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ABSTRACT

This thesis advocates the use of shrinkage and penalty techniques for estimating the param-

eters of a regression model that comprises both parametric and nonparametric components

and develops semi-nonparametric density estimation methodologies that are applicable in

a regression context.

First, a moment-based approach whereby a univariate or bivariate density function

is approximated by means of a suitable initial density function that is adjusted by a linear

combination of orthogonal polynomials is introduced. Such adjustments are shown to be

mathematically equivalent to making use of standard polynomials in one or two variables.

Once extended to apply to density estimation, in which case the sample moments are being

utilized, the proposed technique readily lends itself to the modeling of massive univariate

or bivariate data sets. As well, the resulting density functions are shown to be expressible as

kernel density estimates via the Christoffel-Darboux formula. Additionally, it is established

that a set of n observations is entirely specified by its first n moments.

It is also explained that a univariate bona fide density approximation can be obtained

by assuming that the derivative of the logarithm of the density function under consider-

ation is expressible as a rational function or a polynomial. An explicit representation of

the density function so obtained is derived and jointly sufficient statistics for its parameters

are identified. Then, extensions of the proposed methodology to density estimation and

multivariate settings are discussed. As a matter of fact, this approach constitutes a general-

ization of Pearson’s system of curves. Several illustrative examples are presented including

regression applications.

Finally, an iterative algorithm involving shrinkage and pretest techniques is intro-

duced for estimating the parameters of a certain semi-nonparametric model. It is theoret-

ically established and numerically verified that the proposed estimators are more accurate

than the unrestricted ones. This methodology is successfully applied to a mass spectrome-

try data set.
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Key Words: density approximation, joint moments, bivariate Hermite polynomials, bi-
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Chapter 1

Introduction

A plethora of results pertaining to density approximation or density estimation are avail-

able in the literature. In the former case, the exact density function is approximated by

means of various statistical or mathematical techniques, while in the latter case, the under-

lying density function which is unknown is estimated from the available data. There are

numerous studies on density approximation/estimation methodologies in univariate case;

however, fewer are available for multivariate distributions. Chapter 2 is concerned with

density approximation/estimation techniques that make use of polynomial adjustments and

are applied to bivariate distributions. A family of distributions known as Pearson’s curves

is introduced in Chapter 3. In this case, one assumes that the logarithm of the density

function of interest has a rational form where the numerator and denominators are polyno-

mials of degrees one and two respectively. An extension of the Pearson frequency curves

is proposed and an explicit representation of the resulting density approximant is provided.

This approach is extended to apply to bivariate random vectors in Chapter 4. It should

be pointed out that the bivariate density approximation/estimation techniques discussed in

this thesis can readily be generalized with a view to model multivariate distributions. As

well, they can be utilized in the context of regression. Additionally, a parameter estimation

technique applying to a certain semi-nonparametric regression model, which was proposed

by Ma et al. (2015) is improved upon in Chapter 5. In this model, there are n different

location and scale parametric components and a common unknown function as the non-

parametric component. Stein-type shrinkage and pretest techniques were applied to the

1



2

parametric components of the model to increase the level of accuracy of the estimators.

The last chapter includes some concluding remarks and points out possible developments.

Note that since this thesis has been submitted in the ‘integrated article’ format, some

redundancies are somewhat inevitable as each chapter is essentially self-contained. The

Mathematica code utilized in connection with the main numerical examples presented in

this dissertation is included in Appendix A.

1.1 Density estimation

1.1.1 Introduction

Over the years, statisticians have devoted much attention to approximating and estimating

density functions, and there is a significant body of scientific literature on the subject. At

the outset, it should be specified that what is referred to as a bona fide continuous density

function is a nonnegative continuous function that integrates to one over its support.

Parametric distributions such as the exponential, gamma, beta, and normal, are en-

tirely specified by their parameters. In order to estimate their associated density functions,

one only needs to determine the parameters from the available observations. However,

specific parametric distributions are often inadequate for modeling purposes. Accordingly,

nonparametric density estimation techniques which are more flexible, have been widely

studied. One can refer to Parzen (1962), Silverman (1986) and Izenman (1991) for further

considerations about various density estimation methodologies. Since the density estima-

tion techniques discussed in this thesis are based on moments, it is now established that the

first n sample moments comprise all the information contained in a sample of size n.



3

Theorem 1.1.1. A sample of size n is uniquely determined by the first n moments.

Proof. Let S = {x1, x2, . . . , xn} be a set of points and let M = {m1, m2, . . . , mn}

where mh =
∑n
i=1 x

h
i /n is the hth sample moment, h = 1, . . . , n. According to the

fundamental theorem of algebra, a monic polynomial of degree n, p(z) = a0 +a1z+ · · ·+

an−1z
n−1 + zn, is uniquely defined by its coefficients {a0, a1, . . . , an−1} and it is also

uniquely specified by its n roots {x1, x2, . . . , xn}. Note that only the case of real roots is

of interest in this thesis. Moreover, given S, the coefficients of p(x) can be expressed in

terms of the sequence of moments M via the Newton-Girard identity. Accordingly, a given

polynomial of degree n, say p(x), can be represented as follows:

n∏
i=1

(x− xi) =
n∑
k=0

(−1)n−ken−k x
k, (1.1.1)

where e0 = 1 and

e` =
n

`

∑̀
j=1

(−1)j−1e`−jmj , ` = 1, . . . , n. (1.1.2)

Thus, given the first n sample moments associated with S, a sample of size n, one

can determines the right hand side of (1.1.1) whose roots are precisely {x1, x2, . . . , xn}.

This establishes that S is uniquely specified by M . Although S and M contain exactly

the same amount information, oftentimes, only a subset of the latter suffices to elicit the

distributional characteristics of a given sample. 2

1.1.2 Kernel density estimates and histogram

One of the oldest and popular methodologies for estimating an unknown density function

is known as kernel density estimation, see for instance (Rosenblatt, 1956), (Epanechnikov,



4

1969), (Scott, 1979) and references therein. Such estimates which depend on a kernel

function K(·) as well as a bandwidth h, have the following functional form:

f̂h(x) =
1

nh

n∑
i=1

K
(x− xi

h

)
, (1.1.3)

where n denotes the sample size and f̂h(x) is the estimated density function at the point x.

There are several types of kernel functions which, for example, are discussed in (Epanech-

nikov, 1969), (Scott, 1979), (Silverman, 1986), (Botev et al., 2010), (Xu et al., 2015) and

references therein. The Gaussian, Epanechnikov and the tri-cube kernels are the most

widely utilized. Additionally, there are various criteria for finding the optimum value of h,

known as bandwidth selection techniques whereby on can obtain more accurate density es-

timate on the basis of a given dataset such as those proposed in (Bowman, 1984), (Park and

Marron, 1990), (Sheather and Jones, 1991), (Jones, Marron and Sheather, 1996), (Hall et al.

1992), (Park, Turlach, 1992), (Cao et al., 1994) and (Jiang, 2009). Note that every kernel

function has to satisfy the following conditions: (1) K(x) = K(−x), (2)
∫
K(x) dx = 1

and (3) 0 <
∫
x2K(x) dx <∞.

Among all the kernel density estimators, the histogram might be the oldest and easi-

est to implement, see (Rudemo, 1982). Incidentally, it is still widely used. In order to apply

this approach to a given dataset, one needs an initial point x0 and a bandwidth h. Then,

the m intervals are usually defined as Di = [x0 + (i− 1)h, x0 + i h) , i = 1, 2, . . . , m,

where each interval is often taken to be closed from the left side and open from the right

side. Let IDi(x) be the indicator function of the ith interval, and ni, the number of sample

points that fall into Di with
∑m
i=1 ni = n. The histogram function is then given by

f̂H(x) =
1

nh

m∑
i=1

niIDi(x). (1.1.4)
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1.1.3 Density estimation methodologies involving polynomial adjustments

Some density approximation/estimation techniques depend on the moments of a given dis-

tribution. Whereas exact moments are used for the purpose of density approximation, sam-

ple moments are employed for the purpose of density estimation.

Density approximation/estimation methodologies involving polynomial adjustments

are discussed in the next chapter. In this case, the density approximant is the product of

an initial (base) density function f0(x) and a polynomial adjustment of degree m, p(x) =∑m
i=0 aix

i. Thus, the resulting density approximant of degree m is fm(x) = f0(x) p(x).

The coefficients ai, i = 0, 1, . . . , m, are obtained by solving a linear system of equations

that relies on the moments of the target and base density functions.

Now, let

ϕk(x) =
k∑
`=0

δk,` x
`, k = 0, . . . ,m , (1.1.5)

be polynomials defined on the interval (α, β), which satisfy the orthogonality property,

∫ b

a
w(x)ϕi(x)ϕj(x) dx =


θi for i = j

0 for i 6= j,

(1.1.6)

where w(x) denotes a certain nonnegative weight function whose ‘moments’ given by∫ β
α x

k w(x) dx, exist for k = 0, 1, . . . , and θi will be referred to as the ith degree or-

thogonality factor. Then, {ϕ0(x), ϕ1(x), . . . , ϕm(x)} is said to form a set of orthogonal

polynomials with respect to w(x).
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Provost (2005) developed a density approximation methodology involving linear

combinations of orthogonal polynomials as adjustments. Making use of orthogonal poly-

nomials has the advantage that there is no need to solve any linear system of equations to

determine the unknown coefficients present in the adjustment. It is explained in the next

section that a density approximant computed as the product of a base density and a stan-

dard polynomial adjustment is equivalent to an approximant that is obtained as the product

of the same initial density and a certain linear combination of orthogonal polynomials. It

is also explained that in the context of density estimation, the latter can be expressed as a

kernel density estimate.

1.1.3.1 Moment-based density approximants: orthogonal vs standard polynomials

It is shown in this section that the coefficients aj , j = 0, 1 . . . , p, appearing in the approxi-

mant fp(x), defined as fp(x) = c w(x)
∑p
i=0 ai ϕi(x) where the normalizing constant c is

such that
∫ β
α c w(x) dx = 1, can be determined by matching the first p moments of fp(x)

to those of f(x), the density function being approximated. First, one can easily establish

that the equalities

∫ β

α
xjfp(x) dx =

∫ β

α
xjf(x) dx, j = 0, 1, . . . , p, (1.1.7)

are mathematically equivalent to

∫ β

α
ϕj(x)fp(x) dx =

∫ β

α
ϕj(x)f(x) dx, j = 0, 1, . . . , p, (1.1.8)

where the ϕj(x)’s are orthogonal polynomials generated from the base density function

by means of the Gram-Schmidt orthogonalization process. Accordingly, if (1.1.8) holds,

which amounts to assuming that the first p moments of the approximate distribution are
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equal to those associated with the target density function, one has

∫ β

α
c w(x)

p∑
i=0

ai ϕi(x)ϕj(x) dx =

∫ β

α
ϕj(x)f(x) dx,

that is,
p∑
i=0

c ai

∫ β

α
w(x)ϕi(x)ϕj(x) dx =

∫ β

α
ϕj(x)f(x) dx (1.1.9)

or

c aj θj =

∫ β

α
ϕj(x)f(x) dx ,

so that

aj =

∫ β
α ϕj(x)f(x) dx

c θj
, (1.1.10)

where

∫ β

α
ϕj(x)f(x) dx =

∫ β

α

j∑
`=0

δj,` x
`f(x) dx

=

j∑
`=0

δj,` µX(`) , (1.1.11)

µX(`) denoting the `th moment of the distribution specified by f(x). Thus,

aj =

j∑
`=0

δj,` µX(`)

c θj
, j = 0, 1, . . . , p , (1.1.12)

and the pth degree density approximant can be expressed as follows:

fp(x) = w(x)

p∑
j=0

j∑
`=0

δj,` µX(`)

θj
ϕj(x) , (1.1.13)

where θj =
∫ β
α w(x)ϕ2

j (x) dx and δj,` denotes the coefficient of x` in ϕj(x).
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1.1.3.2 Kernel representation of the density estimates

Density estimates which are the counterparts of the orthogonal polynomial density approx-

imants discussed in the previous section are shown to admit a certain kernel representation.

Let {x1, x2, . . . , xn} be a simple random sample from a population whose distribution is

specified by the random variable X . On replacing the exact moments, µX(`), in (1.1.13)

by the sample moments, mX(`) = 1
n

∑n
i=1 x

`
i , ` = 0, 1, . . . , p, one obtains the pth degree

orthogonal polynomial density estimate,

f̂p(x) = w(x)

p∑
j=0

ϕj(x)

θj

j∑
`=0

δj,`mX(`) (1.1.14)

=
w(x)

n

p∑
j=0

1

θj
ϕj(x)

j∑
`=0

δj,`

n∑
i=1

x`i

=
w(x)

n

n∑
i=1

p∑
j=0

1

θj
ϕj(xi)ϕj(x) . (1.1.15)

On making use of the Christoffel–Darboux formula, that is,

p∑
k=0

ϕk(x) ϕk(y)

θk
=

δp,p
δp+1,p+1

ϕp+1(x) ϕp(y)− ϕp(x) ϕp+1(y)

θp (x− y)
, (1.1.16)

cf., e.g., Hildebrand (1956), δk,k being the coefficient of xk in ϕk(x), and letting

Kp(x, xi) = w(x)

p∑
j=0

1

θj
ϕj(xi)ϕj(x) (1.1.17)

or equivalently,

Kp(x, xi) =
w(x) δp,p
δp+1,p+1

(ϕp+1(x)ϕp(xi)− ϕp(x)ϕp+1(xi)

θp (x− xi)

)
, (1.1.18)
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one has the following kernel representation of the orthogonal polynomial density estimate:

f̂p(x) =
1

n

n∑
i=1

Kp(x, xi), (1.1.19)

which is mathematically equivalent to the representation given in (1.1.14) in terms of the

first p sample moments. It can be shown that such kernels integrate to one.

Example 1.1.1. Legendre Polynomial Kernels Let ϕL
k (x) =

∑k
`=0 δ

L
k,` x

` denote a kth

degree Legendre polynomial; then the coefficient of x` as given explicitly in a suitable

form in Provost and Ha (2009) is

δL
k,` =

(−1)k + (−1)`

2k+1

(−1)
3k−`
2 (k + `)!

Γ(k−`2 + 1) Γ(k+`
2 + 1) `!

, ` = 0, 1, . . . , k,

so that δL
n,n = 2n!/

(
2n(n!)2

)
. In this case, the support is (−1, 1), the weight function is

w(x) = 1/2 , and the orthogonality factor is θp = 2/(2p+ 1) . Thus, according to (1.1.18),

the pth degree kernel associated with the Legendre polynomials is

Kp(x, xi) =
(p+ 1)

2

(
ϕL
p+1(x)ϕL

p (xi)− ϕL
p (x)ϕL

p+1(xi)
)

x− xi
, (1.1.20)

where ϕL
k (x) =

∑k
i=0 δ

L
k,i x

i denotes a Legendre polynomial of degree k.

In some instances and, in particular, if one wishes to make use of available results

on classical orthogonal polynomials, it may be indicated or even necessary to transform

the data prior to resorting to the representations the density estimates given in (1.1.14),

(1.1.15) or (1.1.19). For example, on letting y1, y2, . . . , yn be a simple random sample from

a distribution specified by the density function, f(y), and making the change of variables

x = g(y), where g(y) is a differentiable function of y, the density estimate corresponding

to (1.1.19) becomes

f̂p(y) =
|g′(y)|
n

n∑
i=1

Kp(g(y), g(yi)) , (1.1.21)
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where Kp(·, ·) is as defined in Equation (1.1.18). Oftentimes, it suffices to apply an affine

transformation such as

g(y) =
y − τ
ν

, (1.1.22)

so that support or the first moment (or in some cases the first two moments) of the trans-

formed variable coincide(s) with that (those) of the normalized weight function associated

with a given type of orthogonal polynomials. It should be noted that, by making use of the

Gram-Schmidt orthogonal generalization process, one can always generate a set of orthog-

onal polynomials from a suitable weight function, in which case there is no need to apply

any transformation to the data.

When one makes use of the linear transformation specified by Equation (1.1.22), the

density estimates (1.1.14), (1.1.15) and (1.1.19), respectively become

f̂p(y) =
1

ν
w
(y − τ

ν

) p∑
j=0

ϕj

(
yi−τ
ν

)
θj

j∑
`=0

δj,` mX(`) (1.1.23)

with

mX(`) =
1

n

n∑
i=1

(yi − τ
ν

)`
=

1

ν`

∑̀
k=0

(
`

k

)
mY (k) (−1)`−k τ `−k ,

where

mY (k) =
1

n

n∑
i=1

yki , k = 0, 1, . . . , ` ;

f̂p(y) =
1

n ν
w
(y − τ

ν

) n∑
i=1

p∑
j=0

1

θj
ϕj

(yi − τ
ν

)
ϕj

(y − τ
ν

)
; (1.1.24)

and

f̂p(y) =
1

n ν

n∑
i=1

Kp
(y − τ

ν
,
yi − τ
ν

)
. (1.1.25)

In the case of a density approximant, which is based on µY (k) = E(Y k), k = 0.1, . . . , p,,
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the linear transformation yields the following density approximant corresponding to (1.1.13):

fp(y) = w
(y − τ

ν

) p∑
j=0

j∑
`=0

δi,` µX(`)

ν θj
ϕj

(y − τ
ν

)
, (1.1.26)

where

µX(`) =
1

ν`

∑̀
k=0

(
`

k

)
µY (k)(−1)`−kτ `−k .

As a further refinement, one could define the kernels to be zero subinterval where

they are negative and renormalizing the resulting function to obtain a bona fide density

estimate.

The main results derived in this section, that is, the connection between approximants

and estimates and the dual representation of the density estimates, ought to provide valuable

insights into the orthogonal polynomial density estimation methodology advocated herein

and lead to a heightened appreciation of this approach as a viable alternative to other density

estimation techniques.

1.1.4 Pearson’s frequency curves

In order to model skewed observations, Pearson (1895) proposed a system of frequency

curves known as Pearson’s curves. He assumed that the following differential equation

holds:

d fX(x)

dx
=

x− a0

c2x2 + c1x+ c0
fX(x), (1.1.27)

where fX(x) is the density function and a0, c0, c1 and c2 are constant parameters. Then,

he identified 13 major types of density curves, depending on the values of the constant

parameters, which can be determined as the solutions of the differential equation (1.1.27)

by solving an appropriate linear system of equations requiring the first four moments of the
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Figure 1.1: The regions of different distribution types of Pearson’s frequency curves based
on the values of β1 = skewness squared and β2 = kurtosis + 3, where the β2-axis is in
reverse order. There are no distributions in the critical region (top right shaded area).

distribution. In Figure 1.1 (Podladchikova, et al., 2003), different Pearson curves can be

identified in terms of certain relationships between their skewness and kurtosis. There are

many well-known families of distributions, such as the normal, beta, gamma, chi square,

Student t whose density functions could be obtained from this differential equation.

By multiplying both sides of Equation (1.1.27) by xn, one has

xn (c2x
2 + c1x+ c0)

d fX(x)

dx
= xn(x− a0) fX(x). (1.1.28)

Then, by integrating by part both sides of (1.1.28) and assuming that lim|x|→∞ xnfX(x) =

0, the following recurrence formula for the moments of fX(x) is obtained:

a0µn − n c0µn−1 − (n+ 1)c1µn − (n+ 2)c2µn+1 = µn+1, (1.1.29)

where µn is the nth moment. On setting µ−1 = 0, with µ0 = 1, one has the following
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linear system of equations:

−a0 + c1 = 0

c0 + 3c2µ2 = −µ2

−a0µ2 + 3c1µ2 + 4c2µ3 = −µ3

−a0µ3 + 3c0µ2 + 4c1µ3 + 5c2µ4 = −µ4. (1.1.30)

where µk being the kth central moments for k = 0, 1, 2, 3, 4.

1.1.5 Differentiated log-density approximants (DLDA’s)

This is a generalization of the Pearson frequency curves discussed in the previous sub-

section whereby the derivative of logarithm of a density function fX(x) whose support is

(α, β) is assumed to be a rational function, that is,

d

dx
ln(fX(x)) =

f ′X(x)

fX(x)
= r(x), (1.1.31)

where

r(x) =

∑ν
i=0 ai x

i∑δ
j=0 cj x

j
=
Nν(x)

Dδ(x)
, (1.1.32)

Nν(x) andDδ(x) being polynomials in x of orders ν and δ . Without any loss of generality,

cδ, the coefficient of xδ in the denominator of r(x), is set equal to one. The coefficients

ai’s and cj’s are determined by solving a linear system that is specified in Chapter 3 where

an explicit representation of the approximant,
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fν,δ(x) = κ e
∫ x
α r(y) dy,

is provided, κ is denoting the normalizing constant. Unlike Padé approximants, DLDA’s

remain nonnegative.

1.2 Shrinkage, pretest and penalty estimators

Various regression models, both parametric or semi-nonparametric, have been proposed

in the literature. For regression models involving a certain number of parameters, it is

important to determines the number of significant parameters; otherwise, overfitting may

create problems for prediction purposes and other analyses. Additionally, one should know

which variables are significant and which ones can be considered as nuisance. In this

section, we give an overview of variable selection based on the shrinkage, pretest and

penalty strategies, as discussed in Ahmed (2014).

1.2.1 Shrinkage methods: basic concepts

Consider the regression model,

y = Xβ + ε, (1.2.1)

where y = (y1, y2, . . . , yn)′ is the response vector, X is an n × p fixed matrix of coeffi-

cients, β = (β1, β2, . . . , βp)
′ is the unknown vector of parameters and ε = (ε1, ε2, . . . , εn)′

is the unknown error vector, a prime denoting the transpose of a matrix or a vector. Let
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E(ε) = 0 and Cov(ε) = σ2I. The following two assumptions, called “regularity condi-

tions”, are made for deriving the estimators:

• max
1≤i≤n

xi
′(X ′X)−1xi → 0. as n→∞, where xi

′ is the ith row of X .

• lim
n→∞

X ′X
n = C, where C is a finite positive definite matrix.

If there is no restriction on β, the unrestricted estimator (UE) of β is given by

β̂UE = (X ′X)−1X ′y. (1.2.2)

Let β be divided into two subvectors as β = (β′1,β
′
2)′ so that β1 is a p1-vector

and β2 is a p2-vector with p1 + p2 = p and 0 ≤ pi, i = 1, 2. Suppose that we have the

uncertain prior information (UPI) that β2 is a vector of nuisance parameters and β1 is the

set of parameters of interest. Such UPI might be written as a linear restriction Hβ = h

on β where H is a known p2 × p matrix and h is a known vector of length p2. Under the

restriction Hβ = h, the restricted estimator (RE) is obtained as

β̂RE = β̂UE − (X ′X)−1H ′(H(X ′X)−1H ′)−1(Hβ̂UE − h) (1.2.3)

where β̂RE is a linear transformation of β̂UE . If we want to test the validity of the re-

striction (UPI) as the null hypothesis H0 : Hβ = h, the following test statistic is to be

utilized:

φn =
(Hβ̂i − h)′(H(X ′X)−1H ′)−1(Hβ̂i − h)

s2
e

, i = 1, ..., n,

where
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s2
e =

(y −Xβ̂UE)′(y −Xβ̂UE)

n− p

is an estimator of σ2. Under H0, φn has a chi-square distribution with p2 degrees of free-

dom.

Shrinkage and pretest estimators are obtained as linear combinations of β̂UE and

β̂RE in terms of the test statistic φn as described below.

The Stein-type shrinkage estimator (SE) β̂1
S

of β1 is calculated as

β̂1
S

= β̂1
RE

+ (β̂1
UE − β̂1

RE
){1− kφ−1

n },

where k = p2 − 2 (p2 ≥ 3). In some cases, the sign of (1 − kφ−1
n ) might be negative

which may adversely affect the estimators. To overcome this difficulty, Ahmed (2014) used

the positive-rule Stein-type estimator (PSE) which is defined as

β̂1
S+

= β̂1
RE

+ (β̂1
UE − β̂1

RE
){1− kφ−1

n }+,

where a+ = max{a, 0}. An alternative way of evaluating β̂1
S+

is

β̂1
S+

= β̂1
RE

+ (β̂1
UE − β̂1

RE
){1− kφ−1

n }I(φn < k),

where I(·) denotes the indicator function.

The pretest technique (PT) of estimating β1, the parameter vector of interest, yields

the pretest estimator β̂1
PT

which is of the form,

β̂1
PT

= β̂1
UE − (β̂1

UE − β̂1
RE

)I(φn < cn,α),
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where cn,α is the upper 100αth percentage point of the test statistic φn. Under the PT, we

test the prior information (i.e. UPI) with H0 before computing the estimator while SE and

PSE use the value of the test statistic to obtain the estimator. In this case, PT either rejects

or not the presence of β̂1
RE

based on whether φn > cn,α or not.

In addition to the above techniques, there are some popular penalized least squares

family of estimators which are for instance available in Ahmed (2014). Under these tech-

niques, a penalized term (involving the parameters) is added to the sum of squared errors

to shrink a subset of the parameters to zero. The resulting general form of the penalizing

least squares is

S(β) = (y −Xβ)′(y −Xβ) + λπ(β), (1.2.4)

where π(β), which is called the penalized function, is a function of the parameter vector

β. λ > 0 is called the tuning parameter and the optimum value is mainly selected by cross

validation.

Within this class of estimators, ridge regression (Hoerl, 1958), least absolute shrink-

age and selection operator (LASSO) (Tibshirani, 1994), adaptive Lasso (Zou, 2006), the

smoothly clipped absolute deviation (SCAD) method (Fan and Li, 2001) and the minimax

concave penalty (MCP) (Zhang, 2010) are the most popular techniques. Among them,

LASSO and SCAD are more widely used. We shall simply provide a brief review of these

techniques, more information about these methods being available in (Ahmed, 2014).

The penalty function given in Equation (1.2.4) for LASSO is the sum of the absolute

values of the parameters. Accordingly, the LASSO estimator is obtained as

β̂LASSO = argmin
β

{ n∑
i=1

(yi − β0 −
p∑
j=1

xi,jβj)
2 + λ

n∑
i=1

|βj |
}
.
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In this case, the shrinkage and variable selection are done simultaneously.

SCAD is another important penalized estimator which is given by

β̂SCAD = argmin
β

{ n∑
i=1

(yi − β0 −
p∑
j=1

xi,jβj)
2 + λ

n∑
i=1

pα, λ|βj |
}
,

where pα, λ(·) is the smoothly clipped absolute deviation penalty. The SCAD penalty func-

tion is a quadratic spline on [0, ∞) with nodes at λ and αλ, whose first order derivative

is

pα, λ(x) = λ{I(|x| ≤ λ) +
(αλ− |x|)+

(α− 1)λ
I(|x| > λ)}, x ≥ 0,

where λ > 0 and α > 2 are the tuning parameters. For the asymptotic analysis of these

methods, the reader is referred to Ahmed (2014).

References

Ahmed, S.E. (2014). Penalty, Shrinkage and Pretest Strategies Variable Selection and Es-

timation, Springer, New York.

Botev, Z.I., Grotowski, J.F. and Kroese, D.P. (2010). Kernel density estimation via diffu-

sion, Annals of Statistics, 38(5), 2916–2957.

Bowman, A.W. (1984). An alternative method of cross-validation for the smoothing of

density estimates, Biometrika, 71(2), 353–360.

Cao, R., Cuevas, A. and Manteiga, W.G. (1994). A comparative study of several smoothing

methods in density estimation, Computational Statistics and Data Analysis, 17(2),

153–176.

Elderton, W.P. and Johnson, N.L. (1969). Systems of Frequency Curves, Cambridge Uni-

versity Press, Oxford.



19

Epanechnikov, V.A. (1969). Non-parametric estimation of a multivariate probability den-

sity, Theory of Probability and its Applications, 14, 153–158.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its

oracle properties, Journal of the American Statistical Association, 96, 1348–1360.

Hajek, J. (1972), Local asymptotic minimax and admissibility in estimation, in: Proc. Sixth

Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1. University

of California Press, Berkeley.

Hall, P., Marron, J.S., Park, B.U. (1992). Smoothed cross-validation, Probability Theory

and Related Fields, 92, 1–20.

Hildebrand, F.B. (1956). Introduction to Numerical Analysis, McGraw-Hill, New York.

Hoerl, A.E. (1958). Application of ridge analysis to regression problems, Chemical Engi-

neering Progress, 54–59.

Izenman, A.J., (1991). Recent developments in nonparametric density estimation, Journal

of the American Statistical Association, 86, 205–224.

Jiang, M. (2009). Advances in Kernel Density Estimation, PhD Thesis, The University of

Western Ontario, London, Canada.

Jones, M.C., Marron, J.S., Sheather, S. J. (1996). A brief survey of bandwidth selection for

density estimation, Journal of the American Statistical Association, 91(433), 401–407.

Ma, W., Feng, Y., Chen, K. and Ying, Z. (2015). Functional and parametric estimation

in a semi- and nonparametric model with application to mass-spectrometry data, The

International Journal of Biostatistics, 11(2), 285–303.

Park, B.U., Marron, J.S. (1990). Comparison of data-driven bandwidth selectors, Journal

of the American Statistical Association, 85(409), 66–72.

Park, B.U., Turlach, B.A. (1992). Practical performance of several data driven bandwidth

selectors (with discussion), Computational Statistics, 7, 251–270.

Parzen, E. (1962). On estimation of a probability density function and mode, The Annals

of Mathematical Statistics, 33(3), 1065–1076.



20

Pearson, K. (1895). Contributions to the mathematical theory of evolution, II: Skew varia-

tion in homogeneous material, Philosophical Transactions of the Royal Society, 186,

343–414.

Podladchikova, O., Lefebvre, B., Krasnoselskikh, V., and Podladchikov, V. (2003). Clas-

sification of probability densities on the basis of Pearson’s curves with application

to coronal heating simulations, Nonlinear Processes in Geophysics, European Geo-

sciences Union (EGU), 10(4/5), 323–333.

Provost, S. B. (2005). Moment-based density approximants, The Mathematica Journal, 9,

727–756.

Provost, S.B., and Ha, H.T. (2015). Differentiated logdensity approximants, Statistical

Methodology, 26, 61–71.

Provost, S.B., and Ha, H.T. (2009). On the inversion of certain moment matrices, Linear

Algebra and its Applications, 430, 2650–2658.

Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density function,

The Annals of Mathematical Statistics, 27(3), 832–837.

Rudemo, M. (1982). Empirical choice of histograms and kernel density estimators, Scan-

dinavian Journal of Statistics, 9(2), 65–78.

Sheather, S.J., Jones, M.C. (1991). A reliable data-based bandwidth selection method for

kernel density estimation, Journal of the Royal Statistical Society, Series B, 53(3),

683–690.

Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis, London:

Chapman and Hall/CRC.

Scott, D. (1979). On optimal and data-based histograms, Biometrika, 66(3), 605–610.

Tibshirani, R. (1994). Regression shrinkage and selection via the LASSO, Journal of the

Royal Statistical Society, Series B, 58, 267–288.

Xu, X., Yan, Z., Xu, S. (2015). Estimating wind speed probability distribution by diffusion-

based kernel density method,. Electric Power Systems Research, 121, 28–37.



21

Zhang, C.H. (2010). Nearly unbiased variable selection under minimax concave penalty,

The Annals of Statistics, 38, 894–942.

Zou, H. (2006). The adaptive LASSO and its oracle properties, Journal of the American

Statistical Association, 101, 1418–1429.



Chapter 2

A moment-based bivariate density estimation methodology applicable

to big data modeling

2.1 Introduction

When density functions do not have closed form representations or they assume compli-

cated forms that may for instance involve special functions, it may be desirable to replace

them by certain relatively simple moment-based approximations. However, unlike the type

of approximants being proposed in this chapter, such approximations, which include Pear-

son curves (Solomon, 1978), Edgeworth expansions (Edgeworth, 1905), Johnson curves

(Elderton and Johnson, 1969), Gram-Charlier expansions (Charlier, 1906) and the saddle-

point approximations (Daniels, 1954) and (Reid, 1988) can prove inadequate. This is often

the case when for example the target distributions are not unimodal.

It may happen that different distributions have the same moments, which is often re-

ferred to as the “moment problem”. Rao (2001) provided conditions that ensure the unique-

ness of a density function with respect to its moment sequence, µ(i), i = 0, 1, 2, . . .. A

sufficient condition is that
∞∑
i=1

µ(i)ti

i!

be absolutely convergent for some t > 0.

22
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The density approximation methodology being proposed in this section, that is, ad-

justing a base density function by means of a polynomial or a linear combination of orthog-

onal polynomials, is not restricted to univariate density functions. While being conceptu-

ally simple and easy to implement, this approach is flexible, and accurate. As well, it is

applicable in the context of density estimation.

Incidentally, it should be noted that moment-based density estimation techniques are

ideally suited for modeling data sets containing an exceedingly large number of observa-

tions, which will be referred to as massive data sets. Indeed, once the moments have been

evaluated, which is easily achieved even for extremely large data sets, the determination of

the estimated density function does not depend on the sample size. Moreover, when a new

set of observations, say, xn1+1, . . . , xn, becomes available in addition to an initial data

set, x1, . . . , xn1 , there is no need to make use of each of the n1 original data points. This

is the case since the hth updated moment will then be {n1mh +
n∑

i=n1+1
xhi }/n where mh

denotes the hth sample moment evaluated from the initial data set. In the bivariate case,

let mh,` =
n1∑
i=1

xhi y
`
i/n1 be the (h, `)th joint sample moments of the initial observations

(x1, y1), . . . , (xn1 , yn1). Then, the joint moments can be similarly updated as {n1mh,`+
n∑

i=n1+1
xhi y

`
i}/n given the additional observations (xn1+1, yn1+1), . . . , (xn, yn). This

property clearly extends to joint moments occurring in higher dimensions. Thus, moment-

based methodologies enable one to process large amounts of univariate or multivariate data

that often arrive in streams without having to access previously collected observations.

Note that, for instance, this is not the case for kernel density estimates which, unlike the

proposed estimates, do not have a simple functional representation.

This chapter is organized as follows. A univariate density approximation technique

relying on Hermite polynomials and their associated Gaussian type weight function is dis-

cussed in this introductory section. As explained in Provost and Ha (2009), approximants
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that are based on other initial continuous density functions and their associated orthogonal

polynomials can be similarly obtained. The use of standard polynomials as adjustments

is treated in Provost (2005). An efficient formula for generating bivariate Hermite poly-

nomials, which can easily be extended to the multivariate case, is provided in Section 2.2.

Some properties of such polynomials are also described in that section. In Section 2.3, the

density function associated with a bivariate random vector is first approximated in terms of

a bivariate standard polynomial. Then, the use of linear combinations of bivariate Hermite

polynomials is discussed in connection with the approximation of normal-type bivariate

densities, which are often encountered in practice. Algorithms are provided for both ap-

proaches, which are shown to produce identical density estimates. This methodology is

extended to density estimation in Section 2.4 where several illustrative examples are pre-

sented. Some concluding remarks are included in the last section.

The proposed moment-based density approximation methodology is now briefly de-

scribed for the univariate case. Let Y be a random variable whose density function is to be

approximated and X = (Y − µ)/σ. First, fX(x), the density of X , is approximated by

means of a certain base density, ψX(x), that is adjusted by a polynomial of degree n:

fXn(x) = ψX(x)
n∑
k=0

ξk x
k. (2.1.1)

Clearly, the resulting density approximant for Y is then given by

fYn(y) = ψX((y − u)/s)
n∑
k=0

ξk
s

(y − u
s

)k
. (2.1.2)

As explained in Provost (2005), the coefficients ξk can be determined by equating

the first n moments of fXn(x) to those of fX(x) and solving the resulting linear system of



25

equations.

Since the adjustment consists of a polynomial, it may happen that some of its roots

fall within the support of the target distribution, in which case the approximant will be

slightly negative on certain subintervals which, generally, is hardly noticeable graphically.

It should be noted that, theoretically, the higher the degree of the adjustment, the closer to

zero such negative parts will be. In any case, this issue can easily be addressed by defining

the original function to be zero when it is negative and normalizing the resulting function

so that it integrates to one, thus yielding a bona fide density approximant. Alternatively,

one may apply an iterative procedure, namely the P-algorithm proposed by Gajek (1986),

in order to obtain legitimate density approximants. Whether in the context of density ap-

proximation or density estimation, we shall refer to expressions such as those appearing

in Equations (2.1.2) and (2.3.1) as density functions with the understanding that they can

readily be made bona fide.

When ψX(x) is a standard normal density function, Equation (2.1.1) can be written

as follows in terms of orthogonal polynomials:

fXn(x) = ψX(x)
n∑
k=0

ηkHk(x) (2.1.3)

where Hk(x), k = 0, 1, . . . , are univariate modified Hermite polynomials given by

Hk(x) = (−1)ke
x2

2
dk

dxk
e−

x2

2 , −∞ < x <∞,

≡
k∑
h=0

αkh x
h. (2.1.4)

These polynomials satisfy the following orthogonality property:
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∫ ∞
−∞

e−x
2/2Hi(x)Hj(x) dx =

√
2πj! δij , (2.1.5)

where δij is equal to 1 if i = j and, 0, otherwise. In Equation (2.1.5), e−x
2/2 is the

weight function associated with the density function is ψX(x) = 1√
2π
e−x

2/2 whose jth

moment ismX(j) =
∫∞
−∞ xjψXdx. In this instance, the coefficients ηk in Equation (2.1.3)

can be determined from equating
∫∞
−∞Hk(x)fXn(x) dx to

∫∞
−∞Hk(x)fX(x) dx for k =

0, 1, . . . , n. On applying the orthogonality property (2.1.5), these coefficients are then

obtained as

ηk =
1

cT θk

{ k∑
h=0

αkh µX(h)
}
, k = 0, 1, 2, . . . , n, (2.1.6)

where θk =
√

2πk! , αk0, . . . , αkn are the coefficients obtained from Equation (2.1.4),

and µX(h) = E(Xh). Expansions of functions in terms of orthogonal polynomial series

such as Hermite, Laguerre, Jacobi and Legendre, essential and approximating properties

of orthogonal systems as well as multiply orthogonal series are discussed for instance in

Sansone (2004), Alexits (1961) and Szegö (1959); the convergence behavior of such ex-

pansions, including the fundamental theorem on the convergence of orthogonal series are

also treated therein.

In this case, the determination of the coefficients ηk for k = 0, 1, 2, . . . , n, does not

require the solving of any linear system of equations. In general, a sequence of orthogonal

polynomials can be generated from a given weight function by applying the Gram-Schmidt

orthogonalization process. The approximation of a univariate mixture of normal density

functions is considered in the following example.
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Figure 2.1: Exact (solid line) and approximated (dashed line) density functions

Example 2.1.1. LetX1 ∼ N (−4, 2),X2 ∼ N (2, 3) and fX(x) = 1/2
[
fX1

(x)+fX2
(x)
]
.

In Figure 2.1, the dashed line represents the density approximant as determined from the

first 15 moments of the mixture by making use of Equation (2.1.3). This approximant is

seen to be nearly identical to the exact density function on which it is superimposed. Even

more accurate approximations could be obtained by making use of additional moments.

2.2 Bivariate Hermite polynomials

As indicated earlier, univariate Hermite polynomials can be determined from Equation

(2.1.4). A few approaches may be utilized for obtaining bivariate Hermite polynomials.

Rayner et al. (2013) proposed a recurrence formula that cannot be easily extended to higher

dimensions. Willink (2005) discussed the use of a simpler formula, which is an extension

of Equation (2.1.4), and derived some useful relations for determining multivariate Hermite

polynomials of different orders and obtaining the moments of a multivariate normal distri-

bution in terms of Hermite polynomials. Later, Withers and Nadarajah (2010) suggested

a related formula. We will hereafter make use of the differentiation formula proposed by

Willink (2005). Letting z = (x, y)′ and Σ be a positive definite matrix of order 2, the

associated bivariate Hermite polynomial of orders r1 and r2 can be obtained as follows:
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Hr1, r2(z, Σ) ≡ (−1)rexp
(
z′Σ−1z

) ∂r

∂xr1∂yr2
exp
(
− z′Σ−1z

)
(2.2.1)

where r = r1 + r2. For simplicity, we will denote Hr1, r2(z, Σ) by Hr1, r2(x, y) when

there is no ambiguity. This formula can easily be extended to k variables, in which case

z = (x1, x2, . . . , xk)′ and r = r1 + r2 + · · ·+ rk.

Example 2.2.1. Let Z = (X, Y )′ be a centered bivariate Gaussian random vector with

covariance matrix Σ =

2 1

1 3

. Hermite polynomials of various orders r (= r1 + r2)

were determined by applying Equation (2.2.1). For example, one has

H1,1(x, y) = 1
5 −

3x2

25 + 7xy
25 −

2y2

25 ,

H1,2(x, y) = −8x
25 + 3x3

125 + 6y
25 −

13x2y
125 + 16xy2

125 −
4y3

125 ,

H2,2(x, y) = 8
25 −

33x2

125 + 9x4

625 + 52xy
125 −

42x3y
625 −

22y2

125 + 61x2y2

625 − 28xy3

625 + 4y4

625 .

When Σ = I and r2 = 0, one has

H1,0(x, y) = x,

H2,0(x, y) = x2 − 1,

H3,0(x, y) = x3 − 3x,

H4,0(x, y) = x4 − 6x2 + 3,

H5,0(x, y) = x5 − 10x3 + 15x,

which are the univariate Hermite polynomials of orders 1 to 5.

In the bivariate case, a concept called the dual of a bivariate Hermite polynomial is

needed.
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Definition 2.2.1. Let Hi,j(x, y) =
∑j
`=0

∑i
k=0 δijk` x

ky` be a bivariate Hermite polyno-

mial of order (i, j) where i and j are nonnegative integers. Then

H∗u,v(x, y) =
v∑

n=0

u∑
m=0

δ∗uvmnx
myn

is called the dual bivariate Hermite polynomial associated with Hi,j(x, y) with respect to

the weight function g(x, y). Then, one has

∫
R2

∫
g(x, y)H∗u,v(x, y)Hi,j(x, y) dx dy =


θu,v if (i, j) = (u, v),

0 otherwise.
(2.2.2)

Remark 1. The dual of a bivariate Hermite polynomial Hu,v(x, y) can be obtained as

H∗u,v(x, y) = E[(x+ iX)u(y + iY )v]

where i =
√
−1 and (X, Y ) is a centered bivariate normal random vector, see Willink

(2005) and Withers and Nadarajah (2010).

The following theorem explains how the joint moments of a bivariate normal vector

can be obtained from bivariate Hermite polynomials.

Theorem 2.2.1. Let Z = (X, Y )′ be a normal random vector with mean µ and covariance

matrix Σ, that is, Z ∼ N2(µ, Σ); then, according to Willink (2005), the (r1, r2)th joint

moment of Z can be determined as follows:

E(Xr1Y r2) = Hr1,r2(−Σ−1µ, −Σ−1). (2.2.3)
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2.3 Moment-based bivariate density approximation

In this section, the univariate methodology, as described in Section 2.1, is extended to ap-

proximate bivariate continuous density functions. First, we discuss the use of standard

polynomials as adjustments and then, demonstrate that utilizing linear combination of or-

thogonal polynomials produces exactly the same approximants. Hereafter, we shall de-

note the target density function by f(x, y). Let f(x, y) = ψ(x, y)λ(x, y) where ψ(x, y)

is a suitable initial density approximant whose selection is discussed in Remark 2 and

λ(x, y) =
∑∞
i=0
∑∞
j=0 ci,jx

iyj is an adjustment. Now, let fp,q(x, y) denote the following

approximant of orders p and q:

fp,q(x, y) = ψ(x, y)λp,q(x, y) (2.3.1)

where λp,q(x, y) =
∑p
i=0

∑q
j=0 ci,jx

iyj is a truncated polynomial adjustment. Typically,

the more fluctuating or jagged a marginal density function is, the greater the highest degree

of the corresponding variable appearing in the polynomial adjustment ought to be.

Remark 2. In order to identify a suitable base density function, one may rely for instance

on common knowledge about the characteristics of the target distribution or the general fea-

tures of a histogram of the observations when a data set is available. If only the moments

of a distribution being approximated are available, then a uniform base density would be

indicated. Only coarse initial estimates or approximants are required since the polynomial

adjustments will lead to significant improvements in accuracy. For instance, in order to

approximate a bivariate normal-type density function, one would make use of a bivariate

Gaussian base density function, as was done in Example 2.3.1. As can be seen from the last

three numerical examples included in the next section, other types of base density functions
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can also be appropriately selected.

Let the integrated squared difference between fp,q(x, y) and f(x, y) over the support

of joint distribution be denoted by

ISD(p, q) =

∫ ∫ (
fp,q(x, y)− f(x, y)

)2
dx dy. (2.3.2)

To quantify the error incurred by approximating the target density function f(x, y)

with fp,q(x, y) and determine the optimal orders of the adjustment term, we seek values of

p and q such that ISD(p, q) reaches a set tolerance level or beyond which ISD(p, q) only

decreases marginally.

Let the (k, `)th exact joint moment associated with the density function f(x, y) be

denoted by µ(k, `) =
∫
R2

∫
xk y` f(x, y) dx dy and the (k, `)th joint moment associated

with the base density ψ(x, y), by m(k, `) =
∫
R2

∫
xk y` ψ(x, y) dx dy. Joint moments

could as well be determined by differentiating the moment-generating functions when they

are available.

In order to obtain a computable representation of the approximant fp,q(x, y), one

needs to determine the coefficients ci,j of the truncated polynomial adjustment. To this

end, as in univariate case, the joint moments of the exact density f(x, y) are equated to

those associated with fp,q(x, y):
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µ(k, `) =

∫ ∞
−∞

∫ ∞
−∞

xky`fp,q(x, y) dx dy

=

∫ ∞
−∞

∫ ∞
−∞

xky` ψ(x, y)λp,q(x, y) dx dy

=

∫ ∞
−∞

∫ ∞
−∞

xky` ψ(x, y)

p∑
i=0

q∑
j=0

ci,j x
iyj dx dy

=

p∑
i=0

q∑
j=0

∫ ∞
−∞

∫ ∞
−∞

ci,j x
k+iy`+j ψ(x, y) dx dy,

for k = 0, . . . , p and ` = 0, . . . , q, which yields the following (p + 1)(q + 1) linear

equations:

µ(k, `) =

p∑
i=0

q∑
j=0

ci,jm(k + i, `+ j), k = 0, 1, 2, . . . , p, ` = 0, 1, 2, . . . , q. (2.3.3)

Thus, the ci,j’s can be obtained by solving the linear system Mc = µ where c and µ are

vectors of dimensions (p + 1)(q + 1) whose (i(q + 1) + (j + 1))th component, ci,j and

µ(i, j), appear in the same order for i = 0, 1, . . . , p and j = 0, 1, . . . , q. Increasing p and

q should theoretically result in greater accuracy. The generalization to three or more vari-

ables is straightforward. The following algorithm describes the process of approximating a

continuous density function f(x, y) in terms of standard polynomial adjustments.

Algorithm 3.1. Moment-based density approximants expressed in terms of standard poly-

nomial adjustments

Step 1: Let p and q initially equal 3—or a larger integer, which would be indicated in the

case of an irregular marginal density function.
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Step 2: Evaluate the joint moments of the bivariate vector (X, Y ), that is, µ(i, j) for

i = 0, 1, . . . , p and j = 0, 1, . . . , q.

Step 3: Set the density approximant as fp,q(x, y) = ψ(x, y)λp,q(x, y) where ψ(x, y) is

the initial base density (selected as per Remark 2) and λp,q(x, y) =
∑p
i=0

∑q
j=0 ci,jx

iyj

is the polynomial adjustment.

Step 4: Obtain the coefficients ci,j by solving the linear system of equations resulting from

Equation (2.3.3).

Step 5: Evaluate ISD(p, q) as defined in Equation (2.3.2).

Step 6: Repeat steps 2-5 with larger values of p and/or q until ISD(p, q) is deemed to be

sufficiently small.

Note that it can prove useful to standardize or rescale the data before applying Algo-

rithm 3.1 or Algorithm 3.2. This can be achieved as follows:

Let m′ = (mx,my) be the mean of a random sample (x1, y1), . . . , (xn, yn) whose

underlying distribution is specified by the density function f(x, y) and let S−1/2 be the

inverse of symmetric square root of the sample covariance matrix. Then, letting zi =

(xi, yi), i = 1, . . . , n, the standardizing transformation

z∗i = S−1/2 (zi −m) , (2.3.4)

is utilized to remove the correlation between the variables with z∗i ≡ (x∗i , y
∗
i )′. When deal-

ing with positive random variables, it suffices to rescale the data, in which case m is set to

0 in the above transformation.

A density estimate is then obtained by applying Algorithm 3.1 to (x∗i , y
∗
i )′. The final

density estimate fp,q for (x1, y1), . . . , (xn, yn) is then obtained by applying the inverse
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transformation to the density fp,q(x∗, y∗), which yields

f̂p,q(x, y) = f̂p,q(z) = |S−1/2| fp,q
(
S−1/2 (z −m)

)
. (2.3.5)

Now, let the adjustment be expressed in terms of orthogonal polynomials. When

a Gaussian base density is indicated, once the target distribution has been centered, the

polynomial adjustment λp,q(x, y) consists of a linear combination of bivariate Hermite

polynomials as defined in Section 2.2. In this instance, one may utilize the following

approximation to f(x, y) :

fp,q(x, y) = ψ(x, y)

p∑
i=0

q∑
j=0

ηi,jHi,j(x, y) (2.3.6)

where ψ(x, y) = 2φ(
√

2x,
√

2 y) and φ(·, ·) denotes a standard bivariate normal density

function.

The coefficients ηij are obtained by equating
∫ ∫

H∗u,v(x, y)fp,q(x, y) dx dy to∫ ∫
H∗u,v(x, y)f(x, y) dx dy for u = 0, 1, . . . , p and v = 0, 1, . . . , q, where the dual

Hermite polynomial H∗u,v(x, y) is as specified in Definition . Denoting the (k, `)th joint

moment of the centered target distribution by µ(k, `), one has

∫ ∫
ψ(x, y)H∗u,v(x, y)

p∑
i=0

q∑
j=0

ηi,jHi,j(x, y)dx dy =
v∑
`=0

u∑
k=0

δ∗uvk` µ(k, `). (2.3.7)

Then, on making use of Equation (2.2.2) with g(x, y) replaced by ψ(x, y), the left-

hand side of Equation (2.3.7) becomes

p∑
i=0

q∑
j=0

ηi,j

∫ ∫
ψ(x, y)H∗u,v(x, y)Hi,j(x, y) dx dy = ηu, vθu, v,
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so that

ηu, v =

∑v
`=0

∑u
k=0 δ

∗
uvk` µ(k, `)

θu, v
. (2.3.8)

Thus, as in the univariate case, there is no need to solve linear systems of equations

when making use of linear combinations of orthogonal polynomials as adjustments. The

steps to be utilized for approximating f(x, y) in terms of bivariate Hermite orthogonal

polynomials are provided in the next algorithm.

Algorithm 3.2. Moment-based density approximants expressed in terms of bivariate Her-

mite orthogonal polynomials

Step 1: Let p and q initially equal 3 —or a larger integer, which would be indicated in the

case of an irregular marginal density function.

Step 2: Evaluate the joint moments of the bivariate vector (X, Y ) denoted by µ(i, j) for

i = 0, 1, . . . , p and j = 0, 1, . . . , q.

Step 3: As specified by Equation (2.3.6), set the approximate density as fp,q(x, y) =

ψ(x, y)
∑p
i=0

∑q
j=0 ηi,jHi,j(x, y) where ψ(x, y) is a centered Gaussian base density,

Hi,j(x, y) is the associated bivariate Hermite polynomial of order (i, j) and
∑p
i=0

∑q
j=0

ηi,jHi,j(x, y) is the adjustment.

Step 4: Evaluate the coefficients ηi,j by making use of Equation (2.3.8).

Step 5: Evaluate ISD(p, q) as defined in Equation (2.3.2).

Step 6: Increase p and/or q and repeat steps 2-5 until ISD(p, q) is deemed sufficiently

small.

The proposed density estimation methodology can readily be extended to the multi-

variate case as follows. Let f(x) denote the density function associated with a p−dimensional
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random vector X′ = (X1, . . . ,Xp) whose domain is D = (α1, β1) × · · · × (αp, βp) and

{ϕik(x), ik = 0, 1, . . . , }, k = 1, . . . , p, be sequences of orthogonal polynomials that

can be generated from the normalized nonnegative weight functions wk(x), k = 1, . . . , p,

whose product shall serve as base density. Letting

ϕi(x) =

p∏
k=1

ϕik(xk) ,

the ϕi(x)’s are seen to form an orthogonal system onD with respect to the weight function

w(x) =
∏p
k=1wk(xk). Assuming that f(x) is square integrable, that is,

∫
D f

2(x)dx <

∞, defining i′ = (i1, . . . , ip) to be a vector of nonnegative integers, and letting 1′ =

(1, . . . , 1) be a p-dimensional vector, f(x) can be expanded as follows:

f(x) = w(x)
∑

ai ϕi(x) ,

where the summation sign denotes a multiple sum whose indices ij are going from 0 to

nj , j = 0, . . . , p. Given a simple random sample, x1, . . . , xn, we define the resulting

multivariate orthogonal polynomial density estimate to be

f̂n(x) = w(x)
∑

âi ϕi(x) (2.3.9)

where n = (n1, . . . , np)
′ and

âi =
1

n

n∑
k=1

ϕi(xk),

see Schwartz (1967) or Hall (1983) for selected results. This form assumes that the com-

ponents of the base density are independently distributed. As previously explained, one

can transform the data so that the components be uncorrelated, in which case w(x) should

prove to be a suitable initial density estimate.
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The following theorem formally proves the equivalence between the approximated

densities obtained in terms of standard polynomial adjustments and those resulting from

linear combinations of orthogonal polynomials as adjustments for the univariate and bi-

variate cases. Thus, for a given target density function, an identical approximate density

function can be obtained without having to generate a set of orthogonal polynomials from

the selected base density function.

Theorem 2.3.1. For a given base density function, the approximated density functions ob-

tained by utilizing standard polynomial adjustments are mathematically equivalent to those

obtained by making use of linear combinations of orthogonal polynomials as adjustments.

Proof: The result is first established for the univariate case.

Let f̃n(x) = ψ(x)
∑n
k=0 ck x

k, where the ck’s are such that the first nmoments asso-

ciated with the approximated density function f̃n(x) agree with those of the target density

f(x). Let f̂n(x) = ψ(x)
∑n
j=0 ηjHj(x) where the Hj(x)’s are the orthogonal polynomi-

als corresponding to the base density function ψ(x) and the coefficients ηi are such that

the first n moments of f̂n(x) also coincide with those of f(x), be also an approximation to

f(x).
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Then,

f̂n(x) = ψ(x)
n∑
j=0

ηj Hj(x)

= ψ(x)
n∑
j=0

ηj

( j∑
k=0

αk x
k
)

= ψ(x)
n∑
j=0

j∑
k=0

ηj αk x
k

= ψ(x)
n∑
k=0

( n∑
j=k

ηj αk

)
xk as

n∑
j=0

j∑
k=0

≡
n∑
k=0

n∑
j=k

≡ ψ(x)
n∑
k=0

ck x
k with ck =

n∑
j=k

ηj αk

≡ f̃n(x) . 2 (2.3.10)

It should be pointed out that the set of orthogonal polynomials generated from a

given base density is unique and that such polynomials of degree less than or equal to n are

linearly independent. Thus they are forming a basis for all standard polynomials of degree

at most n. Accordingly, there is a single linear combination of such orthogonal polynomi-

als that will be equal to a specific standard polynomial of degree n.

We now consider the bivariate case. Noting that
∑p
i=0

∑i
k=0 ≡

∑p
k=0

∑p
i=k and∑q

j=0

∑j
`=0 ≡

∑q
`=0

∑q
j=` , and letting f̃p,q(x, y) = ψ(x, y)

∑p
k=0

∑q
`=0 ck,`x

ky` and

f̂p,q(x, y) = ψ(x, y)
∑p
i=0

∑q
j=0 ηi,jHi,j(x, y), one has
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f̂p,q(x, y) = ψ(x, y)

p∑
i=0

q∑
j=0

ηi,jHi,j(x, y)

= ψ(x, y)

p∑
i=0

q∑
j=0

ηi,j

i∑
k=0

j∑
`=0

αijk` x
ky`,

= ψ(x, y)

p∑
i=0

i∑
k=0

q∑
j=0

j∑
`=0

ηi,j αijk` x
ky`,

= ψ(x, y)

p∑
k=0

q∑
`=0

{ p∑
i=k

q∑
j=`

ηk, ` αijk`

}
xky`

≡ ψ(x, y)

p∑
k=0

q∑
`=0

ck,` x
ky`

= f̃p,q(x, y). (2.3.11)

This demonstrates the mathematical equivalence between approximated densities ob-

tained in terms of standard polynomial adjustments and those expressed in terms of linear

combinations of orthogonal polynomials when, in each case, the highest degrees of x and

y are respectively p and q. This equivalence can be similarly established in higher dimen-

sions. 2

The following example illustrates graphically that both approaches produce identical

density approximants.

Example 2.3.1. A mixture of bivariate normal densities. Let

Z1 ∼ N2


 1.1

−0.1

 ,

0.33 0.03

0.03 0.33


 ,Z2 ∼ N2


0.2

1.2

 ,

 0.4 0.04

0.04 0.4


 (2.3.12)
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(a) Exact density (b) Base density (c) f̃6,6(x, y) (d) f̂6,6(x, y)

Figure 2.2: Plots in connection with Example 2.3.1

and f(x, y) = 1
2(fZ1

(x, y) + fZ2
(x, y)). The base density ψ(x, y) is assumed to have the

following distribution:

N2


0.65

0.55

 ,

 0.5675 −0.2575

−0.2575 0.7875


 , (2.3.13)

whose mean and covariance matrix coincide with those of the mixture.

Although, increasing p and q improves the accuracy of the approximant, at some

point, the improvement as quantified by the integrated squared differences between the ex-

act and approximated density functions as defined by Equation (2.3.2), becomes minimal.

Figure 2.2 displays the plots of the exact and base density functions as well as the ap-

proximated densities of f(x, y) which were adjusted by making use of a bivariate standard

polynomial and a linear combination of bivariate Hermite polynomials. For p = q = 6, it

is seen that the approximants obtained from both types of adjustment are nearly identical

to the exact density.

2.4 Density estimation and applications

In this section, we make use of the proposed approximation methodology in the context of

density estimation. Let {(xk, yk), k = 1, . . . , N} be a dataset whose underlying density
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function has to be estimated. In this case, an appropriate initial density function can be

chosen by inspecting a bivariate histogram (or scatter plot) of the data or histograms of the

observations on each of the variables. For example, if the histograms of the xk’s and the

yk’s are more or less normally distributed, then the base density function ψX(x, y) can be

taken to be that of a N2(µ̂, Σ̂) random vector where µ̂ and Σ̂ are respectively the sample

mean and sample covariance matrix. The polynomial adjustment is then determined from

the joint sample moments, which are

µ̂i,j =
1

N

N∑
k=1

xik y
j
k, i, j = 0, 1, 2, . . . . (2.4.1)

Let ECDF(x, y) denote the empirical CDF associated with the dataset andFp,q(x, y) =∫ x
−∞

∫ y
−∞ fp,q(x, y)dydx be the CDF obtained from the estimated density function fp,q(x, y).

The selection of the optimal maximal degree for each variable appearing in the polynomial

adjustment, which are denoted by p? and q?, is made in terms of the following sum of

squared differences:

SSD(p, q) =
N∑
i=1

(ECDF(xi, yi)− Fp,q(xi, yi))2, (2.4.2)

which is used as a goodness-of-fit measure. The optimal degrees of p and q denoted by

p? and q? are chosen to be those that minimize SSD(p, q). Thus, the steps described in

Algorithm 3.1 apply to the determination of a density estimate, except that sample moments

are utilized in lieu of exact moments and the degree selection criteria is based on SSD(p, q)

rather than ISD(p, q). Note that in light of Theorem 2.3.1, there is no need to resort to

orthogonal polynomials.
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Figure 2.3: Graphs in connection with the selection of the optimal degree Example 2.4.1

Alternatively, it may prove simpler to consider SSDX(p) and SSDY (q), which de-

note the sums of the squared differences between the ECDF and a CDF estimate obtained

from a univariate density estimate that has been adjusted by means of a polynomial of de-

gree p for x and a polynomial of degree q for y, and then select p∗ and q∗ corresponding to

global minima or local minima beyond which further improvements are minimal. It would

be appropriate to proceed in this manner whenever one of the variables requires a higher

degree adjustment due to its more pronounced variability. This approach is utilized in the

following examples.

Example 2.4.1. Consider the observations referred to as the xclara data set which is avail-

able from the R package data base (Struyf et al., 1996).

Plots of bivariate and univariate SSD’s are shown in Figure 2.3. The graphs of SSDX

and SSDY indicate that one could take p = 7 and q = 11 as suitable degrees for the ad-

justments in x and y, respectively. In fact, SSD(7, 11) = 0.73 and SSD(11, 11) = 0.74

which, on taking parsimony into account, suggests that setting p = 7 and q = 11 is more

than adequate, which is confirmed by the plots shown in Figure 2.5. Figure 2.4 contains a

scatter plot and a histogram of the data as well as a plot of the base density.

Such density estimates could be utilized in the context of nonparametric regression.

Consider for instance the regression model
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Figure 2.4: Graphs in connection with Example 2.4.1

(a) KDE (b) f7,7(x, y) (c) f7,11(x, y) (d) f11,11(x, y)

Figure 2.5: Kernel density estimate and fp,q(x, y) for p = 7, 11 and q = 7, 11

y = g(x) + ε, (2.4.3)

where g(x) is an unknown continuous function and ε denotes a random error term. On the

basis of an estimate of the joint density fp, q(x, y), one can readily determine the condi-

tional density fp, q(y|X = x). Although the predicted values of the response variable are

often determined by taking the expectation of the conditional density of Y given X = x,

plots of the conditional density functions such as those appearing in Figure 2.6 prove sig-

nificantly more informative.

The following example shows that the proposed methodology also applies to non-

Gaussian type continuous distributions.
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Figure 2.6: The estimated conditional density function (Example 2.4.1)

Example 2.4.2. The dataset being modeled in this example was extracted from CommViol-

PredUnnormalizedData which is included in the “UC Irvine Machine Learning Repository

dataset”. It contains 2315 observation vectors related to communities and crime. It com-

bines socio-economic data from the ’90 Census, law enforcement data from the 1990 Law

Enforcement Management and Admin Stats survey, and crime data from the 1995 FBI

UCR, see Redmond (1990). We selected “pctUrban”: the percentage of people living in

areas classified as urban as the X variable and “pctWFarmSelf”: the percentage of house-

holds with a farm or self employment income in 1989 as the Y variable. Since the same

observations are used for the variables X and Y in Example 6 wherein a third variable is

also involved, we shall refer to certain figures pertaining to that example.

As can be seen from panels (a) and (b) of Figure 2.8, the marginal distribution of

each variable behaves somewhat like a gamma random variable. Accordingly, the initial

density estimate (plotted in panel (c) of Figure 2.7) was taken to be the product of two

gamma density functions, that is, ψ(x, y) = g1(α1, β1) · g2(α2, β2) where the parameters

were determined as follows: α1 = x̄2

ν−x̄2 = 10.2251 and β1 = ν−x̄2
x̄ = 1.41277, where x̄

is the sample mean of X and ν = 1
N

∑N
k=1 x

2
k is the second sample moment of X . The

parameters α2 = 6.14075 and β2 = 1.92751 were similarly obtained from the observations

on Y . Figure 2.7 also includes a scatter plot and a three-dimensional histogram of the

bivariate data.

The graphs of SSDX and SSDY shown in Figure 2.8 suggest that p = 7 and q = 4
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Figure 2.7: Graphs in connection with Example 2.4.2

would be suitable degrees. The resulting density estimate plotted in panel (d) of Figure 2.7

turns out to be similar to the kernel density estimate plotted in panel (a) of Figure 2.9.

Example 2.4.3. In this example, the approach being herein advocated is applied to a trivari-

ate dataset. We modeled the data CommViolPredUnnormalizedData with the variables X

and Y as previously defined in Example 2.4.2 and a third variable Z, “perCapInc”: per

capita income, which is modeled by a N (43.750, 163.531) random variable whose density

function is plotted in panel (f) of Figure 2.8.

Figure 2.8 contains plots of the univariate KDE’s and base densities for each of the

three components. The graphs of the univariate SSD’s, also shown in Figure 2.8, suggest

that suitable degrees for the adjustments in x, y and z could respectively be 7, 4 and 5.

Thus, the base density in x, y and z, that is, the product of the univariate base densities, is

adjusted by means of a trivariate polynomial of degrees 7 for x, 4 for y and 5 for z. This

yields a density estimate denoted by f7,4,5(x, y, z).

Since this estimated density function cannot be plotted, the bivariate marginal den-

sity estimates, that is, f7,4,5(x, y), f7,4,5(y, z) and f7,4,5(x, z) are shown in Figure 2.9,

where for example f7,4,5(x, y) =
∫
f7,4,5(x, y, z) dz. They are seen to be quite similar to

the corresponding KDE’s also plotted in the same figure. It should also be observed that

density function of the marginal distribution X and Y , that is, f7,4,5(x, y) as plotted in

panel (d) Figure 2.9 agrees with f7,4(x, y), which is the joint density function of X and Y
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Figure 2.8: Univariate KDE’s, base densities and SSD’s in connection with Example 2.4.3

plotted in panel (d) of Figure 2.7.

The next example illustrates the usefulness of proposed methodology for modeling

large datasets. This approach is most efficient as it only relies on the joint sample moments

of a dataset, irrespective of its size.

Example 2.4.4. The dataset being considered, which is called Covertype, contains 581, 012

observations on 54 covariates. It was also extracted from the “UC Irvine Machine Learning

Repository dataset”. This data was analyzed in (Blackard and Denis, 2000) in connection

with forest cover studies.

We selected “Aspect”: aspect in azimuth degrees as the X variable and “Slope”:

slope in degrees as the Y variable. Figure 2.10 displays a three-dimensional histogram of

the data and the KDE’s for X , Y and (X, Y ). Uniform and gamma base density functions
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(a) KDE for (X,Y ) (b) KDE for (Y,Z) (c) KDF for (X,Z)

(d) Marginal PDF f7,4,5(x, y) (e) Marginal PDF f7,4,5(y, z) (f) Marginal PDF f7,4,5(x, z)

Figure 2.9: Plots of the bivariate KDE’s and the bivariate marginals of the proposed density
estimates in connection with Example 2.4.3

were used for X and Y respectively. The SSD values associated with X and Y whose

minima are respectively 7 and 3, are shown in panels (e) and (f) of Figure 2.10, which also

includes a plot of the estimated density function f7,3(x, y) whose features are similar to

those exhibited by the kernel density estimate.

The next example shows the application of density estimation in nonparametric re-

gression models.

Example 2.4.5. In this example, we consider the following nonparametric regression model

yi = m(xi) + εi, i = 1, . . . , n (2.4.4)
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Figure 2.10: Graphs in connection with Example 2.4.4

where

m(x) =



x
3 , if 0 ≤ x < 1

1
3 , if 1 ≤ x < 2

x−1
3 , if 2 ≤ x ≤ 3

and εi’s follows normal distribution N (0, 0.05).

The scatter plot of the n = 2000 points is shown in Panel (a) of Figure 2.11. The

density function was obtained by making use of bivariate Legendre polynomials of orders

at most 20 from Equation (2.3.9). The plot of the resulting bivariate density function, the

contour plot and the projection of the PDF are shown in panels (b) to (d) in Figure 2.11,

respectively.

Example 2.4.6. In this example, the dataset is a given set of 100000 points whose scatter

plot shown in Panel (a) of Figure 2.12 represents a square within a triangle. The density

function was obtained from Equation (2.3.9) by making use of bivariate Legendre poly-

nomials of orders at most 40 . The plot of the resulting bivariate density function, the

contour plot and the projection of the PDF are displayed in panels (b) to (d) in Figure 2.12,

respectively.
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Figure 2.11: Scatter plot, Histogram, bivariate PDF, contour plot and estimated regression
function in connection with Example 2.4.5



50

-3 -2 -1 1 2 3

-2

-1

1

2

3

4

(a) Scatter plot (b) Bivariate PDF

-0.06

-0.04

-0.04

-0.04

-0.04

-0.02

-0.02

0.02

-0.02
-0.02

-0.02

-0.020.02

-0.02 -0.02

-0.02

-0.02
-0.02

-0.02

-0.02

-0.02

-0.02

-0.02

-0.02 -0.02

0

0

0

0

0

00

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0
0

0

00.02

0.02

0.02

0.02

0.02

0.020.02
0.02

0.02

0.02

0.02

0.02

0.02
0.02

0.02

0.02

0.02

0.02
0.02

0.04 0.04

0.04

0.04

0.04

0.04

0.04

0.04

0.04
0.04

0.04 0.04

0.04

0.060.06

0.06 0.06

0.06

0.06

0.06

0.06 0.06 0.06

0.08

0.08

0.08 0.08

0.08 0.08

0.08

0.1 0.1

-2 0 2 4

-2

0

2

4

(c) Contour plot (d) Density projection

Figure 2.12: Scatter plot, bivariate PDF, contour plot and density projection in connection
with Example 2.4.6
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2.5 Concluding remarks

This chapter introduces an efficient methodology for approximating the density functions

of continuous random vectors, which makes use of a base density function and a moment-

based polynomial adjustment. It was shown that on making use of a sequence of orthogonal

polynomials associated with a given base density function, one can directly obtain density

approximants or estimates without having to solve any system of linear equations. It was

established that a density approximant whose adjustment is expressed in terms of a lin-

ear combination of orthogonal polynomials, is identical to that resulting from a standard

polynomial adjustment. As well, the proposed approach has been successfully employed

for modeling four data sets. The numerical examples illustrate its flexibility as well as its

applicability in higher dimensions. All the calculations were carried out with the symbolic

computation software Mathematica, the code being available from the authors upon re-

quest. As it turns out, the resulting density estimates possess a simple functional form that

lends itself to algebraic manipulations. Furthermore, as was explained in the Introduction,

the proposed methodology is ideally suited to model the massive data sets occurring nowa-

days in genomics, meteorology and numerous other fields of scientific investigation.
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Appendices

A .1. Some useful univariate orthogonal polynomials

Among the widely used orthogonal polynomials, the Legendre, Laguerre, Jacobi and Her-

mite polynomials are of particular interest in connection with the approximation of density

functions. Some of their mathematical properties are included in this section.

• Legendre Polynomials:

This class of orthogonal polynomials is defined on [−1, 1] as

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n, n = 0, 1, . . . ,

or

Pn(x) =
n∑
i=0

(−1)i
(
n

i

)
((1 + x)/2)n−i((1− x)/2)i.

They satisfy the recurrence relation

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x),

the first five being P0(x) = 1, P1(x) = x, P2(x) = 1
2(3x2 − 1), P3(x) = 1

2(5x3 −

3x), P4(x) = 1
8(35x4 − 30x2 + 3), and the orthogonality property

∫ 1

−1
Pi(x)Pj(x)dx =

2

2n+ 1
δij ,

where δij = 1 when i = j and 0 otherwise.
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• Laguerre Polynomials:

The support of these orthogonal polynomials is [ 0, ∞). They are given by

Ln(α, x) =
x−αex

n!

dn

dxn
(e−xxn+α), n = 0, 1, . . .

or

Ln(α, x) =
n∑
i=0

(−1)i
(
n+ α

n− i

)
xi

i!
,

and satisfy the recurrence relation

(n+ 1)Ln+1(α, x) = (2n+ α + 1− x)Lα,x(x)− (n+ α)Ln−1(α, x),

the first few generalized Laguerre polynomials being L0(α, x) = 1, L1(α, x) =

−x+ 1, L2(α, x) = x2/2− (α + 2)x+ (α + 2)(α + 1)/2, as well as the

orthogonality property

∫ ∞
0

x−αe−xLi(α, x)Lj(α, x)dx =
Γ(n+ α + 1)

n!
δij .

• Jacobi Polynomials:

These orthogonal polynomials which are defined on [−1, 1] can be determined as

follows:

Jn(α, β, x) =
n∑
i=0

(
n+ α

i

)(
n+ β

n− i

)
((x+ 1)/2)i((x− 1)/2)n−i;



56

they satisfy the orthogonality property

∫ 1

−1
(1− x)α(1 + x)βJi(α, β, x)Jj(α, β, x)dx

=
2α+β+1Γ(n+ α + 1)Γ(n+ β + 1)

(2n+ α + β + 1)Γ(n+ α + β + 1)n!
δij .

• Hermite Polynomials:

The modified Hermite polynomials are defined on (−∞, ∞); they can be obtained

as follows:

Hn(x) = (−1)ne
x2

2
dn

dxn
e−

x2

2 .

They satisfy the recurrence relation

Hn+1(x) = xHn(x)− nHn−1(x)

and orthogonality property

∫ ∞
−∞

e−x
2/2Hi(x)Hj(x)dx =

√
2πn! δij .

A .2. Density approximation by means of Legendre and Laguerre

polynomials

A .2.1. Legendre polynomials for densities having a compact support

Provost (2005) suggested to use Legendre polynomials to approximate densities with com-

pact supports. For simplicity, at first, we assume that the density function fX(x) is defined

on [−1, 1] . Next, we extend the results to an arbitrary closed support [ a, b] by applying a

simple linear transformation. We have
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fX(x) =
∞∑
k=0

λkpk(x) (A.2.1)

where pk(x) is a Legendre polynomial of degree k in x, that is,

pk(x) =

floor[ k/2]∑
i=0

(−1)i2−k
(2k − 2i)!

i!(k − i)!(k − 2i)!
xk−2i, (A.2.2)

floor[ k/2] being the largest integer not greater than k/2 and

λk =
2k + 1

2

floor[ k/2]∑
i=0

(−1)i2−k
(2k − 2i)!

i!(k − i)!(k − 2i)!
µX(k − 2i) =

2k + 1

2
p∗k (A.2.3)

with p∗k = pk(x) whereinXk−2i is replaced by the (k−2i)th moment ofX , which is given

by

µX(k) = E(Xk) =

∫ 1

−1
xkfX(x) dx, k = 0, 1, 2, . . . .

To approximate fX(x) on the basis of µX(0) = 1, µX(1), . . . , µX(n), we make use of the

truncated series

fXn(x) =
n∑
k=0

λk pk(x).

To extend this approximation technique to a density function fY (y) having an arbi-

trary compact support [ a, b] with kth moment,

µY (k) = E(Xk) =

∫ b

a
yk fY (y)dy, k = 0, 1, 2, . . . ,
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the following linear transformation is required:

X =
2Y − (a+ b)

b− a

the support of X being [−1, 1]. After some algebra, one obtains the following approxima-

tion:

fYn(y) =
2

b− a
∑
k

λk pk

(2y − (a+ b)

b− a

)
where λk = 2k+1

2 pk((2y − (a+ b))/(b− a)) wherein yj is replaced by µY (j).

A .2.2. Laguerre polynomials for densities defined on the positive half-line

Laguerre polynomials are appropriate for approximating the density functions of many

statistics defined on the interval [ a, ∞), such as shifted gamma distributions.

Suppose a random variable Y is defined on the interval [ a, ∞) where 0 ≤ a < ∞

and denote its jth moment by µY (j), j = 0, 1, 2, . . .. Define

c =
µY (2)− µY (1)2

µY (1)− a
and ν =

µY (1)− a− c
c

,

and set X = Y−a
c .

Then, X has the support [ 0, ∞) and its density function has the following represen-

tation:

fX(x) = xνe−x
∞∑
k=0

δjLj(ν, x), (A.2.4)

where

Lj(ν, x) =

j∑
k=0

(−1)k
Γ(ν + j + 1)xj−k

k!(j − k)!Γ(ν + j − k + 1)
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is a Laguerre polynomial of order j in x with parameter ν and

δj =

j∑
k=0

(−1)k
j!

k!(j − k)!Γ(ν + j − k + 1)
µX(j − k),

which can be expressed as δj = j!
Γ(ν+j+1)

Lj(ν, x) wherein Xk is replaced by µX [ k] .

Since Y = cX + a, we then have

fYn(y) = (y − a)νe−
y−a
c

n∑
j=0

δjLj(ν,
y − a
c

)

= fY0(y)
n∑
j=0

ωjLj(α− 1,
y − a
β

) (A.2.5)

where α ≡ ν + 1 =
(µY (1)−a)2

(µY (2)−µY (1))2
, β ≡ c =

µY (2)−µY (1)2

µY (1)−a , fY0(y) is a gamma distribu-

tion with parameters α and β and ωj = Γ(α)δj .

For further results on the approximation of various types of density functions by

means of orthogonal and standard polynomials, the reader is referred to Provost (2005).

Note that density approximations expressed in terms of modified Hermite polynomials are

discussed in Section 2.1.



Chapter 3

An explicit representation of differentiated log-density approximants

expressed as rational functions

3.1 Introduction

This chapter focuses on a density approximation (estimation) methodology that yields what

is referred to as differentiated log-density approximants. Under this approach, the deriva-

tive of the logarithm of the density function fX(x) is represented as a rational function.

This constitutes an extension of Pearson’s frequency curve system wherein the density

function of a continuous distribution is assumed to satisfy the following equation:

d

dx
log(fX(x)) =

−a0 + x

c0 + c1x+ c2x2
, (3.1.1)

where the parameters a0, c0, c1 and c2 are real numbers that can be determined from the

first four moments of the distribution. The collection of all the distributions satisfying

Equation (3.1.1) is called the family of Pearson distributions, which are described in El-

derton (1938) and have been studied by Cramer (1946), Elderton (1953), Bol’shev (1963),

Johnson and Kotz (1970), Solomon and Stephens (1978) and Stuart and Ord (1987), among

others. Several widely used statistical distributions such as the gamma, beta, normal and

uniform belong to this family.

As an extension of (3.1.1), consider the generalized Pearson’s system (GPS) wherein

approximants satisfy the following differential equation:
60
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d

dx
log(fX(x)) =

f ′X(x)

fX(x)
=
a0 + a1x+ . . .+ aνx

ν

c0 + c1x+ . . .+ cδx
δ
, (3.1.2)

where a0 +a1x+ . . .+aνx
ν ≡ Nν(x) and c0 + c1x+ . . .+ cδx

δ ≡ Dδ(x), the coefficients

ai’s and cj’s being treated as parameters. The probability density function (PDF) fX(x)

generated from (3.1.2) shall be referred as differentiated log-density approximant (DLDA)

or a generalized Pearson’s density curve. Several authors considered some special cases

of (3.1.2) leading to certain PDF’s of interest. For instance, an extension of the Pearson

family of distributions that was considered by Cobb et al. (1983), can generate multimodal

univariate distributions when the degree of the numerator is greater than one and the de-

nominator is selected as one of the following polynomials: D0(x) = 1, −∞ < x < ∞;

D1(x) = x, 0 < x <∞; D2(x) = x2, 0 < x <∞; D2(x) = x(1− x), 0 < x < 1.

Rossani and Scarfone (2009) solved the differential equation

d

dx
log(fX(x)) =

a0 + a1x+ a2x
2

c0 + c1x+ c2x2
,

in connection with the monitoring of the interactions of the charged particles in an electric

or magnetic field. Shakil et al. (2010) considered the differential equation

d

dx
log(fX(x)) =

a0 + a1x+ a2x
2

c1x
, c1 6= 0, (3.1.3)

whose solution is the PDF,
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fX(x) = κxαe−µx
2−βx (3.1.4)

with µ = −a2/2c1, α = a0/b1, β = −a1/b1, κ being the normalizing constant. Hamedani

(2011) obtained the following PDF:

fX(x) = κ ν x−(ν+1)(β − αx2ν)e−αx
ν−βx−ν , 0 < x <

(β
α

) 1
2ν , (3.1.5)

where α, β, ν > 0, κ being the normalizing constant, which satisfies the differential equa-

tion:

d

dx
log(fX(x)) =

νβ2 − (ν + 1)βxν − 2ναβx2ν − (ν − 1)αx3ν + να2x4ν

βxν+1 − αx3ν+1
. (3.1.6)

For other studies in connection with generalizations of the Pearson family of distributions,

the interested reader is referred to (Dunning and Hanson, 1977), (Shakil, 2016), (Lefevre

et al., 2002), among others.

The traditional Pearson curves for which the degrees of numerator and denominator

are respectively one and two while the coefficients of interest in (3.1.2) are not specified in

advance are a very particular case of the proposed DLDA’s, which results in more accuracy.

A review of different density estimation methodologies is provided in (Silverman,

1986). Reid (1988) discussed the saddlepoint technique to approximate a target density.

Certain moment-based techniques were discussed for instance in (Elderton and Johnson,
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1969), (Solomon and Stephens, 1978), (Provost, 2005) and (Provost and Ha, 2015). Ex-

tensions to bivariate and multivariate density estimates or approximants are discussed in

(Scott, 2015), (Zareamoghaddam et al., 2017a) and (Zareamoghaddam et al., 2017b).

This chapter is organized as follows: The DLDA methodology is described in the

next section. An explicit expression for the density approximant is derived in Section

3.3 where some special cases of interest are considered as well. In Section 3.4, we carry

out a Monte Carlo simulation study involving several well-know distributions to illustrate

the efficiency of DLDA methodology. Some concluding remarks are included in the last

section.

3.2 Differentiated log-density approximation

This section describes the DLDA technique as applied to the approximation of continuous

density functions. Let fX(x) be a continuous density function defined on the interval

(α, β) ≡ S . It is assumed that the derivative of the logarithm of fX(x) can be represented

by a rational function, that is,

d

dx
log(fX(x)) =

f ′X(x)

fX(x)
= r(x), (3.2.1)

where

r(x) =

∑ν
i=0 aix

i∑δ
j=0 cjx

j
=
Nν(x)

Dδ(x)
, (3.2.2)

Nν(x) and Dδ(x) being polynomials in x of orders ν and δ . We shall assume without any

loss of generality that cδ is equal to one. After determining the ai’s and cj’s, by solving the
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linear system specified by Equation (3.2.7), which involves a certain number of moments

of the target distribution, fX(x) is approximated as

fν,δ(x) = κe
∫ x
α r(y) dy (3.2.3)

where κ is the normalizing constant.

In light of Equations (3.2.1) and (3.2.2), one has

fν,δ(x)
ν∑
i=0

ai x
i = f ′ν,δ(x)

δ∑
j=0

cj x
j , (3.2.4)

from which the polynomial coefficients can be obtained as follows: Multiplying both sides

of Equation (3.2.4) by xh and integrating over the interval (α, β) yields

∫ β

α
fν,δ(x)

ν∑
i=0

ai x
i+hdx =

∫ β

α
f ′ν,δ(x)

δ∑
j=0

cj x
j+hdx, h = 0, 1, . . . , ν + δ; (3.2.5)

then, on interchanging the sum and the integral on each side of this equation and integrating

the left-hand side by parts, one has

ν∑
i=0

ai

∫ β

α
xi+hfν,δ(x)dx =fν,δ(x)

δ∑
j=0

cjx
j+h |βα (3.2.6)

−
δ∑
j=0

cj(j + h)

∫ β

α
xj+h−1fν,δ(x)dx, h = 0, 1, . . . , ν + δ.
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Thus, letting µh, h = 0, 1, . . . , ν + δ, denote the hth moment of the approximated

density function fX(x), one obtains ν + δ + 1 linear equations of the following form:

ν∑
i=0

ai µ(i+ h) =
δ∑
j=0

cj
(
fν,δ(β) βj+h − fν,δ(α)αj+h

)
−

δ∑
j=0

cj(j + h)µ(j + h− 1), h = 0, 1, . . . , ν + δ, (3.2.7)

where µ0 ≡ 1. In order to determine the unknown coefficients of r(x) as specified by

Equation (3.2.2), one needs to solve the linear system resulting from Equation (3.2.7). By

replacing the unknown µ(h) by µX(h), for h = 0, 1, . . . , ν + δ, where µX(h) denotes the

hth moment of the distribution being approximated, one obtains the following system of

linear equations:

ν∑
i=0

ai µX(i+ h) =
δ∑
j=0

cj
(
fν,δ(β) βj+h − fν,δ(α)αj+h

)
−

δ∑
j=0

cj(j + h)µX(j + h− 1), h = 0, 1, . . . , ν + δ, (3.2.8)

where in most cases of interest fν,δ(α) and fν,δ(β) can be set equal to zero.

Once the solution of this linear system is obtained, one may solve the differential

equation

f ′ν,δ(x) = r(x)fν,δ(x), (3.2.9)

where r(x) =
∑ν
i=0 aix

i/
∑δ
j=0 cjx

j , by making use of symbolic computation packages
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such as Mathematica or Maple. Equivalently, one can evaluate the right-hand side of Equa-

tion (3.2.3), which as shown in the next section, provides an explicit solution to the differ-

ential equation specified by Equation (3.2.9).

Remark 1. The degree of the denominator Dδ(x) in (3.2.2), that is δ, corresponds to the

number of times the density function fX(x) intersects the abscissa plus the number of

points at which this density function is not differentiable. Note that in light of Equation

(3.2.3), it is seen that the integrand will become infinite at the roots of Dδ(x) so that the

approximant will be zero at those points. Moreover, since a simple polynomial cannot ad-

equately account for abrupt changes in the slope of a function, one needs to include the

number of points of non-differentiability in the set of roots of Dδ(x). Also, increasing the

degree of numerator Nν(x) generally leads to more accurate approximations.

3.3 An explicit representation of the density approximant

The following lemmas provide an explicit representation of the density approximation

fν,δ(x).

Lemma 3.3.1. Let λ1, λ2, . . . , λδ be the distinct real roots of a polynomial Dδ(y) =
δ∑
0
ci y

i, cδ 6= 0, and M(y) =
γ∑
i=0

ai y
i, aγ 6= 0, with γ < δ, be another polynomial. Then,

one has

M(y)

Dδ(y)
=

δ∑
k=1

τk
y − λk

(3.3.1)

where τk = M(λk)/
∏
6̀=k

(λk − λ`).
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Proof: Let

γ∑
i=0

ai y
i

δ∏
k=1

(y − λk)

=
δ∑

k=1

τk
y − λk

, (3.3.2)

which can be re-expressed as

γ∑
i=0

ai y
i

δ∏
k=1

(y − λk)

=
δ∑

k=1

τk Ak
δ∏

k=1
(y − λk)

, (3.3.3)

where clearly Ak =
∏
j 6=k

(y − λj). As the right and left hand sides of (3.3.3) are equal for

each y value, one has

γ∑
i=0

ai y
i =

δ∑
k=1

τk
∏
j 6=k

(y − λj).

On substituting λk to y in this equation, all the summands the right hand side will vanish

except for the kth term, which is τk
∏
j 6=k

(λk − λj). Thus,

τk =
( γ∑
i=0

ai λ
i
k

)
/
∏
j 6=k

(λk − λj).

2

Lemma 3.3.2. Letting x > α, i ≥ 2 and A, B, a and b be constants. One has
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∫
Ay +B

y2 + a y + b
dy =

∫
A(2y + a)/2 + (B − aA/2)

y2 + a y + b
dy

=
A

2
log(y2 + a y + b) + (B − aA

2
)

∫
dy

y2 + a y + b
(3.3.4)

where one of the following three cases is possible depending on the solutions of the equation

y2 + a y + b = 0:

i. The equation y2 + a y + b has two real roots of λ1, λ2 (λ1 6= λ2). By setting

m2 = b− a2

4 , one has λ1 = −a/2 +m and λ2 = −a/2−m, and

∫
Ay +B

y2 + a y + b
dy =

∫
E1

y − λ1
dy +

∫
E2

y − λ2
dy

=E1 log|y − λ1|+ E2 log|y − λ2|

= log
(
|y − λ1|E1|y − λ2|E2

)
(3.3.5)

where E1 =
Aλ1+B
λ1−λ2

and E2 =
Aλ2+B
λ2−λ1

.

ii. The quadratic equation has one repeated real root, that is λ = λ1 = λ2 = −a/2

where m = 0. In that case,

∫
Ay +B

y2 + a y + b
dy =

A

2
log(y − λ)2 + (B − aA

2
)

∫
dy

(y − λ)2

=A log(y − λ)− (B − aA

2
)/(y − λ). (3.3.6)

iii. The quadratic equation does not have any real root. Then,
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∫
Ay +B

y2 + a y + b
dy =

A

2
log(y2 + a y + b) + (B − aA

2
)

∫
dy

(y2 + a y + a2/4) + b− a2
4

=
A

2
log(y2 + a y + b) + (B − aA

2
)

∫
dy

(y + a/2)2 +m2

=
A

2
log(y2 + a y + b) + (B − aA

2
)

1

m
arctan

(y + a/2

m

)
.

(3.3.7)

Now, letting λ1, λ2, . . . , λδ denote the distinct real roots of the denominator Dδ(y)

of the rational function specified in Equation (3.2.2), one can express Dδ(y) as a product

of monomials, that is,
∏δ
k=1(y − λk). If ν ≥ δ, one has

Nν(y)/Dδ(y) = Qν−δ(y) +R(y)/Dδ(y), (3.3.8)

where Qν−δ(y) =
∑ν−δ
i=0 qi y

i and R(y) =
∑γ
i=0 di y

i, dγ 6= 0, γ < δ, are the quotient

and the remainder of the rational function r(y), respectively. The coefficients qi and di

can be determined by making use of symbolic computation packages such as Maple or

Mathematica. Note that Q(y) will be equal to zero whenever ν < δ. Thus,

r(y) =

∑ν
i=0 ai y

i∏δ
k=1(y − λk)

=
ν−δ∑
i=0

qi y
i +

∑γ
i=0 di y

i∏δ
k=1(y − λk)

=
ν−δ∑
i=0

qi y
i +

δ∑
k= 1

τk
y − λk

(3.3.9)

where

τk =
( γ∑
i=0

di λ
i
k

)
/
∏
j 6=k

(λk − λj) (3.3.10)
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as shown in Lemma 3.3.1, and one has

∫ x

α
r(y) dy =

∫ x

α
Qν−δ(y) dy +

δ∑
k= 1

∫ x

α

τk
y − λk

dy

=
ν−δ∑
i=0

qi y
i+1/(i+ 1) |xα +

δ∑
k= 1

τklog|y − λk| |xα

=
ν−δ∑
i=0

qi
(
xi+1 − αi+1)/(i+ 1) +

δ∑
k= 1

{
log |x− λk|τk − log |α− λk|τk

}
=
ν−δ∑
i=0

qi x
i+1/(i+ 1) + log

δ∏
k= 1

|x− λk|τk + C. (3.3.11)

where C = −
∑ν−δ
i=0 qi α

i+1/(i+ 1)− log
δ∏

k= 1
|α− λk|τk is a constant.

Thus, using the representation of the approximate density function specified by Equa-

tion (3.2.3) that is fν,δ(x) = κ e

∫ x
α
Nν (y)
Dδ(y)

dy
, one has

fν,δ(x) =κe

∑ν−δ
i=0 qi x

i+1/(i+1)+log
δ∏

k=1
|x−λk|

τk+C

=κ′e
∑ν−δ
i=0 qi x

i+1/(i+1)
δ∏

k= 1

|x− λk|τk , x ∈ (α, β), (3.3.12)

where κ′ is a normalizing constant (such that
∫ β
α fν,δ(x) dx = 1), qi is as defined in (3.3.8),

qi being zero whenever ν < δ, τk is defined in (3.3.10), and the λk’s are the δ distinct roots

of Dδ(x).

We now consider the special cases where δ ≤ 2. Explicit representations of the

approximated density function fν,δ(x) for δ = 0, 1 and 2 are specified below.
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I. Letting δ = 0, without any loss of generality, one has

f ′X(x)

fX(x)
= pν(x) =

ν∑
i=0

aix
i. (3.3.13)

Thus, in light of (3.2.3), the approximated density function has the following repre-

sentation:

fν,0(x) = κe
∫ x
α pν(y) dy = κ′e

∑ν
i=0

ai
i+1x

i+1
, (3.3.14)

where κ and κ′ are the appropriate normalizing constants.

II. When δ = 1, so that the denominator is a linear function of the formD1(x) = x−λ1,

the rational function r(x) has the following form:

r(x) =

∑ν
i=0 aix

i

x− λ1
= Qν−1(x) +

τ1
x− λ1

, (3.3.15)

where Qν−1(x) =
∑ν−1
i=0 qix

i. Accordingly, the approximated density function

fν,1(x) is obtained as

fν,1(x) = κ (x− λ1)τ1e
∑ν−1
i=0

qi
i+1x

i+1
, (3.3.16)

where κ is the normalizing constant.

III. When δ = 2, one can let c2 = 1 without any loss of generality. Assuming that there

are no repeated roots, the denominator has the form of D2(x) = x2 + c1 x + c0 and
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Equation (3.2.2) has the following representation

r(x) =

∑ν
i=0 aix

i

x2 + c1 x+ c0
= Qν−2(x) +

A1 x+ A0

x2 + c1 x+ c0
. (3.3.17)

D2(x) = x2 + c1 x + c0 can have either two real roots or two complex roots. First,

we assume that D2(x) has two real roots, λ1 and λ2, so that

A1x+ A0

x2 + c1 x+ c0
=

θ1

x− λ1
+

θ2

x− λ2
,

with θ1 =
A1 λ1+A0
λ1−λ2

and θ2 =
A1 λ2+A0
λ2−λ1

calculated through partial fractions. Then,

from Equation (3.2.3), one has

fν,2(x) = κe

∫ x
α Qν−2(x) dx+

∫ x
α

θ1
x−λ1

dx+
∫ x
α

θ2
x−λ2

dx
,

= κ′e
∑ν−2
i=0

qi
i+1x

i+1
2∏

k=1

|x− λ2|θi , (3.3.18)

where Qν−2(x) =
∑ν−2
i=0 qix

i and, κ and κ′ are normalizing constants. The second

possibility is that x2 + c1 x+ c0 does not have any real root. We know that

fν,2(x) = κe
∑ν−2
i=0

qi
i+1x

i+1
e

∫ x
α

A1x+A0
x2+c1 x+c0

dx
. (3.3.19)

Thus, the density estimate obtained by evaluating the last integral in Equation (3.3.19)

can be expressed as follows by making use of Equation (3.3.7) (Lemma 3.3.2):

fν,2(x) = κ′(x2 + c1 x+ c0)
A1
2 e

∑ν−2
i=0

qi
i+1x

i+1 + arctan
( x+c1/2√

c0−c21/4

)
, (3.3.20)

with κ′ being the new normalizing constant. On the other hand, when D2(x) has the

single solution λ = −c1/2, by making use of Equation (3.3.6) (Lemma 3.3.2), the
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solution of the integral in Equation (3.3.19) is

fν,2(x) = κe
∑ν−2
i=0

qi
i+1x

i+1
e

∫ x
α

A1x+A0
x2+c1 x+c0

dx

= κ′(x− λ)A1e
∑ν−2
i=0

qi
i+1x

i+1− 1
x−λ . (3.3.21)

When the DLDA is a differentiable function as is the case for instance of the right-hand

side expression in Equation (3.3.18) which, assuming that the end points of the distribution

are λ1 < λ2 and letting θj =
qj−3
j−2 , j = 3, . . . , ν + 2, can be expressed as

fν,2(x) = κ′(x− λ1)θ1(λ2 − x)θ2 e
∑ν−1
i=0 θi+3x

i+1

= e
∑ν+1
j=1 pj(θ1, ..., θj+1)Kj(x)+q(θ1, ..., θj+1) (3.3.22)

in the notation of Hogg and Craig (1978, p. 366), where pj(θ1, . . . , θj+1) = θj for j =

1, . . . , ν + 1, K1(x) = log(x − λ1), K2(x) = log(λ2 − x) and Kj(x) = xj−2, j =

3, . . . , ν + 2. Accordingly, on the basis of a sample of size n,

n∑
i=1

log(xi − λ1),
n∑
i=1

log(λ2 − xi),
n∑
i=1

xi, . . . ,
n∑
i=1

xνi

are joint sufficient statistics for θ1, . . . , θν+2, the parameters of the resulting density func-

tion. Joint sufficient statistics can be similarly determined for the parameters of the general

form of the density approximant given in Equation (3.3.12).

3.4 Numerical results

In the first example, simulation study is carried out to compare the accuracy obtained from

the density approximants determined by making use of the DLDA methodology in con-

nection with the sample moments of the simulated distributions and the kernel density
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estimation (KDE) technique. The integrated squared error

ISE(f̂) =

∫ (
f̂(x)− f(x)

)2
dx, (3.4.1)

is utilized to measure the accuracy of the approximated density f̂(x).

Example 3.4.1. Let n = 500, 1000, 2000 observations be generated randomly from beta(2,10),

gamma(2,20), exponential(2), Student t(5) and normal distribution PDF’s. The DLDA and

KDE methodologies were applied to the generated random values by running Monte Carlo

simulations 100 times. The means and standard deviation of the resulting ISE’s are included

in Table 3.1.

Table 3.1: Average ISE’s (SD’s in parentheses) for different distributions estimated by
applying the DLDA and KDE techniques.

n = 500 n = 1000 n = 2000
Beta DLDA 0.0165 (0.0247) 0.0100 (0.0065) 0.0069 (0.0034)

KDE 0.0270 (0.0142) 0.0158 (0.0079) 0.0101 (0.0041)
Gamma DLDA 0.0001 (0.0001) 0.0000 (0.0000) 0.0000 (0.0000)

KDE 0.0002 (0.0001) 0.0001 (0.0001) 0.0001 (0.0000)
Exponential DLDA 0.0449 (0.0366) 0.0391 (0.0216) 0.0381 (0.0157)

KDE 0.0641 (0.0148) 0.0544 (0.0077) 0.0457 (0.0062)
Student t DLDA 0.0013 (0.0013) 0.0008 (0.0006) 0.0006 (0.0004)

KDE 0.0020 (0.0011) 0.0010 (0.0006) 0.0006 (0.0003)
Normal DLDA 0.001 (0.0004) 0.0003 (0.0002) 0.0002 (0.0001)

KDE 0.0018 (0.0009) 0.0010 (0.0005) 0.0007 (0.0003)

Example 3.4.2. In this example, the following density function is considered:

f(x) =


x/2 if 0 ≤ x ≤ 1

1/2 if 1 ≤ x ≤ 2

(3− x)/2 if 2 ≤ x ≤ 3

(3.4.2)
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Figure 3.1: Exact and estimated PDF’s and CDF’s in connection with Example 3.4.2.
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Figure 3.2: Exact and estimated PDF’s and CDF’s in connection with Example 3.4.3.

In order to approximate this density function, we let δ = 4 be the degree of the

denominator in accordance with Remark 1, noting that there are two points where the func-

tion is not differentiable and two points of intersection with the abscissa. The exact density

and distribution functions as well as the DLDA density approximant f26,4(x) and the cor-

responding CDF approximation are shown in Figure 3.1.

Example 3.4.3. In this case, the target density function is taken as an equally weighted

mixture of Beta(10, 2) and Beta(4, 6) PDF’s. The degree of the denominator is set to

two. The DLDA density approximant f8,2(x) and the exact density functions are plotted in

Figure 3.2.
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Chapter 4

A log-density estimation methodology applicable to massive bivariate

data

4.1 Introduction

We initially consider the problem of approximating the density function of a univariate

continuous random variable. Obtaining an accurate density approximation can prove use-

ful when the exact density function of a statistical quantity such as an estimator or a test

statistic may not be tractable or have a simple closed form. The flexible methodology that

is proposed relies on the moments of the target distribution and can even be utilized to ap-

proximate irregular or multimodal density functions.

There exist several types of density estimates and approximants. However, many

of these techniques will fail to provide adequate approximations, especially when the tar-

get density is not a smooth unimodal function. Silverman (1986) provides a survey of the

various available methodologies while (Reid, 1988) focuses on the saddlepoint approxima-

tion. Moment-based techniques are described for instance in (Elderton & Johnson, 1969),

(Solomon & Stephens, 1978) and (Provost, 2005). (Efromovich, 1999) presents a unified

account of nonparametric approaches to density estimation. Other types of nonparametric

density estimates that are based on the L1 norm are presented in (Devroye, 1985) while

both parametric and nonparametric approaches are discussed in (Eggermont, 2001). The

multivariate case is extensively treated in (Scott, 2015).

79
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The bivariate density estimation methodology that is proposed in this chapter relies

on a univariate density approximation technique that produces differentiated log-density

approximants (DLDA’s) whereby the derivative of the logarithm of a density function is

assumed to be expressible as a rational function. This approach only necessitates the mo-

ments of a distribution up to some particular order; accordingly, when used in conjunction

with sample moments, it enables one to process large amounts of data that often arrive in

streams without having to access previously collected observations. Upon solving a system

of linear equations, the coefficients of the rational function can easily be determined, the

density approximant being then obtained by solving a differential equation. This density

estimation technique is then applied to each of the marginal distributions of a standardized

bivariate sample; the product of the resulting density estimates serves as a base density that

is adjusted by means of a bivariate polynomial whose coefficients are determined from the

joint sample moments of the standardized dataset being modeled as well as those associ-

ated with the base density function. The resulting expressions assume relatively simple

functional representations that can lend themselves to algebraic manipulations; this is not

the case for kernel density estimates, which incidentally may not be as accurate, as is sug-

gested by a numerical example (Example 4.3.1) involving a sample of simulated values.

This chapter is organized as follows. First, the technique being utilized for obtain-

ing univariate DLDA’s is developed in Section 4.2, including the special case where the

derivative of the logarithm of the target density function is assumed to be a polynomial.

The bivariate case is then considered in Section 4.3 where DLDA’s are utilized to obtain

approximants or estimates of the marginal density functions whose product is adjusted by

a bivariate polynomial. To illustrate the applicability of the new methodology, several nu-

merical examples are presented in Section 4.4.
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4.2 Differentiated log-density approximation

This section summarizes the results obtained in (Provost & Ha, 2015) wherein a novel

technique for approximating continuous univariate density functions is introduced. This

approach will be utilized in the next section to approximate the density functions associ-

ated with each of the marginal distributions of a standardized bivariate random vector.

We now explain how differentiated log-density approximants are determined. Let

fX(x) be a continuous density function defined on the interval (α, β) ≡ S . It is assumed

that the derivative of logarithm of fX(x) can be represented by a rational function , that is,

d

dx
ln(fX(x)) =

f ′X(x)

fX(x)
= r(x), (4.2.1)

where

r(x) =

∑ν
i=0 ai x

i∑δ
j=0 cj x

j
=
Nν(x)

Dδ(x)
, (4.2.2)

Nν(x) andDδ(x) being polynomials in x of orders ν and δ . Without any loss of generality,

cδ, the coefficient of xδ in the denominator of r(x), is set equal to one. After determining

the ai’s and cj’s, by solving a linear system involving a certain number of moments of the

target distribution, fX(x) is approximated as

fν,δ(x) = κ e
∫ x
α r(y) dy,

where κ is the normalizing constant, which is such that the integral of fν,δ(x) from α to

β numerically integrates to one, and e
∫ x
α r(y) dy is the solution of the differential equation
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specified by (4.2.6).

In light of Equations (4.2.1) to (4.2.2), one has

f ′ν,δ(x)
δ∑
j=0

cj x
j = fν,δ(x)

ν∑
i=0

ai x
i, (4.2.3)

from which the polynomial coefficients can be obtained as follows: Multiplying both sides

of Equation (4.2.3) by xh and integrating over the interval (α, β) yields

∫ β

α
f ′ν,δ(x)

δ∑
j=0

cjx
j+hdx =

∫ β

α
fν,δ(x)

ν∑
i=0

aix
i+hdx, h = 0, 1, . . . , ν + δ.

On interchanging the sum and the integral on each side of this equation and proceed-

ing by parts for the left-hand side, one has

fν,δ(x)
δ∑
j=0

cjx
j+h |βα −

δ∑
j=0

cj(j + h)

∫ β

α
xj+h−1fν,δ(x)dx =

ν∑
i=0

ai

∫ β

α
xi+hfν,δ(x) dx,

where h = 0, 1, . . . , ν + δ. Note that the first term on the left-hand side, that is,

fν,δ(x)
∑δ
j=0 cjx

j+h |βα, will be zero whenever fν,δ(α) = fν,δ(β) = 0 , which is the case

for most densities of interest. Thus, omitting this term and letting µh, h = 0, 1, . . . , ν + δ,

denote the hth moment of the approximated density function fν,δ(x), one obtains ν+ δ+ 1

linear equations having the following form:

−
δ∑
j=0

cj(j + h)µ(j + h− 1) =
ν∑
i=0

ai µ(i+ h), h = 0, 1, . . . , ν + δ, (4.2.4)
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with µ(0) ≡ 1. In order to determine the unknown coefficients of r(x) as specified by

Equation (4.2.2), one needs to solve the linear system resulting from Equation (4.2.4). On

replacing the unknown µ(h) by µX(h), for h = 0, 1, . . . , ν + δ, where µX(h) denotes the

hth moment of the distribution being approximated, one obviously obtains the following

linear system:

−
δ∑
j=0

cj(j + h)µX(j + h− 1) =
ν∑
i=0

ai µX(i+ h), h = 0, 1, . . . , ν + δ. (4.2.5)

Once the solution of this linear system is obtained, one still has to solve the differen-

tial equation

f ′ν,δ(x) = r(x)fν,δ(x), (4.2.6)

where r(x) =
∑ν
i=0 aix

i/
∑δ
j=0 cjx

j , which can easily be achieved by making use of

symbolic computation packages such as Mathematica or Maple.

Remark 1 The degree δ is set to be the number of times the density function (or its compo-

nents in the case of mixtures) intersects the abscissa plus the number of points at which the

density function is not differentiable, the roots of Dδ(x) corresponding to the intersection

points and the points of non-differentiability as the case may be. For instance, in the case

of a triangular distribution, one would let δ = 3, and for the mixture of density functions

described in Example 2.1, δ was set equal to 4.

For a given δ, let the integrated squared difference (or error) between the approxi-

mate density function fν,δ(x) and the exact density function fX(x) over the support of the

distribution be denoted by
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ISD(ν) =

∫
S

(
fν,δ(x)− fX(x)

)2
dx. (4.2.7)

Remark 2 In order to quantify the discrepancy between the approximate density fν,δ(x)

and the target density fX(x) and to determine the optimal order of the numerator of r(x),

we seek the value ν0 such that ISD(ν0) reaches a set tolerance level or ISD(ν) only de-

creases marginally beyond ν0.

The following algorithm summarizes the DLDA procedure for approximating a uni-

variate continuous density function fX(x).

Algorithm Differentiated log-density approximation methodology

1. Let ν = 0 be the initial order of Nν(x) as specified in Equation (4.2.2) and δ, the

order of Dδ(x), be selected as per Remark 1. (It should be noted that, in most cases

of interest, ν is greater than or equal to two.)

2. Evaluate the moments of the random variable X , that is, µX(i) for i = 0, 1, . . . , r,

where r = 2ν + δ if δ ≤ ν and r = 2δ + ν − 1 if δ > ν. (These moments replace

those associated with the approximated distribution appearing in Equation (4.2.4).)

3. Determine the coefficients of the rational function by solving the linear system (4.2.5).

4. Find the solution of the differential equation specified by (4.2.6) by making use of a

symbolic computation package and normalize the resulting function to obtain a bona

fide density function fν,δ(x).

5. Evaluate ISD(ν) as defined in Equation (4.2.7).

6. Repeat Steps 2-5 with larger values of ν until ISD(ν) is deemed to be sufficiently

small as per Remark 2.
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Figure 4.1: Exact (solid line) and approximated (dashed line) density functions in connec-
tion with Example 4.2.1.

Example 4.2.1. Suppose that fX(x) is the univariate density function of a mixture of two

equally weighted beta distributions with parameters (2, 20) and (3, 2). In this example, we

set ν = 4 and δ = 4. The plots of the exact and approximate density functions are shown in

Figure 4.1. In this case, after rounding to three decimals, the coefficients are a0 = 0.031,

a1 = −0.709, a2 = 3.070, a3 = −3.210, a4 = 0.147, c0 = 0, c1 = −0.040, c2 = 0.407,

c3 = −1.367, c4 = 1 and the density approximant is

f4,4(x) =x0.770(1− x)0.997(0.040− 0.367x+ x2)0.621

e−0.147+1.551 arctan(2.337−12.731x)/0.036.

4.2.1 Polynomial log-density approximants

As a particular case, one may assume that the differentiated log-density function is a poly-

nomial of order n, that is,

d

dx
ln(fX(x)) =

n∑
i=0

aix
i,

in which case c0 = 1 and the other ci’s are equal to zero in Equation (4.2.2). This gives
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rise to the following linear system:



µX(0) µX(1) . . . µX(n)

µX(1) µX(2) . . . µX(n+ 1)

µX(2) µX(3) . . . µX(n+ 2)

...
... . . . ...

µX(n) µX(n+ 1) . . . µX(2n)





a0

a1

a2

...

an


=



0

−µX(0)

−2µX(1)

...

−nµX(n− 1)


, (4.2.8)

which, in matrix form, can be expressed as Ma = τ where a is the vector of unknown

coefficients. We now show that M is a positive definite matrix. Suppose that z is an

arbitrary non-null vector of <n. Then,

zTMz =
n∑
i=0

n∑
j=0

zizj

∫ β

α
xi+jfX(x) dx

=

∫ β

α

( n∑
i=0

zix
i
)( n∑

j=0

zjx
j
)
fX(x) dx

=

∫ β

α

( n∑
i=0

zix
i
)2
fX(x) dx > 0.

Thus, the linear system specified by Equation (4.2.8) has the unique solution M−1τ .

The resulting density approximant, which shall be referred to as a Polynomial Log-density

Approximant (PLDA), will then have the following representation:

fXn(x) = κ e
∑n
i=0 ai x

i+1/(i+1) (4.2.9)

where κ is the normalizing constant, which is determined by numerical integration.

Remark 3 The DLDA (PLDA) methodology can be applied in the context of density esti-

mation by replacing the exact moments of the target distribution by the sample moments

associated with a given dataset. In this case, the degree of Nν(x) is determined in terms
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of the sum of the squared differences between empirical distribution function and the esti-

mated CDF obtained from fν,δ(x), that is, SSD(ν) =
∑n
i=1(ECDF(xi)−Fν,δ(xi))2. One

could select the degree ν for which SSD(ν) reaches a minimum value or beyond which

SSD(·) does not decrease significantly. A suitable degree for Dδ(x) can be determined

by following the guidelines provided in Remark 1 on the basis of a preliminary density

estimate such as a histogram.

4.3 Bivariate density estimation

In this section, the DLDA methodology, as described in the previous section, is initially

utilized to approximate each of the marginal density functions of a standardized bivariate

random vector (X, Y )′. A bivariate polynomial adjustment is then applied to the product

of the marginal density approximants to produce a bivariate density approximation. As

well, it is explained that the proposed bivariate density approximation methodology can be

utilized in the context of density estimation by substituting joint sample moments of given

orders to the corresponding exact joint moments of a target distribution.

When X and Y are independent random variables, their joint density function can

be expressed as the product of the marginal density functions, that is, fX,Y (x, y) =

fX(x)fY (y). However, in general the variables forming a random vector are not inde-

pendently distributed even after standardizing it, and some adjustment to the product of the

approximate or estimated marginal density functions is needed. We are proposing to apply

a bivariate polynomial adjustment to the standardized vectors, which yields a density of the

form specified in Equation (4.3.1). The density approximant/estimate corresponding to the

original bivariate distribution/data is then obtained by applying the inverse transformation.
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Now, letting (wi, zi), i = 1, . . . , n, constitute a dataset with sample mean (w̄, z̄), an

estimate of the covariance matrix V is required in order to standardize these n observation

vectors. Let this estimate be the m.l.e. of V , that is, V̂ = {vij}, where v11 =
[∑n

i=1(wi−

w̄)2
]
/n, v12 = v21 =

[∑n
i=1(wi − w̄)(zi − z̄)

]
/n and v22 =

[∑n
i=1(zi − z̄)2

]
/n. The

standardized data is then obtained asxi
yi

 = V̂ −1/2

wi − w̄
zi − z̄

 ,

V̂ −1/2 denoting the inverse of the symmetric square root of V̂ . The wi’s and the zi’s are

then uncorrelated (however, in general, they are not independently distributed), and we let

fν1,δ1,ν2,δ2,p(x, y) = fν1,δ1(x)fν2,δ2(y) πp(x, y), (4.3.1)

where fν1,δ1(x) and fν2,δ2(y) denote the estimated marginal density functions for the stan-

dardized vector (X, Y )′, πp(x, y) is a bivariate polynomial adjustment of order p in each

variable. Note that whenever δi = 0, i = 1, 2, the subscript δi is omitted on both sides of

Equation (4.3.1) and that the subscript p is omitted when there is no polynomial adjustment.

The degrees ν1, δ1 and ν2, δ2 associated with the density estimates of X and Y are

obtained in accordance with the guidelines provided in Remark 3. Due to the presence of

a polynomial adjustment, smoother estimates (of lesser degrees) of the marginal density

functions could be utilized.

Obtaining the coefficients of the polynomial adjustment

The coefficients of the polynomial adjustment πp(x, y) =
∑p
i=0

∑p
j=0 di,j x

i yj can be de-

termined as follows. For simplicity, we denote the estimated density function fν1,δ1,ν2,δ2,p
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(x, y) by fp(x, y), and fν1,δ1(x)fν2,δ2(y) by ψ(x, y) so that

fp(x, y) = ψ(x, y)πp(x, y).

Let the (k, `)th joint moment associated with the exact density function f(x, y) be denoted

by µ(k, `) =
∫
R2

∫
xk y` fp(x, y) dx dy and the (k, `)th joint moment associated with the

initial density ψ(x, y), by m(k, `) =
∫
R2

∫
xk y` ψ(x, y) dx dy.

In order to obtain a computable representation of the approximant fp(x, y), one

needs to determine the coefficients di,j of the polynomial adjustment. To this end, the

joint moments of the exact density f(x, y) are equated to those associated with fp(x, y),

that is,

µ(k, `) =

∫ ∞
−∞

∫ ∞
−∞

xky`fp(x, y) dx dy

=

∫ ∞
−∞

∫ ∞
−∞

xky` ψ(x, y) πp(x, y) dx dy

=

∫ ∞
−∞

∫ ∞
−∞

xky` ψ(x, y)

p∑
i=0

p∑
j=0

di,j x
iyj dx dy

=

p∑
i=0

p∑
j=0

∫ ∞
−∞

∫ ∞
−∞

di,j x
k+iy`+j ψ(x, y) dx dy,

for k = 0, . . . , p and ` = 0, . . . , p, which yields the following (p+ 1)2 linear equations:

µ(k, `) =

p∑
i=0

p∑
j=0

di,jm(k + i, `+ j), k = 0, 1, 2, . . . , p and ` = 0, 1, 2, . . . , p.

Thus, the di,j’s can be obtained by solving the linear system Md = µ where d and µ are

vectors of dimensions (p+ 1)2 whose (i(p+ 1) + (j + 1))th components, ci,j and µ(i, j),

appear in the same order for i = 0, 1, . . . , p and j = 0, 1, . . . , p. Increasing p should
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Figure 4.2: Dataset, SSD’s, estimates of the marginal densities and base density function
(Example 4.3.1)

theoretically result in greater accuracy. The generalization to three or more variables is

straightforward.

The selection of the optimal degree p associated with πp(x, y) is then made in terms

of the following sum of squared differences:

SSD(p) =
n∑
i=1

(ECDF(wi, zi)−Gp(wi, zi))2,

where ECDF(w, z) denotes the empirical CDF associated with the dataset andGp(wi, zi) =∫ wi
−∞

∫ zi
−∞ gp(w, z) dz dw is the CDF determined from the final density estimate gν1,δ1,ν2,δ2,p

(w, z) ≡ gp(w, z), which is obtained by applying the inverse of the standardizing transfor-

mation to fp(x, y). Note that the base density function, that is, ψ(x, y) will be denoted

by φ(w, z) after applying this inverse transformation and that the degree of each estimated

marginal density function is determined from the SSD function applied to the correspond-

ing component of the original dataset.
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The following example which makes use of a simulated dataset, enables one to gauge

the accuracy of the density estimate obtained by making use of the proposed technique.

Example 4.3.1. Let X1 and X2 be bivariate normal random variables where

X1 ∼ N2


−1.1

−0.1

 ,

0.33 0.03

0.03 0.33


 and X2 ∼ N2


0.2

1.2

 ,

 0.4 0.04

0.04 0.4


 ,

whose density functions are denoted by g
X1

(w, z) and g
X2

(w, z), respectively and let X

denote the random vector resulting from an equally weighted mixture of their respective

density functions, that is, g
X

(w, z) = 0.5g
X1

(w, z) + 0.5g
X2

(w, z). Three thousand bi-

variate data points were generated from this mixture.

The scatterplot and a 3D histogram of the data are displayed in panels (a) and (b) of

Figure 4.2. As per Remark 2, the SSD plots of the estimated marginal density functions

shown in panels (c) and (e) indicate that ν1 = 5 and ν2 = 3 are suitable polynomial de-

grees. The corresponding univariate density functions are plotted in panels (d) and (f). The

transformed base density estimate g5,3(x, y) obtained from the product of the estimated

marginal densities which were determined by applying the PLDA methodology and the

SSD(p) values are respectively plotted in panels (g) and (h) of Figure 4.2.

The bivariate exact density gX(w, z), the kernel density estimate and the final joint

density estimate g5,3,7(w, z) wherein p = 7 is selected as the optimal degree for the poly-

nomial adjustment based on the SSD(p) values are included in Figure 4.3. It is observed

that the plots of the estimated density based on the proposed methodology and the kernel

density estimate obtained by applying Silverman’s rule of thumb are in very close agree-

ment with that of the exact density function, the SSD(7) value obtained from the final

density estimate g5,3,7(w, z) being 0.0249 while it is 0.1147 for the kernel density esti-
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(a) Exact (b) Bivariate KDE (c) Final PDF estimate
g5,3,7(w, z)

Figure 4.3: Exact and estimated density functions (Example 4.3.1)

mate. The ISD values of the estimated density function and the kernel density estimate

which were determined by making use of the bivariate counterpart of Equation (4.2.7) are

respectively 0.0006 and 0.0011.

4.4 Illustrative numerical examples

Four applications of the proposed bivariate density estimation methodology, which involve

actual datasets are presented in this section. In the first three instances, the derivative of

the log-density estimate is assumed to be a polynomial whereas it is taken to be a rational

function in the fourth one.

Example 4.4.1. The dataset being modeled in this example was extracted from CommVio-

lPredUnnormalizedData which is included in the “UC Irvine Machine Learning Repository

dataset”. It contains 2315 observation vectors related to communities and crime. It com-

bines socio-economic data from the ’90 Census, law enforcement data from the 1990 Law

Enforcement Management and Admin Stats survey, and crime data from the 1995 FBI

UCR, see (Redmond, 1990). We selected “pctWFarmSelf”: the percentage of households

with a farm or self employment income as the W variable and “perCapInc”: per capita
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Figure 4.4: Dataset, SSD’s and estimates of the marginal density functions (Example 4.4.1)

income in 1989 as the Z variable.

The histogram of the data is displayed in panel (a) of Figure 4.4. The SSD plots of

the estimated marginal density functions of the standardized data shown in panels (b) and

(d) of Figure 4.4 indicate that ν1 = 4 and ν2 = 3 are suitable degrees. The corresponding

density functions are plotted in panels (c) and (e). (The SSD’s for ν1 = 6 and ν2 = 4 are

not shown as they were comparatively too large.)

The bivariate kernel density estimate, the transformed (by means of the inverse of

the standardizing transformation) base density estimate φ(w, z) obtained from the product

of the estimated marginal densities based on the PLDA methodology and the final joint

density estimate g4,3,7(w, z) wherein p = 7 is selected as the optimum degree for the poly-

nomial adjustment, as indicated by the SSD(p) values plotted in panel (f) of Figure 4.4,

are included in Figure 4.5.
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(a) Bivariate KDE (b) Transformed base PDF
φ(w, z)

(c) Final PDF estimate
g4,3,7(w, z)

Figure 4.5: SSD and density estimates (Example 4.4.1)

Example 4.4.2. In this example, we consider the dataset concrete also included in the “UC

Irvine Machine Learning Repository dataset”, which contains 1030 observation vectors re-

lated to concrete compressive strength in civil engineering. More information about this

dataset is available in (Yeh, 1998). We selected “Cement”: kg in a m3 mixture as the W

variable and concrete compressive strength as the Z variable.

In Figure 4.6, the scatterplot and a histogram of the concrete data are displayed in

panels (a) and (b). Likewise, the previous example, the SSD plots of the estimated marginal

density functions that are shown in panels (c) and (e) of Figure 4.6 indicate that ν1 = 4 and

ν2 = 3 are suitable degrees while the corresponding univariate estimated density functions

are plotted in panels (d) and (f). Large SSD values were omitted.

The bivariate kernel density estimate, the transformed base density estimate φ(w, z)

obtained from the product of the estimated marginal densities based on the PLDA method-

ology and the final joint density estimate g4,3,6(w, z) wherein p = 6 is selected as the op-

timum degree for the polynomial adjustment based on the SSD(p) values plotted in panel

(c) are all included in Figure 4.7. We observe that the proposed density estimate which has

an SSD of 0.0886 reflects the most salient features of the histogram more accurately than

the kernel density estimate for which the SSD is 0.1369.
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Figure 4.6: The dataset, SSD(ν1), SSD(ν2) and estimates of the marginal density functions
(Example 4.4.2)
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Figure 4.7: SSD(p) and bivariate density estimates (Example 4.4.2)
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ple 4.4.3)

(a) Transformed base PDF φ(w, z) (b) Final PDF estimate g5,6,7(w, z)

Figure 4.9: Transformed base PDF and final PDF estimate (Example 4.4.3)

Example 4.4.3. The dataset being considered, which is called Covertype, contains 581, 012

observations. It was extracted from the “UC Irvine Machine Learning Repository dataset”.

This data was analyzed in (Blackard, 2000) in connection with forest cover studies. We

selected horizontal distance in meters to nearest roadway as the W variable and horizontal

distance in meters to nearest wildfire ignition points as the Z variable. Figure 4.8 displays a

three-dimensional histogram of the data as well as f5(x) and f6(y), the estimated marginal

density functions, and the corresponding histogram plots. The bivariate kernel density es-

timate is shown in panel (d).

The transformed base density estimate φ(w, z) and the final joint density estimate

g5,6,7(w, z) wherein p = 7 is the selected degree of the polynomial adjustment are both
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Figure 4.10: Dataset, SSD’s and estimates of the marginal density functions (Example
4.4.4)

included in Figure 4.9. We observe that the proposed density estimate is consistent with

the histogram of the observations.

Example 4.4.4. Finally, the bivariate dataset being considered and referred to as the Flood

data was collected in the Madawaska Basin, Quebec, from 1990-1995. It includes 77 obser-

vations. The first component of the data is the peak value and the second one is the volume.

In this case, the DLDA methodology is applied and it is appropriate to let δ1 = δ2 = 2.

The scatterplot and a histogram of the data are displayed in panels (a) and (b) of

Figure 4.10. The SSD plots of the estimated marginal density functions that are shown in

panels (c) and (e) of Figure 4.10 indicate that ν1 = 5 and ν2 = 5 are suitable degrees. The

corresponding density functions are plotted in panels (d) and (f).
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Figure 4.11: SSD and density estimates (Example 4.4.4)

The bivariate kernel density estimate, the transformed density estimate φ(w, z), that

is, the transformed product of the estimated marginal densities, and the final joint density

estimate g5,2,5,2,6(w, z) wherein p = 6 is selected as the optimal degree for the polynomial

adjustment based on the SSD(p) values plotted in panel (c) are all included in Figure 4.11.

The SSD associated with the proposed density estimate, that is, 0.0265 is about a third of

that corresponding to the kernel density estimate, which is 0.0782.

4.5 Concluding remarks

A technique is developed whereby the derivative of the logarithm of a univariate continuous

density function can be approximated by a rational function, which enables one to obtain

bona fide density approximants for each of the marginals of a standardized continuous bi-

variate density function. Then, a bivariate density approximant is determined by adjusting

the product of the marginal density approximants (taken to be a base density function) by

means of a bivariate polynomial whose coefficients are determined from the joint moments

associated with the standardized target and base density functions. The methodology is

then extended to be applicable in the context of density estimation on the basis of a set of

observations by making use of their joint sample moments. This approach, which is well

suited for modeling massive datasets, can readily be applied in multivariate settings. The

Mathematica code utilized to carry out the calculations and to produce the graphs is avail-
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able from the authors upon request.
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Chapter 5

Shrinkage estimation applied to a semi-nonparametric regression

model

5.1 Introduction

Consider the n semi-nonparametric regression equations (Ma et al., 2015),

yit = αi + βim(xit) + ε̇it, (5.1.1)

where yit is the tth response value on the ith individual for i = 1, 2, . . . , n and t =

1, 2, . . . , T , with the corresponding explanatory variable xit. The unknown coefficients αi

and βi are the location and scale parameters associated with ith model, m(·) is the common

nonparametric component which is assumed to be differentiable, and the ε̇it’s are the error

terms which are assumed to be independently and identically distributed with mean zero

and constant variance σ̇2. The model (5.1.1) could be represented in matrix form as

Y = A+Bm(X) + E ,

where Y = {yit}, A = (α11T , . . . , αn1T ), 1T = (1, . . . , 1)′, B = Diag(β1, . . . , βn),

X = {xit} and E = {ε̇it} for i = 1, 2, . . . , n and t = 1, 2, . . . , T . The objective consists

in estimating the parametric and nonparametric components of this regression model. One

may use this model when the observations on several individuals are similarly distributed
101



102

but with possibly different response values that could be explained by varying location and

scale parameters. One could refer to (Fan and Gijbels, 1996), (Robinson, 1988), (Stone,

1982), (Ruppert et al., 2003) and (Begun et al., 1983) for more information about nonpara-

metric and semi-nonparametric models and related results.

For the purpose of measuring the characteristics (proteins, etc.) of individual molecul-

es, mass spectrometry (MS), which converts those characteristics to ions in some magnetic

fields, are utilized to sort and separate the ions and then measure the separated ions re-

lating to such characteristics, see for instance (Roy et al., 2011), (Yasui et al., 2003) and

(Guilhaus, 1995). A mass spectrum will usually be presented as a vertical bar graph in

which each bar represents an ion having a specific mass-to-charge ratio (m/z), the length

of the bar indicating the relative abundance of the ion. The most intense ion is assigned

an abundance level of 100, and it is referred to as the base peak. Such measurements

are useful to monitor the progression of the disease and to evaluate new treatments. The

two more widely used mass spectrometers are SELDI-TOF (surface enhanced laser des-

orption/ionization time-of-fight) (Baggerly et al., 2004) and MALDI-TOF (matrix assisted

laser desorption and ionization time-of-flight) (Baggerly et al., 2003). Model (5.1.1) was

proposed for analyzing such mass spectrometry data. In each spectrum, the y-axis is the

relative abundance (intensity) and the x-axis is the mass-to-charge ratio (m/z value). In this

chapter, we apply this model to a SELDI-TOF mass spectrometry data set collected from

a study on liver cancer. Interested readers could refer to (Ma et al., 2015) and references

therein for more information about MS data analysis.

When making use of Stein-type shrinkage techniques, one assumes some prior un-

certain information (PUI) about the parameters of interest. The Stein-type shrinkage es-

timators are predicated on the assumed PUI with a view to increase the accuracy of the

estimates of the parameters of interest. For some background about various shrinkage
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techniques applying to similar problems, one can refer to (Ahmed and Krzanowski, 2004),

(Ahmed, 1994), (Chitsaz and Ahmed, 2012a), (Chitsaz and Ahmed, 2012b) and the refer-

ences therein. We focus on the location and scale parametric components in model (5.1.1).

In the remainder, the prior information consists in letting all the scale parameters βi’s be

equal, for i = 1, . . . , n, that is, β1 = . . . = βn = β0, β0 being unknown. The parametric

components are then estimated under the full model as well as the restricted model which

is specified in Section 5.3 where the Stein-type shrinkage estimators for the location and

scale parameters are also discussed. Section 5.4 features a simulation study that confirms

the efficiency of the shrinkage-type estimators.

5.2 The original methodology

The multi-step algorithm proposed in (Ma et al., 2015) for the estimation of the parametric

components αi and βi, i = 1, 2, . . . , n, and the nonparametric function m(·) in (5.1.1)

is described in this section. As the authors stated, on the one hand, when the values of

the αi’s and βi’s for i = 1, 2, . . . , n, are known, one will end up with nonparametric

regression models whereby m(·) is estimated by some local linear regression approach

using the kernel function K(·) with Kh(·) = K(·/h)/h, h being a suitable bandwidth; on

the other hand, if m(·) were known, the model would reduce to n simple linear regression

equations in which case location and scale parameters are obtained by applying the least

squares approach.

5.2.1 The algorithm

In order to obtain estimates for both the parametric and nonparametric components of

(5.1.1), the following iterative algorithm was proposed in (Ma et al., 2015):
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Algorithm 1: Iterative algorithm for the semi-nonparametric model

• (a) Set α1 = 0 and β1 = 1. The initial kernel estimator of m(·) obtained from

(x1t, y1t), t = 1, ..., T via y1t = m(x1t) + ε̇1t is

m̃(x) =

∑T
t=1 ω1t(x)y1t∑T
t=1 ω1t(x)

(5.2.1)

where ω1t(x) = Kh(x1t − x)(ST,2 − (x1t − x)ST,1) and ST,k =
∑T
t=1Kh(x1t −

x)(x1t − x)k for k = 1, 2.

• (b) Replacingm(·) by m̃(·), as obtained in Step (a), the parameters αi, βi, i = 1, ..., n

are estimated by simple linear regression (least squares) as

β̂i =

∑T
t=1[m̃(xit)− ¯̃m(xi.)]yit∑T
t=1[m̃(xit)− ¯̃m(xi.)]2

, α̂i = ȳi. − β̂i ¯̃m(xi.), (5.2.2)

where ȳi. = 1
T

∑T
t=1 yit and ¯̃m(xi.) = 1

T

∑T
t=1 m̃(xit).

• (c) Given the estimates α̂i and β̂i, the estimate of the function m(·) is updated as

m̂(x) =

∑n
i=1

∑T
t=1 ω

∗
it(x)y∗it∑n

i=1

∑T
t=1 ω

∗
it(x)

, (5.2.3)

where ω∗it(x) = β̂2
iKh∗(xit − x)[

∑n
i=1 β̂

2
i S
∗(i)
T,2 − (xit − x)

∑n
i=1 β̂

2
i S
∗(i)
T,1 ], y∗it =

(yit − α̂i)/β̂i and S∗(i)T,k =
∑T
t=1Kh∗(xit − x)(xit − x)k for k = 1, 2.

• (d) Repeat Steps (b) and (c) until convergence is observed for both the parametric

and nonparametric components.

Note: The bandwidth h∗ might be different from h in order to achieve a better convergence

rate, see (Ma et al., 2015).
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5.2.2 Bandwidth selection

The proper choices of h and h∗ may asymptotically affect the accuracy of the estimators.

(Ma et al., 2015) suggested the K-fold cross validation approach for selecting the band-

width. To this aim, all n individuals are divided randomly into K groups Z1, Z2, . . . , ZK

where Zk is taken to be the kth test set with Z−k = ({1, 2, . . . , n} − Zk) as the corre-

sponding training set. Now, Algorithm 1 is applied to Z−k to obtain m̂Z−k(·, h, h∗) as an

estimator of m(·) where h and h∗ are the bandwidths used for obtaining m̃(·) and m̂(·),

respectively. Then, given m̂Z−k(·, h, h∗), the parametric components of the test set are

estimated by the least squares (simple linear regression) approach and the mean square

prediction error associated with Zk is computed as

MSPE(Zk, h, h
∗) =

1

|Zk|
∑
i∈Zk

T∑
t=1

(yit − α̂ki − β̂ki m̂Z−k(xt, h, h
∗))2 (5.2.4)

where α̂ki and β̂ki are the estimated regression coefficients in Zk for k = 1, . . . , K. Then,

the optimum values of the bandwidths for h and h∗ are chosen to be those that minimize

MSPE, that is,

(ĥ, ĥ∗) = arg min(h,h∗)
1

K

K∑
k=1

MSPE(Zk, h, h
∗). (5.2.5)

Asymptotic results

The following asymptotic results are stated in Ma et al. (2015). By asymptotic, it is meant

that both n and T are considered to be large enough (normally n � T ). The following

conditions will be needed to establish the asymptotic theory.

C1: The baseline intensity m(·) is continuous and has a bounded second order derivative.
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C2: There exist constants α > 0 and δ > 0, such that f(·) the marginal density of xit

satisfies f(x) > δ, and |f(x)− f(y)| ≤ c|x− y|α for any x and y within the support

of f(·).

C3: The conditional variance σ2
i (x) = V ar(yit|xit = x) is bounded and continuous in x,

where i = 1, . . . , n and t = 1, . . . , T .

C4: The kernel K(·) is a symmetric probability density function with bounded sup-

port. Hence K(·) has the properties:
∫∞
−∞K(u)du = 1,

∫∞
−∞ uK(u)du = 0 and∫∞

−∞ u2K(u)du is positive and bounded.

Let X = {xit, i = 1, . . . , n, t = 1, . . . , T}, µl =
∫∞
−∞ ulK(u)du and νl =∫∞

−∞ ulK2(u)du, for l ≥ 0.

Lemma 5.2.1. Assuming that conditions C1-C4 are satisfied,

E(m̃(x)−m(x)|X) =
1

2
m′′(x)µ2h

2 + o(h2),

V ar(m̃(x)|X) =
ν0 σ

2(x)

T h f(x)
+ o(

1

T h
),

E({m̃(x)−m(x)}2|X) =
1

4
(m′′(x)µ2)2h4 +

ν0 σ
2(x)

T h f(x)
+ o(h4 +

1

T h
).

Lemma 5.2.2. Suppose that conditions C1-C4 are satisfied and assume thatE
(
m2(xit)

)
(σ2+

1) < ∞ and E
(
m2(xit)

)
> 0 for all i = 1, . . . , n and t = 1, . . . , T . By restricting the

order of h to be between T−1/2 and T−1/4, the β̂Ui values are asymptotically distributed
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as follows:

(β̂Ui − β) ∼ N (0, σ1
2). (5.2.6)

For more information about the value of σ1 and the proofs of Lemmas 5.2.1 and

5.2.2, one can refer to Ma et al. (2015).

Letting m̃(·) be a consistent estimator of the nonparametric component m(·), the

nuisance parameter, it follows that

(α̂Ui − α) ∼ N (0, σ2
2), i = 1, . . . , n, (5.2.7)

where σ2
2 = σ1

2
(

¯̃m(xi.) + 1
T )
)
, i = 1, . . . , n.

5.3 Stein-type location and scale estimators

Oncem(·) in (5.1.1) is identified, the problem reduces to solving multiple simple regression

models wherein the slopes β = (β1, . . . , βn)′ and the intercepts α = (α1, . . . , αn)′ are

estimated via the least squares approach. In fact, m(·) is considered to be the nuisance

component whereas m̃(·) is viewed as its consistent estimator. Thus, the goal is to improve

the accuracy of the parametric estimators under the assumption that the slope is the same

for all n models, i.e., β1 = . . . = βn = β0 where β0 is unknown. For simplicity, m(xit) is

denoted by mit and M = {m̃(xit), i = 1, . . . , n, t = 1, . . . , T}. Accordingly, we have

the following n simple linear models:

yi = αi1T + βimi + εi, i = 1, 2, . . . , n, (5.3.1)
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with yi = (yi1, . . . , yiT )′, 1T = (1, . . . , 1)′, mi = (mi1, . . . , miT )′ and the associated

error vector εi = (εi1, . . . , εiT )′ with mean vector 0 and covariance matrix σ2IT , IT being

the identity matrix of order T .

In the next section, some Stein-type shrinkage estimators for the slopes and inter-

cepts are computed under the parallelism hypothesis, i.e. Ho : β = β01n.

5.3.1 Estimates under the full and restricted models

By making use of the known matrix M , the unrestricted (full model) estimates of α and β

of (5.3.1) obtained by applying the least squares approach are as follows:

β̂U = (β̂U1 , . . . , β̂
U
n )′ and α̂U = ȳ − Tn β̂U , (5.3.2)

where ȳ = (ȳ1·, . . . , ȳn·)′, β̂Ui = [m′iyi −
1
T (m′i1T )(y′i1T )]/(T Qi), Tn = Diag(m̄1·,

. . . , m̄n·), T Qi = m′imi − 1
T (m′i1T )2, m̄i· = 1

T (m′i1T ) and ȳi· = 1
T (y′i1T ).

Furthermore, the unbiased estimator of σ2 is

s2 =
1

nT − 2n

n∑
i=1

‖yi − α̂Ui 1T − β̂
U
i mi‖22, (5.3.3)

where ‖·‖2 denotes theL2-norm. However, under the null hypothesis, i.e.,H0 : β = β01n,

the restricted estimators of α and β are

β̂R =
1n1

′
nD22β̂

U

nTQ
and α̂R = α̂U + TnH β̂

U , (5.3.4)

whereH = In−[1n1
′
nD22]/(nTQ) with nQ =

∑n
i=1Qi andD−1

22 = Diag(TQ1, . . . , TQn).
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Theorem 5.3.1. (Saleh, 2006) Assuming that the conditions of Lemma 5.2.2 are satisfied,

then given M , one has

α̂U −α
β̂U − β

 ∼ N2n


0

0

 , σ2
1

 D11 −TnD22

−TnD22 D22


 , (5.3.5)

α̂R −α
β̂R − β

 ∼ N2n


0

0

 , σ2
1

D∗11 D∗12

D∗21 D22


 , (5.3.6)

 β̂U − β

β̂U − βR

 ∼ N2n


 0

H β

 , σ2
1

 D22 HD22

D22H
′ HD22


 , (5.3.7)

and β̂R − β01n

β̂U − βR

 ∼ N2n


(β̄ − β0)1n

H β

 , σ2
1

1n1
′
n

nQ O

O H D22


 (5.3.8)

with β̄1n = 1n1
′
nD
−1
22 β/(nQ), D11 = (N)−1 + TnD22Tn, N = Diag(T, . . . , T ),

D∗11 = (N)−1 + Tn1n1
′
nTn/(nQ), D∗12 = 1

nQ1n1
′
nTn and D∗21 = D∗12

′.

5.3.2 Shrinkage estimators

In order to test H0 : β = β01n, the likelihood ratio test statistic,

Ln =
β̂U
′
H ′D−1

22 Hβ̂
U

(n− 1)s2
, (5.3.9)

is considered. Saleh (2006) proved that under the null hypothesis, Ln follows a central

F -distribution with n − 1 and T − 2n degrees of freedom, while under the alternative hy-

pothesis, Ha : β 6= β01n, it follows the noncentral F -distribution with n− 1 and T − 2n
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degrees of freedom and noncentrality parameter ∆2/2 where ∆2 = β̂U
′
H ′D−1

22 Hβ̂
U/σ2.

In terms of Ln, the Stein-type shrinkage estimators of α and β are given by

β̂S = β̂U − cL−1
n Hβ̂U and α̂S = α̂U + cL−1

n TnHβ̂
U , (5.3.10)

where c =
(n−3)m
m+2 with m = n(T − 2) and c→ n− 3 as nT →∞. Note that if Ln > c,

then cL−1
n > 1, and this may result in over-shrinking, which is undesirable. In order to

avoid this problem, one can utilize of the positive-rule shrinkage estimators of α and β,

which are defined as follows:

α̂PS = α̂R I(Ln < c) + α̂S I(Ln > c)

= α̂U + {1− (1− cL−1
n ) I(Ln > c)}TnHβ̂U , (5.3.11)

β̂PS = β̂R I(Ln < c) + β̂S I(Ln > c),

= β̂U − (1− cL−1
n ) I(Ln > c)Hβ̂U , (5.3.12)

where I(·) is the indicator function.

The preliminary test estimators of α and β are obtained as follows:

β̂PT = β̂U −Hβ̂U I(Ln < cα),

α̂PT = α̂U + TnHβ̂
U I(Ln < cα), (5.3.13)

where cα (the critical point) is the the upper α-quantile of the central F distribution with

n− 1 and m degrees of freedom.
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5.4 Asymptotic properties

In this section, we study the asymptotic properties of the estimates of the unknown para-

metric components αi and βi, i = 1, . . . , n, in (5.1.1), as determined by applying various

shrinkage and pre-test techniques. The nonparametric component m(·) shall be targeted

as a nuisance parameter. Asymptotic means that, both n and T are assumed to be large

enough (normally n� T ).

Theorem 5.4.1. Assuming that all the required conditions stated in Lemma 5.2.2 are sat-

isfied, the bias associated with intercept and slope estimators are

b(β̂U ) = 0

b(β̂R) = −Hβ

b(β̂S) = −c(n− 1)HβE[χ−2
n+1(∆2)]

b(β̂PS) = −Hβ{Gn+1,m(c1; ∆2)

+ c1E[F−1
n+1,m(∆2)I(Fn+1,m(∆2) > c1)]}

b(β̂PT ) = −HβGn+1,m(`α; ∆2)

b(α̂U ) = 0

b(α̂R) = TnHβ

b(α̂S) = c(n− 1)TnHβE[χ−2
n+1(∆2)]

b(α̂PS) = c1TnHβ {E[F−1
n+1,m(∆2)]

− E[F−1
n+1,m(∆2)I(Fn+1,m(∆2) > c1)]}

+ TnHβGn+1,m(c1; ∆2)

b(α̂PT ) = TnHβGn+1,m(`α; ∆2)

where `α = n−1
n+1Fn−1,m(α), ∆2 = β̂U

′
H ′D−1

22 Hβ̂
U/σ2, c1 =

c(n−1)
n+1 , b(β̂∗) = E(β̂∗ −

β |M) and b(α̂∗) = E(α̂∗ −α |M).

Theorem 5.4.2. Assuming that all the required conditions mentioned in Lemma 5.2.2 are
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satisfied, the MSE associated with intercept and slope estimators are

MSE(β̂U ) =σ2D22

MSE(β̂R) =
σ21n1

′
n

TQ
+Hββ′H ′

MSE(α̂U ) =σ2D11

MSE(α̂R) =σ2D∗11 + TnHββ
′H ′T ′n

MSE(β̂S) =σ2D22 − c(n− 1)σ2HD22{2E[χ−2
n+1(∆2)]− (n− 3)E[χ−4

n+1(∆2)]}

+ c(n2 − 1)(Hββ′H ′)E[χ−4
n+3(∆2)]

MSE(α̂S) =σ2D11 − c(n− 1)σ2TnHD22H
′T ′n{2∆2E[χ−2

n+1(∆2)]

− (n− 3)E[χ−4
n+1(∆2)]}+ c(n2 − 1)(TnHββ

′H ′T ′n)E[χ−4
n+3(∆2)]

MSE(β̂PS) =MSE(β̂S)− (σ2HD22 − 2Hββ′H ′)

× E[(1− c1F−1
n+1,m(∆2))I(Fn+1,m(∆2) < c1)]

−Hββ′H ′E[(1− c2F−1
n+3,m(∆2))I(Fn+3,m(∆2) < c2)]

MSE(α̂PS) =MSE(α̂S)− (σ2TnHD22H
′T ′n − 2TnHββ

′H ′T ′n)

× E[(1− c1F−1
n+1,m(∆2))I(Fn+1,m(∆2) < c1)]

− TnHββ′H ′T ′nE[(1− c2F−1
n+3,m(∆2))I(Fn+3,m(∆2) < c2)]

MSE(β̂PT ) =σ2D22 − σ2HD22Gn+1,m(`α; ∆2) +Hββ′H ′

× {2Gn+1,m(`α; ∆2)−Gn+3,m(`∗α; ∆2)}

MSE(α̂PT ) =σ2D11 − σ2(D11 −D∗11)Gn+1,m(`α; ∆2) + TnHββ
′H ′T ′n

× {2Gn+1,m(`α; ∆2)−Gn+3,m(`∗α; ∆2)}

where `∗α = n−1
n+3Fn−1,m(α), c2 =

c(n−1)
n+3 , D∗11 = N−1 +

T ′n1n1′nTn
TQ , MSE(β̂∗) =

E((β̂∗ − β)(β̂∗ − β)′ |M) and MSE(α̂∗) = E((α̂∗ −α)(α̂∗ −α)′ |M).
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Saleh (2006) showed that by comparing the MSE matrices of different intercept es-

timators under H0, the following results hold:

(i)MSE(α̂U )−MSE(α̂R) = σ2TnHββ
′H ′T ′n,

(ii)MSE(α̂U )−MSE(α̂PT ) = σ2TnHββ
′H ′T ′nGn+1,m(`α; 0),

(iii)MSE(α̂PT )−MSE(α̂R) = σ2TnHββ
′H ′T ′n(1−Gn+1,m(`α; 0)),

(iv)MSE(α̂U )−MSE(α̂S) = c σ2TnHββ
′H ′T ′n, (5.4.1)

(v)MSE(α̂S)−MSE(α̂PS) = σ2TnHββ
′H ′T ′n

× (E[(1− c1F−1
n+1,p(0))2I(Fn+1,p(0) < c1)]),

where the right hand sides of the above expressions are positive semidefinite matrices.

Theorem 5.4.3. Assuming that all the required conditions mentioned in Lemma 5.2.2 are

satisfied, the risk expressions associated with the intercepts and slopes are

R(β̂U ;W ) =σ2tr(WD22)

R(β̂R;W ) =
σ21′nW1n

TQ
+ β′H ′WHβ

R(α̂U ;W ) =σ2tr(WD11)

R(α̂R;W ) =σ2tr(WD∗11)

+ β′H ′T ′nWTnHβ
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R(β̂S ;W ) =σ2tr(WD22)− c(n− 1)σ2tr(WHD22)

× {2E[χ−2
n+1(∆2)]− (n− 3)E[χ−4

n+1(∆2)]}

+ c(n2 − 1)(β′H ′WHβ)E[χ−4
n+3(∆2)]

R(α̂S ;W ) =σ2tr(WD11)− c(n− 1)σ2tr(WTnHD22H
′T ′n){2∆2E[χ−2

n+1(∆2)]

− (n− 3)E[χ−4
n+1(∆2)]}+ c(n2 − 1)(β′H ′T ′nWTnHβ)E[χ−4

n+3(∆2)]

R(β̂PS ;W ) =R(β̂S ;W )− (σ2tr(WHD22)− 2β′H ′WHβ)E[(1− c1F−1
n+1,m(∆2))

× I(Fn+1,m(∆2) < c1)]− β′H ′WHβE[(1− c2F−1
n+3,m(∆2))

× I(Fn+3,m(∆2) < c2)]

R(α̂PS ;W ) =R(α̂S ;W )− (σ2tr(WTnHD22H
′T ′n)− 2β′H ′T ′nWTnHβ)

× E[(1− c1F−1
n+1,m(∆2))I(Fn+1,m(∆2) < c1)]

− β′H ′T ′nWTnHβE[(1− c2F−1
n+3,m(∆2))I(Fn+3,m(∆2) < c2)]

R(β̂PT ;W ) =σ2tr(WD22)− σ2tr(WHD22)Gn+1,m(`α; ∆2) + β′H ′WHβ

× {2Gn+1,m(`α; ∆2)−Gn+3,m(`∗α; ∆2)}

R(α̂PT ;W ) =σ2tr(WD11)− σ2tr[W (D11 −D∗11)]Gn+1,m(`α; ∆2) + β′H ′T ′nWTnHβ

× {2Gn+1,m(`α; ∆2)−Gn+3,m(`∗α; ∆2)}

where W is a positive definite weight matrix, R(β̂∗;W ) = E((β̂∗ − β)′W (β̂∗ − β) |M)

and R(α̂∗;W ) = E((α̂∗ −α)′W (α̂∗ −α) |M).

The proofs of these results are included in the Appendix.

By making use of Equations (5.4.1), one can conclude that under the null hypoth-

esis R(β̂R;W ) < R(β̂U ;W ), R(β̂PT ;W ) < R(β̂U ;W ), R(β̂R;W ) < R(β̂PT ;W ),
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R(β̂S ;W ) < R(β̂U ;W ) and R(β̂PS ;W ) < R(β̂S ;W ).

5.5 Experimental results

In this section, we compare the performance of the four estimators defined in the previous

section, first by carrying out Monte Carlo simulation studies and then by applying them to

a certain mass spectrometry data set.

5.5.1 Simulation study

Monte Carlo simulation studies are conducted for comparing the shrinkage estimators of

α and β in (5.1.1) with those originally proposed. As a measure of accuracy in connection

with such estimators, the “relative error” (RE) is considered. The relative error of (α∗, β∗)

with respect to the estimators obtained from the original approach, that is, (αU , βU ), is

defined by

RE(α∗, β∗) =
Er(αU , βU )

Er(α∗, β∗)
, (5.5.1)

with

Er(α∗, β∗) =
n∑
i=1

(α̂∗i − αi)
2 + (β̂∗i − βi)

2, (5.5.2)

where the αi’s and βi’s are the assumed values of the parameters for i = 1, . . . , n. Thus, a

larger relative error represents an improvement in accuracy over (αU , βU ), the unrestricted

(full model) estimators.

It is indicated to test the performance of the estimators both under H0 and the al-

ternative hypothesis. We carried out simulation studies for different values of ∆ where
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∆ = ‖β − β01n‖22, ∆ being equal to zero under the null hypothesis.

Example 5.5.1. In this example, the exact values of the location and scale parameters

of length n, are taken to be α = (0, 0.2, 0.5, 0.7, 1, 0, 0.2, 0.5, 0.7, 1, . . .)′ and β =

(1, 1, . . . , 1)′ for various values of n and T , and the functionm(x) is assumed to be sin(x).

The error terms are assumed to be independently and identically distributedN (0, 0.25) ran-

dom variables. In this case, we set xit = xt for t = 1, . . . , T , and i = 1, . . . , n, which is

the case in many practical problems such as those arising in mass spectrometry data, the T

values of xt being selected randomly from a uniform distribution on the interval U(0, 20).

The values of (h, h∗) were set to be (0.1, 0.1) noting that these values had almost the min-

imum MSPE for different n and T values based on a 5-fold cross-validation approach.

The scatter plots of the simulated observations (xit, yit), t = 1, . . . , T = 2000

where i = 1, 2, 3, 4, are included in the top panel of Figure 5.1 and the graph of the exact

function m(x) = sin(x) is plotted over the interval (0, 20) as a solid black line while the

estimated functions m̃(·) and m̂(·) are shown as blue and red dashed lines in the bottom

panel of the same figure. It should be pointed out that, in this example, the estimated non-

parametric functions (curves) obtained with the other techniques are very close to those

determined with the original (unrestricted) method. Thus, we only plotted the unrestricted

estimates of the functional components. It is observed that these estimated functions of

m̃(·) and m̂(·) are in a very close agreement with the original function m(x) = sin(x).

The relative errors associated with the various estimators are shown in Table 5.1 for

several values of n and T when ∆ = 0. It is seen that when the null hypothesis is valid,

the relative errors of the restricted estimators have the largest values, which is acceptable,

while the pretest relative errors are similar or rather close to the restricted values. Then,

the positive shrinkage technique provides the next best estimators and, of course, these are
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Figure 5.1: Scatter plots of the first four sets of simulated values (top panel); the actual
function m(x) = sin(x) and the estimates m̃(x) and m̂(x) (bottom panel).
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all more accurate than the original estimators as the RE’s associated with all of these tech-

niques are greater than 1.4, which confirms that they are more efficient than the standard

estimates.

Table 5.1: RE(α∗, β∗) for certain values of n and T (∆ = 0)

n T RE(αR, βR) RE(αPS , βPS) RE(αPT , βPT )
10 500 1.7389 1.4152 1.5031
10 1000 1.7440 1.5841 1.7440
10 1500 1.5923 1.5495 1.5923
10 2000 1.9465 1.6802 1.9465
10 2500 1.9358 1.5848 1.9358
10 3000 1.4921 1.3002 1.4921
15 2500 1.6641 1.6045 1.6641
20 2500 1.4713 1.4408 1.4713
25 2500 1.9156 1.7880 1.9156
30 2500 1.6359 1.5931 1.6359
35 2500 1.5651 1.4930 1.5651

In Table 5.2, the relative error of the estimators are shown for various ∆ ≥ 0 values

when n = 20 and T = 1500. It is observed that the estimators obtained with the restricted

method are not as efficient as they are for the case ∆ = 0 since the null hypothesis is not

valid in this case. However, the relative error associated with the positive shrinkage and

pretest estimators are still greater than or equal to one. This corroborates the efficiency of

the Stein-type shrinkage techniques regardless of the validity of the null hypothesis.

Example 5.5.2. We now consider the estimation of the location and scale parameters,

which are as specified in Example 5.5.1, letting the error terms have a N (0, 0.25) dis-

tribution, the functional component being m(x) = 2/(exp(x) + exp(−x)) on the support

(−7, 7) in this case. The bandwidths h = 0.2 and h∗ = 0.1 were utilized for various values

of n and T .
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Figure 5.2: Scatter plots of the first four sets of simulated values (top panel); the actual
functionm(x) = 2/(exp(x) + exp(−x)) and the estimates m̃(x) and m̂(x) (bottom panel).
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Table 5.2: RE(α∗, β∗) for certain ∆ ≥ 0 with n = 20, T = 1500, and m(x) = sin x

∆ RE(αR, βR) RE(αPS , βPS) RE(αPT , βPT )
0.00 1.99974 1.90482 1.99974
0.05 0.85712 1.24353 0.97805
0.10 0.36683 1.09256 1.00000
0.15 0.19461 1.05267 1.00000
0.20 0.11837 1.03648 1.00000
0.30 0.05624 1.02329 1.00000
0.40 0.03259 1.01790 1.00000
0.50 0.02124 1.01506 1.00000
0.60 0.01495 1.01332 1.00000
0.70 0.01111 1.01214 1.00000
0.80 0.00860 1.01130 1.00000
0.90 0.00687 1.01065 1.00000
1.00 0.00562 1.01013 1.00000

In Table 5.3, as was the case in the previous example, the relative errors of the esti-

mators are shown for several values of n and T when ∆ = 0. In this example, when the null

hypothesis is valid, the relative errors of the estimators are even larger than those observed

in Example 5.5.1 and thus the efficiency of those estimators is superior in this case.

Table 5.3: RE(α∗, β∗) for certain values of n and T where ∆ = 0 and m(x) =
2/(exp(x) + exp(−x))

n T RE(αR, βR) RE(αPS , βPS) RE(αPT , βPT )
10 500 7.1292 1.7358 7.1292
10 1000 3.5141 2.8260 3.5141
10 1500 3.2525 2.5407 3.2525
10 2000 2.9014 2.3964 2.9014
10 2500 2.7548 2.6044 2.7548
10 3000 3.5942 3.4507 3.5942
15 2500 1.7144 1.6971 1.7144
20 2500 3.1391 3.1250 3.1390
25 2500 3.1670 3.0557 3.1670
30 2500 4.8968 4.6132 4.8968
35 2500 2.3400 2.2858 2.3400
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In Table 5.4, the relative error of the estimators are shown for different ∆ ≥ 0 values

when n = 20 and T = 1500. One can again observe that the estimators associated with the

restricted method are not as efficient as they are for the case ∆ = 0 since the null hypothe-

sis is no longer valid. The relative error associated with the positive shrinkage and pretest

estimators are for the most part close to one.

Table 5.4: RE(α∗, β∗) for certain ∆ ≥ 0 with n = 20, T = 1500, and m(x) =
2/(exp(x) + exp(−x))

∆ RE(αR, βR) RE(αPS , βPS) RE(αPT , βPT )
0.00 3.63055 2.82008 3.18199
0.05 1.87993 1.81232 1.59694
0.10 0.92114 1.26926 0.95903
0.15 0.56465 1.12593 1.00000
0.20 0.37634 1.06943 1.00000
0.30 0.19538 1.02086 1.00000
0.40 0.11837 1.00419 1.00000
0.50 0.07908 0.99689 1.00000
0.60 0.05652 0.99321 1.00000
0.70 0.04243 0.99118 1.00000
0.80 0.03306 0.99001 1.00000
0.90 0.02653 0.98930 1.00000
1.00 0.02180 0.98888 1.00000

5.5.2 Application to a mass spectrometry data set

The shrinkage estimation techniques are now applied to an actual mass spectrometry data

set, namely, the SELDI-TOF mass spectrometry data set collected from a study on liver

cancer patients conducted at Changzheng Hospital Shanghai. The accuracy of these meth-

ods are measured by evaluating their mean squared error (MSE):

MSE∗ =
1

T

n∑
i=1

T∑
t=1

(yit − α̂∗i − β̂
∗
i m̂(xt)

∗)2. (5.5.3)
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Figure 5.3: The observations on five individuals randomly selected from the mass spec-
trometry data set (top panel); the estimates m̃(x) in blue and m̂(x) in red (bottom panel).

Table 5.5 shows the MSE values in connection with different estimating approaches.

It is seen that, the MSE values associated with the positive shrinkage technique is the small-

est and that the pretest estimator and original method gave the same level of accuracy even

though the null hypothesis is not valid. As previously explained, the restricted estimation

produces the largest MSE value.

Table 5.5: MSE values obtained from various techniques applied to a mass spectrometry
data set.

Original R PS PT
MSE 13.48971 17.95069 13.38967 13.48971

The plots of the observations of 5 randomly selected individuals from the data sets

are presented in the top panel of Figure 5.3, while the plots of the estimates m̃(x) and m̂(x)

of the nonparametric component of the model are shown in the bottom panel of Figure 5.3.

In this case, n = 35 and T = 21000.
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Appendices

Some asymptotic results are formally proved in Appendix A2.1 and the results of a simu-

lation study that corroborates the usefulness of certain shrinkage and penalty techniques in

connection with the multivariate linear regression model are presented in Appendix A2.2.

A2 .1. Proofs of Theorems 5.4.1, 5.4.2 and 5.4.3

The following Lemma will be used to establish the asymptotic results:

Lemma .1.1. (Judge and Bock, 1978) Let the p-vector x have a Np(µx, Σx) distribution.

Then, for a measurable function of φ, one has

E[xφ(x′x)] = µxE[φ(χ2
p+2(∆2))] (A2.1.1)

and

E[xx′φ(x′x)] = ΣxE[φ(χ2
p+2(∆2))] + µxµ

′
xE[φ(χ2

p+4(∆2))] (A2.1.2)

where ∆2 = µ′xΣ−1
x µx.

A2 .1.1. Proof of Theorem 5.4.1

The biases associated with β̂U , α̂U , β̂R and α̂R follow from the results stated in Theorem

5.3.1. Additionally, one has

b(β̂S) =E[β̂U − β − cL−1
n Hβ̂U ] = −c(n− 1)HβE[φ(χ−2

p+2(∆2))],

b(α̂S) =E[α̂U −α+ cL−1
n TnHβ̂

U ] = c(n− 1)TnHβE[φ(χ−2
p+2(∆2))],
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b(β̂PS) =E[β̂R − β + (1− cL−1
n )Hβ̂UI(Ln > c)]

=−Hβ{Gn+1,m(c1; ∆2) + c1E[F−1
n+1,m(∆2)I(Fn+1,m(∆2) > c1)]},

b(α̂PS) =E[α̂U −α+ {1− (1− cL−1
n )I(Ln > c)}TnHβ̂U ]

= c1TnHβ {E[F−1
n+1,m(∆2)]− E[F−1

n+1,m(∆2)I(Fn+1,m(∆2) > c1)]}

+ TnHβGn+1,m(c1; ∆2),

b(β̂PT ) =E[β̂U − β −Hβ̂U I(Ln < Cα)] = −HβGn+1,m(`α; ∆2),

b(α̂PT ) =E[α̂U −α+ TnHβ̂
U I(Ln < Cα)] = TnHβGn+1,m(`α; ∆2).

2

A2 .1.2. Proof of Theorem 5.4.2

Likewise, the MSE’s associated with β̂U , α̂U , β̂R and α̂R can easily be derived from

Theorem 5.3.1. The MSE’s of other estimators are obtained as follows:

MSE(β̂S) =E[(β̂U − cL−1
n Hβ̂U − β)(β̂U − cL−1

n Hβ̂U − β)′]

=E[(β̂U − β)(β̂U − β)′]− 2cHE[L−1
n β̂U (β̂U − β)′]

+ c2HE[L−2
n β̂U β̂′U ]H ′

=σ2D22 − c(n− 1)σ2HD22{2E[χ−2
n+1(∆2)]− (n− 3)E[χ−4

n+1(∆2)]}

+ c(n2 − 1)(Hββ′H ′)E[χ−4
n+3(∆2)]

MSE(α̂S) =E[(α̂U + cL−1
n TnHβ̂

U −α)(α̂U + cL−1
n TnHβ̂

U −α)′]

=σ2D11 − c(n− 1)σ2TnHD22H
′T ′n{2∆2E[χ−2

n+1(∆2)]− (n− 3)E[χ−4
n+1(∆2)]}

+ c(n2 − 1)(TnHββ
′H ′T ′n)E[χ−4

n+3(∆2)]
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MSE(β̂PT ) =E[(β̂U −Hβ̂U I(Ln < Cα)− β)(β̂U −Hβ̂U I(Ln < Cα)− β)′]

=E[(β̂U − β)(β̂U − β)′]− 2HE[β̂U I(Ln < Cα)(β̂U − β)′]

+HE[I(Ln < Cα)β̂U β̂′U ]H ′

=σ2D22 − σ2HD22Gn+1,m(`α; ∆2) +Hββ′H ′

× {2Gn+1,m(`α; ∆2)−Gn+3,m(`∗α; ∆2)}

MSE(α̂PT ) =E[(α̂U + TnHβ̂
U I(Ln < Cα)−α)× (α̂U + TnHβ̂

U I(Ln < Cα)−α)′]

=σ2D11 + 2TnH E[β̂U I(Ln < Cα)(α̂U −α)′]

+ TnHE[I(Ln < Cα)β̂U β̂′U ]H ′T ′n

=σ2D11 − σ2(D11 −D∗11)Gn+1,m(`α; ∆2) + TnHββ
′H ′T ′n

× {2Gn+1,m(`α; ∆2)−Gn+3,m(`∗α; ∆2)}

MSE(β̂PS) =E(zz′) where {z ≡ β̂U − (1− cL−1
n ) I(Ln > c)Hβ̂U − β}

=MSE(β̂S)− (σ2HD22 − 2Hββ′H ′)

× E[(1− c1F−1
n+1,m(∆2))I(Fn+1,m(∆2) < c1)]

−Hββ′H ′E[(1− c2F−1
n+3,m(∆2))I(Fn+3,m(∆2) < c2)]

MSE(α̂PS) =E[(α̂U + {1− (1− cL−1
n ) I(Ln > c)}TnHβ̂U −α)

× (α̂U + {1− (1− cL−1
n ) I(Ln > c)}TnHβ̂U −α)′]

=MSE(α̂S)− (σ2TnHD22H
′T ′n − 2TnHββ

′H ′T ′n)E[(1− c1F−1
n+1,m(∆2))

× I(Fn+1,m(∆2) < c1)]− TnHββ′H ′T ′n

× E[(1− c2F−1
n+3,m(∆2))I(Fn+3,m(∆2) < c2)].

2

For detailed derivations of the MSE’s associated with pretest and shrinkage estima-

tors, one can refer to (Ali, 1990).
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A2 .1.3. Proof of Theorem 5.4.3

Clearly, in a p × p matrix A = [aij ], the tr(A) is the sum of the diagonal elements of

A. By making use of the properties of the trace and the definition of the risk, that is,

R(β̂∗;W ) = E((β̂∗ − β)′W (β̂∗ − β) |M) = tr(WMSE(β̂∗)), the risk expressions

follow directly from the MSE expressions given in Theorem 5.4.2.

2

A2 .2. A simulation study of certain shrinkage and penalty

techniques in connection with the multivariate linear

regression model

In this section, we compare the relative mean squared error (RMSE) of the restricted,

shrinkage, pretest, penalty (LASSO and SCAD) estimators described in Section 1.2 to the

unrestricted model estimator for various values of n, p and p1. Monte Carlo simulation ex-

periments have been carried out to examine the performance of these methods with respect

to their MSE’s. The following linear model was simulated:

yi = x1,iβ1 + x2,iβ2 + · · ·+ xp,iβp + εi, i = 1, . . . , n,

where x1,i and x2,i are selected randomly and independently from a N (1, 2) distribution,

xs,i, i = 3, . . . , p are iid N (0, 1) and the error terms εi are also iid N (0. 1). We wish to

test the null hypothesis H0 : βj = 0 for j = p1 + 1, . . . , n.

As discussed earlier, we partition the parameter vector β = (β′1,β
′
2)′ as β(0) =

(β′1,0
′)′. Let ∆∗ = ‖β − β(0)‖ where ‖ · ‖ denotes the L2 norm. To compare the perfor-
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mance of these estimators, the MSE of an estimator of β1 obtained from each method was

determined as well as the value of the MSE for the full model estimator, and the following

ratio was considered:

RMSE(β̂UE1 , β̂∗1) =
MSE (β̂UE1 )

MSE (β̂∗1)
,

where β̂∗1 is an estimator of one of the aforementioned types.

In Table A2.1, first, we compare the performance of various estimators first keeping

p and p1 fixed and then keeping n fixed in the second part of the table.

Table A2.1: RMSE’s of various estimators for several values of n, p and p1

n p p1 β̂1
RE

β̂1
S

β̂1
S+

β̂1
PT

β̂1
LASSO

β̂1
SCAD

50 15 5 7.91 2.50 2.51 2.37 1.41 1.23
60 15 5 7.45 2.28 2.26 2.31 1.40 1.95
70 15 5 7.42 2.26 2.29 2.43 1.37 2.06
80 15 5 7.47 2.31 2.34 2.36 1.40 2.03
90 15 5 6.33 2.11 2.12 2.12 1.40 1.90

100 15 5 6.64 2.12 2.12 2.13 1.40 1.87
100 20 7 5.11 1.73 1.73 1.73 1.15 1.62
100 25 10 3.95 1.53 1.55 1.55 1.06 1.49
100 35 15 3.62 1.48 1.49 1.48 1.02 1.47
100 50 20 4.67 1.75 1.79 1.74 1.07 1.77

In Table A2.2 we are interested in observing the effects of changing n and p while

keeping p1 = 4 and ∆∗ = 0. We see that by increasing p, the accuracy is improving in

nearly every case.

It is expected that when ∆∗ = 0, the RE’s will be the more accurate estimators;

however when ∆∗ > 0, the scenario changes and the RE’s are no longer preferred, as can

be seen from the RMSE values presented in Table A2.3.
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Table A2.2: RMSE’s of various estimators for several values of p and n and ∆∗ = 0

n p p1 β̂1
RE

β̂1
S

β̂1
S+

β̂1
PT

β̂1
LASSO

β̂1
SCAD

30 10 4 8.38 2.76 2.76 3.06 1.85 2.31
30 14 4 14.67 3.62 3.73 3.83 2.01 3.15
30 18 4 31.16 5.14 3.64 5.97 2.80 4.61
50 10 4 7.51 2.75 2.75 2.76 1.95 2.32
50 14 4 11.63 3.04 3.05 3.10 1.87 2.58
50 18 4 16.82 3.68 3.72 3.61 1.73 3.11

100 10 4 6.21 2.41 2.40 2.45 1.75 2.02
100 14 4 9.62 2.69 2.69 2.67 1.61 2.50
100 18 4 16.02 3.33 3.50 3.50 1.73 3.06
120 10 4 5.86 2.45 2.42 2.55 1.80 2.19
120 14 4 9.39 2.79 2.76 2.82 1.63 2.39
120 18 4 14.11 2.97 2.99 2.95 1.55 2.68

Table A2.3: RMSE’s for several values of ∆∗

∆∗ n p p1 β̂1
RE

β̂1
S

β̂1
S+

β̂1
PT

β̂1
LASSO

β̂1
SCAD

0 50 15 6 5.10 1.89 1.87 1.94 1.28 1.69
0.06 50 15 6 4.88 2.01 2.02 2.04 1.27 1.75
0.12 50 15 6 3.92 1.90 1.92 1.95 1.25 1.75
0.2 50 15 6 2.97 1.89 1.91 1.89 1.38 1.72

0.35 50 15 6 1.71 1.86 1.86 1.78 1.36 1.61
0.5 50 15 6 1.05 1.76 1.77 1.64 1.30 1.66

0.85 50 15 6 0.44 1.60 1.56 1.54 1.32 1.79
1 50 15 6 0.34 1.66 1.66 1.58 1.34 1.79
2 50 15 6 0.09 1.55 1.55 1.52 1.23 1.68



Chapter 6

Concluding remarks and further research

6.1 Concluding remarks

Certain univariate moment based techniques have been extended to the bivariate case and

it was explained that they are applicable in higher dimensions. In Chapter 2, it was as-

sumed that a bivariate density function could be approximated as the product of an initial

density function and a bivariate polynomial adjustment. The coefficients of the polynomial

adjustment were determined by making use of the joint moments of the exact and initial

density functions and a polynomial degree selection criterion was proposed. Then, it was

established that adjustments by means of standard and orthogonal polynomials produce the

same approximants. Then, this technique was extended to obtain density estimates to esti-

mate an appropriate density function in which case sample moments are utilized in lieu of

exact moments of the exact density function. Several illustrative examples were provided.

It was also explained that the methodology is applicable to ‘big data’. One example in-

volved trivariate data and application of the technique to regression analysis was pointed

out.

In the next chapter, a popular class of univariate distributions known as Pearson’s

family of distributions or Pearson’s frequency curves, as well as certain extensions which

were previously proposed, were reviewed. Then, a general extension of Pearson’s distribu-

tions, which is called differentiated log-density approximant (DLDA), was introduced and

an explicit solution of the resulting PDF was obtained. It was explained that this method-

ology also applies in the context of density estimation.
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In Chapter 4, an extension of DLDA technique to bivariate random vectors was con-

sidered. Using the technique discussed in Chapter 2, a bivariate DLDA density estimation

was developed. These chapters conclude with several applications. Unlike kernel den-

sity estimates, the density estimates discussed in this thesis have functional representations

which makes them amenable to algebraic manipulations.

In Chapter 5, a semi-nonparametric regression model proposed by Ma et al. (2015)

for analyzing mass spectrometry data sets, was studied. It involved n similar regression

models with identical nonparametric component, and n location and scale parameters. The

pretest and shrinkage techniques were applied for estimating the parametric components of

the model in order to obtain more accurate estimates.

6.2 Further research

Further investigations on the applicability of the density estimation techniques proposed in

this dissertation and comparisons to currently used techniques could be carried out. The

multivariate density estimation techniques discussed in this thesis could possibly be gener-

alized to estimate the density functions of certain random matrices.

The DLDA technique is an extension of the Pearson curves which makes use of stan-

dard polynomials. One could study the possibility of utilizing orthogonal polynomials in

both the numerator and the denominator of the rational function. As well, an extension

of the methodology that would directly produce bivariate density approximations and the

connections to copulas shall be investigated.

The regression methodology discussed in Chapter 5 could be extended to more com-

plex semi-nonparametric models involving several nonparametric components.



Appendix A

The Mathematica code utilized in connection with the main numerical examples presented

in this dissertation is included in Appendix A.
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Appendix A : Mathematica Code

A .1  Modules Used in Chapter 2

Module used for Example 2.1.1. (Univariate mixture normal densities)

fY[y_] := fY[y] =
1

2

1

2 π 2
ⅇ

-(y+4)28
 +

1

2

1

2 π 3
ⅇ

-(y-2)218
;

μY[h_] := μY[h] =
1

2

-∞

∞

yh
1

2 π 2
ⅇ

-(y+4)28
 ⅆy +

1

2

-∞

∞

yh
1

2 π 3
ⅇ

-(y-2)218
 ⅆy

n = 15;

Table[μY[h], {h, 0, n}];

u = μY[1];

s = μY[2] - μY[1]
2 ;

μX[j_] := μX[j] = Expand
Y - u

s

j

 /. Yh_. ⧴ μY[h];

w[x_] := ⅇ
-x22;

H*k_[x_] := -1k 2-k/2 HermiteHk,
x

2
;

θk_ := θk = 2 π k!;

fYn [y_] := w
y - u

s
 

i=0

n 1

s θi

H*i[x] /. xj_. ⧴

μX[j] H*i
y - u

s
 ;

f1Yn [y_] := w
y - u

s
 

i=0

n 1

s θi

H*i[x] /. xj_. ⧴

Expand
Y - u

s

j

 /. Yh_. ⧴ μY[h] H*i
y - u

s
 ;

S7 = Show[Plot[fY[y], {y, -15, 12}, PlotRange → All], Plot[Evaluate[fYn[x]], {x, -15, 12},

PlotRange → All, PlotStyle → {Dashing[{0.01, 0.01}], RGBColor[0, 0, 1]}]]

Example 2.3.1. Approximation of the density of an equal mixture of bivariate 

Gaussian densities by means of bivariate orthogonal polynomials

Needs["MultivariateStatistics`"]

m1 = {1.1, -.1}; V1 = {{.33, .03}, {0.03, .33}};

m2 = {.2, 1.2}; V2 = {{.4, .04}, {.04, .4}};

A1 = Inverse[V1];

A2 = Inverse[V2];

Plot3D[

.5 PDF[MultinormalDistribution[m1, V1], {x, y}] + .5 PDF[MultinormalDistribution[m2, V2],
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{x, y}], {x, -2, 3}, {y, -2, 3}, PlotRange → All, PlotLabel → "Exact Density"]

mgf[t1_, t2_] :=
1

2
ⅇ
m1.{t1,t2}+{t1,t2}.V1.{t1,t2}/2

+
1

2
ⅇ
m2.{t1,t2}+{t1,t2}.V2.{t1,t2}/2

jm[r_, s_] :=

jm[r, s] = Derivative[r, s][mgf] /. {#1 → t1, #2 → t2}[[1]] /. {t1 → 0, t2 → 0};

jm[0, 0] = 1;

μ = {jm[1, 0], jm[0, 1]}

V = jm[2, 0] - jm[1, 0]2, jm[1, 1] - jm[1, 0] jm[0, 1],

jm[1, 1] - jm[1, 0] jm[0, 1], jm[0, 2] - jm[0, 1]2


A = Inverse[ V];

fbc[x_ , y_] := fbc[x , y] =
ⅇ-{x,y}.{x,y}/2

2 π

Plot3D[PDF[MultinormalDistribution[{0, 0}, IdentityMatrix[2]], {x, y}],

{x, -3, 3}, {y, -3, 3},

PlotRange → All, PlotLabel → "Standardized Base Density"]

Vhi = MatrixPowerV, -1  2;

Vh = MatrixPowerV, 1  2;

Plot3D.5 PDFMultinormalDistributionVhi.m1 - μ, Vhi.V1.Vhi, {x, y} +

.5 PDFMultinormalDistributionVhi.m2 - μ, Vhi.V2.Vhi, {x, y}, {x, -3, 3},

{y, -3, 3}, PlotRange → All, PlotLabel → "Exact Standardized Density"

mgfn[t1_, t2_] :=

1

2
ⅇ
(Vhi.(m1-μ)).{t1,t2}+{t1,t2}.Vhi.V1.Vhi.{t1,t2}/2

+
1

2
ⅇ
(Vhi.(m2-μ)).{t1,t2}+{t1,t2}.Vhi.V2.Vhi.{t1,t2}/2

mn2[r_, s_] := mn2[r, s] =

ChopDerivative[r, s][mgfn] /. {#1 → t1, #2 → t2}[[1]] /. {t1 → 0, t2 → 0};

mn2[0, 0] = 1;

H1[i_, j_] := H1[i, j] = Expand

Simplify-1i+j  fbc[x, y] Derivative[i, j][fbc] /. {#1 → x, #2 → y}[[1]];

H1[0, 0] = 1;

Unprotect[Power]; ⅇ
0.` x2+0.` x y+0.` y2

= 1; Protect[Power];

Hd1[i_, j_] := Hd1[i, j] = ChopApart ExpectedValueExpandx + ⅈ Xi
y + ⅈ Yj,

MultinormalDistribution[{0, 0}, {{1, 0}, {0, 1}}], {X, Y}

θ[i_, j_, k_, l_] := θ[i, j, k, l] = 
-∞

∞


-∞

∞

fbc[x, y] Expand[H1[i, j] Hd1[k, l]] ⅆx ⅆy;

h[n_, x1_, y1_] :=

h[n, x1, y1] = 

k=0

n



l=0

n 1

k! l!


i=0

k



j=0

l

CoefficientList[Hd1[k, l], {x, y}][[i + 1, j + 1]]

mn2[i, j] Chop[Expand[H1[k, l]]] /. {x → x1, y → y1}

ListPlot3DFlattenTableChop[{w1, w2, Evaluate[fbc[x1, y1] h[9, x1, y1]]} Det[Vhi]] /.

x1 → Vhi[[1, 1]] w1 - μ[[1]] + Vhi[[1, 2]] w2 - μ[[2]],

y1 → Vhi[[2, 1]] w1 - μ[[1]] +

Vhi[[2, 2]] w2 - μ[[2]], w1, -2, 3, 1  4, w2, -2, 3, 1  4, 1,

PlotRange -> All, PlotLabel → 9 
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Example 2.4.1. Bivariate ‘xclara’ dataset

ClearAll[ YY, Y1, Y2, Y, X1, X2];

mydata = Import["xclara.csv", "CSV"];

Unprotect[Power]; 0^0 = 1; Protect[Power];

header = mydata[[1]];

data = mydata[[2 ;;]];

myDataset = Thread[header → #] & /@ data // Map[Association] // Dataset;

data = mydata[[2 ;;]];

Y1 = data[[All, 2]];

Y2 = data[[All, 3]];

n = Length[Y1]

data1 = Transpose[{Y1, Y2}];

Y = Table[{Y1[[j]], Y2[[j]]}, {j, 1, n}];

X1 = Table[Y[[i]][[1]], {i, 1, n}];

X2 = Table[Y[[i]][[2]], {i, 1, n}];

dat1 = Table[{Y1[[j]], Y2[[j]]}, {j, 1, n}];

Plot3D[

Evaluate[PDF[SmoothKernelDistribution[dat1, "SheatherJones", "Gaussian"], {x, y}]],

{x, Min[Y1] - 5, Max[Y1] + 5}, {y, Min[Y2] - 5, Max[Y2] + 5}, Filling → Axis,

Exclusions → None, PlotLabel → "SheatherJones-Gaussian", PlotRange → All]

me1 = SumX1[[j]]  n, {j, n}, SumX1[[j]]  n, {j, n};

V1 =
1

n - 1
SumX1[[j]] - me1[[1]]2, {j, n},

SumX1[[j]] - me1[[1]] X2[[j]] - me1[[2]], {j, n},

SumX1[[j]] - me1[[1]] X2[[j]] - me1[[2]], {j, n},

SumX2[[j]] - me1[[2]]2, {j, n};

Vhi = MatrixPowerV1, -1  2;

Vh = MatrixPowerV1, 1  2;

detVhi = Det[Vhi]

YY = Transpose[Vhi.Transpose[Y - ConstantArray[me1, n]]];

X1 = Table[YY[[i]][[1]], {i, 1, n}];

X2 = Table[YY[[i]][[2]], {i, 1, n}];

me = {0, 0};

V = IdentityMatrix[2];

ddx = Max[X1] - Min[X1]  100;

ddy = Max[X2] - Min[X2]  100;

Needs["MultivariateStatistics`"];

(* The joint sample moments of orders r and s: *)

jm[r_, s_] := jm[r, s] = SumX1[[j]]r X2[[j]]s, {j, n}  n

(* The base density *)

fnt[x_, y_] := fnt[x, y] = PDF[MultinormalDistribution[me, V], {x, y}]

(*Plot3D[fnt[x,y],{x,Min[X1]-2ddx,Max[X1]+2ddx},{y,Min[X2]-2ddy,Max[X2]+2ddy},
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PlotRange→ All, PlotLabel→"Standardized Base Density"]*)

t1 = 11; t2 = 7;

Off[Inner::"normal"]

f3[L1_List, L2_List] := Inner[Plus, L1, L2, List];

L3 = Flatten[Table[{j, i}, {i, 0, t1}, {j, 0, t2}], 1];

P3 = Table[f3[L3[[i]], L3[[j]]], {i, 1, Length[L3] }, {j, 1, Length[L3]}];

mgf[tt1_, tt2_] := ⅇ
me.{tt1,tt2}+{tt1,tt2}.V.{tt1,tt2}/2

mm2[r_, s_] :=

mm2[r, s] = Derivative[r, s][mgf] /. {#1 → tt1, #2 → tt2}[[1]] /. {tt1 → 0, tt2 → 0};

mm2[0, 0] = 1;

M4 = RationalizeTable[mm2[P3[[i, j]][[1]], P3[[i, j]][[2]]],

{i, Length[L3]}, {j, Length[L3]}], 10-25;

Zv1[x_, y_] := Zv1[x, y] = Flatten[Table[x^j y^i, {i, 0, t1}, {j, 0, t2}], 1];

jm[r_, s_] := jm[r, s] = SumX1[[j]]r X2[[j]]s, {j, n}  n

Gms[i_] := Gms[i] = jm [L3[[i, 1]], L3[[i, 2]]] ;

μ = Table[Gms[i], {i, Dimensions[L3][[1]]}] // N;

c4 = LinearSolve[M4, μ];

t5[x_, y_] := t5[x, y] = fnt[x, y] c4.Zv1[x, y];

cst = NIntegrate[t5[x, y],

{x, Min[X1] - 5 ddx, Max[X1] + 5 ddx}, {y, Min[X2] - 5 ddy, Max[X2] + 5 ddy}]

ft[x_, y_] := detVhi t5Vhi[[1, 1]] x - me1[[1]] + Vhi[[1, 2]] y - me1[[2]],

Vhi[[2, 1]] x - me1[[1]] + Vhi[[2, 2]] y - me1[[2]]  cst

Plot3D[ft[x, y], {x, Min[Y1] - 5 ddx, Max[Y1] + 5 ddx}, {y, Min[Y2] - 5 ddy, Max[Y2] + 5 ddy},

PlotRange → All, PlotLabel → t[t1, t2]]

F1[x_, y_] := F1[x, y] = NIntegrate[ft[x1, y1], {x1, Min[Y1], x}, {y1, Min[Y2], y}]

(*Timing[F1[X1[[2500]],X2[[2500]]]]*)

Off[NIntegrate::izero]

Off[NIntegrate::"ncvb"]

edis = EmpiricalDistribution[Y];

EmpCDF = Table[CDF[edis, Y[[j]]], {j, n}];

EstCDF = Table[F1[Y1[[j]], Y2[[j]]], {j, n}];

SumEmpCDF[[j]] - Max[0, EstCDF[[j]] ]
2, {j, n}

Example 2.4.3. Trivariate ‘CommViolPredUnnormalizedData’ dataset

ClearAll[ Y0, Y1, Y2, Y3, Y, X1, X2, X3];

mydata = Import["CommViolPredUnnormalizedData.csv", "CSV"];

header = mydata[[1]];

data = mydata[[2 ;;]];

Unprotect[Power]; 0^0 = 1; Protect[Power];

myDataset = Thread[header → #] & /@ data // Map[Association] // Dataset;

data = mydata[[2 ;;]];

Y1 = Table[data[[i, 16]], {i, Length[data]}];

Y2 = Table[data[[i, 13]], {i, Length[data]}];

Y3 = Table[data[[i, 22]], {i, Length[data]}];

n = Length[Y1]
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Y = Table[{Y1[[j]], Y2[[j]]}, {j, 1, n}];

data1 = Table[{Y1[[j]], Y2[[j]], Y3[[j]]}, {j, 1, n}];

mea1 = Mean[Y1]; mea2 = Mean[Y2]; mea3 = Mean[Y3];

Var = Covariance[data1];

Vhi = MatrixPowerVar, -1  2; detVhi = Det[Vhi];

Vh = MatrixPowerVar, 1  2; detVh = Det[Vh];

X1 = Vhi[[1, 1]] Y1 - ConstantArray[mea1, n] + Vhi[[1, 2]] Y2 - ConstantArray[mea2, n] +

Vhi[[1, 3]] Y3 - ConstantArray[mea3, n] + 2.5;

X2 = Vhi[[2, 1]] Y1 - ConstantArray[mea1, n] + Vhi[[2, 2]] Y2 - ConstantArray[mea2, n] +

Vhi[[2, 3]] Y3 - ConstantArray[mea3, n] + 2.5;

X3 = Vhi[[3, 1]] Y1 - ConstantArray[mea1, n] + Vhi[[3, 2]] Y2 - ConstantArray[mea2, n] +

Vhi[[3, 3]] Y3 - ConstantArray[mea3, n];

me1 = SumX1[[j]]  n, {j, n};

me2 = SumX2[[j]]  n, {j, n};

me3 = SumX3[[j]]  n, {j, n};

x2bar1 = SumX1[[j]]2  n, {j, n};

x2bar2 = SumX1[[j]]2  n, {j, n};

V3 =
1

n - 1
SumX3[[j]] - me32, {j, n};

alpha1 = me12  x2bar1 - me12;

beta1 = x2bar1 - me12  me1;

alpha2 = me22  x2bar2 - me22;

beta2 = x2bar2 - me22  me2;

jm[n1_, n2_, n3_] := SumX1[[j]]n1 X2[[j]]n2 X3[[j]]n3, {j, n}  n

jm[0, 0, 0];

Off[MLE::shdw];

Needs["MultivariateStatistics`"];

f0X1[x_] := PDF[GammaDistribution[alpha1, beta1], x]

f0X2[y_] := PDF[GammaDistribution[alpha2, beta2], y]

f0X3[z_] := PDF[NormalDistribution[me3, Sqrt[V3]], z]

fnt1[x_, y_, z_] := f0X1[x] f0X2[y] f0X3[z]

moments1[h1_] := beta1h1 Gamma[alpha1 + h1]  Gamma[alpha1]; moments1[0] = 1;

moments2[h2_] := beta2h2 Gamma[alpha2 + h2]  Gamma[alpha2]; moments2[0] = 1;

mgf[tt1_] := ⅇ
me3 (tt1)+tt12 V3/2

moments3[r_] := Derivative[r][mgf] /. {#1 → tt1}[[1]] /. tt1 → 0; moments3[0] = 1;

mm3[p_, q_, r_] := moments1[p] moments2[q] moments3[r];

t1 = 7; t2 = 5; t3 = 4;

Off[Inner::"normal", Inner::intpm]

f3[L1_List, L2_List] := Inner[Plus, L1, L2, List]

L3 = Flatten[Table[{k, j, i}, {i, 0, t3}, {j, 0, t2}, {k, 0, t1}], 2];

L = Length[L3];

P3 = Table[f3[L3[[i]], L3[[j]]], {i, 1, L}, {j, 1, L}];

M4 = Rationalize

Table[mm3[P3[[i, j]][[1]], P3[[i, j]][[2]], P3[[i, j]][[3]]], {i, L}, {j, L}], 10-25
;

Zv1[x_, y_, z_] := Zv1[x, y, z] = Flatten[
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Table [x^k y^j z^i, {i, 0, t3}, {j, 0, t2}, {k, 0, t1}], 2];

Gms[i_] := Gms[i] = jm [L3[[i, 1]], L3[[i, 2]], L3[[i, 3]]] ;

mu = Table[Gms[i], {i, Dimensions[L3][[1]]}] // N;

c4 = LinearSolve[M4, mu];

t33[x_, y_, z_] := fnt1[x, y, z] c4.Zv1[x, y, z]

cst = NIntegrate[t33[x, y, z], {x, 0, 20}, {y, -6, 6}, {z, 0, 20}]

t4[x_, y_, z_] :=

detVhi t33Vhi[[1, 1]] x - mea1 + Vhi[[1, 2]] y - mea2 + Vhi[[1, 3]] z - mea3 + 2.3,

Vhi[[2, 1]] x - mea1 + Vhi[[2, 2]] y - mea2 + Vhi[[2, 3]] z - mea3,

Vhi[[3, 1]] x - mea1 + Vhi[[3, 2]] y - mea2 + Vhi[[3, 3]] z - mea3 + 2.5  cst

(*Marginal joint density of (X, Y) :*)

tm1[x_, y_] := NIntegrate[t4[x, y, z], {z, Min[Y3] - 2, Max[Y3] + 2}];

tmp1[x_, y_] :=

If[Min[Y1] < x < Max[Y1] && Min[Y2] < y < Max[Y2] && tm1[x, y] ≥ 0, tm1[x, y], 0];

Plot3D[tmp1[x, y], {x, Min[Y1] - 2, Max[Y1] + 2}, {y, Min[Y2] - 2, Max[Y2] + 2},

PlotRange → All, PlotLabel → XY t[t1, t2, t3]]

dat1 = Table[{Y1[[j]], Y2[[j]]}, {j, 1, n}];

D = SmoothKernelDistribution[dat1];

Plot3D[PDF[D, {x, y}], {x, Min[Y1] - 2, Max[Y1] + 2},

{y, Min[Y2] - 2, Max[Y2] + 2}, PlotLabel → SmoothKernel XY, PlotRange → All]

ListPlot[dat1, PlotLabel → ListPlot XY]

(*Marginal joint density of (Y,Z):*)

tm2[y_, z_] := NIntegrate[t4[x, y, z], {x, Min[Y1] - 2, Max[Y1] + 2}];

tmp2[y_, z_] :=

If[Min[Y2] < y < Max[Y2] && Min[Y3] < z < Max[Y3] && tm2[y, z] ≥ 0, tm2[y, z], 0];

Plot3D[tmp2[y, z], {y, Min[Y2] - 2, 30}, {z, Min[Y3] - 2, Max[Y3] + 2},

PlotRange → All, PlotLabel → YZ t[t1, t2, t3]]

dat2 = Table[{Y2[[j]], Y3[[j]]}, {j, 1, n}];

D2 = SmoothKernelDistribution[dat2];

Plot3D[PDF[D2, {y, z}], {y, Min[Y2] - 2, 30},

{z, Min[Y3] - 2, Max[Y3] + 2}, PlotLabel → SmoothKernel YZ, PlotRange → All]

ListPlot[dat2, PlotLabel → ListPlot YZ]

(*Marginal joint density of (X,Z):*)

tm3[x_, z_] := NIntegrate[t4[x, y, z], {y, 0, 55}];

tmp3[x_, z_] := Max[tm3[x, z], 0];

Plot3D[tmp3[x, z], {x, 0, 30}, {z, Min[Y3] - 2, Max[Y3] + 2},

PlotRange → All, PlotLabel → XZ t[t1, t2, t3]]

dat3 = Table[{Y2[[j]], Y3[[j]]}, {j, 1, n}];

D3 = SmoothKernelDistribution[dat3];

Plot3D[PDF[D3, {x, z}], {x, 0, 30}, {z, Min[Y3] - 2, Max[Y3] + 2},

PlotLabel → SmoothKernel XZ, PlotRange → All]

ListPlot[dat3, PlotLabel → ListPlot XZ]
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Example 2.4.4. Bivariate ‘covtype’ dataset

ClearAll[ YY, Y1, Y2, Y, X1, X2];

mydata = Import["covtype.csv", "CSV"];

Unprotect[Power]; 0^0 = 1; Protect[Power];

header = mydata[[1]];

data = mydata[[2 ;;]];

myDataset = Thread[header → #] & /@ data // Map[Association] // Dataset;

data = mydata[[2 ;;]];

Y1 = data[[All, 2]];

Y2 = data[[All, 3]];

n = Length[Y1]

data1 = Transpose[{Y1, Y2}];

Unprotect[Power]; 0^0 = 1; Protect[Power];

Y = Table[{Y1[[j]], Y2[[j]]}, {j, 1, n}];

X1 = Table[Y[[i]][[1]], {i, 1, n}];

X2 = Table[Y[[i]][[2]], {i, 1, n}];

me1 = 

j=1

n

X1[[j]]  n, 

j=1

n

X2[[j]]  n;

V1 =
1

n - 1
SumX1[[j]] - me1[[1]]2, {j, n},

SumX1[[j]] - me1[[1]] X2[[j]] - me1[[2]], {j, n},

SumX1[[j]] - me1[[1]] X2[[j]] - me1[[2]], {j, n},

SumX2[[j]] - me1[[2]]2, {j, n};

Vhi = MatrixPowerV1, -1  2;

Vh = MatrixPowerV1, 1  2;

detVhi = Det[Vhi];

YY = Transpose[Vhi.Transpose[Y - ConstantArray[me1, n]]];

X1 = Table[YY[[i]][[1]], {i, 1, n}];

X2 = Table[YY[[i]][[2]], {i, 1, n}];

me = {0, 0};

V = IdentityMatrix[2];

ddx = 2 Max[X1] - Min[X1]  Max[X1] + Min[X1];

ddy = 2 Max[X2] - Min[X2]  Max[X2] + Min[X2];

Needs["MultivariateStatistics`"];

jm[r_, s_] := jm[r, s] = SumX1[[j]]r X2[[j]]s, {j, n}  n

fnt[x_, y_] := fnt[x, y] = PDF[MultinormalDistribution[me, V], {x, y}]

t1 = 7; t2 = 4;

Off[Inner::"normal"]

f3[L1_List, L2_List] := Inner[Plus, L1, L2, List];

L3 = Flatten[Table[{j, i}, {i, 0, t1}, {j, 0, t2}], 1];

P3 = Table[f3[L3[[i]], L3[[j]]], {i, 1, Length[L3] }, {j, 1, Length[L3]}];

mgf[tt1_, tt2_] := ⅇ
me.{tt1,tt2}+{tt1,tt2}.V.{tt1,tt2}/2

mm2[r_, s_] :=
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mm2[r, s] = Derivative[r, s][mgf] /. {#1 → tt1, #2 → tt2}[[1]] /. {tt1 → 0, tt2 → 0};

mm2[0, 0] = 1;

M4 = RationalizeTable[mm2[P3[[i, j]][[1]], P3[[i, j]][[2]]],

{i, Length[L3]}, {j, Length[L3]}], 10-25;

Zv1[x_, y_] := Zv[x, y] = Flatten[Table[x^j y^i, {i, 0, t1}, {j, 0, t2}], 1];

jm[r_, s_] := jm[r, s] = SumX1[[j]]r X2[[j]]s, {j, n}  n

Gms[i_] := Gms[i] = jm [L3[[i, 1]], L3[[i, 2]]] ;

μ = Table[Gms[i], {i, Dimensions[L3][[1]]}] // N;

c4 = LinearSolve[M4, μ];

t5[x_, y_] := t5[x, y] = fnt[x, y] c4.Zv1[x, y];

Plot3D[t5[x, y], {x, Min[X1] - 5 ddx, Max[X1] + 5 ddx},

{y, Min[X2] - 5 ddy, Max[X2] + 5 ddy}, PlotRange → All, PlotLabel → T5[t1, t2]]

tpositive[x_, y_] := tpositive[x, y] = Max[t5[x, y], 0];

Off[NIntegrate::"slwcon"]

cst = NIntegrate[tpositive[x, y],

{x, Min[X1] - 5 ddx, Max[X1] + 5 ddx}, {y, Min[X2] - 5 ddy, Max[X2] + 5 ddy}]

ft[x_, y_] := detVhi t5Vhi[[1, 1]] x - me1[[1]] + Vhi[[1, 2]] y - me1[[2]],

Vhi[[2, 1]] x - me1[[1]] + Vhi[[2, 2]] y - me1[[2]]  cst

Plot3D[ft[x, y], {x, Min[Y1] - 10, Max[Y1] + 15}, {y, Min[Y2] - 5, 50}, PlotRange → All]

Histogram3D[data1]

 = SmoothKernelDistribution[data1];

Plot3D[PDF[, {x, y}], {x, Min[Y1] - 10, Max[Y1] + 15},

{y, Min[Y2] - 5, Max[Y2]}, PlotRange → All]

Example 2.4.5. Applying this technique to nonparametric regression y=m(x)+ε

Off[NIntegrate::"slwcon"]

ClearAll[G, K, a, c, Z1, PE, PA1, rts, Sol]

Iu_,v_[z_] := If[u ≤ z < v, 1, 0]

(*The exact function*)

fE[x_] := fE[x] = I0, 1[x] x + I1, 2[x] + I2, 3[x] x - 1  3

n = 20 000;

α = 0; β = 3; ν = 5; δ = 2 ;

PE = Plot[fE[y], {y, 0, 3}, PlotRange → All,

PlotLabel → Nonparametric, PlotStyle → RGBColor[0, 0, 1]];

Y1 = RandomVariate[UniformDistribution[{0, 3}], n];

eps = RandomVariate[NormalDistribution[0, 0.05], n];

Y2 = Table[fE[Y1[[i]]] + eps[[i]], {i, n}];

Y = Table[{Y1[[i]], Y2[[i]]}, {i, n}];

data1 = Table[{Y1[[j]], Y2[[j]]}, {j, 1, n}];

SCAT = ListPlot[Y, PlotRange → All, AxesOrigin → {0, 0}]

X1 = Y1;

X2 = Y2;

fhatLegendre[x_, y_, data_, n_] := Module{μ, std, newdata, w, cw, nn, d,

dd, a, b, cov, invcov, xx, yy, X, ax0, bx0, xx1, yy1, by0, ay0, fx, aa, bb},

nn = Length[data];

xx1 = Table[data[[i]][[1]], {i, 1, nn}];
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yy1 = Table[data[[i]][[2]], {i, 1, nn}];

ax0 = Min[xx1] - Quantile[xx1, 0.1] - Min[xx1];

bx0 = Max[xx1] + Max[xx1] - Quantile[xx1, 0.9];

ay0 = Min[yy1] - Quantile[yy1, 0.1] - Min[yy1];

by0 = Max[yy1] + Max[yy1] - Quantile[yy1, 0.9];

(*ax0=-15;

bx0=15;

ay0=-15;

by0=15;*)

xx =
2 xx1 - ax0 + bx0

bx0 - ax0
;

yy =
2 yy1 - ay0 + by0

by0 - ay0
;

w[z1_, z2_] := 1;

cw = 1  4;

a[i_, j_] := Ifi ⩵ 0 && j ⩵ 0, 0,
2 i + 1

2

2 j + 1

2

Mean[Expand[LegendreP[i, x]] Expand[LegendreP[j, y]] /. {x → xx, y → yy}];

aa = Table[a[i, j], {i, 0, n}, {j, 0, n - i}];

d[i_, j_] := Ifi ⩵ 0 && j ⩵ 0, 0,
2 i + 1

2

2 j + 1

2

MeanExpandLegendreP[i, x]2
 ExpandLegendreP[j, y]2

 /. {x → xx, y → yy};

dd = Table[d[i, j], {i, 0, n}, {j, 0, n - i}];

b[i_, j_] := Ifi ⩵ 0 && j ⩵ 0, 0,

If0 < nn aa[[i + 1, j + 1]]2 - dd[[i + 1, j + 1]]  nn - 1 aa[[i + 1, j + 1]]2
 < 1,

nn aa[[i + 1, j + 1]]2 - dd[[i + 1, j + 1]]  nn - 1 aa[[i + 1, j + 1]]2
, 0;

bb = Table[b[i, j], {i, 0, n}, {j, 0, n - i}];

fx =
4

bx0 - ax0 by0 - ay0

cw +

i=0

n



j=0

n-i

aa[[i + 1, j + 1]] bb[[i + 1, j + 1]]
2 i + 1

2

2 j + 1

2
LegendreP[i, z1]

LegendreP[j, z2] /. z1 →
2 x - ax0 + bx0

bx0 - ax0
, z2 →

2 y - ay0 + by0

by0 - ay0
;

fx



(*dt1=apple[[1]];*)

dt1 = data1;

Clear[x]

m = 30

fapple1 = fhatLegendre[x, y, data1, m];

nn = Length[dt1]

xx1 = Sort[Table[dt1[[i]][[1]], {i, 1, nn}]];

yy1 = Sort[Table[dt1[[i]][[2]], {i, 1, nn}]];
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sa1 = Min[dt1] - Quantile[xx1, 0.05] - xx1[[1]]

sb1 = Max[dt1] + yy1[[nn]] - Quantile[xx1, 0.95]

fhat[a_, b_] := fhat[a, b] = fapple1 /. {x → a, y → b}

ft0[x_, y_] := ft0[x, y] = Max[fhat[x, y], 0]

cst = NIntegrate[ fhat[x, y], {x, 0, 3}, {y, sa1, sb1}]

cstPLUS = NIntegrate[ ft0[x, y], {x, 0, 3}, {y, sa1, sb1}]

ft[x_, y_] := ft[x, y] = ft0[x, y]

ft[1, 1] // N

PTPLUS = Plot3Dfhat[x, y]  cstPLUS,

{x, 0, 3}, {y, sa1, sb1}, PlotRange → All, PlotLabel → Legendre[m]

ContourPlotfhat[x, y]  cstPLUS, {x, 0, 3}, {y, sa1, sb1},

PlotRange → All, ContourLabels → Automatic

DensityPlotfhat[x, y]  cstPLUS, {x, 0, 3}, {y, sa1, sb1}, Mesh → 10

Histogram3D[data1, Automatic, "Probability"]

fx[x_] := fx[x] = FindMaximumft[x, y]  3, {y[[2, 1, 2]]

REGRE = Plot[fx[x], {x, 0, 3}, PlotStyle → {Red, Dashed, Thickness[0.02]}]

AA = Plot[fE[x], {x, 0, 3}, PlotStyle → {Blue, Thick}]

Show[AA, REGRE]

Example 2.4.6. Square within a triangle 

<< Histograms`

(*<<Graphics`Graphics`*)

SetDirectory["H:\\research\\my Package"];

Get["Density.m"]

Off[FindRoot::"cvmit"]

Sim[n_] := Module{r, θ, x2, y2, xy2, xy3, xyc, xys, xyt},

r = Sqrt[RandomReal[{0, 6.3 π}, n]];

θ = RandomReal[{0, 2 π}, n];

x2 = r Cos[θ];

y2 = r Sin[θ];

xy2 = Table[{x2[[i]], y2[[i]]}, {i, 1, n}];

Triangle[list_] :=

Max-2 list[[2]], list[[2]] - list[[1]] 3 , list[[2]] + list[[1]] 3 ;

xyt = Selectxy2, Triangle[#] <
4 π

3
+ 0.2 && Triangle[#] >

4 π

3
- 0.2 &;

circle[list_] := list[[1]]2 + list[[2]]2 ;

(*xyc=Select[xy2, circle[#] <1.7+0.2&& circle[#]>1.7-0.2&];*)

square[list_] := Max[Abs[list[[1]]], Abs[list[[2]]]];

xys = Select[xy2, square[#] < π / 4 + 0.2 && square[#] > π / 4 - 0.2 &];

(*xy3=Flatten[{xyc,xys,xyt},1];*)

xy3 = Flatten[{xyt, xys}, 1];

xy3



n0 = 100 000;

SeedRandom[22];
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dt = Sim[n0];

ListPlot[dt]

nn = Length[dt]

fhatLegendre1[x_, y_, data_, n_] := Module

{μ, std, newdata, w, cw, nn, d, dd, a, aa, b, cov, invcov, xx, yy, X, a0, b0, xx1, yy1},

nn = Length[data];

xx1 = Sort[Table[data[[i]][[1]], {i, 1, nn}]];

yy1 = Sort[Table[data[[i]][[2]], {i, 1, nn}]];

a0 = Min[data] - xx1[[3]] - xx1[[1]];

b0 = Max[data] + yy1[[nn]] - yy1[[nn - 2]];

newdata =
2 data - a0 + b0

b0 - a0
;

xx = Table[newdata[[i]][[1]], {i, 1, nn}];

yy = Table[newdata[[i]][[2]], {i, 1, nn}];

w[z1_, z2_] := 1;

cw = 1  4;

X =
2 {x, y} - a0 + b0

b0 - a0
;

a[i_, j_] := Ifi ⩵ 0 && j ⩵ 0, 0,
2 i + 1

2

2 j + 1

2

Mean[Expand[LegendreP[i, x]] Expand[LegendreP[j, y]] /. {x → xx, y → yy}];

aa = Table[a[i, j], {i, 0, n}, {j, 0, n - i}];

d[i_, j_] := Ifi ⩵ 0 && j ⩵ 0, 0,
2 i + 1

2

2 j + 1

2

MeanExpandLegendreP[i, x]2
 ExpandLegendreP[j, y]2

 /. {x → xx, y → yy};

dd = Table[d[i, j], {i, 0, n}, {j, 0, n - i}];

b[i_, j_] := Ifi ⩵ 0 && j ⩵ 0, 0,

If0 < nn aa[[i + 1, j + 1]]2 - dd[[i + 1, j + 1]]  nn - 1 aa[[i + 1, j + 1]]2
 < 1,

nn aa[[i + 1, j + 1]]2 - dd[[i + 1, j + 1]]  nn - 1 aa[[i + 1, j + 1]]2
, 0;

bb = Table[b[i, j], {i, 0, n}, {j, 0, n - i}];

2

b0 - a0

2

cw +

i=0

n



j=0

n-i

aa[[i + 1, j + 1]] bb[[i + 1, j + 1]]
2 i + 1

2

2 j + 1

2

LegendreP[i, z1] LegendreP[j, z2] /. {z1 → X[[1]], z2 → X[[2]]}



ODS1[data_, end_] := Module{M, nn, cov, invcov, μ, std,

newdata, xx, yy, a, d, aa, dd, J, JM, de, temp, b, a0, b0, xx1, yy1},

M = end;

nn = Length[data];

xx1 = Sort[Table[data[[i]][[1]], {i, 1, nn}]];

yy1 = Sort[Table[data[[i]][[2]], {i, 1, nn}]];

a0 = Min[data] - xx1[[3]] - xx1[[1]];

b0 = Max[data] + yy1[[nn]] - yy1[[nn - 2]];
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newdata =
2 data - a0 + b0

b0 - a0
;

xx = Table[newdata[[i]][[1]], {i, 1, nn}];

yy = Table[newdata[[i]][[2]], {i, 1, nn}];

a[i_, j_] := Ifi ⩵ 0 && j ⩵ 0, 0,
2 i + 1

2

2 j + 1

2

Mean[Expand[LegendreP[i, x]] Expand[LegendreP[j, y]] /. {x → xx, y → yy}];

d[i_, j_] := Ifi ⩵ 0 && j ⩵ 0, 0,
2 i + 1

2

2 j + 1

2

MeanExpandLegendreP[i, x]2
 ExpandLegendreP[j, y]2

 /. {x → xx, y → yy};

aa = Table[a[i, j], {i, 0, M}, {j, 0, M - i}];

dd = Table[d[i, j], {i, 0, M}, {j, 0, M - i}];

J[m_] := 

i=0

m



j=0

m-i

2 dd[[i + 1, j + 1]] - nn + 1 aa[[i + 1, j + 1]]2
;

JM = Table[J[m], {m, 0, M}];

de = Range[0, M, 1];

test1 = Table[{de[[i]], JM[[i]]}, {i, 1, Length[JM]}];

temp = Table[If[test1[[i, 2]] ⩵ Min[JM ], test1[[i]][[1]], 0], {i, 1, Length[JM]}];

Total[temp]



fcom1 = fhatLegendre1[x, y, dt, 50];

nn = Length[dt];

xx1 = Sort[Table[dt[[i]][[1]], {i, 1, nn}]];

yy1 = Sort[Table[dt[[i]][[2]], {i, 1, nn}]];

coma0 = Min[dt] - xx1[[3]] - xx1[[1]];

comb0 = Max[dt] + yy1[[nn]] - yy1[[nn - 2]];

Plot3D[fcom1 /. {x → x, y → y}, {x, coma0, comb0}, {y, coma0, comb0}]

ContourPlot[fcom1, {x, coma0, comb0}, {y, coma0, comb0}, ContourLabels → Automatic]

DensityPlot[fcom1, {x, coma0, comb0}, {y, coma0, comb0}, Mesh → 10]

A .2  Modules Used in Chapter 3

Example 3.4.1. Monte Carlo simulation study 

ClearAll[G, K, a, c, Z1, PE, PA1, rts, Sol]

Unprotect[Power]; 0^0 = 1; Protect[Power];

1 = BetaDistribution[2, 10]; (*Beta Distribution*)

(* 1=ExponentialDistribution[2];(*Exponential Distribution*)*)

(* 1=GammaDistribution[2,20];(*Gamma Distribution*)*)

(* 1=StudentTDistribution[5];(*Exponential Distribution*) *)

f1[x_] := f1[x] = PDF[1, {x}]

F1[x_] := F1[x] = CDF[1, {x}]
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ISD[m_, 1_] :=

Module{data, Y1, X1, edis1, EmCDF1, me1, V1, LB, UB, Sol, g1, h1, ISD1, ISD2},

ClearAll[G, K, a, c, Z1, rts, data, Y1, X1, edis1, EmCDF1,

me1, V1, LB, UB, Sol, g1, h1, ISD1, , ISD2, KSDf, KSDh];

f1[x_] := f1[x] = PDF[1, {x}];

F1[x_] := F1[x] = CDF[1, {x}];

data = RandomVariate[1, m];

Y1 = data;

n = Length[Y1];

edis1 = EmpiricalDistribution[Y1];

EmCDF1 = Table[CDF[edis1, Y1[[j]]], {j, 1, n}];

me1 = 

j=1

n

Y1[[j]]  n;

V1 = Sqrt
1

n - 1
SumY1[[j]] - me1

2
, {j, n};

X1 = TableY1[[i]] - me1  V1, {i, 1, n};

μX[h_] := μX[h] = MeanX1h;

α = Min[X1]; β = Max[X1]; ν = 3; δ = 2 ;

LS[r_, ν_, δ_] :=

LS[r, ν, δ] = 

i=0

ν

K[i] μX[r + i] ⩵ (r + δ) μX[r + δ - 1] + 

j=0

δ-1

r + j G[j] μX[r + j - 1] ;

Z1 = Solve[Table[LS[r, ν, δ], {r, 0, ν + δ}],

Flatten[{Table[K[i], {i, 0, ν}], Table[G[j], {j, 0, δ - 1}]}]];

a = Table[Z1[[1, i + 1, 2]], {i, 0, ν}];

c = Table[Z1[[1, i + 1, 2]], {i, ν + 1, ν + δ}];

c = Append[c, 1];

rt = Solve
i=0

δ

c[[i + 1]] yi ⩵ 0, y;

rts = Table[rt[[i, 1, 2]], {i, 1, δ}];

Sol =

DSolvew'[x] ⩵ - 

i=0

ν

a[[i + 1]] xi  

i=1

δ

x - rt[[i, 1, 2]] w[x], w[x], x // Chop //

Simplify ;

SDC = Sol[[1, 1, 2]]  C[1];

SD[y_] := SD[y] = SDC /. {x → y};

LB = Max[Min[rts] + 0.02, Min[X1]];

UB = Min[Max[rts] - 0.02, Max[X1]];

Off[NIntegrate::slwcon, NIntegrate::ncvb];

Nc1 = NIntegrate[SD[x], {x, LB, UB}];

S1[x_] := S1[x] =
1

Nc1
SD[x];

g1[z_] := g1[z] = S1z - me1  V1  V1;

h1[x_] := h1[x] = Re[g1[x]] - f1[x]^2;

ISD1 = NIntegrate[h1[x], {x, 0, 1}];

KSDf[x_] := PDF[SmoothKernelDistribution[data], x];
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KSDh[x_] := KSDh[x] = KSDf[x] - f1[x]^2;

ISD2 = NIntegrate[KSDh[x], {x, 0, 1}];

Return[{ν, δ, n, LB, UB, ISD1, ISD2}]

ISDs = Table[ISD[1000, 1], {i, 100}];

MatrixForm[ISDs]

Mean[Table[ISDs[[i, 6]], {i, 100}]]

StandardDeviation[Table[ISDs[[i, 6]], {i, 100}]]

Mean[Table[ISDs[[i, 7]], {i, 100}]]

StandardDeviation[Table[ISDs[[i, 7]], {i, 100}]]

(*Normal distribution*)

ClearAll[G, K, a, c, Z1, PE, PA1, rts, Sol]

Unprotect[Power]; 0^0 = 1; Protect[Power];

1 = NormalDistribution[0, 1];

(*2=MultinormalDistribution[{.2,1.2},{{.4,.04},{.04,.4}}];

=MixtureDistribution12,12,{1,2};*)

f1[x_] := f1[x] = PDF[1, {x}]

F1[x_] := F1[x] = CDF[1, {x}]

(*data=RandomVariate[1,3000];*)

Plot[PDF[1, x], {x, -4, 4}]

ISD[m_, 1_] :=

Module{data, Y1, X1, edis1, EmCDF1, me1, V1, LB, UB, Sol, g1, h1, ISD1, ISD2, ISD3},

ClearAll[K0, K1, a1, a0, Z0, Z1, data, cz0, cz1, fA, LS, LS0, Y1, X1, edis1, EmCDF1,

me1, V1, LB0, UB0, S0, f0, g1, h1, ISD1, ISD2, KSDf, KSDh, ISD3, KSDf3, KSDh3];

f1[x_] := f1[x] = PDF[1, {x}];

F1[x_] := F1[x] = CDF[1, {x}];

data = Sort[RandomVariate[1, m]];

Y1 = data;

n = Length[Y1];

edis1 = EmpiricalDistribution[Y1];

EmCDF1 = Table[CDF[edis1, Y1[[j]]], {j, 1, n}];

me1 = 

j=1

n

Y1[[j]]  n;

V1 = Sqrt
1

n - 1
SumY1[[j]] - me1

2
, {j, n};

X1 = TableY1[[i]] - me1  V1, {i, 1, n};

μX[h_] := μX[h] = MeanX1h;

α = Min[X1]; β = Max[X1]; ν = 5; δ = 2 ;

(*Begin initial estimation*)

LB0 = -3.5; UB0 = 3.5;

LS0[r_, ν_] := LS0[r, ν] = 

i=0

ν

K0[i] μX[r + i] ⩵ -r μX[r - 1] ;

Z0 = Solve[Table[LS0[r, ν], {r, 0, ν}], Table[K0[i], {i, 0, ν}]];

a0[i_] := Z0[[1, i + 1, 2]];
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g0[x_] := g0[x] = Exp
i=0

ν

a0[i] xi+1  i + 1;

cz0 = NIntegrate[g0[x], {x, LB0, UB0}];

S0[x_] := S0[x] = g0[x]  cz0;

f0[z_] := f0[z] = S0z - me1  V1  V1;

(*End initial estimation*)

LS[r_, ν_] := LS[r, ν] = 

i=0

ν

K1[i] μX[r + i] ⩵ -S0[α] αr + S0[β] βr - r μX[r - 1] ;

Z1 = Solve[Table[LS[r, ν], {r, 0, ν}], Table[K1[i], {i, 0, ν}]];

a1 = Table[Z1[[1, i + 1, 2]], {i, 0, ν}];

a1 = Table[Z1[[1, i + 1, 2]], {i, 0, ν}];

g1[x_] := g1[x] = Exp
i=0

ν

a1[[i + 1]] xi+1  i + 1;

cz1 = NIntegrate[g1[x], {x, LB0, UB0}];

S1[x_] := S1[x] = g1[x]  cz1;

fA[z_] := fA[z] = S1z - me1  V1  V1;

h1[x_] := h1[x] = Re[fA[x]] - f1[x]^2;

ISD1 = NIntegrate[h1[x], {x, -4, 4}];

KSDf[x_] := PDF[SmoothKernelDistribution[data], x];

KSDh[x_] := KSDh[x] = KSDf[x] - f1[x]^2;

ISD2 = NIntegrate[KSDh[x], {x, -4, 4}];

Return[{ν, δ, n, LB0, UB0, ISD1, ISD2}]

ISDs = Table[ISD[1000, 1], {i, 100}];

MatrixForm[ISDs]

Mean[Table[ISDs[[i, 6]], {i, 100}]]

StandardDeviation[Table[ISDs[[i, 6]], {i, 100}]]

Mean[Table[ISDs[[i, 7]], {i, 100}]]

StandardDeviation[Table[ISDs[[i, 7]], {i, 100}]]
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Example 3.4.2. Trapezoidal density approximant   

ClearAll[G, K, a, c, Z1, PE, PA1, rts, Sol]

Iu_,v_[z_] := If[u ≤ z ≤ v, 1, 0]

(*The exact density*)

fE[x_] := fE[x] = I0, 1[x] x  2 + 0.5 I1, 2[x] + I2, 3[x] -x + 3  2

FE[z_] := FE[z] = Rationalize
0

z

fE[x] ⅆx, 10-300;

μX[h_] := μX[h] = Rationalize
0

3

xh fE[x] ⅆx, 10-300;

α = 0; β = 3; ν = 26; δ = 4 ;

PE =

Plot[fE[y], {y, 0, 3}, PlotRange → All, PlotLabel → {ν, δ}, PlotStyle → RGBColor[0, 0, 1]];

LS[r_, ν_, δ_] := LS[r, ν, δ] =



i=0

ν

K[i] μX[r + i] ⩵ (r + δ) μX[r + δ - 1] +

j=0

δ-1

r + j G[j] μX[r + j - 1]

Z1 = Solve[Table[LS[r, ν, δ], {r, 0, ν + δ}],

Flatten[{Table[K[i], {i, 0, ν}], Table[G[j], {j, 0, δ - 1}]}]] // N

a = Table[Z1[[1, i + 1, 2]], {i, 0, ν}];

c = Table[Z1[[1, i + 1, 2]], {i, ν + 1, ν + δ}];

c = Append[c, 1];

rt = Solve
i=0

δ

c[[i + 1]] yi ⩵ 0, y // Chop;

rts = Table[rt[[i, 1, 2]], {i, 1, δ}];

Sol = DSolvew'[x] ⩵ - 

i=0

ν

a[[i + 1]] xi  

i=1

δ

x - rt[[i, 1, 2]] w[x], w[x], x // Chop //

Simplify ;

SDC = Sol[[1, 1, 2]]  C[1];

SD[y_] := SD[y] = SDC /. {x → y}

LB = 0; UB = 3;

Off[NIntegrate::slwcon, NIntegrate::ncvb]

Nc1 = NIntegrate[SD[x], {x, Min[rts], Max[rts]}]

fA1[x_] := fA1[x] =
1

Nc1
SD[x]

PA1 = Plot[Re[fA1[y]], {y, Min[rts], Max[rts]},

PlotRange → All, PlotLabel → {ν, δ}, PlotStyle → RGBColor[1, 0, 0]];

Show[

PE,

PA1]

149 149



Example 3.4.3. Mixture of Beta densities

ClearAll[G, K, a, c, Z1, PE, PA1, rts, Sol]

Unprotect[Power]; 0^0 = 1; Protect[Power];

1 = BetaDistribution[10, 2];

f1[x_] := f1[x] = PDF[1, {x}]

2 = BetaDistribution[4, 6];

f2[x_] := f2[x] = PDF[2, {x}]

 = MixtureDistribution1  2, 1  2, {1, 2};

PP1 = Plot[f1[y], {y, 0, 1}, PlotRange → All,

PlotStyle → RGBColor[0, 0, 1], AxesOrigin → {0, 0}]

PP2 = Plot[f2[y], {y, 0, 1}, PlotRange → All,

PlotStyle → RGBColor[0, 0, 1], AxesOrigin → {0, 0}]

Iu_,v_[z_] := If[u ≤ z ≤ v, 1, 0]

(*The exact density*)

fE[x_] := fE[x] = PDF[, {x}]

FE[z_] := FE[z] = Rationalize
0

z

fE[x] ⅆx, 10-300;

μX[h_] := μX[h] = Rationalize
0

1

xh fE[x] ⅆx, 10-300;

α = 0; β = 1; ν = 8; δ = 2 ;

PE = Plot[fE[y], {y, 0, 1}, PlotRange → All,

PlotStyle → RGBColor[0, 0, 1], AxesOrigin → {0, 0}]

PE2 = Plot[FE[y], {y, 0, 1}, PlotRange → All,

PlotStyle → RGBColor[0, 0, 1], AxesOrigin → {0, 0}]

LS[r_, ν_, δ_] :=

LS[r, ν, δ] = 

i=0

ν

K[i] μX[r + i] ⩵ (r + δ) μX[r + δ - 1] +

j=0

δ-1

r + j G[j] μX[r + j - 1]

Z1 = Solve[Table[LS[r, ν, δ], {r, 0, ν + δ}],

Flatten[{Table[K[i], {i, 0, ν}], Table[G[j], {j, 0, δ - 1}]}]] // N

a = Table[Z1[[1, i + 1, 2]], {i, 0, ν}] // N

c = Table[Z1[[1, i + 1, 2]], {i, ν + 1, ν + δ}] // N

c = Append[c, 1]

rt = Solve
i=0

δ

c[[i + 1]] yi ⩵ 0, y // N // Chop

rts = Table[rt[[i, 1, 2]], {i, 1, δ}]
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p1[y_] := p1[y] = 

i=0

ν

a[[i + 1]] yi

p2[j_] := p2[j] = ProductIfj ≠ i, rts[[j]] - rts[[i]], 1, {i, 1, δ}

theta[j_] := theta[j] = -
p1[rts[[j]]]

p2[j]

{quot, rem} = PolynomialQuotientRemainder
i=0

ν

a[[i + 1]] yi, 

i=0

δ

c[[i + 1]] yi, y;

CoQuot = CoefficientList[quot, y];

CoRem = CoefficientList[rem, y];

{quot, rem} // N

n2 = Length[CoQuot];

fpaper[x_] := fpaper[x] = Exp-
i=1

n2 CoQuot[[i]] xi

i
 

j=1

δ

Abs[x - rts[[j]]]theta[j]

Nc2 = NIntegrate[fpaper[x], {x, 0, 1}];

LB = 0; UB = 1;

fpap[x_] := fpap[x] =
1

Nc2
fpaper[x]

PA2 = Plot[fpap[y], {y, LB, UB}, PlotRange → All,

PlotStyle → {Thickness[0.008], Dashed, RGBColor[0.75, 0, 0.25]}]

Show[PE, PA2]

Fpap[x_] := Fpap[x] = NIntegrate[fpap[y], {y, 0, x}]

PA3 = Plot[Fpap[y], {y, LB, UB}, PlotRange → All,

PlotStyle → {Thickness[0.008], Dashed, RGBColor[0.75, 0, 0.25]}]

Show[

PE2,

PA3]

A .3  Modules Used in Chapter 4

Example 4.2.1. Univariate mixture of Beta  densities

α = 0; β = 1; ν = 4 ; δ = 4 ;

fE[x_] := fE[x] = PDF[BetaDistribution[2, 20], x] + PDF[BetaDistribution[3, 2], x]  2

FE[z_] := FE[z] = Rationalize
0

z

fE[x] ⅆx, 10-300;

μX[h_] := μX[h] = Rationalize
0

1

xh fE[x] ⅆx, 10-300;

PE = Plot[fE[y], {y, α, β}, PlotRange → All,

PlotLabel → {ν, δ}, PlotStyle → RGBColor[0, 0, 1]]

151 151



G[δ] = 1;

G[δ - 1] = G1 - (α + β);

G[δ - 2] = G2 + α β - G1 (α + β);

G[δ - 3] = G1 α β - G2 (α + β);

G[δ - 4] = G2 α β;

LS[r_, ν_, δ_] :=

LS[r, ν, δ] = 

i=0

ν

K[i] μX[r + i] ⩵ (r + δ) μX[r + δ - 1] +

j=0

δ-1

r + j G[j] μX[r + j - 1]

Z1 = Solve[Table[LS[r, ν, δ], {r, 0, ν + δ - 2}],

Flatten[{Table[K[i], {i, 0, ν}], Table[{G1, G2}]}]];

ai_ := ai = Z1[[1, i + 1, 2]]

G1 = Z1[[1, ν + 1 + 1, 2]];

G2 = Z1[[1, ν + 1 + 2, 2]];

rt = Solve
i=0

δ

ci y
i
⩵ 0, y // N // Chop;

rts = FlattenTableIfIm[rt[[i, 1, 2]]] < 10-12, Re[rt[[i, 1, 2]]], {}, {i, 1, δ} // N;

tn =

SortFlattenTableIfα - (β - α)  15 < rts[[j]] < α + (β - α)  15 || β - (β - α)  15 < rts[[

j]] < β + (β - α)  15, rts[[j]], { }, {j, Length[rts]} // N;

Sol = DSolvew'[x] ⩵ - 

i=0

ν

ai x
i

 

i=1

δ

x - rt[[i, 1, 2]] w[x], w[x], x // Chop //

Simplify ;

SDC = Sol[[1, 1, 2]]  C[1];

SD[y_] := SD[y] = SDC /. {x → y}

LB = 0; UB = 1;

Nc1 = NIntegrate[SD[x], {x, LB, UB}];

fA1[x_] := fA1[x] =
1

Nc1
SD[x]

PA1 = Plot[f1A[y], {y, LB, UB}, PlotRange → All,

PlotLabel → {ν, δ}, PlotStyle → RGBColor[1, 0, 0]]

Show[

PE,

PA1]
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Example 4.3.1. Mixture of bivariate normal densities

Unprotect[Power]; 0^0 = 1; Protect[Power];

Needs["MultivariateStatistics`"]

1 = MultinormalDistribution[{-1.1, -.1}, {{.33, .03}, {0.03, .33}}];

2 = MultinormalDistribution[{.2, 1.2}, {{.4, .04}, {.04, .4}}];

3 = MixtureDistribution1  2, 1  2, {1, 2};

fe[x_, y_] := fe[x, y] = PDF[3, {x, y}]

Fe[x_, y_] := Fe[x, y] = CDF[3, {x, y}]

me1 = 

j=1

n

Y1[[j]]  n;

me2 = 

j=1

n

Y2[[j]]  n;

Var = Covariance[data];

Vhi = MatrixPowerVar, -1  2;

Vh = MatrixPowerVar, 1  2;

detVhi = Det[Vhi];

X1 = Vhi[[1, 1]] Y1 - ConstantArray[me1, n] + Vhi[[1, 2]] Y2 - ConstantArray[me2, n];

X2 = Vhi[[2, 1]] Y1 - ConstantArray[me1, n] + Vhi[[2, 2]] Y2 - ConstantArray[me2, n];

H1 = Histogram[X1, 25];

H2 = Histogram[X2, 25];

μX[h_] := MeanX1h

μY[h_] := MeanX2h

Marginal density for X1 :

ν1 = 5; LB = Min[X1]; UB = Max[X1];

LS[r_, ν1_] := LS[r, ν1] = 

i=0

ν1

K[i] μX[r + i] ⩵ -r μX[r - 1]

Z1 = Solve[Table[LS[r, ν1], {r, 0, ν1}], Table[K[i], {i, 0, ν1}]];

a1[i_] := Z1[[1, i + 1, 2]];

g1[x_] := g1[x] = Exp
i=0

ν1

a1[i] xi+1  i + 1

cz = NIntegrate[g1[x], {x, LB, UB}];

S1[x_] := S1[x] = g1[x]  cz

P1 = Plot[S1[y], {y, LB, UB}, PlotRange → All, PlotLabel → ν1]

Marginal density for X2 :
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ν2 = 3; LB2 = Min[X2]; UB2 = Max[X2];

LS2[r_, ν2_] := LS2[r, ν2] = 

i=0

ν2

K2[i] μY[r + i] ⩵ -r μX[r - 1]

Z2 = Solve[Table[LS2[r, ν2], {r, 0, ν2}], Table[K2[i], {i, 0, ν2}]];

a2[i_] := Z2[[1, i + 1, 2]];

g2[y_] := g2[y] = Exp
i=0

ν2

a2[i] yi+1  i + 1

cz2 = NIntegrate[g2[y], {y, LB2, UB2}];

S2[y_] := S2[y] = g2[y]  cz2

P2 = Plot[S2[y], {y, LB2, UB2}, PlotRange → All]

ListPlot[data, AxesOrigin → {0, 0}]

Histogram3D[data]

Initial joint density function of (X1, X2) :

g[x_, y_] := g[x, y] = S1[x] S2[y]

Plot3D[g[x, y], {x, LB, UB}, {y, LB2, UB2}, PlotRange → All, PlotLabel → G[ν1, ν2]]

ft[x_, y_] := detVhi

gVhi[[1, 1]] x - me1 + Vhi[[1, 2]] y - me2, Vhi[[2, 1]] x - me1 + Vhi[[2, 2]] y - me2

Plot3D[ft[x, y], {x, Min[Y1], Max[Y1]}, {y, Min[Y2], Max[Y2]}, PlotRange → All]

Kernel Smooth density function of Y1 and Y2 :

 = SmoothKernelDistribution[data];

Plot3D[PDF[, {x, y}], {x, Min[Y1], Max[Y1]},

{y, Min[Y2], Max[Y2]}, PlotLabel → SmoothKernel XY, PlotRange → All]

Histogram3D[data]

Polynomial adjustment with degree “MSTerms”:

Off[NIntegrate::izero, NIntegrate::ncvb, NIntegrate::slwcon]

m1[i_, j_] := m1[i, j] = NIntegratexi yj g[x, y], {x, LB, UB}, {y, LB2, UB2}

MSTerms = 7;

f3[L1_List, L2_List] := Inner[Plus, L1, L2, List];

L3 = Flatten[Table[{j, i}, {i, 0, MSTerms}, {j, 0, MSTerms}], 1];

P3 = Table[f3[L3[[i]], L3[[j]]], {i, 1, Length[L3]}, {j, 1, Length[L3]}];

M3 = Rationalize

Table[m1[P3[[i, j]][[1]], P3[[i, j]][[2]]], {i, Length[L3]}, {j, Length[L3]}], 10-25
;

Zv[x_, y_] := Zv[x, y] = Flatten[Table[x^j y^i, {i, 0, MSTerms}, {j, 0, MSTerms}], 1];

Gms[i_] := Gms[i] = SumX1[[j]]L3[[i,1]] X2[[j]]L3[[i,2]]  n, {j, 1, n};

μ = Table[Gms[i], {i, Dimensions[L3][[1]]}] // N;

c3 = LinearSolve[M3, μ];
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t4[x_, y_] := t4[x, y] = g[x, y] c3.Zv[x, y];

t5[x_, y_] := t5[x, y] = If[t4[x, y] < 0 || x > UB || x < LB || y > UB2 || y < LB2, 0, t4[x, y]]

cii = NIntegrate[t4[x, y], {x, LB, UB}, {y, LB2, UB2}] // N

t6[t1_, t2_] := t6[t1, t2] = t4[t1, t2]  cii

f[u_, w_] := f[u, w] = detVhi t4Vhi[[1, 1]] u - me1 + Vhi[[1, 2]] w - me2,

Vhi[[2, 1]] u - me1 + Vhi[[2, 2]] w - me2  cii

ISDest = NIntegratef[u, w] - fe[u, w]^2 , {u, Min[Y1], Max[Y1]}, {w, Min[Y2], Max[Y2]}

F[u_, w_] := F[u, w] = NIntegrate[f[x1, y1], {x1, Min[Y1], u}, {y1, Min[Y2], w}]

EstCDF = Table[F[Y1[[j]], Y2[[j]]], {j, 1, n}];

MSTerms

error = 

j=1

n

EmpCDF[[j]] - Max[0, EstCDF[[j]] ]
2

Plot3D[f[u, w] , {u, Min[Y1], Max[Y1]},

{w, Min[Y2], Max[Y2]}, PlotRange → All, PlotLabel → MSTerms]
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Example 4.4.1. CommViolPredUnnormalizedData  

ClearAll[X1, X2, Y1, Y2, data, n]

Needs["Histograms`"];

Unprotect[Power]; 0^0 = 1; Protect[Power];

mydata = Import["CommViolPredUnnormalizedData.csv", "CSV"];

header = mydata[[1]];

data = mydata[[2 ;;]];

myDataset = Thread[header → #] & /@ data // Map[Association] // Dataset;

data = mydata[[2 ;;]];

Y1 = Table[data[[i, 13]], {i, Length[data]}];

Y2 = Table[data[[i, 22]], {i, Length[data]}];

data = Table[{Y1[[i]], Y2[[i]]}, {i, Length[data]}];

n = Length[Y1]

edis = EmpiricalDistribution[data];

EmpCDF = Table[CDF[edis, data[[j]]], {j, 1, n}];

me1 = 

j=1

n

Y1[[j]]  n;

me2 = 

j=1

n

Y2[[j]]  n;

Var = Covariance[data];

Vhi = MatrixPowerVar, -1  2;

Vh = MatrixPowerVar, 1  2;

detVhi = Det[Vhi];

X1 = Vhi[[1, 1]] Y1 - ConstantArray[me1, n] + Vhi[[1, 2]] Y2 - ConstantArray[me2, n];

X2 = Vhi[[2, 1]] Y1 - ConstantArray[me1, n] + Vhi[[2, 2]] Y2 - ConstantArray[me2, n];

Hist[data_, n_] := Module[{ran},

ran = Max[data] - Min[data];

Histogram[data, HistogramScale → 1,

HistogramRange → {Min[data] - 0.4 * ran, Max[data] + 0.4 * ran},

HistogramCategories → Range[Min[data], Max[data] + 0.2 ran, ran / n]]

]

H1 = Hist[X1, 25];

H2 = Hist[X2, 25];

μX[h_] := MeanX1h

μY[h_] := MeanX2h

Marginal density for X1 :
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ν1 = 4; LB = Min[X1]; UB = Max[X1];

LS[r_, ν1_] := LS[r, ν1] = 

i=0

ν1

K[i] μX[r + i] ⩵ -r μX[r - 1]

Z1 = Solve[Table[LS[r, ν1], {r, 0, ν1}], Table[K[i], {i, 0, ν1}]];

a1[i_] := Z1[[1, i + 1, 2]];

g1[x_] := g1[x] = Exp
i=0

ν1

a1[i] xi+1  i + 1

cz = NIntegrate[g1[x], {x, LB, UB}];

S1[x_] := S1[x] = g1[x]  cz

f1[z_] := f1[z] = S1z - me1  V1  V1

P1 = Plot[S1[y], {y, LB, UB}, PlotRange → All, PlotLabel → ν1];

ν1

Show[H1, P1]

Marginal density for X2 :

ν2 = 3; LB2 = Min[X2]; UB2 = Max[X2];

LS2[r_, ν2_] := LS2[r, ν2] = 

i=0

ν2

K2[i] μY[r + i] ⩵ -r μX[r - 1]

Z2 = Solve[Table[LS2[r, ν2], {r, 0, ν2}], Table[K2[i], {i, 0, ν2}]];

a2[i_] := Z2[[1, i + 1, 2]];

g2[y_] := g2[y] = Exp
i=0

ν2

a2[i] yi+1  i + 1

cz2 = NIntegrate[g2[y], {y, LB2, UB2}];

S2[y_] := S2[y] = g2[y]  cz2

f2[z_] := f2[z] = S2z - me2  V2  V2

P2 = Plot[S2[y], {y, LB2, UB2}, PlotRange → All];

ν2

Show[H2, P2]

ListPlot[data, AxesOrigin → {0, 0}]

Histogram3D[data]

Initial joint density function of (X1, X2) :

g[x_, y_] := g[x, y] = S1[x] S2[y]

Plot3D[g[x, y], {x, LB, UB}, {y, LB2, UB2}, PlotRange → All, PlotLabel → G[ν1, ν2]]

Kernel Smooth density function of Y1 and Y2 :

 = SmoothKernelDistribution[data];

Plot3D[PDF[, {x, y}], {x, Min[Y1], Max[Y1]},

{y, Min[Y2], Max[Y2]}, PlotLabel → SmoothKernel XY, PlotRange → All]

Histogram3D[data]

ListPlot[data, PlotLabel → ListPlot XY]

Polynomial adjustment with degree “MSTerms”:
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m1[i_, j_] := m1[i, j] = NIntegratexi yj g[x, y], {x, LB, UB}, {y, LB2, UB2}

MSTerms = 7;

f3[L1_List, L2_List] := Inner[Plus, L1, L2, List];

L3 = Flatten[Table[{j, i}, {i, 0, MSTerms}, {j, 0, MSTerms}], 1];

P3 = Table[f3[L3[[i]], L3[[j]]], {i, 1, Length[L3]}, {j, 1, Length[L3]}];

M3 = Rationalize

Table[m1[P3[[i, j]][[1]], P3[[i, j]][[2]]], {i, Length[L3]}, {j, Length[L3]}], 10-25
;

Zv[x_, y_] := Zv[x, y] = Flatten[Table[x^j y^i, {i, 0, MSTerms}, {j, 0, MSTerms}], 1];

Gms[i_] := Gms[i] = SumX1[[j]]L3[[i,1]] X2[[j]]L3[[i,2]]  n, {j, 1, n};

μ = Table[Gms[i], {i, Dimensions[L3][[1]]}] // N;

c3 = LinearSolve[M3, μ];

t4[x_, y_] := t4[x, y] = g[x, y] c3.Zv[x, y];

t5[x_, y_] := t5[x, y] = If[t4[x, y] < 0 || x > UB || x < LB || y > UB2 || y < LB2, 0, t4[x, y]]

cii = NIntegrate[t4[x, y], {x, LB, UB}, {y, LB2, UB2}] // N

t6[t1_, t2_] := t6[t1, t2] = t4[t1, t2]  cii

f[u_, w_] := f[u, w] = detVhi t4Vhi[[1, 1]] u - me1 + Vhi[[1, 2]] w - me2,

Vhi[[2, 1]] u - me1 + Vhi[[2, 2]] w - me2  cii

Estimated density for p=7:

Plot3D[f[u, w] , {u, Min[Y1], Max[Y1]}, {w, Min[Y2], Max[Y2]}, PlotRange → All]

Off[NIntegrate::izero]

Off[NIntegrate::"ncvb"]

Off[NIntegrate::"slwcon"]

F[u_, w_] := F[u, w] = NIntegrate[f[x1, y1], {x1, Min[Y1], u}, {y1, Min[Y2], w}]

EstCDF = Table[F[Y1[[j]], Y2[[j]]], {j, 1, n}];

MSTerms

error = 

j=1

n

EmpCDF[[j]] - Max[0, EstCDF[[j]] ]
2

Plot3D[f[u, w] , {u, Min[Y1], Max[Y1]},

{w, Min[Y2], Max[Y2]}, PlotRange → All, PlotLabel → MSTerms]
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Example 4.4.2. Concrete dataset 

ClearAll[X1, X2, Y1, Y2, data, n]

Needs["Histograms`"];

Needs["MultivariateStatistics`"]

mydata = Import["Concrete_Data.csv", "CSV"];

header = mydata[[1]];

data = mydata[[2 ;;]];

Unprotect[Power]; 0^0 = 1; Protect[Power];

myDataset = Thread[header → #] & /@ data // Map[Association] // Dataset;

data = mydata[[2 ;;]];

Y1 = Table[data[[i, 1]], {i, Length[data]}];

Y2 = Table[data[[i, 9]], {i, Length[data]}];

n = Length[Y1]

data = Table[{Y1[[j]], Y2[[j]]}, {j, 1, n}];

edis = EmpiricalDistribution[data];

EmpCDF = Table[CDF[edis, data[[j]]], {j, 1, n}];

me1 = 

j=1

n

Y1[[j]]  n;

me2 = 

j=1

n

Y2[[j]]  n;

Var = Covariance[data];

Vhi = MatrixPowerVar, -1  2;

Vh = MatrixPowerVar, 1  2;

detVhi = Det[Vhi];

X1 = Vhi[[1, 1]] Y1 - ConstantArray[me1, n] + Vhi[[1, 2]] Y2 - ConstantArray[me2, n];

X2 = Vhi[[2, 1]] Y1 - ConstantArray[me1, n] + Vhi[[2, 2]] Y2 - ConstantArray[me2, n];

Hist[data_, n_] := Module[{ran},

ran = Max[data] - Min[data];

Histogram[data, HistogramScale → 1,

HistogramRange → {Min[data] - 0.4 * ran, Max[data] + 0.4 * ran},

HistogramCategories → Range[Min[data], Max[data] + 0.2 ran, ran / n]]

]

H1 = Hist[X1, 25];

H2 = Hist[X2, 25];

μX[h_] := MeanX1h

μY[h_] := MeanX2h

Marginal density for X1 :
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ν1 = 4; LB = -3; UB = 3.1;

LS[r_, ν1_] := LS[r, ν1] = 

i=0

ν1

K[i] μX[r + i] ⩵ -r μX[r - 1]

Z1 = Solve[Table[LS[r, ν1], {r, 0, ν1}], Table[K[i], {i, 0, ν1}]];

a1[i_] := Z1[[1, i + 1, 2]];

g1[x_] := g1[x] = Exp
i=0

ν1

a1[i] xi+1  i + 1

cz = NIntegrate[g1[x], {x, LB, UB}];

S1[x_] := S1[x] = g1[x]  cz

f1[z_] := f1[z] = S1z - me1  V1  V1

P1 = Plot[S1[y], {y, LB, UB}, PlotRange → All, PlotLabel → ν1];

ν1

Show[H1, P1]

Marginal density for X2 :

ν2 = 3; LB2 = -3; UB2 = 3.3;

LS2[r_, ν2_] := LS2[r, ν2] = 

i=0

ν2

K2[i] μY[r + i] ⩵ -r μX[r - 1]

Z2 = Solve[Table[LS2[r, ν2], {r, 0, ν2}], Table[K2[i], {i, 0, ν2}]];

a2[i_] := Z2[[1, i + 1, 2]];

g2[y_] := g2[y] = Exp
i=0

ν2

a2[i] yi+1  i + 1

cz2 = NIntegrate[g2[y], {y, LB2, UB2}];

S2[y_] := S2[y] = g2[y]  cz2

f2[z_] := f2[z] = S2z - me2  V2  V2

P2 = Plot[S2[y], {y, LB2, UB2}, PlotRange → All];

ν2

Show[H2, P2]

Initial joint density function of (X1, X2) :

g[x_, y_] := g[x, y] = S1[x] S2[y]

Polynomial adjustment with degree “MSTerms”:
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m1[i_, j_] := m1[i, j] = NIntegratexi yj g[x, y], {x, LB, UB}, {y, LB2, UB2}

MSTerms = 6;

f3[L1_List, L2_List] := Inner[Plus, L1, L2, List];

L3 = Flatten[Table[{j, i}, {i, 0, MSTerms}, {j, 0, MSTerms}], 1];

P3 = Table[f3[L3[[i]], L3[[j]]], {i, 1, Length[L3]}, {j, 1, Length[L3]}];

M3 = Rationalize

Table[m1[P3[[i, j]][[1]], P3[[i, j]][[2]]], {i, Length[L3]}, {j, Length[L3]}], 10-25
;

Zv[x_, y_] := Zv[x, y] = Flatten[Table[x^j y^i, {i, 0, MSTerms}, {j, 0, MSTerms}], 1];

Gms[i_] := Gms[i] = SumX1[[j]]L3[[i,1]] X2[[j]]L3[[i,2]]  n, {j, 1, n};

μ = RationalizeTable[Gms[i], {i, Dimensions[L3][[1]]}], 10-25
 // N;

c3 = LinearSolve[M3, μ];

t4[x_, y_] := t4[x, y] = g[x, y] c3.Zv[x, y];

t5[x_, y_] := t5[x, y] = If[t4[x, y] < 0 || x > UB || x < LB || y > UB2 || y < LB2, 0, t4[x, y]]

cii = NIntegrate[t4[x, y], {x, LB, UB}, {y, LB2, UB2}] // N

t6[t1_, t2_] := t6[t1, t2] = t4[t1, t2]  cii

f[u_, w_] := f[u, w] = detVhi t4Vhi[[1, 1]] u - me1 + Vhi[[1, 2]] w - me2,

Vhi[[2, 1]] u - me1 + Vhi[[2, 2]] w - me2  cii

Off[NIntegrate::izero]

Off[NIntegrate::"ncvb"]

F[u_, w_] := F[u, w] = NIntegrate[f[x1, y1], {x1, 50, u}, {y1, 0, w}]

EstCDF = Table[F[Y1[[j]], Y2[[j]]], {j, 1, n}];

MSTerms

error = 

j=1

n

EmpCDF[[j]] - Max[0, EstCDF[[j]] ]
2

Plot3D[f[u, w] , {u, 50, 570}, {w, 0, 95}, PlotRange → All]

Example 4.4.3. Covertype dataset 

ClearAll[X1, X2, Y1, Y2, data, n]

mydata = Import["covtype.csv", "CSV"];

Unprotect[Power]; 0^0 = 1; Protect[Power];

header = mydata[[1]];

data = mydata[[2 ;;]];

myDataset = Thread[header → #] & /@ data // Map[Association] // Dataset;

data = mydata[[2 ;;]];

Y1 = data[[All, 6]];

Y2 = data[[All, 10]];

n = Length[Y1]

data = Table[{Y1[[j]], Y2[[j]]}, {j, 1, n}];
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me1 = 

j=1

n

Y1[[j]]  n;

me2 = 

j=1

n

Y2[[j]]  n;

Var = Covariance[data];

Vhi = MatrixPowerVar, -1  2;

Vh = MatrixPowerVar, 1  2;

detVhi = Det[Vhi];

X1 = Vhi[[1, 1]] Y1 - ConstantArray[me1, n] + Vhi[[1, 2]] Y2 - ConstantArray[me2, n];

X2 = Vhi[[2, 1]] Y1 - ConstantArray[me1, n] + Vhi[[2, 2]] Y2 - ConstantArray[me2, n];

H1 = Histogram[X1, Automatic, "Probability"]

H2 = Histogram[X2, Automatic, "Probability"]

μX[h_] := SumX1[[j]]h, {j, n}  n

μY[h_] := SumX2[[j]]h, {j, n}  n

μXY[r_, h_] := SumX1[[j]]r X2[[j]]h, {j, n}  n

ListPlot[data, PlotRange → All, AxesOrigin → {0, 0}]

Histogram3D[data, {40, 30}]

 = SmoothKernelDistribution[data];

Plot3D[PDF[, {x, y}], {x, Min[Y1], Max[Y1]}, {y, Min[Y2], Max[Y2]}, PlotRange → All]

mxy = Table[μXY[r, h], {r, 0, 14}, {h, 0, 14}]

ν1 = 5; LB = -2.5; UB = 3.5;

LS[r_] := LS[r] = 

i=0

ν1

K[i] mxy[[r + i + 1, 1]] ⩵ -r mxy[[r, 1]]

Z1 = Solve[Table[LS[r], {r, 0, ν1}], Table[K[i], {i, 0, ν1}]];

a1[i_] := Z1[[1, i + 1, 2]];

g1[x_] := g1[x] = Exp
i=0

ν1

a1[i] xi+1  i + 1

cz = NIntegrate[g1[x], {x, LB, UB}];

S1[x_] := S1[x] = g1[x]  cz

ν2 = 6; LB2 = -2; UB2 = 4.1;

LS2[r_, ν2_] := LS2[r, ν2] = 

i=0

ν2

K2[i] mxy[[1, r + i + 1]] ⩵ -r mxy[[1, r]]

Z2 = Solve[Table[LS2[r, ν2], {r, 0, ν2}], Table[K2[i], {i, 0, ν2}]];

a2[i_] := Z2[[1, i + 1, 2]];

g2[y_] := g2[y] = Exp
i=0

ν2

a2[i] yi+1  i + 1

cz2 = NIntegrate[g2[y], {y, LB2, UB2}];

S2[y_] := S2[y] = g2[y]  cz2

g[x_, y_] := g[x, y] = S1[x] S2[y]

ft[x_, y_] := detVhi

gVhi[[1, 1]] x - me1 + Vhi[[1, 2]] y - me2, Vhi[[2, 1]] x - me1 + Vhi[[2, 2]] y - me2
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Plot3D[ft[x, y], {x, 0, Max[Y1]}, {y, 0, Max[Y2]}, PlotRange → All]

Polynomial adjustment with degree “MSTerms”:

m1[i_, j_] := m1[i, j] = NIntegratexi yj g[x, y], {x, LB, UB}, {y, LB2, UB2}

MSTerms = 7;

f3[L1_List, L2_List] := Inner[Plus, L1, L2, List];

L3 = Flatten[Table[{j, i}, {i, 0, MSTerms}, {j, 0, MSTerms}], 1];

P3 = Table[f3[L3[[i]], L3[[j]]], {i, 1, Length[L3]}, {j, 1, Length[L3]}];

M3 = Rationalize

Table[m1[P3[[i, j]][[1]], P3[[i, j]][[2]]], {i, Length[L3]}, {j, Length[L3]}], 10-25
;

Zv[x_, y_] := Zv[x, y] = Flatten[Table[x^j y^i, {i, 0, MSTerms}, {j, 0, MSTerms}], 1];

(*Gms[i_]:=Gms[i]=SumX1[[j]]L3[[i,1]] X2[[j]]L3[[i,2]] n,{j,1,n};*)

Gms[i_] := Gms[i] = mxy[[L3[[i, 1]] + 1, L3[[i, 2]] + 1]]

μ = RationalizeTable[Gms[i], {i, Dimensions[L3][[1]]}], 10-25
 // N;

c3 = LinearSolve[M3, μ];

t4[x_, y_] := t4[x, y] = g[x, y] c3.Zv[x, y];

t5[x_, y_] := t5[x, y] = If[t4[x, y] < 0 || x > UB || x < LB || y > UB2 || y < LB2, 0, t4[x, y]]

cii = NIntegrate[t4[x, y], {x, LB, UB}, {y, LB2, UB2}] // N;

t6[t1_, t2_] := t6[t1, t2] = t4[t1, t2]  cii

f[u_, w_] := f[u, w] = detVhi t4Vhi[[1, 1]] u - me1 + Vhi[[1, 2]] w - me2,

Vhi[[2, 1]] u - me1 + Vhi[[2, 2]] w - me2  cii

MSTerms

Plot3D[f[x, y] , {x, 0, Max[Y1]}, {y, 0, Max[Y2]}, PlotRange → All]
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Example 4.4.4. Flood dataset 

ClearAll[X1, X2, Y1, Y2, data, n]

(*Needs["Histograms`"];*)

Unprotect[Power]; 0^0 = 1; Protect[Power];

data = {{121, 3306}, {137, 8327}, {143, 7235}, {146, 10 818}, {151, 5057}, {156, 6620},

{157, 5002}, {162, 5236}, {168, 3826}, {173, 4892}, {176, 6460}, {181, 7502},

{182, 7684}, {183, 4780}, {183, 7748}, {184, 5167}, {186, 8026}, {187, 7350},

{189, 4189}, {196, 6728}, {197, 9645}, {200, 9177}, {202, 9581}, {206, 8788},

{208, 10 853}, {210, 6334}, {214, 6414}, {216, 9506}, {219, 14 890}, {229, 8637},

{230, 10 828}, {232, 8177}, {232, 14 769}, {233, 5650}, {233, 8923}, {236, 12577},

{239, 6865}, {240, 8409}, {245, 6907}, {246, 8640}, {248, 6989}, {255, 8041},

{257, 10 174}, {260, 8949}, {260, 11 127}, {261, 9957}, {275, 10 128}, {279, 9763},

{279, 10 659}, {283, 7241}, {286, 8711}, {286, 12 035}, {289, 7133}, {289, 10299},

{292, 8692}, {292, 12 057}, {294, 8918}, {297, 9352}, {300, 9406}, {303, 8900},

{306, 12 740}, {309, 12 882}, {310, 9266}, {311, 13 593}, {331, 13 602}, {334, 11 437},

{343, 8192}, {351, 11 401}, {371, 8704}, {371, 12 825}, {383, 14 559}, {390, 13543},

{405, 11 174}, {405, 15 003}, {416, 11272}, {424, 13 315}, {442, 13 608}};

Y1 = Table[data[[i, 1]], {i, Length[data]}];

Y2 = Table[data[[i, 2]], {i, Length[data]}];

n = Length[Y1]

Y = Table[{Y1[[i]], Y2[[i]]}, {i, n}];

me1 = 

j=1

n

Y1[[j]]  n;

me2 = 

j=1

n

Y2[[j]]  n;

Var =

1

n - 1
SumY1[[j]] - me12, {j, n}, SumY1[[j]] - me1 Y2[[j]] - me2, {j, n},

SumY1[[j]] - me1 Y2[[j]] - me2, {j, n}, SumY2[[j]] - me22, {j, n};

Var // N;

Vhi = MatrixPowerVar, -1  2;

Vh = MatrixPowerVar, 1  2;

detVhi = Det[Vhi] // N;

V1 = Var[[1, 1]];

V2 = Var[[2, 2]];

X1 = Vhi[[1, 1]] Y1 - ConstantArray[me1, n] + Vhi[[1, 2]] Y2 - ConstantArray[me2, n];

X2 = Vhi[[2, 1]] Y1 - ConstantArray[me1, n] + Vhi[[2, 2]] Y2 - ConstantArray[me2, n];

edis = EmpiricalDistribution[data];

EmpCDF = Table[CDF[edis, data[[j]]], {j, 1, n}];

μX[h_] := MeanX1h

μY[h_] := MeanX2h

H1 = Histogram[X1, Automatic, hspec = "Probability"]

H2 = Histogram[X2, Automatic, hspec = "Probability"]
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Marginal density for X1 :

ν1 = 5;

δ = 2;

LB = -3.5;

UB = 3.5;

Dn[x_] := Expand[(x - LB) (x - UB)]

c = CoefficientList[Dn[x], x]

LS[r_, ν1_, δ_] := LS[r, ν1, δ] = 

i=0

ν1

K[i] μX[r + i] ⩵ 

j=0

δ

r + j c[[j + 1]] μX[r + j - 1]

Z1 = Solve[Table[LS[r, ν1, δ], {r, 0, ν1}], Table[K[i], {i, 0, ν1}]];

Ki_ := Ki = Z1[[1, i + 1, 2]]

Ci_ := Ci = c[[i + 1]]

Z1 // N

Table[Ki, {i, 0, ν1}] // N

Table[Ci, {i, 0, δ}] // N



i=0

δ

Ci y
i
// N

mi1 = FindMinimum
i=0

ν1

Ki x
i+1

 i + 1, LB ≤ x ≤ -2, {x, -2.5};

a = mi1[[2, 1, 2]];

ma1 = FindMinimum
i=0

ν1

Ki x
i+1

 i + 1, 2 ≤ x ≤ UB, {x, 2.5};

b = ma1[[2, 1, 2]];

Sol = DSolvep'[x] ⩵ - 

i=0

ν1

Ki x
i

 (x - a) x - b p[x], p[x], x // Chop // Simplify ;

SDC = Sol[[1, 1, 2]]  C[1];

Sol1[z_] := SDC /. {x → z}

cn1 = NIntegrate[Sol1[x], {x, a, b}];

g1a[x_] := Sol1[x]  cn1

Iu_,v_[z_] := If[u < z < v, 1, 0]

S1[x_] := S1[x] = Ia, b[x] g1a[x]

P1 = Plot[S1[y], {y, a, b}, PlotRange → All, PlotLabel → ν1];

Show[H1, P1]

Marginal density for X2 :
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ν2 = 5; δ2 = 2; LB = -3.5; UB = 3.5;

Dn2[x_] := Expand[(x - LB) (x - UB)]

c2 = CoefficientList[Dn2[x], x]

LS2[r_, ν2_, δ_] := LS2[r, ν2, δ] = 

i=0

ν2

K2[i] μY[r + i] ⩵ 

j=0

δ

r + j c2[[j + 1]] μY[r + j - 1]

Z2 = Solve[Table[LS2[r, ν2, δ2], {r, 0, ν2}], Table[K2[i], {i, 0, ν2}]];

K2i_ := K2i = Z2[[1, i + 1, 2]]

C2i_ := C2i = c2[[i + 1]]

Z2 // N

Table[K2i, {i, 0, ν2}] // N

Table[C2i, {i, 0, δ2}] // N



i=0

δ2

C2i y
i
// N

mi11 = FindMinimum
i=0

ν2

K2i x
i+1

 i + 1, LB ≤ x ≤ -2, {x, -2.5};

aa = mi11[[2, 1, 2]];

ma11 = FindMinimum
i=0

ν2

K2i x
i+1

 i + 1, 2 ≤ x ≤ UB, {x, 2.5};

bb = ma11[[2, 1, 2]];

Sol22 =

DSolvep'[x] ⩵ - 

i=0

ν2

K2i x
i

 (x - aa) x - bb p[x], p[x], x // Chop // Simplify ;

S2DC = Sol22[[1, 1, 2]]  C[1];

Sol2[z_] := S2DC /. {x → z}

cn11 = NIntegrate[Sol2[x], {x, aa, bb} ];

g2b[x_] := Sol2[x]  cn11

Iu_,v_[z_] := If[u < z < v, 1, 0]

S2[y_] := S2[y] = Iaa, bb[y] g2b[y]

P2 = Plot[Re[S2[y]], {y, aa, bb}, PlotRange → All, PlotLabel → ν2];

Show[H2, P2]

ListPlot[data, AxesOrigin → {0, 0}]

Histogram3D[data, 20, "Probability"]

g[x_, y_] := g[x, y] = S1[x] S2[y]

Plot3D[S1[u] S2[w], {u, a, b}, {w, aa, bb}, PlotRange → All]

ft[x_, y_] := detVhi

gVhi[[1, 1]] x - me1 + Vhi[[1, 2]] y - me2, Vhi[[2, 1]] x - me1 + Vhi[[2, 2]] y - me2

Plot3D[ft[u, w], {u, 0, 500}, {w, 1000, 15500}, PlotRange → All]

Kernel Smooth density function of Y1 and Y2 :

 = SmoothKernelDistribution[data];

Plot3D[PDF[, {x, y}], {x, 0, 500}, {y, 1000, 15 500} , PlotRange → Full]

ListPlot[data ]

Polynomial adjustment with degree “MSTerms”:

m1[i_, j_] := m1[i, j] = NIntegratexi yj g[x, y], {x, a, b}, {y, aa, bb}
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MSTerms = 7;

f3[L1_List, L2_List] := Inner[Plus, L1, L2, List];

L3 = Flatten[Table[{j, i}, {i, 0, MSTerms}, {j, 0, MSTerms}], 1];

P3 = Table[f3[L3[[i]], L3[[j]]], {i, 1, Length[L3]}, {j, 1, Length[L3]}];

M3 = Rationalize

Table[m1[P3[[i, j]][[1]], P3[[i, j]][[2]]], {i, Length[L3]}, {j, Length[L3]}], 10-25
;

Zv[x_, y_] := Zv[x, y] = Flatten[Table[x^j y^i, {i, 0, MSTerms}, {j, 0, MSTerms}], 1];

Gms[i_] := Gms[i] = SumX1[[j]]L3[[i,1]] X2[[j]]L3[[i,2]]  n, {j, 1, n};

μ = RationalizeTable[Gms[i], {i, Dimensions[L3][[1]]}], 10-25
 // N;

c3 = LinearSolve[M3, μ] // N

t4[x_, y_] := t4[x, y] = g[x, y] c3.Zv[x, y];

cii = NIntegrate[t4[x, y], {x, a, b}, {y, aa, bb}] // N

t6[t1_, t2_] := t6[t1, t2] = t4[t1, t2]  cii

ff[u_, w_] := ff[u, w] = detVhi t4Vhi[[1, 1]] u - me1 + Vhi[[1, 2]] w - me2,

Vhi[[2, 1]] u - me1 + Vhi[[2, 2]] w - me2  cii

Off[NIntegrate::izero]

Off[NIntegrate::"ncvb"]

F[u_, w_] := F[u, w] = NIntegrate[ff[x1, y1], {x1, 0, u}, {y1, 1000, w}]

EstCDF = Table[F[Y1[[j]], Y2[[j]]], {j, 1, n}];

MSTerms

error = 

j=1

n

EmpCDF[[j]] - Max[0, EstCDF[[j]] ]
2

Plot3D[ff[u, w] , {u, 0, 500}, {w, 1000, 15 500}, PlotRange → All]

SSE of KDE:

 = SmoothKernelDistribution[data];

Plot3D[PDF[, {x, y}], {x, 0, 500},

{y, 1000, 15 500}, PlotLabel → SmoothKernel , PlotRange → Full]

Fkde[u_, w_] := CDF[, {u, w}]

KdeCDF = Table[Fkde[Y1[[j]], Y2[[j]]], {j, 1, n}];

error = 

j=1

n

EmpCDF[[j]] - Max[0, KdeCDF[[j]] ]
2
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