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Abstract 

Applications of nondestructive testing (NDT) technologies have shown promise in assessing 

the condition of existing concrete bridges. Infrared thermography (IRT) has gradually gained 

wider acceptance as a NDT and evaluation tool in the civil engineering field. The high 

capability of IRT in detecting subsurface delamination, commercial availability of infrared 

cameras, lower cost compared with other technologies, speed of data collection, and remote 

sensing are some of the expected benefits of applying this technique in bridge deck inspection 

practices. The research conducted in this thesis aims at developing a rational condition 

assessment procedure for concrete bridge decks based on IRT technology, and automating its 

analysis process in order to add this invaluable technique to the bridge inspector’s tool box. 

Ground penetrating radar (GPR) has also been vastly recognized as a NDT technique capable 

of evaluating the potential of active corrosion. Therefore, integrating IRT and GPR results in 

this research provides more precise assessments of bridge deck conditions. In addition, the 

research aims to establish a unique link between NDT technologies and inspector findings by 

developing a novel bridge deck condition rating index (BDCI). The proposed system captures 

the integrated results of IRT and GPR techniques, along with visual inspection judgements, 

thus overcoming the inherent scientific uncertainties of this process. Finally, the research aims 

to explore the potential application of unmanned aerial vehicle (UAV) infrared thermography 

for detecting hidden defects in concrete bridge decks.  

The NDT work in this thesis was conducted on full-scale deteriorated reinforced concrete 

bridge decks located in Montreal, Quebec and London, Ontario. The proposed models have 

been validated through various case studies. IRT, either from the ground or by utilizing a UAV 

with high-resolution thermal infrared imagery, was found to be an appropriate technology for 

inspecting and precisely detecting subsurface anomalies in concrete bridge decks. The 

proposed analysis produced thermal mosaic maps from individual IR images captured from 

motion. The k-means clustering technique was utilized to segment the mosaics and identify 

objective thresholds and, hence, to delineate different categories of delamination in the entire 

bridge decks. The proposed integration methodology of NDT technologies and visual 

inspection results provided more reliable BDCI. The information that was sought to identify 
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the parameters affecting the integration process was gathered from bridge engineers with 

extensive experience and intuition. The analysis process utilized the fuzzy set theory to account 

for uncertainties and imprecision in the measurements of bridge deck defects detected by IRT 

and GPR testing along with bridge inspector observations. 

The developed analysis procedure should stimulate wider acceptance of IRT as a rapid, 

systematic and cost-effective evaluation technique for detecting bridge deck delaminations. 

The proposed combination of IRT and GPR results should expand their correlative use in 

bridge deck inspection. Integrating the proposed BDCI procedure with existing bridge 

management systems can provide a detailed and timely picture of bridge health, thus helping 

transportation agencies in identifying critical deficiencies at various service life stages. 

Consequently, this can yield sizeable reductions in bridge inspection costs, effective allocation 

of limited maintenance and repair funds, and promote the safety, mobility, longevity, and 

reliability of our highway transportation assets. 
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Chapter 1  

1. Introduction 

1.1 Background 

Bridges represent critical infrastructure components within the transportation network. The 

average age of bridges keeps going up and many are approaching the end of their design 

lives. Structural problems created by corrosion, aggressive environments, material defects, 

construction defaults, and unforeseen mechanical or seismic loads can compromise the 

serviceability and safety of bridges. According to the Canadian infrastructure report card 

(2016), 26% of bridges are in fair, poor or very poor condition and $50 billion needs to be 

invested in their replacement and maintenance, spending $2 billion for bridges in poor and 

(or) very poor condition, $11 billion for bridges in fair condition, and $37 billion for 

bridges in good condition. Likewise, about 40% of the bridges in the USA are 50 years or 

older, with 25% either structurally deficient or functionally obsolete. The most recent 

estimate as per the United States’ 2017 infrastructure report card indicates that the backlog 

of bridge rehabilitation needs $123 billion.  

The importance of an effective bridge management system (BMS) cannot be overstated, 

especially in light of recent collapses of bridges in North America and elsewhere. Bridge 

failures can be catastrophic, both in terms of human life and economic loss, rendering the 

task of managing this important asset a complex endeavour that attracts growing attention. 

The basic components of a BMS are illustrated in Fig. 1-1. The architecture of a typical 

BMS consists of a database, a condition assessment module, a structural assessment 

module, a deterioration prediction module, a lifecycle cost module, and a maintenance 

optimization module. The database stores the bridge inventory and appraisal data. The 

condition assessment module evaluates the existing health condition of the bridge. The 

structural assessment module determines the bridge load carrying capacity. The 

deterioration prediction module estimates the future condition of bridge components. The 

life-cycle cost module calculates agency and user costs for various maintenance 

alternatives. The optimization module determines the most cost-effective maintenance 

strategies (Hammad et al., 2007). Therefore, reliable bridge condition assessment has 
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become vital to predicting future performance and optimizing bridge maintenance, 

rehabilitation and replacement needs and to mitigating socio-economic impacts associated 

with bridge failures. 

 

 

Figure 1-1: Basic components of a BMS. 

 

Among all bridge components, the performance of bridge decks was identified as the most 

important long-term bridge performance issue (Gucunski et al., 2015). While visual 

inspection is the default bridge deck inspection methodology, it cannot yet detect 

subsurface flaws such as voids, internal cracks, delamination, or reinforcing steel 

corrosion. Therefore, there has been growing interest among bridge infrastructure 

stakeholders in using non-destructive testing (NDT) methods for inspecting and evaluating 

the condition of bridge decks. Such techniques enable the detection of deterioration 

processes at their early stages and can be incorporated into the inspection process to 

provide fast and reliable information about the “under-the-surface” deteriorated conditions. 

However, NDT techniques have not been widely accepted, either due to unrealistic 

expectations or improper use (Gucunski et al., 2013). Indeed, most related research efforts 

still aim at verifying the capability, or comparing the accuracy, of NDT methods in 

assessing subsurface conditions (Lounis, 2013).  
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Infrared thermography (IRT) is a remote sensing technology that allows for rapid bridge 

inspection and visualization of the data in the form of real-time thermal images. Laboratory 

and field studies of IRT technology for concrete slabs indicate that this NDT technique is 

capable of detecting subsurface delaminations (Vaghefi et al., 2012). Consequently, it can 

help bridge inspectors identify areas of unsound concrete before they turn into spalls, which 

could threaten public safety and eventually reduce the load capacity of bridges. With the 

advent of newer generations of infrared cameras, IRT is evolving as an accurate, reliable 

and cost-effective technique that can yield both qualitative and quantitative indicators of a 

bridge deck condition (Washer et al., 2013). The IRT testing can be broadly classified into 

two major categories: passive and active. The source of heat is the main difference between 

these two methods. Solar energy and ambient temperature changes are the main heat 

sources in conducting a passive IRT test, while active IRT involves generating a 

temperature gradient using an external source of heat other than the sun (Robert, 1982). 

Although successful application of the IRT technique has been demonstrated through a 

number of research projects, most of these efforts have aimed either at verifying the 

capability of IRT for the detection of subsurface defects in bridge components, or studying 

the environmental conditions for successful application of the technology.  

For instance, Washer et al. (2009) studied the effect of environmental conditions on the 

surface temperature of a concrete block containing subsurface anomalies at different 

depths. They found that uninterrupted solar loading and low wind speeds provide a better 

contrast on a thermal IR image and, hence, provide optimum conditions for detecting 

delaminations in concrete surfaces directly exposed to the sun. High rates of change in 

ambient temperature were needed to create thermal contrast for the concrete surfaces where 

no solar loading was present. Clark et al. (2003) inspected bridge structures under low 

ambient temperature and reported that the thermal contrast between the delaminated and 

sound areas could be about 0.2 to 0.3 ⁰C. In addition, several studies have addressed the 

effect of delamination depth on thermal contrast during IRT testing. For instance, Manning 

and Holt (1982) found that the magnitude of thermal contrast correlates with the depth of 

a delamination where shallower delaminations are associated with larger thermal contrasts 

than deeper delaminations for the same environmental conditions. However, diurnal 

temperature and solar loading effects can vary over the course of a day, with certain time 
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periods having deeper delaminations that present greater contrast than shallower features 

(Washer et al., 2013). Maser and Roddis (1990) investigated the effects of variable 

delamination thickness under a certain set of environmental variables using a thermal 

model. The results revealed that the thickness of the delamination affects the magnitude of 

the thermal contrast where increasing the delamination thickness increased the maximum 

thermal contrast. In a study conducted by Washer et al. (2009), it was found that the 

effective time to perform an IRT test depends on the depth of the delamination. The most 

contrast appears on the IR image approximately four hours after sunrise for a 50 mm deep 

delamination and seven hours after sunrise for a 75 mm deep delamination.  

1.2 Research Motivation 

The majority of passive IRT testing performed in previous research studies was based on 

testing specimens prepared in the laboratory environment with simulated defects, then 

exposing them to solar energy. Hence, several processing algorithms to extract information 

were developed based on the temperature of the pre-defined defects’ locations and sizes 

with respect to the temperature of the surrounding sound concrete. However, when 

conducting passive IRT testing in-situ on full-scale bridges, the defects’ characteristics are 

unknown and extracting quantitative measures of subsurface anomalies still relies on the 

user interpretation of the images. Such qualitative and subjective analyses are rapid, but do 

not warrant rigorous evaluation of the acquired thermal images. In addition, the severity of 

delamination is commonly defined based on the pixels associated with temperatures higher 

than predefined threshold values that are arbitrarily selected. Such a subjective scheme can 

produce inconsistent results. Currently, limited research is available to automate the 

thermal detection of subsurface damage: delaminations, internal horizontal cracks or voids 

on full-scale concrete bridge decks exposed to harsh environments. 

In addition, the majority of existing bridge deck condition rating models have been 

developed based solely on data from visual inspection usually used as a basis for bridge 

condition assessment. Such models do not take into account the inherent uncertainty 

associated with inspection results. Consequently, existing BMSs still have shortcomings, 

especially in the collection of inspection data dominated by subjective judgment, and 

inaccurate and insufficient quantitative inputs. Indeed, it is critical in bridge condition 
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ratings to combine the results of several technologies to yield different deterioration 

mechanisms. For instance, ground penetrating radar (GPR) has been recognized as a 

sensing technology capable of evaluating deck thickness, concrete cover and rebar 

configuration, and determining the potential for delamination and corrosive environments 

in reinforced concrete bridge decks. Currently, there is no bridge condition rating system 

that has adequately considered the results of NDT technologies. Therefore, there is an 

essential need for developing an objective bridge condition assessment and rating system 

based on the integration of commonly employed NDT techniques and taking into 

consideration the visual inspection findings. 

1.3 Objectives of Thesis 

The main goal of this research is to develop a rational and scientific assessment and rating 

process for ageing concrete bridge decks that yields: (1) objective detection of subsurface 

deficient areas using either ground or aerial IRT technology; and (2) reliable rating index 

by integrating the achieved IRT results with other NDT testing results and visual inspection 

observations. To achieve this goal, the following tasks have been undertaken:  

1. A critical overview of the state-of-the-art condition assessment and rating techniques 

for concrete bridges, with emphasis on bridge decks. 

2. A comparative analysis to evaluate and rank the most commonly used NDT techniques 

for detecting defects in concrete bridge decks. 

3. Development of an automated defect detection procedure to extract and classify sub-

surface delaminations in full-scale concrete bridge decks under IRT testing. 

4. Development of a procedure for generating an overall condition map for concrete 

bridge decks by uniting the analysis results of IRT and GPR testing techniques. 

5. Development of an integrated condition rating system for concrete bridge decks 

employing IRT, GPR, and visual inspection techniques. 

6. Investigation of the feasibility of applying UAV - IRT technology for detecting 

subsurface anomalies in concrete bridge decks. 
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1.4 Research Methodology and Organization of Thesis 

Although the detailed research methodology of this study will be described in detail in each 

chapter, the overall methodology is presented in the schematic diagram shown in Fig. 1-2. 

The thesis has been prepared in an “Integrated-Article” format and contains eight chapters. 

This chapter, Chapter 1, introduces the overall scope and objectives of the thesis. Then, 

the methodology and structure of the thesis are outlined. The subsequent six chapters 

present the thesis objectives.  

Chapter 2 reviews the state of knowledge on bridge condition assessment approaches.  

Bridge performance indicators and the deterioration mechanisms of concrete bridges are 

outlined. The strengths, limitations and challenges associated with the application of each 

bridge condition assessment technique, are discussed. The application of artificial 

intelligence techniques in bridge assessment are examined and appraised. Bridge 

deterioration prediction tools are presented and compared. The knowledge gaps for further 

research are identified and recommendations towards the selection of appropriate 

assessment techniques so as to identify specific deterioration types are formulated.  

Chapter 3 presents a comparative analysis of the common NDT methods for detecting 

subsurface defects in concrete bridge decks. The NDT techniques are evaluated and ranked 

based on a set of flexible multi-attributed performance measures. A fuzzy hierarchical 

decision-making model is developed.  A structured survey questionnaire was conducted to 

acquire an expert knowledge base through soliciting broad information about the 

performance of NDT methods which have been implemented by several transportation 

agencies. The fuzzy preference programme is utilized and a Matlab optimization function 

is modified and adopted to accommodate the analysis process. The results of the developed 

model are compared with the findings of a number of previous studies. 

Chapter 4 proposes an objective analysis for detecting and classifying delaminations in 

concrete bridge decks using passive IRT testing. The basic principles of thermal imaging, 

application of IRT for concrete bridge inspection, and current analysis and interpretation 

methods of IR image data are presented. A full-scale deteriorated bridge deck was surveyed 
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using an advanced thermal camera. The IRT model is developed through several stages of 

image analysis: pre-processing, registration, and segmentation. A machine learning 

unsupervised technique is utilized to classify the severity of the detected anomalies. A 

framework is developed to determine the number of defect condition categories. The 

developed model is implemented on four case studies and the findings are validated 

through the results of other testing technologies obtained on the same bridges. 

Chapter 5 integrates the results of two NDT techniques to produce an overall bridge deck 

condition map, which defines the potential location and severity degree of delamination 

and active corrosion. The basic principles of GPR, its application for concrete bridge 

inspection, and current analysis and interpretation methods of GPR scan data are presented. 

Two full-scale deteriorated bridge decks were surveyed using IR imagery and a GPR data 

acquisition unit. The analysis of the captured IRT and GPR data is presented. 

Computational equations to integrate the results are formulated as well as a Matlab code. 

To validate the proposed integration procedure, the detected defects are quantified and 

compared with results on the same bridge decks provided by other technologies.  

Chapter 6 establishes a connection between the NDT technologies and the inspector 

findings by integrating IRT and GPR results with the findings of the routine visual 

inspections to provide a condition rating system of concrete bridge decks. Thus, the system 

accounts for both surface and hidden defects in bridge decks. The condition rating systems 

currently in use in Canada and the United States are discussed and appraised to highlight 

their drawbacks. In-situ inspections on a full-scale deteriorated bridge deck using IRT, 

GPR, and visual inspection were conducted. The collected data is analyzed and the detected 

defects are quantified and converted into condition categories using fuzzy mathematics. 

The inherent uncertainties in the NDT and visual inspection measurement are considered 

using the fuzzy synthetic evaluation approach. Interviews with experts having 

comprehensive bridge experience were carried out to obtain the degree of relative 

importance for defects as well as the boundaries between the defects’ condition categories. 

The proposed integration methodology is implemented in a case study and the results are 

compared with the evaluation results obtained by employing each individual technology. 
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Chapter 7 investigates the feasibility of using an unmanned aerial vehicle to evaluate the 

condition of bridge decks utilizing a high resolution thermal sensor. The principles of aerial 

UAV remote sensing technology are discussed. Two in-service concrete bridge decks were 

investigated using the proposed system. The planning, flight preparation, and setting up of 

the proposed UAV-borne thermal system are discussed. The captured thermal data is 

analyzed using the system developed in Chapter 4. The achieved results are validated using 

data generated by other NDT technologies on the same bridge decks. Future improvements 

for the proposed system are recommended. 

Chapter 8 presents the conclusions from this study along with suggestions for further 

research work. The background information and the related references are included in each 

chapter. 

 

 

                                                                                     Continue  
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Figure 1-2: Schematic diagram of research methodology. 

 

1.5 Main Contributions 

An innovative bridge deck condition assessment and rating system using a passive IRT 

technique is proposed in this thesis. The research contributes evidence that supports 

expanding the use of IRT as a reliable, safe, and rapid condition assessment tool for 

accurate and consistent evaluation of the sub-surface conditions of reinforced concrete 

bridge decks. Specific original contributions of this dissertation include: 

 Developing a rational decision-making methodology to evaluate the performance of 

NDT techniques in assessing the conditions of concrete bridge decks. The proposed 

model guides the bridge stockholders’ efforts to incorporate NDT techniques into 

bridge inspection procedures and can be customized to accommodate different 

transportation agency policies. 

 Developing a robust approach for analyzing IRT data for effective identification of 

delaminated areas in full-scale reinforced concrete bridge decks. The proposed analysis 

allows for the detection of subsurface anomalies regardless of the difference in the 

temperature ranges between various IRT surveys taken at different times and 

environmental conditions. The Matlab codes, specially written to develop a stitching 
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algorithm required to create a mosaicked thermogram of the entire bridge deck from a 

large number of thermal images, were maintained with several input variables to 

accommodate any other thermal survey data, and thus automate the detection process. 

In addition, the proposed procedure clearly distinguishes the categories of identified 

delaminations and presents the findings in terms of condition maps, which provide a 

quantified basis for informed decision making. 

 Developing a rigorous integration procedure of IRT and GPR analysis results to 

produce an overall bridge deck condition map that classifies the severity levels of 

detected delaminations and the potential active corrosion areas. Combining the two 

technologies in inspecting deteriorated concrete bridge decks maximizes the 

capabilities of each method and compensates for their mutual limitations. 

Consequently, adopting the proposed approach provides more precise assessments of 

bridge deck conditions and important information for decision makers. 

 Developing an inventive condition rating system that yields both surface and 

subsurface condition indicators of bridge deck condition. The condition rating models 

currently in use do not account for subjective information in the assessment process 

and employ solid linguistic grades that do not take into consideration gradual 

transitions from one condition category to another. The fuzzy model proposed herein 

for interpreting a new bridge deck condition index (BDCI) from IRT, GPR and visual 

inspection techniques is, to the best of the author’s knowledge, the first model that 

simultaneously considers the uncertainties in the NDT along with the visual inspection 

measurement, thus providing a more reliable rating system. The model could also be 

extended to accommodate other bridge components, to involve more defect types, and 

to include the results of any other NDT technologies. 

  Developing a novel UAV-IRT system to evaluate the condition of bridge decks 

without any traffic interruption. Only one previous research, to the best of the author’s 

knowledge, investigated the application of UAV for in-situ assessment of full-scale 

bridge decks. The proposed system offers a practical and rapid solution for frequent 

bridge deck inspection and provides quantitative measurements of subsurface defects. 
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Chapter 2  

2. Current Practice for Condition Assessment of Reinforced 

Concrete Bridges 

2.1 Introduction 

In view of the colossal backlog of ageing reinforced concrete (RC) bridges and the 

considerable challenge it represents for transportation agencies, reliable bridge condition 

assessment (BCA) has become essential, especially for creating BMSs required for 

maintenance decisions and budget allocation. Visual inspection (VI) is the default bridge 

inspection methodology, yet its results heavily depend on the expertise and judgment of 

bridge inspectors, yielding primarily qualitative and subjective results. An extensive 

literature survey indicates that there is a considerable number of studies on specific 

assessment techniques. For instance, there has been significant focus in using non-

destructive testing (NDT) technologies for detecting several deterioration indicators. NDT 

enables the detection of deterioration processes at their early stages and can be incorporated 

into the inspection process to evaluate hidden defects such as reinforcing steel corrosion or 

crack propagation. However, the use of NDT techniques is usually specified for special 

assessment when severe deficiencies are observed. The term “structural health monitoring” 

(SHM) encompasses a range of methods and practices designed to assess the condition of 

a structure based on a combination of measurement, modelling and analysis. However, 

SHM technology has not been widely adopted as a routine approach for bridge monitoring. 

In addition, artificial intelligence (AI) techniques deal with intelligent behaviour, learning 

and adaptation in machines and have been recognized as powerful tools for BCA. 

Consequently, BCA techniques are evolving rapidly and have reached a certain level of 

maturity. Therefore, it is important to understand how the assessment techniques, as they 

pertain to decision-making, have evolved and what is their present state. 

In this Chapter, a critical overview of the state of existing BCA, with emphasis on current 

practices in North America, is presented in a systematic and rigorous manner to determine 

prospects for improvement. Throughout the chapter sections, the recent research efforts on 

the available techniques are delineated. The versatility of their potential applications is 
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discussed and they are compared, highlighting their primary advantages and limitations. 

The challenges associated with the application of each technique are identified. The AI 

techniques commonly utilized to develop effective BCA models are also examined and 

appraised. To assist bridge owners in making informed decisions, this review suggests 

some recommendations towards the selection of appropriate assessment techniques so as 

to identify specific deterioration types in order to meet desired service goals. Furthermore, 

knowledge gaps and needs in this field are outlined in order to motivate further research 

and development of these technologies, which have been addressed in the present thesis. 

The methodology adopted to achieve the aforementioned objectives is as follows: (1) 

developing a structured framework for conducting a comprehensive literature review on 

BCA based on the vast number of papers published; (2) using this framework to gain an 

understanding of the current state of the BCA research field; and (3) developing a 

conceptual framework identifying areas of concern with regard to BCA techniques. Figure 

2-1 illustrates the developed methodological framework for implementing the review.  

 

 

Figure 2-1: Methodological framework for literature review of BCA technologies. 
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It can be observed in this figure that the review consists of two phases in which the first 

phase is the search for and selection of papers to include in the review and the second phase 

is the classification of the papers. The first phase started by collecting a comprehensive 

range of recent research on BCA. The articles were carefully selected from eight diverse 

academic journals within the domain of bridge construction and management in an attempt 

to capture recent and relevant developments. Leading research conferences on the topic 

were also considered in a similar manner. The articles were searched using key phrases, 

such as “RC bridge assessment” and “RC bridge evaluation”. This process initially 

identified 197 papers. The retrieved articles were further examined to extract their main 

findings and emphases. Articles whose primary focus was not based on quantitative 

evaluation were discarded. Accordingly, the final survey qualitatively aggregates the 

results of a selected set consisting of 158 research studies, among which 70% were 

published over the last five years. The second phase started by overviewing the common 

deterioration mechanisms and common defects occurring in concrete bridges as well as 

exploring the performance indicators of RC bridges. The BCA techniques were then 

classified into categories and each article was evaluated so as to be placed into the relevant 

category. The techniques of each category were discussed to identify their key application 

areas, principal strengths and limitations. The existing deterioration prediction models 

were appraised and the achievements of AI technologies in the field of BCA were 

evaluated. Finally, a conceptual framework was developed to address the challenges and 

technology gap that need further research and development and to formulate 

recommendations for the selection of appropriate technologies. 

2.2 Deterioration of Reinforced Concrete Bridges 

RC bridges are susceptible to various deterioration mechanisms. The distinction among 

their major causes is purely qualitative since such mechanisms can act in synergy. 

However, RC bridge deterioration mechanisms can be categorized as physical, chemical, 

mechanical, and biological processes. Physically-induced deteriorations are caused by 

factors such as freeze-thaw cycling, crystallization of salts in pores, non-uniform volume 

changes, temperature gradients, abrasion, erosion and cavitation from water flow. 

Chemically-induced deteriorations occur because of carbonation, chloride contamination, 
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sulfate and acid attacks, or alkali-aggregate reactions (Delatte, 2009). Mechanically-

induced deteriorations are generally caused by static and/or dynamic loads, or construction 

faults such as those from premature loading during construction. Biologically-induced 

deteriorations, such as fungi, moss, and microbials, can cause internal or external concrete 

damage through physical and chemical interactions (Penttala, 2009). Different 

deterioration processes lead to different types of defects and will have different effects on 

the ability of the evaluation techniques to detect and characterize them (Gucunski and 

Nazarian, 2010).  

Damage mechanisms can primarily affect the steel reinforcement or the concrete itself. 

Corrosion of the reinforcing steel often constitutes the primary deterioration mechanism 

and major concern for RC bridges and can lead to structural and functional failures. The 

reinforcing steel becomes susceptible to corrosion when the ingress of chloride ions 

exceeds a threshold concentration level, which is dependent on factors such as the quality 

of concrete, relative humidity, temperature and pH of the pore solution. In addition, 

carbonation of the concrete resulting from the reaction between carbon dioxide and other 

alkaline constituents of the cement paste reduces the alkalinity of the concrete. Thus, the 

steel can be de-passivated. As the steel corrodes, rust occupied areas increase in volume, 

creating internal tensile stresses in the surrounding concrete. Cracking in the concrete 

surrounding the steel rebar is initiated when such tensile stresses exceed the tensile strength 

of the concrete. Cracking accelerates the damage mechanisms by providing easy access for 

chlorides, oxygen and moisture, resulting in subsurface fracture planes (delaminations), 

which may be localized at the level of steel reinforcement or can extend over a substantial 

area along different planes beneath the concrete surface (Penttala, 2009). As the 

deterioration progresses, these fracture planes may become separated from the main 

structural component, resulting in spalling of the concrete surfaces, which further exposes 

the embedded steel to the corrosive environment, thus accelerating deterioration, and 

possibly compromising the bridge’s structural integrity, safety and serviceability.  

However, the common defects occurring in concrete bridges and their possible causes are 

briefly described in Table 2-1. Such defects represent the main challenge in concrete 

bridge inspection and repair programmes.  



16 

 

Table 2-1: Common defects in reinforced concrete bridges 

Defect Description and Reason 

 

 

Cracking 

 Description: partly or completely linear fracture. Classification: 

geometrically (hairline, narrow, medium and wide) or structurally (shear, 

and flexural cracks).  

 Reason: tensile and compressive stresses, shrinkage and expansion, 

internal or external restraint, differential movements and settlements, rebar 

corrosion.  

 

Scaling 
 Description: local flaking, or loss of surface portions of concrete. 

 Reason: de-icing chemicals, freeze-thaw cycles, high permeability, non-

air entrained, poor concrete consolidation, physical salt attack. 

 

Disintegration 

 Description: starts in the form of scaling and progression of severe scaling 

results in breaking down of concrete into small fragments or particles.  

 Reason: de-icing chemicals, strong alkalies, sulphate or chloride attack, 

and/or frost action. 

 

 

Abrasion 

 Description: as the outer paste of concrete wears, the fine and coarse 

aggregate are exposed and abrasion and impact will cause additional 

degradation that is related to aggregate-to-paste bond strength. 

 Reason: inability to resist wear caused by rubbing and friction, and wind-

borne particles. 

 

 

Corrosion 

 Description: deterioration of steel bars by electrolysis. Starts with light 

rust stain on concrete surface, localized pitting, very heavy rusting, and 

loss of steel section.  

 Reason: ingress of chloride ions, use of de-icing salts, carbonation, using 

high w/c ratio, wetting-drying cycles, lack of curing, low thickness of 

concrete cover. 

 

 

Delamination 

 Description: partial separation areas of the concrete cover at or near the 

external layer of steel bars where concrete subsequently separates, but not 

entirely detaches. 

 Reason: substantial and advanced corrosion in the top steel bars, which 

swell and develop internal stress, leading to de-ponding between concrete 

and steel bars. 

 

 
Spalling 

 Description: fragment detached from a larger concrete mass. Common on 

exposed concrete edges, deck joints or construction joints. 

 Reason: pressure exerted by corrosion, areas of localized high 

compressive load concentrations, or by the formation of ice in the 

delaminated areas. 

 

 

Cavitation 

 Description: irregular concrete surface presented as small holes and pits. 

 Reason: abrupt change in direction of high-velocity flowing water creates 

cavities at the concrete surface. When vapor cavities collapse, causing very 

high instantaneous pressures that impact on the concrete surfaces, causing 

pitting, noise, and vibration. 
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Scour 

 Description: the removal of material from the stream bed or bank due to 

the erosive action of moving water in the stream. Measured as the average 

depth below the original stream bed. 

 Reason: general scour is caused by the constriction to the natural flow 

created by the structure, while local scour is caused by an obstruction to 

the flow by a pier or an abutment. 

 

 

Alkali-

Aggregate 

Reaction 

 Description: expansion occurs under moist conditions, leading to 

cracking and deterioration of concrete. Has two forms: alkali-silica 

reaction (ASR) and alkali-carbonate reaction (ACR). ASR is more 

common than ACR, but ACR tends to be more rapid and severe.  

 Reason (ASR): some aggregates react adversely with alkalis in concrete 

to produce a highly expansive gel causing expansion and cracking usually 

over a period of years, 

 

The formation of corrosion-induced delamination and spalling in concrete bridge decks is 

shown in Fig. 2-2. Such a deterioration mechanism has been a serious concern for 

transportation agencies due to the related serviceability and safety considerations.  

 

 

Figure 2-2: Corrosion-induced delamination and spalling in concrete bridge decks 

(Gucunski et al., 2013). 
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2.2.1 Bridge Performance Indicators 

Bridge performance indicators include scour assessment, fatigue and fracture assessment, 

seismic assessment, and condition assessment, including load carrying capacity.  

2.2.1.1 Scour Assessment 

For a majority of RC bridges spanning watercourses or located in flood plains, failures are 

attributed to scour damage, which is difficult to detect in real time. Scour is a common soil-

structure interaction problem that can occur in three main forms, namely, general scour, 

contraction scour and local scour. Scour reduces the stiffness of foundation systems and 

can cause bridge piers to fail without warning. Continuous changes in climate and the 

increasing frequency of flooding has led to a higher risk of such bridge failures. Several 

studies investigated scour mechanism and how to predict its depth (e.g. Jannaty et al., 2016; 

Amini et al., 2014), and various types of instrumentation (e.g. tiltmeters and 

accelerometers) have been developed to measure bridge response to scour. However, most 

monitoring regimes are based on underwater instrumentation that requires expensive 

installation and maintenance, and can often be subjected to damage during times of 

flooding, when scour risk is at its highest. Consequently, appropriate preventive measures 

are difficult to apply when scour damage is detected. Therefore, scour monitoring is an 

important topic for transportation owners, especially during high-flood events and in 

coastal areas. Currently, there are research efforts investigating scour monitoring using 

changes in bridge structural dynamic properties to indicate the existence and severity of 

the scour phenomenon affecting the bridge. Further details on scour assessment and 

monitoring systems are reported in Prendergast and Gavin, (2014).  

2.2.1.2 Fatigue and Fracture Assessment 

Fatigue failure can occur in RC bridges when they are exposed to repetitive loading. Micro-

cracks in concrete commonly develop at the aggregate-cement paste transition zone due to 

different thermal and shrinkage deformations. Repetitive loading extends the length and 

size of the micro-cracks exacerbating stress concentration, which can lead to a fatigue 

failure depending on the bridge’s geometry, material properties and applied loads. The 

loads could be caused by short-term traffic, variable long-term loads and wind. Generally, 
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two types of fatigue loading can result in different failure characteristics: low-cycle fatigue, 

in which the load is applied at high stress levels for a relatively low number of cycles; and 

high-cycle fatigue corresponding to a large number of cycles at lower stresses (Saviotti, 

2014). Fatigue failure modes could be classified as compression, bending, shear or bonding 

failure. The fatigue life of a bridge depends as much on the stress levels as on the stress 

range and the number of loading cycles. Corrosion induced fatigue strength reduction has 

a large effect on fatigue life. It has been found that the fatigue life of a bridge could be 

reduced by more than 60% for the low corrosion condition and by more than 70% for the 

medium and high corrosion conditions (Zhang and Yuan, 2014). Maekawa and Fujiyama 

(2013) also investigated the crack water interaction and fatigue life assessment of RC 

bridge decks and concluded that a high loading rate shortens the fatigue life of saturated 

concrete bridge slabs. However, several models have been developed in the literature for 

bridge fatigue reliability assessment and the prediction of fatigue life of reinforcing steel 

rebar based on dynamic analysis, stress wave analysis, and finite element analysis 

(Newhook and Edalatmanesh, 2013).   

2.2.1.3 Seismic Assessment 

The risk associated with the seismic susceptibility of bridges is pertinent to the safety and 

security of the public and moreover in the case of disasters (Saviotti, 2014). Therefore, 

bridges located in areas subjected to seismic forces are commonly designed according to 

specific codes (e.g. performance and displacement-based design) to resist such forces 

without collapse (Zhang et al., 2016). However, the primary causes of bridge seismic 

damage include soil liquefaction, bridge age, design or construction modifications, and 

inelastic deformation during strong earthquakes. There are numerous studies in the 

literature on the seismic risk assessment of bridges. For instance, Muntasir et.al. (2015) 

presented a review of the different methodologies developed for seismic fragility 

assessments of highway bridges along with their features, limitations and applications. 

However, the inherent difficulties of upgrading existing RC bridges to current structural 

standards highlight the need for more advanced research studies in several areas (e.g. 

assessment methods, retrofit criteria and intervention techniques) (Saviotti, 2014). Table 

2-2 illustrates some developed techniques and their related references. 
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Table 2-2: Evaluation techniques for RC bridge performance indicators and the 

related references 

Performance 

Indicator 
Evaluation Technique Reference Year 

 

 

  

Scour 

Assessment 

 Bridge Dynamic Response. 

 Sound Wave Devices. 

 Driven Rod Devices. 

 Fibre-Optic Bragg Sensors. 

 Ultrasonic P-Wave. 

 Single-Use Devices. 

 Ground Penetrating Radar. 

 Electrical Conductivity Devices. 

 Elsaid and Seracino 

 Fisher et al. 

 Zarafshan et al.  

 Zarafshan et al.  

 Coe and Brandenburg 

 Briaud et al.  

 Anderson et al. 

 Anderson et al. 

 2014 

 2013 

 2012 

 2012 

 2011 

 2011 

 2007 

 2007 

 

 

Fatigue and 

Fracture 

Assessment 

 Bridge Dynamic Response. 

 Vehicle-Bridge-Wind Dynamic S. 

 Corrosion-Fatigue Strength. 

 Integrating Reliability and SHM. 

 Crack Water Interaction. 

 Static Ultimate Testing. 

 Fatigue Damage Accumulation. 

 Acoustic Survey-Crack Monit. 

 Zanjani and Patnaik 

 Zhang et al. 

 Zhang and Yuan 

 Newhook and Edalatman 

 Maekawa and Fujiyama 

 Newhook et al. 

 Edalatmanesh Rahman 

 Butt et al. 

 2014 

 2014 

 2014 

 2013 

 2013 

 2011 

 2010 

 2007 

 

 

 

Seismic 

Assessment 

 Seismic Fragility Analysis.  

 Negative Stiffness Devices. 

 Probabilistic Time-variant Static. 

 Seismic Design of RC Bridges. 

 Probabilistic Performance Analy. 

 Target Damage Level. 

 Rubber-Based Isolation System. 

 Post Repair Response. 

 Muntasir et.al. 

 Attary et al. 

 Biondini and Frangopol 

 Nogami et al. 

 Lau et al. 

 Taner and Caner 

 Ozbulut and Hurlebaus 

 Do Hyung et al. 

 2015 

 2013 

 2013 

 2013 

 2012 

 2011 

 2011 

 2010 

 

2.3 Bridge Condition Assessment Approaches 

The condition assessment of an existing RC bridge aims at determining whether the bridge 

will function safely over a specified residual service life. It is based on the results of 

assessing hazards and load effects to be anticipated in the future. Guidelines for assessment 

of existing bridges have been developed in many countries. They are commonly separated 

in phases, starting with a preliminary evaluation, followed by a detailed investigation, 

expert investigation, and finally an advanced assessment, depending on the structural 

condition of the investigated bridge (Saviotti, 2014). The preliminary evaluation mainly 

deals with bridge safety and identifying critical deteriorated bridge members. It should 

include an intensive study of the original design and as-built documents, the maintenance 

records, a visual inspection and a photographic survey. The detailed investigation focuses 

https://www.google.ca/search?tbo=p&tbm=bks&q=inauthor:%22Rahman+Edalatmanesh%22
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on those members for which adequate safety was not confirmed by the preliminary 

evaluation. The fatigue and seismic behaviour of the bridge are also considered in this stage 

and NDT could be used in order to characterise the basic material properties of the bridge. 

The final report should establish whether the bridge has sufficient static strength against 

actual loadings. If a bridge component has major consequences in terms of risk or cost, an 

expert investigation will be required to check the conclusions and proposals recommended 

in the detailed investigation report. In-situ assessment using specific testing tools could be 

adopted to help reach a decision. The advanced assessment determines whether retrofitting 

interventions could be adopted, and whether large-scale dismantling operations may be 

required. It could include seismic analysis, material analysis, finite element modeling, and 

a detailed survey using some of the advanced BCA testing techniques (Saviotti, 2014). 

Table 2-3 summarizes the requirements for each phase of the assessment procedure. 

 

Table 2-3: Requirements of different assessment phases of existing bridges 

Assessment 

Procedure 

Assessment Requirement 

  

 

Preliminary 

Evaluation 

 Ensure that bridge construction is conforming to the built drawings. 

 Identify any modification conducted while bridge is in service (e.g. 

rehabilitation, strengthening, changes to static system.... etc. 

 Record the presence of any visual degradation evidence (e.g. 

damaged expansion joints, cracks, scaling, pop-out, spalling.... etc. 

 The final report should indicate any questionable information. 

 

 

Detailed 

Investigation 

 Develop FEM numerical model of the entire bridge. 

 Verify that the structural components and elements are safe. 

 Concerning specific issues such as fatigue and seismic behaviour. 

 NDT could be used to characterise the material properties. 

 The final report should establish whether the bridge has sufficient 

static strength against actual loadings. 

 

 

Expert Investigation 

 Team of experts will discuss and check the conclusions and 

proposals recommended in the detailed investigation report.  

 Further assessment using specific tools can be carried out. 

 On-site testing could be adopted, if required, in order to provide the 

dynamic identification of the bridge. 

 

 

Advanced 

Assessment 

 Determine the global static and cyclic behaviour of the bridge based 

on detailed on-site survey data, NDT, and FEM analysis. 

 In some cases, on-site dynamic identification could be performed. 

 For fatigue assessment, a linear elastic fracture mechanics 

investigation is required. 

 The final report should include all the performed analysis and 

indicate the verification results and any specific retrofit needed. 
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The most significant challenge to BCA is the quantification of information on bridge 

condition (Lounis, 2013). A comprehensive literature survey has shown that BCA 

techniques can be classified into one (or a combination) of five categories including VI for 

assessing the apparent condition, load testing (LT) techniques for determining safe loading 

levels, NDT technologies for detecting deterioration indicators, SHM systems for sensing 

structural performance, and finite element modelling (FEM) for numerically predicting 

bridge reliability as shown in Fig. 2-3. Each category is investigated subsequently to frame 

its knowledge gaps and highlight its research needs. 

 

 

Figure 2-3: Condition assessment mechanisms of reinforced concrete bridges. 

 

2.3.1 Visual Inspection 

Visual Inspection (VI) is the primary component of all existing BMSs. In Canada and the 

United States, routine VI is often conducted within 24-month intervals depending on the 

condition of the bridge. Enhanced inspection to access all areas of bridges over 30 years 

old are typically done with a maximum six years interval, while emergency detailed 

inspection should be carried out immediately when a component contributing to overall 

bridge stability has failed, in case of imminent failure, or when public safety is at risk. The 

use of bridge inspection reporting software has been explored by several asset management 
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software developers. A bridge inspection software typically consists of interactive forms 

that retrieve customized inspection guidelines and relevant historic bridge inspection data, 

capture bridge evaluation data, and automatically associate the captured information with 

the bridge components, making the bridge inspection records intuitive (Akula et al., 2014). 

VI can only identify problems once they have progressed to a high level of severity and 

reached the concrete surface. Furthermore, visual inspection requires lifting tools to gain 

adequate access to some areas of the bridge as shown in Fig. 2-4. 

 

 

Figure 2-4: Visual inspection of concrete bridge decks and soffits (Gucunski et al., 

2013). 

 

Research results indicate that assessing a bridge’s condition by VI alone is unreliable, as it 

is unable to identify correctly the repair priorities (Moore et al., 2001). Although the 

qualifications and experience of those leading bridge inspection are recognized by most 

inspection standards, the quality and consistency of visual inspection results greatly depend 

on the motivation and equipment of those conducting such inspections. In spite of the fact 

that VI is subjective and qualitative, it has been the dominant practice for BCA and for 

input parameters in deterioration models. An advantage of VI is that it involves a broad 

evaluation of the entire bridge and is not limited to the detection or assessment of a specific 

type of damage or a component of the bridge. The VI costs depend on the characteristics 

of the bridge and are positively correlated to the level of inspection details and frequency. 

The major components of VI costs belong to traffic management and labour. VI costs 
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increase, for instance, in cases of underwater inspection to evaluate scour (Agdas et al., 

2015). Increased awareness of the shortcomings of visual inspection has motivated 

advanced BCA approaches. Although more quantitative models of structural deterioration 

have been developed, they have yet to be incorporated in existing BMSs. Thus, the review 

reveals the need for unified guidelines and BCA procedures capable of using the accessible 

data collected during the VI process and accounting for the uncertainty and complexity 

associated with detailed inspection processes.  

2.3.2 Load Testing 

Condition assessments for the global structure integrity of existing concrete bridges are 

commonly addressed through structural analysis, load testing, or a combination of 

methods. For instance, the reliability bridge evaluation rating process described in the 

AASHTO’s (American Association of State Highway and Transportation) manual is based 

on load testing. Load testing is a procedure to determine the safe loading levels of a bridge, 

leading to a load rating that indicates the capacity level of a bridge. Through forced static 

and dynamic load testing in varied load patterns, the maximum response can be detected 

using strain transducers placed at critical locations on the bridge. Forced vibration testing 

combined with system identification has been used for many decades to determine the 

dynamic characteristics of bridges. Load tests are broadly divided into two categories: 

proving load tests, which are intended as self-supporting alternatives to theoretical 

assessments, and supplementary load tests, which are intended to be used as an adjunct to 

theoretical calculations (Zhang et al., 2016). However, the load ratings can be determined 

by allowable stress, load factors, or load and resistance factor methods. Bridge ratings 

performed by all three methods follow a similar basic procedure, differing primarily in the 

load or resistance factors in the rating equation. Although the ratings are determined in 

both inventory and operating load levels, these three competing rating methods may yield 

different rated capacities for the same bridge (Wang et al., 2011).  

Not only do older bridges deteriorate over time, but they may also not have been designed 

for increased load demand. Therefore, the required load capacity of an existing bridge 

should be determined according to the extreme load effects that the bridge will experience 

from actual traffic during its remaining service life. Extreme vehicle loads have been 
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researched through methods such as probabilistic vehicle weight models, consecutive 

traveling vehicle models, and simulation (Zanjani and Patnaik, 2014). Another practical 

procedure of BCA via load testing is using B-WIM (bridge-weight in motion) monitoring 

data where the strain measurements can evaluate the bridge condition, especially for 

bridges under load restriction due to distress (Mosavi et al., 2014). However, it should be 

noted that this testing is only confined to the elastic range (assuming a heavily overloaded 

truck represents ultimate load), which gives no information on the non-elastic performance 

at the ultimate limit state.  

Bridge strains, displacements, and accelerations can be measured during load testing. 

Vertical displacement has been considered the most important among various structural 

health parameters that could be used for predicting consequent damage or deterioration in 

RC bridges. For instance, deflection in RC bridges increases with reductions in stiffness 

when cracking of the concrete occurs. Therefore, service limit states, specified in several 

design codes and standards, indicate that deflections throughout the entire service life of a 

bridge must not exceed acceptable limits. Measuring deflections during a load test can be 

done using linear variable differential transducers-LVDTs, and fibre-optic or similar 

sensors mounted on a fixed support. While these systems have high rates of data acquisition 

and reasonable accuracy, it is usually difficult to install them on bridges spanning 

waterways, bridges with heavy traffic, and when there is need of placing the sensors in 

contact with an auxiliary frame linked to the ground. (Cruz et al., 2015). Other options 

include topographical methods, hydraulic methods, and the radar interferometry system. 

Generally, the topographical methods have low resolution and do not provide high rates of 

readings, preventing their use in obtaining influence lines and accurate deflection 

measures. The hydraulic methods have similar drawbacks in addition to the effects of 

temperature on measurements, while the radar system does not directly measure 

deflections, which makes it difficult to apply. However, applying the geodetic technique 

using a robotic total station or a theodolite has been successfully used for bridges 

characterized by large deflections (Cruz et al., 2015). 

Bridge structural integrity can also be assessed by the most probable values of the structural 

element properties, such as the stiffness obtained using vibration measurements. For 
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instance, Chen et al. (2009) applied image processing methods and utilized the data of 

vibration measurements and video-based traffic monitoring to update the probability 

distributions of the elements’ stiffness where the most probable values served as reliable 

indicators of bridge structural integrity. Wang et al. (2011) assessed several existing bridge 

structures and recommended guidelines, established by a coordinated load testing 

programme and a FEM integrated within a structural reliability framework, to determine 

practical bridge rating methods. However, loads experienced by bridges are often inferred 

from limited measurements of external conditions (e.g. ambient temperature, wind 

speed/direction, wave heights). Therefore, the monitoring of load testing can be combined 

with other technologies, such as structural health monitoring methods, for improved 

assessment of concrete bridges.  

2.3.3 Structural Health Monitoring  

Structural Health Monitoring (SHM) is a non-destructive in-situ sensing and evaluation 

technique that uses multiple sensors embedded in a structure to monitor and analyze the 

structural response and detect anomalous behaviour in order to estimate deterioration and 

to evaluate its consequences regarding response, capacity, and service life. A SHM system 

has the ability to detect damage at any point in time by its real time continuous monitoring. 

In recent years, several SHM systems have been developed and implemented to provide 

information for bridge maintenance strategies. Most SHM systems have similar 

fundamental elements: (1) measurements by sensors and instrumentation, (2) structural 

assessment (e.g. peak strains or modal analysis), and (3) BCA to support MR&R related 

decision-making (Alampalli, 2012). The functionality of a SHM system depends on the 

type and number of sensors used. A monitoring system may rely on single or multiple 

sensor types, which can be tailored to capture a variety of physical measurements 

associated with loads, environmental conditions, and bridge responses (Wong, 2007). A 

SHM system with a variety of sensor types can identify material parameters such as 

concrete creep, shrinkage and corrosion, environmental effects including temperature 

gradients, and dynamic responses such as traffic-induced vibrations. Table 2-4 summarizes 

some common SHM systems to identify the most important parameters in appraising the 

overall stiffness and bearing capacity of a bridge structure. 
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Table 2-4: Summary of common structural health monitoring systems of bridges 

Monitoring System Advantages and Limitations 

 

 

Displacement Sensors  

(Park et al., 2005) 

 Easy to use and can allow rapid collection of data from a large 

number of points when connected to a data acquisition system. 

 Reference dependent and time consuming installation. 

 Cannot be installed under high bridge decks or bridges spanning 

waterways. 

 

Acceleration Sensors 

(Park et al., 2005) 

 Have small size and low weight; mainly for vibration monitoring. 

 Identification effect is poor for low-frequency static displacement 

 Double integration is required to obtain the displacement. Thus, 

has low accuracy. 

 

Strain sensors 

(Glisic et al., 2002) 

 Can measure vertical displacement of a bridge and the 

deformation of a frame. 

 Cumbersome to apply and requires a data acquisition system. 

 Unsuitable for measuring the deformation of long-span bridges. 

 

Robotic Total Station 

(Palazzo et al., 2006) 

 High precision, automation and can measure the 3D coordinates. 

 Cannot complete multi-target tasks in a short time. 

 Due to its low measuring frequency, the requirement of dynamic 

measurement cannot be satisfied. 

 

GPS Satellite-Surveying 

(Cosser et al., 2014) 

 Calculate displacement based on measuring the coordinate 

changes in one, two or three dimensions. 

 Applicable to all-weather continuous monitoring. 

 Low measurement rate, high cost, requires skilled professionals. 

Motion detection 

cameras 

 (Chan et al., 2009) 

 Measure bridge displacement through analyzing photo frames. 

 Require a certain amount of light to achieve accurate results. 

 Accuracy may be compromised due to susceptibility to vibrations 

from wind and vehicle loading when mounted on bridge. 

Digital Image Cross-

Correlation 

(Bell et al., 2012) 

 Optical measurement technique for collecting displacements. 

 Rapid testing of in-service bridges through digital photography. 

 Accuracy of deflection measurement should be verified. 

 

Radar Sensors  

(Guan et al., 2014) 

 Wireless and mounted sensors with relatively low cost. 

 Bridge motion can be extracted from the reflected wave signals. 

 Signal demodulation and data processing are difficult in the 

presence of noise. 

Laser Doppler 

Vibrometer 

(Raghavan, 2007) 

 Measure the vibration and displacement of bridges. 

 Provide accurate results but should be placed on the ground 

underneath the bridge and cannot be left unattended. 

 Not suitable for long-term continuous monitoring (fixed position)  

Terrestrial Laser Scan  

(Gordon & Lichti, 2007) 

 Can rapidly build complex, irregular 3D visualization models. 

 Low monitoring accuracy; the post-processing is complicated. 

Laser Projection-

Sensing  

(Zhao et al., 2105) 

 High image acquisition frequency and able to reflect the variation 

of structural dynamic displacement completely. 

 A feasible method to monitor bridge displacement. 

 Requires long-distance laser devices and high resolution 

cameras. 
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2.3.3.1 Data Acquisition Using Sensors and Laser Scanning  

SHM systems often rely on cables to connect sensors on bridges to a centralized power and 

data acquisition source. These wired systems are usually very reliable and are capable of 

high data collection rates. However, data and power cables, along with supporting conduit 

installation, remain the primary implementation and cost obstacles for cabled monitoring 

systems (Bao et al., 2013). Fibre-optical sensors (FOS) have been applied for strain, 

temperature, and vibration measurement. FOS are less susceptible to electrical noise than 

strain gauges and accelerometers and thus can provide distributed measurements along a 

bridge but their accuracy is questionable (Higuera et al., 2011). With the increased 

availability of wireless data networks, sustainable SHM systems have been developed so 

that pervasive sensor networks allow more efficient monitoring of multiple bridges and 

bridge segments across large areas. Wireless sensors have alleviated the cost and labour 

associated with cabled monitoring systems. O’Connor et al. (2014) employed a wireless 

sensor network to measure bridge accelerations, strains and temperatures. However, 

limitations of using wireless sensors include constraints in power and transmission 

bandwidth. Solar power supply, vibration, or wind could sustain long-term wireless sensor 

network operations, while less relevant communication bandwidth constraints could be 

made by conveying less data. For instance, O’Connor et al. (2012) introduced the 

compressed sensing data acquisition approach to achieve energy efficiency in long-term 

monitoring applications.  

Laser scanning has been used in recent years for several health monitoring and damage 

detection applications in order to capture the status of structures. The most common 

application is tracking user-defined key-points on structures over a time period. Laser 

scanning capabilities, such as texture mapped 3D point clouds, can be used effectively to 

document quantitative information on present conditions of bridges where individual laser 

scans of a scene may be captured from different viewpoints to permit the creation of a 

complete 3D record of a damaged bridge (Olsen et al., 2013). Guldur et al. (2015) 

developed a condition rating system of bridge components using detected and quantified 

surface damage from texture-mapped laser point clouds. The severity of the detected 

damage of each structural item was classified and assigned a numerical rating value based 
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on the AASHTO’s condition rating guidelines. The system provides structural evaluation, 

giving an overall bridge condition based on major deficiencies, including its ability to carry 

the required loads. Zhao et al. (2015) developed a bridge displacement monitoring system 

based on laser projection-sensing and recommended the use of long-distance laser devices 

with higher power and good collimation to monitor displacements in large-span bridges.  

2.3.3.2 Common Applications of SHM Systems 

SHM applications can be deployed for load rating, short-term assessment of a specific 

bridge performance aspect (e.g. corrosion or scour) or for long-term monitoring to assess 

and track a wide range of bridge health conditions. SHM can track previously identified 

concerns or continuously monitor the bridge performance to detect damage before it 

reaches critical levels through systems that are deployed pre-emptively during the 

construction phase. Laory et al. (2012) discussed a systematic approach to determine the 

appropriate number and location of sensors to configure measurement systems in which 

static measurement data are interpreted for damage detection of continuously monitored 

bridge structures. Many SHM systems have been deployed on a variety of bridge 

components, such as long-term monitoring of bridge abutment piles, and remote sensing 

of corrosion in bridge decks (Huntley and Valsangkar, 2014). Integration of different SHM 

systems or combinations of them with other techniques can enhance the assessment 

process. Generally, a monitoring system is designed as an integrated system with all data 

flowing to a single database and presented through a single user interface. 

For instance, Hu and Wang (2013) proposed an integrated SHM system which facilitates 

the combination of data collection and data analysis. Wireless network sensors, including 

accelerometers, strain gauges, and temperature sensors, were utilized in a system that can 

continuously monitor a bridge performance under random loads, where static and dynamic 

structural response parameters (e.g. vibration acceleration, dynamic displacement, and 

dynamic strain) can be determined and analyzed. Agdas et al. (2015) utilized visual 

inspection and wireless sensor networks and recommended a hybrid evaluation technique 

that adopts both approaches for optimal functionality to optimize the efficiency of BCA. 

Akula et al. (2014) introduced an integration BCA system through software called Toolkit, 

which allows inspectors to have access to an intelligent interpretation of SHM obtained 
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data and to the BCA data corresponding to equivalent components recorded visually by 

other respondents. However, while the SHM approach is promising as an effective bridge 

management tool, it still needs further dedicated research to make it a simple, reliable and 

low-cost option to become a standard aspect in BMSs. 

2.3.4 Non-Destructive Testing  

Non-destructive testing (NDT) techniques enable detection of deterioration processes at 

their early stages. NDT methods can be incorporated into the bridge inspection process, for 

example, to evaluate stiffness and strength, moisture content, and subsurface defects such 

as reinforcing steel corrosion, delamination and crack propagation. NDT is specified in 

some BMSs through periodical surveys or when visual inspection results indicate 

irregularities within the bridge structure. Appropriate and effective use of NDT has three 

requirements: (i) suitable understanding of the underlying phenomenon, (ii) the correct 

deployment of testing methods, and (iii) the application of appropriate analysis models to 

quantify the detected defects or variation of properties. The most commonly used NDT 

methods in onsite assessment and evaluation of RC bridges are illustrated in Fig. 2-5.  

 

 

Figure 2-5: Non-destructive testing techniques for reinforced concrete bridges. 
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Among all bridge components, the performance of bridge decks was identified as the most 

important long-term bridge performance issue. Thus, to perform a practical review of the 

existing literature on the wide range of NDT techniques, this section will focus only on 

condition assessment of RC bridge decks. 

2.3.4.1 Conventional NDT techniques 

A number of hand tools, including hammers, steel rods, and chains, have been widely used 

to detect subsurface anomalies (e.g. delamination, voids and cracks) in concrete bridge 

decks. Hammer sounding involves tapping the surface of a concrete member with a 

hammer at multiple locations, while chain dragging involves dragging a chain over the 

bridge deck surface. In both cases, the user listens to and interprets the distinctive sounds 

produced. A dull or hollow sound indicates delaminated concrete, and a distinct ringing 

sound designates non-delaminated concrete. The advantages of these methods include 

simplicity, portability and low operating cost. However, such techniques require hands-on 

access and can be labor-intensive and time-consuming for large areas of concrete, while 

being ineffective for detecting subsurface anomalies in decks having overlays. Traffic 

control must also be in place so that inspectors can safely access the concrete element. In 

addition, the interpretation of the sound produced is subject to the operator’s judgment and 

experience. Likewise, initial or incipient delamination often produces oscillations outside 

the audible range. Hence, delaminations cannot be detected by such methods (Yehia et al., 

2007). These limitations have motivated the pursuit of advanced NDT techniques for more 

effective and reliable bridge inspection. 

2.3.4.2 Advanced NDT Techniques 

A number of NDT techniques that exploit various physical phenomena (acoustic, seismic, 

electric, thermal, and electromagnetic, etc.), have been explored as a means of improving 

the reliability of BCA. Generally, such techniques utilize an approach where the objective 

is to learn about the characteristics of the medium from its response to an applied excitation 

(Gucunski et al., 2013). For example, probability of active corrosion can be evaluated by 

half-cell potential (e.g. Pradhan and Bhattacharjee, 2009), electrical resistivity (e.g. Brown, 

1980), and ground penetrating radar (e.g. Varnavina et al., 2015), while the corrosion rate 
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can be identified by the polarization resistance method (e.g. Cady and Gannon, 1992). The 

presence of vertical cracks leads to a reduced modulus of elasticity of concrete, which can 

be captured using the ultrasonic surface wave method (e.g. Nazarian et al., 1993). 

Delamination can be detected using impact echo (e.g. Kee et al., 2012; Parisa et al., 2013), 

pulse echo (e.g. Krause et al., 2011); and infrared thermography tests (e.g. Washer et al., 

2009; Seong et al., 2012). Table 2-5 compares the advantages and limitations of the most 

relevant NDT techniques for evaluation of concrete bridge decks. The half-cell potential 

method will be presented in this section, and IRT and GPR techniques will be presented in 

Chapters 4 and 5, respectively. However, further details about the theoretical bases, 

instrumentations, applications, and data analysis of all NDT technologies are provided in 

a variety of sources such as the AASHTO Manual for Bridge Evaluation (2011), and a 

report by the American Concrete Institute (ACI 228.2R, 2013). 

Half-Cell Potential (HCP) 

Several researchers have applied Half-cell potential (HCP) to identify the potential of steel 

corrosion in concrete bridge decks. HCP testing is a probabilistic measurement indicating 

the probability of active corrosion. HCP measurements are conducted by electrically 

connecting a reference electrode to the steel reinforcement and measuring the potential 

voltage difference. The magnitude of the measured voltage indicates the corrosion activity. 

If the potential is more positive than -200 mV, the corrosion activity is highly unlikely at 

the time of the measurement. If the potential is more negative than -350 mV, there is a high 

likelihood of active corrosion. Corrosion activity is uncertain when the voltage is in the 

range of -200 to -350 mV. While the test is easy and inexpensive, it requires a moist 

concrete cover and uncoated steel bars. Its results could be affected by the concrete 

resistivity and cover thickness. It is to be noted that an increase in moisture and/or oxygen 

contents of concrete will cause a negative shift in potential voltage measurement. HCP 

results also vary with temperature and ion concentrations. Drilled concrete core specimens 

for chloride ion concentration analysis are usually retrieved from bridge decks being 

investigated using HCP. The accepted chloride threshold value necessary to de-passivate 

reinforcement steel and to allow the onset of rebar corrosion (in the presence of oxygen 

and moisture) is commonly taken as 0.025% by mass of concrete. 
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Table 2-5: Common NDT methods used to evaluate concrete bridge decks 

Technique 
Physical Phenomena and 

Description 
Applications 

Advantages and 

Limitations 

Impact Echo 

(IE) 

 Mechanical or seismic 

stress wave method. 

 Short-duration stress pulse 

using mechanical impact. 

 Compression waves reflect 

at interfaces of different 

acoustic impedance. 

 Monitoring the frequency 

arrival of reflected waves 

at a nearby location. 

 Detection of 

cracks and 

delamination. 

 Detection of 

overlay de-

bonding. 

 Evaluate 

concrete elastic 

modulus.  

 Provides good 

accuracy on depth and 

extent of defects. 

 Impact duration 

controls size of 

detected defect. 

 Less reliable in the 

presence of overlays. 

 Requires experienced 

operator & analyzer. 

Ultrasonic 

Pulse Echo 

(UPE) 

 Ultrasonic stress wave 

method.  

 Transducer emits short 

pulse, high amplitude of 

ultrasonic waves. 

 Waves reflection at various 

acoustic impedance. 

 Measuring the transit time 

of the ultrasonic pulse. 

 Detection of 

defects: 

delamination, 

cracks & voids. 

 Deck thickness 

measurements. 

 Detection of 

overlay de-

bonding. 

 Provides information 

on the presence and 

depth of defect. 

 Time-consuming, less 

reliable in detecting 

shallow defects.  

 Attenuation of 

transmitted pulses has 

scattering effect. 

Half-Cell 

Potential 

(HCP) 

 Electrochemical reaction 

technique. 

 Measures potential voltage 

difference between steel 

reinforcement and standard 

reference electrode using a 

voltmeter. 

 Identifies 

probability of 

active corrosion 

of steel 

reinforcement 

at the time of 

testing. 

 Results affected by 

concrete resistivity, 

moisture content and 

cover thickness. 

 Cannot be used in 

presence of overlays 

or coated rebar. 

Ground 

Penetrating 

Radar (GPR) 

 Electromagnetic (EM) 

wave propagation method. 

 EM pulses are emitted via 

a transmitter antenna. 

 The higher the frequency 

of antenna, the better the 

resolution but the lower the 

depth of penetration. 

 Reflection at interface with 

different electric properties 

 Evaluation of 

deck thickness 

and concrete 

cover. 

 Description of 

concrete as a 

corrosive. 

environment 

 Locating steel 

reinforcement. 

 Rapidly survey with 

100% coverage. 

 Cost-effective method 

 Not good to detect 

delamination when no 

moisture is present.  

 Cannot provide 

information about 

corrosion rates or 

rebar section loss. 

Infrared 

Thermography 

(IRT) 

 Electromagnetic surface 

radiation in the IR region. 

 Utilizes the radiated heat 

energy to characterize 

subsurface conditions. 

 Anomalies interrupt heat 

transfer and result in 

surface temperature 

differentials. 

 Detection of 

defects: 

delamination, 

cracks & voids. 

 Detection of 

layers and 

overlay de-

bonding.  

 Remote sensing 

technique, allows real 

time visualization.  

 Rapid inspection with 

minimum traffic 

disruption.  

 Cost-effective method 

 Environmental 

dependence. 
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2.3.4.3 NDT Using Remote Sensing Technologies 

Remote sensing (RS) is gaining popularity for evaluation of bridge condition. The 

commonly used RS technologies include 3D-optical bridge evaluation (3DOB), bridge 

viewer remote camera (BVRC), GigaPan, LIDAR, digital image correlation (DIC), and 

high resolution street view-style digital photography (Adhikari et al., 2012). These 

technologies do not include emplaced sensors, such as strain gauges or temperature 

sensors, and can be defined as a form of stand-off SHM and a form of NDT where the 

device-gathering data are not in contact with the object (Vaghefi et al., 2012). Abudayyeh 

et al. (2004) proposed a framework for automated bridge imaging system based on digital 

image processing. Their models were capable of storing different surface defects in a 

structured way and generated automated inspection reports. Ahlborn et al. (2012) applied 

different image technologies in assessing the condition of concrete bridge decks and 

reported that the 3DOB or BVCR techniques based on close range 3D photogrammetry 

and the GigaPan technique based on street view-style photography are the best 

technologies for defect measurement for bridge inspections. The DIC technology uses 

mathematical algorithms to extract displacement information from a series of photographs 

and can be used to calculate load rating of BCA throughout the service life of the bridge 

(Sanayei et al., 2012). Hinzen (2013) demonstrated the feasibility of damage detection and 

quantification based on Google street view images. However, these technologies should be 

integrated for complete BCA.  

2.3.4.4 NDT Application Approaches  

NDT methods can be applied alone to evaluate certain defects, or can be combined to cover 

a wider range of testing capabilities in a complementary manner. Although single NDT 

approaches have their own merits, there is no single NDT technology that is capable of 

identifying all of the complex deterioration phenomena that can affect a bridge. Many 

structural problems will be best studied by a particular NDT method, depending upon 

which physical properties of the construction materials offer the best scheme of reliable 

defect detection. However, results of BCA from different NDT techniques do not 

necessarily agree due to the uncertainty associated in data resulting from these techniques 

(Yehia et al., 2007; Huston et al., 2011). Therefore, due to the composite nature of concrete 
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and the many causes of deterioration, a diverse set of NDT technologies could be employed 

for a more complete conception of a bridge condition. Many case studies exist in which 

different techniques have been combined. Table 2-6 illustrates some studies that adopted 

the NDT combination approach and the objective of these studies. For example, the Federal 

Highway Administration (FHWA) has recently developed the “RABIT” bridge deck 

assessment device. RABIT (Robotics Assisted Bridge Inspection Tool) is a fully 

autonomous robotic system for the condition assessment of concrete bridge decks using 

the results of multi-model NDT, which utilizes the electrical resistivity, impact echo, 

ultrasonic surface waves, and ground penetrating radar technologies. The robot’s data 

visualization platform facilitates an intuitive 3-D presentation of three deterioration types 

(rebar corrosion, delamination, and concrete degradation) and deck surface features 

(Gucunski et al., 2015). Pailes (2014) developed a multi-NDT BCA model for concrete 

bridge decks. He identified the correlations between the utilized methods and developed a 

statistics-based approach to threshold identification for the utilized methods, which were 

fused and converted into a deterioration based BCA that identifies locations of active 

corrosion, delamination, and cracking. Results from multi-NDT surveys indicate a high 

potential to develop more realistic deterioration models for bridges. 

 

Table 2-6: Studies utilized combined NDT techniques approach to evaluate bridges 

Techniques Utilized Objective of the Study Reference Year 

 IRT, GPR. 

 GPR, Chain Drag, HCP.  

 IE, GPR, Chain Drag. 

 IRT, Chain Drag. 

 GPR, IE, Dynamic Response. 

 GPR, UE, Hammer Sounding. 

 IE, GPR, IRT. 

 IE, UE. 

 UE, GPR, IRT, HCP. 

 IE, IRT, Chain Drag. 

 IE, GPR, HCP, IRT, Ultrasonic 

Surface Waves, Electrical 

Resistivity, Pulse Echo, 

Impulse Response. 

 Delamination.  

 Damage Detection. 

 Comparative Study. 

 Delamination. 

 Damage Detection. 

 Comparative Study. 

 Comparative Study. 

 Measuring Thickness. 

 Comparative Study. 

 Damage Detection. 

 Comparative Study. 

 

 Alt and Meggers 

 Barnes & Trottier 

 Scott et al. 

 Clark et al. 

 Yong and Kee 

 Wood and Rens 

 Yehia et al. 

 Algernon et al. 

 Arndt et al. 

 Oh et al. 

 Gucunski et al. 

 

 1996 

 2000 

 2003 

 2003 

 2003 

 2006 

 2007 

 2011 

 2010 

 2013 

 2013 
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2.3.5 Finite Element Modelling 

Another tool that is available for BCA is structural modelling. Finite-element modelling 

(FEM) is a widely used method for the RC BCA. Research has shown that traditional 

methods of assessing bridge health are conservative in some cases and that a calibrated 

bridge FEM can provide a more accurate portrayal of bridge response and structural 

condition. The construction process, erection methods, material properties, geometric 

accuracy, and environmental conditions are key factors in the development of robust FE 

models (Sousa et al., 2014). For instance, Xia et al. (2005) developed a FEM for the 

quantitative condition assessment of a damaged RC bridge deck, including damage 

location and extent, residual stiffness evaluation, and load-carrying capacity assessment. 

The model was validated based on dynamically measured data from the undamaged and 

damaged decks. The damage location and quantification of the damaged deck were then 

identified, leading to residual stiffness and load-carrying capacity assessment. Wang et al. 

(2011) developed a FEM to assist the design of load tests and the interpretation of their 

results. The actual bridge test results, in turn, were used to validate the FE analysis. The 

measured bridge deflections were found in good agreement with those computed by FE 

analysis. Alani et al. (2013) proposed an integrated bridge health mechanism where a FEM 

was developed using data from visual inspections and calibrated using NDT survey results.  

Bell et al. (2012) developed a FEM to calculate the load rating and predict the bridge 

structural performance, which was calibrated via the digital image correlation technique 

utilized to measure bridge displacements. The system identifies the portion of the bridge 

that had undergone the greatest amount of deterioration. Ghodoosi et al. (2015) evaluated 

the system reliability of concrete bridges using a FEM and found that the estimated 

element-level structural conditions degrade faster once corrosion is initiated. FEM can also 

be used to evaluate the reliability of bridges that use nonconventional materials or structural 

forms. For example, Ghodoosi et al. (2014) developed a FE BCA model for a restrained 

bridge deck system and calibrated the model with experimental results of static deflection, 

vibration characteristics, load distribution, and crack patterns. Sousa et al. (2014) utilized 

FEM to assess the long-term performance of concrete bridges and suggested that data 

collected using permanently installed monitoring systems is the most reliable strategy to 
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improve such assessments. Subsequently, an integrated framework consisting of both FE 

modelling and structural monitoring can assist informed decisions. 

2.3.6 Advantages and Limitations 

The advantages and limitations of the commonly used BCA approaches, presented herein, 

are summarized in Table 2-7. Generally, VI, the main tool for evaluating bridge condition, 

suffers from limitations such as the required time of inspection, the assessment subjectivity, 

a number of safety risks associated with field inspections, and the need for a clear line of 

sight. This could affect the efficiency of decision-making and resource allocation. NDT 

technology can enhance accuracy and yield more efficient BCA. Simultaneously deploying 

multiple NDT technologies enables accurate detection and characterization of deterioration 

and provides a better understanding of bridge conditions. This approach also makes the 

assessment of a large population of bridges feasible. However, the practitioner must deal 

with substantially larger and more complex data, understand how to properly fuse and 

interpret the data fusion. Automated data collection and analysis using multiple NDT 

methods integrated into robotic systems can overcome those obstacles. Integrated remote 

sensing technologies are also gaining popularity as they provide higher evaluation details.  

SHM is becoming common in bridge monitoring. For instance, using wireless SHM to 

monitor the progression of deficiencies identified during a VI allows for continuous 

monitoring of identified defects, while maintaining a safe use of the bridge. Yet, SHM 

systems have some limitations which can hinder their adoption as part of BMSs. These 

include system complexity, which relies on the desired functionality characteristics, system 

maintenance to sustain long-term operation, and the requirement of automated data 

analysis to locate potential damages. However, the use of compressed sensing can 

simultaneously reduce data sampling rates, on-board storage requirements, and 

communication data payloads. Using traffic-induced vibration response data has several 

practical advantages: (i) it does not interrupt traffic; (ii) captures in-situ dynamic behaviour 

of the bridge undergoing in its normal service; (iii) can be performed continuously, 

scheduled periodically, or triggered automatically; and (iv) requires no special 

experimental arrangements. It should be noted that data collected using either NDT or 

SHM systems is the most reliable strategy to improve and update bridge FEM assessment. 
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Table 2-7: Comparison of condition assessment techniques for RC bridges 

Technique Description, Advantages and Limitations 

Visual 

Inspection 

(VI) 

 

Description: trained engineers recognize, register, and evaluate the physical 

condition of different bridge elements using inspection manuals and defined 

codes. The primary and most common interval for inspections is 24 months. 

Advantages: the most cost-effective means for bridge condition evaluation. 

BMSs rely primarily on VI to record bridge component condition ratings, which 

are quantified and standardized through a priority-ranking procedure. 

Limitations: subjective evaluation; results greatly depend on the qualifications 

of those conducting inspections; the findings may not be identical. Consider only 

the observed physical health of the bridge and cannot detect the hidden defects. 

Load Testing  

(LT) 

Description: determine the actual load the bridge can carry without distress 

(load carrying capacity). Condition ratings can be determined by allowable 

stress, load factor, or load and resistance factor methods. 

Advantages: safe conservative analysis methods. The governing rating is the 

lesser of the shear capacity of the critical bridge component. Development and 

updating the load rating software is undertaken by AASHTO. 

Limitations: costly and time consuming. The three rating methods may lead to 

differently rated capacities and posting limits for the same bridge. No guidance 

as to which method should be used for specific circumstances. 

Structure 

Health 

Monitoring   

(SHM) 

Description: encompasses a range of methods and practices designed to capture 

structural response, detect anomalous behaviour, and to assess the bridge 

condition based on a combination of measurement, modelling and analysis.  

Advantages: reliable and potentially real-time bridge assessment. More 

meaningful than using load response data. Can be deployed for short-term and 

long-term assessment. Appropriate for movable bridges than any other method. 

Limitations: wireless sensors rely on battery power. The size and complexity of 

the bridge could result in complex systems. SHM systems often create liability 

issues. Require routine, on-site maintenance to sustain long-term operation. 

Non-

Destructive 

Testing 

(NDT) 

Description: a number of techniques introduced exploit various physical 

phenomena (acoustic, seismic, electric, electromagnetic, and thermal, etc.) to 

detect and characterize deterioration processes without damaging the elements. 

Advantages: provide effective, and accurate condition assessment. Objectify the 

inspection process and make it faster and more reliable. Integration of different 

techniques is the best approach to identify several different damage states.  

Limitations: applying only one technology provides limited information about 

the bridge condition. No single technology is capable of identifying all of the 

deterioration defects. Require trained personnel for data collection and analysis. 

Finite 

Element 

Modelling 

(FEM) 

Description: numerical analysis to investigate the behaviour and response of a 

bridge structural system. Usually updated or calibrated using results of field 

inspection supported by NDT or by static and/or dynamic tests on the structure. 

Advantages: allows detailed visualization, can be created using data from visual 

inspection and then parameterised and calibrated using information from NDT 

and SHM results. FEMs can satisfactorily capture short-term performance. 

Limitations: FE models typically require calibration. Long-term assessment is 

a challenge due to advances in structural materials and construction methods. 
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2.4 Bridge Deterioration Prediction Tools 

A deterioration prediction model is a link between a measure of existing bridge conditions 

and a vector of explanatory variables that represent the factors affecting bridge 

deterioration (Black et al., 2005). Accurate prediction of the deterioration rate is crucial to 

the success of any BMS. Deterioration models can be categorized according to different 

mechanisms. For example: (i) linear or nonlinear, (ii) deterministic or stochastic, (iii) 

aggregate or disaggregate, and (iv) mechanistic or empirical models. Several deterministic, 

stochastic, and mechanistic models are widely used for predicting the macro and micro 

responses of bridge components but the degree of efficiency of these models is a matter of 

debate. These models and their techniques are summarized in Fig. 2-6. Each category 

suffers from some limitations and is briefly discussed in this section. 

 

 

Figure 2-6: Deterioration prediction models techniques. 

 

2.4.1 Deterministic Models 

Deterministic models use a single defined value to describe bridge elements’ conditions at 

a certain given time. They utilize historical data to estimate the deterioration rate using the 

available statistical techniques. Accordingly, the models can be categorized as straight-line 
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extrapolation, regression and curve-fitting models. For instance, straight-line extrapolation 

models can be used to predict the material condition rating of a bridge given the assumption 

that traffic loading and maintenance history follow a straight line. The models require an 

initial condition that can be assumed at the time of construction and only one condition 

measurement after construction at the time of the inspection. Although these models are 

accurate enough for predicting short-term conditions, they are not appropriate for 

conditions at long periods of time. They also cannot predict the rate of deterioration of a 

bridge that has undergone some repair. Regression models depend on developing an 

empirical relationship between two or more variables that affect the bridge condition: one 

dependent variable and one or more independent variables. Several forms of regression 

models are presented in the literature, including linear and non-linear regression. Linear 

regression models do not provide sufficient accuracy and may underestimate or 

overestimate the bridge condition at a specific time while the non-linear regression models 

provide more adequate prediction accuracy (Morcous et al., 2010). Curve-fitting 

techniques are mathematical methods that depend on constructing a polynomial that best 

fits bridge condition data. A third order polynomial curve, based on the relationship of 

bridge component condition rating versus age, was found as an accurate prediction model 

for several concrete bridges (Elbehairy et al., 2006). 

2.4.2 Stochastic Models 

The deterioration process has a stochastic rather than a deterministic nature since several 

complex mechanisms characterize the variability of a deteriorated element. The use of 

stochastic models has contributed significantly to the field of modeling bridge deterioration 

due to the high uncertainty and randomness involved in the deterioration process. 

Generally, stochastic models can be categorized into probability distribution, simulation 

and Markov chains models (Morcous et al., 2010). A probability distribution describes the 

probabilities associated with all values of a random variable. For example, if the random 

variable is the condition rating of an element in a bridge, then the probabilities associated 

with all of its values are described by a probability distribution function rather than a 

deterministic value. The use of probability distribution requires knowledge of the 

distribution for the variables being predicted, which limits the use of this technique for 
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individual distress prediction (Abu Dabous et al., 2008). An effective way to deal with 

uncertainties is through simulation, which can provide more accurate estimates using a 

large number of “what if” scenarios. The Monte Carlo simulation method takes both 

sensitivity and input variable probability distribution into consideration and has been 

widely utilized in concrete bridge deterioration models. The deterioration can be simulated 

if enough statistics on the transition times required for an element to change its condition 

are available. The output of the simulation is a probabilistic deterioration profile in terms 

of the time taken to change from one condition rating to another.  

Markovian Models 

A stochastic process is generally defined as the process in which the past behaviour 

influences the future ones. A Markov process is a conditional stochastic process where the 

transition probability from a given behaviour to a future behaviour is dependent only on 

the present behaviour and not on the manner in which the current behaviour was reached 

(Elbehairy et al., 2006). This assumption was made for simplicity and to facilitate 

computations but not supported by mechanistic knowledge of material behaviours (Abu 

Dabous et al., 2008). The Markovian models are the most common example of state-based 

probabilistic deterioration models and have been employed in many advanced BMSs such 

as Pontis, and OBMS. State-based probabilistic deterioration models are those used to 

predict the probability distribution of transition states from one condition to another over 

multiple discrete time intervals. The Markovian model takes advantage of the discrete 

condition states identified for inspections, to provide a simple way of describing the 

likelihood of each possible change in condition at evenly-spaced intervals. 

The main challenge in Markovian models is the derivation of the transition probabilities. 

Several methods have been adopted to estimate the transition probabilities, such as 

percentage prediction method, expected-value method, ordered probit model, and 

regression-based optimization methods. Those methods can be used when a statistically 

significant number of consistent and complete sets of condition data are available, 

otherwise the Monte Carlo method or expert judgment elicitation procedure may be applied 

(Black et al., 2005). More improved and realistic models have been recently developed to 

account for the effect of the time spent between the states on the transition probabilities 
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(e.g., Semi-Markov, Weibull Survival models, and Hybrid Markov-Weibull models) and 

to relax the state independence assumption by accounting for the past condition among 

other explanatory variables (Black et al., 2005). The Bayesian belief network (BBN) 

models also offer a compact representation of a joint probability distribution, together with 

a rigorous formalism for the construction of models relying on probabilistic knowledge. 

The Bayesian procedure has great advantages that cover problems of insufficient data and 

difficulty in estimating model parameters but it demands careful considerations for the 

convergence process (Nasrollahi and Washer, 2014). If condition ratings are unavailable, 

the backwards prediction models (BPM) can produce an estimated rating for the 

unavailable components or data and use time delay analysis to predict the condition ratings 

of future components. 

2.4.3 Mechanistic Models 

Mechanistic models describe the specific deterioration mechanisms of particular bridge 

components where deterioration is described by quantitative performance indicators 

through knowledge of the physical and chemical processes involved in the deterioration 

process (Lu and Liu, 2010). Modeling of bridge load-capacity, chloride-induced corrosion, 

and alkali-silica reaction (ASR) are some examples of research efforts towards the use of 

mechanistic deterioration models. For instance, Wang et al. (2011) used load-carrying 

capacity to predict bridge deterioration. Ian et al. (2015) modeled the deformation of 

concrete bridges due to the effects of ASR, creep, and shrinkage. Lu and Liu (2010) 

developed an analytical model that describes the mechanism of damage initiation and 

accumulation to predict corrosion-induced cracking, spalling, and delamination of 

reinforced concrete decks and performed numerical simulations, using a FEM, of the 

condition evolution for different values of model parameters. Morcous et al. (2010) utilized 

Monte Carlo simulation to generate the probability density function of the time to corrosion 

initiation and to capture the stochastic nature of the deterioration process. Tarighat and 

Miyamoto (2010) considered the spatial variability of the deterioration parameters across 

the bridge components (the materials and geometrical properties) and developed a 

deterioration model of concrete bridges exposed to corrosion. Shafei et al. (2014) 

calculated the corrosion initiation time through a detailed computational model considering 
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the most influential parameters, including ambient temperature, relative humidity, chloride 

binding capacity, and exposure conditions. They also provided a detailed mechanical 

model that considers the effects of corrosion on decreasing the cross-sectional area of steel, 

yield strength of steel and the loss of the concrete cover.  

2.4.4 Advantages and Limitations 

The advantages and limitations of the deterioration prediction models are summarized in 

Table 2-8. Deterministic models are the simplest models where the deterioration rate of 

one element is generalized to all similar elements. The main limitations of these models 

are the failing to consider uncertainty and ignoring the effect of unobserved variables and 

hence, the inherent stochastic nature of demands. The complexity and interaction of the 

several deterioration mechanisms make it unrealistic to model the deterioration process 

using a deterministic approach. Several advantages for stochastic models include: (1) 

represent uncertainty in initial condition, assessment errors and deterioration process, (2) 

provide an unbiased estimate of needs within any time frame, and (3) do not require long 

time-series of data. However, they still suffer from several limitations: (1) future 

deterioration depends only on the current or preceding condition state and does not relate 

to the historical condition of a bridge or any other attribute (e.g. maintenance) of the bridge 

elements, (2) assume discrete transition time intervals, a constant bridge population, and 

stationary transition probabilities, and (3) transition probabilities are estimated in terms of 

subjective engineering judgement and require frequent updating.  

Mechanistic models embrace a reliability-based approach and focus on relevant failure 

modes of the bridge in determining the reliability of the bridge over time. These models 

are promising because they relate the qualitative measurement of the condition state to the 

quantitative physical parameters of the bridge such as material properties, stress conditions, 

structural behaviors, which are critical data for assessing the structural capacity of the 

bridge. Although, these models have the ability to predict the deterioration with high 

accuracy and efficiency, none of the transportation agencies incorporate them in their 

BMSs as it is difficult to consider the various variables affecting the deterioration process. 

Another key limitation to this approach is the associated cost to perform detailed condition 

survey, using NDT techniques, for the network level analysis.  
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Table 2-8: Comparison of deterioration model techniques for concrete bridges 

Technique Description 
Advantages & Limitations 

Advantages  Limitations 

 

 

Deterministic 

Models  

 

 

Use a single condition 

value of an element at 

a certain given time. 

Use historical data to 

estimate the element 

deterioration rate.  

Simple and easy to 

understand and 

develop. Require only 

one condition rating 

after construction. 

Assume that the 

environment, structure 

system, and material 

properties exhibit the same 

behaviour. Not accurate for 

long-term prediction. 

 

Stochastic 

Models  

 

 

Consider discrete 

condition states for 

inspections. Describe 

the probabilities of all 

variables by a 

probability distribution 

function. 

Consider the inherent 

uncertainty involved in 

the deterioration 

process. Can predict 

condition within any 

time frame. Require 

two inspection cycles. 

Condition distribution is 

independent of the past 

conditions or any other 

attribute. Assume discrete 

transition time intervals. 

Subjective transition 

probabilities. 

Mechanistic 

Models  

Use quantitative 

performance indicators 

through detailed 

condition surveys and 

analytical assessments. 

Can accurately predict 

the initiation, 

propagation, and 

failure induced by 

different damage 

mechanisms. 

Difficult to develop when 

multiple types of 

deterioration processes are 

to be modeled together. 

Costly for data collection, 

analysis, and modeling. 

 

2.5 Bridge Condition Assessment and Artificial Intelligence  

Research in artificial intelligence (AI) has focused on using soft computing methods that 

permit the creation of evaluation and prediction models based on processes found in nature, 

such as the brain, or natural selection (Flintsch et al., 2004). In comparison with hard 

computing, which is based on precise, definite, and rigorous data; soft computing 

techniques allow for imprecise, uncertain, incomplete and subjective data. Because this 

often describes bridge inventories and condition information, considerable research has 

been dedicated to using AI techniques in bridge management. Artificial Neural Networks 

(ANNs), Fuzzy Set Theory (FST), and Evidential Reasoning (ER) are the most common 

models utilized in evaluating bridge condition and are briefly discussed subsequently.   

2.5.1 Artificial Neural Networks 

Neural networks are based on the principle that a highly interconnected system of simple 

processing elements can learn complex interrelationships between independent and 

dependent variables. ANN model is a parallel distributed processing system consisting of 
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an input layer, an output layer, and hidden layers connected by neurons. Each neuron is a 

processing element that receives one or more inputs and produces an output, or value, 

through a transfer function (activation function), which is passed on to the next neuron to 

determine a final output (Wang and Elhag, 2008). There are several ANN software, which 

have different scale options. For instance, the Matlab Neural Network toolbox can be used 

to develop multilayer perceptron ANN models (Lee et al., 2015). Figure 2-7 illustrates an 

ANN structure consisting of an input layer, an output layer and hidden layers.  

 

 

Figure 2-7: Structure of an artificial neural network. 

 

Sobanjo (1997) investigated using ANNs in modelling bridge deterioration where a multi-

layer ANN was utilized to relate the age of a bridge superstructure to its condition rating. 

The model yielded 79% of the predicted values matching the actual values with a 15% 

prediction error. Tokdemir et al. (2000) developed a more elaborate model that 

incorporated additional factors such as highway class, design type, material type, and 

traffic volume to predict a bridge sufficiency index. The ANN model resulted in 62.5% 

correct solutions on average percentage with a prediction error of 3%. Huang (2010) 

developed an ANN condition assessment model for concrete bridges based on statistical 

analysis of the significant factors affecting the deterioration process. For example, the 

maintenance history, age of the bridge, previous condition, district where bridge is located, 

design load, bridge length, average daily traffic, environmental exposure, number of spans, 

and degree of skew were used as input neurons.  
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Li and Wang (2011) compared several ANN methods to predict bridge condition ratings 

based on physical and operational bridge parameters and produced related deterioration 

curves. Emily (2011) developed two types of ANN, multi-layer perceptrons (MLPs) and 

ensembles of neural networks (ENNs), to predict the condition ratings of concrete bridge 

decks using historical condition assessments chronicled in the NBI database. It was 

reported that ANNs can produce correct responses even in the presence of noise or 

uncertainty in the training data, and can predict the outcome of complex deteriorations or 

those with a high degree of nonlinear behaviour. Lee et al. (2012) proposed an ANN model 

for bridge deterioration where a backwards prediction model (BPM) was used to fill in 

gaps in historical data. The model subsequently uses time delay neural network modelling, 

similar to the ANN model proposed by Huang (2010) to predict future condition ratings. 

An advanced integrated model was further developed by Lee et al. (2015) that incorporates 

a time-based model, a state-based model with the Elman neural network and a BPM to 

predict long-term bridge performance where similar bridge components are grouped 

together, thereby identifying the common deterioration patterns, achieving 75.4% accuracy 

with 4% prediction error.  

2.5.2 Fuzzy Set Theory 

To deal with vagueness and uncertainty in modelling bridge condition, probabilistic 

techniques are usually used, among which the Monte Carlo simulation is the most popular. 

However, such methods are complex requiring large amounts of data (Kishk and Al-Hajj, 

2002). Ross (2010) reported that the deterioration mechanisms and surrounding aggressive 

environment of concrete cannot be simply identified by separate factors. Fuzzy sets, based 

on the fuzzy set theory that was first introduced by Zadeh (1965), are developed for 

handling uncertainties associated with vague, imprecise, qualitative, linguistic, or 

incomplete data that play an important role in the case of evaluation and predication of 

bridge conditions (Sasmal et al., 2009).  

The vague data are generally represented by fuzzy numbers or fuzzy sets, which can be 

processed using mathematical operations according to analysis requirements in a fuzzy 

domain. The main components of building a fuzzy system include: (1) fuzzification: 

converting input data into partial degrees of one or more membership functions of fuzzy 
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subsets, (2) inference: computing the true value for the premise of each fuzzy rule and 

applying it to the conclusion part of each rule, (3) composition: assigning the fuzzy subsets 

to each output variable and combining them to form a single fuzzy subset for each output 

variable, and (4) defuzzification: converting the fuzzy output set to a crisp number. 

Techniques for constructing fuzzy membership functions include pairwise comparison, 

clustering, direct or reverse rating, polling, neural networks, relative preference, and 

statistical regression. However, there is no single method that can work for all applications 

(Sasmal et al., 2009). Figure 2-8 illustrates the basic configuration of a fuzzy system.  

 

 

Figure 2-8: Basic configuration of fuzzy system with fuzzifier and defuzzifier 

(Senouci et al., 2014, with permission from ASCE). 

 

Extensive studies have been carried out to evaluate the condition of different bridge 

components using FST as a potential substitute for probabilistic models (Tee et al., 1988; 

Liang et al., 2002; Sasmal et al., 2009; Tarighat and Miyamoto, 2010; Chen and Fan, 2011; 

Li and Wang, 2011; Hasan et al., 2013; Moufti et al., 2014). For example, Tee et al. (1988) 

presented a bridge condition assessment model based on resolution identity of fuzzy sets. 

They presented algorithms for fuzzy weighted average computation. Many bridge 

condition rating methodologies have since adopted this approach. For instance, Liang et 

al. (2002) used fuzzy mathematics and proposed regression models for predicting the 

remaining service life of concrete bridges. Sasmal et al. (2009) developed a procedure for 

condition assessment and rating of concrete bridges using fuzzy mathematics where the 

entire bridge was divided into three major components: deck, superstructure, and 
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substructure. Each of which is further subdivided into a number of elements, while the 

defuzzified value of the resultant rating fuzzy set becomes the rating value for the bridge 

as a whole. Moufti et al. (2014) proposed a fuzzy based framework through a detailed 

bridge condition assessment incorporating a weighted set of possible bridge defects. Li and 

Wang (2011) developed a fuzzy model to predict the condition rating of concrete bridges 

where ANN with back-propagation algorithm was applied. The results indicated that the 

model improved the performance of the knowledge representation system based on 

enhanced fuzzy inference rules.  

2.5.3 Evidential Reasoning 

Uncertainties can be classified into two main classes: ignorance (incompleteness) and 

fuzziness (vagueness). The ER approach is characterised by a distributed modelling 

framework capable of modelling ignorance, whilst fuzziness can be well treated using the 

fuzzy set theory. The ER approach deals with a wide range of decision problems having 

precise data, random numbers and subjective judgments with probabilistic uncertainty in a 

way that is rational, transparent, reliable, systematic and consistent (Yang et al., 2006). The 

ER approach applies the evidence combination rule of the theory of evidence (D-S), 

(Dempster, 1967; Shafer, 1976). The theory has the ability of combining pairs of bodies of 

evidence or belief functions to derive a combining evidence or belief function (Deng et al., 

2014). The ER approach for bridge assessment consists of five main parts: (1) identification 

of bridge condition assessment factors, (2) determination of weights and assessment grades 

for each factor, (3) distributed modeling framework for the assessment factors, (4) 

recursive or analytical ER algorithm for aggregating multiple assessment factors, and (5) 

utility interval based ER ranking, which is required to prioritize bridges in terms of their 

overall condition assessments (Wang and Elhag, 2008).  

ER has been recently used by several researchers to assess and predict bridge condition 

rating (e.g. Wang and Elhag, 2008; Bolar et al., 2013; Deng et al., 2014; Moufti et al., 

2014). For example, Bolar et al. (2013) proposed a bridge condition assessment using the 

hierarchical ER methodology to model the uncertainties inherent in bridge evaluation 

where bridge data are classified in their respective order of importance into primary, 

secondary, tertiary and life safety-critical elements to capture both structural importance 
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and data reliability. The data were combined using D-S evidence theory to obtain 

respective condition indices and finally grouped to predict the overall bridge condition 

index. Moufti et al. (2014) proposed a fuzzy hierarchical ER approach for condition 

assessment of concrete bridges under uncertainty based on a multi-level evaluation and 

aggregation of the detected bridge defect measurement. Deng et al. (2014) developed 

hierarchical ER model for bridge condition assessment, which can handle incomplete basic 

probability assignment expressing the uncertainty of judgement in the process of 

assessment. The model extends the D-S evidence theory where the uncertain information 

was represented and called D-numbers, based on reasonable removal for some of the 

hypotheses of D-S theory. It is to be noted that the combination of the belief structure 

generated by the D-S theory and the fuzzy modeling by the fuzzy set theory would be able 

to handle both fuzzy uncertainty and ignorance concepts. 

2.5.4 Advantages and Limitations 

The merits and demerits of ANN, FST, and the ER approaches are summarized in Table 

2-9. The ANN models can learn from existing data and gather knowledge, and perform 

complex activities. However, ANN have some drawbacks: (i) the individual relations 

between the input variables and the output variables are not developed by engineering 

judgment or based on analytical basis; (ii) the conversion to numbers may lead to the loss 

of information that was contained in the original representation; and (iii) ANNs work well 

when the input and output variables are numerical values. Fuzzy logic is a means for 

modelling the uncertainty involved in describing an event/result and is organized as a 

powerful modelling technique designed to handle natural language and approximate 

reasoning. Fuzzifying uncertain variables in bridge evaluation has the benefits of 

enhancing the ability to model real bridge deterioration problems. It is also easier to define 

fuzzy variables than random variables when no information or limited information is 

available. Furthermore, mathematical concepts and operations within the framework of the 

fuzzy set theory are much simpler than those within the probability theory and can easily 

be updated with new data or modified to accommodate future findings. ER is capable of 

aggregating both numerical input and qualitative data with uncertainty as evidences 

towards a comprehensive BCA. The (D-S) evidence theory has an advantage of directly 
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expressing “uncertainty” by assigning probability that is limited by a lower and an upper 

bound, which, respectively, measures the total belief for the objects. ER has produced 

promising results, and thus needs concerted research efforts. 

 

Table 2-9: Comparison of AI techniques for concrete bridges evaluation 

Technique Description, Advantages and Limitations 

Artificial 

Neural 

Networks 

(ANNs ) 

Description: ANNs are based on: a highly interconnected system of processing 

elements (neurons); can learn interrelationships between independent and 

dependent variables. Each neuron receives multiple inputs through weighted 

connections from previous neurons, performs computations, and transmits the 

output to other neurons.  

Advantages: can satisfactorily predict nonlinear behaviour even in the presence 

of uncertainty in the training data. No requirement of predetermining the 

relationships between inputs and outputs. High capability of self-learning and self-

updating. Using optimization algorithms in the learning process reduces error.  

Limitations: relations between the input variables and the output variables are not 

based on analytical basis. Conversion of input data to numbers may lead to loss 

of information that was contained in the original representation. Needs training 

process, which is time consuming and requires large amounts of data. 

Fuzzy Set 

Theory 

(FST) 

Description: FST can model vague linguistic variables using the concept of 

partial membership and approximate reasoning. Involves three steps: 

fuzzification, aggregation, and defuzzification. Fuzzy sets are processed 

according to analysis requirements.  

Advantages: most appropriate where human judgment, perception, or decision 

making are inextricably involved. It is easier to define fuzzy variables than 

random variables when no information or limited information is available. Allows 

applying mathematical operations and programming to the fuzzy domain.  

Limitations: cannot provide a full description of the overall assessment of a 

bridge structure. Triangular fuzzy membership functions give a single value as a 

full membership function, for each linguistic input variable. A fuzzy set must be 

adjusted using the normalization operation.  

Evidential 

Reasoning 

(ER) 

Description: established on the basis of Dempster-Shafer (D-S) theory of 

evidence. Assign belief/credibility to the evaluation of the various assessment 

attributes. Aggregate the multiple attributes based on the distributed assessment 

and the evidence combination rule.  

Advantages: ER is able to combine both numerical input and qualitative data with 

uncertainty such as incomplete information, and total ignorance. The final overall 

assessment of a bridge is a distributed assessment, which offers a panorama of a 

bridge condition. Can deal with both probabilistic and fuzzy uncertainties.  

Limitations: requires careful identification of all bridge assessment factors. 

Different sets of assessment grades for bridge elements need to be unified before 

the implementation of the ER algorithm. Applicable only for bridge condition 

assessment, not for the prediction of bridge condition ratings. 
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2.6 Challenges Requiring Further Research 

The present review highlights some tangible findings including: (1) the existing 

measurement methods for bridge displacement failed to realize long-term and real-time 

dynamic monitoring of bridge structures, essentially because of their low degree of 

automation and insufficient precision (Zhao et al., 2105); (2) there are discrepancies among 

the different load rating methods where the reasons for these differences should be 

addressed (Wang et al., 2011); (3) although NDT and SHM systems have become the most 

effective and significant aids for managing bridge infrastructure, there are a limited number 

of studies that address uncertainty in their measurements based on quantifiable data ( Hesse 

et al., 2015); (4) further work should be undertaken to demonstrate the accuracy of 

maturing and emerging sensors for use on SHM of bridge structures (Webb et al., 2015);  

(5) at present, NDT methods, such as impact echo, radar, ultrasonic, resistivity and infrared 

are being commonly used for quantitative evaluation of bridge condition to augment visual 

inspection data (Gucunski et al., 2015); (6) most current research efforts aimed at verifying 

the capability of integrating NDT techniques to have objective condition assessment 

systems and determine bridge elements or components condition based on their resilience 

(Pailes, 2014); (7) the Markovian and regression models have restrictive assumptions 

implicit in their respective formulations; and (8)  AI models can provide more reliable BCA 

models, but require large bridge information input, while BMS software so far only has 

very limited NDT and SHM results (Lee et al., 2015). 

Bridge engineering is rapidly evolving and much work is ongoing in the specific matter of 

bridge assessment. Figure 2-9 illustrates the developed conceptual framework to identify 

challenges that require further concerted research efforts and development. The prospects 

for improvement was identified as follows: (1) defining solid criteria for the assessment of 

general bridge condition based on visual inspection; (2) advancing the use of NDT and 

SHM in mainstream bridge engineering; (3) developing various fully automated data 

collection systems based on integrated NDT techniques; (4) developing advanced and 

simplified data analysis and interpretation; (5) integrating of diverse monitoring systems; 

(6) developing innovative software for integrating SHM/NDT data and aiding in its 

interpretation; (7) developing correlations between the bridge damage and internal 
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deterioration processes; (8) documenting the cost-benefit of the latest applied techniques 

and augmenting their future study; (9) considering the structural robustness and 

redundancy concepts in the bridge assessment process; and (10) focusing future research 

studies on most relevant problems. Indeed, fully automated data collection and 

interpretation analysis are the primary requirements to improve current BMSs. These will 

provide rapid and accurate BCA and enable monitoring of deterioration progression 

through periodical surveys and thus, allow the surveys of hundreds of bridges to become 

feasible. Consequently, this should yield tremendous reduction in costs associated with the 

application of NDT technologies and in the frequency and duration of traffic interruptions. 

 

 

Figure 2-9: Conceptual framework to identify challenges that require further 

research in bridge condition assessment. 
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2.6.1 Selection of Appropriate Condition Assessment Technique 

As previously discussed, different deterioration processes lead to different types of bridge 

component defects, which affect the ability of the evaluation techniques to detect and 

characterize them. The decision of which technique is more appropriate for BCA is highly 

dependent on the nature of the available data and is driven by certain factors: (a) the 

mechanism of deterioration in the bridge being investigated, (b) expected output from the 

evaluation method, (c) how the assessment data will be used, (d) level of complexity and 

available time to conduct the evaluation, and (e) the geographic location as well as the 

traffic density and environmental conditions. For instance, corrosion can be tracked by 

monitoring the electrical outputs in a cathodic protection system, whereas scour monitoring 

involves using acoustic, pier-mounted sensors to track scour depth in the regions of bridge 

piers and abutments. Cameras are useful for displacement monitoring, whereas strain 

gauges are suitable for deformations. For bridge decks, if delamination is of greatest 

concern, impact echo or infrared with a higher degree of automation are appropriate, while 

radar is suitable if corrosion of greatest concern. Table 2-10 recommends specific BCA 

methods for some of the common deterioration mechanisms in different bridge structures. 

Table 2-10: Appropriate investigation methods for some deterioration mechanisms 

in RC bridges 

Concerned Assessment Recommended Investigation Method 

 Map patterns of distress such as surface 

cracks, spalling, scaling, and erosion  

 Scour damage 

 Integrated visual inspection and remote 

sensing technologies. 

 Vibration based techniques, scour sensors. 

 Fatigue damage   Acoustic emission techniques. 

 Breaks in cable-stayed RC bridges.  Health monitoring (strain sensors). 

 Corrosion in prestressing strands (in 

adjacent concrete box-beam bridges). 

 Magnetic techniques (magnetic reluctance 

meters). 

 Damages in long-span suspension RC 

bridges 

 Health monitoring techniques (strain 

sensors & FEM). 

 Delamination and cracks in RC bridge 

decks. 

 Potential of corrosion in concrete 

bridges 

 Subsurface defects in superstructure 

components of RC bridges. 

 Unknown bridge foundation depth, 

integrity, type.  

 Air-coupled impact-echo and infrared 

thermography. 

 Half-Cell Potential, electrical resistivity, 

and ground penetrating radar technologies. 

 Remote sensing and health monitoring 

technologies. 

 Parallel seismic and ultra-seismic 

techniques. 
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2.7 Conclusions 

Bridge condition assessment procedures have existed for many decades. It was 

enlightening to realize the extent of ongoing work that is expanding rapidly considering 

the staggering resources needed to repair ageing bridges, which often exceed the 

capabilities of bridge owners. BCA is a scientific and technical procedure aimed at 

producing evidence of bridge health, assessing its structural reliability, and tailoring 

procedures to prolong its life. According to this framework, this study has provided a much 

needed review of recent research accomplishments in this field. The reviewed body of 

knowledge offers recent advances in VI, LT, NDT, SHM, and FEM techniques as well as 

existing deterioration prediction models and achievements of AI technologies in BCA. The 

review demonstrates clear need to upgrade existing BMSs to incorporate recent research 

in this domain.  

Future research should consider data that drive the decision making of bridge owners from 

research planning to implementation, with particular focus on added value. Only then can 

the use of these technologies in mainstream bridge engineering practice truly valuable. 

Innovative design and construction methodologies should be also considered by 

transportation owners along with improving existing BMSs. For instance, by verifying the 

accuracy of a bridge FEM with NDT and SHM results, bridge owners can use analysis 

output for bridge evaluation and decision making. An understanding of the range of 

capabilities of different NDT techniques and SHM systems will be helpful in directing 

bridge stakeholders to evaluate the output and, hence, value can actually be delivered. 

Reliable bridge condition can be effectively achieved using several complementary NDT 

technologies. Therefore, there is need for more research efforts to develop multi-NDT 

models. However, caution is recommended before widely using any such methodology. A 

method should be used only after careful cost-benefit analysis to determine its value in 

both the short- and long-term. Lastly, the enormous amount of information and knowledge 

that has already been produced in the BCA field must be integrated into comprehensive 

decision making systems, which could be used by various participants in the field for 

quality management and structural assessment purposes of ageing bridges.  
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Chapter 3  

3. Performance of NDT Techniques in Appraising Condition of 

Reinforced Concrete Bridge Decks 

3.1 Introduction 

As discussed in Chapter 2, the colossal backlog of deteriorated bridges draws attention to 

the importance of NDT technologies as potential condition assessment tools. Many NDT 

techniques have been developed and proven to be efficient and effective in enhancing the 

bridge inspection process and make it faster and reliable. However, the selection of NDT 

technique(s) to evaluate the current state of bridge(s) is a decision variable. There are 

several research efforts that have attempted to compare several NDT techniques, relying 

on physical measures via laboratory or field testing (e.g. Clark et al., 2003; Scott et al., 

2003; Wood and Rens, 2006; Yehia et al., 2007; Algernon et al., 2010; Oh et al., 2103; 

Gucunski et al., 2013). These studies focused mainly on the accuracy and reliability of the 

employed methods, regardless of other important performance indicators such as 

simplicity, speed and cost. Furthermore, while the evaluated NDT technologies were 

comparable in some of those studies, some other findings revealed considerable variation 

between the NDT quantified results (Hesse et al., 2015).  

Therefore, more comprehensive comparative studies need to be conducted to motivate 

practical evaluation of NDT methods and their wider implementation in bridge inspection. 

There are two strategies by which to carry out the performance evaluation process. The 

first strategy is based on quantified data by utilizing the selected techniques and conducting 

in-situ inspection on full-scale deteriorated bridges. The second strategy is based on 

qualitative data through the response of competent bridge engineers and NDT experts on 

an evaluation questionnaire to be formulated for an opinion survey given specific 

performance indicators. Although the first approach can provide an objective evaluation, 

there is limited quantifiable data available in the open literature on the NDT techniques for 

bridges (Hesse et al., 2015). In addition, applying this approach requires substantial field 

inspection work and the purchase of equipment for each technology, which is not a viable 

option for many transportation agencies. Conversely, the second approach can benefit from 
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the knowledge gained by bridge and NDT engineers. Gathering such information from 

experts with extensive experience in NDT can serve as a tool by which to construct a 

decision-making procedure. Moreover, expert information cannot be obtained via analysis 

of limited inspections conducted either in the field or in the laboratory.  

In this Chapter, a rational decision-making framework to evaluate and rank the most 

commonly used NDT techniques for detecting defects in RC bridge decks is developed. 

The analysis and findings presented herein are accomplished through a literature review 

and a structural survey questionnaire. The survey acquired an expert knowledge base 

through soliciting broad information about the performance of NDT methods that have 

been implemented by several transportation agencies. Although such data is qualitative in 

nature, it could indicate the overall performance of the technologies based on a range of 

well-defined performance measures that dominate their profession. Evaluating different 

technologies in the framework allows for the detection of different types of bridge deck 

health indicators. In order to make the evaluation more precise, fuzzy logic theory has 

proved its ability to deal effectively with the inevitable uncertainties and subjectivities 

inherent in human judgments. Consequently, the Fuzzy Analytical Hierarchy Process 

(FAHP) is employed. The Fuzzy Preference Programme (FPP) nonlinear based method is 

adopted to determine the relative weights. 

Figure 3-1 illustrates the adopted systematic methodology by which to achieve the above-

mentioned objectives. It  can be summarized as follows: (1) define and identify the NDT 

alternatives to be apprised and ranked; (2) identify a set of flexible multi-attributed 

performance criteria and sub-criteria required for the evaluation process; (3) develop an 

analytical hierarchy model consisting of the identified performance criteria and sub-

criteria, and the selected NDT alternatives; (4) collect the degree of relative importance for 

the different elements in the hierarchy using expert judgement; (5) apply a fuzzification 

scale on the pair-wise comparison matrices using linear triangular fuzzy membership 

functions; (6) calculate the relative weights of the “fuzzified” pairwise matrices applying 

the FPP using Matlab software and check for any inconsistencies in the obtained results; 

(7) rank NDT alternatives based on their calculated weights; and (8) validate the achieved 

model results with the findings of other comparative studies found in the literature.  
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Figure 3-1: Methodology adopted for apprising and ranking NDT techniques. 

 

3.2 Model Development 

3.2.1 Selection of the Performance Measures 

The performance measures to evaluate various alternatives could significantly influence 

the ranking result. Thus, it is paramount to identify the most critical parameters in a 

decision making problem. The five significant performance measures selected for ranking 

NDT technologies in this study are: (1) capability of each technology based on its exploited 

physical phenomena to detect at least one of the considered defects; (2) speed of applying 

each technology; (3) simplicity of applying each technology; (4) accuracy of the obtained 

results; and (5) the cost associated with applying each technology. Those parameters are 

similar to those adopted in evaluating the results of nine RC bridge deck NDT methods, in 

the SHRP2 project. The rationale used for considering only five performance measures is: 

“although the description of a particular performance provides a more detailed description 

of that performance in terms of a large number of measures, for most technologies there is 

either no information regarding a specific performance measure or the measure is not 
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applicable to that particular technology”. In addition, analyses in terms of a smaller number 

of performance measures are supposed to be of higher interest and practical value for 

implementation by transportation agencies and industry (Gucunski et al., 2013). 

To proceed with the ranking process against the five major performance criteria in an 

accurate and feasible manner, they were further subdivided into 15 sub-criteria. For 

example, the NDT technologies were evaluated against their capabilities for detection of 

the most serious types of defects. Based on literature surveys, it appears that active 

corrosion of steel reinforcement, propagation of vertical cracks, and delamination are the 

most serious types of defects present in RC bridge decks. The rationale behind limiting the 

deterioration types into only three categories is: “although there are different causes for 

deterioration, in most cases the reasons cannot be determined by NDT technologies; only 

their consequences can be determined”. For example, cracking induced by corrosion and 

shrinkage will result in material degradation, which can be detected through reduced 

velocity, stiffness, and so forth (Gucunski et al., 2013). In addition, from all the possible 

deterioration types and mechanisms found in the literature, the three deterioration 

categories are believed to be of the highest concern to transportation agencies. 

The second performance measure (speed) is an important factor for transportation agencies 

and NDT consultants. Thus, the NDT methods were evaluated against: (i) the speed of data 

collection; (ii) speed of data analysis; and (iii) importance and potential of the different 

technologies to be automated. For the third performance measure (simplicity), successful 

application of these methods requires that those collecting and analyzing data have 

adequate understanding of the principles of the methods, setting up data acquisition 

parameters for optimum results, and interpreting the recorded data. Therefore, the NDT 

methods have been evaluated against: (i) the need for experienced operators; (ii) 

importance of having an experienced analyzer; and (iii) effects of the environment and 

traffic on the process of data collection. 

The fourth performance parameter (accuracy) of results obtained depends on the ability of 

each NDT technology to accurately detect a specific defect type. Thus, the accuracy sub-

criteria were identified to detect precisely: (i) the extent and severity of delaminations; (ii) 
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depth and width of vertical cracks; and (iii) presence of active corrosion. Finally, the 

associated cost of: (i) the required equipment including maintenance costs; (ii) data 

collection including traffic control cost; and (iii) data analysis were compared among the 

different NDT methods as sub-criteria of the last performance measure (cost). 

3.2.2 Selection of the NDT Alternatives 

Table 3-1 describes several applicable NDT methods for detecting the selected three 

deterioration types. However, based on literature surveys and interviews with bridge 

experts suggest that the most commonly used NDT methods in onsite assessment and 

evaluation of RC bridge decks are: Impact Echo (IE), Ultrasonic Pulse Echo (UPE), Half-

cell Potential (HCP), Ground Penetrating Radar (GPR), and Infrared Thermography (IRT). 

Consequently, they were selected as the NDT alternatives for the comparative analysis in 

this study.  Since there is no single technology that has the potential to evaluate all the 

deterioration mechanisms, the five NDT technologies have been also selected based on 

their potential for detecting and evaluating the three deterioration types. For instance, HCP 

has a good potential to identify the probability of active corrosion, while GPR evaluates 

the conditions for a corrosive environment. UPE and IE have a good potential to detect 

vertical cracking, while IE, UPE, and IRT have a good potential to detect delamination.  

 

Table 3-1: Applicable NDT methods to detect specific deterioration types 

Defect Applicable NDT Method 

 

 

Cracks and Voids 

 Acoustic Emission 

 Impact Echo 

 Ultrasonic Pulse Echo 

 Infrared Thermography 

 Impulse Response 

 Ultrasonic Surface Waves 

 

Rebar Corrosion 

 Half-Cell Potential (corrosion probability)  

 Ground Penetrating Radar (corrosive environment)  

 Electrical Resistivity (corrosion probability) 

 Polarization Resistance (corrosion rate) 

 

Delamination 

 Impact Echo 

 Ultrasonic Pulse Echo 

 Infrared Thermography 

 Ultrasonic Surface Waves 

 Impulse Response 
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3.2.3 Construction of Fuzzy Analytical Hierarchy Model 

Multi-criteria decision-making methods such as analytic hierarchy process, multi-attribute 

utility theory, and decision trees have the ability to account for multiple decision criteria 

and address increasing complexity and associated uncertainties by providing clear and 

easily interpretable results. The analytic hierarchy process (AHP) has been favored in 

extensive application areas, such as bridge management, and thus gained ground against 

conventional assessment methods. The AHP, developed by Saaty (1980), is based on 

modeling decision problems into multiple layers of criteria and sub-criteria to form a 

hierarchy and provide decision makers a systematic way to evaluate multiple decision 

alternatives. This is followed by constructing a series of pairwise comparisons among the 

model variables in the same layer, using the experts’ judgments, to decide on their relative 

importance/influence. The pairwise comparisons are performed using a 9-point 

fundamental scale of absolute values that represent the strength of judgements. The AHP 

uses an eigenvalue method to determine the normalized weights of all criteria and sub-

criteria in the hierarchy where the intensities of the judgements are assembled in reciprocal 

matrices. The AHP process has the advantage of allowing the decision maker to perform 

consistency checks for the provided judgement regarding the relative importance among 

the decision-making elements. However, the rankings produced by AHP are arbitrary 

because they are produced by a subjective response. The use of the discrete scale of 1 to 9 

does not account for the uncertainty and imprecision associated with judgment during the 

pairwise comparison process (Sasmal and Ramanjaneyulu, 2008).  

The natural top-down approach of the AHP method was utilized to construct the proposed 

model as illustrated in Fig. 3-2. The model was organized into a four-level hierarchy 

structure, which captures the performance parameters along with the evaluated NDT 

alternatives. The first level of the hierarchy is the overall goal of the analysis process. The 

second level contains the main performance measures needed to achieve the overall goal. 

The third level of the hierarchy holds the sub-criteria to be used for evaluating the NDT 

alternatives which were added at the bottom level. The model requires relative importance 

weights to be assigned to the assessment elements, which were collected from bridge and 

NDT experts and analyzed as described subsequently.  
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Figure 3-2: Hierarchy framework for ranking NDT techniques. 

 

The FST, presented in Chapter 2 is mostly helpful when human judgment is predominant, 

as is the case with decision making in the evaluation of alternatives. Thus, the FST was 

introduced for the AHP to make up the deficiency of the conventional AHP modelling, 

referred to as FAHP, which has been utilized and discussed by several researchers (e.g. 

Chang, 1996; Huang et al., 2008; Bhattacharyya et al., 2011; Chang and Lee, 2012). The 

application of FAHP enables taking into account group assessments and can deal 

effectively with the inherent fuzziness and uncertainty in judgment during the pairwise 

comparison process. There are various processing techniques based on the source of the 

fuzziness or uncertainty in the data and analysis requirements (Wang and Elhag, 2008). 
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Fuzzy numbers can be represented by its membership function ranging between 0 and 1. 

When comparing two elements, the uncertain numerical ratio is expressed in a fuzzy 

manner. Membership functions can take various shapes. Linear approximations, such as 

triangular or trapezoidal fuzzy numbers are frequently used in construction applications 

(Sasmal and Ramanjaneyulu, 2008). The analysis of the fuzzified comparison matrices that 

result from the application of the “fuzzification” scale has been the point of interest for 

many researchers (e.g. Mikhailov, 2004; Sasmal and Ramanjaneyulu, 2008; Huo et al., 

2011). For instance, Van Laarhoven and Pedrycz (1983) suggested a fuzzy logarithmic 

least squares method to obtain the fuzzy weights from a triangular fuzzy comparison 

matrix. Buckley (1985) utilized the geometric mean method to calculate fuzzy weights. 

Chang (1996) proposed an extent analysis method, which derives crisp weights for fuzzy 

comparison matrices. Csutora and Buckley (2001) developed the Lambda-Max method, 

which is the direct fuzzification of the well-known 𝑘𝑚𝑎𝑥  method. Mikhailov (2004) 

developed a fuzzy preference programming method, which also derives crisp weights from 

fuzzy comparison matrices using logarithmic nonlinear programming. Srdjevic (2005) 

proposed a multicriteria approach for combining prioritization methods within the AHP, 

including additive normalization, eigenvector, weighted least-squares, logarithmic least-

squares, and logarithmic goal programming (Zhou, 2012). These methods have 

unquestionable potential in fuzzy modelling (Jakiel and Fabianowski, 2015). 

3.2.4 Data Collection  

3.2.4.1 Survey Questionnaire Design 

A structured survey questionnaire was constructed to serve the purpose of the evaluation 

analysis in this study. The survey targeted the participation of a wide spectrum of bridge 

experts from Canadian ministries and US departments of transportation, NDT consultants, 

and researchers. The domain includes bridge and NDT professionals from senior engineers 

and project managers to project engineers and NDT technicians. The process was initiated 

by soliciting 74 experts to participate in the survey and requesting them to indicate which 

NDT techniques they were involved with. While 56 experts welcomed receiving the 

questionnaire, only 35 experts were finally considered and invited. The reason was to 

ensure that: (1) the experts are working in different departments; and (2) the experts have 
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experience with at least three of the evaluated techniques. The questionnaire was then 

distributed using an online survey website service for ease of data collection and to 

minimize the survey time. Of the 35 experts, a total of 27 responses were completed and 

received, a 77% response rate. The relatively high response rate is a good indicator of 

adequate survey design and the respondents’ interest in NDT techniques. This response 

rate also complies with statistical analysis conducted by Baruch (1999), where a reasonable 

response rate for an academic research was found to be about 60 +/- 20 (%). 

The questionnaire consisted of four sections: (1) the first section aimed to obtain general 

information of the participants’ contact information, organization and experience in the 

bridge and NDT community; (2) the second section aimed to identify the frequency and 

type of NDT method(s) being used in their bridge schemes; (3) to identify the significance 

of the factors affecting the successful application of NDT methods, the third section was 

divided into two parts: part (a) aimed to seek the degree of importance between the five 

main performance parameters with respect to the selection of the NDT method, while part 

(b) sensed the degree of importance between the sub-criteria with respect to the related 

main performance parameter; and (4) the fourth section aimed to seek the degree of 

importance of employing the selected NDT alternatives with respect to each of the fifteen 

sub-criteria parameters.  

For statistical analysis of the respondents, Table 3-2 illustrates a summary of information 

based on the participants’ organizations and their experience. Three organization groups 

were created: the first group included those bridge experts from transportation agencies 

and represent an overall participation of 44%; the second group included bridge experts 

from NDT contractors and consultants and represents 41% participation; and the third 

group includes researchers, who are interested in NDT development, with an overall 

participation of 15%. The gathered respondents from the three groups agreed on the relative 

importance of the criteria and sub-criteria. With respect to the participants’ experience, the 

highest participant rate belongs to senior bridge professionals with 41% responses, 

followed by bridge managers who have 15 to 20 years of experience with 26% responses, 

while 18% and 15% of the participants have a total of 10 to 15 years and 5 to 10 years of 

experience, respectively in the bridge and NDT community. 
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Table 3-2: Organization and experience of participants in the survey questionnaire 

Organization 

Invitation 

(35 total 

experts)  

No (%) 

Participation       

(27 total 

experts) 

No (%) 

Experience of Participants 

Over 20 

Years 

No (%) 

15 to 20 

Years 

No (%) 

10 to 15 

Years 

No (%) 

5 to 10 

Years 

No (%) 

Transport. Agencies 16 (46%) 12 (44%) 6 (22%) 3 (11%) 2 (7%) 1 (4%) 

NDT Consultants 13 (37%) 11 (41%) 4 (15%) 3 (11%) 1 (4%) 3(11%) 

Researchers  6 (17%) 4 (15%) 1 (4%) 1 (4%) 2 (7%) 0 

   Overall  41 %  26 %    18 %   15 % 

 

Table 3-3 illustrates a summary regarding the frequency and type of NDT method(s) being 

used by the participants in their bridge schemes. The HCP was reported as the most utilized 

method with a percentage of 59% among the participants, followed by the IE method with 

48%, and the GPR method with 37%. IRT and UPE methods received relatively low share 

of utilization, with percentages of 22 and 11, respectively. It should be noted that each 

participant utilized more than one NDT technique in his/her projects. The responses also 

indicated that only 14% of the experts are utilizing NDT on a frequent basis, while NDT 

methods were utilized for detailed investigations and for advanced assessments by 40% 

and 46%, respectively. According to most of the commonly used bridge inspection 

procedures, the detailed investigation focuses on those members for which adequate safety 

was not confirmed by the preliminary evaluation and the advanced assessment only to be 

conducted when a bridge component has major consequences in terms of risk. These 

figures indicate the importance of incorporating NDT techniques in existing BMSs and 

bridge inspection manuals.  

 

Table 3-3: Results of respondents using NDT techniques 

NDT Technique 

Respondents  

(27 total 

experts) 

No (%) 

Frequency of Using NDT Technique 

Frequently 

Used  

No (%) 

Detailed 

Investigation 

No (%) 

Advanced 

Assessment 

No (%) 

Impact Echo (IE) 13 (48%) 2 (7%) 4 (15%) 7 (26%) 

Ultrasonic Pulse Echo (UPE) 3 (11%) 0 2 (7%) 1 (4%) 

Half-Cell Potential (HCP) 16 (59%) 3 (11%) 6 (22%) 7 (26%) 

Ground Penetrating Radar (GPR) 10 (37%) 2 (7%) 3 (11%) 5 (19%) 

Infrared Thermography (IRT) 6 (22%) 0 4 (15%) 2 (7%) 

 Overall 14 % 40% 46 % 
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3.2.4.2 Pairwise Comparison Matrices 

The experts were asked to provide the relative importance among the selected performance 

parameters, which is based on the 9-point Saaty’s linguistic scale for importance (1 being 

the least favorable and 9 being the most favorable). For example, the experts were asked 

to provide the degree of importance of accuracy compared with speed, simplicity, and cost 

when selecting a technology. Another example is to provide the degree of importance for 

utilizing the IE method if compared with utilizing the IRT method with respect to their 

capabilities of detecting the extent and severity of delamination, and the degree of 

importance of utilizing the GPR if compared with utilizing HCP with respect to their 

potential in detecting the active corrosion. Figure 3-3 illustrates a snapshot for a survey 

question to compare the capability performance parameter with the other main performance 

measures in the evaluation process of NDT methods. The degree of relative importance 

gathered from the questionnaire responses was utilized to construct a total of 567 pairwise 

comparison matrices using an Excel worksheet.  

 

Figure 3-3: Snapshot of a question in the survey questionnaire. 
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3.2.5 Data Analysis 

3.2.5.1 Fuzzification of Collected Data 

A fuzzy set is characterized by a membership function ranging between 0 and 1. A 

triangular fuzzy number (TFN) M, as illustrated in Fig. 3-4 can be represented as (l, m, u), 

which denote the smallest possible value, the most promising value, and the largest possible 

value, respectively, that describe a fuzzy number. Each TFN has linear representations on 

its left and right side such that its membership function can be defined as per Eq. 3-1. 

𝑢𝑀 (𝑥) =  {
(𝑥 − 𝑙)/(𝑚 − 𝑙)            𝑙 ≤  𝑥 ≤ 𝑚 

(𝑢 − 𝑥)/(𝑢 − 𝑚)          𝑚 ≤ 𝑥 ≤ 𝑢
            0                         𝑂ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                         Eq. 3-1 

 

The triangular fuzzy scale, presented in Table 3-4, was adopted for the fuzzification 

process where the difference between most probable (actual response received) with the 

upper and lower values is equal to one. The fuzzification scale was applied to all of the 

constructed 567 pairwise comparison matrices. Thus, for a (n x n) comparison matrix 

shown below, there are (n + 1) variables representing n weights {𝑥(1), 𝑥(2), … 𝑥(𝑛)} and 

a consistency index {𝜆 = 𝑥(𝑛 + 1)}. 

 

{

(𝑙11,𝑚11, 𝑢11) (𝑙12,𝑚12, 𝑢12)
(𝑙21, 𝑚21, 𝑢21) 𝑙22, 𝑚22, 𝑢22

⋯ ⋯
⋯ ⋯

⋯ (𝑙1𝑛, 𝑚1𝑛, 𝑢1𝑛)
⋯ (𝑙2𝑛, 𝑚2𝑛, 𝑢2𝑛)

⋮       ⋮          ⋮
𝑙𝑛1,𝑚𝑛1, 𝑢𝑛1 (𝑙𝑛2, 𝑚𝑛2, 𝑢𝑛2) ⋯ ⋯ ⋯ (𝑙𝑛𝑛 , 𝑚𝑛𝑛, 𝑢𝑛𝑛)

} 

 

Table 3-4: Linguistic comparison scales for importance 

Linguistic scale for 

      importance 

Triangular 

fuzzy scale 

      Triangular fuzzy 

       reciprocal scale 

Equally Important (1,1,1) (1,1,1) 

Intermediate Level (1,2,3) (1/3,1/2,1) 

Moderately Important 

Intermediate Level                                                                                                       

Important 

Intermediate Level 

Very Important 

Intermediate Level 

Extremely Important 

(2,3,4) 

(3,4,5) 

(4,5,6) 

(5,6,7) 

(6,7,8) 

(7,8,9) 

(8,9,9) 

(1/4,1/3,1/2) 

(1/5,1/4,1/3) 

(1/6,1/5,1/4) 

(1/7,1/6,1/5) 

(1/8,1/7,1/6) 

(1/9,1/8,1/7) 

(1/9,1/9,1/8) 
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Figure 3-4: A triangular fuzzy number M. 

 

3.2.5.2 Relative Importance Weights  

The Fuzzy Preference Programing (FPP), can acquire the consistency values and calculates 

weights from a triangular fuzzy pairwise comparison matrix using a fuzzy prioritization 

approach. Therefore, the FPP method was adopted in this study as a reasonable and 

effective means to calculate the relative weights of the identified performance criteria and 

sub-criteria and also for the NDT alternatives with respect to each sub-criterion. The 

Matlab software has excellent performance in matrix operations and data processing and 

thus, is suitable for solving fuzzy decision-making problems. Zhou (2012) implemented 

the Mikhailov’s fuzzy prioritization approach and proposed a Matlab code to achieve the 

weights of fuzzy pairwise comparison matrices using the FPP method. The proposed 

Matlab code was modified and adopted in the analysis process to acquire the weights of 

fuzzy pairwise comparison matrices as described below. 

Considering a set F of fuzzy comparison judgments represented as triangular fuzzy 

numbers �̃�𝑖𝑗, we need to derive a crisp priority vector 𝑤 = (𝑤1, 𝑤2, ……𝑤𝑛)
𝑇, such that 

the priority ratios 𝑤𝑖 𝑤𝑗⁄  are approximately within the scopes of the initial fuzzy judgments. 

 

𝐹 = (�̃�𝑖𝑗)              𝑚 ≤ 𝑛(𝑛 − 1)/2                 �̃�𝑖𝑗 = (𝑙𝑖𝑗, 𝑚𝑖𝑗, 𝑢𝑖𝑗)                 Eq. 3-2 

𝑙𝑖𝑗 ≤̃
𝑤𝑖

𝑤𝑗
≤̃ 𝑢𝑖𝑗          𝑖 = 1,2, … 𝑛 − 1                     𝑗 = 2,3, … 𝑛            𝑗 > 𝑖                  Eq. 3-3 
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Each crisp priority vector w satisfies the double-side inequality (Eq. 3.3) with some degree, 

which can be measured by a membership function, linear with respect to the unknown 

ratio 𝑤𝑖 𝑤𝑗⁄  as shown in Eq. 3-4, and is linearly increasing over the interval (−∞,𝑚𝑖𝑗) and 

linearly decreasing over the interval (𝑚𝑖𝑗, ∞). The function takes negative values when 

𝑤𝑖 𝑤𝑗⁄ < 𝑙𝑖𝑗 or 𝑤𝑖 𝑤𝑗⁄ > 𝑢𝑖𝑗, and has a maximum value 𝑢𝑖𝑗 = 1 at 𝑤𝑖 𝑤𝑗⁄ > 𝑚𝑖𝑗. Over the 

range (𝑙𝑖𝑗, 𝑢𝑖𝑗), the function coincides with the fuzzy triangular judgment 

(𝑙𝑖𝑗, 𝑚𝑖𝑗 , 𝑢𝑖𝑗). 

 

𝑢𝑖𝑗 (
𝑤𝑖

𝑤𝑗
) = {

(𝑤𝑖 𝑤𝑗)−𝑙𝑖𝑗⁄

𝑚𝑖𝑗−𝑙𝑖𝑗
,
𝑤𝑖

𝑤𝑗
≤ 𝑚𝑖𝑗

𝑢𝑖𝑗−(𝑤𝑖 𝑤𝑗⁄ )

𝑢𝑖𝑗−𝑚𝑖𝑗
,
𝑤𝑖

𝑤𝑗
≥ 𝑚𝑖𝑗

                                                                            Eq. 3-4 

 

The solution to the prioritization problem by the FPP method is based on two main 

assumptions. The first one requires the existence of non-empty fuzzy feasible area P on the 

(𝑛 − 1) dimensional simplex 𝒬𝑛−1, defined as an intersection of the membership 

functions, similar to (Eq. 3-4) and the simplex hyperplane (Eq. 3-5). 

 

𝒬𝑛−1 = {(𝑤1, 𝑤2, …… 𝑤𝑛)|𝑤𝑖 > 0,    ∑ 𝑤𝑖 = 1
𝑛
𝑖=1 }                                           Eq. 3-5 

 

The membership function of the fuzzy feasible area is given by 𝑢𝑃(𝑤), as shown in Eq. 3-

6. If the fuzzy judgements are very inconsistent, then 𝑢𝑃(𝑤) could take negative values for 

all normalized priority vectors 𝑤 ∈  𝒬𝑛−1.  

 

𝑢𝑃(𝑤) = min
𝑖𝑗
{𝑢𝑖𝑗(𝑤)|𝑖 = 1,2, …𝑛 − 1;    𝑗 = 2,3, … 𝑛;    𝑗 > 𝑖}                               Eq. 3-6     

 

The second assumption of the FPP method specifies a selection rule, which determines a 

priority vector, having the highest degree of membership in the aggregated membership 

function (Eq. 3-6). It can be noted that 𝑢𝑃(𝑤) is a convex set, so there is always a priority 

vector 𝑤∗ ∈  𝒬𝑛−1 that has a maximum degree of membership: 
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𝜆⋆ = 𝑢𝑃(𝑤
⋆) = max

𝑤∈ 𝒬𝑛−1
min
𝑖𝑗
{𝑢𝑖𝑗(𝑤)}                                                                        Eq. 3-7 

 

The maximum prioritization problem in Eq. 3-7 can be represented as: 

 

𝑀𝑎𝑥 𝜆
𝜆 ≤ 𝑢𝑖𝑗(𝑤),     𝑖 = 1,2, … 𝑛 − 1;     𝑗 = 2,3, … 𝑛;     𝑗 > 𝑖

∑ 𝑤𝑘 = 1,      𝑤𝑘 > 0,     𝑘 = 1,2, … 𝑛𝑛
𝑘=1

                                          Eq. 3-8  

 

Taking the specific form of the membership functions (Eq. 3-4) into consideration, the 

problem (Eq. 3-8) can be further transformed into a bilinear program of the type:   

 

𝑀𝑎𝑥 𝜆
(𝑚𝑖𝑗 − 𝑙𝑖𝑗)𝜆 𝑤𝑗 − 𝑤𝑖 + 𝑙𝑖𝑗𝑤𝑗 ≤ 0,

(𝑢𝑖𝑗 −𝑚𝑖𝑗)𝜆 𝑤𝑗 + 𝑤𝑖 − 𝑢𝑖𝑗𝑤𝑗 ≤ 0,

∑ 𝑤𝑘 = 1,       𝑤𝑘 > 0,        𝑘 = 1,2, … 𝑛𝑛
𝑘=1

𝑖 = 1,2, … 𝑛 − 1;      𝑗 = 2,3, … 𝑛;        𝑗 > 𝑖

                                                               Eq. 3-9 

 

The optimal solution to the non-linear problem above (𝑤⋆,  𝜆⋆) can be obtained by 

employing some appropriate numerical method for non-linear optimization. The optimal 

value 𝜆∗, if it is positive (the maximum value is one), indicates that all solution ratios satisfy 

the fuzzy judgment completely, which means that the initial set of fuzzy judgments is rather 

consistent. A negative value of 𝜆∗ shows that the solutions’ ratios approximately satisfy all 

double-side inequalities (Eq. 3-3). Therefore, the optimal value 𝜆∗ , can be used for 

measuring the consistency of the initial set of fuzzy judgments. 

Generally, optimization deals with maximizing or minimizing an objective function and 

determining the optimum values for a set of variables so that a set of constraints are met. 

The non-linear optimization problem was solved by employing a numerical method in 

Matlab software. The optimization function “fmincon” is a medium-scale algorithm which 

attempts to find a constrained minimum of a scalar function of several variables x (i) 

starting at an initial estimate, generally referred to as constrained nonlinear optimization. 



79 

 

It was utilized to acquire the weights where the objective function and the constraints have 

different formats based on the matrices’ sizes. The weight for each variable x (i) takes its 

value in the range of [0, 1] and its sum is equal to 1, while the consistency index λ takes its 

values in the range [-, 1]. The optimization process was created and when the total 

constraints of a matrix are satisfied, the algorithm identifies the weights of its variables and 

considers the results are acceptable if there is consistency.  

The full expression of the function is fmincon (networkf, X0, A, B, Aeq, Beq, VLB, VUB, 

nonlcon) where networkf represents the objective function and is predefined in the program 

file as f (x) = x (n + 1); X0 is the initial estimates of the variables; A and B are the two 

coefficients of linear inequality constraint and can be ignored or replaced with two empty 

arrays [ ] in the FPP; Aeq and Beq are the two coefficients of linear equality constraint 

Aeq*x = Beq, as the sum of local weights should be one, they are represented by Aeq = [1 

1 … 1 0], and Beq = [1]; VLB is the lower bound of the variables and is represented by [0; 

0;…; 0; -inf] because all the local weights have a lower bound of zero, and the lower bound 

of the consistency index is negative infinity; VUB is the upper bound of the variables and 

is represented by empty array [ ] since all the upper bounds are subject to the constraints; 

and the nonlcon is the nonlinear constraints, including non-linear inequality constraint and 

non-linear equality constraint for the cells above the diagonal as the triangular fuzzy 

comparison matrix is symmetric, and thus, for a (3 x 3) fuzzy comparison matrix, only 

three elements need to be taken into account, while for a (5 x 5) fuzzy comparison matrix, 

ten elements need to be considered to identify the matrix constraints.  

3.3 Model Implementation 

In order to implement the presented fuzzy analysis model, Table 3-5 illustrates a fuzzified 

pairwise comparison sample of one respondent for the main performance parameters with 

respect to the selection of the NDT method. Each cell in the matrix has three values 

obtained from the fuzzification process. The matrix has 6 variables in linear equality 

constraint (5 local weights and a consistency index). According to the FPP method, every 

triangular fuzzy number (𝑙𝑖𝑗 𝑚𝑖𝑗 𝑢𝑖𝑗) was first transformed into nonlinear two double-

side inequality constraints as represented in Equations 3-10 and 3-11. 
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(𝑚𝑖𝑗 − 𝑙𝑖𝑗) ∗ 𝑥(𝑛 + 1) ∗ 𝑥(𝑗) − 𝑥(𝑖) + (𝑙𝑖𝑗) ∗ 𝑥(𝑗)  ≤ 0;                                      Eq. 3-10 

(𝑢𝑖𝑗 − 𝑚𝑖𝑗) ∗ 𝑥 (𝑛 + 1) ∗ 𝑥 (𝑗) + 𝑥(𝑖) − (𝑢𝑖𝑗) ∗ 𝑥(𝑗)  ≤ 0                                  Eq. 3-11 

 

Table 3-5: Pairwise comparison matrix of main performance parameters with 

respect to the selection of NDT technique 

Pairwise Comparison Among The Main Criteria 

Main Criteria CAP SP SIM ACC CO 

CAP 1,1,1 4,5,6 4,5,6 1/4,1/3,1/2 2,3,4 

SP 1/6,1/5,1/4 1,1,1 1,1,1 1/9,1/9,1/8 3/8,3/5,3/2 

SIM 1/6,1/5,1/4 1,1,1 1,1,1 1/9,1/9/1/8 3/8,3/5,3/2 

ACC 2,3,4 8,9,9 8,9,9 1,1,1 8,9,9 

CO 1/4,1/3,1/2 2/3,5/3,8/3 2/3,5/3,8/3 1/9,1/9,1/8 1,1,1 

 

The weights of the matrix were calculated as follows: The below main program 

“NDTcriteria.m” file was constructed in Matlab where the file name was chosen so that it 

can easily be used when called:  

[X, fval] = fmincon (‘NDTfcriteria’, X0, [ ], [ ], Aeq, Beq, VLB, VUB, 

‘NDTnonlconcriteria’, OPT)  

X0 = [0.3; 0.2; 0.2; 0.1; 0.2; 1]; Aeq = [1 1 1 1 1 0]; Beq = [1]; VLB = [0; 0; 0; 0; 0; -inf]; 

and VUB = [ ];  

Where [X, fval] are the optimal solution for the local weights of the matrix and the optimal 

value of the consistency index, respectively. The corresponding objective function file 

“NDTfcriteria.m” and the nonlinear constraint function file “NDTnonlconcriteria.m” were 

predefined by: 

Function f = NDTfcriteria (x); f = x (6); Function [C, Ceq] = NDTnonlconcriteria (x); 

Where the value of function f is related to n, the nonlinear inequality constraint ‘C’ is 

presented as per Eq. 3-10 and 3-11, and the nonlinear equality constraint Ceq is represented 

by an empty array [ ] as there is no nonlinear equality constraint for the FPP method. Thus, 

the Function [C, Ceq] was given by: 
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C = [(5-4)*x (6)*x (2) – x (1) + 4*x (2); (6-5)*x (6)*x (2) + x (1) - 6*x (2); (5-4)*x (6)*x 

(3) – x (1) + 4*x (3); (6-5)*x (6)*x (3) + x (1) - 6*x (3); (1/3-1/4)*x (6)*x (4) – x (1) + 

1/4*x (4); (1/2-1/3)*x (6)*x (4) + x (1)1/2*x (4); (3-2)*x (6)*x (5) - x (1) + 2*x (5); (4-3)*x 

(6)*x (5) + x (1) - 4*x (5); (1-1)*x (6)*x (3) - x (2) +1*x (3);  (1-1)*x (6)*x (3) + x (2) - 1*x 

(3); (1/9-1/9)*x (6)*x (4) - x (2) + 1/9*x (4); (1/8-1/9)*x (6)*x (4) + x (2) -1/8*x (4); (3/5-

3/8)*x (6)*x (5) - x (2) + 3/8*x (5); (3/2-3/5)*x (6)*x (5) + x (2) - 3/2*x (5); (1/9-1/9)*x 

(6)*x (4) - x (3) + 1/9*x (4); (1/8-1/9)*x (6)*x (4) + x (3) - 1/8*x (4); (3/5-3/8)*x (6)*x (5) 

- x (3) + 3/8*x (5); (3/2-3/5)*x (6)*x (5) + x (3) - 3/2*x (5); (9-8)*x (6)*x (5) - x (4) + 8*x 

(5); (9-9)*x (6)*x (5) + x (4) - 9*x (5);]; 

Ceq = [ ]; 

 

The results after running the program are shown in Fig. 3-5, where the local weights x (1), 

x (2), x (3), x (4), x (5) are 0.2572, 0.0614, 0.0614, 0.5526, and 0.0675, respectively. The 

consistency index x (6) is 0.1888 > 0, which means the fuzzy comparison matrix has a good 

consistency, and the results are acceptable.  

 

 

Figure 3-5: Weights and consistency index of the comparison matrix in Table 3-5. 
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3.4 Evaluation and Ranking of NDT Techniques 

The local weights were obtained for all participants’ fuzzified pairwise comparisons, and 

then the calculated weights were averaged to obtain the final local weights for the main 

performance criteria, sub-criteria and NDT alternatives. The obtained weights were 

analyzed in order to check for inconsistency and unrealistic responses. The percent 

difference between the relative weights obtained from each of the gathered responses and 

the average weight was calculated. As a result, two of the questionnaires were discarded 

due to the high percent difference. The final global weights for the sub-criteria were 

obtained by multiplying the weights of the main performance criteria by the sub-criteria 

local weights. The final score for each NDT alternative was then obtained by summing the 

results of multiplying the weights of each method by the global weights of all sub-criteria. 

Table 3-6 illustrates all the achieved weights and will be discussed below.  

 

Table 3-6: Performance measures weights and ranking of NDT techniques 

    Pairwise Comparison Weights  NDT Alternatives 

Main 

Criteria 

Main 

Criteria 

Weight 

Sub-Criteria 

Sub-

Criteria 

Weight 

IE UPE GPR IRT HCP 

Capability 0.40 

Delamination 0.18 0.40 0.20 0.10 0.30 0 

Vertical Cracks 0.07 0.45 0.55 0 0 0 

Steel Corrosion 0.15 0 0 0.40 0 0.60 

Speed 0.09 

Data Collection 0.05 0.17 0.15 0.24 0.24 0.20 

Data Analysis 0.03 0.15 0.14 0.21 0.23 0.27 

Potential for Automation 0.01 0.20 0.20 0.20 0.20 0.20 

Simplicity 0.06 

Experience Operator 0.02 0.15 0.12 0.20 0.28 0.25 

Experience Analyzer 0.03 0.15 0.12 0.20 0.25 0.28 

Environment Effect 0.01 0.23 0.18 0.24 0.15 0.20 

Accuracy 0.32 

Extent of Delamination 0.13 0.38 0.22 0.13 0.27 0 

Depth/Width of Cracks 0.08 0.45 0.55 0 0 0 

Presence of Corrosion 0.11 0 0 0.40 0 0.60 

Cost 0.13 

Equipment 0.03 0.18 0.12 0.23 0.21 0.26 

Data Collection 0.06 0.17 0.14 0.21 0.23 0.25 

Data Analysis 0.04 0.13 0.10 0.21 0.26 0.30 

SUM 1.00  1.00      

Total Score  0.23 0.18 0.21 0.16 0.22 
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3.4.1 Weights of Main Performance Measures 

As discussed above, each performance measure was assigned a weight value based on its 

importance in ranking the NDT alternatives. It can be observed from Table 3-6 that the 

capability of the NDT techniques to detect specific deterioration mechanism(s) attained the 

highest weight of 40%, among all the five performance measures considered in this study. 

Indeed, the participants considered “capability” as the most fundamental and important 

performance measure for the evaluation of any NDT technology. This is because if a certain 

defect cannot be detected by a given technology, the other four performance measures are 

meaningless. Since the level of accuracy in the inspection result of any technology can be 

used to more easily assess changes in the condition of a bridge deck over its service life, 

the parameter “accuracy” obtained the second weight value of 32%. This emphasizes that, 

without a high level of accuracy in detecting defects in bridge decks, remediation and 

rehabilitation cannot be accomplished.  

The performance parameter “cost” obtained the third priority after the capability and 

accuracy parameters with a weight value of 13%. This is because the cost/effectiveness 

ratio of a technique could directly affect its employment. In addition, a low cost technique 

may be compelling for its application before more expensive means are employed. The 

performance parameter “speed” of investigation using a technique is an advantage that 

could add value for a technique. Thus, it obtained the fourth weight value of 9%. Lastly, 

the performance parameter “simplicity” of employing a technique obtained a weight value 

of 6%. Simplicity could be advantageous for a technique as long as it provides comparable 

information to that achieved by other more sophisticated techniques. For a precise ranking, 

the NDT methods were evaluated below with the perspective of the sub-criteria’s of the 

main performance measures. 

3.4.1.1 Evaluation of NDT Techniques from Perspective of Capability 

The NDT techniques were evaluated in perspective of their capability to detect specifically 

three types of defects: delamination, vertical cracking, and steel corrosion. The participants 

considered the ability of detecting delamination as the primary significant factor, thus it 

attained the highest weight value of 45%. The ability of the techniques to evaluate the 
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corrosive environment was the second significant factor with 38% weight value, while the 

ability to detect vertical cracks obtained the least weight value of 17%. The achieved 

weights of the different technologies with respect to these three factors are illustrated in 

Fig. 3-6. Comparing the achieved results confirms that: (i) four technologies have the 

capability of detecting delamination. The highest weight assigned for the IE method 

followed by the IRT and UPE methods and lastly the GPR method; (ii) the two methods 

having capability of detecting vertical cracks were UPE which obtained the highest weight, 

followed by the IE method; and (iii) two methods have capability to evaluate active 

corrosion of steel reinforcement: HCP and GPR, respectively. This complies with the 

physics of these methods, making them attractive in bridge deck evaluation. 

 

 

Figure 3-6: Evaluation of NDT technologies with respect to their capability of 

specific defect detection. 

 

3.4.1.2 Evaluation of NDT Techniques from Perspective of Speed 

The NDT techniques were also evaluated in view of their speed during data collection and 

processing of the collected raw data, as well towards their potential to have an automation 

process. The participants considered the speed of data collection as the primary significant 

factor, which thus attained the highest weight value of 55%. The importance of this factor 

likely reflects the need to reduce the cost of traffic control and the inconveniences 
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associated with traffic interruptions during the data acquisition process. The speed of data 

analysis was the second significant factor with 30% weight value, while the potential of 

automation obtained the least weight value of 15%. The evaluation results of the five NDT 

techniques with respect to these three performance factors (Fig. 3-7 ) indicate that: (i) the 

GPR and IRT methods obtained the highest data collection weight since they are the fastest 

technologies as they can collect data in a continuous manner, while other technologies 

depend on spot measurements; (ii) HCP was identified as the technology that provides the 

highest speed of data analysis and interpretation because it indicates the likelihood of 

corrosion activity directly at the time of test; and (iii) based on the judgment of the 

participants; all the technologies have equal potential of automation and hence obtained 

equal weights.  

 

 

Figure 3-7: Evaluation of NDT technologies with respect to their speed. 

 

3.4.1.3 Evaluation of NDT Techniques from Perspective of Simplicity 

The NDT techniques were evaluated in view of the required expertise for data collection 

and analysis in addition to the effects of environmental conditions and traffic on the data 

acquisition process. The participants considered the expertise for data analysis as the 

primary significant factor, thus it attained the highest weight value of 45%. The expertise 

for data collection was the secondary significant factor with 40% weight value, while the 
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effect of environmental conditions and traffic obtained the least weight value of 15%. The 

achieved weights of the different technologies with respect to these three factors are 

illustrated in Fig. 3-8. Comparing the achieved results confirms that: (i) IE and UPE are 

the most sophisticated technologies that require a high level of expertise in both data 

collection and data analysis and interpretation. Thus, they obtained the minimum weights 

among the other technologies; (ii) the environmental conditions have a significant 

influence on employing the IRT, thus it obtained the lowest weight. In fact IRT testing 

typically requires clear skies, mild wind, dry concrete surface, and intense solar radiation 

to achieve the heat-flow conditions needed to detect the presence of delaminations. 

 

 

Figure 3-8: Evaluation of NDT technologies with respect to their simplicity. 

 

3.4.1.4 Evaluation of NDT Techniques from Perspective of Accuracy 

The NDT techniques were evaluated in perspective of their ability to accurately locate 

defects. The participants considered the ability to detect the extent and severity of 

delamination as the primary significant factor, thus it attained the highest weight value of 

40%. The ability of the techniques to evaluate the intensity of active corrosion was the 

second significant factor with 35% weight value, while the ability to detect the depth and 

width of vertical cracks obtained the least weight value of 25%. Figure 3-9 illustrates the 

evaluation results of the five NDT techniques with respect to these three performance 
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factors. The results indicate that: (i) IE was identified as the technology that provides the 

highest accuracy in detecting the extent and severity of delamination, followed by the IRT, 

UPE, and GPR technologies; (ii) UPE was identified as the technology that provides 

highest accuracy in detecting crack depth and width, followed by the IE method; and (iii) 

HCP was identified as the technology that provides highest accuracy in evaluating 

corrosion activity, followed by the GPR method.  

 

 

Figure 3-9: Evaluation of NDT technologies with respect to their accuracy. 

 

3.4.1.5 Evaluation of NDT Techniques from Perspective of Cost 

The NDT techniques were evaluated in perspective of the cost of equipment, including 

maintenance costs; the cost of data collection including the number of operators, expertise 

level, cost of traffic control, and time needed to collect data; and the cost associated with 

data analysis and interpretation, including the number of analyzers, expertise level, and 

time needed to analyze and interpret. The participants considered the cost of data collection 

as the primary significant factor, thus it attained the highest weight value of 48%. The cost 

of data analysis and interpretation was the second significant factor with 32% weight value, 

while the cost of equipment obtained the least weight value of 20%. The achieved weights 

of the different technologies with respect to these three factors are illustrated in Fig. 3-10. 

Comparing the achieved results indicates that HCP is the lowest cost method with respect 
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to the three parameters, while IE and UPE are the most expensive methods. Thus, HCP 

obtained the maximum weight among the other technologies, while IE and UPE obtained 

the minimum weights. 

 

 

Figure 3-10: Evaluation of NDT technologies with respect to their cost. 

 

3.4.2 Overall Ranking of NDT Techniques  

The overall ranking of the technologies was conducted from high to low. The final score 

values are presented in Table 3-6. The results revealed that IE obtained the maximum score 

of 23%, the HCP ranked second with 22% and GPR third with 21%, while UPE and IRT 

received the minimum percentages of 18 and 16, respectively. It should be noted that this 

overall ranking came from the assigned weights of all parameters and hence was affected 

by the weights of the significant parameters, such as the capability and accuracy. The score 

could be changed if the comparison was made only between each group of technologies 

capable to detect a specific deterioration type. However, the results draw the attention to 

the fact that, while IE and HCP are currently highly regarded as the most commonly used 

methods to evaluate delaminations and the likelihood of rebar corrosion, respectively, there 

is a high potential to increase the use of GPR technology in evaluating the conditions of 

concrete bridge decks. It also indicates that most participants have concerns regarding IRT 

results. 
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For more rational evaluation, Figure 3-11 illustrates the individual performance of the 

technologies from the perspectives of the five performance measures considered in this 

study. The figure indicates that the various NDT technologies are significantly different in 

terms of a selected performance parameter. For instance, the IE was generally considered 

by the participants as the most accurate technology. In fact several experts commented in 

the questionnaire that IE was generally consistent with results from coring when they were 

carefully performed, but it is also a time consuming method. They further mentioned that 

GPR could obtain a higher relative importance weight if the delaminated areas under 

investigation were moist. Evaluating IRT by the experts as the lowest accurate technology 

could be due to its high sensitivity to the effects of environmental conditions, and thus it is 

difficult to establish a rule-based criterion to evaluate its raw data. With respect to speed, 

the figure indicates that the IRT, GPR, and HCP methods were generally considered as the 

speediest technologies. Although different levels of expertise and experience are needed 

for the compared technologies, the HCP and IRT were generally considered as the simplest 

technologies. Similarly, the HCP and IRT were generally considered as the lowest cost 

technologies followed by the GPR method.  

 

 

Figure 3-11: Overall evaluation of NDT technologies with respect to the main 

performance criteria. 
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3.5 Validation of Model Results 

Indeed, comparing the different NDT techniques based on quantifiable data provides more 

precise and objective evaluation. Therefore, the achieved results were validated through 

the findings of some comparative research studies, identified in the open literature that 

compared various NDT techniques qualitatively and quantitatively. In these comparative 

studies, each technique has been compared to at least one other technique with respect to 

different performance parameters. Table 3-7 summarizes the explored studies and their 

major findings. For instance, Barnes and Trottier (2000) utilized the HCP and GPR 

techniques to evaluate nine RC bridge decks and then compared the results with actual 

recognized and repaired areas. They reported that accurate identification of the defects was 

indicated by the HCP tests. Good spatial and quantitative correlation was also observed 

between the GPR-predicted defect locations and the actual deterioration found on the nine 

decks using the ground-truth survey methods.  

Scott et al. (2003) applied IE and GPR testing on a full-scale RC bridge deck and reported 

that all delaminations identified by the IE were validated by the results of core samples 

extracted from the deck, while the GPR tests provided more rapid inspection, yet were not 

able to consistently identify delaminations. Yehia et al. (2007) conducted a study to 

determine the reliability of IE, GPR, and IRT technologies on concrete slabs fabricated 

with three types of flaws (cracks, delaminations, and voids) of known location and 

dimension. They reported that the IE results identified the extent and depth of all defects 

efficiently, while the IRT only detected the shallower defects. GPR testing was fairly good 

at detecting delaminations, but had difficulties with voids and could not detect cracks. Both 

IRT and GPR testing provided rapid inspections, while the IE was a time-consuming 

method. Oh et al. (2013) utilized air-coupled IE and IRT techniques to evaluate an in-

service RC bridge deck. The methods were compared across performance criteria, 

considering accuracy, testing practicality and cost. They reported that IRT is a very 

effective approach for rapid detection of shallow defects, although it is hindered by the 

relatively high capital cost of equipment and high sensitivity to the ambient environment 

and surface conditions. The air-coupled IE showed good performance and accurate results 

for bridge decks under active ambient traffic noise and vibration conditions. 
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Gucunski et al. (2013) published a comprehensive study of nine NDT techniques that were 

utilized in the SHRP2 project to identify typical deterioration mechanisms in RC bridge 

decks. The evaluated techniques included those adopted in the present research. Ten 

organizations (NDT service providers, research institutions, and consultants) conducted 

validation testing in the field and laboratory. After completion of the testing, the data were 

analyzed and quantitative results were used for the evaluation process in which five 

performance measures were considered: accuracy, repeatability, ease of use, speed, and 

cost. Evaluation of the technologies’ accuracy was limited by the extent of ground truth 

information, and hence, was done only through laboratory testing. The report concluded 

that IE was the most accurate technology in detecting delamination defects, followed by 

the IRT method. The HCP and electrical resistivity were the two precise technologies to 

measure the potential of corrosion activity. The surface wave transmission method was the 

most approparite for measuring the depth of cracks, whereas the ultra-sonic surface wave 

method was most successful in quantifying the degradation of concrete. The IE and GPR 

were the two technologies that had highest potential of repeatability. The IRT testing 

provided highest inspection speed, followed by the GPR and HCP techniques. In addition, 

IRT was the easiest technology to use, followed by the HCP method, which was also 

reported as the least expensive technology. These findings comply to a large extent with 

the results obtained from the model developed in the present research. 
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Table 3-7: Comparative studies which utilized several NDT techniques on RC bridge decks 

Reference Techniques Utilized Performance Indicator Outcomes 

 Alt and Meggers 

(1996) 

 Barnes and 

Trottier (2000) 

 Scott et al. (2003) 

 

 Clark et al. (2003) 

 

 Yong and Kee 

(2003) 

 Yehia et al. 

(2007) 

 Gucunski and 

Nazarian (2010) 

 Algernon et al. 

(2010) 

 Arndt et al. 

(2010) 

 Oh et al. (2013) 

 

 Gucunski et al. 

(2013) 

 IRT, GPR 

 

 GPR, HCP, CD 

 

 IE, GPR, CD 

 

 IRC,CD 

 

 GPR, IE, IR 

 

 IE, IRT, GPR 

 

 IE, GPR, HCP, 

USW, ER 

 IE, UPE, 

Covermeter 

 HCP, GPR, IRT, 

IE, UPE 

 IE, IRT, CD 

 

 IE, GPR, HCP, 

USW, ER, IRT, 

UPE, IR 

 Capability, accuracy, 

repeatability  

 Accuracy, variability 

 

 Capability, accuracy, 

speed 

 Accuracy 

 

 Capability 

 

 Capability, accuracy, 

speed, equipment cost 

 Capability, accuracy 

 

 Capability, accuracy 

 

 Capability, 

repeatability  

 Accuracy, practicality, 

cost 

 Accuracy, 

repeatability, ease of 

use, speed, cost 

 Both IRT and GPR were not able to identify all subsurface 

anomalies due to the concrete and asphalt overlays. 

 GPR provided good spatial and quantitative correlation 

compared with the HCP and ground-truth results. 

 IE results were consistent with coring results, while GPR did 

not produce consistent responses to delamination. 

 IRT successfully identified most delaminations, even though 

the survey conditions were imperfect. 

 IE and IR identified hidden anomalies (voids & delamination) 

having good agreement with ground-truth results. 

 IE identified all defects, while IRT identified only shallower 

defects. IRT was the faster method, followed by GPR and IE. 

 IE identified delaminations. HCP and ER enabled the 

assessment of likelihood and severity of corrosion. 

 UPE identified accurate thicknesses of the concrete blocks and 

IE efficiently located irregularities within the blocks. 

 The HCP/GPR testing monitored the probability of active 

corrosion. IE identified the defects and the low stiffness areas.  

 IE enabled efficient detecting of delaminations. IRT detected 

shallow delaminations only. 

 IE was the most accurate in detecting delaminations, HCP was 

accurate in measuring potential of corrosion activity. Tests for 

all techniques were relatively repeatable. IRT and HCP were 

the easiest technologies and HCP was the least expensive. 

Note: CD (Chain Drag); USW (Ultrasonic Surface Waves); ER (Electrical Resistivity); IR (Impulse Response) 
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3.6 Evaluation of the Proposed Model 

This study attempts to provide a rational basis to transportation agencies guiding their 

efforts to incorporate NDT techniques into bridge inspection procedures through the 

evaluation of five NDT techniques. Because the data source used in the development of the 

proposed evaluation methodology came from a survey of bridge owners, consultants and 

researchers, it was important to only consider expertise with high level of interest in NDT 

applications. For instance, expertise sourced from a certain network might have a common 

perception of a particular performance parameter. Thus, including experts from different 

agencies was considered beneficial to incorporate diversity and ensure representation of 

different perspectives. It was unlikely that the respondents had experience or were familiar 

with all the evaluated five NDT technologies. Thus, participation was considered only for 

experts who had experience with at least three of the NDT of interest. Furthermore, the 

experts were requested to have their evaluation based solely on evidence used to validate 

the outcomes of the NDT techniques employed in their schemes (e. g. coring, chloride 

content...etc). Such a plan was taken into account in order to ensure that the results of the 

analysis represent the performance of the technologies rather than a popularity contest of 

NDT alternatives.  

The overall ranking of the technologies in this comparative study was, to some extent, 

influenced by the selected performance measures and the applied weights in the evaluation 

process. Therefore, some suggestions for improvement were received from the experts. For 

example, three respondents highlighted that the performance measures should include 

“commercial availability” since it might influence selection by bridge engineers for a 

specific project. Another two participants highlighted that the ultrasonic pulse echo method 

was not used frequently, while choosing surface wave methods could be more approparite. 

Another respondent advised that low cost, commercially available remote sensing 

technologies are an efficient solution to enhancing and monitoring the condition 

assessment of bridge decks. Although such comments are valuable, it should be noted that 

the idea here is to propose a methodology rather than apply the exact numbers achieved in 

the present research. Moreover, the proposed hierarchy structure can be customized to 

accommodate different transportation agency policies.  
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However, regardless of the accuracy of results in terms of the applied model and the 

presented fuzzy analysis, it should be noted that there is no technology that is a "solve-all" 

solution to assessing the condition of a bridge deck. Each of the evaluated technologies has 

some drawbacks and is appropriate for a specific type of defect/problem. For instance, IE, 

the technology which obtained the highest ranking in this study, requires many testing 

points and inadequate receiver contact can yield inaccurate and false measurements. 

Furthermore, testing rough concrete surfaces could affect the establishment of the low 

impulse time necessary to detect small and shallow defects. The HCP testing does not 

provide quantitative information on the corrosion rate. In addition, it cannot be used in the 

presence of coated rebar and its measurements can be influenced by numerous material 

properties. GPR can indirectly assess the potential of rebar corrosion, while the presence 

of congested reinforcement can prevent GPR signal penetration. In addition, GPR does not 

provide information on the corrosion rate. The results of the UPE technology could be 

significantly affected by the attenuation of the transmitted pulses. The IRT as a remote 

sensing technology could provide real-time results, but is dependent on ambient conditions 

and its conventional inspection method cannot indicate the depth of delaminations and 

voids. Recently, Washer (2016) introduced the ultra-time domain IRT technology based 

on IR continuous monitoring and reported that applying long term measurements using IR 

camera is capable of detecting the depth of delaminations in RC bridge decks. 

The decision on which NDT technology to select or equipment to acquire for a specific 

project depends primarily on the type of deterioration representing the highest concern to 

the transportation agency and the degree of deterioration details required. Generally, an 

optimal selection strategy would seek to minimize the costs of inspection, while still 

ensuring an adequate accuracy and reliability of the NDT technique to be utilized. 

However, the decision could be controlled by many other criteria, such as the size and 

complexity level of the network, geographic location, traffic density, environmental 

conditions, how the assessment data will be used, and available time to conduct the 

evaluation. Moreover, the selection process should be accompanied by a comprehensive 

cost-benefit analysis. It should be noted that, generally, to achieve a reliable evaluation of 

a bridge deck condition, the selected NDT technique(s) must be suitable for the 

components of the bridge deck under investigation. The testing must be performed by 
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qualified personnel with adequate knowledge of the requirements and specifications that 

are relevant to their applications and limitations.  

Indeed, integrating several NDT techniques has emerged to provide more reliable 

evaluation on the condition of bridge decks. Therefore, research has attempted to integrate 

two or more NDT techniques to detect all possible defects and improve the assessment 

process. For example, the FHWA has recently developed the “RABIT” bridge deck 

assessment device. RABIT (Robotics Assisted Bridge Inspection Tool) is a fully 

autonomous robotic system for the condition assessment of concrete bridge decks using 

the results of multi-model NDT, which utilizes the electrical resistivity, impact echo, 

ultrasonic surface waves, and ground penetrating radar technologies. The robot’s data 

visualization platform facilitates an intuitive 3-D presentation of three deterioration types 

(rebar corrosion, delamination, and concrete degradation) and deck surface features 

(Gucunski et al., 2015). However, because not all the transportation agencies employ fully 

NDT evaluation due to the associated costs, they should have access to at least two of the 

five technologies explored herein for a better understanding of a deck’s condition. This 

will also make the assessment of a large population of bridge decks more feasible. 

3.7 Conclusions  

Transportation agencies have a great need to evaluate bridge deck conditions using NDT 

techniques in order to optimize the effective timing, scope, and approaches for preventive 

maintenance, repair, and replacement. An attempt has been made in the present research to 

critically analysis the performance of commonly utilized NDT technologies to assess the 

condition of RC bridge decks. Thus, hierarchical decision modeling was utilized as an 

effective management tool to evaluate the performance of five NDT technologies. AHP, 

which is a well-known multivariable decision making methodology, provides a basis for 

group decision making and can utilize both qualitative and quantitative criteria in the same 

framework. The proposed model was developed based on a combination of literature 

review and questionnaire survey with subject matter experts representing different bridge 

community organizations. The NDT methods were evaluated and ranked based on a set of 

flexible multi-attributed criteria and sub-criteria, developed to form a hierarchical decision. 

The different hierarchal elements were assigned pairwise comparisons using a fundamental 
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scale of absolute values that represent the strength of judgements by the participants. In 

order to make the evaluation analysis more precise, the fuzzy set theory was adopted to 

deal with vagueness and uncertainty in the decision making process. The results of the 

developed model were validated through the findings of multiple research studies retrieved 

from the open literature, which deployed physical laboratory and field NDT testing. The 

outcomes revealed that no single technology is capable of recognizing all three primary 

defect types, and that comprehensive condition assessment could be better conducted using 

more than one technique to compensate for each single technique limitations. The factors 

that could affect the selection of a NDT technique were discussed. Applying this 

management aspect can assist bridge stakeholders in the appraisal and selection of different 

NDT technologies to detect different types of bridge deck health indicators at both the 

project and network levels.  
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Chapter 4  

4. Infrared Thermography Model for Rational Condition 

Assessment of Reinforced Concrete Bridge Decks 

4.1 Introduction  

Subsurface delaminations are serious and common defects that affect the structural 

integrity and reduce the service life of RC bridge decks. Delamination could also be 

indicative of deterioration and potential active corrosion. Therefore, locating and defining 

the extent of this damage in its initial stages is critical to ensure bridge safety and optimize 

maintenance and repair needs. Detecting subsurface delaminations in RC bridge decks 

without physical contact is a considerable advantage of infrared thermography (IRT). Such 

subsurface anomalies can be detected on the basis of variable concrete properties, such as 

density, thermal conductivity and specific heat capacity. Data collection using remote 

sensing technology with thermal IR imagery can reduce traffic disruption and lane closures 

on and underneath bridge decks, and thus it is less costly than other NDT methods. 

Generally, IRT testing collects radiant temperature and visualizes the data in the form of 

real-time thermal infrared images. However, the infrared images can be difficult to 

interpret, and thus specific data acquisition training is often required (Vaghefi et al., 2012).  

There is a dearth of research on the interpretation process of IRT data. In the majority of 

IRT analyses, the post-processing of IR images depends on the analyzer’s personal 

experience since defective areas are usually identified and calculated based on a visual 

interpretation approach. Such qualitative and subjective analyses provide quick decisions 

using the difference in the temperature of the region of interest and a reference region but 

can lead to inconsistency in the obtained results. Therefore, overcoming the obstacles of 

IRT data analysis is necessary to tailor this rapid and reliable evaluation technique for RC 

bridge decks. In this Chapter, a novel procedure to detect and classify subsurface 

delamination in full-scale RC bridge decks under passive IRT testing is developed. To 

achieve this goal, the following objectives are pursued throughout the chapter sections: (1) 

studying the working principles of IRT and the current methods to analyze and interpret 

the IR thermal data; and (2) developing an automated procedure to: (a) generate a 
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mosaicked thermogram of the entire bridge deck from individual IR images, (b) identify 

objective thresholds in order to recognize the sound and defective deck areas and to classify 

the severity of the defective regions, (c) produce a condition map of the entire bridge deck, 

delineating the sound and different classes of defects, and (d) quantify the detected 

delamination defects in each category.  

Figure 4-1 illustrates the adopted systematic methodology to achieve the above-mentioned 

objectives. It can be summarized as follows: (1) conducting a passive IRT survey in-situ 

on a full-scale deteriorated concrete bridge deck using an advanced thermal camera; (2) 

initializing acquisition and storage of the IRT data using the Matlab image acquisition 

toolbox; (3) enhancing the images’ resolution by increasing its dynamic range and reducing 

the inherent noise using the Flir software; (4) developing a stitching algorithm to create a 

mosaicked thermogram of the entire bridge deck using especially written Matlab codes; (5) 

constructing a framework to determine the number of defects’ condition categories 

(clusters) of the subsurface anomalies; (6) segmenting the mosaic to determine the 

threshold values using the k-means clustering algorithm, a machine learning unsupervised 

technique, in the Matlab software; (7) creating an IR condition map delineating different 

categories of the delamination severity using a commercial mapping software; (8) 

implementing the developed procedure in four full-scale bridge decks; and (9) validating 

the condition maps with results provided by other technologies on the same bridge decks. 

 

 

Figure 4-1: Methodology adopted in developing IRT model to detect and classify 

subsurface delamination in RC bridge decks. 
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4.2 Infrared Thermography Technology 

This section provides an introduction to the theory of IRT technology along with its 

application to the in-situ inspection of RC bridges. A brief review of the basic principles 

of heat transfer and thermal imaging, a review of IR cameras, and application and 

interpretation of passive IRT testing are presented.  

4.2.1 Basic Principles of IRT 

4.2.1.1 IR Radiation 

Any object at a temperature above the absolute zero (-273.15 degrees Celsius or 0 Kelvin) 

emits infrared radiation (below red). Infrared radiation lies between the visible and 

microwave portion of the electromagnetic spectrum where the usable part is approximately 

defined from 0.8 to 14 μm. This range can be further subdivided into near-infrared (0.8-1.5 

μm), short-wavelength infrared (1.5-2.5 μm), mid-wavelength infrared (2.5-8 μm), and 

long-wavelength infrared (8-14 μm). We experience infrared radiation every day. For 

instance, the heat that we feel from sunlight, a fire or a radiator is all infrared. Although 

our eyes cannot see it, the nerves in our skin can feel it as heat. The intensity of the infrared 

radiation emitted by objects is mainly a function of their temperatures and radiation 

wavelengths. Figure 4-2 illustrates the infrared region in the electromagnetic spectrum. 

 

 

Figure 4-2: Infrared region in the electromagnetic spectrum (FLIR Guidebook). 

 

In the thermal radiation theory, there are three ways by which the radiant energy striking 

an object can be dissipated: absorption, transmission and reflection (Robert, 1982). IRT 
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employs infrared sensors to detect thermal radiation emitted from materials, and creates an 

image of surface temperatures based on the emitted radiation. In addition to emitting 

radiation, an object reacts to incident radiation from its surroundings by absorbing and 

reflecting a portion of it, or allowing some of it to pass through. From this physical 

principle, the radiation law is derived as per Equation 4-1, which can be simplified as per 

Equation 4-2. 

 

𝐸 =  𝛼𝐸 +  𝛽𝐸 +  𝜏𝐸                                                                                                  Eq. 4-1 

𝛼 +  𝛽 +  𝜏 = 1                                                                                                           Eq. 4-2 

 

The coefficients 𝛼, 𝛽, 𝑎𝑛𝑑 𝜏describe the object’s incident energy absorption (𝛼), reflection 

(𝛽), and transmission (𝜏). Each coefficient can have a value from zero to one, depending 

on how well an object absorbs, reflects, or transmits incident radiation. Stefan-Boltzmann 

further developed the formula presented in Equation 4-3, where the intensity of the 

infrared radiation emitted by objects was directly proportional to the fourth power of its 

absolute temperature (Robert, 1982). As per the formula, the amount of radiation increases 

with temperature. Therefore, the warmer the object the greater the intensity of the emitted 

infrared radiation.  

 

𝐸𝑟𝑎𝑑 = 𝜀 𝜎 𝑇4                                                                                                      Eq. 4-3 

 

Where: E is the radiation energy (W·m⁻²), is Stefan-Boltzmann constant (5.67 ×

 10−8 𝑊 𝑚−2 𝐾−4), T is the surface temperature (Kelvin), and ε is the object’s emissivity 

(unit-less value). A material’s emissivity is the ability of its surface to emit energy by 

radiation relative to a black body. In other words it is the ratio of the radiant energy emitted 

by the body to the radiant energy emitted by a black body at the same temperature. A 

blackbody is considered as a hypothetical object which absorbs all incident radiations (the 

transmissivity and the reflectivity are null) and radiates a continuous spectrum. For a 

perfect blackbody, emissivity is unity, but for real surfaces it is always less than unity. For 
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concrete, this property is typically greater than 0.92 (Meola, 2012). Emissivity is important 

in terms of analyzing thermographic images, because different materials may emit 

radiation at different rates, even though they may be at the same temperature. However, 

the surface roughness and moisture content of the concrete can influence its emissivity 

value. The presence of other materials on the surface of the concrete (e.g. staining, water, 

lane markings, etc.), which have different emissivity properties, can result in apparent 

temperature variations in the IR image and possibly mask the thermal contrasts created by 

subsurface anomalies (Clark et al., 2003). 

4.2.1.2 Heat Transfer 

Heat energy moves by conduction, convection and radiation. The thermal energy, received 

by the concrete surface due to the sun’s rays, depends on the concrete absorptivity and the 

solar radiation on the concrete surface as per Equation 4-4. The solar radiation depends 

on geographical location and the position of the sun relative to the surface of the concrete, 

whereas absorptivity is a measure of the efficiency of receiving radiated heat. 

 

𝐸𝑠 = 𝛼𝑠 𝐼𝑠                                                                                                                   Eq. 4-4 

 

Where 𝛼𝑠 is the absorptivity of concrete and 𝐼𝑠 is the solar radiation on the concrete surface.  

The thermal energy, transfer by convection as a result of temperature differences between 

the concrete surface and the surrounding air, is given by Newton’s law of cooling according 

to Equation 4-5. 

 

𝐸𝑐𝑜𝑛𝑣 = ℎ (𝑇𝑠 − 𝑇𝑎)                                                                                                   Eq. 4-5 

 

Where ℎ is a convection coefficient, 𝑇𝑎 is the ambient temperature, and 𝑇𝑠  is the surface 

temperature of the concrete. The convection coefficient depends on many factors, such as 

surface roughness and surface area of the concrete, wind velocity, and thermal properties 

of the air. The convective heat transfer is positive when the ambient temperature is less 

than the temperature of the concrete, for example, when radiant heating from the sun warms 
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the concrete above the ambient temperature. In this case, increased wind speed will result 

in increased energy transfer from the concrete to the surrounding environment. 

Accordingly, the thermal gradients in the concrete reduces (Washer et al., 2013). In other 

words convective cooling for solar exposed surfaces may counteract the radiant heating of 

the sun, and reduce the thermal gradient in the concrete. Conversely, if the ambient 

temperature is warmer than the concrete, for example, when ambient temperatures are 

increasing but there is no heating from the sun, then the convective heating transfer is 

negative. In this case, increased wind speed will accelerate the heat transfer to the concrete, 

and increase the thermal gradients in the concrete, thereby increase the detectability of a 

subsurface delamination. 

Within the concrete solid, heat transfer via conduction occurs and is affected by its thermal 

conductivity, which indicates how quickly heat flows through the concrete. It depends on 

the aggregate types used in the concrete mixture. The thermal diffusivity is the thermal 

conductivity divided by the volumetric heat capacity. A high thermal diffusivity means that 

heat transfer through a material will be rapid and the amount of storage will be small. 

Conversely, low thermal diffusivity indicates a slower rate of heat transfer and a large 

amount of heat storage (Bagavathiappan et al., 2014). Heat capacity is defined as the 

amount of heat needed to raise the temperature of a unit mass of a material by one degree 

and describes its ability to store heat. For the one dimensional plane, the thermal energy 

transfer by conduction is expressed according to Equation 4-6, while the ability of the 

concrete to conduct and store heat is commonly represented by its thermal inertia, 

computed as the square root of the product of its thermal conductivity, density, and heat 

capacity as per Equation 4-7.  

 

𝐾𝑐𝑜𝑛𝑑 = 𝐾 {
𝑇𝑠− 𝑇𝑎

𝐿
}                                                                                                      Eq. 4-6 

𝐼 =  √𝐾 𝜎 𝐶                                                                                                                 Eq. 4-7 

 

Where 𝐾 is the thermal conductivity, 𝐿 is the concrete thickness in the direction of heat 

flow, 𝜎 is the density, and 𝐶 is the heat capacity.  
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4.2.2 Infrared Cameras 

IR cameras are designed for a specific range of the IR spectrum. An IR camera measures 

the intensity of emitted infrared radiation from an object and converts it into a visible 

image. The fact that radiation is a function of object surface temperature makes it possible 

for the camera to calculate and display this temperature. However, the radiation measured 

by the camera not only depends on the temperature of the object, but is also a function of 

the emissivity. Radiation also originates from the surroundings and is reflected in the 

object. The radiation from the object and the reflected radiation will also be influenced by 

the absorption of the atmosphere. To measure temperature accurately, it is therefore 

necessary to compensate for the effects of a number of different radiation sources. The 

object parameters that must be supplied for the camera include the emissivity of the object, 

the reflected apparent temperature, the distance between the object and the camera, the 

relative humidity, and the temperature of the atmosphere. 

The main components of IR cameras are a lens that focuses IR onto a detector, plus 

electronics and software for processing and displaying the signals and images. The 

configuration of a typical IR camera is shown in Fig. 4-3. Infrared energy (A) coming from 

an object is focused by the optics (B) onto an infrared detector (C). The detector sends the 

information to sensor electronics (D) for image processing. The electronics translate the 

data coming from the detector into an image (E) that can be viewed in the viewfinder or on 

a standard video monitor or LCD screen.  

 

 

Figure 4-3: General configuration of a typical IR camera (FLIR Guidebook). 
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IRT is the art of transforming an infrared image into a radiometric one, which allows 

temperature values to be read from the image. So every pixel in the radiometric image is 

in fact a temperature measurement. In order to do this, complex algorithms are incorporated 

into the thermal imaging camera. However, the optics and detectors are the heart of IRT 

systems and must be selected for the desired range (Rinaldi, 2012). Because IR has the 

same properties as visible light regarding reflection, absorption, and transmission, the 

optics for thermal cameras are designed in a fashion similar to those of a visual wavelength 

camera. However, the types of glass used in optics for visible light cameras cannot be used 

for optics in an infrared camera, as they do not transmit IR wavelengths well enough. 

Conversely, materials that are transparent to IR are often opaque to visible light. IR camera 

lenses typically use silicon and germanium materials. Normally silicon is used for medium 

wavelength IR camera systems, whereas germanium is used in long wavelength cameras. 

Both materials have good mechanical properties, e.g., they do not break easily, they are 

non-hygroscopic, and they can be formed into lenses with modern turning methods. As in 

visible light cameras, IR camera lenses have antireflective coatings. With proper design, 

IR camera lenses can transmit close to 100% of incident radiation. 

The IR camera detector is a focal plane array (FPA) of micrometer-sized pixels made of 

various materials sensitive to IR wavelengths. FPA resolution can range from about 160 × 

120 pixels up to 1024 × 1024 pixels. Some IR cameras have built-in software that allows 

the user to focus on specific areas of the FPA and calculate the temperature. Other systems 

utilize a computer or data system with specialized software that provides temperature 

analysis. Both methods can supply temperature analysis with better than ± 1° C precision. 

However, the FPA technologies are broken down into two categories: thermal detectors 

(uncooled microbolometers) and quantum detectors, which are generally faster and more 

sensitive than thermal detectors. On the other hand, thermal detectors have a lower cost 

and broader IR spectral response than that of quantum detectors, which also require a 

cooling system using either liquid nitrogen or a small stirling cycle refrigerator unit 

(Vladimir, 2014). However, advances in the field of solid state technology have paved the 

way for the development of newer types of uncooled infrared detectors with better 

resolution and accuracy. Nowadays, the thermal sensitivity of the uncooled cameras is 

about 0.03 ⁰C compared to 0.01 ⁰C of the cooled ones (Bagavathiappan et al., 2014).  
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The most important parameters that must be considered before choosing an IR camera 

include the spectral range, spatial resolution, temperature range and frame rate. For 

observing objects at ambient temperature, long wave length band (8–14 μm) is preferable 

to detect small thermal contrast and reduce the effects of direct solar radiation during 

daytime testing. The spatial resolution of an IR camera primarily depends on the object-to-

camera distance, lens system and detector size. The spatial resolution decreases with 

increasing object-to-camera distance, while lens systems with a small field of view (FOV) 

have higher spatial resolution (Usamentiaga et al., 2014). 

4.2.3 Application of IRT for Concrete Bridge Inspection  

IRT has been applied for several decades to detect corrosion-induced delaminations in RC 

bridges (Manning and Holt, 1982). Previous studies highlighted that the immense 

difference between the volumetric heat capacity of solid concrete and that of the air voids 

within the concrete element results in warmer delaminated areas than the sound concrete 

when exposed to solar heating. They further suggested that more severely delaminated 

regions have stronger thermal contrast values. There are two testing approaches for IRT 

based on the heat source. The active approach uses an external thermal stimulus to induce 

the required heat flow condition in the concrete being tested. The passive approach uses 

natural heat sources, such as solar heating and ambient temperature changes (Robert, 

1982). Based on the external stimulus, different methods of active IRT have been 

developed, such as pulse thermography, step heating, lock-in thermography, and vibro-

thermography. 

The application of passive IRT testing in full-scale bridge decks relies on detecting 

characteristic thermal signatures associated with subsurface anomalies since solar loading 

can provide a strong radiant heating source. When the ambient air temperature is higher 

than the concrete temperature, heat is transferred into the concrete to bring it toward 

thermal equilibrium with its surroundings through a thermal gradient. Subsurface defects, 

such as delaminations, disrupt the heat transfer through the concrete. If a sufficient thermal 

gradient exists, defects can be detected by measuring the difference in surface temperature 

that exist between a region of sound concrete and a defected region of concrete under 

certain environmental conditions (Manning and Holt, 1982). For instance, when the 
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temperature of the concrete increases, such as during daytime when the sun and ambient 

environment are heating the concrete, the area above a subsurface delamination warms up 

at a faster rate than that of surface areas where the concrete is intact. Delaminations can 

then be detected as “hot spots” on the surface of the material, relative to the intact concrete. 

Conversely, during nighttime, the air temperature usually decreases and the material cools. 

Thus, the surface area above delaminations cools at a faster rate than that of the intact 

concrete and appears as “cold spots” relative to the intact concrete. Figure 4-4 illustrates 

the IR emitted from a concrete bridge deck during the day and night. 

 

 

Figure 4-4: Infrared energy emitted from concrete bridge deck during day and 

night. 

 

However, there has been limited application of the IRT technology to inspect full-scale 

deteriorated RC bridge decks outside the laboratory environment. This could be due to the 

fact that the technology must be used in controlled environmental conditions to obtain 

precise evaluations. Environmental conditions such as solar loading, ambient temperature, 

relative humidity and wind speed affect the accuracy of passive IRT measurements. The 

effects of these environmental factors can be difficult to characterized and vary over time, 

such that it can be difficult to determine if the existing environmental conditions at a given 

point in time are adequate to produce a high quality image. Favorable environmental 

conditions include sufficient solar loading or changes in ambient temperature to produce a 

thermal gradient in the concrete, where the concrete surface heats up at a much higher rate 

than the concrete core. ASTM D4788-03 (Standard Test Method for Detecting 
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Delaminations in Bridge Decks Using IRT) describes the appropriate environmental 

conditions necessary for conducting passive IRT inspections. For instance, a minimum of 

3-hr direct sunshine is required to create a temperature difference of at least 0.5°C. In 

addition, IRT testing shall not be carried out when ambient air temperatures are less than 

0°C (32°F) and when the wind velocity exceeds 50 km/hr (30 mph). 

In addition, characteristics of the subsurface defect (e.g. delamination depth, delamination 

thickness, materials present in delamination, concrete properties, and asphalt overlays) also 

affect the test response. In a study by Hiasa et al. (2017), they reported that the area of 

delamination was found to be the most critical factor that directly affects the thermal 

contrast measures during IRT testing. Kee et al. (2012) reported that overnight cooling 

effect can be used to detect both shallow and deep delaminations, providing clearer images 

than using the morning heating effect. Watase et al. (2015) recommended to predict the 

thermal contrast first based on actual sensor readings in order to determine the suitable 

time window for conducting IRT bridge inspections. Maser and Roddis (1990) reported 

that detection of defects in the presence of an asphalt overlay is difficult because the 

overlay dampened the thermal contrasts achieved due to the thermal mass above a potential 

delamination, and the thicker the overlay, the greater the damping effect. A major concern 

for the reliability of IRT through asphalt overlay is the possible presence of a debonded 

area which could mislead interpretation. The debonded area could appear as a flaw in the 

IR image, in addition to the actual delaminations in the concrete. To distinguish debonding 

for delaminations, Maser and Roddis (1990) suggested that the delaminated areas appear 

as circular and uniform while the debonded areas present as large, non-circular, and non-

uniform. 

4.2.4 Interpretation of Passive IRT Data 

A main challenge in IRT is how to recognize delaminations in IR images since it can be 

rather subjective to judge whether color contrast of the image is an indication of damage 

or not. The location of subsurface delaminations can be identified by analyzing the surface 

temperature variations. The measured thermal contrasts, defined in Equation 4-8, are 

commonly examined to perform qualitative assessment of the thermographic images in an 

attempt to identify subsurface deterioration.  
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∆𝑡 =  𝑇𝑑𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 − 𝑇𝑠𝑜𝑢𝑛𝑑 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒                                                                Eq. 4-8 

 

Where: 𝑇𝑑𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 is the surface temperature above a delaminated area and 

𝑇𝑠𝑜𝑢𝑛𝑑 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒  is the surface temperature in the intact area of the concrete. Manning and 

Holt (1982) pointed out that thermal contrast could occur at any ambient temperature, but 

is greatest during a period of rapid heating and cooling. They also reported that the 

maximum thermal contrast occurs at a distinct time over the course of a typical day. It 

should be noted that the thickness of concrete cover may affect the inspection capability of 

IRT due to the increased weakness of thermal contrasts with increased target depths. In 

addition, Maldague (2000) correlated the depth of a defect with observation time and 

proposed that the deeper defects will be detected at a later time with a reduced contrast, 

where observation time is a function of the square of the depth as indicated in Equation 4-

9. He further suggested a relationship between the loss of contrast and increasing depth, 

where the loss of thermal contrast is proportional to the cube of the target depth, as per 

Equation 4-10. 

 

𝑡 ~ 
𝑧2

𝛿
                                                                                                                       Eq. 4-9 

𝐶 ~ 
1

𝑧3
                                                                                                                      Eq. 4-10 

 

Where 𝑡 is the observation time, 𝑧 is the depth of the target, 𝛿 is the thermal diffusivity, 

and 𝐶 is the thermal contrast loss due to defect depth.  

Preprocessing of IR images may include pixel enhancement and noise smoothing, while 

image processing is commonly conducted using a variety of image segmentation 

techniques (Qianqian and Youna, 2003). IR image mosaics are commonly used to obtain a 

global view of a bridge deck through stitching individual images. There are several 

commercially available stitching software tools that can be utilized for creating this mosaic 

view of a bridge deck. The majority of their algorithms rely on capturing images from a 

fixed location in order to stitch them together. This allows projection onto the image plane 
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to go through the same focal point in all of the images. However, parallax and geometric 

distortions, which often occur when an image is captured while the IR camera is moving, 

make the creation of such a mosaic from the large numbers of images a problem because 

the background appears to shift and automated feature detection methods could stitch the 

background instead of the foreground (Brown and Lowe, 2007). 

Displaying field deployment IR images into a geospatial format is another approach that 

has been widely adopted by several researchers (e.g. Jiang and Li, 2008; Wu et al., 2012; 

Vaghefi et al., 2015). For instance, ArcGIS (geographic information system) and the GE 

(Google Earth) software can register images to produce GIS thermal IR maps, which allow 

the analyst to explore data and make measurements. Although this procedure is useful in 

detecting and calculating delaminated and spall areas present in bridge decks, it usually 

requires manual editing and relies on the user interpretation, often resulting in undesired 

subjectivity.  

4.3 Un-Supervised Machine Learning 

Machine learning is a predictive modeling analysis that constructs algorithms capable of 

learning from and making prediction of data. The algorithms operate by building a model 

from example inputs to predict data or decisions, rather than strictly following static 

programme instructions (Melhem and Cheng, 2003). It can be classified based on the nature 

of input and feedback signals as supervised learning, where the goal is to learn general 

rules to map inputs and known desired outputs, and un-supervised learning, where no 

output labels are given and the data are left on its own to find structure in its inputs (Jain, 

2010). It can be also statistically categorized as classification, regression and clustering 

techniques. Clustering methods partition a set of objects into clusters such that objects in 

the same cluster are more similar to each other than objects in different clusters according 

to some defined criteria (Huang, 2010). Therefore, clustering analysis can be defined as a 

statistical technique for discovering whether the individuals of a population fall into 

different groups by making quantitative comparisons of multiple characteristics (Melhem 

and Cheng, 2003). The k-means clustering, which is employed in the present research, is 

briefly described below. 
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4.3.1 k-Means Clustering 

k-means clustering is a partitioning technique that was independently discovered in various 

scientific fields (Dinh et al., 2014). In spite of the fact that k-means was proposed over 50 

years ago and thousands of clustering algorithms have been published since then, k-means 

algorithm is well known for its efficiency in clustering large data sets. As the most 

commonly used method for statistical data analysis, the k-means procedure divides N-

dimensional population into k sets clusters such that the squared error between the 

empirical mean of a cluster and the points in the cluster is minimized. According to Jain 

(2010), data clustering has been used for three main purposes: (i) to gain insight into data, 

generate hypotheses and identify salient features; (ii) to identify the degree of similarity 

among forms or organisms; and (iii) as a method for organizing the data and summarizing 

it through cluster prototypes. With respect to the computation algorithm, k-means 

clustering proceeds by randomly selecting k initial cluster centers (cᵢ), and then iteratively 

refining them according to two steps: (i) each data point is assigned to the data set 

associated with the nearest centroid, where the Euclidean distance between the data point 

xᵣ and the centroid cᵢ of cluster c is calculated using Equation 4-11; (ii) each cluster center 

cᵢ is updated to be the mean of its constituent data points. The two steps are repeated until 

the centroids and data points no longer move and the clustering process stops (Wagstaff et 

al., 2011).  

 

𝑑(𝑥ᵣ, 𝑐ᵢ) = (∑ |𝑥ᵣᵤ − 𝑐ᵢᵤ|𝑈
𝑢=1 )0.5                                                                              Eq. 4-11 

 

Where U is the dimension of data needed to be categorized. The number of clusters (k) is 

the user defined parameter to perform k-means clustering for a data set. 

However, this technique has some inherent shortcomings. For example, the number of 

clusters must be set in advance; different initializations can lead to different final 

clustering; the data must be numerical and comparable via Euclidean distance and thus, the 

algorithm works best on data containing spherical clusters; and is sensitive to points that 

do not belong to any cluster. Thus, it could distort the centroid positions and a cluster with 
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empty or few objects may occur in the final result. The k-means algorithm has been 

extended in many different ways to improve its performance. Some of these extensions 

deal with additional heuristics involving the minimum cluster size and merging and 

splitting clusters (Jain, 2010). For instance, in the fuzzy c-means, each data point can be a 

member of multiple clusters with a membership value. Replacing the means of clusters 

with modes or medians of the data, by introducing some additional algorithmic parameters, 

are some of other modifications that have been made by several researchers. The k-modes 

algorithm enables the clustering of categorical data in a fashion similar to k-means. The k-

prototypes algorithm, through the definition of a combined dissimilarity measure, further 

integrates the k-means and k-modes algorithms to allow for clustering objects described by 

mixed numeric and categorical attributes. 

4.4 IRT Model Development 

IRT testing was conducted onsite in a real-world application. An in-service RC bridge deck 

in Quebec, Canada was scheduled, by the Quebec Ministry of Transportation (MTQ) for 

rehabilitation. Delaminations, extent of corrosion and high chloride ions content in the 

bridge were recently outlined by a condition survey. Thus, the bridge was considered as a 

good candidate and selected for the IRT survey. The bridge was constructed in 1969. Its 

deck is connected directly to the supporting abutments with no provision in the form of 

bearings. The critical deck characteristics include a total length of 44.8 m with a transverse 

width of 9.1 m, which translates into 8 m of drivable surface (supports one lane of traffic 

in each direction) with one side shoulder. The deck exhibited scaling and pop-outs 

throughout, with presence of numerous transverse, longitudinal and diagonal cracks. 

Figure 4-5 illustrates the location of the surveyed bridge.  

 

 

Figure 4-5: Illustration of the selected concrete bridge located in Montreal, Quebec. 
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4.4.1 Data Collection 

The IRT survey was carried out according to ASTM D4788-03 using a vehicle-based IRT 

system. The utilized thermal IR camera was FLIR T650sc. The camera is equipped with 

an uncooled microbolometer detector capable of detecting the IR radiation in the spectral 

range of 7.5-14 μm, with thermal sensitivity of 0.03˚C at 30⁰ C. It displays thermal images 

with a resolution of 640 x 480 pixels and has a built-in dual 5 Mpixel digital camera and 

GPS system. The camera is accommodated with a 25˚ x 19˚ FOV. Its features and 

specifications are summarized in Table 4-1. 

  

Table 4-1: Features and specifications of the utilized thermal camera 

Characteristic                 Specification 

Detector Type Uncooled Microbolometer 

Spectral Range 7.5μm – 13μm 

Thermal Resolution 640 x 480 

Thermal Sensitivity 

Frame Rate 

Field of View                                                                                                        

Temperature Range 

Focus 

Accuracy 

Built-in Digital Camera 

0.03⁰ C at 30⁰ C  

30 Hz 

25⁰ x 19⁰ 

-40⁰C to 2000⁰C 

Automatic 

+/- 1⁰ C, +/- 1% of reading 

5 MP 

 

Collecting thermal IR images over the entire bridge deck area is highly dependent on the 

camera’s FOV and lens. The ideal option for data collection is to scan one lane on each 

pass. However, obtaining such horizontal FOV is not always achievable in the field. 

Therefore, to reduce the number of survey passes, a calibrated 13.1 mm focal lens was 

utilized. Using this lens means that this camera needed to be located 5.2 m above the 

concrete bridge deck to cover an entire lane width of 4 m in a single image, which was not 

a practical solution. Subsequently, for this field deployment, the IR camera was mounted 

at a height of 2.6 m and oriented facing straight-down to the concrete deck surface to reduce 

distortion along the image edges. Thus, the angle of the images would be consistent from 

one image to the next. This allows a 2.13 m x 1.62 m FOV for each image and to survey 

each single lane with only two passes. Figure 4-6 illustrates the vehicle mounted setup. 

The survey was carried out according to ASTM D 4788-03 (2013), where the vehicle 
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mounted thermal IR camera was driven at a low driving speed of 20 km/hr. over the center 

of each pass assisted by traffic control. The IR camera was triggered to acquire data every 

0.91 m (3 ft.) over the entire deck length. Hence, a total of 392 thermal and digital images 

were collected, which cover the entire bridge deck. The survey of the deck top surface was 

conducted twice: The first survey was done on October 23rd, 2015 at 9 PM, two hours after 

sunset. The second survey was conducted on October 27th, 2015 at 1 PM, six hours after 

sunrise. In addition, the bridge soffit was surveyed on October 24th, 2015 at 2 PM, seven 

hours after sunrise, to maximize contrast on the images. IR images were captured for the 

bridge soffit from the ground level, without need for a bridge access vehicle or controlling 

traffic under the bridge. The images were taken as snapshots using the available 13.1 mm 

focal lens. This allowed a 6.4 m x 5.18 m FOV and hence, a total of 28 thermal and digital 

images were collected, which covers the entire bridge soffit. 

 

 

Figure 4-6: Illustration of the FLIR T650sc IR camera and vehicle mounted setup 

system utilized to survey Montreal bridge. 

 

The concrete emissivity of 0.95, distance between the front lens of the camera and the 

concrete deck, actual ambient temperature, reflected temperature, and humidity at the 

beginning of the data collection were input into the camera software to calibrate the 

temperature measurements and compensate for the radiation being absorbed in the 
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atmosphere. Bridge deck dryness was considered during data collection since surface 

moisture can reduce the thermal contrast on the IR images. Sun direction was also 

considered during the second data collection survey to avoid shadows on images. The total 

time of data collection for each survey was approximately two hours. Table 4-2 

summarizes the environmental conditions during both surveys, as well as the ambient 

temperature variation over the time period the images were captured. The Matlab image 

acquisition toolbox was utilized to initialize acquisition and storage of the IR and digital 

images. The digital images were used to separate patches and surface defects from 

subsurface anomalies.  

 

Table 4-2: Environmental conditions during IR surveys of Montreal bridge 

Bridge 

Element 

Survey 

Date 

Time of 

Data 

Collection 

Ambient 

Temperature 

(⁰ F) 

Ambient 

Temperature 

Variation (⁰ F) 

Wind 

Speed 

(mph) 

Humidity 

(%) 

Deck 23/10/2015 9.00 PM 39 - 6 11.3 37 

27/10/2015 1.00 PM 56 - 5 8.1 26 

Soffit 24/10/2015   2.00 PM 60 - 7 6 32 

 

Data on thermal cameras appears as a color-coded image in which a color palette is 

assigned to temperatures at a certain “level” and across a certain “span” determined by the 

user. The span of the image is the difference between the minimum and maximum 

temperature displayed in the image, and the “level” is the center of the span. Figure 4-7 

shows two typical thermal images taken during the conducted survey at two different times. 

Based on the visual interpretation, which is a subjective technique, the defective area can 

be identified and quantified. For example, the image on the left shows a delamination after 

several hours of exposure to sunlight being much warmer than the surrounding concrete. 

The image on the right was taken two hours after sunset and shows a delamination cooling 

faster than the surrounding solid concrete. It should be noted that it is important to take 

optical images of the bridge deck during IRT surveys in order to provide a preliminary 

assessment of the surface deck condition. Consequently, the visual interpretation of the 

captured thermal images could highlight and separate patches and surface defects from 

actual subsurface anomalies. 
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Figure 4-7: Delamination at (a) daytime; and (b) nighttime surveys. 

 

Extracting quantitative information, such as size and location of defective areas from a set 

of IR images, is one of the critical components of thermal data analysis. The challenge here 

is to develop an automated procedure capable of detecting subsurface defects regardless of 

the difference in the temperature ranges between various IRT surveys taken at different 

times and environmental conditions. The developed procedure to achieve this goal consists 

of several steps as described below. 

4.4.2 Image Pre-Processing 

In this step, the quality of the thermal images was improved. Three functions in The FLIR 

Tools+ and ResearchIR software were utilized to enhance the images. For instance, the 

Gaussian smoothing filter was used to reduce the level of images’ background noise where 

the software selects the size of the filter automatically. Thus, improving the images’ 

resolution, which facilitated the view of small objects. The histogram equalization function 

was used to distribute the intensities on the histogram, which in turn increased the dynamic 

range and enhanced the image’s thermal contrast. The multi-spectral dynamic imaging 

function was also utilized. It is a fusion algorithm that embosses visible spectrum details 

(from the digital camera) onto the infrared image, enabling sharper-looking and quicker 

target orientation. This phase is useful to differentiate delaminated areas from surface 

features appearing in the infrared image (e.g. discoloration, oil stains and rust deposits, 

etc.), yet are unrelated to subsurface conditions. The temperature data of each image was 

then saved in a separate Excel file using the ResearchIR software.  
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4.4.3 Image Registration 

The purpose of this step is not to transform the images into one coordinate system, as 

commonly processed, but to combine the enhanced IR images together to create a plan-

view mosaic of the entire bridge deck (mosaicked thermogram). The stitching algorithm to 

be applied depends on comparing the pixels’ features in the images to be grouped and 

requires exact overlap. However, parallax and geometric distortions, which often occur 

when an image is captured while the vehicle is moving, makes the creation of such a mosaic 

from the large numbers of images a difficult task. In addition, commercial software capable 

of stitching images produce non-radiometric mosaic images, which could lose its dynamic 

range. To overcome this problem, an algorithm was developed as illustrated in Fig. 4-8.  

 

 

Figure 4-8: Developed algorithm for condition assessment of concrete bridge decks. 
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The analysis process starts by extracting a selected window from each image and stitching 

it together with the extracted window from the next image and so on as per Equation 4-

12. This procedure requires the collection of IR images with sufficient overlap and at 

known traveled spacing based on the camera’s FOV. However, the height of each stitched 

window was the number of pixels that are equivalent to the images’ spacing. Hence, this 

appending process produced continuous data for each survey pass. The dimension in pixels 

of each window depends on the resolution of the camera and the image spacing. A special 

Matlab code was written to extract and stitch the selected pixels from each image where 

the number of the first image, the last image, and the selected pixels were maintained as 

variable to automate the selection process with any other survey data. 

 

{
 
 

 
 

𝑓𝑜𝑟 𝑖 = 1 →  𝑁

𝛼1 = (𝑁 − 1) (𝑟2 − 𝑟1) + 𝑟1
𝛼2 = (𝑁 − 1) (𝑟2 − 𝑟1) + 𝑟2
𝛽1 = (𝑁 − 1) (𝑐2 − 𝑐1) + 𝑐1
𝛽2 = (𝑁 − 1) (𝑐2 − 𝑐1) + 𝑐2}

 
 

 
 

                                                                            Eq. 4-12 

          𝐸𝑖 (𝑅, 𝐶)𝑅= 𝑟1  → 𝑟2
𝐶= 𝑐1 → 𝑐2

  ∈   𝑂𝑖(𝐼, 𝐽)𝐼=1 → 𝑚
𝐽=1 → 𝑛

           𝑎𝑛𝑑         𝑀 (𝛼, 𝛽)𝛼= 𝛼1 → 𝛼2
𝛽= 𝛽1 → 𝛽2

 

Where: 

𝑂𝑖: 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 𝑖         𝑖 ∈ (1,2,3… .𝑁)         

𝑁: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 

𝐸𝑖 : 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑚𝑎𝑡𝑟𝑖𝑥 𝑓𝑟𝑜𝑚 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑥 𝑂𝑖 

𝑟1 , 𝑟2 ∶ 𝑆𝑡𝑎𝑟𝑡 𝑎𝑛𝑑 𝑒𝑛𝑑 𝑟𝑎𝑤𝑠 𝑜𝑓 𝑎𝑛 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑚𝑎𝑡𝑟𝑖𝑥 𝐸𝑖 

𝑐1 , 𝑐2 ∶ 𝑆𝑡𝑎𝑟𝑡 𝑎𝑛𝑑 𝑒𝑛𝑑 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 𝑜𝑓 𝑎𝑛 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑚𝑎𝑡𝑟𝑖𝑥 𝐸𝑖 

𝑀 ∶ 𝑀𝑜𝑠𝑎𝑖𝑐 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑛𝑡𝑖𝑟𝑒 𝑏𝑟𝑖𝑑𝑔𝑒 𝑑𝑒𝑐𝑘 

For visualization and to facilitate further processing, it was necessary to scale-down the 

data dimension of the mosaic. This was achieved by assuming that the entire deck was 
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divided into small (𝑚𝑥  ∗  𝑚𝑦) area boxes, with temperature unable to change within each 

box. Then, computing the average of pixels, which represents the resolution within the 

selected box area. To automate this process, the mean function in Matlab was modified and 

a new code was written to calculate the mean for a specified dimension of input data. The 

user needs to enter the dimension of the pixels to be averaged based on the deck dimension 

and the assumed box area. A box area of 10 cm resolution is recommended, but could be 

considered as 15 cm for a very large mosaic data file (e.g. more than hundred million 

pixels). Equation 4-13 represents the mathematical formula of the scale down process of 

the mosaic data. 

 

{
 
 
 

 
 
 
𝑓𝑜𝑟 𝑖𝑖 = 1 →  𝑖𝑥       &        𝑗𝑗 =  1 →  𝑖𝑦
𝑖𝑥 = 𝐶 ∗  𝑚𝑥  𝑊⁄         𝑖𝑦 =  𝑅 ∗  𝑚𝑦  𝐿⁄

𝑆 (𝑖𝑖, 𝑗𝑗) = 𝑀𝑒𝑎𝑛 [𝐴 (𝛿1, 𝛿2) ∶ 𝐴 (𝛿3  , 𝛿4)]

𝛿1 = (𝑖𝑖 − 1)𝑚𝑥 + 1

𝛿2 = (𝑗𝑗 − 1)𝑚𝑦 + 1

𝛿3 = 𝑖𝑖 ∗  𝑚𝑥

𝛿4 =  𝑗𝑗 ∗  𝑚𝑦 }
 
 
 

 
 
 

                                                        Eq. 4-13 

Where: 

𝐶 𝑎𝑛𝑑 𝑅:𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 𝑎𝑛𝑑 𝑟𝑎𝑤𝑠, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦, 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑠𝑎𝑖𝑐 𝑚𝑎𝑡𝑟𝑖𝑥 

𝑚𝑥 𝑎𝑛𝑑 𝑚𝑦 ∶ 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑜𝑥 𝑎𝑟𝑒𝑎 𝑡𝑜 𝑏𝑒 𝑎𝑣𝑒𝑎𝑟𝑔𝑒𝑑 

𝑊 𝑎𝑛𝑑 𝐿:𝑊𝑖𝑑𝑡ℎ 𝑎𝑛𝑑 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑟𝑖𝑑𝑔𝑒 𝑑𝑒𝑐𝑘    

𝑆: 𝑆𝑐𝑎𝑙𝑒 − 𝑑𝑜𝑤𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑛𝑡𝑖𝑟𝑒 𝑏𝑟𝑖𝑑𝑔𝑒 𝑑𝑒𝑐𝑘 

 

To facilitate mapping the mosaic, the coordinates of each pixel in the temperature data file 

was identified. The origin point (0, 0) was assigned at the corner of the bridge deck and 

then the coordinates of all other pixels in the file was computed based on the deck 

dimensions as per Equation 4-14. Thus, another Matlab code was written to identify the 

coordinates of each pixel of the scale-down matrix 𝑆, and arrange the data in a column 

order with (x, y, temperature) values of each pixel. To automate this process, the number 
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of rows and columns of the data file and the dimension of the deck were maintained as 

variables in the code to accommodate any other survey data. The final output was an excel 

file containing pixel information (coordinates and temperature) with no change in the 

thermal contrast values over the entire deck. 

 

{
 
 

 
 

𝑓𝑜𝑟 𝐼 = 1 ∶ 𝐶
𝐽 = 1 ∶ 𝑅

𝑥 = (
𝑊

𝐶
)𝑋 (𝐼 − 1)

𝑦 = 𝐿 − (
𝐿

𝑅
)𝑋 (𝐽 − 1)}

 
 

 
 

                                                                                        Eq. 4-14 

Where: 

𝐶 𝑎𝑛𝑑 𝑅:𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 𝑎𝑛𝑑 𝑟𝑎𝑤𝑠, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦, 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑐𝑎𝑙 − 𝑑𝑜𝑤𝑛 𝑚𝑎𝑡𝑟𝑖𝑥  

𝑊 𝑎𝑛𝑑 𝐿:𝑊𝑖𝑑𝑡ℎ 𝑎𝑛𝑑 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑟𝑖𝑑𝑔𝑒 𝑑𝑒𝑐𝑘 

4.4.4 Image Segmentation 

The output file from the stitching step can be uploaded in image software, such as ImageJ 

or AutoPano, to produce a composed mosaic thermogram for the entire deck. However, 

further analysis depends on the segmentation technique to be used. Many image 

segmentation algorithms have been widely used in the image processing field. The purpose 

of the segmentation process is to partition the image into regions of constituent objects 

based on the concept of point-based segmentation (e.g. value-based technique), object-

based segmentation (e.g. region growing technique), or edge-based segmentation (e.g. edge 

detection technique). Subjective selection of threshold values remains a limitation in 

applying point-based segmentation, while the simplest type of region growing technique is 

to specify some “seed” points as initial regions, and then to aggregate pixels around these 

regions into bigger and bigger connected regions based on similarity of defined properties. 

However, thresholding classification is adopted herein. 

The un-supervised thresholding classification using the k-means clustering function in 

Matlab was implemented in the present research to determine objective thresholds. As 

previously introduced, the k-means clustering algorithm arbitrarily specifies an initial 
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mean vector for each k cluster. Each pixel is then assigned to the class whose mean vector 

is closest to the pixel vector, thus forming the first set of decision boundaries. The new set 

of cluster mean vectors is then calculated from this classification and the pixels are 

rearranged. The iterations are continued until there is no significant change in pixel 

assignments from one iteration to the next or a maximum number of iterations is achieved. 

It should be noted that there is no established mathematical criterion to identify significant 

change in data point assignment or the maximum number of iterations. Data was 

characterized in this study based on one feature vector, which is the pixel numerical 

temperature values. 

4.4.4.1 Identifying the Number of Clusters (Categories) 

The k-means clustering requires defining the number of clusters before the algorithm starts. 

Figure 4-9 illustrates a rational approach to determine the appropriate number of condition 

categories (clusters). The flowchart is based on the age of the bridge deck, the thermal 

contrast values obtained from the thermal images, and the existing deterioration condition 

of the bridge deck, which can be determined from digital images and visual inspection of 

the deck. Newly constructed bridges typically experience few problems during their first 

decade of service, and thus, it is unlikely that deterioration initiates in bridge decks under 

10 years of age. This can justify the selected 10-year decision point in the flowchart. ASTM 

D4788-03 indicates that a temperature difference between the delaminated or debonded 

area and the adjacent solid concrete of at least 0.5°C must exist to identify delamination by 

an imaging infrared scanner. This value was adopted herein to differentiate between the 

sound and deteriorated concrete in order to determine the number of clusters as illustrated 

in the flowchart. With respect to the deterioration criteria, delamination is defined as a 

discontinuity of the surface concrete, which is substantially separated but not completely 

detached from the concrete below or above it and hence, it is invisible. Spalling was chosen 

from the defects commonly occurring in concrete bridge defects because it is often the 

continuation of the delamination process, which represents distressed areas. The pressure 

exerted by corrosion of reinforcement or by the formation of ice in the delaminated area 

results in the breaking off of the delaminated concrete. Spalling may also occur due to 

continued deterioration of the old concrete. The Ontario Structure Inspection Manual 
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(OSIM, 2008) differentiates between light, medium and severe spalling based on defined 

measures of the spalling areas. These measures were used in the flowchart to determine the 

number of clusters.  

Consequently, the k-means clustering algorithm in Matlab was applied and objective 

thresholds were identified. It should be noted that the flowchart was developed for concrete 

bridges with bare decks, while for paved bridge decks the thermal contrast of 0.5°C could 

be due to the effect of pavement thickness. In addition, spalling could be hidden under the 

asphalt layer. Therefore, a higher thermal contrast value and visual condition of the deck 

should be considered in such cases, which requires further research involving scanning of 

paved bridge decks. 

 

 

Figure 4-9: Flowchart for determining number of condition categories (k). 
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4.4.5 IRT Condition Mapping 

Based on the threshold value of each condition category, the temperature values were 

grouped into the same number of clusters. Accordingly, a condition map was plotted using 

a commercial mapping software to reconstruct a high contrast composite image accurately 

delineating the severity of subsurface defects. Such a delamination map created from the 

output of IRT bridge inspection can be used to determine the total percentage area of 

delamination in each category over the entire bridge deck.  

4.5 IRT Model Implementation 

The procedure proposed in the present research was implemented on the surveyed deck 

and can be summarized as follows: (i) the images were enhanced using FLIR+ and 

ResearchIR software and the data was then saved as .csv files; (ii) a selected window of 

600 x 270 pixels, which represents 0.91m spacing of the images, was extracted from each 

image and stitched with the extracted window from the next image using an especially 

developed Matlab code. For a 44.8 m long bridge, the dimension of the stitched strip was 

600 x 13,230 pixels and 2400 x 13,230 = 31.75 million pixels for the entire two lane deck; 

(iii) the data dimension was scaled-down using the Matlab code assuming that the entire 

deck was divided into small 10x10 cm area boxes, with temperature unable to change 

within each box, and thus, this resulted in a reduced file with 80 x 450 = 36,000 pixels; (iv) 

the coordinates of each pixel were identified, and the pixels were arranged in a column 

order with (x, y, temperature) values of each pixel, using the Matlab code; and (v) the k-

means clustering algorithm in Matlab was run to identify the thresholds.  

The number of clusters (k) for this bridge was determined as three, considering the 

developed flowchart, where the bridge deck being considered is about 47 years old, its 

recorded thermal contrast was higher than 0.5⁰ C, and maximum spalling of 225 mm was 

measured. The condition maps of the deck were plotted and illustrated in Fig. 4-10 and 

Fig. 4-11, delineating the severity of the subsurface defects at the daytime and nighttime 

surveys, respectively.  
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Figure 4-10: Condition map of the daytime IRT survey of bridge deck in Montreal 

indicating the severity of the identified delaminated areas. 

 

 

 

Figure 4-11: Condition map of the nighttime IRT survey of bridge deck in Montreal 

indicating the severity of the identified delaminated areas. 

 

As previously discussed, the thermal energy transferred via conduction is affected by the 

thermal properties of the concrete, while the thermal conductivity of concrete is dependent 

on the type of aggregate used in the concrete mixture. However, for concrete bridge 

components outdoors, convective heat transfer can play a significant role.  

The developed procedure for producing a mosaic plan of the bridge deck was not applicable 

for the soffit case as the images were taken at different angles. Therefore, the images of the 

bridge soffit were processed individually to identify the delaminated areas in each image. 
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Having a camera with a larger field of view can solve this issue to some extent, and having 

less images on the overall bridge soffit can make the data procedure faster and more 

practical. However, caution must be taken in using the wide-angle lens for the thermal IR 

camera as the edges of the thermal IR images may be distorted and become not viable for 

calculating the number of pixels and area of delamination. Figure 4-12 displays a subset 

of thermal and related digital images, which were captured by the infrared camera on the 

bridge soffit, delineating the potential of delaminated areas. Vladimir (2014) reported that 

the temperature contrasts in soffits are smaller than those for solar exposed surfaces. This 

was confirmed via the thermal images of the bridge soffit in Fig. 4-12.  

 

 

Figure 4-12: Thermal and digital images of potential delaminated areas in the 

bridge soffit. 

 

In order to validate the model thus developed in the present research, the analysis procedure 

was implemented on three bridge decks located in the state of Wisconsin, USA. The 

bridges’ description, IRT data collection methodology, adopted analysis procedure and 

results are briefly discussed below. 



127 

 

4.5.1 Bridge (A)  

The bridge was constructed in 1963, and consists of seven spans of continuous concrete 

box girders with a 367.5 mm RC slab deck. The bridge was scanned on July 15, 2010 using 

IRT. The critical deck characteristics include a total length of 296.9 m with a transverse 

width of 10.7 m, which translates into 9 m of drivable surface with two side shoulders. The 

IRT survey was conducted by Infrasense, a consulting firm specializing in NDT of bridge 

decks. The infrared data was collected with corresponding high resolution video at a low 

driving speed of 20 km/hr. using a vehicle-based system. The IR camera model used was 

FLIR A41 (M). The camera displays thermal images with a resolution of 320 x 240 pixels. 

Its features and specifications are summarized in Table 4-3. The camera was fixed at 45⁰ 

to have a FOV that covers one lane per driving pass. The images were taken every 0.305-

m (1 ft.) over the 296.9 m of the deck length, hence a total of 1,948 images were collected, 

which cover the entire two-lane bridge deck. The environmental conditions during the 

survey are shown in Table 4-4. 

 

Table 4-3: Features and specifications of the utilized thermal camera 

Characteristic FLIR A40(M) 

Detector Type Uncooled Microbolometer 

Spectral Range 7.5μm – 13μm 

Thermal Resolution 320 x 240 

Thermal Sensitivity 

Frame Rate 

Field of View                                                                                                        

Temperature Range 

Focus 

Accuracy 

Built-in Digital Camera 

0.08⁰ C at 30⁰ C  

60 Hz 

24⁰ x 18⁰ 

-40⁰C to 200⁰C 

Automatic 

+/- 2⁰ C, +/- 2% of reading 

N/A 

 

 

Table 4-4: Environmental conditions during IR surveys of Wisconsin bridges 

 

Bridge  

 

Survey 

Date 

Time of 

Data 

Collection 

Ambient 

Temperature 

(⁰ F) 

Ambient 

Temperature 

Variation  

(⁰ F) 

Wind 

Speed 

(km/h) 

 

Humidity 

(%) 

Br. (A) 15/07/2010 2.00 PM 84 - 9 12.9 38 

Br. (B) 31/05/2011 1.30 PM 80 - 10 16.1 51 

Br. (C) 02/07/2015    12.45 PM 76 - 8 9.7 43 
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The developed analysis procedure was implemented as follows: (i) the images were 

enhanced using FLIR software and the temperature data was then saved as .csv files of all 

images; (ii) a selected window of 320 x 25 pixels, which represents one foot image spacing 

was extracted from each image and stitched with the extracted window from the next 

image. The dimension of the final stitched file was 640 x 24350 = 15.584 million pixels 

for the entire two lane deck; (iii) the data dimension was scaled-down and resulted in a 

reduced file with 60 x 1980 = 118,800 pixels; (iv) since the deck is too long compared with 

its width, the data was divided into three sections, where each section represents one third 

of the bridge length; (v) the co-ordinates of each pixel were identified and then arranged in 

a column order with (x, y, temperature) values of each pixel; (vi) the k-means clustering 

algorithm in Matlab was applied to identify the thresholds. The number of clusters (k) for 

this bridge was determined as three, based on the developed flowchart in Fig. 4-9; and (vii) 

the condition map was plotted. Figure 4-13 illustrates the condition map of the first bridge 

deck section (dimensions in meter) delineating the severity of the subsurface defects based 

on the developed system. Figure 4-14 illustrates the IRT delamination map of the same 

section (dimensions in feet) as per the record of the Wisconsin DOT.  

 

 

Figure 4-13: Condition map of bridge (A) indicating the identified delaminated 

areas using the developed IRT system. 

 

 

Figure 4-14: Condition map of bridge (A) indicating the identified delaminated area 

as per the record of MOT, Wisconsin (Omar et al., 2018). 
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4.5.2 Bridge (B)  

The bridge was constructed in 1965. It consists of three spans of continuous concrete box 

girders with a 350.2 mm RC slab deck. The bridge was scanned on May 31, 2011 by 

Infrasense using IRT, as part of a condition survey. The critical deck characteristics include 

a total length of 26.3 m with a transverse width of 9.15 m, which translates into 8.36 m of 

drivable surface (supports a lane of traffic in each direction) with one side shoulder. The 

IRT survey methodology was carried out similarly to bridge (A) where the same IR camera 

was utilized. The survey conducted in three passes to include the side shoulder. The images 

were taken every 0.305 m (1 ft.) over the deck length, hence a total of 261 images were 

collected, which cover the entire two lanes and the shoulder of the bridge deck. The 

environmental conditions during the survey are shown in Table 4-4. The data was analyzed 

similar to the previous cases. The dimensions of the final mosaic were 960 x 2175 = 2.08 

million pixels and was scaled down to 90 x 260 = 23,400 pixels. The clustering process 

resulted in thresholds, which represent three condition categories. The condition map was 

plotted delineating the severity of the subsurface defects as illustrated in Fig. 4-15 

(dimensions in meter). Figure 4-16 exhibits the IRT delamination map of the deck as per 

the record of the Wisconsin DOT (dimensions in feet). 

 

 

Figure 4-15: Condition map of bridge (B) indicating the identified delaminated 

areas using the developed IRT system. 
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Figure 4-16: Condition map of bridge (B) indicating the identified delaminated area 

as per the record of MOT, Wisconsin (Omar et al., 2018). 

 

4.5.3 Bridge C  

This bridge was constructed in 1967. It consists of four spans of continuous prestressed 

girders with a 362.9 mm RC slab deck. The south and north abutments, as well as the bridge 

piers are supported by driven treated temper piles. The bridge was scanned on July 02, 

2015 by Infrasense using IRT and GPR as part of a condition survey. The critical deck 

characteristics include a total length of 94.5 m with a transverse width of 12.8 m, which 

translates into 8.6 m of drivable surface (supports a lane of traffic in each direction) with 

two side shoulders. The IRT survey methodology was carried out similarly to bridges (A) 

and (B) where the same IR camera was utilized. For this bridge deck with two lanes and 

left and right shoulders, the survey was carried out in four passes: one in each lane and one 

in each shoulder. The IRT survey produced a series of infrared images across the length of 

the deck. The images were taken every 0.305 m (1 ft.) over the deck length, thus a total of 

1,240 images were collected. The environmental conditions during the survey are shown 

in Table 4-4. The data was analyzed similar to the previous cases. The dimension of the 

final stitched file was 1280 x 7750 = 9.92 million pixels and was scaled down to 128 x 945 

= 120,960 pixels. The clustering process resulted in thresholds, which represent three 

condition categories. The condition map was plotted delineating the severity of the 

subsurface defects as illustrated in Fig. 4-17.  
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Figure 4-17: Condition map of bridge C indicating the severity of the identified 

delaminated areas using the developed IRT system. 

 

4.6 Evaluation of the Proposed IRT Model 

Transportation agencies need more conclusive information as to which exact part of a 

structure should be left intact, repaired, or demolished and replaced during the 

rehabilitation decision making process. Therefore, creating an accurate condition map with 

highlighted delamination categories from thermal IRT data is useful to the bridge 

management team and bridge inspectors responsible for ratings. The classification process 

adopted for the four bridge cases presented herein resulted in a segmented map for each 

deck of the surveyed bridges, clearly distinguishing the severity of identified 

delaminations. Sound concrete areas were represented by a green color, concrete areas that 

require close monitoring were represented by a yellow color, and warning concrete areas 

that require repair were represented by a red color. The thresholds between the three 

condition categories were determined based on the developed clustering process without 

analyst interference and, thus providing objective classification.  

For the surveyed bridge deck in Montreal, the temperature differential between the sound 

and unsound areas of the concrete deck in the daytime survey was about 8 ⁰C, as shown in 

in Fig. 4-10. During the nighttime survey of the same deck, the image temperature range 

was reduced to about 5.2⁰ C, as shown in Fig. 4-11. The sound concrete areas had the 

lowest temperature values and the warning concrete areas had the highest temperature 

values during the daytime survey. Conversely, the sound concrete areas had the highest 
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temperature values and the warning concrete areas had the lowest temperature values 

during the nighttime survey. The reason for this is that, during the day, a warming trend 

existed such that the targets had positive thermal contrasts, which meant that the 

delaminated regions were at a temperature higher than that of the sound concrete. 

Conversely, during the night, a cooling trend existed resulting in the targets having a 

negative thermal contrast, which meant that the delaminated regions were at a temperature 

lower than that of the sound concrete. In other words, the defective regions warmed at a 

faster rate in the daytime survey and cooled at a faster rate in the nighttime survey than 

sound concrete. This is the anticipated behavior based on the fundamental heat transfer 

theories and complies with previous results reported by Washer et al. (2013) and Chase et 

al. (2015). It is also interesting to observe that both daytime and nighttime surveys 

identified considerably similar locations and geometries of subsurface defected regions. 

However, some defects were not revealed in the nighttime survey. This is most likely due 

to the transition between heating and cooling, where there may have been situations where 

a defect was not detected due to changes in the heat flow regime. In addition, the ambient 

temperature differential during the conducted nighttime survey was only -6⁰ F, while 

negative thermal contrast takes a much longer time to develop at the targets (Washer et al., 

2009). Hence, conducting the survey at midnight could produce similar results to the 

daytime survey. Yet the veracity of this assumption has not yet been proven. Nonetheless, 

it is more common to inspect bridge decks during the day, since the thermal contrast for 

defects would be much greater. 

For bridges (A), (B), and (C), the temperature differentials between the sound and unsound 

regions of the concrete decks were 12.5 ⁰C, 11.9 ⁰ C, and 10.8⁰ C, respectively, as shown 

in Figs. 4-13, 4-15, and 4-17, respectively. Regardless of the various thermal contrasts and 

the environmental conditions during each survey time, the severity of the delamination was 

classified in each case. Again, the sound concrete areas had the lowest temperature values, 

while the warning concrete areas had the highest temperature values, since all surveys were 

conducted between 1 to 2 PM to ensure maximum thermal contrast. The produced 

delamination maps in Figs. 4-13 and 4-15 generally follow the same trend as the 

delamination maps in Figs. 4-14 and 4-16, respectively, which were produced by 
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Infrasense using their proprietary software. The location and geometry of subsurface 

defected regions were identified with considerably comparable results.  

It should be noted that it is common for the identified thresholds in the presented cases to 

differ because the IR images were taken at different times and environmental conditions, 

especially given the difference in the temperature range over the data collection period. 

This variety did not affect the condition categories that identify the severity of 

delaminations. However, it was observed that the threshold values, obtained for the four 

analyzed data, indicated that sound concrete as it stands for thermal contrast varies from 1 

to 2.5⁰ C. These results reinforce the fact that, for outdoor surveys, many factors alter the 

concrete surface temperature of the deck under investigation. Consequently, it is suggested 

that the ASTM standard should reconsider the specified thermal contrast value (0.5⁰ C) to 

differentiate between sound and delaminated areas in a passive IRT testing. It should also 

be noted that the developed analysis procedure is capable to identify and classify 

delaminated areas at any environmental condition provided that the testing meets the 

minimum environmental conditions’ requirements to conduct IRT surveys as specified in 

ASTM D4788-03. However, the quantified delaminated area in each condition category 

could be influenced to some extent by the recorded thermal contrast at the time of survey. 

Further surveys at different times of the year could validate such impact and also evaluate 

the accuracy of the achieved results. It is recommended to measure the environmental 

variables, such as wind speed, ambient temperature, solar loading and rainfall on site before 

the start of each survey. 

4.7 Validation of IRT Model Results 

4.7.1 Hammer Sounding Test Results 

Hammer sounding was conducted on the surveyed bridge deck in Montreal by a bridge 

inspector from MTQ, before the IR survey. The created IR delamination map of the bridge 

deck was compared with the hammer sounding results and it was found that the two 

methods provided very similar sizes and shapes of deck defects. Similarly, the location of 

the detected delaminated areas revealed by the IRT result for bridges (A), (B), and (C) were 

confirmed by hammer sounding, which was conducted by the inspection team from 
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Infrasense. In addition, the delaminated areas, which were not detected by sounding, were 

subsequently clarified through impact echo testing. The non-detected defects over the piers 

in bridge (B), were due to the congested steel as indicated in the structural drawings.  

Calculating the total delaminated areas in different categories from the mosaicked 

thermograms provides a quantified basis for powerful decision making and hence, can be 

paramount in prioritizing alternatives for bridge deck repair. The percentage of 

delaminated areas in each condition category was calculated by computing the total pixels 

in the same category over the total pixels in the entire deck area. Table 4-5 summarizes 

the results for the surveyed bridge in Montreal and for bridges (A), (B), and (C). The IRT 

delamination maps for bridges (A) and (B), as per the record of the Wisconsin DOT, does 

not differentiate the severity of the delaminated areas. Hence, the total percentage of 

delaminated areas in the entire bridge decks was indicated. Similarly, the total percentage 

of delaminated areas resulting from hammer sounding tests for all bridges were indicated. 

The total percentage of delaminated areas in the Montreal bridge soffit was also presented. 

It was computed for each image, similar to the procedure adopted for the bridge deck.  

The daytime condition map of the Montreal bridge deck showed 42% total delaminated 

areas, whereas the total delaminated areas calculated from the nighttime survey was 36%. 

Indeed, the concrete mass, thermal inertia and conductivity affect the rate of the transition 

process. Thus, some delaminated areas in the daytime survey appeared as sound areas in 

the nighttime survey. The hammer sounding results showed 38% total delaminated areas 

on the bridge deck and thus, 36% of the total delaminations is common between these two 

surveys. Similarly, 32% and 28% total delaminated areas on the bridge soffit were 

identified by the hammer sounding and IRT, respectively. However, it should be noted that 

it was very hard to locate delaminations at the intersection of the bridge soffit and the 

abutments. The delaminations in these areas had very small temperature differences from 

the sound concrete. A reason for this is the amount of concrete present in these areas acts 

as a large heat sink. Hence, a large temperature change is required to sufficiently affect the 

temperature of the concrete and allow easy detection of delaminations using IR cameras.  
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The analysis of IRT data of bridges (A), (B), and (C) showed 39%, 37%, and 28% 

respectively, of total delaminated areas on the bridge decks, whereas the total delaminated 

areas for Bridges (A) and (B) as per the records of Wisconsin DOT, were 41% and 40%, 

respectively from the IR survey and were 37% and 35%, respectively from the hammer 

sounding tests. Thus, the developed analysis procedure in this research can define the 

location and extent of delaminations in RC bridge decks with considerably high accuracy.  

4.7.2 GPR Test Results 

The Montreal bridge investigated by IRT in the present research was surveyed using GPR 

scanning in September, 2015 (one month before the IR survey) by Radex Detection Inc., a 

consulting firm specializing in concrete structure scanning, as part of a condition survey 

program. GPR evaluates the condition of concrete bridge decks based on the difference 

between reflection amplitudes of the top rebar layer, where strong reflection indicates 

sound concrete, while the area with high amplitude attenuation is commonly associated 

with the corrosion of steel reinforcement. Details on the utilized equipment and data 

acquisition are presented in Chapter 5. The GPR profiles were analyzed based on a line 

scan (B-scan) visual image analysis technique. The analyst scrolls through each GPR 

profile and marks visible anomalies based on known criteria of deterioration. The 

processed profiles are then combined by a proprietary software to create a corrosion map 

delineating the corrosion severity as illustrated in Fig. 4-18. In addition, three core drilling 

concrete samples for visual and chloride ion concentration analysis were taken from the 

bridge deck where two cores were taken at corrosion areas and one core was taken at a 

sound concrete area. For the two cores located at corrosion areas, the chloride ion 

concentrations were detrimental to the concrete when they were 0.04% by concrete mass, 

while the commonly accepted chloride threshold that facilitates rebar corrosion in ordinary 

portland cement concrete is 0.025%. This result could validate corrosion identified by the 

analysis of GPR scan data. It should be noted that the chloride threshold value could change 

in blended cements owing to its enhanced corrosion resistance properties (e.g. lower 

chloride and oxygen diffusion coefficients, lower water penetration, etc.).  
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Figure 4-18: Condition map indicating the severity of corrosion for the surveyed 

bridge deck in Montreal (Omar et al., 2018). 

 

The GPR scan for bridge C was carried out by Infrasense at the driving speed using a GPR 

vehicle-based system for data collection. Details on the utilized equipment and data 

acquisition are presented in Chapter 5. The corrosion map as per the records of the 

Wisconsin DOT is illustrated in Fig. 4-19. This map was produced by Infrasense 

proprietary software after analyzing the GPR scan data. It indicates the location and 

geometry of the corroded areas without differentiating their severity. 

 

 

Figure 4-19: Corrosion map of bridge C as per the record of Wisconsin DOT (Omar 

et al., 2018). 

In spite of the different mechanisms of both IRT and GPR techniques and their capabilities 

of detecting different deterioration types, the IRT delamination map achieved by the 

developed analysis in Fig. 4-10 was compared with the corrosion map provided by the 

GPR scanning in Fig. 4-18. Though the shapes (geometry) of the two analyses do not match 

exactly, the areas in which delaminations/corrosion were detected are mostly the same. The 

percentages of the delaminated and corroded areas in both maps were computed and are 

presented in Table 4-5. The GPR results showed 38% total corroded areas on the bridge 
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deck, whereas the total delaminated area calculated from the IRT results was 42% (about 

10% difference in total defects between the IRT and GPR surveys). This complies with the 

results of previous studies. For instance, Maser (2009) reported that in most bridge 

structures, areas of corrosion are associated with delamination even if cracks are not 

detected directly. Washer et al. (2013) reported that not all delamination can be observed 

in GPR images and both GPR and IRT can be used together for accurate identification of 

anomalies in highway bridges. 

For further verification, the IRT delamination map achieved from the thermal analysis of 

bridge C in Fig. 4-17 was compared with the corrosion map provided by the GPR scanning 

in Fig. 4-19 since both surveys were conducted on the same day. It can be observed that 

all corrosion areas identified by the GPR scan were also indicated by the IRT result. 

Conversely, not all the IRT identified delaminated areas were indicated by the GPR result. 

The percentages of the delaminated and corroded areas in both maps were computed and 

are presented in Table 4-5. The total defected areas in the bridge deck identified by the 

GPR and IRT are 23% and 28%, respectively (about 22% difference in total defects 

between GPR and IRT surveys). This variance could be due to the identification of only 

highly advanced corrosion areas by GPR scanning. It should be noted that while corrosion 

is the primary reason leading to delamination in RC bridge decks, there are other possible 

causes, such as freezing and thawing cycles and poor quality concrete. Thus, this could be 

another reason for obtaining potential corrosion areas smaller than the detected 

delaminated areas. However, further evidence from sounding, IE testing and/or core 

drilling of concrete samples is required to confirm the detected defects in this case study 

before final conclusions can be made.  

Generally, any measurement is susceptible to error. Therefore, the results of IRT and GPR 

testing presented in Table 4-5 could have some uncertainties in the quantified defective 

percentages. For instance, while the utilized camera has a thermal sensitivity of 0.03˚C, 

which is a benefit when temperature differences are low, it has a margin of temperature 

measurement error up to +/- 1⁰ C. This could affect the maximum thermal contrast recorded 

during the survey. Therefore, it is more approparite to evaluate the achieved results in terms 

of their precision rather than their accuracy where precision often refers to the closeness of 
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two or more measurements to each other. However, to verify the actual size and shape of 

the delamination identified by the proposed analysis procedure, the performance of the 

thermal camera could be firstly tested in laboratory validation experiments, to assess how 

well it could detect and map delaminations under controlled conditions. Then, error 

analysis should be conducted to evaluate the magnitude of variations between the in-situ 

scanning and experimental test results. This calibration process should give an overall 

measurement accuracy and thus evaluate the accuracy of the proposed analysis procedure. 

 

Table 4-5: Percentage of defective areas in the investigated bridges 

Bridge  
NDT Survey 

Type 
Survey Result 

Concrete Condition 

Sound Monitoring Warning 

Montreal 

Surveyed 

Bridge   

IRT 

Nighttime (Deck) 64% 15% 21% 

Daytime (Deck) 58% 17% 25% 

Daytime (Soffit) 28% Total Delaminated Areas 

Hammer Sounding 
MTQ Record (Deck) 38% Total Delaminated Areas 

MTQ Record (Soffit) 32% Total Delaminated Areas 

GPR MTQ Record 62% 16% 22% 

Bridge 

Deck (A) 

IRT 
Present Research 61% 16% 23% 

DOT Record 41% Total Delaminated Areas 

Hammer Sounding DOT Record 37% Total Delaminated Areas 

Bridge 

Deck (B) 

IRT 
Present Research 63% 19% 18% 

DOT Record 40% Total Delaminated Areas 

Hammer Sounding DOT Record 35% Total Delaminated Areas 

Bridge 

Deck (C) 

IRT Present Research 72% 12% 16% 

Hammer Sounding DOT Record 25% Total Delaminated Areas 

GPR DOT Record 23% Total Corroded Areas 

 

4.8 Further Research to Improve the Proposed IRT Analysis 

The IRT analysis procedure developed in this study has some drawbacks that need further 

research. For instance, the magnitude of thermal contrast for a set of IR images could be 

affected by several factors, such as the thickness of the delamination, the spatial extent of 

the delamination and its depth. The presented methodology only considered the spatial 

extent of the delamination. While this factor was found to have the most direct and 
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significant effect on the thermal contrast values (Hiasa et al., 2017), the other two factors 

need further consideration. In addition, the thermal data was characterized based on one 

feature vector (using the pixel numerical values in the IRT images). Other features, such 

as the shape and texture were not utilized. Hence, applying other image segmentation 

techniques could improve the classification process. Likewise, the k-means technique 

employed to identify the threshold values has inherent shortcomings. For instance, it 

neglects the stochastic nature of the threshold values. Therefore, some recommendations 

to overcome these limitations include: (i) utilizing the ultra-time domain IRT technique 

introduced by Washer (2016) through continuous monitoring for detecting the depth and 

thickness of delaminations in full-scale RC bridge decks; (ii) applying the region growing 

segmentation technique based on similarity of defined pixel properties to provide more 

objective classification; (iii) integrating the k-means and k-modes algorithms to allow for 

clustering pixels described by mixed numeric and categorical attributes; and (iv) employing 

fuzzy c-means technique to consider the uncertainty in pixel assignment where each data 

point can be a member of multiple clusters with a membership value. 

4.9 Conclusions  

The detection of concealed subsurface fracture planes is necessary to determine repair 

priorities of bridge decks. IRT enables recording dynamical variations of temperature in 

real-time and has been evolved as an effective and well-established non-destructive tool 

with the ability to provide meaningful condition information in a non-contact manner for 

bridge inspectors and management teams. The present study developed an easily 

deployable procedure and a less subjective IRT image analysis to classify the subsurface 

defects in concrete bridge decks and present the findings in terms of condition maps 

delineating the identified delaminations in different categories. The results obtained on four 

full-scale bridge decks demonstrated that temperature differences between delaminations 

in the same environment can be detected and categorized using the utilized clustering 

technique. Once the IRT images become available, the developed automated procedure can 

analyze and determine whether a defect exists with minimum human interference. The 

subsurface defected regions identified by the developed analysis provided satisfactory and 
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acceptable results and were confirmed by other NDT techniques including hammer 

sounding and GPR scans.  

A key finding is that the applied methodology allows for the detection of subsurface 

anomalies at different survey times and environmental conditions. The attention herein has 

been mainly devoted to the condition evaluation of concrete bridge decks, while an infrared 

camera can be advantageously exploited with other bridge components. In future work, the 

authors plan to explore the applicability of the developed analysis to bridge soffit areas. 

While the developed procedure accurately identified the location and geometry of the 

subsurface defects, it did not indicate the depth or thickness of such defects. This could be 

another objective of future research. In addition, the application of further developed image 

processing tools on the acquired infrared thermal images, along with artificial intelligence-

based approaches, can augment the decision making process to make it faster and fully 

automated without human interference. The present study confirms previous findings and 

contributes additional evidence, which suggests expanding the use of IRT as a reliable and 

rapid condition assessment tool for bridge inspections on both bridge and network levels. 

This will help transportation authorities in optimizing resources for bridge inspection, in 

prioritizing maintenance needs, and in improving the safety and serviceability of bridges.  
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Chapter 5  

5. Condition Assessment of Reinforced Concrete Bridge Decks 

Using Infrared Thermography and Ground Penetrating 

Radar 

5.1 Introduction 

Corrosion of reinforcing steel has been identified as a significant contributor to RC bridge 

deck deterioration that can affect bridge deck integrity, and thus is one of the greatest 

concerns in bridge engineering. Precise evaluation of the condition of RC bridge decks, 

particularly for corrosion induced delaminations, is essential for ensuring bridge 

performance and safety. Ground penetrating radar (GPR) is one of the most appropriate 

NDT technologies for inspecting concrete bridge decks subjected to this deterioration 

mechanism. GPR testing has many advantages, such as its capability to evaluate the 

conditions for a corrosive environment, its inspection process, which does not require 

expertise, its relatively inexpensive cost compared with other NDT technologies, its high 

ability to rapidly survey large areas with full coverage, and its ability to achieve rapid data 

analysis. GPR uses electromagnetic (EM) signals for subsurface imagery. Several 

researchers investigated the materials characteristics recognized by EM signals either in 

the laboratory or in-service bridge decks. The raw GPR data is commonly represented as 

images that can be processed using several methods to obtain condition maps of the entire 

bridge decks that indicate the potential of active corrosion areas. 

A new approach to NDT has been made in that it is recognized that making use of a 

combination of NDT methods will give the best possible harvest of information. Alani et 

al. (2013) reported that extra financial implications of using a combination of NDT 

techniques is acceptable if the evaluation outcome can be seen to have been enhanced. 

Indeed, GPR and IRT represent two technologies that can provide the needed information. 

Each technology has been developed and enhanced by improvements in hardware, 

software, and understanding of the interpretation of data. However, cogent procedures for 

deciphering their data have yet to be developed. In addition, little effort has been devoted 

to integrating the two technologies into a system that benefits from the strengths of both 
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(Maser, 2009). For instance, Maser and Roddis (1990) presented results of field studies 

using GPR and IRT on asphalt overlaid bridge decks and reported that the combined 

techniques were able to predict the total area of deterioration to within 5% of what was 

actually measured. Currently, there is limited research work describing the combined use 

of the results of these two methods.  

In Chapter 4, an objective analysis for detecting and classifying delaminations in full-scale 

concrete bridge decks using passive IRT testing was developed and demonstrated through 

several case studies. In this Chapter, a robust procedure for uniting the IRT and GPR test 

results is developed. To achieve this goal, the following objectives are pursued throughout 

the chapter sections: (1) studying the working principles of GPR and its application for 

concrete bridge inspection as well as current analysis and interpretation methods of GPR 

scan data; (2) analyzing GPR data and identifying objective thresholds to produce a 

condition map that defines the severity levels of potential active corrosion in RC bridge 

decks; (3) analyzing IRT data and identifying objective thresholds for creating a condition 

map that designates the severity levels of delaminations in RC bridge decks; and (4) 

combining IRT and GPR results to produce an integrated condition map for aging RC 

bridge decks which classifies the severity levels of detected subsurface defects. 

Figure 5-1 illustrates the adopted systematic methodology to achieve the above-mentioned 

objectives. It can be summarized as follows: (1) conducting GPR scanning and passive IRT 

testing on two deteriorated full-scale concrete bridge decks; (2) analyzing the GPR data to 

extract the amplitude of the reflected waves using the conventional numerical amplitude 

method; (3) analyzing the IRT data to produce a thermal thermogram for the entire bridge 

deck from the IR images using the developed automated procedure presented in Chapter 4; 

(4) applying the k-means classification technique to determine objective thresholds for both 

GPR and IRT test results; (5) producing bridge deck condition maps identifying the 

severity levels of delaminations and the potential active corrosion areas from the IRT and 

GPR testing, respectively; and (6) integrating the analyzed GPR and IRT data using a 

specially written Matlab code to produce a condition map of the entire bridge deck. To 

verify the results, the detected defects were quantified and compared with results on the 

same bridge decks provided by other technologies.  
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Figure 5-1: Methodology adopted to evaluate RC bridge deck condition using the 

integration of IRT and GPR testing results. 

 

5.2 Ground Penetrating Radar (GPR) 

5.2.1 Basic Principle of GPR 

GPR emits short pulses of EM waves for subsurface imagery to detect anomalies in 

concrete bridge components. Electric conductivity, permittivity and permeability of the 

concrete are properties that have the greatest effect on the penetration depth of GPR signals 

and its resolution (Barnes et al., 2008). The electric conductivity of a material is its ability 

to conduct the electric portion of an EM wave and is affected by the moisture content of 

the concrete. The higher the moisture content, the higher the conductivity, resulting in 

shallower GPR signal penetration depth. Dielectric permittivity is the ability of a material 

to store and transmit an electric charge induced by an EM field. Permeability is the ability 

of the material to become magnetized in the presence of an EM field. However, when EM 

energy goes through an interface between two materials of different dielectric properties, 

the intensity of reflection is determined by the change in the dielectric permittivity and 

conductivity of materials, where strong reflections indicate higher change in the electrical 
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properties at interfaces. The relationships between the received signal and the dielectric 

permittivity and conductivity of materials are described in Equations 5-1 and 5-2.  

 

𝑅 =  
√𝜀1 − √𝜀2

√𝜀2 + √𝜀1
                                                                                                                  𝐄𝐪. 𝟓 − 𝟏 

𝛼 = 1.69 ×  103  
𝜎

√𝜀
                                                                                                          𝐄𝐪. 𝟓 − 𝟐 

 

Where: R is the reflection coefficient; 𝜀1 and 𝜀2 are the dielectric constant of the first and 

second material, respectively; 𝛼 is the signal attenuation; and 𝜎 is the conductivity of the 

material. When the dielectric constant of the first material is smaller than the dielectric 

constant of the second material, the result of Equation 5-1 will be negative. Although the 

shape of reflection waveform looks the same as the original pulse, their directions (or 

polarity) are different. This effect, in radar theory, is called change in polarity or phase 

reversal and should be considered when analyzing GPR signals. It should also be noted 

that the conductivity of concrete increases with the increasing frequency. Thus, the EM 

wave of a lower frequency can penetrate deeper inside the structure than that of a higher 

frequency (Halabe et al., 1993). 

Generally, a GPR system includes data collection units and antennas, of which there are 

two types: mono-static and bi-static. Mono-static antennas consist of one antenna that 

performs both transmitting and receiving functions, while bi-static antennas include 

separate antennas for transmitting pulses and receiving those that are reflected (Belli et al., 

2011). However, a transmitter antenna emits EM pulses from the surface of the concrete 

member being investigated at a desired frequency, and then these pulses propagate through 

the member. The receiving antenna collects the reflected pulses and records their 

properties, such as wavelength, two-way travel time and amplitude, to analyze and interpret 

the potential of subsurface corrosion (Gucunski et al., 2013). The changes between 

transmitted and reflected pulses indicate a change in the materials’ properties. Typically, 

the corroded rebar area in concrete structures has a low dielectric constant, producing 
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weaker reflected pulses. Therefore, the amplitude of reflection and attenuation are 

measured as an indication of potential rebar corrosion (Alani et al., 2013). 

The evaluation of GPR system performance depends on the ability of the EM signals to 

propagate to the required depth and the resolution of the resulting “images”. Therefore, the 

frequency of the antenna is a critical parameter that should be carefully selected to suit the 

survey’s objective. The propagation depth and resolution are both based on the wavelength 

of the transmitted signal because the frequency is inversely related to the wavelength. 

Higher frequency will have shorter wavelengths that produce a narrow cone of transmitted 

waves, which can focus on smaller areas. To obtain high-quality images, the wavelength 

should be short, which means that the frequency will be high. In other words, the higher 

the frequency, the better the resolution, and the shallower will be the propagation depth. 

5.2.2 Application of GPR for Concrete Bridge Inspection 

GPR scanning has been applied for several decades to evaluate the corrosive environment 

in RC bridge decks with and without overlays. Based on the operation methods, there are 

two types of GPR systems: air-coupled and ground-coupled. An air-coupled system is 

connected to a moving vehicle for rapid survey of highways with minimum traffic 

interruption. Yet, this scheme reduces the quality of the scanned images. Conversely, a 

ground-coupled system is dragged manually on a pushing cart and requires direct contact 

with the concrete bridge surface under investigation, usually providing better quality scans. 

GPR images can be divided into three types: A scan, a one-dimensional plot represents 

amplitude vs. time; B scan, a two-dimensional image created from a gathering of A-scans. 

The horizontal axis represents the position of the scan, while the vertical axis represents 

the two-way travel time; and C scan, a three-dimensional presentation of GPR data formed 

from a collection of B-scans. C-scans provide a block view for GPR data and are helpful 

for providing a good image for specific targets. For bridge decks, GPR data is usually 

analysed based on interpretation of many B-scans (Bostanudin, 2013).  

Maser and Rawson (1993) scanned 72 bridge decks after removal of the asphalt overlay 

using a 1 GHz air coupled GPR acquisition unit, and reported that a correlation of 0.83 was 

found between the predicted deterioration and the known conditions, with a standard error 
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of ±4.1% of the total deck area. Barnes and Trottier (2000) conducted a GPR survey on 24 

asphalt covered bridge decks using a 1 GHz air coupled horn antenna and verified the 

obtained results using half-cell potential testing that was conducted after the asphalt 

pavement was removed from each deck. They reported that significant agreement was 

found between the two methods where the average difference between their results was 2.2 

%. They also found that the decks which had less than 10% or more than 50% deterioration 

lacked contrast in between the regions which were perceived as deteriorated or sound, 

making it difficult to obtain accurate results with GPR. Cardimona et al. (2000) 

investigated 11 bridge decks using a 1.5 GHz ground coupled antenna and presented the 

results in terms of contour plots. Their results indicated that GPR has a good correlation 

with several ground truth methods and can accurately estimate the total deteriorated area 

of bridge decks. Gucunski and Nazarian (2010) evaluated 9 bridge decks with various NDT 

technologies, including GPR and half-cell potentials, and found very good correlation in 

zones of the highest deterioration. However, several other authors (e.g. Hong et al., (2012); 

Lai et al., (2013); and Dinh et al., (2014)) evaluated the condition of RC bridge decks using 

GPR technology and achieved reasonable results. 

5.2.3 Interpretation of GPR Scan Data 

The ASTM D6087-08 (Standard Test Method for Evaluating Concrete Bridge Decks Using 

GPR) has evolved from a recommended practice for assessing asphalt-overlaid decks to a 

specification referenced regardless of the type of deck surface being evaluated. It describes 

the standard procedure for conducting GPR testing as well as data processing 

methodologies. The most common analysis method, the numerical amplitude method, 

depends on the value of the amplitude of the reflected waves from the top layer of 

reinforcing bars. The rationale behind this analysis method is based on known effects of 

moisture, chloride content and rust on the recorded GPR signals. The signal reflections at 

the rebar level are dominant and produce clear hyperbolic shapes. The shape is a hyperbola 

because the farther the antenna is away from the rebar, the longer it takes for the signal to 

travel to and from the rebar. Therefore, if the antenna is located directly over the rebar, it 

will have the shortest travel path. Data in regions with high corrosion will result in very 

“blurry” hyperbolas. Conversely, the higher the amplitudes of the reflected waves, the 
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better the condition of the bar. Because the reflection amplitude at each rebar depends on 

the distance (depth) from concrete surface to the rebar, depth correction through amplitude 

reduction should be considered in the analysis process (Barnes et al., 2008).    

Considering a GPR scan output as an image rather than an amplitude measuring tool, 

several research efforts have aimed to implement image processing methods. These 

methods include edge detection, or thresholding an image based on local extrema of 

intensity, to preprocess the image and isolate potential hyperbola regions. The presence of 

noise and image blurring can affect the edge detection results, while thresholding requires 

manually selected parameters that must be tuned to a given dataset. Another approach is 

template matching to identify hyperbolic regions based on predefined templates stored in 

a library. The type of concrete, rebar depth and noise are some obstacles to obtaining sound 

matching of templates with a GPR image.  

Visual interpretation is another widely used technique to process GPR data. An 

experienced analyst scrolls through GPR data profiles and marks attenuated areas and thus, 

the boundaries of damaged zones can be located (Tarussov et al., 2013). Such an approach 

is time-consuming and provides qualitative analysis depending on the analyzer’s 

experience. For instance, it may be difficult for the analyzers to clearly define the border 

between sound and deteriorated regions or to maintain consistent judgement when they 

switch between profiles. This subjectivity effect is not desired. In addition, thresholds are 

commonly utilized to identify the boundaries of different levels of deterioration severity. 

In many instances, these thresholds are defined based on the personal judgment of the 

analyst, and thus, the subjective selection of threshold values is another limitation in 

interpreting GPR data (Dinh et al., 2014). 

Currently, the analysis and evaluation of GPR data for bridge deck condition assessment 

is mostly done after data collection. There has been interest by many researchers in 

developing automated GPR data acquisition and analysis. Indeed, an automated system can 

help improve the efficiency, reliability and repeatability of GPR data interpretation. For 

instance, an arc segment finding algorithm was suggested by Krause et al. (2007), which 

successfully finds the rebars and classifies them as good (true-positives) and good-minus 
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(false-positives). However, their method requires manual computation of threshold 

parameters to reject low quality rebar signatures and does not interpret the condition of 

bridges from the rebar detection results. Although, this approach has been successful on 

simulated defects in the laboratory, it has not yet been employed in full-scale bridge decks.  

5.3 IRT/GPR Model Development 

Field testing in a real-world application was conducted on two in-service RC bridge decks 

using both IRT and GPR techniques. The bridges are located in Montreal, Canada and 

Wisconsin, USA, respectively. The developed IRT/GPR model will be introduced first for 

the Montreal bridge, and then will be implemented on the Wisconsin bridge. 

5.3.1 Data Collection 

The IRT survey was carried out for the Montreal bridge using a vehicle-based system with 

mounted thermal camera. The bridge characteristics, the features of the utilized thermal 

camera, the vehicle mounted set-up, and the data acquisition procedure have been 

presented in detail in Chapter 4. As previously discussed, there are several factors affecting 

the accuracy of passive IRT testing that can be classified into three principal categories: 

procedural (e.g. thermographer experience), technical (e.g. camera-to-object distance, 

depth and thickness of the delaminated areas), and environmental conditions (e.g. solar 

loading, ambient temperature and wind speed). However, all these factors were addressed 

in the conducted survey and the Matlab image acquisition toolbox was utilized to initialize 

acquisition and storage of high resolution thermal data. The same bridge deck was 

previously GPR scanned, one month before the IRT survey, by Radex Detection Inc., a 

consultant firm specializing in concrete structure scanning, as part of a condition survey 

program and the procedure adopted for the GPR scan is discussed below. 

As per ASTM D6087-08 (2010), it is required for the GPR scan to form an orthogonal grid 

along the entire length of the bridge deck, with less than 0.91 m (3 ft.) spacing. The 

direction of scan paths depends on the direction of the primary steel in the deck. For bridge 

decks with primary steel in the transverse direction, the scan can be done along the lanes 

of travel. Conversely, for bridge decks with primary steel in the longitudinal direction, the 

deck would need to be scanned transverse to the travel lanes. A few settings must initially 
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be adjusted on the data acquisition unit, such as applying a gain at particular points, usually 

at the location of the rebar, in order to force subtle variations in weaker data to be more 

visible, and deciding whether the user wants to collect data according to time or distance. 

The pushing cart for a ground-coupled GPR system is commonly equipped with a 

calibrated distance wheel, enabling the distance option during the survey of bridge decks. 

Thus, it allows data to be mapped out spatially with respect to the actual coordinates of the 

deck (Tarussov et al., 2013). This can also help the analyzer identifying which part of the 

bridge deck must be repaired or rehabilitated. 

The bridge deck was scanned with a ground-coupled radar system using a pushing cart. 

After studying the bridge deck plan, a grid of scanning paths with 50 cm spacing and 25 

cm offset from the curb was established using water soluble paint dots. For each path, its 

two ending points were determined by a survey tape, measuring from curb to curb. Then, 

these points were marked. To move the machine in accurate straight lines by an operator, 

a survey string was used between the points of each path. The scan was conducted using a 

GSSI-SIR3000 GPR data acquisition unit with 1600 MHz antenna frequency. Figure 5-2 

illustrates the data acquisition unit and grid pattern used. The GPR unit was calibrated 

before scanning the bridge deck to ensure accurate measurements. Data collection was 

made longitudinally on the deck and hence, a total of 16 profiles were collected for the 

entire bridge deck (8 profiles for each direction) where each profile represented a width of 

500 mm. The pass direction was selected so that the antenna crosses over the primary top 

layer of reinforcing steel at a 90° angle. The first scan path was done in one direction and 

the second in the reverse direction and so on. The profiles conducted in the reverse direction 

were reversed during the analysis. Road closure was performed, giving adequate access to 

the bridge deck. 

 

 

Figure 5-2: Illustration of GPR travel paths and the utilized data acquisition unit. 
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Detailed information regarding the equipment used and data settings are summarized in 

Table 5-1. 

Table 5-1: Features and specifications of the utilized GPR equipment 

Characteristic Specification 

SIR System SIR - 3000 

Antenna Frequency 1600 MHz 

Scans / m 100 

Samples / Scan 

Bits / Sample 

Gain (No of Point) 

Gain Value                                                                                                    

High Pass Filter 

Low Pass Filter 

256  

16 

1 

- 5 dB 

470 MHz 

1930 MHz 

 

5.3.2 Data Analysis 

The developed automated procedure to analyze the thermal images was presented in 

Chapter 4. As previously discussed, the methodology includes image preprocessing to 

enhance the captured images by reducing noise and improving the images’ thermal 

contrasts, image registration that involves a developed stitching algorithm. All the 

customized Matlab codes that were developed to extract and stitch the selected pixels from 

each image, to scale-down the mosaic dimension, and to identify the coordinates of each 

pixel in the mosaic were written with variables to automate the analysis process. Hence, 

the developed procedure was implemented on the captured thermal images and produced 

a mosaic thermogram of the entire bridge deck as presented in Chapter 4. However, the 

procedure adopted to analyze the GPR data of the same bridge deck is presented below. 

The conventional numerical amplitude analysis method is based on the effects of moisture, 

chloride ions content and rust on the recorded GPR signals. This method was utilized in 

the present research. The scanning profiles were post-processed using the commercial 

software RADAN 7 (a GPR data analysis software developed by GSSI) to extract important 

information for further analysis. First, each profile was cut down to ensure that it only 

includes the bridge deck length. Next, the top reinforcing steel bars were selected (peak of 

the parabolic shapes). When the entire bars were selected, the software generated an Excel 
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sheet containing the scan number, amplitude, and two-way travel time for each point (bar). 

This step was repeated for the entire bridge deck’s profiles. Figure 5-3 illustrates the 

picked top reinforcing bars, represented as red points, in a B-scan GPR profile.  

 

 

Figure 5-3: Picking top reinforcing bars in a B-scan profile. 

 

Reinforcing steel is not always placed at an exact depth throughout the deck during 

construction. It also may not be located at a constant depth due to defects, variable surface 

milling depth or due to surface wearing. Thus, the thickness of the concrete cover to the 

reinforcing steel may vary across the deck and this can lead to variance in the amplitude of 

the reflected waves because the GPR signal attenuates with depth. Accordingly, deeper 

rebar has lower amplitudes than rebar located at shallower depths due to the dissipation of 

energy as the signal travels through concrete. Therefore, to relate deterioration of concrete 

using the attenuation of the signal at the rebar level, the varying depths of rebar must be 

accounted for using an analytical approach. Depth correction for GPR data has been a point 

of interest for many researchers. For instance, Barnes et al. (2008) normalized the depth of 

all reinforcing bars based on the relation between the amplitudes of the reflected waves 
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and the corresponding two-way travel time. They proposed to plot the recorded amplitude 

versus two-way travel time values to determine a best-fit linear trend and then remove it 

from the plot by altering the amplitude, thereby assigning all reflections to a constant depth. 

Consequently, after the processing of all profiles and generating of Excel sheets were 

completed, the saved data were imported to a commercial software where a quantile linear 

regression fitting was performed at 90th percentile, and then subtracted from the depth-

dependent amplitude in order to perform a depth correction for the reinforcing bars. After 

normalization was completed, variations in reflection amplitudes were expected to 

correspond to the deterioration only. The final output was an Excel file containing the 

coordinates and amplitude of the selected reinforcing bars. 

5.3.3 Deterioration Condition Maps  

5.3.3.1 Thresholding Classification 

Thresholding classification was adopted in the proposed methodology to identify objective 

thresholds for both IRT and GPR data. As previously discussed, classification is the task 

of organizing data into categories. The k-means clustering function in Matlab that was 

introduced in Chapter 4 was implemented in the developed model to perform this task. The 

number of clusters is the user defined parameter to perform k-means clustering for a data 

set. A developed framework was presented in Chapter 4 to determine the number of clusters 

for IRT data. However, the AASHTO guide manual for bridge element inspection 

implements four categories (good, fair, poor, and severe) to represent the condition of each 

bridge element, all of which have been introduced into the AASHTOWare™ bridge 

management software BrM, which is currently the primary bridge management software 

used by transportation agencies across the USA. Similarly, in the Ontario Bridge 

Management System (OBMS), defects are recorded in four condition categories (excellent, 

good, fair, and poor) for each bridge component and performance deficiencies for each 

component where a bridge element will remain in each condition category a period of time 

during its service life. The severity degrees of a defect in the material condition rating index 

for the Quebec Ministry of Transportation are defined as light, medium, severe, and very 

severe. Consequently, the number of clusters herein was considered four to represent the 

severity levels of potential deterioration identified by the IRT and GPR testing.  
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5.3.3.2 Delamination Condition Map 

The k-means clustering algorithm in Matlab was first applied to identify the thresholds of 

the IRT data. For the bridge deck being considered and based on the identified thresholds, 

the temperature values in each severity level were grouped and uploaded into a commercial 

mapping software to construct a high contrast composite condition map accurately 

delineating the different severity levels of subsurface delaminations, as illustrated in Fig. 

5-4. The area of very severe delamination was very small and, hence, has been combined 

with the areas of severe delaminations for visualization. This will also ensure an identical 

degree of attention with respect to the preservation or maintenance actions to be taken for 

these areas.  

 

 

Figure 5-4: IRT condition map of Montreal’s bridge deck indicating different 

severity levels of delaminations. 

 

5.3.3.3 Corroded Corrosion Map 

Similarly, for the GPR data and upon completion of the numerical amplitude analysis and 

the depth correction process, the k-means clustering algorithm in Matlab was applied to 

identify the thresholds. Based on the identified thresholds, the amplitude values in each 

severity level were grouped and uploaded in a commercial mapping software to construct 

a high contrast composite condition map accurately delineating the different severity levels 

of potential active corrosion, as illustrated in Fig. 5-5. 
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Figure 5-5: GPR condition map of Montreal’s bridge deck indicating different 

severity levels of potential active corrosion. 

 

The GPR profiles were also analyzed by Radex Detection Inc., the firm who collected the 

data based on the line scan (B-scan) visual image analysis technique. The experienced 

analyst scrolls through each GPR profile and marks the attenuated areas manually while 

considering some factors, such as the presence of beams or tightly spaced steel 

reinforcement. The boundaries of damaged zones are located in each profile and then 

combined by the firm’s proprietary software to create a condition map delineating the 

different severity levels of potential active corrosion, as illustrated in Fig. 5-6.   

 

 

Figure 5-6: GPR corrosion map of Montreal’s bridge deck as per the record of 

MOT, Quebec (Omar et al., 2018). 
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5.3.3.4 Combined Condition Map 

To obtain a precise evaluation of the bridge deck condition, the results of the deployed 

NDT techniques were combined. The Excel sheets, resulting from the analysis of the IRT 

and GPR data, are two matrices 𝐴 (𝑎 𝑥 𝑏) and 𝐵 (𝑐 𝑥 𝑑), respectively where matrix (A) 

represents the temperature values, and matrix (B) represents the reflected amplitude values 

after applying the depth correction. The integration process consists of two steps. First, the 

largest matrix (A) was scaled-down to have a size similar to that of the smallest matrix (B) 

as per Equation 5-3, and then both matrices were combined as per Equation 5-4 using a 

consistency factor, which accounts for the difference in their data range. A Matlab code 

was written for this purpose where the code can accommodate any other survey data, and 

thus, automate the combination process. The integrated data was uploaded into a 

commercial mapping software to produce a final condition map of the entire bridge deck, 

as illustrated in Fig. 5-7. 

 

𝑆𝑘𝑙 = 
∑ ∑ 𝐴𝑖𝑗

𝐽
𝑗=1

𝐼
𝑖=1

[𝐼 × 𝐽]
                                                                                                           𝐄𝐪. 𝟓 − 𝟑 

Where: 

𝑆𝑘𝑙 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑐𝑎𝑙𝑒𝑑 − 𝑑𝑜𝑤𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑆 = (𝑐 × 𝑑) 

𝑘 = 1 → 𝑐          𝑙 = 1 → 𝑑 

𝐴𝑖𝑗  𝑎𝑟𝑒 𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑚𝑎𝑡𝑟𝑖𝑥 𝐴            𝑖 = 1 → 𝑎           𝑗 = 1 → 𝑏           [𝐴 > 𝐵]     

[𝐼 ×  𝐽] 𝑖𝑠 𝑡ℎ𝑒 𝑤𝑖𝑛𝑑𝑜𝑤 𝑖𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝐴 𝑡𝑜 𝑏𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑           𝐼 =  𝑎 𝑐⁄                𝐽 =  𝑏 𝑑⁄  

 

𝐷𝑘𝑙 = 𝐶𝑘𝑙 + (
𝛼

𝛽
) ×  𝐵𝑘𝑙                                                                                                   𝐄𝐪. 𝟓 − 𝟒 

Where: 

𝐷𝑘𝑙  𝑎𝑟𝑒 𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑚𝑎𝑡𝑟𝑖𝑥 𝐷 = (𝑐 × 𝑑) 
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(
𝛼

𝛽
)  𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 

𝛼 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑚𝑎𝑡𝑟𝑖𝑥 𝐴𝑖𝑗 = 
∑𝐴𝑖𝑗
(𝑎 × 𝑏)

  

𝛽 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑚𝑎𝑡𝑟𝑖𝑥 𝐵𝑘𝑙 =
∑𝐵𝑘𝑙
(𝑐 × 𝑑)

 

 

 

Figure 5-7: Integrated condition map of Montreal’s bridge deck based on the IRT 

and GPR results. 

 

5.4 IRT/GPR Model Implementation on a Second Case Study 

The integration procedure outlined above was also implemented on the Wisconsin bridge. 

The IRT survey and GPR scanning were conducted on July 02, 2015 by Infrasense, a 

consultant firm specializing in concrete structure scanning, as part of a condition survey 

program. The IRT survey was carried out using a vehicle-based system with mounted 

thermal camera. The bridge characteristics, the features of the utilized thermal camera, the 

vehicle mounted set-up, the environmental conditions during the survey, and the data 

acquisition procedure have been presented in details for the case study of bridge C in 

Chapter 4. The GPR scan was carried out at driving speed using a GSSI vehicle-based 

system. Hence, no road closure was required and traffic flow was not disrupted. The GPR 

data was collected longitudinally on the deck with 0.91 m (3 ft.) spacing between the GPR 

profiles and hence, a total of 14 profiles were collected for the entire bridge deck (7 profiles 

for each traffic direction). The data was collected with a combination of a 1-GHz horn and 

a 1600-MHz ground-coupled antenna.  

http://www.geophysical.com/
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The developed automated procedure to analyze the thermal images was adopted as follows: 

(i) the images were enhanced and the temperature data was saved as .csv files for all 

images; (ii) a selected window of 320 x 25 pixels, which represents 0.305 m (1 ft.) image 

spacing, was extracted from each image and stitched with the extracted window from the 

next image. The dimension of the final stitched file was 1280 x 7750 = 9.92 million pixels 

for the entire two lane deck and two shoulders; (iii) the data dimension was scaled-down 

resulting in a reduced file with 128 x 945 = 120,960 pixels; (iv) the co-ordinates of each 

pixel were identified and then arranged in a column order with (x, y, temperature) values 

of each pixel; (v) the k-means clustering algorithm in Matlab was applied to identify the 

thresholds; and (vi) the condition map was plotted delineating the different severity levels 

of the subsurface delaminations, as illustrated in Fig. 5-8.  

 

 

Figure 5-8: IRT condition map of Wisconsin’s bridge deck indicating different 

severity levels of delaminations. 

 

The GPR data was analyzed based on the conventional numerical amplitude analysis 

method and the applied clustering technique. The scanned profiles were post-processed 

using the commercial radar software RADAN (a GPR data analysis software developed by 

GSSI), where the top reinforcing steel bars were selected and an Excel sheet containing the 

scan number, amplitude, and two-way travel time for each bar was generated. This step 

was repeated for the entire bridge deck’s profiles. Depth correction for the reinforcing bars 

was then applied using a commercial software. The final output was an Excel file 

containing the coordinates and amplitude of the selected reinforcing bars. The k-means 
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clustering algorithm was applied to identify the thresholds. Accordingly, the condition map 

was plotted delineating the different severity levels of potential active corrosion, as 

illustrated in Fig. 5-9. The corrosion map as per the records of the Wisconsin DOT is 

illustrated in Fig. 5-10. This map was produced by the Infrasense proprietary software 

(dimensions in feet).  

 

 

Figure 5-9: GPR condition map of Wisconsin’s bridge deck indicating different 

severity levels of potential active corrosion. 

 

 

Figure 5-10: GPR corrosion map of Wisconsin’s bridge deck as per the record of 

Wisconsin DOT (Omar et al., 2018). 

 

The integration process was then carried out using the written Matlab code. The 

temperature matrix was first scaled-down to have a size similar to the amplitude matrix, 

then both matrices were combined. The k-means clustering algorithm was subsequently 

applied to identify the thresholds. The final condition map of the bridge deck was plotted 

delineating the integration of the detected delaminations and potential active corrosion 

areas in different severity levels, as illustrated in Fig. 5-11. 
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Figure 5-11: Integrated condition map of Wisconsin’s bridge deck based on the IRT 

and GPR results. 

 

5.5 Evaluation of the Proposed IRT/GPR Model 

The presented integration analysis of IRT and GPR data aims to rationalize their use as 

reliable NDT tools for bridge deck inspection. IRT can highlight overlay and rebar-level 

delamination, while GPR can delineate areas where corrosion could be active as explained 

earlier. When testing full-scale bridges, extracting quantitative measures of subsurface 

defective areas in different severity levels using both techniques remains a challenge. 

Creating a plan view mosaic of the entire bridge deck from the individual IR images 

facilitated the application of thresholding classification to identify and categorize 

subsurface delaminated areas. The thermal contrast developed from the concrete 

subsurface provided numerical values for the color contrasts that were used to process data 

more effectively than simply comparing multiple images. This procedure was useful in 

detecting and calculating delaminated areas present in the bridge decks.  

On the other hand, when conducting GPR testing, the relationship between GPR 

measurements and the real condition of decks is still not well understood. Although the 

amplitude analysis provides an objective and detailed decibel scale, subjective selection of 

threshold values remains a limitation. The corrosion maps created in this study categorized 

the potential corroded areas based on the relative difference between the amplitude values 

of the reinforcing bars. Maser et al. (2012) developed a model to find a threshold for 

determining whether the concrete is sound or deteriorated by making a correlation between 

GPR and half-cell potential. Martino et al. (2014) developed another model, which is also 

based on a correlation between GPR and half-cell potential records. Both models determine 

one threshold to differentiate only between sound and corroded areas. Dinh et al. (2014) 
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developed a threshold model to classify the corroded areas in RC bridge decks based on a 

GPR scan. Their applied methodology in identifying the number of condition categories 

was based on visual interpretation of the GPR images, which is rather subjective. 

The IRT delamination map achieved from the thermal analysis in Fig. 5-4 was compared 

with the corrosion map provided by the GPR analysis in Fig. 5-5 and also with the GPR 

map as per the records of the Quebec MOT in Fig. 5-6. The three condition categories, 

which distinguish the severity of delaminations and corrosion, are presented in the three 

figures as: sound concrete, concrete areas with moderate defects that require close 

monitoring, and concrete areas with severe defects that give a warning to consider a repair 

action. The sound concrete areas had the lower temperature values and higher amplitude 

measures, while the warning concrete areas had the higher temperature values and 

amplitude attenuation measures. In spite of the different mechanisms of the IRT and GPR 

techniques and their capabilities of detecting different deterioration types, their bridge deck 

condition maps established in this case study are comparable. Though the locations and 

geometry of the defects do not match exactly, the areas in which potential delaminations 

and corrosion were identified have reasonable correlation. In addition, hammer sounding 

was conducted on the bridge deck by an MTQ bridge inspector before the IRT survey. The 

created IRT delamination map of the bridge deck was compared with the hammer sounding 

results. It was found that the two methods provided similar sizes and shapes of deck defects. 

The quantified defective areas by the three techniques are discussed below.  

Similarly, the IRT delamination map achieved from the thermal analysis of the Wisconsin 

bridge in Fig. 5-8 was compared with both the corrosion map provided by the GPR analysis 

in Fig. 5-9 and the Wisconsin DOT GPR map in Fig. 5-10. It can be observed that all 

corrosion areas identified by the GPR scan were again indicated by the IRT result. 

Conversely, not all the identified delaminated areas were indicated by the GPR result. This 

indicates that only highly advanced corrosion areas were identified by GPR scanning. For 

more verification, the produced IRT delamination map was compared with the hammer 

sounding results as per the record of Wisconsin DOT and generally followed similar trend. 

However, the threshold classification technique adopted in the present research, not only 

resolves the subjectivity problem in selecting threshold values, but also facilitates the 
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calculation of area percentage for each condition category. Calculating the total 

delaminated and corroded areas in different categories from these thermal and corrosion 

maps provides a quantitative basis for powerful decision making. Thus, prioritizing 

alternatives in bridge deck rehabilitation plans is facilitated. The percentage of the 

delaminated and corroded areas in both bridge deck cases were computed and presented in 

Table 5-2. The total percentage of delaminated areas resulting from hammer sounding tests 

were also indicated.  

 

Table 5-2: Percentage of defective areas in the analyzed bridge decks 

Bridge 

Deck  
NDT Survey Type Survey Result 

Concrete Condition 

Sound Monitoring Warning 

Montreal's 

Bridge 

IRT 

Present Research 

58% 17% 25% 

GPR 64% 15% 21% 

Combined (IRT & GPR) 53% 19% 28% 

Hammer Sounding 
MTQ Record 

38% Total Delaminated Areas 

GPR 37% Total Corroded Areas 

Wisconsin's 

Bridge 

IRT 

Present Research 

72% 12% 16% 

GPR 76% 10% 14% 

Combined (IRT & GPR) 68% 14% 18% 

Hammer Sounding 
DOT Record 

25% Total Delaminated Areas 

GPR 23% Total Corroded Areas 

 

For the Montreal bridge, the analysis of the IRT data indicated 42% total delaminated areas 

in the bridge deck, while the hammer sounding results showed 38% total delaminated areas. 

Hence, the difference between the findings of the two methods is in the range of about 

10%. The GPR analysis showed 36% total areas of potential active corrosion, whereas this 

percentage as per the records of MOT Quebec, is 37%. For the Wisconsin bridge, the 

analysis of the IRT data indicated 28% total delaminated areas in the bridge deck, whereas 

the total delaminated areas identified by hammer sounding as per the records of Wisconsin 

DOT, were 25%. The GPR analysis showed 24% total areas of potential active corrosion, 

while as per the DOT Wisconsin records, the corroded areas represent 23%. Thus, the 

analysis procedure developed herein can precisely define the extent of delamination and 

the potential locations of active corrosion in concrete bridge decks.  
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Combining the results of various inspection techniques could provide more reliable 

evaluation and prevent overestimating or underestimating a bridge deck condition. Thus, 

relevant research efforts have recently attempted to integrate multiple NDT technologies 

to assess the overall bridge structural capacity as well as automate the data collection and 

analysis processes (Gucunski et al., 2013). Adopting this approach during a real field 

deployment is vital to achieving an efficient bridge condition. Figures 5-7 and 5-11 

demonstrate the importance of the integration concept. For instance, the integrated IRT and 

GPR results indicated that 53% of the Montreal bridge deck area was sound, while the IRT 

and GPR separate evaluations were 58% and 64% of the deck’s area, respectively, as 

presented in Table 3. Thus, evaluating the bridge deck condition based solely on IRT or 

GPR could overestimate the sound area by about 11% and 23%, respectively. Similarly, 

for the Wisconsin bridge deck, the integrated IRT and GPR results indicated that 68% of 

the deck’s area was sound, while the IRT and GPR separately evaluated the sound deck’s 

area as 72% and 76%, respectively. These results could significantly affect any 

maintenance actions to be taken and should draw attention to the importance of integrating 

IRT and GPR results. 

However, it is important to highlight that the reliability of the integrated IRT and GPR 

results depends on the accuracy of data collection and analysis. Indeed, each technique has 

its own strengths and limitations. For example, IRT has several advantages over other NDT 

techniques, such as being able to scan a large area in a non-contact manner. It is much 

faster than conventional methods and has a potential to be applied at near highway speed 

over a bridge deck, thus mitigating traffic disruption. In addition, the IRT testing can be 

conducted during both day and night time. Conversely, IRT is dependent upon 

environmental conditions and can become ineffective if such conditions are unfavorable to 

produce a thermal gradient in the concrete. For instance, clouds reduce the intensity of 

incident solar radiation during the day and reflect infrared radiation at night, thus slowing 

heat transfer at the concrete surface. Rain could lead to concrete surface cooling, thus 

masking thermal effects from the surface. For decks with a concrete overlay, IRT can 

clearly reveal the overlay de-bonding, but may have limitations in detecting deeper rebar-

level delamination. In addition, factors such as moisture, oil spills, surface texture and 

staining on the concrete surface can create high noise level in the thermal images.  
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Similarly, GPR scan of RC bridge decks can cover large areas in a short time and easily 

penetrate through asphalt layers. Despite its valuable advantages, GPR has limitations, 

such as its incapability to provide information on corrosion rates or mechanical properties 

of the tested concrete. GPR cannot directly detect thin or in contact cracks and 

delaminations. Extreme cold weather can negatively influence GPR results because frozen 

water is relatively transparent to electromagnetic waves in the frequency range typically 

used for bridge scans. In addition, de-icing agents can limit the ability for GPR signal to 

penetrate the deck, and electromagnetic waves from mobile phones can cause noise in GPR 

results. Therefore, combining the two technologies in inspecting deteriorated bridge decks 

is very powerful, allowing to maximize the capabilities of each method and compensate 

for mutual limitations. 

5.6 Conclusions 

An accurate condition assessment of the extent and severity of bridge deck deterioration is 

essential for transportation agencies in prioritizing preventive maintenance and 

rehabilitation to preserve and extend the deck life and reduce its life cycle costs. IRT and 

GPR represent two NDT technologies that can provide reliable, rapid and cost-effective 

bridge deck evaluation. Hence, they were employed in the present research on two full-

scale bridge decks. Both methods require post-processing analysis of the acquired data to 

reveal subsurface anomalies. A simple analysis procedure of IRT and GPR data was 

developed herein to detect and classify the severity of subsurface defects in RC bridge 

decks and integrate IRT and GPR data. The findings are presented in terms of condition 

maps delineating the different severity levels of subsurface delaminations and potential 

active corrosion. The boundaries between the condition categories were determined based 

on the threshold clustering technique applied on the recorded concrete surface temperature, 

the reflected amplitudes of reinforcing rebar, and the integrated data, thus providing 

objective thresholds and accurate classification. Accordingly, the percentages of 

delaminated and potential corroded areas in the bridge decks were quantified in the 

different categories.  

As a surface temperature method, the detection capability of delamination using IRT 

testing is depth limited. While it is very effective for non-overlaid decks, the IRT 
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effectiveness can decrease in the presence of overlays. Also, IRT data requires adequate 

solar radiation and weather conditions to produce the required temperature differentials. 

The sensitivity of GPR to the presence of chlorides and concrete corrosion makes the 

technology an ideal tool to identify the potential of corroded areas in RC bridge decks. 

However, GPR is not as strong at precisely locating delaminated areas. In addition to rebar 

depth variation, there are several other factors that can jeopardize the efficiency of 

analyzing GPR reflection amplitudes, including variation of rebar spacing, surface 

properties, structural variation and construction quality. Currently, rebar depth variation is 

the only factor that has been taken into account. GPR surveys require dry pavement 

conditions, but are not temperature or weather dependent.  

While both IRT and GPR testing have strengths and limitations, the findings of this study 

demonstrate that combing the results of the two technologies is effective in evaluating the 

condition of deteriorated RC bridge decks. Accordingly, integrating the defective areas 

identified by both methods could provide important information for maintenance decision 

makers. The methodology proposed herein provides rapid and reliable analysis and hence, 

could enable the monitoring of deterioration progression through periodical surveys, thus, 

enabling the effective, rapid and economical surveying of hundreds of bridges.  
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Chapter 6  

6. Integrated Condition Rating Model for Reinforced Concrete 

Bridge Decks Using NDT and Visual Inspection 

6.1 Introduction 

Developing reliable evaluation and condition rating methodologies is paramount for 

efficient BMSs. For instance, combining various inspection techniques could prevent 

underestimating or overestimating a bridge deck condition. However, most commonly used 

bridge condition rating systems utilize data emanating from visual inspection reports 

inevitably associated with considerable uncertainty. This could possibly lead to 

unnecessary repair actions or overlooking critical problems. Although the advent of NDT 

technologies has significantly aided more precise assessment of bridge decks, such 

techniques have not received due attention in the bridge rating process. Thus, relevant 

research efforts have recently attempted to integrate multiple NDT technologies to assess 

the overall bridge structural capacity as well as automate the data collection and analysis 

processes (Gucunski et al., 2015). Adopting this approach during a real field deployment 

is vital to achieving an efficient health indicator of bridge condition.  

A review of current bridge condition rating systems reveals several drawbacks. For 

instance, they do not account for subjective information in the assessment process. Indeed, 

a considerable amount of uncertainty in the current bridge assessment practice stems from 

ignorance, lack of data, or inability to precisely assess bridge elements with subsurface 

deterioration. There exists little or no direct incorporation of structural defects’ measurements 

in the overall bridge condition rating process. Common rating practices do not account for the 

structural role and relative importance of different bridge components and deterioration 

mechanisms towards the overall evaluation (Wang and Elhag, 2008). In addition, they employ 

solid linguistic grades that do not take into consideration gradual transition from one 

condition category to another. Therefore, a superior rational condition rating procedure is 

needed to capture the results of commonly employed NDT techniques, along with the 

relative importance of bridge deck different defects. Uncertainty in the evaluation process 

could be remediated via a set of elaborated fuzzy linguistic variables. 
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In this Chapter, a systematic integrated condition rating procedure for concrete bridge 

decks using fuzzy mathematics is developed. To achieve this goal, the following objectives 

are pursued throughout the chapter sections: (1) study the current bridge condition rating 

practices, (2) identify and quantify the extent of severity for delaminated and potential 

corroded areas in RC bridge decks based on IR thermal imaging and GPR scanning, and 

(3) develop an integrated condition rating model using the fuzzy approach to consider the 

uncertainty in the IRT, GPR, and visual inspection measurements. Figure 6-1 illustrates 

the adopted systematic methodology to achieve the above-mentioned objectives, which 

consists of four phases. The goal of the first phase is to identify and quantify the severity 

degrees of defects. This is achieved by conducting in-situ inspection on full-scale 

deteriorated RC bridge decks using IRT, GPR, and visual inspection. Visual inspection will 

evaluate the extent and severity of surface defects, while IRT and GPR data will be 

analyzed to identify the extent and severity of potential subsurface defects. The goal of the 

second phase is to pursue bridge experts’ judgement to provide: (i) degree of relative 

importance for defects, and (ii) numerical values to identify the boundaries of bridge deck 

condition categories. This will be acquired through interviews with experts having 

comprehensive bridge experience.  

The goal of the third phase is to convert the identified and quantified defects into bridge 

deck condition categories. This is achieved by employing the fuzzy synthetic evaluation 

(FSE) approach to: (i) construct defect linear triangular fuzzy membership functions, (ii) 

calculate the relative importance weights of defects using the fuzzy preference programme 

(FPP), (iii) translate the fuzzy defects to fuzzy condition categories, and (iv) integrate the 

condition categories belonging to each defect type into overall condition categories of the 

bridge deck. The goal of the last phase is to develop a bridge deck condition index (BDCI) 

as follows: (i) construct fuzzy membership functions for the condition categories using 

linear regression analysis; (ii) utilize the area percentage in each condition category to 

aggregate their membership functions using a fuzzy union operation; and (ii) utilize a 

defuzzification method to obtain a final crisp value. Then, the developed rating procedure 

and its application will be demonstrated through a case study on a full-scale reinforced 

concrete bridge deck. A brief description of the current practices of bridge condition rating, 

as well as their main drawbacks, will be presented first. 
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Figure 6-1: Methodology of model development adopted in this study. 

 

6.2 Existing Bridge Condition Rating Systems 

Bridge condition data are generally categorized into condition ratings and condition 

categories. Condition ratings are codes describing the in-place versus the as-built bridge. 

Condition categories describe the condition of bridge elements (Nasrollahi and Washer, 

2014). The national bridge inventory (NBI) rating system requires condition ratings for 

three major bridge structural components: (i) deck; (ii) superstructure; and (iii) substructure 

using a 0 to 9 point scale (9 being excellent condition and 0 implies absolute failure). The 

FHWA (1995) classifies deficient bridges into two categories: structurally deficient and 

functionally obsolete. One of the conditions to consider a bridge as structurally deficient is 

having at least one of its components with a condition rating value of 4 or less. The scale 

of this condition rating system indicates the urgency of an impending loss of structural 

integrity, but does not consider a detailed inspection of bridge elements, and thus provides 

little information about the type and location of possible failure. Hence, it is insufficient to 

formulate repair strategies, or to estimate costs (Bektas et al., 2013). 
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The bridge sufficiency rating (BSR) system evaluates bridge data by calculating four rating 

factors. It starts with a value of 100, then deductions are made for bridge deficiencies down 

to a potential lowest value of 0. The four rating components are comprised of structural 

adequacy and safety (S1) which has a value of 55%, serviceability and functional 

obsolescence (S2) accounting for a value of 30%, essentiality for public use (S3) that 

receives a value of 15%, and finally special reductions (S4) with a value of 13% (FHWA, 

1995). Bridge rehabilitation is determined when BSR ≤ 80, whereas eligibility for 

replacement is indicated by BSR< 50 and structural deficiency or functional obsolescence. 

The main problem associated with the BSR system is that it is based on NBI condition 

ratings. To overcome some of the drawbacks of the NBI condition rating, the commonly 

recognized (CoRe) element condition rating system was developed. It consists of more than 

one hundred standardized element-level conditions. The ratings of all the elements can be 

integrated through a weighted aggregation process to compute the overall bridge health 

index (BHI) that represents the health of the entire bridge structure (Thompson and 

Shepard, 2000). The BHI ranges from 0 to 100, where 100 indicates the best state, whereas 

0 indicates failure condition. BHI is calculated as the ratio of the sum of the current element 

value to the sum of the total element value. It can be calculated for an element, a single 

bridge, or a group of bridges. Although the BHI has been considered by the bridge 

community as an excellent performance measure, it does not take into consideration 

inherent uncertainties during the inspection process and its calculation method makes it a 

deterministic process. 

However, to improve the CoRe system of bridge elements, a detailed bridge element 

inspection system called the AASHTO Guide Manual for Bridge Element Inspection 

(MBEI) was developed in 2011. The manual was built on the concept of element-level 

condition rating and further improvement was implemented in 2013 to include National 

Bridge Elements (NBEs), Bridge Management Elements (BMEs), and Agency-Developed 

Elements (ADEs). All elements are assigned a standard number representing one of four 

condition states: good, fair, poor, and severe. NBEs represent the primary structural 

components of bridges (decks and slabs, superstructure, substructure, railings, bearings, 

and culverts) necessary to determine the overall condition and safety of the primary load 

carrying members. BMEs include components of bridges such as joints, wearing surfaces, 
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protective coating systems and deck/slab protection systems that are typically managed by 

agencies utilizing BMS. ADEs provide the ability to define custom sub-elements in 

accordance with the NBEs or BMEs. The new elements contained within the MBEI have 

been introduced into AASHTOWare™ Bridge Management software BrM, formerly 

known as Pontis, which is currently the primary bridge management software used by 

transportation agencies across the USA (Reardon and Chase, 2016). 

6.2.1 Bridge Condition Rating Systems in Canada 

Each Canadian provincial bridge inspection manual has its own condition rating system. 

For example, in the Ontario Bridge Management System (OBMS), defects are recorded in 

each of 4 condition states (excellent, good, fair, and poor) for each bridge component and 

performance deficiencies for each component (OSIM, 2008). The British Columbia bridge 

condition index (BCI) is a weighted average of the condition state distribution for various 

elements where the element replacement cost is used as the weighting factor. BCI is 

calculated for various strategies as well as for each budget scenario so that bridge network 

performance can be compared for different funding levels (Reed et al., 2008). Similarly in 

Quebec, element, bridge, and network levels are considered where the material condition 

of a bridge element is assessed based on the severity and extent of the detected defects 

according to a 4-level grading system (A, B, C, and D). Similar to the condition rating 

systems developed in the USA, the Canadian bridge condition rating systems do not 

account for fuzzy information in the evaluation process. 

6.2.2 Bridge Condition Assessment Using IRT and GPR 

IRT and GPR are widely accepted to augment visual inspection data from bridge decks. 

Consequently, several researchers proposed objective bridge condition assessment systems 

utilizing these technologies (e.g. Yehia et al., 2007; Maser, 2009; Gucunski et al., 2013; 

Matsumoto and Mitaini 2013; Dinh et al., 2015). For instance, Maser (2009) employed 

both IRT and GPR and proposed a two-level bridge deck condition assessment system. 

Matsumoto and Mitaini (2013) utilized IRT to determine the AASHTO element level 

condition state for bridge decks, railings and beams, where distressed areas were presented 

into three classification categories. Dinh et al. (2015) utilized GPR to evaluate the 
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condition of RC bridge decks and proposed a condition rating index based on GPR results. 

Their proposed rating index only considers corrosion defects and does not consider 

uncertainty in GPR measurements. 

6.3 Fuzzy Bridge Deck Condition Rating Model Development 

In this section, a novel fuzzy condition rating model is proposed based on the integration 

of NDT and visual inspection results to identify an overall condition index for existing RC 

bridge decks (BDCI). The rational behind using a fuzzy approach is that: “Assessment of 

a bridge deck’s defects using visual inspection involves subjectivity and uncertainty. 

Although assessing bridge decks using NDT techniques provides objective defect 

measurements with less ambiguity, many factors can also influence the accuracy of the 

results for the applied technique, such as the experience of the operator and data analyzer. 

Thus, uncertainty in the severity and extent of measured defects has utmost importance in 

both visual inspection and NDT”. Therefore, a valid approach to consider uncertainty and 

integrate both techniques is to establish a uniform fuzzy defect and condition category 

scheme to achieve the proposed BDCI as elaborated below.  

6.3.1 Fuzzy Synthetic Evaluation (FSE)  

The Fuzzy Synthetic Evaluation (FSE) approach is capable of dealing with uncertainties in 

data sampling and can synthesize the evaluation of defects. The FSE was utilized in this 

study for fuzzifying and translating each detected defect to an order of descending 

condition categories and then integrating the condition categories of all defects to obtain 

overall fuzzy condition categories for a bridge deck. The integration process requires 

relative importance weights of the various defects based on their effect on the health of a 

bridge deck. The Fuzzy Preference Programing (FPP) was adopted for this task based on a 

fuzzy prioritization approach. The applied procedure is described in the following steps. 

6.3.1.1 Construction of Defect Fuzzy Membership Functions 

Inaccurate evaluation of the extent and severity degree of a defect will influence the final 

rating and thus, the measured defects should be treated. Fuzzification of the measured 

defects requires the construction of defect membership functions. Therefore, each 
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measured defect was assumed to be associated with an underlying fuzzy set F, defined by 

four fuzzy linguistic condition categories ranging over the defect extent. The four condition 

categories were represented as excellent (E), good (G), fair (F), and poor (P), similar to the 

Ontario bridge condition states, where a RC bridge deck will remain in each condition 

category a period of time during its service life. Thus, the fuzzy set can be recognized as F 

= [E, G, F, P]. The 2012 MTQ (Ministry of Transportation of Quebec) material condition 

rating index for bridge primary elements (Fig. 6-2) implements the extent values for each 

of the four condition categories based on the severity degree of a defect. Consequently, 

linear triangular fuzzy membership functions have been constructed for each severity 

degree (light, medium, severe, and very severe) based on the defect extent (% of deck area 

affected by the related severity degree). Figure 6-3 illustrates the constructed membership 

functions that assisted in handling the fuzzy overlapping nature of the four linguistic 

condition categories. Reasonable interval values of the specified boundaries of the affected 

area were considered to determine zones related to each condition category. A membership 

function of a severity degree represents the extent of a measured defect over the interval 

[0, 1], indicating its degree of belonging to each of the four condition categories.  

 

 

Figure 6-2: Condition category’s map utilized for the construction of defects’ 

membership functions (Omar et al., 2017). 
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Figure 6-3: Triangular fuzzy membership functions for various severity of bridge 

deck’s defects. 

 

6.3.1.2 Determination of Defect Relative Importance Weights 

Figure 6-4 illustrates a simple hierarchy of the common defects occurring in RC bridge 

decks. Relative importance weights representing the effect of these defects on the health of 

RC bridge decks were determined, relying on experts’ judgment through semi-structured 

interviews. A total of 17 expert interviews were undertaken with engineers from different 

Canadian ministries of transportation having extensive bridge experience and knowledge. 

The experts were asked to provide the degree of relative importance among the considered 

defects based on the 9-point Saaty’s linguistic scale of absolute values, developed by Saaty 

(1980), representing the strength of judgements. Comparing surface defects was done at 

first; the experts were asked to provide the degree of importance of surface scaling if 

compared with spalling, pop-outs, and cracking on the health of RC bridge decks. Then the 

experts were asked to provide the degree of importance with regards to the health of a RC 
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bridge deck of delamination defects if compared with corrosion, and surface defects. The 

degree of relative importance gathered from the experts was utilized to construct pairwise 

comparison matrices. 

 

 

Figure 6-4: Common bridge deck defects and related investigation techniques 

utilized in this study. 

 

Due to uncertainties associated with experts’ judgments, the linear triangular fuzzy scale, 

presented in Chapter 3 (Table 3-4), was applied to all the constructed pairwise comparison 

matrices. The difference between most probable (actual response received) with the upper 

and lower values is equal to one. Thus, for a (n x n) comparison matrix, there are (n + 1) 

variables representing n weights (𝑥1, 𝑥2, … … 𝑥𝑛) and a consistency index (λ 

= 𝑥(𝑛+1)). Table 6-1 illustrates a fuzzified pairwise comparison sample of one respondent 

for the relative importance of the considered surface defects on the health of a bridge deck. 

Each cell in the matrix has three values obtained from the fuzzification process. The matrix 

has 5 variables in linear equality constraint (4 local weights and a consistency index). The 

FPP method presented in Chapter 3 was employed to acquire the consistency values and 

calculate weights from the triangular fuzzy pairwise comparison matrices using the Matlab 

fuzzy optimization algorithm “fmincon”, generally referred to as constrained nonlinear 

optimization function. It is a medium-scale algorithm that attempts to find a constrained 

minimum of a scalar function of several variables. Table 6-2 summarizes the achieved 

average weights of the various defects considered in this study. 
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Table 6-1: Example for a fuzzy pairwise comparison matrix of a participated expert 

Pairwise Comparison of Common Surface Defects in Concrete Bridge Decks 

Defect Type Scaling Cracking Spalling Pop-out 

Scaling 1,1,1 3/10,3/7,3/4 1/8,1/7,1/6 5/12,5/7,5/2 

Cracking 4/3,7/3,10/3 1,1,1 1/4,1/3,1/2 2/3,5/3,8/3 

Spalling 6,7,8 2,3,4 1,1,1 4,5,6 

Pop-out 2/5,7/5,12/5 3/8,3/5,3/2 1/6,1/5,1/4 1,1,1 

 

 

Table 6-2: Final weights of bridge deck defects investigated in this study 

    Relative Weights of Common Defects in Concrete Bridge Decks 

Main Defect Weight Sub-Defect Sub-Weight 

Sub-surface Delamination 

(IRT) 
0.382 N/A N/A 

Surface Defects  

(Visual Inspection) 
0.354 

Scaling 0.185 

Cracking 0.237 

Spalling 0.363 

Pop-out 0.215 

Sub-surface Rebar 

Corrosion (GPR) 0.264 N/A N/A 

 

6.3.1.3 Translation of Fuzzy Defects into Condition Categories 

Each fuzzy measured defect using both NDT and visual inspection (e.g. delamination, 

scaling, cracking, spalling, pop-out, and corrosion) was translated into the bridge deck’s 

four condition categories. Consequently, the percentage of extent of each defect was 

converted to a percentage of the defect in the four condition categories. Equation 6-1 

represents the implemented translation formula. 

 

𝐶𝑖 = [𝑃𝑖𝑙 𝑃𝑖𝑚 𝑃𝑖𝑠 𝑃𝑖𝑣𝑠]  ∙  

[
 
 
 
 
 
𝜆𝐸(𝑃𝑖𝑙) 𝜆𝐺(𝑃𝑖𝑙) 𝜆𝐹(𝑃𝑖𝑙) 𝜆𝑃(𝑃𝑖𝑙)
⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮

𝜆𝐸(𝑃𝑛𝑣𝑠) 𝜆𝐺(𝑃𝑛𝑣𝑠) 𝜆𝐹(𝑃𝑛𝑣𝑠) 𝜆𝑃(𝑃𝑛𝑣𝑠)]
 
 
 
 
 

                𝐄𝐪. 𝟔 − 𝟏 

Where: 
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𝐶𝑖: % of defect i in each condition category [E, G, F, P]          

i ∈ (1, 2,..... , n)                           n = number of defects. 

𝑃𝑖: % of defect i in the four severity degrees (Light, Medium, Severe, Very Severe). 

𝜆𝐹(𝑃𝑖𝑙): Membership function for the light severity of defect i to the condition category (e.g. 

Fair). 

 

6.3.1.4 Integration of Condition Categories Belonging to Different 

Defects 

To obtain overall condition categories for a bridge deck, the condition categories translated 

from various defects were integrated using the identified relative importance weight of 

each defect. Initially, the condition categories of surface defects (e.g. scaling, cracking, 

spalling, and pop-out) were aggregated and then integrated with the condition categories 

of the delamination and corrosion defects, identified by IRT and GPR testing. Equation 6-

2 represents the implemented integration formula. 

 

𝐷𝑐 = [𝑤1 𝑤2 …   𝑤𝑖 …    𝑤𝑛]  ∙  

[
 
 
 
 
 
 
𝐶𝐸(1) 𝐶𝐺(1) 𝐶𝐹(1) 𝐶𝑃(1)
⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮

𝐶𝐸(𝑖) 𝐶𝐺(𝑖) 𝐶𝐹(𝑖) 𝐶𝑃(𝑖)
⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮

𝐶𝐸(𝑛) 𝐶𝐺(𝑛) 𝐶𝐹(𝑛) 𝐶𝑃(𝑛)]
 
 
 
 
 
 

                      𝐄𝐪. 𝟔 − 𝟐 

Where: 

𝐷𝑐: % of overall bridge deck area in each condition category.     

i ∈ (1, 2,..... , n)              n = number of defects. 

𝑤𝑖: weight of defect i. 

𝐶𝐸(𝑖): % of defect i in the condition category (e.g. Excellent). 
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6.3.2 Weighted Fuzzy Union (WFU) Operation 

The proposed condition rating model utilizes a numerical scale from 0 to 100 to represent 

the overall bridge deck condition index (BDCI); 0 being failure condition and 100 being 

excellent condition. The scale is divided into the four condition categories previously 

mentioned: excellent (E), good (G), fair (F), and poor (P). The application of the FSE 

process explained above resulted in area percentages of various condition categories of a 

bridge deck that need to be converted into a numerical BDCI value. Therefore, during 

interviews with the bridge experts, the principle of the proposed condition rating model 

was introduced and the experts were asked to identify the values regarding the boundaries 

of each condition category in the BDCI scale in order to provide specific percentages for 

k₁, k₂, and k₃ illustrated in Fig. 6-5.  

 

Figure 6-5: Conception of the proposed bridge deck condition index (BDCI). 

 

Due to the uncertainty associated with experts’ judgments, fuzzy modelling was necessary 

to represent these boundaries and solve the aggregation process. The weighted Fuzzy 

Union (WFU) operation is a basic operation for aggregating fuzzy sets. It provides an 

"optimistic" aggregate by assuming credibility in opinions expressed in the two fuzzy sets 

to be aggregated. WFU was utilized to aggregate the membership functions of the condition 

categories, which was then defuzzified to determine the BDCI. The fuzzification, 

aggregation and defuzzification processes are described below.  

6.3.2.1 Construction of Condition Categories Fuzzy Membership 

Functions 

The fuzzification process requires the construction of a fuzzy membership function for the 

zone of each of the four condition categories. As previously discussed, several techniques 

for generating membership functions have been proposed in the literature based on the 
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nature of the related application. The values of k₁, k₂ and k₃ proposed by the bridge experts 

are presented in Table 6-3 and were utilized to construct the membership functions of the 

four condition categories. Primarily, it was necessary to verify the consistency of the 

experts’ opinions. Figure 6-6 illustrates a histogram and assumed normal distribution 

fitting, which confirms that no individual expert provided inconsistent judgment.  

 

Table 6-3: Experts’ replies for boundaries identification of the condition categories 

Response No. 𝒌𝟏 𝒌𝟐 𝒌𝟑 

1 85 70 50 

2 75 60 35 

3 80 65 50 

4 85 65 50 

5 80 60 45 

6 75 55 35 

7 85 60 45 

8 80 65 40 

9 85 70 45 

10 90 60 40 

11 85 65 35 

12 90 70 50 

13 85 55 35 

14 85 65 35 

15 80 60 40 

16 75 55 35 

17 85 65 45 

 

 

 

Figure 6-6: Histogram and normal distribution curve of k₁, k₂, and k₃. 
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Subsequently, the membership functions were assumed to be piecewise linear. Linear 

regression analysis was conducted and the boundaries of each condition category were 

determined as illustrated in Fig. 6-7. The final constructed membership functions of the 

four condition categories are shown in Fig. 6-8 where the area percentage in each condition 

category would be utilized to aggregate these functions towards a numerical BDCI value. 

 

 

Figure 6-7: Boundaries of condition categories membership functions using linear 

regression method. 

 

 

Figure 6-8: Condition categories membership functions based on k₁, k₂, and k₃. 
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6.3.2.2 Weighted Aggregation of Fuzzy Condition Categories 

The WFU method is an appropriate operation when the importance coefficients are 

considered as fuzzy modifiers. The fuzzy modifier is a fuzzy logic operator which may be 

used to change the characteristic function by spreading out the transition between full 

membership and nonmembership, by sharpening the transition, or by moving the position 

of the transition region. Equation 6-3 represents the mathematical formula of the WFU 

operation. 

 

Ᾱ = ∪ [∑𝐹𝑖 𝑋𝑖

𝑖=𝑛

𝑖=1

]                                                                                                              𝐄𝐪. 𝟔 − 𝟑 

Where:  

Ᾱ = output fuzzy set              

U = fuzzy union operator             

𝐹𝑖 = nonfuzzy weighting factors  

𝑋𝑖 = fuzzy set # i          i ∈ (1, 2,....., n)          n = number of fuzzy sets 

 

To demonstrate how the WFU works, assume a bridge deck has area percentages of the 

four condition categories as: [E (26.7%), G (42.5%), F (21.3%), P (9.5%)], then the 

aggregated fuzzy membership functions of the four condition categories was represented 

by a thick line as illustrated in Fig. 6-8. 

6.3.2.3 Bisector Defuzzification to Identify Bridge Deck Condition Index 

(BDCI) 

The output obtained from the WFU operation is a fuzzy set that needs to be defuzzified to 

have a crisp value representing the BDCI. There are several defuzzification methods 

supported in the Matlab fuzzy logic toolbox such as the middle, smallest, and largest of 

maximum value assumed by the aggregate membership function, the bisector and centroid 
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defuzzification methods. The most commonly used methods are the centroid and bisector 

defuzzification methods. The centroid defuzzification returns the center of area under the 

shape, while bisector is the vertical line that divides the possibility distribution of the output 

fuzzy set into two sub-regions of equal area. The bisector defuzzification method was 

utilized in this study where the intersection of the bisector line with the condition rating 

scale axis is the numerical output represents the BDCI value as illustrated in Fig. 6-8 for 

the above example. 

6.4 Bridge Deck Condition Rating Model Implementation 

6.4.1 Data Collection and Analysis 

As explained in the research methodology, field deployment is required to build the 

proposed model. The field deployment includes IRT testing, GPR scanning, and visual 

inspection to identify both surface and subsurface defects, gain a broader insight into the 

overall bridge deck condition and assign a reliable rating value. Guidelines for visual 

inspection of existing bridges have been developed in many countries and the use of bridge 

inspection reporting software has been explored by several asset management software 

developers and adopted for element-level inspection. Thus, surface defects can be extracted 

from the inspection reports where the extent and severity degrees are registered.  

In this section, the proposed condition rating model was implemented as a proof of concept 

on an in-service RC bridge deck located in Montreal, Canada. Visual inspection was carried 

out by an experienced bridge inspector from the Ministry of Transportation, Quebec and 

the surface defects were quantified and recorded along with their severity degrees. Field 

testing was conducted using IRT and GPR. The IRT data collection and analysis were 

presented in Chapter 4, while the GPR data collection on the same bridge deck and its 

analysis were presented in Chapter 5. The IRT and GPR analyses located the delamination 

and the potential of rebar corrosion sub-surface defects as previously presented in Fig 5-4 

and Fig. 5-5, respectively. These quantified subsurface defects were then integrated with 

the surface defects to identify the BDCI. Table 6-4 summarizes the area percentages of the 

different detected defects in each severity degree (light, medium, severe, very severe) 

resulting from visual inspection, IRT survey, and GPR scan. 
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Table 6-4: Summary of severity and extent of defects in the inspected Montreal’s 

bridge deck 

Defect Inspection 

Technique 
Severity and Extent 

Delamination IRT Light 108m² (30%), Medium 61.2m² (17%), Severe 90m² (25%) 

Scaling 

Visual 

Inspection 

Light 158m² (44%), Medium 108m² (30%), Severe 36m² (10%) 

Cracking Light 158m² (44%), Medium 90m² (25%), Severe 54m² (15%) 

Spalling Light 115m² (32%), Medium 30.6m² (8.5%), Severe 25m² (7%) 

Pop-out Light 144m² (40%), Medium 28.8m² (8%), Severe 21.6 m² (6%) 

Corrosion GPR Light 144m² (40%), Medium 54m² (15%), Severe 75.6m² (21%) 

 

6.4.2 Developing BDCI of Bridge Deck 

The BDCI of the surveyed bridge deck was identified as follows: (i) each defect type in the 

four severity degrees was fuzzified using the constructed defects’ fuzzy membership 

functions in Fig. 6-3; (ii) the extent of each fuzzy defect was then translated to an area 

percentage in the four condition categories (excellent, good, fair, poor) using Eq. 6-1; (iii) 

the area percentages in the four condition categories resulting from the surface defects were 

combined using Eq. 6-2 to represent the overall deck condition based solely on the visual 

inspection technique; (iv) the area percentages in the four condition categories resulting 

from both IRT and GPR testing, respectively, were integrated with the area percentages in 

the four condition categories resulting from the visual inspection using Eq. 6-2 to have an 

overall integrated area percentage of the bridge deck in the four condition categories. 

Figure 6-9 illustrates the condition of the surveyed bridge deck in the four categories as 

indicated by the IRT, GPR, and visual inspection, as well as the overall integrated condition 

of the deck; (v) the area percentages in the four condition categories were utilized to 

aggregate the constructed fuzzy membership functions using WFU operation. For 

comparison purposes, the thick colored lines in Fig. 6-10 represent the aggregated fuzzy 

membership functions of the deck condition as determined by the IRT, GPR, and visual 

inspection techniques, along with the overall integrated condition of the deck; (vi) bisector 

defuzzification was applied and the BDCI was determined for each inspection technique 

as well as for the overall integrated condition of the deck as illustrated in Fig. 6-10. 
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Figure 6-9: Aggregated condition categories of Montreal’s bridge deck based on 

defects measured using different techniques. 

 

 

 

Figure 6-10: Condition rating index of Montreal’s bridge deck based on the 

proposed model in this study. 
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6.5 Evaluation of the Proposed BDCI Model 

Integrating the deficiency areas identified by visual inspection and NDT technologies 

would yield both surface and subsurface indicators of condition for a variety of bridge 

decks in the network and thus, provides meaningful information for maintenance decision 

makers. As previously discussed, the differences between the IRT and GPR area 

percentages in the different condition categories shown in Fig. 4-9 could be due to the fact 

that not all delaminations can be observed in GPR images and only highly advanced 

corrosion areas were identified by the GPR scanning. In addition, corrosion is among the 

primary reasons that could lead to delaminations in RC bridge decks. It should be noted 

that the delaminated and corroded area percentages identified by analyzing the IRT and 

GPR survey data have been validated by other NDT techniques and chloride ion 

concentration analyses in some cores taken from the deck as presented in Chapter 5. 

However, the main concern of this study is to apply a management aspect by utilizing the 

NDT results in the proposed condition rating procedure.  

Figure 6-9 demonstrates the importance of the integration concept in having a reliable 

condition rating of a bridge deck. For instance, the visual inspection does not consider any 

area of the deck in a poor condition and indicated that only 8.3% of the deck’s area is in a 

fair condition, while the IRT and GPR considered that 31% and 23.3% of the deck’s area, 

respectively, are in fair and poor conditions. In addition, the deck’s area in good condition 

was evaluated as 47.3% by visual inspection, while the IRT and GPR evaluations were 

40.2% and 37.1%, respectively. Similarly, visual inspection indicated that 44.4% of the 

deck’s area is in excellent condition, while the IRT and GPR evaluated the deck’s area in 

the same condition category as 28.8% and 39.6%, respectively. Consequently, visual 

inspection indicated a BDCI value of 80.05, while the IRT and GPR indicated values of 

66.76 and 69.35, respectively as shown in Fig. 6-10. The condition rating index based on 

the IRT and GPR results was about 16.6% and 13.4%, respectively, lower than the 

condition rating index indicated by visual inspection results. The overall integrated area 

percentages in the four condition categories from the three inspection technologies 

identified a final BDCI value of 72.05 for the surveyed deck, about 10% less than the value 

if the deck were evaluated based solely on visual inspection.  
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These results could significantly affect maintenance actions to be taken and should draw 

attention to the importance of integrating the results of different technologies. With respect 

to how the proposed index can be used by maintenance decision makers, this study does 

not enforce strict actions. In fact, the conducted interviews with bridge experts indicated 

various opinions regarding the action needed for a bridge deck with a specific BDCI. For 

instance, some experts proposed repair or partial deck replacement, while others proposed 

full replacement of a deck with the same BDCI value. Thus, each transportation agency 

can apply its maintenance strategy in rating the achieved BDCI and select the appropriate 

action. However, based on discussions with the bridge experts and the maintenance 

strategies of the Ontario Bridge Condition Index (OBCI) and other preservation guides in 

the literature, ratings and recommended actions for the proposed BDCI in this study were 

summarized in Table 6-5. The proposed actions aim at having reliable and safe bridge 

conditions. It should be noted that the maintenance actions in the majority of existing BMSs 

are based on optimization models to determine the most cost-effective maintenance 

strategies.  

 

Table 6-5: Recommended actions for the proposed BDCI in this study 

BDCI 

Range 

Deck 

Rating 
Recommended Action 

80 - 100  Excellent Maintenance is not required within the next five years.  

70 - 80 Good Frequent monitoring and repair defects within the next five to ten 

years.  

60 - 70 Fair Major repairs should take place within the next five years. NDT 

using IRT and GPR should be conducted after five years. 

50 - 60 Poor Immediate maintenance is required. Total deck replacement to 

take place within the next five to ten years. 

 Less than 50 Very Poor Immediate rehabilitation is required. Total deck replacement to 

take place within the next five years but if the BDCI < 30, 

immediate closure to traffic. 

 

Considering the relative importance of defects on the health of a bridge deck, applying 

NDT techniques and addressing the fuzzyness of the detected defects were paramount in 

developing the proposed procedure, which can be used for evaluating an individual or a 
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network of bridge decks. It should be noted that the main idea here is to propose a 

methodology rather than apply the exact numbers achieved in this study. The model data 

can be retrieved from in-depth bridge inspection reports, where visual inspection could be 

supplemented by NDT methods. Indeed, employing several NDT techniques will reduce 

the uncertainty inherent in the defect measurements and provide more reliable condition 

rating indices. For instance, it would be objective to detect possible defects using the results 

of multi-model NDT, such as the recently developed “RABIT” system. RABIT (Robotics 

Assisted Bridge Inspection Tool) is a fully autonomous robotic system for the condition 

assessment of concrete bridge decks using multiple NDT technologies (Gucunski et al., 

2015). However, because not all transportation agencies employ NDT evaluation due to 

the associated costs, the model proposed herein integrates visual inspection, being the 

commonly used inspection method, with only two NDT techniques.  

The selection of IRT and GPR in this study was based on their ability to rapidly survey 

large with minimum traffic disruption, lane closures, and exposure of personnel to traffic, 

thus saving significant time and labor costs. However, the proposed procedure provides a 

platform for continuous updates on a bridge deck’s condition as more related data become 

available. The model could also be amended by increasing the hierarchy layers through 

involving more defects, other deck elements, such as the drainage system and wearing 

surface or other bridge components, such as the superstructure and substructure. 

Consequently, the proposed rating procedure if flexible and can accommodate future 

upgrading.  

6.6 Conclusions 

An attempt has been made in the present research to develop a novel condition rating 

methodology for existing RC bridge decks by integrating the results of NDT and visual 

inspection. Fuzzy set theory has been utilized to account for uncertainties and imprecision 

in the measurements of common subsurface and surface bridge deck defects detected by 

NDT such as IRT and GPR along with bridge inspector observations recorded through 

visual inspection. Using fuzzy membership-based defect measurement in combination with 

the importance relative weighting approach, the proposed procedure translated uncertain 

measurements of surface and subsurface defects into fuzzy bridge condition categories. 
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The Fuzzy Preference Programme (FPP) based nonlinear method was adopted to calculate 

the relative defects’ weights using the Matlab software. Considering the uncertainty 

inherent in determining the zone of each condition category, a fuzzy condition category 

scheme was built where the weighted fuzzy union (WFU) technique was employed to 

aggregate the fuzzy membership functions of the condition categories towards a bridge 

deck condition index (BDCI). A case study was provided to illustrate the process of 

implementing the proposed approach. The advantages of the developed system include the 

utilization of various inspection technologies, employment of the knowledge provided by 

bridge engineers with extensive experience and intuition, and conducting the analysis in a 

fuzzy domain. The proposed model could be upgraded to include other bridge elements 

and components, consider more possible defects, and employ other NDT techniques. Thus, 

it would be an effective tool for transportation agencies to prioritize repair and 

rehabilitation efforts and focus limited funding on most deserving bridge decks. 
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Chapter 7  

7. Remote Sensing of Reinforced Concrete Bridge Decks Using 

Unmanned Aerial Vehicle Infrared Thermography 

7.1 Introduction 

There is a need to develop cost-effective and innovative solutions to evaluate bridge deck 

conditions on regular time intervals, without interrupting traffic. This makes remote 

sensing technologies viable options in the field of bridge inspection. As previously 

discussed, IRT as a remote sensing technology does not require direct access to the surface 

under inspection since the images can be captured from distance using appropriate optical 

lenses. However, conducting ground IRT testing in-situ on full-scale bridge decks requires 

mounting the IR camera on a vehicle. The ideal option for data collection is to scan one 

traffic lane on each pass. Obtaining such horizontal field of view is not always achievable 

in the field as it may require to mount the camera at a high level. Thus a number of survey 

passes should be adopted to cover the entire bridge deck area. In addition, the requirements 

of ASTM D4788-03 (2013), ground IRT testing in-situ on full-scale RC bridges should be 

conducted at low driving speeds of no greater than 20 km/h. Thus, the arrangements of 

traffic control is necessary to conduct IRT survey on the field. 

The generic definition of remote sensing technologies allows for a variety of deployment 

platforms including satellites, aerial inspection using fixed wing aircrafts, or vehicle 

mounted systems, making remote sensing potentially valuable in the field of inspection and 

monitoring (Harris et al., 2016). The main limitation to perform a manned aircraft scanning 

is to maintain a fixed distance from the structure, which can be mitigated using an 

unmanned aerial vehicle (UAV) equipped with a GPS system (Chen et al., 2011). In recent 

years, UAV technology has increasingly been used in various application areas such as 

monitoring construction and operation of buildings and other types of engineering systems. 

The improvements in navigation and sensor technology have made UAVs more reliable in 

terms of flight control. In addition, the advanced telecommunication technologies permit 

their flying at different altitudes over considerable distances (Chen et al., 2011). Operating 

UAVs at lower altitudes than piloted aircrafts, result in a higher spatial resolution. 
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Compared with satellite remote sensing and aerial photogrammetry, UAV has several 

merits, which makes it a reliable and cost-effective technology for data acquisition. 

Therefore, remote sensing UAV equipped with high definition photo and video cameras 

can facilitate the inspection tasks of bridge infrastructure. The limitations of applying 

ground IRT could motivate the pursuit of this technology for bridge inspection. A UAV-

borne imaging system with a high resolution digital and thermal cameras can be deployed 

frequently to provide rapid condition assessment and enable monitoring of deterioration 

progression through periodical surveys and thus, allow the surveys of hundreds of RC 

bridge decks to become feasible. Consequently, considerable reductions in costs associated 

with the inspection processes of bridge decks and in the frequency and duration of traffic 

interruptions can be achieved. However, the ability to extract quantitative information of 

subsurface anomalies from images captured by a UAV-IRT system is still needed to fully 

realize its potential in detecting these defects. 

In this Chapter, the potential application of a UAV-borne thermal imaging system for the 

condition assessment of full-scale RC bridge decks is investigated and the reliability of the 

achieved results is evaluated. To achieve this goal, the following objectives are pursued 

throughout the chapter sections: (1) studying the working principles of aerial UAV remote 

sensing technology; and (2) utilizing a UAV thermal imaging system for the detection of 

subsurface delaminations in RC bridge decks. Figure 7-1 illustrates the adopted systematic 

methodology to achieve the above-mentioned objectives. It can be summarized as follows: 

(1) conducting UAV-borne thermal imaging in-situ on two deteriorated full-scale RC 

bridge decks; (2) collecting thermal images via low altitude flights using a high resolution 

thermal camera; (3) producing a mosaicked thermogram for the entire bridge decks from 

the IRT data using especially developed Matlab codes; (3) segmenting the mosaic to 

determine objective thresholds using the k-means clustering algorithm in the Matlab 

software; (4) creating a condition map delineating different categories of the delamination 

severity using a commercial mapping software; and (5) validating the detected delaminated 

areas using the results provided by other testing technologies on the same bridge decks. A 

brief description of the UAV remote sensing technology and its current practices of bridge 

condition inspection as well as its main drawbacks will be presented first. 
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Figure 7-1: UAV-borne thermal survey methodology adopted in this study. 

 

7.2 Unmanned Aerial Vehicle (UAV) 

7.2.1 Basic Principle of UAV 

A general definition of remote sensing can be summarized as the collection and 

measurement of spatial information at a distance from the data source, without direct 

contact. UAVs are a remote sensing technology that have been referred to as drones, robot 

planes, pilotless aircraft, remotely pilot vehicles, remotely pilot aircrafts, and other terms 

which describe aircraft that fly under the control of an operator with no person aboard. It 

can be controlled by a computer and fly autonomously, remotely controlled by a navigator 

on the ground, or semi-autonomously as a combination of both capabilities. A UAV remote 

sensing system consists of four main components: aircraft with sensor(s) for data 

acquisition; remote control for the entire craft; GPS for navigation; and inertial 

measurement unit (IMU) for altitude measurement. Recently, ground station software 

releases on mobile device platforms have allowed operators to use tablets and smartphones 

to control aircrafts. Flight permissions are often required to ensure that the regulations of 

civil and security authorities are followed.  



194 

 

UAVs can be equipped with different high definition cameras to offer several mapping 

applications in the field of photography, geology, geography, meteorology or in agriculture 

and forestry (Hallermann and Morgenthal, 2013). The most critical factor in the UAV 

imaging applications is the movement of the camera directly caused by the movement of 

the flight system, which reacts to changes in wind conditions due to its low weight 

(Hallermann and Morgenthal, 2013). All flight parameters (e.g. longitude, latitude, time, 

GPS altitude, position etc.) are usually stored in a log-file together with the aircraft status 

parameters (e.g. battery status, flight modus and GPS signal quality). Additionally, the 

camera parameters (position, image number, altitude relative to launching area etc.) are 

also stored in the log-file, and thus are available for processing the individual images 

(Vasterling and Meyer, 2013). During the UAV operations, the acquired images are 

commonly stored on the SD card of the camera. The flight time of a UAV depends on its 

payload and is also strongly influenced by wind conditions (Vasterling and Meyer, 2013).  

7.2.2 UAV Applications in Civil Engineering 

UAVs have potential applications in a variety of civil engineering tasks owing to its ability 

of pre-programmed flight paths and collecting data at low altitudes. In construction 

engineering, a large variety of commercial, small and very light UAVs have been recently 

developed and used in surveying construction sites, monitoring work-in-progress, and 

inspecting existing structures, especially inaccessible areas. These UAVs are able to take 

off and land vertically, requiring less area to operate, and can hover over fixed areas. 

During flight, operators can view live video from the camera on a monitor. The gathered 

data can be geo-referenced so as to offer the possibility of 3D-modelling of structures. 

Vaghefi et al. (2012) argued that many aspects of bridge inspection could be aided by UAV 

remote sensing, including remote inspection and producing close up and high-resolution 

still and video imagery of bridges from multiple viewing angles. The inspection results can 

be related to locations on the bridge in relation to a direct visualisation of the detected 

damage. Thus, UAVs can greatly change how bridge infrastructures are assessed and how 

their maintenance can be prioritized (Ellenberg et al., 2016).  

A UAV-borne thermal imaging system utilizes an infrared thermal camera to provide 

information of the ground surface temperature, without the need to access the ground. 
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Thermal imaging with a UAV has several advantages compared to satellite and ground-

based measurements. It generates spatial data with good geometric resolution without the 

need to interpolate the data which might cause errors. Satellite imaging, in contrast, 

requires very high resolution data in order to obtain a high geometric accuracy. Hence, it 

could play a major role in bridge condition assessment. Several researchers have 

investigated the use of UAV in inspecting bridge decks. For example, Khan et al. (2015) 

collected thermal images of a mock up bridge to demonstrate the types of data that can be 

collected with a UAV and were able to detect possible delaminations in the concrete bridge 

deck. Brooks et al. (2015) investigated several applications of UAV technology, including 

bridge inspection. They used the UAV to capture imagery, both digital and thermal, of the 

bridge deck and applied some algorithms to detect surface defects on the deck.  

7.2.3 Successful Application of UAV-IRT System 

Vasterling and Meyer (2013) addressed some critical parameters that should be considered 

to successfully apply a UAV-borne thermal imaging to bridge inspection. For instance, the 

camera should be sufficiently lightweight due to the limited payload of the UAV. It also 

must be robust (e.g. insensitivity towards vibrations and dust). Although thermal cameras 

for the (8-14) μm bandwidth generally do not have a cooled sensor, resulting in low signal 

to noise ratio, they are relatively lightweight, which is an essential advantage for use in 

UAV. It should also be noted that some lightweight infrared cameras do not have an 

autofocus. Thus, before mounting the camera onto the UVA the focus has to be adjusted 

manually by focusing at an object at the same distance as the planned flight altitude. 

Additionally, visual images or video recorded at the same time as the thermal image allow 

mapping thermal subsurface anomalies and differentiating the surface defects. 

The flight altitude is another parameter that has to be selected via a compromise between 

resolution and efficiency. In addition, satisfactory mosaicking a set of thermal images is 

not fully resolved to date. Therefore, if the data are not recorded continuously (video), then 

the overlap of individual images should be at least 50%. Thus, only the central part of the 

images is used, which improves the quality of the composite image. Setting ground control 

points for further processing is another consideration. These points should preferably be 

visible in both the thermal and visual bandwidths. Therefore, a material with an emissivity 
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as well as visual contrast to the survey area has to be chosen (e.g. aluminum foil). These 

marker points have to be positioned in the field accurately. The images can then be stitched 

to fit with the markers at the respective coordinates (Gillins et al., 2016).  

7.3 UAV/IRT Model Development  

To investigate the feasibility of using UAV technology for inspecting bridge decks, two 

full-scale in-service RC bridge decks (named herein bridge (A) and bridge (B)), located on 

the same highway in north London, Ontario, Canada were surveyed using a UAV-born 

thermal imaging system. The bridges were scheduled, by the Ministry of Transportation 

Ontario (MTO) for rehabilitation because delaminations were recently identified by a 

condition survey. Thus, they were considered as good candidates and selected for the UAV 

thermal survey. Both bridges were constructed in 1965. Either bridge is a single span RC 

frame passing over a watercourse, supported directly on abutments, and paved with about 

100 mm asphalt wearing surface. The bridge structures have a north-south orientation and 

their external limits have concrete curbs and steel handrails. The structural drawings of 

both bridges indicate a deck slab thickness varying from 900 mm at the abutments to 480 

mm at the mid-span of the deck with a parabolic soffit. The span of each bridge is 15.24 m 

with a roadway width of 12.18 m carrying one lane of traffic (3.65 m) and a shoulder (2.44 

m) in each direction. Both bridges were rehabilitated in 1985 and 2007, including repair of 

the spalled and delaminated areas. The bridge decks exhibited the presence of numerous 

transverse, longitudinal and diagonal cracks. A west elevation of bridge (A) and a view of 

the condition of its deck are displayed in Fig. 7-2. 

 

 

Figure 7-2: Illustration of the surveyed concrete bridge (A) and an overview of the 

deck surface condition. 
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7.3.1 Planning and Preparation Phase 

7.3.1.1 Selection of IR Thermal Camera 

The testing involves collecting thermal images from the concrete surface using an IRT 

camera. As previously discussed, the key parameters in choosing an IR camera include the 

spectral range, spatial resolution, temperature range and frame rate. For observing objects 

at ambient temperature, a long wave length band (8–14 μm) is preferable to detect small 

thermal contrasts and reduce the effects of direct solar radiation during daytime testing. 

The spatial resolution of an IRT camera decreases with increasing object-to-camera 

distance, while lens systems with a small field of view have higher spatial resolution. An 

advanced thermal camera (FLIR Vue Pro) was utilized in this survey with its settings 

optimized for airborne operation. The camera is compatible with the flight system and has 

an uncooled micro-bolometer detector. It a displays thermal images with a resolution of 

640 x 512 pixels. The camera weighs 113 grams, which makes it ideal for UAV 

applications. When connected to the flight control system, it automatically considers the 

aircraft geo-location. Thus, it facilitates further stitching of the captured still images and 

recorded thermal videos. The IRT camera records the surface temperature using automatic 

gain control and saves the image data on a micro CD card in JPEG, TIFF or FFF format, 

so that it could be further processed using the FLIR software. Each image contains a 

maximum of 256 gray shades, each representing a different temperature range in the same 

scene. The features and specifications of the thermal camera are summarized in Table 7-1.  

 

Table 7-1: Features and specifications of the utilized camera (FLIR Vue Pro) 

Characteristic Specification 

Size 

Weight 

Detector Type 

62.7 mm x 44.5 mm 

101 g to 122 g 

Uncooled Micro-bolometer 

Spectral Band 7.5μm – 13.5μm 

Thermal Resolution 640 x 512 

Full Frame Rate 

Field of View   

Input Supply Voltage  

On-board Storage                                                                                                  

Operating Temperature Range 

Operational Altitude 

Polarity Control 

30 Hz 

9-mm lens (69⁰ x 56⁰) 

4-6 VDC 

MicroSD 

-20⁰C to 50⁰C 

+40,000 feet 

Yes 
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7.3.1.2 Selection of UAV 

The (Inspire 1 Pro) UAV from DJI was utilized in this study. The features and 

specifications of the utilized aircraft are summarized in Table 7-2. The components of the 

utilized flight system as well as the thermal camera are illustrated in Fig. 7-3. The aircraft 

is equipped with retractable landing gear and its camera has an integrated 3-axis stabilized 

gimbal to provide a steady platform and maximize stability and weight efficiency during 

flight. The aircraft boasts a maximum flight speed of 18 m/s and a maximum flight time of 

20 minutes using a fully charged battery. It uses a global positioning system (GPS) and a 

vision positioning system (VPS) to fly as per predefined paths, pinpoint its position and 

stabilize each flight. The GPS is capable of correcting for altitude and coordinate positions 

to allow systematic image acquisition, as well as aiding in producing 3D models, if 

required, from the imagery. The flight remote controller has three flight modes, which 

could be automatically selected based on the strength of the GPS signal and the sensors of 

the VPS. The GPS has the capability to control the aircraft orientation and to assist in 

holding its position, while maintaining the desired altitude. It allows the system to hold 

position with ± 2.5 m horizontal and ± 0.5 m vertical accuracy. The remote controller also 

has three safe modes to ensure safe return and landing of the aircraft to the last recorded 

home point if the control signal is lost or if low battery warning is triggered. The flight 

system has a flight recorder which stores data for each flight (e.g. duration, orientation, 

speed, etc.).  

 

Table 7-2: Features and specifications of the utilized UAV (Inspire 1 Pro) 

Characteristic Specification 

Aircraft/Motor Model 

Propeller Model 

Maximum Take-off Weight 

Vertical Hovering Accuracy 

Horizontal Hovering Accuracy 

Maximum Aircraft Speed 

Maximum Altitude 

Maximum Flight Time 

Maximum Wind Speed Resistance 

T600/DJI 3510 H 

DJI 1345 T 

3500 g 

0.5 m 

2.5 m 

18 m/s 

120 m (from take-off point) 

18-22 Minutes 

10 m/s 

Operating Temperature Range 

Maximum transmitting Distance 

Mobile Device Holder 

-10⁰C to +40⁰C 

3.5 km 

Tablet or Smart Phone 
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Figure 7-3: Illustration of the UAV-borne thermal system utilized to scan two RC 

bridge decks. 

  

7.3.1.3 Setting up UAV-borne Thermal System 

It is required to have a registered UAV and a certificate describing the operation of a 

particular UAV for a particular purpose and in a specific area. In addition, the Canadian 

Aviation Regulations (CAR) require training of UAV pilots to comply with safety 

requirements and hold a special flight operation certificate (SFOC) for Transport Canada 

to ensure UAV reliable and safe operation. Therefore, the UAV-borne thermal imaging in 

the present research was conducted by a consultant specializing in aerial photography, 

videography and thermography who has completed UAV training, IRT training, pilot 

licensing, and acquired special risk aviation insurance and gained a SFOC. The pre-flight 

preparation includes the setup of both the drone and thermal camera. The four propellers 

were installed and fixed firmly to the drone (a quadcopter). The DJI Go app and FLIR Vue 

Pro app were downloaded to link the drone and the camera to the flight controller. The DGI 

Go App controls the drone and allows the user to see a live video stream on a supported 

mobile device, which further allows the pilot to determine when images can be taken. The 

FLIR Vue Pro app allows the setup of the image format, orientation, shutter speed, camera 

focus adjustment, shooting mode, and color palette and communication options with the 

mobile device. An IPad Mini 4 device was utilized to display the live streaming video of 

the flight information on its LED screen. All batteries and iPad were fully charged and the 

camera was mounted on the drone and oriented facing straight-down to be perpendicular 

to the concrete deck surface being surveyed. Fixing the camera at the bottom of the drone 
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assists flight stability. The operator controlled the drone to maintain altitude and position. 

GPS positioning was activated and the compass was recalibrated before every flight. 

7.3.2 Data Acquisition Phase 

The flights were initiated on May 24th, 2016 at 1 PM, six hours after sunrise. During the 

survey, the ambient temperature was 79⁰ F, relative humidity was 22%, and wind speed 

was 8 km/hr. Bridge deck dryness was considered during data collection since surface 

moisture can reduce the thermal contrast on thermal IR images. Sun direction was also 

considered to avoid shadows on images. It is important to note that traffic on the bridge 

was not interrupted during data collection. The total flight time was about three minutes 

for each bridge deck. The total time taken to complete a bridge deck inspection from setup 

to tear-down was approximately 20 minutes. A calibrated 9 mm focal lens (69⁰ x 56⁰) was 

utilized. This allowed a large Field-of-View (FOV) of 13.74 m (horizontally) x 10.62 m 

(vertically) for each image to be taken at 10 m altitude. Hence, a total of only four thermal 

images, at spacing of 5 m, were collected with an overlap of 50% to cover the entire deck 

length. Each image covers the entire deck width and shoulders, in addition to 0.78 m side 

walk at both sides. It should be noted that the flight altitude could be increased to survey 

longer bridge decks utilizing an ultra-wide angle lens which will result in larger FOV. 

The utilized drone can hover in place and is capable of vertical take-offs and landings. Its 

platform was placed closely to the bridge deck being investigated, while ensuring sufficient 

stand-off distance of about 5 m from the outside kerb line. The flight paths were predefined 

for the two bridge decks as two straight line passes in opposite directions at the center of 

each deck. The drone was stable and controlled by the pilot during tests. The survey was 

started by hovering the drone from its platform after recording the home point and then 

pointing it to the top of the bridge deck at a maintained altitude of 10 m using the remote 

controller. The flight path was displayed in real-time on the LED. The still images were 

captured at the center of the bridge deck with several snapshots at each position. The 

images were taken perpendicular to the bridge deck to minimize the effects of possible lens 

distortion. Since it was not possible to measure the angle while flying, an estimation of the 

drone’s perpendicular position to the deck surface was made from the view displayed on 

the screen. The drone was landed after each flight and all equipment was turned off. 
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In addition to thermal images, various digital images of the bridge decks were taken as 

snapshots from the ground using a high resolution (16.1 megapixel) digital camera. These 

images allowed providing preliminary assessment of the surface deck condition. 

Consequently, visual interpretation of the captured thermal images could highlight and 

separate patches and surface defects from actual subsurface anomalies in order to provide 

accurate estimation of the detected subsurface defects.  

7.3.3 Data Analysis Phase 

As discussed in Chapter 4, data on thermal cameras appears as a color-coded image in 

which a color palette is assigned to temperatures at a certain “level” and across a certain 

“span” determined by the user. The span of the image is the difference between the 

minimum and maximum temperature in the image, and the “level” is the center of the span. 

Figure 7-4 shows a snapshot of the UAV and a typical thermal image taken during the 

conducted survey. Based on visual interpretation, which is inherently subjective, the 

potential of delaminated areas can be identified as displayed in the figure. The image shows 

a delamination being much warmer than the surrounding sound concrete after several hours 

of exposure to sunlight. However, it should be noted that the transverse, longitudinal and 

diagonal lines displayed with a lighter color could be misinterpreted as a delamination area, 

whereas the digital images indicate that they are sealed surface cracks. Thus, taking optical 

images of the bridge deck is key for IR data collection and analysis. 

 

 

Figure 7-4: Snapshot of the UAV during the flight to scan bridge (A) and a captured 

thermal image indicating potential delaminated areas. 
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7.3.3.1 UAV/IRT Delamination Maps 

The captured raw images could be post-processed using a variety of commercial image 

processing software, such as Pix4D, ImageJ, and Matlab image processing toolbox. For 

example, importing the thermal images onto the Pix4D mapper software can provide highly 

precise georeferenced 2D maps and 3D models. This requires to use the Pix4D app to 

automatically capture the images in predetermined routes in order to create the model. 

However, this option was not available, and hence the captured IR images of each bridge 

deck were first enhanced using several functions in the ImageJ software to improve its 

quality. The thermal data was then analyzed similar to the developed procedure for ground 

IRT presented in Chapter 4 as follows: (i) the scaled temperature data of each image was 

first saved as .csv in a separate Excel file; (ii) a selected window was extracted from each 

image and stitched with the extracted window from the next image. The dimension of the 

final mosaic, for each of the entire two lane decks, was 640 x 780 = 499,200 pixels; (iii) 

the data dimension was scaled-down and resulted in a reduced file with 128 x 156 = 19,968 

pixels; (iv); the co-ordinates of each pixel were identified and then arranged in a column 

order with (x, y, scaled temperature) values of each pixel. The final output was an excel 

file containing pixel information (coordinates and scaled temperature) with no change in 

thermal contrast values over the entire deck; (v) the k-means clustering algorithm in Matlab 

was applied to identify objective thresholds. The number of clusters (k) for both surveyed 

bridge decks was considered as four to represent the level of severity of potential 

deterioration identified by the UAV-borne thermal testing.  

For the bridge decks being considered and based on the identified thresholds, the 

temperature values in each severity level were grouped and uploaded in a commercial 

mapping software to construct high contrast composite condition maps accurately 

delineating the severity levels of potential subsurface delaminations, as illustrated in Figs. 

7-5 and 7-6. The area of very severe delamination was very small and hence, has been 

combined with the areas of severe delaminations in order to ensure identical degree of 

attention with respect to the maintenance actions to be taken for these areas. Sound concrete 

areas were represented by a green color, concrete areas that require close monitoring were 

represented by a yellow color, and warning concrete areas that require repair were 
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represented by a red color. The sound concrete areas had the lowest scaled temperature 

values, while the warning concrete areas had the highest scaled temperature values since 

the surveys were conducted during daytime. During the day, a warming trend existed such 

that the targets had positive thermal contrasts, which meant that the delaminated regions 

were at a temperature higher than that of the sound concrete. As previously discussed, this 

is the anticipated behavior based on fundamental heat transfer theories and complies with 

previous results reported for instance by Washer et al. (2013). 

 

 

Figure 7-5: Condition map of bridge (A) indicating the severity of the identified 

delaminated areas for the bridge deck and curbs using UAV-borne thermal 

imagery system. 
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Figure 7-6: Condition map of bridge (B) indicating the severity of the identified 

delaminated areas for the bridge deck and curbs using UAV-borne thermal 

imagery system. 

 

7.3.3.2 Quantification of Defects 

Calculating total delaminated areas in different categories from the mosaicked thermogram 

can provide a quantified basis for powerful decision making. It would hence be useful in 

prioritizing alternatives for bridge deck repair. The percentage of bridge deck area in each 

condition category was calculated by computing the total pixels in the same category over 

the total pixels in the entire deck area. Since k-means clustering neglects the stochastic 
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nature of the threshold values, the calculated area percentage in each condition category 

was considered as a variable. Generally, a probability distribution describes the 

probabilities associated with all values of a random variable. For example, if the random 

variable is a threshold value, then the probabilities associated with all of its values are 

described by a probability distribution function rather than a deterministic value. There is 

a wide range of possible statistical techniques that can be used to perform this task. 

However, to highlight the influence of the identified threshold values on the calculated 

delaminated areas, a statistical analysis was conducted considering a consistent ± 5% 

change in the threshold values and computing the corresponding area percentage in each 

condition category. Then, the two primary parameters (mean and standard deviation) of the 

obtained values were calculated. Table 7-3 shows the results of the statistical analysis for 

the two surveyed bridge decks. The basic assumption is that the data has a normal 

probability or Gaussian distribution. The obtained low standard deviation, which indicates 

the average spread around the mean, implies that the percentages of defective areas do not 

change significantly with the change in the identified thresholds. Consequently, the mean 

values were considered as final percentages of bridge deck areas in each condition category 

and were employed to compare the results of the UAV-thermal image analysis with that of 

other NDT techniques conducted on the same bridge decks. 

Table 7-3: Statistical analysis for the influence of IR threshold on the identified 

defective areas 

Change in 

Threshold (%) 

Bridge (A) Bridge (B) 

Bridge Deck Condition (%) Bridge Deck Condition (%) 

Sound Monitoring Warning Sound Monitoring Warning 

-20 31 52.4 16.6 4.5 64.9 30.6 

-15 31.5 52.4 16.1 4.9 65 30.1 

-10 32.1 52.1 15.8 5.2 65.1 29.7 

-5 32.4 52 15.6 5.4 65.1 29.5 

+5 32.9 51.8 15.3 5.7 65.2 29.1 

+10 33.2 51.7 15.1 5.9 65.3 28.8 

+15 33.6 51.7 14.7 6.4 65.3 28.3 

+20 34.1 51.8 14.1 7.2 65.2 27.6 

Mean 32.6 52.0 15.4 5.7 65.1 29.2 

Standard Deviation 1.05 0.29 0.79 0.86 0.14 0.97 
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7.4 Validation of UAV/IRT Model Results 

UAV-borne thermal imaging can be used to delineate surface temperature of concrete 

structures from thermal infrared measurements. The present research aimed to rationalize 

the use of this technology for bridge deck inspection. The resulting detection of subsurface 

delaminations in RC bridge decks using remote sensing and data collection without 

physical contact can be a substantial advantage of this system. When testing full-scale 

bridge decks, quantifying subsurface defective areas at different severity levels remains a 

challenge. The defective areas in UAV-borne thermal imaging are commonly identified 

based on a visual interpretation of the captured IR images. Therefore, the thermal contrast 

developed from the concrete subsurface provided numerical values for the color contrasts 

that were used in the present research to process data more effectively than simply 

comparing multiple images. The created 2D mosaic of the entire bridge deck facilitated the 

application of a thresholding classification technique to identify objective thresholds and 

distinguish the severity of subsurface delaminated areas without interference of the analyst. 

However, to validate the reliability of the achieved results, the produced delamination 

condition maps and the subsequent quantified defects were verified through the results of 

other NDT methods, as discussed below. 

7.4.1 Hammer Sounding Test Results 

Hammer sounding was conducted on the bridge decks by a bridge inspector from the 

Ontario Ministry of Transportation (MTO). Delaminations in the bridge decks were 

detected by striking the surface with a heavy hammer and noting the type of sound being 

emitted. The areas and locations of patches, spalls, delaminations, honey-combing, wet 

areas, scaling and other observed defects were recorded. The created IR delamination maps 

of the two surveyed bridge decks in Figs. 7-5 and 7-6 were compared with the hammer 

sounding results. It was found that the location and geometry of severely delaminated 

subsurface regions identified by the two methods were considerably similar. However, 

hammer sounding results did not indicate the warning regions that were identified by IRT. 

The quantified delaminated areas as identified by the UAV-borne thermal imaging system 

are presented in Table 7-4. The total percentage of delaminated areas resulting from 

hammer sounding tests were also indicated. For bridge (A), the analysis of the thermal data 
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indicated that 15.4% of the total deck area had subsurface severe delamination defects that 

require repair and 52% of the total deck area requiring close monitoring, while the hammer 

sounding results unveiled 17% total delaminated areas. For bridge (B), the analysis of the 

thermal data indicated that 29.2% of the total deck area had subsurface severe delamination 

defects that require repair and 65.1% of the total deck area requiring close monitoring, 

whereas the total delaminated areas identified by hammer sounding was 32%. Thus, the 

analysis procedure proposed herein could precisely define the location and extent of 

delaminations in bridge decks. It was also necessary to validate the identified warning 

regions using the results of a different technique as presented subsequently. 

 

Table 7-4: Percentage of defective areas in the analyzed two bridge decks 

Bridge 

Deck  
NDT Survey Type Survey Result 

Concrete Condition 

Sound Monitoring Warning 

Bridge (A) 

UAV-borne Thermal Present Research 32.6% 52% 15.4% 

Hammer Sounding 
MTO Record 

17% Total Delaminated Areas 

HCP 29.7% 56.2% 14.1% 

Bridge (B) 

UAV-Borne Thermal Present Research 5.7% 65.1% 29.2% 

Hammer Sounding 
MTO Record 

32% Total Delaminated Areas 

HCP 8.9%  63.7% 27.4% 

 

7.4.2 Half-Cell Potential Test Results 

A corrosion survey was carried out on both bridge decks by a consulting firm specializing 

in NDT of concrete structures, as part of a condition survey program with MTO. This 

survey was conducted one month before the UAV thermal imaging. The principle of HCP 

testing was presented in Chapter 2. HCP Testing is usually performed at points arranged in 

a grid. HCP testing was performed on the surveyed bridge decks including the concrete 

curbs, in accordance with the requirements of ASTM C876 and the MTO structure 

rehabilitation manual. A positive ground connection was made directly to the reinforcing 

steel at predefined locations and the quantified results are presented in Table 7-4. For 

bridge (A), the tests indicated that 29.7% of the deck area likely had no corrosion activity, 

with corrosion potential values between 0.000 V and -0.199 V. The survey identified 
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uncertain low corrosion activity for 56.2% of the deck area, with values ranging from -

0.200 V to -0.349 V. Probable active corrosion was detected for 14.1% of the deck area, 

with corrosion potential values more negative than -0.350 V. These results confirm the 

presence of the warning areas identified by IRT results. It should be noted that HCP results 

vary with moisture conditions, temperature and ion concentration.  

Figure 7-7 illustrates the corrosion potential readings for the bridge deck and curbs. The 

high corrosion potential areas were mostly found along the curbs. Three drilled concrete 

core specimens for chloride ion concentration analysis were retrieved from each bridge 

deck. Two cores were taken at corrosion areas and one core was taken at a sound concrete 

area. Evidence of corrosion was not observed on the reinforcement encountered in the cores 

extracted from the deck. The chloride content at the level of the reinforcing steel was below 

the chloride threshold level of 0.025% in all tested cores. The average compressive strength 

of the hardened concrete for these cores was 27.1 MPa. The design drawings specified a 

minimum 28-day strength of 20.7 MPa (3000 Psi) for the concrete deck. The core samples 

also indicated actual overlay thickness of about 50-60 mm, while the delamination layers 

were observed at about 45-50 mm depth from the concrete surface. 

 

 

Figure 7-7: Condition map of bridge deck (A) indicating the potential corrosion 

readings for the bridge deck and curbs using HCP testing (Omar and Nehdi, 2017). 
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For bridge (B), the results indicated that 8.9% of the deck area likely had no corrosion 

activity, with corrosion potential values between 0.000 V and -0.199 V. The survey 

identified uncertain low corrosion activity for 63.7% of the deck area, with potential values 

ranging from -0.200 V to -0.349 V. Probable active corrosion was detected for 27.4% of 

the deck area with corrosion potential values of more negative than -0.350 V. The high 

corrosion potential areas were mostly found along the center line of the bridge deck and 

for all curb areas. It was also observed that 13% of the deck and curb areas showed 

corrosion potential values more negative than -0.450 V, and thus would require immediate 

attention. These results confirm the presence of the warning areas identified by IRT results. 

The areas of potential active corrosion, as indicated by the HCP testing, have been 

validated by chloride ion concentration analysis. The core samples extracted from this 

bridge were located at areas prone to salt exposure (e.g. high corrosion potential areas, 

construction joints, low points of the deck near the curbs). For the two cores located at 

corrosion areas, the chloride ion concentrations were detrimental reaching 0.033% by 

concrete mass. Visual inspection results of the core samples indicated that chloride 

contamination has extended to the upper layer of reinforcing in some areas of the deck, 

particularly in areas with higher exposure to salt contamination. The average compressive 

strength of the hardened concrete for these cores was 29.4 MPa. Figure 7-8 illustrates the 

corrosion potential readings for the bridge deck and curbs. The core samples also indicated 

actual overlay thickness and delamination depth similar to those indicated in Bridge (A). 

 

Figure 7-8: Condition map of bridge deck (B) indicating the potential corrosion 

readings for the bridge deck and curbs using HCP testing (Omar and Nehdi, 2017). 
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7.5 Evaluation of the Proposed UAV/IRT Model 

The delamination maps achieved from the thermal analysis in Figs. 7-5 and 7-6 were 

compared with the corrosion maps provided by the HCP testing results in Figs. 7-7 and 7-

8. It should be noted that IRT and HCP have different working mechanisms, and thus are 

associated with capability of detecting different deterioration defects. In addition, corrosion 

is among several reasons that could lead to delaminations in RC bridge decks. Despite such 

differences, their condition maps were comparable. Though the locations and shapes 

(geometry) of the defects do not match exactly, the areas in which potential 

delaminations/corrosion activity were identified had reasonable correlation. Comparing the 

area percentages as indicated by both techniques, it can be observed from Table 7-4 that 

all areas which had potential active corrosion as identified by the HCP testing were also 

indicated by IRT results. Conversely, not all the identified delaminated areas were 

indicated by the HCP results. This indicates that only areas with high probability of 

advanced corrosion activity were identified by the HCP testing. Such results comply with 

that of previous studies, which indicated that in most bridge structures, areas of corrosion 

are usually associated with delamination even if cracks are not detected directly. Thus, the 

analysis procedure proposed in the present research could define the potential location and 

extent of delaminations in concrete bridge decks with acceptable accuracy. 

Despite the accuracy of the developed analysis procedure in detecting and quantifying 

delaminated areas in the surveyed bridge decks, the results could be affected by the 

precision of the UAV-thermal system orientation during flying. Therefore, a more rigorous 

analysis could be achieved based on a photogrammetric 3D reconstruction and generation 

of orthophotos, in which the internal and external orientation, triangulation and bundle 

adjustment could be considered. There are several commercial software capable of 

producing accurate 3D stereomodels, orthophotos and orthomosaics from data collected by 

various sensor systems. These orthophotos and mosaics are geographically referenced and 

commonly created using automated tools for tie-point matching, orthorectification, relative 

orientation, and color-balancing. However, it should be noted that inaccuracies in input 

control values could cause problems in the photogrammetric modeling process, and thus it 

is preferable to employ the capture app belonging to the utilized software in the data 
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acquisition process to ensure adequate quality imagery and accurate geospatial control in 

order to facilitate the creation of such orthomosaics. 

7.6 Further Research to Improve the Proposed System 

Wireless connectivity and maneuverability are two key parameters that can facilitate using 

UAV systems in inspections of bridge components thus enhancing bridge inventory 

management. For instance, using a UAV equipped with different sensors (e.g. LiDAR, 

thermal and optical cameras, etc.) should allow the collection of imagery that highlights 

surface (e.g. spalls and patches) and sub-surface (delamination) defects in bridge decks and 

soffits. Using such UAV multi-sensors along with inertial and spatial sensors could assist 

in producing geo-registered 3D data for bridges. UAVs can also be effectively utilized for 

determining stream or river bank conditions at bridge ends. They can serve for monitoring 

specific geotechnical assets related to bridges, including slope stability assessment, 

dynamic bank erosion and lateral scour conditions (Otero et al., 2015). Despite these 

benefits, UAV systems have some limitations. For example, due to their small payload, 

only small and light digital and thermal cameras can be used for photo or video 

documentation. The limited payload allows only small battery packs, which causes a 

relatively short flight time. Furthermore, due to the low weight, the flight system is very 

sensitive to changes in weather conditions, especially during high wind speeds, which can 

compromise image quality or impose a change from automatic to manual flight mode, 

which requires especially well-trained operators (Hallermann and Morgenthal, 2013). 

Such considerations mandate concerted research efforts for instance to: (1) enhance  UAV 

performance in various wind conditions that can be experienced during bridge inspections; 

(2) investigate the relation between the flight altitude and the accuracy of detecting 

subsurface anomalies; (3) study the effects of vibration which camera gimbals could be 

exposed to during flights; (4) explore the effects of using different propeller types on the 

UAV stability; (5) conduct cost estimation studies that consider parameters associated with 

operating UAVs during bridge inspection, such as data collection and operator’s time costs, 

equipment costs including batteries, and the maintenance or repair costs; (6) develop 

several effective image post-processing algorithms for defect detection and classification; 

and (7) establish a guide for practical implementation in order to incorporate the UAV 
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technology in bridge inspection manuals. It should also be noted that to utilize UAVs as an 

effective tool in bridge inspection, qualified bridge inspectors should be trained to operate 

such UAV systems in order to ensure high flight performance and objective inspection 

processes. Other options that may be desirable by bridge owners include conducting 

inspections through partnerships with private companies that offer UAV-based data 

collection services. 

7.7 Conclusions 

The UAV technology is evolving at a rapid pace, becoming more reliable and efficient. 

UAVs allow remote imaging, which can be useful in infrastructure condition evaluation. 

The present research demonstrates the applicability of UAV and associated thermal 

imaging for quantitative measurements of delaminations in RC bridge decks. Two bridge 

deck case studies demonstrated the potential of using UAV-borne thermal imaging in fast 

and safe data acquisition for the condition assessment of RC bridge decks. The subsurface 

defect regions identified by the proposed system were confirmed through the results of 

other NDT techniques including hammer sounding and HCP testing. Thus, UAVs could 

provide reliable, rapid and cost-effective bridge deck evaluation compared with 

conventional methods, which involve laborious inspections of bridge decks, especially at 

the network-level. The remote sensing feature of UAV avoids traffic disturbance and 

mitigates risk associated with bridge inspections.  

The proposed methodology allows post-flight data processing. A robust analysis procedure 

was developed herein to detect and classify the severity of subsurface delaminations in RC 

bridge decks. Thus, UAV could become a preferred method for IR imaging of bridge decks. 

This would enable monitoring the progression of deterioration through regular surveys and 

facilitate surveying hundreds of bridges. Consequently, this could yield sizeable reductions 

in costs associated with the application of NDT technologies and in the frequency and 

duration of traffic interruptions. Periodic UAV-borne thermal imaging surveys can help 

bridge owners assess bridge condition at all service life stages, thus making repair decisions 

based on actual condition data by tracking areas of anomalies and prioritizing maintenance 

needs. While the attention herein has been mainly devoted to the condition evaluation of 

RC bridge decks, UAV-borne thermal imaging can be advantageously exploited on other 



213 

 

bridge components. In future work, the authors plan to explore the applicability of the 

deployed system to bridge soffit areas. In addition, the application of further developed 

image processing tools on the infrared thermal data, along with artificial intelligence-based 

approaches, can result in full automation of the analysis and augmentation of the decision-

making process to make it more effective.  
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Chapter 8  

8. Summary, Conclusions and Recommendations 

8.1 Summary and Conclusions 

Subsurface delamination, which is primarily caused by the corrosion of steel 

reinforcement, is the most common damage mechanism that can compromise the service 

life of RC bridge decks. Visual inspection is still the most used method for bridge condition 

assessment. Research results have shown that assessing the condition of a bridge deck by 

visual inspection is unreliable, as it often does not reveal real conditions, nor does it point 

to correct priorities when decisions about repair works are made. IRT has gradually gained 

wider acceptance as a NDT and evaluation tool in the civil engineering field. Therefore, 

the main goal of this dissertation is to develop an automated condition assessment 

procedure for RC bridge decks based on the IRT technology. The research also aimed to 

develop a combination process between the IRT and the GPR survey results to provide 

more precise assessments of RC bridge deck conditions. In addition, the research aimed to 

develop a new bridge deck rating index as a health indicator of the overall bridge deck 

condition based on the integration of IRT, GPR, and visual inspection defects’ 

measurement. Another focus of the research program was to explore the feasibility of using 

UAVs for detecting hidden defects in RC bridge decks.  

In Chapter 2, state-of-the-art of bridge condition assessment was appraised. To proceed 

with this task, a comprehensive review was undertaken aiming to gain a perspective on 

technical issues associated with bridge condition assessment techniques and deterioration 

prediction tools that have been used successfully. Current practices and other advanced 

evaluation methodologies, which employ artificial intelligence techniques, were examined. 

The review indicated a clear need to upgrade existing BMSs to incorporate recent research 

in the bridge condition assessment domain. Also, the review demonstrated that reliable 

bridge condition assessment can be effectively achieved using several complementary 

NDT technologies. Thus, this dissertation pursued such approach. 

In Chapter 3, an evaluation of the capabilities and limitations of the most common NDT 

techniques used to detect and characterize typical deterioration mechanisms in concrete 
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bridge decks was carried out. A fuzzy hierarchical decision-making model was developed 

to evaluate the techniques from the perspectives of capability, speed, simplicity, accuracy, 

and cost. The results revealed that no single technology is capable of recognizing all 

deterioration types. IRT was identified as the most rapid technology capable of detecting 

delaminations in RC bridge decks accurately. Yet, it is the NDT technology of choice by 

transportation agencies due to the difficulty of establishing a rule-based criterion by which 

to evaluate its raw data. Thus, automation of the analysis process of the IRT survey was 

one of the main objectives of this dissertation. 

In Chapter 4, a robust automated analysis procedure for detecting and classifying 

delaminations in RC bridge decks using IRT technology was developed. The developed 

approach resulted in effective identification of delaminated areas within the bridge decks 

of several full-scale case studies. It allows for the detection of subsurface delaminations at 

different survey times and environmental conditions, and hence, solves a major concern 

that has been of interest to many researchers in the NDT community for a long time. The 

developed system could stimulate wider acceptance of IRT as a rapid, systematic and cost-

effective evaluation technique for critical bridge deck subsurface deficiencies. 

Consequently, adding this invaluable technique to the bridge inspector’s tool box 

encourages a focus on the maintenance and repair budgets of the most deserving bridge 

decks.  

In Chapter 5, IRT and GPR testing were employed to survey full-scale RC bridge decks 

and their results were combined to maximize the capabilities of each method and 

compensate for the limitations. The developed integration analysis aimed to rationalize 

their combined use as reliable NDT tools for bridge deck inspection. The developed 

integration methodology produced condition maps that delineate the different severity 

levels of subsurface delaminated and potential active corroded areas. The achieved results 

provided a great degree of confidence in the overall identified deterioration quantities. 

Consequently, employing the developed approach could provide rapid and reliable 

analysis, and an excellent harvest of information for maintenance decision makers. 
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In Chapter 6, an integrated bridge deck condition rating system based on the results of 

visual inspection, IRT, and GPR techniques was developed. The developed computational 

algorithms link technology-based (NDT) and inspector findings in an objective manner, 

while preserving the uncertain properties of the deterioration processes of bridge decks. 

The relative importance of the deterioration mechanisms and the gradual transition from 

one condition category to another were considered in the rating process. The developed 

model accounts for both surface and hidden quantified defects. The accuracy of the model 

was improved by combining NDT and visual inspection results in an uncertainty fuzzy-

based mathematical methodology. Thus, a unique and useful integration process was 

developed, which should be emulated by other researchers in the bridge infrastructure field.  

In Chapter 7, the potential for using thermal imaging with remote sensing unmanned aerial 

vehicles as carrying devices to evaluate the sub-surface conditions of RC bridge decks was 

demonstrated. Thus, UAV equipped with high definition photo and thermal cameras can 

facilitate the inspection tasks of bridge infrastructure. The proposed UAV-IRT system is 

capable of frequent bridge deck inspection at low cost, rapid and safe data collection, and 

provides reliable quantitative results. The proposed system could help transportation 

agencies in identifying critical deficiencies at various service life stages, and thus, apply 

proactive maintenance actions. In addition, considerable reductions in costs associated with 

the inspection processes of bridge decks and in the frequency and duration of traffic 

interruptions can be achieved. 

8.2 Recommendations for Future Research 

The current thesis discusses several topics related to bridge condition assessment and 

highlights some challenges that require further concerted research efforts as follows: 

1. Exploring the applicability of the automated IRT analysis procedure developed in this 

research to bridge soffit areas; correlating the findings of daytime and nighttime survey 

results; and studying the reliability of the developed system in detecting defects in the 

presence of asphalt overlays. 
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2. Investigating the capability of applying an IRT continuous monitoring system for 

detecting the depth and thickness of delaminations in full-scale RC bridge decks. 

3. Studying the characterization of IRT data using several feature vectors of the recorded 

pixel readings in the thermal images. For example, using the pixel shape and texture 

instead of relying only on the pixel numerical values. 

4. Advancing the application of other IRT image processing techniques, along with 

artificial intelligence-based approaches, to provide more objective classification of the 

detected delamination categories and augment a faster decision-making process.  

5. Conducting extensive NDT comparative studies on full-scale deteriorated bridges and 

quantifying the achieved results to motivate practical evaluation of the employed 

methods and their wider implementation in bridge inspection. 

6. Developing various fully automated data acquisition and analysis processes using 

several complementary NDT techniques to improve the efficiency, reliability and 

repeatability of NDT data collection and interpretation. 

7. Developing computational algorithms for integrating various NDT accomplished 

results in order to have fully objective condition assessment systems.  

8. Improving the bridge condition rating model developed in this research by utilizing 

various NDT techniques, including other bridge elements and components, and 

considering more possible deterioration mechanisms.  

9. Developing correlations between the bridge element damage and internal deterioration 

processes and investigating the structural robustness and redundancy concepts in the 

assessment process in order to determine bridge elements’ or components’ conditions 

based on their resilience. 

10. Studying the rebar spacing variation, surface properties, and structural variation and 

construction quality on the efficiency of analyzing GPR reflection amplitudes. 
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11. Utilizing UAV multi-sensors along with inertial and spatial sensors for producing geo-

registered 3D data for bridges and detecting surface and subsurface defects in bridge 

decks as well as inaccessible areas, such as bridge soffits.  

12. Exploring the use of UAV multi-sensor systems for determining stream or river bank 

conditions at bridge ends and for monitoring specific geotechnical assets related to 

bridges, including slope stability assessment, dynamic bank erosion and lateral scour 

conditions. 

13. Establishing a guide for practical implementation of UAV multi-sensor systems in 

order to incorporate this emerging technology in bridge inspection manuals. 
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