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Abstract 

The palmaris longus (PL) and palmaris brevis (PB) are upper limb muscles 

considered atavistic remnants of those found in animal species. Despite their use in 

surgical grafting and tendon transfer procedures, the functional role of the PL and PB 

have not been investigated comprehensively in vivo. Using a multi-modal experimental 

approach consisting of indwelling fine wire electromyography (EMG), ultrasonography 

and immunohistochemical muscle staining techniques, the function of the PL and PB in 

the hand was evaluated both in in vivo and in situ. 

The purpose of Study 1 was to determine whether the PL provides synergistic 

contributions to thenar contractions by recording PL muscle activity using indwelling 

EMG during thumb movements; and to quantify changes in PL muscle architecture using 

ultrasonography. This study supports morphological observations indicating the PL acts 

as an extrinsic hand muscle in enhancing thenar muscle actions. 

The purpose of Study 2 was to compare the proportion of type I and type II 

muscle fibers in the abductor pollicis brevis (APB) based on its morphological 

relationship with the PL tendon for indirect insight into the functional synergy, 

contractile capacity and digastric arrangement amongst contiguous APB and PL 

musculature. The results indicate that APB fascicles arranged in a digastric relationship 

with the PL have greater type II fiber type proportions, which support observations of 

greater thenar abduction strength attributed to PL musculature.  

The purpose of Study 3 was to investigate PB EMG activity during dynamic 

grasping tasks, and to quantify its changes in muscle morphology using ultrasound 

imaging. The results indicate that the PB is voluntarily activated during prehensile 

movements of the hand with significant changes in muscle architecture, which supports 

its proposed protective role as a muscular barrier to neurovasculature within the ulnar 

canal. 
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The purpose of Study 4 was to histologically examine the PB by determining the 

proportion of type I and type II muscle fibers using immunohistochemistry. The results 

indicate that the PB is composed primarily of type I muscle fibers (>70%), which may 

allow the PB to contract for prolonged durations during repetitive intermittent grasping 

tasks based on its fiber type profile.  

Keywords 

Clinical Anatomy; Electromyography, Functional Anatomy, Immunohistochemistry, 

Muscle Histology, Muscle Function, Palmaris Brevis, Palmaris Longus, Ultrasound 

Imaging  
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Chapter 1  

1 General Introduction 

1.1 Functional Anatomy: A Brief Historical Overview 

A comprehensive study pertaining to muscle structure and function would be 

incomplete without recognition of Andreas Vesalius, the 16th Century anatomist, denoted 

by scholars as the “father” of modern human anatomy and author of the historical text, 

De Humani Corporis Fabrica (On the Fabric of Man). The anatomical observations 

made by Vesalius were greatly improved over his predecessor, Galen, whose anatomical 

observations were based primarily on animal dissections and not of human corpses. A 

new field, electrophysiology, emerged from Galvani’s observations of twitch contractions 

in frog legs upon electrical stimulation (Galvani, 1791). The French medical doctor, 

Guillaume Duchenne, made further contributions into muscle function by investigating 

movements produced by faradic stimulation of individual muscles (Duchenne, 1959).  

Through historical anatomical and physiological investigations, the method of 

electromyography became a modern day tool for anatomists, kinesiologists, neurologists 

and orthopedic surgeons in studying muscle function (Basmajian, 1974). Basmajian 

(1980) wrote, “structure and function are inseparable, and each supports the other. Only 

by appreciating the functions of muscle tissue, individual muscles and muscle groups can 

we appreciate the complexities of structure”. Today, individual muscle function can be 

revealed through a variety of modern techniques including functional imaging, 

histological muscle properties, and electromyographical recordings. From a functional 

and evolutionary perspective, two human upper limb muscles, the palmaris longus and 

palmaris brevis, are considered remnants of those more developed in animal species 

(Jones, 1920). Although Vesalius may have first recorded the absence of the palmaris 

longus in man in 1543 (Brinkman and Hage, 2016), he overlooked the palmaris brevis 

altogether in his classical dissections (Tubbs et al., 2007). Although their morphological 

appearance has been comprehensively studied, the functional anatomy of the palmaris 

longus and palmaris brevis in the human hand has yet to be explored.  
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1.2 Palmaris Longus 

1.2.1 Anatomy 

The PL is among four superficial forearm muscles of the common flexor mass 

originating from the medial epicondyle of the humerus (Moore et al., 2014). The PL is a 

fusiform muscle consisting of a characteristically long thin tendon that terminates into the 

palmar aponeurosis in the hand (Gilroy, 2013; Moore et al., 2014). Known for its variant 

morphology, the PL has been observed in several forms consisting of reversed 

(Backhouse and Churchill-Davidson, 1975), or duplicated PL muscle bellies (Pai et al., 

2008), and may terminate in aberrant tendon insertions (Stecco et al., 2009). Moreover, 

the PL is absent in approximately 14% of the population worldwide (Moore et al., 2014); 

however, the incidence of PL agenesis may vary remarkably by geographical region as 

observed in Turkish (63.9%) (Ceyhan and Mavt, 1997) and Korean populations (0.6%) 

(Ahn et al., 2000). Although bilateral PL agenesis is common, unilateral presence of PL 

musculature can be limited to either the left or right limb (Eric et al., 2011; Reimann et 

al., 1944). Furthermore, PL absence may be related to hand dominance with PL absence 

observed more frequently in the non-dominant hand (Eric et al., 2011). Investigation of 

familial PL inheritance patterns in a Brazilian population indicated that PL presence is an 

autosomal dominant trait; however, the exact genetic mechanism of inheritance remains 

unclear as the study demonstrated variable expressivity in parents with bilateral PL 

presence generating children with unilateral PL absence (Morais et al., 2013). From a 

phylogenetic perspective, the PL may be undergoing an evolutionary recession in humans 

(Montague, 1947). 

1.2.2 Function 

Classically, the PL is described as a weak wrist flexor and tensor of the palmar 

aponeurosis. The tension applied to the palmaris aponeurosis may anchor the palmar skin 

and fascia to protect against horizontal shear forces when grasping various implements 

(Standring and Gray, 2008). Although the PL is routinely harvested as an autologous 

tendon graft in several surgeries such as facial reconstruction (Jeng et al., 2004), ulnar 
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collateral ligament reconstruction (“Tommy John Surgery”)(Cain and Mathis, 2016), and 

palmar opponensplasty (Camitz, 1929; Rymer and Thomas, 2016), several functional and 

surgical studies have indicated that PL function may extend beyond roles such as a weak 

wrist flexor and tensor of the palmar aponeurosis. Although no differences in grip 

strength were observed between individuals with and without PL musculature (Sebastin 

et al., 2005), the PL may contribute significant strength to the thenar eminence based on 

its morphological relationship with the abductor pollicis brevis (APB). Gangata et al. 

(2010) compared thumb abduction strength between contralateral limbs in individuals 

with unilateral PL musculature. After accounting for differences in hand dominance, 

significantly greater thenar abduction strength was observed in the hand possessing the 

PL muscle (Gangata et al., 2010). Cadaveric morphological studies indicate that the PL 

terminal tendon serves as an origin to fascicles of the APB (Fahrer, 1973a, 1977; Simard 

and Roberge, 1988), which may provide the physical means for the transmission of force 

from the PL to the thenar eminence. Although the morphological relationship between 

the PL and APB has been described, there is a paucity of functional evidence of the PL in 

thenar function in vivo.  

To date, the functional evidence supporting the PL in thenar contractions in vivo is 

limited to textbook descriptions (Kaplan, 1984), and brief conference proceedings 

(Fahrer, 1973b) that describe the PL as a synergist in thenar opposition and abduction 

movements. Furthermore, previous descriptions of electromyographic recordings of the 

PL during thenar abduction were recorded non-selectively over the skin surface and were 

likely confounded by signals of adjacent forearm musculature of the common flexor mass 

(Fahrer, 1973b). Therefore, the current understanding remains unclear whether the PL 

provides contributions to thenar movements.  
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1.3 Palmaris Brevis 

1.3.1 Anatomy 

Kaplan (1984) described the PB as the most mysterious muscle from a functional 

and developmental perspective. Located anterior to the hypothenar eminence, the PB 

originates from the palmar aponeurosis and inserts into the palmar skin and fascia of the 

ulnar aspect of the palm (Przystasz, 1977). Upon contraction, the PB produces visible 

dimpling along the ulnar aspect of the palm by drawing the skin radially. The supporting 

dorsal fascia of the PB contributes to the anterior wall of the piso-hamate tunnel, which 

contains both the ulnar artery and nerves (Shrewsbury et al., 1972). The PB is considered 

a phylogenetic remnant of the panniculus carnosus; an extensive sheet of skeletal muscle 

found in lower animal species (Bergman et al., 1985; Patil, 2013). The PB varies in 

morphological appearance and has been classified based on its development and course 

of muscle fibers (Przystasz, 1977). In a study of 104 upper limbs, the PB morphological 

variants were observed in almost equal frequencies with developed and regressive forms 

in 53 (52%) and 48 (48%) of cases, respectively. The developed forms of the PB can 

consist of one or more solid muscular plates, or muscle bundles, with the muscle fibers 

arranged either transversely or in a fan-shaped orientation (Przystasz, 1977). The 

regressive forms contain fewer muscle fibers that are interspersed in adipose tissue with a 

chaotic fiber arrangement (Przystasz, 1977). Absence of the PB was considered rare with 

only three extremities (2.9%) in which the PB could not be identified (Przystasz, 1977). 

Interestingly, no representative muscle fibers have been identified in the plantar fascia of 

the foot that could be considered homologous to the PB muscle (Jones, 1920). Despite 

comprehensive PB morphological investigations (Patil, 2013; Przystasz, 1977), there is 

lack of consensus in the literature regarding the functional role of the PB in the hand. 

1.3.2 Function 

From anatomical textbooks, the PB is purported to improve palmar grip by 

deepening the hollow of the palm thereby accentuating the hypothenar eminence (Moore 

et al., 2014; Standring and Gray, 2008); however, this has been questioned by some based 
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on comparative anatomy observations, in which, the PB persists in animal species 

incapable of palmar grasping (Shrewsbury et al., 1972). An alternative function proposed 

describes the PB in the protection of the neurovasculature of the piso-hamate tunnel 

during palmar compression and repetitive grasping (Przystasz, 1977; Shrewsbury et al., 

1972); however, PB muscle architecture has not been investigated during dynamic 

conditions to confirm whether the PB is capable of significant changes in muscle 

architecture to provide a presumed protective barrier.  Furthermore, the PB has been 

described as being under involuntary control (Eswaradass et al., 2014; Serratrice et al., 

1995), which may suggest a smooth muscle composition consistent with other panniculus 

carnosus muscle derivatives such as the dartos muscle and corrigutar cutis ani (Bergman 

et al., 1985; Patil, 2013). Although several functional roles of the PB have been proposed, 

these functions have been inferred from static cadaveric observations and have not been 

evaluated experimentally under dynamic contraction conditions in vivo.  

 

1.4 Skeletal Muscle Histology 

A skeletal muscle is composed of muscle fascicles, or bundles, containing 

multinucleated muscle fibers (Ross and Pawlina, 2011). Each muscle fiber may consist of 

up to 2000 myofibrils, which contain overlapping thick (myosin) and thin (actin) 

myofilaments that give skeletal muscle its characteristic striated appearance under light 

microscopy (Ross and Pawlina, 2011) (Figure 1.1). The actin and myosin are proteins 

bound between adjacent Z-lines within sarcomeres; the anatomical contractile units of 

myofibrils. Specifically, the myosin molecule is composed of two myosin heavy chains 

(MHC) and four myosin light chains. Each globular head of the myosin molecule 

contains an actin binding site and adenosine triphosphate (ATP) binding site responsible 

for cross-bridge formation and ATP hydrolysis, respectively (Ross and Pawlina, 2011). 

The myosin ATPase catalytic enzyme and MHC isoforms can provide a means for 

distinguishing muscle fiber identity. The basis for muscle fiber classification involves 
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identification of a specific enzyme or structural protein indicative of its contractile and 

metabolic function; however, not all methods are considered steadfast techniques. 
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Figure 1.1 Anatomical Organization of Skeletal Muscle 

(A) Gross structure and organization of skeletal muscle; (B) Histological appearance of 

skeletal muscle tissue; (C) Sarcomere structure and constituent myofilaments proteins: 

actin and myosin. Histological image inset from Hill (2018) 
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1.5 Muscle Function Determination Methods 

1.5.1 Muscle Fiber Type Classification 

Human skeletal muscles are composed of a heterogeneous fiber type composition 

resulting in a mosaic pattern of muscle fibers with differential physiological, metabolic, 

and biochemical properties. The fiber type heterogeneity within a skeletal muscle allows 

the tissue to adapt to a variety of functional demands. Several fiber type classification 

systems have been developed using histochemical (myosin ATPase), biochemical 

(oxidative enzymes), and immunohistochemical (MHC isoforms) staining techniques 

(Bottinelli and Reggiani, 2000) that provide insight into metabolic and contractile 

function of muscle fibers. Knowledge of the constituent fiber population of a given 

skeletal muscle can provide further insight into its functional specialization, especially if 

a predominant fiber type is evident.  

1.5.1.1 Myosin ATPase Fiber Type Classification 

 Histochemical staining utilizes by-products from chemical reactions occurring 

within the tissues as the means for fiber identification. In actin and myosin cross-bridge 

formation, ATP hydrolysis occurs on the ATP binding site on the myosin globular head 

(Figure 1.1), in which, myosin ATPase acts as catalyst according to the following 

reaction (MacIntosh et al., 2006): 

Mysosin ATPase 

ATP + H2O  ADP + Pi + H+ 

By reacting inorganic phosphate (Pi) with calcium through a series of steps to 

form calcium phosphate, a dark precipitate forms when further reacted with cobalt sulfide 

highlighting the metabolic activity of the muscle fiber. Importantly, by pre-incubating the 

muscle tissue in acidic or basic environments, the myosin ATPase activity can be 

inhibited in fast (IIa, IIx), and slow (I) fibers, respectively, thereby allowing for 

identification of different fiber types based on staining intensity (Brooke and Kaiser, 

1970). Using this technique, three original fiber types have been identified as type I, IIA, 
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IIB, and several other intermediate types; however, the classification system may be 

problematic as the staining intensities may be grouped differently depending on the 

researcher and procedures (Scott et al., 2001). Furthermore, myosin ATPase hydrolysis 

rates of fast fibers are two to three times greater than slow fibers; however, the myosin 

ATPase staining does not reflect the relative ATPase hydrolysis rates, but only their 

staining intensities (Scott et al., 2001). 

1.5.1.2 Biochemical Enzymatic Classification 

Biochemical techniques staining for oxidative mitochondrial enzymes, or 

glycolytic enzymes has led to classification of fibers based on their metabolic properties: 

slow-twitch (SO), fast-twitch oxidative (FOG), fast-twitch glycolytic (FG) (Scott et al., 

2001). Although type I fibers identified through myosin ATPase staining correlate with 

fibers relying on oxidative metabolism (slow-twitch oxidative), type IIA and IIB fiber 

classifications cannot be used interchangeably with FOG or FG fibers as they do not 

always correlate strongly with their metabolism (Scott et al., 2001) (Table 1.1). 

Unsuccessful fiber type classification using metabolic enzymes is largely due to the 

variability in aerobic/anaerobic enzyme activities, irrespective of the myosin ATPase 

fiber identity (Bottinelli and Reggiani, 2000). 

Table 1.1 Comparison of Muscle Fiber Type Classification Systems 

Table adapted from Scott et al. 2001 
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1.5.1.3 Immunohistochemical Identification of Myosin Heavy Chain 
Isoforms 

The functional and contractile properties of human muscles depend on the 

specific myosin isoforms found within their constituent muscle fibers. Using myosin-

specific antibodies, major human myosin isoforms have been identified, MHC I, MHC 

IIa, MHC IIx, which correspond to the myosin ATPase-based fibers (I, IIA, IIB) likely 

due to the globular myosin head acting as a molecular motor and the site of ATP 

hydrolysis (Scott et al., 2001) (Table 1).  From single muscle fiber studies, the 

complement of MHC isoforms is a major determinant of several functional fiber 

properties including shortening velocity, isometric tension, power, and ATP consumption 

(Schiaffino and Reggiani, 2011). Generally, all mammalian muscle fibers demonstrate an 

orderly increase in peak power (isometric tension x shortening velocity) from slow to fast 

myosin isoforms (MHC I < MHC IIa < MHC IIx) (Schiaffino and Reggiani, 2011). 

Furthermore, the ATP consumed per unit time and per unit tension is less in slow 

compared to fast MHC isoforms, which makes slow fibers more energetically suitable for 

maintaining tension for muscles of postural activity such as the soleus (>80% type I) 

(Johnson et al., 1973; Schiaffino and Reggiani, 2011).  

1.5.1.3.1 Myosin Heavy Chain Co-expression 

Muscle fibers expressing a single MHC isoform are considered pure fibers, 

whereas those fibers co-expressing multiple MHC isoforms within its sarcoplasm are 

considered hybrid fibers (Pette and Staron, 2001). Hybrid fibers demonstrate co-

expression of combinations of MHC isoforms (ex: I/IIa, IIa/IIx) and are often observed in 

aged muscle (Scott et al., 2001). In normal healthy aging, a progressive loss of muscle 

mass leads to a reduction in muscle function and reduces the functional capacity of 

elderly individuals in the performance of activities of daily living. Age-related muscle 

atrophy results from concomitant loss of type I and type II motor units with potential for 

preferential type II motor unit loss (Scott et al., 2001). The mechanism associated with 

MHC co-expression is reinnervation of “abandoned” muscle fibers by adjacent healthy 
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neurons, which may also lead to fiber type grouping (Hepple and Rice, 2016). In the 

vastus lateralis muscle tissue from aged people (>85y), fibers co-expressing type I/IIa and 

IIa/IIx MHC isoforms consisted of 29% and 22% of the fiber population, respectively 

(Andersen et al., 1999). Although muscle fibers co-expressing two isoforms have 

intermediate force-velocity properties compared to their pure counterparts (Bottinelli et 

al., 1996), the functional contributions of fibers with multiple MHC isoforms to whole-

muscle function remains unclear.  

1.5.1.3.2 The Motor Unit 

The former section described muscle fibers as independent structures; however, 

the functional unit of the neuromuscular system and the basis for electromyography is the 

motor unit: an alpha motor neuron and all the muscle fibers it innervates (MacIntosh et 

al., 2006). Importantly, the muscle fibers of a single motor unit are identical in fiber type 

and within the given muscle volume the fibers of single units are intermingled with other 

units, which contribute to the mosaic pattern observed upon fiber type staining 

(MacIntosh et al., 2006). From single motor unit studies, three types of motor units have 

been identified based on their contraction time, twitch force and histochemical fiber type 

appearance: S (slow contracting), FR (Fast, Fatigue Resistant), FF (Fast, Fatigable) 

(MacIntosh et al., 2006). The proportion of slow to fast motor units within a skeletal 

muscle will contribute to its overall muscle function based on their contractile and 

histochemical characteristics (Table 1.2). 
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Table 1.2 Motor Unit Classification 

 

Properties 

Motor Unit Types 

Slow (S) Fast (FR) Fast (FF) 

Fiber Identity SO / I  FOG / IIA FG / IIX 

Twitch Speed Slow Fast Fast 

Twitch Force Small Intermediate Large 

Fatigability Low Low High 

Red Color Dark Dark Pale 

Myoglobin High High Low 

Capillary Density Rich Rich Poor 

Mitochondria Many Many Few 

Glycogen Low High High 

Oxidative 

Enzymes 
High Medium-high Low 

FR: Fast fatigue resistant, FF: Fast fatigable, SO: Slow oxidative, FOG: Fast 

oxidative/glycolytic, FG: Fast glycolytic. Table adapted from MacIntosh et al. 

(2006) 
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1.5.2 Fine Wire Electromyography 

Electromyography (EMG) is a valuable technique for studying muscle activity 

and human movement (Kamen and Gabriel, 2010). Recording and comparing the 

summation of action potentials obtained from motor units during specific movements can 

be useful in determining muscle function. Gross muscle activity can be recorded using 

surface electrodes or more focused and stable motor unit recordings can be obtained 

using indwelling fine wire recording techniques. Although surface EMG is frequently 

used in research exploring human muscular actions, the EMG signals recorded at the skin 

surface are summated action potentials likely generated by several motor units of 

adjacent and deep musculature in addition to the muscle of interest (cross-talk 

phenomenon) (Mogk and Keir, 2003). Furthermore, a muscle may move significantly 

relative to the recording electrodes fixed on the skin surface, which may further confound 

surface EMG recordings. A minimally invasive technique that can overcome these issues 

is the use of indwelling EMG electrodes.  

Fine wire electrodes involve inserting hook-tipped wires (gauge: 50-100μm) into 

an individual muscle through a hypodermic needle (Basmajian and Stecko, 1962). 

Indwelling fine wire electrodes overcome many of the limitations associated with surface 

EMG including cross-talk contamination and recording specificity during dynamic 

contractions (Kamen and Gabriel, 2010). Indwelling fine wire EMG has been useful in 

determining the functional anatomy of muscles composed of several compartments (van 

Oudenaarde and Oostendorp, 1995) and several distinct muscular heads (Basmajian et al., 

1972) such as the abductor pollicis longus and the quadriceps muscle. Although there are 

many advantages to this technique, the indwelling fine wires may cause some participant 

discomfort upon placement. Overall, indwelling fine wire recordings allow for study of 

individual muscles, which cannot be achieved confidently or reliably using surface EMG 

recordings.  
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1.5.3 Ultrasound Imaging 

 The gross architectural arrangement of muscle fibers can further contribute to the 

understanding of muscle function. Although magnetic resonance imaging is considered 

the gold standard for muscle architecture measurements, ultrasound imaging is 

considered a valid technique for parameters such as muscle length, width, thickness, and 

cross-sectional area (Whittaker and Stokes, 2011). Conventional brightness mode (B-

mode) ultrasound imaging involves generating a gray-scale image based on tissue 

reflection of ultrasound waves.  The image generated is dependent upon location, 

amplitude, and reflection time of the ultrasound waves relative to the probe (Whittaker 

and Stokes, 2011).  Ultrasound images are sensitive to the collagen content of tissues as 

regions with dense collagen reflect ultrasound waves more readily than regions of sparse 

collagen content, and appear bright (hyperechoic) or dark (hypoechoic), respectfully 

(Whittaker and Stokes, 2011). Because muscles are highly compartmentalized with 

distinct connective tissue boundaries (epimysium, perimysium, endomysium) (Figure 

1.1), the epimysium layer appears hyperechoic, whereas the muscle tissue proper appears 

hypoechoic due to the presence of tissue fluids (Ross and Pawlina, 2011; Whittaker and 

Stokes, 2011) (Figure 1.2).  

Ultrasound imaging is advantageous for its ability to visualize dynamic movements of 

skeletal muscle in both relaxed and contracted states. Although ultrasound is useful in 

detecting dynamic changes in muscle, the image is a two-dimensional representation of a 

three-dimensional structure, and therefore, requires a fundamental knowledge of cross-

sectional gross anatomy and appreciation of how adjacent musculature might influence 

morphological changes in the muscle of interest. For example, reductions in rectus 

femoris muscle width and cross-sectional area were observed in maximal knee extension 

possibly due to competing forces from the vastus medialis, lateralis and intermedius 

(Delaney et al., 2010). Despite these challenges, ultrasound imaging is a valuable method 

in assessing muscle function by quantifying the change in muscle architecture during 

functional contraction tasks.   
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Figure 1.2 Reflection of Sound Waves in Ultrasound Image Generation 

Left panel: Ultrasound waves are directed from the linear array probe and appear bright 

when reflected from regions of densely packed collagen (ex: epimysium, bone); Right 

panel: An exemplar ultrasound image demonstrating bright (hyperechoic) and dark 

(hypoechoic) reflections from human tissues. 
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1.6 Purpose 

Using several experimental techniques briefly reviewed above, the overall purpose of 

this dissertation was to determine the functional role of the PL and PB in the hand. 

Previous investigations of these muscles are limited to cadaveric observations and have 

not been studied comprehensively during dynamic movements in vivo. In Chapter 2 the 

purpose was to determine whether the PL contributes to thenar contractions by recording 

its relative muscle activity and changes in muscle architecture during specific thumb 

movements. Thus, this study was fundamental in determining whether the palmaris 

longus functions as a synergist in thenar contractions. In Chapter 3 the purpose was to 

investigate the muscle fiber type composition of the APB with respect to its contiguous 

morphological relationship with the palmaris longus. Thus, the results of this study 

provide further insight into the PL and APB acting as a digastric unit with distinct fiber 

type characteristics when contiguously arranged. In Chapter 4, the purpose was to 

investigate the functional role of the PB by recording its muscle activity during specific 

grasping movements and quantifying changes in muscle architecture in response to 

voluntary contractions of the fifth digit. Thus, the results provide further insight into 

postulates suggesting the PB functions as a muscular barrier to ulnar neurovasculature. In 

Chapter 5, the PB muscle fiber type composition was investigated to determine the 

proportions of type I and type II muscles fibers. Thus, the results provide further indirect 

insight into the contractile capacity of the PB and its potential protective function during 

intermittent grasping movements. Overall, this dissertation provides functional insight 

into the role of the PL and PB in the human hand, in vivo. By using several experimental 

modalities in vivo and in situ, the proposed role of the PL and PB as an extrinsic thenar 

muscle and protective barrier can be evaluated, respectfully. These studies contribute to 

the literature by improving our functional understanding of hand musculature.  
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Chapter 2  

2 Investigating the Palmaris Longus as a Thenar 
Synergist1 

2.1 Introduction 

 The palmaris longus (PL) is a slender fusiform muscle situated in the proximal 

forearm between the flexor carpi radialis (FCR) laterally and the flexor carpi ulnaris 

medially. Considered one of the most variable muscles in the human body, the PL is 

absent in approximately 13% of forearms with bilateral agenesis (8%) occurring more 

frequently than unilateral agenesis compared to left (4%) and right (5%) forearms alone 

(Reimann et al. 1944). In certain mammalian species (Orangutans) that use their 

forelimbs for weight bearing and ambulation, the PL is well developed which may 

explain its regression in the forearms of humans (Stecco et al. 2009). Anatomical 

textbooks typically characterize the PL as a weak wrist flexor and tensor of the palmar 

aponeurosis (Gilroy, 2013; Moore et al. 2014); however, the PL may also act as a 

functional anchor to the palmar skin and fascia in resisting horizontal shear forces 

(Standring, 2008). Although generally considered a muscle of insignificance in humans, 

the PL may provide further functional contributions in vivo beyond wrist flexion as a 

thenar synergist in conjunction with the abductor pollicis brevis. 

 

For hand surgeons, restoring thumb opposition by surgical tendon transfer is 

challenging because this action requires a complex combination of thumb abduction, 

flexion, and pronation of the metacarpophalangeal (MCP) joint (Park et al. 2010). Camitz 

(1929) developed a surgical technique to restore thumb opposition that mobilizes the PL 

                                                 

1
 A version of this chapter has been published. Used with permission from John Wiley and Sons Inc. 

Moore CW, Fanous J, Rice CL. 2017. Revisiting the Functional Anatomy of the Palmaris Longus as a 

Thenar Synergist. Clin Anat. (IN-PRESS) 
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tendon with a continuous extension of palmar fascia for insertion on radial side of the 

MCP joint. Through surgical PL tendon transfer approaches, restoration of functional 

palmar movements can be achieved allowing patients to perform activities of daily living 

such as writing and the ability to pick up fine objects (Foucher et al. 1991; Gilbert et al. 

1999). Kaplan (1984) considered the PL as a synergist in thumb opposition and described 

its insertion into the abductor pollicis brevis as a consistent feature, which may explain its 

effectiveness in restoring functional thumb movements through surgical tendon transfer 

(Foucher et al. 1991; Rymer and Thomas, 2016). 

Despite the proposal for the universal acceptance of thenar abduction as a normative 

function of the PL (Gangata et al. 2010), little direct functional evidence in support of the 

PL in thumb abduction can be found in the literature beyond brief descriptions from 

conference proceedings (Fahrer, 1973) and cadaveric descriptions (Fahrer and Tubiana, 

1976). By establishing that a functional synergy exists between the PL and thenar 

musculature, mechanistic insight into the clinical efficacy of the PL in surgical tendon 

transfer can be gained, and may provide evidence for alternative surgical transfer 

approaches utilizing the PL in conjunction with discrete fascicles of the abductor pollicis 

brevis as proposed by Fahrer and Tubiana (1976). Thus, the purpose of this study was to 

systematically investigate PL muscle activity in healthy participants in vivo during 

specific thumb movements using indwelling fine wire electromyographic (EMG) 

recording techniques. Furthermore, dynamic changes in PL muscle architecture during 

thumb movements were visualized using ultrasound imaging to support the EMG 

findings. It was hypothesized that the greatest relative PL muscle activity and changes in 

muscle architecture would be observed during thumb abduction based on previous 

morphological evidence and isometric strength assessments reported in the literature. 
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2.2 Materials and Methods 

2.2.1 Participants 

Ten healthy Caucasian males (ages: 26 ± 5 years) were recruited to participate in 

the EMG investigation. The local research ethics board approved the study procedures 

and informed written consent was obtained from each participant prior to testing. The PL 

and flexor carpi radialis (FCR) were investigated in the dominant limb (right forearm: 8) 

in all participants except in two participants in which the non-dominant limb (left 

forearm: 2) was investigated due to PL absence, and the other had a previous history of 

surgical intervention at the wrist. Schaeffer's test was used to determine the presence of 

the palmaris longus tendon at the wrist, in which participants were instructed to oppose 

the thumb to the fifth digit in each hand (Schaeffer, 1909). A positive test indicated the 

presence of the PL tendon. The experimental protocol required participants to attend two 

separate testing sessions: (1) PL and FCR EMG session followed by (2) a PL ultrasound 

session. 

Two cadaveric upper limbs were dissected and photographed to visualize some of 

the morphological relationships found between the PL tendon and the APB at the wrist. 

All cadaveric specimens used in this study were obtained through the local institution's 

body donation program with permission from the Committee for Cadaveric Use in 

Research (REF#: 21092016). 

2.2.2 EMG Experimental Setup 

In each participant, the PL was identified using ultrasound imaging and the 

location of the muscle belly was marked on the skin to facilitate insertion of indwelling 

fine wires (See ultrasound imaging). Because the PL may play a minor role in elbow 

stabilization, an additional muscle of the common flexor origin, the FCR, was also 

investigated concurrently for relative EMG contributions to the wrist and thumb actions. 

The position of the FCR also was determined using ultrasound imaging and its location 

was marked on the skin. For the EMG recordings, the skin was prepared by applying a 
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70% ethanol solution prior to insertion of hooked-tip bipolar indwelling fine wires 

(California Fine Wire Company, Grover Beach, CA; 100 μm). Use of indwelling fine 

wire electrodes was necessary to provide direct evidence of PL activation beyond 

previous descriptions of PL EMG recordings from the skin surface in which signals from 

adjacent forearm musculature (FCR, flexor carpi ulnaris, flexor digitorum superficialis) 

can confound EMG recordings (Fahrer, 1973). After autoclave sterilization procedures, 

the wire insulation was removed by brief exposure to a flame creating a recording surface 

on the wire tips of approximately five mm. The indwelling fine wires were inserted into 

the PL and FCR muscles via a sterilized hypodermic needle (25 G x 5/8 Becton 

Dickinson EclipseTM Needle, Franklin Lakes, NJ) (Basmajian and Stecko, 1962), which 

was withdrawn leaving the hooked wires embedded temporarily in the muscle for the 

duration of the EMG experimentation session. Surface EMG was recorded from the 

thumb musculature by placing two Ag–AgCl cloth electrodes (H59P monitoring 

electrodes, Kendall, Mansfield, MA, USA) on the thenar eminence. 

2.2.3 EMG Normalization 

Participants were seated at a Cybex Humac Norm Dynamometer (CSMi Medical 

Solutions, Stoughton, MA) with their forearm fully supinated and supported by a padded 

bar while grasping a torque manipulandum (Figure 2.1). Wrist flexion torque was 

recorded from the dynamometer and sampled at 500 Hz with a 12-bit analog-to-digital 

converter (Power 1401, Cambridge Electronic Design, Cambridge, UK) using Spike2 

software (v. 7.0, Cambridge Electronic Design). Three maximal isometric voluntary 

contractions (MVCs) of wrist flexion were performed and the PL and FCR EMG 

recordings from the largest MVC were used to normalize EMG recorded during the 

specific thumb movements (Figure 2.1). The MVC bouts were separated by three minutes 

of rest to minimize fatigue. Verbal encouragement and a visual display of the torque 

tracings were displayed on a computer monitor for each participant.  
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Figure 2.1: Electromyography Experimental Setup and Recordings 

(A) Indwelling electromyography (EMG) experimental setup to record palmaris longus 

(PL) and flexor carpi radialis (FCR) muscle activity during maximal wrist flexion 

contractions. (B) Custom-made apparatus used to secure the wrist in a neutral position to 

record PL and FCR activity during thenar movements alone (C) Exemplar PL and FCR 

EMG recordings during the maximal wrist flexion contraction recorded over a 6-second 

time interval. 
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2.2.4 Experimental Setup for Thenar Movement Tasks 

To examine the potential role of the PL as a synergist in thumb movement, the 

wrist was secured in a neutral position to prevent wrist flexion using a custom-made 

apparatus (Figure 2.2). A wooden block secured the wrist in a neutral position, but still 

allowed for free movements of the thumb. Participants were instructed to make the 

following thumb movements while secured in the apparatus: abduction, flexion, 

opposition, extension, adduction, and circumduction (Figure 2.2). Participants were 

instructed to make maximal isometric contractions when completing each thumb 

movement, except for circumduction, which was a non-resisted task consisting of circular 

thumb movements. Importantly, each resisted task was standardized amongst all 

participants, in which, the thumb movements were performed against a fixed rigid metal 

plate (abduction, adduction, extension), cylinder (flexion) or between the thumb and fifth 

digit (opposition) (Figure 2.2). 

Muscle activity was recorded from the PL and FCR during each thumb 

movement. The root mean square (RMS) amplitude was averaged over a one second time 

interval for each thumb action. The relative activations of the PL and FCR during the 

thumb movements were determined by dividing the respective RMS amplitudes during 

each individual thumb movement by the maximal RMS amplitude recorded from the PL 

and FCR during maximal wrist flexion over an identical time epoch of one second. A 

minimum rest period of two minutes was provided between thumb movement tasks to 

prevent muscle fatigue. 
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Figure 2.2 Standardized Hand Positions for Thenar Contractions Tasks 

Standardized thenar contraction tasks in which palmaris longus and flexor carpi radialis 

electromyographic recordings were monitored. Note: all movements were maximal 

contractions except circumduction, which was a non-resisted task. 
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2.2.5 Ultrasound Imaging 

A Vivid-7 ultrasound system (GE Healthcare, Mississauga, ON, Canada; linear 

array probe: GE model M12L, 4.9 mm, 5–13 MHz) was used to visualize morphological 

changes in PL muscle thickness (MT) from rest to contraction when performing thumb 

abduction and adduction. All muscle measurements were made using the following scan 

parameters: depth = 4.0 cm, frequency = 11.4 MHz, frames per second = 13.7, power = 0 

dB. Ultrasound images at rest and contraction were made at the midpoint of the PL 

muscle belly, which was determined by measuring half the distance between the PL 

myotendinous junction (determined by ultrasound) and the medial epicondyle of the 

humerus (Figure 2.2). A large piece of cloth tape was placed transversely on the skin at 

the midpoint of the PL muscle to facilitate consistent placement of the ultrasound probe. 

A liberal application of ultrasound gel (Aquasonic 100 Ultrasound transmission gel, 

Parker Laboratories) was applied to the skin surface to facilitate optimal imaging quality. 

Upon securing the wrist in the custom-made apparatus described above, the participants 

were instructed to perform a series of maximal isometric thumb abduction and adduction 

movements against a rigid metal plate (Figure 2.3). Participants were instructed to 

gradually abduct and adduct their thumbs to prevent abrupt forearm movements that 

could affect placement of the ultrasound probe. The PL was imaged three times at rest 

and contraction during abduction and adduction, respectively. 

Ultrasound images were exported and analyzed using OsiriX imaging software 

(version 8.0.2, Geneva, Switzerland). The PL muscle borders were determined using the 

hyper-echoic reflections produced by the epimysium surrounding the muscle (Figure 2.4) 

(Pillen, 2010). PL MT was determined at rest and contraction by measuring the distance 

between the superficial and deep muscle borders using the length tool in OsiriX. The 

three PL MT measurements from the thumb abduction and adduction tasks were averaged 

to obtain a mean MT score for rest and contraction. 
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Figure 2.3 Ultrasound Appearance of the Palmaris Longus During Thenar Contractions 
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Figure 2.4 Surface Anatomy of the Palmaris Longus for Ultrasound Imaging 

(A) Illustration depicting the proposed digastric arrangement of the palmaris longus (PL) 

and the abductor pollicis brevis. The mid-belly of the PL was determined using 

ultrasound imaging with the ultrasound probe placed in a transverse orientation (B) 

Ultrasound appearance of the PL and other forearm musculature in comparison to a 

cadaveric cross-section in a similar region. FCR: flexor carpi radialis, FDP: flexor 

digitorum profundus, FCU: flexor carpi ulnaris, FDS: flexor digitorum superficialis, PT: 

pronator teres. Note: the rectangle in panel A represents the ultrasound probe. Illustration 

was adapted from descriptions provided by Fahrer and Tubiana (1976).  
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2.2.6 Ultrasound Reliability 

For intra-rater reliability, an experienced ultrasound operator scanned each 

participant's forearm three times at rest and during maximal thumb abduction. The first 

and third scans were used to assess intra-rater reliability. For inter-rater reliability, the MT 

measures were repeated in all subjects independently by a second ultrasound operator on 

a different day and averaged to obtain a mean MT score for each condition (rest, 

contraction). A mean MT score was calculated from all three measurements made by the 

first ultrasound operator and compared with the mean MT score of the second operator. 

Intra-class correlation coefficients (ICCs) were calculated for intra-rater and inter-rater 

reliability and reported with 95% confidence interval (CI). 

2.2.7 Statistical Analysis 

Data were analyzed using SPSS statistical software (version 24, SPSS Inc., 

Chicago, IL). A two-way repeated measures analysis of variance (ANOVA) was 

conducted to examine the effect of the muscle group (PL, FCR) and thumb position 

(abduction, flexion, opposition, extension, adduction) on the percentage of muscle 

activity (%EMGMVC). Pairwise comparisons were performed of a significant main effect 

using a Bonferroni correction. 

A paired-samples t test was used to determine differences in MT from rest to 

contraction in both thumb abduction and adduction, respectively. A Bonferroni correction 

was used to account for multiple comparisons resulting in statistical significance set at 

P = 0.0125. Statistical comparisons between PL MT measurements in its resting states 

prior to abduction and adduction were determined. Similarly, statistical comparisons 

between PL muscle thickness measurements in its contracted state post-abduction and 

adduction were also determined. All data are presented as Mean ± standard deviation. 

2.3 Results 

Schaeffer's test indicated the presence of bilateral PL muscles in nine of the ten 

participants. In the participant with unilateral PL musculature, investigation of the PL in 
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the non-dominant limb (left forearm) was necessary due to negative Schaeffer's test 

indicating absence of the PL muscle in the dominant limb (right forearm). 

2.3.1 Electromyography 

A two-way repeated measures ANOVA was conducted that examined the effect 

of forearm muscle (PL, FCR) and thumb position (abduction, flexion, opposition, 

adduction, extension) on PL muscle activity (% EMGMVC). Mauchly's test of sphericity 

indicated that the within subject effects had met the assumption of sphericity. There was 

a statistically significant main effect of muscle (F(1,9) = 29.576, P = 0.0004) and thumb 

position (F(4,36)=22.683, P < 0.001) on muscle activity. However, a statistically 

significant interaction was detected between the effects of the forearm muscle (PL, FCR) 

and thumb position (abduction, flexion, opposition, adduction, extension) on the muscle 

activity (F(4,36) = 4.923, P = 0.003). A post-hoc power analysis (G*Power, version 

3.1.9.2) revealed the significant interaction effect was of large size (f = 0.74) with an 

achieved power of 0.88 given the sample size (n = 10). The largest mean PL muscle 

activity was recorded during thumb abduction (% PL EMGMVC = 46 ± 20%) followed by 

opposition (% PL EMGMVC  = 37 ± 14%), flexion (% PL EMGMVC  = 35 ± 13%), 

extension (% PL EMGMVC = 19 ± 13%), and adduction (% PL EMGMVC  = 7 ± 4%) 

movements. Similarly, the largest FCR mean muscle activity was recorded during thumb 

abduction (% FCR EMGMVC  = 26 ± 16%), followed by flexion (% FCR EMGMVC 

 = 14 ± 9%), opposition (% FCR EMGMVC  = 11 ± 9%), adduction (% FCR EMGMVC 

 = 7 ± 4%) and extension (% FCR EMGMVC  = 6 ± 5%). Analysis of simple main effects 

revealed that the relative % PL EMGMVC was significantly greater than the relative % 

FCR EMGMVC during all thumb movement tasks (P < 0.05) except during thumb 

adduction (P = 0.96) (Figure 2.5). For the PL, simple main effects analysis revealed that 

the muscle activity recorded during thumb abduction was not statistically significant 

between the thumb flexion (P = 0.54), and opposition contractions (P = 1.0) but was 

significantly different from adduction (P = 0.002) and extension contraction tasks 

(P = 0.002) (Figure 2.5). When compared to thumb adduction, simple main effects 

revealed significantly greater PL muscle activity during thumb abduction (P = 0.002), 
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flexion (P = 0.001), and opposition (P = 0.001) (Figure 2.5). Synchronous EMG bursts 

were detected in 90% (9/10) of participants upon unopposed circumduction of the thumb 

(Figure 2.6) 
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Figure 2.5 Relative Muscle Activity Recorded During Thenar Contractions 

 

A) Relative muscle activity recorded from the palmaris longus (PL) during maximal 

thenar movement contractions. Note: the relative PL muscle activity recorded during 

abduction, flexion and opposition contractions were not statistically significant from each 

other (P > 0.05). (B) Comparison of the relative muscle activity of the PL and flexor carpi 

radialis during the standardized maximal thenar movement contractions. MVC: maximal 

voluntary wrist flexion contraction. *Denotes statistically significant (P < 0.05). All data 

presented as Mean ± standard deviation. 
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Figure 2.6 Synchronous EMG bursts among Thenar and Palmaris Longus Musculature 

 

Exemplar unprocessed electromyogram depicting synchronous intermittent contractions 

of the thenar muscles with the palmaris longus (PL) during unopposed circumduction. 

Note the quiescence of the flexor carpi radialis (FCR) muscle throughout the 

contractions. Thenar muscle activity was recorded using surface electrodes, while the 

muscle activity of the PL and FCR were recorded using indwelling fine wire electrodes.  
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2.3.2 Ultrasound Imaging 

During thumb abduction, PL MT significantly increased by 21 ± 12% (P < 0.001). PL 

MT significantly decreased upon thumb adduction by −4 ± 4% (P = 0.001). No significant 

differences were found between PL MT measurements at rest prior to abduction and 

adduction (P = 0.50). The PL MT was significantly greater due to abduction contraction 

when compared to the PL MT during the adduction contraction (P < 0.001). Furthermore, 

high intra- (ICC ≥ 0.92) and inter-rater reliabilities (ICC ≥ 0.85) were found for the 

ultrasound measurements made by the two operators. See Tables 2.1 and 2.2 for a 

summary of the MT and ultrasound reliability measurements, respectively. 

 

Table 2.1 Palmaris Longus Muscle Thickness During Maximal Thenar Contractions 

 Muscle Thickness (cm)  

Thumb Action Rest Contraction P-value 

Abduction 
0.92  0.1 

(0.60 – 1.12) 

1.09  0.1* 

(0.84 – 1.27) 

P <0.001 

Adduction 
0.90  0.1 

(0.63 – 1.10) 

0.86  0.1*† 

(0.60 -1.02) 

P = 0.01 

*Denotes statistically significant from resting condition (P<0.0125); †denotes statistically 

significant from contraction during abduction (P<0.0125); All data presented as Mean  

Standard Deviation (Range) 

 

 

 



 

 

 

 

38 

Table 2.2 Intra- and Inter-Rater Reliability of Palmaris Longus Muscle Thickness 

Ultrasound Measurements 

Intra-rater Reliability 

Thumb Action Rest ICC (95% CI) Contraction ICC (95% CI) 

Abduction 0.96 (0.73 – 0.98) 0.95 (0.81 – 0.99) 

Adduction 0.94 (0.76 – 0.99) 0.92 (0.67 – 0.98) 

Inter-rater Reliability 

Thumb Action Rest ICC (95% CI) Contraction ICC (95% CI) 

Abduction 0.85 (0.13 – 0.97) 0.91 (0.67 – 0.98) 

Adduction 0.87 (0.21 – 0.97) 0.89 (0.58 – 0.97) 

ICC: intraclass correlation coefficient; CI: confidence interval 
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2.4 Discussion 

This study investigated the role of the PL as a synergist in thumb movement by 

recording PL muscle activity during maximal thenar muscle contractions throughout the 

movement planes of the first digit. The results indicate that the PL acts as a synergist in 

thumb abduction, flexion, and opposition based on the relative PL muscle activity (% PL 

EMGMVC) recorded during these tasks. Furthermore, using ultrasound imaging a 

significant increase in PL MT was observed during maximal thumb abduction. 

Collectively, these results provide direct support of literature proposing the PL acts as 

part of the extrinsic-intrinsic system of thenar musculature in conjunction with the 

abductor pollicis longus and brevis (Fahrer, 1977; Fahrer and Tubiana, 1976; Gangata et 

al. 2010; Kaplan, 1984). 

2.4.1 Morphological Evidence of the PL in Thumb Abduction 

The synergistic contribution of the PL to thumb abduction has been attributed to the 

spatial relationship between the PL tendon and the abductor pollicis brevis (Fahrer, 1977; 

Fahrer and Tubiana, 1976; Kaplan, 1984). Although continuous with the palmar 

aponeurosis, the PL also terminates as a lateral tendon that serves as the origin for a 

portion of the abductor pollicis brevis, which has been referred to colloquially as the 

“lumbrical of the thumb” due to its insertion into the extensor expansion (Fahrer, 1977; 

Fahrer and Tubiana, 1976). However, other morphological variations may occur 

including a connection between the PL and abductor pollicis brevis in the absence of 

bifurcating PL tendon (Figure 2.7). In a morphological study of 44 dissected hands, the 

abductor pollicis brevis was connected to the lateral PL tendon directly (23 hands, 52%), 

or through a fibrous arcade in association with the abductor pollicis longus (21 hands, 

48%) (Fahrer, 1977). Although we could not directly investigate the tendon morphology 

in our participants, the PL muscle activity recorded during the thumb contractions 

indicates synergistic activity between the PL and the abductor pollicis brevis with the PL 

tendon providing a physical connection between the two muscles. 
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Figure 2.7 Anatomical Variations of the Palmaris Longus (PL) Tendon in Relationship to 

the Abductor Pollicis Brevis (APB) 

(A) APB originating from a bifurcating PL terminal tendon. (B) APB originating from 

the PL tendon and proximal palmar aponeurosis. Note an additional APB muscle belly 

originating from the abductor pollicis longus (APL) tendon in panel B. 
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During the thenar contractions, a similar percentage of PL muscle activation was 

observed across abduction, flexion, and opposition movements (%PL EMGMVC: 46%, 

35%, 37%), respectively (Fig. 2.5). Because thenar musculature acts in unison as a 

functional unit, it is expected that any thumb movement directed ventrally from the palm 

will produce muscle contraction in the abductor pollicis brevis, which could explain PL 

muscle co-contraction across these movements. The abductor pollicis brevis provides 

functional contributions to the extension of the interphalangeal joint (Fahrer, 1977), 

which may explain the PL muscle activity recorded (19%) during thumb extension 

movements through a potential digastric relationship. Although the PL may play a 

minimal role in elbow stabilization based on its humeral origin, the relative muscle 

activity recorded from another muscle of the common flexor mass, the FCR, was 

significantly less compared to the PL throughout all contractions (Fig. 2.5), indicating 

that the PL may provide functional contributions beyond the role of mere elbow 

stabilization. The PL seems to function primarily as a wrist flexor as the mean muscle 

activity remained submaximal throughout the thenar contractions relative to the activity 

recorded during maximal isometric wrist flexion. Thus, in its presence, the PL should be 

perceived as a muscle of functional importance in the thumb based on the premise that it 

contributes a viable contribution of force transmission into the thenar eminence. 

Further evidence of the PL as a thenar synergist is apparent in the intermittent 

bursts of PL muscle activity recorded during unopposed circumduction. A contraction 

synchrony was observed between the muscles of the thenar eminence and the PL, while 

the FCR remained relatively quiescent (Fig. 2.6). This synchrony was observed in all 

participants except one, which could be explained by the presence of variant PL muscle 

anatomy in this individual. Several PL morphological variants have been identified in the 

literature such as those with aberrant PL insertions at the wrist, which may include 

tendon bifurcation and trifurcation (Sunil et al. 2015), or termination into the antebrachial 

fascia alone (Stecco et al. 2009). Other reported cases include a reverse PL in which the 

muscle belly is located in the distal forearm and can cause symptoms of carpal tunnel 

syndrome due to median nerve compression (Backhouse and Churchill-Davidson, 1975). 
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Furthermore, the distal PL tendon can serve as an origin for other variant musculature 

such as the flexor digiti minimi brevis in some cases (Moore and Rice, 2017a). Therefore, 

because of potential variable and complex anatomy, presence of the PL muscle may not 

always provide significant contributions to either thenar movements or to wrist flexion 

depending on its insertion pattern. 

2.4.2 Functional Implications 

Thumb abduction is necessary to perform several activities of daily living 

including keyboard typing, grasping objects such as coffee cups, opening scissors, and 

playing a variety of musical instruments (Gangata et al. 2010). Removal of the PL may 

not overtly compromise function in most individuals, but it may affect the learned motor 

control patterns of some movements receiving contributions from the PL based on its 

potential synergistic activation with the thumb. From cadaveric measurements, it is 

known that the PL is approximately twice the muscle volume (9.0 cm3) of the abductor 

pollicis brevis (4.9 cm3)(Cooney et al. 1984), which may explain reports of significant 

thenar abduction strength contributions attributed to the presence of the PL (Gangata et 

al. 2010). If the PL functions in a digastric manner (Fahrer and Tubiana, 1976; Kaplan, 

1984), a significant loss of thumb abduction strength would be detected upon removal. 

However, this would likely depend on the PL morphological form present and to what 

degree the PL contributes to fine motor control of the thumb. 

Due to their importance in activities of daily living, pinch and grip strength are 

clinical measures often used to assess hand function after invasive hand surgery (Gellman 

et al. 1989). A comparative study in a healthy Asian population reported no functional 

decrements in pinch and grip strength among individuals with and without hereditary PL 

agenesis (Sebastin et al. 2005). To achieve the pinch position, the thumb must adduct to 

the second digit to ensure pulp-to-pulp contact. Similarly, hand-grip dynamometers 

typically assess strength of the forearm flexors and require the thumb to primarily adduct 

when grasping the device. Our results indicated minimal PL muscle activity (7%) and a 

decrease (-4%) in PL MT during thumb adduction, which supports the lack of apparent 
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differences reported in pinch and grip measures when comparing individuals with and 

without PL agenesis. Our results indicated a significant decrease in PL MT, which was 

likely observed due to the tension of surrounding forearm musculature pulling on the PL 

muscle. Thus, the functional contributions of the PL are limited to select thumb 

movements directed ventrally from the palm. 

2.4.3 Surgical Evidence of Palmaris Longus Synergy 

In thenar paralysis, restoration of function can be achieved by several surgical 

approaches involving PL tendon transfer to the insertion site of the abductor pollicis 

brevis to restore thumb abduction function (Camitz Opponensplasty) (Camitz, 1929; 

Rymer and Thomas, 2016). A modified approach to Camitz opponensplasty in treatment 

of severe carpal tunnel syndrome mobilizes the PL tendon through the radial or ulnar 

portion of the incised flexor retinaculum for use as a pulley for better approximation of 

pure opposition movements (Foucher et al. 1991; Kato et al. 2014; Littler and Li, 1967; 

Macdougal, 1995; Park et al. 2010; Terrono et al. 1993). Although the site of the PL 

insertion is transferred from the wrist to the interphalangeal joint of the first digit, 

patients require no specific rehabilitation perhaps due to an established neuromuscular 

facilitation, or synergy, already existing between the PL and abductor pollicis brevis 

(Kato et al. 2014). Therefore, in other surgical interventions in which the ipsilateral PL is 

routinely harvested, such as ulnar collateral ligament reconstruction (Cain and Mathis, 

2016), the role of the PL in palmar function should be considered based on its potential 

synergy with thenar musculature. Removing the PL for tendon grafts or other restorative 

surgeries may affect learned muscle activation patterns, especially in palms of individuals 

in which routine stereotyped movements are necessary such as in some elite or 

professional-level sports. 

Ultrasound imaging is a useful noninvasive tool to record and quantify static and 

dynamic changes in muscle geometry (Hodges et al. 2003). Quantitative ultrasound 

measures in muscles undergoing isometric contractions have been investigated in several 

limb muscles including the biceps brachii (Hodges et al. 2003), tibialis anterior (Hodges 
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et al. 2003), semitendinosus (Karagiannidis et al. 2017), and the palmaris brevis (Moore 

and Rice, 2017b). Although we observed a small change in absolute PL MT (1.7 mm), 

this change represented a 21% increase in mean PL MT, indicative of three-dimensional 

changes in PL muscle geometry (i.e.: fascicle shortening, tendon excursion, muscle 

thickness) in response to thenar abduction. Similar absolute changes in MT have been 

observed in other isometric limb muscle contractions (tibialis anterior: 3.6 mm)(Hodges 

et al. 2003); however, the extent of an absolute change in MT likely depends on the 

fusiform or pennate structure of the muscle investigated (Hodges et al. 2003). In a 

cadaveric feasibility study, Fahrer and Tubiana (1976) proposed an alternative surgical 

mobilization of the PL tendon by maintaining its connections to the abductor pollicis 

brevis in order to restore functional thumb movements in thenar paralysis. By applying 

strong traction to the mobilized cadaveric PL tendon, several functional movements at the 

MCP joint were observed including abduction, pronation, and interphalangeal joint 

extension (Fahrer and Tubiana, 1976). Knowledge of the change in PL MT in response to 

thumb abduction by making pre- and post-surgical tendon transfer measures may be 

useful clinically in evaluating the effectiveness of alternative opponensplasty surgical 

procedures, as suggested in the aforementioned cadaveric feasibility study. Furthermore, 

ultrasound imaging may be useful in the preoperative planning of locating the PL muscle 

and tendon, which may not be prominent at the wrist depending on its morphology and 

pattern of insertion. 

2.5 Conclusion 

Although harvested in several restorative surgeries, the PL may provide significant 

synergistic contributions to functional thenar movements based on recordings of PL 

intramuscular activity and changes in muscle architecture, respectively. Understanding 

the functional synergistic relationship between the abductor pollicis brevis and PL may 

allow for continued development of alternative opponensplasty approaches utilizing the 

PL and abductor pollicis brevis muscles together as a functional digastric unit. 

Furthermore, knowledge of the established synergy in vivo may prove useful in 
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functional rehabilitation strategies from various hand injuries by appreciating that the PL 

may provide significant contributions to thenar motor control. 
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Chapter 3  

3 Fiber type Composition of the Palmaris Longus and 
“Lumbrical”-like Fascicles of the Abductor Pollicis 
Brevis: Implications for Thenar Function2  

3.1 Introduction 

The palmaris longus (PL) is known for its variant morphology and is absent in 

approximately 14% of forearms in the population (Moore et al., 2014). Although 

considered a weak wrist flexor and tensor of the palmar aponeurosis (Gilroy, 2013, 

Moore et al., 2014), the PL may provide significant thenar abduction strength 

contributions based on its morphological relationship with the thenar musculature 

(Gangata et al., 2010). Although the abductor pollicis brevis (APB) has been generally 

depicted as a thin, bipartite muscle of the proximolateral thenar eminence (Standring and 

Gray, 2008, Napier, 1952), Simard and Roberge (1988) described it as consisting of three 

muscular heads with several discrete fascicular sub-divisions representing a substantial 

proportion of the thenar muscle mass. Of the three APB muscular heads, the superficial 

head consisted of a discrete fusiform fascicle continuous with the PL (Simard and 

Roberge, 1988). These discrete fascicles are considered homologous to lumbricals 

(Fahrer and Tubiana, 1976) or interossei (Le Double, 1897) based on their insertion into 

the dorsal aponeurotic expansion and presumed functional role in the extension of the 

interphalangeal joint of the 1st digit. Discrete APB fascicles may originate from several 

PL tendon locations including a bifurcated PL tendon, a region proximal to the palmar 

aponeurosis, or from an accessory abductor pollicis longus tendon (Fahrer and Tubiana, 

1976, Fahrer, 1977, Moore et al., 2017b, Kaplan, 1984). The morphological connection 

between the APB muscle and PL tendon suggests that the PL and APB muscles may act 

as a functional digastric unit contributing synergistically to thenar muscle contractions. 

                                                 

2
 A version of this chapter has been submitted to the Journal of Anatomy 



 

 

 

 

50 

The omohyoid, occipito-frontalis, and the digastric muscle proper are examples of 

muscles engaged in functional synergistic relationships. The nomenclature of the 

digastric muscle reflects its morphological arrangement indicating the presence of two 

discrete muscle bellies separated by an intermediate tendon. The functional relationship 

between the digastric muscle bellies has been investigated histologically by determining 

the fiber type identity of its constituent muscles fibers. Despite a disparate cranial 

innervation, a predominance of type II muscle fibers exist among both anterior (type I: 

37%, type II: 63%) and posterior bellies (type I: 36%, type II: 64%) of the digastric 

muscle indicating a functional relationship irrespective of innervation and site of 

embryological development (Monemi et al., 1999). Because type II muscle fibers have 

greater shortening velocity and fatigability compared to type I muscle fibers, the 

predominant type II muscle fiber type consistency amongst digastric bellies reflect its 

gross function in performing powerful movements necessary for jaw function (Monemi et 

al., 1999, Pette and Staron, 2000). Similarly, the medial and lateral heads of the quadratus 

plantae demonstrate fiber type homogeneity indicative of a shared function despite their 

variable absence in 20% of the population (Schroeder et al., 2014). The quadratus plantae 

fiber type homogeneity persists among its heads despite differences in their phylogenetic 

origins with the lateral head common with mammals and the medial head found only in 

humans (Sooriakumaran and Sivananthan, 2005, Schroeder et al., 2014). The PL and 

APB are arranged in similar morphological arrangement as the digastric muscle through 

the PL terminal tendon (Fahrer, 1977, Moore et al., 2017b). Although the APB fiber type 

composition has been shown to consist of a predominant proportion of type I muscle 

fibers (>60%) (Johnson et al., 1973), the APB fiber type composition has not been 

investigated with respect to its contiguous morphological arrangement with the PL 

muscle.  

In severe carpal tunnel syndrome, median nerve compression can impair the 

functional actions of the APB including thenar abduction, metacarpophalangeal (MCP) 

joint rotation, and true pulp-to-pulp contact of the digits (Napier, 1952). Restoring 

functional hand movements in patients with thenar paralysis can be achieved using an 
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autologous tendon transfer of the PL to the 1st digit (Rymer and Thomas, 2016, Camitz, 

1929). Opponensplasty success has been attributed to an intrinsic synergy of the PL with 

the APB such that no specific muscular retraining is needed upon tendon transfer (Kato et 

al., 2014). This synergy has been demonstrated in young participants in vivo, in which, 

synchronous electromyographic (EMG) activity was recorded between the PL and thenar 

musculature during abduction, flexion, opposition, and circumduction movements 

(Moore et al., 2017b); however, this synergistic relationship may not be adequately 

established in all individuals due to morphological differences. If differences in APB 

fiber type proportions are evident between individuals with robust and rudimentary 

connections with the PL tendon, a lack of fiber type homogeneity between individuals 

may reveal those APB muscles engaged in a synergistic relationship with the PL muscle. 

Knowledge of the morphological connection between the APB and the PL tendon may be 

indicative of the quality of synergy established in vivo, which could be useful in 

predicting the success of the PL in opponensplasty tendon transfer.  

Therefore, the purpose of this study was to investigate whether differences in the 

proportions of type I and type II muscle fibers exist among the APB fascicles originating 

from the PL tendon. When arranged in a digastric manner with the PL, the APB may be 

capable of producing more forceful contractions due to greater type II muscle fiber 

proportions, which may contribute to the significant thenar abduction strength attributed 

to the presence of PL musculature (Gangata et al., 2010). We hypothesized that the APB 

fascicles with discrete continuity with the PL will have significantly greater type II fiber 

type proportions compared to the APB musculature with rudimentary connections, or 

non-exclusive origins, with PL musculature. Knowledge of the APB fiber type 

composition with respect to its morphological relationship with the PL may be useful to 

further characterize the complexity of thenar contractile function and assist surgeons in 

functional restoration of thumb prehension and dexterous hand movements. 
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3.2 Materials and Methods 

3.2.1 Cadaveric Specimens 

Twenty-four contiguous PL and APB muscles were harvested from the forearms 

(left: 12, right: 12) and hands (left: 12, right: 12) of twelve embalmed cadavers [Mean 

age: 74 ± 10 years (range: 55-87y); 6 males, 6 females], respectively. The PL was present 

bilaterally in all cadavers. Cadaveric specimens were obtained from the local institution’s 

body donation program and approved for research use by the Committee for Cadaver Use 

in Research (REF# 21092016). The cadavers received through the body donation 

program are embalmed within 24 hours postmortem. To ensure muscle fiber type 

proportions were not influenced by other comorbidities, the cadaveric specimens were 

excluded if neuromuscular diseases, rheumatoid, or osteoarthritis were indicated in the 

cause of death report, or by visual evidence of hand deformation.  

3.2.2 Morphological Classification of the Abductor Pollicis Brevis 
and Palmaris Longus 

The forearms and hands of each cadaveric specimen were dissected and 

photographed by a single investigator to investigate the PL tendon morphology and its 

continuity with the abductor pollicis brevis muscle as described by Fahrer and Tubiana 

(1976). The 24 hands were stratified into two groups based on morphology of the APB 

and its relationship with the PL tendon. The APB muscles were classified into two groups 

based on the following morphological criteria: (1) APB muscle with discrete PL tendon 

connections (APBD), or (2) APB muscle with non-discrete, or rudimentary, PL tendon 

connections (APBND).  

3.2.3 Immunohistochemistry 

Whole PL muscle tissue sections were harvested from its midpoint, which was 

determined by measuring half the distance between the medial epicondyle and PL 

myotendinous junction. In each hand, the superficial muscular fascicles of the APB 

muscles were identified and harvested by measuring half the distance between the 
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scaphoid and the proximal phalanx of the thumb. At the PL and APB midpoints, 0.5 cm 

width muscle sections were excised for immunohistochemical analysis. The PL and APB 

were stained using previously established immunohistochemical staining procedures as 

per Moore et al. (2017a). The specimens were immediately immersed in a 10% formalin 

solution for a minimum of 24 hours upon harvesting. All tissues were serially sectioned 

at a thickness of 5 μm using a Microtome (Microm HM-325). The tissue slides were 

heated to 37 °C for a minimum of 24 hours prior to immunohistochemical procedures. 

Antigen retrieval was performed in citrate buffer (pH 6.0) in a de-cloaking chamber. 

Slides were blocked in 10% horse serum, and subsequently, incubated with mouse 

monoclonal antibodies specific to either myosin heavy chain (MHC) type I (Sigma-

Aldrich NOQ7.5.4D) or MHC type II (Sigma-Aldrich MY-32) at a dilution of 1: 3200 for 

one hour at room temperature as established by previous experimentation (Moore et al., 

2017a). The antibodies NOQ7.5.4D and MY-32 label type I (slow-twitch) fibers and all 

type II (i.e. type IIa and IIx) (fast-twitch) fibers, respectively.  The secondary antibody, 

ImmPRESS Anti-Mouse Ig Peroxidase Polymer Detection Kit (Vector Laboratories, Cat. 

No. MP-7402), was applied prior to labeling with DAB (DAB Peroxidase Substrate Kit, 

3,3′–diaminobenzidine, Vector Laboratories, Cat. No. SK-4100). Specimen-matched 

negative control sections underwent identical procedures, except for the application of the 

primary antibody. Hematoxylin counterstain was used in all tissue sections. 

3.2.4 Statistical Analysis 

Handling of data and calculations were performed using Excel Software (Version 

13.5.8, 2011, Microsoft Corporation). Statistical analysis was performed using SPSS 

statistical software (Version 25, SPSS Inc., Chicago, IL, USA). A two-way analysis of 

variance (ANOVA) was used to determine the effect of morphology (APBND, APBD), and 

fiber type (type I, type II, or hybrid) on muscle fiber percentage. A three-way ANOVA 

was used to determine the effect of morphology (APBND, APBD), muscle (APB, PL), and 

fiber type (type I, type II, or hybrid) on muscle fiber percentage. Follow-up post-hoc 

comparisons of significant main effects were performed with a Bonferroni correction 

applied. All descriptive statistics are presented as mean ± SD.  
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3.3 Results 

3.3.1 Morphological Classification 

The superficial fascicle of the APB originated from a bifurcated PL tendon in 9/24 hands 

(37%), or directly from the PL tendon in the remaining 15/24 hands (63%). The APB 

fascicles from 11 hands (46%) were classified as discrete based on their distinct 

continuity with the PL tendon. Conversely, the APB fascicles from 13 hands (54%) were 

classified as non-discrete due to rudimentary or minimal connections with the PL tendon 

(Figure 3.1).   
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Figure 3.1 The “Lumbrical”-like Fascicular Divisions of the Abductor Pollicis Brevis 

(APB).   

Upper Row: APB fascicular divisions with discrete origins from the palmaris longus 

tendon (PL); Lower row: APB fascicular divisions with non-discrete/rudimentary origins 

from the palmaris longus tendon. The discrete APB fascicular divisions were relatively 

mobile and originated primarily from the PL tendon. Conversely, the non-discrete APB 

fascicular divisions were affixed primarily to the carpal bones and had only rudimentary 

connections with the PL tendon through thin fascial extensions. 
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3.3.2 Muscle Fiber Quantification 

A total of 55,267 PL (left forearms: 28,412; right forearms: 26,855) and 52,042 

APB (left hands: 26,537; right hands: 25,505) muscle fibers were examined throughout 

the serial histological sections.  Of the fibers quantified in the PL, 25,019 were type I (left 

forearms: 13,285; right forearms: 11, 634), 27,212 were type II (left forearms: 13,584; 

right forearms: 13,628), and 3036 were hybrid muscle fibers (left forearms: 1443; right 

forearms: 1593). Of the fibers quantified in the APB, 32,162 were type I (left hands: 

16,981; right hands: 15,181), 13,627 were type II (left hands: 5900; right hands: 7727), 

and 6253 hybrid muscle fibers (left hands: 3656, right hands: 2597).  

A two-way ANOVA was used to examine the effect of morphology (APBD, 

APBND) and fiber type (type I, type II, hybrid) on the proportion of APB muscle fibers 

quantified. There was a statistically significant interaction effect between morphology, 

and fiber type on the proportion of muscle fibers examined (F 2, 66 = 34.396, p< 0.001). 

The proportion of type I fibers were significantly less in APB fascicles with discrete 

continuity with the PL (APBD: 44 ± 16%) compared to those APB of non-discrete 

continuity (APBND: 75 ± 10%)(p< 0.001). Conversely, the proportion of type II fibers 

were significantly greater in APB fascicles with discrete continuity with the PL (APBD: 

41 ± 19%)(p< 0.001) compared to those APB fascicles with non-discrete connections 

with the PL (APBND: 15 ± 8%). No statistical difference was detected in the proportion of 

hybrid fibers between the APBND (10 ± 6%) and APBD (15 ± 10%)(p= 0.228) fascicles. 

The results of the statistical analysis are displayed graphically in Figure 3.2. 
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Figure 3.2 Fiber Type Composition of the “Lumbrical”-like Fascicles of the Abductor 

Pollicis Brevis (APB). 

Note the differences in APB fiber type composition between fascicles with discrete and 

non-discrete/rudimentary connections with the palmaris longus. All values are mean ± 

SD; * denotes, p <0.05 
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A three-way ANOVA was used to examine the effect of morphology (APBD, 

APBND), muscle (PL, APB), and fiber type (type I, type II, hybrid) on the proportion of 

muscle fibers quantified. There was a statistically significant interaction effect between 

morphology, muscle, and fiber type on the proportion of muscle fibers examined (F 2, 132 

= 11.957, p< 0.001). For PL and APBD muscles discretely connected by the PL tendon, 

simple interaction effect analysis revealed a statistically significant difference in fiber 

type composition amongst type II (APBD: 41 ± 19%, PL: 55 ± 12%, p = 0.003) and 

hybrid (APBD: 15 ± 10%, PL: 4 ± 3%, p = 0.013) fibers; however, a similar fiber type 

percentage was observed amongst type I fibers (APBD: 44 ± 16%, PL: 41 ± 11%, p = 

0.573). For PL and APB muscles arranged in a rudimentary or non-discrete manner with 

the PL tendon, simple interaction effects analysis revealed a statistically significant 

difference in fiber type composition amongst type I (APBND: 75 ± 10%, PL: 49 ± 10%, p 

<0.001) and type II (APBND: 15 ± 8%, PL: 45 ± 9%, p <0.001) fibers; however, a similar 

fiber type percentage was observed amongst hybrid fibers (APBND: 10 ± 6%, PL: 6 ± 4%, 

p = 0.470). The results of the statistical analysis are displayed graphically in Figure 3.3.  
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Figure 3.3 Comparison of Fiber Type Composition between Contiguous Abductor 

Pollicis Brevis (APB) and Palmaris Longus (PL) Musculature 

 (A) Fiber type composition of the PL and APB connected by a non-discrete, or 

rudimentary, PL tendon insertion; (B) Fiber type composition of the palmaris longus and 

APB in cadaveric specimens in which the PL tendon is arranged in a digastric 

relationship. All values are mean ± SD; * denotes, p <0.05 
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3.4 Discussion 

The PL is regarded as a muscle whose clinical importance as an autologous tendon 

graft may supersede its functional purpose in vivo; however, recent PL functional 

investigations have demonstrated that its utility may extend beyond weak wrist flexion to 

provide significant strength contributions to thenar musculature based on a functional 

synergy with the APB (Moore et al., 2017b, Gangata et al., 2010). In the present study, 

the APB and PL muscles from 24 cadaveric limbs were examined histologically to 

determine if their morphological arrangement influenced the APB fiber type proportions. 

Importantly, by determining the constituent APB fiber type proportions based on its 

morphological arrangement with the PL, a better understanding of the complexity of 

thenar contraction may be gained, and this knowledge may assist surgeons in surgical 

restoration of opposition movements in cases of severe thenar paralysis. Using 

immunohistochemical techniques, a differential proportion of type I and II muscle fibers 

were found amongst APB musculature with contiguous discrete (APBD), and 

rudimentary, non-discrete (APBND), morphological connections with the PL tendon. This 

may provide further evidence of the quality of the digastric relationship and functional 

synergy established in vivo. 

 

3.4.1 “Lumbricals” of the Thumb 

Textbooks typically describe the APB as originating from the scaphoid tubercles, 

trapezium, and the flexor retinaculum prior to its insertion into the base of proximal 

phalanx of the 1st digit (Gilroy, 2013, Moore et al., 2014); however, morphological 

studies describe the APB as consisting of three muscular groups with discrete superficial 

fascicles also inserting into the dorsal aponeurotic expansion of the 1st digit (Simard and 

Roberge, 1988). In 44 dissected upper limbs with PL musculature, Fahrer (1977) 

observed several “lumbrical”-like APB fascicles arising from the tendons of extrinsic 

musculature including the PL and abductor pollicis longus tendons. A discrete APB 

fascicle originated from the PL tendon in 23 (52%) hands, and the remaining APB 
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fascicles originated from a fibrous arch between the PL and abductor pollicis longus 

tendons (48%, 21/44) (Fahrer, 1977). In the absence of the PL, a radial APB muscle belly 

originated consistently from the abductor pollicis longus tendon (Fahrer, 1977). In the 

present study, the APB fascicles originated from either a distinct lateral PL terminal 

tendon (37%), or directly from the PL tendon proximal to the palmar aponeurosis (63%); 

however, only in 11/24 hands did the PL serve as an exclusive origin to a relatively 

mobile APB fascicle (Figure 3.1). In the remaining hands (n=13), the APB was primarily 

affixed to its carpal origins with the PL providing only a rudimentary, or non-discrete, 

connection (Figure 3.1). Compared to Fahrer (1977), the fibrous arch between the PL and 

abductor pollicis longus was not observed in our sample, but was illustrated in a previous 

investigation (Moore et al., 2017b). 

Lumbricals are known for their unique worm-like appearance (Latin, lumbricus: 

earthworm) and function in both digital flexion and extension of the MCP and 

interphalangeal joints, respectively (Moore et al., 2014). The fiber type composition of 

the lumbrical acting upon the index finger is a relatively heterogeneous composition of 

type I (43%) and II (57%) muscle fibers (Hwang et al., 2013) (Table 3.1), which was 

consistent with the fiber type composition of the “lumbrical”-like APBD fascicles in 

continuity with the PL (type I: 44%, type II: 56%†) (Figure 2). Conversely, we observed a 

predominance of type I (75%) muscle fibers in the APBND fascicles, which is consistent 

with type I APB (63%) fiber proportions harvested from tissues of young cadavers 

(range: 22-30y) (Johnson et al., 1973). Interestingly, the lumbricals share a similar 

heterogeneous fiber type composition with the flexor digitorum profundus (Table 3.1), 

which acts as the origin to the true lumbricals of the second to fifth digits. Although they 

may not be true lumbricals, the APBD fascicles share a morphological and functional 

homology with proper lumbricals based on their tendinous origins from extrinsic 

                                                 

†
 includes hybrid fibers: type II (41%) + hybrid (15%) 
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musculature, assistance in MCP joint flexion and interphalangeal joint extension, and a 

consistency in phenotypic muscle fiber type profile. 

 

3.4.2 Thenar Muscles as a Series of Digastric Complexes 

3.4.2.1 Palmaris Longus & Abductor Pollicis Brevis 

The thenar eminence has been described as a system of extrinsic-intrinsic 

musculature consisting of the APB, opponens pollicis, flexor pollicis longus and brevis, 

PL, and abductor pollicis longus (Fahrer and Tubiana, 1976). When considered as a 

functional unit, the PL and APBD share similar morphological features with the digastric 

muscle including the presence of two muscular heads interconnected by an intermediate 

tendon (Figure 3.4). The anterior and posterior bellies of the digastric muscle from aged 

cadavers (mean: 73y) both consist of a predominance of type II (anterior: 63%, posterior: 

64%) muscle fibers, despite independent cranial innervation patterns (Monemi et al., 

1999) (Table 3.1). The APBD type I muscle fiber proportions (44%) were similar to those 

observed in the PL (41%); however, significantly fewer type II muscle fibers were 

observed in the APBD fascicles (44%) compared to the PL muscle (55%) (Figure 3.3). In 

healthy human aging, a loss of type I and II motor units, and decrease in muscle fiber 

diameter contribute to muscle atrophy and weakness associated with old age (Berger and 

Doherty, 2010). Preservation of muscle function may occur through collateral 

reinnervation processes in which denervated type II muscle fibers are reinnervated by 

adjacent slower type I motor units producing hybrid muscle fibers co-expressing both 

slow and fast MHC isoforms (Andersen et al., 1999, Hepple and Rice, 2016). Although 

the APBD fibers had significantly less type II muscle fibers, a significantly greater 

proportion of hybrid fibers (15%) were observed in the APBD fascicles compared to the 

PL (4%) (Figure 3.3), which may be indicative of age-related type II motor unit loss and 

collateral reinnervation processes. Although hybrid fibers co-express multiple MHC 

isoforms, their contractile properties may function “fast-like” compared to pure type I 

fiber types (Pette and Staron, 2001, Bottinelli et al., 1996). If the percentage of APBD 
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hybrid fibers (I/IIa) are pooled with type II fibers, the contiguous APBD and PL muscles 

share similar type I (APBD: 44%, PL: 41%) and type II (APBD: 56%, PL: 59%) fiber type 

proportions; a feature consistent with the digastric muscle. Compared to the predominant 

type I muscle fiber proportions typical of thenar musculature (Table 3.1), the 

heterogeneous APBD fiber composition may represent a functional advantage allowing 

for more forceful thenar abduction contractions for activities of daily living, fine thenar 

motor control and hand dexterity. 

 

Table 3.1 Fiber Type Composition of Select Musculature of the Head, Neck and Upper 

Limb 

Muscle 

Fiber Type 

Reference: % Type I % Type II 

Palmaris Brevis 72% 28%† Moore et al. (2017b) 

Adductor Pollicis 80% 20% Round et al. (1984) 

Abductor Pollicis Brevis 63% 37% Johnson et al. (1973) 

Lumbrical (Index finger) 43% 57% Hwang et al. (2013) 

Flexor Digitorum Profundus 47% 53% Johnson et al. (1973) 

Digastric Muscle (Anterior) 37% 63% 

Monemi et al. (1999) 
Digastric Muscle (Posterior) 36% 64% 

†includes hybrid fibers 

 

  



 

 

 

 

64 

 

Figure 3.4 Histological Appearance of the Abductor Pollicis Brevis and Palmaris Longus 

Muscles Stained for Type I and Type II Myosin Heavy Chain Isoforms.  

 

Both muscles consist of a heterogeneous proportion of Type I and II muscle fibers. Note: 

the histological sections were harvested from a cadaveric specimen with the PL tendon 

serving as a discrete origin to the abductor pollicis brevis. Scale bar: 100μm   
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The functional relationship between the PL and thenar musculature has been 

investigated in vivo in young participants using indwelling fine wire electromyography 

and ultrasound imaging techniques (Moore et al., 2017b). In response to maximal thenar 

abduction contractions, an increase in PL muscle thickness (21%) and PL muscle activity 

(46%) was recorded indicating the PL functions as an extrinsic thenar muscle in vivo 

(Moore et al., 2017b). Comparing those with congenital PL absence, Gangata et al. 

(2010) observed significant thenar abduction strength in those with PL musculature and 

attributed the PL tendon as the means for transmitting additional force to the thenar 

eminence. In the APBD fascicles, the greater proportion of type II muscle fibers could 

further contribute to the contraction strength along with the additional force contributions 

from the PL muscle mass.  

In severe carpal tunnel syndrome, open carpal tunnel release in conjunction with 

PL opponensplasty allows for restoration of functional, dexterous hand movements to 

perform activities of daily living during recovery of thenar muscle atrophy (Durban et al., 

2017, Rymer and Thomas, 2016, Kato et al., 2014, Park et al., 2010, Macdougal, 1995, 

Terrono et al., 1993, Foucher et al., 1991, Camitz, 1929). In a study of 21 patients, 

moderate to abundant muscle contractions were observed in the PL post-tendon transfer 

using ultrasound imaging during opposition (90%, 19/21) and abduction (81%, 17/21) 

movements; however, PL muscle contraction was minimal or absent in the remaining 

patients (Durban et al., 2017). The surgical outcome of PL opponensplasty is likely 

multifactorial and may depend on individual factors such as PL muscle and tendon 

morphology, and the extent of the synergistic relationship established in vivo between the 

PL and APB prior to tendon transfer. In our sample of hands, rudimentary, or non-

discrete, connections of the PL with the APBND were observed in 54% of cases, and were 

accompanied by a predominant proportion of type I muscle fibers (75%). In a portion of 

these cases, the synergistic relationship between the PL and APBND fascicles may be 

minimal due to rudimentary PL tendon extensions to the thenar eminence (Figure 3.1). In 

a previous functional investigation, the absence of synchronous synergistic EMG activity 

between the PL and APB was attributed to variant PL tendon morphology at the wrist 
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(Moore et al., 2017b). The variant anatomy of the PL tendon may influence the functional 

recovery and opponensplasty success, if an adequate synergy fails to develop in vivo.  

Furthermore, Fahrer and Tubiana (1976) proposed surgical mobilization of the thenar 

“lumbricals” in conjunction with the PL terminal tendon as a complex to restore 

functional thenar abduction movements in patients with thenar paralysis; however, an 

established synergy, viable PL tendon, and adequate PL muscle mass may be required to 

achieve adequate force transmission to restore functional thenar movement capacity.  

 

3.4.2.2 Abductor Pollicis Longus & Abductor Pollicis Brevis 

Beyond the evidence demonstrating continuity of the PL with the APB, other known 

connections among extrinsic and intrinsic thumb musculature are found between the APB 

and abductor pollicis longus (van Oudenaarde and Oostendorp, 1995). The abductor 

pollicis longus located on the posterior forearm is divided into superficial and deep 

divisions (van Oudenaarde and Oostendorp, 1995). While the superficial division of the 

abductor pollicis longus inserts primarily on the first metacarpal, the deep division may 

have several insertions into the trapezium, joint capsule and capsular ligaments (van 

Oudenaarde and Oostendorp, 1995). Most notably, the deep division of the abductor 

pollicis longus consistently inserts into a radial muscle belly of the APB through an 

accessory tendon (range: 64-84% of cases) (Fahrer, 1977, Baba, 1954, Moore et al., 

2017b, van Oudenaarde and Oostendorp, 1995). Although Le Double (1897) considered 

the connection between the APB and abductor pollicis longus as a malformation, surgical 

observations in stenosing tenosynovitis at the wrist (De Quervain’s disease) indicate that 

variation in the abductor pollicis longus tendon is the rule rather than exception with ≥ 2 

accessory tendons to the APB occurring in 76% of reported cases (Bahm et al., 1995). 

Failure to adequately release all abductor pollicis longus accessory tendons from the first 

dorsal compartment may result in incomplete tendon decompression leading to persistent 

wrist pain after surgical treatment (Patel et al., 2013). Along with receiving radial arterial 

branches, the radial APB muscle belly may receive radial innervation from the superficial 
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branch as observed in four cases of a small sample of dissected hands (n=10) (Fahrer, 

1977), indicating that the APB may receive dual motor innervation from both the median 

and radial nerves in some individuals. However, it was not confirmed whether the 

superficial branches of the radial nerve consisted of motor neurons (Fahrer, 1977). 

Therefore, the several APB muscle bellies originating from the tendons of extrinsic 

forearm musculature suggests that fine thenar motor movements may function through a 

series of digastric muscular complexes in vivo.  

 

3.5 Conclusion 

The disparate fiber type proportions in the APBD compared to APBND fascicles 

provide further support of the PL and APB in providing significant strength contributions 

to the thenar eminence based on a digastric relationship in vivo. The presence of a 

rudimentary PL morphological tendon relationship with APB musculature may prolong 

the motor learning and functional retraining of thenar movements from PL 

opponensplasty surgery, if a sufficient functional synergy fails to develop in vivo.  
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Chapter 4  

4 Functional Anatomy of the Palmaris Brevis: Grasping 
for Answers3 

4.1 Introduction 

The palmaris brevis (PB) is a small muscle of variant morphology originating 

from the palmar aponeurosis to insert in the skin and fascia of the medial palm 

(Przystasz, 1977). The PB is uniquely innervated by the only motor component of the 

superficial branch of the ulnar nerve. Clinically, the innervation of the PB facilitates 

diagnosis of the site of ulnar nerve lesion at the wrist based on whether function to the PB 

is affected or remains intact (PB sign; Pleet & Massey, 1978). Interestingly, Andreas 

Vesalius overlooked the PB in his classical dissections of the human body perhaps due to 

its subcutaneous location (Tubbs et al. 2007). Unlike the relatively frequent absence of 

the palmaris longus (PL; ~14%; Moore et al. 2014), the PB is rarely absent (~ 3%) in 

humans (Przystasz, 1977). The PL is well developed in mammalian species that use the 

forelimb for weight-bearing and ambulation, and may explain its regression in humans 

(Stecco et al. 2009); however, the PB may still provide a functional role based on its 

position in the palm. 

Several researchers have postulated various functions of the PB, ranging from 

deepening the palm to aiding in palmar grip; protecting the neurovasculature of the ulnar 

canal (Shrewsbury et al. 1972; Przystasz, 1977); and preventing the displacement of the 

hypothenar fat pad during grasping (Kirk, 1924). Cadaveric studies have investigated the 

gross anatomy of the PB, including descriptions of its muscle width, length of 

attachments at points of origin and insertion (Shrewsbury et al. 1972; Chiou-Tan et al. 

                                                 

3
 A version of this chapter has been published. Used with permission from John Wiley and Sons Inc. 

Moore CW, Rice CL. 2017. Structural and functional anatomy of the palmaris brevis: grasping for answers. 

J Anat 231:939-946. 
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1998), and its variant morphology (Przystasz, 1977; Nayak & Krishnamurthy, 2007), yet 

morphological measures in vivo of PB muscle length (ML) and thickness (MT) during rest 

and contraction at the ulnar canal have not been assessed. Investigating PB muscle 

architecture during dynamic contractions using ultrasound imaging provides insight as to 

whether the PB acts as a protective muscular barrier or simply tenses with no significant 

change in ML or MT. 

Surveying several texts and clinical electromyographic (EMG) investigations of the 

PB reveals a disparity in the hand movement necessary to evoke its muscle activity. 

Specific movements of the fifth digit (abduction, flexion, opposition; Serratrice et al. 

1995; Chiou-Tan et al. 1998; Standring, 2008; Perotto et al. 2011) or applying 

mechanical pressure superficial to the pisiform bone (Serratrice et al. 1995; Liguori et al. 

2003; Perotto et al. 2011) have been described as actions that evoke PB contraction. 

Furthermore, some PB descriptions from clinical case reports state that the PB is not 

under voluntary control (Serratrice et al. 1995; Iyer, 1998; Eswaradass et al. 2014), which 

may suggest a smooth muscle composition, under a conditioned (Montagu, 1952) or 

reflexive control (Boynton-Lee, 1888), like those found in other panniculus carnosus 

derivatives such as the dartos or corrugator cutis ani muscles (Patil, 2013). Although PB 

EMG has been investigated in clinical examinations, a systematic investigation of PB 

EMG activity during simple movements of the fifth digit and functional grasping tasks 

has yet to be explored. Furthermore, a histological investigation of the PB has yet to 

confirm the presence of smooth or striated muscle fibers, which could provide insight 

regarding PB activation through voluntary or involuntary means. Thus, the purpose of 

this study was to investigate the EMG activity of the PB as well as muscle architecture 

changes during specific hand movements to provide further insight into PB function in 

the palm. The structure of the PB was also examined histologically for the presence of 

skeletal muscle fibers.  
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4.2 Materials and Methods 

4.2.1 Participants 

Twelve healthy participants (11 men and one woman; age: 27 ± 4 years; height: 

182 ± 7 cm; weight: 86 ± 11 kg) volunteered to participate in this study. PB EMG 

recordings could not be obtained from one participant and he was removed from the 

EMG portion of the study. The local research ethics board approved the study 

procedures, and informed written consent was obtained from each participant prior to 

testing. The study protocol required participants to attend two separate experimental 

sessions: (1) PB EMG session followed by (2) a PB ultrasound investigation. Session one 

required only visualization of the PB using ultrasound imaging, whereas the quantitative 

ultrasound measurements were collected in session two.  The ultrasound investigation 

was performed in both the left and right hands, whereas the EMG investigation was 

restricted to the dominant hand (left handed: 1, right handed: 11) to minimize the 

discomfort associated with indwelling EMG insertion into the glabrous skin of the hand. 

Furthermore, PB muscle morphology is typically more developed in the right hand 

(Przystasz, 1977), which could potentially yield better EMG recordings than in the left 

hand. 

4.2.2 Electromyography Experimental Setup 

The medial palmar skin was swabbed with 70% ethanol prior to the EMG 

procedures. Custom-made indwelling fine wire, hooked-tipped electrode pairs (50 μm; 

California Fine Wire Company, Grover Beach, California, USA) were inserted into the 

PB via a small-diameter hypodermic needle (27G × 1/2; Becton Dickinson 

PrecisionGlideTM Needle, REF 305109; Basmajian & Stecko, 1962) using an approach 

angle parallel to the palm. Approximately 5 mm of insulation was removed from the fine 

wires, thereby exposing an adequate recording surface to create a global indwelling EMG 

interference pattern. Chiou-Tan et al. (1998) identified the PB from the abductor digiti 

minimi based on single motor unit rise times using a clinical needle examination. 

Because we could not determine MU rise times due to the use of global EMG recordings, 
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ultrasound imaging was used to visualize the location of the PB relative to the skin prior 

to needle insertion. A common ground electrode was placed on the skin at the 

metacarpophalangeal (MCP) joint of the thumb. Indwelling electrodes are advantageous 

over surface electrodes for PB recordings, because cross-talk from the hypothenar 

muscles may interfere with the EMG signal recorded at the skin surface. Furthermore, the 

indwelling fine wires allow participants to grasp objects while performing functional 

movements, which cannot be achieved when using clinical concentric needle electrodes. 

The global EMG recorded from the indwelling fine wires was pre-amplified 

(1000×; NeuroLog System NL844 Pre-amplifier), band-pass filtered (10 Hz–10 kHz; 60 

Hz notch filter) and sampled at 2500 Hz before being converted to a digital signal using a 

16-bit analog-to-digital converter (Micro 1401 mkII board; Cambridge Electronic Design, 

CED). All EMG data analyses were performed offline using Spike2 software (v.7.0; 

CED, Cambridge, UK). 

4.2.3 Prehensile and non-Prehensile Tasks 

Participants were instructed to perform a series of movements of the fifth digit 

and grasping tasks while PB EMG activity was recorded from the indwelling fine wires. 

The non-prehensile tasks involved specific movements of the fifth digit: abduction, 

flexion at MCP joint only, and opposition to the thumb (Figure. 4.1). Abduction and 

flexion of the fifth digit were performed against a rigid surface to provide resistance to 

the movement. The functional tasks required participants to make two prehensile 

movements: grasping the shaft of a carpenter's hammer and tennis ball using a power grip 

and spherical grip, respectively (Napier, 1956; Figure 4.1). Participants were instructed to 

make maximal contractions during all movements, and each task was held isometrically 

for a minimum of three seconds. 
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Figure 4.1 Unprocessed Electromyogram Recorded from the Palmaris Brevis during 

Maximal Effort Movements of the Fifth Digit and Grasping Tasks.  

(A) Abduction of the fifth digit; (B) Fifth digit flexion (metacarpophalangeal joint only); 

(C) Opposition; (D) Power grip; (E) Spherical grip. 
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4.2.4 Electromyography Normalization 

From the unprocessed EMG signal, the average root mean square (EMGRMS) was 

calculated over a constant time interval of three seconds for all non-prehensile and 

prehensile tasks. To compare relative EMGRMS recorded in each task among participants, 

the PB EMGRMS recorded during each task was normalized to 100% of the three seconds 

PB EMGRMS evoked during maximal abduction of the fifth digit. Normalization of EMG 

signals to maximal peak levels is a reliable and valid method to compare relative values 

of EMG activity among participants (Halaki & Ginn, 2012). 

4.2.5 Ultrasound Imaging 

Visualization of the PB prior to hypodermic needle insertion and dynamic 

morphological changes in PB architecture, ML and MT, were imaged using a Vivid-7 

ultrasound system (GE Healthcare, Mississauga, ON, Canada; linear array probe: GE 

model M12L, 4.9 mm, 5–13 MHz). A single investigator with experience in 

musculoskeletal ultrasound acquired PB images from the palms using the following 

ultrasound settings: probe frequency = 11.4 MHz, frame rate: 19.0, power = −2 dB, 

dynamic range = 9, depth = 4.0 cm. To ensure adequate standoff distance for imaging 

superficial palmar structures, a liberal application of ultrasound gel (Aquasonic 100 

Ultrasound transmission gel, Parker Laboratories) was applied and the ultrasound probe 

frequency was increased to its optimal setting (11.4 MHz). Multiple focus points were set 

on the ultrasound image within a two centimeter depth from the surface as the PB was 

typically located within this depth (Figure 4.4). Each hand was supported and fully 

supinated during the imaging. The ultrasound probe was rotated until the PB muscle 

fibers could be viewed in-plane and were visible from origin to insertion in the 

longitudinal plane. Static ultrasound images of the PB at rest were acquired from each 

participant at the point of maximal PB MT. PB images during maximal contraction were 

acquired at the same position of maximal PB MT. PB muscle contraction was imaged 

longitudinally during maximal abduction of the fifth digit (Figure 4.4). To prevent the 
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ultrasound probe from moving, participants were instructed to gradually abduct the fifth 

digit until maximum abduction was achieved. 

Ultrasound images were exported from the ultrasound unit and analyzed using OsiriX 

imaging software (version. 8.0.2, Geneva, Switzerland). PB muscle borders were 

determined by visual inspection using the echogenicity of both epimysium surrounding 

the muscle, and the perimysium producing linear reflections surrounding and within the 

muscle along the longitudinal axis (Figures 4.2 and 4.4; Pillen, 2010). MT and ML 

measurements were performed using the length tool in OsiriX. Measurement lines were 

drawn perpendicular to the superficial and deep borders, and along the long axis of the 

muscle to determine MT and ML measures, respectively. 
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Figure 4.2 Palmaris Brevis (PB) Gross Morphology and its Ultrasound Appearance at the 

Level of the Hook of the Hamate.  

(A) Illustration demonstrating the spatial relationship of the PB to the ulnar artery and 

nerve. (B) Ultrasound appearance of the PB at rest. (C) Schematic depiction of palmar 

structures located in the ultrasound image from (B). (D) Axial T2-weighted magnetic 

resonance image of the PB at similar location to the ultrasound in (B). Note the following 

structures in (C): palmar aponeurosis (turquoise), ulnar artery (red), ulnar nerve (yellow) 
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4.2.6 Histological Analysis 

Palmaris brevis specimens were harvested from the hands of four (three fresh 

frozen, one formalin-embalmed) cadavers [four left hands, four right hands; mean age at 

death: 78 years (range: 44–88 years)]. Cadaveric specimens were obtained with 

permission from the body bequeathal program at the University of Western Ontario, 

London, ON, Canada, and approved for research use by the Committee for Cadaver Use 

in Research (REF#: 21092016). Tissue samples were immediately immersed in a 10% 

formalin solution for a minimum of 24 hours prior to paraffin embedding. Specimens 

were sectioned 5 μm thick using a Microm HM-325 Microtome. Tissues were mounted 

on slides and warmed at 60 °C for 30 min. Longitudinal- and transverse-orientated PB 

tissue samples were stained with hematoxylin-eosin and hematoxylin only, respectively. 

Histology slides were imaged using a Zeiss AxioCam MRc microscope camera. 

4.2.7 Statistical Analysis 

Data were analyzed using spss statistical software (Version 24, SPSS, Chicago, 

IL, USA). A Shapiro–Wilk test determined that the normalized EMG during the spherical 

grip task was not normally distributed. Therefore, a non-parametric test (Friedman) was 

used to determine whether a significant main effect was present in the % PB EMGRMS/ABD 

recorded during the hand positions. Pairwise comparisons were performed as a post hoc 

analysis (Wilcoxon signed-ranks test) of a significant main effect during the five hand 

movements (fifth digit: abduction, flexion, opposition; and power and spherical grips). 

For the ultrasound measures, a Shapiro–Wilk test determined that the variable, MT (right 

hand, contracted state), was not normally distributed. Therefore, a non-parametric t-test 

(Wilcoxon signed-rank test) was used to determine whether a statistically significant 

change occurred in mean PB ML and MT, at rest and during contraction of both the left 

and right hands. Effect sizes (r) from Wilcoxon signed-rank tests were calculated 

manually using Microsoft Excel software (version 14.5.8). The effect sizes are 

categorized as small (r = 0.1), medium (r = 0.3), and large (r = 0.5). A Bonferroni 
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correction was applied to both the EMG and ultrasound data to account for multiple 

statistical comparisons. All data are presented as means ± SD. 

4.3 Results 

4.3.1 Electromyography 

Of the two contraction types used in clinical examination, the PB EMGRMS 

evoked during abduction of the fifth digit was selected as a method of normalization as 

this contraction task evoked the greatest PB muscle activity in seven of the 11 (~60%) 

participants (Figure 4.3). In the remainder of subjects, flexion of the fifth digit evoked the 

greatest PB EMG activity and was only 5% less compared with the % PB EMG evoked 

during fifth digit abduction. An analysis of main effects revealed a significant difference 

in the % PB EMG recorded during prehensile and non-prehensile hand movements [χ2 

(4) = 23.799, P = 0.0001]. Post hoc analysis with Wilcoxon signed-rank tests was 

conducted with a Bonferroni correction applied, resulting in a significance level set at 

P = 0.005. 

There were no significant differences in the mean PB muscle activity between 

abduction and flexion of the fifth digit (P = 0.44, r = 0.16). The PB muscle activity 

recorded during opposition was significantly reduced by 29% compared with fifth digit 

flexion (P = 0.004, r = 0.61). The opposition task produced 34% less PB muscle activity 

compared with fifth digit abduction, but did not reach statistical significance (P = 0.016, 

r = 0.51). Similarly, the power grip task produced 39% less PB muscle activity compared 

with the spherical grip, but did not reach statistical significance (P = 0.011, r = 0.54). The 

PB muscle activity recorded during the power grip was significantly reduced by 59% and 

54% compared with abduction (P = 0.003, r = 0.63) and flexion of the fifth digit 

(P = 0.003, r = 0.62), respectively (Figure 4.3). The PB muscle activity during the 

spherical grip was 20% and 15% less than abduction (P = 0.13, r = 0.32) and flexion of 

the fifth digit (P = 0.17, r = 0.29), respectively; however, these comparisons were not 

statistically significant (P > 0.005). Similarly, the PB muscle activity recorded during the 
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opposition task was 14% lower compared with the spherical grip, but did not reach 

statistical significance (P = 0.25, r = 0.25). 
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Figure 4.3 Palmaris Brevis (PB) Muscle Activity During Maximal Effort Movements of 

the Fifth Digit and Functional Grasping Tasks.  

The PB muscle activity recorded from each task is displayed as a percentage of PB 

EMGRMS normalized to the PB muscle activity recorded during maximal abduction of the 

fifth digit (EMGABD). Non-prehensile tasks (fifth digit): abduction, flexion, opposition; 

prehensile tasks: power grip (carpenter's hammer), spherical grip (tennis ball). EMGRMS, 

root mean square electromyography; all data presented as means ± SD; * denotes 

P < 0.005. Statistical trends were observed in the comparisons between both fifth digit 

abduction and opposition (P = 0.016), and the spherical and power grips (P = 0.011). 
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4.3.2 Ultrasound Imaging 

Pairwise comparisons using Wilcoxon signed-rank tests were conducted with a 

Bonferroni correction applied, resulting in a significance level set at P = 0.006. During 

abduction of the fifth digit, the mean length of the PB decreased by 28 ± 11% (range: 8–

40%, P = 0.002, r = 0.62) and 32 ± 5% (range: 18–59%, P = 0.002, r = 0.62) in the left 

and right hands, respectively (Table 4.1). PB muscle thickness increased by 68 ± 30% 

(range: 23–130%, P = 0.002, r = 0.62) and 85 ± 44% (range: 39–162%, P = 0.002, 

r = 0.63) in the left and right hands, respectively (Table 4.1). There were no significant 

differences between resting and contracted states between the left and right hands 

(P > 0.006). The ulnar artery and nerve were located deep to the PB in all ultrasound 

images, and these structures were identifiable in both images acquired at rest (Figure 4.4)  

 

Table 4.1 Ultrasound-derived Measures of Palmaris Brevis Muscle Architecture 

(n = 12) 

Left Hand Right Hand 

Rest Contraction Rest Contraction 

Length (cm) 
2.0 ± 0.3 

(1.5 – 2.5) 

1.4 ± 0.2* 

(1.2 – 1.8) 

2.0 ± 0.3 

(1.1 – 2.5) 

1.3 ± 0.3* 

(0.9 – 1.7) 

Thickness (mm) 
1.9 ± 0.6 

(1.3 – 2.9) 

3.1 ± 1.0* 

(1.9 – 4.7) 

1.6 ± 0.5 

(1.1 – 3.0) 

3.0 ± 1.7* 

(1.7 – 7.7) 

Contraction: maximal abduction of the fifth digit. Values are means ± SD 

* Denotes significant from resting condition using Bonferroni correction factor 

(P<0.006) 
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Figure 4.4 Visualizing Dynamic Changes in Palmaris Brevis (PB) Muscle Architecture 

during Abduction of the Fifth Digit using Ultrasound Imaging.  

(A) Ultrasound probe (gray rectangle) aligned longitudinally with the PB muscle. (B) PB 

appearance at rest. (C) PB appearance during contraction. Ulnar artery (red arrow), ulnar 

nerve (yellow arrow), superficial border of the PB (black arrow). 

  



 

 

 

 

85 

4.3.3 Histology 

Histological investigation of the cadaveric PB tissue revealed typical features of skeletal 

muscle tissue, striations and peripherally located nuclei, when viewed in longitudinal and 

cross-sectional orientations, respectively (Figure 4.5). 

 

Figure 4.5 Histological Appearance of the Palmaris Brevis (PB). 

 (A) PB harvested from a fresh frozen cadaveric specimen (black arrows). (B) PB muscle 

fibers oriented longitudinally (hematoxylin–eosin stain). (C) PB muscle fibers oriented in 

cross-section (hematoxylin stain). Note the presence of muscle fiber striations, and 

peripherally located nuclei typical of skeletal muscle. Scale bar: 100 μm 
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4.4 Discussion 

The current study examined the PB EMG and muscle architecture during specific 

movements of the fifth digit and during functional grasping tasks. A few studies have 

examined single motor unit PB EMG in vivo in healthy participants (Chiou-Tan et al. 

1998), during clinical examination (Serratrice et al. 1995; Liguori et al. 2003; Tarsy et al. 

2004; Eswaradass et al. 2014), and PB muscle architecture from cadavers (Shrewsbury 

et al. 1972; Przystasz, 1977; Chiou-Tan et al. 1998). We investigated PB global EMG 

from a functional perspective and imaged the PB muscle during dynamic contractions 

using ultrasound. The results indicated that PB EMG activity is under voluntary control 

and is highly dependent on movements of the fifth digit. The PB muscle is capable of 

significant changes in muscle architecture during voluntary muscle contraction. In 

addition, histological analyses indicated that the PB is composed of striated skeletal 

muscle fibers and should be in under the control of the somatic nervous system. 

For resting PB MT and ML, the ultrasound-determined values (Table 4.1) are in 

agreement with measurements from embalmed (MT: 1–3 mm; Przystasz, 1977) and fresh 

(mean ML: 2.1 cm; Kim et al. 2017) cadaveric specimens. Although a reliability study 

assessing the inter- and intra-rater reliability of the ultrasound-derived PB measurements 

was not performed, the results were comparable to those data obtained from cadavers 

(Przystasz, 1977; Kim et al. 2017). An inter- and intra-rater reliability study of the PB 

validated against magnetic resonance images from the same participants might be useful 

for future studies. From a functional perspective, a resting MT of 1–3 mm may be 

insufficient to protect the neurovasculature of the ulnar canal. Passive movements in 

which the palm is simply resting on a surface will likely not produce PB muscle 

contraction, thereby providing minimal protection during prolonged palmar compression. 

The susceptibility of the superficial branch of the ulnar nerve to compression injury may 

explain the spontaneous intermittent PB contractions in occupations requiring long hours 

using a computer mouse and keyboard (PB spasm syndrome) (Liguori et al. 2003). The 

etiology of PB spasm syndrome remains unclear but may involve peripheral nerve stretch 

injury, or ulnar nerve entrapment at the wrist (Serratrice et al., 1995). In recreational and 



 

 

 

 

87 

elite-level cyclists, the PB may not provide the necessary relief from prolonged overlying 

pressure during conditions in which the palm is passively resting on a surface such as a 

classic-style handlebar typical of a road bicycle (Slane et al. 2011). An absence of PB 

muscle activity and the constant pressure imposed on the hypothenar eminence may 

require cyclists to wear protective gloves to prevent compression-related nerve injuries.  

When the PB contracts, it visibly draws the skin of the hypothenar eminence 

radially producing a dimpling effect on the ulnar margin of the hand. Ultrasound imaging 

allows for improved visualization of dynamic PB contraction and the relationship to the 

ulnar neurovasculature beyond dimpling on the skin surface, or static cadaveric and 

magnetic resonance imaging investigations. In all subjects, maximal abduction of the 

fifth digit produced significant changes in PB muscle architecture resulting in a relatively 

thick muscular barrier between the neurovasculature of the ulnar canal and the palmar 

hypothenar fat (Figure 4.4). The unique quantification through ultrasound showed 

significant changes in PB MT of 68% and 85%, in the left and right hands, respectively, 

indicating that the muscle is capable of forming a relatively thick muscular barrier to the 

neurovasculature of the ulnar canal but only during hypothenar muscle contraction. Kirk 

(1924) proposed that the PB is essential for anchoring the mobile hypothenar fat pad 

during grasping movements. Considering this potential muscular barrier in conjunction 

with the hypothenar fat pad found adjacent to the PB suggests a protective function to the 

ulnar nerve and ulnar artery. Although we imaged the PB during abduction of the fifth 

digit, we expect similar changes in PB muscle architecture during fifth digit flexion at the 

MCP joint, and during the spherical grip based on the PB muscle activity evoked during 

these tasks. Functional movements that sufficiently activate the intrinsic muscles of the 

hypothenar eminence will likely produce PB muscle contraction.  

The power grip produced the least amount of PB muscle activity when grasping 

the carpenter's hammer. During the power grip, finger flexion is achieved mainly by the 

forearm flexors (flexor digitorum superficialis, flexor digitorum profundus) while relying 

on the thenar and hypothenar intrinsic hand muscles for support and stabilization (Napier, 
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1956). The hypothenar eminence acts as a muscular cushion to the hammer during this 

functional task (Napier, 1956). The PB EMG activity was reduced significantly during 

the power grip as grasping the carpenter’s hammer does not require the fifth digit to 

deepen the palm to achieve a ‘cupping’ action typical of a spherical grip. Thus, the PB 

may not provide a protective benefit to the ulnar canal neurovasculature during this 

functional task based on the reduced PB EMG recorded. 

The spherical grip is considered a powerful grip with greater precision and 

reliance on the intrinsic hand muscles for object manipulation compared with grasping 

the carpenter's hammer (Napier, 1956). During the spherical grip, the hand is positioned 

by producing a ‘cupping’ action in which the thumb and the fifth digit are in a position of 

support. To achieve this position, the fifth digit moves by contracting all hypothenar 

muscles in a combination of flexion, abduction, and opposition. This coordinated 

hypothenar muscle contraction would explain the large PB muscle activity (80%) as the 

fifth digit supports the ball and resists the movement of the thumb. The PB muscle 

activity recorded during the spherical grip supports the postulate by Shrewsbury et al. 

(1972) of the protective benefit of the PB during functional tasks associated with 

repetitive intermittent trauma or contact associated with prehensile maneuvers. Therefore, 

the PB may provide a protective benefit when the hand repeatedly grasps a spherical-

shaped object such as catching a baseball or grasping various-sized and shaped elements 

during climbing tasks. 

4.4.1 Palmaris Brevis Function in Palmar Grip 

Textbooks typically describe the function of the PB as deepening the palm to aid in 

palmar grip (Standring, 2008; Moore et al. 2014); however, the extent that the PB 

deepens the palm seems insignificant to the depth created by the muscles of thenar and 

hypothenar eminences. Shrewsbury et al. (1972) disagreed with the interpretation that the 

PB improves palmar grip as the muscle is found in the forelimbs of quadriped mammals 

such as the cat, mouse, and opossum species, which are not capable of grasping objects. 

This idea seems probable considering the PB can be excised for surgical reconstruction of 
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palmar thumb defects (Ueda & Inoue, 1994) or is divided during standard open carpal 

tunnel release surgery (Rodner & Katarincic, 2006; Malhotra et al. 2007); however, a 

systematic description of the functional limitations in grip ability and susceptibility to 

compression-related deficits due to the absence of a PB has yet to be explored. Despite 

the relatively unknown functional limitations imposed by PB absence, some clinicians 

have proposed preserving this muscle during surgical procedures based on its proposed 

protective functions of ulnar neurovasculature of the palm (Shrewsbury et al. 1972) and 

use in diagnosing the location of an ulnar neuropathy at the wrist (Pleet & Massey, 1978; 

Saadeh, 1989). Compared with an open approach to carpal tunnel release surgery, an 

improved recovery time of grip and pinch strength using the endoscopic approach has 

been attributed by some to the preservation of both the PB and palmar fascia (Malhotra 

et al. 2007). The current study results provide support for the preservation of the PB 

during surgical procedures, especially in individuals whose palms are frequently 

subjected to repetitive trauma or compression whether through sport or occupational 

demands. 

4.4.2 Involuntary Palmaris Brevis Activation 

Although PB EMG and PB contraction could be evoked during specific 

movements of the hand, the PB contractions were not in isolation but occurred in 

conjunction with hypothenar muscle contractions. The idea that the PB is not under 

voluntary control has likely been precipitated by historical reports of automatic reflex 

contraction of the PB initially referred to as the palm reflex (Boynton-Lee, 1888; 

Montagu, 1952). Boynton-Lee (1888) reported involuntary reflexive contraction of the 

PB by pinching of the skin above the pisiform bone or by firm mechanical compression 

of the same region. Montagu (1952) reported that the PB muscle could be involuntarily 

activated by compressing the ulnar nerve at the wrist, or by conditioned response 

producing PB contraction without any tactile stimulation. It is unknown whether the PB 

response is a physiological reflex by definition, acting in a spinal loop, or whether 

compression of the pisiform bone produces an involuntary discharge, or spasm, by 

indirectly compressing the superficial branch of the ulnar nerve. Based on the evidence 
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provided by histological examination, the PB is under voluntary control as it contains 

skeletal muscle fibers and thus is capable of voluntary contraction. 

4.5 Conclusion 

Although the PB is a small rudimentary muscle of variant morphology, it is capable 

of significant changes in muscle architecture overlying the neurovasculature of the ulnar 

canal. The PB EMG and ultrasound imaging findings support cadaveric observations that 

the PB can function as a potential protective muscular barrier, but only when actively 

engaging the fifth digit either independently or during functional movements. Although 

involuntary contraction of the PB may be possible through potential reflexive or indirect 

mechanical compression of the ulnar nerve, the PB muscle is a dynamic structure that can 

be voluntarily contracted in conjunction with muscles of the hypothenar eminence. This 

study further supports suggestions that the PB should be spared during surgical 

interventions based on its proposed protective function to the ulnar artery and nerve in the 

palm. 
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Chapter 5  

5 Fiber Type Composition of the Palmaris Brevis: 
Implications for Palmar Function4 

5.1 Introduction 

The palmaris brevis (PB) is a small muscle located superficial to the hypothenar 

eminence in the ulnar aspect of the palm. The morphology of the PB is variable and can 

be classified as either developed or regressive in form based on the course and 

arrangement of the muscle fibers present (Przystasz, 1977). Despite the variability in 

morphological appearance, the PB is rarely (~ 3%) absent in humans (Przystasz, 1977). 

Moreover, the PB is among several subcutaneous muscles considered to be atavistic 

remnants of the panniculus carnosus, an extensive sheet of skeletal muscle found in 

animal species used to remove noxious stimuli on the skin such as insects and birds 

(Bergman et al. 1985). In humans, other remnants of this muscle layer include the facial 

muscles, corrugator cutis ani, and the dartos muscle of the scrotum (Patil, 2013). Several 

proposed functions of the PB include deepening the palm to aid in palmar grip 

(Standring, 2008; Moore et al. 2014), preventing displacement of the hypothenar fat pad 

during compressive grasping tasks (Kirk, 1924) and protecting the ulnar nerve and artery 

at the wrist when grasping hard objects (Henle, 1855; Shrewsbury et al. 1972; Przystasz, 

1977). Shrewsbury et al. (1972) proposed that the PB is protective of the ulnar 

neurovasculature during prolonged palmar compression or intermittent trauma. This is a 

reasonable hypothesis based on previous cadaveric studies investigating PB gross 

morphology; however, no studies have investigated PB tissue architecture to further 

                                                 

4
 A version of this chapter has been published. Used with permission from John Wiley and Sons Inc. 

Moore CW, Beveridge TS, Rice CL. 2017. Fiber type composition of the palmaris brevis muscle: 

implications for palmar function. J Anat 231:626-633. 
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characterize its functional capabilities. Thus, it remains unknown whether the PB has the 

contractile or metabolic capacity to support these functional demands. 

Intramuscular electromyography (EMG) is a useful technique to provide insight 

into the functional specialization of palmar musculature by recording muscle activation 

patterns during movements. The abductor pollicis longus and brevis are among several 

palmar muscles that have been investigated using this technique (van Oudenaarde & 

Oostendorp, 1995); however, EMG investigations of the PB have been limited to clinical 

investigations characterizing PB spasm syndrome in patients (Serratrice et al. 1995; Iyer, 

1998; Liguori et al. 2003; Tarsy et al. 2004; Eswaradass et al. 2014). As an alternative to 

EMG, functional insight into the contractile and metabolic capabilities of a skeletal 

muscle can be achieved by characterizing the muscle fiber-type composition by staining 

for myosin heavy chain (MHC) isoforms of constituent muscle fibers using 

immunohistochemical methods. 

In human muscle, the three major fiber types are classified as type I, type IIa and 

IIx, and can be further sub-classified into hybrid fibers, in which two MHC isoforms are 

co-expressed within a single muscle fiber (i.e. MHC type I/IIa and MHC type IIa/IIx) 

(Scott et al. 2001; Pette & Staron, 2000). The ability of skeletal muscle to adapt to a 

variety of functional demands is due to its heterogeneous fiber-type composition, and the 

mechanical and metabolic properties of each muscle fiber (Staron, 1997). Type I muscle 

fibers have an oxidative metabolism, slow shortening speed, and are fatigue-resistant, 

whereas type II muscle fibers have a glycolytic metabolism, fast shortening speed, and 

are susceptible to fatigue. Determining the fiber-type composition of the PB will provide 

indirect insight into its contractile and metabolic capacity and its proposed protective role 

during prolonged palmar compression. If the PB is capable of protecting the ulnar 

neurovasculature at the wrist during prolonged palmar compression, we expect to observe 

a large proportion of type I muscle fibers, thereby imparting fatigue-resistant properties. 

Therefore, the purpose of the current study was to quantify the proportion of type I, type 
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II and hybrid fibers using immunohistochemistry to provide insight into PB in palmar 

function based on its histological structure. 

 

5.2 Materials and Methods 

5.2.1 Cadaveric Specimens 

Sixteen PB specimens were harvested from the hands (eight right, eight left) of 

eight embalmed cadavers (Mean age: 75 ± 14 years; three males, five females). 

Cadaveric specimens were obtained from the body bequeathal program at the University 

of Western Ontario, London, ON, Canada, and approved for research use by the 

Committee for Cadaver Use in Research (REF#: 21092016). The cadavers received 

through the body bequeathal program are typically embalmed within 24 h postmortem. 

To ensure muscle fiber type proportions were not influenced by other comorbidities such 

as disease, the cadaveric specimens were excluded from the investigation based on the 

following criteria: presence of a neuromuscular disease indicated in the cause of death 

report, and visible evidence of finger deformation indicating presence of rheumatoid or 

osteoarthritis. 

5.2.2 Palmaris Brevis Morphological Variant Classification 

The dissected palms of each cadaveric specimen were photographed and their PB 

morphology was classified, prior to tissue harvesting, based on the criteria proposed by 

Przystasz (1977). A single investigator with extensive experience in palmar dissection 

was responsible for classifying the morphological variants. These morphological forms 

were categorized based on the following specific features: a single muscular plate with 

fibers arranged in parallel or in fan-shaped arrangement (Type A); intermittent muscle 

bundles divided into two to four parts (Type B); a rudimentary form with one to three 

fibers embedded in adipose tissue (Type C); or a chaotic fiber arrangement interspersed 

with adipose tissue (Type D). As per Przystasz (1977), the specimens were further 



 

 

 

 

97 

grouped based on these morphological variants into developed (Types A & B) and 

regressive forms (Types C & D). 

5.2.3 Immunohistochemistry 

Whole muscle PB tissues were excised from their origin and insertions at the 

palmar aponeuroses and hypothenar fascial insertions, respectively. The PB specimens 

were carefully trimmed to remove excess adipose and connective tissues surrounding the 

muscle fibers. Upon harvesting, the PB tissue samples were immediately immersed in a 

10% formalin solution for a minimum of 24 hours prior to processing and paraffin 

embedding. PB specimens were serially sectioned at a thickness of 5 μm using a 

microtome (Microm HM-325). All sections were heated to 37 °C for a minimum of 

12 hours, and then stained using standard immunohistochemical procedures. Antigen 

retrieval was performed in citrate buffer (pH 6.0) in a de-cloaking chamber before 

blocking with 10% horse serum. Slides were incubated with mouse monoclonal 

antibodies specific to either MHC type I (Sigma-Aldrich NOQ7.5.4D) or MHC type II 

(Sigma-Aldrich MY-32) at a dilution of 1 : 3200 for one hour at room temperature, as 

established by preliminary titrations. The antibodies NOQ7.5.4D and MY-32 label type I 

(slow-twitch) fibers and all type II (i.e. type IIa and IIx) (fast-twitch) fibers, respectively. 

The application of the secondary antibody was completed using an ImmPRESS Anti-

Mouse Ig Peroxidase Polymer Detection Kit (Vector Laboratories, Cat. No. MP-7402) 

and was then labeled with DAB (DAB Peroxidase Substrate Kit, 3,3′–diaminobenzidine, 

Vector Laboratories, Cat. No. SK-4100). All sections were counterstained using 

hematoxylin. Specimen-matched negative control sections underwent identical 

procedures, save for the application of the primary antibody. Positive controls for the 

experiments were performed using a section of the soleus muscle (a known MHC-type I 

dominant muscle), and triceps brachii muscle (a known MHC-type II dominant muscle). 
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5.2.4 Image Acquisition and Muscle Fiber Quantification 

Images of the PB tissue sections were captured with a 14-megapixel digital USB 

microscope camera (OMAX, model: A35140U3) attached to a Leitz Laborlux S 

microscope. High-resolution images were saved in a .tiff file format using ToupView 

computer software (OMAX, Ver. X64, 2.7.5849). Two to three sites from each slide were 

imaged at 40× magnification such that a minimum of 1500 representative muscle fibers 

were imaged for analysis per specimen. PB muscle fibers were quantified using the 

counting tool in Adobe Photoshop CC software (2015.5.0 Release). The PB serial cross-

sections were compared side-by-side to classify each muscle fiber into one of three 

categories: type I, type II and hybrid fibers (Figure 5.1). First, PB muscle fibers co-

expressing both MHC type-I and MHC type-II isoforms (hybrid fibers) were identified 

and quantified using the counting tool. Secondly, muscle fibers that stained positive for 

only MHC type-II (type II fibers) were quantified. Finally, the remaining fibers staining 

positive for MHC type-I only (type I fibers) were quantified. Due to gross morphological 

differences among the PB forms, an inherently smaller whole muscle tissue volume was 

obtained when harvesting the regressive form. Therefore, in each PB specimen, the 

proportion of each fiber type was calculated as a percentage by dividing the fiber number 

of each fiber type (type I, type II, hybrid) by the total number of muscle fibers counted in 

the histological section to normalize the values for statistical analysis. 
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Figure 5.1 Immunohistochemical Labeling of Two Serial Cross-Sections of the Palmaris 

Brevis from One Specimen.  

(A) Control slide. (B) Labeled with NOQ7.5.4D antibody against MHC type I (slow-

twitch). (C) Labeled with MY-32 antibody against all MHC type II isoforms (fast-

twitch). Representative type II (red), type I (yellow) and hybrid (blue) muscle fibers are 

identified in both serial cross-sections. Note the predominant proportion of positively 

stained type I fibers in panel (B). The histological sections depict tissue harvested from a 

developed (Type B) palmaris brevis morphological form. Scale bar: 200 μm. 

  



 

 

 

 

100 

5.2.5 Statistical Analysis 

All data handling and calculations were performed using excel (Version 2016, 

Microsoft Corporation). Statistical tests were completed using spss statistical software 

(Version 24, SPSS Inc., Chicago, IL, USA) and power was determined with G*Power (v 

3.1.9.2). To determine whether the percent of muscle fiber types present in the PB 

specimens differed by fiber type (i.e. type I, type II or hybrid) and/or by hand (left vs. 

right) a two-way analysis of variance (ANOVA) was used with power (1 – β = 0.8, 

α = 0.05) to detect a large effect size. Similarly, a two-way ANOVA was performed to 

explore whether the proportion of muscle fibers types differed between Type A and B 

morphological variants of the PB. A Bonferroni correction was used to account for 

multiple comparisons. All descriptive statistics are presented as means ± SD 

 

5.3 Results 

5.3.1 Morphological Classification 

Of the 16 PB muscles harvested, 14 (87.5%) were classified as developed forms 

(Type A: 8; Type B: 6). Regressive forms consisting of poorly developed muscles were 

observed in two (12.5%) PB specimens harvested from the hands of a single cadaver 

(Type C). Of the 16 specimens, there were no PB morphological variants with a chaotic 

fiber arrangement (Type D). Exemplar PB morphological forms can be seen in Figure 5.2. 
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Figure 5.2 Palmaris Brevis Morphological Variants Harvested for Immunohistochemical 

Analysis.  

Type A (I-II): Solid muscular plate with fan-shaped or parallel fiber arrangement; Type B 

(III): Developed muscular bundles separated by adipose tissue; Type C (IV): regressive 

form consisting of only a few fibers embedded in adipose tissue. PB morphological 

classifications are based on criteria established by Przystasz (1977). 

  



 

 

 

 

102 

 

5.3.2 Muscle Fiber Quantification 

 A total of 44 624 PB muscle fibers (left hands: 20 473 fibers; right hands: 24 151 

fibers) were examined throughout the histological sections. Of these, 32 005 were type I, 

5 585 were type II, and 7 034 were hybrid muscle fibers. 

Using a two-way ANOVA, the effect of fiber type and hand on the proportion of 

muscle fibers was examined. An analysis of simple main effects revealed a significant 

difference in the proportion of each fiber type within the PB (F2,42 = 119.7, P < 0.025), 

but also showed no difference in the proportion of fiber types between the left and right 

hands; no interaction effect was observed. A post hoc analysis (Tukey's HSD) indicated 

the proportion of type I fibers (mean = 72.2 ± 13.7%, range = 54.4–96.7%) was 

significantly different (P < 0.025) than the type II (mean = 12.0 ± 11.2%, range = 0.04–

32.0%) and hybrid fibers (mean = 15.8 ± 10.7%, range = 2.9–37.3%). The results of the 

statistical analysis are shown graphically in Figure 5.3. 
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Figure 5.3 Palmaris Brevis Fiber Type Composition Between Left and Right Hands of 

Aged Cadavers 

A predominance of type I fibers was observed and was significantly different (P < 0.025) 

from the type II and hybrid fiber types. No significant difference was detected between 

left and right hands. Error bars represent one standard deviation. N.S. denotes non-

significance. 
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To examine whether the proportion of the three fiber types differed between 

morphological variants (i.e. Type A and B morphologies as described by Przystasz, 

1977), a two-way ANOVA was performed. No significant interaction was observed and 

analysis of the simple main effects for morphological variants was not significant 

(F1,38 = 0.013, P > 0.025), indicating no difference between the percentages of type I, 

type II and hybrid fibers among specimens with Type A and B morphology. Because 

only two Type C variants were identified, they were not included in the present statistical 

analysis. Still, these specimens exhibited a predominance of type I fibers (78 and 81%) in 

comparison with type II (19 and 5%) and hybrid (3 and 15%) fibers in the left and right 

hands, respectively. These findings indicate the PB is predominantly composed of type I 

fibers, irrespective of hand or variant morphology. 

 

5.4 Discussion 

The palmaris brevis in humans is a unique muscle due to its palmar location, variant 

morphology (Przystasz, 1977) and its proposed functionality for improving palmar grip 

(Kirk, 1924) in addition to possibly protecting the ulnar neurovasculature at the wrist 

(Shrewsbury et al. 1972). In the present study, 16 specimens were histologically 

examined to perform the first quantification of fiber type proportions in the human PB 

muscle. Importantly, an understanding of the proportion of fiber types constituting the PB 

provides insight into its potential role protecting the ulnar neurovasculature during 

prolonged palmar compression. Using immunohistochemistry, it was found that a 

predominance of type I fibers was present in all PB specimens, irrespective of the hand 

(side) or morphological variant investigated. 

The finding of a predominant type I muscle fiber-type composition in human skeletal 

muscle is not unique to the PB. Muscles demonstrating a similar predominance (e.g. 

> 60%) of either type I or type II muscle fibers have been observed in muscles of the 

face, hand and the lower limb (Table 5.1). Another palmar muscle, the adductor pollicis, 
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has a relatively homogeneous fiber-type composition (> 80% type I) and shares a similar 

innervation, albeit by different branches of the ulnar nerve (Round et al. 1984; Moore 

et al. 2014). Unlike the adductor pollicis and other intrinsic muscles of the hand, the PB 

does not act upon a joint and thus is not required to generate large forces for gross 

movements. PB muscle fibers are uniquely orientated and are arranged perpendicular to 

the hypothenar muscles. When contracted, the PB will produce a visible dimpling of the 

skin on the ulnar aspect of the palm due to its anatomical insertion into the skin and 

hypothenar fascia. Thus, the PB must only generate enough force to draw the skin and 

fascia of the hypothenar eminence radially through its distinct tendinous insertions. Based 

on the predominant type I muscle fiber composition (> 70%) of the PB observed in the 

current study, the metabolic properties associated with this fiber type would confer a 

fatigue-resistant property. This would prevent unwanted displacement of the hypothenar 

fat pad due to muscular fatigue during repetitive or prolonged palmar contractions. In 

addition to this function, it has been suggested that by anchoring the large hypothenar fat 

pad, the PB-hypothenar fat pad complex could protect the ulnar neurovasculature at the 

wrist when objects are firmly compressed into the palm (Henle, 1855; Kirk, 1924; 

Shrewsbury et al. 1972) or during prolonged sustained grasping tasks. Importantly, the 

predominance of type I fibers in the PB observed in the present study supports the 

fatigue-resistant and protective functions proposed in the previous literature. 
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Table 5.1 Human Skeletal Muscles of the Face, Hand, and Lower Limb with 

Predominant Fiber Type Compositions 

Muscles 

Muscle Fiber 

Proportions 
Reference 

% Type I % Type II 

Orbicularis oculi 11% 89% 
Goodmurphy & Ovalle 

(1999) 

Platysma 19% 81% Dittert & Bardosi (1989) 

Orbicularis oris 29% 71% Stal et al. (1990) 

Frontalis 64% 36% Johnson et al. (1973) 

Adductor pollicis 80% 20% Round et al. (1984) 

Lumbrical (1st digit)† 43% 57% Hwang et al. (2013) 

First dorsal interosseous† 57% 43% Johnson et al. (1973) 

Soleus 89% 11% Johnson et al. (1973) 

Tibialis anterior 73% 27% Johnson et al. (1973) 

† Hand muscles composed of a relatively heterogeneous fiber type composition 

included for comparison 
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The PB is among several cutaneous skeletal muscles that insert into the skin, such as 

the platysma, orbicularis oculi and oris (Goodmurphy & Ovalle, 1999; Stal et al. 1990), 

and corrugator supercilii muscles (Goodmurphy & Ovalle, 1999). Despite sharing a 

similar classification with the PB as discrete muscular remnants of the 

panniculus carnosus (Bergman et al. 1985; Patil, 2013), the facial muscles have a 

predominance of type II muscle fibers (> 70%); a property that indicates divergent 

functions compared with the PB itself (Table 5.1). The facial muscles are generally prone 

to fatigue (Brach & VanSwearingen, 1995), as experienced when one finds it increasingly 

challenging to hold a prolonged smile when posing for a photographic portrait. The 

disparate muscle fiber composition between muscles (Table 5.1) demonstrates how the 

muscle fiber composition can reflect overall muscle function. Compared with the facial 

muscles, a postural leg muscle such as the soleus is fatigue-resistant because it is 

chronically activated in both locomotion and quiet stance (Honeine et al. 2013). This 

function can be inferred from its predominate proportion of type I muscles fibers 

(Table 5.1). Therefore, in some skeletal muscles, the muscle fiber composition can yield 

valuable insight into muscle function based on the fiber-type composition alone. 

 

In the present study, the type II muscle fibers in the PB accounted for only 12% of 

the total muscle fibers quantified in both the left and right hands. Because the MY-32 

antibody stains for all MHC type II isoforms, we could not further distinguish type IIa or 

IIx fibers in our histological sections. However, because the type I muscle fibers 

accounted for > 70% of the total muscle fibers, it was not necessary to further investigate 

the proportion of MHC type II isoform subtypes. 

 

Fiber type co-expression (hybrid fibers) can occur due to either cycles of collateral 

reinnervation and denervation associated with human aging (Andersen et al. 1999; 

Rowan et al. 2012), or alterations in neural stimulation to the muscle fibers (Pette & 

Staron, 2000). It has been established that the transition of MHC isoforms is ordinal, such 

that two ‘neighboring’ MHC isoforms (e.g. MHC I/IIa or MHC IIa/IIx) are usually co-

expressed within a single muscle fiber (Scott et al. 2001). We observed mixed fibers 
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staining positive for both MHC type I and MHC type II on serial cross-sections, which 

were classified as hybrid fibers likely containing MHC type I and type IIa isoforms 

(Figure 5.1). The high mean age (75 ± 15 years) of the cadavers used in this study may 

explain the proportion of hybrid fibers detected in our PB tissue sample. To determine 

whether the MHC co-expression observed in the PB tissue is age-related or an inherent 

phenotype of the muscle, further investigation of younger PB tissues are required. 

Although the presence of hybrid fibers may be indicative of alterations in neural 

stimulation, aging or other potential factors, only a small number of hybrid fibers were 

observed and they contributed a relatively small percentage to the total fiber number (14 

and 17%) in the left and right hands, respectfully. 

 

The proportion of type I and type II muscle fibers within a skeletal muscle can vary 

based on depth of sampling (Johnson et al. 1973; Elder et al. 1982), muscle width (Dittert 

& Bardosi, 1989) or between architecturally distinct regions (Kim et al. 2013). In the 

histological preparation shown in Figure 5.1, type I fibers were distributed throughout 

both the peripheral and central regions of the muscle, whereas type II and hybrid fibers 

were mainly located in the central regions; however, this was not a consistent finding in 

all the histological preparations. The fiber-type distribution within individual fascicles is 

dependent upon several physiological and mechanical factors such as vascular supply, 

muscle activation patterns and differential mechanical stresses experienced by superficial 

and deeper muscular portions (Sjostrom et al. 1986). Further study is needed to examine 

whether regional differences (e.g. proximal vs. distal segments; superficial vs. deep 

regions) in muscle fiber-type proportions exist within the PB tissue volume. Although 

investigation into functionally distinct regions within the PB would be valuable, the 

primary focus of this study was to determine the overall fiber-type composition indicative 

of the whole PB tissue volume. 

 

We further investigated whether the fiber-type composition varied between two 

groups of developed PB morphological forms identified in our sample. When grouped by 

morphological variant (Types A and B), there were no apparent differences in the 
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proportions of type I, type II and hybrid fibers between these developed forms. 

Furthermore, the regressive form observed in the hands of the single cadaveric specimen 

had a similar mean percentage of type I muscle fibers (78% left hand, 80% right hand) 

proportional to the developed forms found in the other cadaveric specimens. Therefore, it 

appeared the PB morphological variant had no bearing on the muscle fiber-type 

composition. Although we observed no significant differences in fiber-type composition 

between left and right hands, and PB developed forms, the lack of apparent differences in 

these measures could be explained by the relatively small sample of PB tissues harvested. 

It is possible that a larger sample size might help solidify these observations, in both 

dominant and regressive forms, thus allowing for a more comprehensive analysis and 

potential comparisons in fiber-type composition between males and females. 

Nevertheless, the present study results indicate that muscle fibers of the regressive PB 

forms have the same fatigue-resistance as the developed PB forms but a reduced 

functional capacity due the relatively few muscle fibers present. 

 

5.5 Implications for Palmar Function 

Kirk (1924) postulated that the PB functions to anchor and stabilize the hypothenar 

fat pad during palmar grasping; however, a sufficiently large muscle tissue mass is likely 

necessary for supporting the hypothenar fat pad and resisting compressive forces incurred 

at the hypothenar eminence. In our sample, the developed PB muscles covered a broad 

area from the pisiform bone to an area approaching the transverse palmar crease, which 

would provide a large coverage area for support of the hypothenar fat pad located 

superficially. Although some developed PB morphological forms can appear divided into 

various discrete muscle fiber bundles (Figure 5.2), the range of muscle separation is only 

1–5 mm based on cadaveric observations (Shrewsbury et al. 1972). Therefore, the overall 

functionality of the PB specimens with divided musculature is likely similar to those 

found in solid muscular plates. 
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The regressive form in our sample was limited to the region near the pisiform bone 

and likely had minimal functionality in anchoring the hypothenar fat pad or providing 

any meaningful protection to the ulnar neurovasculature when subjected to palmar 

compressive forces (Figure 5.2). This is consistent with Przystasz (1977), who suggested 

the PB regressive forms likely provide no functional contribution to stabilizing the 

hypothenar fat pad or resisting compressive forces when grasping hard objects. We 

observed the PB developed forms with equal frequency between hands; however, 

Przystasz (1977) found the PB developed forms occurred more frequently in the right 

hands (70%) compared with the left hands (38%) using a large sample of 101 upper 

limbs. Although we observed different proportions of developed to regressive PB forms 

from the aforementioned study, we cannot discern from cadaveric examinations whether 

handedness influences the morphological form present. Therefore, further studies are 

necessary to determine whether PB morphology is related to handedness and whether the 

presence of a regressive form causes a predisposition to ulnar nerve compression-related 

injuries. 

5.6 Conclusions 

Although the PB is a relatively small muscle of variant morphology, its location at the 

hypothenar eminence conveys potential functionality in both protecting and supporting 

the ulnar neurovasculature and hypothenar fat pad from overlying compression. The 

predominant type I muscle fiber composition supports the hypotheses that the PB has a 

protective capacity during repetitive or prolonged grasping tasks based on the overall 

fatigue-resistance imparted by the proportionally dominant type I muscle fiber-type 

composition. 
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Chapter 6  

6 General Discussion & Summary 

6.1 General Discussion 

The studies presented in Chapters 2 to 5 explore the role of the palmaris longus (PL) 

and palmaris brevis (PB) in the hand by investigating in vivo their muscle activity and 

architectural changes during functional movements. These observations were further 

supported by determining the type I and type II fiber proportions within each muscle in-

situ, which presumably contribute to whole muscle function through the contractile and 

metabolic properties of their constituent fibers. The main findings of this dissertation 

provide evidence that the PL and PB contribute to hand function despite being generally 

perceived as insignificant musculature in the process of evolutionary recession in 

humans. These findings build upon the understanding of the PL and PB in the literature, 

and provide more clarity into their functional role in vivo. By providing a more 

comprehensive understanding of PL and PB anatomy and physiology, the results of this 

dissertation will be useful in further characterizing the functional loss of each, which may 

occur through surgical removal or hereditary absence.  

In Chapter 2, the PL was shown to provide significant muscle activity and 

synchronous co-contraction during thenar abduction, flexion, opposition, and 

circumduction movements. The muscle activity was greatest during thenar abduction, 

which supports the PL acting as an extrinsic thenar muscle contributing to the thenar 

abduction strength. The muscle activity recordings were supported by ultrasound 

imaging, in which significant increases in muscle thickness were observed during thenar 

abduction movements. The contributions of the PL to thenar function were direction 

dependent as minimal changes in muscle activity and muscle thickness were observed in 

response to thenar adduction. Although several studies attribute the success of PL tendon 

transfer in opponensplasty surgery to an established synergy between the PL and the 

abductor pollicis brevis (APB), this synergistic relationship has not been investigated 
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comprehensively in previous literature (Fahrer, 1973). Chapter 2 provides evidence to 

confirm that the PL contributes to thumb movements, which supports studies proposing 

thenar abduction be universally accepted as a PL action by anatomists and hand surgeons 

(Fahrer, 1973, 1977; Fahrer and Tubiana, 1976; Gangata et al., 2010).  

In Chapter 3, the APB muscles with contiguous origins with the PL consisted of 

significantly greater type II fiber proportions than those with non-discrete PL origins. 

This disparate fiber composition between two anatomical arrangements may represent 

quality of synergy established between the PL and APB. This indicates that the synergy is 

dependent not only on the presence of the PL but also on the robustness of its tendon with 

the APB per se. Furthermore, the contiguous relationship between the PL and APB 

indicates that these muscles function as a digastric unit. A homogeneity in fiber type 

composition in APB fascicles arranged in a digastric manner with the PL may reflect a 

functional inter-relationship similar to the digastric muscle proper (Monemi et al., 1999) 

and to the medial and lateral heads of the quadratus plantae (Schroeder et al., 2014). The 

PL and lateral head of the quadratus plantae may still contribute function despite being 

considered under evolutionary recession (Schroeder et al., 2014). Although surgical 

literature attributes the success of PL tendon transfer in opponensplasty to an established 

synergy amongst the PL and APB (Kato et al., 2014), this synergy may not be fully 

established in all individuals based on differences in tendon morphology and PL 

evolutionary regression.  

In Chapter 4, the PB was investigated during dynamic grasping tasks to determine its 

muscle activity. Several functions of the PB have been proposed including aiding in 

palmar grip and ulnar neurovasculature protection (Shrewsbury et al., 1972). However, 

there is lack of consensus regarding its function as some have even described the PB as 

incapable of voluntary contraction (Serratrice et al., 1995). The histological composition 

of the PB was confirmed as striated skeletal muscle, and thus, under voluntary control by 

the somatic nervous system. Several human skeletal muscles, however, are incapable of 

voluntary contraction including the middle ear muscles, the tensor tympani and stapedius, 
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which are primarily driven at the unconscious level (Standring and Gray, 2008). 

Although the PB could not be contracted independently, the greatest muscle activity was 

recorded during abduction and flexion movements of the fifth digit. This suggests that the 

PB is engaged in a functional relationship with the fifth digit, similar to other muscular 

complexes (ex: triceps brachii, triceps surae) incapable of independent contractions of 

their constituent muscles. Jones (1920) attributed the lack of PB volitional control to a 

small cortical representation; however, all participants where capable of producing 

significant changes in PB architecture (length, thickness) and muscle activity in response 

to functional grasping tasks and individual fifth digit movements. Based on the 

comparative anatomy evidence in the literature and the proximity of the PB to the ulnar 

nerve and artery, the significant muscle activity recorded from the PB suggests a 

protective function when grasping round elements (tennis ball) as opposed to more 

cylindrical-shaped objects (Carpenter’s hammer). From an evolutionary perspective, the 

ulnar nerve and artery likely would need protection from repetitive impacts during 

climbing as opposed to hanging from tree limbs.  For arboreal mammals, the ulnar aspect 

of the palm would experience limited, if any, contact or compression when simply 

hanging from tree limbs. In Chapter 5, the fiber type composition demonstrated that the 

PB consisted of a predominant type I muscle fiber population, thereby imparting the PB 

with a fatigue resistant profile based on type I muscle fiber contractile properties. This 

further supports functional postulates of the PB in repetitive, or intermittent climbing, or 

other activities subjecting the palm to repetitive compression, in which, the PB may 

provide protection for the neurovasculature of the piso-hamate tunnel.  

The functional purpose of the “reflexive” involuntary contraction of the palmaris 

brevis still remains unclear (Chapter 4). Most reports are anecdotal (Boynton-Lee, 1888; 

Jones, 1920; Montagu, 1952) with some ascribing its involuntary contraction as 

protective of the ulnar nerve and artery (Przystasz, 1977).  Considering other neonatal 

palmar reflexes, the grasping and palmomental reflexes are considered primitive 

appearing in infancy prior to their inhibition after several weeks after birth (Karimianpour 

et al., 2015; Schott and Rossor, 2003, 2016). Interestingly, these reflexes may become 
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disinhibited in clinical disorders such as frontal lobe damage and dementia, indicating the 

presence of cortical degeneration (Karimianpour et al., 2015; Schott and Rossor, 2003). 

In an early anecdotal account of the PB reflex, Boynton-Lee (1888) identified the 

phenomenon in several hands and proposed that it may serve a potential clinical purpose 

in the future.  Similar to the aforementioned reflexes, the PB reflex may serve a similar 

clinical purpose indicating the presence of cortical degeneration in the brain; however, 

this has yet to be evaluated. 

6.2 Limitations 

Indwelling fine wire electromyography (EMG) is advantageous as it allows for 

investigation of individual muscles; however, this technique records muscle activity from 

a relatively small region assumed to be representative of whole muscle function. In other 

vestigial muscles, such as the anconeus, functional regions have been identified within 

the muscle volume based on variations in fiber direction and regional differences in 

muscle EMG recordings (Bergin et al., 2013). In the PB, functional regions may exist 

based the fiber orientation, direction, and separation between distinct muscle bundles 

(Przystasz, 1977; Shrewsbury et al., 1972); however, this was not the specific aim of 

these initial studies.  

In Chapter 2, ultrasound imaging was used to record architectural changes in PL 

muscle thickness in response to thenar abduction contractions. Although significant 

changes in PL muscle thickness were recorded, the force generating capacity of skeletal 

muscle is dependent upon several other architectural parameters that were not assessed 

such as physiological cross-sectional area and fascicle length. These factors, including 

compliance of the PL tendon, and morphological arrangement of the tendon at the wrist 

will further influence the relative force contributions to thumb function. Despite 

these muscle and tendon properties not being assessed in this thesis, they could be 

addressed in a future study to further characterize the role of the PL in thumb function.  
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Normalization of EMG signals is necessary to compare muscle activity among 

individuals (Halaki and Ginn, 2012). A popular normalization method is determining the 

maximal EMG activity from a given muscle and dividing the EMG of subsequent 

submaximal movements by the maximal EMG value (Halaki and Ginn, 2012); however, 

this may be challenging for several muscle groups not acting on specific joints such as 

the serratus anterior and here, the PB.  Determining maximal EMG from muscles that 

move explicit joints (eg. biceps brachii, PL) are more easily studied compared to muscles 

not necessarily joint exclusive such as the PB. Due to inter-individual variation in muscle 

activity, there is lack of consensus among research studies as to which movement 

produces the greatest activity in some muscles (e.g. serratus anterior) (Halaki and Ginn, 

2012). A similar challenge was encountered in determining the maximal muscle activity 

in the PB as five of the eleven participants were able to achieve maximal EMG activity 

during fifth digit flexion as opposed to the remaining participants achieving maximal 

activation during fifth digit abduction. The dermal insertion, variability in individual PB 

morphology, and challenging method of evoking PB contraction likely contributed to the 

participants ability to achieve maximal activation; however, the majority of participants 

(~60%) were consistent in the method of PB maximal activation.  

The function of the PB was interpreted to support postulates as protective of the ulnar 

nerve and ulnar artery during intermittent grasping or compression actions; however, the 

studies presented in Chapters 2 and 3 did not evaluate the protection of these structures 

beyond visual affirmation that the PB has the capacity to act as a physical barrier in 

conjunction with the hypothenar fat pad. Further study of ulnar nerve and ulnar artery 

physiological properties are required (e.g.: nerve conduction velocity or blood flow 

measures) in the presence and absence of PB musculature in response to palmar 

compression.   Furthermore, intra- and inter-rater reliability of the ultrasound-derived PB 

measurements were not assessed; however, these measures could be assessed further as 

part future PB-related studies (see future directions below).  
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The PL and PB tissues used in this study were harvested from aged formalin 

embalmed cadavers [mean ages: 75y (Chapter 3); 74y (Chapter 5)] due to their 

availability through the Schulich School of Medicine & Dentistry body donation 

program. Although access to these tissues was convenient, applying 

immunohistochemical techniques on aged tissues limited further analysis of fiber cross-

sectional area as the formalin-embalming processes may have affected these properties. 

Immunohistochemical staining is advantageous as it allows for staining of formalin 

embalmed archival tissues and has been validated against myosin ATPase staining 

(Behan et al., 2002). Although analysis of muscle fiber cross-sectional area could be 

useful, Klein et al. (2003) found no significant differences in overall fiber number in 

biopsied biceps brachii from young (21y) and old (82y) individuals, despite reductions in 

mean fiber diameter and overall biceps brachii area. These and other observations 

indicate age-related fiber loss may be muscle specific. Therefore, the ratio type I to type 

II fibers may be unaffected by age in some muscles, but this remains to be 

comprehensively studied in all muscle groups.  

6.3 Future Directions 

Despite advancing the functional understanding of the PL and PB in the hand, it 

would be valuable to study these muscles in specific athletic and patient populations. 

Although the ipsilateral PL is routinely harvested as an autologous tendon graft for ulnar 

collateral ligament reconstruction in elite college and professional-level baseball pitchers 

(Cain and Mathis, 2016), the functional consequences of its removal in terms of thenar 

function remains unknown. For professional level pitchers relying on fine thenar motor 

control, removing the PL may affect the learned motor control patterns necessary for 

various pitches depending on its thenar contributions. Beyond grip strength, a 

longitudinal study during recovery from ulnar collateral ligament reconstruction could be 

conducted that monitors thenar strength and function over 12 to 14 months; the typical 

time of surgical recovery. This could provide further insight into PL function if a 

significant loss of thenar abduction strength persists post-surgical removal of PL.   
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For surgical harvesting of the PL tendon, the Schaeffer test can be used to identify the 

presence of the PL tendon at the wrist; however, the Schaeffer test is associated with a 

10% false negative ratio, which necessitates the use of imaging in preoperative planning 

for PL autologous tendon harvesting procedures (Dabrowski et al., 2018). Beyond PL 

presence, the tendon length and diameter are important parameters to be considered for 

grafting procedures; however, most PL tendons do not meet the minimal criteria (length: 

15cm, diameter: 3mm) due to insufficient PL tendon length (Jakubietz et al., 2011). 

Ultrasound or magnetic resonance imaging may be useful for PL tendon measurements in 

vivo to determine the length and diameter for sufficient transfer. In addition to tendon 

morphological measurements, the quality of tendon could be investigated non-invasively 

using quantitative magnetic resonance imaging techniques.  

Magnetization transfer imaging has been used to evaluate normative and pathological 

changes in muscle tissue quality in healthy individuals and patient populations 

(Henkelman et al., 2001; Moore et al., 2016; Schwenzer et al., 2009; Sinclair et al., 

2012). Similarly, magnetization transfer imaging has been used to detect pathological 

changes in tendon quality in the Achilles tendon by detecting a reduction in bound 

collagen in a patient with arthritic psoriasis (Hodgson et al., 2011). This technique may 

be a useful non-invasive method to evaluate the PL tendon quality prior to its use in 

surgical procedures. Furthermore, the PL tendon could be studied biomechanically for its 

tensile strength relative to quantitative magnetization transfer measurements to determine 

if reductions in bound collagen influence the tensile strength of the PL tendon.  

Future PB studies could investigate individuals whose palms are subjected to 

repetitive compression such as rock climbers, string musicians, and gymnasts. Use of 

magnetic resonance imaging for 3D volume rendering and quantification could be a 

useful non-invasive measure in detecting evidence of PB hypertrophy in these 

individuals. Comparison of muscle fiber diameter in biopsied PB muscle tissue would be 

ideal, but harvesting PB tissue may require more precision than typical Bergstrom needle 

biopsy techniques used in large muscle groups (e.g. quadriceps, biceps brachii) 
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Furthermore, physiological measurements of the ulnar nerve and ulnar artery may also 

provide evidence of its protective function if individuals with undeveloped or absent PB 

musculature have reductions in blood flow or conduction velocity or other physiological 

measures in response to palmar compression.  

 Kim et al. (2017) investigated the PB from a clinical perspective by delineating PB 

topography in cadaveric hands to better approximate the ideal injection site for botulism 

toxin to treat PB spasm syndrome. Although these cadaveric topographical measurements 

may be useful, there is extensive individual PB variation in the hand that may warrant 

ultrasound guided injections on an individual basis (Przystasz, 1977).  In addition to 

previous PB cadaveric studies (Chiou-Tan et al., 1998; Kim et al., 2017; Shrewsbury et 

al., 1972), future investigations should assess PB morphology more comprehensively 

with respect to its morphological form using ultrasound imaging. A study assessing the 

reliability of the PB ultrasound measures in reference to a standardized location (e.g. 

hook of the hamate) may be useful for avoiding neurovasculature during injection 

procedures. 

6.4 Summary 

Although considered atavistic muscles, the PL and PB further contribute to the 

complexity of hand function. This dissertation consists of a series of foundational studies 

concerning PL and PB function in vivo. Firstly, it provides support for the PL as an 

extrinsic thenar muscle in conjunction with discrete fascicles of the APB muscle 

(Chapters 2 and 3). Secondly, it provides support for the PB as a protective barrier to the 

contents of the piso-hamate tunnel neurovasculature, in addition to its potential reflexive 

mechanisms (Chapters 4 and 5). The implications of these results may be applicable to 

several surgical procedures, hand injury rehabilitation protocols, sports medicine injury 

management, and biomechanical simulation studies of the hand. Overall, these 

foundational studies may provide a basis for further applied studies of the PL and PB in 

surgical, clinical, or athletic populations, and may further assist in characterizing the 

functional loss when their absence occurs through either surgical or hereditary means. 
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Appendix B Hematoxylin & Eosin Staining Protocol 

Hemotoxylin & Eosin Staining Protocol 

The slides are completely immersed in the following solutions for the allotted time, 

and in separate containers.  The estimation of 300 mL per slide was assumed 

throughout the protocol. 

 Xylene for 5 minutes 

 Xylene for 5 minutes 

 Xylene for 3 minutes 

 Absolute alcohol for 2 minutes 

 Absolute alcohol for 1 minute 

 95% alcohol for 2 minutes 

 95% alcohol for 1 minute 

 70% alcohol for 1 minute  70 mL anhydrous EtOH with 30 mL of dH2O 

 Water for 2 minutes 

 Hematoxylin for 3 minutes 

 Rinse well in tap water 

 2-3 dips in acid alcohol 

 Rinse well in tap water  

 2-3 dips in ammonium alcohol 

 Rinse well in tap water 

 Eosin for 3 minutes 

 Rinse well in tap water 

 10 dips in 70% alcohol 

 10 dips in 95% alcohol 

 10 dips in 95% alcohol 

 10 dips in absolute alcohol 

 10 dips in absolute alcohol 

 Xylene for 5 minutes 

 Xylene for 5 minutes 

 Mount and coverslip using Cytoseal® permount in a fume hood 

Acid Alcohol Solution: Using glass pipette, mix 1 mL of hydrochloric acid (HCL) with 

250 mL of 70% ethanol (EtOH). 

Ammonium Alcohol Solution: Using glass pipette, mix 5 mL of ammonium hydroxide 

(NH4OH) with 250 mL of 70% ethanol (EtOH). 
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Appendix C Immunohistochemistry Staining Protocol 

 

Staining Protocol for Monoclonal Mouse anti-human MHC (Immunohistochemistry) 

Slides are completely immersed in the following solutions for the allotted time, and in 

separate containers.  The estimation of 300 mL per slide was assumed throughout the 

protocol. 

1. Xylene for 5 minutes 

2. Xylene for 2 minutes  

3. Xylene for 3 minutes  

4. Xylene for 2 minutes  

5. Absolute alcohol for 2 minutes 

6. Absolute alcohol for 2 minute 

7. 95% alcohol for 2 minutes 

8. 95% alcohol for 1 minute 

9. 70% alcohol for 1 minute 

10. Water for 2 minutes 

11. Quenched with fresh 3% Hydrogen Peroxide (H2O2) in methanol for 5 

minutes (20 mL 30% H2O2 and 180 mL Methanol); The solution is prepared 

from 30% H2O2 

 Hydrogen peroxide in fridge, methanol in “flammable cabinet” with 

blue lid 

 180 mL methanol + 20 mL of 30% hydrogen peroxide 

12. Rinsed in distilled water for 5 minutes then subsequently immersed in 

phosphate buffered saline (PBS) for 5 minutes on shaker 

 Shaker: 

i. Turn on 

ii. Press ‘050’ then enter 

iii. Give it a shove to move it 

13. Antigen retrieval is performed in citrate buffer pH 6.0 in a de-cloaking 

chamber 

 500 mL distilled water in bottom of pressure cooker 

 Decloaker: 

i. Turn on, press start 

ii. Let warm to ~125 degrees until it beeps, press start, and check 

pressure reading 

iii. Wait till cools and beeps and turn off, unplug 

14. Rinsed in running tap water, followed by PBS, for 5 minutes each 

15. Blocked in 10% horse serum for 30 minutes at room temperature; the blocking 

serum is then drained onto a paper towel 
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 Just fill up horse serum to 15 mL with PBS 

16. Slides are not rinsed with PBS 

17. Incubated with the monoclonal mouse antihuman myosin heavy chain type II 

or type II at the dilution of 1:3200, which was determined by previous 

titrations. 

 Using 10% horse serum 

 Do not stain negative slides with primary antibody  

18. Rinsed thoroughly with PBS for 5 minutes on shaker 

19. Incubated with ImmPress kit anti-mouse horse-radish peroxidase 

micropolymer solution for no longer than 30 minutes at room temperature 

20. Rinsed thoroughly with PBS for 5 minutes on shaker 

21. Incubated with DAB for no longer than 10 minutes, then drained into a waste 

container using distilled water in order to halt the reaction  

 DAB oxidizes the tissue, thus giving a brown-ish appearance  

22. Stained using filtered Hematoxylin for 1 minute 

23. Rinsed with running tap water, until water is clear 

24. Dipped 2-3 times in Ammonium Alcohol (2% Ammonium Hydroxide in 70% 

alcohol) 

25. Rinsed with running tap water, until no foam or residue is present and water is 

clear 

26. 70% alcohol for 1 minute 

27. 95% alcohol for 1 minute 

28. 95% alcohol for 1 minute 

29. Absolute alcohol for 2 minutes 

30. Absolute alcohol for 1 minute 

31. Xylene for 5 minutes 

32. Xylene for 3 minutes 

33. Mount and coverslip using Cytoseal® permount under a fume hood 

Diaminobenzidine (DAB) Solution: 

To 5 mL distilled H2O, add 2 drops of buffer, 4 drops of DAB, and 2 

drops of H2O2, in that particular order, with vortexing after each step 

 Citrate Buffer Preparation: 

 950 mL of distilled water + 2.1 g of citric acid, anhydrous 

o Citric acid on shelf 

 Put on mixer and place both temperature and pH electrode in solution 

o Remove storage bottle from pH electrode 

 Slowly add Sodium Hydroxide (NaOH) 10.00N form base cabinet using a 

pipette until pH reaches 6.0 

 Top up to 1000 mL with distilled water  
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Appendix D Titration Experiments to Establish Working Ratio of MHC Antibody 

Myosin Heavy Chain Type I and II  - Titration Experiments 

MHC 

Type I 

Slide #1 Slide #2 Slide #3 Slide #4 Slide #5 Slide #6 Slide#7 Slide #8 

 Control 1:50 1:100 1:200 1:400 1: 800 1:1600 1:3200 

  

MHC 

Type II 

Slide #1 Slide #2 Slide #3 Slide #4 Slide #5 Slide #6 Slide#7 Slide #8 

 Control 1:50 1:100 1:200 1:400 1: 800 1:1600 1:3200 

Example: 1 slide requires 300 uL of diluted antibody:  

 

 ex: 1:50 Ratio = 1uL antibody: 50 uL of horse serum (HSR) 

 
1

50
=

𝑋

300𝑢𝐿 𝐻𝑆𝑅
                    

𝑋 =
300 × 1

50
 = 6uL antibody 

∴
6 uL antibody

300𝑢𝐿 𝐻𝑜𝑟𝑠𝑒 𝑠𝑒𝑟𝑢𝑚⁄  
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