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Abstract
The Box-Cox method has been widely used to improve estimation accuracy in different

fields, especially in econometrics and time series. In this thesis, we initially review the Box-
Cox transformation [Box and Cox, 1964] and other alternative parametric power transforma-
tions. Following, the maximum likelihood method for the Box-Cox transformation is presented
by discussing the problems of previous approaches in the literature.

This work consists of the exact analysis of Box-Cox transformation taking into account the
truncation effect in the transformed domain. We introduce a new family of distributions for the
Box-Cox transformation in the original and transformed data scales. A likelihood analysis of
the Box-Cox distribution is presented when truncation is considered. It is shown that numerical
problems may arise in prediction and simulation when the truncation effect is ignored.

A new algorithm has been developed for simulating Box-Cox transformed time series since
previous methods are inefficient or unreliable. An application to sunspot data is discussed.

Box-Cox analysis is employed for random forest regression prediction using cross-validation
instead of MLE to estimate the transformation. An application to Boston housing dataset
demonstrates that this technique can substantially improve prediction accuracy.

Keywords: Box-Cox transformation, cross-validation, maximum likelihood, time series
simulation, truncated distributions
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Chapter 1

Introduction

In this chapter a review is presented regarding the parametric power transformations in regres-
sion models and time series. Box and Cox [1964] proposed the Box-Cox transformation in
order to improve the statistical models. It has been extensively studied on this subject with the
most of the research concentrated on inferences about unknown parameters of interest [Box
and Cox, 1964, Bickel and Doksum, 1981, Hinkley and Runger, 1984, Carroll and Ruppert,
1981].

In the literature, it was assumed that parametric family of distribution from y to y(λ) with λ
parameter are normally distributed with constant variance σ2 and mean µ. Therefore, the prob-
ability density for inverse-transformed observations and likelihood function in original domain
were obtained by multiplying the normal density distribution by the Jacobian of transforma-
tion. The violation of the assumptions was sometimes ignored and statistical analysis was
performed even though all assumptions were not satisfied.

In Chapter 2, we investigate the Box-Cox family distribution in the untransformed data
domain by considering the truncation effect. Our next objective is to find that the optimal
transformation would be changed by this assumption and how log-likelihood would be differed
with respect to parameters λ, µ and σ. The exact Box-Cox distribution is shown and the
comparison between an approximate and exact analysis is discussed in details. One of the
controversial question would be regarding the estimation of λ, and also it needs to explore that
MLE would work under this assumption and limitation.

Chapter 2 explors the contribution of the exact Box-Cox analysis with application to rivers
dataset. Initially, Chen and Lockhart [1997] obtained the conditional and unconditional infer-
ences using parameter-based asymptotics for large finite sample size. Further, Chen et al.
[2002] employed a large sample theory in the Box-Cox linear models and developed the
goodness-of-fit test for the Box-Cox transformation. We illustrate the findings of Chapter 2
with simulated examples in a regression model, and compare them with some of the work done
by previous researchers.

Finally, we revisit carefully the simulated truncated normal by Robert [1995], and we pro-
pose an efficient algorithm for generating the Box-Cox transformed time series. It is presented
an example of the truncation problem with Box-Cox analysis. Further, the modifications are
performed for Durbin-Levinson algorithm to improve the simulation of the Box-Cox time se-
ries.

This thesis reviews the transformation effect in linear regression, time series and Machine

2



1.1. Review of the Box-Cox Transformation 3

Learning. The simple power transformation is employed to minimize the expected prediction
error.

1.1 Review of the Box-Cox Transformation
Transformation used to stabilize variance if variance changes with mean level of measurements
[Bartlett, 1947]. Tukey [1957] introduced the power transformation to achieve normality of
distribution or at least symmetrizing error distribution. This transformation is monotone and
it preserves the order of data for λ > 0. Power transformations can be defined for positive
random variable as,

Y (λ) =

Yλ, if λ , 0,
log(Y), if λ = 0.

(1.1)

Power transformations are often used in econometric and Kriging applications. The usual
practice is to back transform data into the original data domain. Box and Tidwell [1962] con-
centrated on the transformation of independent variables with no impact on homoscedasticity
and normalization of error distribution. The Box-Cox transformation is a linear transformation
of the power transformation but it is more suitable for mathematical treatment. For any Y > 0
and λεR, the Box-Cox transformation is given by,

Y (λ) =

(Yλ − 1)/λ, if λ , 0,
log(Y), if λ = 0.

(1.2)

Box and Cox [1964] suggested the Box-Cox transformation which can improve statistical mod-
els by,

1. removing non-linearity;

2. removing heteroscedasticity;

3. removing skewness and non-normality of errors.

The inverse Box-Cox transformation is obtained by,

Y =

(λY (λ) + 1)1/λ, if λ , 0,
exp(Y (λ)), if λ = 0.

(1.3)

Shifted power transformation was proposed to handle the negative observation [Box and Cox,
1964] as,

Y (λ) =

((Y + λ2)λ1 − 1)/λ1, if λ1 , 0,
log(Y + λ2), if λ1 = 0.

(1.4)
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where λ1 is the transformation parameter and λ2 is shifted parameter defined for Y + λ2 > 0.
This problem can be considered as non-regular case due to the restriction Y > −λ2. The
log-likelihood may not be determined by using the two parameter transformations since it
approximately tends to infinity as λ2 + min(Y) → 0. Bickel and Doksum [1981] discussed the
signed power transformation such that,

Y (λ) = {sgn(Y)|Y |λ − 1)}/λ, for λ > 0. (1.5)

which can cover the whole real number and there is no restriction on Y (λ). This transforma-
tion only can address the kurtosis rather than skewness of distribution. The disadvantage of
the signed power transformation is that it can not handle the skewed distribution. The initial
assumption defined by Box and Cox [1964] restricted to positive data. Yeo and Johnson [2000]
generalized the Box-Cox transformation in the case of the negative random variable.
The Yeo-Johnson transformation for a fixed λ, Y (λ): R→ R is defined by,

Y (λ) = Y (λ)(λ,Y) =



(
(Y + 1)λ − 1

)
/λ, if Y ≥ 0, λ , 0,

log(Y + 1), if Y ≥ 0, λ = 0,
−

(
(1 − Y)2−λ − 1

)
/(2 − λ), if Y < 0, λ , 2,

− log(1 − Y), if Y < 0, λ = 2.

(1.6)

where λ is power parameter likewise the Box-Cox transformation. This transformation can
hold the properties of the log-mean standardization after the inverse-transformation since Y (λ)

is invertible. Back-transformation is obtained by,

Y =



(
Y (λ)(λ,Y)λ + 1

)1/λ
− 1, if Y (λ)(λ,Y),≥ 0, λ , 0,

exp(Y (λ)(λ,Y)) − 1, if Y (λ)(λ,Y) ≥ 0, λ = 0,

1 −
(
−Y (λ)(λ,Y)(2 − λ) + 1

)1/(2−λ)
, if Y (λ)(λ,Y) < 0, λ , 2,

1 − exp
(
−Y (λ)(λ,Y)

)
, if Y (λ)(λ,Y) < 0, λ = 2.

(1.7)

Lemma 1.1.1 From the Yeo-Johnson transformation, we can conclude the following results:

1. For Y ≥ 0, we have Y (λ)(λ,Y) ≥ 0, and for Y < 0, it becomes Y (λ)(λ,Y) < 0;

2. Y (λ)(λ,Y) is continuous function in terms of λ and Y;

3. Y (λ)(λ,Y) is convex with λ > 1, and concave with λ < 1.

1.2 Estimation of the Transformation Parameter
Box and Cox [1964] presented maximum likelihood and Bayesian approach for the estimation
of the parameter λ. Maximum-likelihood estimates are obtained for a fixed λ by ignoring
constant part as follows [Box and Cox, 1964],

log Lmax(λ) = −
n
2

log(σ̂2(λ)) + log J(λ; y). (1.8)
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The robustness of the estimates of the parameters in a linear regression model have been ex-
tensively studied and the truncation effect was neglected by Draper and Cox [1969], Atkinson
[1973], Bickel and Doksum [1981], Carroll [1980], Hinkley and Runger [1984], Carroll and
Ruppert [1981] and Taylor [1986]. Bickel and Doksum [1981] discussed the consistency of
parameters via maximum likelihood estimation (MLE) and the asymptotic variance of these
estimate in the regression. The ordinary likelihood function may be poorly behaved when the
range of observations depends on unknown parameter or no local maximum found [Atkinson
and Pericchi, 1991].

Bickel and Doksum [1981] assumed that Y (λ) = h(Y, λ) can be defined as a monotone
increasing transformation of Y in terms of λ in specific interval. Then, h have partial derivation
in terms of Y

J(Y, λ) =

n∏
i=1

hY(Yi, λ), (1.9)

where the Jacobian shown the mapping the (Y1, ...,Yn) → (h(Y1, λ), ..., h(Yn, λ)) and the mean
of the transformed variable can be written as,

µi(β) =

p∑
j=1

xi jβ j, µ0
i = µi(β0). (1.10)

The likelihood function is

L(Y, β, σ, λ) =
1
σn

n∏
i=1

f

Y (λ)
i − µi(β)

σ

 J(λ,Y). (1.11)

The main differences between the model by Bickel and Doksum [1981] and Box and Cox
[1964] is the use of arbitrary f instead of the normal distribution.

Inference discussion regarding the regression parameter β and λ were presented in differ-
ent cases [Bickel and Doksum, 1981, Hinkley and Runger, 1984, Carroll and Ruppert, 1981].
Asymptotic calculations were presented such that the estimation of β is asymptotically more
variable compare to standard linear model approach, therefore the changes of variance could be
significant [Bickel and Doksum, 1981]. Carroll and Ruppert [1981] indicated that the inverse
transformation used in order to make efficient inferences in original scale domain. Bickel and
Doksum [1981] advocated that maximum likelihood estimates are sensitive to the distribution
assumption. As a result, they concluded that it would be crucial to make the normal assumption
of the response variable in linear model for inferences about regression coefficients.

The Box-Cox transformation assumes that the variable to be transformed is positive. Thus,
in terms of definition, the Box-Cox transformation is intended to induce a truncated normal
distribution. Poirier [1978] stated that it would be hard to determine whether the truncation
effect is negligible since it depends on the unknown parameters of the distribution including the
Box-Cox parameter λ. The Box-Cox transformation used in limited dependent variable (LDV)
models with skewness for variables which have likely been censored or truncated [Poirier,
1978]. The estimation approach is to maximize the likelihood function of the truncated normal
distribution.

Draper and Cox [1969] have shown that if a power transformation satisfy non-normality,
the transformation estimated would be approximately robust corresponding to a distribution
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nearly symmetrical distribution and it can be useful. Carroll [1980] suggested a new method
to obtain robust estimator rather than likelihood method. Furthermore, approximate normality
was investigated in theory and Monte-Carlo approach implemented in linear model.

Chen and Lockhart [1997] argued that the variances of parameter estimators increase based
on λ̂ and parameters are correlated. They derived the Fisher information matrix and its inverse
for a general model involving regression as the truncation part was ignored. It was suggested
that it can be considered the effect of truncation, but the analysis of likelihood function would
be controversial. The models mentioned for the transformed and untransformed Box-Cox dis-
tributions can be generalized by using exponential-family distribution as the error distribution.

Suppose Y (λ)
i are positive and independent variables with probability density function φ(.)

and cumulative distribution function Φ(.) of standard normal. Moreover, we define ξ = −(λ−1 +

µ)/σ as a truncation point and Y (λ)
i are the transformed variables. Let Ẏi

(λ) and Ÿi
(λ) be the first

and second derivatives of Y (λ)
i with respect to λ respectively. The log-likelihood function in

terms of the untransformed variable when truncation is negligible can be written,

log L(σ, µ, λ) = −n/2 logσ2 −
1

2σ2

n∑
i=1

(
y(λ)

i − µi

)2
+ (λ − 1)

n∑
i=1

log yi. (1.12)

In general, the Fisher information matrix for observation Yi by parameters θ = (σ, µ, β, λ)
obtained by,

1/n
n∑

i=1

σ2Ii =



2 0 0 −2a

0 1 0 −b

0 0 Q −C

−2a −b −CT d


(1.13)

where

a = 1/n
n∑

i=1

E

 (Y (λ)
i − µi)Ẏi

(λ)

σ

 , (1.14)

b = 1/n
n∑

i=1

E
(
Ẏi

(λ))
, (1.15)

C = 1/n
n∑

i=1

E[Ẏi
(λ)xi], (1.16)

d = 1/n
n∑

i=1

E
[
(Y (λ)

i − µi)Ÿi
(λ)

+ (Ẏi
(λ))2

]
, (1.17)

Q = 1/nXT X. (1.18)

The average information matrix is presented by a, b, C, Q which are dependent on a sample size
of n. We need to compute the inverse of Fisher information matrix to determine the asymptotic
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variance of MLE of θ. The inverse of the average information matrix is presented by,

Σ =

1/n n∑
i=1

Ii

−1

=



1
2

+
a2

f
ab
f

aCT Q−1

f
a
f

ab
f

1 +
b2

f
bCT Q−1

f
b
f

aQ−1C
f

bQ−1C
f

Q−1 +
Q−1CCT Q−1

f
Q−1C

f
a
f

b
f

CT Q−1

f
1
f


(1.19)

where d − 2a2 − b2 − CT Q−1C = f . It will be shown how to make inference about parameters
when λ is unknown. Under regularity conditions, we can show that the distribution of θ̂ can be
approximated by,

√
n(θ̂ − θ)/σ ∼ N(0,Σ). (1.20)

Assuming λ = λ0 is known, and let β̃ = β̂(λ0) is independent of σ̃ = σ̂(λ0). Therefore, it would
be straightforward to make inference about parameters and it is given by

√
n(β̃ − β)/σ ∼ N(0,Q−1), (n − p − 1)σ̃2 ∼ χ2

n−p−1, (1.21)

and so we have
(β̃ − β)T XT X(β̃ − β)

pσ̃2 ∼ Fp,n−p−1, (1.22)

where Fp,n−p−1 and χ2
n−p−1 are F-distribution and χ2 distribution respectively.

If we estimate λ from data, the variance of µ̂ and σ̂ can obtained from eqn. (1.19) and
(1.20). It presented that the variance of both parameters, µ̂ and σ̂, can be increased as a result
of λ estimation. There is the fact that using Fp,n−p−1 for the unconditional inference on β is not
appropriate.

To construct a conditional inference in terms of λ, it was discussed by Chen and Lockhart
[1997] in details. Here, denote parameter θ = (σ, µ) and let h =

√
n(λ̂ − λ)/σ. Hence, we can

compute the conditional distribution
√

n(θ̂−θ)/σ given h = h0 in eqn. (1.20). It can be written,
√

n(θ̂ − θ)/σ|h=h0 ∼ N(m0,Σ0), (1.23)

and we have,

m0 =

 a

Q−1C

 h0, (1.24)

and

Σ0 =

1/2 0

0 Q−1

 . (1.25)
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It seems that the covariance matrix for the conditional distribution is similar to the case λ
known. In other words, F-distribution Fp,n−p−1 can be used to make the conditional inferences
on β.

Chen et al. [2002] considered limits as δ → 0, likewise Bickel and Doksum [1981] also
used a limit when δ → 0 as n → ∞. They assumed that λ and β are fixed, however δ tends to
zero as σ → 0. Probability density function in Box-Cox model can be affected by parameters
as assuming fixed n. Chen et al. [2002] defined the two parameters such as θ and φ as follows

θ̂ = β̂/σ̂, φ̂ = δ(λ̂ − λ)/λ. (1.26)

Consequently, it was concentrated on the asymptotic expansions of φ̂ and θ̂ by considering a
limit and specific conditions. Draper and Cox [1969] and Taylor [1986] also mentioned to
employ small parameter δ for the same expansion.

In Chapter 2, our work would provide the parameter ξ which is related to parameter δ =

λσ/(1+λµ) indicated in Chen et al. [2002] and Bickel and Doksum [1981]. Bickel and Doksum
provided a pretty poor approximation in asymptotic calculations of β around 0, this issue was
criticized by several authors in application.

Yeo and Johnson [2000] assumed that transformed variables, Y (λ)(λ,Y1), ..., Y (λ)(λ,Yn) can
be considered as a normal distribution for some λ. Therefore, log-likelihood is given by,

log L(θ,Y) = −n/2 logσ2 −
1

2σ2

n∑
i=1

(
Y (λ)(λ, yi) − µ

)2
+ (λ − 1)

n∑
i=1

sgn(yi) log(|yi| + 1), (1.27)

where θ = (σ, µ, λ) and Y (λ)(λ, yi) normally distributed with µ and σ2. Maximizing L(θ,Y) in
terms of fixed λ, we have,

µ̂(λ) = 1/n
n∑

i=1

Y (λ)(λ, yi), σ̂2(λ) = 1/n
n∑

i=1

(
Y (λ)(λ, yi) − µ̂(λ)

)2
. (1.28)

Later, λ̂ is computed by maximizing profile log-likelihood function and so we obtain θ̂ =

(σ̂2(λ̂), µ̂(λ̂), λ̂).
McLeod [2009] discussed the best symmetrizing transformation for four different distri-

butions in Mathematica demonstration. The probability density function for the transformed
random variable computed where λ on [-2,2] and random variable with support on (0, ∞) in
original domain. The specific value of λ was shown for each of the distribution that removes
the skewness of transformed random variable for all the distribution used [McLeod, 2009]. In
general, the value of λ may depend on the shape parameter in order to make symmetric distri-
bution. McLeod [2009] stated that it would be possible to not find a symmetrizing transforma-
tion for some distributions including bimodal distribution. Box-Cox power transformations are
presented to use normal curve theory for non normal distribution of random variable [Griffith,
2013].

1.3 Transformations and Unbounded Likelihood Problem
Atkinson and Pericchi [1991] discussed that ordinary maximum likelihood method behaves
poorly for the random variable depending on an unknown parameter. Grouped likelihood ap-
proach was suggested by Atkinson and Pericchi [1991] for the shifted power transformation
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[Box and Cox, 1964] to handle non-regular problems. It is assumed non-regular problem in
the case that the distribution domain depends on the unknown shifted parameter. In theory, the
maximum likelihood can not satisfy the regularity conditions if the range of the observations
is defined by an unknown parameter. It is significant to denote the likelihood function as pro-
portional of the probability functions. Montoya et al. [2009] criticized the strange behavior of
profile likelihood functions which is derived by an unbounded density likelihood.

Cheng and Traylor [1995] expressed four types of non-regular problems in some situations
and pointed out the unbounded likelihood as one of the special cases. Li et al. [2009] proposed
EM algorithm for non-finite Fisher information if regularity conditions are failed to fulfill. In
fact, unbounded behavior would lead to the problems in convergency and nonsense results for
MLE. Liu et al. [2015] provided the “correct likelihood” to address the problem of unbounded
likelihood by using small intervals.
Assuming a linear model for transformed values Y(λ1, λ2) as follows,

Y(λ1, λ2) = Xβ + ε. (1.29)

Let y−i (λ1, λ2) and y+
i (λ1, λ2) define transformation as yi + ∆ and yi − ∆ used in eqn. (1.4). So,

the contribution of yi in likelihood given by,

pi =
Φ(w+

i ) − (w−i )
1 − Φ(−xiβ/σ)

, (1.30)

where w±i = (Y±(λ1, λ2) − xiβ)/σ and Φ is standard normal distribution.
Grouped log-likelihood can be written as,

log L(λ1, λ2, β, σ) =

n∑
i=1

log pi − n log(2∆). (1.31)

The correct likelihood was proposed by Liu et al. [2015] as a preliminary approach is given by,

L(θ) =

n∏
i=1

Li(θ; ti) =

n∏
i=1

1
∆i

[F(ti + ∆i; θ) − F(ti − ∆i; θ)] , (1.32)

where θ is parameter and ∆ defined as the round-off error. The round-off error would present
the estimated error in calculation by using rounding.

The sensitivity analysis of ∆ values was investigated by Atkinson and Pericchi [1991] and
Liu et al. [2015]. It was argued about the effect of the round-off error on estimation of param-
eters precisely. Liu et al. [2015] also mentioned that the correct likelihood may not resolve
unboundness of likelihood function in the case of multiple maximum or its flatness.
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1.4 Non-Parametric Methods
Duan [1983] discussed the smearing estimate to predict the conditional mean of linear model
after transformation. This model is non-parametric method used for expected response on the
original domain. We have the estimation by the smearing estimate,

Ê(Y0) =

∫
h(x0β̂ + ε)dF̂n(ε) =

1
n

n∑
t=1

h(x0β̂ + ε̂), (1.33)

and, if the distribution of error F is not known, we estimate F function by empirical estimate
as follows,

F̂n(e) =
1
n

n∑
t=1

I(ε̂i ≤ e), (1.34)

where ε̂i = Y (λ)
i − xiβ̂ is the least squares residual and I(.) is defined as an indicator function.

We assume that g and h are monotone and continuous differentiable functions. Hence, it is
defined by,

Y (λ)
i = g(Yi), Yi = h(Y (λ)

i ).

Consistency and efficiency of estimate were investigated by Duan [1983] and then compared
with a parametric method in regression model. Taylor [1986] also compared the conditional
mean by smearing estimate and Taylor expansion in linear model. Gibbs Sampling can com-
pute any desired expectation from posterior distribution. This approach is one of MCMC tech-
nique. It was argued by Taylor [1986] that the bias of the small-θ approximation method could
be reduced by using the higher order of expansion for the conditional mean, while the smearing
estimator would tend to decrease variation of variance.

Breiman and Friedman [1985] provided non-parametric method to find optimal transfor-
mation in multiple regression and stationary time series. The aim of this approach is the same
as the Box-Cox transformation method. Alternating conditional expectation (ACE) algorithm
was applied to different dataset for comparison. Let X1, ..., Xp be mean zero stationary time se-
ries and θ, φ1, ..., φp are real valued function. Thus, the optimal transformations are computed
by minimizing the following function,

e2 =

E
[
θ(Xp+1) −

p∑
i=1
φi(Xi)

]2

E[θ2(Xp+1)]
. (1.35)

The procedure was initially implemented by Breiman and Friedman [1985] for simulated data
when optimal transformations are given, and then it was applied to the Boston housing data of
Harrison and Rubinfeld [1978].

A non-parametric estimation method was suggested by Han [1987] for the transformed
model using Kendall’s rank correlation, and it was discussed to be more consistent and effi-
cient than the maximum likelihood estimator. A simple semi-parametric estimation method
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is introduced by Foster et al. [2001] for the Box-Cox transformation without assuming normal
distribution of the error term . It was illustrated by numerical simulation for the specific dataset,
and also it was derived that estimators are consistent and asymptotically normal [Foster et al.,
2001].

1.5 Box-Cox Transformations and Time Series
Maximum likelihood method applied to estimate the Box-Cox transformation parameter λ and
confidence interval for λ in Box-Cox transformed family in AR model as follows,

z(λ)
t =

(zλt − 1)/λ, if λ , 0,
log(zt), if λ = 0.

(1.36)

for time series data zt, t = 1, ..., n. Hipel and McLeod [1994] discussed this method for seasonal
and non-seasonal ARIMA model to obtain the z(λ)

t series. Finally, the back-transformed time
series would be directly calculated from the ARMA or ARIMA model in the original data
domain. Let log-likelihood function for an assumed value λ in AR(p) model be defined by,

log L(φ, λ) = −
n
2

log(S (φ)/n) −
1
2

log(gn) + (1 − λ)
n∑

t=1

log(zt), (1.37)

and then maximizing over φ leads to L(λ) for λ. Using optimize function to maximize L(λ)
function numerically which λ̂ obtained. The relative likelihood function plot, R(λ) = L(λ)/L(λ̂),
illustrated a 95% confidence interval for λ. Box et al. [2008] discussed that the use of the Box-
Cox transformation may improve the accuracy of the forecasts. Later, the Box-Cox transfor-
mation considered by Proietti and Riani [2009] for positive time series and multivariate time
series. By using numerical and Monte Carlo integration, two conditional moments of season-
ally adjusted time series were computed [Proietti and Riani, 2009]. Proietti and Riani [2009]
developed a Taylor series expansion to determine the inverse transformation.
The optimal forecast for the seasonally adjusted series can be written as,

ẑt = E(zt|Ft) =

∫ +∞

−∞

(λz(λ)
t + 1)1/λ f (z(λ)

t |Ft)dz(λ)
t , (1.38)

and, the conditional variance of the forecast error is presented by,

Var(zt|Ft) =

∫ +∞

−∞

(zt − ẑt)2 f (z(λ)
t |Ft)dz(λ)

t . (1.39)

The naive forecasts can be simply obtained by,
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ẑt =

(1 + λẑ(λ)
t )1/λ, if λ , 0,

exp(ẑ(λ)
t ), if λ = 0.

(1.40)

Granger and Newbold [1976] employed the Hermit polynomial expansion to compare the au-
tocorrelation of data in the original data domain and transformed data domain. This method
can be used by considering the Gaussian assumption of transformed time series. Consequently,
they expressed that the original series is always less forecastable compare to the transformed
series. Forecastability can be presented by [Granger and Newbold, 1976],

R2
h,zt

< R2
h,z(λ)

t
, (1.41)

where h is a lead time. Further, the autocorrelation of the transformed stationary Guassian time
series can be defined as corr(z(λ)

t , z(λ)
t−k) = ρz(λ)

t
(k). It was shown that,

|ρzt(k)| < |ρz(λ)
t

(k)|. (1.42)

Furthermore, Granger and Newbold [1976] investigated loss function in the case of mean
square error and mean absolute error. It needs to develop a numerical method for obtaining
the optimal forecast for any specified loss function. The fact that the expected value of the
inverse Box-Cox transformed can be considered as the minimum mean square error (MMSE)
prediction, and the variance of the inverse transformed is its mean square error (MSE). Granger
and Newbold [1976] discussed how their method can be extended to the homogenous non-
stationary time series models which correspond to spatial models with the intrinsic stationary
assumption.

1.6 Illustrative Application

It has been a problem to predict the sunspot numbers time series for several researchers and
different forecasting methods have carried out in order to obtain the optimal forecast. In this
section, the main goal is to explore the effect of two power transformations on the fitting model
and forecasting.

To illustrate the discrepancy between the Yeo-Johnson transformation and the Box-Cox
transformation, sunspot time series dataset would be considered. Firstly, we apply both trans-
formations discussed on monthly sunspot numbers from 1749 to 1983 and also yearly average
sunspot numbers from 1700 to 1988 to obtain the optimal transformation. These two time
series investigated in this study both include zero values, even though Box and Cox [1964]
defined the Box-Cox transformations only for positive random variables.
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Figure 1.1: Time series plot of sunspots numbers.

0 50 100 150 200 250

0
.0

0
0

0
.0

0
6

0
.0

1
2

P
D

F

Figure 1.2: The probability density function using Gaussian kernel of sunspots.
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Figure 1.3: Yeo-Johnson transformations was used.
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Figure 1.4: Box-Cox transformations was used.

There is no restriction on the transformation defined by Yeo and Johnson [2000]. This
transformation like the Box-Cox transformation is invertiable, and also the inverse transformed
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variables can be derived. There is the fact that the Yeo-Johnson transformation can cover
all range of (−∞,∞), hence it maybe provide more exact analysis compared to the Box-Cox
transformation.

Therefore, we apply relative likelihood function to determine the optimal transformation,
λ̂. From Figure 1.3 and 1.4, we can conclude that λ̂ based on the Yeo-Johnson transformation
is slightly smaller compared to the Box-Cox transformation for monthly sunspots time series.
Furthermore, the Yoe-Johnson transformation produces slightly wider confidence interval for
λ when Y > 0, and also λ̂ = 0.419 is not included in the confidence interval of the Box-Cox
method. To produce Figure 1.3 and 1.4, additive shift used in both transformation. The 95%
confidence interval for λ can be obtained by log L(λ̂) − log L(λ) < 1/2χ2

1,(1−α).

The boxplot shown below reveals that the Yeo-Johnson transformed data is more variable,
but there is still some evidence of left skewness. The skewnesses are -0.14 and -0.20 for the
Box-Cox and Yeo-Johnson transformed data respectively.

Figure 1.6 illustrates the normal probability of the residuals. The Box-Ljung portmanteau
diagnostic plots produced for the Yeo-Johnson and Box-Cox transformed time series are shown
in Figures 1.7 and 1.8. These diagnostic plots confirm that the AR(9) is a reasonable model
for the both of the transformed data. From Figure 1.6, after transformation of the original time
series, we can have an error distribution which behaves normal.
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Figure 1.5: Comparison of the Yeo-Johnson transformed and Box-Cox transformed of sunspots
data set.
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Figure 1.6: Normal probability plot of the standardized prediction residuals of the fitted AR(9)
model to original time series and Yeo-Johnson transformed time series with λ = 0.318.
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Figure 1.7: Diagnostic plots produced for AR(9) model fit to the Yeo-Johnson transformation
of yearly sunspot series.
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Figure 1.8: Diagnostic plots produced for AR(9) model fit to the Box-Cox transformation of
yearly sunspot series.

BoxCox(sunspot.year) YeoJohnson(sunspot.year)

Model AIC Portmanteau Diagnostic AIC Portmanteau Diagnostic

AR(2) 346.8 fail 120.6 fail
AR(9) 288.2 satisfactory 59.3 satisfactory
ARMA(2,1) 1168.62 borderline 942 borderline

Table 1.1: Models fit to transformed yearly sunspot numbers time series.

Several models were evaluated to obtain the long-term prediction of the transformed sunspot
numbers, and also their performance is summarized in Table 1.1. Now, we test the performance
of the Box-Cox and Yeo-Johnson transformation on forecasts of the time series when it was
fitted to AR(9) model. In Table 1.2, we compare the forecasts at origin time n = 289 for lead
times l = 1, 2, 3 for the AR(9) model. In addition, the standard deviations of the forecasts were
computed and its values are significantly higher for approximate Box-Cox transformation. The
differences between the forecasts from the Box-Cox and Yeo-Johnson transformations are sub-
stantial in the transformed scale.
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BoxCox(sunspot.year) YeoJohnson(sunspot.year)

Lead Forecast Standard deviation of forecast Forecast Standard deviation of forecast

1 17.271 1.583 12.419 1.065
2 17.877 2.483 12.728 1.662
3 17.129 2.925 12.283 1.948

Table 1.2: Forecasts and their standard deviations for fitted AR(9) model to transformed
sunspot.year time series in terms of the Box-Cox and Yeo-Johnson transformations.

1.7 Maximum Likelihood Estimation
Fisher [1922] introduced the maximum-likelihood estimation technique following by Wald
[1949] that discussed the asymptotic properties of MLE. The idea of modified likelihood
method developed when the complete likelihood is difficult or impossible to calculate. Cox
[1975] proposed the partial likelihood in the case it is more simpler than complete likelihood
and also it only contains parameter interest rather than nuisance parameters. Conditional and
marginal Likelihood methods are proposed to deal with some multiparameter problems. Sta-
tistical inferences about the parameters of interest can be determined by eliminating nuisance
parameters from likelihood function [Kalbfleisch and Sprott, 1970].

Assume X1, ..., Xn be a random variables from a population whose density depends on the
parameters θ and δ where are called a structural and incidental parameters respectively. To
obtained the estimate of θ, conditional distribution was considered given minimal sufficient
statistics for δ. Define Ti = T (xi) be the minimal sufficient statistic for δi and also probability
distributions of Ti be called g(ti|θ, δ). Thus, conditional distribution of X1, X2,..., Xn given
T1 = t1,..., Tn = tn can be written [Andersen, 1970] as,

φ(x1, ..., xn|θ, t1, ..., tn) =

∞∏
i=1

φ(xi|θ, ti) =

∞∏
i=1

f (Xi|θ, δi)/g(ti|θ, δ), (1.43)

where Ti is sufficient statistics for δ due to independency of δ. The asymptotic normality of the
conditional maximum-likelihood estimation under assumptions defined as follows.

Theorem 1.7.1 The first and second derivatives of log f (xi, θ, t) with respect to θ exist for all
θ in an open interval Θ , and for all δ is given by,

E
(
∂ log φ(xi|θ,T )/∂θ

)
= 0, (1.44)

and E
[
∂2 log φ(xi|θ,T )/∂θ2

]
> 0 and be continuous function of δ.

Assuming that the model is correct, the likelihood principle, the likelihood function con-
tains all the information needed for statistical inference on the parameters. Kalbfleisch and
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Sprott [1970, 1973] described how conditional likelihoods may be useful in eliminating nui-
sance parameters when the likelihood can be factored into two parts. There are two aspects to
consider here would not be straightforward to express mathematically. First, variables X should
include the all information required for the parameters of interest. Further, the distribution of
X is dependent on nuisance parameters. Secondly, nuisance parameters should not appear in
the partial likelihood.

1.8 EM Algorithm
Statistical inference was mostly determined by MLE method as a result of its asymptotic nor-
mality and efficiency properties. We propose EM algorithm which is more flexible and reliable
to estimate parameters for truncated data. The EM algorithm is preferable over the numerical
optimization because at each iteration the likelihood function increases and also the rate of
convergency implies to stationary point. The EM process can be employed to determine the
maximum likelihood estimate for censored and truncated data which come from exponential
family [Dempster et al., 1977]. Lee and Scott [2012] illustrated the EM algorithm to fit mul-
tivariate Gaussian mixture models on truncated and censored data. In general, if L(θ|y) has
several stationary points, the convergency of EM sequence to local or global maximizers and
saddle points depends on the choice of initial point θ0 [Wu, 1983]. Cauchy distribution can be
considered as a non-regular case which its likelihood function with respect to location param-
eter can be multimodal. Simulated annealing technique is performed to reach a global MLE
with high probability for this special situations [Robert and Casella, 2004]. Furthermore, ge-
netic optimization or Monte-Carlo Markov Chain (MCMC) would be applicable for this type
of problem.

The EM procedure is very popular for computing maximum likelihood estimates from in-
complete data, despite that fact that numerical optimization may be converged slowly. In the
case where the likelihood function satisfies regularity conditions and L(θ|y) is unimodal unde-
fined domain, the EM process convergences to unique MLE [McLachlan and Krishnan, 2007].
Dempster et al. [1977] suggested an algorithm to compute iteratively maximum likelihood es-
timates for incomplete data including censored and truncated data. The EM approach contains
two steps which each iteration of the expectation step (E-step) followed by the maximization
step (M-step).
Suppose that observed data Yi, i = 1, ..., n have probability density function g(y|θ). Then we
can write,

g(y|θ) =

∫
Z

f (y, z|θ)dz, (1.45)

and our main purpose is that the parameter can be obtained by,

θ̂ = argmax L(θ|y) = argmax g(y|θ). (1.46)

The log-likelihood for observed data, Y , is given by,
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log L(θ|y) = log(g(y|θ)). (1.47)

We assume that (Y,Z) as complete data have PDF f (y, z, θ) and log-likelihood of complete data
can be written,

log Lc(θ|z, y) = log( f (y, z|θ)). (1.48)

The conditional density of incomplete data Z given observed data Y and θ then becomes,

k(z|y, θ) =
f (y, z|θ)
g(y|θ)

. (1.49)

So that, by taking logs

log g(y|θ) = log f (y, z|θ) − log k(z|y, θ). (1.50)

We can define for given θ0,

Eθ0 log L(θ|y) = Eθ0[log Lc(θ|z, y)] − Eθ0[log k(z|y, θ)], (1.51)

where the expectation define in terms of distribution k(z|y, θ0). We only consider the first term
on the right side of eqn. (1.51) to achieve a maximizing log L(θ|y). By assuming the interchange
expectation with respect to Z and differentiation in terms of θ0, let us have

∂θ0 Eθ0[log k(z|y, θ)] = Eθ0∂θ0[log k(z|y, θ)] = 0. (1.52)

We consider the theory that the expectation of score function become zero [Casella and Berger,
2002]. We can conclude that ∂θ0 Eθ0[log k(z|y, θ)] is not depend on parameter θ, and then we can
maximize Eθ0[log Lc(θ|z, y)].

We aim to maximize Q(θ|θ0, y). Let us define,

Q(θ|θ0, y) = Eθ0[log Lc(θ|z, y)]. (1.53)

The iterative process begin with a given initial value θ0 and let θ j denote the value of θ after j
cycles. The next cycle can be processed in two steps as follows,

1. E-step: compute the expected log-likelihood function of complete data,

Q(θ|θ̂ j, y) = Eθ̂ j
[log Lc(θ|z, y)]. (1.54)

2. M-step: determine the parameter θ j+1 that maximize likelihood,

θ̂ j+1 = argmax
θ

Q(θ|θ̂ j, y). (1.55)
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1.8.1 General Properties of EM Algorithm
The EM process can be applied when data come from exponential family and then it is solv-
able under the convexity property of log-likelihood including JensenâĂŹs inequality and the
Kullback-Liebler discrepancy. We would present these concepts more in details and then use
them in the derivation of the EM algorithm.

Theorem 1.8.1 Define f : X → R be a convex function if ∀x1, x2 ∈ X, and ∀t ∈ [0, 1] we have,

f
(
tx1 + (1 − t)x2

)
≤ t f (x1) + (1 − t) f (x2), (1.56)

so, it is called strictly convex if equality holds for t = 0 or t = 1.

Theorem 1.8.2 Let p1, ..., pn be Pr(Xi = x) = pi and f is a real continuous function which is
convex. Then Jensen’s inequality given by,

f
( n∑

i=1

pixi
)
≤

n∑
i=1

pi f (xi). (1.57)

In general, we assume x as a random variable and f as any convex function where E denoted
expectation. Hence, it follows from Jensen’s inequality,

f
(
E(x)

)
≤ E

(
f (x)

)
. (1.58)

Theorem 1.8.3 Jensen’s inequality is used to create the non-negativity of the Kullbach-Liebler
discrepancy. Denote f(x) and g(x) be two probability density functions on R, the Kullbach-
Liebler discrepancy is given by,

K(g, f ) =

∫
log

f (x)
g(x)

f (x)dx = E f log
f (x)
g(x)

. (1.59)

Proof

K(g, f ) =

∫
log

( f (x)
g(x)

)
f (x)dx = −

∫
log

(g(x)
f (x)

)
f (x)dx ≥ − log

∫ (g(x)
f (x)

)
f (x)dx = 0 (1.60)

We apply all theorem defined to show that likelihood increases at each step of EM algorithm.
Using the sequences of θ̂ j, j = 0, 1, 2, ... given by the EM algorithm satisfy,

log L(θ̂ j+1|y) ≥ log L(θ̂ j|y). (1.61)
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Equality yields in eqn. (1.61) if and only if,

Q(θ̂ j+1|θ̂ j, y) = Q(θ̂ j|θ̂ j, y), (1.62)

Proof By using eqn. (1.51), it can be written as,

log L(θ|y) = Q(θ|θ̂ j, y) − Eθ j log k(z|y, θ j). (1.63)

Hence we have,

log L(θ̂ j+1|y) = Q(θ̂ j+1|θ̂ j, y) − Eθ j log k(z|y, θ j+1), (1.64)

and

log L(θ̂ j|y) = Q(θ̂ j|θ̂ j, y) − Eθ j log k(z|y, θ j). (1.65)

Therefore, it was gained

log L(θ̂ j+1|y) − log L(θ̂ j|y) = Q(θ̂ j+1|θ̂ j, y) − Q(θ̂ j|θ̂ j, y) − Eθ j log k(z|y, θ j+1) + Eθ j log k(z|y, θ j).
(1.66)

We present that by using Q(θ̂ j+1|θ̂ j, y) − Q(θ̂ j|θ̂ j, y) ≥ 0, eqn. (1.61) holds if we have,

Eθ j log k(z|y, θ j+1) ≤ Eθ j log k(z|y, θ j). (1.67)

This can be written as,

Eθ j log
k(z|y, θ j+1)
k(z|y, θ j)

≥ 0. (1.68)

It follows from Jensen’s inequality and Kullback-Liebler discrepancy definition.
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1.9 Appendix. Information Matrix
Under regularity conditions, the MLE of θ̂ is a consistent estimator of θ and also the asymptotic
distribution of

√
n(θ̂− θ) is N(0,Σ) where Σ can be consistently estimated by Σ̂ = −

[
∂2L/∂θ∂θ́

]
assessed at θ = θ̂ [Cox and Hinkley, 1979]. Therefore, the information matrix is appropriate
approach to estimate the approximate standard errors of the MLE estimates. For comparison
with the truncated case, we first provide the result for random sampling from a complete normal
distribution. It would be simpler to consider σ rather than σ2 in finding the information matrix
. In the normal IID case with complete data for a random sample of size n from a normal
population with mean µ and varianceσ2, the Fisher information matrix for (µ, σ) can be defined
by,

I(µ, σ) =


n
σ2 0

0
2n
σ2

 . (1.69)

In this part, we calculated expected information matrix in the more general case with consid-
ering the truncation effect. Hence, denote

n∑
i=1

Ii(σ, µ, β, λ) =



i11 i12 i13 i14

i21 i22 i23 i24

i31 i32 i33 i34

i41 i42 i43 i44


. (1.70)

The log-likelihood, l(µ, σ, λ), can be written as follows,

log L(µ, σ, λ) =

n∑
i=1

log

φ Y (λ)
i − µi

σ

 + (λ − 1)
n∑

i=1

log (Yi) − n log(1 − Φ(ξ)). (1.71)

Taking the first derivatives,

∂l
∂µ

=

n∑
i=1

(Y (λ)
i − µi)/σ2 − n(1/σ)

φ(ξ)
1 − Φ(ξ)

, (1.72)

where Ψ(ξ) = φ(ξ)/1 − Φ(ξ) and ξ = (T − µi)/σ.
From eqn. (1.72), we can derive i22,
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∂2l
∂µ2 = −

n
σ2 − (

n
σ

)
(
∂φµ(ξ)(1 − Φ(ξ)) − (1 − ∂Φµ(ξ))φ(ξ)

(1 − Φ(ξ))2

)

= −
n
σ2 − (

n
σ2 )

(
ξφ(ξ)(1 − Φ(ξ)) − φ2(ξ)

(1 − Φ(ξ))2

)

= −nσ−2 − nσ−2
[
ξΨ(ξ) − Ψ2(ξ)

]
.

(1.73)

So, we have

i22 = −E
[
∂2l
∂µ2

]
= nσ−2

(
1 + ξE[Ψ(ξ)] − E[Ψ2(ξ)]

)
, (1.74)

and also, we can derive i13 from eqn. (1.72)

∂2l
∂µ∂λ

=
1
σ2

n∑
i=1

Ẏi
(λ)
. (1.75)

Then, we obtain

i24 = −E
[
∂2l
∂µ∂λ

]
= −

1
σ2

n∑
i=1

E[Ẏi
(λ)]. (1.76)

To obtain the first derivative with respect to λ,

∂l
∂λ

= −
1
σ2

n∑
i=1

(
Y (λ)

i − µi

)
Ẏi

(λ)
+

n∑
i=1

log Yi. (1.77)

Next, differentiating with respect to λ

∂2l
∂λ∂λ

=
1
σ2

n∑
i=1

[
Ÿi

(λ)(Y (λ)
i − µi) + (Ẏi

(λ))2
]
. (1.78)

Hence, we derive i33

i44 = −E
[
∂2l
∂λ∂λ

]
= −

1
σ2

n∑
i=1

E
[
Ÿi

(λ)(Y (λ)
i − µi) + Ẏi

(λ)]
. (1.79)
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Taking the second partial derivative with respect to σ from eqn. (1.72),

∂2l
∂µ∂σ

== −2σ−3
n∑

i=1

(Y (λ)
i − µi) + nσ−2

[
Ψ(ξ) + ξ(ξΨ(ξ) + Ψ2(ξ))

]
, (1.80)

so, we have

i21 = −E
[
∂2l
∂µ∂σ

]
= −nσ−2

[
E[Ψ(ξ)] + ξ(ξE[Ψ(ξ)] + E[Ψ2(ξ)])

]
. (1.81)

To derive i11, we obtain the second partial derivative with respect to σ,

∂2l
∂σ∂σ

= nσ−2 − 3σ−4
n∑

i=1

(Y (λ)
i − µi)2 − nσ−2ξ

[
−2Ψ(ξ) + ξ(ξΨ(ξ) − Ψ2(ξ))

]
. (1.82)

Thus, it given by

i11 = −E
[
∂2l
∂σ∂σ

]
= 2nσ−2 + nσ−2ξ

[
−2E[Ψ(ξ)] + ξ(ξE[Ψ(ξ)] − E[Ψ2(ξ)])

]
. (1.83)

From eqn. (1.77), we can obtain

∂2l
∂λ∂σ

= 2σ−3
n∑

i=1

Ẏi
(λ)(Y (λ)

i − µi). (1.84)

Then, we have

i14 = −E
[
∂2l
∂λ∂σ

]
= −2σ−2

n∑
i=1

E[Ẏi
(λ)(Y (λ)

i − µi)/σ], (1.85)

and

i34 = −E
[
∂2l
∂λ∂β

]
= −σ−2

n∑
i=1

E[Ẏi
(λ)xi], (1.86)

and
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i33 = −E
[
∂2l
∂β∂β

]
= σ−2

n∑
i=1

E[XXT ]. (1.87)

The average Fisher information matrix I = σ2/n
(∑n

i=1 Ii(σ, µ, β, λ)
)

can be written by,

1
n

n∑
i=1

σ2Ii =



2 + ξw[−2 + ξ2 − ξw] −w[1 + ξ2 + ξw] 0 −2a

−w[1 + ξ2 + ξw] 1 + w(ξ − w) 0 −b

0 0 Q −C

−2a −b −CT d


(1.88)

where
w = E[Ψ(ξ)], (1.89)

a = 1/n
n∑

i=1

E

 Ẏi
(λ)(Y (λ)

i − µi)
σ

 , (1.90)

b = 1/n
n∑

i=1

E
[
Ẏi

(λ)]
, (1.91)

C = 1/n
n∑

i=1

E
[
Ẏi

(λ)xi

]
, (1.92)

d = 1/n
n∑

i=1

E
[
(Y (λ)

i − µi)Ÿi
(λ)

+ (Ẏi
(λ))2

]
, (1.93)

Q = 1/nXT X, (1.94)

where Ψ(.) = φ(.)/(1 − Φ(.)) as λ > 0. In addition, Y (λ)
i assumed as the Box-Cox transformed

variables where Ẏi
(λ) and Ÿi

(λ) are the first and second derivatives of Y (λ)
i . Therefore, the Fisher

information for the exact Box-Cox likelihood can be defined using eqn. (1.88). By obtaining
the Fisher information and its inverse, it can be noticed that the variance of the parameter
estimators are dependent on Ψ(ξ) when λ > 0. In other words, the first-order and second-order
derivatives of log-likelihood in eqn. (1.71) associated with computing repeatedly these two
fractions as follows. For λ > 0,

Ψ(ξ) = φ(ξ)/1 − Φ(ξ), (1.95)

and for λ < 0,
Ψ(ξ) = φ(ξ)/Φ(ξ), (1.96)

where these fractions are the inverse Mills ratio, and also eqn. (1.95) denoted as hazard rate.
Johnson and Kotz [1970] suggested the procedure to determine approximation for the Mills
ratio.
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Exact Box-Cox Analysis

We will be working with various normal distributions so we introduce some convenient no-
tations. Let φ(z, µ, σ) and Φ(z, µ, σ) denote the probability density function (PDF) and the
cumulative density function (CDF) of a normal distribution with mean µ and standard devi-
ation σ and let φ(z) = φ(z, 0, 1) and Φ(z) = Φ(z, 0, 1). The left and right truncated normal
distribution functions with truncation point T are denoted respectively by φ(T,∞)(z, µ, σ) and
Φ(−∞,T )(z, µ, σ).

2.1 Introduction

Box and Cox [1964] introduced the idea for selecting a suitable power transformation by con-
sidering the transformation as part of an enlarged model and showing how the transformation
may be estimated by maximum likelihood (MLE). The Box-Cox transformation for random
variable Y is defined for Y > 0 by

Z = Y (λ) =


(
Yλ − 1

)
/λ, λ , 0,

log(Y), λ = 0.
(2.1)

With this definition the transformation is a continuous function of λ so the Jacobian of the
transformation Y → Z is a continuous and one-to-one.

Let Y be a positive random variable with probability density function (PDF) fY(y). Then
the PDF for Z = Y (λ) may be written,

fZ(z) =

 fY((1 + zλ)1/λ)(1 + zλ)1/λ−1, λ , 0, λz + 1 > 0,
ez fY(ez), λ = 0.

(2.2)

The transformation is used to improve the accuracy of the assumption of the normal distri-
bution when the data exhibit skewness and other related non-normal features such outliers and
monotone variance change. Often the transformation also improves the additivity assumption
when used with the normal linear model. Figure 2.1 shows how the Weibull distribution can
be made approximately normal with a suitable choice of λ, viz. λ = 0.416.

27
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Figure 2.1: Weibull Distribution and a Box-Cox normal approximation.

The inverse or back-transform, Z −→ Y of the Box-Cox transformation may be written,

Y =

(λZ + 1)1/λ, λ , 0,
exp(Z), λ = 0.

(2.3)

Box-Cox analysis [Box and Cox, 1964] proceeds by assuming the conditional distribution
of the transformed variable Y (λ) is normally distributed. eqn. (2.3) requires λY (λ) + 1 > 0 when
λ , 0. Hence we may conclude that Y (λ) has a truncated normal distribution. In the literature
this truncation has been entirely ignored or assumed that it’s effect is negligible.

In this thesis we will demonstrate that this truncation may have an important effect.

2.1.1 The Box-Cox Distributions
In order to develop an exact treatment of Box-Cox analysis, we start by assuming the following
data generation model (DGM). The DGM assumes there is a latent distribution in a sense
similar to statistical models for censoring or missing values. In this case the latent distribution
is a normal distribution that we refer to as the Box-Cox Normal Distribution. This distribution
generates Z and then the observed data is generated by the inverse Box-Cox transformation,
eqn. (2.3), Z → Y . The distribution of Y is referred to as the Box-Cox Data Distribution. It is
a non-normal positive valued distribution which is implicitly defined by the distribution of Z.

2.1.2 Box-Cox Normal Distribution
The PDF for Z is proportional to the normal density φ(Z, µ, σ) and the constant of proportion-
ality is determined so the density integrates to 1 over the

(
−λ−1,∞

)
. Hence the density function

for Z when λ > 0,

φ(−λ−1,∞)(z, µ, σ) =
φ(z, µ, σ)
1 − Φ(ξ)

. (2.4)

where ξ = −
(
λ−1 + µ

)/
σ.

Similarly, when λ < 0,

φ(−∞,−λ−1)(z, µ, σ) =
φ(z, µ, σ)

Φ(ξ)
. (2.5)
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For the general case the Box-Cox Normal Distribution is, φ(z, µ, σ, λ), by

φ(z, µ, σ, λ) =


φ(−λ−1,∞)(z, µ, σ), λ > 0,

φ(z, µ, σ), λ = 0,
φ(−∞,−λ−1)(z, µ, σ), λ < 0.

(2.6)

Standard Box-Cox analysis [Box and Cox, 1964] assumes the transformed data Z = Y (λ)

is normally distributed φ(z, µ, σ) and we will refer to this distribution as the Box-Cox nor-
mal approximation. The right panel in Figure 2.2 compares the exact and Box-Cox normal
approximation when λ = 1, µ = 0 and σ = 1.
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and Latent Normal Distribution ϕ(z)

Figure 2.2: Box-Cox Distributions with parameters λ = 1, µ = 0 and σ = 1. The exact
Box-Cox normal distribution is a truncated normal distribution and its normal approximation
distribution. The corresponding Box-Cox data distribution defined by the inverse Box-Cox
transformation always has support on (0,∞).

2.1.3 Kullback-Leibler Divergence
Box-Cox analysis [Box and Cox, 1964] ignores the effect of truncation and so assumes the
distribution is normal, φ(z, µ, σ),−∞ < z < ∞. The Kullback-Leibler (KL) divergence may be
used to quantify the difference in terms of entropy between the approximate distribution and
the exact true truncated distribution.

The KL divergence of the normal approximate distribution from the exact truncated normal
distribution when λ > 0 is given by

K =

∫ ∞

−λ−1

(
log

φ(z, µ, σ)/(1 − Φ(ξ))
φ(z, µ, σ)

)
φ(z, µ, σ)
1 − Φ(ξ)

dz

= −
log(1 − Φ(ξ))

1 − Φ(ξ)

∫ ∞

−λ−1
φ(z, µ, σ)dz

= − log(1 − Φ(ξ)),

(2.7)
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where

ξ = −
λ−1 + µ

σ
. (2.8)

And similarly when λ < 0, K = − log Φ(ξ). When λ > 0, large −ξ corresponds to K � 0
whereas for λ < 0, large values of ξ correspond K � 0.

Let κ be the probability that the back-transform using the Box-Cox normal approximation
is valid, that is, λZ + 1 > 0. Then we have,

κ =


1 − Φ(ξ), λ > 0,
1, λ = 0,
Φ(ξ), λ < 0.

(2.9)

Hence for the KL divergence K, we have κ = −eK .
In Figure 2.2, 1 − κ = Φ(−1) � 16%. This means that if the Box-Cox normal approxi-

mation was used to simulate data, it would fail about 16% of the time. In a simple situation
involving only independent identical distributions, simply rejecting the invalid data would be
an expedient solution but if 1 − κ was close larger even this approach might not be feasible in
more complicated models such as in regression and time series.

The exact Box-Cox Normal Distribution may also be written

φ(z, µ, σ, λ) = κ−1φ(z, µ, σ), z ∈ Rλ, (2.10)

where Rλ defines the feasible region for λ in the transformed domain,

Rλ =


z ∈ (−λ−1,∞), λ > 0,
z ∈ (−∞,∞), λ = 0,
z ∈ (−∞,−λ−1), λ < 0.

(2.11)

From Figure 2.3 we conclude that the accuracy improves as ξ −→ −∞ when λ > 0 and
when ξ −→ ∞ when λ < 0. It is usually assumed that λ = 1 indicates no transformation is
needed, but strictly speaking we need to also assume that ξ � −3 so that the truncation effect
can be neglected.
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1-
κ
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Figure 2.3: Plot of 1 − κ, the probability that the inverse Box-Cox transformation is invalid
when the Box-Cox approximation is used, vs. ξ, the standardized truncation limit.
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2.1.4 Box-Cox Data Distribution

The distribution that generates the observations y1, . . . , yn is needed to construct the likelihood
function. The Box-Cox Normal Distribution, φ(z, µ, σ, λ), defines the distribution of the data in
the transformed domain. Applying the inverse Box-Cox transformation Z → Y , the distribution
of the data in the original domain is defined. This distribution is denoted by ϕ(y, µ, σ, λ) and
is defined as the Box-Cox Data Distribution. Using eqn. (2.3) for the inverse transformation
to substitute for z and using the Jacobian of the transformation, dyz = yλ−1, the exact Box-Cox
Data Distribution may be written,

ϕ(y, µ, σ, λ) =


φ(−λ−1,∞)

((
yλ − 1

)/
λ, µ, σ

)
yλ−1, λ > 0,

φ(log(y), µ, σ)y−1, λ = 0,
φ(−∞,−λ−1)

((
yλ − 1

)/
λ, µ, σ

)
yλ−1, λ < 0.

(2.12)

Since the Box-Cox distribution is only defined for Y > 0, the distribution ϕ(y, µ, σ, λ) has
support on (0,∞) as required. To check this note that when λ > 0, (yλ−1)/λ ∈ (−λ−1,∞) if and
only if y > 0. Similarly for λ < 0. The special case, ϕ(y, µ, σ, 0), is the log-normal distribution.

Box and Cox [1964] implicitly assume for the likelihood computation the approximation
that ϕ(y, µ, σ, λ) � φ(y(λ))yλ−1. For data arising in applications, y > 0, so both the Box-Cox
transformation and its inverse are valid. In computational statistical inference, such as the
parametric bootstrap, this approximation may fail because the inverse Box-Cox transformation
may be invalid when the Box-Cox approximate normal distribution is used.

2.2 Simulation of the Box-Cox Data Distribution
Simulation of data from the Box-Cox Data Distribution has important applications. In com-
putational statistical inference, methods such as non-parametric bootstrapping, Monte-Carlo
testing, Monte-Carlo Markov Chain and cross-validation where it is necessary to simulate data
from a fitted hypothetical model. In civil engineering, synthetic or simulated data from empir-
ical models are used for the engineering design. Since Box-Cox models are used in all these
applications, it is essential to be able to reliably simulate data from fitted models.

The naive simulation method is simply to generate data from the complete normal distribu-
tion and then use the inverse Box-Cox transformation to simulate the data in the untransformed
domain. But as we have shown, there is a non-zero probability, 1−κ that inverse transformation
may be undefined.

In general, the inverse CDF method may be used to generate data from the Box-Cox Normal
Distribution. Then the Box-Cox transformation is employed to generate the random variates
from the Box-Cox Data Distribution. This two-step method is usually necessary because the
inverse CDF method can not usually be applied directly to the Box-Cox Data Distribution.

When λ > 0, the distribution of Z, φ(−λ−1,∞)(z, µ, σ) is a left-truncated normal with param-
eters µ, σ and truncation point, −λ−1. Our objective is to provide an algorithm to simulate Z
using an inverse CDF method that transforms a uniform(0,1) random variable to Z making use
of efficient algorithms to compute the quantile function from the normal distribution. The quan-
tile function may be expressed as the inverse of the normal CDF and denoted by Φ−1(U, µ, σ).
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The CDF for Z when λ > 0 may be written,

Pr{Z < z} =

∫ y

−∞

φ(−λ−1,∞)(y, µ, σ) dy

=
1

1 − Φ(ξ)

∫ z

−λ−1
φ(z) dz

=
Φ(z, µ, σ) − Φ

(
−λ−1, µ, σ

)
1 − Φ(ξ)

=
Φ(z, µ, σ) − Φ(ξ)

1 − Φ(ξ)
.

(2.13)

Let U be uniform(0,1) and setting,

U =
Φ(Z, µ, σ) − Φ(ξ)

1 − Φ(ξ)
, (2.14)

and then simplifying to obtain

Φ(ξ) + U(1 − Φ(ξ)) = Φ(Z, µ, σ). (2.15)

Hence Z may be generated from

Z = Φ−1(U + Φ(ξ)(1 − U), µ, σ). (2.16)

Similarly when λ < 0 we use Z = Φ−1(Φ(ξ)(1 − U)).
When λ = 0, Z is generated from the normal distribution, Z = Φ−1(U, µ, σ).

To summarize, to simulate from the Box-Cox Data Distribution, we first simulate from the
Box-Cox Normal Distribution using the equation,

Z =


Φ−1(U + Φ(ξ)(1 − U), µ, σ), λ > 0,
Φ−1(U, µ, σ), λ = 0,
Φ−1(Φ(ξ)(1 − U)), λ < 0,

(2.17)

where ξ = −
(
λ−1 + µ

)/
σ.

Then we back-transform to generate data from the Box-Cox Data Distribution,

Y =

(λZ + 1)1/λ, λ , 0,
exp(Z), λ = 0.

(2.18)

The code snippet below shows how the simulation of the Box-Cox Normal Distribution is
implemented in R.

sbxcx <- function(n, mu, sig, lambda) {
#n: number simulated variates, mu, sig, lambda: parameters
stopifnot(length(mu)==1, length(sig)==1,length(lambda)==1,

length(n)==1, n>0)
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if (abs(lambda)<1e-6) {
Y <- rlnorm(n, mu, sig)

} else {
U <- runif(n)
xi <- -(lambda^(-1)+mu)/sig
if(lambda > 0) {
Y <- qnorm(U+pnorm(xi)*(1-U), mu, sig)
} else {
Y <- qnorm(pnorm(xi)*U, mu, sig)
}
Y
}
}

2.2.1 Illustrative Example
As an illustrative example we consider the Box-Cox Normal Distribution, φ(z, 0, 1, 3/4). This
distribution is the same as a truncated normal distribution with support (−4/3,∞) and it arises
when the Box-Cox transformation λ = 3/4 is applied to data generated by the Box-Cox Data
Distribution, ϕ(y, 0, 1, 3/4). Both of these distributions are shown in the Figure 2.4. The fre-
quency with which the back-transform is invalid is 1 − κ = Φ(−4/3) � 9% using eqn. (2.33)
and is represented by the yellow region.
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Figure 2.4: Box-Cox Data and Normal Distributions. In the right panel, the dashed curve
shows the full normal distribution that is assumed in Box-Cox analysis. The yellow region
corresponds to where the back-transform is invalid.

In Figure 2.5, the left panel shows Box-Cox Data Distribution ϕ(y, 0, 1, 3/4) and the prob-
ability histogram for 100 random variates generated from this distribution. This histogram re-
sembles data positive data similar to many common distributions and so the right panel shows
the corresponding PDF φ(z, 0, 1, 3/4) and the histogram of the data from the left panel after the
Box-Cox transformation with λ = 3/4.
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Figure 2.5: Data generated by the distribution ϕ(y, 0, 1, 3/4) is shown in the left panel and the
histogram of the transformed data in the right panel.

The data generated in Figure 2.5 was fitted with four widely used distributions. These
distributions and their estimated parameters are listed below:

• Exponential Distribution.
f (y) = λeλ(−y) (2.19)

where λ̂ � 0.868227.

• Gamma Distribution.

f (y) =
β−αyα−1e−

y
β

Γ(α)
(2.20)

where α̂ � 1.32597 and β̂ � 0.868627

• Weibull Distribution.

f (y) =
αe−

( y
β

)α (
y
β

)α
y

(2.21)

where α̂ � 1.28821 and β̂ � 1.23387

• Half-normal Distribution.

f (y) =
2θe−

θ2y2
π

π
(2.22)

where θ̂ � 0.868227.

In Figure 2.6 the histograms and black curve show the identical data and Box-Cox Data
Distribution as in the Figure 2.5 while the blue curve shows the fitted density to this data from
the specified distribution. From Figure 2.6 we can conclude that the Box-Cox Data Distribution
may generate data similar to that generated by some of the well-known distributions for positive
random variables. To investigate this more quantitatively, the Anderson-Darling test was used
to see if there is a statistical significant difference. The test statistic, A2, is defined by eqn.
(2.23),

A2 = −

n∑
k=1

(2k − 1)
(
log

(
1 − F

(
y(−k+n+1)

))
+ log (F (yk))

)
n

− n, (2.23)
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where n = 100 and y(1) ≤ y(2) ≤ . . . ≤ y(n) are the sorted data generated from the Box-Cox data
distribution ϕ(y, 0, 1, 3/4) that are depicted in the histogram in the left panel of Figure 2.5. The
p-value is the for testing hypothesis that the data were generated from each of the specified
distributions. Only in the case of the Exponential Distribution is the p-value less than 5%.
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Figure 2.6: Fitting some common Distributions to Box-Cox Data in the left panel of Figure
2.5.

2.3 Exact and Approximate Box-Cox Likelihood Analysis
Often Box-Cox analysis is used with linear models. Suppose there are p explanatory variables
and n observations so the Gaussian linear model may be written

yi = µi + εi, (2.24)

where εi ∼ NID(0, σ2) and
µi = β0 + β1xi,1 + . . . + βpxi,p, (2.25)

where for i = 1, . . . , n. We have used the abbreviation NID(0, σ) for normal and independently
distributed random variables with mean 0 and standard deviation σ. Box-Cox analysis [Box
and Cox, 1964] generalizes eqn. (2.24) by assuming that eqn. (2.24) holds when yi is replaced
by its Box-Cox transform y(λ)

i for some λ. Making the transformation y(λ)
i → yi we can write,

yi =


(
λy(λ)

i + 1
)1/λ

, λ , 0,
exp(y(λ)

i ), λ = 0,
(2.26)
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which has Jacobian yλ−1
i . Hence the PDF for yi,

ϕ̃(yi, µi, σ, λ) = φ(y(λ)
i , µi, σ)yλ−1

i , (2.27)

where we have used the notation ϕ̃ to indicate that this formulation is an approximation that
ignores the truncation error since if y(λ)

i is normally distributed λy(λ)
i +1 has a non-zero probabil-

ity of being negative which would result in an invalid transformation. As previously noted an
invalid transformation does not arise directly in applications since the observed data is always
positive.

The log-likelihood using the Box-Cox normal approximation was derived by Box and Cox
[1964] and it may be written,

log L̃(β, σ, λ) =
∑

i

log φ(y(λ)
i , µi, σ) + (λ − 1)

∑
i

log(yi), (2.28)

where β = (β0, β1, . . . , βp), and µi = β0+β1xi,1+. . .+βpxi,p, i = 1, . . . , n. The likelihood function
defined in eqn. (2.28) may be considered as a partial likelihood in the sense of Cox [1975].
It provides an approximation to the complete likelihood defined in eqn. (2.31). The concept
of partial likelihood was introduced by Cox [1975] to deal with cases where the complete
likelihood was intractable. We will refer to L̃(β, σ, λ) in eqn. (2.28) as the Partial Box-Cox
likelihood. Next we turn to the complete or Exact Box-Cox likelihood which specified in
below in eqn. (2.32).

The exact distribution for yi was given in eqn. (2.12) and is denoted by ϕ(yi, µi, σ, λ). An
important feature of the method of Box and Cox [1964] is that the computation of maximum
likelihood estimate is straightforward because for fixed λ, the standard algorithm for the linear
model may be used to obtain the profile likelihood. For fixed λ, the MLE for the other param-
eters may be obtained by inputting the transformed data to least squares algorithm and hence
we obtain, β̃, σ̃ and µ̃i = β̃0 + β̃1xi,1 + . . . + β̃pxi,p for i = 1, . . . , n. The Profile Partial Box-Cox
log-likelihood

log L̃p(λ) =
∑

i

log φ(y(λ)
i , µ̃i, σ̃) + (λ − 1)

∑
i

log(yi), (2.29)

may be evaluated numerically and plotted over a suitable interval.
Exact Box-Cox analysis may proceed in a similar way but due to the fact that in the trans-

formed domain the exact Box-Cox normal distribution is a truncated normal distribution with
support depending on λ, an efficient computational algorithm is more complicated.

From eqn. (2.12), the exact Box-Cox log-likelihood may be written,

log L(β, σ, λ) =
∑

i

logϕ(yi, µi, σ, λ). (2.30)

When λ = 0, eqn. (2.31) is the same as eqn. (2.28) but when λ , 0 normal distribution
is replaced by the truncated normal distribution corresponding to support on (−λ−1,∞) or
(−∞,−λ−1) according as λ > 0 or λ < 0 respectively. Thus we obtain,

log L(β, σ, λ) =


∑

i log φ(−λ−1,∞)(yλi − 1/λ, µi, σ) + (λ − 1)
∑

i log yi, λ > 0,
φ(log yi, µi, σ) + (λ − 1)

∑
i log yi, λ = 0,∑

i log φ(−∞,−λ−1)(yλi − 1/λ, µi, σ) + (λ − 1)
∑

i log yi, λ < 0.
(2.31)

Using eqn. (2.33) we can rewrite this as
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log L(β, σ, λ) =

n∑
i=1

log(φ(
y(λ)

i − µ

σ
)) + (λ − 1)

∑
i=1

log yi − n log κ, (2.32)

where

κ =


1 − Φ(−(λ−1 + µ)/σ), λ > 0,
1, λ = 0,
Φ(−(λ−1 + µ)/σ), λ < 0.

(2.33)

Chen and Lockhart [1997] and Chen et al. [2002] assumed that the effect of the Box-Cox
approximation is asymptotically negligible but from eqn. (2.32) we see that for λ , 0, the
term −n log κ −→ ∞ as n −→ ∞ so it is not negligible. Hence the asymptotic results [Chen
and Lockhart, 1997, Chen et al., 2002] are not applicable to the regular case where the model
parameters µ, σ and λ remain constant.

The MLE are defined by maximizing log L(β, σ, λ) over the unknown parameters. This
optimization may be solved by first solving the optimization problem for a fixed value of λ and
then plotting the profile log-likelihood function of λ as in the approximate analysis [Box and
Cox, 1964]. But the problem is made more difficult by the fact that the support or range for the
truncated normal distribution depends on the unknown parameter λ when λ , 0. Hence, the
sufficient conditions for the asymptotic optimality of the MLE are not satisfied [Shao, 1998].
We conclude that even the standard practice of indicating a 95% confidence interval for the
Box-Cox estimate of λ is not justified by asymptotic theory.

We will provide two solutions to the optimization problem. First we present the solution to
the case where µi = µ is constant.

2.3.1 Exact Box-Cox Analysis: Constant Mean Case
We first investigate an efficient algorithm for estimating the parameters in the model specified
by the exact Box-Cox Data Distribution, eqn. (2.12). Given a random sample, y1, . . . , yn from
this distribution the exact Box-Cox likelihood may be written,

log L(µ, σ, λ) =
∑

i

logϕ(yi, µ, σ, λ)

=


∑

i log φ(−λ−1,∞)(yλi − 1/λ, µ, σ) + (λ − 1)
∑

i log yi, λ > 0,
φ(log yi, µ, σ) + (λ − 1)

∑
i log yi, λ = 0,∑

i log φ(−∞,−λ−1)(yλi − 1/λ, µ, σ) + (λ − 1)
∑

i log yi, λ < 0.

(2.34)

The MLE are defined by,
(µ̂, σ̂, λ̂) = argmax

µ,σ,λ

log L(µ, σ, λ). (2.35)

Most general purpose non-linear optimization routines can not handle this problem since the
range of the objective function depends on one of the parameters, viz. λ and as we have already
noted the sufficient conditions [Shao, 1998] for the statistical optimality of the MLE are also
not satisfied for this very reason.
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We can proceed by defining the profile log-likelihood function for λ

log Lp(λ) = argmax
µ,σ

log L(µ, σ, λ). (2.36)

The profile log-likelihood for λ may then be plotted to obtain a range of suitable values for λ
or optimized using an one-dimensional optimization algorithm.

So for a fixed λ our problem reduces to determining the MLE in a truncated normal dis-
tribution. Cohen [1991] provides an efficient algorithm for this problem. First an iterative
algorithm is developed for obtaining the method of moments estimator for µ and σ in a singly
left-truncated normal distribution (T,∞). These estimates can then be used as starting values
in another iterative algorithm to obtain the MLE’s. The algorithm for right-truncated case may
be obtained by simply negating the data and treating it as left-truncated.

Cohen Algorithm for the Truncated Normal Distribution

We will assume that Z has a left-truncated normal distribution with truncation point T = −λ−1

and the normal parameters are µ and σ. Let W be the corresponding standardized variable
W = (Z−µ)/σ and let ξ = (T −µ)/σ be the corresponding standardized truncation point. Then
the kth moment about zero of W can be written [Cohen, 1991],

µw(k) =
1

1 − Φ(ξ)

∫ ∞

ξ

tkφ(t)dt, (2.37)

where Φ(ξ) is the standard normal CDF evaluated at ξ and φ(t) is the standard normal density
function. The first two moments may be obtained using integration-by-parts. For the mean of
W, k = 1 in eqn. (2.37) and we have,

µw(1) = Q⇐⇒ E{(Z − µ)/σ} = Q, (2.38)

where
Q =

φ(ξ)
1 − Φ(ξ)

. (2.39)

Hence the mean of Z are given by,

E{Z} = µ + σQ. (2.40)

Similarly for the variance of W,
µw(2) = 1 + ξQ. (2.41)

Var(W) = µ̃2 − µ̃
2
1

= 1 + ξQ − Q2

= 1 + Q(ξ − Q)
= Var((Z − µ)/σ)

= 1/σ2Var(Z).

(2.42)
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Hence,
Var{Z} = σ2(1 − Q(Q − ξ)). (2.43)

As a numerical check when T = −1/1.75, µ = 0 and σ = 1, we find Q = 0.473155 = E{Z} and
Var(Z) = 0.50575. These values agree with Mathematica’s methods for truncated distributions.

eqn. (2.40) and (2.43) can be solved for the normal parameters µ and σ given the sample
estimates for E{Z} and Var(Z} using an iterative algorithm such as Newton’s method [Ortega
and Rheinboldt, 2000] which is implemented in the Mathematica function FindRoot[]. The
method-of-moments, obtained using this method are µ̃ = −0.326428 and σ̃ = 1.12147. The
code snippet shows how this is implemented in Mathematica. Verifying that this is indeed the
solution to the moment equations, we find that it is correct.

Let we assume,
s2

z = σ2(1 − Q(Q − ξ)), (2.44)

and
z̄ = µ + σQ. (2.45)

Cohen [1991] presented a simpler algorithm replaces the need for solving a non-linear system
of two equations by only solving a single non-linear equation which is algorithmically much
simpler and greatly easier to implement in programming environments such as R. Let z̄ and s2

be the sample mean and variance given data z1, . . . , zn. Then the estimating equations derived
from eqn. (2.40) and (2.43) may be written, s2 = σ2(1−Q(ξ)(Q(ξ)−ξ)) and z̄−T = σ(ξ−Q(ξ)).
Hence,

s2

(z̄ − T )2 =
σ2[1 − Q(ξ)(Q(ξ) − ξ)]

σ2[ξ − Q(ξ)]2

=
[1 − Q(ξ)(Q(ξ) − ξ)]

[ξ − Q(ξ)]2 = α(ξ),
(2.46)

where Q(ξ) = φ(ξ)/(1 −Φ(ξ)). eqn. (2.46) may be solved by an one-dimensional optimization
algorithm. Verification of our equation demonstrated as follows,

s2

(z̄ − T )2 =
1 − Q(ξ)(Q(ξ) − ξ)

(Q(ξ) − ξ)2 . (2.47)

Continuing with our numerical example, x̄ and s2 are the sample mean and the sample variance
respectively in the data and also T is truncated point given. Therefore, the method of moments
estimators using FindRoot[] are {-0.326428,1.12147}.

The maximum likelihood equations are somewhat complex. Taking the first derivatives,

∂l
∂µ

=

n∑
i=1

(y(λ)
i − µ)/σ2 − n(1/σ)

φ(ξ)
(1 − Φ(ξ))

, (2.48)

and the first derivatives with respect to σ2 is given by,

∂l
∂σ2 = −

n
2σ2 +

1
2σ4

n∑
i=1

(y(λ)
i − µ)2 − n(

1
2σ2 )

(
−(λ−1 + µ)

σ

)
−φ(ξ)

(1 − Φ(ξ))
, (2.49)
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then it implies from eqn. (2.49),

∂l
∂σ2 = −

n
2σ2 +

1
2σ4

n∑
i=1

(y(λ)
i − µ)2 +

n
2σ2 ξΨ(ξ). (2.50)

By setting ∂l/∂µ = 0, we have the first MLE as follows,

ȳ(λ) = µ + σΨ(ξ), (2.51)

where Ψ(.) = φ(.)/(1 − Φ(.)) and Z = y(λ)
i denoted as transformed variables. This equation

determines that in the case of λ > 0, the mean of left truncation, ȳ(λ) is approximately equivalent
to true population mean µ plus a part which depends on the truncation point ξ and σ. Then, let
to set ∂l/∂σ2 = 0 and simplify,

nσ̂2
y(λ) + n(ȳ(λ))2 = nσ2ξΨ(ξ) + nσ2 + nµ(2ȳ(λ) − µ). (2.52)

So, we have
σ̂2

y(λ) = σ2 [
1 − Ψ(ξ)(Ψ(ξ) − ξ)

]
, (2.53)

where σ̂2
y(λ) = 1/n

∑n
i=1

(
y(λ) − ȳ(λ)

)2
. Cohen [1950, 1991] indicated that the maximum likeli-

hood estimations can be computed by these equations iteratively. However, convergency can
not always be obtained by this method due to dependency of convergence on the initial val-
ues. Cohen [1949, 1950] suggested that the initial values should be the sample moments in the
Newton-Raphson method. Pearson and Lee [1908] considered the method of moment estima-
tion to find µ and σ for truncated normal distribution.

Simulated Example

We compare the exact and profile partial log-likelihoods using the simulated example discussed
in Section 2.2.1. Recall that in this case, the Box-Cox Data Distribution defined by ϕ(y, µ =

0, σ = 1, λ = 3/4). In this example 1 − κ = 9% so the truncation effect is sizable but realistic
for various positively skewed distributions that may be seen in practice as was demonstrated in
the previous section.

Data generated was from samples with n = 100 or n = 1000 and the profile exact log-
likelihoods are shown in the two left panels in Figure 2.7. These two panels show that as n
increases the accuracy of the estimate for λ improves. Not only does the MLE estimate itself
change from λ̂ = 0.67 when n = 100 to λ̂ = 0.71 when n = 1000 but the profile log-likelihood
becomes more concentrated about the true value λ = 0.75 and the width of the 95% confidence
interval decreases from about (0.4, 1.2) in the top left panel to about (0.6, 0.8) in the bottom
left panel.1

This is not the case for the Box-Cox profile partial likelihood. There is no improvement in
accuracy and the right panels in Figure 2.7 suggest the estimate may not even be consistent.

1As we have noted asymptotic theory is not available to justify these confidence intervals. But this interval
may also be interpreted as a 38% plausibility interval in the sense of relative likelihood [Sprott, 2000, 2.4]. To
see this note that the 95% confidence interval is determined by −2(log Lm − log L0) = 1.92 where log Lm is the
maximized log-likelihood and log L0 determines the confidence interval endpoints. Hence, Lm/L0 = 38%.
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Figure 2.7: Exact and approximate likelihood analysis of simulated data from a Box-Cox data
distribution with parameters µ = 0, σ = 1, λ = 0.75 for sample sizes n = 100 and n = 1000.

Application to Length of rivers dataset

The built-in R dataset ‘rivers’ is comprised of the lengths of the longest 141 rivers in miles in
North America. A histogram with for this dataset is shown in Figure 2.8 and we note the data
exhibit strong positive skewness with a long right tail.
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Figure 2.8: Histogram of ‘rivers’ dataset.

The exact and approximate Box-Cox analyzes are shown in Figure 2.9 and we see that the
MLE’s for λ are in close agreement although the shape of the likelihood function differs so the
statistical inference is not the same. The exact likelihood produces an asymmetric 95% con-
fidence interval (−1.05,−0.3) while for the approximate method the interval is (−0.81,−0.3).
It is surprising that the inference changes this much for this data since the mean and standard
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deviation of the data in the transformed domain are respectively 1.75432 and 0.0184787 so
ξ̂ = 3.45 and 1 − κ̂ = 0.0003.
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Figure 2.9: Exact and approximate likelihood analysis of ‘rivers’ dataset.

2.3.2 Exact Box-Cox Analysis: Regression Case
In the more general regression case, we have a response variable Y and p explanatory variables
X1, . . . , Xp and Y is related to the inputs through the regression equation,

µx = β0 + β1X1 + . . . + βpXp, (2.54)

where the PDF ϕ(y, µx, σ, λ) specifies the statistical model.
Given n observations and the data (xi,1, . . . , xi,p, yi), i = 1, . . . , n the log-likelihood function

is determined by the Box-Cox Data Distribution, eqn. (2.12),

log L(β, σ, λ) =

n∑
i=1

logϕ(yi, µi, σ, λ), (2.55)

where

µi = β0 +

p∑
j=1

β jxi, j. (2.56)

When λ > 0 the log L may be directly computed from the simplified result,

log L(β, σ, λ) =

n∑
i=1

log φ(
yλi − 1
λ

, µi, σ, λ)+ (λ−1)
n∑

i=1

log(yi)−n log(1−Φ(−
1
λ
, µi, σ)), (2.57)

where µi is defined as in eqn. (2.56). As explained in eqn. (2.12), the positivity assumption,
Yi > 0, i = 1, . . . , n guarantees that eqn. (2.57) is always defined. Furthermore, similar expres-
sions may be given when λ < 0.
For fixed λ the exact profile log-likelihood is defined by

log Lp(λ) = max
β,σ

log L(β, σ, λ) (2.58)

Provided p is not too large, it is feasible to carry out the maximization in eqn. (2.58) using a
general purpose optimization.
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2.3.3 An Approximation to the Profile Log-likelihood

As an approximation to the profile log-likelihood defined in eqn. (2.58) we consider,

log L̄p(λ) = log L(β̃, σ̃, λ), (2.59)

where β̃ and σ̃ are obtained using the Box-Cox method [Box and Cox, 1964].
We illustrate this method using the same data as used in Figure 2.7 with the constant mean

case. The parameter settings are: µ = 0, σ = 1, λ = 0.75 with n = 100 and n = 1000
observations. In Figure 2.7, the exact MLE for λ were λ̂ = 0.67 and λ̂ = 0.71 corresponding to
n = 100 and n = 1000 respectively while the Box-Cox method [Box and Cox, 1964] produced
λ̃ = 0.49, 0.48 corresponding to n = 100, 1000. The suggested approximation produces λ̄ =

0.46, 0.56 respectively for n = 100, 1000 as shown below in Figure 2.10. In this case, the
approximation is not an accurate estimate of the MLE.
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Figure 2.10: Exact and approximate likelihood analysis of simulated data from a Box-Cox data
distribution with parameters µ = 0, σ = 1, λ = 0.75 for sample sizes n = 100 and n = 1000.

2.4 EM Algorithm for Truncated Normal Regression

EM algorithm was investigated since it may provide a more efficient algorithm for doing the
optimization required for computing the exact profile log-likelihood function given in eqn.
(2.58). Initially we start with the simple case of only the parameter β0 = µ. So we consider
implementing the EM algorithm for estimating the parameters µ and σ2 from truncated normal
distribution, φ(z, µ, σ, λ). In this section we consider the case λ > 0, which corresponds to the
normal distribution with parameters µ, σ and truncation point T = −1/λ. Given n observations
from this distribution u1, . . . , un, we consider that there are m latent unknown observations
v1, . . . , vm corresponding to the missing truncated data where m is determined from (n + m)(1−
Φ(T, µ, σ)) = n so m = nΦ(T, µ, σ)/(1 − Φ(T, µ, σ)).

Given initial estimates for the parameters, for example µ(0) = n−1 ∑
i zi and σ(0) the sample

standard deviation of u1, . . . , un. Initialize an iteration counter i← 0.
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2.4.1 Expectation step
The mean of the latent sample has expectation µ∗, where µ∗ is the expected value from the
truncated distribution φ(−∞,T )(µ(i), σ(i)) that can be determined from eqn. (2.60) below.

Mean of Truncated Normal

In general, let µ∗(µ, σ,T ) denote the expected value from the truncated distribution with PDF
φ(−∞,T )(µ, σ) then using Mathematica it can be shown that,

E{Z} =

√
2
π
σe−

(λµ+1)2

2λ2σ2 /

(
1 + erf

(
λµ + 1
√

2λσ

))
(2.60)

where erf(t) denotes the error function defined by,

erf(t) =
2
√
π

∫ z

0
e−t2dt

for z ≥ 0 and erfc(z) = 1 − erf(z).

2.4.2 Maximization step
In this case, the updated estimates are simply determined by

µ(i+1) ←
nū + mµ(∗)

n + m
(2.61)

and

σ(i+1) ←

√√
(n + m)−1

∑
i

(ui − µ(i+1))2 + mEµ(i),σ(i)(Z − µ)2

 (2.62)

2.4.3 Iteration
The steps Expectation and Maximization are iterated until the estimates converge.

2.5 Simulated Example
For parameter settings, xi ∼ N(0, 2), β0 = 0, β1 = 0.5, σ = 1, λ = 0.75 with n = 100
and n = 200 observations we compare the exact MLE for λ with the Box-Cox estimates in
Figures 2.11 and 2.12. The exact MLE were obtained by evaluating the exact profile log-
likelihood in eqn. (2.58) over a fine-grid while the Box-Cox estimates were obtained using the
R function ‘MASS:boxcox()’. The exact MLE is more accurate and its accuracy improves as
n increases. As we can seen from Figure 2.11, the true λ = 0.75 included in the confidence
interval. Howevere, estimates of λ obtained by built-in R function are not consistent with initial
λ = 0.75 as shown in Figure 2.12.
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Figure 2.11: Exact Box-Cox analysis with simulated regression with λ = 0.75 and µi = β0+βixi,
i = 1, . . . , n
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Chapter 3

Box-Cox Time Series

3.1 Introduction
Sampling from a truncated multivariate normal (TMVN) distribution is a recurring problem in
many areas in statistics and econometrics, such as Kriging, censored data models, and general
linear time series model. In this chapter, we aim to discuss about the simulation of multivariate
normal distribution on truncated data.
To simulate univariate truncated normal distribution, classical inverse CDF method can be used
as follows,

x = Φ−1 [Φ(a) + u (Φ(b) − Φ(a))] , (3.1)

where u ∼ Uni f [0, 1] and the boundrary function [a, b]. It is denoted Φ as CDF of the normal
distribution and Φ−1 its inverse.

Marsaglia [1964] introduced an accept-reject algorithm to generate random variables by us-
ing the tail of the normal distribution. Later, the Ziggurat algorithm was proposed by Marsaglia
and Tsang [2000] for generating random variables used horizontal rectangles. Robert [1995]
extended the idea of the previous algorithm proposed by Marsaglia [1964] to simulate uni-
variate truncated normal distribution. Chopin [2011] designed the fast simulation for truncated
Gaussian distributions based on the Ziggurat algorithm of Marsaglia and Tsang [2000]. To gen-
erate the one-sided truncated variables, it can be naively sampling from a normal distribution
untill the desired random variables in the specific interval obtained. Rejection sampling can
be considered as a delicate approach since it depends on probabilities of acceptance [Robert,
1995]. For high-dimensional truncated normal distribution, accept and reject approach is not
preferable.

Gibbs sampler is regarded as a special case of the Markov chain Monte Carlo (MCMC)
algorithm to simulate multivariate truncated normal variables for any covariance structure,
specifically when direct sampling is challenging. The Markov chain sequences x(n) can be
obtained repeatedly from T Np(µ,Σ, x−i , x

+
i ).

The Gibbs sampling procedure is defined by Robert [1995] as follows,

1. x(n)
1 ∼ T N

(
E[x1|x

(n−1)
2 , ..., x(n−1)

p ], x−1 , x
+
1 , σ

2
1

)
,

46
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2. x(n)
2 ∼ T N

(
E[x2|x

(n)
1 , x(n−1)

3 , ..., x(n−1)
p ], x−2 , x

+
2 , σ

2
2

)
,

. . .

3. x(n)
p ∼ T N

(
E[xp|x

(n)
1 , ..., x(n)

p−1], x−p , x
+
p , σ

2
p

)
,

where [x−i , x
+
i ] is truncated interval on p dimensions. The conditional expectation and variances

for xi can be obtained by,

E[xi|x−i] = µi + Σi−iΣ
−1
−i−i(x−i − µ−i),

and
σ2

i = σ2
ii − Σi−iΣ

−1
−i−iΣi−i.

Gibbs sampler can be performed for Bayesian calculations of constrained parameter and trun-
cated data problems [Gelfand and Smith, 1990, Gelfand et al., 1992]. Furthermore, Gelfand
et al. [1992] illustrated Gibbs sampling application in ordered parameters from exponential dis-
tributions and censored data with regression model. Robert [1995] suggests the Gibbs sampler
theory for sampling from truncated multivariate normal distribution.

Gibbs sampler was proposed by Chen and Deely [1992] for constrained multiple linear
regression. Chen and Schmeiser [1996] showed that Gibbs sampler performs better on in-
dependent random variables and reported to sample from conditional distribution by Gibbs
algorithm. Rodriguez-Yam et al. [2004] also employed Gibbs sampler algorithm in multiple
linear regression with inequality constraints parameters. Sampling from truncated densities in-
troduced by Damien and Walker [2001] in terms of latent variable idea within Gibbs sampling
context.

Both rejection and Gibbs sampling algorithm may have disadvantages in the context of
computations. Robert [1995] indicated that Gibbs sampling as an efficient and fast algorithm to
generate random variables from the truncated multivariate normal distribution. It is important
to consider that the convergence of the Gibbs sampling to the stationary distribution may be
computationally complex. Moreover, Gelman and Rubin [1992] stated that inferences from
iterative simulation would be less efficient compared to direct simulation, even though iterative
simulations have wider applications. In fact, sampling from conditional distributions takes
more computing time in some cases.

We propose a direct approach to produce the conditional simulation via decomposition
of covariance matrix and present the application of Box-Cox transformations in time series
model in this chapter. In the case of highly correlated random vector, Cholesky method would
be employed to determine the optimal and efficient ones. The alternative methodology can be
used for sampling from truncated multivariate normal distribution and providing simulation
algorithm to minimize the loss function. The simulation of truncated normal variables need
to reconsider in Bayesian inference for some truncated parameter space problems. We further
demonstrate that this approach can be applied for any arbitrary covariance structure.

Latter, we aim to generalize these procedures in an applied context and the contribution of
exact Box-Cox analysis in simulation. In this chapter, Cholesky decomposition and Durbin-
Levinson are both employed to generate Box-Cox transformed time series and its inverse. Fur-
thermore, the forecasting and simulation of time series would be investigated and the results
are compared with the Box-Cox normal approximation.
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3.2 Truncated Multivariate Normal Distribution
Let Z be a random vector such that Z = (Z1,Z2) where Z1 and Z2 have a jointly normal distri-
bution as written by, [

Z1

Z2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
.

The conditional distribution of Z2 given Z1 = z1 has multivariate normal distribution with mean,

µZ2 |Z1 = µ2 + Σ21Σ
−1
11 (Z1 − µ1), (3.2)

and the covariance matrix

ΣZ2 |Z1 = Σ22 + Σ21Σ
−1
11 Σ12. (3.3)

Direct method was used for generating Box-Cox transformed stationary time series. As we
mentioned in Chapter 2, the Box-Cox family distribution can be simulated by truncated normal
distribution.

3.3 Simulation of Truncated Normal Variables

3.3.1 Bivariate case
We initially consider the following example presented by Robert [1995]. Sampling from the
truncated normal distribution with truncation space< can be written as,(

X1

X2

)
∼ T N

(
0,Σ,<

)
,

where

Σ =

(
1 ρ
ρ 1

)
,

and A is the circle of center γ = (γ1, γ2) and radius r. Hence, it can be defined by,

x−1 (x2) = γ1 −
√

r2 − (γ2 − x2)2,

x+
1 (x2) = γ1 +

√
r2 − (γ2 − x2)2,

and
x−2 (x1) = γ2 −

√
r2 − (γ1 − x1)2,

x−2 (x1) = γ2 +
√

r2 − (γ1 − x1)2.

The truncated bivariate normal distribution is obtained from Gibbs sampling as follows,

1. x(n)
1 ∼ T N(ρx(n−1)

2 , x−1 (x(n−1)
2 ), x+

1 (x(n−1)
2 ), 1 − ρ2),
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2. x(n)
2 ∼ T N(ρx(n)

1 , x−2 (x(n)
1 ), x+

2 (x(n)
1 ), 1 − ρ2).

In this study, we propose a general and direct approach for simulation of a bivariate trun-
cated normal distribution. Further, it will be illustrated its contribution in simulating Box-Cox
transformations. Let Σ be the desired covariance matrix which produces the random number.
Assuming Σ is symmetric and positive-definite and can be decomposed by Cholesky transfor-
mation where Σ = LU = LLT . Let L be a lower triangle matrix, therefore we have,

Y = LZ. (3.4)

We assume that Z1 and Z2 are uncorrelated random variables from a truncated normal distri-
bution. In first case, we create a realization of bivariate distribution Y = (Y1,Y2) by using
Cholesky factorization as shown,

(
Y1

Y2

)
=

(
L11 0
L21 L22

) (
Z1

Z2

)
. (3.5)

Then, it can be expressed as,

L11Z1 = Y1,

L21Z1 + L22Z2 = Y2.
(3.6)

By considering Z = (Z1,Z2) be an independent vector right-truncated at point b = (b1, b2).
Hence, the main purpose is to investigate the boundary in Y-space when we investigate as
written Z → Y ,

Z1 ≤ b1,

Z2 ≤ b2.
(3.7)

and we have,

Y1 ≤ L11b1,

Y2 ≤ L22b2 + L21Z1.
(3.8)

The algorithm that can be used for the simulation of truncated normal variables consists in the
following steps:
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• Step 1: Generate two uncorrelated random vectors Z1 and Z2 from the Box-Cox Normal
Distribution with non-zero mean µ and variance σ2.

• Step 2: Given the coefficients and autocovariance function.

• Step 3: Calculate the lower triangular matrix of covariance matrix, Σ =

[
1 ρ
ρ 1

]
.

• Step 4: Use the lower triangular matrix Σ = LLT .

• Step 5: Obtain the one-sided truncated normal distribution.

The application of the this method for bivariate truncated normal distribution can be shown in
Figures 3.1 amd 3.2. We plot in Figure 3.1 a random sample of a size n = 10, 000 generated
from a truncated normal distribution with truncation point −λ−1 and the mean µ = 2 and
standard deviation σ = 1. Figure 3.2 illustrates the simulated random variables from bivariate
truncated normal with correlation ρ = 0.9 and λ = 0.5.
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Figure 3.1: Ellipsoids of concentration corresponding to 0.95 and 0.5 probability for simulated
random variables from Box-Cox distribution with λ = 0.5, µ = 2 and σ = 1.
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Figure 3.2: Ellipsoids of concentration corresponding to 0.95 and 0.5 probability for simulated
random variables from Box-Cox distribution with λ = 0.5 and ρ = 0.9 µ = 2 and σ = 1.

3.3.2 Multivariate case
We generate Y1, ... , Yp from T Np(µ, σ2, ai, bi) and derive the Cholesky decomposition of the
covariance matrix, Σ, then use of a lower triangular matrix L to simulate truncated normal
distribution with desired covariance matrix. Denote Yi be an independent vector with right
truncation point bi = (b1, ..., bp). To determine the Z-boundaries of a given space, Yi can be
easily computed in the boundary functions ai and bi. Therefore

Y1 = L11Z1,

Y2 = L21Z1 + L22Z2,

...

Yp = Lp1Z1 + Lp2Z2 + ... + LppZp.

(3.9)

Assuming the constraints for variables Y1 ≤ b1 and Y2 ≤ b2, consequently it can be expressed
by,

Z1 ≤ L−1
11 b1,

Z2 ≤
(
b2 − L21L−1

11 Y1

)
L−1

22 .
(3.10)

In general, the formula can be written for p-dimensional random variable at a multivariate
truncated points bi , i = 1, ..., p as,
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Zi ≤ L−1
ii

bi −

i−1∑
j=1

Li jZ j

 , (3.11)

where Z j = L−1
j j

(
Y j −

∑i−2
k= j−i L jkZk

)
. This algorithm can be extended for two-sided truncated

multivariate normal distribution as,

L−1
ii

ai −

i−1∑
j=1

Li jZ j

 ≤ Zi ≤ L−1
ii

bi −

i−1∑
j=1

Li jZ j

 . (3.12)

Cholesky Algorithm for TMVN

We here propose the generalized algorithm using matrix factorization,

• Step 1: Generate u1, ..., un from uniform distribution u ∼ U[0,1].

• Step 2: Given a symmetric positive definite covariance matrix, Σp×p, n, a, b.

• Step 3: Compute lower triangular Cholesky factor L from Σ = LLT .

• Step 4: Boundary intervals can be presented as [ai, bi] where truncated domain defined
for i = 1, ..., p.

• Step 5: Set Zi = Φ−1 (αi + u(βi − αi)) for i = 1, 2, ..., p.

where αi = Φ
(
L−1

ii (ai −
∑i−1

j=1 Li jZ j)
)

and βi = Φ
(
L−1

ii (bi −
∑i−1

j=1 Li jZ j)
)
.

• Step 6: Obtain Z j by Z j = L−1
j j

(
Y j −

∑i−2
k= j−i L jkZk

)
.

3.4 General Linear Time Series
Let zt, t = 1, ..., n, be an ergodic stationary Gaussian time series with mean µ and autocovari-
ance (acvf) function γk = Cov(zt, zt−k) , k = 0, ..., n − 1. Suppose for a given observed series of
size n, autocorrelation (acf) be specified by ρk = γk/γ0, and the covariance matrix of zt can be
obtained by,

Γn = γi− j, (3.13)

where the (i, j) entry is denoted in the n × n matrix. The general linear process (GLP) model
can be written, in general, as

zt = µ + at + Ψ1at−1 + Ψ2at−2 + ...., (3.14)
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where at, t = 1, 2, . . . is a sequence of independent normal random variables with zero mean
and σ2

a variance and ΣkΨ
k < ∞. A general ARMA(p,q) model is given by,

zt = φ0 +

p∑
i=1

φizt−i + at −

q∑
i=1

θiat−i, (3.15)

where at ∼ IID(0, σ2
a). Let us assume that ARMA(p,q) model is of the form

φ(B)(zt − µ) = θ(B)at, (3.16)

where φ(B) = 1 − φ1B − φ2B2 − ... − φpBp and θ(B) = 1 − θ1B − θ2B2 − ... − θqBq where B
is a back-shift operator on the index of the time series. ARMA(p,q) can be specialized as a
pth-order autoregressive process and a moving average process of order q. Thus, zt and zt−k

can be jointly distributed as bivariate normal distribution.
This model can also be defined as,

φ(B)zt = ζ + θ(B)at, (3.17)

where ζ is the intercept parameter is ζ = φ(1)µ. The essential requirement for stationary and
invertibility is that all roots of the polynomial equation φ(B)θ(B) = 0 lie outside the unit circle
where B is a complex variable in this equation. We will further proceed to examine the station-
ary and invertible autoregressive fractionally integrated moving average ARFIMA(p,d,q) where
the model equation can be expressed in general as 5dφ(B)zt = ζ+θ(B)at for | d |< 1/2, and also
φ(B) and θ(B) have the same properties as defined for ARMA process. In R software, a negative
of the moving average coefficients is widely used, following by θ(B) = 1+θ1B+θ2B2+...+θqBq.

In ltsa package, the Durbin-Levinson and Davies-Harte algorithms used to simulate General
Linear Process in time series [McLeod et al., 2007]. In this section, we introduce the algorithm
to generate Box-Cox time series by the given autocovariance function (acvf) γk = Cov(zt, zt−k)
and the covariance matrix specified by Γk. Simulation of truncated normal distribution by
employing Cholesky decomposition is exact method. We define the optimal one-step-ahead
forecast of zn+1 that is given by,

ẑn+1 = E(zn+1|z1, ..., zn) = µ + φn1(zn − µ) + ... + φnn(z1 − µ), (3.18)

where

Γn(φn1, .., φnn) = γn. (3.19)

Durbin-Levinson algorithm provides a fast solution to the linear prediction problem and it is
used to generate general linear Gaussian time series with given covariance matrix [Brockwell
and Davis, 1991]. Durbin-Levinson solves by only using O(n2) arithmetic operations as op-
posed to the O(n3) operations in Cholesky factorization.
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3.5 Simulation of Box-Cox Time Series
In this section we mention some further applications and extensions of the Levinson algorithm.
To simulate the Box-Cox time series, using the fact that Box-Cox and its inverse transformed
data have truncated normal distribution. We design a simulation procedure based on generating
initial values obtained by matrix factorization in order to avoid bias.

3.5.1 BoxCoxAR(1) Time Series Analysis
In fact, a simple time series model may be useful to illustrate the contribution of exact Box-Cox
analysis in the field of time series. The simple autoregressive model, AR(1) be as follows,

zt = φ0 + φ1zt−1 + at, (3.20)

where at assumed to be white noise series with mean zero and varianceσ2
a. Under the stationary

condition, we can define zt from Box-Cox distribution. Hence, the mean and the variance of zt

are given by,

E(zt) = µ,

Var(zt) =
σ2

a

1 − φ2
1

.
(3.21)

If we assumed that the latent series as z1,..., zn, then the joint probability density function can
be written as,

f (z1, ..., zn) = f (z1) f (z2|z1) f (z3|z2)... f (zn|zn−1). (3.22)

Consequently, the conditional distribution f (zt|zt−1) for t = 2, ..., n is normal with mean µt =

µ + φ(zt−1 − µ) and variance σ2
a.

In the first step, we consider AR(1) model to simulate the Box-Cox transformed time series
and its inverse in the original domain. Hence, we have

(z(λ)
t − µ) = φ(z(λ)

t−1 − µ) + at, (3.23)

where at ∼ N(0, σ2
a).

Assuming that z(λ)
t series are stationary, then we can denote z(λ)

t = wt with non-zero mean. The
initial value, w1, obtained from w1 ∼ T N(µ, σ2

a
1−φ2

1
, a, b). Hipel and McLeod [1994] suggested

to employ WASIM1 or WASIM2 algorithms to compute w1 in order to eliminate bias. φ1 is
estimated by data or given. Next, we can generate wt from the past time series wt−1 and at is
simulated by computer.
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We illustrate a simulated BoxCoxAR(1) model with left truncation point at −λ−1 where
λ = 0.25, 0.5, 0.75, 1. Then, time series of length n = 500 with µ = 0 and σa = 1 and φ = 0.8 is
shown in Figure 3.3. Figure 3.4 displays a simulated BoxCoxAR(1) with µ = −10 and various
λ < 0. As can be seen in Table 3.1, the different values of the Box-Cox transformation lead to
change in the forecasts and its standard deviations.
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Figure 3.3: Comparison between the simulated BoxCoxAR(1) time series with different Box-
Cox transformations λ = 0.25, 0.5, 0.75, 1.

φ = 0.8 φ = −0.8

lambda Forecast Standard deviation of forecast Forecast Standard deviation of forecast

0.25 1.494 2.936 2.623 2.984
0.5 1.214 1.515 2.176 1.698
0.75 1.139 1.076 1.870 1.338
1 1.123 0.877 1.653 1.119

Table 3.1: Forecasts and their standard deviations at lead time l = 1 for fitted AR(1) model to
simulated time series.
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Figure 3.4: Comparison between the simulated BoxCoxAR(1) time series with different Box-
Cox transformations λ = −0.25,−0.5,−0.75,−1.

3.5.2 Simulate Sunspot Time Series Model

The statistical model for yearly sunspot numbers from 1700 to 1988 are used to make com-
parison in the transformed and original domain. Using FitAR, we fit a constrained AR(9) to
the sunpot numbers. Parameters estimates are given below. Approximate Box-Cox analysis
produced λ̂ = 0.463. Since k � 99%, and an exact Box-Cox approach would gives virtually
the same results.

The series was simulated using the rejection algorithm. Series of length n = 104 generated.
The rejection algorithm was used 106 times, that is, about 1% of the time.

Box-Cox AR(9) Gaussian Simulation

We use the accept-reject algorithm as in Robert [1995] to simulate a realization with n = 104

observations from the subset AR(9) model that was fitted using our R script. We simulate
a long time series so that we may make accurate comparisons with the expected theoretical
autocorrelation and the sample values. Also we examine histogram of the marginal distribution
of the data.

We found that the rejection algorithm was needed 118 times during the 104 simulations
which agrees approximately with our expected value 1 − κ = 1.7%.

We can compare the original data with the simulated data in the original data domain as
illustrated in Figures 3.5 and 3.6.
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Figure 3.5: Simulated sunspot time series.
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Figure 3.6: Yearly sunspot time series

We compare the theoretical and sample autocorrelations. As expected the agreement is
satisfactory.

The theoretical specification for the autocorrelation in the original domain was derived by
Granger and Newbold [1976] using Hermit polynomial expansion and it is quite complicated.
Alternately, we can estimate the theoretical or expected autocorrelation by simulation. The
autocorrelation function of this nonlinear time series can be compared with expected autocor-
relations from the corresponding linear process.

The theoretical and sample autocorrelations of simulated Box-Cox Gaussian time series are
discussed in Figures 3.7 and 3.8.
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Figure 3.7: Theoretical and sample autocorrelations for simulated Box-Cox transformed time
series.
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Figure 3.8: Theoretical and sample autocorrelations for simulated back-transformed time se-
ries.

Forecastability

Let {yt} be a covariance stationary time series with autocovariance function {γk} and let Γn =

(γi− j)n×n be the covariance matrix of n successive observations, z1, . . . , zn. Then assuming there
is no deterministic component, so E {yt} = 0, then there exists a linear process so that we may
write,

yt = at + ψ1at−1 + ψ2at−2 + . . . (3.24)

where at are the white noise innovation with variance σ2
a. An accurate approximation to the

innovation variance is given by

σ2
a =

det (Γn)
det (Γn−1)

(3.25)

for n large enough. In the case of the sunspot AR(9) model, n = 100, is large enough to obtain
a highly accurate approximation. The coefficient of forecastability [Granger and Newbold,
1976] may be written,

R2 = 1 −
σ2

a

σ2
y

(3.26)

where σ2
y = γ0 is the variance of the time series.

We fit the subset AR(9) model and after Box-Cox analysis, we obtain the fitted model,

zt = y(λ̂)
t (3.27)

and
wt = zt − z̄ (3.28)

Hence, we have
wt = 1.245wt−1 − 0.527wt−2 − . . . − 0.202wt−9 + ât (3.29)
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where σ̂a = 2.060771, z̄ = 10.903 and λ̂ = 0.463.
Using this fitted model we evaluated the coefficient of forecastability for the Box-Cox trans-

formed model and obtained R2
z = 88.8%.. Then we back-transformed the simulated series and

computed the coefficient of forecastability in the original data domain to obtain R2
y = 86.1%.

This agrees with the findings of Granger and Newbold [1976]. In general the result of Granger
and Newbold [1976] can be interpreted to say that if the correct model is found after a suitable
Box-Cox transformation then its coefficient of forecastability is larger than a suitable model
that could be fit in the original data domain.

As we can see from Table 3.2, both the empirical simulation and theoretical probability
computation indicate about 90% of the inverse transformation is invalid. Empirically we find
the true kappa based on 104 simulations shown in Table 3.3.

λ ξ 1 − κ simulation

sunspot.year 0.463 -2.307 0.011 0.872

Table 3.2: The theoretical probability of invalid back transform

κ̂ 95% MOE

sunspot.year 0.983 0.003

Table 3.3: The true kappa based on 10,000 empirical simulations.

3.5.3 Exact Simulation of BoxCoxAR(p)
Simulation of AR and ARIMA models can be obtained in terms of non-Gaussian innovations
from built-in R function. Initial values randomly computed from the specific model equa-
tion. McLeod [1975] pointed out to use an exact method for Gaussian time series in order to
handle the length of burn-in period. A proposed algorithm can be employed to simulate the
BoxCoxAR(p) for Gaussian process. Assuming that the initial time series values z1,..., zp are
obtained from multivariate truncated normal distribution with mean (µ, ..., µ) and covariance
matrix Γk = (γi− j)p×p by using Matrix factorization. Then, we can compute the remaining
values from the model equation recursively for t = p + 1, ..., n as,

zt − µ = φ1(zt−1 − µ) + ... + φp(zt−p − µ). (3.30)

This simulation approach is based on given autocovariance and autocorrelation function for
Box-Cox transformed Gaussian time series. The following algorithm presents the exact simu-
lation of stationary AR(p) models.

• Step 1: Given autocovariance function (acvf) γk = Cov(zt, zt−k) , k = 0, ..., p − 1 or any
desired covariance matrix, Γk.
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• Step 2: Determine the lower triangular matrix L by Cholesky decomposition for Γk =

LLT .

• Step 3: z1, ..., zt, t = 1, ..., p, can be generated from the exact Box-Cox Normal Distribu-
tion.

• Step 4: Obtaine y1, ..., yp using eqn. (3.32) in the transformed domain.

• Step 5: Simulate the transformed time series from eqn. (3.30), and then the Box-
CoxAR(p) model is computed in the untransformed domain.

Γk = LLT =


γ0 γ1 γ2 . . . γp−1

γ1 γ0 γ1 . . . γp−2
...

...
...

. . .
...

γp−1 γp−2 γp−3 . . . γ0

 , (3.31)

and

Yt = LZt. (3.32)

3.5.4 Numerical Example
Figure 3.9 illustrates the time series plot for Ninemile series. The Ninemile time series consists
of n = 771 observations of the annual treeing width measurement on Douglas fir at Nine Mile
Canyon, Utah from 1194 to 1964. We will employ the Box-Cox transformation in order to
improve a statistical model.
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Figure 3.9: Time series plot of Ninemile time series
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Figure 3.10: Box-Cox analysis produced by BoxCox(Ninemile) for fitted AR(1).

Figure 3.11: Graph from boxcox for fitting ARp(1, 2, 6, 9) to Ninemile series.
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λ κ failure probability

Ninemile 0.675 0.999246 0.075%

Table 3.4: The κ and the probability of the Box-Cox normal approximation is failed shown for
Ninemile time series.

Figure 3.10 displays the log-likelihood as a function of the power parameter, λ. The maxi-
mum occurs at λ = 0.675, but a power transformation with λ = 0.5 is not within the confidence
interval for λ. We will take Box-Cox optimal transformation of the Ninemile values for further
analysis. The results in Table 3.4 show that κ � 1, hence there is very slightly failure for each
of the 10000 simulations. It can be used a built-in function SelectModel to determine the best
ARp model. For the Ninemile time series, we fit the ARp(1, 2, 6, 9) model by least-squares
using FitARp. In this case, the output from FitARp obtained and the MASS boxcox() built-in R
function employs approximate log-likelihood corresponding to linear regression as illustrated
in Figure 3.11. The difference in Figure 3.10 and 3.11 is not significant. As we can see, both
plots strongly suggested the approximately same optimal transformation.
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Figure 3.12: Box-Cox transformed of Ninemile in transformed scale illustrated in first panel,
and also simulation of transformed Ninemile series from fitted AR(1) model via bootstrap
method as shown in the second panel.
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Figure 3.12 illustrates BoxCox(Ninemile) and simulated a fitted AR(1) to Box-Cox trans-
formed Ninemile, λ̂ = 0.675. In fact, the parameter estimates in Ninemile series are used to
simulate time series from AR(1) model. We generate a time series from BoxCoxAR(1) model
in transformed domain, and then fitted the AR(1) model to the Box-Cox transformed simulated
data. We examine the estimated residuals and try to evaluate power transformation and deter-
mine the 95% confidence interval of λ by bootstrap simulation. In Figure 3.13, the transformed
actual Ninemile and simulated series in transformed scale are shown.

To compare the performance for some measures of forecast accuracy, we see from Table
3.5 that accuracy measures for simulated series are very close to the Box-Cox transformed
Ninemile. If we compare the log-likelihood for Ninemile data with simulated data after fitting
AR(1) model, it seems that similar results can be obtained.
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Figure 3.13: Comparison of Box-Cox transformed Ninemile series and simulated Box-Cox
transformed in the transformed data domain.

Accuracy measure BoxCoxAR(1) BoxCox(Ninemile)

RMSE 8.98 9.17
ME 0.006 0.002

MAE 7.23 7.44
MASE 0.85 0.86

Table 3.5: Different accuracy measures for simulated Box-Cox transformed AR(1) series and
Box-Cox transformed Ninemile.
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3.6 Modified D-L Algorithm for Box-Cox Time Series
This section focuses on the simulation of BoxCoxARMA model using the Durbin-Levinson
procedure. Brockwell and Davis [1991] proposed Durbin-Levinson approach to generate Gaus-
sian time series with a given covariance structure. We first describe an algorithm of generating
a linear time series proposed by McLeod et al. [2007, 2012] based on the Durbin-Levinson al-
gorithm [Brockwell and Davis, 1991]. The recursive algorithm that is discussed in this section
is applicable to determine the best linear predictor of zk+h in terms of zk,..., z1. Define vk as the
variance of the k step linear predictor. Let,

φ1,1 = γ1/γ0, (3.33)

and

v1 = (1 − φ2
1,1)v0, (3.34)

where γ0 = v0. Then we can recursively obtain the coefficients φk,1, ...,φk,k from the equations,

φk,k =

γk −

k−1∑
j=1

φk−1, jγ(k − j)

 /vk−1, (3.35)


φk,1
...

φk,k−1

 =


φk−1,1
...

φk−1,k−1

 − φk,k


φk−1,k−1

...
φk−1,1

 . (3.36)

and

vk = (1 − φ2
k,k)vk−1. (3.37)

Suppose zt is a zero mean stationary time series with autocovariance function γ(.), then we can
predict the h step-ahead predictor based on the previous observations as follows,

ẑk+1 = φk,1zk + ... + φk,kz1. (3.38)

An equivalent formulation for ARMA(p,q) with given autocovariance function, γ0, ..., γk−1 for
k = 1, ... , n is defined by,
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zk = φk−1,1zk−1 + ... + φk−1,k−1z1 + ak. (3.39)

Assuming the initial value in Durbin-Levinson generated by truncated normal distribution with
the truncation point depended on T = −1/λ. Then, we can show that z1, z2, ... , zn are
recursively simulated,

z1 ∼ T N(λ)(µ, γ0),
z2 = φ1,1z1 + a2,

z3 = φ2,1z2 + φ2,2z1 + a3,

...

zn = φn−1,1zn−1 + ... + φn−1,n−1z1 + an.

(3.40)

where σ2
z = γ0. This model can be written, in general, as

µn = φn−1,1zn−1 + ... + φn−1,n−1z1,

zn ∼ T N(λ)(µn, σ
2
a).

(3.41)

where n = t.

Simulation Algorithm

• Step 1: Given autocovariance function γk for k = 0, 1, ..., n − 1 by using with σ2
a.

• Step 2: Using Cholesky decomposition, Γk = LLT , to compute a lower triangular matrix.

• Step 3: Simulate e1, ..., ep from the Box-Cox Normal distribution with none-zero-mean
and σ2

a variance.

• Step 4: Generate initial value, z1, ... , zp by using zt =
∑t

k=1 Lt,kek for t = 1, ..., p.

• Step 5: Obtain zp+1, ... , zn time series, using Durbin-Levinson algorithm as,

zt = φt−1,1zt−1 + ... + φt−1,t−1z1 + at, t = p + 1, 2, ..., n. (3.42)
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Figure 3.14: Simulate the BoxCoxARMA time series with λ = 1.
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Figure 3.15: Simulate the BoxCoxARMA time series with λ = 0.5.
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3.7 Appendix. Simulation of Time Series
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Figure 3.16: Simulate the transformed GuassianBoxCoxAR series with λ = 0.5.
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Figure 3.17: Simulate the GuassianBoxCoxAR time series with λ = 0.5 in the original domain.



68 Chapter 3. Box-Cox Time Series

Time

z

0 200 400 600 800 1000

−
6

0
−

2
0

2
0

6
0

Figure 3.18: Simulate the transformed GuassianBoxCoxAR series with λ = 1.
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Figure 3.19: Simulate the GuassianBoxCoxAR time series with λ = 1 in the original domain.
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Conclusion

4.1 Summary of Transformations and Machine Learning
The main focus of machine learning (ML) is prediction. Box-Cox analysis provides a paramet-
ric approach to embed a Gaussian statistical model in a larger non-linear model which includes
a continuous family of power transformations. It was demonstrated by Box and Cox [1964]
that this method simplified the model by removing skewness as well as nonlinearities including
interactions and heteroskedasticity. This suggests that perhaps a transformation may improve
predictions from an ML model such as random forest (RF) when the output variable is skewed.
Since we will not be using likelihood method to estimate the transformation, we consider the
simple family of power transformations,

Y (p) =

Y p, p , 0,
log(Y), p = 0.

(4.1)

and its inverse,

Y =

(Y (p))1/p, p , 0,
exp(Y (p)), λ = 0.

(4.2)

This power transformation is recommended when the output variable, y, has a skewed distri-
bution and y > 0. In this situation, the usual mean-square error criterion

MS E(Y, Ŷ) = E
[
(Y − Ŷ)2

]
, (4.3)

is less appropriate. When the output is not close to zero, y > 0, the mean absolute percentage
error

MAPE(Y, Ŷ) = E
[
|Y − Ŷ |

Y

]
, (4.4)

is often used. In practice, the MSE and MAPE are estimated by using sample averages. Other
criteria may also be considered depending on the underlying problem. The power transfor-
mation may be carried in the cross-validation stage by evaluation possible values of p on a
grid and selecting the transformation that provides the most accurate MAPE prediction in the
original data domain. The steps are outlined as follows,

69
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• Step 1: Verify that output variable is skewed and that when the ML algorithm applied to
the data, the residuals are also skewed.

• Step 2: Select values of p. For example we may take p = 1, 1/2, 1/3, 0,−1/2.

• Step 3: Transform the output variable using eqn. (4.1) and apply the ML algorithm to
obtain predictions in the transformed domain.

• Step 4: Apply the inverse transformation in eqn. (4.2) to obtain predictions in the origi-
nal data domain.

• Step 5: Evaluate the average prediction error (EPE) using a suitable criterion.

• Step 6: Repeat Step 3-5 for each p and select the best p which provides the best predic-
tions.

After the optimal p is found on the training data, the training EPE is compared with the test
EPE to check for overfitting.

4.1.1 Application to Boston Housing dataset
The Boston Housing dataset is provided available in R (Boston::MASS) as well as in the cu-
rated datasets in Mathematica.

The original researchers were interested in explaining what factors were important in de-
termining the median value of owner-occupied houses in the city and suburbs around Boston.
Average aggregate data were obtained for n = 506 Boston suburbs for 14 variables. The box-
plot of the output variable, median value of owner-occupied house, is skewed to the right as
illustrated in Figure 4.1.

Figure 4.1: Median House Price, Training set shown.

Figure 4.2 demonstrates that the residuals in both the training and test samples are positive
skewed as might be expected from Figure 4.1. Hence, a transformation might improve the
accuracy of the predictions even in the original data domain.



4.1. Summary of Transformations andMachine Learning 71

Training Data Test Data

-10

-5

0

5

10

15

20

25

M
ed
ia
n
H
ou
se
V
al
ue

Boxplot of Train/Test Residuals

Figure 4.2: Boxplot of the Training and Test residuals for random forest.

Comparing random forest with multiple linear regression on the training and test dataset
it was found that random forest usually performs much better than linear regression. We see
from Table 4.1 that RF seems to outperform Linear Regression even with no transformation.
Table 4.1 compares the RMSE for linear regression and RF using an average of 102 iterations.

Training Data Test Data

Linear Regression 4.4 5.8
Random Forest 2.4 4.1

Table 4.1: RMSE comparison using average of 100 replications.

Figure 4.3: RMSE shown for random forest based on 100 replications.

As can be seen from Figure 4.3 and Table 4.1 the interquartile range is reasonably narrow
so about half the time the predictions are very good. However, Figure 4.3 shows that there
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is a long-right tail to the output from the RF method producing RMSE’s that are very large
indicating poor quality predictions for that iteration. This is a serious drawback not shared
by more deterministic algorithms such as linear regression, artificial neural nets and support
vector machines. As we can see from Table 4.2, RF is better than regression. The predictions
for RF were based on 100 replications of the RF and averaging all 100 predictions.

Training Data Test Data

Linear Regression 16.0 17.6
Random Forest 7.9 11.5

Table 4.2: MAPE comparison using average of 100 replications for linear regression and ran-
dom forest.

RF predictions based on 1000 replications for various power transformations are shown in
Table 4.3. Table 4.3 reveals that p = −0.5 produces the smallest average MAPE in the training
data. For simplicity a log transformation can be used and the expected improvement in MAPE
is about 7.6%. This improvement is also statistical significant as shown by 95% MOE given in
Table 4.4.

p Training Data Test Data

1. 7.98 11.58
0.5 6.59 10.97

0.25 6.37 10.80
0. 6.25 10.70

-0.25 6.17 10.69
-0.5 6.14 10.73
-1. 6.31 10.91

Table 4.3: MAPE various power transformation for random forest.

p Training Data Test Data

1. 0.553 0.666
0.5 0.503 0.649

0.25 0.494 0.644
0. 0.490 0.641

-0.25 0.486 0.640
-0.5 0.485 0.642
-1. 0.492 0.647

Table 4.4: 95% MOE for estimates shown in Table 4.3.
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4.2 Concluding Remarks
This thesis demonstrates that in some situations that exact Box-Cox likelihood analysis may
provide a better approach than is currently used. Research to develop a more efficient and
specialized optimization algorithm to obtain the exact profile log-likelihood is needed. To this
end, we investigated the EM algorithm but were not able to obtain satisfactory convergence
with this method for practical use. The work on the EM algorithm is summarized in Chapter 2.

More extensive simulations are also warranted to investigate the overall performance of the
exact Box-Cox maximum likelihood estimates. It was pointed out that asymptotic theory is to
provide insufficient guidance for all situations since the assumption that the term −n log κ can
be neglected asymptotically is not generally valid. Bootstrapping and Monte-Carlo statistical
tests provide a better alternative for statistical inference on the parameter λ and here it is helpful
to use our exact approach to random sampling from the exact Box-Cox Data Distribution. As
is shown in Chapter 3, simple rejection algorithms are impractical when Box-Cox methods are
used with time series models.

It is evident that the simulation experience results are not affected by the exact Box-Cox
Data Distribution in the case κ is close to 1. Further, we presented that in forecasting and sim-
ulation, truncation is likely significant, especially by using bootstrapping and cross-validation.
As a result, the probability of failure may lead to loss the accuracy in analysis and forecast-
ing. Regarding forecasting’s concept, it seems that the reasonable unbiased forecast may be
involved by using the correct distribution and the specific loss function.

In Chapter 3, we provide an efficient and direct algorithm via matrix factorization to gen-
erate the random variables from truncated normal distribution. The proposed simulation algo-
rithm is more generalized for any covariance structure compared to Robert [1995]. Indeed, an
iterative algorithm may deal with computational difficulty of convergence for multidimensional
simulations. The fact that rejection sampling can be delicated to the probability of acceptance.
With regard to time series models, the dependence assumption means that the computational
demands of rejection method are even more sensitive to κ.

Later, the simulation approach is illustrated with an application to the Box-Cox time series.
Moreover, the modified Durbin-Levinson recursions are extended to simulate a stationary Box-
Cox time series given any desired autocovariance function. It is also shown that the BoxCoxAR
and BoxCoxARMA models would be affected by λ and also the location parameter varies as
the Box-Cox transformation changes.

Finally, we apply the power transformation for random forest and discover the improvement
in the accuracy of the prediction when cross validation used to estimate the optimal transforma-
tion. Predictive performance of other ML algorithms such as MARS, SVM, MLP regression
may sometimes be improved using power transformation.

In future, we will investigate the optimal forecast for the Box-Cox time series and any
desired loss function.
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