection

inference method, we also include a new stopping criteria which is in the family of

‘accumulation tests’, see details in Section 4.2.

4.2 Methodology

Recall linear model (1.2) with µ = Xβ and ϵ ∼ N(0, σ2I). Under the deterministic

design matrix setting, Y ∼ N(µ,Σ). Assume σ2 is known in this chapter. For a

fixed matrix Xn×p of predictor variables, we assume that all the covariates have been

standardized to have mean 0 and unit length, and the response is also centered. We

consider the forward procedure in the LARS context. Note that we only consider the

procedure of adding variables, ignore the possibility of deleting variables.

Let Mk be the active (equicorrelation) set along the LARS solution path, Xjk be

the jkth entering predictor, sjk be the sign of the current correlation. Following Efron

et al. (2004), we define the matrix

XMk
= (. . . sjkXjk . . . )jk∈Mk

. (4.2)

Let SMk
be the vector containing the signs in the active set with the entering

order and XS = XMk
SMk

be the corresponding submatrix formed by extracting the

columns of X in the entering order.

Let

GMk
= XT

Mk
XMk

and AMk
= (1TMk

G−1
Mk

1Mk
)−1/2, (4.3)

where 1Mk
being a vector of 1’s of length equaling |Mk|, the cardinality of Mk.

The direction of LARS solution path is

vMk
= XMk

(XT
Mk

XMk
)−11Mk

, (4.4)

then the unit equiangular vector

uMk
=

vMk

∥vMk
∥
, (4.5)
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where ∥vMk
∥ = 1/AMk

. Hence, XT
Mk

uMk
= AMk

1Mk
. The correlation vector between

the equiangular direction and all predictors can be calculated by

a = XTuMk
, (4.6)

then ST
Mk

XT
Mk

uMk
is a subvector of a for |Mk| < n. Recall (1.16), at the kth stage,

Ĉk is the biggest absolute value of the correlation between the entering variable and

the current residual Zk. LARS finds the variable that has the smallest angle with the

current residual and then proceeds in the direction of uMk
which has the same angle

with all Xjk’s, jk ∈ Mk for a theoretical step size γ̂ until the next variable earns

its ‘most correlated’ position. By the end of each stage, LARS updated the mean

function, i.e.,

µ̂Mk+1
= µ̂Mk

+ γ̂uMk
, (4.7)

where

γ̂ = min
l /∈Mk

+

{
Ĉk − ĉl
AMk

− al
,

Ĉk + ĉl
AMk

+ al

}
, (4.8)

where ĉl is the current correlation of the lth remaining predictor variable and min+

indicates the smallest positive value such that a new index joins the active set. The

mean function µ̂ can be written as

µ̂Mk
= UMk

ΓMk
, (4.9)

where UMk
=
(

u1,u2, · · · ,uk

)
and ΓM = (γ̂1, γ̂2, . . . , γ̂k)

T . Denote β̂(Ĉk) as the

regression coefficients of active predictors at stage k, β̂(Ĉk) = (XT
SXS)

−1XT
S UMk

ΓMk
.

The current correlation can also be expressed as the score vector of the least squares

criterion with entering predictor:

Ĉk = −sjk
2

∂

∂βjk

n∑
i=1

(yi − xT
i β)

2
∣∣∣
β=β̂(Ĉk)

. (4.10)

Define the angle θ(Xjk, Zk) as the angle between the vector Xjk and Zk. Since Xjk is

standardized, we have

cos{θ(Xjk, Zk)} =
∥XTZk∥∞
∥Zk∥2

=
Ĉk

∥Zk∥2
. (4.11)
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In general, | cos{θ(Xjk, Zk)}|, k = 1, 2, 3, . . . , diminish stochastically. LARS solution

path ends at a predetermined step or when the angle θ(Xjk, Zk) is very close to π
2
,

i.e., the remaining variable is almost orthogonal to the current residual.

Lemma 4.2.1. For AMk
≥ 1, | cos{θ(Xjk, Zk)}|, k = 1, 2, . . . , n − 1, is nonincreas-

ing by the LARS solution path. For notational simplicity, we will use θk instead of

θ(Xjk, Zk).

Proof. We know that Ĉk declines with k from Efron et al. (2004), and want to show

1 ≥ Ĉ1

∥Z1∥2 ≥ Ĉ2

∥Z2∥2 ≥ . . . which is equivalent to show Ĉk

Ĉk+1
≥ ∥Zk∥2

∥Zk+1∥2
≥ 1, for k =

1, 2, . . . .

By Eq. (4.7), Zk − Zk+1 = γ̂kuMk
. Hence, γ̂2

k = (Zk − Zk+1)
T (Zk − Zk+1), for

k = 1, 2, . . . .

From Eq. (1.16), (4.3), (4.6) and (4.7), we obtain

Ĉk − Ĉk+1 = γ̂kAk ≥ γ̂k = ∥Zk − Zk+1∥2 ≥ ∥Zk∥2 − ∥Zk+1∥2.

The last inequality is from the Triangle inequality, then we obtain Ĉk

Ĉk+1
≥ ∥Zk∥2

∥Zk+1∥2
,

that is, | cos(θk)| ≥ | cos(θk+1)|, for k = 1, 2, . . . , n− 1.

Note that in the traditional linear regression model with intercept, (1/AMk
)2 is

the first element of the diagonal of hat matrix which contains column one, and it is

always bounded by 1
n

and 1.

Lemma 4.2.2. For Z( ̸= 0) ∈ Rn, the following events are equivalent:

{∥Zk+1∥2 cos θk+1 ≤ ∥Zk∥2 cos θk ≤ ∥Zk−1∥2 cos θk−1} = {θk−1 ≤ θk ≤ θk+1}

Proof. The event in the left hand is equivalent to {Ĉk+1 ≤ Ĉk ≤ Ĉk−1}, for k =

2, 3, . . . , which has the monotone property as shown in Efron et al. (2004). The

monotonicity of θ’s and the one-to-one correspondence of Ĉk and θk, k = 2, 3, . . .

have been verified in Lemma 4.2.1. Hence, the above events are equivalent.

Recall in the linear regression model (1.2), negligible or zero value of ei(= yi −

xT
i β̂) shows a good prediction. In the LARS context, the absolute value of the
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corresponding angle at each knot is bounded by π
2
, no more predictor will enter the

model once the angle is ‘big’ enough. We consider the angle close to π
2

to be ‘big’

enough.

In this section, we make inference about the angle based on the assumption that

the angles follow a (truncated) cosine distribution. The distribution of the cosine val-

ue of the angles is shown in Figure 4.1 through a large sample simulation where θk are

obtained LARS context with n = 1000, p = 2000 and β =
(
5, · · · , 5,︸ ︷︷ ︸
n elements

0, · · · , 0︸ ︷︷ ︸
(p− n) elements

)T .

We connect the angle θk of each LARS solution path to the incremental null hypoth-

esis which measures whether Mk statistically surpass Mk−1 or not. The limiting

distribution of the maximum angle can be used to do an efficient and robust signifi-

cance test for each predictor variable.

Under the domain of [−π
2
, π
2
], Burrows (1986) defined the following cosine distri-

bution with the density function:

f(θ) =


1

2
cos θ if |θ| ≤ π/2,

0 otherwise.
(4.12)

Its cumulative density function (CDF) is give by:

F (θ) =


0 if θ < −π/2,

sin2

(
θ

2
+

π

4

)
if |θ| ≤ π/2,

1 if θ > π/2.

(4.13)

This CDF, F (θ), of cosine distribution can be used to do hypotheses testing of

whether ‘Mk improves over Mk−1’ by the following theorem.

Theorem 4.2.1. Assume that the covariate vectors Xj’s, j = 1, . . . , p, are linearly

independent in the LARS solution path. Let θj, j = 1, . . . , n, be the corresponding

angle at each knot Ĉj in the first n steps. If Lemma 4.2.1 and 4.2.2 hold,

n

2

(π
2
− θn

)2 d→ χ2
2 as n → ∞, (4.14)

where χ2
2 denotes a chi-square random variable with df = 2.
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Figure 4.1: Comparing truncated cosine curve (solid) with the simulation results.

Proof. From Lemma 4.2.1, we know that θj’s, j = 1, . . . , n, are monotone increasing.

Hence, θ1 and θn can be considered as the minimum and the maximum order statistics

of θ’s. As the dimension increases, π
2
− θn will diminish stochastically.

Let θ̃n = n
2
(π
2
− θn)

2. From the CDF of the cosine distribution (Eq. (4.13)) and

the basic trigonometric formula, the distribution of θ̃n can be derived as follows:

P (θ̃n ≤ g) = P
{n
2
(
π

2
− θn)

2 ≤ g
}

= P

{
θn ≥ π

2
− (

2g

n
)1/2
}

= 1− sin2n
[π
2
− (

g

2n
)1/2
]

= 1− cos2n
[
(
g

2p
)1/2
]
, over 0 ≤ g ≤ 2n(π/2)2.

Therefore, the limiting distribution of θ̃n is obtained as

lim
n→∞

P (θ̃n ≤ g) = 1− lim
n→∞

cos2n[(
g

2n
)1/2]

= 1− e−g/2, g ≥ 0,

since cos2n[( g
2n
)1/2] ≈ (1− g

4n
)2n = e−g/2 as n → ∞.
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Hence, θ̃n
d→ χ2

2 converge in distribution, where χ2
2 denotes a chi-square random

variable with df = 2.

The limiting distribution of θ̃n determines if the corresponding angle at knot Ĉk

is ‘big’ enough. A sequence of p-values can be obtained by using the above property

P (χ2
2 > θ̃j), j = 1, . . . , n.

Selection Criteria

Definition 4.2.1. (Family of ‘Accumulation Tests’, Li and Barber 2017)

Let Mm be the model which includes the first m entries. For an integer k ∈

{1, . . . ,m}, a sequence of null hypotheses, Hj, j = 1, 2, . . . , k, measures whether

model Mj statistically surpasses Mj−1 or not. Suppose there is a sequence of uni-

formly distributed p−value, p1, p2, . . . , pk ∈ [0, 1] corresponding to the hypotheses Hj.

Choosing any function ϕ : [0, 1] 7→ [0,∞) satisfying
∫ 1

t=0
ϕ(t)dt = 1, ϕ is termed

‘accumulation function’. The ‘accumulation tests’ determines the stoping point k̂ to

control FDR at level α and are expressed as

k̂ϕ = max

{
k ∈ {1, . . . ,m} :

1

k

k∑
j=1

ϕ(pj) ≤ α

}
. (4.15)

We suggest a new ϕ(x) = x√
1−x2 to choose a stoping point k̂ϕ. We test the

hypothesis with H0 : the jth angle is the maximum one. This null hypothesis is

equivalent to test wether the current model is adequate along the LARS solution

path. By doing this, we reject all hypotheses up to k̂ϕ and none thereafter.

4.3 Numerical Studies

A few related R packages have been added to the current R community since 2015.

The most important packages are PoSI (Berk et al. 2013), covTest (Lockhart et al.

2014) and selectiveInference (Lee et al. 2016). Among them, package PoSI and

covTest cannot support the case of ‘small n and large p’. The functions recorded in

selectiveInference are from Lockhart et al. (2014), Lee et al. (2016), G’Sell et al. (2016)
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and etc. We call it LARS-sI for the methods form selectiveInference in the LARS

context. We are going to assess the performance of the proposed cosine post-selection

inference (cosine PoSI ) method by extensive simulation studies and compare the

results with that from LARS-sI. The proposed ϕ function is used to determine the stop

point along the LARS solution path and the testing level is set to be 0.01. Package

selectiveInference uses the ForwardStop (G’Sell et al. 2016) to determine the stop

point. ForwardStop uses ϕ(x) = log( 1
1−x

) and it is a special case of accumulation test.

In this simulation, the same testing level has been set for the stopping criteria after

the cosine PoSI and LARS-sI. The selected model size and the selection accuracy are

calculated by the expected value after some replications and are defined as E(|Ms|)

and the frequency P (T ⊂ Ms) where Ms respectively.

In Theorem 4.2.1, the covariate vectors are assumed to be independent, but we

still want to see wether the proposed method is robust against the correlated predic-

tors. In general, a strong correlation among the predictors creates difficulty in high

dimensional variable screening/selection.

4.3.1 Simulation Studies

To show good performance of the proposed method, we examine two scenarios. In

the first scenario, compound symmetry structure of Σ’s are used to see wether the

proposed method can overcome issues associated with strong correlation among pre-

dictors. In the second scenario, auto-regressive correlation structure of Σ’s are used

to show that the proposed method is good in parsimonious interpretation. 100 repli-

cations of simulation are run for each scenario. The results of proposed cosine PoSI

and LARS-sI are reported in Table 4.1-4.2.

Scenario I: Compound Symmetry Structure of Σ

For the first scenario, we use model (1.2) with true β = (5, 5, 5, 0, . . . , 0)T . In this

model, X1, . . . ,Xp are p predictors and ϵ ∼ N(0, σ2In) is the noise that is independent

of the predictors. In this simulation, a sample of (X1, . . . , Xp) with size n was drawn
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from a multivariate normal distribution N(0,Σ) with covariance matrix Σ = (1 −

ρ)Ip + ρ11T , where 1 = (1, . . . , 1)T . 16 models are generated by using n = 100, or

200, p = 100 or 1000, ρ = 0, 0.1, 0.5 or 0.9, respectively. This scenario modifies

Example I of Fan and Lv (2008) with a fixed σ2 = 1.

Table 4.1 shows that the proposed cosine PoSI method works perfectly for the case

n = 200, p = 100, 1000 and ρ = 0 (independent predictor variables) and works very

good for the case n = 100, p = 100, 1000 and ρ = 0. The selected model size increases

as the value of ρ increases, but it is still on the level of O(n). The selection accuracy

are all 1 for all the cases which means the selected final model always contains the

entire set of truly nonzero coefficients. We also found that LARS-sI works also very

good for the low dimensional case (n = 200, p = 100) and it can achieve above 90%

selection accuracy for this case. But for the high-dimensional cases, LARS-sI works

conservatively and only keep the ‘strongest’ (the first one) variable in the model.

Table 4.1: Selected Model Size and Selection Accuracy for Scenario I

p = 100 p = 1000

n Method Result ρ=0 ρ=0.1 ρ=0.5 ρ=0.9 ρ=0 ρ=0.1 ρ=0.5 ρ=0.9

100 cosine PoSI E(|Ms|) 3.05 3.17 7.77 11.35 3.23 4.83 16.24 23.90

P (T ⊂ Ms) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LARS-sI E(|Ms|) 1.00 1.04 1.02 1.00 1.02 1.00 1.00 1.00

P (T ⊂ Ms) 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

200 cosine PoSI E(|Ms|) 3.00 3.00 5.68 10.02 3.00 3.05 10.98 19.94

P (T ⊂ Ms) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LARS-sI E(|Ms|) 2.94 3.00 3.00 2.96 1.04 1.04 1.00 1.00

P (T ⊂ Ms) 0.93 0.99 0.98 0.98 0.01 0.00 0.00 0.00
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Scenario II: Auto-Regressive Correlation

In this scenario, we use model (1.2) with true β = (3, 1.5, 0, 0, 2, 0, . . . , 0)T . The

predictors X1, . . . ,Xp and the noise ϵ are again generated the same as in the first

scenario, but having different covariance matrix for the predictors. The covariance

matrix Σ has entries σii = 1, i = 1, . . . , p and σij = ρ|i−j|, i ̸= j. This example is

modified from Example 1 of Tibshirani (1996) with ρ set at 0, 0.5, 0.7 or 0.9.

The results are reported in Table 4.2. The proposed post-selection method is

always able to select a parsimonious model with accuracy rate of 100% even when

the data are highly correlated. From Table 4.1, the proposed cosine PoSI method

works perfectly for the independent predictor variables and works very good for the

case of correlated predictors. The selected model size increases as the value of ρ

increases, but it is still on the level of O(log(n)). The selection accuracy of cosine

PoSI are all 1 for all the cases. We conclude that, for the model with auto-regressive

correlation, the cosine PoSI method accords the parsimony philosophy in statistics

and contains the entire set of truly nonzero coefficients. We also found that LARS-

sI works conservatively than the proposed method. LARS-sI works fine for the low

dimensional case (n = 200, p = 100) with modest selection accuracy. But for the high-

dimensional cases, LARS-sI works conservatively and only keeps about one variable

in the model.

Table 4.2: Selected Model Size and Selection Accuracy for Scenario II

p = 100 p = 1000

n Method Result ρ=0 ρ=0.5 ρ=0.7 ρ=0.9 ρ=0 ρ=0.5 ρ=0.7 ρ=0.9

100 cosine PoSI E(|Ms|) 3.03 3.15 3.51 4.24 3.23 3.33 3.79 4.71

P (T ⊂ Ms) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LARS-sI E(|Ms|) 1.12 1.04 1.00 1.00 1.02 1.00 1.00 1.00

P (T ⊂ Ms) 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

200 cosine PoSI E(|Ms|) 3.00 3.04 3.39 4.10 3.00 3.04 3.39 4.01

P (T ⊂ Ms) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LARS-sI E(|Ms|) 2.74 2.73 2.77 2.37 1.00 1.00 1.00 1.00

P (T ⊂ Ms) 0.76 0.80 0.82 0.46 0.00 0.00 0.00 0.00
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4.3.2 A Real Data Application

We are going to use the data reported in Scheetz et al. (2006) to show the usefulness

of our proposed post-selection inference method. In this data set, F1 rates were

intercrossed and eye tissues from 120 twelve-week-old male F2 offspring were used

for microarray analysis. The microarray data used to analyze the RNA from the eye

tissues contain over 31042 different genes. Among the genes, one gene with the label

‘TRIM32’ was recently found to cause Bardet-Biedl syndrome and it is believed to

be linked with a small number of other genes. A subset of this microarray data can

be found in the R package flare, it contains following two parts:

(1). X - an 120× 200 matrix, which is the data of 120 rats with 200 gene probes.

(2). Y - a vector with length 120, which is the expression level of gene ‘TRIM32’.

To compare the results from cosine PoSI and LARS-sI at the same FDR sig-

nificant level, Leave one out (LOO) technique has been considered such that each

observation in the sample is used once as the validation data. We obtain the vari-

ables after post-selection inference procedure on the training set and then obtain the

OLS estimator of those variables via a linear regression. To evaluate the prediction

accuracy, square error (Yi − Ŷi)
2, i = 1, . . . , n, is recorded for each validation obser-

vation. In Table 4.3, we report the means and the standard deviation (SD) of the

square errors for prediction and the mean and median of model sizes from n train-

ing sets. It can be seen from Table 4.3 that models selected by the proposed cosine

PoSI has smaller cross-validation error than that from LARS-sI, which justifies that

the proposed cosine PoSI method keeps the useful variables in the post-selection

inference procedure, while LARS sI is too conservative and most likely screens out

many relevant variables. We found that LARS sI only contains the very first entered

variable for this real data analysis.

We continue to apply the cosine PoSI method, in contrast to the LARS-sI ap-

proaches, to obtain a final model from the full data by first applying the post-selection

inference methods to select relevant variables and then obtaining the final model us-

ing a linear fit. Table 4.4 reports the selected final model size, The mean square
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Table 4.3: Data Analysis of Eye Microarray Data (LOOCV)

Method Mean SD Model size Model size

square errors square errors (mean) (median)

cosine PoSI 0.3548 0.3523 27.6750 28.0000

LARS-sI 15.5772 1.5019 1.0000 1.0000

error (MSE) and adjusted R2 using different approaches. The MSE and adjusted R2

obtained after applying an OLS estimator to the final selected variables. We see that

the proposed cosine PoSI method contains a larger model than the LARS-sI proce-

dure. The final model of cosine PoSI method keeps 29 variables (ID in package flare):

{153, 55, 99, 87, 42, 85, 180, 177, 109, 90, 199, 112, 36, 185, 62, 136, 200, 155, 187, 146, 188,

134, 141, 172, 127, 11, 54, 181, 164}. Comparing to cosine PoSI, the LARS-sI proce-

dure is too conservative and only includes the first variable into the final model and

some relevant variables may lost in this procedure. In this example, we showed the

usefulness of the proposed cosine post-selection method which is able to select a final

model with size at level O(n) and we also verified our LARS code generates the same

solution path as that of the function ‘lar’ from package selectiveInference.

Table 4.4: Final Models for Eye Microarray Full Data using Different Methods

Method Model Size MSE adjustedR2

cosine PoSI 29 0.0041 0.8009

LARS-sI 1 0.0087 0.5776

4.4 Discussion

When using a traditional linear regression model, a fixed hypothesis test is conducted

to observe which variables are significant at significance level α and report a (1− α)

confidence intervals for the significant variables. The randomness aspect in the high-

dimensional context brought confliction between model selection and the inference. In
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high-dimensional statistics, the data-driven selection procedure is critical important

and the model should be selected to be adaptive to the data instead of devising a

model before collecting data. Hence, a sequence of random hypothesis tests is required

today to do post-selection inference (also termed selective inference). In this chapter,

we proposed cosine PoSI which is a novel post-selection inference method based on

the cosine distribution. We discuss the geometric aspect in LARS and apply the

cosine PoSI in the LARS solution path to do inference. Comparing with the method

in R package selectiveInference, the proposed cosine PoSI did a better job for the

combination of ‘small n and large p as measured through a comparison of the methods

from selectiveInference. The proposed cosine PoSI method is strong in providing a

parsimony model for independent predictor variables and is robust when the data has

‘multicollinearity’.

Lee et al. (2016)’s ‘Polyhedral selection’draw inferences about ηTµ conditional on

the event {My ≤ b} from a truncated normal distribution. ηTy denotes the param-

eter estimator constrained to a variable in M and ηTy ∼ N(ηTµ, ηTΣη). Let γ =

Ση(ηTΣη)−1, d = y − γηTy, V−(d) = max
j:(Mγ)j<0

bj−(Md)j
(Mγ)j

, V+(d) = min
j:(Mγ)j>0

bj−(Md)j
(Mγ)j

,

V0(d) = min
j:(Mγ)j=0

{bj − (Md)j} and V−, V+, V0 are independent of ηTy, {My ≤ b}

can be rewritten in term of ηTy and d as follows: eTj (X
T
MXM)−1XT

Mµ = ηTµ for

some η.

{My ≤ b} = {V−(d) ≤ ηTY ≤ V+(d),V0 ≥ 0}. (4.16)

Hence, ηTy|{My ≤ b,d = d0} is a truncated normal between V−(d0) and V−(d0)

where d0 is a fix value of d and its CDF follows about a standard uniform distribution.

Inspired by the ‘Polyhedral selection’, another cosine distribution can also be

constructed to approximate normal distribution. The density function and cumulative

density function are given by:

f(θ) =


1

2π
(1 + cos θ) if |θ| ≤ π,

0 otherwise.
(4.17)
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F (θ) =


0 if θ < −π,

1

2π
(π + θ + sin θ) if |θ| ≤ π,

1 if θ > π.

(4.18)

We conjecture that some statistics based on this cosine distribution are able to

measure how much improvement the kth entering predictor variable Xjk made over

the interval (Ĉk−1, Ĉk+1). Then the predictor variables having negligible contribution

on this interval can be screened out. We may also combine the results with other

post-selection inference method to refine the candidate predictors and make LARS

as a powerful and reliable high-dimensional screener.
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Chapter 5

Concluding Remarks and Future

Work

Analysing high-dimensional data is one of the most challenging problems in the era

of big data and artificial intelligence. In this thesis, three important problems are

explored for high-dimensional data analysis: variable screening, influence measure

and post-selection inference. This chapter summarizes the main contributions made

in this thesis and discusses some potential directions for future research.

5.1 Conclusions and Discussions

In Chapter 2, the high-dimensional variable screening problem in linear regression was

considered under the assumption of a sparse structure. We proposed a new estimator

of measuring the correlation between the predictor variables and the current residual

dynamically. The new estimator adaptively reduce the spurious correlation among

the predictor variables. Based on this estimator, a new variable screening method

termed Dynamic Tilted Current Correlation Screening (DTCCS) has been proposed

to ensure the screening accuracy especially when the data encounter low signal-to-

noise ratio and/or multicollinearity. We theoretically and numerically showed that

the DTCCS procedure effectively preserves the relevant variables and reduces the

entering chance of the irrelevant variables under certain conditions. A parsimonious
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final model can be obtained by combining the DTCCS and the recent development

of the model selection criteria for high-dimensional data. In Section 2.5, we extended

the DTCCS procedure to the case of the deterministic design matrix. Different from

the random design matrix, the value of the ‘tilting parameter’ can be theoretically

determined.

In Chapter 3, we proposed two frameworks to deal with high-dimensional influ-

ence measure problem, one is from the extreme value distribution (EVD), another

is derived from the robustness of design. The sum-of-squares type statistics have

been widely used in traditional statistics for decades, but EVD-type statistics have

been proven to be more powerful than the sum-of-squares type statistics in the high

dimensional sparse setting (Cai et al. 2011). To measure high-dimensional influence,

we first proposed an EVD-type statistic which is based on a linear transformation of

(Tn − Tn−1) by the precision matrix Ω of T . This new statistic is theoretically pow-

erful against sparse alternatives in the high dimensional setting under dependence.

However, in most cases the precision matrix is unknown and numerically difficult to

estimate. It is a theoretically feasible but time-consuming method. The EVD-type

statistic is involved in the future work of obtaining alternative or efficient approach

of the precision matrix. From the perspective of robustness of design, we proposed

another numerically efficient method termed Hellinger distance for high-dimensional

influence measure (HD-HIM). We first construct two discrete probability mass func-

tions (PMF) from the marginal correlations between the predictor variables or quan-

tities of interest. Similar to the kernel idea in machine learning, an inner product

of two transformed influence function is used to measure the Hellinger distance of

those two PMFs. This construction gives detecting power to flag the observations

that have unusual effect on high-dimensional models. The HD-HIM method has been

thoroughly illustrated theoretically and numerically.

In Chapter 4, we proposed a new numerically feasible post-selection inference

method termed Cosine PoSI in high-dimensional framework. This method is mo-

tivated by the seminal theory of Least Angle Regression (LARS, Efron et al. 2004)

and it focus on the geometric aspect of LARS solutions. LARS efficiently provides a
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solution path along which the entered predictors always have the same absolute cor-

relation with the current residual. At each step of the LARS algorithm, the proposed

Cosine PoSI method employs an angle from the correlation between the entering

variable and current residual and considers this angle as a random variable from the

cosine distribution. The post-selection inference is then conducted based on the or-

der statistics of this cosine distribution. Given the collection of the possible angles,

we propose a new ϕ function to perform multiple hypothesis tests on the limiting

distribution of the maximum angle. Base on our knowledge, there is only one R pack-

age selectiveInference for post-selection inference in the high-dimensional context.

By comparing with selectiveInference, we illustrated that the proposed Cosine PoSI

method can do efficient and robust significant tests for the first n predictor variables

on the LARS solution path. The usefulness and the effectiveness of the proposed

Cosine PoSI method is also established via real-life data analysis.

5.2 Future Work

This thesis is centering on the correlation learning in high-dimensional statistics. Top-

ics on the correlation learning merit further statistical and machine learning research.

Part of the theories and the methodologies in this thesis can be generalized to broader

family of models, such as the generalized linear model and generalized additive mod-

el. There are a bunch of direct applications in the areas such as unusual credit card

transaction, abnormal medical screening image and feature engineering. As the rapid

development of computational power, the advantage of correlation learning will be

more and more prominent. In this section, we will briefly discuss some future work

which is expanded from our methodologies on the correlation learning.

Implicit DTCCS

A nature extension of the DTCCS procedure is to use the residual vector from the

explicit ridge to other implicit methods when regressing Xj against all other variables

X̃−j, such as LASSO, SCAD, etc., for identifying accurate relationships among them.
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For instance, let Jλ(|βk|) = λ|βk| · I(|βk| ≤ λ) +
aλ|βk|−(β2

k+λ2)/2

(a−1)λ
I(λ < |βk| ≤ aλ) +

(a+1)λ2

2
I(|βk| > aλ) for λ > 0 and some a > 2, the SCAD-generated residual vector is

zj = Xj − X̃−j γ̂j, and γ̂j = argmin
β

{
Xj − X̃−jβ

2n
+

p∑
k=1

Jλ(|βk|)

}
, (5.1)

where γ̂j be the vector of coefficients from the SCAD regression of Xj on X̃−j. In

the case of the random design matrix, the value of ‘tilting parameter’ λj can be

preassigned by a descending sequence of positive integers. For the deterministic design

matrix, the selection of the ‘tuning parameter’ may be determined as the deterministic

case which was discussed in Chapter 2.

Extension of the Influence Measure

The accuracy of the EVD-type statistics, ∥Ω(T )(Tn − Tn−1)∥∞ is highly associated

with the estimates of the precision matrix Ω(T ). When we choose T as the HOLP

estimator, the preliminary numerical example shows the usefulness of this new di-

agnostic idea. As the computing power increasing rapidly, we expect to apply an

efficient way to calculate the precision matrix which is one of the most important

step in the EVD-type statistics, for instance, Wu et al. (2018) suggest a ‘low rank

+ diagonal’ decomposition to obtain the high-dimensional inverse. Besides, another

potential extension is to figure out an efficient way to obtain the precision matrix of

the high-dimensional correlation estimator (HDCE). HDCE is one of the most pow-

erful methods to tilt the spurious correlation. We expect its EVD-type statistics is

still powerful to spot the influence observation in high-dimensional statistics.

The proposed HD-HIM is efficient and robust to flag influential observations. It

can be considered as a new inner-product kernel and applied to many machine learn-

ing problems, such as classification. We will continue to explore the asymptotical

relationship between the original distance and the its counterpart for a transformed

higher or lower dimension. This exploration may relate to the Johnson-Lindenstrauss

Lemma (Johnson and Lindenstrauss 1984). This lemma is stated as follows.

Lemma 5.2.1. (Johnson-Lindenstrauss Lemma, Johnson and Lindenstrauss 1984)
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Suppose we have n points u1, . . . , un ∈ Rd. Given ϵ ∈ (0, 1), we are going to map

f : Rd → Rk, where k < d and k = O(ϵ−2 log(n)), such that for each i, j, 1 ≤ i ≤ j ≤

n, we have

(1− ϵ)∥ui − uj∥22 ≤ ∥f(ui)− f(uj)∥22 ≤ (1 + ϵ)∥ui − uj∥22. (5.2)

The above formula can be rearranged to

(1 + ϵ)−1∥f(ui)− f(uj)∥22 ≤ ∥ui − uj∥22 ≤ (1− ϵ)−1∥f(ui)− f(uj)∥22. (5.3)

PoSI of DTCCS

The post-selection inference (PoSI) allows us to test hypothesis suggested by the

data. The PoSI of LASSO and LARS has been discussed in the past few years.

In the high or ultra-high dimensional context, some criteria, such as emphextended

BIC (Chen and Chen 2008) emphquadratically supported risks (QSR, Kim and Jeon

2016), are used to select a final sparse model one by one after the screening procedure.

Our proposed DTCCS admits candidate variables group by group. Post-selection

inference in DTCCS with groups of variables is an interesting future work. Under the

deterministic design matrix, confidence intervals for the DTCCS can also be examined

since β̂j−βj

τjσ

(d)
≈ N(0, 1) where τj was defined in Section 2.5.
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