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Abstract 

Both calpain activation and excessive mitochondrial reactive oxygen species (mtROS) have 

been implicated in the pathogenesis of cardiac diseases. We investigated whether and how 

calpain regulates mtROS generation in mediating cardiac diseases. 

In mouse models of streptozotocin-induced type-1 diabetes and lipopolysaccharides- induced 

sepsis, we show that the protein levels of calpain-1 and calpain activities in mitochondria 

were significantly elevated in diabetic and septic hearts. The elevation of mitochondrial 

calpain-1 correlated with an increase in mtROS generation and oxidative damage. 

Importantly, cardiomyocyte-specific deletion of capns1 disrupted calpain-1 and calpain-2 in 

the heart and prevented mtROS generation in both septic and diabetic mouse hearts. As a 

consequence, cardiomyopathic changes (e.g. cardiac apoptosis, hypertrophy and fibrosis) and 

myocardial dysfunction were attenuated in diabetic or septic capns1 knockout mice 

compared with their wild-type littermates. Mechanistically, we demonstrate that 

mitochondrial calpain-1 directly targeted and cleaved ATP synthase subunit-alpha 

(ATP5A1), leading to a reduction in ATP synthase activity in diabetic hearts and septic 

hearts, and that up-regulation of ATP5A1 restored ATP synthase activity, prevented mtROS 

generation and reduced cardiomyopathic changes in type-1 diabetic mice and in septic mice. 

In addition, selective inhibition of mtROS with mitochondria-targeted antioxidant 

mito-TEMPO prevented mtROS production and intracellular oxidative stress, reduced 

cardiomyopathic changes and improved myocardial function in mouse models of type-1 and 

type-2 diabetes. These in vivo data were recapitulated in cultured cardiomyocytes stimulated 

with diabetic and septic conditions. 

In summary, we have provided strong evidence demonstrating that calpain-1 accumulation in 

mitochondria disrupts ATP synthase through the proteolysis of ATP5A1 and promotes 

mtROS generation, both of which contribute to diabetic cardiomyopathy and septic 
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cardiomyopathy. Given that mitochondrial calpains also increase and contribute to 

myocardial injury in ischemic hearts, our findings suggest that increased mitochondrial 

calpain-1 may be a common mechanism contributing to mtROS generation and myocardial 

injury in the pathogenesis of cardiac diseases. Thus, targeted inhibition of mitochondrial 

calpain may be a potentially effective therapy for cardiac diseases. 

Keywords 

ATP synthase, calpain, cardiac disease, cardiomyopathy, diabetes, mitochondria, reactive 

oxygen species, sepsis 
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1.1 Introduction of cardiovascular disease 

Cardiovascular disease (CVD) includes cardiac disease and vascular disease, referring to 

a range of diseases affecting the circulatory system, such as coronary artery disease, 

congenital heart disease, cardiomyopathy, rheumatic heart disease, atrial fibrillation, 

hypertensive heart disease, aortic aneurysms, endocarditis, peripheral artery disease and 

venous thrombosis [1, 2]. CVD remains the major cause of death globally. Each year, 

more than 17 million people die from CVD which accounts for 30% of all global deaths 

[3]. It is also anticipated that by 2030, CVD-related deaths will increase to more than 23 

million each year [1]. In Canada alone, approximate 70,000 individuals die directly 

associated with CVD every year [4]. There are 1.3 million Canadians with CVD at a 

conservative estimate [5]. Approximately 50,000 new patients [6] are diagnosed with 

heart failure each year and in total about 600,000 Canadians suffering it [7]. Each year, 

the Canadian economy spends almost $20.9 billion on CVD in healthcare system costs, 

decreased productivity and lost wages [8].  

Risk factors for CVD include hypertension, tobacco use, lack of physical activity, obesity, 

high blood cholesterol, poor diet, excessive consumption of alcohol, diabetes and 

inflammation [5] as well as genetic susceptibility [9]. In Canada, about 80% of 

individuals have at least one of these risk factors, and around 10% are exposed to three or 

more [5]. The most above risk factors are preventable. According to the report from 

World Health Organization, for the purpose of disease management, risk factor 

modification is the first recommendation, which can significantly decrease the number of 

people with premature cardiac disease globally [10]. This includes weight loss, quitting 

smoking, more exercise, reductions of lipids, sodium, sugar and alcohol intake, and 

increase of vegetable and fruit consumption. In addition to the lifestyle changes, 

pharmacological therapeutic strategies are available to aid in the risk factors prevention, 
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such as anti-hypertensive therapy and lipid-lowering therapy. Nevertheless, CVD remain 

one of the biggest health challenges in the world. 

Given that diabetes and inflammation are important contributors to cardiac disease, this 

thesis is focused on diabetic cardiomyopathy and septic cardiomyopathy. As such, I 

introduce these two types of cardiac disease in more details as follows.  

1.1.1 Diabetic cardiomyopathy 

1.1.1.1 The definition and characteristics of diabetic 
Cardiomyopathy 

Diabetes represents a major threat to global public health [11]. Globally, the number of 

adults affected with diabetes is estimated to increase from 135 million in 1995 to 300 

million by 2025[12]. Thus, diabetes is projected to become one of the world’s main 

disablers and killers within the next twenty years. The direct costs are extremely high 

because it is a chronic disease with severe complications [13]. Furthermore, total 

financial burden includes indirect costs of lost productivity due to sickness, disability and 

premature retirement of working-age patients [14]. There are two basic types of diabetes 

[15]. Type 1 diabetes is an autoimmune disease in which the body’s immune defense 

system mistakenly attacks and destroys the insulin-producing beta cells of the pancreas, 

which are essential for processing sugar (glucose). Patients with type-1 diabetes require 

exogenous insulin to maintain the blood glucose levels. Approximately, 10 % of patients 

with diabetes are type-1 diabetes [16].  In type-2 diabetes, the more prevalent form, 

patients may produce insulin, but they cannot use it effectively, resulting in high levels of 

glucose in the blood, but low levels of glucose inside cells that need it. Type-2 diabetes is 

associated with several risk factors, including older age, a family history of diabetes, and 

obesity. Both type-1 and type-2 diabetes share the same possible complications, including 

retinopathy, nephropathy, neuropathy, lower limb amputations, sexual dysfunction and 
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cardiovascular disease, particularly heart attack and stroke that can lead to premature 

death [17, 18].   

Cardiovascular complications are the most common cause of morbidity and mortality in 

diabetic patients. Approximately 80% of all diabetic patients die of cardiovascular 

complications [19, 20]. Cardiac complications are mostly due to two pathophysiological 

processes. First, coronary (ischemic) heart disease is increased as a consequence of 

accelerated atherosclerosis associated with risk factors such as visceral obesity, 

hypertension, dyslipidemia, and prothrombotic factors [21-24]. Second, diabetes can 

affect cardiac structure and function in the absence of changes in blood pressure and 

coronary artery disease, a condition called diabetic cardiomyopathy [25].  

Clinical reports in the 1970s first described such patients, who were considered to have a 

diabetic cardiomyopathy [26]. Since then, diabetic cardiomyopathy has been defined as 

ventricular dysfunction that occurs independently of coronary artery disease and 

hypertension [25, 27]. In addition, diabetic cardiomyopathy may be characterized by 

diastolic dysfunction [28, 29], which is more apparent in the presence of myocardial 

ischemia or hypertension [26]. Of far greater epidemiologic importance, however, is the 

risk when diabetes is combined with coronary artery disease and/or hypertension [23]. 

Diabetes patients with acute myocardial infarction have approximately twice the incidence 

of heart failure and death compared to non-diabetic patients [30-32]. The development of 

heart failure in patients with diabetes is a problem of major clinical and epidemiologic 

importance [33]. Diabetic cardiomyopathy is patho-physiologically characterized by the 

loss of cardiomyocytes, cardiac hypertrophy, fibrosis and inflammation [34-37]. The 

pathogenesis of diabetic cardiomyopathy has not been fully understood (Figure 1-1) but 

seems multifactorial, which includes, but not limited to, autonomic dysfunction, 

metabolic disorders, alteration in structural proteins, disturbance of ion homeostasis, 
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myocardial hypertrophy and interstitial fibrosis [38, 39]. In addition, increased glycation 

of interstitial proteins such as collagen resulting from sustained hyperglycemia promotes 

myocardial stiffness and impairs contractility [40-42]. At present, therapeutic approaches 

are limited. 

1.1.1.2 The underlying mechanisms of diabetic cardiomyopathy 

1.1.1.2.1 Metabolic dysfunction in cardiomyocytes  

1.1.1.2.1.1 Hyperglycemia 

Hyperglycemia reduces glucose clearance, increases gluconeogenesis, and plays an 

important role in the pathogenesis of diabetic cardiomyopathy (Figure 1-1). Chronic 

hyperglycemia impairs myocardial cells, as well as fibroblasts and endothelial cells, in 

which multiple mechanisms have been proposed. Hyperglycemia increases the 

production of reactive oxygen species (ROS) in the heart [43-46]. ROS activates poly 

ADP-ribose polymerase (PARP) which increases glycosylation and inhibits 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and therefore, the glycolysis 

process turns into a biochemical cascade of myocardial injury [29, 47]. This includes 

elevated advanced glycation end products (AGEs), activations of the hexosamine 

biosynthesis pathway and the polyol pathway, as well as increased production of protein 

kinases (PKC) [48]. AGEs induce excessive collagen expression and accumulation, and 

promote collagen cross-linking, leading to myocardial fibrosis and consequently 

decreased myocardial compliance [49]. Under hyperglycemic state, the glucose 

transporter-4 activity is decreased, causing reduced transmembrane transportation of 

glucose to the cardiomyocytes, leading to decreased glucose uptake of myocardial cells, 

which then affects the energy metabolism of cardiomyocytes [50]. Increase of ROS, 

PARP, AGEs and aldehyde reductase by hyperglycemia are directly associated with 

myocardial apoptosis. Hyperglycemia also affects the structure and function of the  
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Figure 1-1. Schematic of mechanisms contributing to diabetic cardiomyopathy 

The proposed mechanisms and their downstream consequences are summarized: 

hyperglycemia-induced glucotoxicity, hyperlipidemia-induced lipotoxicity and Insulin 

resistance-induced mitochondrial dysfunction and metabolic disorder contribute to ROS 

production, RAAS activation, calcium disorder, etc. all of which promote cardiac 

apoptosis, hypertrophy, fibrosis and inflammation, leading to cardiomyopathy in diabetes. 

ROS, reactive oxygen species; RAAS, renin-angiotensin-aldosterone system.  
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myocardium by post-translational modifications [51]. For example, hyperglycemia 

induces structural changes in the extracellular matrix, as well as expression and function 

of ryanodine receptors and sarcoplasmic reticulum calcium ATPase (SERCA), leading to 

the myocardial systolic and diastolic dysfunction [29].  

Hyperglycemia can introduce a number of changes in metabolism, particularly substrate 

utilization that could be an underlying mechanism leading to cardiomyopathy [52]. 

Although the normal heart is able to derive energy from multiple substrates including 

ketones, amino acids, carbohydrates and fatty acids, approximately 70% of adenosine 

triphosphate (ATP) generation occurs via fatty acid oxidation and the remaining 30% is 

provided by glucose and lactate [53]. The diabetic myocardium however, uses fatty acid 

oxidation almost exclusively for energy production.   

1.1.1.2.1.2 Increased free fatty acids 

Free fatty acids (FFAs) are important energy substances for the heart. Approximately 

two-thirds of the energy production comes from fatty acid oxidation in the normal heart. 

In diabetic patients, glucose utilization is significantly decreased and fatty acid 

β-oxidation increased in cardiomyocytes, while fatty acid synthesis is increased in 

hepatocytes, and fatty acid catabolism is elevated in adipocytes, leading to high levels of 

triglyceride glycerol and FFAs in the circulation [54, 55]. Meanwhile, hyperinsulinemia 

and hyperlipidemia induce accumulation of fatty acids in cardiomyocytes exceeding the 

cellular fatty acid oxidation capacity, leading to cardiac lipotoxicity [56] (Figure 1-1). 

Excessive intake and oxidization of fatty acids cause the accumulation of metabolic 

intermediate products of fatty acids in myocardial cells [57, 58], increase the oxygen 

demand and elevate mitochondrial membrane potential, resulting in increased ROS 

generation, decreased ATP synthesis, mitochondrial dysfunction and finally apoptosis in 

cardiomyocytes [59-61]. Increased oxidized fatty acids also induce production of 
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ceramide which is a sphingomyelin that can induce cardiomyocyte apoptosis by 

inhibition of mitochondrial respiratory chain [62, 63].   

1.1.1.2.1.3 Disorder of calcium homeostasis  

Precise regulation of calcium homeostasis in cardiomyocytes is the core link to ensure 

cardiac function. In diabetic hearts, increased intracellular fatty acid levels cause 

potassium channels opening, leading to shortening of action potential duration and L-type 

calcium channel opening, which eventually affects the calcium storage of sarcoplasmic 

reticulum, contributing to the disturbance of calcium homeostasis [64-66]. In addition, 

ROS-induced endoplasmic reticulum stress causes intracellular calcium accumulation 

leading to reduced myocardial cell contraction [67]. ROS also modulates L-type calcium 

channel to inhibit Ca2+ influx and suppresses SERCA activation [68]. Activities of 

SERCA and its inhibitor phospholamban (PLB) play important roles in maintaining 

calcium homeostasis in cardiomyocytes [69].  PLB is a key regulator of SERCA activity 

and cardiac contractility by modulating sarcoplasmic reticulum calcium sequestration. 

Study has shown that in diabetic rat hearts, the messenger RNA (mRNA) and protein 

levels of PLB were significantly increased while SERCA activity and sarcoplasmic 

reticulum calcium concentration were decreased, leading to cytoplasmic calcium 

overload, impaired ventricular relaxation and cardiac diastolic dysfunction [68]. 

Overexpression of SERCA2a in cardiomyocytes improved calcium homeostasis and 

myocardial contraction in diabetic rats [70]. 

1.1.1.2.1.4 Insulin resistance 

Insulin resistance (IR) is an important risk factor for diabetic cardiovascular 

complications [71] (Figure 1-1). Cell insulin signals have two key signaling pathways. 

One is the insulin receptor substrate-1 (IRS-1) pathway, which is the upstream signal of 

phosphatidylinositol 3-kinase (PI3K)/Akt pathway, responsible for the major metabolic 
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response. The other is mitogen-activated protein kinase (MAPK) signaling pathway, 

which is related to vascular remodeling, cardiac hypertrophy, myocardial fibrosis, and 

cardiomyocyte apoptosis [72]. IR may accumulate fatty acids, inhibit IRS and Akt, thus 

reducing insulin-mediated uptake of glucose. Studies have shown that endothelial 

dysfunction caused by tumor necrosis factor-alpha (TNF-α) and excessive generation of 

ROS is an important mechanism of IR [73].  IR not only disturbs myocardial energy 

mechanism, but also directly impairs left ventricular structure and function [74]. IR and 

hyperinsulinemia have been shown to aggravate systemic metabolic disorders, activate 

the sympathetic nervous system and the renin-angiotensin-aldosterone system (RAAS), 

and induce oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress and 

calcium homeostasis disturbance, all of which contribute to myocardial fibrosis, cardiac 

hypertrophy, cardiomyocyte apoptosis, and coronary microcirculation dysfunction, 

eventually leading to heart failure [73].  

1.1.1.2.2 Myocardial fibrosis and hypertrophy 

1.1.1.2.2.1 RAAS system 

The RAAS is well-known in the development of heart failure caused by various stress 

including diabetes [75, 76]. Studies have shown that RAAS system activation in diabetic 

patients is closely related to cardiac hypertrophy and fibrosis [77]. Angiotensin II 

activates angiotensin receptor-1 which is located on cardiomyocytes and cardiac 

fibroblasts, and induces increased collagen synthesis and reduced collagen decomposition, 

leading to cardiac hypertrophy and fibrosis which eventually result in decreased 

ventricular compliance and cardiac dysfunction [78]. At present, RAAS inhibitors such as 

angiotensin receptor blocker (ARB) and angiotensin-converting enzyme (ACE) inhibitor 

have been widely used to mitigate diabetic cardiac complications in clinical settings. 

Both are effective in decreasing morbidity and mortality in diabetic patients with cardiac 
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complications [79].  

1.1.1.2.2.2 Matrix metalloproteinases (MMPs) 

The homeostasis of myocardial extracellular matrix is dependent on collagen synthesis 

and degradation.  It is well known that MMPs promote collagen degradation, whereas 

tissue inhibitor of metalloproteinase (TIMPs) inhibit MMPs and consequently prevent 

collagen degradation [80]. Thus, the balance between MMPs and TIMPs is important in 

maintaining collagen homeostasis and subsequent extracellular matrix homeostasis. In 

fact, up-regulation of MMP-2 and MMP-9 has been shown to play an important role in 

atherosclerosis, cardiomyopathy and congestive heart failure [81, 82]. Interestingly, 

studies have found that myocardial expression of MMP-2 is decreased in streptozotocin 

(STZ)-induced diabetic mice, causing reduced collagen degradation and promoting 

myocardial fibrosis [83]. It has also been found that in diabetic rat hearts, increased 

production of ROS interacts with cytoplasmic glutathione leading to activation of 

MMP-2 which cleaves PARP [84] and then induces apoptosis in cardiomyocytes through 

a mitochondrial pathway. The long-term high glucose stimulation induces an unbalance 

between MMPs and TIMPs, which disturbs homeostasis of extracellular matrix collagen 

synthesis and degradation, leading to myocardial fibrosis and finally ventricular systolic 

and diastolic dysfunction [80]. 

1.1.1.2.2.3 Cardiomyocyte apoptosis 

Apoptosis is an evolutionarily conserved suicide process that plays critical roles in 

embryonic development and in the homeostasis, remodeling, surveillance, and host 

defenses of postnatal tissues [85]. Apoptosis is mediated mainly through two central 

pathways: the extrinsic (or death receptor) pathway and the intrinsic (or mitochondrial) 

pathway, which converge via activation of intracellular enzymes called 'caspases'. The 

caspase cascade eventually leads to the activation of the effector caspases, in particular, 
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caspase-3. These effector caspases are responsible for the typical morphological changes 

observed in cells undergoing apoptosis [86].  

Cardiac myocyte apoptosis has been observed in the hearts of diabetic patients and mouse 

models of diabetes and is believed to promote diabetic cardiomyopathy [35, 37, 46, 

87-89]. The diabetic heart may in fact be more susceptible to cardiac myocyte apoptosis 

as reports show that death from myocardial infarction is twice higher in diabetic patients 

than in non-diabetic patients [30-32]. Further studies have shown that hearts of diabetic 

patients with dilated cardiomyopathy had a pronounced increase in apoptotic cells than 

non-diabetic patients.  

Zhang et al found that high glucose activated caspase-8 and caspase-9, the key promoters 

of cardiomyocyte exogenous and endogenous apoptotic pathways followed by activation 

of downstream apoptotic executioner caspase-3 and induced apoptosis in cultured 

neonatal mouse cardiomyocytes [90]. Studies from our lab also showed an increase in 

cardiac apoptosis in cultured cardiomyocytes and mouse hearts under diabetic conditions 

[91, 92]. In addition, studies have shown that endoplasmic reticulum stress is another 

mechanism of apoptosis in cardiomyocytes. Li et al found that in STZ-induced diabetic 

rats, glucose regulated protein78 (GRP78) expression was up-regulated, caspase-12 and 

CCAAT/enhancer-binding protein homologous protein (CHOP) were activated, which 

mediated endoplasmic reticulum stress and further induced apoptosis, and eventually 

leading to diabetic cardiomyopathy [93]. Cardiomyocyte death causes a loss of 

contractile tissue, directly leading to myocardial dysfunction. The loss of cardiomyocytes 

induces hypertrophy of the remaining cells, characteristic changes in diabetic 

cardiomyopathy. Thus, inhibition of cardiomyocyte apoptosis results in a significant 

prevention of the development of diabetic cardiomyopathy in animal models [94, 95]. 
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1.1.1.2.2.4 Microvascular disease 

Diabetic cardiomyopathy has been associated with myocardial microvascular 

abnormalities [96]. Diabetes impaired the stability of myocardial microvascular vessels in 

both diabetic human myocardial explants and experimental diabetes, and microvascular 

endothelial dysfunction was observed in pre-diabetes, which may explain the increased 

risk of complications of microvascular origin in pre-diabetes and early type-2 diabetes 

[97]. Of note, coronary microvascular rarefaction frequently occurs in diabetic hearts and 

contributes to diabetic cardiac complications [98]. Myocardial microvascular rarefaction 

compromises coronary circulation, which can directly impair myocardial function in 

diabetes. On the other hand, compromised coronary circulation may induce a condition of 

sub-ischemia in hearts, which initiates cardiomyocyte death and subsequent myocardial 

remodeling, characteristic changes in diabetic cardiomyopathy [99]. Thus, prevention of 

coronary microvascular rarefaction may be a useful strategy to reduce diabetic cardiac 

complications. However, the mechanism of diabetic microvascular disease in diabetic 

hearts has not been clear. Hyperglycemia, lipid metabolism disorder, oxidative stress, 

inflammatory response, reduced nitric oxide (NO) synthesis, endothelial damage, PPAR 

over-expression, platelet dysfunction and coagulation abnormalities can cause vascular 

endothelial cell damage or functional disorder, leading to increased vascular endothelial 

permeability and basement membrane thickening, which ultimately contribute to the 

development of diabetic cardiomyopathy [100]. Activation of PKC seems an important 

down-stream signaling mechanism, contributing to decreased nitric oxide (NO) 

production in the vascular endothelium and increased prostaglandin synthesis, both of 

which contribute to endothelial dysfunction. In addition, PKC regulates other protein 

kinase activity, such as PI3K/Akt and MAPK, causing vascular endothelial dysfunction 

and vasoconstriction [101]. Imbalance of vasoactive hormones causes endothelial damage 

and the capillary basement membrane thickening, and further leads to myocardial fibrosis 
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and reduced blood flow which contribute to early diastolic dysfunction and late 

contraction abnormality in the heart [102, 103].  

1.1.1.2.2.5 Nrf2-ARE pathway 

Nuclear erythroid-related factor 2 (Nrf2) - antioxidant response element (ARE) pathway 

is an antioxidant defense system [104]. The activated Nrf2 dissociates from Kelch ECH 

associating protein 1 (KEAP1) into the nucleus, binds to the ARE sequence, and further 

activates the ARE-regulated gene transcription. Currently studies have shown that 

Nrf2-ARE pathway is involved in progress of tumor, stress, apoptosis and inflammatory 

response. Nrf2 as a redox-sensitive transcription factor regulates the transcription of 

antioxidant enzymes and plays an important role in inflammatory response, apoptosis, 

mitochondrial metabolism and stem cell regulation [105]. Meanwhile, Nrf2 inhibits high 

glucose-induced nuclear factor-κB (NF-кB) activation, improves cardiac diastolic and 

systolic function, prevents left ventricular end-diastolic pressure increase and ventricular 

dilatation, and reduces cardiomyocytes apoptosis and interstitial fibrosis. In the diabetic 

mouse model, sulforaphane restored the expression levels of Nrf2 and Nrf2-dependent 

antioxidant genes in the aorta, which prevented diabetes-induced ventricular wall 

thickening, myocardial lipid accumulation, fibrosis, inflammation and apoptosis [106]. In 

addition, Nrf2 decreases ROS production, prevents oxidative stress - induced insulin 

resistance, and reduces oxidative stress - induced islet beta cell apoptosis. It has been 

found that in the heart of diabetic patients, Nrf2 protein was significantly decreased and 

ROS production was increased. He et al found that high glucose injured cardiomyocytes 

and induced diabetic cardiomyopathy by ROS [107]. They have also shown that in Nrf2 

gene knockout mice, even slightly elevation of blood glucose level caused diabetic 

myocardial injury in a short period. Therefore, this suggests that Nrf2-ARE pathway may 

be involved in the development of diabetic cardiomyopathy. 
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1.1.1.2.2.6 Inflammatory response 

In recent years, studies have found that abnormalities in energy metabolism are closely 

associated with the occurrence of chronic inflammation, which is induced by 

proinflammatory cytokines and chemokines, and which is believed to be one of the 

important pathogenesis of diabetic cardiomyopathy [108, 109]. Increased concentrations 

of inflammatory cytokines such as TNF-α and interleukin-6 in serum of patients with 

diabetes suggest that chronic inflammation may be associated with cardiac complications 

[110]. TNF-α induces inflammation and cell apoptosis leading to myocardial fibrosis 

[111]. In diabetic rats, inhibition of TNF-α reduced myocardial fibrosis and improved 

cardiac function [112]. NF-кB, as a transcription factor of various inflammatory factors, 

regulates the expression of proinflammatory, fibrosis and hypertrophy-related genes. In 

Diabetic patients, non-enzymatic glycation reaction of excessive blood glucose with 

proteins produces AGEs, which bind the specific receptors on the cell membrane, leading 

to the release of a large amount of ROS. The ROS activates NF-кB, which further 

promotes transcriptions of TNF-α, interleukin-6 and other inflammatory factors, and 

eventually induces vascular endothelial cell injury and fibroblast proliferation, leading to 

the onset of diabetic cardiomyopathy [113]. In macrophages, NF-κB activation 

up-regulates the expression of nucleotide-binding oligomerization domain-like receptor 

protein 3 (NLRP3), which interacts with ASC (apoptosis-associated speck-like protein 

containing a caspase recruitment domain) and pro-caspase-1 leading to the formation of 

an inflammasome. The inflammasome promotes self-cleavage of pro-caspase-1 to form 

active caspase-1 (p10 / p20), which induces the maturation and secretion of interleukin 1 

beta (IL-1β) and IL-18. Luo et al found that both NLRP3 inflammasome and IL-1β were 

increased in diabetic hearts, leading to the development of diabetic cardiomyopathy, and 

silencing of NLRP3 gene prevented diabetic heart remodeling and improved cardiac 

function [114]. Thus, NLRP3 inflammasome has been suggested as a potential target for 
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clinical treatment of diabetic cardiomyopathy. 

1.1.1.3 Treatments of diabetic cardiomyopathy 

Metabolic disorders, myocardial fibrosis, cardiomyocyte apoptosis, microvascular disease, 

oxidative stress, inflammatory response, mitochondrial structure and function changes are 

all involved in the development of diabetic cardiomyopathy. At present, there is no 

specific treatment for diabetic cardiomyopathy, and the main treatments include lifestyle 

Interventions, blood sugar regulation and clinical medications.  

1.1.1.3.1 Lifestyle Interventions  

Diet and exercise are beneficial for the treatment of diabetic cardiomyopathy and also 

helpful for blood sugar control, weight control, improving insulin sensitivity, and 

reducing heart burden [73].  

1.1.1.3.2 Blood sugar regulation  

Control of blood sugar limits glucose toxicity caused by hyperglycemia, and therefore 

prevents diabetes cardiomyopathy. Metformin, an oral hypoglycemic which is a 

medication that lowers blood sugar, is believed to activate adenosine 

monophosphate-activated protein kinase (AMPK) which plays an important role in 

cardiac energy metabolism [115]. Thus, metformin treatment may improve diabetic 

cardiomyopathy. Incretin mimetics, such as glucagon-like peptide-1 (GLP-1) receptor 

agonists, which are innovative and effective medications to improve blood glucose 

control, have been shown to have cardioprotective effects [116, 117].  

1.1.1.3.3 β-blockers 

These drugs can improve autonomic nervous system function in diabetes, restore cardiac 

remodeling and reduce the incidence of sudden death [118].  
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1.1.1.3.4 Statins 

Statins, a class of lipid-lowering medications, have effect of inhibiting cholesterol 

synthesis, inflammatory and oxidative stress. Studies have shown that statins improve left 

ventricular function and inhibit myocardial fibrosis [119]. Large-scale clinical trials 

confirmed that statins have a protective effect on cardiovascular disease [120]. 

1.1.1.3.5 RAAS blockers 

Studies have shown that RAAS blockers not only lower blood pressure, but also reduce 

insulin resistance and improve myocardial diastolic function [121, 122].  

1.1.1.3.6 Calcium antagonists 

Calcium antagonists or calcium channel blockers have antihypertensive effects and also 

play roles in decrease of excitation-contraction coupling, inhibition of oxidative stress 

and regulation of vascular smooth muscle proliferation and so on [123]. Cardiomyocyte 

calcium retention in diabetic patients is associated with depletion of high-energy 

phosphate compound and ultrastructural disorders, which can be corrected by calcium 

antagonists [124]. 

1.1.1.3.7 Insulin and thiazolidinedione derivatives 

Insulin and thiazolidinedione derivatives [125] improve endothelial function, reduce 

vascular smooth muscle hyperplasia, and have protective effects on left ventricular 

function in diabetic cardiomyopathy patients [126].  

1.1.2 Septic cardiomyopathy 

1.1.2.1 The definition and characteristics of septic cardiomyopathy 

Sepsis, or infection-induced systemic inflammatory response syndrome (SIRS), is a 

common complication after infection, shock, severe trauma and major surgery, and the 
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most common cause of death in critically ill patients [127]. According to statistics, about 

15,000 patients die from sepsis and its complications every day in the world [128]. The 

cardiovascular system is usually compromised by sepsis and septic shock. Myocardial 

injury is a common complication during sepsis, the incidence of which is up to 40% [129]. 

Meanwhile, myocardial dysfunction also aggravates the sepsis condition, and is an 

important factor affecting the prognosis of sepsis [130, 131]. Sepsis combined with 

myocardial dysfunction intensifies the evolution of the disease, increasing the risk of 

multiple organ failure and death [132], and its mortality rate is as high as 70-90% 

compared to 40-60% in septic shock patients without myocardial dysfunction [133, 134]. 

In 1951, Waisbren [135] was the first to report that sepsis could lead to myocardial 

depression characterized by impaired systolic function, enlarged heart, decreased ejection 

fraction, poor ventricular contractility in preload and decreased peak systolic 

pressure/end-systolic volume ratio, and so on [136-138]. Currently, sepsis complicated 

with cardiac dysfunction is commonly referred to as septic cardiomyopathy.  

1.1.2.2 The underlying mechanisms of septic cardiomyopathy 

1.1.2.2.1 Myocardial depressant factor (MDF) 

As early as the 1960s, many studies have demonstrated the presence of MDF in septic 

shock [139, 140]. During sepsis, endotoxins or lipopolysaccharides (LPS) of 

Gram-negative bacteria are important pathogens responsible for myocardial dysfunction 

[130, 141, 142]. LPS activates mononuclear macrophages, neutrophils, lymphocytes and 

other immune cells, leading to the release of various myocardial inhibitory factors in the 

blood [143]. Among myocardial inhibitory factors, TNF-α, IL-1β, and IL-6 have been 

well addressed to cause cardiac insufficiency. TNF-α has been found to induce 

myocardial injury by causing cardiomyocyte apoptosis and calcium mishandling [144]. 

IL-1β is another important MDF, which is generated by monocytes, macrophages and 
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neutrophils after stimulation by TNF-α. IL-1β has been shown to inhibit myocardial 

contractility, and has a synergistic effect with TNF-α [145]. Studies have shown that IL-6 

is also involved in myocardial injury in acute sepsis. Increased IL-6 expression in 

monocytes in patients with meningococcal sepsis is associated with cardiac dysfunction 

[146]. However, the disappointing clinical trials using anti-TNF-α approaches suggest the 

complexity of and involvement of potential multiple-mechanisms in septic 

cardiomyopathy [144].  

1.1.2.2.2 Mitochondrial dysfunction and ROS generation 

Mitochondrion is the major site of myocardial energy metabolism. Sepsis induces 

myocardial mitochondrial respiratory chain disorders which disturb oxidative 

phosphorylation and decrease ATP synthesis leading to cardiac dysfunction [143, 147, 

148]. In septic animal models and patients, it has been shown that myocardial 

mitochondria were decreased associate with ultrastructure abnormalities and autophagy 

[149-151]. Meanwhile, mitochondrial dysfunction caused myocardial energy metabolism 

disorders and impaired electron transport chain resulting in generation of a large amount 

of ROS [152]. Mitochondrial ROS production and oxidant damage occur in cultured 

cardiomyocytes under septic conditions. Mitochondrial ROS production is also increased 

in septic hearts [153, 154].  

An excessive ROS is generated by mitochondria under pathological conditions, leading to 

mitochondrial oxidative damage, which impairs mitochondrial function and induces cell 

death via apoptosis and necrosis [155, 156]. ROS production by mitochondria has also 

been shown to trigger the redox dependent intracellular signaling, leading to 

pro-inflammatory response [157]. Thus, selective inhibition of mitochondrial ROS 

prevents proinflammatory cytokine expression in cardiomyocytes under septic conditions 

and reduces myocardial dysfunction in septic animals, underscoring an important role of 
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mitochondrial ROS in septic cardiomyopathy.  

1.1.2.2.3 Caspase-3 activation and apoptosis 

In experimental endotoxemia/sepsis, numerous studies have evaluated the role of 

apoptotic pathway program activation [158, 159]. In cultured adult cardiomyocytes, LPS 

directly activates caspase-3 and induces apoptosis [160]. A recent study demonstrated that 

septic serum also induces caspase-3 activation and apoptosis in cultured human 

cardiomyocytes [161]. In vivo studies have confirmed that caspase-3 activation is 

significantly increased and apoptosis occurs in the heart in animal models of sepsis and 

septic patients, which is associated with multiple heart caspase activation and cytochrome 

c release from mitochondria in sepsis [162, 163]. Although cardiac caspase-3 activity is 

dramatically increased in these models, the levels of apoptotic cell death in septic heart 

are very low and may be insufficient to explain the dramatic progression of myocardial 

dysfunction in sepsis [151]. Interestingly, studies have promisingly shown that either 

blocking caspase-3 activation by targeting mitochondria-dependent apoptotic pathway or 

direct inhibition of caspase-3 activity significantly attenuates myocardial dysfunction and 

improves the survival rate in sepsis [160, 162, 164, 165]. These results suggest that 

nuclear apoptosis independent pathways are also involved in caspase-3-mediated 

myocardial dysfunction in sepsis. Indeed, activated-caspase-3 may also directly impair 

myocardial function via changes in calcium handling and cleavage of sarcomeric 

myofilaments including α-actin, α-actinin, troponin-T, and myosin light chain cleavage, 

independent of their modulation of nuclear apoptosis [166].  

1.1.2.2.4 Calcium homeostasis and imbalance 

Calcium is an important second messenger during cardiac contraction. It participates in 

cardiac excitation-contraction coupling. The homeostasis of intracellular and extracellular 

calcium concentration in cardiomyocytes is the basis of maintaining myocardial function 
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[167]. Sepsis induces considerable inflammatory factors release and ROS production, 

which may impair calcium regulatory machinery in sarcoplasmic reticulum, leading to 

calcium leakage and subsequent damage of mitochondrial membrane calcium transport 

systems [168]. In cardiomyocytes, excessive uptake and accumulation of calcium inside 

the mitochondria exceed the tolerance range of calcium, leading to the formation of 

"calcium overload" and finally resulting in irreversible mitochondrial damage and cell 

death [169]. Calcium overload may also induce excessive ROS production in 

mitochondria, which signals expression of pro-inflammatory factors. 

1.1.2.2.5 Activation of the RAAS 

In recent years, increased attention has been drawn on the role of RAAS in 

sepsis-induced cardiomyopathy [170]. During sepsis, cardiac RAAS is highly activated 

and myocardial ACE activity increases, which up-regulates expression of renin and 

angiotensin [171]. It is well known that activation of the RAAS promotes myocardial 

injury under pathological conditions, e.g. ischemic heart disease [172]. It has been found 

that animal model administrated with ACE inhibitors and angiotensin II receptor blockers 

in early phase of sepsis showed improved cardiovascular function. This may be 

associated with RAAS antagonists-induced hemodynamic changes, including shunt 

reduction, attenuation of sepsis-induced microcirculation dysfunction, tissue edema 

alleviation, etc., which prevent myocardial damage and reduce mortality [173]. 

1.1.2.3 Treatments of septic cardiomyopathy 

1.1.2.3.1 Fluid resuscitation 

In patients with severe infections or septic shock have relative or absolute hypovolemia, 

rapid and effective fluid resuscitation works well [174]. However, in patients with septic 

cardiomyopathy, the effect of liquid resuscitation is limited. Normal fluid resuscitation 

cannot restore left ventricular function, and the fluid overload or hypervolemia is also 
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harmful for the body. It has been controversial that which kind of fluid should be used for 

resuscitation in septic cardiomyopathy. Study has shown that in early phase of sepsis, 

colloid fluid resuscitation improved cardiac perfusion, cardiac output and systolic 

function [175].  

1.1.2.3.2 Levosimendan 

Levosimendan, marketed under the trade name Simdax, is a calcium sensitizer. It effects 

independently of the beta-adrenergic receptor and is used as treatment of decompensated 

heart failure. Prospective randomized controlled study has found that in patients with 

septic cardiomyopathy, administration of levosimendan increased cardiac output and left 

ventricular ejection fraction, reduced pulmonary arterial pressure, lowered blood lactate 

levels and improved systemic and local tissue perfusion [176]. In patients with severe 

heart failure, levosimendan significantly reduced the levels of inflammatory mediators in 

the blood, lowered the blood brain natriuretic peptide (BNP) level and improved the 

hemodynamic status [177]. 

1.1.2.3.3 Beta blockers 

Beta-adrenergic hyperactivity is an important factor in the pathogenesis of septic 

cardiomyopathy, and the administration of beta-blockers may benefit [178]. However, the 

use of β-blockers is controversial, as it may reduce myocardial contractility. Therefore, 

although β-blockers have been used in sepsis studies for nearly 50 years, they cannot be 

included in sepsis guidelines. At present, there is still controversy about the use of 

β-blockers in the treatment of septic cardiomyopathy [179]. 

1.1.2.3.4 Mechanical assist devices 

In the United States, the intra-aortic balloon pump (IABP), a cardiac assist device, has 

been approved by the U.S. Food and Drug Administration for adjuvant treatment of septic 
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shock. In a canine model of severe septic shock with a low cardiac index, Solomon et al 

[180] have reported that IABP prolonged survival and reduced the dose of 

antihypertensive drugs. Clinical studies have also shown that in patients with septic shock, 

IABP significantly restored blood pressure, improved cardiac function index, increased 

urine output and reduced the 30-day mortality [181]. 

Extracorporeal membrane oxygenation (ECMO) is an extracorporeal assist device that 

temporarily circulates blood through an artificial lung to take over the function of the 

lungs, providing prolonged cardiac and respiratory support in patients with acute 

respiratory failure [182, 183]. ECMO could reduce mortality of severe myocardial 

depression caused by septic shock [184]. However, there are only few case reports using 

ECMO to treat sepsis cardiomyopathy.  

To date mechanical assist devices such as IABP and ECMO do not appear to be the 

standard treatment for septic cardiomyopathy, but may be the last resort when serious 

infections lead to severe myocardial depression, while all else therapies have failed. The 

administration of IABP or ECMO in the treatment of septic cardiomyopathy still requires 

more and larger clinical studies for their efficacies. 

1.2 ROS and cardiac disease 

1.2.1 Oxidative stress in cardiac disease 

Numerous studies have demonstrated that increased ROS contributes to cardiac disease 

progression, such as coronary artery disease, cardiomyopathy, myocardial infarction, 

ischemia/reperfusion injury, and heart failure [185]. The enhanced generation of ROS and 

following oxidative stress is evidently a common phenomenon during cardiac disease 

[186]. Oxidative stress refers to a pathological condition in which toxic effects induced 

by ROS damage all components of the cell due to an imbalance between ROS production 
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and antioxidant defense mechanisms [187]. Increased biochemical markers of oxidative 

stress, such as 8-iso-prostaglandin F2α or lipid peroxides, have been observed both 

systemically in the plasma and locally in the pericardial fluid or myocardium in patients 

and animal models with heart failure and also directly correlated with the severity of 

myocardial injury [188-190]. This notion suggests that ROS are important mediators in 

cardiac remodeling. In fact, inhibition of ROS-generating oxidases or antioxidant 

treatment has been shown to be effective to prevent cardiac remodeling [191]. In mice, 

for example, dimethyl thiourea alleviated oxidative stress and inhibited cardiac 

remodeling and heart failure after myocardial infarction [192], and the antioxidant 

N-2-mercaptopropionyl glycine mitigated hypertrophic remodeling in pressure overload 

model of transverse aortic constriction [193].  

1.2.2 Reactive oxygen species (ROS) in cardiac cells  

ROS are various highly reactive compounds with unpaired electrons in the outer valence 

shell [194]. Major intracellular ROS in heart tissues include superoxide radical (•O2
−), 

hydrogen peroxide (H2O2), and hydroxyl radical (•OH) [185] (Figure 1-2). As a primary 

radical, •O2
− is formed from one-electron reduction of oxygen molecular. •O2

− is very 

unstable and its half-life is very short. Its dismutation happens in a few seconds after its 

formation, and it is finally converted to H2O2 either spontaneously or by superoxide 

dismutase (SOD) [195] (Figure 1-2). As a membrane-impermeant molecule, •O2
− 

diffusion capacity is limited, and therefore it mostly induces intracellular compartments 

damage, such as disassembly of iron-sulphur clusters. In contrast, H2O2 is less reactive 

than •O2
−, but is more stable and more lipophilic, allowing it to permeate membranes and 

act at remote sites from its original location. H2O2 can be dismutated by catalase, or 

reduced by glutathione peroxidase (GPX) to H2O (Figure 1-2). In addition, H2O2 could be 

reduced to •OH and hydroxide anion (OH−) in the presence of transition metal ions such 

as Fe2+ or Cu+ via the Fenton reaction [195] (Figure 1-2).  The •OH can also be formed 
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Figure 1-2. Schematic diagram of formation and elimination of ROS 

The superoxide (•O2
−) is formed from one-electron reduction of oxygen molecular (O2) 

and can be dismutated to hydrogen peroxide (H2O2) by superoxide dismutase (SOD). The 

H2O2 can be converted to 2H2O by glutathione peroxidase (GPX) or to O2 + H2O by 

catalase. The •OH can be formed from H2O2 via the Fenton reaction and the Harber-Weiss 

reaction.  



25 

from electron exchange between H2O2 and •O2
− by means of the Harber-Weiss reaction 

(Figure 1-2). As the most reactive oxidant free radical species, •OH is primarily 

responsible for oxidative stress-associated cellular injury in cardiac disease. It is normally 

generated in trace amounts, but in pathologic conditions such as ischemia/reperfusion 

injury, its formation is markedly increased [196].  Due to its non-diffusible characteristic 

and extremely short half-life of 10−9 s, •OH causes non-specific damage to all cellular 

macromolecules within a small radius from the site of its generation, including but not 

limited to protein and deoxyribonucleic acid (DNA) modification, and lipid peroxidation 

[197]. 

1.2.3 Sources of ROS in cardiac cells 

Cellular ROS are generated from various sources including mitochondrial respiratory 

chain, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, xanthine oxidase, 

NO synthases, peroxidases, cytochrome P450, lipoxygenase, and other hemoproteins 

[198]. Three major cell types in the heart (cardiomyocytes, fibroblasts and endothelial 

cells) express all these enzymes and are capable of generating ROS. Although the exact 

proportions of ROS production from individual source are not known, it has been 

suggested that the predominant sources of ROS in heart tissues are NADPH oxidase, 

mitochondria and xanthine oxidase, all of which have been demonstrated to play 

important roles the pathogenesis of cardiac disease. These three major ROS sources in 

heart are described below: 

1.2.3.1 NADPH oxidase (NOX) 

NOX is a multi-component enzyme system that catalyzes the NADPH-dependent 

reduction of oxygen to the •O2
−, which is the precursor of the other ROS [199]. This O2

- 

producing system is well characterized in neutrophils where it plays an important role in 
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bacteria killing. The enzyme complex comprises two membrane subunits (gp91phox and 

p22phox, which form flavocytochrome b558), at least three cytosolic proteins (p40phox, 

p47phox and p67phox, which form the cytosolic complex) and the small GTPase Rac1 or 

Rac2 [200-203]. The catalytic core of NADPH oxidase is the membrane-integrated 

flavocytochrome b558 [204]. NADPH is a highly regulated enzyme. In resting cells, the 

cytosolic complex is separated from the membrane-bound catalytic core. Upon 

stimulation, NADPH oxidase activation appears to be triggered by the phosphorylation of 

the cytosolic phox proteins and their translocation with Rac to the membrane-bound 

flavocytochrome b558 to assemble into an active oxidase [204, 205].  

Several homologs of gp91phox (also termed Nox2)—Nox1, Nox3, Nox4, and Nox5—have 

been identified in nonphagocytic cells [206]. In the heart, recent studies showed that the 

phagocyte-type of NADPH oxidase is expressed in adult cardiomyocytes and is a major 

source of O2
- during pathophysiological conditions [207]. In addition, NOX has been 

demonstrated to significantly contribute to ROS generation in vascular cells (such as 

adventitia, medial smooth muscle, and endothelium) [208]. It has been shown to be 

activated and generate excessive •O2
− in vascular tissue contributing to the pathogenesis 

of angiotensin II - induced endothelial dysfunction and vascular hypertrophy [209].  

1.2.3.2 Mitochondria 

The heart is the highest oxygen consuming organ which uptakes about 0.1ml O2/g/min at 

basal conditions [210]. Therefore, cardiomyocytes have the highest volume density of 

mitochondria within human body, to fulfill the demand for generation of the energy 

source ATP via oxidative phosphorylation reactions. The enzymatic components of 

oxidative phosphorlyation are consistent in all eukaryotic cells. These components 

include: NADH-ubiquinone oxidoreductase (complex I), succinate-ubiquinone 

oxidoreductase (complex II), ubiquinol - ferricytochrome c oxidoreductase (complex III), 
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ferricytochrome c-oxygen oxidoreductase (complex IV), and F1F0 ATP synthase 

(complex V). During the process of ATP production, electrons transfer through these 

multimeric complexes, termed as electron transport chain (ETC). Briefly, in 

mitochondrial ETC, electrons donated from nicotinamide adenine dinucleotide (NADH) 

and flavin adenine dinucleotide (FADH2) are transferred by complex I and II respectively, 

to complex III via ubiquinone (Coenzyme Q10) [211]. Electrons are then delivered by 

cytochrome c to complex IV, and finally passed to O2, converting to water. During the 

transfer of electrons, protons are translocated from the mitochondrial matrix to the 

intermembrane space by complex I, III and IV, and thereby the proton gradient and the 

mitochondrial membrane potential are formed. At last, complex V via the use of the 

energy stored in this proton gradient across the inner mitochondrial membrane produces 

ATP.  Complex V using the ETC - driven membrane potential is termed oxidative 

phosphorlyation. However, not all of the oxygen acts as the terminal electron acceptor. 

Small amount of oxygen is partially reduced by electrons leaked from the ETC and 

transformed into •O2
−. Hence, a little oxidative species is generated as byproducts. The 

complexes I and III are believed as the major sites for electron leakage [211]. Of note, an 

impairment of complex V not only reduces ATP production but also contributes to 

mitochondrial ROS generation.  

Under normal conditions, mitochondria are capable to eliminate these toxic by-products 

of ROS by mitochondrial antioxidant systems. These antioxidant enzymes include 

catalase, SOD and GPX, and several low-molecular-weight antioxidants such as 

ascorbate, α-tocopherols and thiols and ubiquinol [212]. •O2
− can be converted to H2O2 by 

manganese SOD (MnSOD) in mitochondrial matrix or copper-zinc SOD (CuZnSOD) in 

the intermembrane space. Then, H2O2 can be readily reduced to water by catalase or 

GPX, which utilize H2O2 to oxidize reduced glutathione (GSH) to oxidized glutathione 

(GSSG). Meanwhile, GSSG can be converted back to GSH by glutathione reductase 
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(GR). Under pathological conditions, the ETC is blocked, leading to substantial electrons 

inappropriately transferring directly to O2 to form •O2
−, which is beyond the ability of 

mitochondrial antioxidant systems to scavenge, and thereby a large amount of ROS is 

produced [213]. However, it remains incompletely understood how mitochondrial ROS 

generation is regulated in cardiomyocytes under pathological conditions. 

1.2.3.3 Xanthine oxidase (XO) 

XO plays an important role in purine metabolism pathway under normal physiological 

conditions [214]. The enzyme generates ROS as a byproduct in the catalytic process of 

final product uric acid by oxidation of hypoxanthine and xanthine [215]. It has been 

suggested that the level of XO may be low in the heart and it was even not found in 

human cardiomyocytes. XO is normally present in the small intestinal mucosa and the 

liver [216, 217]. However, in disease conditions such as cardiomyopathies or under stress 

such as inflammation or increased oxidative stress by prolonged hypoxia, it is activated 

and released into serum [218]. The released XO may subsequently reach to target tissues 

like heart via circulating system and gather more than thousand-fold at the interstitial 

matrix of the vasculature or binding to surface of endothelial cells. XO-derived ROS has 

been implied to contribute to myocardial ischemia/reperfusion injury by many 

experimental data [219]. It has been shown that XO is highly activated and produces 

excessive superoxide in mesenteric tissue leading to intensified vascular tone in an 

essential hypertensive model[220]. Increased activity of XO has also been observed in 

end-stage failing human heart. It has been suggested that inhibition of XO is a potential 

therapeutic method to improve cardiovascular injury [221, 222]. For example, treatment 

with allopurinol, an inhibitor of XO, has been proved to effectively decrease the level of 

lipid peroxidation and aid postoperative recovery [223]. 
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1.2.4 Oxidative damage in cardiac cells 

ROS can induce massive peroxidative damage to phospholipids, proteins and DNA. ROS 

also lead to protein modifications, such as nitration and carbonylation, and generation of 

lipid peroxidation adducts (e.g. 4-hydroxynonenal [HNE]) [224]. ROS-mediated protein 

modifications (carbonylation and nitration) and HNE adduct change or impair protein 

function and stability [225]. As a consequence, ROS directly influences cellular structure 

and function, and has been suggested as the integral signaling molecules in myocardial 

remodeling and failure, leading to cardiomyocyte apoptosis, inflammation, hypertrophy 

and interstitial fibrosis in the development of heart failure [226, 227].  

1.2.4.1 Oxidative damage to proteins  

Superoxide induces the release of ferrous iron from Fe-S clusters. Ferrous iron then 

readily binds polypeptides. Thus, the Fenton reaction results in the formation of •OH, 

which damages proteins at sites [212]. Protein oxidation is assessed by measuring the 

contents of carbonyls, which can be easily quantified [228]. In addition to 

sulfur-containing residues, most amino acids are irreversibly oxidized, and thus the 

oxidatively-modified protein is likely degraded through the proteolysis. Given that 

hydroxyl radicals readily react with, and H2O2 can directly oxidize cysteine and 

methionine, both residues are targeted by the hydroxyl radical resulting from the Fenton 

chemistry more than other amino acid residues [212, 229]. However, H2O2
− mediated 

cysteine and methionine oxidation is very slow and thus, H2O2 at physiological 

concentrations is unlikely to induce direct oxidation of amino acids [230, 231]. Particular 

mitochondrial proteins such as aconitase have been shown to be inactivated by H2O2 

[232]. In aconitase, superoxide is highly reactive with the [4Fe-S] cluster [233]. Citrate 

synthase is another target of mitochondrial ROS, and in fact SOD2 mutant mice display a 

reduction of citrate synthase activity in the heart [234]. 
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1.2.4.2 Oxidative damage to lipids 

ROS can cause oxidation of lipids which is one of major mechanisms contributing to 

lipid peroxidation (LPO). Others include enzymatic oxidation and non-enzymatic 

oxidation such as ozone. Thus, LPO product can be measured as an indicator of oxidative 

damage to lipids.  

Superoxide itself may not directly oxidize lipids. However, it reacts with NO to form 

peroxynitrite (ONOO−), which can initiate lipid peroxidation [235]. Superoxide may also 

induce conversion of Fe3+ to Fe2+, which reacts with H2O2 and subsequently generates 

hydroxyl radicals in the vicinity of lipids, contributing to LPO. 

The reaction of ROS with lipids can be detrimental or beneficial to the cell depending on 

their products. Lipid peroxidation can disturb bio-membrane and modify proteins and 

DNAs, but products of lipid peroxidation may also regulate gene expression and redox 

signaling, leading to oxidative stress tolerance. In addition, lipid oxidation results in lipid 

hydroperoxides, which in turn become DNA-adducting electrophiles, leading to 

propagation of ROS damage [236, 237]. 

1.2.4.3 Oxidative damage to nucleic acids 

As mentioned above, superoxide can release Fe2+ from Fe-S clusters, which can damage 

DNA. H2O2 directly oxidizes Fe2+ in the Fenton reaction thus generating the extremely 

reactive •OH [238, 239]. Although •OH reacts readily with all biomolecules, such 

reactions are limited because •OH only affects them near the site of its production. Thus, 

when •OH production is present at the site of a ferrous iron-DNA complex, DNA can be 

damaged [212]. •OH can attack any bases in DNA, with guanine being the particular 

target [240]. Since 8-hydroxyguanine (8-oxoG) is the major product formed in an 

•OH-DNA reaction, it has used as an indicator of DNA oxidative damage [241]. In 
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addition to nuclear DNA, mitochondrial DNA (mtDNA) is particularly susceptible to 

oxygen radicals because of its close proximity to the locations of superoxide generation 

by the ETC and its lack of histone protection. In fact, studies have shown more mtDNA 

damage than nuclear DNA damage in cells treated with H2O2 at concentrations at 200 μM 

or less [242-245], indicating the increased ROS vulnerability of mtDNA compared to 

nuclear DNA. 

1.2.5 Mitochondrial ROS and cardiac disease 

For a long time, people have been focusing on antioxidant therapies for cardiovascular 

disease like vitamin E and CoQ based on promising experiments [246, 247]. 

Unfortunately, clinical trials showed disappointing outcomes. Recently, it has been 

recognized that such therapies need to be more targeted towards mitochondria and the 

respiratory chain because they are the main sources of ROS in cardiomyocytes [248]. 

Indeed, mitochondrial ROS production is increased and oxidative stress occurs in a 

variety of cardiac diseases [249]. Sustained high levels of ROS in the mitochondria 

directly damage mitochondrial components [250], including permanent inactivation of 

mitochondrial proteins, destruction of mitochondrial DNA and phospholipid bilayer of 

mitochondrial membrane, inhibition of mitochondrial respiratory chain function, and 

down-regulation of mitochondrial DNA replication, which further accelerate free radicals 

generation leading to forming a vicious cycle: free radical generation → mitochondrial 

structure destruction → more free radical generation. As a consequence, excessive 

mitochondrial ROS compromises energy production and induces cell death. 

Mitochondrial ROS may also serve as a signaling molecule, leading to pro-inflammatory 

cytokines expression resulting in inflammation and fibrosis as well as myocardial 

hypertrophy [251]. All of these changes contribute to cardiac injury, remodeling and 

heart failure. Thus, targeted inhibition of mitochondrial ROS has been shown to reduce 

cardiac injury and prevent myocardial remodeling and heart failure in a variety of animal 
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models [252, 253]. Thus, mitochondrial ROS may represent an excellent target for 

therapy. Indeed, a number of mitochondrial-targeted anti-oxidants have been 

commercially developed including mito-E, mito-TEMPO, mitoQ10, SS31 

(6’-dimethyltyrosine-Lys-Phe-NH2), etc. with some being under clinical trials for various 

diseases [254].  

1.2.5.1 Mitochondrial ROS and ischemic heart disease 

Mitochondria are not only the main targets of oxidative stress but also the major sites of 

ROS production. Under physiological conditions, about 0.2% -2.0% of molecular oxygen 

is transformed to superoxide by acquiring electron from complex I and complex III of the 

electron transport chain in cardiomyocytes [211]. During myocardial ischemia, numerous 

studies have shown that a small amount of ROS is generated in mitochondria, which may 

disrupt the electron transport chain [195]. After onset of reperfusion, the immediate 

restoration of oxygen levels and inefficient oxidative phosphorylation promote a large 

amount of mitochondrial ROS production and subsequent oxidative stress [255]. 

Excessive mitochondrial ROS induces cell death and promotes proinflammatory cytokine 

expression in ischemic heart tissues, leading to the infiltration of inflammatory cells 

which enhances ischemic heart injury [256]. Thus, targeted inhibition of mitochondrial 

ROS reduced ischemia/reperfusion (I/R) injury in in vitro cardiomyocytes and in vivo 

hearts. 

1.2.5.2 Mitochondrial ROS and hypertensive cardiomyopathy 

Hypertension is a highly prevalent human disease that imposes a major risk for 

development of wide spectrum of cardiac and vascular diseases including atherosclerosis, 

cardiomyopathy, stroke and kidney diseases. Meanwhile, mitochondrial ROS and 

oxidative stress are increased in heart tissues in response to hypertension and implicated 

in the development of hypertensive cardiomyopathy [257]. Increased mitochondrial ROS 
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in cardiomyocytes induces mitochondrial protein oxidative damage and mitochondrial 

DNA deletions, contributing to the development of cardiac hypertrophy, fibrosis and 

failure. In an angiotensin II-induced mouse model, Dai et al reported that mitochondrial 

ROS and oxidative stress were induced in cardiomyocytes and over-expression of 

catalase targeted to mitochondria prevented myocardial hypertrophy, fibrosis and 

mitochondrial damage in mice [257]. Over-expression of catalase targeted to 

mitochondria also prevented heart failure induced by over-expression of Gαq in mice 

[258]. Similarly, administration of mitochondrial targeted antioxidant peptide SS31 

reduced mitochondrial oxidative damage, prevented apoptosis, and ameliorated cardiac 

hypertrophy, diastolic dysfunction, and fibrosis induced by angiotensin-II in mice without 

changing blood pressure. The SS31 administration also partially rescued the heart failure 

phenotype of Gαq overexpressing mice [259]. The protective effects of SS31 were 

reproduced by McLachlan et al in stroke-prone spontaneously hypertensive rats using 

another mitochondrial-targeted antioxidant mitoQ10 [260]. These findings suggest the 

potential clinical application of mitochondrial-targeted antioxidants in treating 

hypertensive cardiomyopathy. 

1.2.5.3 Mitochondrial ROS and metabolic cardiomyopathy 

Mitochondrial ROS and consequent oxidative stress are associated with metabolic heart 

disease [36, 261]. Many studies have shown that elevated glucose and free fatty acids 

levels present in the diabetic state drive the formation of ROS [262, 263]. It is believed 

that enhanced substrate flux through the mitochondria enhances electron leak and 

subsequently ROS formation [264]. Oxidative stress occurs when ROS are generated in 

excess through the reduction of oxygen and inadequate antioxidant defense [187]. In this 

regard, studies have shown that anti-oxidant defense system was usually impaired in 

diabetic hearts [265-267]. Furthermore, analysis of cardiac biopsy on patients diagnosed 

with diabetes complicated with heart failure revealed mitochondrial swelling and ROS 
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production in cardiomyocytes. Lastly, restoration of mitochondrial anti-oxidant defense 

function by over-expression of thioredoxin-2 effectively prevented mitochondrial 

oxidative stress and consequently attenuated myocardial hypertrophy in mouse models of 

type-1 diabetes. However, further investigation is needed to determine whether 

therapeutic scavenging mitochondrial ROS using mitochondrial-targeted anti-oxidants 

reduces diabetic cardiomyopathy in animal models of both type-1 and type-2 diabetes. 

Under other metabolic stress, pooled neutral fatty acids within the mitochondria due to 

the inability to utilize efficiently are more susceptible to oxidative damage [268]. 

Sverdlov Al et al observed oxidative posttranslational modifications of cardiac 

mitochondrial proteins in mice fed a high-fat high-sucrose diet [269, 270]. This 

mitochondrial oxidative stress in the heart was associated with cardiac diastolic and 

mitochondrial dysfunction as well hypertrophy. Importantly, transgenic over-expression 

of catalase in mitochondria ameliorated cardiac mitochondrial dysfunction, hypertrophy 

and diastolic dysfunction in mice fed a high-fat high-sucrose diet [271, 272]. Thus, 

increased myocardial mitochondrial ROS generation is an important factor promoting the 

development of metabolic cardiomyopathy and may represent an important target for 

therapy. 

1.2.5.4 Mitochondrial ROS and septic cardiomyopathy 

Mitochondrial ROS production and oxidant damage occur in cultured cardiomyocytes 

under septic conditions [273]. Mitochondrial ROS production is also increased in septic 

hearts [274]. It has been demonstrated that excessive mitochondrial ROS induced 

caspase-3 activation and apoptosis in cardiomyocytes during sepsis, which compromises 

myocardial function [143]. Interestingly, mitochondrial ROS also serves as a signaling 

molecule, which induces expression of pro-inflammatory mediators and subsequent 

infiltration of inflammatory cells, leading to myocardial injury and depression in sepsis 



35 

[275, 276]. Our lab demonstrated that mitochondrial ROS increased and mediated TNF-α 

expression in cardiomyocytes in response to LPS [277]. In a rat model of a 

pneumonia-related sepsis, Zhang et al reported that mitochondria-targeted vitamin E, 

another mtROS specific antioxidant, improved cardiac performance and attenuated 

inflammation [278]. Yao et al further demonstrated that sepsis-induced mitochondrial 

ROS damage mtDNA, leading to the release of free mtDNA and the activation of a toll 

like receptor 9 pathway, which contributes to the development of cardiac failure after 

sepsis [273]. Thus, targeting mitochondrial ROS by mitochondria-targeted antioxidants 

represents a promising therapeutic approach to protect the heart in sepsis.  

1.3 The Calpain family 

1.3.1 General information 

Calpains belong to a family of calcium-dependent thiol-proteases [279, 280]. The first 

calpain discovered and purified was calpain-1 in 1964 by Guroff [281]. A total of 15 

isoforms of calpain (14 large subunit members and one small subunit) and one 

endogenous inhibitor (calpastatin) have been discovered in mammals. Among them, 

calpains 1,2,4, 5, 7, 9 and 10 are ubiquitously expressed members. Calpain-3 (skeletal 

muscle and retina), calpain-6 (placenta), calpain-8 (smooth muscle), calpain-11 (testes), 

calpain-12 (skin) and calpain-13 (testes and lung) are tissue specific isoforms [282]. 

Based on domain IV structure, calpains can be divided into two groups: the typical and 

atypical calpains. Nine of calpain isoforms (1, 2, 3, 8, 9, 11, 12, 13 and 14) containing a 

penta-EF hand in domain IV are classified as typical. The penta-EF domain can bind 

calpastatin, Ca2+ or the calpain small subunit (only calpains 1, 2 and 9 have been shown 

to bind). In contrast, other five isoforms (calpains 5, 6, 7, 10 and 15) are classified as 

atypical as they do not have a penta-EF hand in domain IV and thus, they are unable to 

bind calpastatin or the calpain small subunit [283, 284]. (Figure 1-3).   
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Figure 1-3. Schematic structures of calpain family members in mammals 

The main structural domains and localization of the mammalian calpain protein family 

and their endogenous inhibitor calpastatin are shown. Figure is adapted from Margaret C. 

Frame, et al. Nature Reviews Molecular Cell Biology, 2002 Apr;3(4): 233-245 
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Most calpains have four structural domains: I, II, III and IV (Figure 1-3). Upon Ca2+ 

activation (autolysis), domain I is cleaved in calpains 1, 2 and 9 [280]. However, it is 

unknown if other typical calpains have autolysis of domain I. In atypical calpains, 

domain I is not cleaved and their function remains largely unknown, except in calpain-10 

where a mitochondrial targeting sequence is identified within domain I [285]. The calpain 

active site resides in domain II, which has a catalytic triad of cysteine, asparagine and 

histidine. This catalytic triad is present in the entire family except calpain-6, which does 

not have proteolytic activity [286]. In addition to the catalytic triad, domain II can also 

have binding sites for Ca2+ which assists in calpain activation [287]. There are two 

Ca2+-binding spots and one C2-like motif which binds phospholipid in domain III [288]. 

These Ca2+-binding and phospholipid binding residues are conserved in the calpain 

family except calpain-10. Domain III is important in regulation of calpain activity by 

management of specific electrostatic interactions and in recognition of their substrates 

[287]. Domain IV has the penta-EF hand to bind Ca2+, calpastatin or domain VI of the 

small subunit (calpain 4). These penta-EF hands are important for calpain activation since 

they contain the most Ca2+ binding spots [289].  

Calpain-4, also known as a small calpain subunit, is a 28 kDa protein that forms 

heterodimers with typical calpains, encoded by capn4 or (capns1) gene [280]. It only 

contains domain V and VI (Figure 1-3). The function for domain V is known to bind the 

C-terminus region of domain IV in large calpain subunits [290]. Both domain VI and IV 

have a penta-EF hand for Ca2+-binding and heterodimer formation [291]. Calpain small 

subunit 2 (CSS2) was recently discovered and it dimerizes with calpain-2 [292]. However, 

CSS2 may not redundant with calpain-4 because global deletion of calpain-4 is 

embryonic lethal [293]. 
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1.3.2 Calpastatin 

Calpastatin is an endogenous protein that specifically inhibits calpains (e.g. calpain-1 and 

calpain-2), but not any other proteases. Calpastatin has 8 splice variants, ranging from 

18.7-85 kDa [294, 295]. Calpastatin has six domains (XL, L, I, II, III and IV) [280]. 

Domains I-IV are similar and contain inhibitory subdomains A, B and C. None of the 

subdomains can inhibit calpains when assayed alone, but when subdomains A and B or B 

and C are assayed together calpain activity is reduced. When subdomains A and C are 

assayed together there is no inhibition. Subdomains A and C have been shown to bind to 

domain IV and VI, respectively, in a Ca2+-dependent manner (Figure 1-4), while 

subdomain B binds domain II in a Ca2+-independent manner. Of the four domains the 

order of inhibition effectiveness is: domain I>domain IV>domain III>domain II [296]. 

Little is known about the XL domain other than it contains three PKA phosphorylation 

sites [297]. The function of domain L is still unknown. 

1.3.3 Calpain activation 

Calpains require Ca2+ concentrations at physiological pH and ionic strength (Figure 1-4). 

Although calpains 1 and 2 share identical 28 kDa small subunits, their 80 kDa large 

subunits are different. This discrepancy in structures presumably accounts for the 

differential Ca2+ requirement for activation between them. Calpains 1 and 2 require 

micromolar and millimolar of Ca2+ for their half-maximal activation, respectively [280].  

Activation of typical calpains involves a series of conformational changes, which engage 

the interactions between various domains. In the absence of Ca2+, the interaction between 

the N-terminal anchor helix and Domain VI of the small subunit imposes constraints on 

the protease core (Domains I and II) and makes these two Domains (I and II) separate in 

an inactive conformation [298, 299]. This prevents the active site Cys residue located in 

Domain I from forming the catalytic triad with His and Asn in Domain II because the Cys  
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Figure 1-4. Schematic diagram of calpain activation and regulation 

Calpain requires Ca2+ for activation. Calpain activity can also be regulated by other 

factors, such as ERK1/2 and PIPs. Calpastatin represents the negative regulator of calpain 

activity, which is also in a Ca2+-dependent manner. ERK1/2, extracellular 

signal-regulated kinase-1/2; PIPs, phosphatidylinositol phosphates. 
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is far away from the His (about 10 Å) [300]. Also, the wedge (tryptophan 288) between 

Domains I and II also blocks the formation of the catalytic triad. In the presence of 

sufficient Ca2+, calpain undergoes a series of conformational changes that lift the 

restraints on the protease core, which includes freeing the anchor helix from its contact 

with the small subunit. As a consequence, the catalytic triad containing the active site Cys 

residue located in Domain I and His and Asn in Domain II is formed in a proteolytically 

active conformation [300-302]. This activating process is reversible because abrogation 

of Ca2+ by adding excess EDTA pushes this reaction back to an inactive form of calpain.  

In addition to Ca2+, several other factors have been shown to affect calpain activation 

(Figure 1-4). For example, phosphorylation of calpain may lower the Ca2+ requirement 

for its activation. It was reported that phosphorylation of calpain-2 by ERK1/2 can 

directly induce its activation without increasing Ca2+ [303-305]. Calpain-2 activation is 

also regulated by its binding to phosphatidylinositol 4,5-bisphosphate [306, 307]. This 

may explain why calpain-2 can be activated in cells where there is no way that Ca2+ can 

reaches the millimolar levels. 

1.4 Calpain and cardiac disease 

Activated calpain cleaves its substrates through limited enzymatic cleavage. Its substrates 

are numerous, including a variety of regulatory and receptor proteins, cytoskeletal 

proteins, myofibrillar proteins and protein kinases [308], which are involved in many 

pathophysiological functions. Thus, calpain activation has been implicated in cardiac 

apoptosis, hypertrophy, fibrosis and inflammation in the development of cardiac disease.  

1.4.1 Calpain and cardiac remodeling 

1.4.1.1 Calpain and cardiac apoptosis 

Apoptosis is a highly-regulated, energy-dependent form of programmed cell death known 
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to play an important role in the development and progression of cardiovascular disease 

[309]. One mechanism by which apoptosis is induced in cardiomyocytes is via calpain 

activity [310-314]. 

Calpain has been proved to directly cleave pro-caspase 3, 7, 8, 9 and as such has been 

implicated in apoptosis [315, 316]. Additionally, apoptosis resulting from alterations in 

intracellular calpain concentrations may include calpain-2 mediated caspases-12 cleavage 

and activation [317]. Moreover, calpain has been shown to cleave Bcl-xL, an apoptotic 

inhibitor [318]. The protease is also implicated in ischaemia-reperfusion induced 

apoptosis and has been shown to participate in TNF-alpha mediated apoptosis in 

cardiomyocytes [312]. A recent study demonstrated that cardiac over-expression of 

calpain-1 is sufficient to cause heart failure in transgenic mice [319]. Our lab recently 

showed that hyperglycemia-induced calpain-1 activation, mediated through an NADPH 

oxidase-dependent pathway, can lead to apoptosis through down-regulation of (Na, 

K)-ATPase activity in cardiomyocytes and in vivo diabetic hearts [311]. Calpain 

inhibition via calpastatin over-expression imparted an anti-apoptotic effect on 

cardiomyocytes. In this study we also demonstrated that the pro-apoptotic role of calpain 

is mediated through caspase-3 activation. During high glucose stimulation calpain 

inhibition via pharmacological calpain inhibitors, calpain-1 siRNA and calpastatin 

overexpression was able to block calpain activation and consequently prevent apoptosis 

in cardiomyocytes and hyperglycemic hearts [320]. 

Calpain inhibition has been found to be protective in ischaemia injury models as well 

[321-324]. ROS production and the resulting oxidative stress is a key feature of I/R injury 

[325]. Our lab has shown that in high glucose treatment, ROS mediate calpain activation 

in cardiomyocytes. Calpain activation may be the outcome of increased intracellular 

calcium in cardiomyocytes after oxidative activation of L-type calcium channels and 
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ryanodine receptor by ROS leads to calcium release [311]. This is consistent with reports 

that calcium is increased under I/R stimulation and high glucose conditions [326-328]. 

The pro-apoptotic effects of calpain were also on display as once calpain activity was 

inhibited by calpastatin overexpression, cardiomyocyte apoptosis and necrosis were 

diminished in diabetic and non-diabetic hearts after I/R and encouraged myocardial 

functional recovery [329]. Mani and colleagues used a mouse model of myocardial 

infarction to demonstrate that active caspase-3 increased after myocardial infarction (MI) 

in the border zone but calpeptin, a calpain inhibitor and caused a decrease in calpain 

activity that reduced chamber dilation and protected left ventricular pump function and 

reduced cardiomyocyte loss in the border zone [330]. This was further supported by our 

recent report in a mouse model of MI [331]. All these previous studies have demonstrated 

an important role of calpain activation in cardiac apoptosis under stress.  

1.4.1.2 Calpain and cardiac hypertrophy 

Hypertrophy is an important feature of cardiac remodeling. It is characterized by the 

individual cardiomyocyte size increase. Pathological cardiac hypertrophy is initiated by 

biomechanical, stretch-sensitive (mechanical deformation) or neurohumoral mechanisms 

(release of endothelin-1, catecholamines, angiotensin II, chemokines, cytokines, and 

growth factors) [72]. Proteins involved in these intracellular signaling pathways would be 

the targets of calpains [332].  

Although the exact mechanism is unclear, calcium is believed to play some role in 

promoting cardiac hypertrophy [333] Alteration in calcium handling is a common 

occurrence in some models of cardiac hypertrophy [334]. The clear increase in 

intracellular calcium may serve as an avenue facilitating the morphological and 

biochemical changes that lead to a hypertrophic state. One way in which this occurs may 

be through the action of calcium-activated calpain [335]. Despite limited understanding 
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of its role in cardiac hypertrophy, elevated calpain activity is an established feature of the 

diabetic myocardium [336]. In one study, calpain-like activity was increased in the 

myocardium concurrent with cardiac mass after injection with isoproterenol to stimulate 

beta-agonist induced hypertrophy [337].  

A proposed method by which calpain indirectly promotes hypertrophy is through the 

activation of calcineurin, a Ca2+/calmodulin dependent protein phosphatase [338]. 

Proteolysis of calcineurin by calpain involves removal of the autoinhibitory domain 

which causes calcineurin to assume its active conformation, no longer requiring calcium 

and calmodulin for activation [339]. Calpain can also cleave an endogenous inhibitor of 

calcineurin, cain/cabin 1 [340]. On its way to promoting hypertrophy, calcineurin 

activates nuclear factor of activated T-cells (NF-AT), a transcription factor that 

translocates into the nucleus and initiates pro-hypertrophic gene expression [341]. 

Another transcription factor implicated in hypertrophy is NF-κB [342]. When inactive, 

NF-κB is complexed to its inhibitor, inhibitor-κB (IκB) and is thus prevented from entering 

the nucleus [343].  Calpain has been shown to degrade IκB but under normal 

circumstances activation of IκB kinase (IKK) by extracellular signals initiates the 

degradation of IκB [344-346]. Phosphorylation of two serine residues of the IκB structure 

by IKK leads to ubiquitination and subsequent digestion by the proteasome. NF-κB 

becomes free to translocate into the nucleus and transcribe its associated genes [343].  

Specifically, NF-κB is responsible for the activation of pro-inflammatory cytokines some 

of which, such as TNF-α, are elevated in the diabetic heart [347, 348]. Pro-inflammatory 

cytokines can subsequently induce expression of other cytokines to enhance cell injury. 

Our lab used a cardiac-specific capn4 knockout model and both an STZ and OVE26 

mouse model with calpastatin overexpression to investigate the role of calpain in the 

hyperglycemic myocardium. We demonstrated that impeding calpain function can reverse 
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hypertrophy and concurrently found that elevated calpain also increased NF-AT and 

NF-κB activity [336]. This finding supports the suggestion that calpain plays an 

important role in the activity of NF-κB and calcineurin, both key activators of 

hypertrophic pathways. We also observed that limiting calpain activity through capn4 

knockout also decreases TNF-α and TGF-ß1 expression in the diabetic heart [336]. 

Similarly, in a mouse model of ischemic heart disease using cardiac-specific capn4 

knockout mice, our lab reported that disruption of calpain reduces hypertrophy. Again, 

this anti-hypertrophic effect of calpain disruption was associated with inhibition of 

NF-κB activation and subsequent reduction of TNF-α expression in ischemic hearts [331]. 

Nevertheless, the signaling mechanisms by which calpain promotes hypertrophy in 

diseased hearts have not been fully understood.   

1.4.1.3 Calpain and cardiac fibrosis 

Myocardial fibrosis is a maladaptive response to stress characterized by excess collagen 

accumulation and is believed to occur independently of organ hypertrophy [349]. In the 

heart, myocytes are bounded by the extracellular matrix (ECM) which is primarily 

composed of collagen with smaller amounts of elastin, laminin and proteoglycans among 

others [350]. Collagen is vital to the maintenance of cardiac architecture [351]. Although 

studies indicate that only 2-4% of the myocardium is collagen, even slight changes in 

collagen concentration can have substantial effects on the mechanical properties of the 

heart [352]. The dominant collagens are type I, accounting anywhere from 50-80%, and 

type III collagen, comprising around 10% of the ECM; the other collagens are present but 

to a much lesser degree [353]. Collagen I is characterized by tensile strength whereas 

collagen III has greater elastic potential and for this reason, ratios between collagen types 

are significant [354]. Collagen may also be involved in the transmission of force generated 

by cardiac muscle and therefore has a substantial impact on the diastolic and systolic 

function of the heart. 
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Increased ventricular stiffness resulting from elevated levels of collagens can inhibit 

myocyte recoil during cardiac relaxation resulting in aberrant ventricular filling and 

consequently stroke volume. Increases in collagen content impair sarcomere extension 

and compromise the heart’s ability to generate adequate pressure for systemic perfusion 

[355]. Taken together, it is clear that fibrosis greatly jeopardizes the heart’s ability to 

function and not surprisingly, fibrosis is a leading cause of heart failure. 

We have shown that myocardial collagen deposition is increased in mouse models of 

Type I diabetes such as the STZ and OVE26 mouse. In these models, cardiac-specific 

capn4 knockout or calpastatin overexpression reduced both collagen deposition and gene 

expression of collagens I and III. Clearly as calpain over-activity is restrained, the amount 

of total collagen accumulation in the hyperglycemic heart is diminished and the relative 

amounts of collagens I and III are brought back to homeostatic levels [349]. In a mouse 

model of myocardial infarction, we similarly demonstrated that cardiac-specific capn4 

knockout attenuated both collagen deposition and gene expression of collagens I and III 

[331].     

Fibrosis is believed to be mediated by fibroblasts [356]. Having established a correlation 

between calpain activity and collagen content in the myocardium, we isolated and 

cultured cardiac fibroblast cells. The study aimed to identify fibroblasts as targets of 

calpain hyperactivity and examine the mechanisms that relate calpain to fibroblast 

stimulation in the diabetic heart [336]. The precise manner in which hyperglycemia 

stimulates increased collagen deposition by fibroblasts in cardiac tissue is not clearly 

understood. Transforming growth factor- beta 1 (TGF-β1) has gained notoriety as a 

potent fibrogenic cytokine [357]. TGF-ß1 is a key regulator of inflammation and wound 

healing; it’s released at wound sites where it recruits neutrophils, monocytes and 

fibroblasts to initiate tissue repair [358]. It also plays a central role in the maintenance of 
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the ECM and can induce the expression of ECM proteins including collagen from 

fibroblasts [359]. But further research into the mechanisms behind fibrosis has 

highlighted its ability to promote excess and unnecessary secretion of collagen from 

fibroblasts. One possibility is that high glucose up-regulates TGF-β1 expression leading 

to increased fibroblast proliferation. TGF-ß1 knockout models show reduced fibrosis in 

ageing hearts while TGF-ß1 overexpression in mice caused interstitial fibrosis [360].  

TGF-β1 has also been demonstrated to induce differentiation of fibroblasts to 

myofibroblasts [360]. Although in their resting state, fibroblasts are considered to be 

sessile they migrate and proliferate upon activation. During the reparative process, tissue 

needs to be contracted and as a result a subpopulation of the fibroblasts will gain 

contractile properties that resemble those belonging to smooth muscle cells and this 

modulation allows the cell, now called a myofibroblast, to secrete greater amounts of 

collagen [361]. Over the course of their development, myofibroblasts irreversibly acquire 

proteins, one of which is alpha-smooth muscle actin (α-SMA), a well-accepted marker of 

myofibroblast differentiation. Calpastatin overexpression imparts an anti-fibrotic 

advantage to the myocardium as our study showed that α-SMA is elevated in the diabetic 

heart but diabetic capn4 knockout hearts showed a significant decrease in α-SMA 

expression [336].        

Maintenance and degradation of the extracellular matrix in the myocardium is regulated 

by MMPs which are regulated in turn by their inhibitors, TIMPs. Modifications in the 

activities of either MMPs or TIMPs have marked effects on the architecture of the ECM 

in the myocardium [362]. In the event of impaired MMP regulation an imbalance in 

collagen synthesis versus collagen degradation leads to the accumulation of fibrillar 

collagen and the appearance of myocardial fibrosis [363]. The diabetic heart has been 

shown to have up-regulated MMP-9 activity [364] and down-regulated MMP-2 activity 
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[83]. In our lab we found an increase in total MMP activity in fibroblasts in vitro and 

diabetic hearts in vivo, calpain inhibition reduced MMP activity in both cases suggesting 

MMP inhibition may protect the diabetic heart against fibrosis [336].  

Further, in angiotensin-II induced cardiac remodelling, Letavernier and colleagues 

demonstrated using microscopy and immunohistochemical analysis of collagen type I 

that fibrosis can be reduced around the aorta and tissue arteries by inhibiting calpain 

[365]. An accompanying decrease in MMP activity was also observed suggesting that 

stimulation by calpain is not limited only to the fibroblast, whether directly or indirectly 

through fibrogenic factors, but also to the remodelling machinery in the ECM.  

1.4.1.4 Calpain and cardiac inflammation 

Inflammation occurs frequently in the heart under stress [366]. After an initial injury of 

the myocardium, the endogenous stress protein levels are up-regulated, such as HSP10 

(heat shock protein 10), HSP60, and HSP70. These stress proteins, known as ‘alarmins’, 

are ligands for toll like receptors (TLRs) which are expressed on the surface of 

inflammatory/ immune cells and cardiac cells. Binding of HSPs to TLRs induces the 

expression of pro-inflammatory factors including cell adhesion molecules, chemokines, 

and chemokine receptors, promoting both the recruitment and the activation of a series of 

inflammatory cells, such as neutrophils and monocytes. These cells release cytotoxic 

substance, inducing damage to endothelial cells and cardiomyocytes, which in turn, 

amplify alarmin expression [367]. The expression of proinflammatory factors are 

regulated by various transcriptional factors with NF- κB being the most important. At rest 

state, iκB binds and inhibits NF-κB in cytosol. Upon activation, iκB is degraded and 

NF-κB translocated into nucleus for activation [368]. Calpain has been shown to target 

and cleave iκB and thus, promotes NF-κB activation in inducing the expression of 

proinflammatory factors and inflammation [369]. Using calpastatin transgenic mouse 
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model, our lab demonstrated that inhibition of calpain by calpastatin over-expression or 

pharmacological inhibitor of calpain significantly reduced inflammatory cytokine TNF-α 

expression in cardiomyocytes and hearts [336]. We further reported that cardiac-specific 

knockout capn4 restored the protein levels of IκB, prevented NF-κB activation and 

attenuated TNF-α expression in hearts after myocardial infarction [331]. Clearly, calpain 

activation promotes inflammation in the heart under stress. In addition, in animal mouse 

model of angiotensin II-mediated cardiovascular remodeling, over-expression of 

calpastatin disturbed and delayed the ability to recruit inflammatory cells in mice [365]. 

Similarly, decreased endothelium adhesiveness to circulating leucocytes has been shown 

in angiotensin II infusion model with calpastatin overexpressing or calpain-1 deficiency 

[370]. Thus, calpain is involved in the occurrence of inflammation in cardiovascular 

system under diseased conditions. 

1.4.2 Calpain in cardiac disease 

1.4.2.1 Calpain and ischemia-reperfusion 

Calpain has been implicated in ischemia/ reperfusion (I/R)-induced injury in the heart 

[371]. Activation of calpains induced by Ca2+ overload during IR, leads to the proteolysis 

of the cytoskeletal protein fodrin rendering the membrane fragile [372]. IR increases 

cytosolic calpains activities leading to cardiac injury by cleaving Bid to truncated Bid 

[373], Ca2+ - ATPase [374, 375], Na, K - ATPase [376] and troponin T [372].  

Pharmacological inhibitors of calpain decreased myocardial infarction size in I/R models 

and attenuated the progression of heart failure after MI [330]. The protective effects of 

calpain inhibitors were then confirmed by over-expression of calpastatin in global whole 

I/R model and a mouse model of ischemia/reperfusion injury [324, 329]. In addition, 

cardiac-specific capn4 knockout reduced myocardial infarct size and remodeling, and 

improved myocardial dysfunction in a mouse model of myocardial infarction [331]. 
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These promising findings suggest that calpain may be a therapeutic target to limit 

myocardial ischemia/reperfusion injury. However, further investigation is warranted to 

understand the underlying mechanisms. 

1.4.2.2 Calpain and diabetic cardiomyopathy 

Diabetic cardiomyopathy is a serious clinical condition. It is a tremendous personal 

struggle for Canadians and a significant financial burden for our health care system [4]. 

However, the mechanisms by which this occurs remain incompletely understood and no 

cure is available for this disease. In recent years, our lab has been investigating calpain 

activation in diabetic cardiomyopathy. In cultured cardiomyocytes, our lab reported that 

incubation with high glucose or high palmitate increased calpain activation and inhibition 

of calpain with pharmacological inhibitor, siRNAs or over-expression of calpastatin 

prevented high glucose or palmitate-induced apoptosis [91, 377]. Further studies showed 

that selective silencing of calpain-1 but not calpain-2 prevented high glucose or 

palmitate-induced apoptosis in cardiomyocytes [91, 377]. In mouse models of 

STZ-induced and genetic type-1 diabetes, our lab reported that transgenic 

over-expression of calpastatin or cardiac-specific capn4 knockout attenuated cardiac 

apoptosis, hypertrophy and fibrosis, which are associated with an improvement of 

myocardial function [336]. These findings provide strong evidence in support of the role 

of calpain in type-1 diabetes-related cardiomyopathy. In db/db mice, calpain activity was 

increased in the heart and correlated with myocardial remodeling and dysfunction, which 

were attenuated by over-expression of calpastatin [378]. This data underlies a role of 

calpain in type-2 diabetes-related cardiomyopathy. More recently, our lab demonstrated 

that cardiac-specific capn4 knockout prevented cardiac apoptosis, reduced hypertrophy 

and fibrosis, and improved myocardial function in mice fed a high fatty diet, a model of 

pre-diabetes with impairment of glucose tolerance and insulin resistance [377]. This 

provides further evidence to support the role of calpain in type-2 related cardiomyopathy. 
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Mechanistically, our lab showed that calpain might induce ER stress and subsequent 

apoptosis in diabetic cardiomyopathy [377]. Taken together, calpain may represent a new 

therapeutic target for diabetic cardiac complications. 

1.4.2.3 Calpain and septic cardiomyopathy 

As described above, both caspase-3 activation and apoptosis are important in the 

development of myocardial dysfunction during sepsis [158-160, 162, 164, 165]. Studies 

have suggested that calpain is an important player in cell death signaling. Partial cleavage 

of pro- or anti-apoptotic proteins by calpain might activate or inactivate, respectively, 

putative substrates including caspase-3, caspase-7, -8, and -9 [158, 159], caspase-12 

[317], Bcl-2 [318], Bcl-xl [318], Bid [373], Bax [379], and inhibitor of NF-κB [344]. Our 

lab reported that calpain was activated in cardiomyocytes and hearts under septic 

conditions. Inhibition of calpain by its pharmacological inhibitors or over-expression of 

calpastatin protected cardiomyocytes against sepsis-induced apoptosis both in vitro and in 

vivo, which was associated with improved myocardial dysfunction. Silencing of 

individual calpain isoforms revealed that calpain-1 but not calpain-2 contributed to 

sepsis-related apoptosis in cardiomyocytes [320]. Furthermore, a recent study showed 

that calpain inhibition might be associated with activation of Akt/ GSK-3β (glycogen 

synthase kinase-3 beta) signaling in preventing cardiac apoptosis during sepsis [380]. 

Meanwhile, calpain activation was associated with NF-κB activation via degradation of 

IκB, leading to expression of pro-inflammatory mediates, which in turn elicited 

myocardial depression in sepsis [381]. Thus, transgenic over-expression of calpastatin or 

cardiac-specific capn4 knockout inhibited calpain activation and prevented 

pro-inflammatory cytokine expression in septic hearts. 

1.5 Mitochondrial calpain and cardiac disease 

Although calpains have been considered cytoplasmic enzymes [280, 382], studies have 
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demonstrated that calpain-1, calpain-2 and calpain-10 are also present in mitochondria 

[285, 314, 383-390]. Further studies reveal that calpain-1 has a mitochondrial targeted 

signal peptide which induces its translocation to mitochondria [391]. A previous study 

showed that homocysteine (Hcy) induced the translocation of active calpain from cytosol 

to mitochondria, leading to matrix MMP-9 activation in cultured rat heart microvascular 

endothelial cells [392]. In isolated hearts, Chen Q et al showed that a global 

ischemia/reperfusion induced calpain-1 activation within mitochondrial intermembrane 

space, leading to the cleavage of apoptosis-inducing factor (AIF) and subsequent 

apoptosis [313]. Using the same model, Chen Q et al further demonstrated that global 

ischemia/reperfusion increased calpain activation in mitochondrial matrix and disrupted 

complex-I activity [393]. The increased calpain-2 activity in mitochondrial matrix was 

also reported in a rat model of ischemia/reperfusion injury by a different lab and 

contributed to disruption of complex-I activity [394]. These studies suggest that 

increased mitochondrial calpain activity may be implicated in ischemic heart disease. In 

fact, several key mitochondrial proteins have been suggested to be substrates of calpain 

including AIF [313, 314, 383, 395], optic atrophy-1 (Opa-1) [396], Na+/Ca2+ exchanger 

[397] and ATP synthase-α [398], etc. Proteolysis of these proteins will compromise 

mitochondrial function and subsequent cardiac injuries following ischemia/reperfusion. 

However, it remains to be determined whether mitochondrial calpain is also increased in 

other pathological conditions. Given that mitochondria are major source of ROS in 

cardiomyocytes, mitochondrial dysfunction elicits ROS generation which may induce cell 

death and also serve as a signaling molecule promoting cardiac hypertrophy, fibrosis and 

inflammation, all of which contribute to cardiac disease and heart failure. Thus, it is 

highly possible that increased mitochondrial calpain induces ROS generation and cardiac 

disease under pathological conditions. 
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1.6 Rationales 

CVD are arguably the number-one health problem in the world. Constant prevalence of 

CVD and its high morbidity and mortality indicate that there are huge gaps in 

understanding of the underlying mechanisms and that better therapy strategies are 

urgently needed to control CVD and its clinical manifestations. Amongst various 

proposed mechanisms, oxidative damage induced by ROS has been critical in this 

disease. As a major source of ROS in cardiomyocyte, mitochondria are important players 

in pathogenesis of cardiac disease, while it has been increasingly recognized that calpain 

activation contributes to cardiac disease [399]. However, it has never been reported 

whether calpain activation can modulate mitochondrial ROS generation in cardiac 

disease. A previous study showed that mitochondrial calpains are increased in isolated 

hearts following global ischemia/reperfusion, leading to apoptosis via cleavage and 

release of AIF [313]. However, it remains unknown whether increased mitochondrial 

calpain is a common mechanism contributing to cardiac disease and if yes, how 

mitochondrial calpain mediates cardiac disease. Since both diabetes and inflammation are 

critically important factors in promoting cardiac disease, in this thesis, I used diabetic 

cardiomyopathy and septic cardiomyopathy as disease models to address the above 

questions.  

1.7 Hypotheses 

In this work, the following four hypotheses were investigated: 

1. Calpain is increased in mitochondria in cardiomyocytes under diabetic and septic 

conditions;  

2. Increased mitochondrial calpain contributes to mitochondrial ROS generation in 

cardiomyocytes under diabetic and septic conditions;  
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3. Increased mitochondrial calpain disrupts ATP synthase via cleavage of ATP5A1 

leading to excessive mitochondrial ROS generation in cardiomyocytes under 

diabetic and septic conditions; 

4. Administration of mitochondrial-targeted antioxidant reduces diabetic adverse 

cardiac changes and improves myocardial function in diabetes.  
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Chapter 2 

2 Deletion of capn4 protects the heart against 

endotoxemic injury by preventing ATP synthase 

disruption and inhibiting mitochondrial superoxide 

generation2 

 

 

 

 

 

 

 

 

 

 

 

                               

2 This chapter has been published in the following manuscript: 

 Ni R, Zheng D, Wang Q, Yu Y, Chen R, Sun T, Wang W, Fan GC, Greer PA, Gardiner RB, 

and Peng T. (2015) Deletion of capn4 Protects the Heart Against Endotoxemic Injury by 

Preventing ATP Synthase Disruption and Inhibiting Mitochondrial Superoxide Generation, 

Circ Heart Fail 8, 988-996. 
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2.1 Introduction  

Sepsis is the leading cause of death among the critically ill [1]. Among the general 

population, sepsis accounts for 215, 000 deaths per year [2], making it the 10th most 

common cause of death in the United States [3]. Myocardial dysfunction is a key 

manifestation contributing to morbidity and mortality among septic patients in intensive 

care units [4], and 40-50% of patients with prolonged septic shock develop myocardial 

depression [5]. Estimates of mortality due to sepsis range from 20-30% [6, 7], however, 

mortality increases to 70-90% when there is accompanying myocardial dysfunction [7]. 

Thus, myocardial dysfunction is a decisive factor in determining survival or death in 

sepsis. Lipopolysaccharides (LPS) of gram-negative bacteria are important pathogens 

responsible for myocardial dysfunction during sepsis [8, 9]. LPS-induced 

pro-inflammatory cytokines, in particular, tumour necrosis factor-alpha (TNF-α), play a 

critical role in myocardial dysfunction in animal models of sepsis [8, 10, 11]. However, 

the mechanisms underlying LPS-induced pro-inflammatory response in septic hearts 

remain not fully understood and no cure is available to correct this life-threatening 

condition. 

Calpains belong to a family of calcium-dependent thiol-proteases [12, 13]. Fifteen gene 

products of the calpain family are reported in mammals. Among them, calpain-1 and 

calpain-2 are ubiquitously expressed, while other calpain family members have more 

limited tissue distribution. Both calpain-1 and calpain-2 are heterodimers. They consist of 

distinct large 80-kDa catalytic subunits encoded by capn1 and capn2, respectively, and a 

common small 28-kDa regulatory subunit encoded by capn4. The regulatory subunit is 

indispensable for calpain-1 and calpain-2 activities. These two calpain isoforms are 

regulated by the endogenous calpain inhibitor, calpastatin. Our recent study demonstrated 

that over-expression of calpastatin reduced cardiac TNF-α expression and attenuated 
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myocardial dysfunction in calpastatin transgenic mice (Tg-CAST) in response to LPS 

[14]. However, the underlying mechanisms by which calpain participates in the 

regulation of pro-inflammatory response remain to be defined. Moreover, tissue-specific 

gene deletion of calpain is generally considered to be more conclusive to clarify the 

contribution of cardiac calpain since inhibition of systemic inflammation could not be 

excluded to confer cardiac protection in endotoxemia in Tg-CAST mice. 

Although calpain-1 and calpain-2 have been considered mainly cytoplasmic enzymes, 

recent studies have found that they are also present in mitochondria [15, 16]. 

Mitochondrial calpains have been shown to play important roles in pathophysiological 

conditions [16]. However, it has never been shown whether calpains are altered in 

mitochondria and whether mitochondrial calpains contribute to pro-inflammatory 

response in septic hearts. Activation of mitochondrial calpains may be involved in 

mitochondrial dysfunction because several mitochondrial proteins have been suggested to 

be potential substrates of calpain, including, but not limited to, ATP5A1 [17], optic 

atrophy-1 (Opa-1) [18], apoptosis-inducing factor [19], and Na+/Ca2+ exchanger-1 

(NCX-1) [20]. Proteolysis of these mitochondrial proteins will compromise 

mitochondrial function and may lead to excessive ROS generation. Thus, calpain may 

regulate mitochondrial ROS production. Our recent study has demonstrated that LPS 

increases mitochondrial ROS and selectively blocking mitochondrial ROS inhibits TNF-α 

expression in cardiomyocytes [21]. Taken together, these studies raise an intriguing 

hypothesis that calpain activation may induce excessive mitochondrial ROS generation, 

leading to cardiac pro-inflammatory response and myocardial dysfunction in sepsis. 

In the present study, we employed cardiomyocyte-specific capn4 knockout mice to 

investigate whether and how calpain activation disrupts ATP synthase and induces 

mitochondrial ROS generation in cultured cardiomyocytes and hearts during LPS 
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stimulation. 

2.2 Methods 

2.2.1 Animals 

This investigation conforms to the Guide for the Care and Use of Laboratory Animals 

published by the US National Institutes of Health (NIH Publication, 8th Edition, 2011). 

All experimental procedures were approved by the Animal Use Subcommittee at the 

University of Western Ontario, Canada. Breeding pairs of C57BL/6 mice were purchased 

from the Jackson Laboratory. Tg-CAST mice were generously provided by Dr. Laurent 

Baud (the Institut National de la Santé et de la Recherche Médicale, Paris, France) 

through the European Mouse Mutant Archive [22]. Mice with cardiomyocyte-specific 

disruption of capn4 (capn4-ko) were generated as described previously [23]. All of the 

mice used in this study, including controls, were littermates of the same generation. Adult 

male mice (aged 2 months, 8-15 mice in each group) were injected with LPS (4 mg/kg, 

i.p.) or saline as a control. 

2.2.2 Echocardiography  

Animals were lightly anaesthetized with inhalant isoflurane (1%) and imaged using a 

40-MHz linear array transducer attached to a preclinical ultrasound system (Vevo 2100, 

Visual Sonics, Canada) with nominal in-plane spatial resolution of 40 μm (axial)  80 μm 

(lateral). M-mode and 2-D parasternal short-axis scans (133 frames/second) at the level 

of the papillary muscles were used to assess changes in left ventricle (LV) end-systolic 

inner diameter (LVIDs), LV end-diastolic inner diameter (LVIDd), LV posterior wall 

thickness in end-diastole (LVPW;d) and end-systole (LVPW;s), and fractional shortening 

(FS%). LV end-systolic volume (LV Vol;s) and end-diastolic volume (LV Vol;d) were 

acquired by 7/(2.4+LVIDs) × LVIDs3 and 7/(2.4+LVIDd) × LVIDd3 , respectively. 
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2.2.3 Delivery of recombinant adenovirus into mice  

Mice were anaesthetized with inhaled isofluorane (1%). With the guide of 

echocardiography, adenovirus containing human ATP5A1 gene (Ad-ATP5A1, 2×109 PFU 

in 100 μL, SignaGen Laboratories) or containing GFP (Ad-GFP, SignaGen Laboratories) 

was injected into mouse left ventricle. 

2.2.4 Isolation and culture of adult mouse cardiomyocytes  

Adult mouse ventricle cardiomyocytes were isolated from Tg-CAST and wild-type mice 

(C57BL/6), and cultured as described in our recent study [24]. 

2.2.5 Adenoviral infection of cardiomyocytes  

Cardiomyocytes were infected with Ad-ATP5A1, adenoviral vector containing 

mitochondria-targeted rat calpastatin (Ad-mtCAST, SignaGen Laboratories), or beta-gal 

(Ad-gal, Vector Biolabs) as a control at a multiplicity of infection of 100 PFU/cell as we 

previously described [25]. 

2.2.6 Measurement of mitochondrial superoxide generation  

Superoxide flashes in single mitochondrion were measured to determine mitochondrial 

superoxide generation in living cardiomyocytes as described previously [26]. Briefly, 

cardiomyocytes were infected with an adenoviral vector expressing mt-cpYFP 

(Ad-mt-cpYFP). Ad-mt-cpYFP expresses a circularly permuted yellow fluorescent 

protein (cpYFP) in the mitochondrial matrix of cells using the cytochrome C oxidase 

subunit IV targeting sequence (mt-cpYFP). Twenty-four hours after infection, confocal 

imaging was recorded using the Olympus FV 1000 laser-scanning microscope equipped 

with a 63x, 1.3NA oil immersion objective and a sampling rate of 0.7s/frame. 
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2.2.7 Construction of plasmid with mitochondrial targeted capn1 
expression and transfection in cardiomyocyte-like H9c2 Cells  

The full coding region of human capn1 cNDA was recovered from pCMV6-XL5 

containing human capn1 (Origene) and inserted into pCMV/myc/mito following 

mitochondrial signal peptide (Life Technologies Inc.). The resulting plasmid 

pCMV/myc/mito-capn1 expresses myc-tagged capn1 selectively in mitochondria. 

Rat cardiomyocyte-like H9c2 cells were cultured and transfected with 

pCMV/myc/mito-capn1 or pCMV/myc/mito as a control using the jetPRIMETM DNA 

transfection reagent (VWR International) according to the manufacturer’s instructions. 

2.2.8 Calpain activity  

Calpain activity was determined by using a fluorescence substrate 

N-succinyl-LLVY-AMC (Cedarlane Laboratories) as previously described [14]. 

2.2.9 Real-time reverse-transcriptase polymerase chain reaction 
(RT-PCR)  

Total RNA was extracted from heart tissues using the Trizol Reagent (Life Technologies 

Inc.) following the manufacturer's instruction. Real-time RT-PCR was performed to 

analyze mRNA expression for TNF-α, ATP5A1 and GAPDH as described previously 

[27]. 

2.2.10 Western blot analysis  

The protein levels of calpain-1, calpain-2, mitochondrial voltage-dependent anion 

channel (VDAC1), cytochrome c, cyclophidin D, complex Va, ATP synthase-alpha 

(ATP5A1) and beta subunits, Opa-1, calreticulin, and GAPDH were determined by 

western blot analysis using respective specific antibodies (Cell Signaling and Santa Cruz 

Biotechnology). 
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2.2.11 Measurement of ROS generation in isolated mitochondria  

Interfibrillar Mitochondria were isolated from the freshly harvested heart as described 

previously [28], with minor modifications as follows. Instead of Nagarse, trypsin (5 mg/g 

wet weight of tissues) was used and after homogenizing and centrifuging, trypsin 

inhibitor (0.5 mg/ml) was added to the supernatant. The isolated mitochondria were 

further purified using Percoll density gradient centrifugation [29]. Mitochondrial ROS 

generation was determined on addition of pyruvate/malate or succinate by using Amplex 

Red and horseradish peroxidase according to the manufacturer’s instruction. 

2.2.12 Immuno-fluorescence staining and confocal microscopy 

Mitochondrial smears were prepared on slides and fixed with freshly prepared 4% 

paraformaldehyde. After incubation with appropriate primary antibodies (calpain-1 and 

VDAC-1) and secondary antibodies conjugated with different fluorescences (Alexa Fluor 

488 Donkey anti-mouse IgG and Alexa Fluor 594 Goat anti-rabbit IgG), signals were 

obtained with an Olympus FluoViewTM FV1000 confocal microscope equipped with the 

IX81 motorized inverted system as described in our recent report [30]. 

2.2.13 Immuno-electron microscopy  

The sections of heart tissues were incubated with primary antibodies against calpain-1 

(Cell Signaling), and then labeled with second antibodies tagging with colloidal gold 

(10nm, Cedarlane Laboratories). Gold particles were identified in mitochondria and 

quantified as the number of gold particles in given mitochondrial areas. 

2.2.14 Co-immunoprecipitation (co-IP) and native gel electrophoresis  

Co-IP and non-denaturing polyacrylamide gel electrophoresis were carried out to analyze 

protein–protein interactions. Briefly, calpain-1 and its interacting proteins were pulled 

down using Immunoprecipitation kit - dynabeads protein G (Life Technologies Inc.), and 
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ATP synthase complex was isolated using ATP synthase immunocapture kit (Abcam Inc.) 

in isolated mitochondria according to the manufacturer’s instructions. Both calpain-1/its 

interacting proteins and ATP synthase complex were subjected to SDS-polyacrylamide 

gel electrophoresis for separation, followed by western blot analysis for ATP5A1 and 

calpain-1 using their specific antibodies, respectively. 

2.2.15 ATP synthase activity  

ATP synthase activity was measured using an assay coupled with pyruvate kinase, which 

converts ADP to ATP and produces pyruvate from phosphoenolpyruvate, as described 

previously [31]. 

2.2.16 Statistical Analysis 

All data were presented as mean ± SD. Statistical comparisons between only two groups 

were done using an unpaired Student’s t-test. For comparisons of more than two groups, 

one-way analysis of variance (ANOVA) or two-way ANOVA was performed as 

appropriate. Post hoc comparisons were performed using Newman-Keuls or Bonferroni 

comparison analysis in one-way ANOVA or two-way ANOVA, respectively. One-way 

repeated-measures ANOVA was performed for time course and dose response studies on 

mitochondrial superoxide flashes. A value of P < 0.05 was considered statistically 

significant. 

2.3 Results 

2.3.1 Deletion of Capn4 Reduces Pro-Inflammatory Response and 
Attenuates Myocardial Dysfunction in Endotoxemic Mice 

To determine whether cardiomyocyte-specific deletion of capn4 provides beneficial 

effects in septic hearts, we injected capn4-ko and their wild-type mice with LPS or saline. 

As previously reported [14], LPS induced TNF-α expression and decreased myocardial 
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function in wild-type mice; however, deficiency of capn4 significantly attenuated TNF-α 

expression and myocardial dysfunction in endotoxemic capn4-ko mice (Figure 2-1A and 

B, and Table 2-1). Thus, cardiomyocyte-specific deletion of capn4 protects the heart 

against LPS-induced injury.  

2.3.2 Genetic Inhibition of Calpain Prevents Mitochondrial 
Superoxide Generation in Hearts and Cultured 
Cardiomyocytes during LPS Stimulation 

Our recent study has shown that mitochondrial ROS contributes to LPS-induced 

pro-inflammatory response in cardiomyocytes [32]. In this study, we examined whether 

there is a link between calpain and mitochondrial ROS generation in endotoxemia. We 

determined ROS generation in isolated mitochondria of mouse hearts at 4 hours after LPS 

stimulation. LPS treatment increased ROS generation in mitochondria using either 

pyruvate/malate or succinate as substrates (Figure 2-1C and D). Capn4 deletion 

significantly reduced ROS generation in mitochondria from LPS-stimulated capn4-ko 

mice (Figure 2-1C and D). However, the anti-oxidant capacity slightly increased in 

response to LPS and there was no difference between wild-type and capn4-ko mice (data 

not shown). These results suggest that calpain induces mitochondrial ROS generation in 

response to LPS and the increase in mitochondrial ROS production is not due to the 

disruption of anti-oxidant defence system.
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Figure 2-1. Mitochondrial ROS generation, TNF-α expression and dysmyocardial 

function in capn4-ko mice and their wild-type littermates  

Mice were injected with LPS or saline (6-7 mice in each group). Four hours later, 

myocardial function was assessed (B) and the mRNA levels of TNF-α measured (A). 

Mitochondrial ROS generation was determined following addition of pyruvate/malate (C) 

or succinate (D) using Amplex Red. Data are mean ± SD, n = 4-7. *P < 0.05 versus saline 

in WT and †P < 0.05 versus LPS in WT. 
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Table 2-1. Myocardial function in Capn4-KO mice during endotoxemia 
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To confirm the role of calpain in mitochondrial ROS generation, we isolated and cultured 

cardiomyocytes from adult Tg-CAST and wild-type mice. Cardiomyocytes were infected 

with Ad-mt-cpYFP [26] and followed by incubation with LPS (0.1-5 μg/ml) or saline for 

up to 4 hours. Although cpYFP is also sensitive to the pH, our recent study showed that 

mt-cpYFP flash events reflect a burst in electron transport chain-dependent superoxide 

production that is coincident with a modest increase in matrix pH in cardiomyocytes [33]. 

Thus, we used cpYFP as a probe to analyze mitochondrial superoxide flashes in 

cardiomyocytes (Figure 2-2A). Mitochondrial superoxide flashes in cardiomyocytes were 

inhibited by mitochondria-targeted superoxide dismutase mimetics, mito-TEMPO (Fig. 

2B). LPS increased mitochondrial superoxide generation in wild-type cardiomyocytes in 

a time- and dose-dependent manner (Figure 2-2C and D). However, the increase in 

mitochondrial superoxide generation by LPS was abrogated in Tg-CAST cardiomyocytes 

(Figure 2-2E). These results demonstrate that calpain is important in mitochondrial 

superoxide generation in cardiomyocytes induced by LPS stimulation. 
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Figure 2-2. Measurement of single mitochondrial superoxide flashes in 

cardiomyocytes  

Adult mouse cardiomyocytes were isolated from Tg-CAST mice and their wild-type (WT) 

littermates. After incubation with LPS or saline for 0-4 hours, mitochondrial superoxide 

generation was determined. (A1-4) Representative pictures for mitochondrial superoxide 

flashes in cardiomyocytes. Individual mitochondria display green color in 

cardiomyocytes. Inside of yellow boxes, the green color increases from 0 to 10 sec and 

decreases after 15 sec, indicating one superoxide flash in one box. (B) Mitochondrial 

superoxide flashes were inhibited by mito-TEMPO in cardiomyocytes. (C) 

Cardiomyocytes were incubated with LPS (1 μg/ml) for up to 240 minutes. Mitochondrial 

superoxide flashes were measured. (D) Cardiomyocytes were incubated with LPS (0, 0.1, 

1 and 5 μg/ml) for 4 hours. Mitochondrial superoxide flashes were quantified. (E) 

Mitochondrial superoxide flashes in WT and Tg-CAST cardiomyocytes. Data are mean ± 

SD from 4-7 different cultures. *P < 0.05 versus 0, saline + WT or saline + vehicle, and 
#P < 0.05 versus LPS + WT or LPS + vehicle. 
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2.3.3 LPS Induces Calpain-1 Accumulation in Mitochondria 

To determine whether calpains were altered in mitochondria of LPS-treated mouse hearts, 

we prepared mitochondrial and cytosolic fractions from sham and LPS-stimulated mouse 

hearts. An intact set of mitochondrial proteins (VDAC1, cytochrome c, cyclophilin D, 

complex Va and ATP5A1) was detected in the mitochondrial fraction, whereas GAPDH 

and calreticulin appeared in cytosolic but not mitochondrial fraction, validating the purity 

and integrity of isolated mitochondria (Figure 2-3A). The protein levels and activities of 

calpain-1 and calpain-2 were significantly elevated in mitochondria from LPS- compared 

with saline-treated hearts (Figure 2-4A-D). LPS also increased calpain activities in 

cytosol of the heart (Figure 2-3B). However, LPS did not change the protein levels of 

calpain-10, an isoform widely recognised as a mitochondrial calpain (data not shown). 

Since our recent study have implicated calpain-1 but not calpain-2 in LPS-induced TNF-α 

expression in cardiomyocytes [14], we focused on investigating calpain-1 for the 

following studies.  

To provide further evidence in support of calpain-1 accumulation in mitochondria, we 

determined calpain-1 and VDAC1 proteins in isolated mitochondria of LPS-treated 

mouse hearts by dual immunofluorescent confocal microscopy. Confocal microscopic 

analysis demonstrated that VDAC1 was detected in mitochondrial membrane (red) and 

calpain-1 was present inside of mitochondria (green), and percentages of 

calpain-1-labelled mitochondria were much greater in LPS-treated versus sham mouse 

hearts (Figure 2-4E). Immune-electron microscopy confirmed the localization of 

calpain-1 in mitochondria (Figure 2-4F and G). Consistently, there were much more 

calpain-1 signals in mitochondria of LPS-treated hearts than those of sham mouse hearts 

whereas calpain-1 signals in cytosol remained comparable between sham and LPS-treated 

hearts (Figure 2-4G and Figure 2-5B). As a negative control for primary antibodies, no 
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signal was observed when calpain-1 antibody was replaced by a negative IgG isotype 

(Figure 2-5A). These results demonstrate that LPS induces calpain-1 accumulation in 

mitochondria of the heart. However, inhibition of calpain activity prevented LPS-induced 

calpain-1 accumulation in mitochondria of mouse hearts (Figure 2-6), suggesting that 

calpain-1 may re-locate to mitochondria after activation in response to LPS. 
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Figure 2-3. (A) Confirmation of isolated mitochondria  

Mitochondria were isolated and purified from heart tissues. Western blot analysis was 

performed to detect a set of mitochondrial proteins, GAPDH and calreticulin in 

mitochondrial (Mt) and cytosolic fractions (Cyt).  

(B) Calpain activities in the cytosol 

The cytosol was isolated from heart tissues of sham and LPS-injected mice and calpain 

activities were measured. Data are mean ± SD, n = 5. *P<0.05. 



106 

 

 

 



107 

 

 

 

 

Figure 2-4. Calpain accumulation in mitochondria 

Mitochondrial fractions were prepared from mice treated with saline or LPS (6 mice in 

each group). (A) A representative western blot for calpain-1, calpain-2, and VDAC1 in 

mitochondrial fraction from 2 out of 6 different hearts in each group. (B)  Quantification 

of capn1/VDAC1 in mitochondria. (C) Quantification of capn2/VDAC1. (D) Calpain 

activity in mitochondrial fraction. Data are mean ± SD, n = 6. *P < 0.05 versus saline. (E) 

Mitochondria were isolated from sham and LPS-treated mice. Dual immunofluorescent 

staining for VDAC1 and calpain-1 was performed in isolated mitochondria. 

Representative microphotographs of confocal microscopy for VDAC1 and calpain-1 

shows membrane staining of VDAC1 in mitochondria (Red) and that calpain-1 is located 

in mitochondria (Green). (F) Representative microphotographs of immune-electron 

microscopy for calpain-1 in mitochondria (black dots). (G) Quantification of calpain-1 

signals in mitochondria and cytosol. Data are mean ± SD from 3 different heart tissues in 

each group. *P < 0.05 versus saline + mitochondria. 
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Figure 2-5. (A) Specificity of capn1 staining by immune-electron microscopy  

Representative microphotographs of immune-electron microscopy for capn1 (black dots).  

(B) Relative distribution of capn1 signals in mitochondria versus cytosol  

Data are mean ± SD, n = 3 hearts in each group. * p < 0.05 vs mitochondria in Sham.
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Figure 2-6. The protein levels of capn1 in mitochondria 

Mice were injected with LPS or saline in combination with calpain inhibitor-III (CI-III) 

or vehicle. Four hours later, mitochondria were isolated from the heart and the protein 

levels of capn1 and VDAC1 were determined by western blot analysis. The 

representative western blot for capn1 and VDAC1 in mitochondria from 2 out of 6 

different hearts in each group is shown. 
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2.3.4 Targeted Over-expression of Calpastatin in Mitochondria 
Inhibits Superoxide Generation in Cardiomyocytes during LPS 
Stimulation  

To investigate the role of mitochondrial calpain, we infected cultured cardiomyocytes 

with adenoviral vector containing mitochondria-targeted calpastatin (Ad-mtCAST) and 

then incubated them with LPS for 4 hours. Selective over-expression of calpastatin in 

mitochondria prevented mitochondrial superoxide flashes induced by LPS (Figure 2-7). 

This result describes a crucial role of mitochondrial calpain in superoxide generation in 

cardiomyocytes during LPS stimulation.  

2.3.5 Up-regulation of Calpain-1 Selectively in Mitochondria Induces 
Superoxide Generation and Pro-inflammatory Response in 
Cardiomyocytes 

To provide direct evidence to support our hypothesis that the accumulation of calpain-1 in 

mitochondria contributes to superoxide generation and subsequent pro-inflammatory 

response, we transfected cardiomyocyte-like H9c2 cells with pCMV/myc/mito-capn1, a 

plasmid expressing mitochondrial targeted capn1. Twenty-four hours later, mitochondrial 

and cytosolic fractions were isolated from cardiomyocyte-like H9c2 cells. 

Over-expressed capn1 was confirmed as myc-tagged protein in mitochondrial but not in 

cytosolic fractions (Figure 2-8). Intriguingly, over-expression of capn1 restricted to 

mitochondria significantly increased mitochondrial superoxide generation and induced 

TNF-α expression in cardiomyocyte-like H9c2 cells, both of which were inhibited by 

mito-TEMPO (Figure 2-9A and B). These results strongly implicate mitochondrial 

calpain-1 in ROS production and pro-inflammatory response.  

 



111 

 

Figure 2-7. Effects of mitochondria-targeted calpastatin over-expression on 

mitochondrial superoxide flashes and ATP synthase activity in LPS-stimulated 

cardiomyocytes 

(A)  A representative western blot confirms myc-tagged CAST is expressed selectively 

in mitochondria of H9c2 cells after infection with adenoviral vector containing 

mitochondria-targeted calpastatin (Ad-mtCAST) or Ad-gal as a control. (B and C) After 

infection with Ad-mtCAST, adult cardiomyocytes were exposed to LPS or saline for 4 

hours, mitochondrial superoxide generation (B) and ATP synthase activity (C) were 

determined. Data are mean ± SD from 6 different cultures. *P < 0.05 versus saline + 

Ad-gal, and # P < 0.05 versus LPS + Ad-gal. 
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Figure 2-8. Plasmid expressing mitochondria-targeted capn1 

(A) Schematic map of the plasmid expressing mitochondrial targeted capn1 

(pCMV/myc/mito-capn1). (B) H9c2 cells were transfected with pCMV/myc/mito-capn1 

or an empty plasmid (pCMV/myc/mito) as a control. Twenty-four hours later, 

mitochondrial and cytosolic fractions were prepared, and myc, GAPDH and VDAC1 

were detected by western blot analysis. A representative western blot confirms 

myc-tagged calpain-1 is expressed selectively in mitochondria.  
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Figure 2-9. Effects of mitochondrial targeted capn1 on superoxide generation and 

TNF-α expression in H9c2 cells 

After transfection with pCMV/myc/mito-capn1, H9c2 cells were incubated with 

mito-TEMPO or vehicle for 24 hours. (A) Mitochondrial superoxide flashes were 

assessed. (B) TNF-α mRNA was analyzed. Data are mean ± SD from 4-6 different 

cultures. *P < 0.05 versus pCMV/myc/mito + vehicle, and #P < 0.05 versus 

pCMV/myc/mito-capn1 + vehicle. 
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2.3.6 ATP5A1 Is a Direct Target of Calpain-1 in Mitochondria in 
Response to LPS 

To explore the potential targets of calpain-1 in mitochondria, we pulled down the 

calpain-1 and its interacting proteins from isolated mitochondria of LPS-treated mouse 

hearts. Western blot analyses for a number of mitochondrial proteins (VDAC1, 

cytochrome c, cyclophidin D, NCX1, ATP5A1, ATP synthase-β and Opa-1) revealed that 

only ATP5A1 was pulled down with calpain-1 (Figure 2-10A1). Likewise, calpain-1 was 

detected in immune-captured ATP synthase complex (Figure 2-10A2). These results 

demonstrate a physical interaction between calpain-1 and ATP5A1 in mitochondria. 

Furthermore, ATP5A1 is a direct substrate of calpain-1 since co-incubation of active 

calpain-1 with recombinant ATP5A1 protein in vitro resulted in multiple cleavages of 

ATP5A1 (Figure 2-11).   

We therefore reasoned that calpain-1 cleaved ATP5A1 and disrupted ATP synthase 

activity in mitochondria of LPS-treated mouse hearts. Accordingly, LPS reduced ATP 

synthase activity in mitochondria, which is consistent with previous reports [34, 35]. 

However, the reduction in ATP synthase activity was prevented by capn4 deletion (Figure 

2-10B). In line with the reduction of ATP synthase activity, the protein levels of 

ATP5A1were markedly decreased in mitochondria from LPS-treated wild-type hearts 

(Figure 2-10C) and restored in capn4-ko mice after LPS stimulation (Figure 2-10D). 

However, the mRNA levels of ATP5A1 remained comparable among those groups (data 

not shown). In cultured cardiomyocytes, selective over-expression of calpastatin in 

mitochondria by infection with Ad-mtCAST significantly attenuated LPS-induced 

reduction in ATP synthase activity (Figure 2-7C).  
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Figure 2-10. Role of calpain in ATP5A1 expression and ATP synthase disruption in 

endotoxemic mouse hearts 

(A1) A representative western blot shows that ATP5A1 is detected in calpain1 interacting 

proteins. (A2) A representative western blot shows that calpain-1 is detected in captured 

ATP synthase complex. (B-D) Myocardial mitochondria were isolated from capn4-ko and 

their wild-type (WT) mice treated with saline or LPS. (B) ATP synthase activity was 

measured in mitochondria. (C and D) The upper panels are the representative western 

blot for ATP5A1 protein from 2 out of 4 hearts in each group and the lower panels are the 

quantification of ATP5A1 protein relative to VDAC1 in mitochondria. Data are means ± 

SD, n = 4-6. *P < 0.05 versus saline, saline + WT or LPS+WT and #P < 0.05 versus LPS 

+ WT.  
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Figure 2-11. Calpain-1 dependent cleavages of ATP5A1  

Recombinant protein ATP5A1 was incubated with active calpain-1 in a reaction buffer 

containing 50 μmol/L of Ca2+ at room temperature for 15 minutes. A representative 

SDS-PAGE gel after coomassie blue staining shows ATP5A1 protein and its multiple 

cleaved fragments. 
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2.3.7 Over-expression of ATP5A1 Reduces Mitochondrial 
Superoxide Generation and TNF-α Expression and Attenuates 
Myocardial Dysfunction in Endotoxemic Mice  

To investigate whether up-regulation of ATP5A1 provides cardiac protection, we 

delivered Ad-ATP5A1 into mice. Ad-GFP served as a control. Forty-eight hours later, 

mice received LPS (4 mg/kg, i.p.) or saline. Four hours later, delivery of Ad-ATP51 

significantly increased ATP5A1 protein in both sham and LPS-treated hearts (Figure 

2-12A and B) and ATP synthase activity in LPS-treated hearts (Figure 2-12C), suggesting 

that ectopic expression of ATP5A1 integrates into the complex of ATP synthase. 

Up-regulation of ATP5A1 reduced mitochondrial ROS generation (Figure 2-12D) and 

TNF-α expression in mouse hearts after LPS stimulation (Figure 2-12E), and improved 

myocardial function in endotoxemic mice (Figure 2-12F and Table 2-2). 

In cultured cardiomyocytes, incubation with ATP synthase inhibitor oligomycin A 

increased mitochondrial superoxide flash generation (Figure 2-13). To provide direct 

evidence to support the role of ATP5A1, we infected cardiomyocytes with Ad-ATP5A1 or 

Ad-gal as a control, and then incubated them with LPS for 4 hours. Up-regulation of 

ATP5A1 increased ATP synthase activity (Figure 2-14A) and reduced mitochondrial 

superoxide generation induced by LPS (Figure 2-14B). Similarly, infection with 

Ad-ATP5A1 attenuated mitochondrial superoxide generation and TNF-α expression 

induced by mitochondrial-targeted calpain-1 in cardiomyocytes (Figure 2-14C and D). 
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Figure 2-12. Effects of ATP5A1 over-expression in endotoxemic mouse hearts  

Adult mice were injected with Ad-ATP5A1 or Ad-GFP and then treated with LPS. Four 

hours later, mitochondria were isolated. (A) A representative western blot from 2 out of 

4-6 different hearts for ATP5A1 and VDAC1. (B) Quantification of ATP5A1/VDAC1 

protein ratio. (C) ATP synthase activity. (D) Mitochondrial ROS generation was assessed 

following addition of succinate. (E) TNF-α mRNA was analyzed in heart tissues by 

real-time RT-PCR. (F) Myocardial function was assessed by echocardiography. Data are 

means ± SD, n = 4-7. *P < 0.05 versus saline+Ad-GFP, and #P < 0.05 versus 

LPS+Ad-GFP.
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Table 2-2. Effect of Ad-ATP5A1 on myocardial function in endotoxemic mice 
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Figure 2-13. Effect of oligomycin A on mitochondrial superoxide flashes in adult 

cardiomyocytes 

Adult mouse cardiomyocytes were incubated with oligomycin A in the presence or 

absence of mito-TEMPPO. At different time points after addition of oligomycin A, 

mitochondrial superoxide flashes were determined. Data are MEAN ± SD from 3 

different cultures. *P < 0.05 versus control and # P < 0.05 versus control, oligomycin 30 

min, or 20 min. 
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Figure 2-14. Role of ATP5A1 in mitochondrial superoxide generation and TNF-α 

expression  

(A and B) Adult mouse cardiomyocytes were infected with Ad-ATP5A1 or Ad-gal. 

Twenty-four hours later, the cells were incubated with LPS or saline for 4 hours. 

Mitochondrial superoxide generation (A) and ATP synthase activity (B) were determined. 

(C and D) After transfection with pCMV/myc/mito-capn1, H9c2 cells were infected with 

Ad-ATP5A1 or Ad-gal for 24 hours. Mitochondrial superoxide flashes (C) and TNF-α 

mRNA (D) were analyzed. Data are mean ± SD from 4-6 different experiments. *P < 

0.05 versus Ad-gal + saline or Ad-gal + pCMV/myc/mito, and #P < 0.05 versus Ad-gal + 

LPS or pCMV/myc/mito-capn1 + Ad-gal. 
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2.4 Discussion 

In this study, we demonstrate that LPS treatment increases calpain-1/-2 in mitochondria and the 

accumulation of calpain in mitochondria correlates with mitochondrial ROS generation in the 

heart. Deletion of capn4 reduces mitochondrial ROS production in cardiomyocytes and the hearts 

in response to LPS. Selective up-regulation of calpain-1 in mitochondria sufficiently induces 

superoxide generation and TNF-α expression in cardiomyocytes. Furthermore, calpain-1 in 

mitochondria disrupts ATP synthase through proteolysis of ATP5A1 in response to LPS 

stimulation. Up-regulation of ATP5A1 inhibits mitochondrial superoxide generation in 

cardiomyocytes, and attenuates TNF-α expression, leading to the improvement of myocardial 

function in endotoxemic mice. To our knowledge, this is the first study demonstrating a novel role 

of calpain-1 in disrupting ATP synthase and promoting mitochondrial superoxide generation in 

endotoxemic hearts. 

In a rat model of endotoxemia, the role of calpain in myocardial dysfunction was suggested by 

using pharmacological inhibitors of calpain [36]. Further evidence came from our demonstration 

that over-expression of calpastatin attenuated myocardial dysfunction in Tg-CAST mice during 

LPS stimulation [14]. In the present study using tissue-specific capn4 knockout mice, we show 

that deletion of capn4 decreases myocardial TNF-α expression, reduces mitochondrial ROS 

production and attenuates myocardial dysfunction in endotoxemic mice. These findings verify the 

view that cardiac calpain plays a direct role in myocardial dysfunction in sepsis and may 

represent an important therapeutic target for sepsis. 

Calpains have been shown to relocate to the membrane and nucleus in the heart under 

stress [37, 38]. They are also present in mitochondria [16, 39, 40]. A recent study has 

demonstrated that calpain-1 activity is increased in cardiac mitochondria during 

ischemia-reperfusion [41]. In the present study, we demonstrate that LPS induces the 
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accumulation of calpain-1 in mitochondria of the heart. Although it is currently unknown 

whether the accumulation of calpain-1 in mitochondria results from an increase in its 

translocation into mitochondria or a decrease in their degradation in mitochondria, our 

previous study showed that the protein levels of calpain-1 in whole heart lysates were not 

altered after LPS stimulation [14], suggesting that LPS may induce the translocation of 

calpain-1 into mitochondria. It is worthwhile to mention that immune-electron 

microscopic analysis shows no significant change in calpain-1 in cytoplasm upon LPS 

stimulation. Given that interfibrillar mitochondria constitute about 15-20% of cellular 

volume in cardiomyocytes, we believe that a small portion of calpain-1 protein relocates 

to mitochondria while the majority of calpain-1 remains in cytoplasm. Thus, relocation of 

a small portion of calpain-1 may not significantly affect the protein levels of calpain-1 in 

cytoplasm upon LPS stimulation. Furthermore, the re-location of calpain-1 in 

mitochondria is dependent on its activation in response to LPS as inhibition of calpain 

prevents calpain-1 accumulation in mitochondria. Active calpain-1 mitochondrial 

translocation has been also shown in homocysteine-stimulated microvascular endothelial 

cells [42]. A recent study has identified a mitochondrial targeting sequence in the 

N-terminal region of capn1, which provides a molecular basis for calpain-1 

mitochondrial translocation [43]. It is currently unknown what causes the translocation of 

active calpain-1 from cytosol to mitochondria in the setting of septic cardiomyopathy. A 

recent study demonstrated that calpain translocation to sarcolemmal was dependent on 

Ca2+ entry through Na+/Ca2+ exchanger in cardiomyocytes [44]. Given that mitochondrial 

Ca2+ is altered in septic cardiomyocytes [45], it is possible that mitochondrial Na+/Ca2+ 

exchanger may facilitate the translocation of calpain-1 from cytosol to mitochondria in 

cardiomyocytes in response to LPS stimulation, which merits further investigation. 

An important finding of this study is that calpain-1 accumulation in mitochondria 

mediates ROS generation in endotoxemic mouse hearts. Importantly, targeted 
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over-expression of capn1 in mitochondria mimics the effect of LPS on mitochondrial 

superoxide generation in cardiomyocytes. Thus, this study provides a novel mechanism 

that mitochondrial superoxide is induced by calpain-1 in cardiomyocytes during LPS 

stimulation. Given the importance of mitochondrial ROS in cardiac pathophysiological 

processes [46], further investigations are needed to clarify whether mitochondrial 

calpain-1 activation is a common mechanism for mitochondrial superoxide generation in 

other pathological conditions. Mitochondrial ROS induces the damage to mitochondria 

which may promote more ROS production in mitochondria, forming the vicious circle, 

finally leading to mitochondrial dysfunction [47]. Mitochondrial ROS is also an 

important signaling mechanism in mediating gene expression. In this regard, we have 

recently demonstrated that mitochondrial ROS mediates TNF-α expression in cultured 

cardiomyocytes during LPS stimulation [32]. The present study further demonstrates that 

selective over-expression of capn1 in mitochondria induces TNF-α expression in 

cardiomyocytes, which is inhibited by mito-TEMPO, providing direct evidence in support 

of the view that mitochondrial calpain-1 mediates pro-inflammatory response through 

superoxide generation. 

In an effort to explore the mechanisms by which calpain-1 induces superoxide generation 

in mitochondria, we demonstrate that ATP5A1 co-localizes with calpain-1 in LPS-treated 

mouse hearts. We further show that calpain-1 may cleave ATP5A1, substantiating the 

finding from a recent report that ATP5A1 is a potential substrate of calpain [17]. 

Disruption of ATP synthase inhibits ATP production, directly contributing to myocardial 

dysfunction. In septic hearts, ATP synthase activity and ATP production are decreased [34, 

35]. Our observations are consistent with a model whereby calpain-1 accumulation in 

mitochondria compromises ATP synthase in LPS-treated mouse hearts. In fact, we show a 

significant reduction of ATP5A1 protein and of its activity in mitochondria from 

LPS-treated mouse hearts, which are prevented by capn4 deletion. On the other hand, 
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disruption of ATP synthase within complex V results in excess electron “backup” in the 

individual electron transfer complexes [47], in particular complexes I and III, promoting 

mitochondrial superoxide generation. In support of this view, inhibition of ATP synthase 

activity directly increases mitochondrial superoxide generation in cardiomyocytes, and 

up-regulation of ATP5A1 attenuates mitochondrial superoxide generation and TNF-α 

expression in cardiomyocytes induced by LPS and mitochondrial-targeted calpain-1.  

Furthermore, we show that up-regulation of ATP5A1 increases ATP synthase activity, 

reduces mitochondrial ROS generation and TNF-α expression, and attenuates myocardial 

dysfunction in endotoxemic mice. Taken together, our observation argues that calpain-1 

mediates mitochondrial superoxide generation, at least partly by disrupting ATP synthase, 

leading to LPS-induced pro-inflammatory response in the heart. It is worthwhile to 

mention that over-expression of ATP5A1 did not abrogate TNF-α expression in 

cardiomyocytes. This suggests that other targets of calpain-1 in mitochondria may exist in 

regulation of TNF-α expression, which merits further investigation. In fact, a recent study 

demonstrated that calpain also targets and cleaves apoptosis inducing factor in 

mitochondria of the heart [41], leading to ischemia/reperfusion injury. Thus, it is possible 

that calpain-mediated cleavage of apoptosis inducing factor may also contribute to septic 

cardiomyopathy, which needs further investigation for clarification. 

In summary, the present study has provided convincing evidence that calpain activation 

directly contributes to myocardial pro-inflammatory response to LPS by promoting 

mitochondrial calpain-1 translocation and ROS generation. ATP5A1 may represent an 

important target of calpain-1 in mitochondria and its proteolysis disrupts ATP synthase, 

leading to mitochondrial superoxide generation in endotoxemia. Our study suggests that 

calpain and mitochondrial ROS may be potential therapeutic targets for myocardial 

dysfunction in sepsis. 
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Chapter 3 

3 Mitochondrial calpain-1 disrupts ATP synthase and 

induces superoxide generation in type-1 diabetic hearts: 

a novel mechanism contributing to diabetic 

cardiomyopathy3 

 

 

 

 

 

 

 

 

 

 

 

                               

3 This chapter has been published in the following manuscript: 

 Ni R, Zheng D, Xiong S, Hill DJ, Sun T, Gardiner RB, Fan GC, Lu Y, Abel ED, Greer PA, 

and Peng T. (2016) Mitochondrial Calpain-1 Disrupts ATP Synthase and Induces Superoxide 

Generation in Type 1 Diabetic Hearts: A Novel Mechanism Contributing to Diabetic 

Cardiomyopathy, Diabetes 65, 255-268. 
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3.1  Introduction 

Diabetes is a global metabolic disease and will affect nearly 400 million people by 2030 

[1]. Cardiovascular complications are the most common cause of morbidity and mortality 

in diabetic patients, and approximately 80% of all diabetic patients will die of 

cardiovascular diseases [2, 3]. Both type-1 and type-2 diabetes can directly affect cardiac 

structure and function in the absence of changes in blood pressure and coronary artery 

disease, a condition described as diabetic cardiomyopathy. Diabetic cardiomyopathy may 

present with diastolic dysfunction in the early stages and may subsequently proceed to 

systolic dysfunction [4]. The pathogenesis of diabetic cardiomyopathy is incompletely 

understood and limited treatment options exist.  

Calpains belong to a family of calcium-dependent thiol-proteases [5]. Fifteen gene 

products of the calpain family are reported in mammals. Among them, calpain-1 and 

calpain-2 are ubiquitously expressed and well-studied. Both calpain-1 and calpain-2 

consist of distinct large 80-kDa catalytic subunits encoded by capn1 and capn2, 

respectively, and a common small 28-kDa regulatory subunit encoded by capn4. The 

regulatory subunit is indispensable for calpain-1 and calpain-2 activities. Calpain-1 and 

calpain-2 are regulated by the endogenous calpain inhibitor, calpastatin. We have recently 

reported that genetic inhibition of calpain by over-expression of calpastatin or deletion of 

capn4 prevented cardiomyocyte apoptosis and reduced cardiomyopathic changes in 

mouse models of streptozotocin (STZ)-induced type-1 diabetes [6, 7], highlighting a 

critical role of calpain in diabetic cardiomyopathy. However, the underlying mechanisms 

remain to be determined. 

Although calpain-1 and calpain-2 have been considered as mainly cytoplasmic enzymes, 

they are also present in mitochondria [8, 9]. It was reported that hyperhomocysteinemia 
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induced the translocation of active calpain-1 from cytosol to mitochondria, which was 

associated with intra-mitochondrial oxidative stress in cultured rat heart microvascular 

endothelial cells [10], suggesting that calpain may regulate mitochondrial ROS 

generation. This was supported by our recent study, which demonstrated that inhibition of 

calpain prevented mitochondrial ROS generation in endothelial cells upon high glucose 

stimulation [11]. It has been suggested that calpains may target some important proteins 

in mitochondria, including, but not limited to, ATP synthase-alpha (ATP5A1) [12], optic 

atrophy-1 (Opa-1) [13], apoptosis-inducing factor [14], and Na+/Ca2+ exchanger-1 

(NCX-1) [15]. In diabetic hearts, studies have shown that the protein levels of ATP5A1 

are reduced and ATP synthase activity decreases [16, 17]. Disruption of these 

mitochondrial proteins may compromise mitochondrial function, resulting in excessive 

ROS generation. In fact, mitochondrial ROS production is increased in hearts of type-1 

and type-2 diabetic models [17-20]. Although mitochondrial superoxide generation is not 

increased in the heart of some T1D animals [21, 22], selective inhibition of mitochondrial 

ROS reduces cardiomyopathic changes in T1D [23, 24]. These studies raise an intriguing 

hypothesis that calpain activation may lead to excessive mitochondrial ROS generation in 

diabetic hearts, which contributes to diabetic cardiomyopathy. 

In this study, we demonstrate that diabetes induces calpain-1 accumulation in 

mitochondria of the heart. Increased calpain-1 in mitochondria is associated with ATP 

synthase disruption, which stimulates mitochondrial ROS generation and thus, promotes 

diabetic cardiomyopathy in a mouse model of STZ-induced T1D. 

3.2 Research design and methods 

3.2.1 Animals 

This investigation conforms to the Guide for the Care and Use of Laboratory Animals 

published by the US National Institutes of Health (NIH Publication, 8th Edition, 2011). 
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All experimental procedures were approved by the Animal Use Subcommittee at the 

University of Western Ontario, Canada in accordance with the guidelines of the Canadian 

Council for Animal Care. Breeding pairs of C57BL/6 mice and db+/- mice were 

purchased from the Jackson Laboratory (CA, USA). Transgenic mice with 

over-expression of calpastatin (Tg-CAST, C57BL/6 background) were generously 

provided by Dr. Laurent Baud (The Institut National de la Santé et de la Recherche 

Médicale, Paris, France) through the European Mouse Mutant Archive [25]. Mice with 

cardiomyocyte-specific disruption of capn4 (capn4-ko) were generated as described in 

our recent reports [7]. All of the mice used in this study, including controls, were 

littermates of the same generation.  

3.2.2 Experimental protocol 

Type-1 diabetes was induced in adult male mice (2-month old) by consecutive peritoneal 

injection of STZ (50 mg/kg/day) for 5 days [7]. Seventy-two hours after the last injection 

of STZ, whole blood was obtained from the mouse tail-vein and random glucose levels 

were measured using the OneTouch Ultra 2 blood glucose monitoring system (Life Scan, 

Inc. CA, USA). Mice were considered diabetic and used for the study only if they had 

hyperglycemia ( 15 mM) 72 h after STZ injection. Citrate buffer-treated mice were used 

as a non-diabetic control (blood glucose < 12 mM). Two months after induction of 

diabetes, mice (n=8-12 in each group) were subjected to the following experiments.  

3.2.3 Echocardiography 

Animals were lightly anaesthetized with inhalant isoflurane (1%) and imaged using a 

40-MHz linear array transducer attached to a preclinical ultrasound system (Vevo 2100, 

FUJIFILM VisualSonics, Canada) with nominal in-plane spatial resolution of 40 μm 

(axial)  80 μm (lateral). M-mode and 2-D parasternal short-axis scans (133 

frames/second) at the level of the papillary muscles were used to assess changes in left 
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ventricle (LV) end-systolic inner diameter (LVIDs), LV end-diastolic inner diameter 

(LVIDd), and fractional shortening (FS%).  

To assess diastolic function, we obtained apical four-chamber views of the left ventricle. 

The pulsed wave Doppler measurements of maximal early (E) and late (A) transmitral 

velocities in diastole were obtained in the apical view with a cursor at mitral valve inflow. 

3.2.4 Delivery of adenoviral vectors into mice 

Mice were anaesthetized with inhaled isofluorane (1-3%). With the guide of 

echocardiography, adenoviral vectors containing human ATP5A1 gene (Ad-ATP5A1, 

2×109 PFU in 100 μL, SignaGen Laboratories, MD, USA) or GFP (Ad-GFP, SignaGen 

Laboratories, MD, USA) were injected into mouse left ventricle.  

3.2.5 Isolation and culture of adult mouse cardiomyocytes 

Adult mouse ventricle cardiomyocytes were isolated and cultured as previously described 

[26].  

3.2.6 Adenoviral infection of cardiomyocytes 

Cardiomyocytes were infected with Ad-ATP5A1, adenoviral vectors containing 

mitochondria-targeted rat calpastatin (Ad-mtCAST, SignaGen Laboratories, MD, USA), 

or beta-gal (Ad-gal, Vector Biolabs, PA, USA) as a control at a multiplicity of infection of 

100 PFU/cell as previously described [27].  

3.2.7 Measurement of mitochondrial superoxide generation 

Superoxide flashes in single mitochondrion were measured to determine mitochondrial 

superoxide generation in living cardiomyocytes as described previously [28]. Briefly, 

cardiomyocytes were infected with an adenoviral vector expressing mt-cpYFP 

(Ad-mt-cpYFP). Ad-mt-cpYFP expresses a circularly permuted yellow fluorescent 
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protein (cpYFP) in the mitochondrial matrix of cells using the cytochrome C oxidase 

subunit IV targeting sequence (mt-cpYFP). Twenty-four hours after infection, confocal 

imaging was recorded using the Olympus FV 1000 laser-scanning microscope equipped 

with a 63x, 1.3NA oil immersion objective and a sampling rate of 0.7s/frame. At least 20 

cardiomyocytes per culture in each group were analyzed.  

3.2.8 Construction of plasmid with mitochondrial targeted capn1 
expression and transfection in H9c2 Cells 

The full coding region of human capn1 cDNA was recovered from pCMV6-XL5 

containing human capn1 (Origene, Rockville, MD, USA) and inserted into 

pCMV/myc/mito, which introduced the mitochondrial signal peptide (Life Technologies 

Inc. Burlington, Ontario, Canada). The resulting plasmid pCMV/myc/mito-capn1 

expresses myc-tagged capn1 selectively in mitochondria.  

Rat cardiomyocyte-like H9c2 cells were transfected with pCMV/myc/mito-capn1 or 

pCMV/myc/mito as a control using the jetPRIMETM DNA transfection reagent (VWR 

International, Mississauga, Ontario, Canada) according to the manufacturer’s 

instructions.  

3.2.9 Calpain activity 

Calpain activity was determined using a fluorescence substrate N-succinyl-LLVY-AMC 

(Cedarlane Laboratories, Burlington, Ontario, Canada) as previously described [27].  

3.2.10 Real-time reverse-transcriptase polymerase chain reaction 
(RT-PCR)  

Total RNA was extracted from heart tissues using the Trizol Reagent (Life Technologies 

Inc. Burlington, Ontario, Canada) and real-time RT-PCR was performed to analyze 

mRNA expression for ANP, β-MHC and GAPDH as previously described [7].  
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3.2.11 Western blot analysis  

The protein levels of capn1, capn2, calpastatin, mitochondrial voltage-dependent anion 

channel (VDAC1), ATP5A1 and beta subunits, and GAPDH were determined by western 

blot analysis using respective specific antibodies (Cell Signaling, Danvers, MA and Santa 

Cruz Biotechnology, Dallas, Texas).  

3.2.12 Measurement of ros generation in freshly isolated 
mitochondria 

Myocellular mitochondria were isolated from the freshly harvested heart as described 

previously [29], with minor modifications as follows. Instead of Nagarse, trypsin (5 mg/g 

wet weight of tissues) was used and after homogenizing and centrifuging, trypsin 

inhibitor (0.5 mg/ml) was added to the supernatant. The isolated mitochondria were 

further purified using Percoll density gradient centrifugation [30]. Mitochondrial ROS 

generation was determined on addition of pyruvate/malate or succinate by using Amplex 

Red and horseradish peroxidise (Invitrogen, USA) according to the manufacturer’s 

instructions.   

3.2.13 Determination of oxidative stress in diabetic hearts 

The formation of ROS in heart tissue lysates was measured by using 

2,7-dichlorodihydro-fluorescein diacetate (DCF-DA, Invitrogen, USA) [6] and Amplex 

Red as indicators according to the manufacturer’s instructions. The protein oxidation in 

heart tissues was assessed by measuring protein carbonyl content using a commercial 

assay kit (Cayman Chemical, USA) following manufacturer’s instructions.  

The anti-oxidant capacity was measured based on reduction of copper (Ⅱ) to copper 

(Ⅰ)using OxiSelectTM Total Antioxidant Capacity Assay Kit (Cell Biolabs, Inc., USA). 



140 

3.2.14 Immuno-fluorescence staining and confocal microscopy 

Mitochondrial smears were prepared on slides and fixed with freshly prepared 4% 

paraformaldehyde. After incubation with appropriate primary antibodies (capn1 and 

VDAC-1) and secondary antibodies conjugated with differing fluorescence (Alexa Fluor 

488 Donkey anti-mouse IgG and Alexa Fluor 594 Goat anti-rabbit IgG), signals were 

obtained with an Olympus FluoViewTM FV1000 confocal microscope equipped with the 

IX81 motorized inverted system as described [31].  

3.2.15 Co-immunoprecipitation (co-IP) and native gel electrophoresis 

Co-IP and non-denaturing polyacrylamide gel electrophoresis were carried out to analyze 

protein–protein interactions. Briefly, calpain-1 and its interacting proteins were co-precipitated 

using an Immunoprecipitation kit - dynabeads protein G (Life Technologies Inc. Burlington, 

Ontario, Canada), and ATP synthase complex was isolated using ATP synthase immunocapture kit 

(Abcam Inc, Toronto, Ontario, Canada) in isolated mitochondria according to the manufacturer’s 

instructions. Both calpain-1/interacting proteins and ATP synthase complex were subjected to 

non-denaturing polyacrylamide gel electrophoresis for separation, followed by western blot 

analysis.  

3.2.16 ATP synthase activity 

ATP synthase activity was measured using an assay coupled with pyruvate kinase, which 

converts ADP to ATP and produces pyruvate from phosphoenolpyruvate, as described 

previously [32].  

3.2.17 Statistical analysis 

All data were presented as mean ± SD. A one-way or two-way ANOVA followed by 

Newman-Keuls test was performed for multi-group comparisons as appropriate. For 

comparison of 2 groups, unpaired t-test was used. A value of P < 0.05 was considered 
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statistically significant. 

3.3 Results 

3.3.1 Mitochondrial ros generation is increased in diabetic mouse 
hearts and high glucose-stimulated cardiomyocytes 

To determine mitochondrial ROS generation in cardiomyocytes under diabetic conditions, 

we made wild-type mice diabetic by injection of STZ. At 0, 7, 28 and 60 days after STZ 

injection, we isolated mitochondria from mouse hearts and determined mitochondrial 

H2O2 generation. As shown in Figure 3-1A, H2O2 generation in isolated mitochondria 

was increased in a time-dependent manner using pyruvate/malate as substrates. Similarly, 

in cultured adult cardiomyocytes, high glucose (30 mmol/L) incubation increased 

mitochondrial superoxide generation in a time-dependent manner (Figure 3-1B). These 

results confirm that mitochondrial ROS generation is increased in cardiomyocytes under 

diabetic conditions.  

3.3.2 Genetic inhibition of calpain prevents mitochondrial ROS 
generation and reduces oxidative damage in diabetic mouse 
hearts  

We have recently reported that genetic inhibition of calpain reduces diabetic 

cardiomyopathy in mouse models of type-1 diabetes [6, 7]. To understand the underlying 

mechanisms, we determined whether calpain plays a role in mitochondrial ROS 

generation. To this end, we first incubated cultured cardiomyocytes from Tg-CAST and 

wild-type mice with normal or high glucose for 24 hours. Over-expression of calpastatin 

significantly decreased mitochondrial superoxide generation induced by high glucose in 

Tg-CAST cardiomyocytes (Figure 3-1C). This result provides direct evidence that 

inhibition of calpain by over-expressing calpastatin blunts high-glucose stimulated 

superoxide generation in cardiomyocytes. 
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Figure 3-1. Determination of mitochondrial ROS generation  

(A) Adult wild-type mice were injected with streptozotocin (STZ, 50 mg/kg/day, i.p.) for 

5 days. Mice were killed 1 week, 1 month and 2 months after STZ injection. 

Mitochondria were isolated from heart tissues. Mitochondrial H2O2 generation was 

determined using Amplex Red as an indicator after addition of pyruvate/malate. (B and C) 

Adult cardiomyocytes were isolated and cultured for up to 24 hours. (B) Time course of 

mitochondrial superoxide flashes following incubation with high glucose (30 mmol/l) in 

wild-type (WT) cardiomyocytes. (C) Twenty-four hours after incubation with high 

glucose (30 mmol/l, HG) or normal glucose (5 mmol/l, NG), mitochondrial superoxide 

flashes were analyzed in WT and transgenic mice over-expressing calpastatin (Tg-CAST). 

Data are mean ± SD, n = 6 or 3 different cultures. * P < 0.05 versus Sham, 0 hr or NG in 

WT, and # P < 0.05 versus HG in WT. 
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We then made Tg-CAST, capn4-ko and their wild-type mice diabetic by injection of STZ. 

Sixty days after STZ injection, calpastatin over-expression or capn4 deletion significantly 

reduced H2O2 generation in mitochondria from STZ-treated Tg-CAST and capn4-ko 

mice, respectively following addition of pyruvate/malate (Figure 3-2A and B) or 

succinate (Figure 3-3A and B). Similarly, H2O2 formation as determined by using 

DCF-DA (Figure 3-2C and D) and Amplex Red (Figure 3-2E and F), and the protein 

carbonyl content (Figure 3-2G and H) were increased in diabetic mouse hearts and 

abrogated in Tg-CAST and capn4-ko mice, respectively. However, total anti-oxidant 

capacity was comparable between wild-type, Tg-CAST and capn4-ko mice after 

induction of diabetes (data not shown). These results suggest that calpain contributes to 

mitochondrial ROS generation and oxidative damage in diabetic hearts. 
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Figure 3-2. Assessment of mitochondrial ROS generation and oxidative stress 

Wild-type (WT), transgenic mice over-expressing calpastatin (Tg-CAST) or 

cardiomyocyte-specific capn4 knockout mice (Capn4-ko) were injected with STZ (50 

mg/kg/day for 5 days, i.p.). Two months after STZ injection, mitochondria were isolated 

from heart tissues. Mitochondrial ROS generation was measured using Amplex Red after 

addition of pyruvate/malate (A and B). ROS formation in heart tissue lysates was 

determined using DCF-DA as an indicator (C and D) or using Amplex Red (E and F). (G 

and H) Oxidative damage was assessed by measuring protein carbonyl contents in heart 

tissue lysates.  Data are mean ± SD, n = 6. * P < 0.05 versus Sham in WT, and # P < 

0.05 versus STZ-treated WT. 
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Figure 3-3. Assessment of mitochondrial ROS generation 

Wild-type (WT), transgenic mice over-expressing calpastatin (Tg-CAST) or 

cardiomyocyte-specific capn4 knockout mice (Capn4-ko) were injected with STZ (50 

mg/kg/day for 5 days, i.p.). Two months after STZ injection, mitochondria were isolated 

from heart tissues. Mitochondrial ROS generation was measured using Amplex Red after 

addition of succinate. Data are mean ± SD, n = 6. * P < 0.05 versus Sham in WT, and # P 

< 0.05 versus STZ in WT.  
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3.3.3 Calpain-1 is increased in mitochondria of stz-induced mouse 
hearts 

Having shown that inhibition of calpain prevented mitochondrial superoxide generation, 

we determined whether the levels of calpains were altered in mitochondria of diabetic 

mouse hearts. In line with the increase in mitochondrial ROS generation, the protein 

levels of capn1 were significantly elevated in mitochondria from diabetic hearts in a 

time-dependent manner (Figure 3-4A). Consistently, diabetes also increased calpain 

activities in mitochondria of diabetic compared with sham animal hearts (Figure 3-5). 

However, diabetes did not change the protein levels of capn2 and calpain-10, an isoform 

well recognised as a mitochondrial calpain [33] (data not shown).  

To provide further evidence in support of calpain-1 accumulation in mitochondria, we 

determined capn1 and VDAC1 proteins in isolated mitochondria of diabetic mouse hearts 

by dual immunofluorescence confocal microscopy. Confocal microscopic analysis 

demonstrated that VDAC1 was detected in mitochondrial membranes (red) and capn1 

was present inside of mitochondria (green), and that percentages of capn1-labelled 

mitochondria were much greater in diabetic versus sham mouse hearts (Figure 3-4B).  

Similarly, the protein levels of capn1 were also increased in hearts of db/db type-2 

diabetic versus db+/- mice (Figure 3-4C). 
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Figure 3-4. Measurement of calpain-1 in mitochondria 

(A) Adult wild-type mice were injected with streptozotocin (STZ, 50 mg/kg/day, i.p.) for 

5 days. Mice were killed 1 week, 1 month and 2 months after STZ injection. 

Mitochondria were isolated from heart tissues and the protein levels of calpain-1 and 

VDAC1 in mitochondria were determined by western blot analysis. Upper panel is the 

representative western blot for capn1 and VDAC1 from 2 out of 6 different hearts in each 

group and lower panel is the quantification of capn1/VDAC1 in all animals. (B) Adult 

wild-type mice were injected with STZ (50 mg/kg/day, i.p.) for 5 days. Two months after 

STZ injection, heart tissues were collected and mitochondria were isolated. After fixation 

on slides, dual immunofluorescent staining for VDAC1 and capn1 was performed using 

their respective antibodies followed by secondary antibodies conjugated with different 

fluorescent dyes. Representative photomicrographs of confocal microscopy for VDAC1 

and capn1 in mitochondria shows membrane staining of VDAC1 (Red) and that capn1 is 

located in mitochondria (Green). (C) Mitochondria were isolated from db/db type-2 

diabetic and db+/- mouse hearts (male and age of 3.5 months). The protein levels of 

capn1 and VDAC1 were determined by western blot analysis. Left panel is a 

representative western blot for capn1 and VDAC1 from 3 out of 6 different hearts in each 

group and right panel is the quantification of capn1 protein normalized to VDAC1. Data 

are mean ± SD from 6 different heart tissues in each group. *P < 0.05 versus Sham.
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Figure 3-5. Measurement of calpain activity in isolated mitochondria 

Wild-type mice were injected with STZ (50 mg/kg/day for 5 days, i.p.) or citrate buffer as 

a sham control. Two months after STZ injection, mitochondria were isolated from heart 

tissues. Calpain activity was determined. Data are mean ± SD, n = 6. * P < 0.05.  
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3.3.4 Mitochondrial calpain-1 contributes to superoxide generation 
and cell death in high glucose-stimulated cardiomyocytes 

To determine whether mitochondrial calpain-1 contributes to superoxide generation in 

cardiomyocytes, we infected cultured cardiomyocytes with an adenoviral vector 

containing mitochondria-targeted calpastatin (Ad-mtCAST) and then incubated them 

with high glucose for 24 hours. Selective over-expression of calpastatin in mitochondria 

prevented mitochondrial superoxide flashes and cell death induced by high glucose 

(Figure 3-6A-D). This result suggests that mitochondrial calpain contributes to 

superoxide generation and cell death in cardiomyocytes induced by high glucose.   

To provide direct evidence to support our hypothesis that the accumulation of calpain-1 in 

mitochondria induces superoxide generation and apoptosis, we introduced 

pCMV/myc/mito-capn1, a plasmid expressing mitochondrial targeted capn1 into 

cardiomyocyte-like H9c2 cells. Twenty-four hours after transfection, mitochondrial and 

cytosolic fractions were isolated from H9c2 cells. Over-expressed capn1 was confirmed 

in mitochondrial but not in cytosolic fractions (Figure 3-7A). Intriguingly, 

mitochondria-targeted over-expression of capn1 significantly increased mitochondrial 

superoxide generation as determined by mitochondrial superoxide flashes (Figure 3-7B) 

and induced apoptosis (Figure 3-7C and D). These results strongly support a causal role 

of mitochondrial calpain-1 in superoxide generation and apoptosis in cardiomyocytes. 
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Figure 3-6. Effects of mitochondria-targeted calpastatin over-expression on 

mitochondrial superoxide flashes and cell death in high glucose-stimulated 

cardiomyocytes 

(A)  H9c2 cells were infected with an adenoviral vector containing 

mitochondria-targeted calpastatin (Ad-mtCAST) or Ad-gal as a control. Twenty-four 

hours later, mitochondrial and cytosolic fractions were prepared, and calpastatin (CAST), 

GAPDH and VDAC1 were detected by western blot analysis. A representative western 

blot confirms myc-tagged CAST is expressed selectively in mitochondria. (B-D) Adult 

cardiomyocytes were isolated from mice. After infection with Ad-mtCAST, 

cardiomyocytes were exposed to normal glucose (NG) or high glucose (HG) for 24 hours, 

mitochondrial superoxide flashes (B), and Annexin V staining for cell death (C and D) 

were determined. Data are mean ± SD from 6 different cultures. *P < 0.05 versus NG + 

Ad-gal, and # P < 0.05 versus HG + Ad-gal. 
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Figure 3-7. Effects of mitochondrial targeted capn1 on ATP5A1 protein, superoxide 

generation and apoptosis in H9c2 cells 

H9c2 cells were transfected with pCMV/myc/mito-capn1 (mt-Capn1) or 

pCMV/myc/mito as a control. Twenty-four hours later, (A) Mitochondrial and cytosolic 

fractions were isolated. Western blot analysis was performed to determine the protein 

levels of capn1, GAPDH and VDAC1. (B) Mitochondrial superoxide flashes were 

assessed. (C and D) Apoptosis was determined by caspase-3 activity and DNA 

fragmentation. (E and F) ATP5A1 and its cleaved fragment were determined by western 

blot analysis. (E) Mitochondrial lysates (100 μg) were incubated with active calpain-1 (5 

μg) for 15 minutes. (F) ATP5A1 immunoblot in H9c2 cells transfected with 

mitochondrial-targeted calpain-1 (mt-capn1). Data are mean ± SD from at least 3 

different experiments. *P < 0.05 versus control. 
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3.3.5 ATP5A1 is a target of calpain-1 in diabetic hearts 

Since studies have shown that the protein levels of ATP5A1 are reduced and ATP 

synthase activity decreases in diabetic hearts [16, 17], our initial effort was focused on 

ATP5A1. After incubation of mitochondrial lysates from the heart with active calpain-1, a 

cleaved fragment of ATP5A1 protein (about 38KD) was detected (Figure 3-7E). 

Interestingly, up-regulation of calpain-1 selectively in mitochondria led to a similar 

cleaved fragment of ATP5A1 protein in H9c2 cells (Figure 3-7F). These results strongly 

indicate that ATP5A1 protein is a direct substrate of calpain-1.     

We further revealed that ATP5A1 was co-immunoprecipitated with capn1 in diabetic 

hearts (Figure 3-8A). Likewise, capn1 was detected in immune-captured ATP synthase 

complex (Figure 3-8B). These results demonstrate a potential interaction between 

calpain-1 and ATP5A1 in mitochondria of diabetic hearts. We also measured the protein 

levels of ATP5A1 in isolated mitochondria of diabetic hearts. Diabetes significantly 

reduced ATP5A1 protein levels in mitochondria (Figure 3-8C), which is consistent with 

previous reports [16, 17], whereas the protein levels of ATP synthase β subunit remain 

unchanged in diabetic hearts (Figure 3-8C). However, the reduction in ATP5A1 protein 

levels was prevented by calpastatin over-expression (Figure 3-8D). In line with a 

reduction in ATP5A1 protein, ATP synthase activity was markedly decreased in 

mitochondria from diabetic hearts and restored in diabetic Tg-CAST mice (Figure 3-8E).  

In cultured cardiomyocytes, over-expression of calpastatin selectively in mitochondria by 

infection with Ad-mtCAST significantly increased ATP synthase activity during high 

glucose stimulation (Figure 3-8F). This result provides further evidence to support that 

calpain activation disrupts ATP synthase activity in diabetic hearts.  
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Figure 3-8. Role of calpain in ATP5A1 expression and ATP synthase disruption in 

diabetic hearts 

(A) Interaction between ATP5A1 and capn1. Capn1 interacting proteins were 

co-immunoprecipitated using capn1 antibody. A representative western blot shows that 

ATP5A1 is detected in capn1 interacting proteins. (B) ATP synthase complex and its 

interacting proteins were captured using ATP synthase immune-capture assay kit. A 

representative western blot shows that capn1 is detected in captured ATP synthase 

complex. (C-E) Myocardial mitochondria were isolated from sham and STZ-injected 

Tg-CAST and their wild-type (WT) mice. (C and D) The upper panels are the 

representative western blot for ATP5A1 protein from 3 out of 6 hearts in each group and 

the lower panels are the quantification of ATP5A1 protein relative to VDAC1 in 

mitochondria. (E) ATP synthase activity was measured in mitochondria. Data are mean ± 

SD, n = 6. *P < 0.05 versus sham or STZ + WT, and #P < 0.05 versus STZ + WT. (F) 

Adult cardiomyocytes were isolated and cultured from wild-type mice. After infection 

with Ad-mtCAST or Ad-gal, the cells were incubated with high glucose (30 mmol/l, HG) 

or normal glucose (5 mmol/l, NG) for 24 hours. ATP synthase activity was determined in 

cell lysates. Data are mean ± SD, n = 6. *P < 0.05 versus NG + Ad-gal, and #P < 0.05 

versus HG + Ad-gal.  
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3.3.6 Over-expression of ATP5A1 reduces mitochondrial superoxide 
generation, cardiac hypertrophy and myocardial dysfunction in 
diabetic mice  

To investigate whether up-regulation of ATP5A1 protects diabetic hearts, we delivered 

Ad-ATP5A1 into mice 72 hours after the last STZ injection. Ad-GFP served as a control. 

Two weeks later, mice received the second dose of Ad-ATP5A1. Two months after STZ 

injection, mice were subjected to various experiments. The efficient delivery of 

adenoviral vectors into the heart was confirmed by GFP signal in heart tissues (Figure 

3-9). As a result, delivery of Ad-ATP5A1 significantly increased ATP5A1 protein and 

ATP synthase activity in diabetic mouse hearts (Figure 3-10A and B), suggesting that 

ectopic expression of ATP5A1 integrates into the complex of ATP synthase. 

Up-regulation of ATP5A1 reduced the formation of H2O2 (Figure 3-10C and D), and 

attenuated cardiac hypertrophy as evidenced by decreased cardiomyocyte sectional area 

(Figure 3-10E) and down-regulation of ANP and β-MHC expression in diabetic mouse 

hearts (Figure 3-10F and G), leading to an improvement of myocardial function in 

diabetic mice as determined by increased fractional shortening and E/A ratio (Figure 

3-10H and I, Table 3-1). However, delivery of Ad-ATP5A1 slightly elevated ATP5A1 

protein levels in sham mouse hearts but did not increase ATP synthase activity.  

To provide further evidence to support the role of ATP5A1, we infected adult 

cardiomyocytes with Ad-ATP5A1 or Ad-gal as a control, and then incubated them with 

high glucose for 24 hours. Up-regulation of ATP5A1 increased ATP synthase activity in 

high glucose- but not normal glucose-stimulated cardiomyocytes (Figure 3-11A), reduced 

mitochondrial superoxide generation (Figure 3-11B) and prevented cell death induced by 

high glucose (Figure 3-11C and D).
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Figure 3-9. GFP signal in heart tissues after delivery of Ad-GFP 

Adult mice were injected with Ad-GFP via tail vein. Five days later, heart tissues were 

collected and cryosections were prepared. The sections were stained with Hoechst 33342 

for nuclei. The signals for GFP (green color) and Hoechst 33342 (blue) were captured.   
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Figure 3-10. Effects of ATP5A1 over-expression in diabetic cardiomyopathy  

Adult mice were injected with Ad-ATP5A1 or Ad-GFP and then treated with STZ. (A) 

Up-regulation of ATP5A1 protein was confirmed by western blot analysis. Upper panel is 

a representative western blot from 2 out of 6 different hearts for ATP5A1 and VDAC1, 

and lower panel is quantification of ATP5A1/GAPDH ratio for all hearts. (B) ATP 

synthase activity. (C and D) H2O2 formation was determined in heart tissue lysates using 

Amplex Red (C) and DCF-DA as indicators (D). (E) Cardiomyocyte size in heart sections. 

(F) The mRNA levels of beta-MHC. (G) The mRNA levels of ANP. (H and I) 

Echocardiographic analysis was performed to assess myocardial function. Data are mean 

± SD, n = 6-8. *P < 0.05 versus sham + Ad-GFP, and #P < 0.05 versus STZ + Ad-GFP. 



162 

 

 

 

 

 

 

 

Table 3-1. General information in mice after receiving Ad-GFP or Ad-ATP5A1 
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Figure 3-11. Role of ATP5A1 in ATP synthase activity, mitochondrial superoxide 

generation and cell death in cardiomyocytes 

Adult mouse cardiomyocytes were isolated from wild-type mice. After cell attachment to 

the culture dish, they were infected with Ad-ATP5A1 or Ad-gal. Twenty-four hours later, 

cells were incubated with normal glucose (NG) or high glucose (HG) for 24 hours. (A) 

ATP synthase activity. (B) Mitochondrial superoxide generation. (C) Representative 

pictures for annexin V staining positive cells as an indicator of cell death (green color). 

(D) Quantification of annexin V staining positive cells. Data are mean ± SD from at least 

3 different experiments. *P < 0.05 versus Ad-gal + NG, and #P < 0.05 versus Ad-gal + 

HG. 
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3.4 Discussion 

The major findings of this study are that genetic inhibition of calpain increases the 

protein levels of ATP5A1 and ATP synthase activity, and decreases mitochondrial ROS 

generation and oxidative damage in diabetic hearts. Both type-1 and type-2 diabetes 

induce calpain-1 accumulation in mitochondria of the heart. Selective inhibition of 

mitochondrial calpain attenuates ATP synthase disruption, reduces mitochondrial 

superoxide generation and prevents apoptosis in cardiomyocytes under diabetic 

conditions, whereas targeted up-regulation of calpain-1 specifically in mitochondria 

induces the cleavage of ATP5A1, superoxide generation and apoptosis in cardiomyocytes. 

In a mouse model of T1D, up-regulation of ATP5A1 restores ATP synthase activity and 

decreases mitochondrial ROS generation in diabetic hearts, and reduces diabetic 

cardiomyopathy. Thus, ATP synthase disruption and mitochondrial ROS generation are 

important mechanisms by which calpain activation promotes diabetic cardiomyopathy. 

Accumulating evidence indicates that mitochondrial ROS production is increased and 

oxidative stress occurs in type-1 and type-2 diabetic hearts [17-20]. Although some 

type-1 diabetic animals did not exhibit increased mitochondrial superoxide generation in 

the heart [21, 22], selective inhibition of mitochondrial ROS production reduces adverse 

cardiac changes in T1D models [23, 24], supporting a critical role of mitochondrial ROS. 

The present study provides further evidence that demonstrates that diabetic conditions 

induce mitochondrial superoxide generation in cultured cardiomyocytes and hearts in 

vivo. ROS produced by mitochondria not only directly contributes to mitochondrial 

dysfunction [34], cell death and hypertrophy in cardiomyocytes and hearts under stress 

[35, 36], but also serves as “second messengers” in cellular signalling pathways [37]. 

Thus, targeted inhibition of mitochondrial ROS by transgenic over-expression of 

superoxide dismutase-2 (SOD2) and mitochondrial catalase reduces cardiac hypertrophy, 
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preserves cardiac structures and improves function in a mouse model of type-1 diabetes 

[23] and in insulin-resistant and obese Ay mice [24], respectively. We further show that 

genetic inhibition of calpain significantly attenuates mitochondrial superoxide generation 

and subsequent oxidative damage in diabetic mouse hearts, which are associated with 

reduced myocardial injury and improved myocardial function in diabetic mice. Thus, our 

data suggest an important role of calpain in mitochondrial ROS generation in 

development of diabetic cardiomyopathy.  

It is well-known that mitochondria generate superoxide, the primary ROS as by-products, 

when single electrons leak to react with molecular oxygen [38]. While many 

mitochondrial enzymes have been reported to produce ROS, the respiratory chain is the 

major source of ROS in mitochondria. Within the respiratory chain, Complexes Ⅰand 

Ⅲ have been identified as major ROS generators. On the other hand, mitochondrial ROS 

are eliminated by antioxidant defence systems. Superoxide anion dismutates to H2O2 

spontaneously, or by SOD2 in mitochondria. H2O2 can be readily converted to water by 

catalase and glutathione peroxidase. In addition to these antioxidant enzymes, 

mitochondria possess several low-molecular-weight antioxidants, including α-tocopherol 

and ubiquinol, etc. An increase in superoxide generation and/or a decrease in antioxidant 

capacity will lead to oxidative stress in mitochondria [39]. In this regard, our data suggest 

that calpain may promote oxidative damage through increased mitochondrial superoxide 

generation rather than decreased antioxidant capacity because inhibition of calpain does 

not affect the anti-oxidant capacity in diabetic hearts. 

Multiple mechanisms have been suggested to mediate mitochondrial ROS generation in 

diabetic hearts. It was reported that high glucose concentrations result in increased 

metabolic input into mitochondria, which overwhelms the respiratory chain causing 

mitochondrial hyperpolarization, leading to electron backup within the respiratory chain 
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and ROS overproduction [38]. In addition, elevated circulating lipids and 

hyperinsulinemia together increase fatty acid delivery to cardiomyocytes, which rapidly 

adapt by promoting fatty acid utilization. High rates of fatty acid oxidation increase 

mitochondrial membrane potential, leading to the production of ROS in mitochondria [40, 

41]. In the present study, we show that diabetes increases calpain-1 in mitochondria and 

calpain-1 accumulation in mitochondria correlates with ROS generation in diabetic 

mouse hearts. Importantly, selective inhibition of mitochondrial calpain reduces 

superoxide generation in cardiomyocytes under diabetic conditions whereas targeted 

over-expression of capn1 in mitochondria sufficiently induces superoxide generation in 

cardiomyocytes. Thus, mitochondrial calpain-1 may represent a novel mechanism 

underlying mitochondrial ROS generation in cardiomyocytes under diabetic conditions. 

 Another important finding is that mitochondrial calpain-1 negatively regulates ATP5A1 

protein, leading to ATP synthase disruption in diabetic hearts. ATP synthase, also called 

Complex V, is an enzyme that uses the energy created by the proton electrochemical 

gradient to synthesize ATP from ADP [42]. It is located within the mitochondria. ATP 

synthase consist of 2 regions: the Fo portion and F1 portion. The Fo region of ATP 

synthase is a proton pore located within the inner membrane of mitochondria, which 

transfers the energy created by the proton electrochemical gradient to F1, where ADP is 

phosphorylated to ATP. The F1 region of ATP synthase comprises five different subunits 

(α, β, γ, , and ) in the matrix of the mitochondria. Down-regulation of ATP synthase has 

been shown in both type-1 and type-2 diabetic hearts [16, 17]. Similarly, we show a 

significant reduction of ATP5A1 protein and of its activity in mitochondria from diabetic 

mouse hearts. Importantly, diabetes-induced down-regulation of ATP5A1 and ATP 

synthase activity are prevented by both calpastatin over-expression and capn4 deletion. 

Thus, our observations are consistent with a model whereby calpain-1 accumulation in 

mitochondria compromises ATP synthase through the proteolysis of ATP5A1 protein in 
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diabetic mouse hearts. In fact, selective up-regulation of calpain-1 in mitochondria 

induces the cleavage of ATP5A1 protein, mitochondrial superoxide generation and 

apoptosis in cultured cardiomyocytes. Although we could not detect Opa-1 and NCX1 

protein in calpain-1 immunoprecipitates (data not shown), it is worthwhile to mention 

that calpain-1 may also target other substrates in mitochondria. For example, calpain-1 

has been reported to cleave apoptosis inducing factor, leading to apoptosis during 

ischemia/reperfusion injury in the heart [14]. Thus, it is possible that there may be 

multiple targets of calpain-1 in mitochondria of diabetic hearts, which merits further 

investigation. 

Disruption of ATP synthase within Complex V results in excess electron “backup” in the 

individual electron transfer complexes [34], in particular Complex I and III, promoting 

mitochondrial superoxide generation. Indeed, an increase in reverse electron flow and 

electrons leaking from Complex I and III of the respiratory chain has been suggested to 

be main mechanisms promoting mitochondrial ROS generation in diabetes [40, 41]. 

Disruption of ATP synthase also induces insufficient ATP production, which directly 

contributes to myocardial dysfunction. In support of this view, we show that 

up-regulation of ATP5A1 increases ATP synthase activity, decreases mitochondrial ROS 

generation and mitigates diabetic cardiomyopathy. Taken together, our observation argues 

that calpain-1 mediates mitochondrial superoxide generation, at least partly by 

down-regulation of ATP5A1 and disruption of ATP synthase, leading to cardiomyopathic 

changes in diabetic mice. It is important to mention that over-expression of ATP5A1 per 

se is not sufficient to increase ATP synthase activity but it prevents 

diabetes/hyperglycemia-induced decrease in its activity in cardiomyocytes. 

In the present study, STZ was given in multiple low doses to induce T1D in mice. In this 

model, an inflammatory response occurs in the β-cells, leading to lymphocytic infiltrates 
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and cell death [43], which effectively models the autoimmune T cell-mediated destruction 

and hypoinsulinemia observed in human T1D [44]. Since mitochondrial capn1 protein is 

also elevated in db/db type-2 diabetic mouse hearts, similar mechanisms may be 

operating in type-2 diabetic cardiomyopathy, which requires further study for 

clarification. Future study is also needed to determine whether mitochondrial calpain is 

increased and contributes to diabetic cardiomyopathy in humans. 

Although the present study focuses on mitochondrial calpain-1 and ROS generation, 

other mechanisms may be also involved in calpain-mediated diabetic cardiomyopathy. In 

particular, calpain activation may induce the cleavages of important cytosolic proteins 

including signaling molecules (PKC and NF-κB) [45, 46], calcium regulatory proteins 

[47, 48] and myofibril proteins [49, 50], which may contribute to myocardial dysfunction 

in diabetes.  

In summary, we have provided evidence to demonstrate that mitochondrial calpain-1 

stimulates mitochondrial ROS generation through down-regulation of ATP5A1 and 

disruption of ATP synthase, which promotes diabetic cardiomyopathy. These findings 

uncover a novel mechanism underlying diabetic cardiomyopathy, which may have 

significant implications in diabetic cardiac complications. 
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4 Therapeutic inhibition of mitochondrial reactive oxygen 

species with mito-TEMPO reduces diabetic 

cardiomyopathy4 
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 Ni R, Cao T, Xiong S, Ma J, Fan GC, Lacefield JC, Lu Y, Le Tissier S, and Peng T. (2016) 

Therapeutic inhibition of mitochondrial reactive oxygen species with mito-TEMPO reduces 

diabetic cardiomyopathy, Free Radic Biol Med 90, 12-23. 
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4.1 Introduction 

Globally, the number of adults affected with diabetes is rapidly growing and it is 

estimated to increase to nearly 400 million by 2030 [1]. Both type-1 and type-2 diabetes 

induce complications including visual impairments and blindness, nerve and kidney 

damage [2]. However, the greatest challenges lie in cardiovascular complications, 

accounting for up to 80% diabetes-related morbidity and mortality [3]. Diabetes can 

directly affect the heart, a condition described as diabetic cardiomyopathy. Diabetic 

cardiomyopathy has been defined as ventricular dysfunction that occurs in the absence of 

changes in blood pressure and coronary artery disease [4]. So far, there is no specific 

therapy available for this disease.  

Oxidative damage induced by reactive oxygen species (ROS) has been implicated in the 

pathogenesis of diabetic cardiomyopathy [5-7]. ROS is mainly produced by mitochondria, 

NADPH oxidase and xanthine oxidase in the heart [8, 9]. Inhibition of xanthine oxidase 

or NADPH oxidase reduces diabetic cardiomyopathy [10-12]. There is convincing 

evidence that mitochondrial ROS production is increased in type-1 and type-2 diabetic 

hearts [13-17]. Transgenic over-expression of manganese superoxide dismutase (MnSOD) 

and mitochondrial catalase inhibit mitochondrial ROS and reduce cardiac hypertrophy, 

preserves cardiac structures and improves function in a mouse model of type-1 diabetes 

and in insulin-resistant and obese Ay mice, respectively [18, 19]. These studies suggest a 

critical role of mitochondrial ROS in diabetic cardiomyopathy. Given the fact that 

commonly employed antioxidants have proven ineffective in clinical trials, it is possible 

that these agents may not be adequately delivered to the sub-cellular sites of ROS 

production. Because the mitochondria are important sources of ROS, we hypothesized 

that therapeutic inhibition of mitochondrial ROS by a mitochondrial targeted antioxidant 

(2-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl) triphenylphosphonium 
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chloride, monohydrate (mito-TEMPO) might be beneficial in the setting of diabetic 

cardiomyopathy. 

Mito-TEMPO is a physicochemical compound as one of SOD mimics. It has an ability to 

pass through lipid bilayers easily and accumulate selectively in mitochondria [20]. Both 

in vitro and in vivo studies have confirmed that mito-TEMPO is a mitochondria-targeted 

antioxidant with superoxide and alkyl radical scavenging properties [20-22]. In vitro 

study showed that incubation with mito-TEMPO prevented cell death in adult 

cardiomyocytes induced by a pharmacological MnSOD inhibitor [23]. In vivo studies 

revealed that administration of mito-TEMPO improved cardiac function in a mouse 

model of pressure over-load heart failure [24], and reduced diabetes-attributable cardiac 

injury and mortality after myocardial infarction [25]. In this study, we demonstrated that 

therapeutic inhibition of mitochondrial ROS using mito-TEMPO prevented oxidative 

stress and reduced cardiomyopathic changes in mouse models of type-1 and type-2 

diabetes. Our data strongly indicate that mitochondria-targeted antioxidants have 

therapeutic effects on diabetic cardiac complications.  

4.2 Material and methods 

4.2.1 Animals and cardiomyocytes culture 

This investigation conforms to the Guide for the Care and Use of Laboratory Animals 

published by the US National Institutes of Health (NIH Publication, 8th Edition, 2011). 

All experimental protocols were approved by the Animal Use Subcommittee at the 

University of Western Ontario, Canada (2008-079). Breeding pairs of C57BL/6 mice and 

db+/- mice were purchased from the Jackson Laboratory. Transgenic mice 

over-expressing a circularly permuted yellow fluorescent protein in the mitochondrial 

matrix of cells (Tg-mtcpYFP) were kindly provided by Dr. Wang Wang (University of 

Washington, Seattle) [26]. A breeding program for mice was implemented at our animal 
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care facilities. 

Adult mouse ventricle cardiomyocytes were isolated from C57BL/6 mice, and cultured as 

described in our recent studies [27]. 

4.2.2 Experimental protocol 

Type-1 diabetes was induced in adult male mice (2-month old) by consecutive 

intraperitoneal injection of streptozotocin (STZ, 50 mg/kg/day) for 5 days [11]. 

Seventy-two hours after the last injection of STZ, random blood glucose levels were 

measured using the OneTouch Ultra 2 blood glucose monitoring system (Life Scan, Inc. 

CA, USA). Mice were considered diabetic and used for the study only if they had 

hyperglycemia ( 15 mM) 72 h after STZ injection. Citrate buffer-treated mice were used 

as non-diabetic control (blood glucose < 12 mM). Thirty days after diagnosis, diabetic 

mice (6-8 in each group) received daily injection of mito-TEMPO (0.7 mg/kg/day, i.p., 

Enzo Life Sciences, Inc., the product number: ALX-430-150) [28] or vehicle for 30 days.  

Type-2 diabetic db/db mice were produced by breeding db+/- mice. Male db/db mice and 

their littermate db+/- mice received daily injection of mito-TEMPO (0.7 mg/kg/day, i.p.) 

starting at age of 2.5 months for 30 days.        

4.2.3 Echocardiography 

Animals were lightly anaesthetized with inhalant isoflurane (1%) and imaged using a 

40-MHz linear array transducer attached to a preclinical ultrasound system (Vevo 2100, 

FIJIFILM VisualSonics, Canada) with nominal in-plane spatial resolution of 40 μm (axial) 

 80 μm (lateral). M-mode and 2-D parasternal short-axis scans (133 frames/second) at 

the level of the papillary muscles were used to assess changes in left ventricle (LV) 

end-systolic inner diameter, LV end-diastolic inner diameter, LV posterior wall thickness 

in end-diastole and end-systole, fractional shortening (FS%) and ejection fraction (EF%). 
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An apical four chamber view of the left ventricle was obtained and the pulsed wave 

Doppler measurements were performed in the apical view with a cursor at mitral valve 

inflow: maximal early (E) and late (A) transmitral velocities in diastole. The diastolic 

function was determined by the ratio of E to A peak. 

4.2.4 Histological analyses  

For cardiomyocyte cross-sectional area, several sections of the heart (5 μm thick) were 

prepared and stained for membranes with fluorescein isothiocyanate–conjugated wheat 

germ agglutinin (Invitrogen) and for nuclei with Hochest. A single cardiomyocyte was 

measured by using an image quantitative digital analysis system (NIH Image version 1.6) 

as described [11]. The outline of at least 200 cardiomyocytes was traced in each section.  

4.2.5 Measurement of ROS generation in isolated mitochondria 

Interfibrillar mitochondria were isolated from freshly harvested hearts as described 

previously [29]. The isolated mitochondria were further purified using Percoll density 

gradient centrifugation. The freshly isolated mitochondria (10 µg) was incubated with 

pyruvate/malate (5/5 mmol/l) in a reaction buffer containing Amplex Red (0.05 mmol/l, 

Life Technologies Inc. Burlington, Ontario, Canada) and horseradish peroxidase (0.1 

units/ml) at 37ºC. The fluorescent signals were monitored by spectrofluorometer at the 

520/580 nm in every 10 minutes. 

4.2.6 Determination of oxidative stress levels in diabetic hearts 

The oxidative stress levels in heart tissue lysates were measured by using 

2,7-dichlorodihydro-fluorescein diacetate (DCF-DA, Invitrogen, USA) as an indicator 

[11]. Briefly, fresh heart tissues were homogenized in an assay buffer. The homogenates 

(50 μg protein) were incubated with DCF-DA at 37ºC for 3 hours. The fluorescent 

product formed was quantified by spectrofluorometer at the 485/525 nm. Changes in 
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fluorescence were expressed as arbitrary unit.  

The protein oxidation in heart tissue lysates was assessed by measuring protein carbonyl 

content using a commercial assay kit (Cayman Chemical, USA) following manufacturer’s 

instructions.  

4.2.7 Measurement of mitochondrial superoxide generation in 
cardiomyocytes 

Superoxide flashes in single mitochondrion were measured to determine mitochondrial 

superoxide generation in living cardiomyocytes as described [30]. Briefly, 

cardiomyocytes were infected with an adenoviral vector expressing mt-cpYFP 

(Ad-mt-cpYFP, kindly provided by Dr. Wang Wang from the University of Washington, 

Seattle, USA). Ad-mt-cpYFP expresses a circularly permuted yellow fluorescent protein 

(cpYFP) in the mitochondrial matrix of cells using the cytochrome C oxidase subunit IV 

targeting sequence (mt-cpYFP). Twenty-four hours after infection, confocal imaging was 

recorded using the Olympus FV 1000 laser-scanning microscope equipped with a 63x, 

1.3NA oil immersion objective and a sampling rate of 0.7s/frame. At least 20 

cardiomyocytes per culture in each group were analyzed. 

Mitochondrial superoxide generation was also assessed in living cardiomyocytes from 

Tg-mtcpYFP mice by using the MitoSOXTM Red mitochondrial superoxide indicator 

(Molecular Probes) and oxidant levels measured by using Dihydroethidium (DHE, 

Molecular Probes). The cpYFP signals were used to identify mitochondrial MitoSOXTM 

Red and DHE staining in cardiomyocytes. 

4.2.8 Determination of apoptotic cell death 

Caspase-3 activity in myocardial tissues and cardiomyocytes was measured by using a 

caspase-3 fluorescent assay kit (BIOMOL Research Laboratories). 
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Cell death was also determined in cardiomyocytes by annexin V/ Hochest staining as 

described [31].  

4.2.9 Real-time RT-PCR 

Total RNA was extracted from heart tissues using the Trizol Reagent (Life Technologies 

Inc. Burlington, Ontario, Canada). Real-time RT-PCR was performed to analyze mRNA 

expression for β-myosin heavy chain (β-MHC), atrial natriuretic peptide (ANP), gp91phox, 

p47phox and GAPDH as previously described [11]. 

4.2.10 Western blot analysis 

The protein levels of Bcl-2, phosphorylated and total extracellular signal-regulated 

kinase-1/2 (ERK1/2), c-Jun NH2-terminal kinase-1/2 (JNK1/2), p38 kinase, and GAPDH 

were determined by western blot analysis using their specific antibodies (Cell Signaling, 

Danvers, MA). 

4.2.11 Statistical analysis 

All data were given as means ± SD. Differences between two groups were compared by 

unpaired Student's t test. For multi-group comparisons, ANOVA followed by 

Newman-Keuls test was performed. A value of P < 0.05 was considered statistically 

significant. 

4.3 Results 

4.3.1 Mito-TEMPO inhibited high glucose-induced mitochondrial 
superoxide generation and cell death in cardiomyocytes 

To determine the effects of mito-TEMPO on mitochondrial superoxide generation and 

cell death, we incubated adult cardiomyocytes with normal glucose (5 mmol/l) or high 

glucose (30 mmol/l) in the presence of mito-TEMPO (25 nmol/l) or vehicle for 24 hours. 

This dose of mito-TEMPO was chosen because it has been shown to increase 
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mitochondrial superoxide dismutation by 3-fold while not affecting cytoplasmic 

dismutation in cultured cells [20]. As shown in Figure 4-1A, high glucose increased 

mitochondrial flashes in cardiomyocytes, which were abrogated by mito-TEMPO, 

indicating an increase in mitochondrial superoxide generation. This was further 

confirmed by the MitoSOXTM Red or DHE staining in living cardiomyocytes during high 

glucose stimulation (Figure 4-1B and C).  

High glucose induced cardiomyocyte death as determined by annexin-V/Hochest staining. 

Co-incubation with mito-TEMPO prevented high glucose-induced cell death in 

cardiomyocytes (Figure 4-1D and E). These results demonstrate that inhibition of 

mitochondrial superoxide generation prevents high glucose-induced cardiomyocyte 

death. 
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Figure 4-1. Effects of mito-TEMPO (M-TEMPO) on mitochondrial superoxide 

generation and cell death in cardiomyocytes  

Adult mouse cardiomyocytes were incubated with normal glucose (NG) or high glucose 

(HG) for 24 h in the presence of M-TEMPO or vehicle. (A) Single mitochondrial 

superoxide flashes were determined. (B) Representative microphotographs from 5 

different cultures for the MitoSOX staining, cpYFP signals and nuclei (Hoechst staining) 

show overlap of MitoSOX staining and cpYFP signals in cardiomyocytes. (F) 

Representative microphotographs from 5 different cultures for the DHE staining, cpYFP 

signals and nuclei (Hoechst staining) show overlap of DHE staining and cpYFP signals in 

cardiomyocytes. (D) A representative staining for annexin V (green color) and nuclei 

(blue color) and (E) Quantification of death cells (%). Data are mean ± SD from 5 

different cell cultures. *P < 0.05 versus vehicle + NG and †P < 0.05 versus vehicle + HG. 
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4.3.2 Administration of mito-TEMPO abolished mitochondrial ROS 
generation and oxidative stress in hearts of diabetic mice 

Injection of mito-TEMPO did not affect the blood glucose levels, heart weight and body 

weight in both sham and diabetic mice (Tables 4-1 and 2). Neither abnormal behaviors or 

health problems including myocardial function and death nor changed intake of food and 

water was observed due to the use of mito-TMEPO in sham mice (Tables 4-3), 

suggesting there might be no obvious toxic side-effects of mito-TEMPO. 

Mitochondrial ROS generation was significantly increased in both db/db and 

STZ-induced mouse hearts. Administration of mito-TEMPO abolished mitochondrial 

ROS generation in diabetic mouse hearts (Figure 4-2A and B). 

To assess oxidative stress in diabetic hearts, we first measured oxidative stress levels in 

heart tissue lysates. The oxidative stress levels were increased in db/db and STZ-induced 

mouse hearts, which was inhibited by mito-TEMPO (Figure 4-2C and D). The total 

antioxidant capacity (including small molecule and protein antioxidants) was also 

increased in diabetic hearts (Figure 4-3). We then determined the oxidative damage in 

diabetic mice hearts by measuring the protein carbonyl content. The protein carbonyl 

content was elevated in db/db and STZ-induced mouse hearts. However, injection with 

mito-TEMPO abrogated diabetes-induced protein carbonyl content (Figure 4-2E and F). 

These results suggest that mito-TEMPO effectively blocks mitochondrial ROS 

production and prevents oxidative stress in diabetic mouse hearts.  
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Table 4-1. General information in db/db and db+/- mice receiving mito-TEMPO 

 

 

Table 4-2. General information in STZ-injected mice receiving mito-TEMPO 

 

 

Table 4-3. Intake of food and water in mice receiving mito-TEMPO 
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Figure 4-2. Effects of mito-TEMPO (M-TEMPO) on mitochondrial ROS generation 

and oxidative stress 

Mitochondrial oxidant levels were assessed using Amplex Red in db+/- and db/db hearts 

(A) or sham and STZ-treated hearts (B). Oxidative stress levels were determined using 

DCF-DA in db+/- and db/db hearts (C) or sham and STZ-treated hearts (D). Protein 

carbonyl content was measured in db+/- and db/db hearts (E) or sham and STZ-treated 

hearts (F). Data are mean ± SD; n = 6-8. *P < 0.05 versus vehicle in db+/- or sham and 

†P < 0.05 versus vehicle in db/db or STZ. 
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Figure 4-3. Effect of mito-TEMPO on total antioxidant capacity in db/db mice and 

STZ-injected mice  

The total antioxidant capacity was increased in db/db (A) and STZ-treated mouse hearts 

(B), but was reduced by mito-TEMPO (M-TEMPO). Data are means ± SD; n = 6-8. *P < 

0.05 versus vehicle in db+/- or sham and †P < 0.05 versus vehicle in db/db or STZ. 



188 

Since NADPH oxidase is another important source of ROS in the heart, we measured 

NADPH oxidase expression. Real-time PCR revealed that the mRNA levels of gp91phox 

and p47phox were significantly increased in STZ-induced type-1 diabetic hearts but not in 

db/db mouse hearts. Administration of mito-TEMPO decreased the mRNA levels of 

gp91phox and p47phox in STZ-induced mouse hearts whereas it did not have significant 

impact on their expression in db/db mouse hearts (Figure 4-A-D). 

To examine whether mitochondrial superoxide interacts with gp91phox-containing 

NADHP oxidase (Nox2) activation, we used gp91ds-tat peptide to inhibit Nox2 

activation in cardiomyocytes [32]. Cardiomyocytes were incubated with normal or high 

glucose in the presence of gp91ds-tat (10 µmol/l, AnaSpec, Inc., Fremont, CA, USA), 

mito-TEMPO (25 nmol/l) and vehicle, either alone or in combination for 24 hours. 

Gp91ds-tat and mito-TEMPO alone or in combination prevented mitochondrial 

superoxide production and oxidant levels induced by high glucose as determined by the 

MitoSOX Red and DHE staining, respectively (Figure 4-E and F). Similarly, high 

glucose-induced cell death was inhibited by gp91ds-tat or mito-TEMPO; however, a 

combination of gp91ds-tat and mito-TEMPO did not provide further protection in 

cardiomyocytes (Figure 4-5), suggesting a potential interaction between mitochondrial 

superoxide and Nox2 activation. 
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Figure 4-4. (A-D) Effects of mito-TEMPO (M-TEMPO) on NADPH oxidase 

expression in diabetic mice 

The mRNA levels of gp91phox and p47phox mRNA in db+/- and db/db mouse hearts (A and 

B) or sham and STZ-treated mouse hearts (C and D) were determined by real-time 

RT-PCR. Data are mean ± SD; n = 6-8. *P < 0.05 versus sham and †P < 0.05 versus 

vehicle + STZ. 

(E and F) Effects of gp91ds-tat and mito-TEMPO (M-TEMPO) on mitochondrial 

superoxide production in cardiomyocytes 

Cultured cardiomyocytes isolated from Tg-mtcpYFP mice were incubated with normal 

(NG) or high glucose (HG) in the presence of gp91ds-tat, M-TEMPO or vehicle, either 

alone or in combination for 24 hours. Mitochondrial superoxide production was then 

determined. (E) Representative microphotographs for the MitoSOX staining, cpYFP 

signals and nuclei (Hoechst staining) show overlap of MitoSOX staining and cpYFP 

signals in cardiomyocytes. (F) Representative microphotographs for the DHE staining, 

cpYFP signals and nuclei (Hoechst staining) show overlap of DHE staining and cpYFP 

signals in cardiomyocytes. Data are from 5 different cultures. 
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Figure 4-5. Effects of gp91ds-tat and mito-TEMPO (M-TEMPO) on cell death 

Cultured cardiomyocytes isolated from Tg-mtcpYFP mice were incubated with normal 

(NG) or high glucose (HG) in the presence of gp91ds-tat, M-TEMPO or vehicle, either 

alone or in combination for 24 hours. Cell death was determined by annexin V staining. 

(A) Representative staining for annexin V (green color) and nuclei (blue color). (B) 

Quantification of death cells (%). Data are mean ± SD from 5 different cultures. *P < 

0.05 versus vehicle+control+NG and †P < 0.05 versus vehicle+control+HG. 
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4.3.3 Mito-TEMPO reduced cardiomyopathic changes in type-2 
diabetic db/db mice 

Histological analysis of cardiomyocyte cross-sectional areas showed an increase in 

cardiomyocyte size from db/db mouse hearts. However, administration of mito-TEMPO 

did not affect cardiomyocyte size in sham animals but reduced cardiomyocyte size in 

db/db mice hearts (Figure 4-6A). Similarly, the mRNA levels of ANP and β-MHC were 

elevated in diabetic db/db mouse hearts and significantly reduced in db/db mice receiving 

mito-TEMPO (Figure 4-6B and C). These results demonstrate that mito-TEMPO prevents 

myocardial hypertrophy in type-2 diabetic db/db mice. 

Apoptosis plays an important role in development of diabetic cardiomyopathy. We 

examined the effects of mito-TEMPO on apoptosis in db/db mouse hearts. Diabetes 

increased caspase-3 activity, an indicator of apoptosis, and decreased the protein levels of 

BCL-2, an important anti-apoptotic factor in db/db mouse hearts. Administration of 

mito-TEMPO prevented caspase-3 activity and increased BCL-2 protein expression in 

db/db mouse hearts (Figure 4-6D and E). These results suggest that inhibition of 

mitochondrial ROS protects the heart against apoptosis in diabetic mice. 

Echocardiographic analysis revealed a decline of E/A ratio in db/db mice (Figure 4-6F), 

indicating myocardial diastolic dysfunction, while myocardial systolic function was 

preserved in db/db mice as determined by FS% and EF% (Figure 4-6G and H, and Table 

4-4). Injection of mito-TEMPO significantly increased the E/A ratio in db/db mice 

(Figure 4-6F). Taken together, administration of mito-TEMPO reduces cardiomyopathy 

in type-2 diabetic db/db mice. 
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Figure 4-6. Effects of mito-TEMPO (M-TEMPO) on cardiomyopathic changes in 

db/db mice 

(A) Cardiomyocyte cross-sectional areas. (B and C) the mRNA levels of ANP and 

β-MHC in db/db mouse hearts. (D) Caspase-3 activity in db/db hearts. (E) The upper 

panel is a representative western blot for BCL-2 in myocardial tissues, and the lower 

panel is the quantitative data from western blot analysis for BCL-2/GAPDH. (F) 

Myocardial diastolic function (E/A). (G) Myocardial systolic function (FS%). (H) Left 

ventricular ejection fraction (EF%). Data are mean ± SD; n = 6-8. *P < 0.05 versus 

vehicle in db+/- and †P < 0.05 versus vehicle in db/db.  
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Table 4-4. Parameters of echocardiographic analysis in db/db and db+/- mice 

receiving mito-TEMPO 
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4.3.4 Mito-TEMPO mitigated diabetic cardiomyopathy in 
STZ-induced mice 

We also examined the effects of mito-TEMPO on diabetic cardiomyopathy in 

STZ-induced mice. Consistently, cardiomyocyte cross-sectional areas and gene 

expression of ANP and β-MHC were significantly increased in STZ-induced type-1 

diabetic hearts (Figure 4-7A-C). These hypertrophic changes were attenuated by 

mito-TEMPO (Figure 4-7A-C). Injection of STZ increased caspase-3 activity (Figure 

4-7D) and reduced anti-apoptotic protein BCL-2 in the heart (Figure 4-7E), which were 

prevented by mito-TEMPO (Figure 4-7D and E). Finally, myocardial diastolic and 

systolic functions were decreased in STZ-induced mice as determined by the E/A ratio 

(Figure 4-7F), FS% and EF% (Figure 4-7G and H, and Table 4-5), respectively. However, 

administration of mito-TEMPO restored both myocardial diastolic and systolic functions 

in STZ-induced type-1 diabetic mice (Figure 4-7F-H and Table 4-4). 
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Figure 4-7. Effects of mito-TEMPO (M-TEMPO) on cardiomyopathic changes in 

STZ-injected mice 

(A-D) Cardiomyocyte cross-sectional areas (A), the mRNA levels of ANP (B) and 

β-MHC (C) and caspase-3 activity (D) were determined in STZ-treated hearts. (E) The 

upper panel is a representative western blot for BCL-2, and the lower panel is the 

quantification of BCL-2 protein levels relative to GAPDH. (F) Echocardiographic 

analysis (E/A). (G) Myocardial systolic function (FS%). (H) Left ventricular ejection 

fraction (EF%). Data are mean ± SD; n = 6-8. *P < 0.05 versus sham and †P < 0.05 

versus vehicle + STZ. 
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Table 4-5. Parameters of echocardiographic analysis in STZ-injected mice receiving 

mito-TEMPO 
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4.3.5 Mito-TEMPO attenuated ERK1/2 activation in diabetic mouse 
hearts and high glucose-stimulated cardiomyocytes 

Since activation of mitogen-activated protein kinase has been implicated in diabetic 

cardiomyopathy and they are sensitive to oxidative stress, we therefore examined the 

phosphorylation of its three family members: ERK1/2, JNK1/2 and p38. Western blot 

analysis showed that phosphorylated ERK1/2 was increased in both diabetic mouse 

hearts (Figure 4-8A and B) while no change in phosphorylated JNK1/2 and p38 was 

observed (data not shown). Mito-TEMPO significantly reduced ERK1/2 phosphorylation 

in db/db and STZ-induced mouse hearts (Figure 4-8A and B). 

To further address the involvement of ERK1/2, we incubated adult cardiomyocytes with 

normal (5 mmol/l) or high glucose (30 mmol/l) in the presence of mito-TEMPO (25 

nmol/l) or vehicle for 24 hours. High glucose increased phosphorylated ERK1/2, which 

was abolished by mito-TEMPO (Figure 4-8C). In addition, co-incubation with ERK1/2 

inhibitor PD98059 (10 μmol/l) prevented high glucose-induced cell death (Figure 4-8D). 
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Figure 4-8. Effects of mito-TEMPO(M-TEMPO) on ERK1/2 phosphorylation in 

hearts and cardiomyocytes  

Upper panels are representative western blots for phosphorylated ERK1/2 (p-ERK) and 

total ERK1/2 (T-ERK), and lower panels are quantitative data of p-ERK/T-ERK ratio in 

db+/- and db/db hearts (A), sham and STZ-treated hearts (B) or high glucose-stimulated 

cardiomyocytes (C). (D) Cell death was determined by annexin V staining. Upper panel 

is a representative staining for annexin V (green color) and nuclei (blue color) and lower 

panels are the quantification of death cells (%). Data are mean ± SD; n = 6-8 or 5 

different cultures. *P < 0.05 versus vehicle in db+/-, sham or normal glucose and †P < 

0.05 versus vehicle in db/db, STZ or high glucose. 
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4.4 Discussion 

The present study provides the first evidence that therapeutic inhibition of mitochondrial 

ROS by mito-TEMPO reduces cardiomyopathic changes and improves myocardial 

function in type-1 and type-2 diabetic mice. Our study also provides direct evidence that 

high glucose induces mitochondrial superoxide generation, which is prevented by 

mito-TEMPO. We further suggest that ROS amplified in mitochondria subsequently 

activates downstream ROS-sensitive signaling pathways (e.g. ERK1/2) implicated in 

pathological cardiac changes in diabetes (Figure 4-9). 

 This study demonstrates that both type-1 and type-2 diabetes promoted 

mitochondrial ROS generation, increased intracellular oxidative stress levels and induced 

oxidative damage in the heart, which are consistent with previous reports [13-17]. The 

total antioxidant capacity was also increased in diabetic hearts as well. Furthermore, our 

in vitro study provides direct evidence that high glucose induced mitochondrial 

superoxide generation in cultured cardiomyocytes. Thus, the elevation of oxidative stress 

levels and oxidative damage may be caused by increased ROS generation rather than 

decreased antioxidant capacity. Whereas we used cpYFP as a probe to measure 

mitochondrial superoxide flashes in cardiomyocytes, we are aware there has been a 

controversy concerning the use of the cpYFP as a superoxide probe [33, 34]. To validate 

mitochondrial superoxide generation in cardiomyocytes, we also assessed mitochondrial 

superoxide production by using the MitoSOXTM Red mitochondrial superoxide indicator. 

In addition, DHE was employed to measure oxidant levels in cardiomyocytes. Both 

MitoSOXTM Red and DHE staining showed an increase in mitochondrial oxidant levels 

during high glucose stimulation, which was inhibited by mitochondrial-targeted 

antioxidant mito-TEMPO, similar to the changes in mitochondrial flashes. 
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Figure 4-9. Diagrammatic illustration of the proposed mechanisms of mito-TEMPO 

protection in type-1 and type-2 diabetic cardiomyopathy 

Diabetes induces mitochondrial ROS generation. ROS-induced oxidative damage and 

ROS-mediated activation of signaling contribute to cardiac apoptosis, hypertrophy and 

dysfunction. 
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It is well known that excessive mitochondrial ROS causes mitochondrial dysfunction in 

cardiomyocytes [35], compromising ATP production and inducing cell death [36], both of 

which directly contribute to myocardial dysfunction [37]. In fact, ATP product is reduced 

and apoptosis is induced in diabetic hearts [38, 39]. Mitochondrial ROS over-production 

also promotes adverse myocardial hypertrophy, an important cellular hallmark of diabetic 

cardiomyopathy [40, 41]. Thus, targeted inhibition of mitochondrial ROS by transgenic 

over-expression of SOD2 and mitochondrial catalase prevents cardiac adverse changes 

and dysfunction in a mouse model of type-1 diabetes and in insulin-resistant and obese 

Ay mice, respectively [18, 19]. The present study extends these previous findings to 

investigate the therapeutic potentials of targeted inhibition of mitochondrial ROS in both 

type-1 and type-2 diabetic mice. We show that incubation with mito-TEMPO efficiently 

inhibited mitochondrial superoxide generation in high glucose-stimulated cardiomyocytes 

and treatment of mito-TEMPO after diabetes onset abolished diabetes-induced 

mitochondrial ROS production and oxidative damage in hearts. Consequently, 

administration of mito-TEMPO prevented hypertrophy and attenuated myocardial 

dysfunction in both type-1 and type-2 diabetic mice. Thus, antioxidant strategies 

specifically targeting mitochondria may have therapeutic benefit in diabetic cardiac 

complications.  

Gp91phox-containing NADPH oxidase is another important source of ROS in 

cardiomyocytes [42]. It consists of cytosolic subunits (p67phox, p47phox, p40phox and Rac1) 

and membrane subunits (gp91phox and p22phox). We have recently demonstrated that 

gp91phox containing NADPH oxidase significantly contributes to diabetic cardiomyopathy 

[11, 31]. The present study shows that gp91phox and p47phox were up-regulated in 

STZ-induced mouse hearts, which is consistent with our recent report [11]. In contrast, 

NADPH oxidase expression was not altered in type-2 diabetic db/db mice, suggesting a 

differential expression of NADPH oxidase in type-1 and type-2 diabetes. Inhibition of 

mitochondrial ROS by mito-TEMPO prevented up-regulation of NADPH oxidase 

expression in type-1 diabetic hearts. This suggests that mitochondrial ROS signaling may 

promote NADPH oxidase expression in type-1 diabetic hearts. In fact, this has been 

recognized that mitochondrial ROS positively regulates NADPH oxidase subunits 

expression and activation under pathological conditions including diabetes [43]. On the 
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other hand, we have recently reported that deletion of Rac1 or pharmacological inhibition 

of NADPH oxidase activation reduces mitochondrial ROS generation in diabetic hearts, 

suggesting that NADPH oxidase promotes mitochondrial ROS generation [31]. Thus, it is 

most likely that cross-talks between mitochondria and NADPH oxidase form a positive 

feedback loop in favor of ROS production and oxidative damage in type-1 diabetic hearts, 

and disruption of this feedback loop by inhibiting either of them provides beneficial 

effects in diabetes. This is indeed supported by our findings that inhibition of either 

mitochondrial superoxide or gp91phox-containing NADPH oxidase prevents mitochondrial 

superoxide production and attenuates apoptosis in high glucose-stimulated 

cardiomyocytes.  

Apoptosis has been implicated in the pathogenesis of diabetic cardiomyopathy [4, 39, 44]. 

Cardiomyocyte apoptosis has been reported to occur in diabetic animal models and 

patients [44]. Apoptotic cell death in the heart causes a loss of contractile tissue which 

initiates cardiac remodeling. The loss of cardiomyocytes and hypertrophy of the 

remaining viable cardiomyocytes characterize the diabetic cardiomyopathy. As such, 

inhibition of cardiomyocyte apoptosis has been shown to prevent the development of 

diabetic heart diseases [45]. In the present study, administration of mito-TEMPO 

prevented caspase-3 activation in type-1 and type-2 diabetic mouse hearts. This effect of 

mito-TEMPO was associated with up-regulation of BCL-2 protein in diabetes. In cultured 

cardiomyocytes, we provide direct evidence in support of our hypothesis that inhibition 

of mitochondrial superoxide generation protects cardiomyocytes under diabetic 

conditions. Thus, inhibition of apoptotic cell death may be one of important mechanisms 

by which mito-TEMPO reduces diabetic cardiomyopathy. 

ROS production and subsequent oxidative damage have been demonstrated to activate a 

variety of signaling pathways, among which ERK1/2, p38 and JNK1/2 have been 
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implicated in apoptosis and hypertrophy in the heart [46, 47]. Studies have shown that 

ERK1/2 is activated in diabetic hearts whereas p38 and JNK1/2 activities are either 

increased or decreased in diabetes [48, 49]. Activation of ERK1/2 and p38 contributes to 

apoptosis and hypertrophy in cardiomyocytes under diabetic conditions [50, 51]. The 

present study shows that the levels of phosphorylated ERK1/2 were increased in type-1 

and type-2 diabetic hearts; however, phosphorylation of p38 and JNK1/2 remained 

unaltered. Importantly, administration of mito-TEMPO prevented ERK1/2 activation in 

diabetic hearts and cardiomyocytes under diabetic conditions, and inhibition of ERK1/2 

prevented cell death in high glucose-stimulated cardiomyocytes. Thus, blocking ERK1/2 

signaling may represent a potential mechanism underlying the cardiac protection of 

mito-TEMPO in diabetes. 

Although mito-TEMPO is a mitochondria-targeted antioxidant with superoxide and alkyl 

radical scavenging properties [20], it is currently unknown whether there are any 

off-target effects of mito-TEMPO when it is accumulated in mitochondria, and it is also 

unclear how much of mito-TEMPO has actually gone to the heart. The present study 

shows that administration of mito-TEMPO did not display any effects on blood glucose, 

body weight, activity and dietary ingestion in both sham and diabetic mice, suggesting no 

significant side-effects of this reagent. In addition, systemic administration of 

mito-TEMPO may provide protective effects on other organs in diabetes, which may 

benefit the heart. 

4.5 Conclusions 

Administration of mitochondria-targeted antioxidants may be an effective therapy for 

diabetic cardiac complications.  
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Chapter 5 

5 General discussion, limitations and future directions 
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5.1 General Discussion 

Calpains have been implicated in a variety of cardiac diseases and may represent an 

important target for therapy [1]. However, the mechanisms by which calpains play a role 

in the pathogenesis of cardiac diseases remain incompletely understood. The major 

findings of this thesis are that calpain-1 is increased in mitochondria of the hearts under 

septic (Chapter 2) and diabetic conditions (Chapter 3), and that increased mitochondrial 

calpain-1 correlates with mitochondrial ROS generation, myocardial pathological 

changes and myocardial dysfunction. Targeted inhibition of mitochondrial ROS prevents 

apoptosis in cardiomyocytes and reduces cardiomyopathic changes in both type-1 and 

type-2 diabetes (Chapter 4). Importantly, we demonstrate for the first time that 

mitochondrial calpain-1 targets and cleaves ATP5A1 subunit, leading to a reduction in 

ATP synthase activity, and that disruption of ATP synthase promotes mitochondrial ROS 

generation in cardiomyocytes and hearts under septic and diabetic conditions. These 

findings reveal a novel role of calpain-1 in septic and diabetic cardiomyopathy, identify 

ATP5A1 as a new target of calpain-1 in mitochondria and provide a new mechanism 

underlying calpain-mediated cardiac diseases, specifically mitochondrial ROS generation. 

Thus, this study significantly increases our understanding of the role of calpain in 

cardiovascular diseases. 

Calpains have been considered as a cytoplasmic enzyme [2, 3]. However, it has been 

shown that calpains are trans-located from the cytosol to sarcolemma following 

myocardial ischemia/reperfusion (I/R) [4]. Translocation of calpain-2 to nuclei of 

cardiomyocytes was also observed in tail-suspended rats [5]. Some isoforms including 

calpain-1, calpain-2 and calpain-10 have been demonstrated to be also present in 

mitochondria [6-15]. An important finding of this thesis is that both septic and diabetic 

conditions significantly increase the protein levels and activities of calpain-1 in 
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mitochondria of mouse hearts, whereas the protein levels of calpain-2 are slightly 

elevated in both conditions. In contrast, the protein levels of calpain-10 are not changed 

in septic and diabetic hearts. Our present data further show that the majority of 

mitochondrial calpain-1 is located in mitochondrial matrix as well as the intermembrane 

space of septic hearts. An early study reported that I/R condition increases calpain-1 in 

mitochondrial intermembrane space in cardiomyocytes [16]. More recent studies from 

two independent laboratories demonstrated that both calpain-1 and calpain-2 are 

increased in mitochondrial matrix from heart tissues following I/R [17, 18]. Thus, 

increased calpains in mitochondria may be a common phenomenon in the heart under 

stress. However, it is currently unknown how calpains are elevated in mitochondria of the 

heart under stress. Our data indicate that increased calpains in mitochondria may be due 

to translocation from the cytosol because (1) the protein levels of total intercellular 

calpains are comparable between normal and diseased hearts (including sepsis and 

diabetes), and (2) inhibition of calpain activity prevents the accumulation of calpain-1 in 

mitochondria of septic hearts. The latter also suggests that calpain activation is necessary 

for its translocation into mitochondria. Further evidence in support of the mitochondrial 

translocation is that the N-terminus of calpain-1 contains a mitochondrial targeting 

sequence [19]. Nevertheless, it is still unclear how calpains relocate to mitochondria after 

activation in diseased hearts. A recent study revealed that Ca2+ overload induced 

translocation of calpain to sarcolemma through reverse mode of Na+/Ca2+ exchanger in 

the heart during ischemia. They showed that inhibition of Na+/Ca2+ exchanger markedly 

attenuated calpain-1 translocation, suggesting that Na+/Ca2+ exchanger may be important 

for calpain translocation [20]. Interestingly, similar Na+/Ca2+ exchanger exists on 

mitochondrial membrane [21]. It is possible that Na+/Ca2+ exchanger may mediate 

relocation of calpains from the cytosol to mitochondria in cardiac disease, which merits 

future investigation. 
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Increased calpains in mitochondria was reported to be associated with cardiac apoptosis. 

Following I/R, mitochondrial calpain-1 increased in the intermembrane space and 

induced cleavage of apoptosis inducible factor (AIF), leading to apoptosis in 

cardiomyocytes [16]. Our data demonstrate for the first time that calpain-1 increases in 

mitochondrial matrix and cleaves ATP5A1, leading to disruption of ATP synthase in both 

septic and diabetic hearts. Disruption of ATP synthase results in a reduction in ATP 

production, which directly contributes to myocardial dysfunction. Furthermore, 

compromised ATP synthase within mitochondrial complex V results in “back-up” of 

electrons and thus promotes electron leak from the individual complexes on the 

respiratory chain, especially complexes I and III, leading to mitochondrial superoxide 

generation. In fact, inhibition of calpain or restoration of ATP synthase by up-regulation 

of ATP5A1 prevents mitochondrial ROS generation in cardiomyocytes and hearts under 

septic and diabetic conditions. Furthermore, selective up-regulation of calpain-1 in 

mitochondria sufficiently induces mitochondrial ROS generation in cardiomyocytes. 

Thus, our data provide a novel mechanism that mitochondrial calpain-1 induces 

mitochondrial superoxide generation by disruption of ATP synthase through proteolysis 

of ATP5A1 in cardiomyocytes under septic and diabetic conditions. Increased calpains in 

mitochondrial matrix were also reported to cleave and compromise complex 1 activity in 

ischemic hearts, leading to defect in ATP production, which directly contributes to 

myocardial dysfunction and may also promote superoxide generation [17]. It is important 

to mention that mitochondrial complex-Ⅰ activity was also compromised in diabetic and 

septic hearts [22, 23]. Thus, it is likely that increased calpains in mitochondrial matrix 

may disrupt the respiratory chain by targeting both ATP synthase and complex-Ⅰ, and 

may represent a new mechanism underlying calpain-mediated mitochondrial ROS 

generation in cardiac diseases. However, it remains to be determined whether calpains 

have any other targets in mitochondrial matrix in diseased hearts. Taken together, 
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calpains in mitochondrial intermembrane space cleaves AIF, leading to apoptosis and 

calpains in mitochondrial matrix disrupts energetic metabolism and promotes 

mitochondrial ROS generation in diseased hearts, which contribute to myocardial 

dysfunction and pathological changes as discussed below. 

It is well-known that excessive mitochondrial ROS have been implicated in cardiac 

pathophysiological processes [24]. First, mitochondrial ROS impairs mitochondria which 

may induce more ROS generation in mitochondria and further mitochondrial dysfunction, 

causing a vicious circle [25]. Second, mitochondrial ROS also promotes cell death in the 

heart [26]. Third, mitochondrial ROS act as a “second messenger” in cellular signaling 

pathways, leading to pro-inflammatory response and hypertrophy in cardiomyocytes [27]. 

Thus, selective inhibition of mitochondrial ROS has been protective in a variety of 

cardiac diseases. For example, pressure-overload induced heart failure was significantly 

ameliorated by treatment of mitochondrial-targeted antioxidant peptide, Szeto-Schiller 

(SS) 31 in a mouse model of transverse aortic constriction [28]. Transgenic 

over-expression of mitochondrial catalase and superoxide dismutase-2 (SOD2) attenuated 

cardiac hypertrophy, protected cardiac structures and improved myocardial function in 

angiotension-II induced hearts and type-1 diabetic mice [26, 29, 30]. In this work, we 

extend these previous findings to investigate the therapeutic effects of 

mitochondria-targeted antioxidant mito-TEMPO on diabetic cardiomyopathy in both 

type-1 and type-2 diabetic mice. We show that injection of mito-TEMPO efficiently 

inhibits mitochondrial superoxide generation, reduces hypertrophy and attenuates cardiac 

dysfunction in type-1 and type-2 diabetic mice. Given the evidence that mitochondrial 

calpain-1 induces mitochondrial ROS generation in diseased hearts, excessive 

mitochondrial ROS production may be an important mechanism by which calpain-1 

mediates cardiac diseases (Figure 5-1). 



218 

In summary, this thesis study has provided evidence in support that accumulation of 

calpain-1 in mitochondria disrupts ATP synthase through the proteolysis of ATP5A1, 

leading to a reduction in ATP production and promoting mitochondrial ROS generation. 

Mitochondrial ROS not only induces apoptosis, hypertrophy and pro-inflammatory 

response, but also promotes mitochondrial dysfunction, leading to ATP depletion, all of 

which directly contribute to septic cardiomyopathy and diabetic cardiomyopathy. 

Considering that calpains are also increased in ischemic heart diseases, where 

mitochondrial ROS production are increased, it is most likely that increased calpains in 

mitochondria and subsequent mitochondrial ROS generation may be a common 

mechanism contributing to cardiac diseases (Figure 5-1). Thus, targeted inhibition of 

mitochondrial calpains may represent a novel therapeutic approach for cardiac diseases.  
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Figure 5-1. Illustration of the proposed mechanism for increased mitochondrial 

calpain 1-induced ROS generation in cardiac disease 

The proposed mechanism in present study is summarized: increased mitochondrial 

calpain 1 disrupts ATP synthase via cleavage of ATP5A1 leading to excessive 

mitochondrial ROS generation, which contributes to the development of cardiac disease. 
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5.2 Limitations 

This study is mainly focused on the role of mitochondrial calpain-1; however, 

mitochondrial calpain-2 may also play a role in septic and diabetic cardiomyopathy as 

increased calpain-2 in mitochondria was reported to compromise complex-Ⅰ activity in 

ischemic hearts [18]. Although our data indicate that increased mitochondrial calpain-1 is 

closely associated with mitochondrial ROS generation in septic and diabetic hearts, direct 

evidence from in vivo hearts is lacking. It is also unknown whether targeted inhibition of 

mitochondrial calpains provides beneficial effects in diseased hearts. 

As for the substrates of calpains in mitochondrial matrix, other proteins may be also 

targeted by calpain-1 and calpain-2 in diseased hearts. This thesis study did not examine 

the role of increased calpains in mitochondrial intermembrane space whereas they may 

play a role in cardiac diseases. 

So far, all data regarding the role of mitochondrial calpains in cardiac diseases were 

obtained from cultured cardiomyocytes and animal models. Studies are needed to 

determine whether calpains are also increased in mitochondria of human diseased hearts. 

If yes, whether increased calpains in mitochondria are associated with compromised ATP 

synthase and complex-Ⅰ activities, as well as mitochondrial ROS generation in human 

diseased hearts. 

5.3 Future directions 

Future directions should include the following items: 

First, to provide direct in vivo evidence to support the role of increased mitochondrial 

calpains in mitochondrial ROS generation and myocardial injury, we are investigating 

whether forced up-regulation of calpain-1 and calpain-2 restricted to cardiomyocyte 



221 

mitochondria induces mitochondrial ROS generation, ATP synthase activity, complex-Ⅰ 

activity, cardiac structural and morphological changes, and myocardial function by 

generating transgenic mice with cardiac-specific and mitochondrial-targeted 

up-regulation of calpain-1 and calpain-2.  

Second, we will generate transgenic mice with cardiac-specific and 

mitochondrial-targeted over-expression of calpastatin, an endogenous inhibitor of 

calpain-1 and calpain-2, and investigate whether selective inhibition of mitochondrial 

calpain-1 and calpain-2 prevents mitochondrial ROS generation and reduces myocardial 

injury under pathological conditions including ischemia/reperfusion, diabetes and sepsis.  

Third, we will investigate additional targets of calpains in mitochondria. To do this, we 

will use proteomic approaches (including 2D gel and MASS) to identify potential 

substrates of calpains in mitochondria of diseased hearts. 

Finally, it is important to determine whether calpain-1 and calpain-2 in mitochondrial are 

increased in human diseased hearts and whether these changes correlate with cleavages of 

calpain targets in mitochondria. We will plan to compare the protein levels of calpains in 

mitochondria between human diseased hearts (e.g. transplanted diseased hearts) and 

healthy hearts (brain trauma).   
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