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Abstract 

The calcium stable isotopic compositions of mantle-sourced rocks and minerals were 

investigated to better understand the carbon cycle in the Earth’s mantle. Bulk carbonatites and 

kimberlites were analyzed to identify a geochemical signature of carbonatite magmatism, while 

inter-mineral fractionation was measured in co-existing Ca-bearing carbonate and silicate 

minerals. Bulk samples show a range of composition deviating from the bulk silicate Earth 

δ44/40Ca composition indicating signatures of magmatic processes or marine carbonate addition 

to source materials. Δ44/40Cacarbonate-silicate values range from -0.55‰ to +1.82‰ and positively 

correlate with Ca/Mg ratios in pyroxenes. A series of experiments designed to equilibrate 

clinopyroxene with carbonated melts of varying compositions were conducted to constrain the 

systematics of Ca isotopic fractionation in these systems. Results show significant fractionation 

between phases, with δ44/40Ca in Cpx ranging from +0.37 to +2.75‰ heavier than quenched 

melts. However, the influence of thermal diffusion on these results is not fully understood. 
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Chapter 1 

1. Introduction 

1.1 Earth’s Carbon Cycle 

Carbon is the basis of all biomolecules and inextricably linked to the sustainability of all life on 

Earth. Carbon-rich gases in the atmosphere (e.g. CO2) affect Earth’s variable climate conditions, 

while carbon-based fuels supply most of the energy that powers society. From food to plastics, 

strong structural materials to soft textiles, carbon plays a role in such a wide array of useful 

materials unmatched by any other element. However, despite its importance, the properties and 

behaviour of carbon-bearing systems more than several hundred meters beneath the Earth’s 

surface remain poorly understood. Previous investigations of the global carbon cycle have 

focused primarily on shallow surface environments, oceans, and the atmosphere, with the 

understanding that these carbon reservoirs essentially act as a closed system. The transfer of 

carbon between biotic and abiotic reservoirs in the near surface carbon cycle is influenced by 

living systems, combustion of organic matter, burial of sediments, and transfer of CO2 between 

the oceans and atmosphere (Berner, 2004).  The distribution of near-surface fossil fuels and 

carbon-bearing rocks such as carbonates and organic-rich shales have been mapped, their 

abundances and ages estimated, and their contributions to the carbon cycle have been 

established. In contrast, relatively little is known about the deep interior carbon cycle, which may 

contain more than 90% of the Earth’s total carbon (Javoy, 1997). Many major questions remain 

poorly constrained:  

 What is the abundance of carbon in the Earth’s deep interior? 

 What reservoirs contain this carbon and what is the nature and extent of these reservoirs 

in time and space? 

 How is carbon exchanged among reservoirs? 

 What is the flux of carbon between the deep interior and the surface of the Earth? 

Primitive chondritic meteorites, which are believed to be one proxy for the composition of the 

Earth at the time of its formation (Marty et al., 2013), contain several weight percent carbon. Yet 

the current, albeit not well constrained, estimates for Earth’s total carbon are much lower. A 

better understanding of the deep carbon cycle through a comprehensive characterization of the 
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mantle carbon reservoirs may be part of the answer to this question of missing carbon. Possible 

deep carbon reservoirs include volumetrically large but diffuse reservoirs such as silicate 

minerals and melts and concentrated reservoirs such as carbonate magmas (Table 1). 

The nature and extent of these various carbon reservoirs in Earth’s interior is important for 

gaining a better overall understanding of carbon in the Earth. Further research and technological 

advances are still required to answer many of these questions about the abundance and mobility 

of deep carbon (Jones et al., 2013).  

 

1.2 Carbonate Melts and Carbon-Rich Rocks 

Carbonates have been identified as a possible deep carbon reservoir (Table 1) and carbonate 

melts could possibly play an important role in providing a vertical pathway for carbon transferral 

from the mantle to the surface of the Earth (Jones et al., 2013). The study of carbonate magmas 

and their related rocks could therefore aid in the characterization of deep carbon and its role in 

the global carbon cycle.  
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Table 1 - Possible deep carbon reservoirs. Table redrawn from Hazen et al., (2012). 

Reservoir Composition Structure [C]  
(mole %) 

Depth  
(km) 

Abundance 
(wt%) 

Diamond C Diamond 100 >150 <<1 

Graphite C Graphite 100 <150 <<1 

Carbides SiC, FeC, Fe3C Moissanite, 
Cohenite 

25-50 ? ? 

Carbonates (Ca,Mg,Fe)CO3 Unknown 20 0 to ? ? 

Metal Fe,Ni Kamecite/ 
Awaruite 

Minor? ? ? 

Silicates Mg-Si-O Various Trace? ? ? 

Oxides Mg-Fe-O Various Trace? ? ? 

Sulfides Fe-S Various Trace? ? ? 

Silicate Melts Mg-Si-O   Trace? ? ? 

CHON fluids C-H-O-N   Variable ? ? 

Methane CH4   20 ? ? 

Methane clathrate [H2O+CH4] Clathrate Variable ? ? 

Hydrocarbons CnH2n+2   Variable ? ? 

Organic species C-H-O-N   Variable ? ? 

Deep life C-H-O-N-P-S   Variable <15 ? 

 

Carbonate magmas are often temporally associated with alkaline silicate melts, but are 

distinguished by their unique physical properties. They have very high solubilities for elements 

that are typically rare in silicate melts, as well as for dissolved volatiles such as water and 

halogens. Carbonate melts remain mobile over a wide range of temperatures and are noted for 

their very low viscosity (Dobson et al., 1996; Wolff, 1994), implicating them in geochemical 

enrichment processes within the mantle related to metasomatism and making them efficient 

transporters of carbon from mantle to crust (Jones et al., 2013). They are also noted for their high 

electrical conductivity and their presence has been used to explain anomalously conductive 

regions in the mantle (Gaillard et al., 2008). Perhaps the most fundamental property of carbonate 
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melts is their atomic structure itself - ionic liquids consisting of metal cations and carbonate 

CO3
2- molecular anions related via coulombic interactions. This sets them apart from silicate 

melts, which are characterized by polymerized network structures (Mysen, 1983).  

Direct evidence of mantle carbonate sources is not well preserved at the Earth’s surface. 

Oldoinyo Lengai in Tanzania is the only active carbonate volcano, but it erupts highly alkaline 

carbonate lavas that do not match the Ca-rich or Mg-rich carbonates found in other carbonatite 

occurrences worldwide (Chen et al., 2013). Therefore, carbonatite liquids must be studied using 

experimental methods and through investigations of rocks that are believed to have formed 

through interactions with carbon-rich magmas such as carbonatites and kimberlites. 

1.2. Carbonatites 

Carbonatites are magmatic rocks that contain more than 50 wt% carbonate minerals derived from 

carbonate magma (Streckeisen, 1980), less than 20% SiO2 (Le Maitre, 2002), and high 

abundances of Sr, Ba, P, and light rare-earth elements (LREE), usually three or more orders of 

magnitude higher than chondritic meteorite values (Nelson et al., 1988). They can be subdivided 

based on their dominant carbonate mineral and corresponding major element geochemistry 

(Figure 1). Carbonatites often occur not just as one single rock unit but as a suite with alkaline 

silicate rocks, with only ~20% of carbonatite occurrences not having associated silicate rocks 

(Woolley and Kjarsgaard, 2008). Based on these associated silicate rocks, Mitchell (2005) 
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further classifies magmatic carbonatites into groups associated with nephelinite, melilitite, 

kimberlite, and specific mantle-derived silicate magmas formed by partial melting.  

Carbonatites are most commonly found in continental crust in stable, intraplate settings, many in 

regions that are peripheral to orogenic belts and often related to continental rift related tectonics 

(Veizer et al., 1992). However, there are increasing numbers of carbonatites reported from other 

tectonic settings such as oceanic islands, ophiolites, and deep subduction zones, and any 

understanding of the origins of carbonatites must be able to take these into account (Jones et al., 

2013). Woolley and Kjarsgaard (2008) published a detailed and comprehensive world map of all 

known carbonatite occurrences to date. The ages of these carbonatite occurrences range from 

Archaean to present but appear to increase in frequency with decreasing age. The Phalaborwa 

carbonatite in South Africa is reported to be the oldest carbonatite at an age of 2063 to 2013 Ma 

(Masaki et al., 2005).  

CaO 

MgO FeOt 
(+MnO) 

Magnesio-
carbonatite 

Ferro-
carbonatite 

Calcio-
carbonatite 

Figure 1 - Carbonatite classification diagram. Redrawn from Woolley and Kempe (1989). 
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There is significant scientific evidence indicating a mantle origin for carbonatites including: Sr-

Nd isotopic data, stable isotope compositions, noble gases and experimental phase equilibria 

(Jones et al., 2013). Steep LREE enriched patterns without significant europium anomalies are 

typical for carbonatites and consistent with mantle origins. The extremely low concentrations of 

Pb in carbonatites offers a clear distinction from crustal carbonates, and the Pb isotopic 

composition of carbonatites further indicates a lack of crustal contamination and could be used to 

explore the isotope geochemical signature of mantle carbon reservoirs (Jones et al., 2013). Even 

with substantial evidence for the mantle origin for carbonatites, the limit to their depth of origin 

is not known, but needs to be constrained since their possible existence in the lower mantle may 

have an important influence on the long-term storage and mobility of deep carbon (Kaminsky et 

al., 2009). 

Despite the consensus that carbonatites originate in the mantle, one single theory for their 

formation has yet to be agreed upon (Jones et al., 2013). Currently, three main theories exist to 

explain the origin of carbonatites: 

1. Residual melts of fractionated carbonated nephelinite or melilitite (Gittins 1989; Gittins 

and Jago 1998). 

2. Immiscible melt fractions of CO2-saturated silicate melts (Freestone and Hamilton, 1980; 

Amundsen, 1987; Kjarsgaard and Hamilton 1988, 1989; Brooker and Hamilton 1990; 

Kjarsgaard and Peterson 1991; Church and Jones 1995; Lee and Wyllie 1997; Dawson 

1998; Halama at al., 2005; Brooker and Kjarsgaard, 2011). 

3. Primary mantle melts generated through partial melting of CO2-bearing peridotite 

(Wallace and Green 1988; Sweeney 1994; Harmer and Gittins 1998; Harmer et al., 1998; 

Ying et al., 2004; Dasgupta et al., 2004b). 

Combinations of some or all three of these theories have also been proposed for carbonatite 

genesis (e.g. Yaxley and Brey, 2004). Despite the lack of consensus on the exact origin of 

carbonatites, their derivation from the mantle with minimal effects of crustal contamination 

make them powerful geochemical probes for understanding the Earth’s mantle (Jones et al., 

2013).  

Geochemical analyses, experiments, and general observations have linked carbonatites to other 

ultramafic carbon-rich rocks, specifically kimberlites, and some have even obscured the 
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distinction between carbonatite and kimberlite volcanism (Sparks et al., 2009). Kimberlites are 

rare, highly alkaline, mantle-derived rocks found primarily within Archaean cratons and are the 

deepest terrestrial magmas best known as carriers of diamonds from deep within the Earth to the 

surface. Woolley and Bailey (2012) argue in favour of a direct link between carbonatites, 

kimberlites, and a common underlying source of deep mantle carbon. Evidence for a genetic link 

between carbonatites and kimberlites include:  

 Shared geochemical trace element signatures (Hornig-Kjarsgaard, 1998; Le Roex et al., 

2003), 

 Experimentally determined relationship between group II kimberlites and carbonate melts 

in the same mantle source region (Ulmer and Sweeney, 2002), and 

 Metasomatized mantle xenoliths that display a geochemical signature that is transitional 

between carbonatites and kimberlites (Jones, 1989). 

However, there are others that argue against a genetic association between carbonatites and 

kimberlites (Anderson, 2008; Mitchell, 2005). Evidently there are still questions to answer 

regarding the petrogenesis of carbonatites and carbonate melts within the deep mantle that 

obscure our comprehension of the exact origin of carbonatites and their relationship to other 

mantle rocks, including kimberlites, the deepest known mantle magmas.  

 

1.3 High-Pressure and High-Temperature Experimental Work 

Despite the still evolving body of knowledge regarding the origin of carbonatites and carbon-

bearing magmas in the Earth’s mantle, much of what we do understand has been discovered 

through decades of experimental studies in high-pressure and high-temperature systems. Mantle 

pressures and temperatures can be achieved in laboratories using piston cylinder and multi-anvil 

experimental apparatus, allowing for carefully controlled experiments under mantle conditions. 

As a result, there is a significant amount of experimental evidence for the involvement of carbon 

in mantle magmatism.  
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1.3.1 Experiments on the Origin of Carbonatites and Carbon-Bearing Melts 

Melting of carbonated peridotite and carbonate-silicate phase equilibria in this system is 

important for understanding the generation of magmas that require CO2 such as carbonatites and 

kimberlites. Early experimental work in the carbonated peridotite system was conducted by 

Wyllie and co-workers and by Eggler and co-workers. The main finding of these early works 

was the transition in the type of melts that are generated, silicate melts formed in the low-

pressure regions (<2 GPa) and carbonatite or kimberlite type melts formed in the high-pressure 

region (2-3 GPa). The transition in the type of melt that is produced appears to correspond with a 

distinct change in the slope of the carbonated peridotite solidus in the systems MgO-SiO2-CO2 

(MS-CO2), CaO-MgO-SiO2-CO2 (CMS-CO2), and CaO-MgO-Al2O3-SiO2-CO2 (CMAS-CO2). 

The solidus for the model carbonated peridotite has a positive slope from 1 to 2 GPa, a negative 

slope above 2.5 GPa, and then a positive slope again as pressure is increased above 3 GPa 

(Figure 2) (Eggler, 1973, 1974, 1975, 1976; Wyllie and Huang, 1975a, 1975b, 1976a, 1976b). 

The negatively sloped region of the solidus is called the carbonate “ledge” (Eggler, 1987a, 

1987b) and is the most pronounced feature in its topology. The classical peridotite-carbonate 

phase diagrams describe the reaction that occurs at the carbonate ledge as: 

Clinopyroxene + Olivine + Vapour = Orthopyroxene + Carbonate Melt, 

with the vapour-bearing assemblage on the low pressure/low temperature side of the ledge, and 

the melt-bearing assemblage on the high pressure/high temperature side of the ledge (Figure 2). 

Experimentally, the ledge can occur because the melting temperature of carbonated peridotite 

decreases by 200-300°C compared to dry peridotite when the vapour-carbonate reaction meets 

the model carbonated peridotite solidus curve (Wyllie and Huang, 1975a, 1975b, 1976a, 1976b). 

However, extensive debate followed regarding the details of this transition – the cause for such a 

transition, the exact pressure at which it occurs, and its sharpness.  
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The Wyllie and co-worker’s interpretation of the carbonate ledge was that it was caused by an 

invariant point in P-T space at the intersection of two curves, where vapour, carbonate, and 

liquid all coexisted with mantle peridotite in the MS-CO2 and CMS-CO2 systems. This invariant 

point was also found in the CMAS-CO2 system at approximately 2.6 GPa (Dalton and Presnall, 

1998). Additional experimental studies of the carbonate ledge by Wyllie and Huang using the 

CMS-CO2 system (1975a, 1975b) as well as the simpler MS-CO2 system (1976a) indicated that 

the liquid that was in equilibrium with the other phases at this point was a model carbonatite 

(~40 wt.% CO2). Therefore, they concluded that the liquid is a model carbonatite over the 

pressure range of approximately 2.5 to 4.4 GPa, only when P-T invariance occurs, and regardless 

of the system utilized. In their phase equilibria scheme, immediately before the liquid becomes a 

carbonatite, it is essentially basaltic in composition (White and Wyllie, 1992) 

The interpretation of the carbonate ledge by Eggler and co-workers was that it was caused by the 

gradual increase in CO2 solubility in the liquid between 2-3 GPa (Eggler, 1973, 1974, 1975, 

1976, 1978). Starting at 2 GPa, the liquid was an undersaturated basalt with approximately 5 

wt.% CO2, but with increasing pressure the solubility of CO2 in the liquid increased, 

Figure 2 - Experiments in the carbonated peridotite system showing the carbonate ledge. 

(a) illustrates the basic topology and (b) illustrates the effect of bulk silicate composition. 

Figure from Hammouda and Keshav (2015). 
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transitioning through a melilitic composition, and eventually to a kimberlitic composition 

between 2.6-3 GPa with ~20-25 wt.% CO2 (Eggler 1976). This gradual transition across the 

carbonate ledge contrasts with the sharp transition suggested by Wyllie and co-workers.  

More recent studies of the carbonate ledge using the CMAS-CO2 system (Keshav and 

Gudfinnsson, 2013; Novella et al., 2014) also indicates that the amount of CO2 in the melt 

increases between 1.9 and 2.1 GPa along the carbonated peridotite solidus, causing a shift from a 

silicate melt at 1.9 GPa to a carbonatite melt at 2.1 GPa. Both types of melts are in equilibrium 

with olivine, orthopyroxene, clinopyroxene, spinel, and vapour on the solidus. These studies 

suggest that the carbonated peridotite solidus meets a P-T invariance at 2 GPa, precisely where 

the carbonate ledge appears in the earlier works of Wyllie and Eggler, and it is this invariance 

that causes the ledge to occur. However, according to these works, the reason this invariance 

occurs at 2 GPa is because on either side of it there are two distinctly different melt 

compositions, therefore, the carbonate ledge is interpreted to be caused by the existence of two 

immiscible liquids (Novella et al., 2014).  

The carbonate ledge essentially represents a barrier above which carbonates are no longer stable. 

This is because on the high-pressure side of the ledge (i.e. greater depths), CO2 as a vapour does 

not remain stable as a vapour and instead reacts with silicates to form solid or molten carbonates, 

whereas on the lower pressure side of the ledge, decarbonation reactions occur and carbonates 

break down and release CO2. This decarbonation reaction that occurs at the ledge can explain 

why carbonates are rarely found in mantle xenoliths (Canil, 1990), and can also prevent 

carbonatite magmas from reaching the Earth’s surface (Dalton and Presnall, 1998). Although 

there are exceptions where very fast ascent rates can allow carbonatite magmas to escape 

degassing at the ledge, the carbonate ledge effectively provides an upper bound for the region of 

the mantle where carbonatite melts can exist. 

Whereas the carbonate ledge provides the upper bound for the carbonatite melt present region in 

the Earth’s mantle, a redox front provides the lower bound. The Enstatite + Magnesite = Olivine 

+ Graphite/Diamond (EMOG/D) equilibrium defined by Eggler and Baker (1982) describes 

carbonate stability in relation to graphite or diamond as a function of oxygen fugacity. Carbon is 

stable as carbonate when the oxygen fugacity of the mantle is above the EMOG/D equilibrium, 

and it is stable as graphite or diamond (a reduced phase) when the oxygen fugacity of the mantle 
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is below EMOG/D. Since the oxygen fugacity of the mantle decreases with depth (Frost and 

McCammon, 2008), the region where oxidized carbon is stable as carbonate and can participate 

in melting is restricted to shallower depths (<150km). If carbonate in the mantle was to descend 

below this redox front, it would be reduced to graphite or diamond and any carbonate melt would 

undergo a process called ‘redox freezing’ (Rohrbach and Schmidt, 2011). This means that 

carbonate melts are not expected to exist at depths greater than 150km when Fe controlled redox 

conditions are dominant (Luth, 1999). However, there is the possibility that carbonate-bearing 

subducted slabs could allow for carbon controlled redox conditions to prevail, allowing for 

localized areas of oxidized carbon melting deeper in the mantle (Figure 3). 
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Like the carbonated peridotite system, phase relations in the carbonated eclogite system are 

important for understanding carbon-rich magmas in Earth’s mantle, but more specifically, the 

carbonated eclogite system is important in the context of subduction and carbonate recycling 

(Doucelance et al., 2010, 2014). Early experimental work (Yaxley and Green, 1994) determined 

that carbonates could be subducted to mantle depths greater than 100km, while more recent 

experimental studies have expanded on this hypothesis.  

High-pressure and high-temperature experiments on carbonated eclogites can be more complex 

than those in the carbonated peridotite system and yield higher variance assemblages. Various 

experimental studies in the 3-10 GPa range have produced contrasting solidus temperatures and 

Figure 3 - Overview of the carbon geodynamical cycle, illustrating areas where carbonatite 

melts may occur. Figure from Hammouda and Keshav (2015). 
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melt compositions (Hammouda, 2003; Dasgupta et al., 2004a; Yaxley and Brey, 2004). This 

discrepancy is most likely caused by the variations in bulk compositions of the starting materials 

used by different experimenters. Regarding these differences, Dasgupta et al. (2004a) argue that 

there is no single unique solidus for the melting of carbonated eclogite because of the different 

amounts and compositions of carbonate that can be added during ocean floor alteration.  

The carbonate ledge that was reported in the carbonated peridotite system, is identified in some, 

but not all, experiments on carbonated eclogites. However, the pressures at which the ledge was 

identified varied between experiments. Hammouda (2003) used a more silica-rich starting 

composition, produced coesite and stishovite in their run products, and observed the ledge at 5.5 

GPa, while the experiments by Dasgupta et al. (2004b) yielded no silica phase in their run 

products and observed a ledge at lower pressures, much like the carbonated peridotite system. 

This supports the idea that the variations in results can be attributed to differences in bulk 

starting compositions, and suggests that the amount of silica in the experiments can have some 

influence on the carbonate ledge in this system.  

The existence of the carbonate ledge in the carbonated eclogite system has a profound influence 

on the survival of carbonates in subducted slabs. Based on the different pressure temperature 

paths computed for hot versus cold subduction (van Keken et al., 2002), the fate of carbon 

carried in a subducting plate varies. For hot slab subduction (e.g. young oceanic lithosphere), the 

P-T path of the carbonates carried by the subducting plate crosses the solidus of the ledge due to 

its negative slope, suggesting that the carbon cycle would end at shallower depths in the Earth 

(<200km). However, in the case of cold slab subduction (e.g. old continental lithosphere), it is 

possible that carbonates in the subducting plate could reach much greater depths. One possible 

implication of these studies is that the melting of carbonated eclogite could be a potential source 

of continental carbonatites, while carbonated peridotite is a more likely source of magmatic 

carbon in oceanic regions (Dasgupta et al., 2004b).  

Adding to the body of research on carbonatite melts in carbonated peridotite and eclogite 

systems, recent research by Dasgupta et al. (2013) highlights the importance of carbonated 

silicate melts in the Earth’s mantle and their influence on the stability of carbonatite melts and 

the inventory of carbon in the upper mantle. Dasgupta et al. (2013) conducted piston cylinder 

and multi-anvil experiments using carbonated peridotites and examined the relationship between 
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near solidus carbonatite melts and higher temperature carbonated silicate melts to constrain the 

carbonate-silicate melt transition in P-T space. One of their key findings was that the temperature 

at which carbonated silicate melting can occur is significantly lower than the volatile-free 

peridotite solidus and that this difference increased with pressure. Their results also suggested 

that TiO2, Na2O, and FeO played an important role in the stabilization of carbonated silicate 

melts as the temperature at which carbonated silicate melting began in their experiments was 

approximately 200°C lower than in previous experiments in the more simplified CMAS-CO2 

system (Gudfinnsson and Presnall, 2005). Overall, this study proposes that the first melt formed 

beneath ridges in an upwelling mantle is a carbonated silicate melt at depths of up to 250-220km, 

and this deep onset of carbonated silicate melting suggests that a kimberlitic melt, not a 

carbonatite melt, exerts the most control over the flux of incompatible elements including CO2 at 

mid-ocean ridges.  

 

1.3.2 Experiments Using Geochemical Tracers 

Evidently, experimental studies on carbonated peridotites and carbonated eclogites are robust 

approaches for studying the origin of carbonatite magmas. However, other tools exist for tracing 

the sources of mantle carbon, including the use of geochemical tracers. The first and most 

obvious choice would be to use carbon isotopes since carbon is a major element in carbonatites 

and the carbon isotope ratios for various reservoirs such as the mantle (δ13C = -5.5‰), 

sedimentary carbonates (δ13C = 0‰), and organic carbon (δ13C < -20‰) are all relatively well 

constrained (Deines, 2002). Therefore, any recycled sedimentary carbon integrated into 

carbonatite magmas should yield a noticeably heavier carbon isotope signature. However, nearly 

all the carbon isotope measurements made on carbonatites yield mantle values (Deines, 1989). 

The main problem is that the systematics of carbon isotope fractionation at high pressures and 

temperatures is relatively unknown. There were some limited earlier experimental works on the 

fractionation between CO2 and silicate melts that reported variable results (Javoy et al., 1978; 

Mattey et al., 1990; Mattey, 1991) and a more recent study on silicate melts in equilibrium with a 

reduced fluid (Mysen et al., 2009). However, there is insufficient experimental work that has 

been done to be able to interpret the carbon isotope signatures of mantle derived sources like 

carbonatites.  
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Still, other useful geochemical tracers for the origin of carbonatites and mantle carbon may exist, 

with calcium being another potential candidate. Compared to carbon, calcium has the advantage 

of being present in both silicate and carbonate fractions of mantle minerals or melts whereas all 

carbon will be sequestered into the carbonate fractions. To interpret the isotopic data of 

carbonatites for any geochemical tracer, there must be a good understanding of the various 

natural isotopic reservoirs, as well as some experimental evidence for the systematics of isotopic 

fractionation between different phases at high temperatures and pressures. Fortunately, there is 

recent evidence showing that the fractionation of stable isotopes between phases that equilibrated 

at high temperatures and pressures can be experimentally determined. 

 

1.3.3 Experimental Determination of Stable Isotope Fractionation 

To effectively use the ratios of non-traditional stable isotopes to study rocks formed at high 

temperatures, accurate and reliable equilibrium fractionation factors between phases are of 

critical importance. Young et al. (2015) assert that even in studies where stable isotopes are used 

as geochemical tracers of mantle reservoirs or other studies where the fractionation between 

phases is not the focus, a robust understanding of fractionation factors is vital for interpretations 

of bulk rock data sets. These fractionation factors can often be predicted by computational 

methods, but require confirmation using carefully controlled experiments.  

Computational predictions of inter-mineral fractionation are often based on the general rule that 

heavier isotopes concentrate where bonds are stiffer (i.e. bond lengths are shorter), which in turn 

is affected by crystal chemical controls such as coordination number. Young et al. (2015) 

illustrated that experiments have confirmed these computational methods are often successful in 

predicting the direction and magnitudes of fractionation factors for stable isotopes such as Mg, 

Si, and Fe. The experimentally determined 26Mg/24Mg fractionation factors for spinel-forsterite 

and magnesite-forsterite mineral pairs (Macris et al., 2013) matched well with those predicted 

computationally using density functional perturbation theory (DFPT, Schauble, 2011) (Figure 4). 

Experimentally determined 57Fe/54Fe fractionation factors between magnetite and fayalite 

(Shahar et al., 2008) also matched the ionic model predictions of Young et al. (2015). In terms of 

using stable isotopes to identify unseen geochemical reservoirs, experimental determination of 

silicon isotope fractionation factors between Fe-rich metal and mantle-like silicates (e.g. Shahar 
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et al., 2009; Shahar et al., 2011) have been used to help assess the significance of isotopic 

partitioning between the Earth’s core and mantle.  

 

Figure 4 - Comparison of 26Mg/24Mg fractionation factors for magnesite-forsterite (Mgs-

Fo), orthopyroxene-forsterite (Opx-Fo), and spinel-forsterite (Sp-Fo) mineral pairs. Figure 

from Young et al., (2015). 

More recently, Sossi and O’Neill (2017) conducted a series of piston cylinder experiments at 

800°C and 1 GPa to determine the iron (Fe) fractionation factors (Δ57Fe) for pairs of common 

Fe-bearing high temperature minerals and to characterize the effect of coordination number and 

oxidation state on their isotopic compositions. They explicitly state that quantifying stable 

isotope fractionation under controlled experimental conditions is key to understanding the 

systematics of fractionation in nature. Sossi and O’Neill (2017) conducted their experiments by 

growing a single solid phase from a mix of oxide powders corresponding to the bulk composition 

of the mineral of choice in equilibrium with a buffering fluid of 2M FeCl2∙4H2O(l) as a common 

reference phase. By assuming that the bonding environment of Fe was the same in the fluid of all 

the experiments, they calculated the mineral-mineral fractionation factors by simply subtracting 
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the fluid phase. Fractionation factors between mineral phases for stable iron isotopes under 

equilibrium conditions is dependent on the strength of the Fe-O bonds (shorter = stronger) in the 

mineral (Urey, 1947; Schauble, 2004), which is influenced by coordination number and 

oxidation state. Some of the main findings of Sossi and O’Neill (2017) were: 

1) Average Fe-O bond lengths increased with increasing coordination numbers (Figure 

5). 

2) Fractionation between the mineral and the buffering fluid decreased with increasing 

coordination number (i.e. increasing Fe-O bond lengths, weaker bonds) (Figure 6). 

3) Fractionation between the mineral and the buffering fluid increased with increasing 

oxidation states (as exhibited by magnetite in Figure 6). 

 

Figure 5 - Fe-O bond length increases with coordination number in high-temperature Fe-

bearing minerals. Figure redrawn from Sossi and O'Neill, (2017). 
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Figure 6 - Δ57Femineral-fluid decreases with increased Fe-O bond length. The increased 

Δ57Femineral-fluid of magnetite is due to its higher oxidation state. Figure redrawn from Sossi 

and O'Neill, (2017). 

The importance of the Sossi and O’Neill (2017) study relevant to this work is that it 

demonstrates again that fractionation factors and the systematics of fractionation for stable 

isotopes in phases equilibrated at high temperatures or pressures can be determined 

experimentally.   

 

1.3.4 Thermal Diffusion 

While experimentally determined fractionation factors for stable isotopes in high temperature 

systems are critical to understanding natural systems, there are some difficulties associated with 

conducting these types of experiments. Piston cylinder experiments on silicate melts have been 

shown to produce thermal isotopic fractionation effects for the stable isotopes of major elements 

(Richter et al., 2008, 2009; Huang et al., 2009, 2010). Thermal diffusion, otherwise known as the 

Ludwig-Soret effect (Ludwig, 1856; Soret, 1879) or just Soret diffusion, refers to mass 
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diffusions or chemical fluxes driven by differences in temperature. The experiments conducted 

by Richter et al. (2008, 2009) utilized a 10mm long capsule in a piston cylinder apparatus and 

intentionally created a 160°C temperature gradient between the two ends of the capsule. The 

experiments were run for 100 hours at just over 1 GPa and were considered to have reached a 

steady state. The results showed fractionations caused by thermal diffusion for the major 

elements Si, Mg, Ca, Fe, and O that were all correlated but with different sensitivities to 

temperature (Figure 7). The thermal isotopic fractionations were described in terms of the 

parameter Ωi, which is defined as the fractionation in per mil per 100°C per atomic mass 

difference between the isotopes. Richter et al. (2009) reported values of ΩCa = 1.6, ΩFe = 1.1, ΩSi 

= 0.6, ΩO = 1.5, and Richter et al. (2008) reported ΩMg = 3.6. For Ca this corresponds to a 

thermal isotopic fractionation of δ44/40Ca = 0.064‰ per 1°C. The values reported by Richter et al. 

(2008, 2009) are comparable to those that were also reported by Huang et al. (2010).  

 

Figure 7 - Correlated major element fractionations caused by thermal diffusion. Figure 

from Richter et al., (2009) 

Interestingly, the results of these thermal diffusion experiments consistently showed that the 

heavier isotopes would be enriched in the colder end of the experimental capsule, regardless of 
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whether the concentration of the parent element increased towards the same end. These results 

suggest that even very small temperature differences of a few degrees or a few tens of degrees 

will fractionate the isotopes of major elements in silicate liquids and that these fractionations will 

be correlated and predictable, and therefore can be distinguished from fractionation caused by 

other processes (Richter et al., 2009). This unique fingerprint of positive co-variation of stable 

isotope fractionation provides an important diagnostic tool for potentially recognizing if these 

processes occur in nature and future studies using non-traditional stable isotopes could provide 

information to determine if thermal diffusion could be a significant process of igneous 

differentiation on Earth (Huang et al., 2010). However, any experimental work involving stable 

isotopes must account for this process and take precautions to limit temperature gradients within 

experimental capsules.  

 

1.4 Isotope Geochemistry 

With recent advances in modern analytical geochemistry techniques, non-traditional stable 

isotopes such as Mg, Si, Ca, and Fe formerly not thought to fractionate during magmatic 

processes have become a very powerful tool in the field of high temperature geochemistry 

(Huang et al., 2010). With the Ca cycle closely linked to the C cycle in the Earth (DePaolo, 

2004; Fantle and Tipper, 2014), studying the Ca isotopic composition of carbonatites may be 

able to add to our understanding of deep carbon and its role in the global carbon cycle.  

 

1.4.1 Calcium Isotopes 

Calcium is the fifth most abundant element in the Earth’s crust and an important rock forming 

element. It has six isotopes (40Ca, 96.941%; 42Ca, 0.647%; 43Ca, 0.135%; 44Ca, 2.086%; 46Ca, 

0.004%; 48Ca, 0.187%) with the largest relative mass difference between the heaviest and lightest 

isotope (Δm/m = 20%) except for H and He, which amplifies mass-dependent fractionation and 

makes it a cosmochemical and geochemical tracer with great potential (DePaolo, 2004). 

Calcium-bearing carbonate minerals can coexist with calcium-bearing silicate minerals in 

carbonatites, and recent geochemical research has shown that the Ca isotopic variation in silicate 

minerals that equilibrated at high temperatures in the mantle can be accurately measured (Huang 
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et al., 2010; Valdes et al., 2014). Calcium is a good candidate for isotopic studies of the mantle 

because, as a refractory lithophile element, it does not partition into planetary cores during the 

accretion and differentiation processes that occur during planetary formation (Valdes et al., 

2014). Therefore, the calcium isotopic composition of the mantle may represent the bulk Earth 

composition.  

Like other stable isotopes, calcium isotope fractionation is reported in the conventional delta 

notation:  

 δ44/40Ca = {[(44Ca/40Ca)sample - (44Ca/40Ca)standard]/[(44Ca/40Ca)standard]} 

Delta notation reports the ratio of stable isotopes relative to a standard because the differences in 

isotopic ratios can be measured more precisely than the absolute ratios. Delta notation is reported 

in per mil (‰) units, or parts per thousand. A positive δ value indicates the ratio of heavy to light 

isotope is higher in the sample than in the standard and a negative δ value indicates the opposite. 

The fractionation factor between two substances or phases (A and B) can also be reported as:  

αA-B = (1000 + δA)/(1000 + δB) 

Values of α are often very close to unity, normally in the order 1 ± 10-3, and for this reason, other 

useful methods of reporting fractionation are the 103 ln α value and the Δ (‘big delta’) value. 103 

ln (1 + x 10-3) is approximately equal to just x, and the Δ value (ΔA-B = δA – δB) is approximately 

equal to 103 ln α so both are useful for reporting the isotopic fractionation between two 

substances.  

Many of the isotopic exchanges that occur in nature are near-equilibrium reactions and therefore 

they can be modeled using classical equilibrium thermodynamics. The precipitation of mineral 

phases (e.g. carbonates, phosphates) in water is one example of a low-temperature equilibrium 

process, whereas crystallization is generally an equilibrium process at high temperatures. In 

general, equilibrium fractionation between two phases is determined by the differences in bond 

strength of the different isotopes of any element, with the heavier isotope forming stronger bonds 

and being concentrated in whichever phase also has ‘stiffer’ or stronger bonds. General rules for 

equilibrium isotopic fractionation are described by Schauble (2004): 
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1) Fractionation between two phases generally decreases with increasing temperatures 

as described by the relationship 1/T2 

2) Fractionation is generally greater for elements with a larger mass ratio determined by 

the equation (mheavy – mlight)/(mheavymlight) 

3) Heavy isotopes are preferentially partitioned into the sites with the stiffest bonds 

(strongest and shortest bonds) and bond stiffness is increased by 

a. High oxidation states 

b. Lighter elements 

c. Covalent bonds 

d. Low coordination number 

It is the first rule regarding the relationship between fractionation and temperature which has 

made high temperature isotope geochemistry for some stable isotopes difficult until recent 

technological advancements in mass spectrometry. The δ values for Ca can now be measured to a 

precision as good as ±0.05 (2 standard deviations) or better, using high resolution multi-collector 

inductively coupled mass spectrometry, representing a minimum improvement by a factor of 10 

from very early measurements conducted using double-spike thermal ionization mass 

spectrometry techniques (Schiller et al., 2012).  

Calcium isotopic fractionation has been well studied in low-temperature systems, with most 

previous research focused on marine carbonates and sulfates and limited work on Ca isotopes in 

igneous systems (Fantle and Tipper, 2014). Low temperature systems showing Ca isotopic 

fractionation include: inorganic and biotic Ca-mineral precipitation (e.g. Gussone et al., 2003), 

ion exchange (Russell and Papanastassiou, 1978), and plant uptake (e.g. Schmitt and Stille, 

2005). Russell et al. (1978) were the first to publish a study of Ca isotopes that included igneous 

rocks, however, the analytical precision (δ44Ca ±0.5‰, 2 standard deviations) was not precise 

enough to resolve most isotopic fractionations. Data compiled from more recent studies shows 

large variations in the δ44/40Ca values (+0.62‰ to +1.54‰) for terrestrial basalts (Kang et al., 

2017). Fantle and Tipper (2014) conducted a review of recent Ca isotope research and compiled 

data from more than 70 published studies (Figure 8). Generally, seawater is the heaviest 

isotopically speaking with a mean value of δ44Ca = +1.92‰ while plants are isotopically lighter 

at only δ44Ca = +0.01‰. Other important trends that were reported were the difference between 
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ancient (δ44Ca = +0.54‰) and modern marine carbonates (δ44Ca = +0.74‰), and the fact that the 

marine carbonates yielded typically lower δ44Ca values than silicates (δ44Ca = +0.99‰).  

 

Figure 8 - Summary of published Ca isotope data compiled and presented in Fantle and 

Tipper (2014). Figure redrawn from Fantle and Tipper (2014). 

As with most published Ca isotope studies, Fantle and Tipper (2014) reported their δ44/40Ca 

values relative to the NIST reference standard SRM915a which is a calcium carbonate. However, 

this reference standard has since been exhausted and replaced with SRM915b, another calcium 

carbonate. Whereas most samples are heavier isotopically than the SRM915a, the SRM915b is 

much closer to the bulk silicate earth values for δ44Ca and therefore it has been argued that it is a 

better reference standard for use in Ca isotopic studies (Schiller et al., 2012). 

Amini et al. (2009) provided Ca isotopes for widely available reference material as well as a 

wider range of igneous and metamorphic rock types than was available in the literature at the 

time. They reported, for the first time, mantle rocks such as peridotites that were enriched in 

heavy Ca isotopes compared to basalts. They indicated that Ca isotopes can be fractionated at 

high temperatures but did not identify the igneous and metamorphic processes by which this may 

occur. However, they did postulate that inter-mineral fractionation may play a role in the Ca 

isotope variations they measured in ultramafic rocks, and that changes in mineral assemblages or 

the abundances of different minerals within samples may cause Ca isotope variability. They 
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suggested that a more in-depth analysis of rock assemblages including mineral separates was 

required to further constrain the fractionation mechanism.  

Huang et al. (2010) reported the first evidence for Ca isotopic fractionation between co-existing 

clinopyroxene (Cpx) and orthopyroxene (Opx) in mantle peridotites with the 44Ca/40Ca in 

orthopyroxenes being +0.36 to +0.75‰ higher than that of the clinopyroxenes. This fractionation 

between co-existing minerals was attributed to differences in the Ca-O bond length, with the 

shorter Ca-O bond leading to a stronger bond and a heavier Ca isotopic composition (Figure 9). 

Due to the large variability in the Ca isotopic composition of basalts (DePaolo, 2004), and the 

fact that their study showed Ca isotopic fractionation due to igneous processes, Huang et al. 

(2010) reconstructed the mantle 44Ca/40Ca value based on mantle peridotites. They based their 

estimate on the proportion of Opx and Cpx (the principal Ca-bearing minerals) in the upper 

mantle and assumed the Ca isotopic composition of the minerals in their study were 

representative of the mantle. Their estimate for the mantle or Bulk Silicate Earth (BSE) δ44/40Ca 

was +1.05±0.04 which was higher than the average for their measured basalts (+0.97±0.04), 

consistent with the results of Amini et al. (2009). Huang et al. (2010) concluded by asserting 

their BSE δ44/40Ca was not final, but rather that additional samples should be analyzed to better 

characterize the Ca isotopic composition of the mantle. The importance of establishing a stable 

terrestrial mantle value for Ca isotopes extends beyond terrestrial samples, it is also important to 

effectively compare the Ca isotopic compositions of meteorites and other planetary bodies with 

the BSE (Simon and DePaolo, 2010; Valdes et al., 2014; Amsellem et al., 2017). Subsequent 

studies of the Ca isotopic composition of mantle peridotites have continued to expand our 

understanding of the mechanisms behind the observed Ca isotopic fractionation.  
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Figure 9 – δ44/40Ca vs. Ca-O bond length in low temperature minerals (calcite, aragonite, 

barite) calculated using mineral-seawater fractionation factors from Gussone et al., (2005) 

and Griffith et al., (2008), and coexisting Opx and Cpx in mantle peridotites measured by 

Huang et al., (2010). Figure redrawn from Huang et al. (2010). 

Kang et al. (2016) provided Ca isotope data for coexisting Cpx and Opx in mantle xenoliths from 

Eastern China. They found Opx-Cpx Ca isotope fractionations ranging from −0.01 to +1.11 that 

increased with decreasing Ca/Mg values in the orthopyroxenes. Their δ44/40Ca for the bulk 

peridotites ranged from +0.76 to +1.04‰, positively correlated with CaO content and negatively 

correlated with MgO content. These correlations were explained by a two end-member mixing 

model between a fertile mantle and a depleted one with low δ44/40Ca caused by carbonate 

metasomatism followed by melt extraction. Kang et al. (2016) argued their study showed that Ca 

isotopes could be useful for studying mantle evolution.  

Kang et al. (2017) further expanded the database of Ca isotopes in mantle peridotites to better 

constrain the Ca isotopic composition of the BSE. Their results showed that fertile peridotites 

had a consistent δ44/40Ca value of +0.94±0.05‰ which they proposed as the BSE value. They 

also indicated that the mantle processes of melt extraction and metasomatism may slightly 

elevate and decrease respectively the δ44/40Ca values of mantle peridotites, particularly in low-Ca 

rocks. They assert that the results of their study provide the benchmark for using Ca isotopes for 
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the study of planet formation, mantle evolution, and crustal recycling. Figure 10 represents a 

summary of the high-temperature Ca isotope data that has been published to date. The data and 

sources for Figure 10 are also provided in Appendix A (meteorite samples) and Appendix B 

(terrestrial samples).  

In addition to these studies of natural samples, theoretical research has also been conducted by 

Feng et al. (2014) into the mechanisms behind the Ca isotope fractionation between coexisting 

Opx and Cpx. The mantle and crust are the largest reservoirs of Ca in the Earth and Ca cycles 

between the mantle and crust are achieved by crustal growth and recycling (e.g. Dasgupta et al., 

2004a). Since carbonates typically have δ44/40Ca values distinct from the mantle and much higher 

Ca contents, recycling of marine carbonates at subduction zones can alter the Ca isotope 

compositions of the mantle (Huang et al., 2011). Due to the coupling of Ca and C cycles, Ca 

isotopes can be used to monitor the global carbon cycle throughout Earth’s history (e.g. Fantle 

and DePaolo, 2005) and subsequently, Feng et al. (2014) emphasized the necessity for a detailed 

investigation into how Ca isotopes are fractionated between silicate minerals. In order to use Ca 

isotopes as tracers in mantle geochemistry, equilibrium fractionation factor of Ca isotopes 

between mantle minerals are of critical importance, and to date there have been no experiments 

to determine these all-important fractionation factors (Feng et al., 2014). Feng et al. (2014) 

showed for the first time, a compositional effect on equilibrium stable isotope fractionation that 

matched the observations on natural mantle minerals from Huang et al. (2010). They confirmed 

the belief that the Opx-Cpx fractionation that was measured in the San Carlos and Kilbourne 

Hole peridotites (Huang et al., 2010) was controlled by Ca-O bond lengths, while also showing 

that the Ca-O bond length in Opx can vary when Ca is a minor element. Lower Ca/Mg values in 

Opx results in a shorter Ca-O bond length and an enrichment in heavier Ca isotopes, which 

explains the +0.36 to +0.75‰ variation in Opx-Cpx fractionation measured between the San 

Carlos and Kilbourne Hole peridotites.  
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Figure 10 - Compilation of published terrestrial and meteorite Ca data (excluding low 

temperature terrestrial systems). Vertical red line indicates the average δ44/40Ca value for 

terrestrial basalts (+0.90 ± 0.04‰, Valdes et al., 2014), vertical blue line indicates the 

average δ44/40Ca value for the BSE (+1.05 ± 0.04‰, Huang et al. 2010), and vertical yellow 

line indicates the average δ44/40Ca value for seawater (+1.92 ± 0.20‰, Fantle and Tipper, 

2014). Data and sources are given in Appendix A and Appendix B. Any data that was not 

reported as δ44/40Ca relative to SRM915a in the original source was converted using the 

methods given in Chapter 2 or using conversion values from Fantle and Tipper, (2014). 
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1.5 Thesis Objectives 

 Add to the growing database of Ca isotopic data for mantle rocks (e.g. peridotites, 

carbonatites, kimberlites) and improve our understanding of the Ca isotopic composition 

of the mantle 

 Use natural carbonatite samples to investigate the potential differences in Ca isotopic 

compositions between carbonates and silicate minerals with the same evolutionary 

history 

 Add further constraints to the use of Ca isotopes as geochemical tracers of carbonatite 

metasomatism 

 Measure the Ca isotopic compositions of co-existing silicate and carbonate minerals 

 Conduct a series of experiments at a range of pressure and temperature conditions to 

constrain the systematics of Ca isotopic fractionation between mantle minerals and melts 

of different compositions ranging from carbonate to silicate melts. 
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Chapter 2 

2. Methods & Analytical Techniques 

2.1 Sample Selection 

Both natural and experimental samples were analyzed for their Ca isotopic compositions in this 

study. Experimental samples were not collected, but instead synthesized in the laboratory and 

will be described in a subsequent section. Natural samples were selected with an emphasis on 

rocks derived from the Earth’s mantle such as peridotites, carbonatites, kimberlites, and mantle 

xenoliths. Ten of these samples were obtained from the Suffel Collection at the University of 

Western Ontario, a collection of more than 200,000 catalogued samples from ore deposits around 

the world. Four samples were taken from the personal collections of Dr. Audrey Bouvier and Dr. 

Tony Withers. One sample was obtained from the rock and mineral collection at the University 

of Minnesota, and six samples were obtained from Dr. Regis Doucelance at Clermont University.  

 

2.2 Natural Sample Preparation 

Preparation of each sample for calcium isotopic analysis varied slightly depending on the 

physical state of the sample upon acquisition as well as their rock and mineral matrices, but with 

the same objective of breaking down the bulk rock and separating it into its distinct mineral 

phases. Mineral separation began by breaking down the bulk rock into more manageable pieces 

using a diamond-edged rock saw, isolating portions of the whole rock that contained higher 

concentrations of the Ca-bearing minerals of interest. These smaller pieces were broken down 

further using a disc mill to crush them into grain sized fragments and then separated by grain size 

using handheld sieves (>425µm, 250-425µm, 150-250µm, <150µm). If necessary, the 150-

250µm sized grains were passed on a S.G. Frantz Co. LB-1 Magnetic Barrier Laboratory 

Separator to help separate and concentrate the different mineral phases based on their magnetic 

susceptibilities. The final step of mineral separation for all samples was hand-picking mineral 

grains using forceps under a binocular microscope, selecting only the cleanest grains with no 

visible impurities. In addition to mineral separates, a homogenized bulk rock powder for each 

sample was also reserved for various whole-rock analyses 
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2.3 Experimental Sample Design and Preparation 

Piston cylinder and multi-anvil experiments were designed with starting bulk compositions given 

in Table 2. Experiments were designed with the strategy of producing clinopyroxene and 

quenched melt in approximately equal proportions. Clinopyroxene and melt compositions were 

chosen to reflect appropriate compositions for a mantle assemblage that would be in equilibrium 

with a low degree carbonated silicate melt. In other words, the starting materials used for 

experiments were constructed such that the clinopyroxene and melt compositions would match 

those found to be in equilibrium with a peridotite assemblage (Dasgupta et al., 2013). This means 

that the melt composition is that of a low-melt-fraction, high-pressure carbonated silicate melt, 

such as might form under oxidising conditions in a carbon-bearing peridotite mantle, even 

though the melt fraction in the experiment is close to 0.5. In addition, the compositions of the 

two phases in the target assemblage were calculated to match those shown to be in equilibrium 

with olivine, orthopyroxene and garnet (Dasgupta et al., 2013), even though these other minerals 

are not part of the target experimental assemblage. Capsules were packed at UWO and pressed at 

the University of Minnesota. Prior to weighing, K2CO3 was dried at 500 °C for eight hours, and 

Na2CO3 and CaCO3 were dried at 400 °C, for twelve and four hours, respectively. Reagent SiO2, 

Al2O3 and MgO were calcined at 1100 °C for 95 hours. All K2O and Na2O was added to the 

starting material as K2CO3 and Na2CO3, while CaO was added as both CaCO3 and CaSiO3 to 

achieve the required amount of CO2 in each experiment. To achieve the intended levels of H2O 

in the Cpx + Silicate melt experiment, all MgO was added as Mg(OH)2.  Reagents were weighed 

using an analytical balance and each mix was ground in an agate mortar with isopropanol for a 

minimum of 45 minutes. Starting materials were stored in glass vials in a desiccator until they 

were ready to be packed into 3 mm diameter, platinum experimental capsules 4-6 mm in length, 

and sealed by arc welding. Capsules contained 43-61 mg of starting material.  
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Table 2 - Experiment Starting Materials in wt% 

 Piston Cylinder 
Cpx + Carbonated 

Silicate Melt 
Starting Materials 
(Experiment Cbt-

01) 

Multi-Anvil Cpx + 
Carbonated Silicate 

Melt Starting 
Materials 

(Experiments Cbt-
02 and M824) 

Piston Cylinder 
Cpx + Silicate Melt 
Starting Materials 

(Experiment 
A1325) 

Piston Cylinder 
Cpx + Carbonatite 

Melt Starting 
Materials 

(Experiments B795, 
B796, B797, B798) 

SiO2 38.40 41.56 49.21 29.78 

TiO2 2.90 0.70 - - 

Al2O3 4.33 3.54 10.45 2.38 

Cr2O3 0.51 0.13 - - 

FeO 7.76 7.12 - - 

MnO 0.12 0.18 - - 

MgO 18.24 20.59 12.38 18.57 

CaO 14.27 15.10 22.97 27.26 

Na2O 2.26 0.82 - - 

K2O 0.09 0.03 - - 

CO2 11.00 10.25 - 21.39 

H2O - - 5.53 - 

 

All experiments were assembled and conducted at the University of Minnesota’s Experimental 

Petrology Laboratory.  Piston cylinder experiments were conducted using an end-loaded piston 

cylinder apparatus using a BaCO3 pressure medium and type B thermocouple and run times 

ranged from 44-128 hours. Pressure calibration for this instrument can be found in Xirouchakis 

et al. (2001). Multi-anvil experiments were conducted using a Walker-style module mounted in a 

1000-ton hydraulic press with a modified 12-TEL assembly for large volume experiments 

(Withers et al., 2011). The modified assembly consisted of 13 mm x 5 mm outside diameter x 4 

mm inside diameter graphite furnace. A type C thermocouple was used and the interior of the 

furnace surrounding the capsule and thermocouple was filled with crushable MgO. The details 

for the pressure and temperature calibration for this apparatus is given in Dasgupta et al. (2004a). 

Based on unpublished pyroxene solvus thermometry, experiments with multiple thermocouple 

junctions, and observations of the solid-liquid boundaries in sphene melting experiments, the 

temperature gradient within the central 2.5 mm measured along the cylindrical axis of the 
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furnace in both piston cylinder and (unmodified) multi-anvil assemblies is ≤ 20 °C/mm. The run 

conditions for each experiment are given in Table 3.  

Table 3 - Experiment ID's, run conditions and apparatus used for all the experiments 

conducted in this study. 

Experiment 
Type 

Experiment 
ID 

Pressure 
(GPa) 

Temperature 
(°C) 

Run Time 
(hours) 

Apparatus 
Used 

Cpx + Silicate 
Melt A1325 1 1125 128 

Piston Cylinder Cpx + Carbonate 
Melt 

B796 3 1250 72.8 

B795 3 1350 44.5 

B797 3 1450 46.3 

B798 3 1550 44.7 

Cpx + 
Carbonated 

Silicate Melt 

Cbt-01 3 1375   

Cbt-02 5 1440 48 
Multi-Anvil 

M824 5 1440 48 

 

Any residual MgO pressure medium was carefully removed from the outside of the experimental 

capsules before they were carefully opened using forceps and a scalpel under a binocular 

microscope. Experimental products were slowly removed from their platinum capsules under 

magnification and collected in glass vials, separating the clinopyroxenes from the melt phase for 

each experiment (Figures 11 and 12).  
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Figure 11 - Photographs taken while opening experiment B797. Left image shows a cluster of 

clinopyroxene crystals removed from the capsule, the image on the right shows the open capsule with 

fragments of quenched melt and Cpx crystals inside. For scale: diameter of the capsule is 3 mm.  

Figure 12 - Photographs taken while opening experiment M824. Left image shows crystals within the 

open capsule, the image on the right shows the transition from crystals to quenched melt within the 

capsule. For scale: diameter of the capsule is 3 mm.  
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2.4 Electron Probe Microanalyses 

After sample preparation and mineral separation, the major element compositions of the various 

calcium-bearing minerals in each sample were analyzed by electron microprobe. This 

information was required to determine the amount of calcium in each, and therefore establish 

how much sample mass was to be dissolved for calcium isotope analyses. One sample was 

mounted as a rock fragment in epoxy while the rest were mounted as individual mineral grains in 

epoxy or cyanoacrylate on brass mounts. All samples were polished using diamond lapping film 

and then carbon coated before being analyzed. 

All microprobe analyses were done at the Earth and Planetary Materials Analysis (EPMA) 

Laboratory at the University of Western Ontario using the JEOL JXA-8530F hyperprobe. The 

electron microprobe allows for non-destructive in situ chemical analysis of solid geological 

samples. The silicon drift energy dispersive spectrometer (EDS) was used for rapid identification 

of mineral phases and qualitative elemental analyses before the wavelength dispersive 

spectrometers (WDS) were used for quantitative chemical analyses of each Ca-bearing silicate 

and carbonate mineral phase. The backscattered electron (BSE) detector was also used for 

imaging of mineral grains, especially for experimental samples. The silicate mineral phases were 

analyzed using a focused beam with a 1 µm spot size, an acceleration voltage of 15 kV, and a 

beam current of 20 nA. The following standards were employed: San Carlos olivine (Si, Mg), 

rutile (Ti), Ca-augite (Al), fayalite (Fe), diopside (Ca), albite (Na), millerite (Ni), rhodonite 

(Mn), orthoclase (K), and chromite (Cr). Carbonate mineral phases were analyzed using a 

defocused beam with a 25 µm spot size, an acceleration voltage of 15 kV, and a beam current of 

5 nA. The following standards were employed: calcite (Ca), dolomite (Mg), siderite (Fe, Mn), 

strontianite (Sr), barite (Ba), and quartz (Si). 

 

2.5 Silicate Mineral Acid Leaching Procedure 

After mineral separation and microprobe analyses, but before sample dissolution, silicate mineral 

separates were acid leached to remove any potential carbonate residues that would contaminate 

these samples. Samples were weighed and then soaked in 2 ml 0.5M acetic acid in capped Teflon 

beakers at 100-120 °C for 30-60 minutes, then placed in an ultrasonic bath for 15 minutes. The 

liquid was pipetted off and each sample was washed twice with MilliQ water.   
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2.6 Sample Dissolution Procedure 

All sample dissolutions were conducted in the GEOMETRIC Laboratory at the University of 

Western Ontario under clean conditions using acid-washed Teflon beakers, 18.2 MΩ cm-1 MilliQ 

(purified by Millipore Adavntage 10 and QPOD Element ion-exchange filtration systems) water 

and ultra-clean distilled acids throughout. The calcium blank for this digestion method was on 

average 7 ng. Depending on the Ca concentrations of the samples, between 1 and 1000 mg of 

sample material was weighed into beakers using a Mettler Toledo Excellence Plus XPE105 

Analytical Balance. The dissolution procedure varied depending on whether the sample was 

composed on silicate or carbonate minerals, the method used for each were as follows: 

- Silicate Mineral Dissolution  

1) Acid leaching procedure (outlined above) 

2) Add 10 drops of concentrated HNO3 (16M) + ~2 ml of concentrated HF (29M) 

3) Capped on Hot plate @ 120 °C for minimum 48 hours (often several days is necessary) 

4) Dry down on hot plate 

5) Add ~20 drops of concentrated HClO4 (enough to cover sample) to break down fluorides and 

avoid Ca isotopic fractionation into insoluble fluorides 

6) Dry down on hot plate @ 180 °C in perchloric fume hood 

7) Add H2O from dropper to rinse down any remaining HClO4 from sides of beaker 

8) Dry down on hot plate again in perchloric fume hood 

9) Add ~2ml concentrated HNO3 to convert the samples into a nitride form 

10) Dry down on hot plate 

11) Uptake in 1M HNO3  

12) Centrifuge to remove any refractory particles not dissolved (e.g. possible organics or metals) 

 

- Carbonate Mineral Dissolution 

1) Add ~2 ml 0.5M Acetic Acid or HNO3 (if necessary) to dissolve only carbonates, not silicate 

inclusions 

2) Hot plate @ 120 °C 

3) Centrifuge for 10 mins to remove any particles 

4) Collect supernatant, dry down on hot plate 

5) Uptake in 1M HNO3 
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2.7 Calcium Purification 

Samples containing 50-200 µg Ca were purified from matrix elements using column 

chromatography to prevent elemental and molecular isobaric interferences during mass 

spectrometry analyses. The calcium purification procedure given in Tables 4 and 5 was adapted 

from the method described in Valdes et al. (2014). Each step was tested and calibrated to 

optimize the calcium yields and purity before beginning work with samples. Complete calcium 

recovery was essential as it has been shown that incomplete recovery can result in fractionation 

of calcium isotopes (Russell et al., 1978). Figures 13 and 14 display the calibration curves for 

each step of the calcium purification protocol.  

Step 1 used 2 ml of Eichrom DGA ion exchange resin packed in polypropylene Bio-Rad 

columns. These columns could process a maximum sample load of 20 mg, however, for samples 

larger than 2-3 mg a second pass was required to further purify the sample (specifically to 

remove the small residual Ti peak visible in elution steps Ca 1, Ca 2 of the elution curve in 

Figure 13). Strontium is the only element that was not separated from calcium during this first 

purification step. After one or two passes through this matrix removal step, samples were dried 

down and re-dissolved in 3M HNO3 in preparation for the second purification step. Step 2 used 

200µl of Eichrom Sr-specific resin packed in ~3 ml Teflon columns to separate Sr from Ca. 

Based on the elution curve (Figure 14), only 5 ml of 3M HNO3 was used after the initial sample 

load to elute Ca since all the Ca had been eluted at that point and any additional volume started 

to elute Sr. Samples were then dried down and re-dissolved in 2% HNO3 for ICP-MS and MC-

ICP-MS analyses. Yields for each of these purification steps was measured by quadrupole ICP-

MS to be 100% and total procedural blanks were measured to be on average 18.3 ng of Ca which 

equated to 0.009-0.037% relative to the total Ca in the samples (50-200 µg). 
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Table 4 - Step 1 calcium purification procedure 

Step #1: Matrix removal (Repeated for high matrix samples) 

Eluent Volume (ml) Elements Eluted 

15M HNO3 5 cleaning 

1M HNO3 6 Conditioning 

Load sample in 1M HNO3 1 Matrix 

1M HNO3 5 Matrix 

15M HNO3 12 Ca + Sr 

15M HNO3 5 cleaning 

H2O 5 rinse 

 

Table 5 - Step 2 calcium purification procedure 

Step #2: Sr separation 

Eluent Volume (ml) Elements Eluted 

3M HNO3 1 reservoir cleaning 

3M HNO3 4 Conditioning 

Load sample in 3M HNO3 1 Ca 

3M HNO3 5 Ca 

0.01M HNO3 3 Sr 

0.01M HNO3 1 reservoir rinse 
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Figure 13 - Elution curve for calcium purification step 1. 

 

 

Figure 14 - Elution curve for calcium purification step 2. 
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For low Ca samples, such as olivines, some bulk rock samples, and some orthopyroxenes, a 

preliminary pass using cation exchange column was conducted before advancing to the above 

steps. For these samples, most of the matrix elements were removed from the sample using 

Teflon columns with Bio-Rad AG50W-X8 200-400 mesh cation exchange resin (11.6 ml, 

capacity of 270 mg whole-rock sample) (Tera et al., 1970). The procedure for this step is given 

in Table 6 and the calibration curve is given in Figure 15. The eluates collected from this 

preliminary matrix removal step were dried down, re-dissolved in 1M HNO3, and passed through 

the remaining steps of the Ca column chemistry protocol. The yield for this step was measured to 

be 98% (with an estimated error of ±5% by qICPMS).  

Table 6 - Preliminary calcium purification procedure for very low Ca samples 

Low Ca Samples Preliminary Matrix Removal 

Eluent Volume (ml) Elements Eluted 

2.5M HCl 35 Conditioning 

Load Sample in 2.5M HCl 3 Matrix 

Rinse 2.5M HCl 27 Matrix Elements 

2.5M HCl 25 Ca 

H2O 10 Backwash 

2M HF 60 Cleaning 

6M HCl 60 Cleaning 

H2O 10 Backwash & Store 
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Figure 15 - Elution curve for low Ca samples preliminary cation exchange column matrix 

removal step. 

 

2.8 Iron Purification 

In addition to calcium, several samples were analyzed for their Fe isotopic composition. Sample 

aliquots containing 5 µg Fe were purified from matrix elements using column chromatography to 

prevent elemental and molecular isobaric interferences during mass spectrometry analyses. The 

purification procedure used 2 ml of 100-200 mesh Bio-Rad AG MP-1 strong anion exchange 

resin packed into polypropylene Bio-Rad type columns. The Fe purification protocol was 

adapted from Chapman et al., (2006) and the details are outlined in Table 7.  
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Table 7 - Iron purification procedure 

Fe Purification Protocol 

Eluent Volume (ml) Elements Eluted 

6M HCl 1 reservoir Cleaning 

H2O 1 reservoir Cleaning 

7M HCl 6 Conditioning 

Load sample in 7M HCl 1 Matrix 

7M HCl 33 Matrix  

2M HCl 25 Fe 

H2O 1 reservoir Rinse 

 

2.9 Quadrupole Inductively Couple Plasma Mass Spectrometry (ICP-MS) 

Quadrupole inductively coupled plasma mass spectrometry (qICP-MS) was used extensively to 

measure major and trace elements throughout various steps of the sample preparation process. 

All ICP-MS analyses were conducted using a Thermo iCAP Q quadrupole ICP-MS in the 

GEOMETRIC Laboratory at the University of Western Ontario. Some of the many uses of the 

ICP-MS included: major element analyses of samples including determining the calcium 

concentration of each, analyzing column calibration results including measuring sample yields, 

trace element analyses of samples, and measuring chemistry procedural blanks. All samples were 

analyzed in 2% HNO3 solutions and each run included a set of calibration standards, blank, and 

internal standard. For major element analyses of samples, typically a 1% sample aliquot was 

diluted into 10 ml of 2% HNO3. Calcium was the most frequent analyte, and solutions were 

analyzed at concentrations ranging from the detection limit of approximately 2-5 ppb up to 5-10 

ppm. However, concentrations in the range of 100-500 ppb were typical for most calcium 

analyses. ICP-MS measurements were critical to determine the Ca concentration of samples 

before column chemistry to ensure that the columns were not overloaded, as well as essential for 

measuring the concentrations of samples after chemical purification to ensure complete yields. It 

was also used to ensure that each sample was diluted to the same concentration and that the 

concentrations matched that of the standards before isotopic analyses.  

 



42 
 

2.10 Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-

ICP-MS) 

All high-precision Ca isotope analyses were conducted using a Thermo Neptune multi-collector 

inductively coupled plasma mass spectrometer (MC-ICP-MS) operating at high resolution at the 

Water Quality Centre at Trent University. After chemical purification, calcium samples were 

dissolved in 2% HNO3 and diluted to a concentration of 4 ppm. Samples were introduced to the 

MC-ICP-MS plasma source using an ESI SC-4 DX autosampler and an ESI Apex Q desolvating 

nebulizer sample introduction system which helped increase sensitivity and decrease rinse-out 

times. Samples were aspirated at an approximate rate of 0.150 ml/min and the samples gas flow 

rate was typically in the range of 0.800-1.000 L/min. The cones used were a TF1001-Ni/Cu 

nickel sampler cone with a copper core, along with either a T1002A-Ni nickel skimmer cone or a 

TF1002X-Ni nickel X-skimmer cone with a copper core. The X-skimmer cone typically allowed 

for greater sensitivity but less stability, so the skimmer cone that was used depended on the 

instrument conditions. A static 6 Faraday cup configuration was used with the 42Ca, 43Ca, 44Ca, 

46Ca, 47Ti, and 48Ca ion beams measured on L4, L2, L1, H1, H2, and H3 cups respectively. Each 

analysis consisted of one block of 25 cycles with integration times of 8.389 s and was preceded 

by a baseline measurement. Tuning parameters were adjusted each day during analyses to ensure 

optimal instrument stability and sensitivity.  

The standard-sample bracketing technique was used for all isotope measurements to correct for 

instrument drift throughout the course of the analyses. NIST SRM915b was used as the 

bracketing standard for all measurements. The SRM915b standard contains a level of Sr that 

would affect the accuracy of measurements, so it was first passed through one round of Sr 

removal chemistry. The conventional delta notation was used to report all calcium isotope 

variations in per mil units (‰) relative to the bracketing standard: 

δ44/42Ca = {[(44Ca/42Ca)sample - (44Ca/42Ca)SRM915b]/[(44Ca/42Ca)SRM915b]} (eqn 1) 

δ44/40Ca = {[(44Ca/40Ca)sample - (44Ca/40Ca)SRM915a]/[(44Ca/40Ca)SRM915a]} (eqn 2) 

Since 40Ar+ is used as the ionizing gas when using MC-ICP-MS for analyses, it is not possible to 

measure the more conventionally reported 44Ca/40Ca ratios. However, assuming mass 

dependency the 44Ca/42Ca ratio that was measured in this study was converted to 44Ca/40Ca ratios 
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using the equation δ44/40Ca = δ44/42Ca/β where β = 0.488 (Colla et al., 2013), allowing for better 

comparisons to values reported in the existing literature. Mass independent fractionation is 

assumed to have no effect on these conversions since all Ca isotopic fractionations measured 

thus far in terrestrial samples are mass dependent (Moynier and Fujii, 2017). Furthermore, most 

of the existing literature reported their δ44Ca values relative to the calcium standard SRM915a, 

the supply of which has since been exhausted and replaced with SRM915b. Valdes et al. (2014) 

measured the δ42/44Ca value of SRM915b relative to SRM915a to be −0.35 ± 0.01‰ or, assuming 

mass dependency, a δ44/40Ca of +0.71 ± 0.02‰. These conversion values were also in good 

agreement with other published studies (Heuser and Eisenhauer, 2008; Hindshaw et al., 2011; 

Lehn et al., 2013) and so were used to convert the data and report it relative to SRM915a for 

better comparisons to the existing literature. Ultimately, all data was measured and calculated as 

δ44/42Ca relative to SRM915b (see equation 1) but was subsequently converted to δ44/40Ca relative 

to SRM915a (equation 2) using the equation δ44/40Ca = (δ44/42Ca/0.488) + 0.71.  

SRM915b aliquots were always passed through the full chemistry procedure alongside samples 

and these aliquots were routinely measured relative to the regular SRM915b bracketing standard. 

This was done to ensure that the chemistry method was not introducing any fractionation as well 

as to monitor the instrument stability and long-term reproducibility of the analyses.  The long-

term average of SRM915b from September 2016 to September 2017 was 0.00 ± 0.07‰ (n = 16) 

(Figure 16). The errors associated with these SRM915b measurements are comparable to recent 

Ca isotopic studies that used MC-ICP-MS, for example, Schiller et al. (2012) processed a 
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SRM915b aliquot using their full chemistry procedure and reported a value of δ44/42Ca = +0.04 ± 

0.09 (error is two times the standard deviation). 

Additional samples were utilized as external standards to ensure the efficacy of the chemistry 

and analyses. These included clinopyroxene and orthopyroxene mineral separates from the San 

Carlos and Kilbourne Hole peridotites, as well as the USGS rock standard BCR-2. These 

samples were used because their Ca isotope data has already been published (e.g. Huang et al., 

2010). Each was found to be identical within error to the previously published values. Leached 

and unleached samples of the San Carlos and Kilbourne Hole clinopyroxenes were found to be 

identical within error. San Carlos clinopyroxenes that underwent one pass through the matrix 

removal step #1 chemistry were identical within error to a sample that underwent two passes, and 

full procedural replicates from dissolution to purification were also identical (Figure 17).  

  

 

 

 

 

Figure 16 - SRM915b long-term reproducibility. Red line indicates the average of all 

measurements (0.00 ± 0.07‰, N = 16). 
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Figure 17 - San Carlos clinopyroxenes were used as external standards in this study to test 

the accuracy of the chemical purification methods. Each replicate matched the published 

value from Huang et al. (2010) within error. 
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Chapter 3 

3. Sample Descriptions 

3.1 Carbonatites 

This work includes 14 carbonatite samples from 6 localities.  

3.1.1 Oka Carbonatites 

The Oka carbonatite complex is located 40km west of Montreal, Quebec, Canada. It is one of the 

most westerly plutons of the Monteregian Igneous Province, intruded into Precambrian Grenville 

basement rocks (Gold, 1972; Gold et al., 1986). There are two clear intrusive centres that make 

up northern and southern ring structures and give the complex a distorted figure eight appearance 

(Gold et al., 1967; Gold, 1972). Both ring structures contain an outer region of alkalic silica-rich 

rocks and carbonatite along with a later central region of carbonatite (Treiman and Essene, 

1985). The Oka carbonatite complex has been mined for niobium, which is found at three main 

occurrences – St. Lawrence Columbium Deposit (SLC), the Bond Zone, and the NIOCAN 

deposit. It is also one of the youngest carbonatite occurrences in North America with U-Pb ages 

ranging between 113 Ma and 135 Ma (Chen and Simonetti, 2014). Oxygen and carbon isotope 

compositions of Oka carbonatites suggest a primary igneous origin (Dennis and Schrag, 2010). 

This study includes three samples from the Oka carbonatite complex acquired from the Suffel 

Collection at the University of Western Ontario (Table 8). 

Table 8 - Oka carbonatite samples included in this study. 

Sample # Sample Fractions Analyzed for Ca Isotopes Sample Location Info 

20346 
- Bulk Rock (20346-Bulk) 

- Calcite mineral separate (20346-C) 

- SLC deposit at the Oka 
complex 

12162 
- Bulk Rock (12162-Bulk) 

- Calcite mineral separate (12162-C) 

- SLC deposit at the Oka 
complex 

9399 

- Bulk Rock (9399-Bulk) 

- Calcite mineral separate (9399-C) 

- Clinopyroxene mineral separate (9399-P) 

- Unknown location at the Oka 
complex 
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3.1.2 Phalaborwa Carbonatites 

The Phalaborwa (or Palabora) carbonatite complex is in northeastern Transvaal, South Africa, 

within the Kaapvaal craton. It is well-known as the only carbonatite occurrence containing 

copper mineralization of economic value. It is a concentrically zoned structure with a central 

pipe-like feature known as Loolekop. There are two distinct types of carbonatites in this location. 

The first is a medium- to coarse-grained banded carbonatite, and the second is a transgressive 

carbonatite in veinlets caused by subsequent fracturing of the Loolekop Pipe (Phalaborwa 

Mining Company Limited Mine Geological and Mineralogical staff, 1976). The transgressive 

carbonatite is where the Cu mineralization occurs and contains both calcite and dolomite, 

whereas the banded carbonatite contains just calcite. The banded and transgressive carbonatites 

have both been dated using U-Pb isotopes to an age of 2060 Ma (Wu et al., 2011). One other 

unique feature of Phalaborwa carbonatites is high and variable Sr isotopic compositions (Wu et 

al., 2011). Based on Sr, Nd, and Hf isotopic analyses of Phalaborwa carbonatites, a primary 

igneous origin derived from different batches of enriched and heterogeneous mantle sources is 

suggested (Wu et al., 2011). This study includes three carbonatite samples from the Phalaborwa 

carbonatite complex acquired from the Suffel Collection at the University of Western Ontario 

(Table 9). 

Table 9 - Phalaborwa carbonatite samples included in this study. 

Sample # Sample Fractions Analyzed for Ca Isotopes Sample Location Info 

25865 
- Bulk Rock (25865-Bulk) 

- Calcite mineral separate (25865-C) 

- Sample of banded Phalaborwa 
carbonatite 

25869 

- Bulk Rock (25869-Bulk) 

- Mixed (calcite + dolomite) carbonate mineral 
separate (25869-C) 

- Sample of transgressive 
Phalaborwa carbonatite 

20414 

- Bulk Rock (20414-Bulk) 

- Mixed (calcite + dolomite) carbonate mineral 
separate (20414-C) 

- Undetermined but believed to 
be sample of transgressive 
Phalaborwa carbonatite 
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3.1.3 Lueshe Carbonatite 

The Lueshe carbonatite complex is in the Rwindi Mountains in the northeastern Democratic 

Republic of Congo. It is a sub-elliptical pluton that intrudes into a 1100 Ma metamorphic rock 

sequence. The complex includes a core of syenite and a ring dyke structure of coarse-grained 

calcic carbonatite, as well as one area of medium to fine-grained dolomitic carbonatite in the 

southeast portion of the complex. The carbonatites here can contain microscopic sized veins of 

hydrothermal alteration and in some areas experienced significant weathering, especially in the 

dolomitic carbonatites (Nasraoui and Bilal, 2000). Despite the presence of altered and weathered 

carbonatites, stable carbon and oxygen isotope data for the calcic Lueshe carbonatites (Pineau 

and Javoy, 1969; Denaeyer, 1970) plot within the carbonatite field for unaltered carbonatites as 

defined by Taylor et al. (1967). Kramm et al. (1997) also suggest a primary magmatic origin for 

the Lueshe carbonatites based on Sr and Nd isotope data and REE distribution patterns. K-Ar 

dating gives an age of 516±26 Ma for the carbonatites (Bellon and Pouclet, 1980), while more 

recent Rb-Sr dating gives an age of about 558 Ma (Kramm et al., 1997). This study includes one 

sample from the Lueshe carbonatite complex acquired from the Suffel Collection at the 

University of Western Ontario (Table 10).  

Table 10 - Lueshe carbonatite samples included in this study. 

Sample # Sample Fractions Analyzed for Ca Isotopes Sample Location Info 

10690 

- Bulk Rock (10690-Bulk) 

- Calcite mineral separate (10690-C) 

- Orthopyroxene mineral separate (10690-P) 

- Sample of coarse-grained, 
calcic Lueshe carbonatite 

 

 

3.1.4 Nemegos Carbonatite 

The Lackner Lake Complex is an alkalic syenite – carbonatite pluton that has intruded Archean 

gneisses near Nemegos, Ontario, Canada. It is a circular complex approximately 5.5 km in 

diameter and borders the Ivanhoe Lake fault zone, which is the boundary between the Wawa 

Subprovince and the Abitibi Subprovince (Symons, 1989). The complex is primarily composed 

of coarse-grained syenites with smaller zones of carbonatites, as well as veins of carbonatites 
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that contain niobium-rich pyrochlores (Symons, 1989). According to K-Ar dating, the age of the 

complex is 1086 ± 60 Ma (Lowden et al., 1963), while Rb-Sr dating has given ages of 1078 ± 7 

Ma (Owen and Faure, 1977) and 1058 ± 22 Ma (Bell and Blenkinsop, 1980). This study includes 

one sample of carbonatite from the Lackner Lake Complex at Nemegos acquired from the Suffel 

Collection at the University of Western Ontario (Table 11).  

Table 11 - Nemegos carbonatite samples included in this study. 

Sample # Sample Fractions Analyzed for Ca Isotopes Sample Location Info 

10673b 

- Bulk Rock (10673b-Bulk) 

- Calcite mineral separate (10673b-C) 

- Clinopyroxene mineral separate (10673b-P) 

- Apatite mineral separate (10673b-A) 

- Sample from undisclosed 
location at the Nemegos 
carbonatite deposit 

3.1.5 Cape Verde Archipelago Carbonatites 

The Cape Verde archipelago is a chain of 10 volcanic islands and several smaller islets located 

450 km off the coast of Senegal in western Africa. They are situated on top of the Cape Verde 

Rise, an oceanic mega-swell considered to be the result of a mantle plume (e.g. Montelli et al., 

2006; Zhao, 2007). The islands are renowned as one of the only occurrences of oceanic 

carbonatites on Earth. The carbonatites here are intrusive and are relatively young, with Brava 

carbonatites dated to about 1.55 Ma (Madeira et al., 2010), and Fogo carbonatites dated to 

approximately 3.4 Ma (Lancelot and Allegre, 1974). As one of the rare occurrences of oceanic 

carbonatites, they have been studied using many different isotopic systems in recent years 

including: Sr-Nd (Doucelance et al., 2010), noble gases and C (Mata et al., 2010), as well as Ce-

Nd and Pb (Doucelance et al., 2014). These isotopic studies suggest that the origin of the Cape 

Verde carbonatites involves a mixing of a depleted mantle source and either recycled marine 

carbonates or a deep primordial mantle source, with the more recent Ce-Nd isotopic study 

favouring the recycling of marine carbonates (Doucelance et al., 2014). This study includes three 

samples from the Cape Verde archipelago acquired from Dr. Regis Doucelance at Clermont 

Université, France (Table 12). 
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Table 12 - Cape Verde carbonatite samples included in this study. 

Sample # Sample Fractions Analyzed for Ca Isotopes Sample Location Info 

F1C 
- Bulk rock sample only - Ca-carbonatite from Fogo 

Island 

CY 250 
- Bulk rock sample only - Ca-carbonatite from Brava 

Island 

CY 114 
- Bulk rock sample only - Mg-carbonatite from Brava 

Island 

 

3.1.6 Tamazert Massif (Morocco) Carbonatites  

The Tamazert Massif of the High Central Atlas Range of Morocco contains some of the largest 

occurrences of outcropping carbonatites in northern Africa. The High Atlas Range extends for 

more than 2000km in an east-west direction from Morocco to Algeria and Tunisia and the 

Tamazert complex is found on the north side of the central region of this range. It is an 

elliptically shaped intrusion (17km x 5km) that covers around 70 km2 consisting of silica-

undersaturated alkaline rocks and carbonatites that have intruded into Jurassic carbonates. The 

carbonatites have been dated to an age of 39 Ma (Bouabdellah et al., 2010). Ce-Nd and Pb 

isotopic studies by Doucelance et al., (2014) indicate a similar origin for the Tamazert and Cape 

Verde carbonatites. This study includes three carbonatite samples from the Tamazert Massif 

acquired from Dr. Regis Doucelance at Clermont Université, France (Table 13).  

Table 13 - Tamazert carbonatites included in this study. 

Sample # Sample Fractions Analyzed for Ca Isotopes Sample Location Info 

TA 2a92 
- Bulk rock sample only - Ca-carbonatite from Tamazert 

Massif 

TA 1692 
- Bulk rock sample only - Ca-carbonatite from Tamazert 

Massif 

TA 1792 
- Bulk rock sample only - Ca-carbonatite from Tamazert 

Massif 

 

3.2 Kimberlites and Related Rocks 

This work includes one kimberlite sample along with two kimberlite related peridotite samples.  
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3.2.1 Kimberley Area Kimberlite 

The area surrounding Kimberley, South Africa is home to a cluster of kimberlite pipe deposits 

including five major deposits and many smaller pipes. The discovery of diamonds and their 

association with these kimberlites in the late 19th century sparked a rush of diamond mining in 

the area and led to the discovery of many diamond mines in South Africa (Field et al., 2008). 

The Kimberley area kimberlites intrude Archean-aged basement gneisses of the Kaapvaal 

Craton. The age of this cluster of kimberlite pipes has been dated at 84 ± 3 Ma (Clement et al., 

1979). Kimberlites from the major kimberlite pipes in the Kimberley area have been classified as 

group I kimberlites (Le Roex et al., 2003) This study includes one kimberlite sample from 

Kimberley, South Africa acquired from the rock and mineral collections at the University of 

Minnesota (Table 14).  

Table 14 - Kimberley kimberlites included in this study. 

Sample # Sample Fractions Analyzed for Ca Isotopes Sample Location Info 

R841 

- Bulk Rock (R841-Bulk) 

- Calcite mineral separate (R841-C) 

- Clinopyroxene mineral separate (R841-P) 

- Two amphibole mineral separates (R841-Am1 and 
R841-Am2) 

- Sample from undisclosed 
location around Kimberley, 
South Africa 

3.2.2 Kaapvaal Craton Peridotites 

The Kaapvaal Craton covers an area of approximately 1.2 x 106 km2 and consists of mainly 

tonalitic gneisses and granite greenstones that formed and stabilized sometime between 3.7 and 

2.6 Ga (de Wit et al., 1992). It has been subdivided into four terranes: The Western Terrane, the 

Southeastern Terrane, the Central Terrane, and the Pietersburg Terrane (Begg et al., 2009). The 

area of Kimberley, South Africa, and its many kimberlite pipes, can be found in the Western 

Terrane of the Kaapvaal Craton. Along with diamonds, kimberlite pipes in this region often carry 

mantle peridotite xenoliths to the Earth’s surface (Le Roex et al., 2003). This study includes two 

peridotite samples from the Kaapvaal craton acquired from the Suffel Collection at the 

University of Western Ontario (Table 15). 
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Table 15 - Kaapvaal peridotites included in this study. 

Sample # Sample Fractions Analyzed for Ca Isotopes Sample Location Info 

16965 
- Orthopyroxene mineral separate only (16965-P) - Peridotite sample from 

diatreme in the Kaapvaal craton, 
unknown location 

16962 
- Bulk rock (16962-Bulk) 

- Orthopyroxene mineral separate (16962-P) 

- Peridotite sample from 
diatreme in the Kaapvaal craton, 
unknown location 

 

3.3 External Standards 

This study includes three samples that were used as external standards since their Ca isotopic 

composition has already been published in one or more scientific works.  

3.3.1 San Carlos Peridotite 

The San Carlos ultramafic inclusion region is located on Peridot Mesa within the San Carlos 

Apache Reservation, approximately 30 km east of Globe, Arizona, USA. The region is known 

for abundant, large and coarse-grained peridotite inclusions. The San Carlos peridotites can be 

divided into two groups, Group I xenoliths which are more Cr and Mg rich and dominated by 

spinel lherzolites, and Group II xenoliths which are Fe and Ti rich, contain a wide variety of rock 

types, and are much less common (Frey and Prinz, 1978). The Ca isotopic composition of 

clinopyroxenes and orthopyroxenes from the San Carlos mantle peridotites have been published 

by Huang et al. (2010). The San Carlos mantle peridotite samples in this study were collected 

and provided by Dr. Audrey Bouvier (Table 16).  

Table 16 - San Carlos peridotite samples included in this study. 

Sample # Sample Fractions Analyzed for Ca Isotopes Sample Location Info 

San Carlos 

- Clinopyroxene mineral separate (SC-Cpx) 

- Orthopyroxene mineral separate (SC-Opx) 

- Olivine mineral separate (SC-Olv) 

- San Carlos peridotites from the 
San Carlos ultramafic inclusion 
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3.3.2 Kilbourne Hole Peridotite 

The Kilbourne Hole maar is an eruptive center in the Potrillo Volcanic Field in the Rio Grande 

Rift in southern New Mexico. It is sub-elliptical in shape, around 3 km wide, and 100-125 m 

deep. The age of the maar eruption has been dated at approximately 20,000 years ago using 3He 

surface exposure dating (Anthony and Poths, 1992; Williams, 1999). The eruption brought an 

abundant supply of mantle xenoliths to the surface. The types of xenoliths include peridotite 

(lherzolite, harzburgites, and dunites) and clinopyroxenites, with the dominant lithology being 

lherzolite peridotites (Irving, 1980). Huang et al. (2010) analyzed the Ca isotopic compositions 

of the clinopyroxenes and orthopyroxenes in Kilbourne Hole peridotites. The Kilbourne Hole 

mantle peridotite samples in this study were provided by Dr. Tony Withers (Table 17).  

Table 17 - Kilbourne Hole peridotites included in this study. 

Sample # Sample Fractions Analyzed for Ca Isotopes Sample Location Info 

Kilbourne 
Hole 

- Clinopyroxene mineral separate (KH-Cpx) 

- Orthopyroxene mineral separate (KH-Opx) 

- Olivine mineral separate (KH-Olv) 

- Kilbourne Hole peridotites 
from the Kilbourne Hole maar 

 

3.3.3 BCR-2 

Basalt, Columbia River (BCR-2) is a United States Geological Survey (USGS) reference 

material. The material used to prepare BCR-2 was collected in 1996 from the Bridal Veil Flow 

Quarry, located approximately 29 miles east of Portland, Oregon, USA, under the direction of 

Stephen A. Wilson, U.S. Geological Survey (Wilson, 1997). The elemental concentrations were 

determined during an extensive study involving twenty international laboratories (Table 18). The 

Ca isotopic composition of BCR-2 has already been published in many scientific papers (e.g. 

Valdes et al., 2014; Kang et al., 2017).  
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Table 18 - Major element concentrations in USGS reference material BCR-2. Table 

redrawn from Wilson (1997). 

Oxide Wt % ± 

Al2O3 13.5 0.2 

CaO 7.12 0.11 

Fe2O3 tot 13.8 0.2 

K2O 1.79 0.05 

MgO 3.59 0.05 

Na2O 3.16 0.11 

P2O5 0.35 0.02 

SiO2 54.1 0.8 

TiO2 2.26 0.05 

 

3.4 Other Samples 

This work includes two additional samples that do not fall into any of the other sample 

categories.   

3.4.1 Bancroft Marble 

This sample of marble from Bancroft, Ontario, Canada was collected and provided by Dr. Tony 

Withers (Table 19). Not much is known about the tectonic history or geologic setting of where 

this sample originated from, nor is the age of the sample known. Despite the relative paucity of 

information regarding this sample, it was available in abundance and contained both carbonate 

and silicate minerals and therefore was used as a preliminary sample in this study to fine-tune 

sample preparation and chemical purification procedures without using more valuable samples. 

Table 19 - Bancroft marble samples included in this study. 

Sample # Sample Fractions Analyzed for Ca Isotopes Sample Location Info 

Bancroft 
Marble 

- Clinopyroxene mineral separate (BC-Cpx) 

- Calcite mineral separate (BC-C) 

- Bancroft, Ontario, Canada 
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3.4.2 Twin Sisters Ultramafic Complex 

The Twin Sisters ultramafic complex is in Washington, USA, in the North Cascades Mountains 

of the North American Cordillera approximately 6km southwest of Mount Baker. It is an 

elliptical shaped body around 6 x 16 km and is believed to extend to a depth of approximately 2 

km based on gravity modeling (Thompson and Robinson, 1975; Brown et al., 1987). The Twin 

Sisters complex consists of only ultramafic rocks, dominated by dunite and harzburgite 

peridotites, with several generations of orthopyroxenite and clinopyroxenite veins, all of which 

are of mantle origin (Ragan, 1961) and experienced natural deformation processes in the upper 

mantle (Kruckenberg et al., 2013). The age of the Twin Sisters complex is currently unknown, 

but it provides access to some of the world’s most pristine outcrops of upper mantle materials. 

The Twin Sisters mantle peridotite samples in this study were collected and provided by Dr. 

Tony Withers (Table 20) 

Table 20 - Twin Sisters peridotite samples included in this study. 

Sample # Sample Fractions Analyzed for Ca Isotopes Sample Location Info 

Twin Sisters 

- Clinopyroxene mineral separate (TS-Cpx) 

- Orthopyroxene mineral separate (TS-Opx) 

- Bulk rock dunite (TS-WR) 

- Mantle peridotites from 
undisclosed location in the Twin 
Sisters ultramafic complex 
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Chapter 4 

4. Results 

4.1 Microprobe Data  

Major element compositions for mineral separates analyzed in this study were determined using 

electron microprobe analysis at the University of Western Ontario. Data for carbonate and 

silicate mineral separates in carbonatite, kimberlite, and other samples are given in Tables 21-25. 

Table 21 - Major element compositions of carbonate mineral separates from carbonatite 

samples in this study. CO2 totals were calculated by difference. 

  Nemegos Lueshe Oka 

  
10673b-C 
(Calcite) 

10690-C 
(Calcite) 

20346-C 
(Calcite) 

9399-C 
(Calcite) 

12162-C 
(Calcite) 

SiO2 0.02 ±0.01 0.03 ±0.02 0.00 ±0.01 0.02 ±0.01 0.01 ±0.01 

MgO 0.10 ±0.01 0.23 ±0.02 0.10 ±0.03 0.04 ±0.02 0.11 ±0.02 

CaO 52.45 ±0.65 53.27 ±0.21 54.64 ±0.40 55.46 ±0.47 54.71 ±0.19 

BaO 0.07 ±0.05 0.06 ±0.04 0.12 ±0.04 0.05 ±0.06 0.23 ±0.07 

FeO 0.42 ±0.09 0.77 ±0.04 0.05 ±0.03 0.02 ±0.04 0.02 ±0.03 

MnO 0.23 ±0.03 0.51 ±0.03 0.20 ±0.03 0.03 ±0.03 0.17 ±0.05 

K2O 0.00 ±0.00 0.00 ±0.00 - - -   - - 

SrO 2.34 ±0.54 1.02 ±0.10 1.72 ±0.18 1.44 ±0.13 1.37 ±0.06 

CO2 44.37  44.11  43.17  42.94  43.38  
Total 100.00   100.00   100.00   100.00   100.00   

n 9   9   6   5   5   

  Phalaborwa 

  
25865-C 
(Calcite)  

25869-C 
(Calcite) 

25869-C 
(Dolomite) 

20414-C 
(Calcite) 

20414-C 
(Dolomite) 

SiO2 0.03 ±0.02 0.01 ±0.02 0.01 ±0.01 0.00 ±0.01 0.00 ±0.01 

MgO 2.42 ±0.55 1.68 ±0.16 20.38 ±0.23 2.51 ±0.14 19.63 ±0.13 

CaO 51.69 ±0.74 52.82 ±0.10 30.59 ±0.17 51.00 ±0.50 30.66 ±0.17 

BaO 0.12 ±0.06 0.03 ±0.06 0.00 ±0.06 0.00 ±0.05 0.03 ±0.05 

FeO 0.39 ±0.05 0.32 ±0.02 1.41 ±0.09 0.64 ±0.00 2.33 ±0.23 

MnO 0.07 ±0.05 0.09 ±0.02 0.12 ±0.02 0.27 ±0.02 0.25 ±0.01 

K2O - - - - - - -   - - 

SrO 0.51 ±0.07 0.74 ±0.03 0.36 ±0.02 1.03 ±0.11 0.55 ±0.07 

CO2 44.77  44.31  47.13  44.55  46.55  
Total 100.00   100.00   100.00   100.00   100.00   

n 5   3   3   3   3   
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Table 22 - Major element compositions for silicate mineral separates from carbonatite 

samples in this study. 

  Nemegos Lueshe Oka 

  10673b-P 10690-P 9399-P 

SiO2 49.47 ±0.53 51.54 ±0.13 35.88 ±0.15 

Al2O3 0.51 ±0.16 2.26 ±0.20 0.04 ±0.02 

Na2O 1.87 ±0.17 12.49 ±0.07 0.03 ±0.03 

MgO 5.24 ±0.72 0.26 ±0.03 17.93 ±0.17 

TiO2 0.13 ±0.08 0.24 ±0.02 0.04 ±0.03 

CaO 19.66 ±0.38 0.48 ±0.09 32.62 ±0.17 

FeO 19.84 ±0.79 27.24 ±0.28 7.66 ±0.40 

MnO 1.11 ±0.05 0.01 ±0.01 4.74 ±0.16 

K2O 0.00 ±0.00 0.00 ±0.00 0.00 ±0.01 

NiO 0.00 ±0.00 0.01 ±0.01 0.01 ±0.01 

Cr2O3 0.01 ±0.02 0.01 ±0.01 0.00 ±0.01 

Total 97.84 ±0.44 94.54 ±0.22 98.95 ±0.30 

n 5   8   5   

 

Table 23 - Major element compositions of carbonate and silicate mineral separates from 

Kimberley kimberlite and Kaapvaal peridotite samples in this study. CO2 totals were 

calculated by difference. 

  Kimberley   Kimberley Kaapvaal 

  
R841-C 
(Calcite)   R841-P R841-Am 16962-P 16965-P 

SiO2 0.03 ±0.02 SiO2 54.40 ±0.16 54.69 ±0.52 57.87 ±0.38 55.46 ±0.06 

MgO 0.01 ±0.01 Al2O3 2.42 ±0.38 1.16 ±0.03 0.80 ±0.01 3.04 ±0.18 

CaO 57.27 ±0.26 Na2O 1.92 ±0.28 3.40 ±0.09 0.13 ±0.02 0.02 ±0.00 

BaO 0.00 ±0.03 MgO 16.30 ±0.71 22.30 ±0.49 36.74 ±0.06 34.30 ±0.23 

FeO 0.00 ±0.02 TiO2 0.06 ±0.04 0.34 ±0.03 0.00 ±0.02 0.00 ±0.01 

MnO 0.00 ±0.01 CaO 20.28 ±0.13 6.93 ±0.03 0.29 ±0.02 0.84 ±0.09 

K2O - - FeO 2.20 ±0.30 2.73 ±0.03 3.46 ±0.05 4.50 ±0.07 

SrO 0.37 ±0.30 MnO 0.05 ±0.03 0.04 ±0.01 0.08 ±0.02 0.12 ±0.04 

CO2 42.32  K2O 0.02 ±0.01 3.91 ±0.06 0.01 ±0.01 0.01 ±0.01 

Total 100.00   NiO 0.06 ±0.02 0.07 ±0.02 0.10 ±0.02 0.07 ±0.01 

n 4   Cr2O3 1.67 ±0.04 0.31 ±0.01 0.38 ±0.02 0.77 ±0.06 

   Total 99.38 ±0.21 95.88 ±1.10 99.86 ±0.43 99.13 ±0.18 

   n 7   6   5   5   
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Table 24 - Major element compositions of carbonate and silicate mineral separates from 

Bancroft marble samples in this study. CO2 totals were calculated by difference. 

  Bancroft   Bancroft 

  
BC-C 

(Calcite)   BC-Cpx 

SiO2 0.02 ±0.02 SiO2 53.91 ±0.27 

MgO 0.36 ±0.03 Al2O3 0.53 ±0.12 

CaO 55.58 ±0.28 Na2O 0.48 ±0.17 

BaO 0.00 ±0.06 MgO 16.26 ±0.78 

FeO 0.19 ±0.03 TiO2 0.03 ±0.02 

MnO 0.04 ±0.03 CaO 24.77 ±0.49 

K2O 0.00 ±0.01 FeO 3.11 ±1.05 

SrO 0.33 ±0.04 MnO 0.18 ±0.05 

CO2 43.48  K2O 0.00 ±0.00 

Total 100.00  NiO 0.00 ±0.01 

n 18   Cr2O3 - - 

   Total 99.27 ±0.22 

   n 33   

 

Table 25 - Major element compositions of silicate mineral separates for Twin Sisters and 

Kilbourne Hole peridotite samples in this study. 

  Twin Sisters Kilbourne Hole 

  TS-Cpx TS-Opx KH-Cpx KH-Opx KH-Olv 

SiO2 53.69 ±0.19 56.42 ±0.09 51.51 ±0.12 54.32 ±0.04 40.38 ±0.13 

Al2O3 0.89 ±0.09 0.87 ±0.05 7.27 ±0.12 4.95 ±0.09 0.02 ±0.01 

Na2O 0.30 ±0.02 0.01 ±0.01 1.57 ±0.07 0.09 ±0.01 0.00 ±0.01 
MgO 17.70 ±0.12 34.68 ±0.18 14.92 ±0.07 32.34 ±0.12 48.45 ±0.19 

TiO2 0.03 ±0.01 0.02 ±0.01 0.53 ±0.02 0.11 ±0.02 0.01 ±0.01 

CaO 23.91 ±0.12 0.39 ±0.08 19.97 ±0.12 0.70 ±0.01 0.07 ±0.00 

FeO 1.74 ±0.10 5.82 ±0.11 2.91 ±0.08 6.39 ±0.03 10.02 ±0.07 
MnO 0.07 ±0.01 0.15 ±0.02 0.09 ±0.01 0.15 ±0.01 0.16 ±0.01 

K2O 0.00 ±0.00 0.00 ±0.00 0.00 ±0.01 0.00 ±0.00 0.01 ±0.00 
NiO 0.04 ±0.01 0.10 ±0.01 0.03 ±0.02 0.08 ±0.03 0.36 ±0.03 

Cr2O3 0.72 ±0.04 0.40 ±0.03 0.74 ±0.04 0.32 ±0.02 0.01 ±0.01 
Total 99.09 ±0.15 98.86 ±0.17 99.54 ±0.25 99.45 ±0.13 99.49 ±0.27 

n 7   7   6   6   6   
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4.2 XRF Data 

Bulk rock major element compositions were determined using X-ray fluorescence (XRF) at the 

University of Western Ontario for several of the samples in this study (Table 26).  

Table 26 - Major element concentrations of bulk rock samples analyzed using XRF in this 

study (in %). BDL = Below Detection Limit. 

 

Kimberley 
kimberlite 

Nemegos 
carbonatite 

Lueshe 
carbonatite 

Oka 
carbonatite 

  R841 10673b 10690 9399 

SiO2 41.01 1.75 9.08 4.03 

TiO2 0.67 0.10 0.11 0.25 

Al2O3 5.64 0.21 0.50 0.71 

Fe2O3 7.58 3.65 7.69 2.17 

MnO 0.12 0.23 0.37 0.46 

MgO 25.95 0.53 0.46 2.08 

CaO 4.50 46.92 41.18 44.53 

K2O 1.26 0.02 0.02 0.25 

Na2O 1.45 0.22 2.14 0.24 

P2O5 0.46 3.65 1.45 4.42 

Cr2O3 0.18 BDL BDL BDL 

BaO 0.05 0.06 0.04 0.13 

SrO 0.05 1.97 0.70 0.90 

LOI 11.53 35.13 31.67 31.26 

Total 100.44 94.42 95.38 91.43 

 

4.3 Minor and Trace Element Data 

Minor and trace element analyses of bulk rock samples in this study were conducted using ICP-

MS at the University of Western Ontario. The complete results of these analyses are provided in 

Table 27. Figure 18 plots chondrite-normalized rare-earth element (REE) data for these samples. 
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Table 27 - Minor and trace element concentrations of bulk rock samples in this study (all 

concentrations in parts per million). 

  Bancroft  10690 10673b R841 12162 16962 9399 20346 20414 16965 25865 25869 

K 2529 < 1229 < 1229 10028 2609 2917 2669 1160 26958 388 783 387 

Sc 2.5 3.2 1.4 13.2 0.8 4.9 1.1 0.8 10.6 5.7 7.1 4.3 

Ti 611 836 737 4141 1309 939 1732 761 2910 17 479 177 

V 41.5 389.6 16.5 91.9 165.0 32.2 123.2 139.5 128.7 32.2 22.7 1.6 

Cr 10 < 7.5 < 7.5 1167 5 1640 4 17 21 2519 19 5 

Mn 862 3068 1991 905 5054 725 4505 2499 1444 813 693 762 

Fe 17662 51694 22000 56001 30283 46908 17406 10037 94528 52355 19460 43657 

Co 4 2 5 72 1 96 2 1 102 104 11 133 

Ni 8 < 6.5 < 6.5 1251 4 2393 3 19 43 2437 31 188 

Cu 7 < 6.5 14 50 6 18 5 4 6944 7 224 18441 

Zn 138 7 40 61 153 38 105 44 65 42 14 38 

Rb 7.5 0.7 2.2 54.7 24.0 14.8 16.4 9.1 187.4 1.5 1.6 0.9 

Sr 1316 6644 20506 590 10714 80 10359 14661 3396 6 3820 5019 

Y 38.0 45.1 156.5 11.8 107.8 1.0 115.2 93.8 50.8 0.1 68.4 47.9 

Zr 21 219 99 181 86 14 103 34 161 1 59 7 

Nb 4.2 3602.6 1403.3 47.9 851.5 9.3 1150.1 1861.7 9.2 0.3 0.7 0.2 

Ba 243 331 494 440 2111 91 1429 1161 2106 6 710 159 

La 137.4 148.8 738.3 58.5 1106.0 7.2 1584.5 1049.6 319.9 0.3 213.7 305.6 

Ce 235.5 317.7 1528.3 117.9 2096.3 14.0 2816.5 1988.1 747.5 0.4 492.2 755.5 

Pr 23.1 34.7 173.6 13.1 188.0 1.5 253.2 176.2 90.4 0.0 63.4 94.4 

Nd 72.8 120.4 591.2 46.8 617.4 5.8 799.6 563.8 387.2 0.2 278.8 422.4 

Sm 10.0 19.3 91.7 7.3 78.0 1.0 93.4 69.8 68.9 0.1 55.3 74.4 

Eu 2.2 5.6 26.8 1.9 19.9 0.2 23.2 17.4 14.0 0.0 12.3 11.8 

Gd 8.0 15.9 68.7 5.3 51.5 0.6 59.6 45.5 43.7 0.0 41.3 42.0 

Tb 1.1 2.1 8.3 0.6 5.5 0.1 6.0 4.8 4.3 0.0 4.5 4.0 

Dy 6.0 10.9 39.9 3.0 24.7 0.3 25.8 21.5 16.2 0.0 19.1 14.5 

Ho 1.2 2.0 6.7 0.5 4.1 0.0 4.3 3.6 2.1 0.0 2.7 1.9 

Er 4.0 5.2 17.2 1.3 10.7 0.1 11.3 9.4 4.4 0.0 5.6 3.9 

Tm 0.6 0.7 2.0 0.2 1.3 0.0 1.3 1.1 0.4 0.0 0.5 0.3 

Yb 4.3 4.2 11.0 1.0 7.6 0.1 7.7 6.5 2.2 0.0 2.5 1.7 

Lu 0.7 0.6 1.3 0.1 1.0 0.0 1.0 0.8 0.3 0.0 0.3 0.2 

Hf 0.6 7.4 1.1 4.5 0.3 0.4 0.3 0.2 2.8 0.0 1.4 0.1 

Ta 0.1 8.2 8.6 1.1 80.7 0.5 139.9 10.7 0.7 0.0 0.1 0.0 

W 0.2 0.6 0.2 1.6 0.8 1.2 0.8 0.3 0.3 0.7 0.2 0.1 

Pb 23.1 3.3 14.9 6.8 1.1 1.1 1.3 0.9 4.1 0.3 1.4 4.2 

Th 213.2 28.6 117.7 8.6 1.8 0.9 11.8 2.4 50.4 0.0 4.1 55.0 

U 52.8 12.7 26.1 2.6 9.4 0.2 23.8 0.5 14.9 0.0 0.8 23.6 
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4.4 Calcium Isotopic Data for Natural Samples 

Calcium isotopic data are presented in this chapter as δ44Ca/42Ca relative to SRM915b, 

δ44Ca/42Ca relative to SRM915a, and δ44Ca/40Ca relative to SRM915a. Initial analyses provided 

data as δ44Ca/42Ca relative to SRM915b which was subsequently converted using the equations 

and methods outlined in Chapter 2.  
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Figure 18 - Chondrite normalized rare-earth element spider plots for samples in this study: A) Lueshe 

carbonatite, Nemegos carbonatite, and Bancroft marble samples; B) Oka carbonatite samples; C) Phalaborwa 

carbonatite samples; D) Kimberley kimberlite and Kaapvaal peridotite samples. Normalizing values for 

chondrite are from McDonough and Sun (1995). 
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4.4.1 SRM915b and External Standards 

The SRM915b Ca isotopic standard that was passed through the full Ca purification procedure 

along with every set of samples was measured relative to the unprocessed SRM915b bracketing 

standard during each analytical session. This was done to ensure the chemistry procedure was 

not introducing any fractionation as well as to monitor instrument stability and long-term 

reproducibility of the analyses. The calcium isotopic compositions of the SRM915b standards 

used in this study are provided in Table 28 and the long-term reproducibility (0.00 ± 0.07‰, n = 

16) is illustrated in Figure 19.  

Table 28 – δ44/42Ca values for SRM915b samples analyzed in this study. 

  
Date of Analysis 

Mean δ44/42Ca Rel. 
SRM915b (in ‰) 

2 SD N (repeats) 

SRM915b 
Standards 

September 2016 +0.01 0.05 3 

October 2016 +0.07 0.04 3 

October 2016 +0.01 0.16 3 

October 2016 −0.07 0.11 3 

October 2016 +0.02 0.02 3 

January 2017 +0.01 0.15 4 

January 2017 +0.01 0.13 3 

January 2017 +0.02 0.14 3 

March 2017 +0.01 0.05 3 

March 2017 +0.01 0.10 4 

June 2017 −0.01 0.13 13 

June 2017 −0.02 0.06 4 

June 2017 +0.05 0.13 3 

June 2017 +0.02 0.16 3 

September 2017 −0.04 0.05 4 

September 2017 −0.06 0.05 4 
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The calcium isotopic compositions of external standards used in this study are provided in Table 

29. All the analyses of external standards matched within error the data provided in previously 

published works (Table 29, Figure 20). Full procedural replicates for San Carlos clinopyroxene 

samples were identical within error (+0.47 ± 0.03‰ and +0.55 ± 0.12‰), as were full procedural 

replicates for Kilbourne Hole clinopyroxene samples (+0.37 ± 0.08‰ and +0.46 ± 0.05‰) 

(Figure 20). Unleached samples of both San Carlos clinopyroxenes (+0.50 ± 0.12‰) and 

Kilbourne Hole clinopyroxenes (+0.39 ± 0.08‰) were identical within error to their respective 

leached clinopyroxenes (Figure 20). A San Carlos clinopyroxene sample that underwent two 

rounds of matrix removal step #1 chemistry (+0.45 ± 0.08‰) was also identical within error 

compared to the samples put through only one round of this purification step (Figure 20). 

 

Figure 19 - Long-term reproducibility of SRM915b standard over duration of this study 

(0.00 ± 0.07‰, n = 16). 
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Table 29 - Calcium isotopic compositions of external standards analyzed in this study. 

Published values for San Carlos and Kilbourne Hole samples are from Huang et al. (2010), 

published value for BCR-2 is from Valdes et al. (2014). 

  

δ44/42Ca Rel. 
SRM915b 

(in ‰) 
2 SD 

N 
(repeats) 

δ44/42Ca Rel. 
SRM915a 

(in ‰) 

Published 
δ44/42Ca Rel. 
SRM915a 

(in ‰) 

2 SD 

Difference 
from 

Published 
δ44/42Ca Rel. 
SRM915a 

Value (in ‰) 

San Carlos               

Clinopyroxene +0.12 0.03 3 +0.47 +0.49 0.04 −0.02 

Clinopyroxene (full 
replicate) +0.20 0.12 3 +0.55 +0.49 0.04 +0.06 

Clinopyroxene (full 
replicate with two 

matrix removal step 
1 passes) +0.10 0.08 3 +0.45 +0.49 0.04 −0.04 

Clinopyroxene 
(unleached) +0.15 0.12 4 +0.50 +0.49 0.04 +0.01 

Clinopyroxene 
(unleached full 

replicate) +0.15 0.17 8 +0.50 +0.49 0.04 +0.01 

Orthopyroxene +0.32 0.07 4 +0.67 +0.64 0.06 +0.03 

BCR-2               

Bulk +0.08 0.1 4 +0.43 +0.43 0.09 0.00 

Kilbourne Hole               

Clinopyroxene +0.02 0.08 3 +0.37 +0.43 0.02 −0.06 

Clinopyroxene (full 
replicate) +0.11 0.05 4 +0.46 +0.43 0.02 +0.03 

Clinopyroxene 
(Unleached) +0.04 0.08 3 +0.39 +0.43 0.02 −0.04 

Orthopyroxene +0.41 0.11 4 +0.76 +0.81 0.07 −0.05 
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Figure 20 - Ca isotope data for external standards in this study compared to previously 

published values. 

 

4.4.2 Carbonatites 

The calcium isotopic compositions of all carbonatites studied in this work are provided in Table 

30 and illustrated in Figure 21. Bulk rock δ44/40Ca data is provided, as well as any Ca-bearing 

mineral separates that were available for analysis in each sample.  

The δ44/40Ca for bulk carbonatites in this study ranges from +0.43 ± 0.18‰ in sample 25865, to 

+1.29 ± 0.16‰ in sample 10673b, with an overall average value for bulk carbonatites of 

+0.91‰. Bulk rock δ44/40Ca data for carbonatites is illustrated in Figure 22.  

Table 30 – Calcium isotopic composition of carbonatites analyzed in this study. 

    

δ44/42Ca Rel. 
SRM915b 

(in ‰) 
2 SD 

N 
(repeats) 

δ44/42Ca Rel. 
SRM915a 

(in ‰) 

δ44/40Ca Rel. 
SRM915a 

(in ‰) 
2 SD 

Nemegos  

10673b             

Bulk +0.28 0.08 4 +0.63 +1.29 0.16 

Carbonate (calcite) +0.69 0.15 3 +1.04 +2.13 0.31 

Pyroxene (Cpx) −0.20 0.13 4 +0.15 +0.31 0.27 

Apatite +0.36 0.06 3 +0.71 +1.45 0.12 
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Lueshe 

10690             

Bulk  +0.18 0.11 3 +0.53 +1.09 0.23 

Carbonate (calcite) +0.29 0.17 6 +0.64 +1.31 0.35 

Pyroxene (Opx) +0.05 0.13 3 +0.40 +0.82 0.27 

Oka 

20346             

Bulk +0.07 0.07 4 +0.42 +0.86 0.14 

Carbonate (calcite) +0.20 0.08 3 +0.55 +1.13 0.16 

12162             

Bulk +0.16 0.05 4 +0.51 +1.04 0.10 

Carbonate (calcite) +0.19 0.10 6 +0.54 +1.11 0.20 

9399             

Bulk +0.14 0.07 4 +0.49 +1.00 0.14 

Carbonate (calcite) −0.06 0.10 8 +0.29 +0.59 0.20 

Pyroxene (Cpx) +0.03 0.07 3 +0.38 +0.78 0.14 

Phalaborwa 

25865             

Bulk −0.14 0.09 8 +0.21 +0.43 0.18 

Carbonate (calcite) +0.03 0.07 4 +0.38 +0.78 0.14 

25869             

Bulk +0.17 0.04 4 +0.52 +1.07 0.08 

Carbonate (calcite + 
dolomite) −0.08 0.11 3 +0.27 +0.55 0.23 

20414             

Bulk +0.02 0.05 4 +0.37 +0.76 0.10 

Carbonate (calcite + 
dolomite) −0.14 0.06 3 +0.21 +0.43 0.12 

Cape Verde 

F1C             

Bulk +0.12 0.04 4 +0.47 +0.96 0.08 

CY 250             

Bulk +0.11 0.04 4 +0.46 +0.94 0.08 

CY 114             

Bulk +0.06 0.08 8 +0.41 +0.84 0.16 

Tamazert 

TA 1692             

Bulk +0.09 0.07 4 +0.44 +0.90 0.14 

TA 1792             

Bulk +0.03 0.11 8 +0.38 +0.78 0.23 

TA 2a92             

Bulk +0.05 0.11 8 +0.4 +0.82 0.23 
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Figure 21 - Ca isotope data for carbonatite samples. Squares = bulk rock samples, Circles = 

carbonates, Diamonds = pyroxenes, Triangles = apatite. 
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Figure 22 - Ca isotope data for bulk rock carbonatite samples grouped by locality. 

 

4.4.3 Kimberlites and Related Samples 

The calcium isotopic compositions of all kimberlite and kimberlite related peridotite samples 

studied in this work are provided in Table 31 and illustrated in Figure 23.  
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Table 31 – Calcium isotopic compositions of kimberlites and related samples analyzed in 

this study. 

    

δ44/42Ca Rel. 
SRM915b 

(in ‰) 
2 SD 

N 
(repeats) 

δ44/40Ca Rel. 
SRM915a 

(in ‰) 

δ44/42Ca Rel. 
SRM915a 

(in ‰) 
2 SD 

Kimberley 

R841       
Bulk +0.17 0.09 8 +0.52 +1.07 0.18 

Carbonate (calcite) −0.21 0.14 7 +0.14 +0.29 0.29 

Pyroxene (Cpx) +0.06 0.13 7 +0.41 +0.84 0.27 

Amphibole 1 −0.39 0.08 4 −0.04 −0.08 0.16 

Amphibole 2 +0.18 0.09 3 +0.53 +1.09 0.18 

Kaapvaal 

16965       
Pyroxene (Opx) +0.27 0.09 4 +0.62 +1.27 0.18 

16962       
Bulk +0.02 0.10 4 +0.37 +0.76 0.20 

Pyroxene (Opx) −0.15 0.14 4 +0.20 +0.41 0.29 

 

 

Figure 23 - Ca isotope data for kimberlites and related peridotite samples. 
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4.4.4 Other Natural Samples 

The calcium isotopic compositions of all other samples studied in this work are provided in 

Table 32 and plotted in Figure 24. These samples include the Bancroft marble, Twin Sisters 

peridotite and olivine mineral separates from the San Carlos and Kilbourne Hole mantle 

peridotites. δ44/40Ca values for the olivine mineral separates compared to the coexisting Cpx and 

Opx minerals in the San Carlos and Kilbourne Hole samples are illustrated in Figure 25.  

Table 32 – Calcium isotopic compositions of other natural samples analyzed in this study. 

  

δ44/42Ca 
Rel. 

SRM915b 
(in ‰) 

2 SD 
N 

(repeats) 

δ44/40Ca 
Rel. 

SRM915a 
(in ‰) 

δ44/42Ca 
Rel. 

SRM915a 
(in ‰) 

2 SD 

Bancroft Marble       
Carbonate (calcite) +0.05 0.12 3 +0.40 +0.82 0.25 
Carbonate (calcite) 

replicate −0.02 0.13 3 +0.33 +0.68 0.27 
Carbonate (calcite) 

average +0.02 0.14 6 +0.37 +0.76 0.29 

Clinopyroxene 0.00 0.06 4 +0.35 +0.72 0.12 

Twin Sisters       
Clinopyroxene −0.19 0.06 3 +0.16 +0.33 0.12 

Orthopyroxene +0.07 0.07 3 +0.42 +0.86 0.14 

Dunite Whole Rock +0.27 0.13 4 +0.62 +1.27 0.27 

San Carlos       
Olivine +0.40 0.07 4 +0.75 +1.54 0.14 

Kilbourne Hole       
Olivine +0.19 0.08 4 +0.54 +1.11 0.16 
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Figure 24 - Ca isotope data for other natural samples 
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Figure 25 - Ca isotopic composition of San Carlos and Kilbourne Hole olivine mineral 

separates compared to coexisting clinopyroxenes and orthopyroxenes. 
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Table 33 – Calcium isotopic compositions of coexisting pyroxene and carbonate minerals 

analyzed in this study. 

    

δ44/42Ca Rel. 
SRM915b 

(in ‰) 
2 SD 

N 
(repeats) 

δ44/42Ca Rel. 
SRM915a 

(in ‰) 

δ44/40Ca Rel. 
SRM915a 

(in ‰) 
2 SD 

Nemegos  

10673b       
Carbonate (calcite) +0.69 0.15 3 +1.04 +2.13 0.31 

Pyroxene (Cpx) −0.20 0.13 4 +0.15 +0.31 0.27 

Lueshe 

10690       
Carbonate (calcite) +0.29 0.17 6 +0.64 +1.31 0.35 

Pyroxene (Opx) +0.05 0.13 3 +0.40 +0.82 0.27 

Oka 

9399       
Carbonate (calcite) −0.06 0.1 8 +0.29 +0.59 0.20 

Pyroxene (Cpx) +0.03 0.07 3 +0.38 +0.78 0.14 

Kimberley 

R841       
Carbonate (calcite) −0.21 0.14 7 +0.14 +0.29 0.29 

Pyroxene (Cpx) +0.06 0.13 7 +0.41 +0.84 0.27 

Bancroft 

Bancroft Marble       

Carbonate (calcite) 
average +0.02 0.14 6 +0.37 +0.76 0.29 

Clinopyroxene +0.00 0.06 4 +0.35 +0.72 0.12 
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Figure 26 – Ca isotope data for coexisting carbonate and pyroxene mineral separates 
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δ44/40Ca values for samples that have data for both parameters.  
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Table 34 – Bulk rock 87Sr/86Sr ratios of samples in this study. 

Sample 
Type 

Sample 87Sr/86Sr SD 

Carbonatites 

Oka     

20346 0.7033 2.36E-05 

9399 0.7033 2.70E-05 

12162 0.7033 2.90E-05 

Nemegos     

10673b 0.7030 3.51E-05 

Lueshe     

10690 0.7032 2.66E-05 

Phalaborwa     

25865 0.7064 2.91E-05 

25869 0.7040 2.78E-05 

20414 0.7102 2.35E-05 

Kimberlites 
and Related 
Peridotites 

Kimberley     

R841 0.7057 3.32E-05 

Kaapvaal     

16962 0.7055 2.37E-05 

Others 
Bancroft Marble     

BC 0.7050 2.81E-05 
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4.6 Experimental Results 

This section describes the resulting run products for each experiment and the results of the 

isotopic analyses of all experimental samples. As intended, most experiments produced a 

quenched melt phase and a crystal phase (clinopyroxenes) in approximately equal proportions. 

The crystal phase was typically concentrated in the bottom of the experimental capsule and the 

quenched melt phase concentrated in the upper half of the capsule (Figure 28). Experimental 

sample ID’s followed by an ‘X’ indicate crystal phase and ID’s followed by an ‘M’ indicate 

quenched melt phase (e.g. B796-X, B796-M).  
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Figure 27 - Comparison of δ44/40Ca vs. 87Sr/86Sr values in bulk rock samples analyzed in this 

study. 
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4.6.1 Clinopyroxene + Carbonate Melt Experiments 

Four clinopyroxene + carbonate melt experiments were conducted at 3 GPa and temperatures 

ranging from 1250 to 1550 °C using the same starting material (Chapter 2). Each experiment 

produced crystals and quenched melt except for experiment B798. The crystals produced in each 

experiment were homogeneous clinopyroxenes ranging in size from approximately 1-100 μm. As 

observed in previous studies (e.g., White and Wyllie, 1992; Dalton and Presnall, 1998), 

carbonated silicate melt is not preserved as a glass, but rather transforms to a matte of rapidly-

grown, feathery ‘quench crystals’ during the couple of seconds that it talks to cool the 

experiment to below 500 °C. This quenched carbonate melt in these experiments was opaque and 

milky white in appearance and sometimes powdery in texture. The quenched melt texture is not 

completely homogeneous and often appears radiating or fibrous in BSE images (Figure 29). 

Quench crystals nucleated at the border between the clinopyroxene crystals and quenched melt 

and appeared to radiate inwards from the edges of the experimental capsule. B798 was the 

highest temperature experiment (1550 °C) and it produced 100% quenched melt with no 

(equilibrium) crystals. Part of the resulting quench material appeared to be in the form of a glass 

(B798-G) or more glass-like than the typical milky-white quenched melt. BSE images for each 

phase of the four experiments are provided in Figure 29. Major elemental compositions of each 

phase in the four experiments are provided in Table 35. The results of the Ca isotopic analyses 

for all experiments are given in Table 36 and illustrated in Figure 30. In experiments that contain 

both crystals and quenched melt, the δ44/40Ca values are consistently greater in the crystals than 

Crystals 

Quenched 
Melt  

Figure 28 - Schematic of typical experimental capsule and resulting phases. 
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in the quenched melt (Figure 31). The magnitude of this difference in δ44/40Ca values between 

crystals and quenched melt is positively correlated with increasing temperature (Figure 32), and 

increasing sample mass (Figure 33) which is as a proxy for the size (i.e. length) of the 

experimental capsule. 
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B796-X B796-M 

B795-X B795-M 

B797-X B797-M 

B798-G B798-M 

10 μm 10 μm 

10 μm 100 μm 

100 μm 100 μm 

100 μm 100 μm 

Figure 29 - BSE images of all Cpx + Carbonate Melt experiments. 'X' suffix indicates crystals, 

'M' suffix indicates quenched melt, 'G' suffix indicates glassy quenched melt in experiment 

B798. White patch in the image for B796-X is the result of a gas bubble that formed on the 

surface of the sample during analysis and does not reflect a compositional change in the Cpx 

crystals. Scale bars are provided but vary for each image. 
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Table 35 - Major element compositions of Cpx + Carbonate Melt experiments. CO2 wt.% 

in quenched melt calculated by difference. 

  B796 (3GPa/1250°C)   B795 (3GPa/1350°C) 

  Pyroxene SD Melt SD   Pyroxene SD Melt SD 

SiO2 53.95 0.33 3.44 1.43 SiO2 55.12 0.22 5.08 5.14 

Al2O3 3.19 0.43 - - Al2O3 1.66 0.18 0.93 0.55 

MgO 20.15 0.27 13.87 0.85 MgO 20.52 0.09 15 3.51 

CaO 21.82 0.21 38.95 1.25 CaO 22.48 0.05 34.66 2.2 

CO2 - - 43.74 - CO2 - - 44.33 - 

TOTAL 99.11 0.24 100  TOTAL 99.78  100  
n 5  6  n 5  9  

  B797 (3GPa/1450°C)   B798 (3GPa/1550°C) 

  Pyroxene SD Melt SD   Glassy SD Melt SD 

SiO2 54.58 0.2 7.55 6.31 SiO2 32.18 1.11 33.16 2.05 

Al2O3 2.43 0.14 2.01 1.58 Al2O3 2.78 0.14 2.9 0.11 

MgO 20.42 0.33 16.6 3.21 MgO 12.61 0.54 18.82 0.96 

CaO 22.2 0.28 35.74 2.39 CaO 24.55 0.23 28.51 0.81 

CO2 - - 38.1 - CO2 27.88 - 16.61 - 

TOTAL 99.63  100  TOTAL 100  100  
n 5  8  n 5  15  
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Table 36 - Calcium isotopic composition of Cpx + Carbonate Melt experiments. 

Experiment 
Type 

Sample 
ID 

P/T Phase 

δ44/42Ca 
Rel. 

SRM915b 
(in ‰) 

2 
SD 

N 
(repeats) 

δ44/42Ca 
Rel. 

SRM915a 
(in ‰) 

δ44/40Ca 
Rel. 

SRM915a 
(in ‰) 

2 
SD 

Cpx-
Carbonate 

Melt 

CaCO3 N/A Starting Material −0.05 0.14 3 +0.30 +0.61 0.29 

                  

B796 
3 GPa/1250 

°C 

Pyroxene −0.03 0.13 3 +0.32 +0.66 0.27 

Quenched Melt −0.21 0.11 3 +0.14 +0.29 0.23 

Pyroxene 
Leachate 

+0.20 0.15 7 +0.55 +1.13 0.31 

                  

B795 
3 GPa/1350 

°C 

Pyroxene +0.04 0.06 3 +0.39 +0.80 0.12 

Quenched Melt −0.26 0.14 3 +0.09 +0.18 0.29 

Pyroxene 
Leachate 

+0.32 0.16 8 +0.67 +1.37 0.33 

                  

B797 
3 GPa/1450 

°C 

Pyroxene +0.43 0.12 4 +0.78 +1.60 0.25 

Quenched Melt −0.20 0.07 3 +0.15 +0.31 0.14 

Pyroxene 
Leachate 

+0.52 0.14 8 +0.87 +1.78 0.29 

                  

B798 
3 GPa/1550 

°C 

Glassy 
Quenched Melt 

−0.14 0.06 4 +0.21 +0.43 0.12 

Quenched Melt −0.08 0.06 3 +0.27 +0.55 0.12 
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Figure 30 - Ca isotopic data for Cpx + Carbonate Melt experiments 

 

Figure 31 - Ca isotopic data for pyroxenes compared to quenched melt in Cpx + Carbonate 

Melt experiments 
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Figure 32 – δ44/40Ca difference between crystals and quenched melt as a function of 

temperature in Cpx + Carbonate Melt experiments 

 

Figure 33 - δ44/40Ca difference between crystals and quenched melt as a function of sample 

mass in Cpx + Carbonate Melt experiments 
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4.6.2 Clinopyroxene + Silicate Melt Experiment 

One clinopyroxene + silicate melt experiment was conducted at 1 GPa and 1125 °C (Chapter 2). 

This experiment produced clinopyroxene crystals (A1325-X) and a silicate melt (A1325-M). The 

crystals were relatively large compared to the other experiments, ranging from approximately 

10’s of μm up to 500 µm. The quenched silicate melt was in the form of a glass and was 

colourless. The BSE images for each phase are provided in Figure 34. Major elemental 

composition of each phase is given in Table 37. The results of the Ca isotopic analyses are given 

in Table 38 and plotted in Figure 35. Following the same trend as the Cpx + Carbonate melt 

experiments, the δ44/40Ca values are greater in the crystals than in the quenched melt.  

 

Table 37 - Major element compositions of Cpx + Silicate Melt experiment. H2O content of 

melt phase calculated by difference 

  A1325 

  Pyroxene SD Melt SD 

SiO2 54.16 0.27 46.94 0.21 

Al2O3 3.29 0.49 18.96 0.19 

MgO 18.22 0.22 7.25 0.04 

CaO 24.88 0.4 18.09 0.03 

H2O - - 8.76  
TOTAL 100.55 0.14 100 0.35 

n 5  5  
 

Figure 34 - BSE images for Cpx + Silicate Melt experiment. 

A1325-X A1325-M 

100 μm 100 μm 
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Table 38 - Calcium isotopic composition of Cpx + Silicate Melt experiment. 

Experiment 
Type 

Sample 
ID 

P/T Phase 

δ44/42Ca 
Rel. 

SRM915b 
(in ‰)  

2 
SD 

N 
(repeats) 

δ44/42Ca 
Rel. 

SRM915a 
(in ‰)  

δ44/40Ca 
Rel. 

SRM915a 
(in ‰)  

2 
SD 

Cpx-Silicate 
Melt 

CaSiO3 N/A 
Starting 
Material 

−0.13 0.06 4 +0.22 +0.45 0.12 

                  

A1325 
1 GPa/1125 

°C 

pyroxene −0.10 0.11 3 +0.25 +0.51 0.23 

melt −0.32 0.10 3 +0.03 +0.06 0.20 

 

 

Figure 35 - Ca isotope data for Cpx + Silicate Melt experiment 
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yielded only clinopyroxenes. This mixed mineral crystal phase was treated and analyzed in bulk 

due to the difficulty of mechanical separation of the different minerals. The BSE images of the 

crystals and quenched melt for the three experiments are provided in Figure 36. Major element 

compositions for the crystals and quenched melt in each experiment are provided in Table 39. 

The results of the Ca isotopic analyses for all experiments are given in Table 40 and plotted in 

Figure 37. Once again, the δ44/40Ca values are consistently greater in the crystals compared to the 

quenched melt. Like the Cpx + Carbonate melt experiments, the magnitude of this difference in 

δ44/40Ca values between crystals and quenched melt is positively correlated with increasing 

temperature (Figure 38), however, unlike the Cpx + Carbonate melt experiments, it does not 

increase with increasing sample mass (Figure 39). Also seen in this set of experiments is an 

increase in the difference in δ44/40Ca between crystals and quenched melt with an increase in 

pressure (Figure 40). Figure 41 demonstrates the relationship between the crystals and quenched 

melt in experiment Cbt-01 as well as the negligible effect of leaching on the crystal phase.  

 

 

 



87 
 

 

 

Cbt-01-X Cbt-01-M 

Cbt-02-X Cbt-02-M 

M824-X M824-M 

Cpx 

Opx 

Gt 

100 μm 

100 μm 

10 μm 

10 μm 10 μm 

10 μm 

Figure 36 - BSE images for all Cpx + Carbonated Silicate Melt experiments. Experiment 

M824 images were taken during a different session and therefore differences in colour or 

shade compared to the other experiments do not necessarily reflect differences in 

composition. The image for Cbt-02-M also includes a smaller fragment of Cpx crystal, the 

quenched melt is the larger fragment. Scale bars are provided for each image. Cpx = 

clinopyroxene, Opx = orthopyroxene, Gt = Garnet. 
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Table 39 - Major element compositions of Cpx + Carbonated Silicate Melt experiments. 

CO2 wt.% in melt phases calculated by difference. 

  
Cbt-01 (3GPa/1375°C) 

   Cbt-02 (5GPa/1440°C) 

  Pyroxene SD Melt SD    Pyroxene SD Melt SD 

SiO2 54.77 0.21 36.13 0.09  SiO2 54.99 0.69 26.24 1.53 

Al2O3 3.07 0.24 6.57 0.05  Al2O3 3.36 0.06 3.61 0.14 

Na2O 1.26 0.02 3.26 0.01  Na2O 0.85 0.02 0.21 0.12 

MgO 21.75 0.34 17.65 0.03  MgO 23.12 0.15 16.50 0.78 

TiO2 0.01 0.01 0.01 0.01  TiO2 0.08 0.01 1.18 1.64 

CaO 15.20 0.27 14.79 0.04  CaO 12.47 0.15 18.84 0.5 

FeO 1.84 0.19 2.98 0.05  FeO 3.01 0.23 3.26 0.19 

MnO 0.02 0.01 0.02 0.00  MnO 0.18 0.01 0.23 0.03 

K2O 0.00 0.00 0.17 0.01  K2O 0.01 0.00 0.05 0.03 

NiO 0.01 0.01 0.00 0.00  NiO 0.01 0.00 0.00 0.00 

Cr2O3 1.14 0.13 0.16 0.02  Cr2O3 0.19 0.01 0.04 0.01 

CO2 - - 18.26 -  CO2 - - 29.85 - 

TOTAL 99.05 0.26 100 0.10  TOTAL 98.27 0.68 100.00 2.65 

n 9   4    n 9   4   

  M824 (5GPa/1440°C) 

  Cpx SD Opx SD Gt SD Silicate AVG SD Melt SD 

SiO2 55.75 0.09 57.48 0.12 44.07 1.90 55.17 0.26 26.39 1.45 

Al2O3 3.01 0.14 1.82 0.04 22.78 2.94 4.47 0.37 3.13 0.22 

Na2O 1.00 0.02 0.21 0.01 0.09 0.13 0.70 0.03 0.64 0.07 

MgO 21.03 0.25 33.41 0.19 22.75 0.24 24.53 0.23 17.70 0.59 

TiO2 0.14 0.02 0.07 0.01 0.38 0.08 0.14 0.02 1.62 0.35 

CaO 14.36 0.50 1.61 0.05 4.85 1.29 10.06 0.45 20.46 0.26 

FeO 4.11 0.27 4.99 0.19 5.74 0.37 4.49 0.26 5.13 0.10 

MnO 0.17 0.01 0.17 0.02 0.31 0.02 0.18 0.01 0.24 0.01 

K2O 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 

NiO 0.01 0.02 0.00 0.02 0.00 0.01 0.01 0.02 0.00 0.02 

Cr2O3 0.13 0.02 0.07 0.01 0.44 0.06 0.14 0.02 0.05 0.01 

CO2 - - - - - - - - 24.63 - 

TOTAL 99.71 0.13 99.83 0.12 101.41 0.32 99.90 0.14 100.00 1.35 

n 5   5   5   15   10   
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Table 40 - Calcium isotopic compositions of Cpx + Carbonated Silicate Melt experiments. 

Experiment 
Type 

Sample 
ID 

P/T Phase 

δ44/42Ca 
Rel. 

SRM915b 
(in ‰)  

2 
SD 

N 
(repeats) 

δ44/42Ca 
Rel. 

SRM915a 
(in ‰)  

δ44/40Ca 
Rel. 

SRM915a 
(in ‰)  

2 
SD 

Cpx-
Carbonated 

Silicate 
Melt 

Cbt-01 

N/A 
Starting 
Material 

−0.01 0.11 3 +0.34 +0.70 0.23 

3 GPa/1375 
°C 

Pyroxene +0.36 0.02 2 +0.71 +1.45 0.04 

Quenched 
Melt 

−0.38 0.16 3 −0.03 −0.06 0.33 

Unleached 
Pyroxene 

+0.38 0.09 3 +0.73 +1.50 0.18 

Pyroxene 
Leachate 

+0.09 0.11 3 +0.44 +0.90 0.23 

                  

Cbt-
02/M824 

N/A 
Starting 
Material 

−0.05 0.15 4 +0.30 +0.61 0.31 

Cbt-02 
5 GPa/1450 

°C 

Pyroxene +0.61 0.08 2 +0.96 +1.97 0.16 

Quenched 
Melt 

−0.42 0.11 6 −0.07 −0.14 0.23 

                  

M824 
5 GPa/1440 

°C 

Pyroxene +0.73 0.09 4 +1.08 +2.21 0.18 

Quenched 
Melt 

−0.61 0.11 4 −0.26 −0.53 0.23 
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Figure 37 - Ca isotope data for Cpx + Carbonated Silicate Melt experiments. 

 

Figure 38 - δ44/40Ca difference between crystals and quenched melt as a function of 

temperature in Cpx + Carbonated Silicate Melt experiments. 
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Figure 39 - δ44/40Ca difference between crystals and quenched melt as a function of sample 

mass in Cpx + Carbonated Silicate Melt experiments. 
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Figure 40 - δ44/40Ca difference between crystals and quenched melt as a function of 

pressure in Cpx + Carbonated Silicate Melt experiments. 

Figure 41 - δ44/40Ca difference between crystals and quenched melt in experiment Cbt-01 

and the effect of leaching on crystals. 
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4.6.4 Iron Isotope Data 

The three Cpx + Carbonated Silicate Melt experiments (Cbt-01, Cbt-02, M824) were also 

analyzed for their iron isotopic compositions. These experiments were chosen for Fe isotopic 

analysis because they were the only ones that contained iron in their bulk starting compositions. 

The results of these Fe isotopic analyses are given in Table 41. Like the Ca isotopic analyses, the 

crystals in each experiment yielded heavier isotopic compositions compared to the quenched 

melt as illustrated in Figure 42. In all the Cpx + Carbonated Silicate Melt experiments the 

δ44/40Ca values are positively correlated with δ57/54Fe values (Figure 43). 

Table 41 - Iron isotopic compositions of Cpx + Carbonated Silicate Melt experiments. 

Experiment 
Type 

Sample 
ID 

P/T Phase 
δ56/54Fe Rel. 
IRMM-014 

(in ‰) 

2 
SD 

N 
(repeats) 

δ57/54Fe Rel. 
IRMM-014 

(in ‰) 
2 SD 

N 
(repeats) 

Cpx-
Carbonated 

Silicate 
Melt 

Cbt-01 
3 GPa/1375 

°C 

Pyroxene +3.35 0.04 3 +5.02 0.05 3 
Quenched 
Melt +3.14 0.05 3 +4.67 0.07 3 

            

Cbt-02 
5 GPa/1450 

°C 

Pyroxene +2.83 0.03 3 +4.30 0.06 3 
Quenched 
Melt +2.41 0.02 3 +3.67 0.05 3 

            

M824 
5 GPa/1440 

°C 

Pyroxene +2.35 0.07 3 +3.52 0.15 3 
Quenched 
Melt +1.50 0.03 3 +2.25 0.07 3 
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Figure 42 - Fe isotope data for Cpx + Carbonated Silicate Melt experiments reported as 

δ57/54Fe. 
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Figure 43 – Δ44/40Ca vs. Δ57/54Fe in Cpx + Carbonated Silicate Melt experiments. 
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Chapter 5 

5. Discussion 

5.1 Natural Samples 

This study includes elemental and Ca and Sr isotopic analyses of natural samples from different 

regions and of different rock types. Carbonatites are the prime candidate for this study due to 

their mantle origins and carbon-rich compositions and they make up the bulk of the natural 

samples, but mantle peridotites and kimberlite samples are also included. Bulk rock samples as 

well as mineral separates were analyzed, with the goals being that bulk rock samples could help 

uncover information about sample origin and unseen reservoirs in the mantle, while mineral 

separates could be used to study fractionation between high-temperature phases in the Earth’s 

mantle. 

5.1.1 Bulk Carbonatites 

This section discusses the bulk carbonatites analyzed in this study except for the Cape Verde and 

Tamazert carbonatites which are discussed as a separate case study in a later section. One of the 

reasons for conducting bulk rock calcium isotopic analyses of carbonatite samples from different 

localities was to determine if calcium isotopes could be used as a geochemical indicator of the 

source of these carbonatites or the processes that contributed to their formation.  

Figure 44 compares the δ44/40Ca values of the carbonatites to the δ44/40Ca value for the upper 

mantle as determined by Huang et al. (2010). Many of the carbonatites (samples 10690, 12162, 

9399, 25869) plot within the range of the upper mantle value within error. This suggests an upper 

mantle source for these carbonatites. Since the upper mantle δ44/40Ca value established by Huang 

et al. (2010) was calculated using the δ44/40Ca values of Cpx and Opx minerals in mantle 

peridotites. Since these carbonatites share δ44/40Ca values with the average value for the BSE or 

upper mantle peridotites this may implicate the carbonated peridotite theory of carbonatite 

formation for these samples. The 87Sr/86Sr ratios for these same samples also suggest a similar 

type of mantle source Samples 10690, 12162, and 9399 have nearly identical 87Sr/86Sr ratios 

(0.7032, 0.7033, and 0.7033 respectively) and sample 25869 is only slightly higher (0.7040) 

(Table 34 in Chapter 4). These 87Sr/86Sr ratios correspond to a slightly enriched MORB source 
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(Anderson, 1989), or could be attributed to a high U/Pb mantle (HIMU) source (Zindler and 

Hart, 1986).  

 

Figure 44 - Bulk rock δ44/40Ca values for carbonatites in this study compared to the BSE 

δ44/40Ca value of Huang et al. (2010). 

The δ44/40Ca value for sample 20346 is only very slightly below the δ44/40Ca of the upper mantle 

(Figure 44). This sample is from the Oka carbonatite complex, along with samples 9399 and 

12162 which both plot within the upper mantle range. Sample 20346 also has an identical 

87Sr/86Sr ratio to that of both other Oka samples which would indicate a genetic relationship and 

the same mantle source. If the source of sample 20346 matches the other Oka samples, some 

subsequent process or processes must have caused the difference in δ44/40Ca. Differences in the 

partial melting of carbonatite source material or melt extraction processes are possible candidates 

for investigation. Kang et al. (2016) demonstrated that δ44/40Ca was positively correlated with 

concentrations of elements favouring melts such as Lu and Yb in bulk peridotites. We see this 

same positive correlation in the bulk rock Oka carbonatite samples (Figure 45). Sample 20346 

contains lower concentrations of Lu and Yb and a lower δ44/40Ca value compared to samples 

9399 and 12162, perhaps implicating melting related processes such as melt extraction or partial 

melting as contributing factors.   
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The δ44/40Ca of samples 25865 and 20414 – both from the Phalaborwa carbonatite complex - plot 

well below the upper mantle average. These samples have significantly different 87Sr/86Sr ratios 

compared to the other carbonatite samples in this study – and compared to each other – 

indicating a different type of source material for these two samples (Table 34, Chapter 4). The 

87Sr/86Sr ratio for 25865 (0.7064) indicates the enriched mantle 1 (EM1) mantle reservoir as a 

potential source, whereas the 87Sr/86Sr ratio for 20414 (0.7102) indicates the enriched mantle 2 

(EM2) as a possible source (Zindler and Hart, 1986). The wide range of 87Sr/86Sr ratios in these 

Phalaborwa samples could be indicative of contamination by material with higher Sr isotopic 

ratios such as crustal material or interactions with later hydrothermal fluids, however, previous 

studies of Phalaborwa carbonatites argue against this due to a limited range of Nd-Hf isotopic 

variation (Wu et al., 2011). Zurevinski and Mitchell (2004) have argued that it is possible for 

carbonatite complexes to be formed by a mixture of multiple concurrent batches of carbonatitic 

magmas that are genetically-related but heterogeneous. Therefore, it is possible that the 

variations in both the 87Sr/86Sr ratios and the δ44/40Ca values of these Phalaborwa samples are the 

result of sampling different enriched mantle sources.  

Sample 10673b is the only carbonatite sample in this study that plots above the average upper 

mantle δ44/40Ca. It also has the lowest 87Sr/86Sr ratio (0.7030) of any of the samples in this study 

(Table 34 in Chapter 4). This 87Sr/86Sr ratio still plots it as being sourced from the HIMU mantle 

reservoir like the Oka carbonatite samples but it is closer to a depleted mantle end member 

reservoir than any other sample in this study (Zindler and Hart, 1986). If the source for this 
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Figure 45 – Positive correlation between Lu and Yb concentrations and δ44/40Ca values in Oka 

carbonatite bulk rock samples. 
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sample matches the upper mantle δ44/40Ca like other carbonatites in this study (10690, 12162, 

9399, 25869) as well as one that plots just below (20346), other processes may be leading to the 

increased δ44/40Ca value. If we add this sample to the Lu (ppm) and Yb (ppm) versus δ44/40Ca 

plots in Figure 45, we see that it continues the same positive correlation trend (Figure 46). This 

again suggests the variations in δ44/40Ca that we see in these samples that originated from the 

same HIMU type mantle reservoir (according to their 87Sr/86Sr ratios) may be the result of 

varying degrees of source partial melting or carbonatite melt extraction processes.  

 

In summary, it seems that the source effect found in the radiogenic Sr isotopes are not 

necessarily reflected in the δ44/40Ca values of the carbonatites analyzed in this study. This is 

supported by the wide range of δ44/40Ca values for carbonatites that originate from the same 

mantle reservoir according to their 87Sr/86Sr ratios (Figure 47). However, the δ44/40Ca values of 

these bulk carbonatite samples may be susceptible to modification by mantle processes. 

Analyzing additional well-characterized samples would help to clarify if δ44/40Ca values alone 

could be used to detect variations in mantle melting related processes for carbonatite samples 

that share the same type of mantle source. One additional note of importance is that these 

samples that were obtained from the Suffel Collection are all mineralized carbonatites whereas 

many of the carbonatite occurrences worldwide are not mineralized. Therefore, this study 

unintentionally sampled mineralized carbonatite samples and the influence of these 

mineralization processes on their δ44/40Ca values is unknown. It would be useful to analyze many 
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carbonatite and Nemegos carbonatite bulk rock samples with HIMU type mantle reservoir origins. 
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non-mineralized carbonatites along with mineralized carbonatites to see if any systematic 

differences exist.  

 

 

5.1.2 Cape Verde and Tamazert Carbonatites 

This section focuses on the Cape Verde and Tamazert Carbonatites as a specific case study since 

they have already been examined recently in the research of Doucelance et al. (2014). 

Doucelance et al. (2014) used coupled cerium and neodymium isotopes to discuss whether the 

origin of the carbon in these oceanic carbonatites was primordial mantle carbon or the result of 

recycled marine carbonate via subduction. Their analyses and interpretations favoured the 

recycling of marine carbonates model, although they had difficulties in constraining the age and 

depth of this recycling.  

Huang et al. (2011) have already showed that the Ca isotopic compositions of Hawaiian shield 

lavas can be used as evidence for the recycling of ancient marine carbonates into the mantle. If 

we use the same principles and concepts from their work, we can see if the Ca isotopic 
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Figure 47 – 87Sr/86Sr ratios vs δ44/40Ca values for bulk carbonatite samples in this study. 

Estimated Sr ratio ranges for mantle reservoirs overlain (Zindler and Hart, 1986). DM 

= Depleted Mantle, HIMU = High μMantle, EM I = Enriched Mantle I, EM II = 

Enriched Mantle II. 
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compositions of these Cape Verde and Tamazert carbonatites supports the models of recycled 

marine carbonates.  

If recycled ancient marine carbonates were part of the source material for these carbonatites, we 

would expect their δ44/40Ca values to be lower than the average for the upper mantle. Figure 48 

compares the δ44/40Ca of the Cape Verde and Tamazert carbonatites to the upper mantle value. 

All the carbonatites plot below the upper mantle average as was expected by the recycled ancient 

marine carbonate model. If we adopt the same δ44/40Ca values for the upper mantle (δ44/40Ca = 

+1.05‰) and for ancient marine carbonates (δ44/40Ca = +0.20‰) as well as the same CaO 

concentrations for ancient carbonates and the mantle plume that were used by Huang et al. 

(2011), we can estimate the amount ancient marine carbonate that was added to the mantle 

source for these Cape Verde and Tamazert carbonatites. Table 42 provides the estimated amount 

of ancient marine carbonate added to the mantle source and the amount of the Ca budget that is 

contributed by this carbonate addition. Figure 49 illustrates the relationship between the amount 

of ancient marine carbonate added to a mantle source and the resulting δ44/40Ca (based on the 

model from Huang et al., 2011) with the calculated values for the Cape Verde and Tamazert 

carbonatites falling between the 0% and 5% end members.  

The calculated amounts of ancient marine carbonates that would have needed to be added to the 

mantle source to yield the resulting δ44/40Ca values for these carbonatites ranges from 0.64% - 

2.93%. This corresponds with approximately 10-35% of the total Ca in these samples contributed 

by marine carbonates (Table 42). The Ce-Nd isotopic compositions and 206Pb/204Pb isotopic 

ratios in Doucelance et al. (2014) correspond to a carbonate component addition in the order of a 

few %. Therefore, our results and calculations match up well and support the model of ancient 

marine carbonate recycling.  
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Table 42 - Estimated amounts of ancient marine carbonate added to the mantle source for 

Cape Verde and Tamazert carbonatites and the amount of the total Ca budget contributed 

by this carbonate addition. Calculations are based on the calcium isotopic compositions 

measured in this study paired with the models and theory from Huang et al. (2011). 

Location  Sample 

δ44/40Ca 
relative to 
SRM915a 

Carbonate 
added (%) 

Ca budget 
from 

carbonate (%) 

Fogo F1C +0.96 0.64 10.1 

Brava 
CY 250 +0.94 0.90 13.6 

CY 114 +0.84 2.17 27.9 

Tamazert 

TA 
1692 +0.90 1.40 19.9 
TA 
1792 +0.78 2.93 34.5 
TA 
2a92 +0.82 2.42 30.2 
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Figure 48 - Bulk rock δ44/40Ca values for Cape Verde and Tamazert carbonatites in this 

study compared to the BSE δ44/40Ca value of Huang et al. (2010). 
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5.1.3 Bulk Kimberlites and Related Peridotites 

This section discusses the δ44/40Ca values of the one bulk rock kimberlite sample included in this 

study (R841), as well as one of the related bulk peridotite samples (16962). Figure 50 compares 

these samples to the average upper mantle δ44/40Ca value determined by Huang et al. (2010). 

Sample R841 plots within the range for the upper mantle whereas sample 16962 plots slightly 

below. Both samples have nearly identical 87Sr/86Sr ratios (0.7057 and 0.7055 respectively, Table 

34 in Chapter 4) which correspond to the EM I reservoir as their mantle source. Since these 

samples appear to come from the same mantle source based on their strontium isotope ratios, 

perhaps we can implicate mantle melting processes as contributing factors to their δ44/40Ca 

differences as was shown to be a possibility for the carbonatite samples. Figure 51 plots the 

δ44/40Ca for each sample in relation to their Lu and Yb concentrations. Yet again we find that the 

processes of partial melting or melt extraction may be able to explain the δ44/40Ca variations in 

these samples. Especially when comparing the kimberlite to the peridotite sample it makes sense 
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that the kimberlite would be exposed to greater partial melting in its source material whereas the 

peridotite would be more likely to experience melt extraction processes.  
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Figure 50 - Bulk rock δ44/40Ca values for Kimberley kimberlite (R841) and Kaapvaal 

peridotite (16962) in this study compared to the BSE δ44/40Ca value of Huang et al. (2010). 

Figure 51 - Positive correlation between Lu and Yb concentrations and δ44/40Ca values in Kimberley 

kimberlite and Kaapvaal peridotite bulk rock samples with EM I type mantle reservoir origins. 
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5.1.4 Carbonate – Pyroxene Fractionation 

The purpose of analyzing the Ca isotopic compositions of available Ca-bearing mineral separates 

from each sample is to help understand the systematics of inter-mineral fractionation for 

coexisting minerals in high-temperature igneous systems. Ca-O bond length is often the main 

contributing factor to fractionation between coexisting minerals. This has been shown for 

clinopyroxene and orthopyroxene pairs in high temperature systems (Huang et al. 2010) and 

calculated for carbonate minerals in low-temperature systems (Gussone et al., 2005), but the 

fractionation between coexisting high-temperature carbonates and pyroxenes has not been 

measured. Despite this, the expectation remains that differences in Ca-O bond lengths would be 

the main determinant of Ca isotopic fractionation between these minerals. Therefore, calcite is 

expected to yield heavier δ44/40Ca values than coexisting clinopyroxenes, but lighter δ44/40Ca 

values than coexisting orthopyroxenes. However, Table 33 and Figure 26 in Chapter 4 give the 

δ44/40Ca data for all coexisting calcite and pyroxene pairs and the results do not clearly support 

this prediction.  

There are five total pairs of coexisting carbonate – pyroxene pairs that were analyzed in this 

study. Three were carbonatite samples (10673b, 10690, 9399), one was a kimberlite (R841), and 

one was a sample of marble from Bancroft. The major element compositions of each pyroxene 

and carbonate mineral separate can be found in Chapter 4 (Tables 22-24). There is quite a range 

of compositions for the pyroxenes analyzed in this study, making comparisons somewhat 

difficult. Samples BC-Cpx and R841-P are diopsides, 10690-P is an aegirine, 9399-P may be a 

wollastonite, and 10673b-P is an Fe-rich clinopyroxene often with many inclusions.  

The Bancroft marble sample has identical δ44/40Ca values within error for both the calcite and 

clinopyroxene mineral components. Perhaps this is the result of some effect of metamorphism 

the sample has experienced. Since this sample is not a carbonatite, kimberlite, or peridotite, and 

the conditions under which it was metamorphosed are generally unknown, we will omit this 

sample from the rest of the interpretations in this section.  

Samples R841, 10690 and 10673b all contained calcite – clinopyroxene pairs. We should expect 

the calcites to have heavier δ44/40Ca values than the clinopyroxenes based on Ca-O bond lengths, 

and we see that in sample 10673b and 10690, but not for R841-P. The estimated Ca-O bond 

length for wollastonite is 2.395 Å (Hesse, 1984) which is shorter than a typical clinopyroxene 
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and very similar to the estimated Ca-O bond length in a calcite but still slightly longer. 

Therefore, we would expect the δ44/40Ca of the wollastonite in sample 9399 to be close to the 

δ44/40Ca of the coexisting calcite but still slightly lower, but instead it is slightly higher.  

There are too few samples and the pyroxenes are too variable in composition to make definitive 

arguments about coexisting calcite-pyroxene fractionation in these samples. However, there are a 

few trends that are noticeable in the data. Figure 52 shows a positive correlation between the 

Ca/Mg mole ratio in the pyroxenes and the Δ44/40Cacarbonate - pyroxene values. Ca/Mg mole ratio 

typically decreases as pyroxene composition moves from clinopyroxene to orthopyroxene. As 

the Ca/Mg ratio decreases in these pyroxenes, the Δ44/40Cacarbonate – pyroxene values get smaller, 

indicating more of the heavy Ca isotopes concentrating in the pyroxenes. Extrapolating this trend 

would yield more negative Δ44/40Cacarbonate - pyroxene values (i.e. pyroxene heavier than carbonate) 

for orthopyroxenes with low Ca-Mg mole ratios (Figure 53), thus fitting with the predictions 

based on Ca-O bond lengths.  

Both Feng et al. (2014) and Kang et al. (2016) discussed the strong control of the chemical 

composition of orthopyroxenes (i.e. Ca content or Ca/Mg ratio) on the inter-mineral fractionation 

between Opx and Cpx. The patterns observed in this study suggest a strong compositional 

control on the inter-mineral fractionation that has been measured between the carbonates and 

pyroxenes.  Despite the high variability in overall chemical composition in these pyroxenes, the 

Ca/Mg ratio appears to be a strong indicator of inter-mineral fractionation patterns.  

Kang et al. (2016) also discuss the effect of temperature on Ca content in Opx and subsequently 

the Δ44/40CaOpx-Cpx in their study and in Huang et al. (2010). For both data sets, they found that 

Δ44/40CaOpx-Cpx was negatively correlated with increasing equilibrium temperatures. Kang et al. 

(2016) argued that the Ca content in Opx is controlled by the equilibrium temperature, and 

therefore, temperature controls the crystal chemistry of pyroxenes which subsequently exerts 

control on inter-mineral fractionation. If we apply this same theory to the data from this study, 

decreasing Δ44/40Capyroxene-carbonate or increasing Δ44/40Cacarbonate-pyroxene values may reflect an 

increase in equilibrium temperatures. With further studies and careful calibrations, 

Δ44/40Cacarbonate – pyroxene values could be used to estimate the temperatures and depths of formation 

for carbon-rich mantle rocks such as carbonatites and kimberlites.  
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However, another important point for consideration is the blocking temperatures or closure 

temperatures of different pyroxenes and carbonate minerals. Once the blocking temperature of a 

mineral has been reached, the crystal structure has formed sufficiently that the diffusion of 

isotopes is unlikely to continue. If the blocking temperatures of coexisting minerals is not the 

same, one of the mineral types may remain open to re-equilibration with infiltrating fluids or 

other minerals. This could result in coexisting carbonates and pyroxenes not being in isotopic 

equilibrium with respect to their Ca isotopes. Therefore, this should be considered in future 

investigations of this type.  
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Figure 53 - Positive correlation between Ca/Mg ratio in pyroxene and Δ44/40Cacarbonate-pyroxene 

with extrapolated estimate for Opx. 

5.1.5 Olivine – Pyroxene Fractionation 

This study also included the analysis of two olivine samples (KH-Olv and SC-Olv) which 

coexisted with both clinopyroxenes and orthopyroxenes in the San Carlos and Kilbourne Hole 

mantle peridotites. There are extremely limited data published to date on olivine samples. One of 

the only instances of an olivine mineral separate analyzed for its Ca isotopic composition was in 

a recent work by Kang et al. (2016) in which it coexisted with both Cpx and Opx in a mantle 

peridotite and had a δ44/40Ca that was identical to the Opx but higher than the Cpx. The olivines 

in this study were measured to have δ44/40Ca values that were also higher than the coexisting Cpx 

in both samples. In the San Carlos peridotite, the olivine is slightly heavier in Ca isotopic 

composition than the Opx (δ44/40Ca = +1.54 ± 0.14‰ compared to δ44/40Ca = +1.37 ± 0.14‰) 

while in the Kilbourne Hole peridotite, the olivine was lighter than the coexisting Opx (δ44/40Ca = 

+1.11 ± 0.16‰ compared to δ44/40Ca = +1.56 ± 0.23‰). Since Kang et al. (2016) have shown 

that Δ44/40CaOpx-Cpx decreases with increasing Ca/Mg in Opx, perhaps this same concept applies 

to Δ44/40CaOpx-Olivine. Figure 54 plots the Ca/Mg ratios in the San Carlos and Kilbourne Hole 

orthopyroxenes versus the Δ44/40CaOpx-Olivine measured for these samples in this study. Although 

two data points is not a robust data set from which to draw conclusions, the same effect of 

-2.00

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

0.00 0.50 1.00 1.50 2.00 2.50 3.00

Δ
44

/4
0
C

a c
ar

bo
na

te
-p

yr
ox

en
e

R
el

at
iv

e 
to

 S
R

M
9

1
5

a 
(‰

)

Ca/Mg (mole ratio) in Pyroxene

Pyroxenes (This Study)

Hypothetical Opx Range



109 
 

Ca/Mg ratios in Opx observed by Kang et al. (2016) appear to be present in the Δ44/40CaOpx-Olivine 

values. Since there are not as many data to draw from, it appears olivines may be heavier or 

lighter than coexisting orthopyroxenes (perhaps depending on the chemical composition of the 

orthopyroxenes), but they do appear to match the existing, albeit limited, data and are heavier 

than coexisting clinopyroxenes. 

 

5.2 Experimental Work 

This study included the analysis of several high-pressure/high-temperature experiments with the 

goal of measuring the calcium isotopic fractionation between pyroxene and quenched melts of 

varying compositions to better understand and constrain the systematics of fractionation in 

natural systems.  

5.2.1 Attainment of Equilibrium 

Since the goal of the experiments was to measure isotopic fractionation between two phases, it is 

important that chemical and isotopic equilibrium was reached otherwise the analyses conducted 

could be measuring incomplete isotopic exchange between two phases that do not reflect upper 
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mantle chemical compositions. Attainment of chemical and isotopic equilibrium during each 

experimental run is of critical importance to the interpretation of the isotopic variations that are 

observed between the crystal and melt experimental phases. Although no experiment was 

conducted to specifically test that isotopic equilibrium was achieved during these experiments, 

the presence of homogeneous, unzoned pyroxenes (Figures 29,34,36 in Chapter 4) with 

compositions that were anticipated based on the composition of the starting materials used is 

suggestive of equilibrium conditions. Comparing the run times and P/T conditions of these 

experiments to those of Sossi and O’Neill (2017) also suggests they would have reached an 

equilibrium state. The experiments conducted by Sossi and O’Neill (2017) were similar in the 

sense that they were measuring isotopic fractionation between mineral phases and a fluid phase, 

and they determined that even after only 24 hours, their experiments had reached equilibrium. 

Our experiments were run for a minimum of 44 hours (up to 128 hours), and were also run at 

temperatures ranging from 325°C – 750°C higher than the 800°C run temperatures of Sossi and 

O’Neill (2017).  

 

5.2.2 Experimentally Determined Fractionation Factors 

If equilibrium conditions prevailed in the experiments, fractionation factors for the pyroxene 

versus melt phases of each experiment can be calculated. Table 43 gives the calculated values for 

these fractionation factors as well as the 1000lnα and Δ values. It is with these fractionation 

factors that we can begin to make some interpretations of the experimental data. 

Table 43 - Crystals-Quenched melt fractionation factors for experimental samples. 

Experiment Type 
Experiment 

ID 
P/T 

Conditions 

 Fractionation 
Factor (αCrystals - 

Melt)  
1000ln α ΔCrystals - Melt 

      44/40Ca 44/42Ca 44/40Ca 44/42Ca 44/40Ca 44/42Ca 

Cpx + Carbonate 
Melt 

B796 1250°C/3GPa 1.0004 1.0002 0.37 0.18 0.37 0.18 

B795 1350°C/3GPa 1.0006 1.0003 0.61 0.30 0.61 0.3 

B797 1450°C/3GPa 1.0013 1.0006 1.29 0.63 1.29 0.63 
Cpx + Silicate 

Melt A1325 1125°C/1GPa 1.0005 1.0002 0.45 0.22 0.45 0.22 

Cpx + Carbonated 
Silicate Melt 

Cbt-01 1375°C/3GPa 1.0015 1.0007 1.52 0.74 1.52 0.74 

Cbt-02 1440°C/5GPa 1.0021 1.0010 2.11 1.03 2.11 1.03 

M824 1440°C/5GPa 1.0027 1.0013 2.74 1.34 2.75 1.34 
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If we assume these are equilibrium fractionation factors, we can interpret the systematics of these 

fractionations using the available knowledge of how calcium isotopes fractionate between phases 

at high temperatures.  

5.2.3 Ca-O Bond Lengths 

Many of the recent studies involving inter-mineral fractionation of calcium isotopes at high 

temperatures have discussed the differences in Ca-O bonds lengths between different phases as a 

major contributing factor (e.g. Huang et al., 2010; Feng et al., 2014). As discussed in Chapter 1, 

shorter Ca-O bond lengths typically indicate stronger bonds which favour the heavier isotopes. 

An in-depth study of Ca-O bond lengths and Ca isotopes in various minerals such as the study 

conducted by Sossi and O’Neill for Fe-O bond lengths and iron isotopes does not currently exist. 

However, the studies by Huang et al. (2010) and Feng et al., (2014) looked at the Ca-O bond 

lengths in Opx versus Cpx in coexisting pyroxenes and used theoretical calculations that provide 

a basis for some interpretations. Also, while the current state of knowledge may not be robust, 

there is some information regarding the approximate Ca-O bond lengths in silicate and carbonate 

melts. Using this information, we can predict the direction in which calcium isotopes should 

fractionate between the minerals and melts in these experiments based on Ca-O bond lengths and 

compare these predictions to the results. Table 44 provides approximate Ca-O bond lengths for 

relevant mineral phases and melts.  

Table 44 - Estimated Ca-O bond lengths for Ca-bearing minerals and melts. Opx, Cpx, and 

calcite bond lengths are from Huang et al. (2010), carbonate melt bond length from Genge 

et al. (1995), silicate melt bond length estimated from Sun et al. (2011). 

Phase Ca-O bond length (Å) 

Orthopyroxene 2.15 

Clinopyroxene 2.50 

Calcite 2.32 

Carbonate Melt 2.33 

Silicate Melt 2.22 

 

If the results were based purely on the assumption that the heavier isotopes of calcium would 

concentrate in the phase with the shorter Ca-O bond, then a negative correlation between Ca-O 
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bond length and δ44/40Ca is to be expected. However, plotting the δ44/40Ca values for each type of 

experiment against the approximate bond lengths of each experimental phase (Cpx and melt) 

illustrates a positive correlation (Figure 55). This suggests some other factors are at work in 

creating this fractionation between mineral and melt phases that is the opposite of what the Ca-O 

bond length theory predicts. Comparing the results of experiments Cbt-02 and M824 provides 

the only instance in which this line of reasoning may be relevant. Experiments Cbt-02 and M824 

were run at the same P/T conditions and had the same starting material, yet experiment M824 

produced some orthopyroxene and garnet crystals along with clinopyroxenes whereas Cbt-02 

produced only clinopyroxenes. The appearance of Opx and garnet suggests that the temperature 

at the colder end of the capsule, which is situated at the opposite end to the thermocouple 

junction, may have been lower than in Cbt-02. The presence of garnet and orthopyroxene, while 

unintentional, verifies that the Cpx and carbonated silicate liquids in these experiments are 

indeed in equilibrium with a peridotite mineral assemblage. The addition of orthopyroxenes to 

the crystalline portion of M824 could explain its heavier calcium isotopic composition when 

compared to the Opx-free Cbt-02 crystals. In fact, if the crystals were purely Opx, the Ca-O bond 

length theory would predict a heavier crystal phase and lighter melt phase. However, the amount 

of orthopyroxene in M824 (~ 27% of crystal phase) is still outweighed by the amount of 

clinopyroxene (~ 64% of crystal phase) and the clinopyroxenes still account for the bulk of the 

Ca in the crystal phase (Cpx ≈ 91.3%, Opx ≈ 4.32%, Gt ≈ 4.34% of crystal phase Ca). Also, this 

still cannot account for the overall trend of heavier isotopes (larger δ44/40Ca values) accumulating 

in the crystal phases that is consistent across all the experiments.  

In summary, current knowledge of the systematics of calcium isotopic fractionation between 

phases at high temperatures does not seem to be able to explain the fractionation trends found in 

these experiments. The general rule that shorter bond lengths and stronger bonds will concentrate 

the heavier isotopes of any element, calcium included, does not appear to be followed by these 

experiments. Additional factors need to be explored to uncover possible explanations.  
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5.2.4 Experimental Pyroxenes vs. Melts as a Proxy for BSE vs. Basalts 

Looking at the δ44/40Ca values that have been published thus far for the Bulk Silicate Earth (BSE) 

(i.e. upper mantle) and terrestrial basalts leads to one possible interpretation of the relationship 

between the crystal and melt phases in the experiments. Figure 56 illustrates the δ44/40Ca values 

for the BSE and terrestrial basalts with the average δ44/40Ca values for the experimental crystal 

and melt phases for comparison. The BSE or upper mantle is slightly offset and heavier in its 

calcium isotopic composition compared to basalts. Although the size of the offset is increased by 

nearly an order of magnitude, we see the same pattern in the experimental data. This begins to 

make sense when we consider that some of the main Ca-bearing minerals in the Earth’s upper 

mantle are pyroxenes and that basalts are a product of partial melting of the upper mantle. 

Additionally, the offset in the Cpx + Silicate Melt experiments (Δ44/40Capyroxene-melt = +0.45) – 

likely representing the most common type of melt in the mantle – is less than the overall 

experimental average and closer to the offset found in nature. Although there have been studies 

published that indicate the lower δ44/40Ca values found in some basalts can be attributed to the 

recycling of ancient marine carbonates into their source material (e.g. Huang et al., 2011), 

δ44/40Ca variations in basalts have also been hypothesized to be caused by stable Ca isotopic 

fractionation during igneous processes. Additionally, the systematic trends in the data of Amini 

et al. (2009), strongly suggests a high temperature fractionation effect for Ca isotopes (Figure 

57). While the results of these experiments do not necessarily indicate the mechanism that is 

driving the fractionation between the pyroxene and melt phases, it does support the theory that 

variations in basaltic and mantle rock δ44/40Ca values (specifically lower δ44/40Ca values) could be 

the result of calcium isotopic fractionation driven by igneous processes. 
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To summarize thus far: 

 If isotopic equilibrium conditions were achieved during our experiments, equilibrium 

fractionation factors for pyroxenes vs. melts can be estimated 

 Estimated Ca-O bond lengths for the different experimental phases does not appear to be 

a good predictor of the direction or magnitude of fractionation. 

 Experimental pyroxenes vs. melts may be a proxy for BSE vs. basalts in natural systems, 

and if so, the direction of fractionation in our experimental system correlates well to 

existing data for these natural systems. 

 The mechanism or processes by which this fractionation occurs remains unknown. 

 

5.2.5 Temperature Effect 

The first general rule of equilibrium isotopic fractionation is the fractionation between two 

phases decreases with increasing temperatures as described by the relationship 1/T2. However, 

when we plot the fractionation between pyroxene and melt phases in these experiments we do 

not see this relationship. Figure 58 illustrates the relationship between temperature and the 

fractionation between experimental phases in the Cpx + Carbonated Silicate Melt experiments. 

We see an increase in the fractionation as the temperature increases, breaking the first rule of 

isotopic fractionation. However, there are other factors in play for this set of experiments, 

namely different pressures, different experimental apparatus (piston cylinder vs. multi-anvil), 

and different starting compositions. 

This is where the Cpx + Carbonate Melt experiments are particularly important, since they were 

run at different temperatures but they all used a piston cylinder apparatus at the same pressure 

conditions, they all used the same starting materials, and they essentially all produced the same 

products (with B798 being the exception). Therefore, the effect of temperature can be more 

closely studied. Figure 59 shows this relationship between temperature and fractionation in the 

Cpx + Carbonate Melt experiments. The same trend of increasing fractionation with increasing 

temperature is even more evident in these experiments. Once again, this breaks the first general 

rule of equilibrium isotopic fractionation. So, either the experiments did not achieve equilibrium 

or there are other factors that are influencing the fractionation between the pyroxenes and melt 
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phases. Due to the evidence supporting the achievement of equilibrium during the experiments 

that has already been discussed, there must be other contributing factors to explain this 

fractionation trend.  
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Cpx + Carbonated Silicate Melt experiments. 

Figure 59 - Positive correlation between temperature and Δ44/40Cacrystals-melt in 
Cpx + Carbonate Melt experiments. 
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The Cpx + Carbonate Melt experiments were important for examining the effect of temperature 

because almost all other experimental conditions were the same. But, upon closer investigation, 

there was one additional factor that varied slightly amongst these experiments – the size of the 

experimental capsule itself. The exact size (i.e. length) of every experimental capsule was not 

measured but the mass of each sample was, and this can be used as a proxy for the length of the 

capsule since 3 mm diameter capsules were used for all the experiments. Based on sample 

masses and the lengths of several capsules that were measured, 10 mg of sample corresponds to 

approximately 1 mm of capsule length. In general, larger capsules were used for the higher 

temperature experiments to help ensure the formation of sufficient pyroxene crystals for isotopic 

analysis. Figure 60 illustrates the relationship between the mass of the experimental sample 

(representing the length of the capsule) and the fractionation between phases. There appears to 

be a positive correlation between the length of the experimental capsule and the magnitude of the 

fractionation between phases. Since increasing fractionation with increasing temperature goes 

against the general rules of isotopic fractionation, it seems much more logical that the 

fractionation is somehow related to the variations in capsule length.  
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To summarize: 

 The magnitude of fractionation between phases in the different sets of experiments 

appears to be correlated positively with temperature. 

 The magnitude of fractionation is also positively correlated with the length of the 

experimental capsule. 

 Since one of the rules of isotopic fractionation is the 1/T2 relationship, perhaps there is a 

mechanism involving the length of the experimental capsule that can explain the 

otherwise contradictory correlation between fractionation and temperature in the 

experiments. 

 

5.2.6 Thermal Diffusion 

Thinking of a mechanism that involves the length of the experimental capsule as well as 

variations in temperature invoked the theory of isotopic fractionation by thermal diffusion 

recently studied by Richter et al. (2009) and Huang et al. (2010). The concept of isotopic 

fractionation of major elements by thermal (or Soret) diffusion was outlined in Chapter one but 

the main point to consider is that all major elements undergo isotopic fractionation in the same 

direction when a silicate melt is held under a temperature gradient, with the heavier isotopes 

concentrating at the cold end of the gradient. In a piston cylinder apparatus, the thermocouple 

that measures and helps regulate the temperature of the experiment is located near the top of the 

experimental capsule. This means that there is a ‘hot spot’ located near the top end of the capsule 

and, although the apparatus is designed to minimize this, there will be a slight decrease in 

temperature in areas within the capsule that are further from this hot spot. This means this effect 

will be amplified when the length of the experimental capsule is increased. We see this in the 

experiments of Richter et al. (2009) where they used a 10 mm long capsule that was purposely 

offset from the piston cylinder hot spot to set up a larger temperature gradient to measure the 

effects of thermal diffusion (Figure 61A). Conversely, when they wanted to measure the effects 

of chemical diffusion and minimize the effects of thermal diffusion, they used a smaller 5 mm 

long capsule (Figure 61B).  
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Thermal isotopic fractionation has not been observed in carbonatite or carbonated silicate melts. 

For thermal fractionation to be effective, the liquid phase must remain unstirred by convection. 

Low viscosity aqueous fluids likely remain sufficiently well-mixed through convective processes 

to eradicate thermal fractionation (e.g. Sossi and O’Neill, 2017). The melts in these experiments 

have significantly lower viscosity than silicate melts (Dobson et al., 1996; Genge et al., 1995), so 

it is not clear whether a stable compositional or isotopic profile could be maintained. Certain 

aspects of the experiments conducted in this study suggest, however, that thermal diffusion may 

be contributing to the measured isotopic fractionation patterns. Most importantly, the pyroxenes 

in each experiment formed in the bottom end of the experimental capsule where the temperature 

would be the lowest. This is the phase that is enriched in the heavier isotopes of calcium in every 

experiment and this effect is amplified when the length of the capsule (and therefore any 

temperature offset that exists within it) is increased. Especially when these observations are 

paired with the fact that the direction of fractionation between phases goes against predictions 

based on Ca-O bond lengths and defies the well-established 1/T2 relationship between 

fractionation and temperature, thermal diffusion driven isotopic fractionation seems to be a 

possible interpretation.  
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The Fe isotopic composition of the Cpx + Carbonated Silicate Melt experiments was analyzed to 

test the hypothesis that the measured Ca isotopic fractionation is caused by thermal diffusion. 

When isotopic fractionation is driven by thermal diffusion, heavy isotopes of all major elements 

including Ca and Fe will concentrate in the cold end of the temperature gradient (Richter et al., 

2009; Huang et al., 2010). Moreover, we can use relative magnitude of thermal fractionation of 

Ca and Fe measured by Huang et al. (2010) to predict the Fe fractionation (for silicate melts) that 

should accompany temperature-driven Ca isotopic fractionation. Therefore, if the Fe isotope 

fractionation pattern between experimental phases is in the order of that predicted from silicate 

melt studies, this would be consistent with thermal diffusion effects. If the Fe isotopes 

fractionated in the opposite direction to the Ca isotopes, this would essentially rule out thermal 

diffusion. Results showed that the heavier Fe isotopes were also enriched in the pyroxenes 

compared to the melt phases (Chapter 4), thus providing additional evidence in support of 

thermal diffusion.  
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Figure 59 - Temperature gradients within a piston-cylinder apparatus. Figure from Richter et 
al. (2009) 
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Richter et al. (2009) and Huang et al. (2010) both provide estimates for the changes in δ44/40Ca 

and δ57/54Fe expected per °C caused by thermal diffusion. Table 45 provides these estimates for 

δ44/40Ca and δ57/54Fe based on these two studies, as well as the relationships between Ca and Fe 

including those in this study. These values were calculated based on the experiments of Richter 

and Huang which utilized large temperature gradients and long experimental capsules, but if we 

assume they are applicable to any size capsule and any range of ΔT we can use them to interpret 

the fractionations in our experiments.  

Table 45 - Estimated rates of change to δ44/40Ca and δ57/54Fe caused by thermal diffusion 

compared to data from this study. 

  
Richter et al. 

(2009) 
Huang et al. 

(2010) Data from this 
study   44/40Ca 57/54Fe 44/40Ca 57/54Fe 

‰/°C 0.064 0.033 0.061 0.036 
44/40Ca/57/54Fe 1.94 1.69 2.50 

 

Since we did not measure the ΔT that would have existed within our experimental capsules, the 

Fe isotope measurements and the relationship between Δ44/40Ca and Δ57/54Fe were used to 

identify the possibility of thermal effects. Because the relative magnitudes of thermal gradient 

driven fractionation for different elements are proportional, considering the ratio of Ca 

fractionation vs Fe fractionation allows us to remove temperature from the equation: for 

fractionation in a temperature gradient, Δ44/40Ca/Δ57/54Fe is constant. Figure 62 illustrates the 

Δ44/40Ca/Δ57/54Fe relationship for the Cpx + Carbonated Silicate Melt experiments compared to 

the Δ44/40Ca/Δ57/54Fe caused by thermal diffusion according to Richter et al. (2009) and Huang et 

al. (2010). The line of best fit for our data is forced through the origin to better compare its slope 

to the slopes from Richter et al. (2009) and Huang et al. (2010). The positive correlation that is 

found in our experiments suggests that we cannot rule out the effects of thermal diffusion. 

Additionally, the slope of the Δ44/40Ca/Δ57/54Fe relationship is in the order of that observed in the 

thermal diffusion studies (Huang et al., 2010; Richter et al., 2009).  
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Table 46 shows the estimated ΔT within our experimental capsules calculated using the average 

changes in δ44/40Ca per °C according to Huang et al. (2010) and Richter et al. (2009) (Table 45) 

and based on the assumption that the Δ44/40Cacrystal-melt measured in each experiment is driven 

entirely by thermal diffusion. Essentially, Table 46 calculates the effective ΔT that explains the 

measured values according to thermal diffusion in silicate melts. The calculations show that 

increased effective ΔT corresponds with increased experimental temperature. The higher 

effective ΔT calculated for the Cpx + Carbonated Silicate Melt experiments corresponds to the 

use of the modified multi-anvil apparatus for these experiments which may be expected to have a 

slightly steeper temperature gradient. The conclusion here is that the calculated effective ΔT’s 

are very reasonable, they increase with experimental temperature and are larger in the multi-anvil 

experiments, suggesting that thermal effects are a reasonable explanation for the Δ44/40Cacrystal-melt 

values that were measured in the experiments.  
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Table 46 – Estimated temperature variation within experimental capsules calculated based 

on the measured Δ44/40Cacrystals-melt in this study and effect of thermal diffusion driven 

fractionation for calcium isotopes averaged from Richter et al. (2009) and Huang et al. 

(2010). 

Type of 
Experiment 

Experiment 
ID 

Δ44/40Cacrystal-melt 
(‰) 

Estimated ΔT Within 
Experimental Capsule 

(°C) 

Cpx + Carbonated 
Silicate Melt 

Cbt-01 +1.52 24.3 

Cbt-02 +2.11 33.8 

M824 +2.75 43.9 

Cpx + Carbonate 
Melt 

B796 +0.37 5.9 

B795 +0.61 9.8 

B797 +1.29 20.7 

Cpx + Silicate Melt A1325 +0.45 7.2 

 

If the Δ44/40Cacrystal-melt that was measured in our experiments is due to thermal effects, we can 

make some assumptions and describe two scenarios that can explain the mechanism behind this 

process occurring within the experiment. The assumptions are that the crystals are in the lower 

portion of the capsule, while the melt is in the upper half, and that the temperature within the 

capsule increases uniformly from bottom to top. Additionally, we assume all fractionation is 

driven by temperature and we analyze all melt from the top and all crystals from the bottom. 

Based on these assumptions, the two different scenarios that may exist are:  

1. All the crystals are in equilibrium with the bottom of the melt pool (Figure 63A). 

2. There is a vanishingly small melt fraction in the lower half of the capsule that allows 

temperature driven fractionation to persist throughout (Figure 63B). 

In each scenario, Δ44/40Ca is related to an effective ΔT, and if we use the rate of change to 

Δ44/40Ca per °C from Huang et al. (2010) we can come up with equations that describe the 

fractionation from thermal effects in our experiments. The first scenario could be described by 

the following equation: 

 Δ44/40Ca = capsule length * temperature gradient * 0.061 / 4 

This equation can be reduced further to give us: 

 Effective ΔT = capsule length * temperature gradient / 4 
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Since scenario two allows for temperature driven fractionation to persist throughout the entire 

experimental capsule, the equations must be slightly modified to account for this larger degree of 

fractionation, giving us: 

 Δ44/40Ca = capsule length * temperature gradient * 0.061 / 2 

And: 

 Effective ΔT = capsule length * temperature gradient / 2 

 

Isotopic fractionation measured in all the high-pressure experiments may be thus caused by 

thermal fractionation in a temperature gradient. This effect has not been well recognised and may 

be a serious impediment to measuring equilibrium fractionation factors in high-temperature and 
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Figure 61 - Schematic of two possible scenarios describing the temperature driven 
fractionation in high pressure experiments. 
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high-pressure experiments. There are only a few experimental studies that measure isotopic 

fractionation in systems that involve silicate melt (e.g., Shahar et al., 2008, 2009, 2011, 2015; 

Savage et al., 2015; Poitrasson et al., 2009; Hin et al., 2012, 2014), but these either do not 

consider the possible influence of thermal fractionation on their results, or maintain that thermal 

fractionation is an insignificant effect relative to the magnitude of measured fractionation.  

This may help explain why there have been such mixed results in experimental studies of Fe 

isotope fractionation between metal and silicate melts. Whereas, Shahar et al. (2015) identified a 

significant fractionation between Fe-metal alloys and silicate melts, and computational 

predictions suggest there should be a measurable fractionation between metal and silicate 

(Polyakov and Mineev, 2000; Polyakov et al., 2007), Hin et al. (2012) found no fractionation 

between metal and silicate, and Poitrasson et al. (2009) also found no statistically significant 

fractionation.  

Additionally, unlike this work, most studies of fractionation in systems involving silicate melts 

do not systematically investigate the effects or trends associated with temperature. For example, 

the data from Savage et al. (2015) suggest that there may be an increase in metal-silicate Cu 

isotope fractionation with increasing temperature, but this possibility is not explored, and the 

data is presented in a way that makes it difficult to identify this relationship.  

It is important to note that proof of isotopic equilibrium conditions does not preclude thermal 

fractionation effects because they are also equilibrium effects. Many experimental studies will 

utilize methods of proving isotopic equilibrium such as the three-isotope exchange method used 

in Shahar et al. (2015). This method incorporated an 54Fe isotopic spike to their Fe samples and 

allows for the terrestrial fractionation line (TFL) to be replaced by a secondary fractionation line 

(SFL) which has the same slope but a different intercept. At isotopic equilibrium, any phase that 

contains the isotope of interest will plot on the SFL, thus providing evidence of equilibrium 

fractionation effects. However, even methods such as this are unable to discriminate between 

phase driven and thermal driven fractionations, which illustrates the difficulty of separating the 

two effects in experimental work.  

Adding to the difficulty of separating and identifying phase driven versus thermal driven 

fractionations in experimental work is the fact that experiments of this nature typically use larger 

than ideal capsules (as in this work). This is done to maximize the amount of material available 
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from each experimental phase for isotopic analyses. Especially if the isotope of interest is not a 

major element within one or more phases, the larger capsule sizes can be particularly necessary. 

Unfortunately, the larger the capsule, the more likely that a temperature offset can be generated 

between the top and bottom parts of the capsule. In addition, the details of capsule size and the 

spatial distribution of phases within the capsule are often not described by the authors of these 

type of studies, making it even more difficult to interpret the results and determine whether there 

is a possibility for thermal effects not previously identified in the work.  

Shahar et al. (2015) measured the Fe isotope fractionation between Fe-metal and Fe-bearing 

silicate melt and found Δ57Femetal-silicate values ranging from +0.12‰ to +0.43‰. This study 

warrants comparison because the capsules may have had mostly melt in the upper parts and 

mostly Fe-metal in the lower parts. If this was the case, their results may be showing thermal 

effects like our experiments. Despite not knowing the exact layout of the run products, nor the 

lengths of their capsules, the magnitude of their measured fractionations certainly aligns within 

the expected range of thermal diffusion driven fractionation. Using the estimated change in 

δ57/54Fe per °C given in Huang et al. (2010), the +0.12‰ to +0.43‰ range corresponds to a 

temperature offset of 3.3-11.9 °C, comparable to the calculated offsets in our experiments. It is 

important, therefore, in the light of this analysis, that future studies should consider in the 

experimental design how to minimise temperature gradients within the sample and provide 

sufficient documentation to assess the magnitude of potential thermal fractionation. 
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Chapter 6 

6 Conclusion 

This thesis has examined the Ca isotopic compositions of natural, mantle-derived samples, the 

fractionation between co-existing minerals in these rocks, and investigated the systematics of 

calcium isotopic fractionation in these systems through high-pressure and high-temperature 

experimentation. Previous research has explored calcium isotopes in mantle rocks, but has 

focused primarily on peridotites. Similarly, studies of inter-mineral calcium isotopic 

fractionation have only looked at Opx-Cpx mineral pairs. High pressure and temperature 

experimental work using calcium isotopes is very limited. Therefore, much of what was studied 

in this thesis was new and original research with little to which it can be compared. As such, the 

conclusions of this thesis serve as preliminary foundations for future works to expand and build 

upon. A summary of the main findings of this thesis follows: 

 Ca isotopic composition of many bulk carbonatite samples matched that of the BSE value 

determined by Huang et al. (2010) based on Opx and Cpx in mantle peridotites. This may 

support the partial melting of carbonated peridotite as a carbonatite formation model.  

 Ca isotopic composition of bulk carbonatites that varied from the BSE were correlated 

with concentrations of melt-favouring elements such as Lu and Yb. Based on this, 

decreased δ44/40Ca values may be an indicator of melt extraction processes, while 

increased δ44/40Ca may be a marker of increased partial melting in the carbonatite source 

material. These findings support the potential use of calcium isotopes as geochemical 

tracers of mantle processes related to melting and magmatism.  

 The calcium isotopic composition of the Cape Verde and Tamazert carbonatite samples 

confirmed the findings of previous studies which pointed to the addition of ancient 

marine carbonates into the carbonatite source.  

 Calcium isotopic fractionation between coexisting carbonate and pyroxene minerals in 

this study existed over a wide range but was correlated with the Ca/Mg ratio in the 

pyroxenes. This suggests the Ca-O bond length in the pyroxenes plays a critical role in 

determining the direction and magnitude of fractionation between the two mineral phases. 
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However, the sample set was limited, and additional coexisting carbonate-pyroxene 

mineral pairs should be examined to better constrain this relationship.  

 Olivines analyzed for their calcium isotopic composition measured heavier than 

coexisting Cpx but were heavier and lighter than coexisting Opx depending on the 

sample. 

 Experiments yielded consistently heavier calcium isotopic compositions in the pyroxenes 

than in the quenched melts in all experiments. The direction of fractionation between 

phases appeared to be contrary to that predicted based on the available information on the 

estimated Ca-O bond lengths in the pyroxenes and melts. The magnitude of the 

fractionation between the two phases was positively correlated with temperature when it 

typically should be negatively correlated based on the 1/T2
 relationship. Whether the 

fractionation that was measured is the result of equilibrium isotopic fractionation between 

pyroxene and quenched melt or whether other factors are influencing the results is 

undetermined. Iron isotopic fractionation between pyroxenes and quenched melt in the 

Cpx + Carbonated Silicate Melt experiments suggested that thermal diffusion may have 

influenced the direction and magnitude of fractionation in the experiments. However, not 

enough evidence exists to definitively conclude in favour of diffusion driven 

fractionation or equilibrium fractionation between the two phases. Additional 

experimentation is required.  

 Other experimental studies of fractionation in systems involving silicate melts often do 

not measure other isotopes besides the one of interest. Comparing Ca and Fe isotopes in 

the same experiments as was done in this study provides an important measure that shows 

whether the results may be consistent with fractionation in a temperature gradient.  

 

6.1 Future Natural Sample Work 

Future work with natural samples should continue to assess mantle-derived samples for their 

calcium isotopic compositions to further characterize the calcium isotopic composition of the 

mantle. Additional well-characterized carbonatite samples should be carefully selected for 

analysis to continue the research conducted in this study and build a larger data set from which to 

make interpretations. Samples that include co-existing Ca-bearing mineral phases should be 
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sought out for analysis to add to the developing understanding of the systematics of inter-mineral 

calcium isotopic fractionation in high-temperature systems. Coupled with continued 

experimental work, these samples should prove to be of great value. 

 

6.2 Future Experiments 

Future experimental work to investigate the fractionation between pyroxenes and melts of 

varying compositions will need to be designed very carefully to minimize and account for the 

effects of thermal diffusion. Minimizing the size of the experimental capsule should help 

minimize the delta T within the sample and therefore minimize the effects of thermal diffusion. 

Based on the estimated temperature profile within the piston cylinder experimental capsule of 

Richter et al. (2009) illustrated in Figure 60, minimizing the capsule size to <2mm may be 

sufficient to limit the temperature gradient to a few degrees (°C) or less. However, even a 2°C 

ΔT could result in δ44/40Ca fractionations up to 0.13‰ between hot and cold ends of the capsule. 

Therefore, precise estimates of the temperature gradients that exist within any given piston 

cylinder apparatus should be made before running these types of experiments to be able to 

accurately correct for thermal diffusion effects. Alternatively, a rocking piston cylinder or multi-

anvil apparatus could be used to run these types of experiments to maintain convection within 

the capsule and keep the experiment mixed, thus avoiding the need for a stable temperature 

profile.  

In addition to this, the thermal diffusion experiments conducted by Richter et al. (2009) and 

Huang et al. (2010), measured the effect using only silicate melts. Many of the assumptions 

made here are based on the effect of thermal diffusion in silicate melts being similar to its effect 

in carbonate melts or carbonated silicate melts. However, experiments that measured the effect 

of thermal diffusion in melts of varying compositions would be useful in determining the validity 

of these assumptions.  

As well as accounting for thermal diffusion in all future experiments involving isotopic analyses 

of major elements, revisiting previous experiments of this kind should also be of importance. 

Since temperature gradients exist to varying degrees in all piston cylinder apparatus, the results 

and interpretations of previous isotopic analyses of experimental materials must take this into 
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account. For example, the experiments by Sossi and O’Neill (2017) used the fractionation 

between minerals and a buffering fluid within their experimental capsules to determine the Fe 

fractionation factors between common Fe-bearing mantle minerals. They indicate they believed 

the maximum temperature gradient within their capsules to be 12°C, which could result in Fe 

isotopic fractionations up to δ57/54Fe = +0.40‰. Sossi and O’Neill (2017) reported Δ57/54Femineral-

fluid values that ranged from −0.14‰ to +0.45‰ yet made no mention of any potential effects that 

thermal diffusion could have had on these results. However, their buffering fluid was an iron-

chloride solution and not a silicate melt, so the effect of thermal diffusion may be minimized by 

convection of this fluid, but these are all topics worthy of investigation.  

Despite the concerns that thermal diffusion may present for experimental work, a study 

investigating inter-mineral equilibrium fractionation factors, much like the one Sossi and O’Neill 

(2017) conducted for Fe isotopes, could be carried out for Ca isotopes in numerous Ca-bearing 

mineral phases. Experiments of this type to determine inter-mineral Ca fractionation factors 

would be important for interpreting the growing number of natural sample data sets. They may 

also help with designing and interpreting experiments to measure the fractionation between 

minerals and melts such as this one.   
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Appendix A 

Category Group Sample δ44/40Ca 2se Reference 

Carbonaceous 
Chondrites 

CM2 Murchison +0.84 0.05 Valdes et al., 2014 

CM2 Murray +0.75 0.07 Valdes et al., 2014 

CM2 Murchison +0.60 0.04 Simon and DePaolo, 2010 

CM2 Murchison +0.72 0.04 Huang and Jacobsen, 2017 

CM PCA 02012 +0.55 0.19 Amsellem et al., 2017 

CM2 Cold Bokkeveld +0.36 0.13 Amsellem et al., 2017 

CM PCA 02010 +0.77 0.12 Amsellem et al., 2017 

CM2 Murchison +0.59 0.09 Wombacher et al., 2009 

CV3 Allende +0.55 0.10 Valdes et al., 2014 

CV3 Vigarano +0.33 0.18 Valdes et al., 2014 

CV3 Allende +0.49 0.05 Simon and DePaolo, 2010 

CV3 Allende +0.28 0.05 Huang and Jacobsen, 2017 

CV3 Allende +0.26 0.07 Amsellem et al., 2017 

CV3 Allende replicate +0.10 0.05 Amsellem et al., 2017 

CV3 Allende replicate +0.44 0.08 Amsellem et al., 2017 

CO3.3 Felix +1.19 0.13 Valdes et al., 2014 

CO3.4 Ornans +0.76 0.03 Valdes et al., 2014 

CO3.5 Lance +0.95 0.08 Valdes et al., 2014 

CO3.8 Isna +0.99 0.04 Valdes et al., 2014 

CR2 RBT 04133 +0.27 0.04 Valdes et al., 2014 

CR2 Asuka 881595 +0.47 0.10 Amsellem et al., 2017 

CI Orgueil +0.65 0.05 Valdes et al., 2014 

CI1 Orgueil +0.75 0.08 Huang and Jacobsen, 2017 

CI1 Orgueil +0.45 0.04 Amsellem et al., 2017 

CI1 Yamato 980115 +0.93 0.02 Amsellem et al., 2017 

Ordinary 
Chondrites 

LL4 Soko-Banja +0.95 0.10 Valdes et al., 2014 

LL5 Olivenza +0.97 0.16 Valdes et al., 2014 

LL6 Cherokee Springs +0.96 0.08 Valdes et al., 2014 

LL5 Paragould +0.92 0.05 Simon and DePaolo, 2010 

L6 Bruderheim +0.96 0.03 Simon and DePaolo, 2010 

LL6 St. Severin +0.98 0.04 Simon and DePaolo, 2010 

O, L6 Bruderham +0.98 0.07 Huang and Jacobsen, 2017 

O, L6 Peace River +0.83 0.11 Huang and Jacobsen, 2017 

O, H6 Guarena +0.91 0.03 Huang and Jacobsen, 2017 

O, H3 Grady (1937) +0.92 0.04 Huang and Jacobsen, 2017 

Enstatite 
Chondrites 

EH3 Qingzhen +0.99 0.07 Valdes et al., 2014 

EH3 Kota-Kota +1.01 0.01 Valdes et al., 2014 



150 
 

EH4 Abee +0.98 0.02 Valdes et al., 2014 

EH4 Indarch +0.95 0.03 Valdes et al., 2014 

EH5 St. Marks +0.90 0.09 Valdes et al., 2014 

EH3 Indarch +1.13 0.04 Simon and DePaolo, 2010 

EH3 Sahara 97096 +1.18 0.04 Simon and DePaolo, 2010 

EH3 Qingzhen +1.16 0.05 Simon and DePaolo, 2010 

EH4 Abee +1.25 0.05 Simon and DePaolo, 2010 

EH3 KLE 98300 +1.29 0.05 Simon and DePaolo, 2010 

EL3 MAC 88136 +1.48 0.05 Simon and DePaolo, 2010 

EH Abee +0.90 0.02 Huang and Jacobsen, 2017 

EH Indarch +0.96 0.02 Huang and Jacobsen, 2017 

EH6 Indarch +1.06 0.15 Amsellem et al., 2017 

EL6 Khairpur +0.91 0.03 Amsellem et al., 2017 

Achondrites 

Aubrite Khor Temiki +0.88 0.03 Valdes et al., 2014 

Aubrite Norton County 1 +1.08 0.05 Valdes et al., 2014 

Aubrite Norton County 2 +0.88 0.05 Valdes et al., 2014 

Aubrite Cumberland Falls +0.96 0.05 Valdes et al., 2014 

Aubrite Bustee +0.96 0.06 Valdes et al., 2014 

Angrite Angra dos Reis +0.88 0.05 Simon and DePaolo, 2010 

Diogenite Bilanga +0.95 0.05 Simon and DePaolo, 2010 

Eucrite Juvinas +0.89 0.04 Simon and DePaolo, 2010 

Aubrite Norton County +1.01 0.07 Simon and DePaolo, 2010 

Lunar, Apollo 
samples 

Ilmenite basalt 10057 +0.81 0.09 Valdes et al., 2014 

Olivine basalt 12012 +1.05 0.04 Valdes et al., 2014 

Basalt 14053 +0.76 0.06 Valdes et al., 2014 

Basalt 15016 +0.91 0.05 Valdes et al., 2014 

Green glass 15426 +0.88 0.08 Valdes et al., 2014 

Basalt 10017 +0.87 0.04 Simon and DePaolo, 2010 

Green glass 15427 +1.09 0.04 Simon and DePaolo, 2010 

Green glass 15427 +1.04 0.04 Simon and DePaolo, 2010 

Martian 

Orthopyroxenite ALH 84001 +1.01 0.05 Simon and DePaolo, 2010 

Shergottite Zagami +0.97 0.05 Simon and DePaolo, 2010 

Enriched 
shergottites 

LAR 06319 +0.93 0.14 

Magna et al., 2015 

Los Angeles 001 +0.99 0.02 

NWA 856 +0.91 0.06 

NWA 1068 +0.90 0.02 

RBT 04262 +0.90 0.07 

Shergotty +1.14 0.10 

Zagami +0.71 0.01 

ALHA 77005 +1.05 0.01 
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Intermediate 
shergottites 

EETA 79001A +1.05 0.03 

Y-000097 +0.98 0.07 

Depleted 
shergottites 

NWA 5990 +0.95 0.04 

NWA 6162 +0.90 0.01 

SaU 005 +0.80 0.06 

Y-980459 +1.08 0.05 

Nakhlites 

Lafayette +0.94 0.07 

MIL 03346 +0.89 0.04 

Nakhla  +0.81 0.01 

NWA 817 +0.79 0.07 

NWA 5790 +0.82 0.04 

Y-000593 +1.04 0.05 

Chassignites 
Chassigny  +1.06 0.10 

NWA 2737 +0.74 0.07 

Orthopyroxenite ALH 84001 +1.06 0.07 

Allende 
Chondrules 

CV3 EA1 +1.12 0.10 

Amsellem et al., 2017 

CV3 EA2 +1.12 0.06 

CV3 EA3 +1.16  - 

CV3 EA4 +1.21 0.12 

CV3 EA5 +1.11 0.08 

CV3 EA6 +1.00 0.15 

CV3 EA7 +1.01 0.15 
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Appendix B 

Category Sample δ44/40Ca 2se Reference 

Basalts 

BHVO-2  +0.83 0.07 Amini et al., 2009 

BHVO-2  +0.87 0.03 Valdes et al., 2014 

BHVO-2 +0.80 0.03 Kang et al., 2017 

BHVO-2 +0.90 0.05 Magna et al., 2015 

BHVO-2 +0.79 0.08 Schiller et al., 2012 

BHVO-2 +0.77 0.10 Feng et al., 2017 

BHVO-1 +0.96 0.05 Huang et al., 2011 

BHVO-1 +0.87 0.06 Schiller et al., 2012 

BHVO-1 +0.77 0.10 Feng et al., 2017 

BHVO-1 +0.78 0.08 Lehn and Jacobson, 2015 

Kilauea BHVO-1 +1.00 0.12 Huang et al., 2010 

BHVO +0.80 0.05 Amsellem et al., 2017 

BIR-1  +0.77 0.09 Amini et al., 2009 

BIR-1 +0.89 0.04 Valdes et al., 2014 

BIR-1 +0.84 0.03 Kang et al., 2017 

BIR-1 +0.79 0.06 Schiller et al., 2012 

BIR-1 +0.79 0.12 Feng et al., 2017 

BIR-1 +0.82 0.20 Wombacher et al., 2009 

BCR-2  +0.87 0.06 Amini et al., 2009 

BCR-2 +0.87 0.18 Valdes et al., 2014 

BCR-2 +0.82 0.03 Kang et al., 2017 

BCR-2 +0.87 0.08 Schiller et al., 2012 

BCR-2 +0.92 0.40 Wombacher et al., 2009 

BCR-2 +0.79 0.12 Feng et al., 2017 

BCR-2 +0.91 0.04 Amsellem et al., 2017 

BCR +0.82 0.05 Colla et al., 2013 

BCR-1 +0.82 0.05 Simon and DePaolo, 2010 

DNC-1 +0.79 0.06 Schiller et al., 2012 

DNC-1 +0.82 0.08 Feng et al., 2017 

Mauna Kea SR 687 +0.89 0.13 Huang et al., 2010 

Mauna Kea SR 700 +0.94 0.06 Huang et al., 2010 

SR700 +0.94 0.05 Huang et al., 2011 

Mauna Kea SR 685 +0.97 0.13 Huang et al., 2010 

SR685 +0.92 0.08 Huang et al., 2011 

Mahukona 72-1 +1.03 0.13 Huang et al., 2010 

72-1 +1.02 0.04 Huang et al., 2011 

Mahukona 72-5 +0.91 0.13 Huang et al., 2010 
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Oslo Rift Nephelinites 
S36/S01 +1.06 0.13 Huang et al., 2010 

KL2-G  +0.70 0.07 Amini et al., 2009 

KL2  +0.76 0.07 Amini et al., 2009 

ML3B-G +0.72 0.05 Amini et al., 2009 

ML3B  +0.62 0.06 Amini et al., 2009 

SRM688 +0.86 0.05 Valdes et al., 2014 

151-09-9 +0.85 0.09 Valdes et al., 2014 

KBD 408-702 +1.05 0.11 Valdes et al., 2014 

CV-SN98-01 +0.81 0.10 Valdes et al., 2014 

BM1962 128 (114) +0.81 0.09 Valdes et al., 2014 

BV2 +0.93 0.13 Valdes et al., 2014 

BM1911 1626 (11) +0.89 0.03 Valdes et al., 2014 

SH 25 +0.90 0.08 Valdes et al., 2014 

Eruption 1931 +0.87 0.04 Valdes et al., 2014 

AG 132 +1.07 0.11 Valdes et al., 2014 

AG 36 +1.06 0.02 Valdes et al., 2014 

MO50 CP112 +0.96 0.05 Valdes et al., 2014 

NIC-SC2 +1.02 0.04 Simon and DePaolo, 2010 

Average host basalts +0.63 0.06 Zhao et al., 2017 

KOO-1 +0.75 0.03 Huang et al., 2011 

KOO-7 +0.76 0.02 Huang et al., 2011 

KOO-10 +0.75 0.05 Huang et al., 2011 

KM-1 +0.77 0.03 Huang et al., 2011 

KSDP-9 +0.92 0.06 Huang et al., 2011 

KSDP-71 +0.83 0.06 Huang et al., 2011 

D19-9 +0.90 0.05 Huang et al., 2011 

BE-N +0.69 0.25 Wombacher et al., 2009 

9149 +0.80 0.04 Jacobson et al., 2015 

22038 +0.81 0.04 Jacobson et al., 2015 

9297 +0.80 0.04 Jacobson et al., 2015 

9265 +0.79 0.04 Jacobson et al., 2015 

709 +0.82 0.04 Jacobson et al., 2015 

4685 +0.79 0.04 Jacobson et al., 2015 

W-2 +0.70 0.08 Feng et al., 2017 

HSDP-R452 +1.04 0.12 Skulan et al., 1997 

HSDP-R160 +1.54 0.25 Skulan et al., 1997 

IO-14 +1.04 0.19 Skulan et al., 1997 

IO-38 +0.97 0.10 Skulan et al., 1997 

D54G +0.87 0.07 DePaolo, 2004 
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KOO-10 +1.03 0.22 DePaolo, 2004 

KOO-21 +1.10 0.19 DePaolo, 2004 

KOO-55 +1.11 0.14 DePaolo, 2004 

GUG-6 +1.41 0.22 DePaolo, 2004 

ALV-1833 +1.03 0.23 DePaolo, 2004 

HK-02 +1.04 0.26 DePaolo, 2004 

HU-24 +0.88 0.23 DePaolo, 2004 

HK-11 +0.83 0.27 DePaolo, 2004 

HU-05 +1.34 0.16 DePaolo, 2004 

HSDP 452 +1.04 0.12 DePaolo, 2004 

HSDP 160 +1.54 0.25 DePaolo, 2004 

IO-14 +1.04 0.19 DePaolo, 2004 

IO-38 +0.97 0.10 DePaolo, 2004 

SUNY MORB +0.98 0.03 DePaolo, 2004 

SUNY MORB +0.93 0.12 DePaolo, 2004 

EH12 +0.88 0.11 Amsellem et al., 2017 

EH12 replicate +0.88 0.04 Amsellem et al., 2017 

EH12 replicate +0.83 0.05 Amsellem et al., 2017 

EH15 +0.80 0.02 Amsellem et al., 2017 

EW 9309 10D +0.86 0.09 Amsellem et al., 2017 

Felsic Rocks 

ATHO-G  +0.87 0.08 Amini et al., 2009 

Tsm-2G +0.84 0.05 Simon and DePaolo, 2010 

RGM-1 +0.89 0.03 Feng et al., 2017 

RGM-2 +0.80 0.13 Feng et al., 2017 

92DLV-113 +1.29 0.20 Skulan et al., 1997 

92DLV-113 +1.11 0.20 DePaolo, 2004 

Lake Co. Obsidian +0.97 0.05 DePaolo, 2004 

StHs6/80-G +0.75 0.05 Amini et al., 2009 

StHs6/80 +0.77 0.11 Amini et al., 2009 

AGV-2 +0.77 0.10 Valdes et al., 2014 

AGV +0.53 0.05 Colla et al., 2013 

AGV-2 +0.79 0.09 Feng et al., 2017 

T1-G  +0.80 0.06 Amini et al., 2009 

T1 +0.72 0.10 Amini et al., 2009 

G-2 +0.59 0.07 Valdes et al., 2014 

92-12-29 +1.05 0.22 Skulan et al., 1997 

94-02-05 +1.22 0.08 Skulan et al., 1997 

76DSH-8 +1.32 0.24 Skulan et al., 1997 

76DSH-8 +1.09 0.21 Skulan et al., 1997 

76DSH-8 +0.93 0.06 Skulan et al., 1997 
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92-12-29 +1.05 0.22 DePaolo, 2004 

94-02-05 +1.22 0.24 DePaolo, 2004 

76DSH-8 +1.32 0.21 DePaolo, 2004 

76DSH-8 +1.09 0.21 DePaolo, 2004 

76DSH-8 +0.93 0.06 DePaolo, 2004 

Bulk Peridotites 

BM90/21-G  +1.01 0.07 Amini et al., 2009 

BM90/21  +1.01 0.09 Amini et al., 2009 

PCC-1  +1.14 0.07 Amini et al., 2009 

PCC +1.20 0.05 Amsellem et al., 2017 

Ts-53389 +0.94 0.06 Kang et al., 2017 

S-17 +0.94 0.02 Kang et al., 2017 

313-8 +0.99 0.08 Kang et al., 2017 

S-4 +0.95 0.03 Kang et al., 2017 

313-102 +0.92 0.08 Kang et al., 2017 

stz-1 +0.93 0.02 Kang et al., 2017 

S-37 +0.93 0.02 Kang et al., 2017 

S-1 +0.92 0.08 Kang et al., 2017 

S-14 +0.96 0.06 Kang et al., 2017 

S-21 +0.92 0.06 Kang et al., 2017 

stz-2 +0.90 0.07 Kang et al., 2017 

S-15 +0.90 0.09 Kang et al., 2017 

S-2 +0.95 0.05 Kang et al., 2017 

313-104 +0.97 0.08 Kang et al., 2017 

S-16 +0.97 0.09 Kang et al., 2017 

S-22 +0.98 0.07 Kang et al., 2017 

S-62 +1.09 0.06 Kang et al., 2017 

621-16 +1.07 0.09 Kang et al., 2017 

BN-8 +1.03 0.06 Kang et al., 2017 

419/09 +0.79 0.03 Kang et al., 2017 

S-29 +0.72 0.04 Kang et al., 2017 

105/03 +0.61 0.09 Kang et al., 2017 

H-25 +0.55 0.01 Kang et al., 2017 

107/03 +0.96 0.08 Kang et al., 2017 

KC-137/08 +0.25 0.01 Kang et al., 2017 

4230-16 +0.89 0.07 Kang et al., 2017 

U85 +0.83 0.04 Kang et al., 2017 

4230-19 +0.88 0.06 Kang et al., 2017 

YY09-47 +0.86 0.13 Zhao et al., 2017 

YY11-06 +0.89 0.09 Zhao et al., 2017 

YY09-07 +0.92 0.09 Zhao et al., 2017 
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YY09-05 −0.08 0.07 Zhao et al., 2017 

YY09-05 +0.09 0.14 Zhao et al., 2017 

YY09-28 +0.22 0.10 Zhao et al., 2017 

YY09-28 +0.24 0.14 Zhao et al., 2017 

YY09-24 +0.58 0.09 Zhao et al., 2017 

YY09-18 +0.66 0.06 Zhao et al., 2017 

YY09-27 +0.70 0.09 Zhao et al., 2017 

JP-1 +1.15 0.03 Magna et al., 2015 

LZ0604B +1.08 0.06 Amsellem et al., 2017 

LZ0604B replicate +1.17 0.11 Amsellem et al., 2017 

Clinopyroxenes 

San Carlos Cpx +1.04 0.04 Huang et al., 2010 

Kilbourne Hole Cpx +0.98 0.04 Huang et al., 2010 

P-1 +0.77 0.03 Kang et al., 2016 

P-9 +0.71 0.06 Kang et al., 2016 

P-10 +0.96 0.04 Kang et al., 2016 

P-15 +0.91 0.04 Kang et al., 2016 

H-3 +0.82 0.03 Kang et al., 2016 

H-16 +0.92 0.05 Kang et al., 2016 

LHLS-4 +0.94 0.12 Kang et al., 2016 

LHLS-6 +1.03 0.12 Kang et al., 2016 

LHLS-10 +0.83 0.12 Kang et al., 2016 

89CN +0.96 0.05 Simon and DePaolo, 2010 

90DH +0.97 0.07 Simon and DePaolo, 2010 

YY09-47 +0.86 0.12 Zhao et al., 2017 

YY11-06 +0.88 0.06 Zhao et al., 2017 

YY09-07 +0.92 0.03 Zhao et al., 2017 

YY09-05 −0.09 0.07 Zhao et al., 2017 

YY09-28 +0.25 0.07 Zhao et al., 2017 

YY09-24 +0.58 0.07 Zhao et al., 2017 

YY09-18 +0.67 0.05 Zhao et al., 2017 

YY09-27 +0.69 0.08 Zhao et al., 2017 

Orthopyroxenes 

San Carlos Opx +1.40 0.07 Huang et al., 2010 

Kilbourne Hole Opx +1.73 0.09 Huang et al., 2010 

P-1 +1.77 0.01 Kang et al., 2016 

P-9 +1.82 0.01 Kang et al., 2016 

P-10 +0.95 0.05 Kang et al., 2016 

P-15 +1.12 0.09 Kang et al., 2016 

H-3 +1.44 0.10 Kang et al., 2016 

H-16 +1.05 0.05 Kang et al., 2016 

LHLS-4 +1.34 0.12 Kang et al., 2016 
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LHLS-6 +1.31 0.12 Kang et al., 2016 

LHLS-10 +1.21 0.12 Kang et al., 2016 

YY09-47 +0.90 0.04 Zhao et al., 2017 

YY11-06 +1.01 0.06 Zhao et al., 2017 

YY09-07 +0.88 0.09 Zhao et al., 2017 

YY09-05 +0.22 0.02 Zhao et al., 2017 

YY09-28 −0.24 0.06 Zhao et al., 2017 

YY09-24 +0.44 0.06 Zhao et al., 2017 

YY09-18 +0.59 0.03 Zhao et al., 2017 

YY09-27 +0.70 0.06 Zhao et al., 2017 

Olivine P-15 +1.16 0.08 Kang et al., 2016 

Dunites 

DTS-1 +1.59 0.09 Huang et al., 2010 

DTS-1  +1.49 0.06 Amini et al., 2009 

DTS-1 +1.51 0.13 Feng et al., 2017 

DTS-2 +1.20 0.11 Feng et al., 2017 

Calcites 

500 (spar) +1.14 0.04 Jacobson et al., 2015 

6917 (spar) +0.91 0.04 Jacobson et al., 2015 

7906 (spar) +1.10 0.04 Jacobson et al., 2015 

10303 (spar) +0.98 0.04 Jacobson et al., 2015 

11622 (spar) +1.22 0.04 Jacobson et al., 2015 

15239 (spar)  +1.24 0.04 Jacobson et al., 2015 

NI 4320 +1.17 0.04 Jacobson et al., 2015 

NI 4525 +0.92 0.04 Jacobson et al., 2015 

NI 1582 +1.27 0.04 Jacobson et al., 2015 

NI 10784 +1.06 0.04 Jacobson et al., 2015 

Bulandstindur +1.08 0.04 Jacobson et al., 2015 

NI 14632 (spar) +0.85 0.04 Jacobson et al., 2015 

NI 14231 +1.18 0.04 Jacobson et al., 2015 

B9435 +0.68 0.04 Jacobson et al., 2015 

Sturlugata +0.77 0.04 Jacobson et al., 2015 

Bulk 
Carbonatites 

SARM 40 +0.87 0.04 Schiller et al., 2012 

COQ-1 +0.71 0.11 Feng et al., 2017 

Carbonatites 
Silicate Phase 

82LM66A +0.87 0.02 Amini et al., 2009 

83HV26 +0.69 0.04 Amini et al., 2009 

Carbonatites 
Carbonate Phase 

82LM66A  +0.67 0.05 Amini et al., 2009 

83HV26  +0.74 0.04 Amini et al., 2009 
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