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Abstract

Rodent models show that alcohol only sensitizes the pancreas to subsequent insult, 

indicating that additional factors play a role in alcohol-induced pancreatic injury. Mice 

lacking MIST1 (Misti4'), a target of the UPR marker XBP1, show reduced ability to 

activate the UPR during cell stress. Therefore, I hypothesized that an absence of MIST1 

would lead to increased sensitivity to alcohol feeding. The effects of dietary stress on 

the UPR were examined in pancreatic tissue from 2 to 4 month-old mice placed on a 

diet containing 36% of kcal from ethanol for 6 weeks. Based on immunofluorescent, 

histological and immunoblotting assays, MistTA mice showed age related changes in 

UPR activation. In response to ethanol, they developed periductal accumulations of 

inflammatory cells, limited induction of autophagy and reduction in the expression of 

BiP, pelF2a and sXbp1, unlike wild type counterparts that had significantly higher levels 

of sXbp1 and pelF2a. The UPR was not further activated following initiation of acute 

pancreatitis. This work suggests that factors affecting MIST1 expression and function in 

humans may be a predisposing factor for pancreatic disease.

Keywords: Pancreas, MIST1, Unfolded Protein Response, Ethanol diet, High-fat diet, 

Autophagy



ACKNOWLEDGEMENTS

I would like to thank my supervisor, Dr. Christopher Pin for his continued support, 

encouragement and advice throughout this project. He has set high standards for our 

lab and always pushed me to do my best. In addition to being a vast source of 

knowledge, his accessibility and friendly nature have made the journey that much 

smoother.

I would also like to acknowledge members of the Pin lab, Charis Johnson, Elena Fazio, 

Dr. Rashid Mehmood and Camilla Stepniak for all their help, academic and otherwise. It 

was a pleasure to work in such a wonderful, friendly environment. Their continued 

encouragement and positive critiques have helped shape my work. Thank you to the 

Deroo, Drysdale and DiMattia-Shepherd labs for their ideas and comments during group 

lab meetings. Members of my advisory committee, Drs. Barry Tepperman and Peter 

Chidiac have been most helpful in offering suggestions and valuable feedback all the 

way. Last but not the least, I would like to thank my family for their unending love and 

support and for picking me up when I was down.

IV



TABLE OF CONTENTS

CERTIFICATE OF EXAMINATION....................................................................  jj

ABSTRACT......................................................................................................... iii

ACKNOWLEDGEMENTS................................................................................... iv

TABLE OF CONTENTS...................................................................................... v viii

LIST OF FIGURES AND TABLES.....................................................................  ix-x

LIST OF ABBREVIATIONS................................................................................ xi-xiv

CHAPTER 1: INTRODUCTION..........................................................................  1-32

1.1 THE ACINAR CELL...................................................................................... ^7

1.2 PANCREATITIS............................................................................................  7A1

1.2.1 Pathogenesis of pancreatitis....................................................................  8-9

1.2.2 Environmental factors in pancreatitis.......................................................  IQ

1.2.3 Genetic susceptibility to pancreatitis........................................................  10-11

1.3ALCOHOL AND THE PANCREAS...............................................................  ^ .1 8

1.3.1 Ethanol metabolism in the pancreas........................................................  12-14

1.3.2 Models of alcohol induced pancreatitis....................................................  15-16

1.3.3 Ethanol and pancreatic enzyme secretion................................................ 16-18

1.4UNFOLDED PROTEIN RESPONSE.............................................................  19_27

1.4.1 The PERK pathway..................................................................................  22-23

1.4.2 The IRE 1 pathway................................................................................... 23-25

v



1.5 MIST1 AND THE PANCREAS........................................................................... 27-31

1.5.1 The MistVA mouse.........................................................................................  28-29

1.5.2 UPR in the Mist1'A mouse.............................................................................  29-31

1.6 HYPOTHESIS & OBJECTIVES.......................................................................  32

CHAPTER 2: MATERIALS AND METHODS........................................................... 33_43

2.1 ANIMALS............................................................................................................ 33

2-2 DIETS.................................................................................................................  33_34

2.3 INITIATION OF CERULEIN-INDUCED PANCREATITIS..................................  34

2.4 SERUM AMYLASE ANALYSIS.........................................................................  34

2.5 EDEMA..............................................................................................................  35

2.6 PROTEIN ANALYSIS......................................................................................... 35-38

2.6.1 Protein isolation and quantification.................................................................. 35-36

2.6.2 Immunoblotting................................................................................................  36-37

2.6.3 Densitometry.................................................................................................... 37

2.6.4 Antibodies.......................................................................................................  38

2.6.5 Western membrane stripping........................................................................... 38

1.4.2 The ATF6 pathway........................................................................................................  25-27

vi



2.7 RNA ISOLATION 38-39

2.8 RT PCR & AGAROSE GEL ELECTROPHORESIS............................................... 39-40

2.9 HISTOLOGY........................................................................................................... 41

2.9.1 Sectioning............................................................................................................  41

2.9.2 H&E Staining.......................................................................................................  41

2.9.3 Trichrome Staining..............................................................................................  41

2.10 IMMUNOFLUORESCENCE.................................................................................. 42

2.10.1 Antibodies.........................................................................................................  42

2.11 STATISTICAL ANALYSIS.................................................................................... 42-43

CHAPTER 3: RESULTS..........................................................................................
j

3.1 Mist1'A mice on the Lieber-DeCarli ethanol diet have no overt phenotype.........

3.2 Histological analysis of pancreatic tissue following exposure to ethanol............

3.3 Effects of chronic ethanol feeding on the UPR in pancreatic acinar cells...........

3.4 Effects of chronic ethanol feeding on the UPR in Mist1'/ 'pancreatic acinar cells

3.5 Mist1v' mice exhibit limited induction of autophagy in response to ethanol........

3.6 UPR in the Mist1v~ pancreas...............................................................................

3.7 Chronic ethanol exposure followed by cerulein-induced acute pancreatitis.......

vii

44-70

44-49

50-52

53-55

56-58

59-61

62-64

65-70



CHAPTER 4: CONCLUSONS & DISCUSSION 71-88

4.1 CONCLUSIONS........................................................................................................  71

4.2 DISCUSSION............................................................................................................  72-88

4.2.1 Mist1'A mice are more sensitive to chronic ethanol consumption............................ 73-76

4.2.2 Mist1'A mice exhibit chronic activation of the UPR that changes over time............. 76-78

4.2.3 Diets high in ethanol and fat activate the UPR in pancreatic acinar cells............... 7g gg

4.2.4 Long term exposure to ethanol leads to attenuation of the UPR in Mist1'A

pancreatic acinar cells............................................................................................  80-85

4.2.5 Chronic ethanol and high-fat exposure followed by an acute pancreatitis

episode prevents further enhancement of the UPR...............................................  86-88

5.0 REFERENCES..........................................................................................................  89-100

6.0 APPENDIX................................................................................................................. 101-102

viii

7.0 VITA 103



LIST OF FIGURES AND TABLES

FIGURE PAGE

1.1 Structure of a pancreatic acinar cell 4

1.2 Current model of the pathogenesis of alcoholic pancreatitis 18

1.3 Schematic of the mammalian unfolded protein response 21

1.4 Differential activation of the UPR in WT and Mist1'A pancreatic 31
acinar cells upon induction of acute pancreatic injury.

3.1 WT and MistTA mice show no overt response to ethanol 47
feeding.

3.2 Chronic ethanol feeding has no effect on pancreatic 

injury parameters.
49

3.3 Mist1v' pancreata develop periductal accumulations 

of inflammatory cells in response to ethanol feeding.
52

3.4
Chronic ethanol exposure activates the PERK and 

IRE1 arms of the UPR in pancreatic acinar cells.
55

3.5
Chronic ethanol exposure attenuates the PERK and 

IRE1 arms of the UPR in Mist1'A pancreatic acinar cells.
58

3.6 Ethanol-fed Mist1'A mice show limited increases in autophagy. 61

3.7 Mistiv~ pancreas show age-related changes in UPR activation. 64

3.8 Chronic ethanol exposure followed by an acute pancreatitis episode. 68

IX



3.9 Chronic ethanol exposure followed by initiation of acute pancreatic 

injury has no additional effect on the UPR in pancreatic acinar cells
70

TABLE

2.1

2.2

PAGE

Composition of diets 101

List of Antibodies 102

x



ABBREVIATIONS

ACh Acetylcholine

ANOVA Analysis of variance

ASK1 Apoptosis signal-regulating kinase 1

Atg Autophagy related gene

ATP Adenosine triphosphate

ATF3 Activating transcription factor 3

ATF4 Activating transcription factor 4

ATF6 Activating transcription factor 6

bHLH Basic helix-loop-helix

bZIP Basic leucine zipper

cAMP Cyclic adenosine monophosphate

CRE Cyclic adenosine monophosphate response element

CHOP CCAAT/enhancer binding protein homologous protein

CE Cholesteryl ester

CPA Carboxypeptidase

CCK Cholecystokinin

CTRC Chymotrypsinogen C

CYP2E1 Cytochrome P 450 2E1

DAG Diacylglycérol

DAP I 4,6 diamidino-2-phenylindole

DEPC Diethyl pyrocarbonate

DNA Deoxyribose nucleic acid

dNTP deoxy-nucleotide triphosphate

xi



elF2a Eukaryotic initiation factor 2 a

ER Endoplasmic reticulum

ERSE-1 Endoplasmic reticulum stress response element 1

FAEE Fatty acid ethyl ester

FITC Fluorescein iso-thiocyanate

GADD34 Growth arrest and DNA damage inducible protein 34

GDP Guanine diphosphate

GPCR G protein coupled receptor

GTP Guanine triphosphate

HRP Horse radish peroxidase

IF Immunofluorescence

IPs Inositol 1,4,5-triphosphate

IP3R Inositol 1,4,5-triphosphate receptor

IRE1 Inositol requiring enzyme 1

kDa Kilodalton

kcal Kilocalories

LPL Lipoprotein lipase

MIST1 Muscle, inhibitor of Twist-1

NFDM Non-fat dried milk

NF-kB Nuclear factor -kappa B

PAGE Polyacrylamide gel electrophoresis

PAP1 Pancreatitis associated protein 1

PAR Protease activated receptor

PBS Phosphate buffered saline

PBS-T Phosphate buffered saline with Tween-20

xii



PCR

PRSS1

PSP

pelF2a

PERK

pPERK

PLC

PVDF

RNA

RT

RT-PCR

SDS

SNARE

SPINK1

TBS

TBS-T

TRAF2

TRITC

uORF

UPR

UPRE

UTR

VAMP

WT

Polymerase chain reaction

Protease, Serine 1

Pancreatic stone protein

Phosphorylated eukaryotic initiation factor 2 a

Protein kinase RNA (PKR)-like endoplasmic reticulum 
kinase

Phosphorylated PERK 

Phospholipase C 

Polyvinylidene difluoride 

Ribose nucleic acid 

Reverse transcription

Reverse transcription polymerase chain reaction 

Sodium dodecyl sulfate

Soluble N-ethylmaleimide-sensitive fusion protein 
attachment protein receptors

Serine protease inhibitor Kazal type 1

Tris buffered saline

Tris buffered saline with Tween-20

Tumour necrosis factor receptor associated factor 2

Tetramethylrhodamine isothiocyanate

Upstream open reading frame

Unfolded protein response

Unfolded protein response element

Untranslated region

Vesicle associated membrane protein

Wild type

xiii



XBP1 IXbp1 

sXBP1/Xbp1 

uXBP1/Xbp1 

ZG

X-box binding protein 1 

Spliced XBP1 IXbp1 

Unspliced XBP1 IXbp1 

Zymogen granule

XIV



1

CHAPTER 1: INTRODUCTION

The pancreas is a glandular organ that is the main site of digestive enzyme 

synthesis in the body. The pancreas consists of exocrine, endocrine and ductal cell 

compartments that are distinct in morphology and function. The endocrine compartment 

comprises 2% of total pancreatic area in the rat and is confined to the islets of 

Langerhans (Kempen, de Pont & Bonting, 1977). The endocrine pancreas is 

responsible for the secretion of the glucose-regulating hormones insulin and glucagon, 

as well as somatostatin, pancreatic polypeptide and ghrelin (Elayat, el-Naggar & Tahir, 

1995. The cell types that secrete these hormones are as follows: alpha cells produce 

glucagon; beta cells produce insulin and amylin; delta cells produce somatostatin; 

pancreatic polypeptide cells produce pancreatic polypeptide and epsilon cells produce 

the hormone ghrelin (Elayat, el-Naggar & Tahir, 1995). Pancreatic duct cells play an 

integral role in the exocrine function of the organ by producing bicarbonate and mucin 

rich secretions required for digestion and providing a passageway for digestive 

enzymes to the duodenum of the small intestine (Kuijpers & de Pont, 1987). The focus 

of this thesis is on the exocrine pancreas and its response to environmental stressors.

1.1 THE ACINAR CELL

The functional unit of the exocrine pancreas is the acinus, which is comprised of 

acinar cells (Figure 1.1). Acinar cells are designed for the synthesis, storage and 

secretion of digestive enzymes into pancreatic ducts. Hence, the acinar cell contains an 

extensive endoplasmic reticulum (ER) and Golgi apparatus to cope with the high rate of



2

protein synthesis (Hand, 1990). Morphologically, acinar cells are pyramidal in shape 

and characterized by apical-basal polarity of intracellular organelles (McCuskey & 

Chapman, 1969). While the nucleus and endoplasmic reticulum (ER) are basally 

localized, secretory vesicles known as zymogen granules are predominantly 

concentrated at the apex (McCuskey & Chapman, 1969). Secretory proteins pass from 

the rough endoplasmic reticulum (ER) to the Golgi apparatus where they are 

concentrated into condensing vacuoles as zymogens (Hand, 1990). A pancreatic 

zymogen is an inactive precursor or proenzyme that is activated in the duodenum by 

cleavage of the peptide bond in its amino-terminal region (Rinderknecht et al, 1974). In 

the presence of low concentrations of Ca2+ in the duodenum, the enzyme 

enteropeptidase (enterokinase) cleaves the terminal hexapeptide from inactive 

trypsinogen to form active trypsin. This first crucial cleavage reaction subsequently 

triggers the activation of all other pancreatic zymogens (Rinderknecht et al, 1974), 

which include chymotrypsinogen proelastase, procarboxypeptidase and 

prophospholipase A. Enzymes secreted in their active form include amylase, lipase, 

cholesterol esterase, ribonuclease and deoxyribonuclease, colipase and pancreatic 

trypsin inhibitor (reviewed by Case, 1978).
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Figure 1.1. Structure of a pancreatic acinar cell. The acinar cell exhibits apical-basal 

polarity with the nucleus and endoplasmic reticulum localized to the basal aspect (facing 

the basement membrane) and zymogen granules (storage vesicles) containing 

digestive enzyme precursors localized to the apical pole. Through the process of 

regulated exocytosis, the contents of the zymogen granules are released into the acinar 

lumen, which is continuous with pancreatic ducts.
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Pancreatic enzyme secretion is predominantly regulated via a hormonal pathway 

mediated by gastrointestinal hormones such as cholecystokinin (CCK) and a cholinergic 

pathway mediated by the neurotransmitters such as acetylcholine (ACh) (Owyang, 

1996). In addition to the binding and activation of high affinity CCKA receptors on 

pancreatic vagal afferents, rodent and human acinar cells have functional CCK 

receptors on the basolateral plasma membrane that, upon stimulation, can initiate a 

signalling cascade that regulates exocytosis (Owyang, 1996; Murphy et al, 2008). 

These receptors belong to members of the G-protein coupled receptor family, 

specifically heterotrimeric proteins of the Gq subclass (Logsdon, 1994; Yule, Baker & 

Williams, 1999). At the cellular level, agents that stimulate secretion, termed 

secretagogues initiate exocytosis through two different second messenger systems: 

cAMP (cyclic adenosine monophosphate) and IP3 (inositol triphosphate). While the 

secretagogues, CCK and ACh stimulate the IP3 pathway (Matozaki et al, 1990), other 

hormones such as secretin stimulate the cAMP pathway (Kimura et al, 1986).

In the IP3 second messenger system, secretagogue exposure induces activation 

of the a subunit of the Gq family of receptors, which triggers phospholipase C and in 

turn stimulates the production of inositol-3-phosphate (IP3) and diacylglycerol (DAG). IP3 

regulates Ca2+ release from intracellular reserves while DAG activates protein kinase C 

(PKC) (Matozaki, 1990; Yule, Baker & Williams, 1999). Under non-stress conditions, 

secretagogue stimulation of pancreatic acinar cells leads to an oscillatory rise in 

intracellular Ca2+ levels, followed by spreading of the signal (Thorn et al, 1993; reviewed 

by Logsdon, 2000). This signal subsequently leads to the fusion of zymogen granule 

membranes to the apical plasma membrane of the acinar cell, believed to be mediated
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by the proteins, soluble NSF attachment protein receptor (SNARE) and Rab (belonging 

to the Ras superfamily of monomeric G-proteins)(Sudhof, 1995). Following fusion, 

contents of the zymogen granules are released into the ductal system for transport to 

the duodenum.

Under non-physiological conditions, such as those following hyperstimulation of 

the CCK receptors to induce mild acute pancreatitis, the secretagogue induced 

exocytosis pathway is disrupted. According to one hypothesis, major events include the 

co-localization of zymogens and lysosomal enzymes such as cathepsin B into large 

vacuoles. It is believed that premature trypsinogen cleavage and activation occurs in 

these compartments where the pH is acidic and favours enzyme activation (Willemer et 

al, 1990; Steer & Meldolesi, 1988). Rise in intracellular Ca2+ levels aids the formation of 

these cytosolic vacuoles (Kruger et al, 2000; Raraty et al, 2000). Additionally, the 

process of exocytosis is said to be redirected from the apical pole to the basolateral 

aspects of the cell, resulting in elevated levels of digestive enzymes in the pancreatic 

interstitium (Scheele et al, 1987).

The acinar cell has evolved three major defense mechanisms to protect itself 

from autodigestive injury in the event of premature intracellular enzyme activation. A key 

feature of pancreatic digestive enzymes is that most of them are synthesized, packaged 

and secreted in their inactive, precursor form (termed zymogen). These zymogens are 

often proteases that are designed to be activated only upon arrival at the duodenum 

where they aid in digestion in a pH dependent manner. Second, restriction of both 

inactive and active enzymes (such as amylase, which is not produced as a precursor) to 

zymogen granules prevents unwanted contact with other intracellular organelles,
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thereby preserving cellular integrity. Third, genetic mechanisms that either inhibit further 

activation of, or degrade active intracellular proteases are in place. Serine protease 

inhibitor kazal type 1 (SPINK1) encodes an endogenous trypsin inhibitor that prevents 

the auto-activation of prematurely activated trypsin (Whitcomb et al, 1996). Therefore, 

under physiological conditions, the acinar cell is well equipped to deal with aberrant 

enzyme activation. A breakdown in any or all of these mechanisms can initiate a 

pathological response resulting in a condition known as acute pancreatitis.

1.2 PANCREATITIS

Pancreatitis is an inflammatory disease that targets the exocrine pancreas. It 

affects 100,000 people in North America yearly and is often manifested in two forms: 

acute and chronic. Acute pancreatitis is identified by sudden onset, with symptoms 

being resolved within a short period of time and the pancreas returning to its normal 

functionality (Sarles et al, 1965; Steer & Meldolesi, 1988). 25% of patients with acute 

pancreatitis develop a severe form of the disease, which can be lethal in half of these 

cases (Bhatia, 2004). Characteristic symptoms of the disease include severe abdominal 

pain, nausea, diarrhea and fever. Histological analysis reveals inflammation of the 

pancreas evident from areas of lymphocyte infiltration, varying degrees of sclerosis, 

pancreatic and peri-pancreatic edema and occasional necrosis. Diagnostic tests for 

acute pancreatitis include an analysis of serum amylase and lipase levels, blood sugar 

levels, and subsequent histological examination of pancreatic morphology (Sarles et al., 

1965, Steer & Meldolesi, 1988).
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Chronic pancreatitis is identified by persistent changes in pancreatic morphology 

and functionality, with long-term complications and recurring symptoms. It is believed to 

be a result of persistent attacks of acute pancreatitis episodes, causing irreparable 

damage to pancreatic morphology. Recurring attacks of significant steatorrhea 

(excessive fat content in stool) are a characteristic symptom. Histological changes in the 

pancreas include significant inflammation and lesions, extensive fibrosis and necrosis, 

occasional calcification and acinar dedifferentiation (Sarles etal, 1965).

1.2.1 Pathogenesis of pancreatitis

While the pathogenesis of acute pancreatitis is poorly characterized, the general 

consensus is that the initiating event involves the premature activation of enzymatic 

precursors, occurring within the acinar cell (Steer & Meldolesi, 1988). Recent evidence 

implicates the role of environmental stimuli in sensitizing the acinar cell to secretagogue 

input, including those of CCK and acetylcholine (reviewed by Gorelick & Thrower, 

2009). Therefore, it appears that acute pancreatitis is a multi-factorial disease and the 

exact cause-effect relationship between application of harmful stimuli and initiation of 

the acinar response has not been unraveled. Nevertheless, some of the key events that 

occur in the earliest stages of acute pancreatitis pathogenesis have been well 

elucidated through the use of rodent models.

Although several models exist for studying the initiating events in pancreatitis, the 

best characterized model to date involves administration of supramaximal doses of the 

CCK analog, cerulein, via subcutaneous, intraperitoneal or intravenous routes of entry.



9

Cerulein-induced pancreatitis (CIP) induces a mild, edematous form of pancreatitis, with 

little to no mortality. In mice, CIP is induced by 1-10 hourly injections of cerulein and 

confirmed by significant increases in serum amylase and lipase levels, pancreatic 

edema and presence of acute pancreatic inflammation (Lampel & Kern, 1977). WT mice 

recover within 24 hours, as judged by return to normal serum enzyme levels and 

restoration of pancreatic tissue integrity (reviewed by Su et al, 2006).

Following induction of pancreatitis in the rodent pancreas with cerulein, one of 

the earliest morphological changes observed in the acinar cell is the formation and 

accumulation of vacuoles containing both digestive zymogens as well as lysosomal 

hydrolases (Watanabe et al, 1984; Saluja et al, 1987). This ‘co-segregation’ event 

allows for inactive digestive zymogens to come into contact with lysosomal hydrolases, 

particularly Cathepsin B, which has the ability to convert inactive trypsinogen to active 

trypsin (Saluja et al, 1985; Saluja et al, 1987). Premature activation of trypsinogen 

within the acinar cell is considered a hallmark of an early acute pancreatitis event. 

Activated trypsin can, in turn, activate other zymogens within the acinar cell, thereby 

initiating a cascade of events that leads to autodigestive injury to the pancreas 

(Greenbaum, Hirshkowitz & Shoichet, 1959; Figarella, Miszczuk-Jamska & Barrett, 

1988). Other significant events in pancreatitis include a marked decrease in apical 

exocytosis and resulting release of activated enzymes into the interstitium, 

fragmentation of the Golgi apparatus, formation of autophagosomes, redistribution of 

the actin cytoskeleton, and upregulation of proinflammatory factors (Watanabe et al, 

1984; Van Acker et al, 2007).
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1.2.2 Environmental factors in pancreatitis

Several causes of pancreatitis have been identified, including alcohol abuse, 

ductal obstruction, ischemia and drugs (reviewed by Saluja & Bhagat, 2003). Among 

these, alcoholism and ductal obstruction by gallstones are the two leading causes of 

acute pancreatitis in humans (Ammann, 2001). In addition, cigarette smoking has been 

recently linked to acceleration of the progression of chronic pancreatitis in humans 

(Maisonneuve et al, 2005). Although the majority of cases of acute pancreatitis are 

associated with alcohol abuse, only a small percent of heavy alcohol abusers go on to 

develop pancreatitis (Saluja & Bhagat, 2003). Therefore, it is believed that genetics play 

a significant role in determining an individual’s susceptibility and sensitivity to pancreatic 

injury.

1.2.3 Genetic susceptibility to pancreatitis

Given that the onset of pancreatitis is coincident with premature intracellular 

trypsinogen activation, studies have focused on the role of two genes in determining 

individual susceptibility to pancreatitis. A point mutation in exon 3 of the cationic 

trypsinogen gene, PRSS1 results in persistent trypsin activity and correlates with the 

occurrence of hereditary pancreatitis in humans (Whitcomb et al, 1996). Estimated 

penetrance for mutations in PRSS1 and the occurrence of hereditary pancreatitis is 

80% (Whitcomb et al, 1996). More recent studies have also reported a high degree of 

correlation between mutations in PSTI (pancreatic secretory trypsin inhibitor) and the 

onset of pancreatitis (Witt et al, 2000). Analysis of a trypsin receptor of the protease-



11

activated receptor (PAR) family, PAR-2 has revealed that its activation, in concert with 

premature trypsinogen activation and its subsequent inhibition by SPINK1 plays a role 

in the pathogenesis of acute pancreatitis (Maeda et al, 2005; Sharma et al, 2005). In 

addition, individuals with family history of hyperlipidemia, those with mutations in 

lipoprotein lipase (LPL) and those with apolipoprotein C II deficiency are at increased 

risk of developing acute pancreatitis (Wilson et al, 1993; Simon et al, 2001). Upon 

induction of pancreatitis, LPL deficient mice develop severe pancreatic necrosis and 

haemorrhaging as a result of free fatty acids in the blood (Wang et al, 2009). 

Rosendahl et al (2008) determined that among 908 individuals diagnosed with either 

idiopathic (etiology unknown) or hereditary pancreatitis, 4.8% contained CTRC 

(chymotrypsinogen C; a digestive enzyme with the ability to destroy prematurely 

activated trypsin) variants compared to 0.7% of healthy controls. While these findings 

underline the role of genetic factors in determining susceptibility to pancreatitis, they do 

not account for the majority of the genetic variation that increases susceptibility to 

pancreatitis.

1.3 ALCOHOL AND THE PANCREAS

Chronic alcohol abuse is a leading cause of health issues in North America, 

increasing the risk of liver disease, hypertension, and cancer. In addition, excessive 

alcohol consumption accounts for approximately 40% of all cases of chronic and acute 

pancreatitis. While the effects of alcohol on the acinar cell have been well characterized, 

the pathogenesis of alcohol induced pancreatitis is poorly understood. Studies in



12

rodents indicate that alcohol administration on its own has little to no effect on 

pancreatic morphology (Siech, Heinrich & Letko, 1991; Andrzejewska, Dlugosz & 

Jurkowska, 1998). Combining models of experimental pancreatitis with ethanol feeding 

indicates that ethanol sensitizes acinar cells to further damage. Rats fed an ethanol diet 

and subsequently injected with physiological doses of the cholecystokinin octopeptide 

(CCK-8) exhibited signs of pancreatitis that were absent in non-ethanol fed counterparts 

(Pandol et al, 1999; Pandol et al, 2003). This model allows for studying the effects of 

alcohol on pancreatic blood flow and acinar cell specific damage (reviewed by 

Schneider, Whitcomb & Singer, 2002).

1.3.1 Ethanol metabolism in the pancreas

Ethanol metabolism is said to occur predominantly via the oxidative or non- 

oxidative pathways. The oxidative pathway is catalyzed by the enzymes alcohol 

dehydrogenase, cytochrome P4502E1 (CYP2E1) and catalase, yielding the toxic 

metabolite, acetaldehyde and reactive oxygen species (ROS). In the non-oxidative 

pathway, ethanol is esterified by fatty acids, resulting in the production of cholesteryl 

esters (CE) and fatty acid ethyl esters (FAEE) as toxic metabolites (Haber et al, 1998). 

Ethanol metabolism by pancreatic acinar cells has been well characterized (Haber et al, 

1998; Gukovskaya et al, 2002). Both, isolated pancreatic acinar cells and pancreatic 

tissue in vivo show similar activities of enzymes involved in ethanol processing, 

indicating that acinar cells are the source of ethanol metabolism in the pancreas. While 

ethanol is typically processed via the oxidative pathway in the liver, it is metabolized via



13

both pathways in the pancreas (Haber et al, 1998; Gukovskaya et al, 2002). However, 

alcohol dehydrogenase (ADH; the enzyme that catalyzes the conversion of alcohol to 

acetaldehyde) activity in the pancreas is only 7-12% of that in the liver while FAEE 

synthase activity is 4 times greater in the pancreas (Gukovskaya et al, 2002). On the 

other hand, in vitro studies have revealed that the rate of oxidative metabolism in the 

pancreas is significantly higher than that of non-oxidative metabolism (Apte et al, 1997; 

Gukovskaya et al, 2002). Taken together, it is clear that pancreatic acinar cells 

metabolize ethanol via both pathways, although the contributions of each pathway are 

not entirely understood.

Regarding the actions of the toxic metabolites of ethanol on the acinar cell, it has 

been established that acetaldehyde can cause morphological damage to rat and dog 

pancreatic acinar cells (Nordback et al, 1991). In addition, acetaldehyde has been 

shown to alter the acinar redox state, disrupt the actin cytoskeleton and alter CCK 

induced acinar enzyme secretion in vivo by affecting secretagogue binding to their 

receptors (Sankaran et al, 1985). ROS produced by oxidative metabolism have been 

linked to the generation of oxidant stress within the acinar cell, potentially resulting in 

damage to cell membranes and intracellular proteins (Norton et al, 1998). Both, acute 

and chronic exposure to ethanol results in the production of ROS, leading to oxidant 

stress in the rat pancreas (Norton et al, 1998). In vivo introduction of FAEEs into rats 

led to the development of pancreatic edema, formation of vacuoles within acinar cells, 

lysosomal destabilization and premature trypsinogen activation, events that are 

hallmarks of acute pancreatitis (Haber et al, 1993; Werner et al, 1997). Recent studies
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have also elucidated the role of signalling pathways in mediating the effects of the toxic 

metabolites of ethanol on the acinar cell. For example, FAEE production has been 

shown to induce inflammatory signalling pathways involving the pro-inflammatory 

factors, nuclear factor -Kappa B (NF-kB) and activator protein-1 (AP-1), in addition to 

altering intracellular Ca2+ signalling pathways (Gukovskaya et al, 2002; Criddle et al, 

2006). These findings suggest that ethanol metabolism in the pancreas plays a crucial 

role in determining its toxic effects on the acinar cell, thereby providing more insight into 

the pathogenesis of alcohol induced pancreatitis.

1.3.2 Models of alcohol induced pancreatitis

Animal models of ethanol intake have been a significant tool in studying the 

effects of ethanol on a variety of organs, particularly the liver, pancreas and the heart. In 

vitro models of acute ethanol exposure involve treatment of isolated pancreatic acinar 

cells with varying doses of ethanol, followed by examination of parameters of acinar 

function and/or injury (Cosen-Binker et al, 2007). Acute in vivo models include infusion 

(by catheters) of ethanol for a short duration and subsequent analysis. These systems 

have revealed the generation of plasma and pancreatic FAEEs and dose-dependent 

pancreatic injury, indicative of acute pancreatitis (Werner et al, 2002). Conventional 

chronic models include ethanol-laced diet models (as in the Lieber-DeCarli liquid 

ethanol diet), continuous intra-gastric infusion of ethanol (as in the Tsukamoto-French 

method), ethanol inhalation, ethanol gastric gavage and intraperitoneal injections 

(Lieber & DeCarli, 1986; reviewed by Keane & Leonard, 1989; Sampson et al, 1997;
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Juarez & Barrios de Tomasi, 1999; lumuro et al, 2000). Among these, the Lieber- 

DeCarli diet model is the most nutritional and physiologically relevant, with blood 

ethanol levels being equivalent to those observed during clinical intoxication in human 

patients (Lieber & DeCarli, 1986). The afore-mentioned models are not physiologically 

relevant due to the unconventional and physiologically irrelevant method of ethanol 

administration. On the other hand, a concern with the efficacy of the Lieber-DeCarli 

model is that dietary manipulation of the control diet to match calories in the ethanol diet 

may skew nutrient composition and yield nutrient-specific effects in controls. For 

instance, one variety of Lieber-DeCarli liquid control diet replaces calories from ethanol 

with 47% calories from carbohydrates while the isocaloric liquid ethanol diet is 

composed of only 11% from carbohydrates, making it a low-carbohydrate diet. In this 

instance, ethanol-specific effects are difficult to unmask (Lieber & DeCarli, 1986). 

Another criticism is the discrepancy in weight gain and preference for the diet in 

comparison to the controls. Despite its drawbacks, the Lieber-DeCarli diet model is still 

an effective and commonly used model system for studying alcohol induced 

pancreatitis.

1.3.3 Ethanol and pancreatic enzyme secretion

According to the current model of alcohol induced pancreatitis (Figure 1.2), 

ethanol is said to have two major effects on pancreatic enzyme secretion. A four -week 

liquid ethanol diet in rats resulted in a modest increase in protein and mRNA levels of 

the digestive enzymes, trypsinogen and chymotrypsinogen with statistically significant 

increases in pancreatic lipase as well as the lysosomal enzyme cathepsin B (Apte et al,
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1995). Given that cathepsin B is capable of converting trypsinogen to trypsin within the 

acinar cell (Apte et al, 1995). Conversely, chronic ethanol intake in vivo in rats led to a 

decrease in basal rates of amylase secretion (Ponnappa et al, 1987). Chronic ethanol 

consumption followed by postprandial cholinergic stimulation results in a blocking of 

exocytosis at the apical pole and redirection to the basolateral aspect of pancreatic 

acinar cells (Cosen-Binker et al, 2007). Acute low-dose ethanol exposure, followed by 

cholinergic stimulation resulted in decreased amylase secretion from basal levels 

(Cosen-Binker et al, 2007). These findings suggest that ethanol consumption alters 

pancreatic enzyme secretion and potentiates the acinar cell to premature enzyme 

activation, thereby increasing susceptibility to the initiating events of acute pancreatitis.
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Figure 1.2. Current model of the pathogenesis of alcoholic pancreatitis. According 

to the current hypothesis, ethanol and its toxic metabolites exert three major effects on 

the pancreatic acinar cell. Firstly, ethanol causes an increase in digestive (trypsinogen, 

chymotrypsinogen and lipase) and lysosomal enzyme (cathepsin B) content at both the 

mRNA and protein levels. Secondly, accumulation of ethanol’s toxic metabolites such 

as cholesteryl esters (CEs) and fatty acid ethyl esters (FAEEs) cause the destabilization 

of lysosomes (L) and zymogen granules (ZG). Thirdly, in the presence of an appropriate 

trigger or co-factor, the acinar cell is sensitized to premature intracellular enzymatic 

activation, leading to inflammation, pancreatic stellate cell activation and fibrosis.
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1.4 UNFOLDED PROTEIN RESPONSE

Protein folding in the endoplasmic reticulum is an intricate process carried out by 

two main classes of proteins: chaperones and foldases (Schroder & Kaufman, 2006). 

When this process is disrupted, the result is a misfolded protein, mainly characterized 

by exposed hydrophobic amino acid side chains that can form aggregates and 

accumulate in the ER. This presents a disturbance to physiological ER homeostasis and 

results in a condition known as ER stress (Schroder & Kaufman, 2006). The ER aims to 

alleviate ER stress and restore homeostasis by activating signal transduction pathways, 

collectively referred to as the unfolded protein response (UPR; Adams & Rose, 1985; 

Gething, McCammon & Sambrook, 1986; Kozutsumi et al, 1988). In addition, the UPR 

is also active at basal levels in most cell types in response to changes in nutrient levels 

(Schroder, Chang & Kaufman, 2000; Scheuner et al, 2001).

The UPR is initiated when the ER chaperone, BiP (immunoglobulin binding 

protein)/GRP78 (Glucose regulated protein 78) dissociates from the three main 

transducers of ER stress, namely PERK (protein kinase R (PKR) like endoplasmic 

reticulum resident kinase), IRE1 (inositol-requiring enzyme 1) and ATF6 (activating 

transcription factor 6) (Figure 1.3) (Adams & Rose, 1985; Gething, McCammon & 

Sambrook, 1986).
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Figure 1.3. Schematic of the mammalian unfolded protein response. The UPR 

comprises three signal transduction pathways and is initiated when the ER chaperone, 

BÎP/GRP78 dissociates from the three main transducers of ER stress, PERK, IRE1 and 

ATF6. Upon release of BiP, PERK undergoes oligomerization and autophosphorylation 

and phosphorylâtes its substrate, elF2a, which in turn causes an increase in translation 

of ATF4 and its target ATF3. Activation of the PERK arm results in a general attenuation 

of protein translation. Prolonged ER stress can activate the pro-apoptotic factor, CHOP 

which in turn can induce GADD34 expression. GADD34 acts in a negative feedback 

fashion by associating with PP1 to promote dephosphorylation of elF2a. Upon 

activation, IRE1 oligomerizes and trans-autophosphorylates, allowing it to cleave a 26- 

bp fragment from the mRNA of its substrate, Xbp1. sXBP1 is a potent transcription 

factor that induces expression of ER chaperones and foldases. Activation of ATF6 

results in its cleavage in the Golgi and translocation to the nucleus where it induces 

expression of ER chaperones and factors that degrade the unfolded/misfolded proteins.
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Adapted from Schroder & Kaufman, 2004.
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1.4.1 The PERK Pathway

PERK is an ER resident type I transmembrane protein kinase (Shi et al, 1998; 

Shi et al, 1999; Harding, Zhang & Ron, 1999). Under physiological conditions, its ER 

luminal domain is bound to the chaperone, BiP and upon release of BiP, PERK 

undergoes oligomerization and phosphorylates its substrate, eukaryotic initiation factor 

2a (elF2a) (Shi et al, 1998; Shi et al, 1999; Harding, Zhang & Ron, 1999). 

Phosphorylation of elF2a on the serine 51 residue (Harding, Zhang & Ron, 1999) 

causes the inhibition of guanosine-5’-triphosphate (GTP)- guanosine-5’-diphosphate 

(GDP) exchange on elF2 by elF2ß, thereby preventing formation of the 43S pre

initiation complex (Schröder & Kaufman, 2006). This complex is comprised of the 43S 

ribosomal subunit, GTP, elF2 and methionyl methionine initiator tRNA and inhibits 

translation upon its entry to the 5' capped end of eukaryotic mRNA (Schröder & 

Kaufman, 2006). Therefore, activation of the PERK arm of the UPR results in a general 

attenuation of protein translation that aims to protect cells from ER stress and promote 

cell survival (Harding et al, 2000). In addition, phosphorylation of elF2a causes an 

increase in translation of activating transcription factor 4 (ATF4) by selective translation 

of mRNAs encoding for upstream open reading frames (uORFs) (Hinnebusch, 1997; 

Harding et al, 2000). ATF4 can induce expression of the transcription factor ATF3 

(activating transcription factor 3; a member of the ATF/CREB subfamily of basic-region 

leucine zipper (bZIP) proteins), which in turn induces expression of the pro-apoptotic 

transcription factor CHOP (CCAAT/enhancer binding protein homologous protein) and 

GADD34 (growth arrest and DNA damage inducible protein 34) (Jiang et al, 2004). 

Activation of the PERK pathway in response to ER stress is tightly regulated. Gadd34
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associates with the catalytic subunit of protein phosphatase 1 (PP1; an elF2a 

phosphatase) and promotes the dephosphorylation of elF2a in negative feedback 

fashion to control the attenuation of translation response to PERK activation (Connor et 

al, 2001).

Analysis of a Perk'A mouse model has revealed a significant effect on the 

exocrine pancreas. Perk'A mice show significant acinar cell death and atrophy of the 

pancreas three weeks postnatally (Zhang et al, 2002). There is a loss of endocrine 

pancreatic (3 cells and a subsequent diabetic phenotype due to deficiencies in insulin 

production as well as defects in bone formation (Harding et al, 2001; Zhang et al, 2002). 

In addition, the acinar cell specific Perk'A mouse revealed that the effects of PERK on 

the exocrine pancreas are cell-autonomous and the deficits observed are not due to ER 

stress, but rather an inflammatory response that leads to an oncotic (swelling necrosis) 

form of cell death (lida et al, 2007).

1.4.2 The IRE1 pathway

IRE1 is an ER resident type I transmembrane protein kinase with 

endoribonuclease activity (Cox, Shamu & Walter, 1993; Mori et al, 1993). Mammals 

contain two isoforms of IRE1 - IRE1a (Tirasophon et al, 2000) and IRE1(3 (Wang et al, 

1998). The luminal N-terminal domain of IRE1 senses accumulation of unfolded or 

misfolded proteins in the ER. Release of the ER chaperone BiP is the triggering event 

for activation of IRE1 upon induction of ER stress (Cox, Shamu & Walter, 1993). The C- 

terminal domain of IRE1 is an RNAse (endoribonuclease) whose known substrate in
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yeast is HAC1 mRNA, the functional homologue to mammalian XBP1 (X-box binding 

protein 1) (Yoshida et al, 2001; Calfon et al, 2002). Upon activation, IRE1 oligomerizes 

and trans-autophosphorylates its kinase domain, thereby opening its ATP-binding 

domain (Papa et al, 2003). Binding of ADP to this domain is sufficient to cause an 

activating conformational change in the RNAse domain of IRE1, allowing it to cleave 

exon-intron junctions in the mRNA of its substrates (Cox, Shamu & Walter, 1993; 

Yoshida et al, 2001; Calfon et al, 2002; Papa et al, 2003). In yeast, tRNA ligase splices 

the exons of Hac1u (uninduced H ad) mRNA while in mammals, an Xbp1 ligase is yet to 

be identified (Sidrauski, Cox & Walter, 1996). The resulting transcripts: H ad 1 (induced 

H a d ) in yeast and sXbp1 (spliced Xbp1) in mammals are actively translated to 

transcription factors that translocate to the nucleus and regulate expression of several 

UPR target genes (including ER chaperones and factors that promote ER associated 

degradation) by binding to specific promoter regions such as the UPRE (unfolded 

protein response element) and ERSE-1 (ER stress response element 1) (Mori et al, 

1998; Yoshida et al, 2001).

Recent studies have highlighted the role of XBP1 in the exocrine pancreas. 

Pancreatic acinar cell specific ablation of XBP1 has been demonstrated to be lethal to 

acinar cells, resulting in ER stress, loss of zymogen granules (and MIST1 expression) 

and acinar ultra-structure, reduction in the enzymes, amylase and elastase and 

premature activation of the digestive enzyme, carboxypeptidase (CPA) (Hess et al, 

2011). Remarkably, following the acinar cell specific ablation of XBP1, the pancreas 

showed a regenerative response involving progenitor centroacinar cells (Hess et al,
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2011). These findings implicate XBP1 not only as a key regulator of ER stress in the 

pancreas but also in the maintenance of acinar cell viability (Hess et al, 2011).

Ire1'/' mice have been characterized and were found to be lethal between 

embryonic days 9.5 to 11.5 (Urano et al, 2000). Xbp1'A mice on the other hand also 

begin to die at embryonic day 12.5 primarily through defective plasma cell and 

hepatocyte differentiation (Reimold et al, 2000), suggesting that these two molecules 

play an integral role in development in addition to their function as mediators of ER 

stress.

1.4.3 The ATF6 pathway

Activating Transcription Factor 6 (ATF6) is a type II transmembrane bZIP 

transcription factor that has two isoforms - ATF6a and ATF6(3 (Haze et al, 2001). During 

ER stress, BiP dissociates from ATF6 at which time, ATF6 translocates from the ER 

membrane to the Golgi apparatus where it undergoes sequential cleavage of its luminal 

domain by the Golgi resident serine protease, S1P (site 1 protease) (Haze et al, 1999; 

Yoshida et al, 2000). The metalloprotease, S2P (site 2 protease) then cleaves and 

releases the cytosolic N terminal domain of ATF6 (Haze et al, 1999; Yoshida et al, 

2000; Ye et al, 2000). The cleaved ATF6 then translocates to the nucleus where the 

cytosolic domain binds to the ATF/cAMP response element (CRE) and the ER stress 

response elements (ERSE) I and II (Yoshida et al, 1998; Wang et al, 2000; Kokame, 

Kate & Miyata, 2001). Targets of ATF6 include ER resident molecular chaperones (such
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as BiP), and transcription factors XBP1 and CHOP (Wang et al, 2000). These factors 

aim to restore protein folding and alleviate ER stress.

Atf6aA mice show no overt phenotype under non-stress conditions, but upon 

induction of ER stress by tunicamycin (a chemical agent that inihibits N-linked protein 

glycosylation and generates ER stress), these mice develop hepatic steatosis (Wu et al, 

2007). Atf6(3v' mice show normal development and no overt phenotype, while Atf6aA 

/Atf6/5'/' mice exhibit embryonic lethality, indicating redundancy in the functions of the 

two molecules (Yamamoto et al, 2007). These findings suggest that while the two 

isoforms of ATF6 are not individually crucial for development, they play a critical role in 

maintaining ER function during chronic stress.

Persistent ER stress can lead to activation of cell death mechanisms, particularly 

through the apoptotic pathway. Failure to ameliorate ER stress is believed to cause a 

switch from the immediate adaptive responses to a multitude of intrinsic and extrinsic 

pro-apoptotic responses. One prominent route is through the transcriptional induction of 

Chop separately by ATF6 and ATF4 (Scheuner et al, 2001; Oyadomari & Mori, 2004). 

Additionally, the IRE1 pathway of the UPR can activate apoptotic cell death. IRE1 forms 

a complex with TRAF2 (tumour necrosis factor receptor associated factor 2) and ASK1 

(apoptosis signal-regulating kinase 1) to activate c-Jun amino-terminal kinase to induce 

apoptosis (Urano et al, 2000). Nevertheless, the dynamics of this switch from anti- to 

pro-apoptotic mechanisms remain unclear. The UPR is hence a complex signalling 

pathway playing a dual role in protecting the cell from stressors. On the one hand, the 

adaptive aspect of the UPR aims to alleviate ER stress and restore homeostasis by
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attenuating protein translation, upregulating ER chaperones and promoting ER 

associated degradation of misfolded proteins. On the other hand, chronic and severe 

ER stress promotes cell death via apoptosis.

It is possible that mutations in UPR mediators, acting in concert with 

environmental stressors predispose some individuals and not others to pancreatic 

disease (reviewed by Pandol et al, 2011). For instance, certain Xbp1 mutations confer 

risk for inflammatory bowel disease in humans (Kaser et al, 2008). While all three 

pathways of the UPR are activated in response to both L-arginine and cerulein-induced 

pancreatitis (Sans et al, 2003; Kubisch et al, 2006; Kowalik et al, 2007), the role of ER 

stress in the pathogenesis of pancreatitis has not been fully characterized. A number of 

gene targets have been identified for sXBP1, including Misti, a basic helix-loop-helix 

(bHLH) transcription factor required for complete acinar cell maturation (Pin et al, 2001; 

Alcosta-Alvear et al, 2007). Given that chronic ethanol feeding induces Xbp1 splicing, 

this project examines UPR activity in response to chronic ethanol exposure, in the 

context of a Misti'A mouse model.

1.5 MIST1 AND THE PANCREAS

MIST1 is a serous exocrine cell specific transcription factor that is crucial for the 

complete maturation and proper function of acinar cells of the exocrine pancreas (Pin et 

al, 2001; Johnson et al 2004). It is also required for intracellular organization of acinar 

cells and as a consequence, regulated exocytosis (Johnson et al, 2004). MIST1 

expression is first observed in the nuclei of acinar cells of the developing pancreas at
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embryonic day 10.5 (Pin et at, 2001). It is completely absent from endocrine and ductal 

pancreatic tissue (Pin et al, 2001). In addition to the pancreas, Misti is expressed in 

cells that exhibit regulated exocytosis, including the acinar cells of the salivary and 

lacrimal glands, chief cells of the stomach, Paneth cells of the intestine and secretory 

cells of the seminal vesicle and prostate gland (Pin et al, 2000). Our lab has generated 

a Mist1'A mouse model to better understand the role of Misti in pancreatic development, 

function and disease.

1.5.1 The Mist1'A mouse

The Mist1'A mouse shows no overt phenotype (Pin et al, 2001). They are viable 

and fertile and develop a functional pancreas (Pin et al, 2001). At the histological level, 

one of the most salient differences between WT and Mist1'A pancreatic tissue is the 

disruption of both inter- and intracellular acinar organization in the MistTA tissue. At the 

intracellular level, M is t icells have apparent mislocalization of the nucleus and ER and 

dispersed zymogen granules throughout the cell in contrast to the WT acinar cell with a 

basally localized nucleus and ER and apically localized zymogen granules (Pin et al, 

2001). The primary deficit in the Mist1v~ pancreas is the inability to properly position 

zymogen granules at the apical pole of the acinar cell for regulated exocytosis (Johnson 

et al, 2004). MistTA cells also show deficits in intracellular calcium signalling, including 

the presence of aberrant calcium waves in response to secretagogue stimulation and 

loss of IP3R3 (inositol tri-phosphate receptor 3) (Luo et al, 2005).
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Mist1'A tissue deteriorates over time, resulting in the loss of acinar cell 

differentiation characteristics and appearance of pancreatic lesions in older mice, 

including distended acinar and duct lumens (Pin et al, 2001). Part of the Mist1v~ 

phenotype includes premature activation of digestive enzymes such as 

carboxypeptidase (CPA) and subsequent intracellular digestion of organelles (Pin et al, 

2001). These events are comparable to the initial events in the pathogenesis of 

pancreatitis. Furthermore, expression of genes that are known to be upregulated during 

pancreatitis, such as PSP (pancreatic stone protein) and PAP1 (pancreatitis associated 

protein 1), is significantly increased in Mist1'A tissue (Pin et al, 2001). These 

characteristics make the MistTA mouse a model of chronic pancreatic injury and an 

important tool for studying the pathogenesis of pancreatitis.

1.5.2 The UPR in the M istTA mouse

Following the initiation of cerulein induced pancreatitis, assays for key UPR 

markers revealed a number of striking differences between WT and MistTA cells (Figure 

1.4). After 4 hours of initial cerulein stimulation, Mist1'A cells failed to show significant 

increases in ATF3 expression and phosphorylation of elF2a, relative to WT cells. 

GADD34 levels were elevated before and after cerulein stimulation in Mist1'A cells, 

suggesting an inhibition of elF2a dephosphorylation. Taken together, these findings 

indicate that the Mist1'A mouse is a genetic model of chronic stress with disregulation of 

the UPR upon induction of pancreatic injury.
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Figure 1.4 Differential activation of the UPR in WT and Mist1'/m pancreatic acinar 

cells upon induction of acute pancreatic injury. Upon initiation of CIP, WT 

pancreatic acinar cells show activation of all three arms of the UPR. Following the 

release of BiP, PERK undergoes phosphorylation and oligomerization, resulting in the 

phosphorylation of elF2a, causing a general attenuation of translation. This is regulated 

in a negative feedback fashion by GADD34, which promotes the dephosphorylation of 

elF2a. Phosphorylated IRE1 increases ASK1 expression thereby activating JNK and 

promoting apoptotic cell death. Mist1'A pancreatic acinar cells contain significantly high 

levels of GADD34 prior to CIP, preventing the phosphorylation of elF2a and inhibiting 

translational attenuation in response to CIP. Limited JNK activation (decreased 

apoptosis) and ATF3 expression is observed, coincident with increased severity of 

pancreatitis.
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1.6 HYPOTHESIS AND OBJECTIVES

Hypothesis

MistVA mice represent a model of chronic pancreatic injury. Upon induction of acute 

pancreatitis, they show increased susceptibility to and severity of pancreatic damage 

and an altered unfolded protein response. Based on these studies, I hypothesize that 

Mist1'A mice will be more sensitive to chronic ethanol feeding, compared to WT mice, 

due to an inability to fully activate the unfolded protein response. To address this 

hypothesis, I undertook the following objectives:

Objectives

1. Characterize the response of Mist1'A pancreas to an ethanol laced diet

2. Examine the effect of chronic ethanol feeding on the UPR in pancreatic acinar 

cells

3. Examine the UPR in Mist1'A pancreatic acinar cells following ethanol feeding

4. Determine if chronic ethanol feeding followed by induction of acute pancreatitis 

alters UPR in pancreatic acinar cells

This work should provide a better explanation of how MIST 1 governs susceptibility to 

pancreatic disease during adverse dietary conditions.
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CHAPTER 2: MATERIALS AND METHODS

2.1 ANIMALS

All mice used for this project were male and have a C57BL/6 genetic background. 

MistVA mice were generated in which the coding region of both the endogenous Misti 

alleles was replaced by the bacterial LacZ gene, which encodes for the enzyme, (3- 

galactosidase ((3-gal; Pin et al, 2001). MistTA animals were backcrossed for ten 

generations to be congenic with C57BL6 mice.

Mice were handled according to the stipulations of the University of Western Ontario 

and by the Canadian Council for Animal Care. All procedures were approved by the 

Animal Care Committee at the University of Western Ontario (Protocol # 2008-116). 

Animals were housed in individual cages in a closed facility with a 12 hour light-dark 

cycle and fed standard rodent chow, except where indicated.

2.2 DIETS

Four to five month-old C57BL/6 MistTA (Pin et al, 2001) and congenic C57 BI6 mice 

were housed individually and fed a Lieber-DeCarli ethanol (LDC-E; diet #L10016, 

Research Diets) diet ad libitum for six weeks (n=5 (round 1); n=7 (round 2); n=4 (round 

3)). This diet consisted of 36% of kcal from ethanol and 36% of kcal from fat. As a 

control, mice were fed a LDC-C liquid diet (diet #L10015, Research Diets) that replaced 

calories from ethanol with those from isocaloric maltodextrin (a carbohydrate). The

LDC-C diet also consisted of 36% of kcal from fat. Control mice were fed standard
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breeder’s chow that had a lower composition of fat (22% kcal; Teklad Global 2019 

Rodent Diet). During the course of the diet, mice were weighed daily and food replaced 

daily. Food intake was measured by subtracting the amount remaining in the feeding 

bottle following a 24 hour period from the amount that was initially placed. Daily caloric 

intake was determined with 1 gram of the diet equivalent to 1 ml_ and yielded 1 kcal of 

energy units. For comparison of diets, see Table 2.1.

2.3 INITIATION OF CERULEIN-INDUCED PANCREATITIS

In some mice, mild edematous acute pancreatitis was induced in mice following the 6 

week LDC-C and LDC-E diet in wild type mice, through four hourly injections of cerulein. 

Control mice on the standard chow diet were also injected with cerulein. Each mouse 

received 50 pg/kg body weight of cerulein per injection (Sigma, St. Louis, MO) dissolved 

in 0.9% saline, via intraperitoneal injections (n=4).

2.4 SERUM AMYLASE ANALYSIS

Blood was obtained through cardiac puncture, placed on ice for 20 minutes and 

centrifuged at 5000 x g for 15 minutes at 4°C. Serum amylase levels were determined in 

the resulting serum, using the Phadebas amylase detection kit (Pharmacia Diagnostics, 

Dorval, QC) as per manufacturer’s instructions.
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2.5 EDEMA

A small portion of the pancreas was removed and placed into pre-weighed Eppendorf 

tubes, which were weighed along with the pancreas to obtain wet pancreatic weight. 

Tubes were incubated at 55°C for 2 days, allowing for complete desiccation of the 

pancreas. The net water loss was determined by the following equation;

Edema (%) = (Wet weight -  Dry weight] / [Wet weight]) x 100%

2.6 PROTEIN ANALYSIS

2.6.1 Protein Isolation and Quantification

At the time of dissection, the splenic portion of the pancreas was removed and 

immediately frozen in liquid nitrogen. Tissue was later homogenized and sonicated in 

isolation buffer consisting of 1 M Tris (pH 7.2), 1 M MgCI2, 1 M CaCI2, 1 M DTT, 5% 

(wt/vol) Nonidet P-40, 30 mM NaF, 2 mM NaVO, 5 pM Leupeptin, 5 pM Chymostatin, 5 

pM Pepstatin, 1 mM PMSF and dH20. Approximately 500 pL of the buffer was used per 

100 mg of tissue. Homogenized samples were then sonicated for 20 seconds at high 

speed and centrifuged at 5000 x g for 5 minutes. The pellet was discarded and the 

supernatant was retained. Protein samples were then quantified using a Bradford 

protein quantification assay. In this assay, 1 mL of Bradford solution (4 parts dH20 to 1 

part Bradford dye (Bio-Rad, CA) was added to 1 pL protein sample. This solution was 

allowed to stand at room temperature for 15 minutes before its absorbance was 

determined by a spectrophotometer (set at wavelength 590 nm). The resulting
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absorbance values were converted to concentrations in pg/pL according to the following 

calculation:

Concentration (pg/pL) = [Absorbance x 0.038] / 0.07

2.6.2 Immunoblotting

For immunoblot analysis, 40-50 pg of protein was resolved by Sodium Dodecyl Sulfate- 

Polyacrylamide Gel Electrophoresis (SDS-PAGE). For this procedure, 7-12% 

acrylamide solutions were prepared and poured between glass plates, combined into a 

plate holding assembly. The separating gel consisted of a buffer consisting of Tris, SDS 

and dH20  (pH 8.8), acrylamide stock and distilled water along with 10% ammonium 

persulfate (APS) and tetramethylethylenediamine (TEMED). Following polymerization 

for 30 minutes, a stacking gel composed of a buffer consisting of Tris, SDS and dH20  

(pH 6.8), acrylamide stock, distilled water, 10% APS and TEMED was pipetted onto the 

separating gel. A 10 or 15 well comb was inserted to form wells in the stacking gel. For 

preparation of the protein samples, 5pL of 1x SDS loading dye was added to 1pL of (3- 

mercaptoethanol and the appropriate volume of protein, as determined by its 

concentration. Samples were heated at 95°C and centrifuged before being loaded onto 

wells. Protein was resolved on the gel at 100 volts until the dye front reached the end of 

the gel.

Following electrophoresis, 10 pg of protein was resolved by SDS-PAGE as previously 

described (see section 2.5.2). After electrophoresis, the gel was incubated with 

Coomassie blue stain for 30 minutes followed by incubation with a destain solution for
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another 30 minutes. Gels were then imaged using the VersaDoc imaging system (Bio- 

Rad model 3000) under white light. Alternatively, protein was transferred to a 

polyvinylidene difluoride (PVDF) membrane (Bio-Rad, Hercules, CA) via wet transfer, at 

200 mA for 90 min. The membrane was incubated with blocking buffer (5% non-fat dry 

milk in phosphate buffered saline [PBS] with 0.1% Tween; PBS-T) for 30 minutes, 

followed by incubation with primary antibody diluted in blocking buffer for 1 hour, three 

washes in PBS-T and incubation with secondary antibody diluted in blocking buffer for 

one hour. For analysis of proteins such as BiP, pPERK and pelF2a, the blocking buffer 

consisted of 5% Bovine Serum Albumin (BSA) in TBS with 0.1% Tween, whereas the 

primary antibody was diluted in 5% BSA with gentle shaking at 4°C overnight. Following 

five more washes with PBS-T, the membrane was incubated in enhanced 

chemiluminescent substrate (Perkin Elmer, Woodbridge, ON) and exposed to X-ray film 

in a dark room. Alternately, the membrane was imaged using the VersaDoc imaging 

system (Bio-Rad model 3000) on the chemiluminscence channel and subsequently 

analyzed.

2.6.3 Densitometry

Densitometric analysis was performed on images obtained on the VersaDoc imaging 

system using ImageLab Software (Bio-Rad). Artificial bands were overlaid onto the 

protein bands in the image and adjusted accordingly. Band volumes were determined 

by the software based on relative pixel intensities.
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2.6.4 Antibodies

Primary antibodies used included rabbit antibodies directed against amylase (dilution 

1:1000; Calbiochem, San Diego, CA), ATF3 (1:500; Santa Cruz Biotechnologies, Santa 

Cruz, CA), ATF4 (1:500; Santa Cruz), ATF6 (1:500; Santa Cruz), Carboxypeptidase 

(1:1000; Cedarlane Laboratories, Hornby, ON), BiP (1:1000; Cell Signalling Technology, 

Pickering, ON), elF2a (1:500; Cell Signalling), GADD34 (1:500; Santa Cruz), LC3I/III 

(1:500; Cedarlane), pPERK (1:500; Cell Signalling), pelF2a (1:500; Cell Signalling) and 

total XBP1 (1:500; Santa Cruz) and ß-actin (1:500; Santa Cruz). Secondary antibodies 

were conjugated to horse radish peroxidase (HRP; 1:10,000; Sigma, St. Louis, MO). 

See Table 2.2 for a list of antibodies

2.6.5 Western membrane stripping

Following visualization of protein, membranes were kept at 4°C until they were ready for 

stripping. The membrane was washed in PBS-T twice for 10 minutes each and 

incubated in a stripping buffer consisting of (ß-mercaptoethanol, 0.5 M Tris-HCI pH 6.8, 

10% SDS and dH20) at 60°C for 30 minutes. This was followed by three more washes in 

PBS-T for 10 minutes each after which it was ready to be blocked.

2.7 RNA ISOLATION

Total RNA was isolated using TRIzol® reagent (Invitrogen), from the duodenal portion 

of the pancreas as follows. Approximately 50 mg of pancreatic tissue was homogenized 

in 5 mL of TRIzol® reagent and incubated in ice for 5 minutes. Chloroform was added to 

this solution (0.2 mL per 5 mL Trizol) followed by incubation in ice for 3 minutes and
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centrifuging at 5000 rpm (4°C) for 15 minutes. The RNA aqueous phase was removed 

and added to 0.5 ml_ of isopropanol per 5 ml_ Trizol which was then incubated at -20°C 

for 30 minutes. The mixture was then centrifuged at 5000 rpm (4°C) for 15 minutes and 

the supernatant removed. The resulting RNA pellet was washed in 1 ml_ 75% ethanol in 

RNAse free diethylpyrocarbonate (DEPC) dH20  and centrifuged at 5000 rpm (4°C) for 

15 minutes. The supernatant was removed and the RNA pellet was air dried and re

dissolved in 100-300 pL RNAse free DEPC dH20  and stored at -80°C. RNA 

concentrations (in ng/pL) were determined using a NanoDrop 3300 

fluorospectrophotometer (NanoDrop Technologies, Thermo Fisher Scientific, Ottawa, 

ON).

2.8 RT PCR & AGAROSE GEL ELECTROPHORESIS

2 pg of total mRNA was transcribed to cDNA in the presence of random primers in 

DEPC dH20  and heated at 70°C for 10 minutes and quickly chilled on ice for 5 minutes. 

This mixture was then added to a master mixture composed of 5 x first strand buffer, 25 

mM MgCI2 and 10 mM dNTPs in DEPC dH20. 1 pL of the enzyme reverse transcriptase 

was added and the resulting mixture was heated at 42°C for 1 hour, 70°C for 15 minutes 

and chilled on ice for 5 minutes.

PCR (Polymerase Chain Reaction) was performed with 1 pL cDNA (obtained from RT 

reactions) in 24 pL master mix, consisting of 2.5 pL of buffer, 1 pL of 0.25 mM MgCI2, 

0.5 pL dNTPs, 0.5 pL of 3’ and 5’ primers and 18.75 pL dH20  per reaction. 0.25 pL of



40

Taq polymerase was added to this mixture at the time of PCR. The reaction was carried 

out on an Eppendorf Mastercycler® (Eppendorf, Germany).

Primers to amplify Xbp1 and P-actin were based on sequences obtained from NCBI 

(http://www.ncbi.nlm.nih.qov/tools/primer-blast). Primer sequences to amplify Xbp1 

were:

Xbp1 forward: 5' AAACAGAGTAGCAGCGCAGACTGC 3'

Xbp1 reverse: 5' TCCTTCTGGGTAGACCTCTGGGAG 3'

These primers produced amplicon sizes of 289 bp and 263 bp for uXbp1 and sXbp1 

respectively. To calculate the ratio of sXbp1 to uXbp1, pixel intensity of the sXbp1 band 

was divided by the pixel intensity of the uXbp1 band, obtained using ImageLab software 

(Bio-Rad) following visualization in the VersaDoc imaging system (Bio-Rad).

Primer sequences to amplify for p-actin were: 

p-actin forward: 5' ATGGAGAAGATCTGGCAC 3'

P-actin reverse: 5' C GTC AC ACTTC AT GAT G G 3'

These primers produced amplicon sizes of 212 bp.

The PCR product was subsequently analyzed on a 1-3% agarose gel (agarose 

dissolved in Tris base, acetic acid and EDTA (TAE) buffer and ethidium bromide) at 

100-120 volts for 40 minutes. The gel was visualized using the GelDoc system under 

ultraviolet light.

http://www.ncbi.nlm.nih.qov/tools/primer-blast
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2.9 HISTOLOGY

2.9.1 Sectioning

Following dissection, the duodenal portion of the pancreas was removed and placed 

into OCT (Shandon cryomatrix solution; Thermo Fisher Scientific) and immediately 

frozen in liquid nitrogen. Frozen sections were later sectioned to 7 pm using a Shandon 

cryostat (Thermo Fisher Scientific). For histological analysis, pancreatic tissue was 

rinsed in PBS, fixed in 4% formaldehyde for 24 hours and processed for paraffin 

sectioning (VRL Histocore facility, London, ON).

2.9.2 H&E Staining

Hematoxylin and Eosin (H&.E) staining was performed on frozen cryosections. Slides 

were first rehydrated in 70% ethanol and tap water, stained with CAT hematoxylin 

(Biocare), blueing solution and Eosin Y respectively. The dehydration step involved 

rinses in 70, 90 and 100% ethanol consecutively before repeated washes in xylene and 

mounting onto slides. CAT hematoxylin stains basophilic cellular structures while eosin 

stains the eosinophilic structures.

2.9.3 Trichrome Staining

Paraffin sections were sent to Robarts Research Institute (University of Western 

Ontario, Canada) for Gomori’s trichrome staining. According to this protocol, connective 

tissue is stained in blue the nuclei are stained in purple and the cytoplasm in dark red.
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2.9 IMMUNOFLUORESCENCE

Slides with cryosectioned pancreatic tissue were allowed to thaw for 10 minutes before 

being fixed with 4% formaldehyde. After washes in PBS, 0.1% Triton-X in PBS was 

added to permeabilize the cell membrane, for 15 minutes. More washes in PBS were 

followed by incubation in blocking solution for 30 minutes, consisting of 5% BSA in 0.1% 

Triton-X in PBS to prevent non-specific binding of antibodies. Sections were then 

incubated in primary antibody in blocking solution for 1 hour, washed in blocking 

solution and incubated in secondary antibody in blocking solution for 1 hour. More 

washes in PBS were followed by incubation in DAPI (4', 6-diamidino-2-phenylindole; 

1:500 for 5 minutes to stain DNA. Slides were washed in PBS and then coverslipped 

with VECTASHIELD® mounting media (Vector Laboratories).

2.9.1 Antibodies

Primary antibodies used included rabbit antibodies directed against CD4 (1:500; BD 

Pharmingen, Mississauga, ON) and LC3I/II (1:500; Cell Signalling). Secondary 

antibodies were conjugated to either fluorescein isozthiocyanate (FITC; 1:250, Sigma) or 

tetramethyl rhodamine iso-thiocyanate (TRITC; 1:250, Sigma).

2.10 STATISTICAL ANALYSIS

Quantitative analysis was performed using GraphPad Prism 4.0 software (GraphPad 

Software, San Diego, CA). Results are expressed as mean and standard error of the
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mean with a minimum n of 3. Each n value represents data from each animal. One way 

analysis of variance (ANOVA) followed by Tukey post-tests were performed while 

comparing three or more groups of the same genotype, differing in treatment. Two-way 

Analysis of Variance (ANOVA) followed by Bonferroni post hoc tests were performed 

when groups varied in terms of treatment as well as genotype. An unpaired two-tailed t- 

test was used to compare between two groups of the same genotype.
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CHAPTER 3: RESULTS

3.1 M istTA mice on the Lieber-DeCarli ethanol diet have no overt phenotype

The effects of chronically feeding mice an ethanol-supplemented liquid Lieber- 

DeCarli (LDC) diet, which contains 36% kcal from ethanol were examined. As a control, 

animals were placed on an identical diet with the calories from ethanol being replaced 

by carbohydrates. However, this diet contained a significant amount of calories from fat 

(36%). Therefore, mice maintained on regular breeder’s chow were also included as 

controls. See Table 2.1 for constituents of each diet. The breeder’s chow (denoted BC) 

contained 22% of kcal from fat.

To determine if the diets were affecting overall health, mice were initially weighed 

daily and then weekly and monitored for any signs of distress (grooming, excessive 

weight loss, food consumption, pilliated hair). Throughout the study, the average weight 

of the Mist1'A cohort of animals was less than diet-matched WT mice, although the 

difference did not reach statistical significance. WT and Mist1'A mice on the LDC-E and 

LDC-C diets consumed equivalent kcal amounts throughout the length of the study, with 

minimal individual variability in daily caloric intake (Figure 3.1A). Even with similar kcal 

consumption, the rate of weight gain was significantly higher in LDC-C fed mice for both 

genotypes compared to LDC-E counterparts (WT- P<0.001, n=11 (LDC-C), n=12 (LDC- 

E); MistTA- P<0.05, n=11 (LDC-C), n=12 (LDC-E)) or breeder chow fed mice (WT- 

P<0.001, n=7; MistTA- P<0.01, n=7) (Figure 3.1 B), suggesting that any weight gain was 

due to the fat in the diet and that ethanol offset this effect. Observations from studies in
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the literature indicate that ethanol itself has no effect on weight gain in rats or mice 

(Pandol et al, 1999; Perides et al, 2005), supporting the findings in this thesis. 

Interestingly, WT mice on the LDC-C diet gained significantly more weight than Mist1'A 

mice (P<0.01).

To assess pancreatic damage, typical parameters of pancreatitis, including 

elevated serum amylase levels and pancreatic edema were compared at time of 

sacrifice. Analysis of serum amylase levels (Figure 3.2A) and pancreatic edema 

(Figure 3.2B) revealed that the LDC-E diet had no significant effect compared to the 

LDC-C diet.
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Figure 3.1. WT and M istT /m mice show no overt response to ethanol feeding.

Caloric intake (A) and weight gain (B) was monitored over six weeks of feeding with a 

Lieber-DeCarli Ethanol (LDC-E), LDC high fat (LDC-C) or breeder’s chow (BC) diet. 

Letters represent statistically significant differences between groups. LDC-C fed mice 

gained significantly more weight than LDC-E mice (WT- P<0.001, n=11 (LDC-C), n=12 

(LDC-E); M isti*- P<0.05, n=11 (LDC-C), n=12 (LDC-E)) as wells as BC fed mice (WT- 

P<0.001, n=7; M isti*- P<0.01, n=7). Groups were compared using a two-way ANOVA 

and a Bonferroni post-hoc test: n=7 (BC), n=11 (LDC-C), n=12 (LDC-E). The LDC-C 

diet resulted in increased weight gain in both genotypes.
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Figure 3.2.Chronic ethanol feeding has no effect on pancreatic injury parameters

in Mist1'/m mice. There were no significant differences in serum amylase levels (A) or 

pancreatic edema (B) between Mist1Vmand WT mice on the LDC-E or LDC-C diets. 

Groups were compared using a two way ANOVA and a Bonferroni post-hoc test: 

P=0.5645 (serum amylase); P= 0.2469 (edema). n=11 (LDC-C), n=12 (LDC-E).
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3.2 Histological analysis of pancreatic tissue following exposure to ethanol

Trichrome and H&E staining of paraffin embedded pancreatic sections revealed no 

signs of pathological damage in LDC-C or LDC-E fed WT mice (Figure 3.3A, B). 

Control fed Misti4'mice showed acinar disorganization, which is a hallmark of mice 

lacking MIST1 (Figure 3.3C; Pin et al, 2001). Importantly, 75% (9/12) of ethanol fed 

Misti4' mice showed obvious periductal infiltration of presumptive inflammatory cells 

within pancreatic tissue (Figure 3.3D). Immunofluorescent (IF) analysis of frozen 

pancreatic sections for the T-lymphocyte marker CD4 confirmed these cells to be 

lymphocytes (Figure 3.3E, F). Interestingly, IF analysis also revealed smaller 

accumulations of CD4 positive cells in all other LDC-E fed Misti4' pancreatic tissue that 

were not evident in H&E stained tissue (Figure 3.3E, F). Similar staining of WT and non 

LDC-E groups showed no such CD4 positive cells within the pancreatic interstitium 

(data not shown). While trichrome histological staining did not reveal significant 

pancreatic fibrosis, 50% (6/12) of ethanol fed Misti4' mice showed accumulation of 

presumptive adipocytes, often located adjacent to the site of peri-ductal accumulations 

(Figure 3.3Di) that were not observed in any other group. These results indicate that 

exposure to ethanol promoted localized inflammation in Misti4 pancreatic tissue.
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Figure 3.3. M istTA pane reata develop periductal accumulations of inflammatory 

cells in response to ethanol feeding. Representative photomicrographs of Gomori’s 

trichrome stained pancreatic sections from WT (A, B) and M is tT mice (C, D) fed a 

LDC-C (A, C) or LDC-E (B, D) diet for 6 weeks. Higher magnification images (Ai-Di) 

were used to highlight specific morphological events. Cellular accumulations 

(arrowhead) surrounding ducts (*) and adipose accumulations (arrow) were observed 

only in LDC-E fed MistTA mice. (E, F) IF analysis for the T-lymphocyte marker CD4 (E) 

indicated that these accumulations consisted of lymphocytes and that lymphocyte 

infiltration occurred in 75% of LDC-E MistTA mice (9/12). Sections were co-stained with 

DAPI (F) to reveal all cells. Magnification bars= 40 pm.
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3.3 Effects of chronic ethanol feeding on the UPR in pancreatic acinar cells

Recent reports have shown that chronic ethanol exposure leads to increased 

accumulation of sXbp1 in mouse pancreatic acinar cells (Lugea et al, 2011). Xbp1+/' 

mice show increased inflammation and pancreatic injury upon ethanol exposure, 

suggesting the UPR acts in a protective fashion to prevent ethanol-induced damage 

(Lugea et al, 2011). Therefore, activation of the three arms of the UPR (pelF2a activity 

as an indicator of activation of the PERK pathway, BiP/GRP78 expression as one 

output of the ATF6 pathway and splicing of Xbp1 mRNA to indicate IRE1 activation) 

was examined in response to adverse diets.

RT-PCR analysis revealed increased splicing of Xbp1 (Figure 3.4 A, B) in 

response to LDC-E feeding in WT acinar cells. Surprisingly, there is an increase in the 

ratio of sXbp1/uXbp1 in LDC-C fed mice as well, indicating that a diet high in fat also 

activates the IRE1 pathway of the UPR (Figure 3.4 A, B). Both diets also lead to an 

increase in the total levels of Xbp1 mRNA, suggesting increased activity of ATF6. 

Immunoblot (IB) analysis showed similar increases in pelF2a (Figure 3.4C, D) in 

response to LDC-C and LDC-E feeding, relative to breeder chow fed controls, indicating 

activation of the PERK signaling pathway. However, IB analysis revealed no change in 

BiP/GRP78 expression (Figure 3.4 C, E) another target of ATF6 (Wang et al, 2000). In 

summary, the PERK and IRE1 arms of the UPR were activated in pancreatic acinar 

cells in response to chronic high-fat and ethanol diets.
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Figure 3.4. Chronic ethanol exposure activates the PERK and IRE1 arms of the 

UPR in pancreatic acinar cells. (A) RT-PCR analysis of Xbp1 splicing in mice fed 

breeder chow (BC), LDC-E or LDC-C diets revealed increased splicing of Xbp1 mRNA 

in response to both LDC-E and LDC-C diets only in WT pancreatic tissue. (B) 

Quantification of the ratio of spliced (s) Xbp1 to unspliced (u) Xbp1 as determined by 

densitometric analysis of images in A. (C) Immunoblot analysis of pelF2a and 

BiP/GRP78 expression, as an indicator of activation of the PERK and ATF6 pathways of 

the UPR respectively, in mice fed either breeder chow (BC), LDC-E or LDC-C diets. (D) 

Quantitative analysis of pelF2a normalized to (3-Actin. (E) Quantitative analysis of 

BiP/GRP78 normalized to (3-actin. Each lane represents data from individual mice. 

Groups were compared using a one-way ANOVA and a Tukey’s post-hoc test: *P < 

0.05, **P< 0.01. n=3 (BC), n=6 (LDC-C & E).
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3.4 Effects of chronic ethanol feeding on the UPR in Af/sff^'pancreatic acinar cells

Recent evidence has identified the Misti gene as a direct transcriptional target of XBP1 

in the stomach (Huh et al, 2010) and that it may mediate the effects of XBP1 in the 

pancreas (Hess et al, 2011). Examination of Mist1'A pancreas revealed that the LDC-E 

diet led to a loss of sXbp1 mRNA accumulation in Mist1'A tissue, suggesting a specific 

alteration in UPR signaling due to chronic ethanol exposure (Figure 3.5A, B). The loss 

of sXbp1 was specific to the LDC-E diet as high fat consumption did not significantly 

alter the ratio of sXbp1/uXbp1. Interestingly, both LDC-C and LDC-E diets appeared to 

reduce overall Xbp1 accumulation, although these experiments are not quantitative. The 

accumulation of the ER chaperone BiP/GRP78, which is regulated by ATF6 under 

conditions of ER stress (Wang et al, 2000) was also decreased in LDC-E Mist1'A mice 

(Figure 3.5C, D) indicating that activation of the UPR was reduced in Mist1'A mice at 

multiple levels in response to ethanol feeding. However, IB analysis revealed that LDC- 

C fed Mist1'A mice also showed decreased levels of BiP/GRP78 (Figure 3.5C, D), 

suggesting that its accumulation is sensitive to a number of adverse dietary conditions. 

Alternatively, while the levels of pelF2a did not decrease in LDC-C and LDC-E fed 

animals, the levels did not increase either (Figure 3.5C, E), consistent with previous 

studies in which Mist1'Aacinar cells cannot increase pelF2a activity in response to ER

stress (Kowalik et al, 2007).
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Figure 3.5. Chronic ethanol exposure attenuates the PERK and IRE1 arms of the 

UPR in M is ti '' pancreatic acinar cells. (A) RT-PCR analysis of Xbp1 splicing in MistT 

A mice fed breeder chow (BC), LDC-E or LDC-C diets revealed decreased splicing of 

Xbp1 mRNA in response to the LDC-E alone. (B) Quantification of the ratio of spliced 

(s) Xbp1 to unspliced (u) Xbp1 as determined by densitometric analysis of images in A. 

(C) Immunoblot analysis of pelF2a and BiP/GRP78 expression, as an indicator of 

activation of the PERK and ATF6 pathways of the UPR respectively, in mice fed either 

breeder chow (BC), LDC-E or LDC-C diets. (D) Quantitative analysis of pelF2a 

normalized to p-actin. (E) Quantitative analysis of BiP/GRP78 normalized to p-actin. 

Each lane represents data from individual mice. Groups were compared using a one

way ANOVA and a Tukey’s post-hoc test: *P < 0.05, **P< 0.01. n=3 (BC), n=6 (LDC-C 

& E).
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3.5. M istT /m mice exhibit limited induction of autophagy in response to ethanol

As a functional readout for the UPR, acinar autophagy was evaluated by IF and IB 

analysis of LC3-II, a protein associated with autophagosomal membranes of autophagic 

vacuoles (Levine & Klionsky, 2004). Autophagy is a degradation mechanism that can be 

triggered by the PERK and IRE1 arms of the UPR to allow for cell survival under 

conditions of ER stress, thereby enhancing cell survival (Levine & Klionsky, 2004; 

Ogata et al, 2006; Yorimitsu et al, 2006).

Consistent with increased UPR activity, WT mice fed the LDC-C diet showed a 

significant increase in acinar autophagy compared to breeder chow fed controls, as 

determined by IF analysis of area of LC3-II puncta as a percent of the acinar cell 

(Figure 3.6 A-C, G). The LDC-E diet led to a modest, although statistically insignificant 

increase in autophagy in the WT pancreas (Figure 3.6 A-C, G). In Mist1'A mice, only the 

LDC-C diet caused a significant increase in autophagy while the LDC-E diet had a 

modest (statistically insignificant) effect (Figure 3.6 D-F, G). IB analysis revealed that 

the LDC-C diet caused a significant increase in autophagy in Mist1'A mice, while the 

ethanol fed MistTA mice showed a limited increase (Figure 3.6 H, J). The limited 

induction of autophagy in Mist1'A mice following ethanol feeding correlates with 

decreased activity of the UPR. Combined, these results show that the pancreatic tissue 

of MistTA animals responds to ethanol feeding by reducing or suppressing further

activation of the UPR.
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Figure 3.6. Ethanol-fed Mist1'A mice show limited increases in autophagy.

Representative photomicrographs of pancreatic tissue sections from WT and Mist1v~ 

mice fed either breeder chow (A,D), LDC-C (B,E) or LDC-E (C,F) diet and stained for 

the autophagy marker, LC3II (punctate staining in red). Dapi (blue) was used to 

counterstain nuclei. (G) Quantitative analysis of LC3II puncta, shown as the area of LC3 

dots per area of DAPI stained nuclei. Groups were compared using One-way ANOVA 

and a Tukey post- hoc test: *P<0.05. n=3 (BC), n=5 (LDC-C & LDC-E). Magnification 

bar = 20 pm. (H) Immunoblot analysis of LC3 lipidation in WT and Mist1'A mice fed 

either breeder chow, LDC-C or LDC-E diets. (I) Quantitative analysis of the ratio of 

LC3II to LC3I in WT mice.(J) Quantitative analysis of the ratio of LC3II to LC3I in Mist1'A 

mice. Groups were compared using a one-way ANOVA and a Tukey’s post- hoc test: 

Each lane represents data from individual mice. *P<0.05 **P<0.01. n=3 (BC), n=6 (LDC- 

C & LDC-E).
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3.6 UPR in the M istTA pancreas

The data so far suggests that Mist1'A mice failed to activate the UPR in response to 

adverse dietary conditions. RT-PCR analysis of Xbp1 splicing in WT and Mist1'A 

pancreas in response to ethanol indicated that the breeder chow fed MistTA tissue had 

increased levels of sXbp1 compared to WT counterparts (Figures 3.4 A, B & 3.5 A, B). 

Hence, activation of UPR mediators including BiP/GRP78, GADD34, XBP1 and pelF2a 

was assessed in 2 and 6 month old Mist1'A and WT mice by IB analysis.

At 2 months of age, protein levels of BiP/GRP78, GADD34 and sXBP1 were 

significantly increased in pancreatic tissue of breeder chow fed Mist1'A mice compared 

to age-matched WT mice (Figure 3.7A, C-E) indicating that the Mist1'A tissue is under 

stress . Protein levels of pelF2a remained unchanged. This can be explained by the fact 

that GADD34 is a negative regulator of elF2a phosphorylation, and chronically elevated 

levels of GADD34 will prevent an increase in elF2a phosphorylation (Connor et al, 

2001). In contrast, at 6 months of age, no significant differences were observed in 

BiP/GRP78 and sXBP1 expression between WT and Mist1'A pancreatic tissue, while 

increased GADD34 expression in the MistTA pancreas was maintained (Figure 3.7B). 

pelF2a levels also remained unchanged at 6 months of age in Mist1'A pancreatic tissue. 

These results suggest that the Mist1'A pancreas is chronically stressed and the loss of 

UPR activation between 2 and 6 months of age rendered the tissue increasingly 

susceptible to environmental stressors such as an ethanol laced diet.
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Figure 3.7. M i s t i pancreas show age-related changes in UPR activation.

Immunoblot analysis of key unfolded protein response markers in 2 (A) and 6-month old 

(B) WT and Mist1'A whole pancreatic lysates from 2-month old Mist1'A mice showed 

significant increases in the expression of BiP/GRP78 (P=<0.001) (C), GADD34 (P<0.01) 

(D) and sXBP1 (P<0.01) (E) but not in pelF2a (P=0.743) or uXBP1 (P= 0.532). There 

were no significant differences in expression of any of the afore-mentioned markers 

between 6-month old WT and Mist1'A mice. (C) Quantitative analysis comparing 

BiP/GRP78 (C), GADD34 (D) and sXBP1 (E) accumulation at 2 months in WT and 

Mist1'A mice. Total elF2a served as a normalization control. Groups were compared 

using a Student’s T-test: *p <0.05. n=3.
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3.7 Chronic ethanol exposure followed by cerulein-induced acute pancreatitis

MistTA tissue displays a limited or decreased UPR response to acute and chronic 

stress. If adaptation to chronic activation of the UPR observed in Misti'J~ pancreata was 

responsible for the inability to further enhance activity of the pathway when an additional 

stress is introduced, then the ability of LDC-E and LDC-C fed wild types to activate the 

UPR in response to acute stress should be compromised. To test this hypothesis, the 

pancreatic response of 3-4 month old diet challenged WT mice to CIP was examined. 

Pancreatitis was initiated through four hourly injections of cerulein in LDC-E, LDC-C and 

breeding chow fed mice. This produced a UPR response including increased activity of 

pPERK and its downstream targets, pelF2a, ATF3 and ATF4. The activity of the UPR 

mediators was assessed four hours after initiation of CIP. Parameters of acute 

pancreatitis such as serum amylase levels and pancreatic edema were also assessed 

at the 4 hour time-point.

Analysis of serum amylase levels revealed a significant decrease in response to the 

LDC-C diet compared to breeder chow fed controls (Figure 3.8 A). This finding is in 

contrast to findings in the literature (Deng et al, 2004; Ye et al, 2010) where initiation of 

CIP in high fat diet and ethanol fed WT mice caused significant increases in blood 

amylase and lipase levels compared to regular diet fed mice.

IB analysis of key UPR markers including BiP, pelF2a, ATF3 and ATF4 revealed no 

differences between different treatments (Figure 3.9 A). Interestingly, both LDC-C and
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LDC-E diets led to a significant increase in pPERK activity (Figure 3.9 A, B). This was 

surprising, given that downstream targets of pPERK (such as pelF2a, ATF3 and ATF4) 

remained unaffected by chronic ethanol or high fat diets upon induction of acute 

pancreatitis.
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Figure 3.8. Chronic ethanol exposure followed by an acute pancreatitis episode (4

hour cerulein-induced pancreatitis) had no effect on serum amylase levels in WT mice, 

while chronic feeding of a the LDC-C diet led to a significant decrease in serum amylase 

levels compared to breeder c how fed mice. Groups were compared using a one-Way 

ANOVA and a Tukey’s post-hoc test: *P<0.05. n=4.
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Figure 3.9. Chronic ethanol exposure followed by initiation of acute pancreatic 

injury has no additional effect on the UPR in pancreatic acinar cells. (A)

Immunoblot analysis of UPR markers pPERK, pelF2a, ATF3, ATF4 and BiP in mice fed 

either a breeder chow (BC) diet, LDC-E or LDC-C diet for 6 weeks, followed by initiation 

of acute pancreatitis by four hourly injections of cerulein. There were no significant 

differences in UPR mediators such as pelF2a (P=0.562), ATF3 (P=0.413), ATF4 (P=

0.563) and BiP (P=0.201). (3-Actin served as a loading control. (B) Quantitative analysis 

of pPERK activation. Groups were compared using a one way ANOVA and a Tukey’s 

post-hoc test: ***P<0.001. n= 4.
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CHAPTER 4: CONCLUSIONS & DISCUSSION 

4.1 CONCLUSIONS:

The following are the major findings in this thesis:

1. Compared to WT mice, Mist1‘A mice alone develop pancreatic injury in response 

to chronic ethanol consumption. This suggests that factors that affect MIST1 

expression and function in humans may be a predisposing factor for pancreatic 

disease.

2. M is tT mice exhibit chronic activation of the UPR that decreases over time. The 

loss of this protective cellular mechanism coincides with increased susceptibility 

to pancreatic injury.

3. Diets high in ethanol and fat activate the UPR in pancreatic acinar cells. This 

finding provides a link between adverse environmental conditions and a 

molecular pathway that is involved in the course of pancreatic disease.

4. A chronic ethanol diet attenuates the UPR in Mist1'A pancreatic acinar cells. This 

has implications for manipulating the UPR to ameliorate symptoms of pancreatic

disease in the context of genetic mutations or deletions.
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5. Further enhancement of the UPR is prevented in WT mice exposed to chronic 

ethanol or high fat diets followed by an acute pancreatitis episode. This suggests 

that adverse dietary conditions may predispose individuals to pancreatitis due to 

lack of enhancement of the protective UPR.

4.2 DISCUSSION

Pancreatitis is a debilitating disease that targets the exocrine pancreas. While 

chronic alcohol abuse is a leading cause of pancreatitis in humans, animal models of 

alcoholic pancreatitis indicate that additional factors must be present to promote 

pancreatic injury associated with alcohol. The harmful effects of chronic alcohol 

exposure on the pancreas are well characterized. At the cellular level, ethanol 

sensitizes the pancreas by altering Ca2+ and NF-kB signaling, increases digestive and 

lysosomal enzyme content and leads to spatial alterations in SNARE-mediated 

regulated exocytosis (Cosen-Binker et al, 2007; Vonlaufen et al, 2007). Consistent with 

the current model of alcoholic pancreatitis, the findings in this thesis project indicate that 

a chronic ethanol diet on its own does not cause overt morphological damage to the 

pancreas. In the presence of chronic stress caused due to a lack of MIST1, the 

sensitizing effects of ethanol promote the accumulation of inflammatory and 

presumptive adipocyte cells, a phenotype that could represent a progression to 

pancreatitis. It remains to be seen if a longer duration of the ethanol diet results in the

onset of the disease in these mice.
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4.2.1 M istl^ ' mice are more sensitive to chronic ethanol consumption.

Mist1m/' mice develop periductal accumulations of inflammatory T cells in 

response to ethanol feeding that are not observed in congenic mice, suggesting that 

Misti'A mice are more sensitive to ethanol consumption in comparison to their WT 

counterparts. Furthermore, an absence of MIST1 function may be a link to increased 

susceptibility to environmental factors that promote pancreatic injury in humans.

The finding that absence of MIST1 enhances sensitivity to ethanol but not fat 

suggests the involvement of distinct molecular events in the pathogenesis of alcohol 

induced injury in these mice. What is the underlying cause of the development of 

inflammation in these animals? One possible target is the Ca2+ signalling pathway in 

acinar cells impacted by the production of toxic metabolites of ethanol and reactive 

oxygen species (ROS). Activation of ROS results in the generation of more ROS and 

subsequent deficits in the regulated exocytosis pathway (Gonzalez et al, 2006). Recent 

work also suggests that ethanol inhibits Ca2+ pump activity, preventing extrusion of Ca2+ 

from the cytosol (Fernandez-Sanchez et al, 2009). These are believed to be some of 

the initiating events in ethanol mediated activation of pro-inflammatory factors during the 

course of ethanol induced pancreatitis (Pandol et al, 2003). Interestingly, M/'sff7' 

pancreatic acinar cells exhibit altered Ca2+ signalling, including a loss of Ca2+ 

oscillations and aberrant apical-basal Ca2+ waves following secretagogue stimulation 

(Luo et al, 2005) as well as decreased expression of modulators of cytoplasmic Ca2+
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including IP3R and SPCA2 (Pin et al, 2001; Garside et al, 2010). It is likely that chronic 

ethanol feeding of Mist1v' mice compounded the existing deficits in Ca2+ signalling, 

thereby initiating the onset of inflammation. It will be interesting to examine the in vitro 

effects of ethanol on isolated Mist1'A acinar cells in the context of Ca2+ signalling and the 

activation of pro-inflammatory factors.

Another potential target is altered NF-kB signalling in ethanol-fed Mist1'A mice. 

NF-kB is a transcription factor and a key mediator of the inflammatory pathway (Barnes 

and Karin, 1997). Gukovskaya et al (2002) have shown that ethanol’s effects on NF-kB 

activation are dependent on its mode of metabolism in pancreatic acinar cells. Oxidative 

metabolites of ethanol, including acetaldehyde inhibited NF-kB activity while its non- 

oxidative metabolites, including FAEEs (fatty acid ethyl esters) activated NF-kB 

(Gukovskaya et al, 2002). While the relative contributions of the oxidative and non- 

oxidative metabolic pathways in pancreatic acinar cells are currently not well 

understood, alteration in NF-kB signalling is a key link to ethanol mediated 

inflammation. Examination of NF-kB activity in Mist1v' mice before and after ethanol 

treatment will uncover potential alterations in this pathway and the resulting 

inflammation.

In addition to altered NF-kB signalling, ethanol has detrimental effects on the 

regulated exocytosis pathway in pancreatic acinar cells. An ethanol diet followed by 

post-prandial cholinergic stimulation leads to the displacement of SNARE (Soluble NSF

Attachment Protein Receptor) proteins from zymogen granules, forming a complex with
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their cognates on the basolateral acinar cell membrane and essentially re-directing 

exocytosis from the apical pole to the basolateral aspect of the cell (Cosen-Binker et al, 

2007). This event has been identified as a key step in the early pathogenesis of 

pancreatitis as a consequence of elevated digestive enzyme levels in the interstitium 

(Watanabe et al, 1984). Mist1'A mice show improper granule organization and disrupted 

exocytosis, one of several characteristics that make them more susceptible to 

secretagogue induced pancreatitis (Johnson et al, 2004; Kowalik et al, 2007). In the 

present study, elevated serum amylase levels were not observed due to ethanol feeding 

of the Mist1'A mice and it is likely that the limited duration of exposure to the MistTA 

pancreas or the age of the animals within this study - 2 to 4 months of age at the 

beginning of treatment -  contribute to this mild phenotype.

Another likely cause for increased susceptibility of Mist1'A mice to ethanol is 

differential activation of the UPR in response to stress. All three pathways of the UPR 

are activated in response to both L-arginine and cerulein-induced pancreatitis (Sans et 

al, 2003; Kubisch et al, 2006; Kowalik et al, 2007). Recently, the importance of XBP1, a 

key marker of the unfolded protein response (UPR), was examined in the context of 

ethanol-induced sensitivity to pancreatitis (Lugea et al, 2011). Chronic ethanol feeding 

of wild type (WT) mice led to increased activation of IRE1 (inositol requiring enzyme 1) 

and its target XBP1, and mice heterozygous for Xbp1 (Xbp1+A) exhibited increased 

sensitivity to alcohol, based on the amount of acinar cell damage compared to WT mice
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(Lugea et al, 2011). Collectively these studies suggest that events that alter the UPR 

may predispose individuals to ethanol-initiated pancreatitis.

4.2.2 Mist1'A mice exhibit chronic activation of the UPR that changes over time.

Studies in our laboratory on 2 to 10-month old Mist1'A mice revealed alterations 

in Ca2+ handling and accumulation of active digestive enzymes within the tissue similar 

to the initial events that occur during pancreatitis (Pin et al, 2001). These studies 

showed that the pancreatic disorganization observed in Mist1'A mice was progressive, 

and that a subset of 10-month old mice developed pockets of acinar-ductal complexes, 

indicative of acinar to ductal trans-differentiation in vivo. However, only a subset 

(<10%) of these mice developed any type of inflammation or fibrosis characteristic of 

pancreatic injury, suggesting that protective mechanisms may be preventing 

development of the disease. A compelling candidate for this protective mechanism is 

the unfolded protein response (UPR). The UPR is believed to protect the tissue from 

significant injury in both experimental and ethanol induced models of pancreatic injury 

(Lugea et al, 2011). Indeed, compared to WT controls, Mist1'A mice show extensive 

damage upon initiation of cerulein induced pancreatitis (CIP), coincident with an inability 

to fully activate the UPR (Kowalik et al, 2007). In the absence of additional stress, 2- 

month old Mist1'A mice show elevated levels of sXBP1 and BiP/GRP78 while at 6

months o f age, there is a return to W T levels o f these proteins, suggesting an adaptive
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response over time. However, while this switch in UPR activity occurs relatively early, 

work from our lab has revealed that only the pancreas of aged Misti4' mice (12 and 18- 

month olds) contained periductal inflammatory infiltrate, positive for the T-lymphocyte 

marker, CD4 (Guinness and Pin, unpublished results). This suggests that while there is 

an adaptation in the UPR over time, its protective functions are intact in younger Misti4' 

mice. It is also likely that other protective pathways are playing a role in these mice..

What causes the switch in UPR activity between 2 and 6 months is currently 

unclear. It is possible that attenuating the UPR in response to chronic stress is 

protective to the tissue in the long run since continuous activation would impose 

translational attenuation that can be detrimental. This is consistent with the finding that 

GADD34 protein levels continue to be elevated in the Misti4' mice at all time points 

examined (2, 6 and 12 months). GADD34 works in a negative feedback fashion by 

promoting the dephosphorylation of pelF2a, thus inhibiting attenuation of protein 

translation brought upon by elF2a phosphorylation (Connor et al, 2001). Therefore, 

chronically elevated levels of GADD34 in Misti4 mice may be responsible for the 

adaptation of the PERK arm of the UPR. Ongoing studies in our lab are examining the 

molecular links between Gadd34 and Misti for a better understanding of the 

relationship between MIST1 and mediators of the UPR. Treatment with the 

pharmacological agent, salubrinal, which selectively inhibits the dephosphorylation of 

elF2a by the GADD34/PP1 complex (Boyce et al, 2005) followed by analysis of
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parameters of pancreatic injury will provide clues as to the importance of GADD34 in 

the Mist1'A phenotype.

Seemingly, the lack of MIST1, either directly or through secondary effects, is the 

trigger for activating the UPR in Mist1'A mice, but the inability of the UPR to immediately 

ameliorate this stress eventually leads to its attenuation, which in turn can be beneficial 

to the cell by releasing translational attenuation. Whether suppression of the UPR is 

directly protective against pancreatic injury in Mist1v~ mice is currently unclear. It is very 

likely that other mechanisms (such as the inflammatory pathway involving NF-kB) also 

play a role in preventing the pancreatitis-like phenotype in these mice. Further work is 

warranted to determine the molecular events involved in the attenuation of UPR activity 

between 2 and 6 months of age in the Mist1'A pancreas as well as uncover other 

pathways that may be activated to protect the tissue.

4.2.3 Diets high in ethanol and fat activate the UPR in pancreatic acinar cells

Consistent with recent evidence of UPR activation in the pancreas triggered by 

ethanol feeding (Lugea et al, 2011), the findings in this thesis show that an ethanol diet 

enhances activity of the IRE1 and PERK arms of the UPR. Furthermore, a high-fat diet 

also causes increased activation of the UPR, signifying a novel finding. Additionally, 

ethanol and high-fat feeding caused no discernible damage to pancreatic morphology in
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WT tissue. This also agrees with the finding that activation of the UPR protects the 

pancreas from ethanol induced damage (Lugea et al, 2011). One difference however, is 

that the Lugea et al (2011) study detected a significant increase only in sXbp1 in 

response to ethanol feeding of wild type mice while this project has identified a 

significant increase in pelF2a as well. The fact that Lugea et al (2011) employed the 

French-Tsukamoto model of continuous intragastric ethanol fusion, resulting in 

increased exposure to ethanol may account for the observed discrepancies.

As a potential output of the UPR, acinar autophagy was examined in response 

to high-fat and ethanol feeding. Autophagy is an essential cellular degradation 

mechanism. By triggering cell autophagy, non-essential organelles are processed to re

use micromolecular nutrients under conditions of stress (Levine & Klionsky, 2004). 

Recent studies have shown that ER stress can trigger autophagy in an Atg (autophagy 

related gene)-related manner through the UPR (Yorimitsu et al, 2006). UPR induced 

autophagy is mediated by PERK and the IRE1 pathways and plays a cytoprotective role 

in the face of severe ER stress (Ogata et al, 2006; Yorimitsu et al, 2006). In addition, 

Lugea et al (2011) observed a modest increase in autophagy in ethanol fed pancreatic 

tissue and a lack of overt morphological damage due to ethanol treatment. Given these 

studies, I hypothesized that chronic ethanol and high fat feeding should induce acinar 

autophagy by induction of ER stress and activation of the UPR. The findings in this 

project indicate that the high-fat diet causes a significant increase in autophagy in wild 

type pancreatic tissue, while ethanol causes a modest increase. This is consistent with
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activation of both the PERK and IRE1 arms of the UPR in response to diet and 

correlates with a lack of inflammation in WT mice on either diet.

4.2.4 Long term exposure to ethanol leads to attenuation of the UPR in Mist1'A 

pancreatic acinar cells.

The findings in this thesis indicate that chronic ethanol exposure resulted in 

decreased activation of the UPR in Mist1'A mice. A significant decrease in sXbp1 mRNA 

levels was observed in response to ethanol alone. Interestingly, both LDC-C and LDC-E 

diets appeared to reduce overall Xbp1 accumulation, which is a target of ATF6a trans

activation (Wang et al, 2000). Additionally, both diets caused a significant decrease in 

levels of the ER chaperone, BiP/GRP78 which is also a target of ATF6 signaling (Wang 

et al, 2000) while pelF2a levels were unchanged in response to either diet. Taken 

together, these results suggest that Mist1'A mice had a reduction in ATF6 signaling as a 

result of ethanol or high-fat consumption, while IRE1 signaling is perturbed only in 

response to ethanol. A closer look at the relationship between MIST1 and UPR 

signaling may provide more insight into this effect.

Mist1v~ mice exhibit an altered UPR in response to induction of acute pancreatitis

(Kowalik et al, 2007) and recent studies have shown that activation of the UPR is a



81

protective response to chronic alcohol exposure (Lugea et al, 2011). Therefore, the 

inability to activate this pathway in MistTA mice in response to environmental stressors 

would be detrimental to the pancreas. Examination of Mist1'A pancreas revealed that 

Xbp1 splicing in Mist1'A mice is significantly reduced compared to that in both LDC-C 

and breeder chow fed Mist1'A mice, while the LDC diets alone (both HF and E) led to 

increased Xbp1 splicing relative to breeder chow fed WT mice. Examination of the 

PERK pathway revealed a trend where the LDC-E and LDC-C fed Mist1'A mice 

contained similar levels of pelF2a protein compared to LDC-C and breeder chow fed 

MistTA mice, indicating an inability to activate this pathway. This suggests that chronic 

activation of the pathway may cause an adaptive effect that alters the response of the 

cells to additional stress events. However, the fact that inflammation was observed only 

in the LDC-E fed mice suggests that it is the specific loss of sXbp1 mRNA that is 

responsible for this outcome.

Recent studies have shown that XBP1 can directly bind a c/s-regulatory 

sequence in the Misti promoter (in the stomach) and is required for the induction of 

MIST1 in vivo (Huh et al, 2010). Interestingly, MIST1 expression is maintained in gastric 

zymogenic cells even upon loss of XBP1 (Huh et al, 2010). The idea that Misti is a 

direct transcriptional target of Xbp1 provides novel links between a key UPR mediator 

and a transcription factor required for normal pancreatic function. Lack of XBP1 in the 

pancreas (as in X B P fA;L/V*BPi mouse with liver-specific rescue of XBP1 expression) 

resulted in severe deficits in the exocrine pancreas including pronounced decreases in
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the production of digestive enzymes, an under-developed endoplasmic reticulum and 

massive apoptosis during development (Lee et al, 2005). More recently, pancreatic 

acinar cell specific ablation of XBP1 has been demonstrated to be lethal to acinar cells, 

resulting in ER stress, loss of zymogen granules (and MIST1 expression) and acinar 

ultra-structure, reduction in the enzymes, amylase and elastase and premature 

activation of the digestive enzyme, carboxypeptidase (CPA) (Hess et al, 2011). Hence, 

in addition to its role in the cellular response to ER stress, XBP1 is also important for 

normal pancreatic acinar cell development and function. These findings in concert 

suggest that the loss of sXbp1 observed in LDC-E fed Mist1'A mice is a likely cause of 

pancreatic damage observed in these mice. Given that the Misti gene is a target for 

XBP1 transcriptional regulation (Huh et al, 2010), the simplest model would suggest that 

MIST1 mediates part of XBPTs protective effect against ethanol feeding. However, 

there are strong arguments against this theory. First, Xbp1 splicing is enhanced in 

Mist1'A tissue under non-experimental conditions and decreases after exposure to 

ethanol. Secondly, MIST1 is normally expressed to high levels in pancreatic tissue, 

even in the absence of Xbp1 splicing. Third, work in our lab has recently uncovered an 

inhibitory role for XBP1 on Misti gene activity, suggesting that MIST1 does not mediate 

the effects of XBP1 under conditions of stress in pancreatic acinar cells (Fazio E, 

personal communication).

An alternative scenario is that MistTA acinar cells adapt to chronic stress by 

repressing the various UPR pathways. Although MistTA mice show inhibition of the UPR 

in response to acute CIP (Kowalik et al, 2007) and age-dependent attenuation over
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time, it is likely that mediators of the ER stress response are not targets of MIST1 

transcriptional regulation. Previous work on the Mist1'A phenotype has revealed 

intracellular activation of digestive enzymes, cell disorganization, increased autophagy 

and stellate cell activation, all of which will put undue stress on the tissue. The findings 

indicate elevated expression or activity of each UPR pathway with GADD34 (PERK), 

spliced XBP1 (IRE1) and Bip/GRP78 (ATF6) in Mist1'A tissue. However, ethanol 

exposure decreased the expression of BiP/GRP78 and spliced Xbp1 over time, 

corresponding to appearance of inflammatory cell accumulations. It is likely that Mist1'A 

acinar cells adapt to repress the deleterious consequences of chronic activation of the 

UPR. When a second stress, such as ethanol, is introduced, the acinar cells are unable 

to further activate the pathway required for protection. The elevated levels of GADD34 

found in Mist1'A tissue support such a model. Decreased accumulation of sXbp1 and 

BiP/GRP78 in response to both ethanol and high fat also support a model in which the 

UPR cannot be properly activated. Further work is required to distinguish between the 

two models of relationship between MIST1 and XBP1/UPR signaling.

At this point, it is not clear if the inflammation evident in the ethanol fed Mist1'A 

mice is a direct consequence of activation of UPR attenuation or alternatively, the 

activation of UPR mediated inflammatory pathways. There is evidence that the UPR can 

directly initiate inflammation through activation of the pro-inflammatory factor, NF-kB as 

mediated by the PERK and IRE1-JNK pathways (Zhang & Kaufman, 2008). UPR 

associated inflammation is especially prominent in cells with metabolic functions (Zhang 

& Kaufman, 2008), such as the pancreatic acinar cells. Since no additional activation of
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the PERK pathway is observed in the MistTA mice in response to ethanol feeding, 

examination of the IRE1-TRAF2-JNK pathway may help elucidate a link between the 

UPR and inflammation. It is also possible that changes in the cell composition of the 

pancreas are the source of the UPR and related inflammation.

It is interesting that the inflammation evident in the M is t ipancreas is specific to 

the LDC-E diet. Why do the LDC-C fed Mist1'A mice not develop inflammation? 

Examination of UPR induced autophagy provides some insight. The findings in this 

thesis show that ethanol feeding of Mist1'A mice had little to no effect on acinar 

autophagy, while a high-fat diet induces significant autophagy. This discrepancy may 

explain the differential effects of the LDC-C and LDC-E diets on Mist1~A pancreatic 

tissue and the resulting inflammation observed only in the LDC-E fed MistTA mice. 

Studies have shown that activation of the IRE1 signaling pathway is required for ER 

stress induced autophagy, while PERK and ATF6 are dispensable for this pathway 

(Ogata et al, 2006). More importantly, autophagy induced by the UPR is crucial for cell 

survival during ER stress and may act as either a degradation mechanism for unfolded 

proteins or maintain energy homeostasis to protect against cell death (Ogata et al, 

2006). Accordingly, the findings in this thesis have shown that Mist1'A mice on the 

ethanol diet alone show a significant decrease in sXbp1, a direct target of IRE1. 

Considering that the increase in autophagy observed in the controls is mediated by the 

UPR, it seems that the LDC-E fed Mist1'A pancreas is unable to reactivate the UPR in 

response to a second stressor. Given the lack of evident pancreatic injury in high fat fed
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Mist1'A mice, it is likely that the increase in autophagy in this case, is playing a 

protective role. On the other hand, lack of induction of autophagy in response to ethanol 

feeding in the Mist1'A mice suggests that loss of the cytoprotective function of 

autophagy may be one reason for the appearance of inflammation in this group alone. 

Evaluation of autophagy in relation to activation of the IRE1-JNK pathway of the UPR 

should provide clues regarding the contribution of this process to the inflammatory 

pathway and the resulting phenotype.

These results suggest that the sensitivity of Mist1'A pancreatic tissue to ethanol 

exposure correlates with their inability to activate the UPR. Combined, these results 

show that the pancreatic tissue of Mist1~A animals has higher baseline levels of UPR, 

but responds to adverse conditions by reducing or suppressing further activation of the 

UPR. Overall, these findings highlight the role of the UPR and its outputs in mediating 

the course of ethanol induced pancreatic damage in the absence of a genetic factor that 

is crucial for pancreatic function. In addition, this work has implications for 

pharmacological or genetic manipulation of the UPR to ameliorate symptoms of 

pancreatic disease in the context of genetic mutations or deletions in human patients.
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4.2.5 Chronic ethanol and high-fat exposure followed by an acute pancreatitis 

episode prevents further enhancement of the UPR.

The findings in this section indicate that UPR markers including BiP/GRP78, 

pelF2a, ATF3 and ATF4 were not significantly altered as a result of CIP in breeder 

chow, LDC-C or LDC-E diets, while both LDC-C and LDC-E diets led to a significant 

increase in pPERK activity. While this agrees with the hypothesis that the ability of LDC- 

C and LDC-E fed wild types to activate the UPR in the presence of additional acute 

stress will be compromised, it raises the question of why pPERK levels are altered while 

its downstream targets such as pelF2a, ATF3 and ATF4 remain unchanged. One 

explanation could be the time-point at which CIP was initiated. It is possible that the 4 

hour duration was enough to elicit increased activity of pPERK but too early to activate 

its downstream targets in the UPR. Initiation of a longer duration of CIP followed by 

assessment of pPERK activity as well as its downstream targets may shed more light 

on activation of this pathway. Further work is also needed to assess activation of the 

IRE1 and ATF6 arms, although preliminary results suggest no differences between 

treatments. Given that increased activity of PERK is observed following 4 hour CIP in 

the WT pancreas (Kowalik et al, 2007), it is necessary to compare activation of UPR 

mediators between non-CIP treated (saline injected) controls with the experimental 

groups to provide a better understanding of the changes in UPR activity relative to 

starting levels. Furthermore, while preliminary histological analysis did not reveal 

additional damage in the LDC-E and LDC-C groups relative to the BC diet, more 

extensive work is required to establish a correlative link between lack of UPR
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enhancement and pancreatic damage. If the LDC-E and LDC-C diet fed mice develop 

more pancreatic damage than the breeder chow fed counterparts, it may be interpreted 

as the result of lack of UPR activity due to adverse dietary conditions.

Following CIP, analysis of serum amylase levels revealed a significant decrease 

in response to the LDC-C diet compared to breeder chow fed controls. This finding is in 

contrast to a study by Ye et al (2010), where initiation of CIP in LDC-C fed WT mice 

caused significant increases in blood amylase and lipase levels compared to regular 

diet fed mice. It is likely that differences in experimental conditions, such as duration of 

CIP (4 hours in this project versus 7 hours), length of feeding (6 weeks in this project 

versus 20 weeks) and fat content in the diet (36% LDC-C versus 45%) contributed to 

the observed discrepancies. The findings of this project also contrast with a study by 

Deng et al (2005) in which LDC-E feeding of rats followed by initiation of CIP for 3 hours 

resulted in a significant increase in serum amylase levels in both LDC-C and LDC-E 

diets relative to saline-treated controls, but not relative to each other. While the dosage 

of cerulein (20 pg/kg body weight versus 50 pg/kg in this project) and the different 

animal model used (rats versus mice) could account for the observed discrepancies, it 

is more likely that repeated experiments with a larger n value will yield more reliable 

results.

Taken together, the findings in this thesis project suggest that lack of MIST1 is a 

risk factor for developing ethanol induced inflammation in the pancreas. Although 75%
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of cases of acute pancreatitis are associated with alcohol abuse, only a small percent of 

heavy alcohol abusers go on to develop pancreatitis (Saluja & Bhagat, 2003). This work 

provides a novel genetic link that accounts for the variable response of individuals to 

ethanol abuse. These results can be applied to a clinical situation where human patients 

with deletions or mutations in Misti will be placed at increased risk for developing 

alcohol induced pancreatitis. Referring to the current model of alcohol induced 

pancreatitis (Figure 1.2), this work has identified Misti as one genetic trigger or co

factor that sensitizes the acinar cell to further insult in the presence of ethanol. Ongoing 

studies in our lab are examining pancreatic samples from patients with chronic 

pancreatitis for expression of MIST1. There is preliminary evidence to suggest that 

these patients have decreased expression of the MIST1 protein, indicating a correlative 

relationship with the disease phenotype at the very least. Further information on the 

etiology of the disease and genetic analysis of DNA from these patients should help 

elucidate a link between alcohol abuse, MIST1 and the risk of developing chronic 

pancreatitis.

In conclusion, altered MIST1 function may be an underlying cause for 

pancreatitis susceptibility from environmental stressors such as a diet high in fat and/or 

ethanol. This work provides clues as to why some individuals are more susceptible than 

others in developing alcoholic pancreatitis. Work in this field should also shed more light 

on how disease phenotypes are affected by gene-environment influences and enhance 

our understanding of the molecular mechanisms of pancreatic disease.
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6.0 APPENDIX

Table 2.1 Diet constituents

Composition Research Diet 
#L10015

Research Diet 
#L10016

Teklad extruded 
rodent diet

(kcal %) (kcal %) (kcal %)
Protein 17 17 23

Carbohydrate 47 11 55
Fat 36 36 22

Ethanol 0 36 0
Ingredients gm kcal gm kcal %

Casein 41.4 166 41.4 166 0
DL-Methionine 0.3 1 0.3 1 0.5

L-Cystine 0.5 2 0.5 2 0.3
Amino acids (total) 0.8 3 0.8 3 18.5

Maltodextrin42 115.2 461 25.6 102 0
Cellulose 10 0 10 0 0

XanthamGum 3 0 3 0 0
Com Oil 8.5 77 8.5 77 0
Olive Oil 28.4 256 28.4 256 0

Safflower Oil 2.7 24 2.7 24 0
Fatly acids (total) 14.4

Minerals
Salts Salts % mg/kg

8.75 0 8.75 0 3.1 361.23

Vitamins 2.5 9 2.5 9
IU/g mg/kg
126.5 1412.48

Choline Bitartrate 0.53 0 0.53 0 0
Ethanol (100%) 0 0 50 360 0

Research Diet #L10015 -  Lieber-DeCarli control diet 

Research Diet #L10016 -  Lieber-DeCarli ethanol diet 

Teklad extruded rodent diet -  Breeder’s chow
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Table 2.2 Antibodies used for immunoblot and immunofluorescent analysis

Antibody Dilution Application Source

ß-Actin 1/500 IB Santa Cruz Biotechnologies, Santa Cruz, CA

Amylase 1/1000 IB Calbiochem, San Diego, CA

ATF3 1/500 IB Santa Cruz Biotechnologies, Santa Cruz, CA

ATF4 1/500 IB Santa Cruz Biotechnologies, Santa Cruz, CA

ATF6 1/500 IB Santa Cruz Biotechnologies, Santa Cruz, CA

CD4 1/500 IF BD Pharmingen, Mississauga, ON

CPA 1/1000 IB Cedarlane Laboratories, Hornby, ON

BiP 1/1000 IB Cell Signalling Technology, Pickering, ON

elF2a 1/500 IB Santa Cruz Biotechnologies, Santa Cruz, CA

GADD34 1/500 IB Santa Cruz Biotechnologies, Santa Cruz, CA

LC3I/III 1/500 IB, IF Cell Signalling Technology, Pickering, ON

pPERK 1/500 IB Cell Signalling Technology, Pickering, ON

pelF2a 1/500 IB Cell Signalling Technology, Pickering, ON

XBP1 1/500 IB Santa Cruz Biotechnologies,Santa Cruz.CA

IB = immunoblotting; IF = immunofluorescence
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