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Abstract 

Insecticide resistance is often linked to the expression of detoxification genes such as MDRs 

which code for ATP-binding cassette efflux transporters with broad substrate specificity. To 

investigate the role of MDR genes in Leptinotarsa decemlineata and Trichoplusia ni 

tolerance for the insecticide ivermectin, ingested dsRNA was used to attempt silencing of 

various MDR genes in these insects through RNA interference. Silencing was effective in L. 

decemlineata, but not T. ni. No change in ivermectin tolerance was found in L. decemlineata 

after MDR gene silencing. Because RNAi efficiency was different between L. decemlineata 

and T. ni, the stability of dsRNA in midgut lumen and hemolymph was compared between 

the two species and another insect, Manduca sexta. The dsRNA was least stable in T. ni body 

fluids, providing a likely cause for the ineffectiveness of ingested dsRNA. 
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Chapter 1  

1 Introduction 

Insects from many different orders have been agricultural pests, either directly through 

feeding or as vectors of diseases, ever since humans cultivated plants (Oerke, 2006) and 

the Animal Plant and Health Inspection Service (APHIS) of the United States Department 

of Agriculture (USDA) estimated losses amount to $120 billion each year in the USA 

alone (Montalvo, 2015). Such losses take on a greater significance when one considers 

that food production must increase by 70% by 2050 to accommodate global food 

demands (FAO, 2009). Meeting such goals will require better agriculture practices, 

including more effective pest management strategies that do not place as much reliance 

on chemical insecticides, since they can negatively impact ecological systems and human 

health (Fairbrother et al., 2014; Pimentel, 2005; Weston et al. 2013). 

Furthermore, as the widespread use of insecticides has also resulted in a rise in resistant 

strains of insects, there has been an increase in research studying insecticide resistance 

and alternative methods of pest management (Jensen, 2015; Kogan, 1998). One approach 

that has gained popularity is the use of double-stranded RNA (dsRNA)-mediated RNA-

interference (RNAi) where dsRNA with sequence complementarity to that of a targeted 

mRNA is introduced into a cell such that the dsRNA then reduces the expression of the 

respective gene. This approach has been used to investigate the function of individual 

gene products but also has potential as a novel pest management technique (Mamta & 

Rajam, 2017). If a gene is determined to be involved in insecticide metabolism, 

downregulating it through RNAi can lower the dose of insecticide that is required to be 

effective. This can allow for less intensive use of insecticides and reversal of insecticide 

resistance by targeting resistance-related genes. The success of RNAi as a pest control 

method has varied between different insect species (Katoch at al, 2013), but when 

successful it has often targeted genes related to the metabolism of xenobiotics, including 

insecticides. Considering that metabolic genes often provide a multidrug resistance 

(MDR) phenotype, this could allow for decreased use of multiple insecticides. 

Consequently, identifying the genes involved in insecticide resistance and the MDR 



2 

 

phenotype will not only provide valuable information regarding the development of 

insecticide resistance, but also provide targets for manipulation to increase insecticide 

lethality. Transgenic crop plants that express dsRNA for targeted RNAi of these genes 

are an ideal end product that would increase insecticide effectiveness without having 

significant ecological drawbacks.  

The MDR genes are strong candidates for targeting with RNAi as they code for MDR 

proteins that are transmembrane efflux transporters with broad substrate specificity. They 

have been intensively studied in humans because upregulation of these genes confers the 

MDR phenotype to cancer cells (Gottesman et al., 2002), but since they are highly 

conserved across many organisms their function is being more actively explored with 

respect to insecticide resistance in insects (Dean et al., 2001; Dermauw & Van Leeuwen, 

2014; Liu et al., 2011b; Roth et al., 2003). 

It will prove invaluable to investigate and refine RNAi as a pest management tool and 

identify appropriate gene targets for manipulation. There is still limited knowledge 

regarding which insects are responsive to RNAi and the reasons there are differences 

between species. Identifying which species are responsive or refractory will elucidate 

which insects can be easily managed with RNAi. Additionally, while MDR genes are 

excellent candidates for RNAi-mediated knockdown, their role in insecticide resistance is 

not yet thoroughly investigated in many insects. As such, targeting MDR genes for 

RNAi-mediated knockdown in species where their function is not yet known will both 

serve to investigate MDR gene function and test MDR knockdown as a pest management 

technique. 

The two species examined in this study are the Colorado potato beetle, Leptinotarsa. 

decemlineata (Say) the most important insect defoliator of potato plants (Alyokhin et al, 

2008), and the cabbage looper, Trichoplusia ni (Hübner), a persistent polyphagous pest of 

Brassicaceae plants, like cabbage, as well as others including tomato, lettuce, and 

cucumber (Soo Hoo et al., 1984). Both species are resistant to different chemical 

insecticides and transgenic plants producing toxins derived from the bacterium Bacillus 

thuringiensis (Bt) (Alyokhin et al., 2008; Janmaat & Myers, 2003), but currently the 
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extent to which MDR genes are implicated in their resistance is unknown. Furthermore, 

RNAi has been shown to be successful in L. decemlineata, but has had limited success in 

lepidopterans like T. ni. Investigating these two species allowed for a comparison of 

RNAi between responsive and refractory insects, as well as an assessment of MDR genes 

as insecticide resistance genes and potential targets for RNAi-mediated pest management.  

1.1 Xenobiotic Metabolism and the Multidrug Resistance 
Phenotype 

1.1.1 Xenobiotic Metabolism and Detoxification 

Almost all known organisms use common intracellular structures, processes, and 

enzymes for xenobiotic metabolism and toxin defense. Semi-permeable membranes 

prevent most hydrophilic molecules from diffusing into cells, but many hydrophobic 

molecules freely pass through. Therefore, metabolic proteins and mechanisms are used to 

detoxify and actively transport harmful hydrophobic molecules out of the cells. The 

metabolism of foreign toxins is divided into three phases: Phase I (Modification), Phase 

II (Conjugation), and Phase 3 (Excretion), although depending on the chemical properties 

of the molecule in question, it may or may not go through all three (Le, 2017). In Phase I, 

enzymes such as cytochrome P450 monooxygenases (CYPs) add reactive groups to the 

xenobiotic molecule through reactions such as oxidation, hydrolysis, hydroxylation, 

typically adding an oxygen atom or removing a hydrogen atom. These reactions either 

create a site for Phase II enzymes to catalyze, or make the target molecule polar enough 

to be excreted directly. Phase II enzymes, such as glutathione S-transferases (GSTs), use 

the newly added reactive groups to catalyze a reaction that conjugates the xenobiotic 

molecule with a charged species like glutathione or sulfate. This reduces the toxicity of 

the molecule and further polarizes it which facilitates the excretion process. Phase II 

enzymes tend to have broader substrate specificity and substrate overlap than those of 

Phase I.  Phase III enzymes, also noted for having particularly broad substrate 

specificities, are typically ATP-binding cassette (ABC) transporters, like MDRs, that use 

ATP to actively transport their targets across the cell membrane. If the targets are large 

molecules that have been polarized through Phase I or Phase II reactions, they will 
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remain outside of the cell. However, if not polarized, the molecule will enter and be re-

excreted by other cells until it is excreted from the body.  

1.1.2 Insecticide Resistance and the Multidrug Resistance 
Phenotype 

Mutations that increase the activity of detoxification enzymes, usually through increased 

gene expression, can increase an organism’s resistance to xenobiotics. In insects, these 

mutations can arise if they are continually challenged by insecticides for many 

generations. The selective pressure from continued insecticide exposure may increase the 

prevalence of mutations that protect against those insecticides. There are many examples 

of enzymes from all three phases contributing to xenobiotic metabolism and insecticide 

resistance. CYP genes that directly increase metabolism of insecticides are overexpressed 

in some resistant species, like the housefly, Musca domestica (Zhu et al. 2008), a malaria 

vector, Culex quinquefasciatus (Liu et al., 2011a) and the cotton bollworm, Helicoverpa 

armigera (Brun-Barale et al., 2010). Overexpression of GST genes has been linked to 

DDT resistance in M. domestica (Clark & Shamaan, 1984) and pyrethroid resistance in 

the maize weevil, Sitophilus zeamais (Fragoso et al, 2003). ABC transporters, like 

MDRs, have been identified as resistance factors in the tobacco budworm, Heliothis 

virescens,(Lanning et al., 1996) and a Bt-resistant leaf beetle, Chrysomela tremula 

(Pauchet et al, 2016). In some cases multiple resistances can result, depending on the 

substrate specificity of the encoded enzyme, by a single upregulated gene or by co-

upregulation (Alyokhin et al., 2008; Edi et al., 2014). Genes for enzymes with broad-

substrate specificity, such as MDR genes, are commonly upregulated in organisms 

displaying the MDR phenotype. A single mutation in such a gene is often sufficient to 

support multiple resistances, as their enzyme products can interact with multiple insecticides 

(Sun et al., 2017). This can be particularly problematic for pest control as insect 

populations can become resistant to multiple chemically unrelated insecticides, 

sometimes after being exposed to only one chemical. Therefore, it is important to 

understand the nature of the MDR phenotype in insects, so that it can be prevented or 

circumvented by management techniques. 
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1.2 Multidrug Resistance Proteins (MDRs) 

1.2.1 ATP-binding Cassette Superfamily 

MDRs are members of the ATP-binding cassette transporter superfamily, a very large 

and ancient protein family consisting of transmembrane transporters that are present in 

archaea (Albers et al., 2004), bacteria (Davidson & Chen, 2004) and eukaryotes (Dassa & 

Bouige, 2001). They are defined by their ATP-binding cassette domain used to acquire 

energy from ATP for active transport. ABC transporters, responsible for transporting a 

large variety of substrates across membranes, including steroids, phospholipids, ions, 

peptides, bile acids, and xenobiotics (Klein et al., 1999), act exclusively as exporters in 

eukaryotes, but can be either importers or exporters in archaea and prokaryotes. They are 

divided into 7 subfamilies (ABCA-G) in humans and 8 in arthropods (ABCA-H) based 

on structural similarities, and many ABC proteins in other non-human organisms are 

named for their homologous human counterparts. MDRs are part of the ABCB subfamily, 

also known as the MDR/TAP subfamily as it also includes transporters associated with 

antigen processing (TAP) proteins. 

1.2.2 Structure and Mechanism 

MDRs, like all ABC transporters, are composed of four domains: two nucleotide binding 

domains (NBDs) and two transmembrane domains (TMDs) that can be organized in 

various combinations: one NBD with one TMD (half transporter), or all four domains 

together (full transporter). However, all four domains are required for the protein to be 

functional so the polypeptides for half transporters are combined after translation as 

homodimers or heterodimers to form full transporters. The NBDs are also considered 

ATP-binding cassette domains as they as they contain Walker-A and Walker-B motifs 

that are shared with other non-ABC proteins, and a signature amino acid sequence of 

LSGGQ unique to ABC proteins (Dean et al., 2001). The NBDs are situated towards the 

cytosol and bind with two ATP molecules in a “sandwich dimer” structure having both 

ATP molecules enclosed between the two NBD domains. Hydrolysis of these ATP 

molecules provides energy that drives conformational changes in all domains of the 

protein, moving the substrate across the membrane. The TMDs contain multiple alpha 
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helices that span the membrane into which the protein is embedded, in addition to 

sequences that recognize substrates for transport. As the TMDs are responsible for 

substrate recognition, their sequences can vary significantly between different ABC 

proteins that transport different substrates. The alpha helices are oriented to provide a 

pore across the membrane through which the substrate is passed during transport. In 

resting conformation, the TMD pore is oriented to be open towards the side of the 

membrane from which the substrate is to be transported. Several mechanisms have been 

proposed for ABC transport: the “alternating site” (Senior et al., 1995) , “switch” 

(Higgins & Linton, 2004), and “constant contact” (Sauna et al., 2007) models. All of 

these models include the steps of ATP binding, ATP hydrolysis, ATP release, NBD 

dimerization, TMD conformational changes from inward facing to outward facing (or 

vice versa), and a return to resting state. However, they differ in the specific order of 

actions, and in which action provides the “power stroke” to push the substrate across the 

membrane. It is also possible that multiple mechanisms are valid and simply vary 

between different transporters (Wilkens, 2015). 

1.2.3 Function 

MDRs are well studied because of their involvement in drug-resistant human cancer cells 

and xenobiotic resistance in other organisms, particularly insects. The first MDR protein 

was identified and characterized in drug-resistant hamster ovary cells and termed a 

permeability glycoprotein (P-glycoprotein) for its role in affecting drug permeation 

(Juliano & Ling, 1976). Similar proteins and their corresponding genes were later found 

in human multidrug-resistant cancer cells, and their gene expression and protein activity 

were correlated with drug resistance (Roninson et al., 1986). Since then, MDR proteins 

and MDR genes have been identified and linked to xenobiotic tolerance in many different 

organisms including dogs (Roulet et al., 2003), mice (Chin et al., 1990), moths (Aurade et 

al., 2012), mosquitos (Buss et al., 2002; Figueira-Mansur et al., 2013), flies (Mayer et al., 

2009; Tapadia & Lakhotia, 2005) and nematodes (James & Davey, 2009). They protect 

against xenobiotics by transporting the compounds out of the cell to reduce their 

accumulation and toxic effects. MDR genes are typically expressed in barrier and entry 

tissues like digestive and blood-brain barrier tissues, as well as in tissues performing 
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detoxification or regulatory functions (Croop et al., 1989; Fojo et al., 1987; Fromm, 

2004; Huai-Yun et al., 1998; Schinkel, 1999; Simmons et al., 2013; Tapadia & Lakhotia, 

2005; Tsuji, 1998). In insects these tissues include midgut as a barrier to ingested 

compounds, central nervous system tissue as a blood-brain barrier equivalent, and 

Malpighian tubule tissue for detoxification. MDR genes within each organism are not 

always expressed ubiquitously amongst these tissues, indicating that MDR transporters 

serve different purposes and that each transporter may act on a different collection of 

xenobiotics. Regardless of their localization, MDR proteins expressed by these genes 

have broad substrate specificity and are capable of transporting a wide variety of toxins. 

While most research interest is in their capacity for drug resistance, MDR transporters 

can also perform basic metabolic functions. Some MDRs transport non-toxic molecules 

such as cholesterol (Aurade et al., 2012; Garrigues et al., 2002), lipids, bile salts (van 

Helvoort et al., 1996), and peptides (Momburg et al., 1994). Thus, they can be essential 

for normal cellular and physiological processes instead of, or in addition to functioning as 

detoxification transporters. Mutations in MDRs that are responsible for such processes 

often result in diseases such as, progressive familial intrahepatic cholestasis (PFIC) and 

immune suppression in humans.  

1.2.4 MDRs and Insecticide Resistance 

The capacity of MDR genes and MDR proteins to protect insects from xenobiotics like 

insecticides is of particular interest to agricultural research. Changes to MDR gene 

expression, rather than changes to the MDR amino acid sequence are much more 

common as resistance mechanisms and have been linked to insecticide resistance in 

multiple insect species. Dermauw and Van Leeuwen (2014) reported that ABCB 

transporters contributed to resistance of a diverse array of arthropod species to 

carbamates, macrocyclic lactones, organochlorines, organophosphates, pyrethroids, and 

Cry1A toxin. A variety of assays including in vivo knockdown of gene expression and the 

use of protein inhibitors were used to link these genes and proteins to various resistances. 

Verapamil, a competitive inhibitor, is commonly used to inhibit ABC transporter activity 

before challenging the insect with an insecticide. Macrocyclic lactones, such as 
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ivermectin, are often used to test the relationship between MDR genes and insecticide 

resistance because they are substrates for many MDR transporters.  

1.3 RNA Interference (RNAi) 

1.3.1 Mechanism 

RNAi is the process by which dsRNA molecules with sequence complementarity to a 

mRNA transcript of a gene reduce expression of that gene by targeted degradation of the 

transcript. RNAi was first reported by Fire et al. (1998) by microinjecting dsRNA into 

Caenorhabditis elegans and has since been investigated in bacteria, nematodes, insects 

and plants (Hannon, 2002). The RNAi process begins when precursor dsRNA molecules 

are either produced or acquired by a cell. These molecules are then cleaved into 21-23 

nucleotide long small interfering RNA (siRNA) fragments by the RNase enzyme Dicer 

(Bernstein et al., 2001). One strand from each siRNA molecule, referred to as the guide 

strand, is incorporated into the multi-protein RNA-induced silencing complex (RISC) 

(Hannon et al., 2000), while the other, the passenger strand, is discarded (Filipowicz, 

2005). The RISC uses the complementary sequence of the guide strand to identify and 

bind to the target mRNA molecules and then the catalytic protein of the RISC, 

Argonaute, cleaves the mRNA, preventing it from being translated (Hammond et al., 

2001). In insects, RNAi can occur through either the micro-RNA (miRNA) or the small 

interfering-RNA (siRNA) pathways, which has separate purposes and proteins. The 

miRNA pathway uses endogenously transcribed dsRNA from the genome to regulate 

cellular gene expression, while the siRNA pathway uses exogenous dsRNA and is 

believed to be a defense mechanism against foreign dsRNA molecules (Tomari et al., 

2007). This makes the siRNA pathway of particular interest in pest management if 

exogenous dsRNA can be used as a pesticide by downregulating vital genes, particularly 

because the specificity of the dsRNA sequences can minimize or even completely 

eliminate effects on non-target organisms. 

RNA interference can be divided into four major categories: cell-autonomous, non-cell-

autonomous, systemic, and environmental (Whangbo & Hunter, 2008). Cell-autonomous 

refers to RNAi that occurs within the cell that also produced the precursor dsRNA. Non-
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cell-autonomous refers to cases where RNAi occurs in a cell that acquired the dsRNA 

either from the environment or from other cells. Systemic RNAi refers to interference 

that is spread from cell to cell through intercellular transport and signaling. 

Environmental RNAi refers to interference that occurs when cells uptake the precursor 

RNA from the environment. These different categories are not mutually exclusive, and 

very often occur together. Environmental and systemic RNAi are the most important with 

respect to pest management as any dsRNA used will come from external sources. In 

addition it is usually crucial for the target gene to be adequately downregulated 

throughout the whole body of the insect to have an appropriate effect (Huvenne & 

Smagghe, 2010). 

1.3.2 dsRNA Uptake and Propagation in Insects 

Acquiring dsRNA molecules from an external source requires an uptake mechanism that 

ensures the dsRNA reaches the target cells. Two different cellular pathways have been 

identified for this: the SID-1/SID-2 channel protein-mediated pathway and the receptor-

mediated endocytosis pathway. The SID-1/SID-2 pathway uses the transmembrane 

channel SID-1, which allows for passive transport of dsRNA through the membrane 

(Feinberg & Hunter, 2003; Winston et al., 2002). The role apical intestinal membrane 

protein SID-2 has yet to be elucidated (McEwan et al., 2012; Winston et al., 2007). These 

proteins were first identified in C. elegans using knockout mutants and gene orthologs 

have been identified in many insect species (Huvenne & Smagghe, 2010). However, sid-

1 and sid-2 genes may not be required for successful RNAi. Drosophila melanogaster S2 

cells responded to environmental dsRNA even though this species has no known sid-1 or 

sid-2 gene orthologs (Saleh et al., 2006) and downregulation of a sid-1 ortholog in 

Locusta migratoria, did not inhibit RNAi (Yuan Luo et al., 2012). Insects that 

demonstrate an RNAi response to environmental RNA without sid genes are presumed to 

take up the dsRNA through receptor-mediated endocytosis. For example, the clathrin 

heavy chain gene, vacuolar H
+
 ATPase, and other genes related to endocytosis are 

necessary for uptake of dsRNA in D. melanogaster S2 cells when both downregulation of 

these genes and pharmacological inhibition of endocytosis inhibited dsRNA uptake 

(Saleh et al., 2006; Ulvila et al., 2006). These two forms of uptake are also not mutually 
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exclusive, as inhibition of either sid genes or endocytosis genes in C. elegans and the 

beetle L. decemlineata reduced RNAi efficiency (Cappelle et al., 2016; Saleh et al., 

2006). Many insects do not respond efficiently to environmental dsRNA (Whangbo & 

Hunter, 2008). Whether this is due to a lack of a proper uptake pathway or other 

physiological factors, such as gut pH or RNase activity, is not yet clear.  

For systemic RNAi, both SID-1/SID-2 mediated and endocytosis-mediated uptake are 

used by cells to receive dsRNA from neighbouring cells, but an extra element is also 

required to copy the dsRNA fragments for use in other cells. In nematodes and plants, 

this is accomplished by RNA-dependent RNA polymerases (RdRPs) which amplify the 

RNAi effect by creating new dsRNA molecules (Dalmay et al., 2000; Sijen et al., 2001). 

Neither RdRPs nor equivalent mechanisms have been identified in insects, so while their 

cells may be able to spread existing dsRNA to other cells, they cannot reproduce the 

silencing signal. Despite the lack of RdRPs, some insects still have strong systemic 

silencing when exposed to dsRNA (Tomoyasu et al., 2008). Absence of RdRPs does, 

however, imply that while systemic RNAi is possible, it is also transient, so insects must 

continuously receive environmental dsRNA to have a persistent downregulatory effect 

(Price & Gatehouse, 2008). 

1.3.3 RNAi in Pest Management 

While RNAi has not yet been used in the field, it is seen as a promising new form of pest 

management (Huvenne & Smagghe, 2010; Katoch et al., 2013; Zhu et al., 2011) as the 

specificity of the mRNA targeting allows it to selectively affect the target species with 

minimal or non-existent ecological side effects on other animals. Furthermore, as the 

dsRNA sequence used for its insecticidal activity is assumed to have robust plasticity, it 

could be easily altered if the target insect develops resistance. The interspecific 

variability in receptiveness to RNAi has hindered development of management 

techniques for certain insects. However, the use of dsRNA-mediated RNAi in transgenic 

plants that produce insecticidal dsRNA has proved successful in reducing survival and 

reproduction of the potato peach aphid (Mao & Zeng, 2014), cotton bollworm (Mao et 

al., 2007), western corn rootworm (Baum et al., 2007), and Colorado potato beetle 

(Zhang et al., 2015). Thus the use of such transgenic plants offers an ideal end product 
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for field crops as there would be no additional costs, such as spraying, for growers. 

However, consumer acceptance remains a challenge. 

In the absence of a complete understanding of the mechanisms of dsRNA uptake and 

spread in insects, success of RNAi can be difficult to predict when considering its use in 

pest management. It is difficult to know whether or not a particular species will respond 

to environmental dsRNA, even when genome-wide analysis is performed to check for 

relevant genes such as sid-1 or sid-2 orthologs. Even with putative RNAi uptake genes 

present, there are other physiological obstacles that can hinder RNAi such as pH, and 

RNase enzyme activity in the gut lumen, which are potential barriers for ingested dsRNA 

(Arimatsu et al., 2007; Price & Gatehouse, 2008). Similarly, hemolymph degrades 

dsRNA at different rates in different species (Shukla et al., 2016). Even if the dsRNA is 

taken up by cells, there is still no guarantee that the cell will be able to use the dsRNA 

(Shukla et al., 2016). 

1.4 Leptinotarsa decemlineata (Say) (Coleopetra: 
Chrysomelidae): The Colorado Potato Beetle 

1.4.1 Description and Life Cycle 

The small, yellow or orange, oblong eggs are often laid in clusters (20-100) on the 

underside of leaves. After 4-15 days they hatch into reddish-brown larvae with black 

spots along their sides and a black head capsule. They feed on the foliage and pass 

though four larval instars in 6-10 days. The fully mature, yellowish orange, larvae 

burrows several centimeters into the soil where they pupate then 5-10 days later emerge 

as adults. Variation in life stages is caused by environmental factors including 

temperature and humidity. The oval-shaped beetles have orange-yellow elytra with 10 

black lines oriented lengthwise, the source of the species name; decemlineata for “ten 

lines”. Adult beetles feed for several days before mating and females can lay 200-500 

eggs over their life (Capinera, 2001). In the fall, in response to environmental cues (short 

days, cool temperatures and declining food quality) adults enter reproductive diapause 

and will remain in the soil until the following spring. 



12 

 

1.4.2 Distribution and Damage 

Leptinotarsa decemlineata are native to Mexico, but spread across America and into 

Canada after an outbreak in 1859 (Casagrande, 1987). The beetle established in France in 

1922 and spread throughout most of Europe, the Middle-East, central Asia and parts of 

China (Weber, 2003). Its total geographic range was estimated to be 16 million km
2
 and 

is still increasing (Weber, 2003). Although the insect primarily attack potatoes they may 

also be pests on other Solanaceae, such as eggplant and tomato (Weber, 2003). Larvae 

consume approximately 40 cm
2
 of leaf tissue during their development while adults 

consume approximately 10 cm
2
 per day (Ferro et al., 1985). They will also consume 

stems and tubers, when foliage is no longer available. Losses due to defoliation will 

depend on many factors, such as the species of plant and the timing of the infestation, but 

total crop loss is common when the beetles are left uncontrolled. One adult beetle, or 1-4 

larvae per plant is considered an acceptable economic threshold, above which treatment 

for control is required (Weber, 2003). 

1.4.3 Control and Resistance 

Different management techniques are used against L. decemlineata. Cultural techniques 

such as crop rotation and trap crops are useful when potato growers are able to do so. 

Physical controls, such as flaming and vacuuming the insects, have also proven effective 

in limited cases (Weber, 2003). The transgenic potato plant “Newleaf”, developed by 

Monsanto Company to express a L. decemlineata-specific Bt toxin, was briefly used in 

the 1990s, but discontinued to avoid public backlash due to poor public opinion regarding 

genetically modified organisms (Gianessi et al., 2002). However, insectcides are the most 

common control technique, with over 30 chemical insecticides currently registered for 

use against L. decemlineata (Whalon et al., 2008). Due to the extensive use of 

insecticides as a management technique, L. decemlineata populations have developed 

resistance to 55 different insecticides in 13 different chemical groups (Whalon et al., 

2008). In many cases there are also  MDR phenotypes in the resistant strains (Alyokhin et 

al., 2008), making the use of chemical controls increasingly difficult.  
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1.4.4 MDR Genes in L. decemlineata 

No MDR genes had been specifically identified or characterized in L. decemlineata prior 

to the research conducted for this thesis. However a published L. decemlineata 

transcriptome was available online (Kumar et al., 2014) and an unpublished 

transcriptome was available at the London Research and Development Centre (London, 

Ontario, Canada) for use in identifying MDR transcripts. 

1.4.5 RNA Interference in L. decemlineata 

Coleopterans in general respond well to RNAi, making them easy organisms to study 

using the technique (Katoch et al., 2013). Recent research has specifically identified 

several physiological factors in L. decemlineata, which are likely common to other 

coleopterans, that make them more responsive to RNAi than most lepidopterans, mainly 

that their gut contents and hemolymph do not degrade dsRNA as quickly and their cells 

more easily process long dsRNA into siRNA fragments (Shukla et al., 2016). Ingested 

dsRNA has successfully been used in L. decemlineata to downregulate multiple vital 

genes, causing mortality and demonstrating its potential use as an insecticide (Zhu et al., 

2011). Transgenic plants producing dsRNA lethal to L. decemlineata have also been 

tested in a lab setting and were effectively protected from herbivory by the insects (Zhang 

et al., 2015). 

1.5 Trichoplusia ni (Hübner) (Lepidoptera:Noctuidae): The 
cabbage looper 

1.5.1 Description and Life Cycle 

The small, yellowish-white, hemispherical eggs, usually laid individually or in small 

clusters on the undersurface of leaves, hatch within 2–5 days depending on the 

temperature (Capinera, 1999). The caterpillar, generally green with a white lateral stripe 

running the length of the body, passes through five larval instars over 9-14 days before 

pupating within a thin, white cocoon on the plant or in other secluded locations The pupal 

stage lasts for 4-13 days, giving rise to a mottled brown and gray moth which may live 

for up to 14 days. The female moths can produce 300-600 eggs during their life. On each 

forewing  next to a white dot there is a white U-shaped mark resembling the lower case 
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Greek letter ni, which is the source of their species name ni. The common name “cabbage 

looper” is derived from the looping mode of walking deployed by the larvae. T. ni prefer 

subtropical climates as they do not survive in low temperatures and do not enter diapause 

to survive inhospitable seasons (Capinera, 1999). If winter temperatures do not reach 

below 10°C, they may overwinter by pupating on plant debris and extending their pupal 

stage until environmental conditions are more favourable (Chalfant et al., 1974). In 

colder climates, they can overwinter by taking refuge in greenhouses (Cervantes et al., 

2011; Franklin et al., 2010, 2011). 

1.5.2 Distribution and Damage 

T. ni are native to southwestern North America, but are now present in South America, 

Africa and Asia (CAB International, 2013; Capinera, 1999; Infonet-Biovision, 2017). As 

this species is not cold tolerant, annual populations observed in northern areas of North 

America are the result of immigrants from further south or from populations that 

successfully overwintered in local greenhouses. They feed on crucifers such as cabbage, 

broccoli and cauliflower, but are sporadic pests on a wide variety of other crops 

(Andeloro & Shelton, 1981). Feeding can directly reduce yield while contamination with 

frass can render the crop unacceptable to buyers. The threshold established for control 

measures to be applied intervention is approximately 0.3 larvae per plant (Kirby & 

Slosser, 1984). 

1.5.3 Control and Resistance 

The looper is generally controlled using Bacillus thuringiensis (Bt) toxins, chemical 

insecticides (Caron & Myers, 2008; Cervantes et al., 2011; Franklin & Myers, 2008; 

Janmaat & Myers, 2003; Kain et al., 2004) or the naturally occurring 

nucleopolyhedroviruses (NPVs) (Milks et al., 1998). Resistance to Bt is becoming 

increasingly problematic, especially when it develops in the overwintering refuge 

populations in greenhouses and the moths emigrate into other susceptible populations in 

the summer (Caron & Myers, 2008; Franklin & Myers, 2008; Janmaat & Myers, 2003; 

Kain et al., 2004). 
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1.5.4 MDR Genes in Trichoplusia ni 

Three different MDR genes, trnMDR1, trnMDR2, and trnMDR3, have been identified and 

characterized in T. ni (Simmons et al., 2013). TrnMDR1 is expressed primarily in midgut 

tissue, with lesser expression in the Malpighian tubules and nervous tissue. TrnMDR2 

and trnMDR3 are both expressed in nerve tissue, with the latter present in much higher 

abundance. Small changes in mRNA transcript abundance of trnMDR1 and trnMDR2 

occur when the insect was exposed to the insecticide deltamethrin, being downregulated 

in some tissues and upregulated in others. These somewhat contradictory results 

demonstrate the need for additional research to clarify their potential involvement in 

insecticide susceptibility. 

1.5.5 RNA Interference in Trichoplusia ni 

RNA interference in T. ni has previously been examined using cell cultures, as well as 

through injection or ingestion. In cell cultures, transfection of dsRNA with 

complementarity to Tn-caspase-1 mRNA decreased transcript abundance and prevented 

apoptosis (Heber et al., 2009). Injection of dsRNA used to downregulate endogenous 

developmental genes in T. ni larvae (Kim et al., 2007; Kramer, 2003) found that that cells 

are capable of taking up dsRNA and causing a silencing response indicative of a full 

RNAi pathway. In their review Terenius et al. (2013) reported that feeding dsRNA to T. 

ni larvae can cause downregulation: however the expression reduction was low and the 

data have not been published in the primary literature. In general, Lepidoptera are less 

amenable to dsRNA-mediated RNAi than other orders, so it is improbable that ingested 

RNAi will be as successful in T. ni as in insects such as L. decemlineata (Shukla et al., 

2016; Terenius et al., 2011). 

1.6 Objectives 

Crop losses by pest insects significantly impacts global food production and the 

emergence of insecticide resistance clearly exacerbates the problem. Understanding the 

biological mechanisms behind resistance will allow us to develop methods to prevent, 

eliminate or circumnavigate this problem, which would be valuable for the agriculture 

industry and global food safety. MDR genes are associated with xenobiotic resistance in a 
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multitude of organisms, including insects, making them likely contributors to insecticide 

resistance and important targets for research. RNAi is often used to investigate gene 

function and is now being adapted as a pest control technique, but has varied success in 

different insect species. Therefore two hypotheses were used to guide my experiments: L. 

decemlineata and T. ni tolerance for ivermectin correlate with expression levels of their 

MDR genes; and RNAi is more effective in L. decemlineata than in T. ni because of 

higher RNase enzyme activity in T. ni body fluids. The objectives of my research were to 

(i) identify and characterize MDR genes by their tissue expression in L. decemlineata, (ii) 

test and compare ingested dsRNA as a delivery method for RNAi of MDR genes in L. 

decemlineata and T. ni, and (iii) provided that RNAi is successful, use it to silence MDR 

genes in L. decemlineata and T. ni to investigate their involvement in insecticide 

tolerance.  
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Chapter 2  

2 Materials and Methods 

2.1 Insect Rearing 

All insects used came from laboratory colonies reared in the London Research and 

Development Centre in London, Ontario. Insect strains used in experiments showed no 

previous resistance to insecticides. The L. decemlineata were reared on potato plants 

(Solanum. tuberosum var. Kennebec), T. ni were reared on cabbage plants (Brassica 

oleracea var. Golden Acre) and Manduca sexta, used for dsRNA degradation assays, were 

reared on tobacco plants (Nicotiana tabacum). All were reared at 25°C, 50% relative 

humidity under a 16L:8D photoperiod, and all bioassays were conducted under these 

same conditions. 

2.2 Identification of MDR Genes in L. decemlineata 

MDR genes in L. decemlineata were identified using the BLAST program and the 

QIAGEN® CLC Genomics Workbench by comparing known MDR transcripts from T. ni 

to two L. decemlineata transcriptomes to identify potential MDR sequences. The 

transcriptomes were acquired from Kumar et al. (2014) and an unpublished transcriptome 

from the London Research and Development Center (London, Ontario, Canada). Three 

different sequences were acquired and compared to translated MDR protein sequences 

from the Asian long-horned beetle, Anoplophora glabripennis, the leaf beetle, 

Chrysomela tremula, and the red flour beetle, Tribolium castaneum, using BLAST. 

2.3 Tissue Expression of MDR Genes in L. decemlineata 

Adult beetles that were less than 7 days old were anesthetized on ice then pinned in wax-

bottomed 100 mm Petri dish filled with Calpode’s insect saline solution (pH 7.2, 10.7 

mM NaCl, 25.8 mM KCL, 90 mM glucose , 29 mM CaCl2, 20 mM MgCl2, and 5 mM 

HEPES). The head was removed to obtain brain tissue while midgut and Malpighian 

tubule tissues were obtained via an anterior-posterior incision along the ventral side of 

the body. Each replicate of brain or midgut tissues used material from three insects, while 
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a replicate of Malpighian tubule tissue used material from 12 insects. All tissue for a 

replicate was combined in a 1.5 mL microcentrifuge tube containing 300 µL of 

RNAlater®, stored at 4°C overnight then held at -20°C for long term storage until total 

RNA was extracted using the QIAGEN® RNeasy® Mini Kit. This RNA was used for 

cDNA synthesis and qRT-PCR to measure the relative expression of each gene in each 

tissue (Fig. 1).Three replicates of each tissue type were used.  

2.4 L4440 Plasmid and HT115(DE3) E. coli 

2.4.1 L4440 Plasmid 

The L4440 plasmid confers ampicillin resistance for bacterial selection and its multi-

cloning site (MCS) is flanked by two convergent T7 RNA polymerase promoters for 

RNA synthesis of both strands of an insert simultaneously. The L4440 vector was a gift 

from Andrew Fire (Addgene plasmid # 1654). For in vivo dsRNA production, fragment + 

L4440 plasmid constructs were transformed into HT115(DE3) strain E. coli. 

2.4.2 HT115(DE3) E. coli 

The HT115(DE3) E. coli strain has the genotype F-, mcrA, mcrB, IN(rrnD-rrnE)1 

rnc14::Tn10(DE3) lysogen: lacUV5 promoter-T7 polymerase (IPTG-inducible T7 

polymerase) (RNase III minus). The strain is tetracycline resistant, RNase deficient and 

has isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible T7 polymerase for dsRNA 

synthesis from cloned DNA fragments that have been inserted into the L4440 plasmid 

MCS. Reduced RNase levels in this bacterial host allow greater yields of dsRNA to be 

produced. 

2.5 In vivo Transcription of dsRNA for L. decemlineata 

2.5.1 Fragment Design and Synthesis 

L. decemlineata dsRNA was produced in vivo through bacterial expression because the 

method was logistically preferable. It was cheaper and easier to use than in vitro 

synthesis for creating high volumes of dsRNA. 
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Pairs of primers (Table 2) for PCR amplification of a fragment from each of LedMDR1, 

LedMDR2, and LedMDR3 mRNA transcripts in L. decemlineata were designed using 

sequences acquired from the unpublished London Research and Development Center L. 

decemlineata transcriptome. The fragments were chosen from areas that had low 

homology between each transcript to minimize possible cross-target effects on different 

MDR transcripts. The primers included recognition sites for Not1 and Sal1 restriction 

enzymes on the forward and reverse primers, respectively, to facilitate ligation into the 

L4440 plasmid. Each fragment was amplified by PCR using cDNA synthesized from 

total RNA taken from head, midgut and Malpighian tissue as a template in four 50 µL 

reactions using 25 ng of cDNA per reaction. The following PCR cycle was used: an 

initial step at 94°C for 3 min, then 35 cycles of 94°C for 30 s, 60°C for 30 s, and 72°C for 

30 s, then a final step at 72°C for 7 min. The PCR reactions were purified and 

concentrated using Amicon® Ultra 30k filters. The purified PCR products and the L4440 

plasmid were digested with Not1 and Sal1 enzymes for 16 h at 37°C, which were then 

deactivated at 65°C for 5 minutes. Successful digestion was verified by visualizing and 

comparing the digested products to undigested products through gel electrophoresis using 

a 1.5% agarose gel. The successfully digested products were then isolated through 

electrophoresis on a 1.2% agarose gel and extracted using the QIAGEN® Gel Extraction 

Kit. A fragment of GFP, acquired from a pre-constructed GFP + L4440 plasmid that was 

used in subsequent transformation and induction protocols, was used as a control for non-

specific dsRNA  

2.5.2 Ligation and Transformation 

Each digested fragment was then ligated into the digested L4440 plasmid over 72 h at 

15°C. The fragment + L4440 constructs were transformed into competent HT115(DE3) 

E. coli cells which were incubated on LB + agar + 100 µg/mL ampicillin + 12.5 µg/mL 

tetracycline plates at 37°C for 16 h. Transformants were screened for the insert by using 

them as templates in PCR amplifications with the fragment-specific primers to amplify 

the fragment if it was present. The transformants were inoculated into 100 µL of low salt 

LB and 2 µL of that was used as template in PCR using the same fragment-specific 
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primers and protocol as before. The PCR products were then visualized on a 1.2% 

agarose gel using electrophoresis to verify that the fragments were present. 

2.5.3 Induction and Transcription 

Transformants were induced to produce T7 RNA polymerase using IPTG to promote 

synthesis of dsRNA fragments. For each transformant, 20 mL of an overnight culture of 

the transformed bacteria were inoculated into 1 L of LB + 100 µg/mL ampicillin + 12.5 

µg/mL tetracycline and 400 µL of an overnight culture were inoculated into 20 mL of LB 

+ 1 µM ampicillin + 12.5 µg/mL tetracycline. Both cultures were incubated at 37°C 

while shaking at 180 rpm. The 1 L culture was induced with 1 mL of 1 M IPTG at an 

OD600 of 0.5, while the 20 mL culture was not, and both were incubated again for 4 h. A 

500 µL sample was taken from each culture and centrifuged at 10 000g for 10 min to 

pellet the cells. The supernatants of each sample were removed and replaced with 50 µL 

of RNAlater®. The samples were stored at 4°C overnight and then stored at -20°C until 

having total RNA extracted from them using the MasterPure™ Complete DNA and RNA 

Purification Kit. The RNA was visualized using electrophoresis on a 1.2% agarose gel 

comparing induced to non-induced samples to verify that the dsRNA fragment was 

successfully synthesized (Fig. 2). The remainder of the 1 L induced culture was separated 

into four 250 mL sterile centrifuge tubes and centrifuged at 10 400 g, 10°C to pellet the 

cells. The supernatants were removed and the pellets were washed with 5 mL of PBS, 

resuspended in 25 mL of PBS, combined, divided into 10 mL aliquots, and then stored at 

-80°C until being used for feeding assays. 

2.6 In vitro Transcription of dsRNA for T. ni 

T. ni dsRNA was produced in vitro instead of in vivo as it allowed for easily quantifiable 

dsRNA. Quantifiable amounts of dsRNA allowed for controlled dosing of dsRNA to 

ensure that high quantities were being ingested by the T. ni larvae. TrnV-ATPaseA was 

targeted to serve as a positive control to further evaluate how effective ingested dsRNA is 

in T. ni. A V-ATPase gene was chosen because similar genes have been successfully 

silenced in the lepidopterans M. sexta (Whyard et al., 2009) and H. armigera (Mao et al., 

2015)., with observable phenotypic changes. Multiple dsRNA fragments for each of 
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TrnV-ATPaseA and TrnMDR1 were also used to target each transcript to increase the 

chance that at least one would be effective in case sequence choice affected silencing 

efficiency. A GFP fragment was also used, similar to L. decemlineata. 

Pairs of primers (Table 2) for PCR amplification of 3 different fragments of the TrnV-

ATPase A and TrnMDR1 mRNA transcripts were designed using sequences acquired 

from Simmons et al. (2013) and a T. ni transcriptome assembly (Chen et al., 2014). The 

fragment sequences were chosen to target different areas of each gene. The primers for 

TrnV-ATPaseA included T7 RNA polymerase transcription promoter sequences on their 

ends, so that each fragment would contain convergent promoters for dsRNA 

transcription. They were amplified by PCR using cDNA synthesized from total RNA of 

whole second instar larvae as template in four 50 µL reactions using 25 ng of cDNA per 

reaction. The GFP and TrnMDR1 fragments were amplified using primers consisting of 

the sequence of the T7 RNA polymerase promoter region to amplify them from fragment 

+ L4440 constructs created previously. The same protocol was followed as for fragments 

from L. decemlineata. The same protocols for PCR amplification and purification as the 

L. decemlineata fragments were also used. These purified products were used as 

templates in the Promega™ T7 Ribomax™ Express RNAi System to synthesize dsRNA. 

Successful synthesis was verified by visualizing the dsRNA products on a 1.2% agarose 

gel using electrophoresis (Fig. 3). 

2.7 L. decemlineata RNAi Silencing and Mortality Assays 

2.7.1 RNAi Silencing Assays 

Prior to feeding treatments, beetles were kept in groups of at least 20 and fed untreated 

potato leaves ad libitum. For each replicate of each treatment (HT115; GFP dsRNA; 

MDR1 dsRNA; MDR2 dsRNA; and MDR3 dsRNA), leaf clippings from potato plants 

were submerged in PBS containing the appropriate induced cells and allowed to air dry. 

Untreated leaf clippings were used for a control treatment. The leaf clippings were placed 

in a 150 mm Petri dish with air holes in the lid and moist filter paper on the floor of the 

dish. Four or five beetles less than 7 days old were placed in the dish with the enough leaf 

clippings to feed ad libitum. Each dish was considered a replicate and six replicates were 
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performed for each treatment. The filter paper was re-moistened and the food replaced 

every 24 h for 72 h, at which point 3 beetles were removed and dissected for head, 

midgut, and Malpighian tubule tissues. All tissues from the 3 insects were pooled 

together and stored in RNAlater® at 4°C overnight, then moved to -20°C until RNA was 

extracted from them. Total RNA was extracted from these tissues using the QIAGEN® 

RNeasy® Mini Kit. This RNA was used for cDNA synthesis and qRT-PCR to measure 

the expression levels of each gene (Fig. 4). 

2.7.2 dsRNA + Ivermectin Survival Assays 

To test for ivermectin toxicity after gene silencing the same protocol was used except 13 

or 14 beetles were placed in each Petri dish rather than 4 or 5. Ten beetles were placed in 

individual 100 mm Petri dishes with moistened filter paper and an 8 mm diameter leaf 

that had been treated with 2 microlitres of 5 ppm ivermectin. The dose was chosen as an 

approximate LD50 based on toxicity tests performed on L. decemlineata (Appendix A1). 

The insects were allowed to feed on the disc overnight after which they received no food. 

They were assessed daily for 7 days for paralysis (unable to exhibit normal walking 

behaviour) or death. No paralyzed beetles recovered so they were deemed moribund and 

counted as deaths when analyzing the data. Each beetle was considered a replicate. 

Kaplan-Meier estimators were used to model the survival of the insects in each treatment 

and a log-rank test was performed to compare the survival rates (Fig. 5). 

2.7.3 Verapamil + Ivermectin Survival Assays 

Verapamil was used to inhibit all ABC transporter activity at the protein level to verify if 

phenotypic changes caused by direct transporter inhibition would be similar to those 

caused by transcript downregulation.  

Sixty beetles that were less than 7 days old were chilled on ice, and then 30 had 1 µL of 1 

mM verapamil dissolved in acetone topically applied to the underside of their abdomen. 

The remaining 30 had acetone topically applied and served as controls. The verapamil 

dosage was based off of a similar assay performed by Hou et al. (2016). Each beetle was 

then fed a dose of ivermectin and then observed for 7 days using the same protocol as in 

the dsRNA + ivermectin survival assays (Fig. 6). 
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2.8 T. ni RNAi Silencing Assays 

For each replicate of each treatment (GFP dsRNA; V-ATPaseA Frag 1, 2, 3; MDR1 Frag 

1, 2, 3), 2 µg of dsRNA were applied to three or four 6 mm diameter cabbage leaf discs 

and allowed to air dry. Untreated cabbage leaf discs were used as a control treatment. 

One second instar T. ni larva was placed with each leaf disc in a 50 mm petri dish lined 

with moist filter paper. The disc was replaced and the filter paper re-moistened every 24 

h for 72 h. Six replicates were performed for each treatment. Two or three larvae from 

each replicate were placed in a 1.5 mL centrifuge tube, chilled on ice for 5 minute then 

submerged in 150 µL of RNAlater®, held overnight at 4°C then stored at -20°C until 

total RNA was extracted using the QIAGEN® RNeasy® Kit. This RNA was used for 

cDNA synthesis and qRT-PCR to measure the relative expression levels of each gene 

(Fig. 7 and 8). 

2.9 cDNA Synthesis and Real-time Quantitative PCR (qRT-
PCR) 

2.9.1 cDNA Synthesis 

Total RNA samples were DNase-digested using the Ambion™ Turbo DNA-free™ Kit 

prior to synthesis in order to remove any contaminating DNA. cDNA was then 

synthesized using the Invitrogen™ SuperScript® III First-Strand Synthesis System for 

RT-PCR. Successful synthesis of cDNA was verified by using the cDNA products as 

templates in PCR. The same PCR protocol for amplification of L. decemlineata RNAi 

fragments was used, with 25 ng of cDNA used as template and qPCR primers for L8e and 

EIF4α for L. decemlineata and T. ni, respectively, were used for amplification. The 

products were visualized by electrophoresis on a 1.2% agarose gel to verify successful 

amplification, indicating the presence of cDNA. 

2.9.2 qRT-PCR 

The Bio-Rad SsoFast™ EvaGreen® Supermix kit, Bio-Rad C1000™ Thermal Cycler, 

and Bio-Rad CFX96™ Real-Time Detection System were used for all qPCR reactions. 

Primer pairs for each gene of interest were designed such that each amplicon was located 
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outside of the sequences used for the dsRNA fragments to avoid false positives. Primer 

pairs for the L8e and EIF4α transcripts were designed for use as reference genes in L. 

decemlineata and T. ni, respectively. Amplification efficiency of these primers was 

determined by using 2x dilution series starting with a concentration of 2.5 ng/µL and 

diluting down to 0.078 ng/µL of cDNA template in 10 µL reactions. The following PCR 

cycle was used: an initial step of 95°C for 3 min, then 40 cycles of 95°C for 10 s, 60°C 

for 30 s, and 72°C for 30 s. Fluorescence was measured at the end of every cycle and a 

melt curve from 95 to 65°C performed to ensure no off-target products were amplified. 

Primer pairs were only used if their amplification efficiency was within 90-110%. No-

template controls were included for every primer pair and all reactions were performed in 

duplicate. When measuring the genes of interest in insect cDNA samples, the same PCR 

cycle was used, 2.5 ng/µL of cDNA template was used, no-template controls were 

included, and each reaction was performed in triplicate. Expression of L8e was measured 

in all L. decemlineata samples and EIF4α was measured in all T. ni samples. The ΔΔCt 

method was used to analyze the expression data with all Ct values in L. decemlineata 

being normalized to L8e Ct values in the same sample, and T. ni Ct values being 

normalized to EIF4α. Ct values to generate the ΔCt values. When measuring localized 

expression of MDR transcripts in L. decemlineata, ΔΔCt values were calculated relative 

to the tissue with the highest expression for each gene. When measuring expression of 

genes after attempted silencing in both L. decemlineata and T. ni, ΔΔCt values were 

calculated relative to the expression in insects fed untreated potato or cabbage. To 

determine statistical significance, one-way ANOVA and Tukey’s HSD tests (p<0.05) 

were used to determine differences between ΔCt values. 

Table 1: Primers used for dsRNA fragment synthesis and qPCR expression measurement 

of genes in dsRNA-fed Colorado potato beetles and cabbage loopers. Sequences added 

for restriction enzyme digestion or for T7 transcription are indicated by square brackets. 

Primer Sequence 

Primers for Fragment + L4440 Construction 

LedMDR1 For [GAGCGGCCGC]TGTTCATGATTTATTCTAGT 

LedMDR1 Rev [GCAGGTCGAC]ATCTGGTCTGACGGATAG 

LedMDR2 For [GAGCGGCCGC]AAGTTAGCCGTGGAAGCCAT 

LedMDR2 Rev [GCAGGTCGAC]TCCCACGCACAATTCACTGG 
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LedMDR3 For [TAGCGGCCGC]AGTGGGAAGACGCCATCAGT 

LedMDR3 Rev [GCAGGTCGAC]TGCCATACCACCAACATAACGA 

TrnMDR1 Frag 1 For [GAGCGGCCGC]CTCCAGACGTTCCGTTCACA 

TrnMDR1 Frag 1 Rev [GCAGGTCGAC]TTACGAAGGTCAGGGCGACTA 

TrnMDR1 Frag 2 For [GAGCGGCCGC]ATACCCAACTCGTCCGATGG 

TrnMDR1 Frag 2 Rev [GCAGGTCGAC]TACATCTTGGGGCTCGTATG 

TrnMDR1 Frag 3 For [GAGCGGCCGC]ATACCCAACTCGTCCGATGG 

TrnMDR1 Frag 3 Rev [GCAGGTCGAC]TACATCTTGGGGCGTCGTATG 

Primers for in vitro dsRNA Synthesis 

T7 TAATACGACTCACTATAGGG 

TrnV-ATPaseA Frag 1 For [TAATACGACTCACTATAGGG]CGGGCCACAACATCGCATA 

TrnV-ATPaseA Frag 1 Rev [TAATACGACTCACTATAGGG]AACGTGGAATGCAAGAGGGT 

TrnV-ATPaseA Frag 2 For [TAATACGACTCACTATAGGG]GTTCTACAAGACCGTGGGCA 

TrnV-ATPaseA Frag 2 Rev [TAATACGACTCACTATAGGG]AATATGCGATGTTGTGGCCC 

TrnV-ATPaseA Frag 3 For [TAATACGACTCACTATAGGG]CGAGACCGACAAGATCACCC 

TrnV-ATPaseA Frag 3 Rev [TAATACGACTCACTATAGGG]ATATGCGATGTTGTGGCCC 

qPCR Primers 

qLedL8e For GGTAACCATCAACACATTGG 

qLedL8e Rev TCTTGGCATCCACTTTACC 

qLedMDR1 For TAGACCTCACATGGTTCAGG 
qLedMDR1 Rev TTAGACTTCCGTTGACTTCTTC 

qLedMDR2 For TAGTTTCCCAGGAGCCGAAC 

qLedMDR2 Rev TTCGCACTCTTTGCAGCTTTC 

qLedMDR3 For TCGTTGGTATCTGCTCTCTTCG 

qLedMDR3 Rev TGAGGTGCCATTATTCGATCTG 

qTrnEIF4α For ACCTTGCGGCGAGTGTT 

qTrnEIF4α Rev CTGGATACGCTGTGTGAC 

qTrnV-ATPaseA For TTCCATCTTTGTCGTCCCGT 

qTrnV-ATPaseA Rev CTTCAAACCGCCTTTGGTCG 

qTrnMDR1 For GCTGCCTGTTCTACGCCTAT 

qTrnMDR1 Rev CACCTTCCCACACTGACCTC 

 

2.10 Comparison of dsRNA Degradation in Midgut Lumen 
and Hemolymph 

Degradation of dsRNA in hemolymph and midgut lumen of L. decemlineata, M. sexta, 

and T. ni was compared to determine if gut dsRNAse enzymes could be a mitigating 

factor for RNAi in T. ni. Manduca sexta was included as it is a lepidopteran where RNAi 
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has had some success. Thus, T. ni could be compared to multiple relevant species to 

establish its relative refractoriness to ingested dsRNA.  

2.10.1 Midgut Lumen and Hemolymph Extraction 

The hemolymph and lumen content were obtained from <7 day old L. decemlineata 

adults, 4
th

 instar T. ni and 3
rd

 instar M. sexta larvae that were first held at -20°C for 5 

minutes. Hemolymph was pipetted from a pinhole made in the ventral surface of the L. 

decemlineata abdomen, while for the caterpillars it was obtained from an incision made 

in one of the prolegs. In all three, the midgut content was obtained by removing the 

midgut via a lengthwise incision along the ventral surface, placing it in a 1.5 mL 

microcentrifuge tube and then gently pressing with a pestle. The samples of hemolymph 

and midgut contents were kept on ice and hemolymph was preserved with 2 mg of N-

Phenylthiourea/10 µL. The hemolymph from 3-4 insects was combined and centrifuged 

at 16 000 g for 7 min, while the gut contents from 2-3 insects were combined and 

centrifuged at 6 000 g for 7 min. Only the supernatants were used in degradation assays 

that were conducted the same day as the extractions were made. 

2.10.2 Comparison of dsRNA Degradation 

Serial dilutions were created starting at 100% hemolymph and 10% midgut lumen then 

diluting 2x using PBS until reaching concentrations of 1.56% hemolymph and 0.156% 

midgut lumen. One microgram of GFP dsRNA synthesized in vitro was added to 10 µL 

of each dilution and incubated at room temperature for 90 minutes. One microgram of 

GFP dsRNA was added to 10 µL of PBS as a control. The remaining dsRNA from each 

reaction was then visualized on a 1.2% agarose gel using gel electrophoresis (Fig. 9 and 

10). 
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Chapter 3  

3 Results 

3.1 Identification of MDR Genes in L. decemlineata 

Three potential MDR genes were identified in L. decemlineata after comparison of L. 

decemlineata transcriptomes to the T. ni transcriptome. Each putative MDR gene in the 

beetle had moderate to high identity at the amino acid level (52-74%) with the predicted 

MDR and MDR-like proteins from A. glabripennis, C. tremula, and T. castaneum. Each 

sequence also showed the conserved domains typical of MDR proteins: ABC 

transmembrane domains, ATP-binding cassettes, Walker A and B motifs; and ABC 

transporter signature motifs. The genes were named LedMDR1, LedMDR2, and 

LedMDR3. 

3.2 Tissue Expression of MDR Genes in L. decemlineata 

To characterize the expression profiles of each of the three new LedMDR genes in L. 

decemlineata, qPCR was used to measure their relative expression levels in three tissues 

in which MDR genes are commonly expressed: midgut, nervous, and Malpighian tubule 

tissues. Dissected heads were used to serve as nervous tissue. LedMDR1 had an 

approximately 40-fold higher expression in midgut tissue than head and Malpighian 

tubule tissues (Fig. 1, p<0.05), while LedMDR2 had 300-500 fold higher expression in 

head tissue when compared to the other tissues (Fig. 1, p<0.05). LedMDR3 had similar 

levels of expression in head and Malpighian tubule tissues that were significantly high 

than in the midgut tissue in which there was no detectable expression (Fig. 1, p<0.05). 
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Figure 1: Expression levels of each MDR gene in midgut, head, and Malpighian tubule 

tissue of adult L. decemlineata. Bars represent the mean normalized fold expression of 

each gene (± SEM, n=3) relative to the tissue in which each gene is most highly 

expressed. Different letters represent significantly different expression levels within each 

gene (Tukey’s HSD, p<0.05). 

3.3 Verification of dsRNA Synthesis 

The dsRNA fragments used for RNAi in L. decemlineata were produced in HT115 E. coli 

cells designed for inducible expression of dsRNA molecules. The dsRNA fragments used 

for RNAi in T. ni were produced in vitro from PCR templates or plasmids. Synthesis of 

the fragments was verified by visualizing the fragments using gel electrophoresis. Each 

of the HT115 E. coli strains transformed with a fragment + L4440 plasmid construct 

successfully synthesized the dsRNA fragments in high quantities upon induction with 

IPTG (Fig. 2). Each of the induced strains produced high quantities of nucleic acid 

fragments of the correct size. Each of the T. ni dsRNA fragments were also successfully 

synthesized in vitro (Fig. 3). Fragments of the correct size were able to be produced at 
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high concentrations (1.5 µg/µL or greater), so that T. ni could be given high doses during 

feeding assays. 

 

Figure 2: Gel visualization of nucleic acid extracts from bacteria transformed with L. 

decemlineata fragment + L4440 plasmids. Each lane contains total nucleic acids 

extracted from one of the transformed strains, as indicated by the labels. Each strain was 

either uninduced (U) or induced (I) to produce dsRNA before extraction. The synthesized 

dsRNA fragments are indicated by white arrows. 
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Figure 3: Gel visualization of in vitro synthesized T. ni dsRNA fragments. Labels 

indicate the target gene for each fragment as well as each fragment’s name. Each lane 

contains 1 µg of synthesized dsRNA. 

3.4 L. decemlineata RNAi Silencing Assays 

RNAi through feeding of bacterially-expressed dsRNA fragments was attempted for 

downregulation of LedMDR1, LedMDR2, and LedMDR3 in L. decemlineata beetles. The 

insects were fed one of the following treatments: untreated potato foliage, potato foliage 

treated with non-dsRNA-expressing bacteria, potato foliage treated with GFP dsRNA-

expressing bacteria, or potato foliage treated with bacteria expressing dsRNA specific to 

LedMDR1, LedMDR2, or LedMDR3. The relative expression levels of each gene were 

measured using qPCR after each feeding treatment. LedMDR1 and LedMDR2 were 

significantly downregulated in adults after ingestion of bacteria containing respective 

gene-specific dsRNA fragments compared to those fed with potato only, dsRNA-free 

bacteria, or GFP dsRNA-producing bacteria. (Fig. 4) Compared with controls LedMDR1 

and LedMDR2 expression in the three tissues combined was 90% and 96% silenced, 

respectively, with no significant differences between the other treatments. LedMDR3 
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expression couldn’t be measured in the silencing assays as the transcript abundance was 

too low for qPCR to provide consistently accurate measurements. 

 

Figure 4: Expression levels of each LedMDR gene in adult L. decemlineata fed with one 

of the indicated treatments. Bars represent the mean normalized fold expression (± SEM, 

n=6) relative to each gene’s expression in insects fed with potato. Different letters 

represent significantly different expression levels within each gene (Tukey’s HSD, 

p<0.05).  

3.5 L. decemlineata Survival Assays 

To test if downregulation of LedMDR genes had an effect on L. decemlineata tolerance 

for the insecticide ivermectin, L. decemlineata beetles were fed a dose of ivermectin after 

being fed one of the dsRNA feeding treatments. When challenged with ivermectin the 

survival of the beetles feeding on foliage treated with bacteria or bacteria expressing 

dsRNA did not differ significantly from those fed with untreated potato leaves (Fig. 5, 

log-rank test, p=0.372).   
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Figure 5: Proportion of L. decemlineata adults surviving in different dsRNA feeding 

treatments after receiving 2 µL of 5 ppm ivermectin. Error bars represent 95% confidence 

intervals (n=30). No significant differences were observed between treatments (Log-rank 

test, p=0.372). 

Since no significant changes in ivermectin tolerance were caused by downregulation of 

LedMDR1 or LedMDR2, another survival assay was performed using verapamil to inhibit 

all MDR transporters in L. decemlineata. This would reveal if any MDR transporters 

other than LedMDR1 or LedMDR2 are involved in ivermectin tolerance. L. decemlineata 

beetles were given a topical treatment of either acetone to serve as a control, or verapamil 

before being fed a dose of ivermectin. There was no significant difference in survival 

between beetles treated with verapamil compared to those treated with acetone after both 

were challenged with ivermectin (Fig. 6, log-rank test, p=0.0547). 
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Figure 6: Proportion of L. decemlineata adults surviving in different feeding treatments 

each day after receiving 2 µL of 5 ppm ivermectin. Error bars represent 95% confidence 

intervals (n=30). A significant difference was not observed between the two treatments 

(Log-rank test, p=0.0547). 

3.6 T. ni RNAi Silencing Assays 

RNAi through feeding of in vivo-synthesized dsRNA fragments was attempted for 

downregulation of TrnV-ATPaseA and TrnMDR1 in second instar T. ni larvae. The larvae 

were fed untreated cabbage foliage, foliage treated with GFP dsRNA, or foliage treated 

with dsRNA fragments specific to TrnV-ATPaseA or TrnMDR1. The relative expression 

levels of each gene were measured using qPCR after the feeding treatments. No 

significant differences in TrnV-ATPaseA (Fig. 7, Tukey’s HSD, p>0.05) or TrnMDR1 

(Fig. 8, Tukey’s HSD, p>0.05) expression were found between insects in any of the 

different feeding treatments. 
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Figure 7: Expression levels of TrnV-ATPaseA in T. ni larvae fed different foliage 

treatments. Bars represent mean normalized fold expression levels (± SEM, n=6) relative 

to the expression of TrnV-ATPase A in T. ni fed with cabbage. No significant differences 

were found between feeding treatments (Tukey’s HSD, p>0.05). 

 

Figure 8: Expression levels of TrnMDR1 in T. ni larvae fed different foliage treatments. 

Bars represent mean normalized fold expression levels (± SEM, n=6) relative to the 

expression of TrnMDR1 in T. ni fed with cabbage. No significant differences were found 

between feeding treatments (Tukey’s HSD, p>0.05). 
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3.7 Comparison of dsRNA Degradation in Midgut Lumen 
and Hemolymph 

To determine the relative stability of dsRNA molecules in the body fluids of L. 

decemlineata and T. ni, GFP dsRNA was incubated in serial dilutions of midgut lumen 

contents or hemolymph from each insect before being visualized by gel electrophoresis. 

GFP dsRNA was also incubated in midgut lumen contents or hemolymph from M. sexta 

to provide a comparison to another lepidopteran insect. 

dsRNA degradation capacity of midgut contents from the lepidopteran larvae was much 

greater (M. sexta fluids degraded the dsRNA slightly less than T. ni) than in L. 

decemlineata adults (Fig. 9). In both M. sexta and T. ni dsRNA was fully degraded at 

concentrations of 1.25% while it required 5% in L. decemlineata. 

 

Figure 9: Gel visualization of GFP dsRNA incubated for 90 minutes in midgut lumen 

contents of L. decemlineata, M. sexta, and T. ni. The first lane of each image contains 1 

µg of GFP dsRNA incubated in PBS. Each other lane contains 1 µg GFP dsRNA 

incubated in the indicated concentration of midgut lumen contents diluted in PBS. 
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The dsRNA degradation in hemolymph followed a similar pattern to the midgut lumen 

contents (Fig. 10). In L. decemlineata, dsRNA was fully degraded at hemolymph 

concentrations of 6.25% compared with 3.13% in M. sexta and 0.156% in T. ni. 

 

 

Figure 10: Gel visualization of GFP dsRNA incubated for 90 minutes in hemolymph of 

L. decemlineata, M. sexta, and T. ni. The first lane of each image contains 1 µg GFP 

dsRNA incubated in PBS. Each other lane contains 1 µg GFP dsRNA incubated in the 

indicated concentration of hemolymph diluted in PBS. 
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Chapter 4  

4 Discussion  

Investigating the nature of insecticide resistance and developing novel pest management 

techniques will be crucial for formulating future agricultural practices. The data presented 

in this thesis provide knowledge about the role of MDR genes in L. decemlineata 

tolerance for insecticides as well as elucidating differences between insects that are 

responsive to RNAi compared to those that are not. 

Three L. decemlineata genes; LedMDR1, LedMDR2, and LedMDR3 were identified and 

their tissue expression characterized across midgut, nervous, and Malpighian tubule 

tissues. Each gene had a different tissue expression profile, indicating that the functions 

of their protein products likely differ and may target different substrates for transportation 

across their respective membranes. Downregulation of LedMDR1 and LedMDR2 genes 

through RNAi did not significantly affect L. decemlineata tolerance for ivermectin, 

demonstrating that neither of them are strong components of ivermectin detoxification in 

this insect. Inhibition of MDR proteins using a chemical inhibitor, verapamil, had an 

effect on L. decemlineata ivermectin tolerance that was nearly statistically significant, but 

did not provide clear enough evidence to prove that ivermectin tolerance is correlated 

with MDR activity. 

RNAi in T. ni was not successful when targeting either TrnV-ATPaseA or TrnMDR1 with 

any of the dsRNA fragments utilized. This suggests that T.ni have a physiological barrier 

that prevents RNAi. Subsequent comparisons of dsRNA stability in the hemolymph and 

midgut lumen of L. decemlineata, M. sexta, and T. ni showed that dsRNA degrades faster 

in T. ni when compared to the other two insects. This result, along with similar published 

research, solidifies the conclusion that the physiological barrier is at least partly due to 

high RNase enzyme activity in lepidopteran insects. 
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4.1 Tissue Expression of L. decemlineata MDR Genes 

The levels of expression of the MDR genes in L. decemlineata differed between the three 

tissues examined as reported in other organisms. In Chrysomela populi, a leaf beetle 

similar to L. decemlineata, the transcript abundance of 65 potential ABC transporter 

genes was examined between gut, Malpighian tubule, fat body, and glandular tissue 

(Strauss et al., 2014). Most of the genes in C. populi varied in expression by tissue type 

with some having markedly higher expression in a single tissue and others being more 

evenly expressed throughout all tissues. Likewise, three MDR genes previously 

investigated in T. ni had varied expression; one was primarily expressed in the midgut 

and two were almost exclusively expressed in the nervous system (Simmons et al., 2013). 

The differences in tissue expression, which are common across organisms, imply that the 

MDR proteins may differ in their substrates and function.  

There is a high excretion of unmetabolised secondary metabolites in mammalian feces 

(Sorensen et al., 2004) and insect frass (Gómez et al., 1999), indicating that excretion 

itself is actually the primary mode of defense. Due to their general function of effluxing 

xenobiotics and their broad substrate specificity (Sorensen and Dearing, 2006), it has 

been postulated that ABC transporters are involved in this adaptive defense mechanism. 

While the research examining the role of ABC transporters in secondary metabolite 

excretion is limited, there are some examples that show direct correlations between MDR 

expression and xenobiotic tolerance. For example, D. melanogaster with MDR knockout 

mutations has increased susceptibly to cardenolides (Groen et al., 2017) and MDR 

expression in Mayetiola destructor larvae increases when they feed on resistant strains of 

wheat (Shukle et al., 2008). Similarly, when H. armigera, larvae were fed different plant 

secondary metabolites several ABC transporter genes were upregulated in gut tissue 

(Bretschneider et al., 2016). Interestingly in Chrysomela populi ABC transporters play a 

role in sequestering secondary metabolites that the beetle subsequently uses in its defense 

against predators (Strauss et al., 2013) providing additional evidence that ABC 

transporters do indeed transport secondary metabolites. Given that L. decemlineata 

excretes glycoalkaloids from solanaceous plants without metabolizing them (Armer, 

2004) and LedMDR1 is almost exclusively expressed in midgut tissue would lend support 
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to the idea that it plays a role in the first line of defense against ingested compounds. If 

the substrate specificity of LedMDR1 also includes insecticides, it could play an equally 

important role in insecticide resistance.  

LedMDR2 probably serves to protect against neurotoxins as it was primarily expressed in 

the head, which contains a concentration of nervous tissue. Multiple MDRs have been 

identified in other animals as a barrier against xenobiotics that accumulate in or attack the 

nervous system. Collie dogs with MDR1 mutations compromising transporter function 

are specifically vulnerable to the neurotoxin ivermectin (Roulet et al., 2003), and mdr1a 

expressed in brain capillary and endothelial cells of mice prevents accumulation of a 

variety of drugs including ivermectin in the brain (Schinkel, 1999). Similar MDR genes 

have been identified in D. melanogaster (Mayer et al., 2009) and M. sexta (Murray et al., 

1994) in which they are expressed in the CNS-humoral interface, the blood-brain barrier 

equivalent in insects. The expression of these genes and their corresponding proteins was 

linked to reduced penetration of nerve-targeting xenobiotics like nicotine. As LedMDR2 

shares a similar expression pattern to these examples, it is probably involved in the 

blood-brain barrier. 

LedMDR3 may serve a more general function to help excrete a wider variety of toxins as 

it was expressed in both the Malpighian tubules and head tissue. MDR genes expressed in 

Malpighian tubules have been linked to detoxification of plant secondary metabolites in 

D. melanogaster (Groen et al., 2017) and M. destructor (Say) (Shukle et al., 2008), 

including neurotoxins. The MDR in M. sexta that protected against nicotine was 

expressed in the CNS-humoral interface and the Malpighian tubules, similar to 

LedMDR3. As Malpighian tubules are the primary excretory tissue for filtering insect 

hemolymph, LedMDR3 may serve as a second barrier, excreting xenobiotics against 

which the gut transporters don’t protect. 

4.2 RNAi Silencing Assays 

4.2.1 L. decemlineata Silencing Assays 

In feeding assays using LedMDR1 and LedMDR2 dsRNA, the targeted gene was 

significantly downregulated compared to controls. The insects fed with HT115 bacteria 
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showed no significant changes in gene expression, indicating that MDR expression is not 

affected by the ingestion of bacterial cells. Therefore using bacterial cells as a delivery 

method for dsRNA will not confound expression results. Similarly GFP dsRNA-fed 

insects showed no significant change in either LedMDR1 or LedMDR2 expression, 

indicating that MDR expression did not respond to a non-specific dsRNA molecule. As 

there are minimal off target effects from non-target dsRNA molecules any effects seen 

from MDR-complementary dsRNA molecules are likely due to specific targeting. It is 

also important to note that in L. decemlineata there was no upregulation of either 

LedMDR1 or LedMDR2 in response to ingested dsRNA yet in the Chinese tussar moth, 

Antheraea pernyi, injection of hemolin-specific dsRNA actually caused an increase rather 

than a decrease in the target mRNA abundance. This was interpreted as an immune 

response because similar results were found with baculovirus infection (Hirai et al., 

2004). Large scale changes to gene expression are also possible, as feeding dsRNA to the 

honey bee, Apis mellifera, caused expression changes in genes related to RNA 

processing, immunity, stress response, and response to external stimulus (Nunes et al., 

2013). While it is possible, even likely, that similar such changes occurred in L. 

decemlineata, neither LedMDR1 nor LedMDR2 were affected. The efficient 

downregulation of LedMDR1 by ingested dsRNA demonstrates the ability of L. 

decemlineata to absorb and uptake dsRNA from the gut lumen into gut cells, which is 

consistent with other research (Cappelle et al., 2016). LedMDR2 was also effectively 

downregulated, despite not being expressed in midgut tissue, showing that L. 

decemlineata are capable of spreading the RNAi effect to other tissues as seen in a study 

by (Zhu et al., 2011) in which five vital genes expressed in multiple tissues showed 

significant downregulation, and an increase in insect mortality. It should be noted that 

both LedMDR1 and LedMDR2 were successfully downregulated despite using a delivery 

method that did not allow for direct quantification of how much dsRNA the insects were 

consuming. As expression of dsRNA using HT115 E. coli cells is often cheaper and 

easier than synthesizing dsRNA in vitro, it is a useful method for dsRNA delivery 

whenever precise control of dosing is not necessary, as in this case with L. decemlineata. 

Unfortunately LedMDR3 expression could not be measured accurately by qPCR as I 

obtained inconsistent and highly variable Ct values within some samples, probably 
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caused by low transcript concentrations. The low concentrations were likely due to 

LedMDR3 transcripts being primarily localized to Malpighian tubule tissue. During RNA 

extraction for the silencing assays, midgut, head, and Malpighian tubule tissues were 

combined from 3 insects instead of using solely Malpighian tubule tissue as for the tissue 

expression assay. Since the Malpighian tubule tissue has a smaller mass and volume than 

the other tissues, this lowered the concentration of Malpighian tubule-specific mRNA in 

the samples and consequently, the concentration of LedMDR3 transcript. The expression 

of LedMDR3 was already low compared to the other LedMDR transcripts, so this reduced 

the accuracy of qPCR measurements enough that transcript levels could not be 

consistently measured. 

4.2.2 T. ni Silencing Assays 

In the case of T. ni, neither TrnV-ATPaseA nor TrnMDR1 were downregulated by any of 

the dsRNA fragments used. This lack of downregulation was not likely due to inefficient 

dsRNA fragments, because varied amounts of silencing between the fragments would 

have likely been observed if that was the case. It is more likely that an inherent 

physiological inhibition exists in the T. ni larvae. These results are not unexpected, as 

RNAi is difficult with lepidopteran species and there is little evidence to suggest T. ni 

respond well to ingested dsRNA. However, T. ni cells are capable of taking up dsRNA 

from the hemocoel and show an interference response when the dsRNA is taken up or 

directly transfected into cells as shown in other research (Hebert et al., 2009; Kim et al., 

2007) Unsuccessful interference from ingested dsRNA, even when targeting transcripts 

expressed in midgut tissue, indicate that there are barriers that prevent ingested dsRNA 

from being absorbed from the gut. One possibility is RNAse activity or other factors 

within the gut that degrade the dsRNA fragments before they can be absorbed. Higher 

concentrations of dsRNA-targeting nucleases in T. ni gut lumen compared to other 

insects such as L. decemlineata could explain why RNAi through ingestion has varying 

effectiveness based on the species. In fact, dsRNase enzymes that are specifically 

excreted into the gut lumen have been identified in the silkworm, Bombyx mori (Arimatsu 

et al., 2007; Liu et al., 2012), another lepidopteran, as well as Locusta migratoria (Song 

et al., 2017). Notably, reduced effectiveness of ingested dsRNA compared to injected 
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dsRNA was found in an earlier study of L. migratoria (Luo et al., 2013). A review by 

Terenius et al. (2011) also noted reduced success with ingested dsRNA in the 

lepidopteran Spodoptera frugiperda compared to injected dsRNA. Information regarding 

insect gut nucleases is currently limited, but they have been identified in other 

publications as major obstacles for ingested dsRNA in pest management (Katoch & 

Thakur, 2012). 

4.3 Comparison of dsRNA Degradation in Midgut Lumen 
and Hemolymph 

To determine if dsRNA stability in body fluids is a determinant for the success of RNAi 

in the species studied here, relative degradation rates of dsRNA in midgut lumen and 

hemolymph were compared between L. decemlineata, M. sexta, and T. ni. The relative 

degradation of dsRNA in midgut lumen between L. decemlineata, M. sexta, and T. ni 

correlated with the relative success of ingested dsRNA between the three species. L. 

decemlineata had the least amount of degradation between all three species, which was 

expected as there are many published results successfully using ingested dsRNA in this 

species. M. sexta and T. ni lumen had much greater degradation than L. decemlineata, but 

similar degradation to each other, with dsRNA surviving slightly better in M. sexta. Use 

of ingested dsRNA in M. sexta has largely been successful, but the efficiency of silencing 

was not always high (Terenius et al., 2011), while in T. ni there are no published 

examples of successful RNAi through ingestion. These results agree with the current 

knowledge of RNAi in insects as environmental RNAi is generally more successful in 

coleopteran species than in lepidopteran species and imply that an insect’s midgut lumen 

environment is a strong indicator of how successful ingested dsRNA will be. How 

quickly dsRNA fragments are degraded in the gut of the target insect seems to be an 

important factor for predicting environmental RNAi effects. 

The hemolymph degradation assays followed a similar pattern to the lumen assays. There 

was a clear order of hospitability with the least degradation in L. decemlineata 

hemolymph and the most degradation in T. ni hemolymph. However, the difference 

between species was less pronounced in the hemolymph than in the midgut lumen. 

Whereas dsRNA survived in L. decemlineata lumen at 4 times the concentration of M. 
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sexta lumen, it only survived up to 2 times the concentration in hemolymph. This 

suggests that the hemolymph composition does not explain species differences in RNAi 

efficacy as strongly as midgut lumen composition. Notably there have also been 

successful RNAi studies using injected dsRNA in all three species, so the hemolymph is 

not as significant a barrier as the midgut lumen. 

A similar experiment was performed by Shukla et al. (2016) comparing the lumen and 

hemolymph of L. decemlineata larvae to the larvae of another lepidopteran, Heliothis 

virescens. They found similar results in that dsRNA survived at higher concentrations for 

both fluids in L. decemlineata compared to H. virescens. The dsRNA also survived at 

higher concentrations of both fluids in the L. decemlineata larvae in their experiment 

compared to adults used for this thesis, which again agrees with current knowledge about 

RNAi in insects as earlier life stages of insects seem to be more susceptible to RNAi 

effects than later stages (Katoch et al., 2013). Survivability of dsRNA in the gut and 

hemolymph seem to be a factor in this difference between developmental stages. 

Because evidence of the effects of the gut lumen on dsRNA are becoming more 

prevalent, some researchers have started looking for techniques to circumvent or protect 

against degradation in the gut. An experiment in S. frugiperda specifically timed dsRNA 

feeding assays for when insect guts have lower concentrations of dsRNAses, such as 

when they recently molted or were starved (Rodríguez-Cabrera et al., 2010). Timing 

dsRNA delivery around gut chemical properties can be useful in the lab for gene studies, 

but would be more difficult to execute in a field for pest management. Other researchers 

are using delivery techniques designed to protect the dsRNA fragments long enough for 

them to be absorbed by cells. Lin et al. (2017) delivered dsRNA to Blattella germanica 

by encasing it in lipoplexes which proved more effective than using naked dsRNA. 

4.4 L. decemlineata Survival Assays 

Despite successful silencing of LedMDR1 and LedMDR2, the subsequent survival assays 

using dsRNA with ivermectin showed no statistically significant changes due to the 

downregulation. Similarly, while the survival of insects dosed with verapamil prior to 

ivermectin had reduced survival compared to those dosed with the acetone control, the 
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difference was not statistically significant. Survival assays with verapamil returned a p-

value of 0.0547 with a critical p-value of 0.05.  It is possible that verapamil does in fact 

have a significant biological effect, but the assay wasn’t powerful enough to capture it. If 

further replication of the assay were to provide a lower p-value, then it would be 

appropriate to conclude that there is a significant difference and that MDR proteins play a 

significant role in ivermectin detoxification. Repetition of the assay could also include 

multiple different doses of ivermectin or verapamil. Despite the use of an ivermectin 

concentration estimated to be approximately the LD50 for the insecticide, only 10% of 

the control insects were killed by the end of the assay, indicating that ivermectin 

tolerance can vary significantly between cohorts of insects. The use of multiple doses of 

ivermectin and verapamil would ensure that any assay captures a broader view of the 

effects of each variable. Higher concentrations of verapamil might also cause a larger 

biological effect that is more likely to be captured by statistical analysis. However, given 

the results obtained, it cannot be clearly concluded that MDR genes and proteins are 

significant components of ivermectin tolerance in L. decemlineata.  

An initial concern is that downregulation was transient and did not persist after dsRNA 

feeding to have a measurable effect on the beetles’ survival; however downregulation 

through feeding has been shown to have persistent phenotypic effects in L. decemlineata 

for up to 6 days after dsRNA feeding was halted (Zhu et al., 2011). Additionally, there is 

evidence that continuous or multiple applications of dsRNA in insects, as was performed 

for my research, have persistent silencing effects on the target transcript, unlike single 

applications (Asokan et al., 2013). Another concern is that even if transcript silencing 

was persistent during the assay, protein abundance wasn’t reduced enough to create a 

phenotypic change. This could occur if post-transcriptional or post-translational 

regulatory processes were more important for controlling MDR protein abundance. 

Particularly, if MDR proteins have a slow turnover rate and remain active for several 

days after translation, reducing mRNA transcript abundance would have a delayed effect 

on the phenotype that might not have been captured by the survival assay. A third 

possibility is that downregulation of just LedMDR1 or LedMDR2 is not sufficient for a 

phenotypic change. Another MDR gene, such as LedMDR3 for which downregulation 

could not be verified, may code for the primary transporter for ivermectin efflux. It is 
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also possible that multiple MDRs are responsible for ivermectin efflux, so singular 

downregulation of any of them would be insufficient. If the substrate specificity of 

multiple MDR proteins overlapped, then multiple genes may have to be silenced to 

significantly impair ivermectin efflux. If the dosage of verapamil was insufficient to have 

a strong enough effect on transporter activity, then these issues remain. This is a 

possibility, but it is not likely as the L. decemlineata beetles were given a dose originally 

designed for the German cockroach, Blatella germanica (Hou et al., 2016), which is a 

larger insect. However, provided that it was sufficient and effective, the assay should 

have accounted for these possibilities by directly inhibiting protein activity of all MDR 

transporters at once, in which case the similar results between the dsRNA and verapamil 

assays indicate that neither protein activity nor the number of inhibited transporters was 

an issue in affecting survival.  

The lack of significant differences in survival from the treatments implies that the MDR 

transporters in L. decemlineata are not important detoxification enzymes for insecticides 

like ivermectin. It is possible that they aren’t significantly involved in ivermectin 

metabolism in L. decemlineata at all, but current research in MDR proteins doesn’t 

support that conclusion. MDR gene expression and MDR protein activity have been 

identified as important factors in detoxification of ivermectin and other macrocyclic 

lactones in a multitude of species: dogs (Roulet et al., 2003) and mice (Schinkel et al., 

1995; Schinkel et al., 1996) use MDRs to prevent ivermectin penetration through the 

blood-brain barrier and into nerve tissue; MDR expression was linked to ivermectin 

resistance in the nematodes Caenorhabditis elegans (James & Davey, 2009) and 

Haemonchus contortus; and many arthropods like the tick Rhipicephalus (Boophilus) 

microplus (Pohl et al., 2011), the model insect D. melanogaster (Luo et al., 2013), and 

the agricultural pests H. armigera (Srinivas et al., 2004) and Spodoptera exigua (Zuo et 

al., 2017) all had MDR expression or MDR protein activity linked to ivermectin or 

abamectin resistance. The current knowledge of MDR genes indicates that they have 

highly conserved functions and similar substrate specificities across species, so it is 

unlikely that L. decemlineata MDRs play no role in ivermectin tolerance when MDRs in 

so many other species are clearly involved. A much more likely explanation is that other 

enzyme-coding genes involved in ivermectin metabolism in L. decemlineata have more 
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significant effects on the rate of metabolism, making inhibition of MDR activity 

insufficient to significantly increase susceptibility. While MDRs themselves are often 

involved in xenobiotic metabolism and resistance, the process includes more than just 

efflux transporters because avermectins, like many other compounds, are subjected to 

metabolic modifications before being excreted. Other detoxification genes that code for 

enzymes like P450 monooxygenases, glutathione S-transferases, or other ABC 

transporters have also been identified as part of the ivermectin detoxification pathway, 

and can also be upregulated in avermectin resistant strains of insects. Polymorphisms in 

the human cytochrome P450 genes CYP3A4 and CYP3A5 are associated with 

differential ivermectin metabolism and response to the drug (Kudzi et al., 2010). 

Likewise, a cytochrome P450 was identified as a major enzyme in avermectin 

metabolism in rats (Zeng et al., 1996). Cytochrome gene expression and enzyme activity 

have been implicated in avermectin resistance in the diamondback moth, Plutella 

xylostella (Qian et al., 2008), the mite, Tetranychus urticae (Riga et al., 2014), and in L. 

decemlineata as well (Yoon et al., 2002). While the L. decemlineata strain used in for my 

research was not resistant, it is clear that cytochromes are integral to metabolism of 

avermectins. Increased activity of glutathione S-transferase enzymes has also been 

connected to avermectin resistance in T. urticae (Stumpf & Nauen, 2002) and the scabies 

mite, Sarcoptes scabiei var. hominis (Mounsey et al., 2010). The ABCC transporter gene 

mrp-1 was also upregulated alongside the ABCB transporter gene pgp-1 in ivermectin 

resistant C. elegans, demonstrating that ABC transporters from multiple subfamilies are 

involved in efflux of avermectins. However, verapamil should inhibit activity of all ABC 

transpotters, so it is not likely that they are preserving ivermectin tolerance in my assays..    

4.5 Future Directions 

While I was unable to prove a relationship between MDR gene expression and tolerance 

to ivermectin in L. decemlineata, this does not indicate that LedMDR genes aren’t 

involved in xenobiotic metabolism. MDR substrate specificity is broad and varies 

between transporters. As such, the LedMDR1 and LedMDR2 transporters could be more 

important in detoxification of insecticides other than ivermectin. Challenging L. 

decemlineata with alternate insecticides after knockdown of LedMDR1 or LedMDR2 
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would reveal their role. Additionally, multiple enzymes are usually involved in 

detoxification of a xenobiotic compound, so it is possible that expression of another 

detoxification gene, such as a cytochrome P450, is a greater determinant of ivermectin 

tolerance than MDR expression. To explore this, different potential detoxifying genes 

should be downregulated individually or in tandem with MDR genes before challenging 

the beetles with ivermectin to determine the involvement of each gene. The p-value of 

0.0547 for the verapamil + ivermectin assay also suggests that further investigation is 

warranted. Further optimization of this assay could clarify whether or not there is a 

statistically significant effect that simply was not captured by the current experiments. 

My results for T. ni RNAi clearly show that this insect is refractory to ingested dsRNA 

like many other lepidopterans. For continued use of RNAi in T. ni to silence select genes, 

injected dsRNA should be used when possible to have a greater chance of success. 

However, this isn’t an option when studying RNAi for pest management as the dsRNA 

will need to be ingested. Techniques for protecting the dsRNA while it is in the T. ni 

midgut lumen will have to be developed to ensure it is absorbed and can cause silencing, 

such as encasing the dsRNA in lipoplexes similar to a method used in B. germanica (Lin 

et al., 2017). New transgenic plants in which RNAi-inducing dsRNA is expressed in 

chloroplasts instead of the nuclei may also serve as a solution (Zhang et al., 2017). 

Expression of dsRNA in plant chloroplasts has proven to be more effective at causing 

RNAi in insects than when it is expressed in nuclei, as the dsRNA is protected from plant 

Dicer enzymes. The protection of the chloroplast could also help shield the dsRNA from 

dsRNAse enzymes in insect guts. If this proves true, then it would open up RNAi as a 

pest management tool for insects that are currently resistant to the practice. 

4.6 Summary and Conclusions 

My research examined three different MDR genes in L. decemlineata, establishing that 

LedMDR1 is primarily expressed in midgut tissue, LedMDR2 in nervous tissue, and 

LedMDR3 in Malpighian tubule and nervous tissue. LedMDR1 and LedMDR2 were 

successfully downregulated in L. decemlineata beetles using ingested dsRNA, however 

this did not result in higher susceptibility to the insecticide ivermectin, contrary to 

expectation. Inhibition of ABC transporter activity by verapamil also failed to 
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significantly increase susceptibility to ivermectin, indicating that ABC transporters may 

not be a significant factor in L. decemlineata ivermectin metabolism compared to other 

pathways. 

T. ni did not have an RNAi effect on either TrnV-ATPaseA or TrnMDR1 after ingesting 

dsRNA. Investigating the relative degradation rates of dsRNA in T. ni midgut lumen and 

hemolymph compared to L. decemlineata and M. sexta revealed that dsRNA degraded 

faster in both body fluids compared to the other species. Therefore it is suspected that 

dsRNAase enzymes in their body fluids are responsible for T. ni resistance to ingested 

dsRNA. 

These results provided interesting insights into how MDR genes are involved in L. 

decemlineata insecticide metabolism. Specifically, they may not be as important in 

detoxification as previously believed. A comparison of dsRNA stability in T. ni midgut 

lumen and hemolymph compared to L. decemlineata and M. sexta also demonstrated 

dsRNAses as a major factor for why T. ni are refractory to ingested dsRNA. These 

conclusions have improved the general understanding of insect insecticide detoxification 

and RNAi as a potential insect control mechanism.  
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Appendices 

Appendix A: Figure of ivermectin toxicity tests performed on L. decemlineata. 

 L. decemlineata beetles were treated with different doses of ivermectin to 

determine the lethality of ivermectin over 7 days. These tests were used to estimate 

LD50s for experiments. Fourteen to fifteen insects were used for each treatment 

following the same protocol as the dsRNA + ivermectin mortality assays. 

 

Figure A-1: Cumulative survival over 7 days of L. decemlineata beetles fed different 

doses of 5ppm ivermectin to estimate lethality. 
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