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From https://blogs.nvidia.com/blog/2016/08/22/difference-deep-learning-training-inference-ai/

Figure 2.2: Training vs. inference

depth of the input volume. During the forward pass, each filter is convolved across the width
and height of the input volume, computing the dot product between the entries of the filter and
the input and producing a 2-dimensional activation map of that filter. (Fig. 2.3)

Relu Layer

ReLU is the abbreviation of Rectified Linear Units. This layer applies the non-saturating acti-
vation function f (x) = max(0, x). It perfects the nonlinear properties of the decision function
and of the overall network without affecting the receptive fields of the convolution layer.

Pooling Layer

Another important layer of CNNs is pooling, which is a form of non-linear down-sampling.
There are several non-linear functions to implement pooling among which max pooling and
average pooling are the two most common. Max pooling partitions the input image into a set
of non-overlapping rectangles and, for each such sub-region, outputs the maximum. (Fig. 2.4)

Batch Normalization Layer

Batch Normalization, proposed by Sergey Ioffe and Christian Szegedy[17], is a method to
reduce internal covariate shift in neural networks. Batch Normalization allows us to use much
higher learning rates and to focus less on weights initialization. (Fig. 2.5)
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Convolution operation with 3 x 3 kernel, stride 1 and padding 1. ~ denotes the convolutional operator

Figure 2.3: Convolution layer

2.3.2 Network Architecture

The first CNN that had a great success on image classification is the LeNet proposed by
Y.LeCun in 1989 [23]. Its successor AlexNet [22] won ILSVRC challenge in 2012 and signifi-
cantly outperformed the runner-up (top 5 error of 16% compared to runner-up with 26% error).
After that many excellent network architectures have been proposed. This section lists some
famous network architectures that are related to this research or have inspired our design.

VGGNet

VGGNet, proposed by Karen Simonyan and Andrew Zisserman [35], is the runner-up in
ILSVRC 2014. It is the first architecture that uses much smaller 3x3 filters in each convolu-
tional layer and also combines them as a sequence of convolutions to emulate greater receptive
fields.
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Figure 2.4: Pooling layer

GoogLeNet

GoogLeNet, proposed by Szegedy et al. [37] from Google, is the ILSVRC 2014 winner. Its
main contribution is the development of an Inception Module that dramatically reduces the
number of parameters in the network. (Fig. 2.6)

ResNet

Residual Network (ResNet), proposed by Kaiming He et al. [9], is the winner of ILSVRC 2015
and COCO 2015. It features special skip connections to make training a very deep network
easier. ResNet is currently by far the state of the art Convolutional Neural Network model and
is widely used in all kinds of computer vision tasks. (Fig. 2.7)

DenseNet

Densely Connected Convolutional Network (DenseNet), proposed by Gao Huang and Zhuang
liu et al.[14], is a network architecture where each layer is directly connected to every other
layer in a feed-forward fashion (within each dense block). DenseNet encourages feature reuse
and substantially reduces the number of parameters (Fig. 2.8). DenseNet is the foundation of
our study. We will give a detailed description of DenseNet in Section 3.2.1
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Input : Values of x over a mini-batch {x1...m}

Parameters to be learned: γ, β

Output:
{
yi = BNγ,β(xi)

}

µ←
1
m

m∑
i=1

xi //mini − batch mean

σ2 ←
1
m

m∑
i=1

(xi − µ)2 //mini − batch variance

x̂i ←
xi − µ
√
σ2 + ε

//normalize

yi ← γx̂i + β //scale and shi f t

Figure 2.5: Algorithm of Batch Normalization

2.4 Datasets

Here we introduce datasets that are used in different tasks. ImageNet [2] ILSVRC 2012 and
a customized Stanford Dogs [19] are used for image classification tasks. PASCAL VOC [3]
2007 and 2012 are used for object detection tasks.

2.4.1 ImageNet ILSVRC 2012

ImageNet [2] is an image dataset organized according to the WordNet hierarchy. Each mean-
ingful concept in WordNet is called a ”synonym set” or ”synset”. ImageNet uses ”WordNet
ID” (wnid) to uniquely identify a synset. For example, the wnid of synset ”dog, domestic dog,
Canis familiaris” is ”n02084071”.

ImageNet ILSVRC 2012 is a classification dataset widely used to measure the performance of
a network architecture. The training dataset contains 1000 categories and 1.2 million images.
The validation dataset contains 50,000 images with 50 images per class.
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From Going deeper with convolutions [37]

Figure 2.6: Inception model with dimension reduction

2.4.2 CIFAR-10

CIFAR-10 [21] is a popular toy image classification dataset. This dataset consists of 60,000
32x32 color images containing one of 10 object classes, with 6000 images per class. Although
CIFAR-10 is widely used for ablation study, we do not use this dataset in this thesis. The main
reason is that we have limited computing resource and hope that the hyper parameters got from
ablation study can be used for ImageNet ILSVRC task. However, the hyperparameters used on
CIFAR-10 are not able to be used on ILSVRC because CIFAR-10 is a low resolution dataset
while ILSVRC is a high resolution dataset. Moreover, the network architectures on these two
datasets are also different. Therefore, we build a customized Stanford Dogs dataset described
as follows.

2.4.3 Stanford Dogs

Stanford Dogs [19] dataset contains images of 120 breeds of dogs from around the world. This
dataset has been built using images and annotation from ImageNet for the task of fine-grained
image classification.

Fine-grained classification, as a sub-field of image recognition, aims to distinguish subordinate
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From http://www.cs.cornell.edu/ gaohuang/papers/DenseNet-CVPR-Slides.pdf

Figure 2.7: High level diagram of ResNet architecture

categories within entry level categories. We believe the dataset used for this kind of task is
complicated enough to evaluate the performance of the network architecture. However, there
are only 14,580 training images, with about 120 images per class, in the original Stanford Dogs
dataset, which is not large enough to train the model from scratch.

Instead of using the original Stanford Dogs, we build a subset of ILSVRC 2012 according to
the ImageNet wnid used in Stanford Dogs. Both training data and validation data are exactly
copied from the ILSVRC 2012 dataset. In the following chapters, the term of Stanford Dogs
means this subset of ILSVRC 2012 instead of the original one. Contents of this dataset:

• Number of categories: 120
• Number of training images: 150,466
• Number of validation images: 6,000

2.4.4 PASCAL VOC

PASCAL VOC [3] Challenge is a challenge in visual object recognition funded by PASCAL
network of excellence. The datasets from the challenges are widely used for the benchmark of
detection and segmentation tasks. The twenty object classes that have been selected are:

• Person: person
• Animal: bird, cat, cow, dog, horse, sheep
• Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train
• Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor
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From http://www.cs.cornell.edu/ gaohuang/papers/DenseNet-CVPR-Slides.pdf

Figure 2.8: High level diagram of DenseNet architecture

2.5 Related Work

2.5.1 Network Acceleration and Compression

The high computational cost and the large model size are two main factors restricting CNN
being used on embedded systems. Researchers have worked great efforts to solve this problem
in different ways.

Weights Pruning and Quantization

Song Han et al. propose deep compression, a three-stage pipeline: pruning, trained quantiza-
tion and Huffman coding [8], to reduce the storage requirement of neural networks by 35x to
49x without affecting their accuracy. (Fig. 2.9)

Network Binarization

Several methods attempt to binarize the weights and the activations in neural networks to speed
up inference time. The most famous one is XNOR-Net, proposed by Mohammad Rastegari et
al. [29]. In XNOR-Net, both the filters and the input to convolutional layers are approximated
with binary values. Therefore, the convolution operation can be estimated by XNOR operation.
Theoretically, this can result in 58x faster speed and 32x smaller model size compared to the
full-precision counterpart. However, in XNOR-Net, the accuracy drops greatly. For example,
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From Deep compression: Compressing deep neural networks with pruning, trained quantization and

huffman coding [8]

Figure 2.9: Deep compression - three stage compression pipeline

for ResNet-18, XNOR-Net is 18.1% lower in top-1 accuracy than the full precision network on
ImageNet ILSVRC 2012 (51.2% vs 69.3%). (Fig. 2.10)

From Xnor-net:Imagenet classification using binary convolutional neural networks [29]

Figure 2.10: Convolution with XNOR-bitcount

Knowledge Distilling

Another approach is knowledge distillation [11][33] which trains a student network from the
softened output of an ensemble of deeper and wider networks, called teacher network. The
main idea is to allow the student network to capture not only the information provided by the
true labels, but also the feature learned by the teacher network.

Efficient Network Architectures

Instead of depending on a large model, efficient architecture design tries to design and train a
network from scratch to meet the strictly constraints budget.

GoogLeNet [37] is the earliest architecture focusing on computational efficiency and low pa-
rameter count. It spends only 10% of computational cost of VGG and maintains a similar
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accuracy to VGG. Many of its outstanding design ideas have greatly affected the current net-
work design. For example, S. Hong et al. [20] widely uses inception block in PVANet, which
is a high accuracy real time object detection system.

MobileNet [13] is a pioneering work on efficient model architecture and for the first time shows
the VGG level accuracy for a fully convolutional network with about 600 Million MACs (the
number of Multiply-Accumulates which measures the number of fused Multiplication and Ad-
dition operations) computational budget. MobileNet is based on a streamlined architecture that
uses depthwise separable convolutions to build light weight CNNs. ShuffleNet [40] is another
efficient model which utilizes pointwise group convolution and channel shuffle together with
depthwise separable convolution to balance computational cost and accuracy. NASNet [41] is a
complicated network obtained by reinforcement learning and model search. It achieves state of
the art results both among large scale models and efficient models. NASNet architecture uses
depthwise separable convolutions with different sizes ranging from 3x3 to 5x5, 7x7. However,
the size of 7x7 is rarely used in human designed efficient models.

All these three famous efficient models heavily depend on depthwise separable convolution.
Depthwise separable convolution is initially used in Inception models [37][38] to reduce the
computation in the first few layers. Depthwise separable convolution is made up of two layers:
depthwise convolution and pointwise convolution. Depthwise convolution applies a single
filter per each input channel. Pointwise convolution is just a standard 1x1 convolution which
is used to create a linear combination of the output of the depthwise layer. (Fig. 2.11)

(a) Standard convolution filters (b) Depthwise convolution filters

From http://machinethink.net/blog/googles-mobile-net-architecture-on-iphone/

Figure 2.11: Standard convolution filters vs. depthwise convolution filters
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2.5.2 Object Detection

Object detection is one of the main areas of researches in computer vision. Recent progress in
object detection is heavily driven by the successful application of deep Convolutional Neural
Networks (CNN). State-of-the-art CNN based object detection methods can be divided into
two groups: region proposal-based detector and one-stage detector.

Proposal-based Detector

Proposal-based detector, also called two-stage detector, includes R-CNN [6], Fast RCNN [5],
Faster R-CNN [32] and R-FCN [1]. There are two stages in proposal-based detector. Some
potential object regions are generated at the first stage, and then classification and location
processing are made on these proposed regions at the second stage. R-CNN uses selective
search [39] to generate region proposal and then uses a CNN network to extract features from
these proposed regions - each region is processed by the CNN network separately. Faster R-
CNN improve the efficiency by sharing computation and using neural networks to generate the
region proposals. (Fig. 2.12)

From Speed/accuracy trade-offs for modern convolutional object detectors [15]

Figure 2.12: High level diagram of Faster R-CNN architecture

One-stage Detector

One-stage detector, for example YOLO [30] and SSD [26], uses a single feed-forward convolu-
tional network to directly predict object classes and locations. YOLO frames object detection
as a regression problem that spatially separates bounding boxes and associates class probabili-
ties. In this way, both object classes and locations can be directly predicted by a convolutional
network. SSD improves YOLO in several aspects, including using multi scales of features for
prediction and using default boxes and aspect ratios for adjusting varying object shapes. (Fig.
2.13)


