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Abstract 

Due to the depletion of fossil fuels and climate change, extensive research has performed 

towards renewable energy production from microalgal biomass. Microalgae have several 

inherent benefits, such as high photosynthetic efficiencies, fast growth rates, and high lipid 

contents. In addition, microalgae can be cultivated in the non-arable lands (e.g., saline and 

waste water), thereby no competition with food crops production.  

Transesterification is the one of commonly used technologies for converting microalgae into 

liquid bio-fuels (i.e., biodiesel). Normally, an energy-intensive drying step is required in the 

transesterification treatment, which accounts for nearly half of the energy input. Hence, if 

“wet” microalgal biomass can be directly used as the feedstock for bio-fuel production 

without dewatering/drying, the overall economy of microalgae-to-fuel conversion can be 

greatly improved.  

In this thesis work, an alternative pre-treatment by pre-cooled NaOH/urea solution was 

investigated for microalgae. Subsequently, the pre-treated microalgae were applied as the 

feedstock for producing bio-crude oil. In addition, hydrothermal liquefaction (HTL) of 

microalgae was carried out in water, alcohol or water-alcohol mixed solvents under various 

reaction conditions with aims to improve bio-crude oil yield and quality. More noteworthily, 

the feasibility of recycling aqueous by-product from HTL of microalgae as a reaction 

medium for bio-crude oil production was explored, which yields great significance for the 

large-scale HTL applications. Furthermore, the co-processing of microalgae with other 

lignocellulosic biomass (i.e., aspen sawdust) was performed in ethanol-water co-solvents, 

and this work demonstrated the synergistic interactions between microalgae/sawdust and 

ethanol/water in the co-liquefaction process.  

Keywords 

 Microalgae, Pre-treatment, Hydrothermal liquefaction, Bio-crude oil, Characterization, Two-

step hydrothermal liquefaction, Aqueous phase recirculation, Methanol, Mild reaction 

conditions, Co-liquefaction, Ethanol-water mixed solvents, Lignocellulosic biomass  
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Chapter 1  

1 Introduction 

1.1 Background 

Renewable energy has gained a great deal of attention over the past decades, owing to the 

exhaustion of fossil fuels and growing global population as well as the serious 

environmental problems (Marcilla et al., 2013). Therefore, extensive studies have focused 

on the production of bio-fuels from biomass. In general, bio-fuels can be categorized into 

first, second, and third generation according to their sources of biomass (Voloshin et al., 

2016). First generation bio-fuels obtained from food crops such as corn, soybean, and 

sugarcane have been commercialized. To avoid competition with crop production, second 

generation bio-fuels from non-food crops such as wood chip, wheat straw, and rice husk 

have been widely investigated (Chen et al., 2015). Recently, third generation bio-fuels 

from microalgal biomass have attracted interests due to their inherent advantages, 

namely, (i) high biomass productivities; (ii) high lipid contents; (iii) the abilities to be 

cultivated in the brackish or waste water; and (iv) can be potentially used for carbon 

sequestration. (Guo et al., 2015; Barreiro et al., 2013).  

In literature, there are two common conversion routes for producing liquid bio-fuels from 

microalgae, including (i) biodiesel via transesterification of the microalgal lipid and (ii) 

bio-crude oil via hydrothermal liquefaction (HTL) of the whole biomass (Tian et al., 

2014). Drying as an energy-intensive pre-treatment is required prior to transesterification 

treatment (Guo et al., 2015). Therefore, some researches have used wet microalgal 

biomass as the feedstock for bio-crude oil production through HTL (Zou et al., 2010; 

Jena et al., 2011; Shakya et al., 2015). HTL of microalgae is usually carried out in water 

at 200-380 C and 5-28 MPa with or without catalyst. At the end of HTL process, an 

energy-dense bio-crude oil is obtained as the main product, along with solid, aqueous, 

and gaseous by-product (Tian et al., 2014; Barreiro et al., 2013). Products distribution 
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and the bio-crude oil properties are primarily dependent on the feedstock characteristics 

and various operating conditions (e.g., temperature, residence time, microalgae/solvent 

ratio, catalyst, and solvent etc.) (Barreiro et al., 2013).  

1.2 Objectives  

The overall objective of this PhD project was to investigate the production of liquid bio-

fuels from microalgae through HTL treatment. Specifically, this project aimed to:  (1) 

develop an alternative pre-treatment method for maximizing energy recovery from 

microalgae; (2) investigate a two-step HTL coupled with a pre-treatment in order to 

produce a high-quality bio-crude oil; (3) recycle aqueous by-product from HTL of 

microalgae with an aim to improve the overall economy of HTL treatment; (4) examine 

the effects of operational parameters on the direct liquefaction of microalgae  in terms of 

products distribution and bio-crude oil properties; and (5) explore co-liquefaction of 

microalgae and lignocellulosic biomass in ethanol-water co-solvents for improving bio-

crude oil yield and quality.  

1.3 Research approaches and methodology  

This research study can be divided into two main phases. The first phase involved the 

establishment of an alternative pre-treatment approach for microalgae and its effect on 

the bio-crude oil recovery, and the second on investigating the effects of aqueous phase 

recycling and various operating parameters on the liquefaction of microalgal biomass.  

In the first phase, a pre-treatment using a pre-cooled NaOH/urea solution was developed 

for microalgae and compared with existing pre-treatment approaches. Following this, the 

pre-treated microalgae was employed as the feedstock for producing bio-crude oil.  

In the second phase, the effects of operating conditions such as reaction temperature, 

residence time, biomass/solvent mass ratio, catalyst, and solvent on the liquefaction 

yields and bio-crude oil properties were examined. In addition, the feasibility of recycling 
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water phase as a reaction medium was evaluated. Finally, the co-conversion of 

microalgae and lignocellulosic biomass (i.e., aspen sawdust) was carried out in ethanol-

water mixed solvents. 

1.4 Thesis overview 

The thesis consists of eight chapters organized in the following sequence:  

• Chapter 1 provides a general introduction to the importance of production of 

microalgae-derived liquid bio-fuels through HTL. The research objectives, 

approaches and methodology, and thesis structure are also outlined.  

• Chapter 2 summarizes the available literature on the pre-treatment approaches 

(mechanical and non-mechanical techniques) for various microalgae strains. The 

underlying reaction mechanisms of microalgal biomacromolecules in the HTL 

and the effects of operational parameters on the microalgal HTL are reviewed. 

Finally, the physical and chemical properties of four different liquefaction 

products are also discussed.  

• Chapter 3 investigates an alternative pre-treatment with a low-temperature 

NaOH/urea solvent for microalgae and compared with current pre-treatment 

approaches (i.e., acid and ultrasonication-assisted approach).  

• Chapter 4 presents the results of a two-step HTL process combining with a pre-

treatment for producing a high-quality bio-crude oil.  

• Chapter 5 explores the feasibility of recycling aqueous phase from microalgal 

HTL as a reaction medium for improving bio-crude oil production. The effects of 

catalyst and water phase recycling on the HTL of microalgae were studied. The 

roles of recycled aqueous by-product in the HTL of microalgae were also 

investigated.  
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• Chapter 6 conducts a study of direct liquefaction of microalgal biomass in 

methanol with an aim for maximizing bio-crude oil yield under mild reaction 

conditions. Various operating parameters including residence time, 

biomass/solvent mass ratio, reaction temperature, and methanol-water mixed 

solvents composition were examined.  

• Chapter 7 reports the results from co-liquefaction of microalgae and 

lignocellulosic biomass (i.e., aspen sawdust) in ethanol-water mixed solvents 

under various reaction conditions in order to obtain higher quantity and quality of 

bio-crude oil products.   

• Chapter 8 summarizes the main conclusions from this present work and suggests 

future research directions.   

1.5 Contributions and novelties 

The main contributions and novelties of this research are summarized as follows:  

• Development of an alternative pre-treatment approach for microalgae in order to 

improve energy recovery.  

• Establishment of a two-step HTL process coupled with a pre-treatment for 

efficient bio-crude oil production. 

• Demonstration of the effectiveness of reusing the water phase from HTL of 

microalgae as a liquefaction medium for bio-crude oil production, which plays a 

crucial role in the industrial-scale HTL applications.  

• Comprehensive studies on the effects of various operational factors including 

temperature, residence time, biomass/solvent ratio, and methanol-water co-

solvents composition on the direct liquefaction of microalgal biomass. 
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• Discovering the synergistic interactions between microalgae and lignocellulosic 

biomass in the co-liquefaction for improving the yield and properties of bio-crude 

oil products. 
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Chapter 2  

2 Literature review  

The information presented in this Chapter is based on the paper “Bio-crude oil production 

from microalgae using hydrothermal liquefaction: a review of recent developments”, 

which has been submitted to Sustainable and Renewable Energy Review.  

2.1 Abstract 

Microalgae have been widely considered as the potential sources for bio-fuel production 

without affecting the environment. Hydrothermal liquefaction (HTL) is a suitable 

technology for converting high water-containing feedstock (e.g., microalgae) into liquid 

fuels. The structural diversity and rigidity of microalgal cell-wall remains as one of the 

major techno-economic bottlenecks for the recovery of intramolecular compounds from 

microalgae. In this section, recent developments in the pre-treatments and HTL for 

various microalgae strains are reviewed. The discussed pre-treatment approaches are 

mechanical (bead milling, high pressure homogenization, ultrasonication, microwave, 

and pulsed electric field) and non-mechanical (acid, alkali, osmotic shock, ionic liquid, 

and enzymatic cell-lysis) methods. In addition, the available literature investigating the 

effects of feedstock characteristics and operating conditions on the HTL of microalgae 

are presented. The reaction pathways of microalgal macromolecules (lipid, protein, and 

carbohydrates) and their corresponding model compounds in the HTL are reviewed, 

followed by a discussion on the physiochemical properties of liquefaction products (bio-

crude oil, aqueous phase, solid residue, and gas).  

2.2 Introduction 

Due to their high lipid contents and fast growth rates, microalgae have been broadly 

regarded as the promising resources for the production of renewable energy (Garcia Alba 
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et al., 2012). In addition, microalgae can be applied for wastewater treatment by 

consuming 𝑁𝐻4
+, 𝑁𝑂3

−, and 𝑃𝑂4
3− in the waste streams from industries (Chen et al., 

2017). Except that, microalgae have the potentials to be used as food supplements (Kwan 

et al., 2017), animal feeds (Madeira et al., 2017), cosmetics (Wang et al., 2015), and 

pharmaceuticals (Borowitzka et al., 1995). However, there remain several challenges for 

the industrial-scale microalgae-based biorefinement. Among them, one of the most 

critical problems cited in the literature is the low recovery efficiencies of intracellular 

components from microalgae, owing to their highly resilient and complex cell-wall 

structures (Günerken et al., 2015). Therefore, a wide range of cell disruption techniques 

such as bead milling (Zheng et al., 2011), high pressure homogenization (Shene et al., 

2016), ultrasonication (Garoma et al., 2016), microwave (Heo et al., 2017), pulsed 

electric field (Carullo et al., 2018), acid treatment (Hu et al., 2017a), alkali treatment 

(Mahdy et al., 2014), osmotic shock (Rakesh et al., 2015), ionic liquid extraction (Pan et 

al., 2016), and enzymatic cell lysis (Wu et al., 2017), have been investigated.  

One of the most common technologies for converting microalgae into liquid bio-fuels is 

the transesterification treatment, which requires dewater/drying stage of the feedstock 

(Brown et al., 2010). Compared to transesterification, HTL has several benefits, namely, 

(i) non-requirement for drying the biomass (Yu et al., 2011); (ii) not only lipid but also 

protein and carbohydrates can be processed (Li et al., 2014); (iii) the desirable properties 

of water under hydrothermal conditions, such as low dielectric constant, high ionic 

product, and low viscosity (Toor et al., 2011); and (iv) can separate and recycle nutrients 

(e.g., N, P, Mg, and K) for microalgal cultivation (Guo et al., 2015). Commonly, HTL of 

microalgae is performed in water at 200-380 °C and 5-28 MPa for 5-120 min with or 

without catalyst (Tian et al., 2014; Peterson et al., 2008; Toor et al., 2011). Despite the 

advantages mentioned above, the bio-crude oil obtained from microalgal HTL usually 

contains higher concentrations of N and O than those of petroleum crude oil, and this 

represents as a crucial barrier to the commercialization of microalgae-derived bio-crude 

oil (Barreiro et al., 2013a). 
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There are several comprehensive review papers discussing bio-fuels production from 

algae (including microalgae and macroalgae) (Tian et al., 2014, Guo et al., 2015), while, 

the focus of this chapter is to review the pre-treatment methods and bio-crude oil 

production specifically from microalgae. This is due to the fact that macroalgae typically 

contain higher ash contents than microalgae, which could negatively affect the bio-crude 

oil yield and cause slagging and fouling problems. In section 2.3, the fundamental 

principles of various pre-treatment technologies and the relating case studies are 

discussed in detail; followed by Section 2.4 where covers the reaction mechanisms and 

crucial factors in the HTL of microalgae with the focus on the feedstock characteristics, 

operating conditions, and products distribution.  

2.3 Pre-treatment of microalgae 

Microalgal cells are protected by a resistant cell wall, and the target products are often 

located inside the globules or bounded to the cell membrane, which makes the extraction 

of intra-molecules from microalgae by conventional solvent extraction very challenging. 

Thus, disrupting the microalgal cell wall is necessary before conducting solvent 

extraction (Maffei et al., 2018). An overview of recent studies on the cell disruption for 

microalgae is summarized in Table 2.1.  
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Table 2-1: An overview of recent studies investigating the cell disruption of microalgae. 

Disruption 

approach 

Microalgae strain Operating conditions Reference 

Bead milling 

 C. vulgaris 0.4-0.6 mm glass beads, 67% beads filling, 20 

min 

Zheng et al. 

(2011) 

 Schizochytrium S31 0.4-0.6 mm, 0.8-1.0 mm ZrO2 beads, 54% 

beads filling, 1-7/100 g/mL cell concentration 

Byreddy et 

al. (2016) 

 C.vulgari, N. 

Oleoabundans, T. 

suecica 

0.3-1 mm ZrO2 beads, 65% beads filling Postma et 

al. (2017) 

 N. oculata, P. 

cruentum 

0.375-2.15 mm glass beads, 0.2-1.25 mm ZrO2 

beads, 8-14 m/s rotational speed, 35-85% beads 

filling, 48-200 mL/min flow rate 

Montalescot 

et al. (2015) 

High-pressure homogenization 

 N. oculata 75-350 MPa, 1.6 wt.% cell dry weight Shene et al. 

(2016) 

 C. vulgaris 2700 bar, 2 wt.% cell dry weight Carullo et 

al. (2018) 

 Nannochloropsis sp.  30-150 Mpa, 3 h, 20-25 wt.% cell dry weight Yap et al. 

(2015) 

 T. suecica, 

Chlorococcum sp.  

517 and 862 bar, 2,503-10,720 cells/mm3 cell 

concentration  

Halim et al. 

(2013) 

 Chlorococcum sp.  500 and 850 bar, 15 min, 9,559 and 65,476 

cells/mm3 cell concentration 

Halim et al. 

(2012) 

Ultrasonication  
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 C. vulgaris  20 kHz frequency, 55 W power, 20 min,  Garoma et 

al. (2016) 

 C. vulgaris  40 kHz frequency, 700 W power, 15 min Heo et al. 

(2017) 

 C. vulgaris  40 kHz frequency, 80 W power, 10-30 min Hu et al. 

(2017a) 

 T. suecica 40 kHz frequency, 32.5 and 130 W power, 25 

min, 1,824-22,784 cells/mm3 cell concentration  

Halim et al. 

(2013) 

 Chlorococcum sp.  40 kHz frequency, 65 and 130 W power, 25 

min, 9,559 and 65,476 cells/mm3 cell 

concentration 

Halim et al. 

(2012) 

 Nannochloropsis sp.  20 kHz frequency, 10 W power, 10 min, 107 

cells/mL cell concentration 

Kurokawa 

et al. (2016)  

 C. reinhardtii 20 kHz frequency, 64-144 µmp-p amplitude, 5 s  Gerde et al. 

(2012) 

 Botryococcus sp., C. 

vulgaris, Scenedesmus 

sp., N. oculata 

10 kHz frequency, 5 min Lee et al. 

(2010) 

Microwave 

 Botryococcus sp., C. 

vulgaris, Scenedesmus 

sp. 

100 ℃, 2450 MHz, 5 min Lee et al. 

(2010) 

 N. oculata 1025 W, 20 min McMilan et 

al. (2013) 

 Bortyococcus sp., C. 

sorokiniana,  

2450 MHz, 100 ℃, 2-6 min Rakesh et 

al. (2015) 
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Pulsed electric field  

 C. reinhardtii  0.5-15 kV/cm electric field strength, 1-15 

number of pulses, 0.05-0.2 ms pulses length 

‘t Lam et al. 

(2017) 

 A. protothecoides  20-50 kV/cm electric field strength, 52-211 

kJ/kgsus specific energy 

Goettel et 

al. (2013) 

 C. vulgaris  27-35 kV/cm electric field strength, 50-150 

kJ/kgsus specific energy, 10.8 and 14 kV, 5 µs 

pulse length  

Pataro et al. 

(2017) 

Acid and alkali 

 C. vulgaris  120 ℃, 1-4% v/v H2SO4, 30 min Hu et al. 

(2107a) 

 Chlorococcum sp.  120 and 160 ℃, 3 and 8 vol.% H2SO4, 15 and 

45 min, 9,559 and 65,476 cells/mm3 cell 

concentration 

Halim et al. 

(2012) 

 S. obliquus 58 -120 ℃, 30 min, 0.05-10 N H2SO4 Miranda et 

al. (2012) 

 C. vulgaris, 

Scenedesmus sp.  

50 ℃, 24 and 48 h, 0.05-5 wt/wt NaOH Mahdy et 

al. (2014) 

Osmotic shock 

 C. vulgaris 10% w/v NaCl, 48 h Heo et al. 

(2017) 

 Botryococcus sp., C. 

vulgaris, Scenedesmus 

sp. 

10% NaCl, 48 h Lee et al. 

(2010) 

 Bortyococcus sp., C. 

sorokiniana,  

5-15% NaCl, 48 h Rakesh et 

al. (2015) 
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Ionic liquid  

 C. vulgaris  1-ethyl-3-methyl imidazolium 

diethylphosphate, 120 ℃, 2 h, 5 wt.% loading 

Choi et al. 

(2014) 

 C. vulgaris, N. oculata (hydroxymethyl(phophonium chloride, 100 ℃, 

24 h, 10 cm3/1 gbiomass loading 

Olkiewicz 

et al. (2015) 

Enzymatic cell lysis  

 Chlorella sp., 

Nannochloropsis sp., 

Scenedesmus sp.  

pH=7 for lysozyme, pH=5 for cellulase, 37 ℃, 

2-16 h 

Al-Zuhair 

et al. (2017) 

 C. vulgaris Cellulase, lysozyme, pH=4.8, 37 ℃, 2h Zheng et al. 

(2011) 

2.3.1 Mechanical methods 

2.3.1.1 Bead milling 

Bead milling has been demonstrated to be an effective disruption technique for the 

release of intracellular components from microalgae under mild operating conditions. 

The cell disruption is believed to achieve through sudden compaction or shear force, 

resulting from the high-speed solid beads (Lee et al., 2017). The optimal efficiency of 

cell disruption is dependent on the bead diameter, bead density, agitator speed (i.e., tip 

speed of agitator), bead filling ratio, biomass concentration, and suspension flow rate. 

Byreddy et al. (2016) found that the degree of cell disintegration increased with 

increasing agitator tip speed, while, in contrast, an opposite trend was observed for 

biomass concentration. Postma et al. (2017) observed that a bead size in the range of 0.3-

0.4 mm resulted in the highest disruption rate for C. vulgaris and N. oleoabundans. 

Montalescot et al. (2015) investigated the cell disintegration of N. oculate and P. 

cruentum by bead milling and reported that the degree of cell disruption was proportional 

to bead filling ratio.  
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Although bead milling has advantages of high efficiency and scalability, the high energy 

demand and unavoidable heat generation represent as crucial barriers to its practical 

application (Günerken et al., 2015).  

2.3.1.2 High pressure homogenization 

High pressure homogenization (HPH) is an effective cell disruption technique, particular 

for microalgae with resilient cell wall like Nannochloropsis (Yap et al., 2015). In an HPH 

unit, cell paste is forced to flow through a narrow nozzle under a high pressure, followed 

by colliding to an impact ring, and then released into a low-pressure chamber. Cell 

disruption by HPH is thus to be achieved by high shear force and cavitation from the 

sudden pressure drop (Günerken et al., 2015). The degree of cell disintegration in HPH is 

mainly determined by loading pressure and cell dry weight. Halim et al. (2013) 

investigated the effects of loading pressure and cell dry weight on the cell disruption 

efficiency of T. suecica and Chlorococcum sp. The authors reported that the disruption 

rate was inversely proportional to cell dry weight but positively correlated to loading 

pressure. Similarly, Halim et al. (2012) pre-treated microalgae Chlorococcum sp. via 

HPH-assisted treatment and found that a higher loading pressure was beneficial for 

improving cell disintegration efficiency.  

Together with bead milling, HPH is the most favorable cell disruption method for 

microalgae. Nevertheless, the high energy requirement and relatively expensive 

disruption equipment make HPH less favorable for industrial-scale implementations (Lee 

et al., 2017).  

2.3.1.3 Ultrasonication 

Ultrasonication has been extensively studied for the extraction of lipid, protein, and 

sugars from microalgae. In general, two main working principles exist for 

ultrasonication-based treatment, including (i) radiation force and acoustic stream and (ii) 

cavitation effects (e.g., free radical reactions, shock waves, shear stress, and microjet) 
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(Kurokawa et al., 2016). The first phenomenon occurs at low ultrasonic powers and is 

confirmed by the bio-effects on the cell cytoplasm (Miller et al., 1986). The latter 

phenomenon is caused by the formation of micro-bubbles when ultrasound is applied to 

the liquid. As the micro-bubbles continue to grow till a critical size, the cavitation 

phenomenon can be created and then imparts shock waves to break the surrounding cells 

(Gerde et al., 2012). Besides, the cavitation promotes the thermolysis of water into highly 

reactive free radicals like H· and OH·. In literature, the cell disruption efficiency of 

ultrasonication is primarily affected by ultrasound frequency and acoustic power 

(Kurokawa et al., 2016). Gerde et al. (2012) evaluated the cell disruption efficiency of S. 

limacinum from ultrasonication-assisted treatment. It was observed that the degree of 

disruption increased with increasing sonication energy, whereas further increase above 

789 J/10 mL exhibited no significant effect.  

The main benefits of ultrasonication include high disruption efficiency, short treatment 

time, negligible toxicity, and simple handing. However, the requirement of temperature 

control and relatively low disruption efficiencies for some microalgae species (e.g., 

Chlorococcum sp.) are considered as the main challenges for the large-scale 

implementation of ultrasonication treatment (Halim et al., 2012).  

2.3.1.4 Microwave 

Microwave is a non-contact disruption technique for microalgae. The working principle 

of microwave is as followed, heat can be generated from inter- and intra-molecular 

movements when microwave irradiation is applied to a dielectric polar material (e.g., 

water). Within a short time, water can reach its boiling point and causes cell expansion, 

followed by an increase in the internal pressure. Thus, the disruption of microalgal cells 

by microwave is caused by the local heat and internal pressure (Lee et al., 2012). 

Depending on the microalgae strains, a higher disruption efficiency can be achieved by 

microwave treatment, when compared with other mechanical methods. For instance, Lee 

et al. (2010) compared bead milling, autoclave, ultrasonication, and microwave for lipid 

recovery from Botryococcus sp., C. vulgaris, and Scenedesmus sp. They reported that the 
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microwave treatment was the most effective disruption technique for improving lipid 

extraction. In another study, McMilan et al. (2013) observed that the highest disruption 

efficiency of 94.92% was achieved by microwave-assisted treatment, along with a 

relatively lower energy consumption.  

Even though microwave treatment is highly effective and easily scale-up, some 

constrains still ahead, (i) it is not suitable for non-polar solvents (Wang et al., 2006) and 

(ii) it may lead to the formation of unstable bonds in the carbon-chain structure, thereby 

affecting the properties of target compounds (Lee et al., 2017).  

2.3.1.5 Pulsed electric field 

Pulsed electric field (PEF) has gained much attention as a low-cost and mild technique 

for cell disruption (‘t Lam et al., 2017). Cell disruption by PEF is obtained by a reverse 

transmembrane potential (TMP), inducing pore formation in the cell wall. Literature 

indicated that the cell disintegration efficiency of PEF treatment is correlated to the 

specific energy input and electric field strength (Goettel et al., 2013). Pataro et al. (2017) 

examined the extraction of protein and carbohydrates from C. vulgaris using PEF 

treatment at electric field strength of 27-35 kV/cm and specific energy input of 50-150 

kJ/kg. They reported that the carbohydrate-extracted yield increased ~2.7 times at 27 

kV/cm and ~2.6 times at 35 kV/cm compared to that obtained without PEF treatment. 

Additionally, the effect of the electric field strength on the carbohydrate recovery was 

observed to be less important than that of energy input. In the case of protein extraction, 

the electric field strength had no significant effect on the protein-extracted yield. On the 

contrary, the protein recovery efficiency sharply increased with increasing energy input 

from 50 kJ/kg to 100 kJ/kg, and further increase in the energy input led to a lower 

protein-extracted yield.  

Even though PEF-assisted extraction can be easily scale-up and combine with other 

disruption techniques, the requirement for additional pre-washing and deionization for 
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marine microalgae and the high energy requirement make PEF treatment undesirable for 

large-scale applications (Günerken et al., 2015).  

2.3.2 Non-mechanical methods 

2.3.2.1 Acid and alkali 

Acid-based treatment has been widely employed for disrupting microalgal cell wall. 

During acid treatment, sugar polymers in the cell wall can be hydrolyzed, thereby 

facilitating recovery of intracellular components (Lee et al., 2017). Sulfuric acid (H2SO4) 

is reported to be the most commonly used acid. Miranda et al. (2012) observed that the 

extraction efficiency of carbohydrates from S. obliquus was as high as 95.6% in 2 N 

H2SO4 solution at 120 ℃ for 30 min.  

Cell disruption by alkaline treatment is achieved through saponification of membrane 

lipid. Sodium hydroxide (NaOH) is the commonly utilized chemical in the alkali-assisted 

disruption. Mahdy et al. (2014) studied the effect of alkali pre-treatment on the C. 

vulgaris and Scenedesmus sp. for improving biogas production, and the cell disruption 

efficiency was found to increase with increasing NaOH dosage.  

The main advantages of acid and alkaline pre-treatment are low energy demand, modest 

capital cost, and scalability (Gong and Bassi, 2016). However, the use of acid/alkali may 

damage target compounds, like degradation of pigment by acid and denaturation of 

protein by alkali, thereby limiting the practical applications of acid and alkali pre-

treatment for microalgae. 

2.3.2.2 Osmotic shock 

Osmotic shock, a rarely used disruption technique, lowers the movement or concentration 

of water across the cell membrane by the addition of salts, which may facilitate the 

recovery of intracellular molecules (Mercer et al., 2011). Rakesh et al. (2015) applied 
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osmotic shock treatment for Bortyococcus sp and observed that the osmotic shock by 

15% NaCl led to a higher disruption rate than microwave-assisted treatment.  

The major drawbacks of osmotic shock include low disruption efficiency, high cost of 

salts, prolonged processing time, and can only be used for certain microalgal species.  

2.3.2.3 Ionic liquid 

Ionic liquid (ILs), also known as “green designer solvents”, are molten salts consisting of 

relatively large asymmetric organic cations and smaller inorganic or organic anions (Lee 

et al., 2017). Owing to their non-volatile, thermal stability, and non-flammability 

characteristics, ILs have been broadly utilized for cell disruption and lipid recovery from 

various microalgae species (Choi et al., 2014; Olkiewicz et al., 2015). For example, Choi 

et al. (2014) investigated the lipid extraction from C. vulgaris using 1-ethyl-3-methyl 

imidazolium diethylphosphate ([Emim]DEP) and conventional organic solvents (hexane 

and hexane/methanol). The authors reported that the IL-assisted treatment can extract 

almost all fatty acids present in the raw material and observed to be more effective than 

hexane or hexane/methanol extraction. Olkiewicz et al. (2015) used 

(hydroxymethyl)phosphonium chloride [P(CH2OH)4]Cl to extract lipid from C. vulgaris, 

and compared with Soxhlet and B&D extraction method. The results showed that IL-

based extraction resulted in the highest recovery efficiency, which was ~2.3 times higher 

than Soxhlet extraction and ~1.2 times higher than B&D extraction.  

ILs-assisted treatment could offer high extraction efficiencies of intracellular compounds; 

however, the environmental concerns, recyclability, and process scale-up must be 

addressed.  

2.3.2.4 Enzymatic lysis  

Enzymatic cell disruption is a promising technology for microalgae due to its biological 

specificity, mild operating conditions, and low energy demand (Demuez et al., 2015). Its 

basic working principle is that enzyme can selectively bond to specific molecules in the 
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cell wall, thereby causing breakage of bonds and degradation of cell wall (Günerken et 

al., 2015). Al-Zuhair et al. (2017) used lysozyme and cellulase for improving protein 

extraction from Chlorella, and the resultant protein-extracted yield was higher than that 

from ultrasonication-assisted extraction. Zheng et al. (2011) carried out a comparative 

study on varying cell disruption techniques for lipid recovery from C. vulgaris. The 

tested disruption methods included ultrasonication, bead milling, enzymatic lysis with 

cellulase/lysozyme, and microwave. The authors found that the enzymatic treatment 

caused distortion and collapse of most microalgal cells; however, ultrasonication, bead 

milling, and microwave only partially altered the morphologies of microalgal cells.  

However, there are several weaknesses of enzyme-assisted treatment, such as (i) high 

cost of enzymes; (ii) long processing time; and (iii) requirement for maintaining stable 

operational conditions (Gong and Bassi, 2016).  

2.4 Hydrothermal liquefaction of microalgae 

Hydrothermal liquefaction (HTL) is a biomass-to-liquid fuel conversion route that can 

use a feedstock containing ~80 wt.% moisture content (Marcilla et al., 2013). During 

HTL treatment, all microalgal macromolecules (lipid, protein, and carbohydrate) can 

break down to form a bio-crude oil product with a comparable energy density to 

petroleum crude. However, the subsequent upgrading process (e.g., hydrotreatment) is 

needed before microalgae-derived bio-crude oil can be used as transportation fuel. A 

schematic diagram of the microalgae-based biorefinery is depicted in Fig. 2.1. 

In this section, the effects of feedstock characteristics and various operational parameters 

on the products distribution and bio-crude oil properties are reviewed. The discussed 

operating factors include temperature, residence time, microalgae/solvent ratio, solvent, 

and catalyst (homogenous and heterogenous catalyst). In addition, the reaction 

mechanisms of major components of microalgae (lipid, protein, and carbohydrates) under 

hydrothermal conditions are presented. In addition, the physiochemical properties of four 
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liquefaction products (bio-crude oil, aqueous phase, solid residue, and gas) are discussed. 

Recent studies on the HTL of microalgae are summarized in Table 2.2.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-1: A schematic diagram of microalgae-based biorefinery. 
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Table 2-2: An overview of recent studies investigating the hydrothermal liquefaction of 

microalgae. 

Microalgae strain  Reaction conditions  Reference 

Desmodesmus sp.  175-450 ℃, 5-60 min, 7-8 wt.% solids  Garcia 

Alba et al. 

(2012) 

C. vulgaris, N. occulta, 

P. creuntum 

350 ℃, 1 h, 3/27 g/mL biomass/solvent, 1 M Na2CO3, HCOOH Biller and 

Ross 

(2011) 

C. pyrenoidosa  300 ℃, 1 h, 25 wt.% solids Chen et al. 

(2017) 

Nannochloropsis sp.  200-500 ℃, 60 min, 20 wt.% solids  Brown et 

al. (2010) 

C. pyrenoidosa  100-300 ℃, 0-120 min, 20 wt.% solids  Yu et al. 

(2011) 

Nannochloropsis sp., 

Chlorella sp.  

220-300 ℃, 30-90 min, 15-25 wt.% solids  Li et al. 

(2014) 

S. obliquus, N. gaditana, 

T. Suecica, C. vulgaris  

250 and 375 ℃, 5 min, 5-7 wt.% solids  Barreiro et 

al. (2013b) 

N. gaditana, Chlorella 

sp.  

180-350 ℃, 30 min, 10% w/v solids  Reddy et 

al. (2016) 

C. pyrenoidosa  170-370 ℃, 5-120 min, 2.5/2-16 g/mL biomass/solvent, pure 

ethanol 

Duan et al. 

(2013) 

Tetraselmis sp.  310-370 ℃, 5-60 min, 16 wt.% solids Eboibi et 

al. (2014) 

C. pyrenoidosa  220-300 ℃, 0-120 min, 6.3-50/75 g/mL biomass/solvent, 0-100 Peng et al. 
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vol.% ethanol content  (2016) 

C. pyrenoidosa  170-350℃, 5-120 min, 2.5/2-16 g/mL biomass/solvent, pure 

acetone  

Jin et al. 

(2014) 

C. pyrenoidosa  200-300 ℃, 30 min, 20 wt.% solids, 5 wt.% HZSM-5, Raney-Ni Zhang et 

al. (2013) 

C. pyrenoidosa  280 ℃, 120 min, 30 wt.% solids, ethanol/water (0/7, 2/5, 1/1, 

5/2, 7/2, v/v) 

Zhang and 

Zhang 

(2014) 

D. tertiolecta  250-340 ℃, 30 min, 0-100 vol.% ethanol Chen et al. 

(2012) 

C. vulgaris   225-275 ℃, 10-50 min, 5/25 g/mL biomass/solvent, 5 wt.% 

Na2CO3, HCOOH 

Hu et al. 

(2017b) 

Nannochloropsis sp.  250-350 ℃, 1 h, 14 wt.% solids, 5 wt.% Na2CO3 Shakya et 

al. (2015) 

C. vulgaris   300 and 350 ℃, 1 h, 3/27 g/mL biomass/solvent, 1 M Na2CO3, 

KOH, CH3COOH, HCOOH 

Ross et al. 

(2010) 

Nannochloropsis sp.  350℃, 1 h, 70 kPa He, 3500 kPa H2, 50 wt.% Pd/C, Pt/C, Ru/C, 

Ni/SiO2-Al2O3, CoMo/γ-Al2O3 (sulfided), zeolite 

Duan and 

Savage 

(2010) 

C. vulgaris, N. occulta  350 ℃, 1 h, 3/27 g/mL biomass/solvent, 20 wt.% Pt/Al2O3, 

Ni/Al2O3, Co/Mo/Al2O3 

Biller et al. 

(2011) 

2.4.1 Effects of feedstock characteristics and reaction conditions 

on HTL of microalgae 

2.4.1.1 Feedstock characteristics 

Microalgae mainly consist of lipid, protein, carbohydrates, along with a small amount of 

ash. In general, high lipid-containing microalgae result in a higher yield of bio-crude oil. 
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Biller and Ross (2011) carried out HTL of three microalgae strains with different 

biochemical compositions (C. vulgaris, N. occulta, and P. creuntum) at 350 ℃ for 1 h, 

and reported that the contribution to bio-crude oil yield followed by, lipid > protein > 

carbohydrates. In another study, Barreiro et al. (2013b) investigated the effect of cell wall 

structure of microalgae on the products distribution from HTL of eight different 

microalgae species at 250 ℃ or 375 ℃. At 250 ℃, it was observed that a higher bio-

crude oil yield was produced from HTL of microalgae without a very resistant and thick 

cell wall structure While, the influence of cell wall structure on the bio-crude oil yield 

was found to be minor at 375 ℃.  

Furthermore, the ash content in the original feedstock plays an important role in the 

liquefaction yields. High ash content in the biomass is believed to have a negative effect 

on the bio-crude oil yield, which can be explained as follows, (i) high ash content means 

less organic materials that can be converted into bio-crude oil, water-solubles, or gases in 

the HTL process and (ii) more ash may cover the surface of organic materials and thus 

prevents the interactions between organics and reaction medium (Tian et al., 2014).  

2.4.1.2 Temperature  

Temperature is regarded as the most important operating parameter in the HTL of 

microalgae. The competition reactions involve hydrolysis and re-polymerization define 

the role of temperature on HTL. Initially, the hydrolysis is a dominant reaction at 

temperatures below 220 °C. Gasification becomes active at later stage (T > 375 °C), 

which promotes the formation of gaseous products. Intermediate temperature range (250-

375 °C) usually results in the highest yield of bio-crude oil (Garcia Alba et al., 2012). As 

demonstrated in Fig. 2.2, the bio-crude oil yield first increases with increasing 

temperature, whereas further increase in the temperature lowers the bio-crude oil yield.  

Garcia Alba et al. (2012) found that the bio-crude oil yield from HTL of Desmodesmus 

sp. increased with increasing temperature up to 375 ℃, and then dropped with further 

increase in the temperature. In a similar study, Brown et al. (2010) investigated the effect 
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of reaction temperature on the products distribution obtained from HTL of 

Nannochloropsis sp. at 200-500 ℃ for 60 min. The bio-crude oil yield was reported to 

increase with temperature, reaching the maximum level at 350 ℃. Further increase in 

temperature decreased oil yield, accompanied by a dramatical increase in the gas yield. 

They speculated that the reduced oil yield may be attributed to the following reasons, (i) 

the secondary decomposition and gas formation appear to be predominant at higher 

temperatures and (ii) the enhanced repolymerization of free radical into high molecular-

weight compounds like char that retained in the solid residue.  

Besides, the properties of bio-crude oil are dependent on the liquefaction temperature. 

For instance, Reddy et al. (2016) performed HTL of Nannochloropsis sp. in water at 180-

330 °C for 30 min. Higher heating value (HHV) of bio-crude oil increased with 

increasing temperature till 300 ℃ and thereafter decreased. In another study, Garcia Alba 

et al. (2012) reported that increasing temperature from 175 ℃ to 450 ℃ led to an 

increase in the C content of bio-crude oil, along with increased heating value of oil 

product. It was also reported that H content remained constant over the temperature 

range, while N content significantly increased with increasing temperature and then kept 

constant when temperature above 275 ℃.  
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Figure 2-2: Effect of temperature on the bio-crude oil yield reported in the literature. 

2.4.1.3 Residence time 

Residence time is defined as the duration, in which the pre-designated temperature is 

maintained for the whole liquefaction process without heating and cooling time (Barreiro 

et al., 2013a). Many researchers have investigated the effects of residence time on the 

HTL of microalgae in terms of products distribution and bio-crude oil properties. In 

general, the effect of residence time on the HTL of microalgae is conjugated with the 

reaction temperature. Fig. 2.3 shows the bio-crude oil yield from microalgal HTL as a 

function of residence time. Duan et al. (2013) studied the effects of residence time on the 

HTL of C. pyrenoidosa at 350 °C for 5-120 min, and found that the yield of bio-crude oil 

increased from 56.8 wt.% at 5 min to 65.1 wt.% at 70 min and then sharply decreased as 

residence time extended till 120 min. Eboibi et al. (2014) carried out HTL experiment of 

Tetraselmis sp. at 310 ℃ for 5-60 min. The results showed that a large increase in the 

bio-crude oil yield occurred as residence time increased from 5 min to 15 min. 
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Afterwards, a minor increase in the oil yield was observed with the extension in the 

residence time till 30 min. Besides, the bio-crude oil obtained at 5 min contained a higher 

content of O than that obtained at 60 min, suggesting the promoted deoxygenation at 

longer residence times. Garcia Alba et al. (2012) reported that the residence time did not 

exert a significant effect on the products distribution at 300 ℃; however, a two-fold 

increase was found in the bio-crude oil yield at 200 ℃ when residence time extended 

from 5 min to 60 min.  

 

Figure 2-3: Effect of residence time on the bio-crude oil yield reported in the literature. 

2.4.1.4 Microalgae/solvent ratio 

Microalgae/solvent ratio can be defined as the ratio of mass of dried microalgae (g) to the 

volume of the solvent (mL) loaded into the reactor (Peng et al., 2016). According to 

previous studies, microalgae/solvent ratio has demonstrated as an important role in the 

HTL. Peng et al. (2016) found that the bio-crude oil yield obtained from HTL of C. 
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pyrenoidosa gradually increased from 30.7 wt.% at 6.3/75 g/mL to 39.8 wt.% at 18.8/75 

g/mL, and then markedly dropped. A similar trend was also reported by Jin et al. (2014) 

in which microalgae was liquefied in acetone at 290 ℃ for 60 min with 

microalgae/solvent ratio ranging from 2.5/2 g/mL to 2.5/16 g/mL. At a lower solvent 

loading, microalgae cannot form a well-mixed suspension inside the reactor, causing 

undesirable mass and heat transfer conditions (Duan et al., 2013). On the other hand, 

introducing a higher amount of solvent into the liquefaction system could considerably 

increase the overall cost (Jin et al., 2014). To achieve a better economy, the solids 

concentration should be maintained at ~15-20 wt.% in the HTL of microalgae (Guo et al., 

2015).  

2.4.1.5 Solvent  

Liquid water is the most common reaction medium in the microalgal HTL (Garcia Alba 

et al., 2012; Biller and Ross, 2011; Chen et al., 2017). As assessed by Yu et al. (2011), 

~40% of carbon and ~70% of nitrogen in the original feedstock were migrated into water 

phase during HTL treatment rather than into oily phase. To solve this problem, numerous 

organic solvents have been employed as a reaction medium, including methanol, ethanol, 

acetone, ethylene glycol, n-propanol, and 1,4-dioxane (Duan et al., 2013; Jin et al., 2014; 

Zhang et al., 2013). The main advantages of organic solvent over water include: (i) the 

dielectric constant of organic solvent is lower than water under same conditions and (ii) 

can be operate under mild reaction conditions without sacrificing bio-crude oil yield 

(Duan et al., 2013).  

In the recent years, several researchers have reported the existence of synergetic effects 

of ethanol-water co-solvents in the liquefaction process (Peng et al., 2016; Zhang and 

Zhang, 2014; Chen et al., 2012). Chen et al. (2012) liquified D. tertiolecta in ethanol-

water mixed solvents at 320 ℃ for 30 min, and found that the yield of bio-crude oil 

peaked when using 40 vol.% ethanol-60 vol.% water mixed solvents as the reaction 

medium. Similarly, Zhang and Zhang (2014) reported that the highest bio-crude oil yield 
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from C. pyrenoidosa was obtained from liquefaction in ethanol-water mixed solvents 

(5:2, v/v).  

2.4.1.6 Catalyst  

Catalyst plays an important role in the HTL of microalgae. In general, the catalysts 

employed in the HTL system can be categorized into homogeneous and heterogenous 

catalysts.  

2.4.1.6.1 Homogeneous catalyst  

The most common homogenous catalyst employed for HTL of microalgae is Na2CO3. 

Shakya et al. (2015) observed that Na2CO3 enhanced the yield of bio-crude oil obtained 

from HTL of Nannochloropsis at 250 ℃. In contrast, Hu et al. (2017b) found that the 

catalytic HTL with Na2CO3 resulted in a much lower bio-crude oil compared to that 

obtained without catalyst.  This contradicting phenomenon may be attributed to the 

differences in the biochemical compositions of microalgae, especially carbohydrate 

content. Previously, Zhou et al. (2010) found that the bio-crude oil yield from E. prolifera 

(a high carbohydrate-containing macroalgae) was improved when using Na2CO3 as a 

catalyst. Biller and Ross (2011) also observed that the high carbohydrate-containing 

microalgae strain was efficiently liquefied in the presence of Na2CO3, however, Na2CO3 

had no or even negative influence on the high lipid or protein-containing microalgae. 

Previously, Dote et al. (1996) investigated the degradation behavior of protein in the 

presence of Na2CO3, and it was observed that Na2CO3 deterred the migration of N into 

oily phase. In addition, the addition of Na2CO3 may promote the saponification of lipid, 

thereby affecting bio-crude oil yield (Biller and Ross, 2011). Apart from alkaline 

catalysts, both organic (e.g., HCOOH and CH3COOH) and inorganic acid (e.g., H2SO4) 

catalysts have been used in the microalgal liquefaction (Hu et al., 2017b; Zou et al., 2009; 

Ross et al., 2010).  Zou et al. (2009) observed that the use of H2SO4 exhibited a positive 

effect on the bio-crude oil production from HTL of D. tertiolecta, meanwhile, N content 

of bio-crude oil was considerably reduced to 0.96 wt.%. Ross et al. (2010) applied both 
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acid and alkaline catalysts for HTL of C. vulgaris. The results showed that the acid 

catalysts (HCOOH and CH3COOH) not only produced a higher bio-crude oil yield but 

also a better flowability of oil product, when compared with alkaline catalysts (Na2CO3 

and KOH).  

2.4.1.6.2 Heterogenous catalyst  

Heterogenous catalyst (i.e., water-insoluble catalyst) typically exist in the different 

phases with liquefaction medium. The major benefits of heterogenous catalysts include: 

(i) can be used at severe reaction conditions that often damage homogeneous catalysts 

and (ii) recyclability (Galadima and Muraza, 2018). Duan and Savage (2010) performed 

catalytic HTL of Nannochloropsis sp. using Pd/C, Pt/C, Ru/C, Ni/SiO2-Al2O3, CoMo/ϒ-

Al2O3 (sulfide), or zeolite under inert and reducing conditions. When under inert 

condition, the bio-crude oil yields from all catalytic HTL experiments were generally 

higher than that obtained from non-catalytic liquefaction; however, the presence of 

Ni/SiO2-Al2O3 or zeolite had a negative effect on the bio-crude oil yield under reducing 

condition. The work of Zhang et al. (2013) examined the catalytic effects of HZSM-5 and 

Raney-Ni on the direct liquefaction of C. pyrenoidosa in ethanol at 240-300 ℃ for 30 

min. It was observed that catalysts exhibited a minor effect on the bio-crude oil yield 

under both inert and reducing conditions. Besides, a slight increase in the HHV was 

found in the bio-crude oil obtained using HZSM-5 as a catalyst. Nevertheless, Biller et al. 

(2011) observed that the presence of Pt/Al2O3, Ni/Al2O3, or Co/Mo/Al2O3 in the HTL of 

C. vulgaris and N. occulta had positive influences on the yield and quantity of bio-crude 

oil. More researches are still required to further elucidate the underlying mechanism of 

heterogenous catalyst in the HTL of microalgae.  
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Fatty acid + Glycerol 

Monoglyceride + Water 

2.4.2 Major components of microalgae in HTL process 

2.4.2.1 Lipid 

Microalgal lipid often exist in the form of triglyceride (TAG) consisting of a glycerol 

backbone bounded to three free fatty acids. In common, lipid content in the microalgae 

ranges from ~1 wt.% to ~70 wt.% on a dry weight but some species (e.g., Botryococcus) 

can contain ~90 wt.% of lipid content on a dry weight (Metting, 1996). A proposed 

reaction pathway of lipid in the hydrothermal medium is presented in Fig. 2.4.  

 

 

 

 

 

 

 

Figure 2-4: A predicted reaction network of triglyceride in the hydrothermal medium 

(adapted from Changi et al., 2015). 

2.4.2.1.1 Glycerol 

Glycerol is one of the main intermediate products from the hydrolysis of lipid. Under 

hydrothermal conditions, glycerol preferentially converts into water phase rather than 

into oily phase (Toor et al., 2011). Bühler et al. (2002) observed that the main 

decomposed products from glycerol in the near-critical water were methanol, ethanol, 

allyl alcohol, formaldehyde, acetaldehyde, propionaldehyde, acrolein, and gases (CO2, 
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CO, and H2). Lehr et al. (2007) examined the hydrothermal degradation behavior of 

glycerol in the subcritical water, and the results indicated that the acrolein was the main 

degradation product.  

2.4.2.1.2 Fatty acids  

Even though fatty acids are very stable in the subcritical water, they still can be partially 

decomposed into long-chained hydrocarbons (Toor et al., 2011). Fu et al. (2010) studied 

the degradation behavior of palmitic acid (16:0) in the near-critical water, and only 

~0.7% molar yield of pentadecane was observed at 370 °C for 17 h. Watanable et al. 

(2006) reported that stearic acid (18:0) was highly stable in the supercritical water, and an 

approx. 2% conversion rate was obtained. In another study, Fu et al. (2011) compared the 

decarboxylation behavior of four different fatty acids [stearic (18:0), palmitic (16:0), 

oleic (18:1), and linoleic (18:2) acids] over Pt/C. The yields of corresponding n-alkanes 

from saturated fatty acids were not affected by the carbon number of fatty acids. 

Moreover, the decarboxylation product yield (i.e., heptadecane) from unsaturated fatty 

acids (oleic acid and linoleic acid) was significantly lower compared to that from stearic 

acid (18:0), indicating the decarboxylation rate of unsaturated fatty acids was dependent 

on the degree of unsaturation.  

2.4.2.2 Protein  

Protein is a polymer of amino acids linked by one or several peptide-chains. Protein 

content of microalgae is typically in the range of 6-71 wt.% on a dry weight basis 

(Changi et al., 2015). Previous literature suggested that the protein fraction of microalgae 

is the major contributor to the N element in the bio-crude oil, causing NOx emission upon 

combustion and deactivation of catalyst in the existing refinery system (Jazrawi et al., 

2015).   
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2.4.2.2.1 Protein depolymerization 

When subjected to hydrothermal conditions, protein will be readily decomposed to 

simpler amino acids. The distribution of amino acids is dependent on the operating 

conditions and protein material. Rogalinski et al. (2005) conducted the hydro-thermolysis 

of bovine serum albumin (BSA) at 200-300 °C and 15-27 MPa for 4-180 s. The authors 

observed that BSA first hydrolyzed into 18 different amino acids and then further 

decomposed into carboxylic acids (e.g., acetic acid, propanoic acid, n-butyric acid, and 

iso-butyric acid), gases (e.g., CO2, CO, H2, and CH4), and alcohols. Besides, pressure was 

observed to be less important on the recovery yield of amino acids, when compared with 

temperature and residence time. Quitain et al. (2001) investigated the amino acid 

production from shrimp shells in the sub/super-critical water. The yields of amino acids 

(glycine and alanine) sharply increased with increasing temperature till 250 ℃ and 

dropped thereafter.   

2.4.2.2.2 Amino acids  

Despite the heterogeneities of amino acids, they always undergo similar decarboxylation 

and deamination reactions. The decarboxylation and deamination occur simultaneously in 

the hydrothermal medium, and the ratio of decarboxylation/deamination is affected by the 

type of amino acid, pH of reaction medium, and composition of side chain, etc. (Changi 

et al., 2015). For instance, Li and Brill (2003) studied the hydrothermal degradation 

behavior of six amino acids (phenylalanine, serine, threonine, proline, histidine, and 

methionine) over varying pH values of reaction medium. It was found that the 

decarboxylation rates of phenylalanine, serine, threonine proline, and methionine 

increased in the pH range of 1.5-3, while further increase in the pH of reaction medium 

did not affect the decarboxylation rates. Additionally, the decarboxylation rate of 

histidine reached its minimum level at pH of 7.44 but it was improved under both acid 

and alkaline conditions. Sato et al. (2004) found that deamination was the predominant 

reaction for aspartic acid in the subcritical water at 200-340 °C and 20 MPa. The 
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proposed reaction pathways of glycine and alanine under hydrothermal conditions are 

shown in Fig. 2.5 (a) and (b), respectively.   
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Figure 2-5: A predicted reaction network of glycine (a) and alanine (b) in the 

hydrothermal medium (adapted from Klingler et al., 2007).  
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2.4.2.3 Carbohydrates  

Typically, microalgal carbohydrates exist in the form of cellulose, starch, and other 

polysaccharides (e.g., hemicellulose). Glucose is the most dominant simple sugar, along 

with small amounts of ribose, xylose, rhamnose, fructose, arabinose, mannose, and 

galactose (Changi et al., 2015).  

2.4.2.3.1 Cellulose 

Cellulose is one of the main structural components in the cell wall of microalgae. It is 

composed of glucose monomers linked by β-1,4--glycosidic bonds, which allows the 

formation of strong intra- and inter-molecular hydrogen bonds. Owing to its high 

crystallinity, cellulose is insoluble in the water at room temperature, whereas, it can be 

readily hydrolyzed to glucose monomers in the near-critical water (Toor et al., 2011). 

However, the hydrolysis yield of glucose is very low, which can be explained by the 

following two reasons: (i) glucose itself is readily subject to decomposition in the 

hydrothermal medium and (ii) some of the oligomers from cellulose degradation cannot 

be hydrolyzed to glucose (Peterson et al., 2008). The possible reaction pathway for the 

degradation of cellulose under hydrothermal conditions is shown in Fig. 2.6.  
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Figure 2-6: A predicted reaction network of cellulose in the hydrothermal medium 

(adapted from Cantero et al., 2013 and Yu and Wu, 2011). (Notes: Ⅰ: Isomerization; Ⅱ: 

Dehydration; Ⅲ: Condensation).  

2.4.2.3.2 Hemicellulose 

Hemicellulose is a heterogenous polymer consisting of C5 (D-xylose and L-arabinose) and 

C6 (D-mannose, D-galactose, and D-glucose) sugars (Dhepe and Sahu, 2010). Due to the 

absence of β-(1→4)-glycosidic bonds and less uniform structure, hemicellulose appears 

to be less resistant to hydrothermal degradation (Peterson et al., 2008). Hashaikeh et al. 

(2007) found that the hemicellulose fraction in the willow began to decompose at 200 °C, 

whereas, in contrast, cellulose was fragmented and dissolved at 280-320 ℃.  
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Xylose is the major hydrolysis product from hemicellulose (Changi et al., 2015). Aida et 

al. (2010) investigated the degradation behavior of D-xylose in the sub and super-critical 

water at 350-400 °C and 40-100 MPa. The major decomposed products from D-xylose 

were furfural, D-xylulose, glyceraldehyde, glycolaldehyde, dihydroxyacetone, 

pyruvaldehyde, lactic acid, and formaldehyde.  

2.4.2.3.3 Starch 

Starch is a polysaccharide that consists of glucose monomers linked by β-1,6-glycosidic 

bonds (Changi et al., 2015). In general, it can be broadly categorized into two groups: (i) 

amylose with a linear structure and (ii) amylopectin with a more branched structure. In 

literature, starch can be readily decomposed in the hydrothermal medium. Nagamori and 

Funazukuri (2004) converted starch into glucose by hydrothermal hydrolysis at 180-240 

°C in a batch reactor. The authors observed that the optimal glucose yield of 632 g/kg (on 

the carbon basis) was obtained at 200 °C for 30 min. In addition, the effect of residence 

time on the starch degradation was investigated at 220 °C for 0-20 min. The yield of 

glucose was found to reach its optimal yield at 10 min and then sharply decreased with 

further increase in the residence time. They speculated that the reduced glucose yield at 

prolonged residence time was mainly attributed to the formation of 5-HMF. Similarly, 

Miyazawa et al. (2006) investigated the hydrothermal degradation of starch at 180-290 

°C and 10 MPa. The authors observed that the degradation of glucose into 5-HMF was 

not pronounced until 220 °C, while reached its optimal yield at 290 °C.  

2.4.2.4 Multicomponent system  

2.4.2.4.1 Binary mixtures of protein and carbohydrates  

Two of the main decomposed components from protein and carbohydrates are amino acid 

and simple sugar (i.e., glucose, fructose, and xylose), which can react with each other to 

produce N&O-containing compounds via Maillard reaction (Gai et al., 2015). These 

compounds include pyrrole, pyrrolidinedione, thiazole, and imidazole, which can act as 

free radical scavengers in the sub-/super-critical water conditions (Toor et al., 2011). A 
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predicted reaction pathway between glycine and glucose has been proposed by Peterson 

et al. (2010), as shown in Fig. 2.7.  
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Figure 2-7: A simplified reaction pathway between glycine and glycose (Adapted from 

Peterson et al., 2010).  

2.4.2.4.2 Ternary mixtures of lipid, protein, and carbohydrates  

In a recent study, Sheng et al. (2018) investigated the hydrothermal interaction among 

lipid, protein, and carbohydrates fraction of microalgae by using different model 

compounds, including castor oil, soya protein, glucose, and their binary mixture at 280 °C 

for 60 min. The yield of bio-crude oil resulted from the mixture of glucose and soya 

protein was higher than that resulted from individual feedstock, which can be attributed 

to the interaction between protein and carbohydrates to form N-containing compounds 

via Maillard reaction. Besides, a similar result trend was observed in the binary mixture 
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of castor oil and glucose. Based on the liquefaction results, a proposed model for bio-

crude oil yield from HTL of microalgae has been developed, as shown below:  

𝐵𝑖𝑜 − 𝑐𝑟𝑢𝑑𝑒 𝑜𝑖𝑙 𝑦𝑖𝑒𝑙𝑑 (𝑤𝑡. %) = 0.9(±0.043)𝑋𝐿 + 0.385(±0.039)𝑋𝑃 +

0.025(±0.064)𝑋𝐶 + 0.052(±0.022)
𝑋𝐿𝑋𝑃

|𝑋𝐿−𝑋𝑃|
+ 0.093(±0.054)

𝑋𝐿𝑋𝐶

|𝑋𝐿−𝑋𝐶|
+

0.003(±0.005)
𝑋𝑃𝑋𝐶

|𝑋𝑃−𝑋𝐶|
                                                                                                  (2-1)      

Where, XL, XP, and XC represent lipid, protein, and carbohydrates content in the 

feedstock, respectively.    

In a similar study, Teri et al. (2014) studied the interaction among protein, carbohydrates, 

and lipid at 300-350 °C for 10-90 min. A model for predicting the bio-crude oil yield 

produced from HTL of model compounds mixture has been indicated below:  

𝐵𝑖𝑜 − 𝑐𝑟𝑢𝑑𝑒 𝑜𝑖𝑙 𝑦𝑖𝑒𝑙𝑑 (𝑤𝑡. %) = 0.95𝑋𝐿 + 0.33𝑋𝑃 + 0.058𝑋𝐶 − 0.016𝑋𝐿𝑋𝐶 +

0.271𝑋𝐿𝑋𝑃 − 0.019𝑋𝑃𝑋𝐶                                                                                              (2-2) 

Where, XL, XP, and XC represent lipid, protein, and carbohydrates content in the 

feedstock, respectively.  

2.4.3 Products from HTL of microalgae 

2.4.3.1 Bio-crude oil 

Bio-crude oil is a dark and viscous liquid from microalgal HTL and contains an energy 

content of 70-95% of that of petroleum crude based on HHV (Barreiro et al., 2013a). The 

physical and chemical properties of bio-crude oil are determined by the feedstock 

properties and operating conditions. It is a complex mixture with a great number of 

compounds and a broad distribution of molecular weights (Tian et al., 2014). Commonly, 

the characterization of bio-crude oil is performed via Gas Chromatography-Mass 

Spectrometry (GC-MS) analysis. It should be noted that some low molecular-weight oil 

compounds might be lost in the solvent evaporation stage, and most of the heavy 
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compounds cannot be eluted into the column (Brown et al., 2010). According to their 

functional groups, the main chemical compounds in the microalgae-derived bio-crude oil 

can be categorized into aromatics (e.g., phenols and phenolic derivatives), organic acids 

(e.g., fatty acids), nitrogenated compounds, hydrocarbons, and other oxygenated 

compounds (e.g., alcohols, ketones, esters, and aldehydes) (Guo et al., 2015). 

Previous studies have also determined the physical properties of bio-crude oil obtained 

from HTL of microalgae. Zou et al. (2010) measured the moisture, ash, density, and 

acidity of bio-crude oil obtained from HTL of D. tertiolecta at 360 °C and 50 min with 

the use of Na2CO3. The ash content of bio-crude oil was 0.2-0.5 wt.%, accompanied by a 

water content as high as ~ 9 wt.%. This high-water content may exhibit negative effects 

on the energy density and stability of bio-crude oil. In addition, the pH of oil product was 

3.5-4.2, which results from the formation of organic acids during HTL.  

2.4.3.2 Aqueous phase 

Recirculation of aqueous by-product from HTL is considered as an essential element in 

the practical implementation of HTL applications (Biller et al., 2016). The water phase 

obtained from HTL of microalgae is composed of 𝑃𝑂4
3−, 𝑁𝐻4

+, 𝐶𝐻3𝐶𝑂𝑂−, as well as 

some minerals (e.g.,𝐾+, 𝑁𝑎+, and 𝑀𝑔2+) (Ross et al., 2010). Since microalgae can 

assimilate nitrogen from a wide range of sources, HTL water phase has the potential to be 

recycled as the growth medium for microalgae (Biller et al., 2012; Jena et al., 2011; Du et 

al., 2012). Biller et al. (2012) cultivated C. vulgaris in a series of dilutions of recycled 

aqueous phase and compared to a standard growth medium. It was found that a higher 

biomass productivity was achieved in a diluted HTL process water (200 ×). Alternatively, 

water phase can be reused as a liquefaction medium for bio-crude oil production (Hu et 

al., 2017b; Ramos-Tercero et al., 2015). Hu et al. (2017b) for example found that the bio-

crude oil yield from C. vulgaris gradually increased from 29.4 wt.% to 38.9 wt.% upon 

recycling of water phase for three rounds. The work by Ramos-Tercero et al., (2015) 

extended the number of recycling to a total of six and an increase in the bio-crude oil 

yield from C. vulgaris was also observed.  
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2.4.3.3 Gas 

Gaseous fraction as a co-product from HTL usually accounts for ~10-20 wt.% of the 

original organics in the feedstock (Tian et al., 2014). It mainly consists of CO2, and small 

amounts of CH4, H2, C2H4, and C2H6. Caporgno et al. (2016) found that CO2 was the 

major gaseous product in the HTL of N. oceanica at 240-300 ℃. Brown et al. (2010) 

observed that the contents of H2 and CH4 were relatively low at 200-300 ℃, but their 

formation considerably promoted in the temperature range of 300-500 ℃. Besides, very 

little or no CO was observed in the HTL of Nannochloropsis sp. at 200-500 °C, which 

was probably consumed in the water-gas shift and/or methanation reactions. From a 

biorefinery point of view, CO2 generated from HTL can be fed back for microalgal 

cultivation, and H2 could be recycled for subsequent bio-crude oil upgrading (e.g., 

hydrotreatment) (Barreiro et al., 2013a). However, the relevant literature on the 

recirculation of gaseous products is still lacking.  

2.4.3.4 Solid residue 

HTL of microalgae results in a solid residue product mainly consisting of inorganics and 

a trace of organics. The yield of solid residue is strongly dependent on the ash content of 

original feedstock. Considering the low ash content in the microalgae strains, the solid 

residue yield from HTL is normally observed to be lower than 10 wt.%. An elemental 

analysis of solid residue obtained from HTL of Nannochloropsis at 350 ℃ for 60 min 

was conducted by Shakya et al. (2015) as followed, 50.2% C, 7.0% H, 2.2% N, 0.3% C, 

and 1.9% O. Owing to the presence of essential nutrients (e.g., N, S, K, and P), the solid 

residue is possible to be reused as a soil fertilizer. 

2.5 Conclusions 

In this review, the working principles and relating case studies of various pre-treatment 

approaches for microalgae are discussed. Mechanical methods are the most common pre-

treatment techniques but are energy-intensive and non-selective release of intracellular 
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compounds. Hence, a number of energy-sufficient chemical and biological methods have 

been investigated. However, the high cost of chemicals/enzyme and potentially 

environmental hazards remain as the critical issues to their practical applications. 

Alternatively, a novel pre-treatment by pre-cooled NaOH/urea has been reported to be 

effective for removing cellulose (one of main structural components in microalgae) from 

lignocellulosic biomass. However, few studies have applied low-temperature NaOH/urea 

as a pre-treatment for microalgal biomass. In summary, energy-saving and eco-friendly 

pre-treatment methods are still needed to be established in the consideration of microalgal 

cell wall characteristics, overall cost, mildness, energy demand, and scalability.  

Hydrothermal liquefaction (HTL) is a suitable processing technology for converting 

microalgae into liquid bio-fuels without dewatering the feedstock. HTL can convert not 

only lipid in the microalgae but also protein and carbohydrate into bio-crude oil. Previous 

studies have investigated the effects of feedstock characteristics and various operational 

parameters on the HTL of microalgae in terms of products distribution and bio-crude oil 

properties. In addition, previous studies have investigated the hydrothermal degradation 

behavior of microalgae macromolecules (lipid, protein, and carbohydrates) and their 

corresponding model compounds in the sub/super-critical water. However, HTL is still at 

the developmental stage and many issues remain unclear.  
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Chapter 3  

3 Investigation of an alternative pre-treatment for 

microalgae  

The information presented in this Chapter is based on the paper “Investigation of an 

alternative cell disruption approach for improving hydrothermal liquefaction of 

microalgae”, which was published in Fuel, 2017, Vol. 197, pages 138-144. The sections 

in Chapter 3 present the results towards the completion of objective 1 of this PhD project 

(see Section 1.2).  

3.1 Abstract 

High-energy and cost-intensive cell disruption processes represent one of the major 

techno-economic bottlenecks in the microalgae-based bio-refineries. Therefore, a feasible 

disruption method is required to ensure low energy input and operating cost, as well as 

high target-product (e.g., lipid) recovery. In this study, several different pre-treatment 

strategies for the pre-treatment of Chlorella vulgaris were investigated, including 

NaOH/urea, sulfuric acid and ultra-sonication.  Experimental results showed that the pre-

treatment by NaOH/urea solution resulted in an average mass loss of 33.7 wt.% and 

resulted in the removal of 77.2 % of carbohydrates and 46.3 % of protein (as N) from the 

original biomass. While these results were comparable to those obtained from the other 

pre-treatment methods, the NaOH/urea method is believed to be more advantageous in 

terms of energy-efficiency and cost. Afterwards, all pre-treated microalgae samples were 

subjected to the liquefaction process towards bio-crude oil production. The bio-crude oils 

obtained from NaOH/urea solvent pre-treated microalgae resulted in higher yields and 

demonstrated better flow properties and demonstrated better flow properties.  
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3.2 Introduction 

In recent years, microalgae have been regarded as a potential source for the sustainable 

production of various products ranging from biofuels to nutraceuticals due to their high 

biomass productivities and abilities to be cultured in different environmental conditions 

and climates (Liang et al., 2012). Moreover, microalgae can be used as an option for both 

CO2 mitigation and capture and biofuel production. Despite these advantages, microalgal 

technologies also have a number of limitations. One of the main techno-economic 

challenges is attributed to the rigid micro-algal cell walls, which can be a complex 

assembly of carbohydrates and glycoproteins (Hammed et al., 2013). However, the target 

intracellular bio-products (e.g., lipid) are usually located in intra-cellulose globule bodies 

or bound within cell membranes (Kim et al., 2016). Algaenans, which are insoluble and 

highly aliphatic structure have also been detected in the cell walls of certain microalgae, 

making the extraction of intracellular products more difficult. To-date, numerous cell 

disruption methods, including acid/alkaline hydrolysis, ultra-sonication, bead beating, 

grinding, and enzymatic lysis, have been reported. Zheng et al. (2011) investigated the 

cell disruption efficiency from C. vulgaris via ultra-sonication, bead milling, grinding, 

and enzymatic lysis. The grinding in liquid nitrogen was found to be the most effective 

method. Another study by Hernández et al. (2015) observed that the acid pre-treatment 

was the most efficient method to disrupt the cell walls and remove carbohydrates from C. 

sorokiniana. However, none of them are desired for microalgal biomass. For example, 

the acid/alkali pre-treatment usually preforms at temperature above 120 °C, making these 

methods less favorable for mild microalgae-based biorefinery system (Günerken et al., 

2015). Besides, although the current mechanical pre-treatments (e.g., bead milling, high 

pressure homogenization, and ultra-sonication) are highly effective in the cell 

disintegration, the high energy demand and the unavoidable heat generation represent 

barrier for their practical implementation (Lee et al., 2017).  

According to previous studies, the low temperature NaOH/urea solvent has been regarded 

as an effective approach to remove cellulose through hydrolyzing inter-molecular bonds 
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and destroying crystalline structures. Kuo and Lee (2009) observed that the low-

temperature NaOH/urea solvent greatly improved the cellulose dissolution for defatted 

cotton. Wang et al. (2015) investigated the pre-treatment of wheat straw by NaOH/urea 

solvent as low temperature (-20 °C) and found that this approach could break down the 

hydrogen bonds in cellulose and simultaneously solubilize hemicellulose. However, to 

the best of our knowledge, the effect of low-temperature NaOH/urea solvent pre-

treatment on microalgal cell disruption has not been investigated, in particular as a pre-

treatment for biofuel production.  

Microalgae-derived biofuels have been extensively investigated due to the depletion of 

fossil fuels and climate change (Biller and Ross, 2011). Recently, various technologies 

have been developed to convert microalgae into liquid fuels, including pyrolysis, 

gasification, and hydrothermal liquefaction. Among these techniques, hydrothermal 

liquefaction (HTL) is more suitable for feedstock with high moisture content (e.g., 

microalgae) due to its inherent advantage of being a wet processing technique without the 

requirement of drying the feedstock (Ross et al., 2010). Furthermore, oil products 

obtained from HTL have much lower oxygen content and moisture, as compared to 

pyrolysis oils (Peterson et al., 2008). The lower oxygen content is related to a higher 

heating value of bio-crude oil. In addition, the thermal and chemical stability of bio-crude 

oils is determined by oxygen and water content (Lee et al., 2016). However, microalgae-

derived bio-crude oil (i.e., 5-7%) usually contains a much higher nitrogen content than 

that of petroleum crude oil (0.1-1.5%), which could result in the NOx emissions upon 

combustion (Saber et al., 2016). Apart from the subsequent upgrading, the protein 

removal from the starting biomass might be an alternative way to produce a bio-crude oil 

containing a low nitrogen content.  

In this research, the cell disruption efficiency of NaOH/urea solvent pre-treatment for C. 

vulgaris was investigated and compared with conventional approaches, like dilute acid 

and ultrasonication. The degree of microalgae disruption was quantified by measuring the 

release of cellular metabolites, such as carbohydrates and protein. Furthermore, 
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hydrothermal liquefaction studies for both crude and pre-treated microalgae were 

performed to illustrate the effect of pre-treatment method on quantity and quality of bio-

crude oil.  

3.3 Materials and methods 

3.3.1 Materials 

Microalgal biomass, C. vulgaris, was purchased from a health-food store (Pure Bulk, 

Inc., Roseburg, USA) as fine powder. Reagent grade sulfuric acid was purchased from 

Caledon Laboratories Ltd (Georgetown, Canada). Sodium hydroxide and urea were 

supplied by Sigma Aldrich (Oakville, Canada). The contents of lipid and carbohydrates 

were determined by the Bligh & Dyer method (Bligh and Dyer, 1956) and the phenol-

sulfuric acid method (DuBois et al., 1956), respectively. The content of protein was 

estimated as % N × 6.25 (Rebolloso-Fuentes et al., 2001).  

3.3.2 Pre-treatment methods 

3.3.2.1 NaOH/urea solvent 

Pre-treatment studies by low-temperature NaOH/urea solvent were carried out according 

to Kuo et al. (2009) and Wang et al. (2015). In each experiment run, 50 g of NaOH/urea 

aqueous solution was first prepared by mixing NaOH powder, urea, and distilled water 

(7:12:81 by weight) and this mixture was stored in a freezer for 12 h at -5 to -10 ºC. An 

amount of 5.0 g of dry microalgae was thoroughly mixed with 50 g of the cold 

NaOH/urea solvent in a shaker at 200 rpm for 2 min.  

3.3.2.2 Dilute acid 

An aliquot of 5.0 g of dry algal biomass was thoroughly mixed with 50 mL of distilled 

water. The H2SO4 concentration of the mixture was adjusted to 1%, 2%, and 4% (v/v), 

respectively. The resultant mixture was then heated to 120 °C for 30 min in a 
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thermostatic oil bath with constant agitation at 60 rpm. After the selected processing time 

was elapsed, the mixture was cooled down to 22 ℃.  

3.3.2.3 Ultrasonication 

An amount of 5.0 g of dry microalgae was mixed with 50 mL of distilled water. The 

mixture was placed into an ultrasonication apparatus (1510 Branson, Branson 

Ultrasonics, Danbury, USA) at frequency of 40 kHz and power of 80 W. The 

ultrasonication pre-treatment was carried out continuously at room temperature for 10 

min, 20 min, and 30 min.  

After pre-treatment, all samples were filtered and washed with distilled water till 

neutralization and then vacuum-dried at 50 °C for three days. The dried samples were 

thereafter ground in a mortal and kept in sealed plastic bags until further analysis. It 

should be mentioned that the particle size distribution of biomass is considered to be a 

secondary parameter in HTL. This is due to the fact that sub/supercritical water can both 

serve as a heat transfer medium and as an effective extractant during liquefaction (Akhtar 

and Amin, 2011). As a result, thermal gradients within the biomass particles (due to size 

distribution) themselves can be neglected. The ash content was determined by heating the 

dry biomass at 575 °C in a muffle furnace for 3 h to constant weight according to ASTM 

E1755 standard. The C, H, and N contents were analyzed using an elemental analyzer 

(Vario EL Cube, Elementar, Hanau, Germany), and the O content was estimated by 

difference (O%=100%-C%-H%-N%-Ash%).  TGA analysis of crude and pre-treated 

microalgae was performed on a TGA analyzer (PerkinElmer Thermogravimetric analyzer 

Pyris 1 TGA, Massachusetts, USA) from 50 °C to 800 °C in 20 mL/min N2 at a heating 

rate of 10°C/min. FT-IR spectra of the crude and pre-treated microalgae were recorded on 

a Nicolet 6700 Fourier Transform Infrared Spectroscopy (Thermo Fischer Scientific, 

Massachusetts, USA) in the region from 4000 to 550 cm-1.   
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3.3.3 Hydrothermal liquefaction studies 

Hydrothermal liquefaction experiments were carried out in a 100 mL batch autoclave 

(Parr 4590, Illinois, USA). In the case of crude microalgae, 5.0 g of dried sample was 

mixed with 25.0 g of fresh water and loaded into the reactor. For pre-treated sample, the 

pre-treated microalgae sludge as described in Section 3.3.2 (without drying) was mixed 

with additional fresh water to make a total of 30 g and then charged into the reactor as a 

slurry. The reactor was sealed and purged with N2 for three times to remove air inside the 

system. After that, pure nitrogen at 0.69 MPa was purged into the reactor to prevent water 

from boiling during the experiments. Following this, the reactor was heated to a set-point 

temperature (250 °C) at a heating rate of ~ 5 ºC/min and then the temperature was 

maintained for 30 min. During the liquefaction process, the temperature was measured by 

a thermocouple inside the reactor, and the pressure was monitored by a pressure gauge 

connected to the reactor. After the process, the reactor was cooled to room temperature 

using tap water. The resulting gaseous products were then released through a control 

valve. Dichloromethane (DCM) was added to the reaction mixture to extract the bio-

crude oil. The liquid and solid product were separated by filtration. The insoluble fraction 

remaining on the filter paper was dried in an oven at 105 °C overnight to obtain a solid 

residue. The remaining reaction mixture was transferred to a separatory funnel. The bio-

crude oil phase (lower phase) was recovered by vacuum evaporation at 45 °C under 

reduced pressure to remove DCM. The upper phase was defined as aqueous phase, which 

was composed of large amounts of dissolved organics. Liquefaction yields were 

expressed in wt.%, and calculated as follows:  

Bio-crude oil yield = (Mass bio-crude / Mass feedstock) × 100%                                (3-1)                                                                            

Solid residue yield = (Mass solid residue / Mass feedstock) × 100%                           (3-2)                                                       

Aqueous phase & gas yield = 100% – Bio-crude oil yield – Solid residue yield          (3-3)                      
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3.3.4 Analytical approach 

The major compounds in the bio-crude were analyzed by an Agilent 7890 GC/5975 MS 

equipped with a HP-5MS nonpolar capillary column (30 m × 0.25 mm × 0.25 µm). The 

bio-crude oil was dissolved in DCM prior to GC-MS analysis. The injection temperature 

was set at 280 ºC. The oven temperature was set at 60 ºC and held for 2 min, followed by 

a ramp at 20 ºC/min to 280 ºC and then held for 10 min. The functional groups were 

characterized by a FT-IR Spectrometer (Nicolet 6700 Fourier Transform Infrared 

Spectroscopy, Thermo Fisher Scientific, Massachusetts, USA) with an attenuated total 

reflectance (ATR) mode between 4000 and 550 cm-1.  

3.4 Results and discussion 

The C. vulgaris powder was characterized as described in Materials and Methods and 

found to be as follows (in wt.%): ash 7.13, lipid 12.99, protein 61.13, and carbohydrates 

16.10 respectively. Various pre-treatment strategies were applied to the microalgae 

samples and these are further discussed below.   
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3.4.1 Effects of NaOH/urea solvent pre-treatment 

The mass loss from NaOH/urea pre-treatment was about 33.7 wt.%, as shown in Fig. 3.1.   

 

Figure 3-1: Mass loss of the microalgae in NaOH/urea solution pre-treatment and the 

contents of main components of the pre-treated sample. 

This could be potentially due to the high extractive content of microalgae. Fig. 3.1 also 

shows the contents of main components of the pre-treated sample. For example, the 

carbohydrates content dropped to as low as ~5.54 wt.%, compared with 16.10 wt.% 

carbohydrates in the crude sample. The carbohydrates removal efficiency can then be 

calculated taking 100 g of dry crude sample as the calculation base: [(16.10% × 100 g) -

(5.54% × 100 g × (1-33.7 wt.%))] / (16.10% × 100 g) = 77.20 %. That is, around 77.20% 

of carbohydrates in the original biomass were removed during pre-treatment, suggesting 

the NaOH/urea solvent was an effective approach for carbohydrates dissolution. Similar 

results were reported by Wang et al. (2015). As shown in Fig. 3.1, the protein content 

dropped to as low as 49.50 wt.%, compared with 61.13 wt.% protein in the crude sample, 

corresponding to 46.33% protein removal by NaOH/urea pre-treatment. The ash content 

in the pre-treated microalgae was much lower than that in the original biomass. The 

possible reason for large ash removal could be the “wash out” effect of water on the 
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minerals. The lowered ash content in the feedstock is be beneficial to the downstream 

HTL treatment because the high ash content in feedstock might potentially lead to 

slagging and fouling problems. However, it should be noticed that some lipid presented 

in the crude microalgae was removed by NaOH/urea solvent pre-treatment. This may be 

due to the removal of glycolipid and phospholipid (structural components) and some 

intercellular lipid during pre-treatment. 

The mass loss (TG) and curves of crude and pre-treated microalgae are depicted in Fig. 

3.2. As shown in Fig. 3.2, there are more volatile materials (T: 30-600 ℃) present in the 

pre-treated microalgae than that in the crude feedstock. This suggests that more volatiles 

can be converted into liquid/gases in the HTL treatment. In addition, there were still 

approximately 30 wt.% of crude microalgae and 10 wt.% of pre-treated microalgae 

remaining as the solid products. These solid products are primarily bio-char and ash. The 

ash contents of the two microalgae samples were 7.13 wt.% (Table 3.1) and 2.20 wt.% 

(Fig. 3.1), respectively. This indicated that around 23 wt.% of crude microalgae cannot be 

processed during the thermal treatment, which was significantly higher than that of pre-

treated microalgae (around 8 wt.%). As is known, a high ash content could seriously 

affect heat transfer during thermochemical conversion. Therefore, the pre-treated 

microalgae obtained from NaOH/urea solvent pre-treatment were found to be more 

suitable than untreated microalgae during the thermal-chemical processing since more 

organic materials can be converted into target products in terms of bio-crude oil for 

subsequent hydrothermal liquefaction. 
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Figure 3-2: TG curves of pre-treated and crude microalgae. 

The FT-IR spectra of crude and pre-treated microalgae were shown in Fig. 3.3. It was 

observed that the spectra of two microalgae samples were similar, and no new peaks were 

identified. The results were consistent with those reported by Wang et al. (2016). This 

showed that potentially no new chemical compounds were generated during pre-

treatment by NaOH/urea solvent. Thus, it can be concluded that the NaOH/urea solvent 

pre-treatment is a suitable approach for microalgal biomass. 
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Figure 3-3: Functional groups of crude and pre-treated (NaOH/urea solvent pre-

treatment) microalgae. 

3.4.2 Effects of NaOH/urea solvent pre-treatment on liquefaction 
yields 

The major volatile chemical compounds (i.e., relative peak area > 1%) detected in the 

bio-crude oil obtained from pre-treated microalgae at 250 °C for 30 min are summarized 

in Appendix-A. The major compounds can be categorized into four groups, including 

hydrocarbons [e.g., 1,11-Tridecadiene (RT. 10.12) and 1,4-Eicosadiene (RT. 10.39)], N-

containing compounds [e.g., pyrazine (RT. 2.66) and indole (RT. 8.40)], O-containing 

compounds [e.g., cyclohexanol, 2,6-dimethyl (RT. 10.86)], and aromatics [e.g., 3-ethoxy-

4-methoxyphenol (RT. 11.53)]. Surprisingly, no fatty acids were observed in the oil 

samples. It was possibly due to the conversion of fatty acids into hydrocarbons via 

decarboxylation (Watanabe et al., 2006). Fatty acid methyl ester (FAME) analysis will be 

carried out in future studies to investigate that the conversion of fatty acids to 

hydrocarbons is from decarboxylation. Fatty acid methyl ester (FAME) analysis will be 
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carried out in future studies to investigate that the conversion of fatty acids to 

hydrocarbons is from decarboxylation. As is known, the presence of these long-chain 

fatty acid can result in a high viscosity of bio-crude oil, which negatively affects its 

flowability (Guo et al., 2015). A high percentage of N-containing compounds were 

detected in the bio-crude oils due to a higher protein content of C. vulgaris. The results 

were consistent with those obtained by Gai et al. (2014) and Biller and Ross (2011). The 

bio-crude oil also contained some phenolic compounds, like phenol, 2,2'-methylenebis[6-

(1,1-dimethylethyl)-4-ethyl- (RT. 14.55) and phenol, 3,5-dimethoxy- (RT. 12.07), which 

were possibly derived from the decomposition of carbohydrates during liquefaction 

process (Guo et al., 2015). Due to the complexity of bio-crude oil, a single technique 

cannot provide a fully understanding of its chemical composition. In addition, some 

fractions of non-volatile compounds in the oil cannot be detected by GC-MS analysis 

without derivatization (Michailof et al., 2016). Therefore, some other techniques, such as 

the HPLC and HPLC-MS, will be conducted in the future work to achieve a better 

understanding of HTL bio-crude oil.  

It should be noted that the GC-MS results only represented a fraction of the bio-crude oil 

with boiling points lower than 280 °C; thereby FT-IR analysis was conducted to 

thoroughly elucidate its chemical properties. Fig. 3.4 shows the FT-IR spectrum of the 

bio-crude oil obtained from pre-treated microalgae at 250 °C for 30 min. A prominent 

stretching vibration absorption observed between 3700 and 3200 cm-1 can be ascribed to 

O-H or N-H group (Gai et al., 2014). The C-H stretching appeared at 3000-2800 cm-1 was 

observed in the oil, suggesting the existence of methylic or methylene alkanes. As 

expected, the heteroatom functionality and N-H bending (1667 cm-1) was observed in the 

bio-crude oil samples, resulting from N-containing compounds (e.g., pyrazine, methyl- 

and indole) (Patel et al., 2015). The peak at 1452 cm-1 was related to the C-H bending 

vibration in methyl groups. The absorption bands from 1400 to 1199 cm-1 were attributed 

to the polysaccharide derivatives, which could result in the formation of undesired 

nitrogenous compounds via Maillard reaction. The spectrum indicated C-O stretching at 
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1260-1000 cm-1 may be assigned to C-O vibration stretching from alcohol. The region of 

950-700 cm-1 confirmed the presence of aromatic C-H in the bio-crude oil. 

 

Figure 3-4: Functional groups of bio-crude oil obtained from pre-treated (NaOH/urea 

solvent pre-treatment) microalgae. 

3.4.3 Comparison of various pre-treatment methods 

3.4.3.1 Pre-treatment performance 

The mass loss (ML) of microalgae during pre-treatment was one of the most important 

indicators for expressing a change in the quality of pre-treated biomass. As summarized 

in Table 3.1, the mass loss obtained from NaOH/urea solvent pre-treatment was much 

higher than that from ultrasonication and the acid pre-treatments at the lowest 

concentration (1% v/v). In addition to mass loss during the pre-treatments, contents of 

carbohydrates and protein of the pre-treated samples are also presented in Table 3.2, in 
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comparison with crude microalgae (Data represents average value of oven dry weight ± 

standard deviations).  

Table 3-1: Mass loss of the microalgae and content of carbohydrates and protein due to 

various pre-treatment approaches, for crude and pre-treated microalgae (Data represents 

average value of oven dry weight ± standard deviations). 

Samples Mass loss (wt.%) Carbohydrates (wt.%) Protein (wt.%)a 

Crude microalgae          - 16.10 61.13 

Sample A 33.73 ± 1.02 5.54 ± 0.11 49.50 

Sample B 15.31 ± 0.11 2.88 ± 0.59 45.88 

Sample C 40.72 ± 1.97 1.48 ± 0.75 46.88 

Sample D 42.94 ± 3.30 1.46 ± 1.24 43.69 

Sample E 15.24 ± 3.15 4.85 ± 0.02 46.44 

Sample F 19.23 ± 0.42 4.29 ± 0.95 46.81 

Sample G 20.50 ± 4.67 4.00 ± 0.79 47.19 

a Estimated by %N × 6.25; Sample A represents pre-treated microalgae obtained from 

NaOH/urea solvent pre-treatment; Sample B, Sample C, Sample D represents pre-treated 

microalgae obtained from sulfuric acid pre-treatment at 1%, 2%, and 4%, respectively; 

Sample E, Sample F, and Sample G represents pre-treated microalgae obtained from 

ultrasonication pre-treatment at 10 min, 20 min, and 30 min, respectively.  

As explained previously in Section of 3.4.1 and Fig. 3.1, 77.20% of carbohydrates and 

46.33% of protein in the original biomass were removed during the pre-treatment by 

NaOH/urea solution. The pre-treatment by sulfuric acid at concentration of 4 % (v/v) 

obtained the NaOH/urea solvent highest mass loss (42.94 wt.%). However, it should be 

noted that high temperatures (> 120 °C) are necessary to acid treatment, thereby making 

this approach less desirable for mild microalgae-based biorefinery. Moreover, the 

destructive effect of acid on cell components (e.g., pigments) is an issue that should be 

overcome before applying acid for microalgae pre-treatment (Günerken et al., 2015). 
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Based on the similar calculations as described previously in Section 3.4.1, around 84.85 

%, 94.55%, and 94.83% of carbohydrates, and 36.44%, 54.54%, and 59.22% of protein in 

the feedstock were removed in the pre-treatment with 1%, 2%, and 4% (v/v) H2SO4, 

respectively. The removal efficiency can be positively related to the acid concentration, 

which is in agreement with the results reported by Hernández et al. (2015). The 

ultrasonication method was shown to obtain the lowest mass loss from C. vulgaris (15.24 

– 20.50 wt.%). According to Sheng et al. (2011), the major drawback of ultrasonication 

could be related to the temperature control during treatment, which might seriously affect 

pre-treatment performance. Therefore, with respect of low energy input and short 

processing time, the pre-treatment by NaOH/urea solvent at low temperature was 

preferable for microalgal pre-treatment when compared with current approaches, 

including sulfuric acid and ultrasonication. 

3.4.3.2 Liquefaction yields  

Liquefaction processes require mixing (solid) biomass with water. A low solids 

concentration requires more energy input for pre-heating the water and potentially 

increases costs for downstream wastewater treatment (Guo et al., 2015). On the other 

hand, a high concentration of solids may negatively impact the yield of bio-crude oil. The 

study by Jena et al. (2011) observed that the HTL of microalgae at a solids concentration 

of 20% produced the highest bio-crude oil yield but further increase in solid 

concentration showed no effect on the oil yield. Therefore, in this study, a biomass to 

water ratio of 1:5 (g/mL) was selected. The products distribution obtained from crude and 

various pre-treated microalgae samples are shown in Fig. 3.5.  
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Figure 3-5: Liquefaction yields obtained from various pre-treated microalgae at 250 °C 

for 30 min. (Notes: Sample A represents pre-treated microalgae obtained from 

NaOH/urea solvent pre-treatment; Sample B, Sample C, and Sample D represents pre-

treated microalgae obtained from sulfuric acid pre-treatment at 1%, 2%, and 4%, 

respectively; Sample E, Sample F, and Sample G represents pre-treated microalgae 

obtained from ultrasonication pre-treatment for 10 min, 20 min, and 30 min, 

respectively). 

The maximum bio-crude oil yield of 26.06 wt.% was obtained from NaOH/urea solvent 

pre-treated microalgae. This might be due to the NaOH/urea solvent pre-treatment could 

change the structure of biomass and help excrete the intracellular compounds such as 

lipids and thus benefiting the subsequent liquefaction process towards oil formation. The 

oil yield obtained from sulfuric acid pre-treatment was decreased from 20.26 wt.% to 

19.38 wt.% as the acid concentration increased from 1% to 4% (v/v). Contrarily, in the 

case of ultrasonication pre-treatment, the bio-crude oil yield was increased from 19.38 

wt.% to 24.39 wt.% when the processing time extended from 10 min to 30 min. 
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Compared with HTL of crude microalgae (22.86 wt.%), the oil yields after sulfuric acid 

pre-treatment were unchanged, ~20 wt.% by weight. As expected, the solid residue yields 

obtained from all pre-treated microalgae were significantly lower than that obtained from 

crude microalgae. It was surprising to notice that the yields of solid residues obtained 

from NaOH/urea solvent pre-treated microalgae were smallest (5.9 wt.%), which could 

suggest that an almost complete liquefaction of microalgal biomass at subcritical water 

condition. Overall, the first pre-treatment step with NaOH/urea solvent likely changed the 

microalgae structure, and so an increased accessibility to water during the following HTL 

step. Therefore, the performance of the following HTL step can be improved in terms of 

increasing the bio-crude oil yield.   

3.5 Conclusions 

In this study, a novel cell disruption technique using low-temperature NaOH/urea solvent 

was applied to pre-treat microalgal biomass. Two current cell disruption approaches, 

namely sulfuric acid and ultrasonication, were investigated and compared with 

NaOH/urea solvent pre-treatment. The results indicated that this new technique was 

effective for releasing carbohydrates and protein into aqueous solution. Although a 

fraction of lipid was removed during pre-treatment, the pre-treatment with NaOH/urea 

solvent was preferable for microalgal biomass in terms of low energy input and short 

processing time. TGA analysis indicated the pre-treated microalgae obtained from 

NaOH/urea solvent pre-treatment was more suitable for subsequent hydrothermal 

liquefaction towards bio-crude oil production, when compared with crude microalgae. 

Moreover, the hydrothermal liquefaction studies showed that a higher yield of bio-crude 

oil with a better flow property was obtained with the NaOH/urea solvent pre-treated 

microalgae, compared with that of the crude microalgae.  
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Chapter 4  

4 Production of high-quality bio-crude oils from 
microalgae pre-treated with pre-cooled NaOH/urea 
solution  

The information presented in this Chapter is based on the paper “Production of low 

nitrogen of bio-crude oils from microalgae with pre-treated with pre-cooled NaOH/urea 

solution”, which is published in Fuel, 2017, Vol 206, pages 300-306. The sections in 

Chapter 4 present the results towards the completion of objective 2 of this PhD project 

(see Section 1.2).  

4.1 Abstract 

In this study, a two-stage hydrothermal liquefaction (HTL) process was employed to 

produce low-nitrogen bio-crude oils from microalgae, involving pre-treatment of the 

microalgae with a pre-cooled NaOH/urea solution or a dilute acid and HTL of the pre-

treated algal feedstock at 250 °C for 10-50 min. The results indicated that the pre-

treatment with a pre-cooled NaOH/urea solution effectively removed carbohydrates and 

protein from the raw microalgae, leading to a decrease in carbohydrates and protein 

content by 12 wt.% and 10 wt.% (both absolute values), respectively, while retaining 70 

wt.% of the solid mass, corresponding to as high as 82% carbohydrates removal 

efficiency and 40% protein removal efficiency. The two-stage HTL process slightly 

increased the overall bio-crude oil yields relative to the conventional single-stage HTL 

process, and the bio-crude oils obtained from the two–stage HTL process have a better 

quality than those obtained from the single-stage HTL, in terms of lower nitrogen and 

oxygen level and higher energy content. 
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4.2 Introduction  

Due to the global shortage of fossil fuels and concerns about greenhouse gas (GHG) 

emissions, it has become important to develop economical and sustainable pathways for 

the production of bio-renewable liquid fuels. Recently, microalgae have been intensively 

investigated as alternative sources for bio-fuels production owing to their inherent 

advantages i.e., (i) high photosynthetic efficiencies; (ii) high lipid productivities; (iii) ease 

of cultivation on marginal and non-arable land; (iv) potential recyclability of stationary 

emissions of carbon dioxide (CO2); and (v) adaptabilities to seawater or waste water 

(Peng et al., 2016). Various techniques (e.g., hydrothermal liquefaction and pyrolysis) 

have been employed to convert biomass into liquid bio-fuels. Compared to pyrolysis, 

hydrothermal liquefaction (HTL) is regarded as a more suitable method for feedstock 

with high moisture content since it requires no dewatering of the feedstock, thereby 

avoiding enthalpy energy loss (Jena et al., 2011). In general, the yield and property of 

bio-crude oils obtained from HTL are dependent on the operating conditions, including 

reaction temperature, retention time, ratio of biomass to water, and catalyst (Peng et al., 

2016; Jena et al., 2011; Garcia Alba et al., 2012; Anastasakis and Ross, 2011; Gai et al., 

2014). Among them, reaction temperature has been commonly identified as the most 

important parameter for microalgal HTL. The appropriate reaction temperatures reported 

in the literature for maximizing bio-crude oil yield are in the range of 250-375 ºC (Guo et 

al., 2015). Although a higher reaction temperature results in an increase in the oil yield, 

the nitrogen content in the bio-crude oil can be simultaneously increased. Yu et al. (2012) 

observed that the nitrogen content in the bio-crude oil from Chlorella increased from 3.06 

wt.% to 7.46 wt.% with reaction temperature rising from 200 ºC to 280 ºC with a constant 

residence time of 10 min. Garcia Alba et al. (2012) investigated the effect of reaction 

temperature on the distribution of nitrogen in the bio-crude oil, and found that nitrogen 

tended to accumulate in the oil at higher temperatures. In addition, it should be noticed 

that a higher operational temperature is less energy efficient, thereby conducting 

microalgae HTL at a relatively lower temperature is a more economical option.   
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 As well known, microalgae-derived bio-crude oils commonly contain a high nitrogen 

content which could lead to undesirable NOx emission in combustion. Therefore, further 

upgrading is necessary to improve bio-crude oil quality by reducing the heteroatoms 

(e.g., nitrogen and sulfur) contents. Up to now, numerous upgrading strategies have been 

reported in the literature, such as supercritical fluid and hydroprocessing. Duan and 

Savage (2011) processed the bio-crude oil from HTL of Nannochloropsis sp. in the 

supercritical water (400 ºC) with the presence of Pt/C. Guo et al. (2014) hydroprocessed 

bio-crude oils over bimetallic Ni-Cu/ZrO2 catalyst to improve the algal bio-crude oils 

properties. Alternatively, a two-stage process could be employed to produce low-nitrogen 

bio-crude oils from microalgae. The two-stage process mainly consists of pre-treating 

raw microalgae at a low temperature (100 ºC – 200 ºC), followed by a high-temperature 

liquefaction (250 ºC – 375 ºC). For example, Jazrawi et al. (2015) reported up to a 55 

wt.% nitrogen removal via HTL coupled with a mild acid pre-treatment (< 200 ºC), when 

compared with the single-stage liquefaction.   

In recent years, biomass pre-treatment approach using a pre-cooled NaOH/urea solution 

was developed (Mao et al., 2008; Zhou et al., 2006). Compared to other conventional 

biomass pre-treatment methods (e.g., dilute acid), NaOH/urea solution pre-treatment is 

more environmental friendly. The dilute acid pre-treatment could cause corrosion and 

generates “toxic” intermediates, leading to an increase in the downstream wastewater 

treatment cost (Zhao et al., 2008). In contrast, the process water produced from the pre-

treatment with NaOH/urea solution can be recycled or used as a good catalyst for 

biomass hydrothermal liquefaction to improve the yield and quality of bio-crude oil 

products. For instance, NaOH has been commonly demonstrated to be an active catalyst 

for microalgae HTL (Yu et al., 2014). Thus, the novel pre-treatment method with a pre-

cooled NaOH/urea solution may provide a great potential to improve the HTL efficiency 

for microalgae.  

To the best of our knowledge, the pre-treatment method using pre-cooled NaOH/urea 

solution has not well studied for microalgae. Therefore, in this present work, the 
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feasibility of using pre-cooled NaOH/urea solution for microalgae conversion was 

studied. The effects of the pre-treatment on the yield and quality of microalgal bio-crude 

oil products were further investigated by HTL of raw and pre-treated microalgae at 250 

ºC for 10-50 min.  

4.3 Materials and methods 

4.3.1 Materials 

Food-grade powder C. vulgaris was purchased from a health-food store (Pure Bulk, Inc., 

Roseburg, USA). The obtained microalgae sample has a moisture and ash content of 4.3 

wt.%. and 7.1 wt.%, respectively. The ultimate analyses on a dry basis are as follows: 

51.5 wt.% carbon, 7.7 wt.% hydrogen, 9.8 wt.% nitrogen, 0.5 wt.% sulfur, and 23.4 wt.% 

oxygen (calculated by %O = 100% - %C - %H - %N - %S - %Ash). The major chemical 

components of C. vulgaris are lipid, protein, and carbohydrates with 13.0 wt.%, 61.3 

wt.%, and 16.1 wt.%, respectively. Reagent grade dichloromethane (DCM) was 

purchased from Caledon Laboratories Ltd (Georgetown, Canada). The sodium hydroxide 

and urea used in the pre-treatment tests were obtained from Sigma-Aldrich (Oakville, 

Canada). 

4.3.2 Pre-treatment studies  

4.3.2.1 Pre-cooled NaOH/urea solution method 

Microalgae pre-treatment studies with pre-cooled NaOH/urea solution was performed 

using a procedure modified from that previously reported by Cai and Zhang (2005), as 

briefly described below. An amount of 35.0 g of NaOH/urea solution was prepared by 

mixing NaOH, urea, and distilled water (7:12:81 by weight) and stored in a freezer (-5 to 

-10 ºC) overnight. An aliquot of 7.0 g of C. vulgaris was thoroughly mixed with the de-

frozen NaOH/urea solution for 5 min at room temperature. The mixture was then 

neutralized with 1.0 M HCl solution, followed by centrifugation. After that, the solid 

fraction was separated from the aqueous phase by vacuum filtration, and directly used as 

the feedstock for HTL experiments.  



77 

 

 

 

4.3.2.2 Dilute acid method  

An amount of 7.0 g of dry microalgae and 35 mL of 2% (v/v) sulfuric acid were mixed 

thoroughly and placed in an oil bath at 120 ºC for 20 min with constant agitation at 60 

rpm. The mixture was thereafter cooled to room temperature and then neutralized with 

1.0 M NaOH solution. The solid fraction was separated via centrifugation, and 

subsequently filtrated to recover the solid fraction, which was directly used for HTL 

studies. 

4.3.3 Hydrothermal liquefaction process 

A 100 mL bench-top autoclave reactor equipped with a magnetic drive stirrer, was used 

for the HTL tests (Parr 4590, Illinois, USA). In a single-stage HTL run, 7.0 g of crude 

biomass with 35.0 mL of distilled water were loaded into the reactor. In a two-stage HTL 

experimental run, the pre-treated microalgae slurry sample as described earlier was mixed 

with additional distilled water to make a total of 42.0 g and then charged into the reactor. 

The reactor was then sealed and flushed with nitrogen for 3 times to remove residual air 

inside the reactor. After that, pure nitrogen at 0.69 MPa was purged into the reactor to 

prevent water from boiling during the experiments. The reactor was then heated from 

room temperature to the pre-set temperature of 250 °C at a heating rate of 5 °C/min for 

~45 min. This temperature was maintained for 10 min, 30 min, and 50 min. Throughout 

the reaction process, the pressure was monitored by a pressure gauge attached to the 

reactor head. The final pressure was ~45 bar at 250 °C. At the end of the reaction, the 

reactor was rapidly quenched to room temperature using a water bath to stop the reaction. 

After the pre-set residence time elapsed, the reactor was immediately quenched in a water 

bath to stop further reactions. After the system cooled to room temperature, the gaseous 

products were released via the fume hood (in this work gas samples were not collected 

and analyzed, as our preliminary tests showed that the total yield of gases at 250 ºC was 

negligibly low, less than 5 wt.% and CO2 was the main gas species formed in the 

process). The reactor contents were then completely rinsed into a beaker using DCM. 

This reaction mixture was then filtered, and the filter residue was further washed with 
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DCM.  The residue was then dried for 12 h at 105 °C to obtain a dry solid residue 

fraction. The two-phase mixture was transferred to a separation funnel to isolate the 

aqueous phase (upper layer) from the bio-crude oil phase (lower layer). The bio-crude oil 

phase was transferred to a pre-weighed 500 mL Erlenmeyer flask to remove DCM by 

rotary evaporation at 45 ºC under reduced pressure and to obtain bio-crude oil product. 

Liquefaction yields are expressed in wt.% and were calculated as follows:  

Bio-crude oil yield = 
𝑀𝑎𝑠𝑠𝑏𝑖𝑜−𝑐𝑟𝑢𝑑𝑒 𝑜𝑖𝑙

𝑀𝑎𝑠𝑠𝑑𝑟𝑦 𝑚𝑖𝑐𝑟𝑜𝑎𝑙𝑔𝑎𝑒
 × 100%                                                           (4-1) 

Solid residue (SR) yield = 
𝑀𝑎𝑠𝑠𝑠𝑜𝑙𝑖𝑑 𝑟𝑒𝑠𝑖𝑑𝑢𝑒

𝑀𝑎𝑠𝑠𝑑𝑟𝑦 𝑚𝑖𝑐𝑟𝑜𝑎𝑙𝑔𝑎𝑒
 × 100%                                                   (4-2) 

Aqueous phase & Gas yield = 100%-Bio-crude oil yield-Solid residue yield              (4-3) 

All HTL experiments were performed in triplicate and the repeatability of liquefaction 

yields was typically ± 5 wt.%. The bio-crude oil recovery and extraction procedure is 

shown in Fig. 4.1.  
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Figure 4-1: Flow diagram of bio-crude oil recovery and product separation procedure. 

4.3.4 Analytical approach  

4.3.4.1 Raw and pre-treated microalgae 

The pre-treated microalgae slurry obtained from previously described pre-treatment 

studies were oven dried at 50 ºC for 3 days to obtained pre-treated samples for the 

following analyses. The ash contents of raw and pre-treated microalgae were measured 

gravimetrically with a muffle furnace at 550 ºC for 3 h based on the ASTM E 1755 

standard. Elemental compositions were determined by using an elemental analyzer (Vario 

EL Cube, Elementar, Hanau, Germany). The lipid and carbohydrates contents of raw and 

pre-treated biomass were measured by the Bligh and Dyer (B&D) method and DuBois 

method, respectively (Bligh and Dyer, 1956; DuBois et al., 1956). The protein contents of 

Microalgae 
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raw and pre-treated samples were estimated by multiplying N (wt.%) by 6.25 (Becker et 

al., 1994). 

4.3.4.2 Bio-crude oils  

The volatile compositions of the bio-crude oils were analyzed by a gas chromatograph 

(GC, Agilent 7890B) equipped with a mass spectrometric detector (MS, 5977A) and a 

HP-5MS nonpolar capillary column (30 m × 0.25 mm × 0.25 µm), with temperature 

programming from an initial temperature hold of 2 min at 50 °C followed by a ramp at 10 

°C/min to a final temperature of 280 °C with a 2 min hold. Compounds were identified 

with the use of the National Institute of Standards and Technology (NIST) mass spectral 

data library. FT-IR analysis of bio-crude oils was performed using a Nicolet 6700 Fourier 

Transform Infrared Spectroscopy over a range of 550−4000 cm-1. Elemental 

compositions of bio-crude oils and solid residues were determined with the same method 

as described previously for the raw and pre-treated microalgae. The higher heating value 

(HHV) of bio-crude oils and solid residues was calculated using the DuLong’s equation 

as widely adopted in literature (Channiwala and Parikh, 2002):   

HHV (MJ/kg) = 0.338 × C + 1.428 × (H - O/8)                                               (4-4) 

4.4 Results and discussion  

4.4.1 Characterizations of pre-treated microalgae 

The main characteristics of pre-treated microalgae samples obtained from pre-cooled 

NaOH/urea and dilute acid pre-treatments were summarized in Fig. 4.2. First of all, two 

pre-treatment methods resulted in an average mass loss of the feedstock, by ~30 wt.% 

(NaOH/urea) and ~41 wt.% (dilute acid). It should be noted that the dilute acid pre-

treatment approach is essentially unselective as its economic benefits could be 

significantly outweighed by the reduction in the bio-crude oil yield (Jazrawi et al.,2015). 

The ash contents in two pre-treated microalgae samples were much lower than the raw 

microalgae, and the % of ash reduction was ~81.3 (NaOH/urea) and ~82.0 (dilute acid). 

The reduction in ash content might be partially due to the “wash out” effects of water on 
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minerals. Microalgae are reported to contain 5-20 wt.% of ash content (Changi et al., 

2015). Its main components can either serve as catalysts or inhibitor for intra-

macromolecules (lipid, protein, and carbohydrates) degradation when subjected to 

hydrothermal condition (Changi et al., 2015).   

 

Figure 4-2: Characterizations of the microalgae after different pre-treatments. 

Besides, approx. 12 wt.% of carbohydrates and 9 wt.% of protein (both absolute 

amounts) in raw biomass were removed by pre-cooled NaOH/urea solution pre-treatment, 

corresponding to as high as ~82% carbohydrates removal efficiency and ~40% protein 

removal efficiency. It should be noted that it is significant to handle the remaining 

process water after pre-treatment to reduce pollution. Due to the high contents of carbon 

and nitrogen, the process water might be employed as the growth medium for 

heterotrophic algae strains. Some algae species have showed their abilities to consume 

municipal and industrial wastewater as carbon source. In addition, algae could assimilate 

a wide range of nitrogen sources, including organics and inorganics (Barreiro et al., 

2013). Another solution is to recycle the process water as reaction medium for HTL to 

improve bio-crude oil production and more efficient utilization of NaOH. These above 
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two options will be investigated in the future study. In the case of dilute acid pre-

treatment, a similar amount of carbohydrates (~11 wt.%, absolute value) and around ~35 

wt.% (absolute value) of protein were removed.   

However, it should be mentioned that the amounts of chemicals used for NaOH/urea 

solution pre-treatment could be very high for the actual industrial application. Therefore, 

to address this problem, a number of methods, such as NaOH recovery and partially 

substitution of NaOH with CaO or Ca(OH)2, can be utilized. Another crucial practical 

problem related to this pre-treatment approach is that it is energy costly to pre-cooling the 

NaOH/urea solution at 10~12 ºC in the perspective of large-scale operation. A previous 

study performed by Zhao et al. (2008) found that the winter temperature, especially in the 

northern region (Madison, Wisconsin, USA), was low enough to cool the system to the 

required processing temperature without any extra energy input for cooling the pre-

treatment system. 

4.4.2 Liquefaction yields 

Due to its advantage of high efficiency, low energy demand, and short processing time, 

the pre-treatment by pre-cooled NaOH/urea solution was chosen to explore the effects of 

pre-treatment and residence time on the products distribution from HTL of microalgae. 

Residence time is one of the key operating parameters that determine the liquefaction 

efficiency and product distributions. Generally, an insufficient residence time leads to an 

incomplete conversion process; whereas, in contrast, an excessive residence time could 

cause the secondary reactions of desirable products, such as decomposition or re-

polymerization of bio-crude oils (Guo et al., 2015). Effect of residence time on the 

liquefaction yields was studied with the raw and pre-treated (the pre-cooled NaOH/urea 

solution) microalgae at 250 ºC for 10-50 min, and the results are illustrated in Fig. 4.3. In 

general, the bio-crude oil yields from the raw and pre-treated biomass increased with 

prolonging reaction time. This tendency is consistent with the results reported in some 

previous studies (Peng et al., 2016; Garcia Alba et al., 2012). In addition, at any given 

reaction time, the oil yields from the two-stage HTL process with the pre-treated 
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feedstock were higher than those obtained from the single-stage HTL process with raw 

microalgae. This might be attributable to the changes in the cell structure in the pre-

treatment, which may facilitate the extraction of intra-macromolecules, like lipid, from 

microalgal cells and their conversion into oil products. The solid residue yields from both 

raw and pre-treated microalgae decreased slightly by increasing retention time, as 

similarly reported in literature (Guo et al., 2015).  

 

Figure 4-3: Liquefaction yields obtained from HTL of microalgae at 250 ºC for 10 min, 

30 min, and 50 min. 

4.4.3 Characterization of liquefaction products  

Elemental compositions of bio-crude oils obtained from raw/pre-treated (with pre-cooled 

NaOH/urea solution) microalgae at 250 ºC for 10 min are summarized in Table 4.1. HHV 

of the bio-crude oil from the pretreated microalgae (~ 36 MJ/kg) is higher than that of the 
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bio-crude oil from raw microalgae (~ 31 MJ/kg). The carbon content in the bio-crude oil 

obtained from two-stage process was higher compared to that of the oil obtained from 

single-stage HTL process, so is the hydrogen content in the bio-crude oils. As expected, 

the nitrogen and sulfur contents in the oil derived from pre-treated microalgae (6.39 wt.% 

N and 0.19 wt.% S) are lower than those of the oil derived from raw biomass (7.49 wt.% 

N and 0.32 wt.% S), which was likely due to the removal of protein and other sulfur-

containing components in the pre-treatment. Although the pre-treatment could remove a 

fraction of protein from crude biomass, the oil products still contain significant quantities 

of nitrogen. Accordingly, further upgrading via deoxygenation or denitrogenation is 

required, so as to make the microalgae-based bio-crude oils liquid bio-fuels comparable 

to petroleum-based fuels. In this work, energy recovery ratio was calculated with the 

following equation (Biller and Ross, 2011):  

Energy Recovery ratio (%) = 
𝐻𝐻𝑉𝑏𝑖𝑜−𝑐𝑟𝑢𝑑𝑒 𝑜𝑖𝑙×𝑀𝑎𝑠𝑠𝑏𝑖𝑜−𝑐𝑟𝑢𝑑𝑒 𝑜𝑖𝑙

𝐻𝐻𝑉𝑏𝑖𝑜𝑚𝑎𝑠𝑠×𝑀𝑎𝑠𝑠𝑏𝑖𝑜−𝑐𝑟𝑢𝑑𝑒 𝑜𝑖𝑙
×100%                           (4-5) 

As shown in Table 4.1, the two-stage HTL process (HTL coupled with the NaOH/urea 

solution pre-treatment) had a higher recovery ratio (~ 32%) than single-stage process (24 

%), which was mainly resulted from the higher energy content and yield of bio-crude oil 

products in the two-stage HTL process.  

Table 4-1: Ultimate analysis of bio-crude oils obtained from HTL of the raw and 

pretreated microalgae at 250 °C for 10 min. 

Elemental composition (wt.%) Oil from the pre-treated 

microalgae 

Oil from raw 

microalgae 

C 70.14 62.42 

H 10.22 9.45 

Oa 13.06 20.32 

N 6.39 7.49 

S 0.19 0.32 

HHV (MJ/kg)b 35.97 30.97 

Energy recovery ratio (%)c 31.97 23.50  
a Oxygen content determined by difference; b HHV (MJ/kg) calculated by Dulong 

equation Eq.4-4); c Energy recovery ratio (%) calculated by Eq. 4-5.  
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Similarly, an energy recovery ratio of ~32% was reported in a previous study by Biller 

and Ross (2011), in which the Chlorella vulgaris was liquefied at 350 °C for 1 h with the 

addition of HCOOH as a catalyst.  

Major volatile chemical compounds in the bio-crude oils obtained from the raw and pre-

treated microalgae (with pre-cooled NaOH/urea solution) were analyzed by GC-MS, and 

the results with the oils at 250 ºC for 10 min are shown in Fig. 4.4. The compounds 

detected in the oil samples can be categorized into five groups: (1) hydrocarbons; (2) 

fatty acids; (3) amides; (4) oxygen-containing compounds (including aldehydes, alcohols, 

esters, ethers, and ketones); (5) cyclic oxygenates or aromatics (including phenols, phenol 

derivatives, and benzenes); and (6) nitrogen-containing compounds.  

 

Figure 4-4: Major compounds detected by GC-MS in the bio-crude oils obtained from 

HTL of microalgae at 250 ℃ for 10 min. 
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The detailed compounds in the bio-crude oils were summarized in Appendix-B. As 

shown in Fig. 4.4, the bio-crude oil from the pre-treated microalgae contained a higher 

content of hydrocarbons, which could be directly produced from decarboxylation of fatty 

acids (Gai et al.,2014). Hydrocarbons were identified as the major compounds for two oil 

samples, such as 1,3,5-hexatriene, (E)- and 3-eicosyne. Compared with the oil samples 

from the single-stage HTL with raw microalgae, the oils from the two-stage HTL process 

have a higher content of fatty acid. This might be due to the fact that the lipid in pre-

treated microalgae was easier to be extracted, thereby improving the bio-crude oil yield 

as well (Fig. 4.3). Large amounts of nitrogen-containing compounds were also detected 

in all oil samples, such as cyclo(valylvalyl) (RT. 9.17) and 2,5-Piperazinedione, 3-

methyl-6-(phenylmethyl)- (RT. 11.09), as similarly reported by Ross et al. (2010) and 

Gai et al. (2014). The bio-crude oils from the pre-treated microalgae contain a lower 

concentration of nitrogen-containing compounds than that in the oils obtained from raw 

microalgae, which is in a good agreement with the results of elemental analysis (Table 

4.1). Besides, the amides were identified in the bio-crude oils, which could result from 

the substitution reactions among fatty acids and ammonia (Garcia Alba et al., 2015). Fig. 

4.4 indicates that the oil products from the two-stage HTL process with the pre-treated 

microalgae had a relatively higher fraction of cyclic oxygenates or aromatics (e.g. 

biphenyl). In contrast, bio-crude oils from the single-stage HTL with raw microalgae 

contained a much higher content of oxygen-containing compounds (e.g., aldehydes, 

alcohols, esters, ethers, and ketones). 

FT-IR spectra of bio-crude oils derived from both raw and pre-treated microalgae (with 

pre-cooled NaOH/urea solution) at 250°C for 10 min are displayed in Fig. 4.5. FT-IR 

analysis of the functional groups in the bio-crude oils may supplement the results 

obtained by GC-MS analysis (valid only for volatile chemical components). As can be 

seen in Fig. 4.5, the spectra of the two bio-crude oil samples are very similar. An 

absorption peak at 3200 cm-1 can be assigned to O-H or N-H stretching bonds (Peng et 

al., 2016). The peaks at 2924 cm-1 and 2856 cm-1 are ascribed to the C-H stretching 

vibration, suggesting the existence of alkyl C-H (Guo et al., 2015). A strong absorbance 
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at 1670 cm-1 can be attributed to the C=O stretching band in carbonyl groups, which is 

consistent with the ketones, aldehydes and fatty acids detected in the bio-crude oil via 

GC-MS analysis (Table 4.2) (Gai et al., 2014). Another peak at 1450 cm-1 could indicate 

the presence of C-H bending in the oils. The peak at 736 cm-1 can be related to the C-H 

bending from aromatics and their derivatives, some of which were identified by GC-MS 

(Table 4.2), such as biphenyl and phenol, 2,2'-methylenebis[6-(1,1-dimethylethyl)-4-

ethyl- (RT. 11.65). 

 

Figure 4-5: FT-IR spectra of bio-crude oils obtained from HTL of microalgae at 250 ºC 

for 10 min. 

On the other hand, the solid residues (or bio-chars) obtained from the pyrolysis or HTL of 

microalgae could be used as soil fertilizers for soil amelioration or solid fuels as they 

contain alkali ash, carbon and nitrogen (Bird et al.,2011). The proximate and ultimate 

analyses of the solid residue derived from raw and the pre-treated microalgae (with pre-
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cooled NaOH/urea solution) at 250 °C for 10 min are displayed in Table 4.2. Owing to 

the reduced ash content in the microalgae pre-treatment the two-stage HTL process 

resulted in a solid residue with an ash content much lower than that of the single-stage 

HTL process. In general, the solid residues from microalgae HTL contain significant 

amounts of carbon, hydrogen, and nitrogen, as well as a high energy content (HHVs 28 

~30 MJ/kg), making them a potential solid fuel for energy production or a soil 

conditioner. 

Table 4-2: Properties of solid residue (SR) derived from the raw and pretreated 

microalgae at 250 °C for 10 min. 

 SR from the pre-treated 

microalgae 

SR from raw 

microalgae 

Ash (wt.%, dry basis)  1.34 4.09 

Ultimate analysis (wt.%, dry basis)  

C 61.89 59.90 

H 8.58 7.96 

Oa 20.16 19.98 

N 7.85 7.96 

S 0.18 0.11 

HHV (MJ/kg)b 29.57 28.05 
a Determined by difference; b Calculated by Dulong equation (Eq. 4-4). 

4.5 Conclusions 

In this study, a two-stage HTL process involving pre-treatment of the feedstock with a 

pre-cooled NaOH/urea solution was investigated for microalgae liquefaction. The pre-

treated microalgae resulted in higher yields of bio-crude oils with a better quality with 

respect to higher energy contents and reduced nitrogen and oxygen contents, when 

compared with those obtained from the single-stage HTL process. The solid residues 

from microalgae HTL contain significant amounts of carbon, hydrogen, and nitrogen, as 
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well as a high energy content (HHVs 28 ~30 MJ/kg), making them a potential solid fuel 

for energy production or a soil conditioner.  
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Chapter 5  

5 Investigation of aqueous phase recycling for improving 
bio-crude oil yield in hydrothermal liquefaction of algae  

The information presented in this Chapter is based on the paper “Investigation of aqueous 

phase recycling for improving bio-crude oil yield in hydrothermal liquefaction of algae”, 

which is published in Bioresource Technology, 2017, Vol. 239, pages 151-159. The 

sections in Chapter 5 present the results towards the completion of objective 3 of this 

PhD project (see Section 1.2).  

5.1 Abstract 

In this study, the aqueous phase obtained from catalytic/non-catalytic hydrothermal 

liquefaction (HTL) of Chlorella vulgaris was recycled as the reaction medium with an 

aim to reduce water consumption and increase bio-crude oil yield. Although both Na2CO3 

and HCOOH catalysts have been reported to be effective for promoting biomass 

conversion, the bio-crude oil yield obtained from HTL with Na2CO3 (11.5 wt.%) was 

lower than that obtained from non-catalytic HTL in pure water at 275 ºC for 50 min. 

While, the HCOOH led to almost the same bio-crude yield from HTL (29.4 wt.%). 

Interestingly, the bio-crude oil yield obtained from non-catalytic or catalytic HTL in 

recycled aqueous phase was much higher than that obtained from HTL in pure water. 

Recycling aqueous phase obtained from catalytic HTL experiments resulted in a sharp 

increase in the bio-crude oil yield by 32.6 wt.% (Na2CO3-HTL) and 16.1wt.% (HCOOH-

HTL), respectively. 

5.2 Introduction 

Algal biomass has been considered as promising feedstocks for the production of 

renewable and environmentally friendly transport fuels (Yang et al., 2014). The 

advantages of algal biomass over conventional lignocellulosic biomass such as agro-

forest residues include fast growth rates (Zou et al., 2010) and high photosynthetic 
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efficiencies (Biller and Ross, 2011). Furthermore, algal biomass can be cultivated in 

either waste water or sea without competing with food production (Peng et al., 2016). 

Pyrolysis and hydrothermal liquefaction (HTL) are two dominant techniques converting 

biomass into liquid biofuels (Jena et al., 2012). In comparison, HTL is more suitable for 

biomass with high moisture content due to the elimination of the feedstock drying step 

(Biller and Ross, 2011). Moreover, the oil products produced from HTL generally have 

higher energy content and better stability properties than pyrolysis oil (Barreiro et al., 

2013).  

To date, extensive research on HTL has been conducted in the water at 200-350 ºC for 5-

60 min with or without the presence of a catalyst (Brown et al., 2010). It has been found 

that when temperature elevates from 25 °C to 350 °C, the ionic product (Kw) of water 

increases from 10-14 to 10-12 (Toor et al., 2011). The resulting high levels of H+ and OH- 

could promote the acid and base-catalyzed hydrolysis reactions (Gai et al., 2014). 

Meanwhile, the dielectric constant of water decreases, rendering the water molecular 

more affinitive to organic compounds (Peng et al., 2016). However, two major challenges 

for algal HTL still exist ahead: (i) large amounts of processing water as a co-product that 

requires additional treatments before discharging into the environment (Zhu et al., 2015); 

(ii) algae-based bio-crude oil requires further upgrading due to the higher contents of 

heteroatoms (e.g., N, O, and S) (Guo et al., 2015).  

To address the problems above, several studies have been carried out with recycled 

aqueous phase as the growth medium for algae cultivation due to its high content of C, N, 

and P. For instance, Jena et al. (2011a) found that microalgae can grow in the recycled 

aqueous phase from HTL of Spirulina, but heavy dilution was necessary to reduce the 

inhibitory effects of phenol and nickel. Alternatively, the recycled aqueous phase can be 

introduced back into the HTL system for improving bio-crude oil yield. Zhu et al. (2015) 

found that the bio-crude oil yield from HTL of barley straw slightly increased from 34.9 

wt.% to 38.4 wt.% after three rounds of aqueous phase recycle. In another study, the bio-
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crude oil yield from HTL of dried distillers grains with solubles (DDGS) was increased 

by recycling aqueous phase for up to nine cycles (Biller et al., 2016).  

Apart from aqueous phase recycling, numerous homogenous catalysts (including alkali 

and organic acids) have been used to improve algal HTL process in terms of bio-crude oil 

yield and quality. By far, the most employed catalyst for HTL is Na2CO3 (Jena et al., 

2012; Ross et al., 2010; Shakya et al., 2015; Zhou et al., 2010), and the catalytic 

mechanism involves a series of reactions (Fang et al., 2004). One of its important 

catalytic effects on HTL is the formation of reducing gas, H2, which could promote 

biomass liquefaction by stabilizing the fragmented intermediates and preventing 

condensation, cyclization, and repolymerization of the free radicals, leading to a higher 

yield of oil and reduced char formation (Akhtar and Amin, 2011). Also, some studies 

showed that organic acids have demonstrated positive roles on algal HTL. Ross et al. 

(2010) found that the use of organic acids (including HCOOH and CH3COOH) resulted 

in a higher yield of bio-crude oil with an improved flow property, compared to the use of 

alkali catalysts (including Na2CO3 and KOH). The mechanism of organic acids in 

biomass liquefaction involves the decomposition of HCOOH and CH3COOH to form in-

situ H2 and CO, the in-situ H2 can serve as a hydrogen donor to enhance oil yield and 

quality. The oxygen content present in the biomass can be removed by water formation 

(Guo et al., 2015). However, to the best of our knowledge, there was a limited extent of 

literature relating to algal liquefaction using organic acid catalysts (Yang et al., 2014). 

Although most homogenous catalysts have positive effects on algal HTL, the processes 

can only be economically viable if the aqueous phase and the catalysts can be reused 

(Guo et al., 2015). Moreover, the aqueous phase recycling has been regarded as a 

necessity for industrial applications of HTL technology (Biller et al., 2016).  

In this present work, the aqueous phases obtained from both catalytic and non-catalytic 

HTL were recycled as the reaction medium with an aim to improve oil yield and reduce 

water consumption. Effects of aqueous phase recycling on products distribution and bio-

crude oil properties were investigated. As indicated in the literature, glycerol and acetic 
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acid were commonly identified in the aqueous phase from algal HTL (Yang et al., 2014; 

Zhou et al., 2010). Several studies have demonstrated that the glycerol could be used as a 

co-solvent to facilitate liquefaction process for lignocellulosic biomass (Cao et al., 2016; 

Pedersen et al., 2015). Therefore, effects of glycerol and acetic acid on products 

distribution and bio-crude oil properties were also investigated in order to elucidate the 

possible roles of the recycled aqueous phase in the algal HTL. 

5.3 Materials and methods 

5.3.1.1 Materials 

C. vulgaris was obtained from a health-food store (PureBulk, Inc, Roseburg, USA) and 

received as fine powder. The reagent grade dichloromethane (DCM), HCOOH, 

CH3COOH, and glycerol were purchased from Caledon Laboratories Ltd (Georgetown, 

Canada), and the Na2CO3 was purchased from EMD Millipore (Massachusetts, USA). All 

chemicals were used as received. 

5.3.2 HTL process and products separation 

5.3.2.1 HTL in pure water 

HTL was performed in a 100 mL stainless steel autoclave reactor (Parr 4590, Parr 

Instrument Co, Illinois, USA). Temperature inside the reactor was measured by a Type J 

thermocouple, and pressure in the reactor was monitored with a pressure gage installed 

on the top of the reactor. In a typical non-catalytic HTL run, the reactor was loaded with 

~5.0 g of microalgae (on a dry basis) and ~25.0 g of water at a solid/water ratio of 1:5 

(w/w). In the case of catalytic HTL process, the reactor was charged with ~5.0 g of 

microalgae and ~25.0 g of water containing either 5 wt.% Na2CO3 or HCOOH. After the 

loading, the reactor was sealed and flushed with nitrogen for three times to remove the 

residual air inside. After that, pure nitrogen at 0.69 MPa was purged into the reactor to 

prevent the mixed reaction medium from boiling during the heating process. The stirring 

speed was set at ~300 rpm throughout the liquefaction process. The reactor was then 

heated up to the pre-set temperature of 225-275 ºC with a heating rate of ~5 ºC/min, and 
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maintained at the pre-set temperature for 10-50 min. At the end of the reaction, the 

reactor was rapidly cooled to room temperature in a water bath. 

5.3.2.2 Products separation 

After the reactor was cooled to room temperature, gases in the reactor were vented 

through a control valve into a fume hood. Since gaseous products (mainly CO2) yield was 

very low (3~5 wt.%) according to our preliminary tests, gas fraction was thus not 

collected and analyzed in this study. Afterward, the reactor was opened and the reaction 

mixture was washed out with DCM and carefully transferred to a 500 mL beaker, 

followed by rinsing the reactor walls and the stirrer with DCM twice. The solid residue in 

the mixture was then separated by vacuum filtration. The solids recovered on the filter 

paper were dried in an oven at 105 °C for 24 h. After that, the filtrate was transferred to a 

separatory funnel and allow to stand for 30 min for phase separation. The DCM soluble 

fraction (bottom phase) was transferred into a 500 mL round bottle flask and evaporated 

at 45 ºC under reduced pressure to remove DCM, resulting in bio-crude oil products. The 

aqueous phase fraction (top phase) was filtered to remove undissolved materials and 

stored in a fridge for the subsequent recycling studies. Meanwhile, approximately 1 mL 

of the aqueous phase was sampled for GC-MS analysis. All HTL experiments either in 

recycled aqueous phase or in pure water were performed in triplicate to demonstrate the 

acceptable reproducibility. As explained above, the aqueous phase and gas products were 

lumped together and their yield was simply calculated by mass balance. The product 

yields of bio-crude oil and solid residue were calculated using Eq. (5-1).  

Yield bio-crude oil/solid residue = (Weight of products (dry basis))/(Weight of biomass 

(dry basis))  ×100%                                                                                                        (5-1) 

5.3.2.3 HTL in recycled aqueous phase 

The maximum bio-crude oil yield from non-catalytic HTL in pure water was selected as 

the baseline experiment for aqueous phase recycling studies. As indicated later in the 

Section 5.3, the maximum bio-crude oil yield was obtained at 275 °C for 50 min, with a 
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solid/liquid ratio of 1:5 (w/w). These reaction parameters were applied for the HTL in 

recycled aqueous phase. For non-catalytic HTL recycling studies, the aqueous phase 

obtained from the baseline experiment (non-catalytic HTL in pure water) was used as the 

reaction medium for the first recycling experiment (Recycle-1), and so on for the 

subsequent recycling tests (Recycle-2 and Recycle-3). No more than three recycling runs 

were carried out because the aqueous phase almost reaches saturation point at end of the 

third round, which is explained later in the Section 5.4.2.2. In the case of catalytic HTL 

recycling studies, a similar procedure was employed expect for using the aqueous phase 

produced from catalytic HTL with Na2CO3 or HCOOH. Since this present study aims to 

determine the feasibility for reusing aqueous phase as the reaction medium, only one 

round of recycle was performed in the catalytic HTL recycling studies. Besides, no 

additional catalysts were used.  

5.3.3 Analysis  

5.3.3.1 Feedstock 

The moisture content was determined by drying the sample in an oven at 105 ºC for 24 h. 

The ash content was determined by combusting the dry sample in a muffle furnace at 550 

ºC in air for at least 3 h until reaching a constant weight. The lipid content was 

determined by the Bligh and Dyer method (Bligh and Dyer, 1956). The protein content 

was estimated by 6.25 × wt.% N (Rebolloso-Fuentes et al., 2001). The carbohydrates 

content was determined by the phenol-sulfuric acid method (DuBois et al., 1956). From 

the above analysis, content of moisture, ash, lipid, protein and carbohydrates was 4.30 

wt.%, 7.13 wt.%, 12.99 wt.%, 61.13 wt.%, and 16.10 wt.%, respectively. The mass 

balance cannot reach 100% here due to the experimental errors and unavoidable mass 

loss during sample transfer. The ultimate analysis of feedstock was performed by 

Chemistry Department of Lakehead University (Ontario, Canada), and the reported 

values are an average of three measurements. The elemental composition on a dry basis 

was as follows: 51.50 wt.% C, 7.67 wt.% H, 9.78 wt.% N, 0.50 wt.% S, and 23.42 wt.% 

O (calculated by difference, %O = 100% - %C - %H - %N -%S - %Ash). The higher 
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heating value (HHV) was calculated according to the Dulong equation (Eq. 5-2) 

(Channiwala and Parikh, 2002):   

HHV (MJ/kg) = 0.338 × C + 1.428 × (H – O/8)                                                            (5-2) 

Where, C, H, and O were the weight percentages of carbon, hydrogen, and oxygen in the 

feedstock, respectively.   

5.3.3.2 Liquefaction products 

The functionality of bio-crude oil was determined by FT-IR analysis. A FT-IR 

Spectrometer (PerkinElmer, Massachusetts, USA) was employed to scan bio-crude oil 

samples over the wavelength range of 4000-550 cm-1 at the resolution of 4 cm-1. The 

elemental composition and HHV of bio-crude oil were determined using similar methods 

as adopted for feedstock. The energy recovery (%) from feedstock into the bio-crude oil 

was calculated by Eq. 5-3 (Biller and Ross, 2011):  

Energy recovery (%) =  
𝐻𝐻𝑉𝑏𝑖𝑜−𝑐𝑟𝑢𝑑𝑒 𝑜𝑖𝑙×𝑊𝑒𝑖𝑔ℎ𝑡𝑏𝑖𝑜−𝑐𝑟𝑢𝑑𝑒 𝑜𝑖𝑙

𝐻𝐻𝑉𝑚𝑖𝑐𝑟𝑜𝑎𝑙𝑔𝑎𝑒×𝑊𝑒𝑖𝑔ℎ𝑡𝑚𝑖𝑐𝑟𝑜𝑎𝑙𝑔𝑎𝑒
× 100%                              (5-3) 

The chemical composition of bio-crude oil and aqueous phase was analyzed using an 

Agilent 7890 GC/5975 MS equipped with a HP-5MS capillary column (30 m × 0.25 mm 

id., 0.25 µm film thickness) (Agilent Technologies, California, USA). For each GC-MS 

run, 1 µL of sample was injected at 280 ºC with a split ratio of 20:1. Helium was used as 

a carrier gas with a flow rate of 2.64 mL/min. The GC oven temperature was programed 

as follows: held at 60 ºC for 2 min, then ramped to 280 ºC with a heating rate of 20 ºC/ 

min, and held for 10 min. The volatile chemical compounds in the samples were 

identified using NIST (National Institute of Standards and Technology) database and 

reported qualitatively by % peak area. 

5.4 Results and discussion 

The non-catalytic HTL in pure water were conducted in the subcritical water at 225-275 

℃ for 10-50 min, with a solid/water ratio of 1:5 (w/w), and the resulting liquefaction 
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yields were summarized in Table 5.1. The bio-crude oil yield increased with the 

increased reaction severity (a higher temperature or longer residence time), but solid 

residue yield decreased. This trend was consistent with the previous studies (Brown et al., 

2010; Shakya et al., 2015). A maximum bio-crude oil yield of 29.39 wt.% was obtained 

from non-catalytic HTL at 275 ºC for 50 min. Thus, temperature of 275 ºC and 50 min 

residence time were applied for the subsequent studies on catalytic HTL in pure water 

and aqueous phase recycling studies. 

Table 5-1: Liquefaction yields (average value ± standard deviation) obtained from HTL 

of C. vulgaris in pure water without catalyst. 

Reaction conditions Liquefaction yields (wt.%) 

Temperature (ºC) Residence time (min) Bio-crude oil Solid residue 

 10 10.50 ± 0.49 32.63 ± 1.53 

225 30 13.21 ± 0.52 26.97 ± 2.42 

 50 13.82 ± 1.79 30.07 ± 4.71 

 10 18.36 ± 0.75 27.95 ± 0.79 

250 30 22.86 ± 3.04 25.48 ± 1.26 

 50 27.83 ± 0.13 21.72 ± 2.16 

 10 22.48 ± 3.41 16.98 ± 0.38 

275 30 29.21 ± 0.94 16.23 ± 1.03 

 50 29.39 ± 3.80 17.60 ± 3.07 

5.4.1 Effects of catalysts 

5.4.1.1 Products distribution  

Effects of catalysts on products distribution from HTL of C. vulgaris in pure water at 275 

ºC for 50 min are displayed in Fig. 5.1. The yield of bio-crude oil obtained with Na2CO3 

was much lower that obtained from non-catalytic HTL, which was in a good agreement 

with the results previously reported by Biller and Ross (2011). This was due to the fact 

that carbohydrates tend to decompose into C2-C5 carboxylic acids (e.g., acetic and lactic 

acids) under alkaline conditions. These water-solubles acids are preferable to partition 

into the water phase and therefore do not contribute to bio-crude oil formation. 

Meanwhile, the use of Na2CO3 during HTL reduced solid residue yield from 17.60 wt.% 

to 6.41 wt.%. 
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Figure 5-1: Effects of catalysts on products distribution at 275 °C for 50 min. 

As for the effect of HCOOH on product distribution from HTL, the bio-crude oil yield 

was almost the same as that from baseline experiment. In contrast, the solid residue yield 

decreased markedly from 17.60 wt.% to 2.52 wt.% after adding HCOOH to HTL system. 

As indicated in the literature, the carbohydrates under acidic conditions could form 5-

hydroxymethylfurfural (5-HMF) and levulinic acid, which are considered as the 

precursors of bio-crude oil (Yin and Tan, 2012). On the other side, the organic acid could 

facilitate the protein decomposition into amino acids, and the amino acids can be further 

converted into aqueous ammonia and other water-soluble compounds (Abdelmoez et al., 

2007). Since feedstock applied in this study contains more than 60 wt.% of protein but 

only approx. 16 wt.% of carbohydrates, the positive effect of HCOOH on bio-crude oil 

production from carbohydrates could be outweighed by its negative impact on oil 

formation from protein. From the liquefaction results above it can be concluded that 

neither alkaline catalysts nor organic acids are favorable for liquefying high-protein 

containing biomass.   
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5.4.1.2 Elemental composition of bio-crude oil  

The elemental composition of bio-crude oil obtained from catalytic/non-catalytic HTL at 

275 °C for 50 min is presented in Table 5.2.  The bio-crude oil obtained with HCCOH 

had slightly higher carbon and hydrogen contents, but lower oxygen content, when 

compared with non-catalytic HTL. This was likely due to the de-hydration/hydro-de-

oxygenation effects of HCOOH as a hydrogen donor solvent on removing oxygen via 

water formation (Akhtar and Amin, 2011). In contrast, the bio-crude oil obtained with 

Na2CO3 had lower carbon and hydrogen contents, but higher oxygen content. This 

increase in the oxygen content could be due to the alkaline-promoted Maillard reaction 

between reducing sugars and amino acids to form oxygenated oil compounds. Besides, 

the nitrogen content in all bio-crude oils obtained from catalytic HTL was lower 

compared to that obtained from non-catalytic HTL. However, it should be noted that the 

nitrogen content in the bio-crude oil was still much higher than that of petroleum crude 

oil (0-0.8 wt.%) (Shakya et al., 2015). Thus, the subsequent upgrading (e.g., hydro-

treatment and cracking) is necessary for the applications of algal bio-crude oils for drop-

in fuels. The sulfur content in all bio-crude oil samples was lower than 1 wt.%, lower 

than that of petroleum crude oils (0-3 wt.%) (Shakya et al., 2015). As also shown in 

Table 5.2, HHVs of the bio-crude oils obtained from HTL with HCOOH was 36.03 

MJ/kg, higher than that of the bio-crude oil obtained from non-catalytic HTL (HHV 

33.87 MJ/kg) or that from Na2CO3 catalyzed HTL (HHV 31.80 MJ/kg).  

Table 5-2: Elemental composition of bio-crude oils obtained from HTL of C. vulgaris in 

pure water at 275 ºC for 50 min with or without catalyst. 

Elemental compositions (wt.%) Baseline experiment 
a 

Na2CO3 HCOOH 

C 69.61 68.21 71.47 

H 8.89 8.34 9.73 

O b 13.20 17.71 11.31 

N 8.20 5.62 7.49 

S 0.10 0.12 0 

HHV (MJ/kg) c 33.87 31.80 36.03 
a The baseline experiment was performed in pure water at 275 °C for 50 min without catalyst; b 

The amount of oxygen was determined by difference (%O = 100% - %C - %H - %N -%S); c The 

HHV was calculated by Dulong equation given in Eqn. (5-2).  



103 

 

 

 

5.4.2 Effect of aqueous phase recycling  

5.4.2.1 Products distribution  

The liquefaction yields obtained from catalytic and non-catalytic HTL of C. vulgaris with 

and without recycled aqueous phase are displayed in Fig. 5.2. In general, HTL in recycled 

aqueous phase resulted in a higher bio-crude oil yield, which might be attributed to the 

transformation of some reactive compounds in the aqueous phase into the oily phase. The 

possible roles of the recycled aqueous phase in promoting bio-crude oil formation during 

HTL process was discussed later in the Section 5.3 and 5.4. As for non-catalytic HTL in 

recycled aqueous phase, the bio-crude oil yield gradually increased from 29.39 wt.% 

(baseline experiment in pure water) to 38.87 wt.% upon recycling of aqueous phase for 

three times. At the same time, the solid residue yield increased from 17.60 wt.% to 22.59 

wt.% after using two cycles of aqueous phase, while, in contrast, the solid residue 

decreased to 17.01 wt.% from HTL in the third recycled aqueous phase. As also shown in 

Fig. 5.2, HTL in recycled aqueous phase obtained from Na2CO3-catalyzed HTL led to a 

sharp increase in the bio-crude oil yield from 11.54 wt.% (algal HTL with Na2CO3) to 

44.10 wt.% (Recycle-Na2CO3), whereas, the solid residue yield was almost constant. 

Similarly, the bio-crude oil yield obtained with recycled aqueous phase from HCOOH-

catalyzed HTL increased from 29.39 wt.% (algal HTL with HCOOH) to 45.46 wt.% 

(Recycle-HCOOH), along with an increase in the solid residue yield from 2.52 wt.% to 

8.43 wt.%.  
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Figure 5-2: Liquefaction yields obtained from non-catalytic and catalytic HTL 

experiments with and without recycled aqueous phase at 275 ºC for 50 min. 

5.4.2.2 Elemental composition of bio-crude oils  

Effects of aqueous phase recycling on the elemental composition and energy content of 

the bio-crude oil along with its energy recovery are shown in Table 5.3. The aqueous 

phase recycling exerted a little effect on the elemental composition as well as energy 

content of the resulting bio-crude oil products. Besides, the HHVs of bio-crude oils 

obtained from algal HTL in recycled aqueous phase ranged from 31.37 MJ/kg to 35.61 

MJ/kg, which was comparable to that of the baseline HTL in pure water (33.87 MJ/kg). 

As also shown in Table 5.3, the aqueous phase recycling could lead to a much higher 
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energy recovery compared to the baseline HTL, which was probably due to the markedly 

increased bio-crude oil yield. 

Table 5-3: Effects of aqueous phase recycling on the elemental composition and energy 

content of the bio-crude oils and the energy recovery in the oil products. 

 C H Ob N S HHV 

(MJ/kg)c 

Energy recovery 

(%)d 

Baseline 

experiment a 

69.61 8.89 13.20 8.20 0.10 33.87 41.13 

Recyle-1 67.06 8.77 16.36 7.59 0.22 32.27 45.05 

Recyle-2 65.57 8.68 17.85 7.66 0.24 31.37 42.99 

Recycle-3 68.45 9.05 14.54 7.69 0.27 33.46 53.75 

Recycle-Na2CO3 71.90 9.37 11.63 7.10 0 35.61 64.89 

Recycle-

HCOOH 

70.87 9.23 12.29 7.61 0 34.94 65.64 

a The baseline experiment was performed in pure water at 275 °C for 50 min without 

catalyst; b The amount of oxygen was determined by difference (% O = 100% - % C - % 

H - % N -% S); c The HHV (MJ/kg) of bio-crude oil was calculated by Dulong equation 

given in Eqn. (5-2); d The energy recovery (%) into the oil products was calculated by 

Eqn. (5-3). 

5.4.3 Analysis of aqueous phase 

5.4.3.1 Non-catalytic HTL  

The major chemical compounds in the aqueous phase obtained from non-catalytic HTL 

before and after water phase recycling experiments are summarized in Appendix-C. The 

chemical compounds identified in the aqueous phase were categorized into organic acids, 

straight & branched amides, cyclic oxygenates, N-containing compounds, and other 

oxygenates (including esters, ketones, and alcohols), as displayed in Fig. 5.3. Numerous 

N-containing compounds can be observed in aqueous phase, which was due to the 

hydrolytic decomposition of protein (Zhou et al., 2010). Besides, some organic acids 

were also observed, which was in accordance with the results reported by Gai et al. 

(2015). Acetic acid has previously been reported to be an effective catalyst for algal HTL 
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leading to a higher bio-crude oil yield and better quality (Ross et al., 2010). As a result, 

the presence of acetic acid in the recycled aqueous phase may contribute to an increase in 

the bio-crude oil from water phase recycling studies. Glycerol that originates from 

triglyceride (the algal lipid) via hydrolysis (Toor et al., 2011) was also detected in the 

aqueous phase. Effects of acetic acid and glycerol on algal HTL were later discussed.  

 

Figure 5-3: The major compounds in the aqueous phase obtained before and after 

recycling at 275 °C for 50 min. 

The color of aqueous phase became darker as a result of increased recycling times, as 

shown in Appendix-D. This could indicate the enrichment of the organic compounds in 

the aqueous phase. Although we did not quantify the compounds using internal/external 

standards, some changes in the relative peak areas to the total area were still visible. As 

shown in Fig. 5.3, some reductions in the relative peak areas (e.g., organic acids) can be 

observed, indicating the reduced concentration of some organic components in aqueous 

phase. This could be resulted from the fact that after several recycles, the concentration of 

0 10 20 30 40 50 60

Area (%)

Aqueous phase before recycling

Aqueous phase after recycling



107 

 

 

 

organic solutes increases, which could decrease the solubility of organic acids in the 

aqueous phase and thus contributes to oil formation. Meanwhile, the relative peak areas 

of N-containing compounds in bio-crude oil increase after HTL in recycled aqueous 

phase, which can be attributed to the Maillard reaction between amino acids and reducing 

sugars in the recycled aqueous phase. According to the study by Déniel et al. (2016), the 

Maillard products can act as scavengers of reactive intermediates, deterring the 

degradation of bio-crude oil into char and/or gas. This could be the reason for the slight 

decrease in the solid residue yield after three cycles (as shown in Fig. 5.2).  

5.4.3.2 Catalytic HTL  

The major chemical compounds in the aqueous phase obtained from HTL with Na2CO3 or 

HCOOH are presented in Table 5.4. Phytol (a long carbon-chain alcohol, C20H40O) was 

detected in the aqueous phase obtained from HTL with Na2CO3. The presence of phytol 

in the recycled aqueous phase may lead to the formation of bio-crude oil products (e.g., 

isophytol, phytene, and phytane) (Changi et al., 2012), when employing this aqueous 

phase as the reaction medium for algal HTL. Another possible role of the recycled 

aqueous phase from algal HTL with Na2CO3 can be related to the decreased solubility of 

organic chemicals due to the “salting out” effect, and the organic chemicals flow into bio-

crude oil stream and thus bio-crude oil yield increases (Fig. 5.2). In general, some 

compounds of environmental concerns can be detected in all aqueous phase samples 

above, such as 2-pyrrolidinone and 3-pyridinol, 6-methyl-. Thus, the downstream 

wastewater treatments are required before the aqueous phase can be safely discharged 

into the environment (Gai et al., 2015).  
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Table 5-4: The major compounds in the aqueous phase obtained with Na2CO3 or 

HCOOH at 275 °C for 50 min. 

RT (min)a Compounds in aqueous phase Area (%) 

Na2CO3 HCOOH 

3.52 1,5-Pentanediol   2.93 

6.78 7H-Dibenzo[b,g]carbazole, 7-methyl 7.53  

9.04 Acetic acid  2.42 

9.22 Pyridine, 5-ethyl-2-methyl- 4.10  

9.89 Glycerol   27.54 

9.94 Threitol  4.97 

10.04 Isovaleraldehyde  4.00 

10.39 5H-1-Pyrindine, 6,7-dihydro- 1.40  

10.45 2-Cyclopenten-1-one, 3-ethyl-2-hydro-  3.69 

10.61 2-Pyrrolidinone  5.44 

10.83 N-methyl-1,3-Propanediamine  9.85 

11.16 3-Pyridinol, 6-methyl-  2.87 

11.73 1-[2-(2,5-dimethyl-1H-pyrrol-1-yl)ethyl]piperazine  2.84 

11.96 2-Cyclopropylaniline 3.11  

12.13 4-(2-Oxiranyl)-1-butanol  2.07 

12.97 Indole 8.72 2.73 

13.79 3,4-Dimethyl-2-hexanol  3.43 

13.96 Ethanone, 1-(3-cycloocten-1-yl)-  1.72 

14.06 Isopropyl 6-(4-ethoxyphenyl)-3-methyl-4-oxo-4,5,6,7-

tetrahydro-1H-indole-2-carboxylate 

 2.65 

15.11 2,4-Dimethylbenzo[h]quinoline  1.77 

15.35 N,N-Dimethyl-4-nitroaniline  1.48 

15.52 3,3-Dimethyl-4-methylamino-butan-2-one 10.60  
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15.6 1-Naphthalenamine   1.30 

15.68 Bicyclo[3.1.1]heptane, 2,6,6-trimethyl-, (1α,2β,5α)- 2.83  

16.01 6,6-Dimethyl-2-azaspiro[4.4]non-1-ene 3.48  

16.09 5-Methyl-2,3-dihydroimidazo[1,2-c]quinazoline 3.75  

16.19 3-(1,5-Dimethyl-hex-4-enyl)-2,2-dimethyl-cyclopent-3-

enol 

3.57  

16.56 Isophytol  4.41  

17.07 2-Ethylacridine  1.74 

17.08 dl-Alanyl-l-leucine 10.22  

17.63 Phytol 28.66  

18.08 Butanamide 6.77  

a Represents retention time (min). 

5.4.4 Effects of glycerol and acetic acid on algal HTL  

As indicated above, glycerol and acetic acid can be identified in the recycled aqueous 

phase. Their promotion effects on algal HTL were investigated at 275 ºC for 50 min, with 

a solid/liquid ratio of 1:5 (w/w). The baseline conditions for most of the HTL 

experiments in this study were discussed previously, and contents in Table 5.5 were some 

key results. Table 5.5 shows that the bio-crude oils yield was lower when glycerol was 

added in water as the reaction medium, compared to those obtained from HTL in pure 

water. It is speculated that this may be due to the conversion of glycerol into water-

soluble compounds rather to an oily phase during HTL (Toor et al., 2011). The chemical 

composition of aqueous phase obtained from glycerol-water co-solvent was determined 

by GC-MS analysis. The results indicated that n-hexadecanoic acid (commonly identified 

in the bio-crude oil) can be observed in the aqueous phase. This was likely due to the less 

polarity of glycerol/water mixture than pure water, leading to more organic compounds 

partition into aqueous phase. On the other hand, the solid residue yield from HTL in 

recycled aqueous phase was lower than that obtained from baseline HTL in pure water. 

This was possibly due to the fact that glycerol could lead to the formation of formic acid 
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and ethanol by C-C bond cleavage when subjected to hydrothermal condition (Pedersen 

et al., 2015). Formic acid and ethanol can further serve as a hydrogen donor and radical 

scavenger, prohibiting char formation (Guo et al., 2015). In addition, the nitrogen content 

in the bio-crude oil obtained from HTL in water/glycerol co-solvent was lower than that 

obtained from HTL in pure water, indicating the addition of glycerol promotes the de-

nitrogenation of bio-crude oil. This could be due to the migration of high polar N-

containing compounds into water phase in the presence of polar glycerol (Lu et al., 

2017).  

Table 5-5: Effects of glycerol and acetic acid on products distribution (average yield ± 

standard deviation) and elemental composition of the bio-crude oils. 

 Baseline 

experiment a 

Glycerol to water 

ratio  

Acetic acid addition 

1:2 (v/v) 1:1 (v/v) 3 % 

(w/w) 

5 % (w/w) 

Bio-crude oil yield 

(wt.%) 

29.39 ± 3.80 21.79 ± 

2.28 

23.64 ± 

4.39 

31.45 ± 

1.21 

40.99 ± 

0.85 

Solid residue yield 

(wt.%) 

17.60 ± 3.07 13.62 ± 

1.92 

8.37 ± 

1.56 

10.65 ± 

1.01 

7.69 ± 

0.31 

Elemental composition of bio-crude oils (wt.%) 

C 69.61 66.82 57.27 - 68.51 

H 8.89 9.42 9.21 - 9.10 

O b 13.20 18.73 29.91 - 15.11 

N 8.20 5.00 3.61 - 7.28 

S 0.10 0.03 0.00 - 0.00 

HHV (MJ/kg) c 33.87 32.69 27.17 - 33.45 

a The baseline experiment was performed in pure water at 275 °C for 50 min without 

catalyst; b The amount of oxygen was determined by difference (% O = 100% - % C - % 

H - % N -% S); c The HHV (MJ/kg) of bio-crude oil was calculated by Dulong equation 

given in Eqn. (5-2).  
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However, HTL in acetic acid-water mixture medium improved the algal conversion and 

bio-crude oil yield, when compared with the baseline HTL in pure water. This was 

consistent with the previous study on HTL of E. prolifera (Yang et al., 2014). The 

increase in the bio-crude oil yield might be attributed to the reactions between acetic 

acids and alcohols and amino compounds to form esters and amides and eventually flow 

into bio-crude oil. The chemical composition of aqueous phase obtained from HTL in 

acetic acid/water co-solvent was determined by GC-MS analysis. Compared to baseline 

experiment, a higher relative peak area of acetamide was observed in the aqueous phase 

from HTL in acetic acid/water co-solvents, confirming the formation of acetamide 

through reaction between acetic acid and ammonia.  

5.4.5 Chemical analysis of bio-crude oils  

5.4.5.1 GC-MS analysis  

The chemical compounds in the bio-crude oils obtained from non-catalytic HTL with and 

without recycled aqueous phase (i.e., Baseline experiment, Recycle-1, Recycle-2, and 

Recycle-3) were characterized by GC-MS, as presented in Appendix-E. It should be 

noted that some low molecular weight components could be lost during the solvent 

evaporation process for bio-crude oil recovery, while the high molecular weight 

compounds could not elute from the GC column. Thus, only part of the components in 

bio-crude oil can be characterized through GC-MS. During the analysis process, only the 

components with identification probability > 60 % were selected and analyzed. To ease 

discussion, chemical components in the bio-crude oils were categorized into five groups 

based on their functional groups, namely aromatics (e.g., monoaromatics and 

polyaromatics), fatty acids (e.g., saturated and unsaturated fatty acids), hydrocarbons 

(e.g., straight and branched hydrocarbons), other oxygenates (e.g., esters and ketones), 

and nitrogenates (e.g., indoles, pyrazines, and amines). 

As illustrated in Fig. 5.4, no obvious differences can be observed among all four bio-

crude oil samples in terms of their chemical compositions. A high fraction of 

nitrogenated compounds was observed in all the bio-crude oils, which can be attributed to 
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the high protein content (61.13 wt.%) in the feedstock biomass. Similar results were 

reported in the previous studies on algal HTL (Gai et al., 2014; Ross et al., 2010). 

Besides, saturated and unsaturated fatty acids such as n-hexadecenoic acid and 9,12-

octadecadienoic acid (Z,Z)- can be detected in the bio-crude oils. Fatty acids can be 

directly produced from lipid hydrolysis (Shakya et al., 2015). Some straight and branched 

hydrocarbons were also identified in the bio-crude oils and hydrocarbons can be formed 

through fatty acids decarboxylation (Gai et al., 2014). Moreover, some aromatics (e.g., 

phenols and phenol derivatives) were also found in the oil products, and these aromatics 

could be produced from carbohydrates (Gai et al., 2014). In addition, a small fraction of 

other oxygenates was also observed in the bio-crude oil. These oxygenates might be 

yielded from the degradation of polysaccharide in algal feedstock via hydrolysis, 

dehydration, and cyclization (Yang et al., 2014).  

 

Figure 5-4: The major compounds in the bio-crude oils obtained from non-catalytic HTL 

with and without recycled aqueous phase at 275 °C for 50 min. 
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Although chemical components in all the bio-crude oils obtained from non-catalytic HTL 

with and without recycled aqueous phase, slight differences can be still identified. No 

fatty acid esters were detected in the bio-crude oils obtained from HTL in pure water, 

whereas fatty acid esters existed in the bio-crude oils obtained from non-catalytic algal 

HTL in recycled aqueous phase. Ammonia (weak base) is commonly observed in the 

aqueous phase, which may be attributed to the decomposition of protein (Shakya et al., 

2015). Glycerol present in the aqueous phase can decompose into methanol during HTL 

(Bühler et al., 2002). As a result, the transesterification between fatty acids and methanol 

to form methyl ester like 8,11-octadecadienoic acid, methyl ester could take place.  

5.4.5.2 FT-IR analysis  

IR characteristics of bio-crude oils were consistent to the previous studies on algal HTL 

(Jena et al., 2011b; 2012; Zou et al., 2010). As shown in Fig. 5.5, all four bio-crude oil 

samples exhibited similar functionalities. The peak from 3600 cm-1 to 3100 cm-1 can be 

related to O-H or N-H stretching vibrations. The bands at 2940 cm-1, 2924 cm-1, and 2855 

cm-1 were attributed to C-H stretching vibrations in methylene and methyl groups. A 

strong peak at 1670 cm-1 can be assigned to C=O stretching bands, which could exist in 

forms of ketones, aldehydes, or carboxylic acids in the bio-crude oils. The band at 1453 

cm-1 may be attributed to C-H bending vibration from methyl groups. The peaks at 1262 

cm-1, 1169 cm-1, 1070 cm-1, and 968 cm-1 can be assigned to the presence of primary, 

secondary, and tertiary alcohols in the bio-crude oil samples. The peaks at 812 cm-1, 734 

cm-1, and 701 cm-1 were ascribed to the C-H bending from aromatics and their 

derivatives. 
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Figure 5-5: The FT-IR spectra of bio-crude oils obtained from non-catalytic HTL 

recycling studies. 

5.5 Conclusions 

HTL of C. vulgaris was performed with/without catalyst in this study. Although the two 

catalysts Na2CO3 and HCOOH did not exert positive effects on bio-crude oil yield, 

recycling the aqueous phase obtained from HTL especially from the catalytic algal HTL 

as the reaction medium in the subsequent HTL contributed to higher bio-crude oil yields. 

The bio-crude oil obtained from HTL in recycled aqueous phase had a comparable 

energy content with that obtained from HTL in pure water. Thus, the aqueous phase 

recycling not only improves the efficiency of biomass utilization without sacrificing oil 

quality, but also reduces waste generation.  
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Chapter 6 

6 Highly efficient conversion of algal biomass into bio-
crude oil via direct liquefaction in methanol at mild 
reaction conditions 

The information presented in this Chapter is based on the paper “Highly efficient 

conversion of algal biomass into bio-crude oil via direct liquefaction in methanol at mild 

reaction conditions”, which has been submitted to Applied Energy. The sections in 

Chapter 6 present the results towards the completion of objective 4 of this PhD project 

(see Section 1.2).  

6.1 Abstract 

In this study, algal biomass, Chlorella, was applied as the feedstock for producing bio-

crude oil via direct liquefaction (DL). Initially, the screening tests were carried out at 275 

°C for 60 min by employing different reaction media including pure water, water with 

four acid catalysts (formic acid, acetic acid, sulfuric acid, and hydrochloride acid), and 

four different organic solvents (methanol, ethanol, ethyl acetate, and acetone) without 

acid catalyst. Based on the bio-crude oil yield from screening tests, methanol as the most 

effective reaction medium was chosen for the further investigation on the effects of 

residence time, biomass/solvent mass ratio, reaction temperature, and methanol-water 

composition on the products distribution. Liquefaction products (bio-crude oil, aqueous 

phase, and solid residue) were analyzed by elemental analysis, gas chromatogram-mass 

spectrometry (GC-MS), and Fourier transform infrared (FT-IR). The results showed that 

DL at 225 °C for 60 min with 1:5 biomass/solvent mass ratio produced the highest bio-

crude oil yield of 85.5 wt.%. Higher heating values (HHVs) of bio-crude oils obtained 

were in the range of 30.6-34.1 MJ/kg. As indicated by GC-MS analysis, main 

components of bio-crude oils from DL in methanol were fatty acid esters, especially C17 

and C19 fatty acid methyl esters, suggesting the existence of esterification in the DL 

process. 
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6.2 Introduction 

Recently, algae have attracted much attention as sustainable sources for the 3rd 

generation bio-fuels production. Compared to the conventional lignocellulosic biomass 

(e.g., corn stalk, wheat straw, and wood chip, etc.), algae have unique advantages such as 

high lipid contents, non-arable land use, and substantial environmental benefits through 

the capture of atmospheric CO2 (Yang et al., 2014; Barreiro et al., 2013). 

A variety of techniques (e.g., pyrolysis and hydrothermal liquefaction) have been 

investigated for converting algae into liquid bio-fuels (Yang et al., 2014; Barreiro et al., 

2013; Huang et al., 2014; Reddy et al., 2016; Xu et al., 2014). Among them, 

hydrothermal liquefaction (HTL) is regarded as a more suitable conversion route for wet 

biomass due to the non-requirement for feedstock drying/dewatering step (Brown et al., 

2011). According to an assessment performed by Lardon et al. (2009), the drying step 

accounts for more than 75% of the total energy consumption in the thermochemical 

conversion of wet algal biomass. In addition, the bio-crude oils from pyrolysis contain 

higher oxygen contents compared to HTL bio-crude oils, which could negatively affect 

bio-crude oil properties (e.g., heating value) (Guo et al., 2015). However, there are 

several challenges of HTL still ahead, such as harsh reaction conditions, relatively lower 

oil yield, and poor bio-crude oil quality (Duan et al., 2013).  

To address the above challenges, a number of catalysts have been applied for the HTL of 

algae, such as sodium carbonate (Shakya et al., 2015; Biller and Ross, 2011), potassium 

hydroxide (Ross et al., 2010; Anastasakis and Ross, 2011), formic acid (Ross et al., 2010; 

Hu et al., 2017), acetic acid (Yang et al., 2014; Ross et al., 2010), and sulfuric acid (Yang 

et al., 2014; Muppaneni et al., 2017). The advantages of using catalyst for algal 

liquefaction may be summarized as follows: (i) promoting decomposition of the 

macromolecules of biomass into smaller molecules; and (ii) improving bio-crude oil 

properties in terms of lower contents of heteroatoms (i.e., O, N, and S) and better 

flowability or lower viscosity (Yang et al., 2014; Guo et al., 2015). According to previous 

literatures, effects of catalyst on the quantity and quality of bio-crude oils are not only 
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dependent on the type and dosage of the catalyst but also on the feedstock characteristics 

(Shakya et al., 2015; Biller and Ross, 2011). For example, the use of sodium carbonate as 

a catalyst significantly promoted bio-crude oil production in the HTL of high 

carbohydrates-containing algae, while, in contrast, a negative effect was observed in the 

HTL of high protein-containing algae (Shakya et al., 2015). Additionally, the liquefaction 

behavior of amino acids (a building block for protein) with the addition of sodium 

carbonate was examined by Dote et al. (1998). The results showed that sodium carbonate 

promoted the distribution of N element in the amino acid to water phase in the form of 

ammonia, thereby negatively affecting bio-crude oil yield. To date, both organic and 

inorganic acids have been used as catalyst for the HTL of algae. Ross et al. (2010) 

observed that the yields of bio-crude oils from C. vulgaris (a high protein-containing 

algae) were higher using an acid catalyst (formic acid or acetic acid) than an alkaline 

catalyst (sodium carbonate or potassium hydroxide), along with an improved flow 

property. In another study, Yang et al. (2014) carried out a comparative study on HTL of 

algae with the addition of organic acid or inorganic acid as a catalyst. The results showed 

that the organic acid and inorganic acid exhibited different catalytic performances in 

terms of yields and properties of bio-crude oils. Considering the high protein content in 

algal biomass used in this study, various acid catalysts including organic and inorganic 

acids were adopted in the liquefaction treatment.  

Previously, Yu et al. (2011) performed the mass balance analysis for the liquefaction 

process using water as a reaction medium (also denoted as HTL). The authors observed 

that more than one-third of carbon in the feedstock were preferentially transferred to 

water phase rather than oily phase. For this reason, a range of organic solvents (e.g., 

methanol, ethanol, ethyl acetate, and 1,4-dioxaen) have been used as the reaction medium 

(Duan et al., 2013; Zhou et al., 2012; Yuan et al., 2011; JI et al., 2017; Chen et al., 2012), 

and this process is commonly defined as direct liquefaction (DL). The main advantages 

of using organic solvent over water as a reaction medium are as follows: (i) higher bio-

crude oil yield; and (ii) moderate reaction conditions (Duan et al., 2013). According to 

the previous studies, the type of solvent, particularly its polarity, plays a significant role 
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in the algal liquefaction with respect to the products distribution and properties of bio-

crude oils (Duan et al., 2013; Yuan et al., 2011). Generally, a higher bio-crude oil yield 

was obtained using a solvent with strong polarity, such as an alcohol. More importantly, 

it was observed that the bio-crude oil from liquefaction in alcohol solvent primarily 

consisted of fatty acid alkyl esters resulted from esterification of the carboxylic acids in 

the liquefied product with the alcohol solvent, which was similar to biodiesel on the 

composition (Zhou et al., 2012). In addition, the alcohol solvents (e.g., methanol and 

ethanol) can be derived from renewable resources, thereby reducing the overall cost of 

the liquefaction treatment (Chen et al., 2012). Apart from solvent type, reaction 

conditions such as residence time, biomass/solvent mass ratio, reaction temperature, 

catalyst type and dosage, and solvent composition are significantly influence the quantity 

and quality of bio-crude oil during algal liquefaction (Ji et al., 2017).  

In this present study, nine different reaction media including pure water, water with four 

different acid catalysts (formic acid, acetic acid, sulfuric acid, and hydrochloride acid), 

and various organic solvents (methanol, ethanol, ethyl acetate, and acetone) were 

investigated for the liquefaction of Chlorella. The most effective reaction medium 

identified was then selected to study the effects of residence time, biomass/solvent mass 

ratio, reaction temperature, and solvent composition on the products distribution. 

Furthermore, physical and chemical properties of liquefaction products (bio-crude oil, 

aqueous phase, and solid residue) were characterized by elemental analysis, gas 

chromatography-mass spectroscopy (GC-MS), and Fourier transform infrared (FT-IR).   

6.3 Materials and methods 

6.3.1 Materials 

Algal biomass, Chlorella with cracked cell wall, was purchased as food-grade material 

and received as fine powder. The main characteristics, such as proximate analysis, 

ultimate analysis, and biochemical analysis (lipid, protein and carbohydrates) of the algal 

biomass sample are summarized in Table 6.1. All chemicals used in this study were 

purchased from Caledon Laboratories Ltd (Georgetown, Canada), and used as received.  
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Table 6-1: The main characteristics of algal used in this work as the biomass feedstock 

(Data represents average value ± standard deviation). 

Proximate analysis (wt.%)  

Moisture Ash Organic matters a    

3.48 ± 0.62 7.15 ± 0.10 89.37   

Elemental analysis (wt.%, d.b.) b  

C H O c N S 

46.54 ± 1.84 7.37 ± 0.30 29.86 ± 2.14 8.59 ± 

0.25 

0.48 ± 0.24 

HHV (MJ/kg) d     

20.97 ± 1.45     

Biochemical analysis (wt.%)b  

Lipid Protein e Carbohydrates f   

6.10 ± 1.77 53.66 ± 1.55 33.09    

a Determined by difference; b Determined on dry basis; c Calculated by %O = 100% -%C - 

%H - %N - %S - %Ash; d Calculated by the Dulong equation; e Estimated by %Protein = 

%N × 6.25 (Rebolloso-Fuentes et al., 2001); f Determined by %Carbohydrates = 100% - 

%Lipid- %Protein - %Ash.  

6.3.2 Liquefaction experiments 

Liquefaction experiments were carried out using a 100 mL Micro-Bench top reactor 

equipped with a magnetic stirrer (Parr 4590, Illinois, USA). Throughout the liquefaction 

processes, temperature and pressure were monitored by a Type J thermocouple and Alloy 

400 Pressure Gaga, respectively. The baseline liquefaction run was performed by loading 

5.0 g of dried algal biomass and 25.0 g of distilled water into the reactor without catalyst. 

For the catalytic HTL runs, the reactor was charged with 5.0 g of dried algal biomass and 

25.0 g of distilled water containing 1.5 g of acid catalyst (5 wt.% of the total slurry). The 

tested acid catalysts in this work included formic acid, acetic acid, sulfuric acid, and 

hydrochloride acid. In the case of liquefaction experiments in organic solvent, 5.0 g of 
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dried algal biomass and 25.0 g of a specific organic solvent (methanol, ethanol, ethyl 

acetate or acetone) or an organic solvent-water mixed medium were loaded into the 

reactor without catalyst. Afterwards, the reactor was sealed and purged with pure 

nitrogen to displace the residual air inside the reactor. After that, pure nitrogen at 0.69 

MPa was purged into the reactor to prevent the reaction medium from boiling during the 

heating process. The reactor was then heated to the desired reaction temperature at a 

heating rate of approx. 5 °C/min and then this temperature was held for a pre-set 

residence time. The liquefaction experiments were carried out under varying reaction 

temperatures (175 °C, 225 °C, 275 °C, and 300 °C), residence times (30 min, 60 min, 90 

min, and 120 min), biomass/solvent mass ratios (1/2.5, 1/5, and 1/10), and organic 

solvent content in the mixed solvent (0 wt.%, 25 wt.%, 50 wt.%, 75 wt.%, and 100 wt.%).   

6.3.3 Product separation 

The procedure used for the baseline experiment and the catalytic HTL was fully 

described in our previous report (Hu et al., 2017). For the liquefaction in mixed solvents, 

a similar procedure as earlier adopted by Peng et al. (2016) was used. In addition, the 

procedure to separate different product fractions from the liquefaction in organic solvent 

is described below. Briefly, after the reactor was cooled to room temperature, the gases 

were released into the fume hood. It shall be noted that the gas formation, mainly CO2, 

was found to be negligible due to the low liquefaction temperatures used in this work, 

thus the gas yield was not quantified. After that, the reaction mixture was then transferred 

into a 250 mL beaker. The reactor and stirrer were further washed using 100 mL of 

dichloromethane (DCM) for three times, followed by filtration through a pre-weighed 

filter paper. The filter paper was then oven-dried at 105 °C for 24 h and weighed to 

determine the solid residue yield. The DCM together with the reaction solvent (methanol, 

ethanol, acetone, or ethyl acetate) were transferred to a 500 mL pre-weighed round-

bottom flask and evaporated at 65 °C under reduced pressure. The remaining dark 

material in the flask was weighed and denoted as bio-crude oil. The yields of bio-crude 

oil and solid residue were determined in wt.%, in relation to dried mass of the feedstock, 

and the balance was calculated as the yield of other products (gases + aqueous phase).  
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6.3.4 Analysis  

6.3.4.1 Feedstock  

The moisture content was determined by drying the sample in an oven at 105 °C for 24 h. 

The ash content was measured by ashing the dried algal biomass in a muffle furnace at 

575 °C in air for 3 h until reaching a constant weight. The elemental compositions (C, H, 

N, and S) were analyzed using a CHNS [Cl] Elementar vario EL, while the O content was 

estimated by difference on dry basis (%O = 100% - %Ash - %C - %H - %N -%S). The 

higher heating value (HHV) was calculated by the Dulong equation [HHV (MJ/kg) = 

0.338C + 1.428(H-O/8) + 0.095S]. The lipid content was determined by the Bligh & 

Dyer method (Bligh and Dyer, 1956). The protein content was estimated by %N × 6.25 

(Rebolloso-Fuentes et al., 2001). The carbohydrates content was calculated by difference 

on dry basis (%Carbohydrates = 100% - %Ash - %Lipid - %Protein).  

6.3.4.2 Liquefaction products 

The elemental compositions and HHV of bio-crude oil and solid residue were analyzed 

using the same method as earlier described for feedstock. The key chemical components 

of bio-crude oil and aqueous products were determined by an Agilent 7890-5975 GC-MS 

equipped with a HP-5MS nonpolar capillary column (30 m × 0.25 mm × 0.25 µm). Pure 

helium was used as the carrier gas, with a flow rate of 2.64 mL/min. Prior to GC-MS 

analysis, the bio-crude oil or aqueous phase sample was diluted in acetone. In a typical 

test, 1 µL diluted sample was injected at 280 °C with a split ratio of 20:1. The GC oven 

temperature was programmed as follows: held at 60 °C for 2 min, followed by heating at 

20 °C/min to 280 °C and held for 10 min. The major components were identified by 

NIST (National Institute of Standards and Technology) database. The functional groups 

of bio-crude oil were characterized with a Nicolet 6700 Fourier Transform Infrared 

Spectroscopy (Thermo Fischer Scientific, Massachusetts, USA) in the range of 4000-600 

cm-1, with a resolution of 4 cm-1.  
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6.4 Results and discussion 

6.4.1 HTL media screening  

Initial studies were carried out at 275 °C for 60 min, with a biomass/solvent mass ratio of 

1/5 for screening nine different reaction media including pure water, water with acid 

catalyst (formic acid, acetic acid, sulfuric acid, or hydrochloride acid), or organic solvent 

(methanol, ethanol, ethyl acetate, or acetone), with respect to the products distribution 

from liquefaction of algal biomass.  

As shown in Fig. 6.1, the type of reaction medium considerably affected the products 

yield. For the organic acid-catalyzed HTL, the bio-crude oil yield was significantly 

higher (38.0 wt.% with formic acid and 32.6 wt.% with acetic acid) compared to that 

(20.3 wt.%) obtained from the baseline operation without catalyst. Additionally, the yield 

of solid residue drastically reduced from 21.0 wt.% (no catalyst) to 3.3 wt.% (formic 

acid) and 9.8 wt.% (acetic acid), respectively. This result was consistent with previous 

studies on the HTL catalyzed by organic acid (Ji et al., 2017; Bi et al., 2017). The 

increased oil yield may be attributed to the acid-catalyzed degradation of macromolecules 

(e.g., protein and carbohydrates) into small molecules in the liquefaction system. In the 

case of catalytic HTL with hydrochloride acid, only a slightly higher yield of bio-crude 

oil (22.1 wt.%) was observed compared to that (20.3 wt.%) obtained without catalyst. 

Surprisingly, the addition of sulfuric acid resulted in a decrease in bio-crude oil yield 

(12.6 wt.%) than that (20.3 wt.%) from baseline experiment. On the contrary, Zou et al. 

(2009) studied the effect of sulfuric acid on the HTL of D. tertiolecta, and the results 

showed an increase of bio-crude oil yield with the use of sulfuric acid. This opposite 

result could be attributed to the differences in feedstock characteristics and operating 

conditions. For instance, the reaction temperature (275 °C) tested in this study was much 

higher than those of the literature work (commonly < 200 °C). At a high temperature, the 

presence of a strong inorganic (mineral) acid like H2SO4 could catalyze dehydration or 

condensation of the oil products to yield more water by-product at the expense of bio-

crude yield, as evidenced by markedly increased yield of others (gases + aqueous 
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products including water by-product) being 66.8 wt.% with H2SO4 vs. 58.8 wt.% without 

catalyst.        

 

Figure 6-1: The products distribution obtained from nine different reaction media at 275 

°C for 60 min, with a biomass/solvent mass ratio of 1/5 (Note: The baseline experiment 

and catalytic HTL were performed in pure water with or without catalyst). 

On the other hand, as clearly shown in Fig. 6.1, the bio-crude oil yield was consistently 

higher when using organic solvent as the reaction medium (26.2 wt.%, 40.1 wt.%, 62.7 

wt.%, and 68.3 wt.% with ethyl acetate, acetone, ethanol, and methanol, respectively) 

than that from liquefaction in water (20.3 wt.%). This result is in good agreement with 

the findings of many previous literature reports (Ji et al., 2017; Peng et al., 2016; Jin et 

al., 2014). Fig. 6.1 also shows that the type of organic solvent played an important role in 
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the products distribution. Specifically, the yield of bio-crude oil obtained using a polar 

protic solvent (methanol or ethanol) as the reaction medium was significantly higher than 

that obtained using a polar aprotic solvent (ethyl acetate or acetone). One possible reason 

could be that the hot-compressed methanol/ethanol can serve as a hydrogen donor 

solvent. The released hydrogen free radical (H·) could promote the hydrocracking of 

macromolecules to small molecules. Meanwhile, the fragments/intermediates from 

liquefaction process can be stabilized, thereby preventing char formation and improving 

bio-crude oil yield (Akhtar and Amin, 2011). This could be confirmed with the extremely 

low yield of solid residue (~5 wt.%) with these alcohols compared to that from baseline 

experiment (21.0 wt.%). In contrast, the solid residue yield obtained in ethyl acetate (25.4 

wt.%) or acetone (30.1 wt.%) was observed to be higher than those obtained in an alcohol 

solvent (methanol or ethanol).    

Based on the results as described above, methanol was identified as the most effective 

reaction medium for converting algal biomass to bio-crude oil via direct liquefaction. 

Following this, effects of residence time, solvent/biomass mass ratio, reaction 

temperature, methanol-water composition on the products distribution were investigated.  

6.4.2 Effects of operating conditions on products distribution  

6.4.2.1 Residence time 

Effects of residence time on the products distribution were investigated under the 

conditions of 275 °C, biomass/solvent mass ratio of 1:5 and 100 wt.% methanol, for a 

residence time varying from 30 min to 120 min. As shown in Fig. 6.2, the bio-crude oil 

yield increased from 59.0 wt.% to 68.3 wt.% while prolonging residence time from 30 

min to 60 min, and thereafter dropped to 41.1 wt.% at 120 min.  
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Figure 6-2: Effects of residence time on the products distribution (Other reaction 

conditions: 275 °C, biomass/solvent mass ratio of 1/5, and in 100 wt.% methanol). 

A similar trend was reported by Ji et al. (2017) in the direct liquefaction of Spirulina in 

ethanol-water mixed solvents. The reduction of bio-crude oil yield at extended residence 

time may be due to the further decomposition of oil products to gaseous and/or aqueous 

products, as evidence by a sharp increase in the others yield (gases + aqueous products) 

from 26.5 wt.% at 60 min to 54.2 wt.% at 120 min. While, it was observed that the 

residence time had no significant effect on the solid residue yield. As mentioned early, 

methanol can act as a hydrogen donor solvent that could stabilize the 

fragments/intermediates from liquefaction and consequently prevent their re-

polymerization to form char (Akhtar and Amin, 2011).  
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The best residence time for obtaining the highest bio-crude oil yield from algal biomass 

appeared to be 60 min for the given reaction conditions. This residence time was 

therefore chosen for investigating the effects of biomass/solvent mass ratio on the 

products distribution. 

6.4.2.2 Biomass/solvent mass ratio 

Fig. 6.3 demonstrates the effect of biomass/solvent mass ratio on the products distribution 

at 275 °C for 60 min in 100 wt.% methanol. Variations of biomass/solvent mass ratio 

were obtained by mixing a fixed feedstock loading (5.0 g on dry basis) with different 

solvent loading amounts from 12.5 g to 50 g, corresponding to a biomass/solvent mass 

ratio from 1:2.5, 1:5 to 1:10, respectively.  

 

Figure 6-3: Effects of biomass/solvent mass ratio on the products distribution (Other 

reaction conditions: 275 °C, residence time of 60 min, and in 100% methanol). 
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As shown in Fig. 6.3, the bio-crude oil yield sharply increased from 38.9 wt.% to 68.3 

wt.% when increasing the solvent/biomass mass ratio from 2.5/1 to 5/1. Whereas, further 

increasing the solvent loading decreased the bio-crude oil yield. This phenomenon is 

consistent with that reported in previous literature on liquefaction of algae (Duan et al., 

2013; Ji et al., 2017). The increased oil yield at higher solvent loading was likely owing 

to the presence of a larger amount of solvent that could prevent re-polymerization of the 

fragments/intermediates from liquefaction to form char, or it could possibly be attributed 

to the enhanced mass and heat transfer during algal liquefaction (Jin et al., 2014). 

However, oil products could be partially cracked into aqueous and/or gaseous products as 

the solvent loading was too high (e.g., with the solvent/biomass mass ratio of 10/1), 

which can be confirmed with the markedly increased yield of (gas + aqueous phase). 

Besides, the yield of solid residue gradually decreased from 10.3 wt.% to 2.5 wt.% with 

increasing the solvent loading amount, suggesting the promoted conversion of biomass or 

the suppressed re-polymerization of bio-crude oil to form char with a higher solvent 

loading. It should however be noted that very low solid residue yield (approx. 3-5 wt.% 

on dry basis) was obtained at a higher solvent loading, even smaller than the ash content 

(7.2 wt.%) of the original feedstock. This was possibly caused by the dissolution of some 

inorganic salts of the ash fraction into the water phase during algal liquefaction, thereby 

reducing the yield of solid residue (Duan et al., 2013). With respect to bio-crude oil yield, 

the biomass/solvent mass ratio of 1:5 was selected for exploring the effects of reaction 

temperature and methanol-water mixed solvent composition on the products distribution.  

6.4.2.3 Reaction temperature 

Effects of reaction temperature on the products distribution are shown in Fig. 6.4, which 

presents the results obtained at 175-300 °C for 60 min in 100 wt.% methanol solvent with 

biomass/solvent mass ratio of 1:5. The critical temperature and pressure of methanol are 

240 °C and 8.1 MPa. Hence, the liquefaction experiments were carried out in sub-/super-

critical methanol. As indicated in Fig. 6.4, increasing reaction temperature increased bio-

crude oil yield, but peaked at 225 °C where a maximum oil yield of 85.5 wt.% was 

obtained, and thereafter it drastically dropped to 17.5 wt.% at 300 °C.  
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Figure 6-4: Effects of reaction temperature on the products distribution (Other reaction 

conditions: residence time of 60 min, biomass/solvent mass ratio of 1/5, and in 100% 

methanol). 

Such strong dependency of bio-crude oil yield on reaction temperature was commonly 

reported previously in many literature work, e.g., by Biswas et al. (2017). Interestingly, 

the bio-crude oil yield was as high as 45.9 wt.% even at a low reaction temperature of 

175 °C. This was probably owing to the feedstock characteristics. The algal biomass used 

was Chlorella with broken cell wall, as earlier mentioned in Section 6.2.1, which hence 

facilitate hydrolysis and depolymerization of biomass macromolecules to yield more 

liquefaction products (Lee et al., 2017). Another possible reason for such higher bio-

crude oil yield could be the incorporation of methanol to oil products esterification 

reactions (Duan et al., 2013), which may be evidenced by the formation of methyl esters 

according to the GC-MS (Fig. 6.6 and Appendix-D) and FTIR (Fig. 6.7) results to be 

discussed later.  
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Moreover, the yield of solid residue drastically decreased from 53.8 wt.% at 175 °C to 

5.1 wt.% at 275 °C, and thereafter increased to 14.4 wt.% at 300 °C. On one hand, due to 

the endothermic nature of the biomass macromolecules degradation, while increasing 

reaction temperature more fraction of biomass macromolecules could be liquefied and 

then converted into bio-crude oil, aqueous products, or gases. On the other hand, as 

further increased temperature (to above critical point) would favor cracking and 

gasification (such as decarboxylation and steam reforming reactions) of the oil/aqueous 

products (Guo et al., 2015), which would lead to significant formation of solids 

(char/coke) and gases, as shown in Fig. 6.4. Specifically, with the reaction temperature 

ramped from 275 °C to 300 °C, the bio-crude oil yield dramatically decreased from 68.3 

wt.% to 17.5 wt.%, accompanied by an increase in the yield of solid residue from 5.1 

wt.% to 14.4 wt.%. As described previously the highest bio-crude oil yield (85.5 wt.%) 

was achieved in this work employing methanol solvent at milder conditions (225 °C). 

The oil yield obtained is much higher than that reported in previous studies (Chen et al., 

2012; Peng et al., 2016). In this study, 225 °C was selected as the reaction temperature 

for the rest of the experiments to investigate effect of methanol-water composition in 

mixed solvent on the products distribution.  

6.4.2.4 Methanol-water mixed solvent composition  

To investigate the effect of methanol-water mixed solvent composition on the products 

distribution, liquefaction experiments with various methanol contents (in methanol-water 

mixed solvents) were performed at reaction temperature of 225 °C, residence time of 60 

min, and biomass/solvent mass ratio of 1:5. As can be seen in Fig. 6.6, the bio-crude oil 

yield gradually increased from 14.9 wt.% to 85.5 wt.% with methanol content in the 

reaction medium increased from 0 to 100 wt.%, as similarly reported by Jiang et al. 

(2017) in liquefaction of pine wood. This result suggests that 100% methanol performed 

the best in liquefaction of algal biomass for bio-crude production at 225 °C, which is 

different from the findings reported in many literature studies on direct liquefaction of 

algae (Ji et al., 2017; Chen et al., 2012; Peng et al., 2016) and woody biomass (Cheng et 
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al., 2010) where alcohol-water mixed solvents with 40-60% alcohol demonstrated 

synergistic effects.  

 

Figure 6-5: Effects of methanol content (in methanol-water mixed solvents) on the 

products distribution (Other reaction conditions: 225 °C, residence time of 60 min, and 

biomass/solvent mass ratio of 1/5). 

For instance, the bio-crude oil yield from HTL of microalgae in ethanol-water mixed 

solvents at 300 °C was found to increase with increasing ethanol content, and peaked at 

40% of ethanol (ethanol : water, v/v) (Chen et al., 2012; Peng et al., 2016). The above 

different results could mainly be due to the differences in the feedstock properties 

(structure) and reaction temperature. First of all, the pre-treated Chlorella with broken 

cell wall used in this work is believed to have cell wall structure less rigid than that of the 
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need of hydrolytic reactions. In contrast, the original untreated algae whose degradation 

requires a higher reaction temperature (250-375 °C) and the hydrolysis reactions (Guo et 

al., 2015; Biswas et al., 2017; Cheng et al., 2010), which may explain the synergistic 

performance of alcohol-water mixed solvent. As such, the Chlorella with broken cell wall 

used in this work can be effectively liquefied at a mild temperature (225 °C) in absence 

of water by employing 100% methanol. Moreover, the yield of solid residue consistently 

decreased from 23.3 wt.% to 7.2 wt.% with increasing methanol content from 0 to 100 %, 

suggesting best biomass conversion with 100% methanol. 

6.4.3 Bio-crude oil characterization 

6.4.3.1 Elemental analysis  

The elemental compositions and HHVs of bio-crude oils obtained in methanol-water 

mixed solvents with various methanol contents are summarized in Table 6.2. The algae 

derived bio-crude oils from all liquefaction runs have HHVs in the range of 30.6-34.1 

MJ/kg, and the maximum HHV (34.1 MJ/kg) was obtained for the bio-crude oil from the 

liquefaction in methanol/water (50/50, wt/wt) co-solvents. As a comparison, the algal 

bio-crude oil contained around 71-79% energy content of that of petroleum crude oil. 

Besides, the HHVs of the obtained bio-crude oil products are much higher than the 

original biomass (21.0 MJ/kg), and comparable to those from earlier studies (Shakya et 

al., 2015; Biller and Ross, 2011; Ross et al., 2010; Zhou et al., 2012). In general, all bio-

crude oil samples have higher carbon and hydrogen contents (62.4-69.1 wt.% and 8.7-9.3 

wt.%, respectively), and relatively lower oxygen content (13.7-19.8 wt.%), compared to 

the feedstock material. As expected, a high nitrogen content (6.2-8.4 wt.%) was observed 

in all bio-crude oils, due to the higher protein content in the feedstock (approx. 54 wt.%, 

in Table 6.1), typical of algae-derived bio-crude oils (Jin et al., 2014). Thus, the 

subsequent hydrotreatment of microalgae-derived bio-crude oil is required for nitrogen 

removal in order to meet the requirement for transportation fuel. As also expected, the 

resultant bio-crude oils have a lower sulfur content between 0.3 wt.% and 0.6 wt.% 

owing to the low sulfur content in the feedstock (0.48 ± 0.24 wt%). This result was lower 
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than sulfur content of petroleum crude oil. Interestingly, nitrogen content of the bio-crude 

oils was observed to increase with increasing methanol content in the solvent as 

presented in Table 6.2, which might be resulted from the reduced water content while 

increasing the methanol content in the methanol-water mixed solvent. As previously 

reported by Dote et al. (1998), most of N in amino acids from hydrolysis of protein was 

preferentially transferred to water phase rather than oil phase in hydrothermal 

liquefaction of algal biomass. Hence, the presence of less water in the reaction medium 

would result in more N-containing compounds in the oil products (Table 6.2).  

Table 6-2: The elemental compositions of bio-crude oils obtained in methanol-water 

mixed solvents with various methanol contents at 225 °C for 60 min, with a 

biomass/solvent mass ratio of 1/5. 

Elemental 

composition 

(wt.%) 

Methanol content in reaction medium (wt.%) Petroleum 

crudec 
0 25 50 75 100 

C 65.09 69.05 68.81 64.46 62.41 83-87 

H 8.69 9.08 9.25 8.83 9.12 10-14 

Oa 19.55 14.21 13.74 18.24 19.84 0.5-6.0 

N 6.17 7.08 7.72 8.09 8.39 0.1-1.5 

S 0.51 0.58 0.48 0.39 0.25 0.1-2.0 

HHV 

(MJ/kg)b 

30.97 33.82 34.06 31.18 30.60 42.90 

Atomic ratio (mol/mol) 

H/C  1.60 1.58 1.61 1.64 1.75  

O/C  0.23 0.15 0.15 0.21 0.24 

N/C 0.08 0.09 0.10 0.11 0.12 

a Determined by difference; b Calculated by the Dulong equation.  
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6.4.3.2 GC-MS analysis  

The chemical compounds in bio-crude oils obtained from direct liquefaction of algal 

biomass were determined by GC-MS analysis, although some compounds in the oils were 

not able to be detected by GC-MS analysis, due to (i) some light oil compounds might be 

lost during solvent evaporation; and (ii) the heavy compounds cannot be eluted through 

the GC column (Brown et al., 2011). The GC-MS analysis results for three bio-crude oil 

samples obtained at 225 °C for 60 min with a biomass/solvent mass ratio of 1:5 in 

methanol-water mixed solvents with different methanol contents (0, 50, and 100 wt.%) 

are presented in Fig. 6.7 and detailed in Appendix-F. The major compounds (i.e., the 

relative percentage of peak areas over than 1%) of three bio-crude oil samples are 

categorized into N-containing compounds, esters, other O-containing compounds 

(alcohols, ketones, and ethers), and cyclic oxygenates.  

Some distinct differences can be observed in the relative concentrations of compounds 

(based on peak areas) among three bio-crude oil samples. The major compounds in bio-

crude oil obtained with pure water are N-containing compounds (76.0%), while esters 

(66.3%) are the most abundant compounds in the bio-crude oil obtained with pure 

methanol. As given in Appendix-F, the bio-crude oil obtained with the methanol-water 

mixed solvent consists mainly of both N-containing compounds (20.7%) and ester 

compounds (47.3%). The content of hexadecenoic acid, methyl ester (RT. 12.87) 

increases from 2.4% in pure water to 19.6% in methanol-water mixed solvents, and to 

27.0% in pure methanol, and 9,12-octadecadienoic acid (Z,Z)-, methyl ester (RT. 13.88) 

is also higher in the oil obtained with pure methanol or the methanol-water mixed 

solvent. Typically, C16 and C18 fatty acids with various degree of unsaturation such as 

hexadecenoic acid and (C16:0) and 9,12-octadecadienoic acid (Z,Z)- (C18:2) are the most 

common fatty acid in the algal lipid (Changi et al., 2015). The above results evidence that 

the esterification reactions between fatty acids from algal biomass and the alcohol. In 

fact, the most abundant compounds in the biodiesel are C16-20 fatty acid methyl/ethyl 

esters, similar to the esters detected in the bio-crude oil obtained from the liquefaction of 

an algal biomass in methanol (Zhou et al., 2012). Nevertheless, some nitrogen-containing 
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esters like DL-proline, 5-oxo-, methyl ester (RT. 10.89) were also observed in the bio-

crude oils obtained in pure methanol or methanol-water mixed solvents, which was likely 

resulted from the reactions of amino acids with alcohols (Anastasakis and Ross, 2011). 

Based on the GC-MS results above, it may be inferred that liquefaction of algal biomass 

in methanol could improve bio-crude oil properties such as long-time stability (shelf 

time) and corrosivity. In previous studies, the biodiesel properties, including acid value, 

saponification value, iodine number, and cetane number, are determined by the fatty acid 

composition of oil (Srivastava et al., 2018; Knothe, 2005). Thus, in the future study, the 

acid value, saponification value, iodine number, and cetane number of biodiesel produced 

from this study will be measured.    

 

Figure 6-6: Major chemical compounds of bio-crude oils obtained from liquefaction of 

algal biomass in water-methanol mixed solvents with different methanol contents at 225 

°C for 60 min, with a biomass/solvent mass ratio of 1/5. 
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6.4.3.3 FT-IR analysis  

The FT-IR spectra of bio-crude oil samples obtained in different reaction media (water, 

methanol and water-methanol mixed solvent) at 225 °C for 60 min, with a 

biomass/solvent mass ratio of 1/5 are displayed in Fig. 6.8.  

 

Figure 6-7: FT-IR spectra of bio-crude oils obtained in various liquefaction media at 225 

°C for 60 min, with a biomass/solvent mass ratio of 1/5. 

The interpretation of major peaks was performed according to Socrates (1994). A broad 

absorption band from 3700 to 3100 cm-1 can be assigned to O-H or N-H stretching 

vibration. The peaks at 2944, 2925, and 2853 cm-1 can be ascribed to C-H asymmetrical 

and symmetrical stretching vibration, indicating the presence of alkyl C-H in the bio-

crude oils. Another peak at 1742 cm-1 could be related to C=O carbonyl group, which is 

consistent with the ketones and esters identified in the bio-crude oil (Appendix-D). The 

peak at 1666 cm-1 represents the C=O stretching vibration from primary amide 
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compounds. Besides, the peak at 1440 cm-1 could be attributed to C-H bending vibration 

in methyl groups. The peaks at 1199 and 1031 cm-1 can be related to the C-O stretching 

vibration. Finally, a strong peak at 753 cm-1 indicated the presence of aromatic C-H in the 

bio-crude oil.  

Although the FT-IR spectra of three bio-crude oils obtained in different reaction media 

(water, methanol and water-methanol mixed solvent) show similar functionalities, some 

evident differences among oil samples can be observed in Fig. 6.7. Firstly, the stretching 

vibrations of carbonyl C=O at 1742 cm-1 and C-O at 1029 cm-1 were observed to be more 

intensive in the bio-crude oil obtained using pure methanol as the reaction medium, 

suggesting formation of esters between acid intermediates and alcohol (Ji et al., 2017), as 

evidenced by the contents of esters identified in the bio-crude oil by GC-MS (Appendix-

F). Furthermore, the peak at 753 cm-1 representing aromatic C-H vibration is weaker in 

the bio-crude oil obtained in pure methanol, implying enhanced hydrogenation of the oil 

products attributed to the hydrogen donor property of near-critical methanol. 

6.4.4 Aqueous phase characterization 

In this work, major chemical components of aqueous phase samples obtained at 225 °C 

for 60 min, with a biomass/solvent mass ratio of 1/5 in methanol-water mixed solvents 

with various methanol contents were also determined by GC-MS analysis. As illustrated 

Fig. 6.9 and detailed in Appendix-G, the major compounds identified in the aqueous 

products are organic acids, alcohols, esters, N-containing compounds, and cyclic 

oxygenates. N-containing compounds were observed to be the most abundant compounds 

in the aqueous phase, which was expected as most of N in amino acids from protein tend 

to partition to water phase in the form of ammonium during algal liquefaction (Dote et 

al., 1998; Gai et al., 2015). Some compounds identified in the aqueous phase samples, 

such as 3-pyridinol and 3-pyridinol, 6-methyl-, as shown in Appendix-G could be toxic to 

the surrounding environment (Pham et al., 2013), as such the aqueous phase without 

treatments should not be discharged directly to the surrounding environment. To address 

the above challenge related to the aqueous phase, the authors have demonstrated 
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innovative solution by recycling aqueous phase as a reaction medium for improving bio-

crude oil productivity in hydrothermal liquefaction of algae (Hu et al., 2017). Besides, it 

was observed that glycerol was identified in all aqueous phase samples. As also shown in 

Appendix-G, phenolic compounds were also identified in all aqueous phase samples, 

which are likely derived from carbohydrates.  

 

Figure 6-8: Major chemical compounds of aqueous phase samples obtained from 

liquefaction of algal biomass (pre-treated Chlorella with broken cell wall) in water-

methanol mixed solvents with different methanol contents at 225 °C for 60 min, with a 

biomass/solvent. 

Several distinct differences can be observed among three aqueous phase samples. Acetic 

acid is absent in the aqueous phase sample obtained in the methanol-containing media, 

which may be caused by esterification of acetic acid and methanol. However, no ester 
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due to no or negligible alcohols produced from HTL of algal biomass under the given 

conditions, although alcohol could be formed by reduction of organic acid from 

deamination of amino acids. In addition, decarboxylation reaction is another main 

decomposition pathway for amino acids under hydrothermal condition (Barreiro et al., 

2013; Guo et al., 2015). Decarboxylation and deamination usually occur simultaneously, 

and the extent of decarboxylation/deamination could be affected by the type of amino 

acid, the pH of reaction medium, operating condition (Changi et al., 2015). Based on the 

chemical compositions analysis of both bio-crude oils and aqueous phase, a possible 

reaction pathway of liquefaction of algal biomass may be proposed and illustrated in Fig. 

6.10.   

 

Figure 6-9: The proposed reaction pathway of liquefaction of algal biomass. 
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6.4.5 Solid residue characterization 

Table 6.3 summarizes the elemental compositions and HHVs of solid residue samples 

obtained at 225 °C for 60 min, with a biomass/solvent mass ratio of 1/5 in methanol-

water mixed solvents with various methanol contents. As clearly shown in the Table 6.3, 

increasing the methanol content in the reaction medium produced solid residues with 

lower carbon, hydrogen, and nitrogen contents but higher oxygen content, hence resulting 

in the reduced HHV (decreasing from 30.47 MJ/kg with pure water medium to 9.97 

MJ/kg with pure methanol medium). Besides, the nitrogen contents of all solid residues 

were observed to be as high as 5.5-7.8 wt%, making them an attractive option for the 

application as a soil amendment (Shakya et al., 2015).  

Table 6-3: The elemental compositions of solid residue samples obtained in methanol-

water mixed solvents with various methanol contents at 225 °C for 60 min, with a 

biomass/solvent mass ratio of 1/5. 

Elemental composition (wt.%) Methanol content in reaction medium (wt.%)  

 

0  25  50  75  100  

C 65.05 63.73 55.91 40.29 37.85 

H 8.38 8.08 6.96 5.56 4.49 

Oa 18.53 20.10 29.39 47.50 51.47 

N 7.83 7.81 7.48 6.37 5.53 

S 0.21 0.29 0.26 0.28 0.66 

HHV (MJ/kg)b 30.67 29.52 23.62 13.11 10.08 

Atomic ratio (mol/mol) 

H/C  1.55 1.52 1.49 1.66 1.42 

O/C  0.21 0.24 0.39 0.88 1.02 

N/C 0.10 0.11 0.11 0.14 0.13 

a Determined by difference; b Calculated by the Dulong equation.  
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6.5 Conclusions  

In this study, algal biomass, Chlorella, was converted into bio-crude oil products as 

potential advanced bio-fuels via direct liquefaction in water with/without catalyst, 

methanol or water-methanol mixed solvents. The screening tests showed that the 

methanol was the most effective reaction medium from the perspective of bio-crude oil 

yield. In addition, the effects of other reaction conditions (residence time, 

biomass/solvent mass ratio, reaction temperature, and methanol-water composition) on 

the products distribution were investigated. The highest bio-crude oil yield of 85.5 wt.% 

was obtained at 225 °C, for 60 min, with biomass/solvent mass ratio of 1/5, and in pure 

methanol. The HHVs of the obtained bio-crude oils are in the range of 30.4-33.9 MJ/kg. 

Both GC-MS and FTIR analyses evidenced that the bio-crude oils obtained in methanol 

primarily contained various fatty acid esters, suggesting the esterification reactions 

between fatty acids from algal biomass and the alcohol in the reaction medium during the 

liquefaction process. 
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Chapter 7 

7 Improvement in bio-crude production through co-
liquefaction of algal biomass and sawdust in ethanol-
water mixed solvents  

The information presented in this Chapter is based on the paper “Improvement in bio-

crude production through co-liquefaction of algal biomass and sawdust in ethanol-water 

mixed solvents”, which has been submitted to Energy Conversion and Management. The 

sections in Chapter 7 present the results towards the completion of objective 5 of this 

PhD project (see Section 1.2).  

7.1 Abstract 

This study investigated co-liquefaction of algal biomass (AB) and sawdust (SD) in 

ethanol-water mixed solvent for bio-crude production. Effects of temperature (200-300 

°C), residence time (30-120 min), ethanol-water mixed solvent composition (0/100-100/0 

wt/wt), and AB/SD mass ratio (0/100-100/0) on the products distribution were explored. 

The results indicated that both AB/SD and ethanol/water exhibited positive synergistic 

effects on the co-liquefaction process. The highest bio-crude yield of 58 wt.% was 

obtained from co-liquefaction of AB and SD (50/50, wt/wt) in ethanol-water (75/25, 

wt/wt) mixed solvent at 250 ℃ for 60 min. In addition, the bio-crude from co-

liquefaction contained a higher fraction of light oil components than that obtained using 

AB or SD as feedstock. Aqueous by-product from co-liquefaction was recycled and 

reused as reaction medium, which results in a bio-crude product at a comparable yield 

and a greater heating value (HHV of 34.8 MJ/kg). 

7.2 Introduction  

Due to the shortage of fossil fuels and severe environmental issues, bio-fuels from 

renewable resources have gained increasing attention. Generally, bio-fuels can be 

classified into first, second, and third generation categories. First and second-generation 

bio-fuels can be produced from food crops (e.g., corn, soybean, and sugarcane) and non-



150 

 

 

 

food crops (e.g., rice husk and wood chip), respectively. While, the development of first 

and second-generation bio-fuels are limited owing to the land availability and 

competition with crop production (Duan et al., 2013). Recently, algae as third-generation 

biomass have been widely applied for the production of liquid fuels. Algae have several 

advantages, such as high growth rate, high lipid content, be able to sequester atmospheric 

CO2, and can be cultivated in non-arable land (Guo et al., 2015).   

Until now, numerous technologies have been developed for converting algal biomass into 

renewable fuels, including transesterification (López et al., 2016), pyrolysis (Andrade et 

al., 2018), and hydrothermal liquefaction (Jena et al., 2011). Compared to conventional 

technologies, hydrothermal liquefaction (HTL) has been identified as a more suitable 

conversion route for high water-containing feedstocks, due to the elimination of 

drying/dewatering the feedstock. Typically, HTL is carried out in sub- or near-critical 

water at 250-350 °C and 5-15 MPa for 5-120 min with or without catalyst (Peng et al., 

2016). Recently, some researchers have co-liquefied algae and lignocellulosic biomass in 

subcritical water (Gai et al., 2015; Chen et al., 2014). For instance, Gai et al. (2015) 

investigated co-liquefaction of C. pyrenoidosa and rice husk at 200-350 °C for 10-90 min 

and found positive synergistic effects existed in the co-liquefaction of C. pyrenoidosa and 

rice husk in terms of higher quantity and quality of bio-crude.  

Most previous studies have employed water as liquefaction medium, which is based on 

the unique properties of water under hydrothermal conditions. The ionic product (Kw) of 

water increases with increasing temperature and pressure, thereby promoting acid- or 

base-catalyzed reactions like biomass hydrolysis. Meanwhile, the dielectric constant of 

water decreases from 78 F m-1 at 25 °C and 0.1 MPa to 14.07 F m-1 at 350 °C and 20 

MPa, making water molecules more affinitive to organic compounds (Toor et al., 2011). 

However, there remain several limitations regarding the use of water. Previously, Yang et 

al. (2004) reported that more than half of C and H in the feedstock was favorable to 

migrate into water phase rather than oily phase. For this reason, various organic solvents 

(e.g., ethanol, methanol, acetone, and 1,4-dioxane, etc.) have been applied for algal 
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liquefaction (Duan et al., 2013; Yuan et al., 2011; Jin et al., 2014). Among them, ethanol 

is reported to be the most desirable reaction medium, which can be explained as follows, 

(i) enhanced degradation of macromolecules due to a lower dielectric constant than water 

(Chen et al., 2012); (ii) can act as a hydrogen donor solvent (Akhtar and Amin, 2011); 

(iii) can achieve a high bio-crude yield at mild operating conditions (Duan et al., 2013); 

and (iv) can be derived from renewable sources (Chen et al., 2012). In literature, the 

ethanol-water mixed solvent has demonstrated positive effects on the liquefaction of 

microalgae with respect to bio-crude yield (Peng et al., 2016; Chen et al., 2012; Ji et al., 

2017). Ji et al. (2017) studied the effect of ethanol-water mixed solvent composition on 

the products distribution from liquefaction of Spirulina at 300 °C for 45 min. It was 

reported that the bio-crude yield reached its maximum level when the liquefaction was 

conducted in ethanol-water (75/25, v/v) mixed solvent. Hence, in this study, the ethanol-

water mixed solvent rather than pure ethanol was introduced into liquefaction system. As 

cited in the literature, water phase recycling plays a crucial role in the industrial-scale 

implementation of liquefaction treatment (Biller et al., 2016). In the previous studies, 

Ramos-Tercero et al. (2015) and Hu et al. (2017) demonstrated the feasibility of reusing 

water phase from HTL of algae as liquefaction medium for improving bio-crude 

production.  

To fill the above knowledge gaps in the literature, co-liquefaction of algal biomass (AB) 

and sawdust (SD) was carried out in the ethanol-water mixed solvent. According to an 

assessment by Natural Resources Canada at 2013, around half of the landscape of Canada 

is covered by forests. Sawdust identified as a typical forestry residue appear to be good 

alternative resources for fuels production, since they are available in large quantities and 

at low price (Dimitriadis and Bezergianni, 2017). Initially, the effects of temperature, 

residence time, ethanol-water mixed solvent composition, and AB/SD mass ratio on the 

products distribution were investigated. Afterwards, the physiochemical properties of 

bio-crude and solid residue were characterized. Finally, the aqueous by-product was 

recycled and reused as reaction medium for bio-crude oil production. 
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7.3 Materials and methods 

7.3.1 Materials  

Algal biomass (AB), Chlorella with cracked cell wall in powder form (0.2 mm particle 

size), was purchased from PureBulk, Inc (Roseburg, USA). Aspen wood sawdust (SD) 

was supplied from a lumber mill (Thunder Bay, Canada), with the pre-treatment of 

crushing and sieving to 0.5 mm particle size. Dichloromethane (DCM) and ethanol were 

purchased from Caledon Laboratory Ltd (Georgetown, Canada). The characteristics of 

AB and SD were summarized in Table 7.1.  

Table 7-1: Proximate and elemental analysis of algal biomass and sawdust. 

 Algal biomass Sawdust 

Proximate analysis (wt.%) 

Moisture 3.48 ± 0.62 0.38 ± 0.05 

Ash 7.15 ± 0.10 0.58 ± 0.10 

Elemental analysis (%)a 

C 46.54  48.12 

H 7.37  6.91 

Ob 29.87  44.32 

N 8.59  0.07 

S 0.48  0.00 

H/C 1.90 1.72 

O/C 0.48 0.69 

N/C 0.16 0.00 

HHV (MJ/kg)c 20.97 18.22 

a On dry basis; b Determined by difference; c Calculated by DuLong equation.  
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7.3.2 Experimental procedure  

The co-liquefaction experiments were performed in a 100 mL benchtop autoclave reactor 

coupled with a magnetic stirrer (Parr 4590, Moline, USA). In a typical run, 3.0 g of the 

mixed feedstock (AB+SD) and 30.0 g of ethanol-water mixed solvent were loaded into 

the reactor. The reactor was tightly closed and flushed with pure nitrogen to remove 

residual air inside the reactor. After that, pure nitrogen at 0.69 MPa was purged into the 

reactor to prevent the mixed reaction medium from boiling during the heating process. 

The reactor was then heated up to the pre-set temperature at a heating rate of ~5 °C/min. 

This temperature was then kept for a designated residence time. The agitation speed was 

set at ~250 rpm throughout the whole co-liquefaction process. The reaction conditions 

investigated in this study were as follows: temperatures (200 °C, 225 °C, 250 °C, 275 °C, 

and 300 °C), residence times (30 min, 60 min,90 min, and 120 min), ethanol-water mixed 

solvent compositions (0/100, 25/75, 50/50, 75/25, and 100/0 w/w,), and AB/SD mass 

ratios (0/100, 25/75, 50/50, 75/25, and 100/0).  

At end of the reaction, the reactor was quenched in a water bath. After the reactor was 

cooled to room temperature, the gaseous products inside the reactor were vented through 

a control valve into fume hood. The yield of gaseous products main consisting of CO2 

was found to be negligible under the conditions tested in our preliminary experiments, so 

the gases were not analyzed in this work. The reaction mixture was collected from the 

reactor by washing with a proper amount of ethanol, followed by filtration to separate the 

solid residue. The solid residue was then dried in an oven at 105 °C for 24 h. The filtrate 

was transferred to a 500 mL round bottom flask to remove ethanol via rotary evaporation 

at 45°C under reduced pressure. Afterwards, the remaining mixture was transferred into a 

separatory funnel, and 100 mL of dichloromethane (DCM) was added to extract bio-

crude. Leaving the upper layer containing water and aqueous by-product, the bottom 

layer was transferred into a 500 mL pre-weighed round-bottom flask to remove DCM 

using a rotary evaporator at 40°C under reduced pressure, and the remaining dark 

material was denoted as bio-crude.  
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Furthermore, a series of co-liquefaction experiments were conducted using the upper 

water layer as liquefaction medium instead of ethanol-water mixed solvent. The water 

phase recycling runs were only carried out at the optimal reaction conditions determined 

from this work.  

The bio-crude and solid residue yield were expressed in wt.% and calculated on a dry 

basis. The combined yield of gas and aqueous phase was defined as “others yield”, and 

simply determined by the weight difference. The energy recovery (%) of co-liquefaction 

process was calculated by Eqn. (1). 

Energy recovery (%) = 
𝐻𝐻𝑉𝑏𝑖𝑜−𝑐𝑟𝑢𝑑𝑒×𝑊𝑒𝑖𝑔ℎ𝑡𝑏𝑖𝑜−𝑐𝑟𝑢𝑑𝑒

𝐻𝐻𝑉𝐴𝐵×𝑊𝑒𝑖𝑔ℎ𝑡𝐴𝐵+𝐻𝐻𝑉𝑆𝐷×𝑊𝑒𝑖𝑔ℎ𝑡𝑆𝐷
                                             (7-1)  

7.3.3 Analytic approaches  

The moisture content was measured by drying the feedstocks in an oven at 105 °C 

overnight. The ash content was determined by combusting the dried feedstocks in a 

muffle furnace at 575 °C for at least 3 h until the weight reached a constant level. The 

particle size was analyzed using a particle size analyzer (HELOS/BF, Sympatec GmbH). 

The elemental analysis (CHNS) of raw material, bio-crude, and solid residue was 

performed via an elemental analyzer (Vario EL Cube, Elementar, Germany). The higher 

heating values (HHVs) of original biomass, bio-crude, and solid residue was calculated 

by Dulong equation [HHV (MJ/kg) = 0.338C + 1.428(H-O/8) + 0.095S] (Jin et al., 2014). 

The thermal degradation characteristics of feedstocks were analyzed by a 

thermogravimetric analyzer (Pris 1 TGA, Massachusetts, USA). TGA analysis was 

carried out in a N2 flow at 30 mL/min from 30 °C to 800 °C at the heating rate of 10 

°C/min, using dried feedstock samples. The functionalities of bio-crude samples were 

characterized with a FT-IR spectrometer (PerkinElmer, Massachusetts, USA) in the range 

of 4000-600 cm-1 at a resolution of 4 cm-1. The average molecular weight (Mw and Mn) 

and polydispersity index (PDI = Mw/Mn) of bio-crude samples were measured on a 

Waters Breeze GPC-UV equipped with a Waters Styragel HR1 column and calibrated 

with polystyrene standards. The boiling point distribution of the obtained bio-crude oils 
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was estimated by TGA analysis with the same Pris 1 TGA instrument and operating 

conditions as earlier described. The chemical composition of aqueous phase was 

determined by GC-MS analysis (Agilent 7890 GC/5975 MS) using a similar GC 

temperature program, as previously described (Hu et al., 2017).  

7.4 Results and discussion 

7.4.1 Thermal degradation characteristics  

The thermogravimetric (TG) and differential thermogravimetric (DTG) curves of AB, 

SD, and AB+SD (50/50, wt/wt) are displayed in Fig. 7.1 (a) and (b), respectively. 

Clearly, TG and DTG curves of AB and SD are significantly different from each other 

owing to their great differences in the chemical composition.  

As shown in Fig. 7.1 (a and b), all feedstock samples exhibited three stages during the 

thermal degradation process. The first weight loss stage (Stage-I) was observed from 30 

°C to 150 °C, possibly caused by the dehydration of feedstocks and the removal of light 

volatile compounds (Azizi et al., 2017). The second weight loss stage (Stage-II) from 

150-600 °C accounts for the majority of the weight loss, which can be attributed to the 

degradation of major biomass biomolecules. The third weight loss stage (Stage- III) starts 

from 600 °C and ends at 800 °C. This stage exhibits slight weight loss of feedstocks, 

resulting from the decomposition of carbonaceous materials retained in the solid residue. 

Surprisingly, DTG curve of AB+SD is very similar to that of SD, while much differing 

from that of AB, as indicated in Fig. 7.1 (b). This suggests that the presence of SD might 

play a predominant role over AB in the devolatilization and co-liquefaction process.  
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Figure 7-1: The thermogravimetric (TG) (a) and differential thermogravimetric (DTG) 

(b) curves for algal biomass (AB), sawdust (SD), and mixed feedstocks of AB+SD 

(50/50, wt/wt). 
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Specifically, in the case of AB, the first major weight loss began at 150 °C and ended at 

295 °C, possibly caused by the degradation of carbohydrates (Ross et al., 2008). The 

second major weight loss representing the decomposition of protein ranged from 295 °C 

to 390 °C (Ross et al., 2008). The final weight loss stage occurred at 450 °C, which might 

be attributed to the degradation of lipid. On the other hand, hemicellulose decomposition 

occurs as a shoulder at 285 °C and the degradation of cellulose defined as a clear peak at 

366 °C. This observance is consistent with the previous literature performing TGA 

analysis of woody biomass (Azizi et al., 2017). The peak of lignin (another main 

component of wood) decomposition cannot be seen in Fig. 7.1 (b). This is likely due to 

the fact that the lignin degradation usually appears on a wide temperature zone and thus 

may be not present (TranVan et al., 2014). 

7.4.2 Effects of liquefaction conditions on the products distribution  

7.4.2.1 Temperature  

Effects of liquefaction temperature on the products distribution obtained from co-

liquefaction of AB and SD (50/50, wt/wt) in ethanol-water (50/50, wt/wt) mixed solvent 

at 200-300 °C for 60 min were investigated. As illustrated in Fig. 7.2, the bio-crude yield 

increased from 32 wt.% to 51 wt.% as the reaction temperature increased from 200 °C to 

250 °C, which is likely due to the enforced bond cessation and promoted hydrolysis of 

biomass macromolecules at higher temperatures (Akhtar and Amin, 2011). However, the 

bio-crude yield peaked at 250 °C, and a further increase in reaction temperature gradually 

decreased bio-crude yield from 47 wt.% at 275 °C to 27 wt.% at 300 °C. Such variation 

of bio-crude yield with HTL reaction temperature is in a good agreement with many 

earlier studies, e.g., by Jena et al. (2011). The reduced bio-crude yield at above 250 °C 

was likely caused by thermal cracking of oil compounds into gases and/or water-soluble 

products (Chen et al., 2012), as evidence by a sharp increase in the by-products yield 

(gases + aqueous solubles) from 39 wt.% at 275 °C to 55 wt.% at 300 °C. At a high 

temperature, thermal cracking of oil intermediates could also form lighter and more 

volatile oil compounds that however were unable to be recovered as they might be lost in 
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the solvent evaporation stage for bio-crude recovery. The yield of solid residue 

consistently decreased with increasing temperature from 200 °C until 275 °C, suggesting 

the promoted conversion of organics into liquefaction products (bio-crude, water-

solubles, and gaseous products). In contrast, when the temperature further increased from 

275 °C to 300 °C, the solid residue yield increased from 13 wt.% to 17 wt.%. This 

increased solid residue yield was probably attributed to the enhanced repolymerization of 

oil intermediates into solid products (Peng et al., 2016). According to the results above, it 

can be concluded that 250 °C appeared to be the best temperature for co-liquefaction of 

AB and SD in ethanol-water mixed solvents. 

 

Figure 7-2: Effect of reaction temperature on the products distribution obtained from co-

liquefaction of algal biomass (AB) and sawdust (SD) (50/50, wt/wt) in ethanol-water 

(50/50, wt/wt) mixed solvents at 200-300 ℃ for 60 min. 
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7.4.2.2 Residence time  

Effects of residence time on the products distribution obtained from co-liquefaction of 

AB and SD (50/50, wt/wt) in ethanol-water (50/50, wt/wt) mixed solvent were explored 

at 250 °C for 30-120 min. As illustrated by Fig. 7.3, the bio-crude yield increased from 

25 wt.% at 30 min to 51 wt.% at 60 min, but dropped to 30 wt.% when the residence time 

further increased till 120 min.  

 

Figure 7-3: Effect of residence time on the products distribution obtained from co-

liquefaction of algal biomass (AB) and sawdust (SD) (50/50, wt/wt) in ethanol-water 

(50/50, wt/wt) mixed solvents at 250 ℃ for 30-120 min. 

This trend is consistent with those reported in previous investigations on the co-

liquefaction (Gai et al., 2015; Jin et al., 2014). The reduced bio-crude yield at residence 

time might be attributed to the subsequent cracking (to form gaseous or light compounds) 
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and/or repolymerization (to form solid residues) of bio-crude at a prolonged residence 

time, as evidenced by the increasing of both yields of others (gaseous + aqueous 

products) and solid residues for a residence time longer than 60 min.  For instance, the 

solid residue yield decreased from 27 wt.% at 30 min to 20 wt.% at 60 min, but increased 

to 23 wt.% at 120 min. Hence, 60 min was selected in further tests to investigate the 

effect of ethanol-water mixed solvent on the products distribution. 

7.4.2.3 Ethanol-water mixed solvents composition  

To determine the optimal ethanol-water mixed solvent composition, co-liquefaction 

experiments of AB and SD (50/50, wt/wt) were conducted at 250 °C for 60 min. As 

indicated in Fig. 7.4, it is clear that the bio-crude yields (20-58 wt.%) were higher with 

ethanol-water mixed solvent as reaction medium compared to that obtained in water (11 

wt.%) or ethanol (29 wt.%) alone, and much higher than the predicted bio-crude yield 

based on the arithmetic average. This phenomenon may demonstrate the synergistic 

interaction between ethanol and water in the co-liquefaction process. Similar findings 

were also observed by Chen et al. (2012) and Ji et al. (2017). Specifically, the bio-crude 

yield increased from 11 wt.% to 58 wt.% with ethanol content in the mixture increased 

from 0 wt.% to 75 wt.%. This increase in bio-crude yield could be explained as follows: 

ethanol can readily dissolve relatively high molecular weight intermediates from biomass 

macromolecules due to its lower dielectric constant than water (Chen et al., 2012). On the 

other side, ethanol can act as a hydrogen donor solvent to stabilize the fragments and/or 

intermediates and deter the condensation, cyclization, and re-polymerization of free 

radicals to form char that retained in the solid residue (Akhtar and Amin, 2011). This can 

be confirmed with an apparent reduction in the solid residue yield from 31.3 wt.% to 20.1 

wt.% when increasing the ethanol content in the mixed solvent from 0 wt.% to 75 wt.%. 

Whereas, further increase in ethanol content to 100 wt.% (pure ethanol) drastically 

reduced bio-crude yield to as low as 29 wt.%, accompanied by a sharp increase in the 

solid residue yield. This observance can be explained by the fact that ethanol is a weaker 

acid than water and thus the hydrolytic degradation of biomass might be limited in the 

liquefaction process with pure ethanol (Cheng et al., 2010). It is therefore concluded that 
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the ethanol-water (75/25, wt/wt) mixed solvent could be the most effective reaction 

medium in the co-liquefaction of AB and SD. 

 

Figure 7-4: Effect of ethanol-water mixed solvents composition on the products 

distribution obtained from co-liquefaction of algal biomass (AB) and sawdust (SD) 

(50/50, wt/wt) at 250 ℃ for 60 min. 

7.4.2.4 AB/SD mass ratio  

Fig. 5 shows the effects of AB/SD mass ratio on the products distribution obtained from 

co-liquefaction of the mixture of AB and SD in ethanol/water mixed solvent (75/25, 

wt/wt) at 250 °C for 60 min. As clearly indicated in Fig. 7.5, the bio-crude yields (49-58 

wt.%) were higher from co-liquefaction of AB and SD than those obtained from HTL of 

mono feedstock of either AB (46 wt.%) or SD (42 wt.%). Besides, the obtained oil yields 

from co-liquefaction process were higher than the predicted bio-crude yields based on the 
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arithmetic average. According to these results, it can be inferred that the synergistic 

interaction between AB and SD may be existed in the co-liquefaction process, which will 

be further discussed in the Section 3.3. Similar observances were reported in a previous 

study on the co-liquefaction of microalgae and rice husk (Gai et al., 2015). This could be 

due to the protein fraction of microalgae can be decomposed into acid compounds, which 

may facilitate the degradation of cellulose and hemicellulose fraction of sawdust. The 

bio-crude yield peaked at 58 wt.% with AB/SD mixture (50/50, wt/wt). On the other 

hand, the yield of solid residue continuously decreased from 31 wt.% (SD feedstock) to 7 

wt.% (AB feedstock) when increasing mass percentage of AB in the mixed feedstocks 

from 0 wt.% to 100 wt.%. 

 

Figure 7-5: Effect of algal biomass (AB)/sawdust (SD) mass ratio on the products 

distribution obtained from co-liquefaction of AB and SD in ethanol-water (75/25, wt/wt) 

mixed solvents at 250 ℃ for 60 min. 
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7.4.3 Characterization of bio-crude  

7.4.3.1 Elemental composition 

The CHNS elemental compositions and HHVs of bio-crude oils obtained from co-

liquefaction of AB and SD with various AB/SD mass ratios in ethanol/water (75/25, 

wt/wt) mixed solvent at 250 °C for 60 min are summarized in Table 7.2. In general, the C 

(62.6-66.8%) and H (7.2-9.4%) contents in all bio-crude oils are higher, accompanied by 

a lower O content (16.0-26.8%), than those in the feedstocks. As a result, all bio-crude 

oils have higher HHVs (27.7-33.2 MJ/kg) than the original feedstocks. In addition, the 

O/C atomic ratios of bio-crude samples were lower than two feedstocks, implying that 

partial deoxygenation appears in the liquefaction process. Oxygen can be removed as 

H2O via dehydration or CO2 via decarboxylation (Tian et al., 2014). As expected, the N/C 

ratios of bio-crude products were greater than the feedstock of SD but were lower than 

AB. During liquefaction process, the denitrogenation can proceed through deamination of 

amino acid (building block of protein) (Chen et al., 2014). In contrast, the H/C ratios of 

all bio-crude oils are lower than that of two feedstocks. Clearly, the N content of bio-

crude oil was linearly proportional to the mass percentage of AB in the mixed feedstocks, 

along with an opposite trend for O content of the oils. This is expected due to the higher 

N content (8.6 wt.%) and lower O content (29.87 %) of AB than those of SD. The S 

contents in all bio-crude samples range from 0% to 0.2%, which is much lower than that 

of petroleum crude (0.1-2%) (Jena et al., 2011). Besides, HHVs of bio-crude produced 

from co-liquefaction are in the range of 28.3-32.1 MJ/kg, which are higher than those 

reported in a previous study where a mixture of swine manure and mixed-culture algae 

were co-liquefied (Chen et al., 2014). As also shown in Table 7.2, the highest energy 

recovery of 91.0% was obtained in the co-liquefaction of AB and SD (50/50, wt/wt), 

which is much greater than the average value calculated based on that of AB (72.0%) and 

SD (63.6%), again demonstrating the synergistic effects between AB and SD in the co-

liquefaction process. 
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Table 7-2: Elemental compositions and HHVs of bio-crude oils obtained from co-

liquefaction of algal biomass (AB) and sawdust (SD) with different mass ratios in 

ethanol-water (75/25, wt/wt) mixed solvents at 250 °C for 60 min. 

Elemental composition (%)a AB/SD mass ratio (w/w)  

0/100 25/75 50/50 75/25 100/0 

C 65.75 62.64 64.23 65.54 66.82 

H 7.22 8.19 9.17 9.33 9.40 

Ob 26.84 25.87 22.10 18.69 16.02 

N 0.19 3.30 4.50 6.43 7.61 

S 0.00 0.00 0.00 0.01 0.15 

H/C 1.32 1.57 1.71 1.71 1.69 

O/C 0.31 0.31 0.26 0.21 0.18 

N/C 0.00 0.05 0.08 0.08 0.10 

HHV (MJ/kg)c 27.74 28.25 30.86 32.14 33.16 

Energy recovery (%)d 63.63 72.60 91.00 88.08 72.01 

a On dry basis; b Estimated by difference; c Calculated by DuLong equation; d Determined 

by Eqn. (7-1).  

7.4.3.2 Boiling point distribution  

The boiling point distributions of bio-crude oils obtained from co-liquefaction of algal 

biomass (AB) and sawdust (SD) with various mass ratios in ethanol-water (75/25, wt/wt) 

mixed solvent at 250 °C for 60 min are estimated from the TGA results and presented in 

Table 7.3. The bio-crude from SD contains the highest percentages of mild boiling point 

compounds (26 wt.%, bp 343-538 °C) and high boiling point compounds (31 wt.%, bp > 

538 °C), along with the lowest percentage (~43 wt.%) of low boiling point compounds 

(bp < 343 °C). In general, the bio-crude oils from co-liquefaction had a higher percentage 

(51-73 wt.%) of low boiling point compounds than that from liquefaction of AB (58 

wt.%) or SD (43 wt.%) alone, suggesting the co-liquefaction process promotes the 
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formation of light oil compounds. In addition, oil samples obtained from co-liquefaction 

of AB and SD were found to have the lowest percentage of high boiling point (15-30 

wt.%) components. The distillable fraction (bp < 538 °C) of bio-crude from co-

liquefaction is 70-85 wt.%, which is much higher that of conventional petroleum crude 

oil (e.g., 66 wt.% for Venezuelan crude, and 44-65 wt.% for North American tar sand 

bitumen) (Vardon et al., 2011).  

Table 7-3: The boiling point distributions of bio-crude oils obtained using pure algal 

biomass (AB), AB/SD (50/50, wt/wt), or pure sawdust (SD) as feedstock in ethanol-water 

(75/25, wt/wt) mixed solvents at 250 °C for 60 min. 

Distillate range (°C)a  AB/SD mass ratio 

0/100  25/75  50/50  75/25  100/0  

<193 (Heavy Naphtha) 18.88 16.97 20.70 16.75 13.59 

193-271 (Kerosene) 10.77 16.37 35.72 20.95 26.94 

271-343 (Gas Oil)  13.33 17.98 16.73 23.73 17.58 

343-538 (Vac Gas Oil) 26.26 18.29 12.21 20.05 22.24 

>538 (Residues) 30.76 30.39 14.64 18.51 19.66 

a From Vardon et al. (2011).  

7.4.3.3 Average molecular weight 

The average molecular weights (Mw: weight average; Mn: number average) and 

polydispersity index (PDI = Mw/Mn) of bio-crude oils obtained from co-liquefaction of 

AB/SD with various mass ratios in ethanol-water (75/25 wt/wt) mixed solvent at 250 °C 

for 60 min were determined via GPC-UV. Fig. 7.6 presents the GPC curves of bio-crude 

oils.  
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Figure 7-6: The average molecular weight of bio-crude oils obtained using pure algal 

biomass (AB), AB/SD (50/50, wt/wt), or pure sawdust (SD) as feedstock in ethanol-water 

(75/25 wt/wt) mixed solvents at 250 °C for 60 min. 

As shown in Table 7.4, the bio-crude from AB has the smallest Mn (253 g/mol) and Mw 

(536 g/mol), and the oil from SD has the highest Mn (468 g/mol) and Mw value (957 

g/mol), while the bio-crude obtained from co-liquefaction of AB and SD has average 

molecular weights falling in between (Mn: 299-325 g/mol and Mw: 671-723 g/mol). 

Although a high Mw of bio-crude could be attributed to polymer-linking functional 

groups such as esters and ethers in the bio-crude oils (Adjaye et al., 1992), the authors 

believe that the much higher Mw for the SD-derived oil is mainly due to the presence of 

lignin – a more complex and larger molecule in woody biomass, compared with protein, 

carbohydrates, and lipid in the AB (Nazari et al., 2017). 
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Table 7-4: Average molecular weight of bio-crude products obtained from co-

liquefaction of algal biomass (AB) and sawdust (SD) with different AB/SD mass ratios in 

ethanol-water (75/25, wt/wt) mixed solvent at 250 °C for 60 min. 

 AB/SD mass ratio 

 0/100  25/75  50/50  75/25  100/0  

Mn (g/mol) 468 325 316 299 253 

Mw (g/mol) 957 707 723 671 536 

PDIa 2.04 2.18 2.29 2.24 2.12 

a Calculated by Mw/Mn.  

7.4.3.4 FT-IR analysis  

FT-IR spectra of the bio-crude oils derived from co-liquefaction of AB/SD with various 

mass ratios in ethanol-water (75/25, wt/wt) mixed solvents at 250 °C for 60 min are 

displayed in Fig. 7.7. A broad peak between 3600 and 3000 cm-1 corresponding to O-H 

and N-H stretching vibration was observed in all oil samples. The peaks at 2963 cm-1, 

2924 cm-1, and 2856 cm-1 may be related to the symmetrical and asymmetrical C-H 

stretching vibration. Another peak at 1709 and 1670 cm-1 can be ascribed to C=O 

stretching vibration.  Besides, the peak at 1655 cm-1 can be related to C=O stretching 

vibration arising from primary amides. The peaks at 1608 cm-1 and 1515 cm-1 can be 

attributed to the aryl groups in aromatic compounds. The adsorption peaks at 1203 cm-1, 

1112 cm-1, and 1047 cm-1 can be assigned to C-O stretching vibrations from tertiary, 

secondary, and primary alcohols, respectively. Finally, the peak at 760 cm-1 can be 

ascribed to C-H vibration from aromatics. Obviously, there are some distinct differences 

among the IR spectra of the bio-crude samples. A strong peak at 1709 cm-1 representing 

carbonyl C=O group from carboxylic acid can be only observed in the bio-crude obtained 

from SD, which combines with the existence of O-H group might indicate the presence of 

carboxylic acids in the bio-crude. Acids are reported to be one of the most common 

compounds in the bio-crude obtained from woody biomass (Adjaye et al., 1992). Besides, 

the peak at 1655 cm-1 corresponding to C=O vibration from amides was not detected in 
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the bio-crude obtained from liquefaction of SD alone, which is expected as the SD used 

contains negligible N (Table 7.1). The peaks at 1608 cm-1 and 1515 cm-1 relating to C=C 

aromatic ring vibration are less intensive in the bio-crude obtained from AB alone or the 

mixed feedstocks, whereas, an intensive peak 760 cm-1 representing C-H vibration from 

aromatic compounds can only be observed in the oil from SD due to the presence of 

lignin (phenolic polymer) in the woody biomass sample. 

 

Figure 7-7: FT-IR spectra of bio-crude oils obtained using pure algal biomass (AB), 

AB/SD (50/50, wt/wt), or pure sawdust (SD) in ethanol-water (75/25, wt/wt) mixed 

solvents at 250 °C for 60 min. 

7.4.4 Characterization of solid residue  

The elemental compositions and HHVs of solid residues from co-liquefaction of mixed 

feedstocks with varying AB/SD mass ratios in ethanol-water (75/25, wt/wt) mixed 

solvent at 250 °C for 60 min are presented in Table 7.5. The C and H contents in the solid 
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residue gradually decrease with increasing mass percentage of AB in the mixed 

feedstocks, so does the HHVs, while the O and N contents in the solid residue exhibit an 

opposite trend. The solid residue obtained from SD alone has the highest HHV of 16.6 

MJ/kg, close to that of the raw material (18.2 MJ/kg, Table 7.1). 

Table 7-5: Elemental compositions and HHVs of solid residues obtained using pure algal 

biomass (AB), AB/SD (50/50, wt/wt), or pure sawdust (SD) as feedstock in ethanol-water 

(75/25, wt/wt) mixed solvents at 250 °C for 60 min. 

Elemental composition 

(%)a 

AB/SD mass ratio  

0/100 25/75 50/50 75/25 100/0 

C 46.55 47.41 45.96 44.79 35.00 

H 6.48 6.39 5.40 5.51 3.83 

Ob 46.88 45.65 46.97 46.46 56.21 

N 0.09 0.55 1.67 3.04 4.81 

S 0.00 0.00 0.00 0.20 0.15 

H/C 1.67 1.62 1.41 1.48 1.31 

O/C 0.76 0.72 0.77 0.78 1.20 

N/C 0.00 0.01 0.03 0.06 0.12 

HHV (MJ/kg)c 16.62 17.00 14.86 14.73 7.28 

a On dry basis; b Determined by difference; c Calculated by DuLong equation.  
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7.4.5 Aqueous phase recirculation studies  

Recycling and reuse of aqueous phase (or process water) as liquefaction medium was 

investigated for co-liquefaction of AB/SD (50/50, wt/wt) at 250 °C for 60 min. As shown 

in Table 7.6, co-liquefaction in the recycled aqueous phase resulted in a bio-crude yield 

of 9.2 wt.% and solid residue yield of 38.9 wt.%, both comparable to those of the 

operation in water medium (11.1 wt.% and 31.3 wt.%, respectively).   

Table 7-6: The products distribution and elemental compositions obtained from co-

liquefaction of AB and SD (50/50, wt/wt) in recycled aqueous phase at 250 °C for 60 

min. 

Liquefaction yields 

(wt.%) 

Recycled 

aqueous phase 

Pure water   

Bio-crude  9.16 ± 2.17 11.13 ± 0.17 

Solid residue 38.93 ± 2.24  31.29 ± 3.56 

Aqueous phase & 

Gasa 

51.90 ± 0.07 57.58 ± 3.39 

Elemental 

composition (wt.%)b 

Recycled aqueous phase Ethanol-water (75/25, 

wt/wt) mixed solvents 

Bio-crude  Solid residue Bio-crude  Solid residue 

C 70.28 62.25 64.23 45.96 

H 9.63 6.61 9.17 5.40 

Oa 15.46 26.95 22.10 46.97 

N 4.57 4.12 4.50 1.67 

S 0.06 0.07 0.00 0.00 

H/C 1.64 1.27 1.71 1.41 

O/C 0.16 0.32 0.26 0.77 

HHV (MJ/kg)c 34.75 25.68 30.86 14.86 

a Determined by difference; b On dry basis; c Calculated by DuLong equation.  
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The elemental compositions and HHV of bio-crude and solid residue from co-

liquefaction of AB/SD (50/50, wt/wt) in both recycled aqueous phase and ethanol-water 

(75/25, wt/wt) mixed solvent at 250 °C for 60 min are compared in Table 7.6. 

Interestingly, HHV (34.8 MJ/kg) of bio-crude obtained using the recycled aqueous phase 

as liquefaction medium is higher than that (30.9 MJ/kg) of bio-crude obtained in ethanol-

water (75/25, wt/wt) mixed solvent. The bio-crude obtained with recycled aqueous phase 

liquefaction medium has higher C and H contents and lower O content when compared 

with those of bio-crude obtained in ethanol-water mixed solvent (75/25, wt/wt), while 

there are not much differences in the N and S contents for the two bio-crude oils. As also 

shown in Table 7.6, the solid residue obtained from co-liquefaction in the recycled 

aqueous phase medium has higher C, H, and N contents and a lower O content, hence a 

greater HHV (25.7 MJ/kg), compared with the solid residue obtained in ethanol-water 

mixed solvent (75/25, wt/wt). The above results suggest that the aqueous by-product from 

the co-liquefaction can be potentially recycled and reused as an effective reaction 

medium for the co-liquefaction process to minimize the waste generation from the 

process.   

The major chemical compounds (i.e., relative peak area>0.5% in the total peak area) of 

aqueous phase were identified using GC-MS analysis, as shown in Appendix-H. It should 

be noted that only a fraction of chemical compounds in the aqueous phase can be 

identified by the GC-MS since some high molecular weight compounds cannot be eluted 

into GC column. Some organic acids can be observed in the water phase. Acetic acid 

(RT. 3.73) is the dominant specie with a 11.33% of the total area. In literature, acetic acid 

is normally identified in the aqueous phase produced from HTL of lignocellulose (Zhu et 

al., 2015) or algal biomass (Hu et al., 2018).  Besides, it can be found that the polyols are 

present in the aqueous phase, such as glycerol (RT. 9.76) and 1,2,3,4-butanetetrol, [S-

(R*,R*)]-  (RT. 9.84), which is possibly attributed to the polyol structure of cellulose and 

hemicellulose in the sawdust. Another reason could be due to the hydrolysis of lipid 

fraction in the algal biomass into glycerol (RT. 9.84). As expectedly, N-containing 

compounds are detected as the major compounds in the aqueous phase, possibly caused 
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by the degradation of protein in the co-liquefaction process. Among them, small amine 

compounds [e.g., 2-butanamine, (S)- (RT. 18.53)] can be observed in the aqueous phase, 

which could be resulted from the decarboxylation of amino acid. 

7.5 Conclusions 

In this study, co-liquefaction of algal biomass (AB) and sawdust (SD) in ethanol-water 

mixed solvent was investigated. The highest bio-crude yield of 57.8 wt.% was obtained 

from co-liquefaction of AB/SD (50/50, wt/wt) in ethanol-water (75/25, wt/wt) mixed 

solvent at 250 °C for 60 min. This work demonstrated the synergistic interactions 

between AB/SD feedstocks and ethanol/water mixed solvents in the co-liquefaction 

process. The co-liquefaction of AB/SD resulted in bio-crude oil containing a higher 

fraction of light oil components than those obtained from liquefaction of AB or SD alone. 

In addition, this work demonstrated that the aqueous by-product could be recycled and 

reused as reaction medium for the co-liquefaction process to minimize the waste 

generation from the process. 
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Chapter 8 

8 Conclusions and future work 

8.1 Conclusions  

The aim of this work was to develop hydrothermal process for the cost-effective 

production of bio-crude oil from microalgae without the requirement of de-

watering/drying. Initially, an alternative pre-treatment using a pre-cooled NaOH/urea 

solution was investigated in order to maximize energy recovery from microalgae. Based 

on this microalgal pre-treatment, a two-step HTL treatment was investigated for C. 

vulgaris with aims for producing a high-quality bio-crude oil. This project also 

demonstrated effectiveness of reusing the water phase from HTL of microalgae as a 

liquefaction medium for producing bio-crude oil, which yields great significance for the 

industrial-scale HTL applications. In addition, the effects of solvent, catalyst, residence 

time, biomass/solvent ratio, reaction temperature, and reaction medium composition on 

the direct liquefaction of microalgal biomass were explored. Finally, co-conversion of 

microalgae and lignocellulosic biomass was carried out in ethanol-water mixed solvents 

under various reaction conditions, and synergistic interaction between the two feedstocks 

and ethanol/water in the co-liquefaction were proved.  

The following detailed conclusions could be drawn from this research:  

• In Chapter 3, an alternative pre-treatment by cold NaOH/urea solvent was 

identified as an effective cell-disruption approach for microalgae.   

• In Chapter 4, the pre-treated microalgae from NaOH/urea solvent pre-treatment 

resulted in a higher yield of bio-crude oil with a better quality.  

• In Chapter 5, two catalysts including Na2CO3 and HCOOH did not exhibit 

positive effects on the bio-crude oil yield from C. vulgaris. Recycled aqueous 

phase from catalytic/non-catalytic HTL led to an increase in the bio-crude oil 

yield without affecting oil quality (i.e., heating value).  
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• In Chapter 6, methanol was determined as the most effective reaction medium 

for converting microalgae into bio-crude oil. A high bio-crude oil yield of 85.49 

wt.% can be obtained from direct liquefaction of microalgal biomass in methanol 

at mild reaction conditions (i.e., 225 °C; 60 min).  

• In Chapter 7, the synergistic interactions between microalgae/sawdust and 

ethanol/water can be observed in the co-liquefaction process. The aqueous by-

product could be potentially reused as the reaction medium for bio-crude oil 

production.  

8.2 Future work 

• Cell wall structure and composition of microalgae are believed to have great 

effects on the cell disintegration rate during microalgae pre-treatment, but the 

relevant literature is still lacking (Scholz et al., 2014). As such, extensive research 

is required to obtain a deeper understanding of the relationships between cell wall 

characteristics and disruption efficiency.  

• Although HTL has demonstrated to be a promising and cost-effective route for 

microalgae-to-fuels conversion, no large-scale production facility has been 

demonstrated due to some  technical challenges, of which the most important are: 

(i) continuous pumping of solid-liquid mixtures to a high-pressure HTL rector in 

continuous operation mode can be difficult and energy-demanding, (ii) a high 

content of heteroatoms such as nitrogen and oxygen in microalgae-derived bio-

crude oils requires additional  upgrading treatment (such as hydro-processing) 

before they can be sued as a liquid transportation fuel.  

• More value-added applications of microalgae-derived bio-crude oils for bio-based 

chemicals and polymer materials need to be explored. For example, a promising 

high-value utilization of microalgae-derived bio-crude oils can be as a carbon 

feedstock for Polyhydroxyalkanoates (PHAs) production via bio-conversion. 

PHAs are polyesters that are suitable for the production of bio-based and 



178 

 

 

 

biodegradable polymer (Andin et al., 2017). PHAs can be accumulated as 

intracellular carbon and energy reserve in a variety of microorganisms. PHAs can 

be categorized into two groups, namely, (i) short-chain length PHAs (scl-PHAs) 

consist of 3-hydroxy fatty acids of 3-5 carbon units, and (ii) medium-chain length 

PHAs (mcl-PHAs) are composed by 6-14 carbon units (Cruz et al., 2016). 

Previous studies have used vegetable oils mainly consisting of fatty acids as 

carbon substrate for mcl-PHA production using Pseudomonas putida (Andin et 

al., 2017; Cruz et al., 2016; Follonier et al., 2015). Long-chain fatty acids such as 

palmitic acid and linoleic acid are commonly identified in the microalgae-derived 

bio-crude oil. Hence, fatty acid-containing microalgal bio-crude oil was employed 

as feedstock for accumulating mcl-PHA by Pseudomonas putida KT2440 (ATCC 

47054). In fact, we employed similar experiment procedure as reported by Andin 

et al. (2017), Cruz et al., (2016), and Brandl et al. (1998) and performed some 

preliminary work on bioconversion of microalgae-derived bio-crude oils for the 

production of PHAs, while the results are too preliminary to report in this thesis.  

8.3 Contributions 

• In Chapter 3, an alternative pre-treatment by cold NaOH/urea solvent was 

developed for microalgae.  

• In Chapter 4, a two-step HTL technology combining with a cold NaOH/urea 

solvent pre-treatment demonstrated positive effects on the quantity and quality of 

bio-crude oil. 

• In Chapter 5, the feasibility for improving the overall economy of catalytic HTL 

can be achieved through recycling the water phase as the reaction medium for 

producing bio-crude oil. 

• In Chapter 6, the use of methanol as the reaction medium exhibits the beneficial 

effects on the bio-crude oil production from microalgae.  
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• In Chapter 7, very first study on investigating the co-liquefaction of microalgae 

and other lignocellulosic biomass in ethanol-water mixed solvents under various 

reaction conditions.  
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Appendices  

Appendix-A: Major chemical compounds in the bio-crude oil obtained from pre-treated 

microalgae at 250 ℃ for 30 min using GC-MS. 

RTa Area (%) Compounds  

2.66 2.32 Pyrazine 

3.54 2.03 Pyrazine, methyl- 

8.40 1.13 Indole 

10.07 1.05 3,7,11,15-Tetramethyl-2-hexadecene 

10.12 1.55 1,11-Tridecadiene 

10.39 1.70 1,4-Eicosadiene 

10.53 1.02 6,6-Dimethyl-2-azaspiro[4.4]non-1-ene 

10.86 1.73 Cyclohexanol, 2,6-dimethyl- 

11.20 1.05 Cyclo(valylvalyl) 

11.32 1.86 Isobutyraldehyde, propylhydrazone 

11.42 2.41 l-Alanine, N-valeryl-, pentyl ester 

11.53 1.59 3-Ethoxy-4-methoxyphenol 

11.67 6.32 1-Butylimidazolidine-2,4-dione 

11.87 5.38 l-Proline, N-allyloxycarbonyl-, hexyl ester 

12.07 3.41 Phenol, 3,5-dimethoxy- 

12.20 1.48 di-n-Decylamine 

12.31 3.76 3-Nitroso-3-azabicyclo[3.2.2]nonane 

12.37 6.59 Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl)- 

12.52 1.91 Methyl N-(cyclopropylcarbonyl)-L-leucinate 

13.72 1.38 9,10-Ethanoanthracene-9(10H)-methylamine, N-methyl-, 9,10-dihydro 

14.08 1.89 3-Benzyl-6-isopropyl-2,5-piperazinedione 
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14.55 1.07 Phenol, 2,2'-methylenebis[6-(1,1-dimethylethyl)-4-ethyl- 

a Represents retention time (min). 
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Appendix-B: Major chemical compounds detected by GC-MS in the bio-crude oils 

obtained from HTL of raw and pre-treated microalgae (pre-treatment by pre-cooled 

NaOH/urea solution) at 250 ºC for 10 min. 
  Area (%) 

RTa Compounds Oil from raw 

microalgae 

Oil from the 

pre-treated 

microalgae 

2.69 1,3,5-Hexatriene, (E)-  0.46 

3.44 Pyrazine, methyl-  0.58 

8.03 3,7,11,15-Tetramethyl-2-hexadecene  0.24 

8.08 3-Eicosyne 1.12  

8.25 cis-Pinane  0.90 

8.26 6,6-Dimethyl-2-azaspiro[4.4]non-1-ene 1.33  

8.35 1-Ethyl-2-undecylimidazole  0.39 

8.36 Pinane 0.56  

8.58 Isophytol 0.74 0.62 

8.62 1,3-Dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone 1.51 0.99 

8.89 Palmitic acid 6.92 8.24 

8.94 7-Tetradecyne  14.83 

8.94 8-Dodecen-1-ol, (Z)- 14.52  

9.01 2-Methoxy-2,3-dihydrofuran-3-carbaldehyde  2.98 2.55 

9.10 3-Pyrrolidin-2-yl-propionic acid 1.75  

9.16 5-ethyl-5-pentan-2-yl-1,3-diazinane-2,4,6-trione  7.21 

9.17 Cyclo(Valylvalyl) 6.65  

9.24 5,5-Dimethylbarbituric acid 3.25  

9.29 2,6-Dimethylheptane-3,5-dione  3.37  

9.46 Biphenyl  7.48 

9.46 l-Proline, N-butoxycarbonyl-, nonyl ester 6.45  

9.55 Glycerol monooleate   2.00 

9.59 Linoleic acid 22.19 27.74 

9.93 Lauric amide  2.00 

9.94 Palmitamide 2.08  

9.98 Z,Z-10,12-Hexadecadien-1-ol acetate  3.57 
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10.00 5,10-Diethoxy-2,3,7,8-tetrahydro-1H,6H-dipyrrolo[1,2-a:1',2'-

d]pyrazine 

3.71  

10.84 1,3,12-Nonadecatriene  4.31 

10.90 cis-7,cis-11-Hexadecadien-1-yl acetate 1.82  

11.09 2,5-Piperazinedione, 3-methyl-6-(phenylmethyl)- 1.64 1.11 

11.25 3-benzyl-6-isopropyl-2,5-Piperazinedione 1.36 1.88 

11.65 Phenol, 2,2'-methylenebis[6-(1,1-dimethylethyl)-4-ethyl- 1.27 0.95 

11.80 Diethyl itaconate  1.61 

12.45 Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(phenylmethyl)-  1.11 

12.47 Cyclo-Phe-Pro-diketopiperazine 1.66  

Total   86.88 90.77 

a Represents retention time (min). 
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Appendix C: The major compounds in the aqueous phase before and after recycling. 

RT 

(min)a 

Compounds in aqueous phase  Area (%) 

Before 

recycling  

After 

recycling 

4.19 Acetic acid  6.96 0.59 

5.78 Propanoic acid 0.66  

5.99 N-Ethylidene t-butylamine 0.16  

6.41 Piperidine 0.24  

7.80 Butanoic acid, 3-methyl- 0.76  

7.86 Acetamide, N-methyl-  0.51 

8.17 Oxime-, methoxy-phenyl-_ 5.39 3.41 

8.81 Pentanoic acid, 4-methyl- 1.44  

9.95 Glycerol 8.10 5.49 

10.08 1,2,3,4-Butanetetrol, [S-(R*,R*)]-  1.31 

10.23 N-Dimethylaminomethyl-N-methylformamide  1.74 

10.27 Propanamide, 2-hydroxy-N-methyl- 1.00  

10.66 2-Pyrrolidinone 1.35 1.34 

10.80 3-Pyridinol  1.60 

10.92 4-Pyridinoe 2.80  

10.99 Methanone, dicyclohexyl-  1.07 

11.02 But-3-enyl (E)-2-methylbut-2-enoate 1.37  

11.25 3-Pyridinol, 6-methyl- 2.14 1.63 

11.58 1-[2-(2,5-dimethyl-1H-pyrrol-1-yl)ethyl]piperazine 0.11  

11.62 2-Methyl-2,4,5,6-tetrahydrocyclopenta[c]pyrazol-3-amine  0.36 

11.78 2-Piperidinone 1.06 1.68 

11.87 Spiro-3-(2-butyl-2,4-diazabicyclo[3.3.0]octan-1-one)-

cyclohexane 

 0.73 
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11.98 2-Piperidinone, 1-methyl-  0.36 

12.10 (S)-(+)-2',3'-Dideoxyribonolactone  0.70 

12.28 2-Propenoic acid, 3-(2-amino-1H-imidazol-5-yl)-  1.06 

12.64 Caprolactam 0.14  

12.92 Indole  0.28 

13.14 2,4-Dimethylamphetamine  0.34 

13.18 Phenylpropanoic acid 0.35  

13.52 Tenamfetamine  0.13 

13.65 2-Propenamide, N-(1-methylethyl)-  0.30 

13.70 (3β,20S)-20-Aminopregn-5-en-3-ol  0.11 

13.79 Ethanamine, 2-phenoxy-  0.15 

13.86 L-Alanine, N-acetyl-  0.43 

13.92 2-Heptanamine, 5-methyl-  1.57 

13.95 2-(2-Aminopropyl)phenol  0.12 

14.04 1-Octadecanamine, N-methyl-  1.09 

14.17 N(6)-Methyllysine  0.83 

14.43 N-Methyl-2-phenyl-1-propylamine  0.26 

14.48 2,3-Dimethoxyamphetamine  0.22 

14.49 1,6-Hexanediamine, N,N'-dimethyl-  0.26 

14.56 p-Hydroxyamphetamine  0.33 

14.71 5,5,8a-Trimethyldecalin-1-one 0.10  

14.73 Metaraminol  4.06 

14.75 Arginine  0.22 

14.89 Propan-1-one, 2-amino-1-piperidin-1-yl-  0.62 

16.04 3,6-Dimethylpiperazine-2,5-dione 2.71 2.24 

16.07 3,3-Dimethyl-4-methylamino-butan-2-one  0.45 
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16.13 N-Acetyl-2-methylamphetamine  0.48 

16.18 N,N'-Dimethyl-decane-1,10-diamine  0.26 

16.20 Tricyclo[10.2.2.2(5,8)]octadeca-5,7,12,14,15,17-hexaene, 6-

nitro- 

0.08  

16.41 3,3-Dimethylpiperidine  0.83 

16.52 2-Cyclohexen-1-one, 4,4,5-trimethoxy-  1.43 

16.58 2,5-Piperazinedione, 3-methyl-6-(1-methylethyl)- 5.41  

16.60 1,3-Dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone  1.26 

16.79 Benzeneethanamine, 4-methoxy-.alpha.-methyl-  1.79 

16.83 1-Octanamine, n-octyl-  0.54 

17.03 (3S,6S)-3-Butyl-6-methylpiperazine-2,5-dione  1.64 

17.07 2,4(1H,3H)-Pyrimidinedione, 5-hydroxy-  1.45 

17.09 N-Ethyl-4-methyl-4-octanamine 3.98  

17.13 L-Alanyl-L-Leucine 2.39  

17.21 l-Pyrrolid-2-one, N-carbamoyl- 3.40 1.90 

17.24 2-Amino-4-hydroxy-6-methylpyrimidine  2.50 

17.28 3-Methoxy-4,4-dimethyl-1-cyclohexene 3.66  

17.33 1-Pyrrolidineethanamine  0.22 

17.37 1-Piperidineacetic Acid  0.29 

17.46 3H-Pyrrolizin-3-one, hexahydro- 2.71  

17.46 2-Pentanamine, N-(1-methylbutyl)-  0.67 

17.53 Cyclo-(glycyl-l-leucyl) 1.66  

17.54 2,4(1H,3H)-Pyrimidinedione, dihydro-  1.21 

17.61 L-Threonine, N-glycyl 1.74  

17.61 2-(4-Acetyl-5-methyl-[1,2,3]triazol-1-yl)-acetamide  0.97 

17.77 Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro- 3.36 2.90 
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17.86 Phenol, 3,5-dimethoxy- 1.11  

17.99 Duloxetine 0.19  

18.05 3-Azabicyclo[3.2.2]nonane  1.15 

18.28 Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-

methylpropyl)- 

0.45  

18.70 Phenethylamine, 3,4,5-trimethoxy-.alpha.-methyl-  2.91 

18.98 Propanamide, 3-(3,4-dimethylphenylsulfonyl)- 0.41  

19.66 2,5-Piperazinedione, 3-methyl-6-(phenylmethyl)- 1.41  

19.74 Benzaldehyde, 2-nitro-, diaminomethylidenhydrazone  0.12 

19.77 Methylpent-4-enylamine  0.50 

19.85 dl-Alanyl-l-phenylalanine  0.82 

19.92 Trimethoxyamphetamine  0.18 

19.97 Methoxyamphetamine  0.31 

20.06 Haliclorensin  0.22 

20.08 2-Amino-1-(o-hydroxyphenyl)propane  1.00 

20.20 1-Pentanamine, N-methyl-   0.30 

20.22 Amphetamine  0.23 

20.27 Sarcosine, N-valeryl-, undecyl ester 0.03  

20.41 2,5-Piperazinedione, 3-(phenylmethyl)- 0.63  

20.41 Northiaden  0.20 

20.62 Desmethyldoxepin  0.29 

20.82 3-Ethoxyamphetamine  1.40 

21.41 2-pentanamine    0.26 

a Represents retention time (min). 
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Appendix D: The color of aqueous phase obtained from baseline experiment and the 

subsequent water phase recycling studies at 275 °C for 50 min. 
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Appendix-E: The major compounds in the bio-crude oil obtained with and without 

recycled aqueous phase. 

RT 

(min)a 

Compounds in bio-crude oil Area (%) 

Baseline 

experiment 

Recycle rounds 

   1 2 3 

2.66 Pyrazine  0.10 0.08 0.09 0.14 

2.70 Cyclobutane, 1,2-bis(methylene)- 0.09  0.07  

2.70 Pyridine   0.08  0.21 

3.24 1H-Pyrrole, 3-ethyl-  0.02  0.03 

3.24 1H-Pyrrole, 1-ethyl-   0.02  

3.33 Pyridine, 2-methyl- 0.17 0.13 0.11 0.23 

3.54 Pyrazine, methyl- 0.56 0.58  1.02 

3.54 3-Aminopyridine   0.59  

3.91 Acetic acid 6-methoxy-8-methyl-8-

azabicyclo[3.2.1]octan-3-yl ester 

 0.02   

3.91 1H-Pyrrole, 2,5-dimethyl-   0.02  

3.94 Pyridine, 3-methyl-    0.13 

3.95 Pyridine, 2,6-dimethyl-  0.04   

3.97 Styrene   0.07  

3.97 Bicyclo[4.2.0]octa-1,3,5-triene    0.12 

4.21 Pyridine, 2-ethyl-   0.04 0.07 

4.41 Pyrazine, 2,5-dimethyl- 0.37 0.36 0.36 0.64 

4.45 Phenol, 2-methyl- 0.54 0.19  0.96 

4.45 2-Pyridinamine, 5-methyl-   0.57  

4.53 Pyridine, 2,5-dimethyl- 0.18  0.19  

4.59 2-Methyl-2-cyclopenten-1-one 0.39 0.26 0.23 0.57 

5.25 Pyrazine, 2-ethyl-5-methyl- 1.24 1.26 0.50 0.80 

5.30 Pyrazine, trimethyl- 0.20 0.26 0.29 0.48 
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5.44 Pyridine, 5-ethyl-2-methyl-   0.72 1.11 

5.52 1H-Pyrrole, 2,3,5-trimethyl-   0.07 0.08 

5.60 Phenol   0.26 0.26 0.28 0.33 

5.89 Pyrazine, 3-ethyl-2,5-dimethyl-  0.06 0.08 0.10 

5.91 4-Nonyne 0.12    

5.91 2-Cyclopenten-1-one, 2,3-dimethyl-   0.07  

5.91 Spiro[2.4]heptan-4-one    0.12 

5.94 N-Ethyl-p-toluidine 0.29 0.30   

5.94 Benzenamine, N-ethyl-2-methyl-   0.31  

5.94 Benzenamine, 2-ethyl-6-methyl-    0.43 

6.14 2-Ethyl-3,5-dimethylpyridine    6.21 

6.15 Pyridine, 2-ethyl-4,6-dimethyl-   0.10  

6.19 1H-Pyrrole, 3-ethyl-2,4-dimethyl-  0.13 0.14  

6.22 Pyridine, 3-methyl-5-propyl- 0.05   0.06 

6.25 Phenol, 2-methoxy- 0.11  0.20  

6.25 1-Acetylcyclohexene  0.13   

6.25 Ethanone, 1-(1-cyclohexen-1-yl)-    0.23 

6.35 4-methylphenol 0.29 0.28 0.27 0.39 

6.35 1-Methyl-1H-imidazole-2-carbonitrile    0.35 

6.44 Pyrrole, 2,3,4,5-tetramethyl-  0.26 0.33  

6.55 Benzenamine, N-ethyl-3-methyl-  0.19   

6.55 3-Isopropylaniline   0.19 0.23 

6.60 Acetamide, N-(4-methylphenyl)-   0.21 0.26 

6.90 2-ethyl-3,4,5-trimethyl-1H-pyrrole 0.16 0.21   

6.90 1H-Pyrrole, 3-ethyl-2,4,5-trimethyl-    0.26 

6.95 2,5-Pyrrolidinedione, 1-methyl- 0.93 1.15 1.17 1.40 

7.12 2,5-Pyrrolidinedione, 1-ethyl-  0.50 0.44 0.46 0.64 
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7.29 Pyrrolidine, 1-acetyl- 1.38 1.45 1.63 2.40 

7.44 2-Methyl-5-(3-methylbutyl)pyridine 0.58 0.69 0.70 0.90 

7.58 Benzenamine,2,6-bis(1-methylethyl)- 0.13 0.25 0.16 0.27 

7.65 2-Piperidinone 0.65 0.82 0.86 1.40 

8.06 Naphthalene 0.25   0.24 

8.16 Caprolactam 0.63 0.64 0.32  

8.16 Piperidine-2,5-dione    0.79 

8.32 1-Naphthalenol, 5,6,7,8-tetrahydro 0.37    

8.38 Indole  0.66 0.56 0.50  

8.38 5H-1-Pyrindine    0.57 

8.66 Phenylmalonic acid    0.25 

8.95 1H-Indole, 3-methyl- 0.45  0.58  

8.95 1H-Indole, 4-methyl-  0.25   

9.00 1H-Indole, 7-methyl- 0.26    

9.22 N6-Methyl-L-lysine  0.28   

9.53 Benzenamine N-(1-methyl-2-propenyl)-   0.50  

9.62 2,5-Dimethylindolizine 0.16    

9.62 Indolizine, 2,8-dimethyl-  0.29   

9.62 2-Methyl-5-(1-butyn-1-yl)pyridine   0.33  

9.72 [1,1'-Biphenyl]-3-amine 0.40    

9.72 [1,1'-Biphenyl]-4-amine  0.44  0.32 

9.72 Pyridine, 2-methyl-5-phenyl-   0.36  

9.81 Acetamide, N-(2-phenylethyl)- 0.60 0.72 2.81 0.81 

9.90 1H-2-Indenone,2,4,5,6,7,7a-hexahydro-3-(1-

methylethyl)-7a-methyl 

0.36    

9.90 Dihydroactinidiolide   0.33  

9.90 4,4,7a-Trimethyl-5,6,7,7a-tetrahydrobenzofuran-

2(4H)-one 

   0.29 
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9.98 3,7,11,15-Tetramethyl-2-hexadecene 1.25 0.60 0.60  

9.98 2,6,10,14-Tetramethyl-2-hexadecene    0.44 

10.06 Acetic acid, 3,7,11,15-tetramethyl-hexadecyl ester  0.68   

10.06 Cyclohexane, 2-ethyl-1,3-dimethyl-    0.53 

10.07 7-Tetradecene   0.66  

10.11 Citronellyl acetate   0.65  

10.11 6-Octen-1-ol, 3,7-dimethyl-, formate    0.58 

10.38 2-Cyclohexen-1-one, 4,4-dimethyl-  1.05   

10.38 6,6-Dimethyl-2-azaspiro[4.4]non-1-ene    0.94 

10.50 1,7-Trimethylene-2,3-dimethylindole 0.18 0.19 0.21 0.16 

10.53 (2Z,4E)-3,7,11-Trimethyl-2,4-dodecadiene 0.83  1.12  

10.72 Ethyl 1-methyl-2-oxocyclohexanecarboxylate   0.22  

10.72 Sarcosine, N-(3-cyclopentylpropionyl)-, butyl ester    0.14 

10.81 1,7-Trimethylene-2,3,5-trimethylindole  0.26 0.30  

10.86 Glycylsarcosine  0.70   

10.92 (3S,6S)-3-Butyl-6-methylpiperazine-2,5-dione 0.50  0.58  

11.07 Hexadecanenitrile   0.44  

11.20 Cyclo(valylvalyl) 1.15 4.76 0.98 1.29 

11.33 n-Hexadecanoic acid 2.37 2.40 3.20 2.07 

11.37 Cyclooctanone Oxime 3.56    

11.37 3,3-Diacetyl-2,3,4,5-tetrahydro-2-oxofuran    3.35 

11.44 1-Heptanamine, N-heptyl- 2.00 1.90   

11.44 1,3-Dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone    1.89 

11.52 3-Ethoxy-4-methoxyphenol 1.10 1.22   

11.52 3-Acetyl-1H-benzo[e]indole-1,2(3H)-dione 1-oxime   1.16  

11.52 Hexahydropyrrolizin-3-one    1.38 

11.68 Probarbital 4.22  3.55  
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11.77 4-Dibutylaminobut-2-en-1-ol    1.87 

11.78 1-Butylhydantoin 1.86 1.61 1.36 4.92 

11.86 1,4-Dioxaspiro[4.5]decane    2.38 

11.87 2,2,4,4-Tetramethyl-6-oxabicyclo[3.1.0]hexan-3-one 2.44    

11.87 l-Norvalyl-l-norvaline, n-propargyloxycarbonyl-, 

pentyl ester 

 2.16   

11.88 6-oxabicyclo[3.1.0]hexan-3-one, 2, 2,4,4-tetramethyl-   2.08  

11.98 Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro- 0.65 0.87  0.74 

12.07 Phenol, 3,5-dimethoxy- 2.01 1.70 1.54  

12.07 3-Hydroxy-4-methoxybenzyl alcohol    2.20 

12.11 2,5-Piperazinedione, 3,6-bis(2-methylpropyl)- 2.86    

12.11 d-Proline, N-isobutoxycarbonyl-, isobutyl ester  2.26   

12.11 l-Proline, N-isobutoxycarbonyl-, undec-10-enyl ester   2.07  

12.11 l-Leucine, N-allyloxycarbonyl-N-methyl-, heptyl 

ester 

   2.58 

12.21 5-Acetyl-2,4,6(1H,3H,5H)-pyrimidinetrione 1.24    

12.21 1-Pentanamine, N,N-dipentyl-  1.03   

12.22 p-Hydroxybiphenyl   0.92 1.10 

12.26 Formamide, N,N-dioctyl- 0.47    

12.31 9,12-Octadecadienoic acid (Z,Z)- 2.21 9.25 8.25 1.50 

12.37 5-Nitroso-2,4,6-triaminopyrimidine 2.32    

12.37 L-Proline, N-valeryl-, undecyl ester  2.20   

12.37 Methyl N-(cyclopropylcarbonyl)-L-leucinate    2.39 

12.43 Methyl (9Z,12Z)-9,12-heptadecadienoate  0.38   

12.44 9-Eicosyne   0.46  

12.47 2-Amino-5-nitrophenol 2.37    

12.47 Sebacic acid, butyl 2,6-dimethoxyphenyl ester  2.06   

12.47 3,3,5,5-Tetramethyl-1,2-cyclopentanedione   1.96  
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12.47 Phenol, 2-amino-5-nitro-    2.48 

12.52 Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-

methylpropyl)- 

1.53  2.54  

12.52 L-Proline, N-valeryl-, heptadecylester  1.45   

12.52 d-Proline, N-allyloxycarbonyl-, heptadecyl ester   1.36  

12.53 d-Proline, N-allyloxycarbonyl-, pentadecyl ester    1.57 

12.59 3-Azabicyclo[3.2.2]nonane, 3-nitroso- 1.00    

12.59 Methyl (9Z,12Z)-9,12-heptadecadienoate   1.09  

12.67 Varenicline    0.34 

12.68 1,3,12-Nonadecatriene   0.43  

12.75 5,10-Diethoxy-2,3,7,8-tetrahydro-1H,6H-

dipyrrolo[1,2-a:1',2'-d]pyrazine 

2.61   2.47 

12.75 5-Hydroxy-2,2,6,6-tetramethyl-4-cyclohexene-1,3-

dione 

 2.63   

12.75 2,3-Dimethyl-1-hexene    2.36  

12.79 N-Methyldodecanamide   1.65  

12.80 1-Hexadecanamine 1.67    

12.80 1-Octadecanamine  1.77   

12.88 1-Octadecanamine, N-methyl- 1.41    

12.89 N,N-Dimethylhexanamide  1.41   

12.89 N-(4-Aminobutyl)guanidine   1.30  

12.96 Phenylephrine 1.23    

12.96 1-Isoquinolinecarbonitrile, 3-methyl-    0.48 

13.07 N-Decyl-N-methylbutanamide  0.44   

13.08 Metaraminol 0.52 0.74   

13.08 Pterin-6-carboxylic acid   0.42  

13.12 L-Aspartic acid, N-(2,4-dinitrophenyl)-   0.24  

13.14 10-Hydroxydesmethylimipramine   0.34  

13.19 o-Veratramide  0.77   
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13.20 1-(3,5-Dinitro-2-pyridinyl)proline 0.62    

13.27 Benzonitrile, 2-[1-(3-methylphenyl)-2-

pyrrolidinylideneamino]- 

  1.09  

13.28 Alanine, 3-anthraniloyl-, methyl ester, dl-  1.03   

13.43 2-[(3,5-dinitropyridin-2-yl)amino]butanedioic acid 0.95    

13.43 Sarcosine, N-valeryl-, pentyl ester  1.31   

13.43 p-Aminobenzoyl-dl-aspartic acid   1.09  

13.64 Pregn-5-ene-3.beta.,20.alpha.-diamine 0.16 0.14 0.39  

13.64 N,N'-Dimethyl-decane-1,10-diamine  0.37   

13.64 Metanephrine   0.23  

13.71 Cyanoacetylurea 1.33    

13.71 Histidine, 1,N-dimethyl-4-nitro-  2.44   

13.71 Methyl 9,12-heptadecadienoate   1.29  

13.71 2,5-Piperazinedione, 3-methyl-6-(phenylmethyl)-    1.17 

13.77 L-Alanine, N-acetyl- 1.22   1.13 

13.77 8,11-Octadecadienoic acid, methyl ester  1.31   

13.77 9,12-Octadecadienoic acid, methyl ester, (E,E)-   1.20  

13.86 1-(4,5-Diphenyl-oxazol-2-yl)-ethylamine 0.36    

13.99 1-[8-(2-Hexylcyclopropyl)octanoyl]pyrrolidine  1.01   

14.00 l-Alanine, N-octanoyl-, octyl ester 1.12    

14.08 2 5-piperazinedione 3-benzyl-6-isopropyl- 3.11 2.98 1.03 1.49 

14.08 3-Benzyl-6-isopropyl-2,5-piperazinedione   1.50  

14.08 Isocarboxazid    0.91 

14.21 Sarcosine, N-valeryl-, propyl ester   0.64  

14.46 Nortriptyline  0.47   

14.46 N-[3,5-Dinitropyridin-2-yl]proline   0.52  

14.54 Phenol, 2,2'-methylenebis[6-(1,1-dimethylethyl)-4-

ethyl- 

 0.71  0.54 
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14.54 2-Amino-1-(o-methoxyphenyl)propane   0.37  

14.55 p-Benzenediacetohydroxamic acid 0.28    

14.64 1-Benzylpiperidin-4-onoxim  1.13   

14.65 12-(4,4-Dimethyl-4,5-dihydro-oxazol-2-yl)-dodecan-

1-ol 

1.54    

14.65 2-Piperidinone, 1-methyl-   1.12  

14.82 Cyclo(L-leucyl-L-phenylalanyl) 1.04  0.72 0.19 

14.82 Pyrrolidine, 1-(1-oxopentadecyl)-  1.14   

14.82 Pyrrolidine, 1-(12-methyl-1-oxotetradecyl)-   0.89  

15.28 Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-

(phenylmethyl)- 

2.71 2.61 1.06 1.43 

15.41 (3β,20S)-20-Aminopregn-5-en-3-ol    0.02 

15.50 Spermidine   0.77  

a Represents retention time 
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Appendix-F: Major chemical compounds, determined by GC-MS, in the bio-crude oil 

samples obtained with various methanol contents (in methanol-water mixed solvents) at 

225 °C for 60 min, with a solid/solvent mass ratio of 1/5. 

RT (min)a Compounds  Methanol content (wt.%, in methanol-

water mixed solvents) 

  0 50 100 

 N-containing compounds    

3.54 Pyrazine, methyl- 1.02   

11.16 2,4(1H,3H)-Pyrimidinedione, 1,3-dimethyl-   1.26 

12.32 (S)-6,6-Dimethyl-2-azaspiro[4.4]non-1-ene 1.07   

13.17 3,6-Diisopropylpiperazin-2,5-dione 11.54 5.78  

13.28 1,3-Dimethyl-3,4,5,6-tetrahydro-2(1H)-

pyrimidinone 

 5.59  

13.31 dl-Alanyl-l-leucine   1.17  

13.32 2,4,5-Trihydroxypyrimidine 8.2   

13.40 Hydrouracil, 1-methyl- 3.08   

13.75 N,3-Diethyl-3-octanamine 3.85   

14.04 3-Isobutylhexahydropyrrolo[1,2-a]pyrazine-1,4-

dione 

4.23   

14.05 Caffeine   4.19 

14.08 2,5-Piperazinedione, 3,6-bis(2-methylpropyl)- 9.92 2.99  

14.29 2-Butenamide, N,N-diisopropyl-, (E)- 1.56   

14.34 Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-

methylpropyl)- 

9.33 1.82 2.43 

14.72 5,10-Diethoxy-2,3,7,8-tetrahydro-1H,6H-

dipyrrolo[1,2-a:1',2'-d]pyrazine 

5.5   

14.72 2-Hydroxyimino-N-(4-methoxy-phenyl)-acetamide  1.19  

15.67 2,5-Piperazinedione, 3-methyl-6-(phenylmethyl)- 2.95 1.04  

15.97 dl-Alanyl-l-phenylalanine 1.64   
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16.04 2,5-Piperazinedione, 3-benzyl-6-isopropyl- 4.34 1.08  

16.61 2-Piperidinone, 1-methyl- 3.86   

16.78 Glyoxime, 1-cyano- 1.56   

17.24 Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-

(phenylmethyl)- 

2.39   

     

 Esters    

10.89 DL-Proline, 5-oxo-, methyl ester   3.18 

12.87 Hexadecanoic acid, methyl ester 2.44 19.61 27.04 

13.63 l-Proline, N-propoxycarbonyl-, isobutyl ester   2.08 

13.74 l-Norvaline, N-allyloxycarbonyl-, nonyl ester  1.2  

13.82 8-Octadecenoic acid, methyl ester   2.76 

13.83 9-Octadecenoic acid (Z)-, methyl ester  2.19  

13.88 9,12-Octadecadienoic acid (Z,Z)-, methyl ester 2.22 22.1 30.01 

13.98 9,12,15-Octadecatrienoic acid, methyl ester, 

(Z,Z,Z)- 

 1.14  

13.98 6,9-Octadecadienoic acid, methyl ester   1.24 

14.50 L-Leucine, N-cyclopropylcarbonyl-, methyl ester 4.5 1.01  

     

 Other O-containing compounds    

12.04 Phytol  2.58  

12.32 2-hexadecen-1-ol, 3,7,11,15-tetramethyl  2.83  

13.36 Cyclohexane, ethoxy-   1.98 

13.55 4-Methyl-2-pentanone 1.18   

     

 Cyclic oxygenates    

13.49 3-Ethoxy-4-methoxyphenol 1.59   

13.84 6-Methylene-1,4-dioxaspiro[4.5]decane 3.52   
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14.49 Phenol, 3,5-dimethoxy-  1.73  

Total   91.49 75.05 76.17 

a Retention time (min). 
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Appendix-G: Major chemical compounds, determined by GC-MS, in the aqueous phase 

samples obtained in methanol-water mixed solvents with various methanol contents at 

225 °C for 60 min, with a solid/solvent mass ratio of 1/5. 

RT 

(min)a 

Compound Area (%)  

Methanol content in reaction medium (wt.%) 

0  25  50  75  

 Organic acid, alcohols, and esters     

3.61 Acetic acid 4.06    

9.86 Glycerol  10.77 15.24 12.79 6.25 

10.80 Octyl 2-furoate    1.01 

14.19 DL-Proline, 5-oxo-, methyl ester  1.76 5.45 16.93 

17.14 l-Alanine, N-allyloxycarbonyl-, pentyl 

ester  

 2.77   

17.23 L-Proline, N-(hexanoyl)-, hexyl ester    4.87 

17.23 L-Proline, N-(hexanoyl)-, butyl ester  5.04   

 N-containing compounds     

10.61 2-Pyrrolidinone  1.33   

10.77 3-Pyridinol 2.50 1.97   

10.98 3-Aminopyrazole 1.00  1.93  

10.99 Pyridine, 2,3,4,5-tetrahydro-  1.63   

11.10 3-Pyridinol, 6-methyl- 2.89 1.15 2.34  

15.98 3,6-Dimethylpiperazine-2,5-dione 7.39  7.27 13.86 

16.42 2,5-Piperazinedione, 3-methyl- 3.79 4.64 4.53 4.45 

16.53 Hydrouracil, 1-methyl- 15.20  3.11 2.42 

16.61 2,5-Piperazinedione, 3-methyl-6-(1-

methylethyl)- 

3.89 10.18 11.80 7.40 

17.08 (3S,6S)-3-Butyl-6-methylpiperazine-2,5-

dione 

6.43 14.42 15.71 12.51 
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17.23 1,7-Diazabicyclo[2.2.0]heptane   3.79  

17.24 1H-Pyrimidine-2,4-dione, 5-(2-hydroxy-

1,1-dimethylethylamino)- 

5.51    

17.41 3-Methyl-1,4-diazabicyclo[4.3.0]nonan-

2,5-dione, N-acetyl- 

 5.03 4.84 3.66 

17.46 Cyclo-(glycyl-l-leucyl)   5.28 4.58  

17.48 1H-1,2,4-Triazole-3-methanol, 5-amino- 5.21   4.81 

17.54 N-Ethyl-4-methyl-4-octanamine  3.57 3.12 2.65 

17.56 2,4(1H,3H)-Pyrimidinedione, dihydro- 3.37    

17.61 Adenine 2.73 2.39  2.28 

17.72 Pyrrolo[1,2-a]pyrazine-1,4-

dione,hexahydro- 

6.45 7.90 6.47 5.80 

19.61 2,5-Piperazinedione, 3-methyl-6-

(phenylmethyl)- 

2.77  2.92 2.80 

19.61 Piperazine, 2,6-dimethyl-  1.29   

20.35 2,5-Piperazinedione, 3-(phenylmethyl)- 1.76 1.51 2.69 2.51 

19.04 d-Ribitol, 1-deoxy-1-heptylamino- 1.67    

      

 Cyclic oxygenates     

17.82 Phenol, 3,5-dimethoxy- 2.86 2.91 2.80 1.53 

a Retention time (min).  
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Appendix-H: The major compounds of aqueous by-product obtained from co-

liquefaction of algal biomass (AB) and sawdust (SD) in ethanol-water (75/25 wt/wt) 

mixed solvent at 250 °C for 60 min.  

RT (min)a Area (%) Compound Formula 

3.73 11.33 Acetic acid  CH3COOH 

6.80 0.57  3,3'-Iminobispropylamine  C6H17N3 

6.86 0.57 Pyrazine, methyl- C5H6N2 

8.27 0.51 2-Hexynoic acid C6H8O2 

8.93 0.56 Tetrahydro-4H-pyran-4-ol C5H10O2 

9.41 1.52 Phenol C6H5OH 

9.76 3.07 Glycerol C3H8O3 

9.84 2.39 1,2,3,4-Butanetetrol, [S-(R*,R*)]- C4H10O4 

10.15 1.83 2-Pyrrolidinone, 1-methyl-  C5H9NO 

10.62 2.63 2-Pyrrolidinone  C4H7NO 

10.78 9.02 3-Pyridinol C5H5NO 

10.99 1.88 4-Pyridone C5H5NO 

11.12 6.48 3-Pyridinol, 6-methyl- C6H7NO 

11.30 0.56 Hexahydroindole C8H13N 

11.75 1.20 2-Propenoic acid, ethenyl ester C5H6O2 

12.09 1.59 2,7-Octadien-4-ol, 2-methyl-6-methylene-, (S)- C10H16O 

16.50 0.71 3,3-Dimethyl-4-methylamino-butan-2-one C7H15NO 

16.58 0.91 2,5-Piperazinedione, 3-methyl-6-(1-methylethyl)- C8H14N2O2 
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17.01 0.75 2-Butenediamide, (E)-  C4H6N2O2 

17.05 2.58 dl-Alanyl-l-leucine C9H18N2O3 

17.24 1.58 3-Azabicyclo[3.2.2]nonane C8H15N 

17.52 1.54 1,2,5-Oxadiazole-3,4-dicarboxamide C4H4N4O3 

17.71 1.64 Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro- C7H10N2O2 

17.81 2.04 3-Azahexan-1-ol, 6-cyclohexyl- C11H23NO 

18.53 0.79 2-Butanamine, (S)- C4H11N 

Area 58.25   

a Represents retention time (min).  
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Appendix-I: Measurement of the particle size of aspen sawdust.  

HELOS (H2316) & CUVETTE, R5: 0.5/4.5...875µm 2018-03-12, 14:51:32,453 

Saw Dust 

WARNING: Coarse particles probably exceeding the measuring range. 

x10 = 220.55 µm x50 = 543.27 µm x90 = 778.98 µm  SMD = 314.86 µm VMD = 

518.86 µm  

x16 = 282.80 µm x84 = 727.27 µm x99 = 865.40 µm  SV = 0.02 m²/cm³ Sm = 

381.12 cm²/g  

  

cumulative distribution 

  x0/µm   Q3/%    x0/µm   Q3/%    x0/µm   Q3/%    x0/µm   

Q3/%  

  4.50   0.07   18.50   0.35   75.00   1.41  305.00  

18.18 

  5.50   0.10   21.50   0.37   90.00   1.97  365.00  

24.27  

  6.50   0.12   25.00   0.39  105.00   2.55  435.00  

32.55 

  7.50   0.15   30.00   0.42  125.00   3.35  515.00  

44.72  

  9.00   0.18   37.50   0.48  150.00   4.55  615.00  

63.39 

 11.00   0.23   45.00   0.58  180.00   6.52  735.00  

85.42  
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 13.00   0.27   52.50   0.72  215.00   9.47  875.00
 100.00 

 15.50   0.31   62.50   0.99  255.00  13.27     

density distribution (log.)  

  xm/µm   q3lg    xm/µm   q3lg    xm/µm  q3lg    xm/µm   
q3lg  

  1.50   0.00   16.93   0.00   68.47   0.05  278.88   

0.63 

  4.97   0.00   19.94   0.00   82.16   0.07  333.65   

0.78  

  5.98   0.00   23.18   0.00   97.21   0.09  398.47   

1.09 

  6.98   0.00   27.39   0.00  114.56   0.11  473.31   

1.66  

  8.22   0.00   33.54   0.01  136.93   0.15  562.78   

2.42 

  9.95   0.01   41.08   0.01  164.32   0.25  672.33   

2.85  

 11.96   0.01   48.61   0.02  196.72   0.38  801.95   

1.93 

 14.20   0.01   57.28   0.03  234.15   0.51     

 

evaluation: WINDOX 5.4.2.0, LD  product: Saw Dust  

 revalidation:     density: 0.50 g/cm³, shape factor: 1.00  

 reference measurement:  03-12 14:50:13    disp. meth.: 1500rpm  

 contamination:  0.00 %   Copt= 23.36 %  

  

trigger condition: 10S  user parameters:  

 time base: 500.00 ms   : Josh  

 start:  button   :   
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Appendix-J: Measurement of the particle size of algal biomass.  

HELOS (H2316) & CUVETTE, R5: 0.5/4.5...875µm 2018-03-12, 14:34:28,281 

Unknown 

x10 = 42.58 µm x50 = 128.37 µm x90 = 320.53 µm  SMD = 71.40 µm VMD = 

156.65 µm  

x16 = 55.17 µm x84 = 272.87 µm x99 = 444.27 µm  SV = 0.08 m²/cm³ Sm = 

1120.52 cm²/g  

 

  

cumulative distribution 

  x0/µm   Q3/%    x0/µm   Q3/%    x0/µm   Q3/%    x0/µm   

Q3/%  

  4.50   0.69   18.50   1.75   75.00  26.22  305.00  

88.44 

  5.50   0.79   21.50   2.36   90.00  33.83  365.00  

94.46  

  6.50   0.86   25.00   3.28  105.00  40.78  435.00  

98.87 

  7.50   0.91   30.00   4.89  125.00  48.85  515.00
 100.00  

  9.00   0.95   37.50   7.77  150.00  57.36  615.00
 100.00 

 11.00   1.01   45.00  11.06  180.00  65.95  735.00
 100.00  
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 13.00   1.11   52.50  14.65  215.00  74.18  875.00
 100.00 

 15.50   1.33   62.50  19.71  255.00  81.53     

density distribution (log.)  

  xm/µm   q3lg    xm/µm   q3lg    xm/µm  q3lg    xm/µm   
q3lg  

  1.50   0.01   16.93   0.05   68.47   0.82  278.88   

0.89 

  4.97   0.01   19.94   0.09   82.16   0.96  333.65   

0.77  

  5.98   0.01   23.18   0.14   97.21   1.04  398.47   

0.58 

  6.98   0.01   27.39   0.20  114.56   1.07  473.31   

0.15  

  8.22   0.01   33.54   0.30  136.93   1.07  562.78   

0.00 

  9.95   0.01   41.08   0.42  164.32   1.08  672.33   

0.00  

 11.96   0.01   48.61   0.54  196.72   1.07  801.95   

0.00 

 14.20   0.03   57.28   0.67  234.15   0.99     

 

evaluation: WINDOX 5.4.2.0, LD  product: Unknown  

 revalidation:     density: 0.75 g/cm³, shape factor: 1.00  

 reference measurement:  03-12 14:31:32    disp. meth.: 1500rpm  

 contamination:  0.00 %   Copt= 21.52 %  

  

trigger condition: 10S  user parameters:  

 time base: 500.00 ms   : Josh  

 start:  button   : 
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