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Abstract

The bold framework of the Integrated Information Theory of consciousness are

explored in this thesis in the context of the generalized Ising model of the brain.

Small 5-node networks are simulated on the Ising model with Metropolis transitions

where the fitting parameter T is fit to empirical functional connectivity matrices

of healthy human subjects. Fitting to criticality, results indicate that integrated

information undergoes a phase transition at the critical temperature Tc. The results

are interpreted in the context of an emerging perspective of the science of complexity

and perhaps even the philosophy of science; the universe as a self-organizing critical

system undergoing cascades of phase transitions into complexity.

Keywords: integrated information, consciousness, ising model, criticality, phase

transitions, emergence, complexity
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Chapter 1

Consciousness

How do a few billion neuronal cells wired together in complex networks of communi-

ties give rise to consciousness? Why does it feel like something to be this interacting

conglomeration of matter? The first step to understanding is imitation and to that

end, in this thesis we use a generalized Ising model to model the brain as a critical sys-

tem. Integrated information, a measure of consciousness proposed by the Integrated

Information Theory (IIT) of consciousness is measured alongside the traditional

statistical measures of the model. IIT claims that the measurable quantity ‘integrated

information’ quantifies consciousness in a system and an object called the ‘concep-

tual structure’ of the system describes the quality of the conscious experience. In this

thesis the bold ideas of IIT are combined with the emerging physical perspective of

the critical brain to explore the interaction of these ideas. Our results indicate that

consciousness, an abstract macroscopic object or order parameter, seems to undergo

a phase transition at the critical temperature of the Ising model. At the onset of this

phase transition, the integrated information (consciousness) generated by the system

is maximally susceptible. We interpret our results in light of recent arguments that

complexity, life, and consciousness all tend to be critical systems through evolution

due to the adaptive capabilities of critical systems (Goldenfeld and Woese, 2011; Hop-

field, 1994; Mora and Bialek, 2011). While the numeric results of our experiment are

simple and succinct, contextualizing our methods and then justifying our conclusions

1
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from these results requires a journey back and forth through several different disci-

plines, a recurring theme in the physics of meta-cognition. Each discipline has its

own unique language, its dialect, and a regime of relevance. Each semi-independent

piece must be stitched at its boundaries to some other discipline to form a unified

puzzle made from components that may look nothing like each other. This puzzle is

the causal structure of our universe. This thesis is mostly interested in the ‘brain and

consciousness’ patch of this puzzle, though a holistic perspective of the puzzle is still

useful, if not necessary. To understand the brain at a fine scale, one my look at the

individual anatomy of a single neuron, its action potentials, ion channels, metabolic

network and all, and attempt to describe that as accurately as possible and construct

upwards from there. Here, differential equations, organic chemistry, and biology are

the useful and relevant languages one would have to learn to discuss these subjects.

At a larger scale, the brain is a non-equilibrium thermodynamic system where bil-

lions of similar (but crucially non-identical) cells interact both in cooperation and

segregation to give rise (or self-organize) to new qualities (order parameters) that

did not exist before (e.g. pain, thought, consciousness). At this scale we employ

the languages and methods of statistics, statistical mechanics and thermodynamics

to explore these ideas. At an even larger scale, sets of brains interact and once again

self-organize to construct even larger and newer qualities that did not exist before

(communities, societies, cultures, economies). These scales are predominantly classi-

fied under ‘complex systems’, an accelerating frontier of scientific research which has

been a catalyst of interdisciplinary research. By acknowledging this variable scope,

a new sort of meta-concept begins to emerge: the iterative act of traversing scales,

coarse-graining, zooming out, mixing disciplines. The concept of traversing scales

is in some idealized ways explained by the physics of renormalization group flow, a

relatively modern mathematical apparatus which has among other accolades helped

explain the ubiquity of universality for systems undergoing phase transitions. Uni-
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versality as a general phenomenon is the observation that many disparate systems

with dissimilar microscopic origins can give rise to identical meso- or macroscopic

properties. A phase transition as a general phenomenon is the observation that many

systems seem to have abrupt or discontinuous changes in their defining characteristics.

Perhaps not so coincidentally, from gaining a better understanding of the phenomena

of phase transitions many new ideas also condense out, such as the informational/-

computational capabilities of critical systems, or their capabilities to adapt/evolve

in changing environments. Furthermore, universality can give much-needed relief in

helping predict a variety of complex systems by classifying ‘micro-complexes’ into

‘macro-simplexes’, to put it simply. Universality classes can act like attractors for

dynamics, and give hope that even complex systems like the brain might one day

be understood more succinctly as a realization of a particular universality class(es)

whose properties can be simply described by a set of critical exponents which de-

scribe the scaling relations of important parameters of the system. There is still,

however, an elephant in the room. From an idealistic perspective, why did the cu-

mulative branches of knowledge, the disparate disciplines, emerge the way that they

did? From a material perspective, why did the universe after the big bang undergo

a cascade of phase transitions as new modes of being and order condensed out of the

initially symmetric universe. Why is it that in a universe that we expect to tend

towards the mundane of disorder we see such diverse modes of existence and com-

plexity? Is the emergence of consciousness particularly special in this grand cascade?

This thesis does not pretend to have answers to these questions but instead present

them as vectors of exploration in the endeavor to understand complexity. While the

symmetric origins of our cascading universe remain mysterious, the observation of

this pattern helps understand how a bridge between the ideal and material world

might be built. In the paradigm of the critical brain hypothesis, the critical brain

is a consequence of a complex, heterogeneous world. The brain is the system which
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has evolved over time towards criticality to best imitate, predict and be adaptive to,

the dynamic, critical environment in which it resides. This thesis hopes to motivate,

among a number of other supporting ideas, the notion that a self-organizing critical

brain is an evolutionarily attractor for reasons that seems to penetrate into the heart

of meta-cognition, physics, and the philosophy of science as a whole.

1.1 What is Consciousness?

Describing consciousness initially seems like it could be a relatively simple task. After

all, it is the thing we know and experience most intimately. A relatively unrestricted

definition may be proposed as ‘what it feels like to be something’. However even

such a simple description only poses more questions. How do we define the concept

of ‘feeling’, or ‘being’. These questions are traditionally approached by philosophers

interested in ontology, however if we ever hope to explore the ideas of consciousness

or the theories that arise attempting to explain it, it seems inevitable that we must

brave the winds and leave the comforts of our home disciplines and venture into foreign

lands. What follows in the next two sections is a digression on the ideas of ‘being’ and

‘feeling’ which the author of this thesis hopes to prime the mind to the subjectivity

and intrinsic quality of the integrated information theory of consciousness. These

sections can also be skipped without loss of continuity into other sections.

1.1.1 To be or not to be

If the fundamental particles of this universe are only ever things like electrons and

quarks, is it meaningful to think of a macroscopic object which is simply composed

of these fundamental particles as existing in any distinct way from its constituent

components? The famous thought experiment of the Ship of Theseus presents an

interesting variation of this idea.
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The thought experiment poses the question that if the components of the ship are

slowly replaced one by one until the ship has been completely refurbished, is it still the

same ship? In response to the paradox that arises from the thought experiment, one

can argue that it’s not the constituent components that matter, but the relationship

between the components. So the individual planks of wood in the ship do not define

the ship, it is the relationship that the planks of wood have with each other. However,

one can argue that the Ship of Theseus as an individual object is contingent on the

history of the matter it is composed of; it is not simply a 3 dimensional object in

space, but a 4 dimensional object in time. If the definition of the object includes its

history, modifying the ship can be seen as an act of modifying just 3 dimensions of

this 4 dimensional object, so the ship’s identity is preserved. Conversely if we ignore

its history, replacing the ship’s parts can be seen to be equivalent to creating a replica

of the ship, that is, a separate but congruent object to the original ship.

It is here the concept of the ship as an individual entity begins to blur as one

can ask: at what point in the replacement process does the ship stop being the Ship

of Theseus?. If this ship is a 4 dimension object, can it ever split into two objects,

and at what point? Clearly, this paradox highlights the ambiguity of the abstract

macro-objects we as humans in our human language use to describe the world. In

fact, one conclusion to the Ship of Theseus paradox is that what we call the “Ship

of Theseus” doesn’t actually exist in any physical way. It simply exists in our minds

as a virtual object, a smoothed out idealization of reality that acts as a useful tool

to approximate the rough edges of our uncertain world. This idealization can include

the history of the ship or it can ignore it. The exact boundaries of our idealizations

arise from the utility of our idealizations and the contexts in which they are relevant.

This implies that while our idealizations aren’t completely arbitrary or random, they

may not necessarily be universal or unique.

Yuval Noah Harari, author of Sapiens: A Brief History of Humankind (Harari
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and Perkins, 2014) argues that the human ability to believe in virtual objects and

stories are what separated humans from other species on Earth. The ability for

humans to coordinate and form large communities arose from the fact that we were

all capable of believing the same stories and through such unification we built order

and organization. So the objects in our universe that ‘exist’ are not always exactly

material, do not always exist in the same way for different entities, and exist insofar

as they have an influence on some entities and are not contingent on some crudely

defined sense of ‘objectivity’. This abstraction of what ‘can be’ is captured in IIT by

the intrinsic notion of information which is defined more technically in the Axioms

and Postulates sections. The motivations behind the demand that any theory of

consciousness must have such an intrinsic quality deserves its own digression which

is discussed in the following section.

1.1.2 Subjectivity and Objectivity

The distinction between subjectivity and objectivity is hard to physically pin-point.

For instance, how could one possibly know if something is objectively true? Even our

scientific methods depend on the reproduction and verification of previous results. We

only ever call something a scientific fact when it has been repeatedly verified to the

point that it being a statistical anomaly is sufficiently small (where the definition of

’sufficiently small’ is essentially an arbitrarily small number). In other words, the sci-

entific method is contingent on society’s self-organizing, error-correcting capabilities.

Only observations that are agreed upon in an inter-subjective way are considered to

be objective in science. Any individual observation is akin to a subjective experience

and objectivity is reserved for a large number of sufficiently similar, non-contradictory

subjective observations. This is all to say that what we call objectivity is simply the

accumulation of a large number of subjective experiences that agree with each other.

Objectivity exists insofar as an abstract but useful idealization/summary statistic of
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subjectivity; ‘what is unlikely to be an accidental experience’.

I have not commented on the potential objectivity of mathematics. One can ar-

gue that even if there are no objective experiences, surely there are some objective

relationships and self-consistent properties one could imagine. The answer to this

question is likely hidden in the answer to the following question: “Is our universe a

mathematical one?” After all, mathematics may be yet another idealization that our

universe simply does not obey. So far it has been one of the most useful, fundamen-

tal, and self-correcting idealizations we as humans have come up with, and there is

good reason to believe that our universe is indeed a mathematical universe. If we

are residing in a mathematical universe, there is still quite a large space for subjec-

tivity to reign, if only from a general and special relativity perspective, or a from a

quantum information perspective. In general, it seems quite natural to imagine in

the 21st century that the subjective nature of our universe, from the subjectivity in

defining entropy, to the relativity of simultaneity, or even the indecision of coher-

ent, ‘unobserved’ entangled system, that a holistic theory of the emergence of our

universe will have to acknowledge the subjective quality of existence. The axioms

(or the self-evident truths) of consciousness in IIT are therefore phenomenologically

derived from experience and offer a ‘top-down’ approach to defining consciousness.

Instead of asking how neural mechanisms can en masse give rise to consciousness,

IIT defines consciousness and asks how and when neural mechanisms can satisfy such

conditions.

1.1.3 To feel

Simply put, to feel something is to be affected by its presence; its presence makes a

difference to the trajectory of the object’s phase space in an informative way from the

intrinsic perspective of the object. A photo diode can ‘feel’ light, an electron can ‘feel’

a proton, but are these objects conscious? So far we defined objects, what ‘can be’,
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from the perspective of the forces they impart. However an opposing perspective can

fill in the negative space if we attempt to define how and in what context these objects

are felt. This will be the duality between mechanisms and their purview which will

be discussed in more detail in the Integrated Information Theory section. In short,

to feel something means to be sensitive to its supposed existence such that counter-

factually, its lack of existence would change the trajectory of the object in a way that

no other force could mimic. It must make a difference that makes a difference.

Integrated Information Theory attempts to define the boundaries of existence for

macroscopic objects by analyzing the causal structure of the containing system. Only

causal structures that are irreducible or have irreducible components exist intrinsi-

cally. For something to be irreducible means that it is not sufficiently describable

if one looks at the system in partitions; the system considered as a whole contains

much more information than when it is partitioned. Therefore in IIT objects exist

insofar that their causal structure as a whole is irreducible. Consciousness arises as

causal structures becomes more and more irreducible. Irreducible causal structures

are a ubiquitous concept, in mathematics as prime numbers, in physics as elementary

particles, or in language as words or letters. IIT aims to measure the irreducibility

of systems, claiming that the larger the irreducibility, the greater the conscious expe-

rience. Finally, it is in these irreducible structures that the concepts of ‘feeling’ and

‘being’ are found in a tangled knot, where the objects ‘being’ are only defined as such

if they are capable of feeling themselves. In short, to be is to interbe (Schindler).

1.1.4 Loss of Consciousness & Brain Injury

Losing or altering consciousness is one of the easiest ways to become aware of its

existence in the first place. We lose our consciousness every night when we sleep, we

alter our consciousness with drugs and alcohol and food, and we even seem to witness

our consciousness explore itself as we experience our dreams and lucid sleep states.
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Even more strangely, certain anesthetics can lead to loss of consciousness whereas

others keep it intact (Alkire et al., 2008). Measuring, quantifying and describing

these fluctuations is another frontier of research in the grind towards understanding

consciousness. New methods aiming to capture brain complexity have been measured

to decrease in these altered states of consciousness which we phenomenologically

expect to be a decrease in consciousness (Casali et al., 2013; Sarasso et al., 2015).

Furthermore, the safe usage of non-invasive techniques such as transcranial magnetic

stimulation (TMS) can allow researchers to probe and perturb the brain and spark

another major avalanche in the research on consciousness and brain dynamics in

general.

1.2 Integrated Information Theory

Integrated Information Theory makes the bold claim that integrated information is

consciousness. The quantity of consciousness is represented by the value of Φ and

the quality of consciousness is described by what is called the conceptual structure.

The theory is built from phenomenological reports of consciousness. A set of axioms

are built that should in principle be agreed upon by all conscious humans capable of

expressing their experiences. The axioms are meant to represent self-evident truths.

A set of postulates follow from the axioms that attempts to translate the axioms into

a mathematical language. The postulates are assumptions on the nature of physical

reality. If the axioms of IIT are indeed “self-evident truth” then criticisms of IIT must

be centered on the postulates, for everything else arises from these set of rules. The

theory aims to make predictions about consciousness that are otherwise ambiguous

such as the quality and quantity of consciousness in humans that cannot report their

experiences, in infants, animals, neural networks, etc. This section aims to review the

basic principles behind IIT but does not attempt to give a comprehensive account of
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all its details which is given in the newest version by Oizumi et al. (2014).

1.2.1 Axioms

Existence

Consciousness as a phenomenon exists. Descartes’ statement “I think therefore I am”

puts it most succinctly.

Composition

Consciousness is composed of multiple concepts arranged in distinct ways. For exam-

ple the experience of seeing the colour red does not preclude the experience of seeing

the colour blue elsewhere at the same time.

Information

Consciousness is informative by specifying a particular experience out of all possible

experiences. To have any one particular experience means that other experiences are

not being had and this is informative.

NOTE: The definition of information used in IIT is notably different from the def-

inition of information that was introduced by Shannon (Shannon, 2001). The infor-

mation in IIT is described as intrinsic as opposed to the extrinsic nature of Shannon

information. Shannon information is prescribed by an extrinsic observer who is ca-

pable of assessing the statistical dependencies between the inputs and outputs of

their system of interest. Furthermore, this information is meaningless. The extrinsic

observer is assumed to know what the meaning of the output is but the quantified

information has no dependence on the actual meaning of the observations.

In IIT information is defined through ‘causal’ relationships and not just statistical

relationships. The cause of a system in a particular configuration is assessed by

perturbing the system into all possible configurations and calculating its transition
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probabilities. In physics, this would be equivalent to solving the partition function of a

system. Therefore, the information in IIT is intrinsic to the self-interactions a system

has with itself. This also ensures that the information and meaning are congruent

in IIT. The meaning of the system is encoded in the exact shape of its conceptual

structure, which when quantified is expressed as the [integrated] information.

Integration

A conscious experience is integrated and irreducible. For example, if one looks at

a red apple, the experience of red and the experience of apple are not distinct from

each other. You cannot separate the whole experience into two experiences, one of

the apple, the other of the colour red. This axiom aims to capture the sensation of

the holistic experience that cannot be separated into independent but simultaneous

components. This axiom is at the very heart of IIT.

An irreducible system cannot be separated into independent components whose

combined dynamics recreates the whole system. An irreducible system has some

unique behaviour (causal structure) that is above and beyond the ‘sum of its parts’.

Integrated systems have emergent properties that the components of the system were

not capable of causing by themselves. In IIT, only integrated information contributes

to the conscious experience. Information on its own is not enough, the information

needs to arise from an integrated causal structure.

Exclusion

Conscious experiences are exclusive in the sense that one cannot have some superpo-

sition of experiences. Furthermore, experiences have boundaries in both space and

time. Experience seems to have a distinct scale in time so that conscious percepts

have a well-defined temporal grain. This axiom bounds the extent of the conscious

complex so that two complexes never overlap. For example your sense of self does
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not exist in superposition to the sense of self of the left and right hemispheres inde-

pendently. Temporally, the experience of the flow of time has a particular cadence.

Looking at moving clouds for 10 minutes is not equivalent to a timelapse of those

same clouds compressed into 10 seconds.

1.2.2 Postulates

For each axiom there follows a postulate that aims to translate the axiom into a

mathematical assumption on the nature of reality. Here, only 3 of the 5 postulates

will be discussed. The information, integration, and exclusion postulates contain

most of the important mathematical concepts that will be used throughout IIT.

Definitions

Some vocabulary that is necessary to describe the postulates are defined below. Their

context and utility should become clear as the postulates are reviewed.

Mechanism: A mechanism is any component (or set of components) of a system

that has a causal role. Specifically it is a subset of the components of a system. In

the brain, a single neuron or a set of neurons can be a mechanism. For example in

an Ising model of N spins, the set of two spins (s1, s2) are one from a power-set of

possible mechanisms.

Cause-effect repertoire: The cause-effect repertoire is the probability distributions

of the possible causes and effects of a system constrained to a particular state ~st

at time t. if one knows the transition probabilities for a particular configuration

of the system then the probabilities for past or future states can be calculated by

constraining the state of a mechanism in a system. The cause-effect repertoire is

calculated for the purview of interest. For example if we constrain the two spins:

~st = (s1, s2) = ↑, ↓ (1.1)
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and calculate probabilities for the past or future states of the purview:

cause repertoire = p ((s1, s2, s3)t−1|~st)

effect repertoire = p ((s1, s2, s3)t+1|~st)
(1.2)

Purview: A purview is, like a mechanism, a subset of components in a system from

which the cause-effect repertoire is calculated for. The mechanism defines the com-

ponents that are to be constrained to a state and the purview defines the components

of the system whose cause and effect repertoire is to be calculated. In the example

given in equation 1.2, the purview is composed of the components (s1, s2, s3).

Figure 1.1: Example system of 3 spins. Spins 1 and 2 interact with each other and
are disconnected from spin 3.

Information

If a system is constrained with respect to some mechanism in a state ~s, and if this

constraint yields probabilities for the past/future that is more informative than the

‘unconstrained’ repertoire puc, then the mechanism is informative. The unconstrained

repertoire is the probability distribution of the past/future when no mechanisms

are constrained to a state. In the case of the unconstrained cause repertoire, the

maximum entropy distribution corresponds to the uniform distribution. In the case of

the unconstrained effect repertoire, this will depend on the dynamics of system where
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the probabilities of the future are calculated assuming all the past states are equally

likely. The comparison between the two distributions can be defined in different ways

where in IIT 3.0 the Earth Mover’s Distance is used. Formally, it can be written as:

cause information = D (p ((s1, s2, s3)t−1 | ~st) || puc((s1, s2, s3)t−1))

effect information = D (p ((s1, s2, s3)t+1 | ~st) || puc((s1, s2, s3)t+1))

cause-effect information = min(cause information, effect information))

(1.3)

If constraining a mechanism to a state does not constrain its cause-effect reper-

toire any better than the unconstrained repertoire, then constraining the mechanism

doesn’t ‘feel’ like anything to the system. Only “differences that make a difference”

are informative and exist from the intrinsic perspective of the system. On the other

hand if constraining a mechanism to a state strongly specifies the cause-effect reper-

toire of a purview (by sharpening the probability distributions of the causes/effects)

then the constraint mechanism is informative and can contribute to consciousness.

Integration

Mechanisms can only contribute to consciousness if they are irreducible. If the cause-

effect repertoire specified by a mechanism in a state can be reduced into a product

of independent components, then the information is not integrated. For example in

Figure 1.1 spins s1, s2 are causally disconnected from spin s3, where the 3 spins define

the whole system. We could decompose the cause/effect repertoire of this system as

the product of independent partitions A and B:

p ((s1, s2, s3)t−1 | ~st) = p ((s1, s2, s3)t−1 | ~st/A,B) (1.4)
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where

p ((s1, s2, s3)t−1 | ~st/A,B) ≡ p
(
(s1, s2)t−1 | ~sAt

)
× p

(
(s3)t−1 | ~sBt

)
(1.5)

If equation 1.4 is true, no integrated information is generated by this particular mech-

anism in a state. If it is not true, then the distance between the partition-product

cause-effect repertoire (right hand side of equation 1.5) and the unpartitioned cause-

effect repertoire is taken. Generalizing to some partition P we can write the integrated

information φ as:

φP
cause = D (p ((s1, s2, s3)t−1 | ~st) || p ((s1, s2, s3)t−1 | ~st/P )) (1.6)

The partition that minimizes this distance is defined as the minimum information

partition.

MIP = arg min
P

φP (1.7)

Integrated information is the distance between the cause-effect repertoire of the un-

partitioned mechanism and its minimum information partition (MIP). The Earth

Mover’s Distance is once again used for these calculations as of IIT 3.0. When we

talk about φ we are usually talking about the φ calculated under the MIP unless

otherwise specified. An example MIP is illustrated in Figure 1.2.

φMIP
cause = D (p ((s1, s2, s3)t−1 | ~st) || p ((s1, s2, s3)t−1 | ~st/MIP)) (1.8)

Conceptually what we are doing here is approximating the holistic cause-effect reper-

toire by the probability product of its partitioned mechanisms’ cause-effect reper-

toires. The partitioned repertoires are marginalized versions of the holistic repertoire,

so these probability products at best recreate the holistic repertoire, or at worst in-

formation is lost about the holistic repertoire. The amount of information lost by
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Figure 1.2: The MIP for the 3 spin system. Since spins s1 and s2 are causally
disconnected from s3, partitioning these elements makes no difference to the cause/-
effect repertoires and the mechanism (s1, s2, s3 = ↑, ↑, ↓) is therefore not integrated.
However, the mechanism (s1, s2 = ↑, ↓) generates integrated information because par-
titioning that mechanism would sever a causal interaction that would therefore make
a difference to the cause/effect repertoire of this mechanism.

this act of partitioning is equal to the integrated information of the system. If a

particular partition is found such that the information lost is minimized, we have

found the most natural partitioning that best decomposes the holistic system. Since

we are only interested in measuring irreducible causal structures, we always calculate

φ with respect to the MIP as it defines the cruelest cut for the partition. In other

words, the irreducibility of a causal structure is prodded out of the system cut after

cut until the cruelest cut, the MIP is found, where by analogy, the information that

is bled after each cut is a measure of this irreducibility.

For a system with N components there are 2N possible subsets that can be made

so the number of possible partition combinations scales very quickly with the number

of components. To naively check if a mechanism is integrated, all possible partitions

must be checked until the MIP is found to measure the irreducibility of the mechanism.

This process is one of the first super exponential computational jumps in IIT.
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Exclusion

Each mechanism can only contribute a single cause-effect repertoire to conscious-

ness. For each mechanism only one cause and one effect can exist, called the core

cause/effect.

When constraining a mechanism to a state, all possible purviews of the whole

system are used to find the purviews which contain the core cause and core effect. For

each mechanism in a state, only one purview can contain its core cause or core effect,

the purview which maximizes the generation of integrated information φmax. For

all mechanism/purview pairs, a maximally irreducible cause-effect repertoire

(MICE) must be found following the steps from the integration postulate. For each

of the 23 = 8 possible mechanisms in our simple 3 particle system there are also

23 = 8 possible purviews that that could contain its core cause or core effect. This

is illustrated in Figure 1.3. This same diagram can be made to illustrate all possible

mechanisms.

This postulate is motivated by the idea that mechanisms must only ever have

a singular cause or effect and not a superposition of causes. For example the core

cause of a thrown ball falling to the ground is due to Earth’s gravity, not Earth’s

gravity plus the Moon’s gravity plus all the other negligible forces that interact with

the ball. In this example, the purview containing the core cause/effect would be from

Earth’s gravitational interactions with all other irrelevant interactions kept outside

of the purview.

IIT claims that each mechanism can only have one cause/effect therefore for each

mechanism. Therefore one must search through all possible purviews in order to

find the one that gives maximal integrated information. “The core cause[-effect]

of a mechanism from the intrinsic perspective is its maximally irreducible cause[-

effect] repertoire”. The MICE is an extension of the concept of the MIP from the

integration postulate if one imposes the constraint that every mechanism only has a
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Figure 1.3: All the possible purviews for the 3 spin system are shown by the ellipses
filled in blue. The mechanism is set by the pink spins in the state ~st = (s1, s2)t = ↑, ↓.
The core cause/effect is specified as purview P = s1, s2. In this case, since these
two spins are only interacting with each other, the probabilities for their future and
past are entirely contingent on the state of the two spins at the current time. Since
the spins are not connected to any other spins, their core effects will also only be on
each other. The core cause/effect generate maximal φMax with respect to the other
possible causes/effects.

single cause/effect. The MIP defines what to look for in order to reduce a system to

its components. Then the Exclusion postulate demands that the largest irreducible

objects be found (MICE), or in other words to find the core causes/effects.

In short, for each mechanism, there is a search over all possible purviews and all

possible partitions in order to define a single concept. “A concept: a mechanism

that specifies a maximally irreducible cause-effect repertoire” Oizumi et al. (2014).

Finally, by sweeping through all possible mechanisms all the concepts in a system can

be found; not all mechanisms necessarily have core causes/effects (and these mech-

anisms therefore generate no integrated information). Here we are already seeing

the beginnings of the exponential growth of the computational complexity of IIT as
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the postulates of the theory are constructed. It is like trying to find all the prime

numbers by first counting all the composite numbers and seeing what’s left. A fur-

ther iterations of these postulates on sets of mechanisms gives rise to the notion of

conceptual structures and, analogous to the MICE, the maximally irreducible

conceptual structure (MICS). Summary: The mechanism is the set of elements

that constrains the system. The purview is the set of elements whose past/future

probability distributions are conditioned by the mechanism. The set of elements that

define the mechanism and the set of elements that define the purview can overlap

but don’t have to. If a mechanism in a state does not constrain the past and future

probability distributions of a purview, then that mechanism is not informative in that

purview. It did not “make a difference that makes a difference”. The information

lost by partitioning a particular mechanism/purview pair quantifies how integrated

a mechanism is with the elements across the partition. To give a grim analogy, this

is like measuring the life of something by cutting it and measuring its spilled blood.

Partitioning a mechanism amounts to ‘noising’ across the connections of the parti-

tion which can only decrease or leave unchanged the information generated by the

mechanism. The act of finding the minimum information partition (MIP) for a par-

ticular mechanism/purview pair tells one the partition which maximally reduces the

mechanism. The MIP can be intuitively thought of as the ‘natural borders’ of the

cause/effect structure of a system. In general, the MIP tends to separate disconnected

or weakly connected elements in a system, however for complex systems the MIP can

be quite abstract and non-trivial to find. At the moment the simplest strategy for

finding the MIP is brute force though new algorithms are emerging to considerably

speed this process up (Kitazono et al., 2017). A concept is specified by a particular

mechanism and its corresponding core cause/effect (if they exist). Core causes and

effects are found by iterating over the power set of purviews for a particular mecha-

nism. The particular purview that maximizes integrated information is the one that
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specifies the core cause/effect of that mechanism. There, each concept specifies a

mechanism, a purview, and a MIP associated with that mechanism/purview pair.

Note: Sets of Mechanisms

In IIT 3.0, the current newest version of the theory, these ideas are extended to

systems of mechanisms. The ideas described above are in the context of a single

mechanism in a state. For a single mechanism in a state, the MIP and MICE must be

found in order to describe the concept associated with the mechanism. A hierarchy of

concepts can be generated from the power set of the mechanisms in the whole system.

Again, not all of the mechanisms in the power set of mechanisms will give rise to

concepts, but some may, and this set of concepts is referred to as the conceptual

structure. Once again, there is a systematic process of checking if this conceptual

structure is informative or integrated. This layer of complexity is not addressed in

this thesis but it is worth acknowledging the vast combinatorial space one faces in

the endeavor of measuring integrated information.

1.2.3 IIT Calculations and Methods

As detailed in the section above, calculating the integrated information that a par-

ticular system in a particular state generates is a combinatorially tedious task. First,

from the entire set of elements in the system one can generate a power set of mech-

anisms. For each of these mechanisms in the power set one must then look across

the power set of purviews in order to find the purview which maximizes integrated

information. To calculate integrated information, the minimum information parti-

tion for each possible mechanism/purview pair must be found, which itself requires

the exploration of all possible partitions. If one uses a brute force technique for all

these steps, one must explore the entire combinatorial space across 3 different power

sets of all the elements in the system. This is clearly not a computationally trivial
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task and is one of the largest problems one faces when attempting to test IIT. This

characteristic difficulty of calculating integrated information can be summarized as a

matrix factorization problem (Tegmark, 2016).

Transition Matrix Factorization

Tegmark (2016) summarizes this process succinctly: All physical processes can be

defined with a Markov matrix or transition matrix M. This transition matrix com-

pletely defines the dynamics of the system. (For real physical systems one simply

needs to ensure that the time-step is sufficiently small in order to use a transition

matrix to accurately portray the system.) The transition matrix M describes every-

thing about the dynamics of a system and combined with knowledge of the system’s

state at a particular time, one can make use of the transition matrix to calculate

probability distributions p for future or past states. This is an equivalent rephrasing

of the cause/effect repertoires discussed in the sections above. Some example transi-

tion matrices for the Ising model at different temperatures are illustrated in Figure

1.4.

The process of calculating integrated information is then equivalent to attempting

to find factors for the matrix M in the form of MA ⊗MB. For systems that are

composed of independent components, there will be a natural factorization that will

separate the independent components such that the full matrix M can be reduced

to independent factors MA and MB. For systems that are integrated, there will be

no factorization possible. For such systems, the strategy then is to find approximate

factors such that their product approximately resembles the original whole system.

This is the process of finding the minimum information partition. Once approximate

factors are defined, a new approximated transition matrix M ≈ M′ = MA ⊗MB

is generated. Then, given some constraint, for example when the system is in a

particular state, one can calculate the cause/effect repertoires of these two transition
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Figure 1.4: The transition probability matrix (TPM) of three different tempera-
tures of the Ising model, each characteristic of its particular phase. The deterministic
nature of the sub-critical regime, the exploratory nature of the critical regime, and
the equiprobable nature of the super-critical regime are clearly visualized in these
matrices.

matrices. For the approximate transition matrix M′, we can call this probability

distribution q.

Integrated information is then the distance, by some metric, between the vectors

p and q which demonstrates the amount of information lost by the act of factoring

(partitioning) the system. For each possible approximate factorization there exists

some value of integrated information that is generated. The combinatorial task of

finding the factorization which minimizes the integrated information generated is the

same process outlined in the previous section of finding the minimum information

partition.

Tegmark (2016) has outlined a taxonomy of methods that integrated information

theory can employ. In his review the calculations involved in IIT are separated into

4 steps:

1. Defining an approximate factorization method.

2. Defining the nature of the probability distributions p and q to compare. This

choice is analogous to the choice of purviews that one may take from the section
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above, though it is also slightly more general.

3. Defining what is known about the system when calculating the probability dis-

tributions in step 2. This is analogous to the choice of constraint one imposes

on the system from the section above. For example if it is its current state that

is known, its past state that is known, or a probability distribution of states

that is known, etc.

4. Defining the metric by which the probability distributions p and q are com-

pared. In older version of IIT, the K-L divergence was used, in IIT 3.0 the

Earth Mover’s Distance is used.

Clearly, the methods involving calculating integrated information are still being

developed. For these reasons at the onset of this research project a simplified version

of the IIT calculations was implemented. This simplified version written in MATLAB

is notably faster than the more complete version that is made accessible by the authors

Oizumi et al. (2014) in the python library pyPhi. The distinctions and simplifications

implemented in our code are outlined below. The Python documentation of the

python library pyPhi explains with more detail the intricacies of implementing IIT

calculations (Oizumi et al., 2014).

MATLAB code

In order to better understand the methodology of IIT’s calculations, a simplified

version of the algorithm was written in MATLAB. Though the final results of this

thesis utilize the python library of IIT ’pyPhi’ (Oizumi et al., 2014), it is a fruitful

exercise to recreate the more basic processes involved in IIT. The distinctions between

the simplified version of the algorithm and that of pyPhi are outlined below.

1. The MATLAB IIT code does not consider sets of mechanism in the way that

IIT 3.0 defines. The MATLAB IIT code is based on a simpler version of the
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theory from (Oizumi et al., 2014). In this version only individual mechanisms

are analyzed.

2. The probability distributions that are compared in the MATLAB code are those

of the cause repertoire. The effect repertoire is not considered. In principle it is

relatively straight-forward to implement the forward direction of the simplified

IIT algorithm, but due to computational constraints this is ignored. The choice

one makes in defining the probability distributions that are compared is non-

trivial and are reviewed by Tegmark (2016) in step #2 of the taxonomy of

IIT.

3. Mechanisms and purviews are not considered separately as they are in IIT 3.0.

In IIT 3.0, the distinction between mechanisms, which constrain the system,

and purviews, which define the cause/effect of that mechanism, are an inte-

gral part of the notion of ‘concepts’ and the ‘maximally irreducible cause-effect

repertoire’. In the simplified algorithm, when a mechanism is partitioned in

search of the MIP, its purview is always the same elements as the mechanism.

No distinction is made between mechanisms and purviews. This has the re-

sult that if a mechanism whose core cause/effect is part of a purview that does

not contain itself, our simplified algorithm will not be able to detect such in-

tegration. Therefore our method of calculating φ does not find the MICE and

therefore may give false positives or negatives when trying to assess if a mech-

anism generates integrated information.

4. In IIT 3.0, sets of mechanisms give rise to sets of concepts called a conceptual

structure. Since our algorithm does not find the MICE, concepts are not defined.

Furthermore, no such higher-order structure of concepts are defined either in

the simplified version. The only mechanism that is analyzed is the mechanism

of the whole system. That is, the state of the entire system is what is used
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to constrain the probability distributions. Therefore the simplified algorithm

is not sensitive to mechanisms in the system that are smaller than the whole

system. This has the result that the simplified algorithm can sometimes miss

smaller-order integrated mechanisms.

Overall, the simplified algorithm mainly revolves around finding the MIP of a

system. It is not particularly sensitive to the higher-order structures that may exist

in the system and as such can be considered as a first approximation of the integrated

information that a system may generate.

Example Calculations

An example is given to illustrate the process of calculating integrated information.

First we begin by defining our system, which we choose to be an Ising model with

N = 5 nodes. A connectivity matrix inspired by the Default Mode Network (DMN)

of the brain is used (see chapter 2 for details and the appendix for region labels). This

connectivity matrix is illustrated in Figure 1.5-A. A temperature close to criticality

is chosen for the model (where the temperature is the only fitting parameter). In

general, this is well approximated by the temperature where its susceptibility curve

peaks (Binney et al., 1992; Stanley, 1971) as illustrated in Figure 1.5-B.

Setting T = Tc, we can now calculate the transition probabilities for the system.

At temperatures approaching 0, the system behaves increasingly deterministic. All

initial conditions eventually fall into one of two possible minimum energy states after

a small number of iterations. (For larger networks with more complicated, perhaps

modular, hierarchical or frustrated graphs with negative interaction weights, there

may be a number of meta-stable states as well.) At temperatures approaching infinity,

the system behaves stochastically and is dominated by thermal fluctuations/noise; the

interactions between spins becomes negligible.

Once a TPM is generated, IIT calculations can begin. First, the system must
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Figure 1.5: A: Connectivity matrix JDMN of the default mode network. B: Average
magnetic susceptibility of this network in the Ising model as a function of temper-
ature is plotted in the middle panel. The critical temperature Tc is marked by the
peak of the susceptibility. C: The TPM for this system at the critical temperature.
These three figures illustrate the basic methodology of the simulations in this the-
sis. Starting from a connectivity matrix, a simulation on the Ising model is run and
the corresponding statistics and transition probabilities are calculated. The TPMs
are then fed into the φ algorithm to compute the expected integrated information
generated by this system as a function of temperature.

be constraint to a state in order to calculate the cause repertoire. We can choose

one at random or allow the Ising model to thermalize using the Metropolis algorithm

and allow the simulation to pick a state for us. This is what is done when analyzing

the Ising model with IIT in chapter 2, but for the sake of simplicity we will simply

choose a state at random: ~st = ↑, ↑, ↓, ↓, ↓. The mechanism defines which column

of the TPM is the cause repertoire where each column in the TPM represents the

probability distribution for past states conditioned on the state that it is currently in

p(~st−1|~st).

When a mechanism is partitioned there will be a number of degenerate states that

correspond with that constraint from the perspective of the partitioned mechanism.

For example if we partition the system such that nodes PA = s1, s2 are contained in

partition A and nodes PB = s3, s4, s5 are contained in partition B, the mechanism of

partition B no longer constrains the cause repertoire of partition A and vice versa.
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Therefore, noise is ‘injected’ across the partitions where the mechanism of partition A

will have 23 = 8 degenerate states associated with it and the mechanism of partition

B will have 22 = 4 degenerate states associated with it. This is visualized in Figure

1.6-i where all the possible cause repertoires of the first-order mechanism ~s1,t = ↑ are

shown with respect to the original TPM. Since these degenerate states are equivalent

from the perspective of the partitioned mechanism, all are treated equally and their

cause repertoires are averaged. This is referred to as noising across the partition

which is illustrated in Figure 1.6-ii-iii.

However, before averaging across these columns in the TPM one final correction

must be done. In order to avoid correlations from common inputs, for example if the

two nodes in partition A have a common connection to a node in partition B, the

mechanisms in partition A must be imposed independently in order to avoid spuri-

ous correlations since we are only interested in the cause-information of partition A

independently of partition B. This can be dealt with by separating higher-order mech-

anisms into their constituent mechanisms. For example the mechanism (s1, s2)t = ↑, ↑

can be split into two first-order mechanisms s1 = ↑, s2 = ↑. Then the probabilities of

the cause-repertoire for the higher-order mechanisms can be calculated as the prod-

uct of the probabilities of the individual mechanisms (Equation 1.9). Please refer

to (Oizumi et al., 2014) for a more detailed explanation of this correction with the

introduction of ‘virtual elements’.

p ((s1, s2)t−1 | (s1, s2)t = ↑, ↑) = p ((s1, s2)t−1 | s1 = ↑)× p ((s1, s2)t−1 | s2 = ↑)

(1.9)

Finally, in order to calculate the probabilities of p ((s1, s2)t−1) | (s1, s2)t = ↑, ↑),

one must marginalize over the probabilities outside of the purview (which in our

simplified algorithm is the same as the mechanism). This marginalization process is

accomplished by prescribing a label to each row in the TPM to designate which state
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Figure 1.6: i: All the possible cause-repertoires corresponding to the first-order mech-
anism ~st = ↑ are highlighted in red out of all the cause-repertoires in the TPM. ii:
Since these cause-repertoires are equivalent from the perspective of the mechanism
which only constrains a single element, they are all averaged as shown in iii. iv-v:
the repertoires of the partitions are constructed from the repertoires of the first-order
mechanisms. vi: The full cause-repertoire of the entire system is constructed as the
product of the repertoires of the partitions, coloured orange. This is compared to the
original cause-repertoire in blue.
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it corresponds to from the perspective of the partition. For partition A which is of

size 2, there are 22 = 4 possible states. Thus, each of the 25 = 32 states in the full

TPM correspond to one of the 4 states in the partition where all states corresponding

to the same partitioned state have their probabilities marginalized. At this stage of

the calculations, each partition should have its own cause-repertoire generated with

respect to the state of that partition. Figure 1.6-iv-v illustrates the cause-repertoires

corresponding to the partitions in our worked example.

This process of calculating the marginal probabilities conditioned on the mecha-

nisms of the state of the partitioned system can only ever reduce the total information

we have about the full system. To see this, one only needs to reconstruct the prob-

ability distribution of the full system by calculating the product of the probabilities

of the two partitions. If the two partitions are in fact causally disconnected, for ex-

ample if Jij = 0 for the nodes across the two partitions, then no information will be

lost. If there are interactions between the nodes across the partitions, and if these

interactions are causally informative, then the act of partitioning will destroy some of

the information contained within the probability distributions. Since in this worked

example the network we are using is fully connected, partitioning the system will

always destroys some information about the past probabilities. Comparing the origi-

nal cause repertoire of the full system with the one reconstructed from the partitions

demonstrates this loss of information as shown in Figure 1.6-vi. The differences be-

tween these two probability distributions indicates how much integrated information

arises from the interaction of the elements across from the partitions. As always, this

distance measure between the two probability distributions is only ever defined as

integrated information if the partition which gives rise to such loss of information is

the MIP.

The metric by which IIT measures this loss of information has changed over the

course of its different versions. In older versions the KL-divergence (Equation 1.10)
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was used to compare the two probability distributions, but more recently in IIT 3.0

the Earth Movers Distance has been employed for reasons outside the scope of this

thesis (Oizumi et al., 2014).

DKL (P || Q) = −
∑
i

P (i) log
Q(i)

P (i)
(1.10)

Our simplified algorithm employs the simpler KL-divergence to measure the in-

formation lost by partitioning the system. Calculating the KL-divergence of this

particular example under this particular partition yields a loss of information of

DKL

(
p(st−1 | st) || p(st−1 | st/PA × PB)

)
= 0.1447 bits, where the unit of bits comes

from the fact that we are using a base of 2 for the logarithms. To calculate integrated

information, the partition that yields the minimum information loss must be found,

this is the minimum information partition or MIP. The MIP is the partition that

maximally reduces the system and represents the most natural way to partition the

system into two. Other partitions that are not the MIP can yield losses of information

that are high because one has cut across strong causally connected elements. This

can lead one to believe that a system is highly integrated when in reality there may

exist a partition that can completely reduce the system to (semi-) independent.

An intuitive example would be if one naively looks at the brains of two individuals

and treats it as one unified system. From this perspective, the most natural division/-

factorization, the MIP, would be the partition that separates the brain of the first

individual from the second person since these two systems are not strongly causally

connected relative to the strong internal connections in each individual brain. How-

ever, if one never finds this partition, one might believe that the two-brain system

generates high integrated information simply because the most irreducible partition

was not found. Therefore, finding the MIP is crucial in order to maximally reduce the



31

system, and only when the system is maximally reduced can one look to see if it has

behaviours that are above and beyond the sum of its components. In the end, this

is the property that IIT seeks to measure, the emergence of behaviours that cannot

be explained by the sum of the parts. In other words, if a system’s behaviours, char-

acterized by its cause/effect probability distributions, can be explained by reducing

the system to smaller parts, then the larger system as whole does not intrinsically

exist. On the other hand, if all attempts at reducing the system to its parts yield

losses of information, then the conclusion is that the interaction of the parts yields

behaviours that the sum of the independent components cannot account for, giving

rise to integrated information and therefore consciousness.

At the moment of writing this thesis, a brute-force method is employed to find

the MIP such that all possible bi-partitions are checked to assess which particular

partition yields the minimum information lost. In the intuitive example given above,

one can imagine that a smarter algorithm could make better guesses at what the MIP

might be instead of simply trying all combinations. Indeed, in the pyPhi library there

are some simple methods employed to discount certain combinations of partitions

based on the connectivity matrix of the system, however this only takes into account

elements that are completely disconnected and is not sensitive to weakly interacting

components. In fully connected systems, one needs a method that can distinguish

which elements form natural clusters of mutual causal connectivity. Tegmark (2016)

suggests methods that threshold the connectivity matrix of interacting systems to

better guess the MIP, however these ideas have not been explored rigorously and will

be necessary in any serious future work on IIT. Interestingly enough, this factorization

process that IIT deems so necessary and fundamental seem analogous to some of the

re-scaling methods employed in renormalization group flow. In IIT the factorization is

considered at the level of the causal structure whereas with renormalization methods

we are normally dealing with transformations of the Hamiltonian to model rescaling



32

of interaction terms. It seems likely that these ideas are in some shape cousins to each

other as further suggested by the coarse-graining and black-boxing methods employed

to find emergent causal structures (Hoel et al., 2016; Marshall et al., 2016).

1.2.4 Summary

At this point in time, there is no working definition of ‘consciousness’ that is univer-

sally agreed upon by the different domains of science. Each domain interested in the

phenomenon has carved out its own definition specific to the tools and understanding

that that domain is capable of. While many of these definitions overlap, some con-

tradict and so it is difficult to have a conversation across (or even within) disciplines

about what ‘consciousness’ is, how one should measure it, or how it arises. Inte-

grated Information Theory has presented a relatively formal definition of conscious-

ness starting from phenomenological axioms which in principle should be self-evident

truths that all conscious beings should agree upon. The theory formalizes the con-

cept of intrinsic information which is notably distinct from the more commonly

used Shannon information. Furthermore the theory also formalizes the concept of

integration which measures how/if the whole is larger than the sum of its parts. By

taking the intrinsic nature of information (and simultaneously ‘meaning’) seriously, a

mathematical formulation of consciousness is defined where the major claim is that

integrated information is consciousness. Integrated information is a complicated func-

tion of the causal structure of the system, where causality is defined by assessing all

possible perturbations of a system in all possible states across all possible partitions.

While the theory has opened many doors in analyzing the integration of systems by

way of the suggested algorithms of IIT, there remain many limitations due to the

intractability of computing all such perturbations and partitions. This thesis uses

the definitions and subsequent algorithms formalized by IIT on very small Ising sys-

tems where comprehensive perturbations and partition computations can be done in
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reasonable time. Integrated information is then calculated for these systems across

different model parameters where certain critical parameters of the model compare

favourably to empirical brain measurements.



Chapter 2

Modeling the Brain

To model something is to make a set of predictions about its past or future when

given some kind if initial information. It is not always obvious which observables in

the brain we would like to predict and it is also not obvious what kind of information

could even yield such predictions. To model a system as complex as the brain, one

has to construct careful questions and combine them with meticulous experimental

observations to find the underlying relationships. In this sense, modeling the brain is

a task unto itself and requires one to confront some philosophical questions regarding

the scale at which one ought to model and the nature of causality. In this chapter

we explore some of the questions one faces when attempting to model an intractably

complex system such as the brain and ultimately decide to use a generalized Ising

model. The model takes information from experimental brain tractography images

to map out the underlying networks and then simply simulates Ising transitions and

outputs a timeseries. Ultimately, a correlation network is generated from the time-

series which is then compared to empirical brain fMRI images. The control parameter

of the model, the temperature is swept to find the temperature at which the model

fits best with empirical observations.

34
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2.1 Thermodynamics of the Brain

2.1.1 Reductionism

One of the fundamental assumptions built into most physicists’ minds is that the

universe must be reducible to its parts. In other words, if you know exactly the

microscopic motions of the universe, you could in principle derive how macroscopic

order can emerge (i.e. stars, galaxies, planets, life). Reductionism is at the heart of

physics and science and without it it is hard to imagine what a self-consistent Theory

of Everything would look like. However, there is an explanatory gap between the

concept of reductionism and emergence that has yet to be understood in a satisfying

way. The nature of this ignorance arises from the difficulty to define causality where

many modern measures of ‘causality’ are mostly measuring statistical correlations

or are heuristic approximations (Albantakis et al., 2017; Hoel, 2017; Pearl, 2003).

Though it is not in the scope of this thesis to discuss the exact nature/definition

of causality, it is important to emphasize the strangeness of emergence as a concept

when juxtaposed to the assumption that we live in a reductionist world. Integrated

Information Theory offers some hints and suggestions how emergence can be naturally

measured or predicted from the reductionist perspective.

2.1.2 Traversing Different Scales

The bridge between the microscopic and macroscopic, or from Newton’s laws to ther-

modynamics, was built slowly over the course of the 19th century with Ludwig Boltz-

mann largely considered the father of the statistical mechanics movement and ulti-

mately of many branches of modern statistical physics (Sklar, 2015). The macroscopic

world is generally accessible to us through our human-scale interactions and macro-

scopic relationships were estimated heuristically through scientific experiment. The

microscopic world is inferred by us through our knowledge of classical mechanics and
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its relationships were found through mathematical exploration, creativity and deriva-

tion. From the scientific process of building a causal bridge between these different

scales of reality statistical mechanics was born. I have been intentionally vague about

what the macro-observables are. It seems reasonable to assume that a massive num-

ber of macro-variables can be generated from even a small number of micro-variables.

Why then do we only care about some macro-variables and not others?

2.1.3 The Emergence of Macro-variables and Order Param-

eters

Perhaps our choice of macro-variable is simply contingent on how much informa-

tive power it gives us and evolution naturally picks out the macro-variables sufficient

and/or necessary for survival. The complexity of natural language and the words

we invent are a testament to the utility and necessity for a large number of macro-

descriptions. Abstract concepts like love, happiness, contempt, hunger are as real to

us as the microscopic patterns that they are physically composed of. The experience

of these macro-variables from our subject point of view is entangled with the notion of

emergence; microscopic objects interacting with each other can create macro-objects

that are qualitatively different than their constituent parts. This is what is colloqui-

ally described as when “the whole is greater than the sum of its parts” and is at the

heart of the emergence of complexity and consciousness. These ideas are formalized

in IIT and are discussed in the next section. The ideas of IIT have also recently been

extended in the context of emergence and rescaling of causal structures (Hoel, 2017),

where Figure 2.1 demonstrates an example of the outcome of such a process.

While this emergence does not contradict the reductionist perspective, it demon-

strates the concept that it is not always useful or productive to look at the world

microscopically. It is often useful, if not necessary, to coarse-grain our observations in

order to get anything done. For example if one is trying to design a heat engine, it is
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Figure 2.1: Figure is modified from (Hoel, 2017, Fig. 4) as a demonstration of coarse-
graining and black-boxing methods that aim to rescale causal structures. Here, the
microscopic systems on the left can be causally represented by the macroscopic system
on the right.

not necessary to know the exact position and momentum of each particle. Instead, we

tend to use macroscopic variables like pressure, temperature, density, volume, energy

or work to describe the system and for this thermodynamic context these variables

do pretty well in allowing one to make predictions and understanding the system

under a variety of real-world conditions. With machine learning, neural networks as

one example can be trained to pick out the most natural or useful features of some

arbitrary data set. In the realm of physics, recent work by Carrasquilla and Melko

(2017) has shown how machine learning can be utilized to teach a neural network to

detect order parameters in a simulation.

In fact, the process of machine-learning and particularly unsupervised learning is

tantamount to discovering the macro-variables of a system that minimize the uncer-
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tainty (or maximize the likelihood) of classifying the state of a system. While the

exact strategy that a machine learning algorithm employs to describe a system can

vary case by case, the overall strategy of coarse-graining a data-set is something that

we do naturally not only in our scientific endeavors but also in our day to day lives. An

appreciation of the parallels between the strategies employed by statistical physics,

the inverse Ising problem, and machine learning can help us better understand how

our coarse-grained perspective of the universe emerges from the microscopic processes

that underlie it (Nguyen et al., 2017; Shalizi and Moore, 2003).

2.1.4 The Brain as a Thermodynamic System

Now what happens if we try to understand the brain in the context laid out above?

The brain, a complex interconnected system composed of a very large number of

similar but importantly diverse set of neurons, is very much like its own state of matter

(Tegmark, 2014). Moreover, the microscopic dynamics of the neuronal elements of

the brain are not completely mysterious either and have been relatively well studied

for some decades, for example with the Hodgkin—Huxley model. The next logical

step is to better understand systems of these models (Hansel et al., 1993; Hodgkin

and Huxley, 1952). So the brain as a complex system lends itself quite readily to the

idea that we can treat the brain as a thermodynamic system. While this may indeed

be a good analogy, let us begin by considering the ways in which the brain is different

to, say, the ideal gas that is commonly used in thermodynamic examples.

For starters, the brain has a much smaller number of ‘particles’. For a box of gas

we might have 1023 particles of gas whereas the brain ‘only’ has 1010 neurons, so the

scale of the problem is a few orders of magnitude different. Since most problems in

thermodynamics tend to be in the limit as the number of particles goes to infinity,

one must be cognizant of the truncated scale of our physical system. Is the size of

the system large enough so that it no longer suffers from finite-size effects or is the
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finite size of the system a fundamental property of its quality? Perhaps its finite size

extends its critical point to a critical regime (or Griffiths phase) or perhaps such a

critical regime is instead a property of the modular hierarchical organization of brain

matter (Moretti and Muñoz, 2013; Muñoz et al., 2010; Rubinov et al., 2011; Wang

and Zhou, 2012). If a system like the brain does indeed have some kind of limit as the

number of its neuronal components approaches infinity, then it will be important to

know at what rate it approaches this limit in order to describe any finite-size effects

the brain system might have.

The next main qualitative difference between the classical ensembles in thermo-

dynamics and the neuronal counterpart in the brain is the nature in which the system

interacts with itself. Generally in the classical ensembles in statistical mechanics one

is dealing with particles that at any one point in time interact only with nearest

neighbours where the organization of the matter is either in a well-defined lattice or

some kind of homogeneous gas. For good reason, these kinds of systems are simpler

to solve and are good models for a wide range of natural phenomena. From these

idealizations/simplifications, there is a strong source of symmetry to take advantage

of in order to allow one to calculate probabilities and ensemble averages. The brain

on the other hand is much less symmetric than these idealizations and is capable of

longer range and importantly non-linear interactions. Across human individuals one

can easily find important differences in brain architecture and in fact this is a major

technical challenge in neuroscience where the brains of different individuals must be

normalized to some standard space in order to lend themselves to comparison and

analysis (Brett et al., 2002). That being said, the brain still has symmetric properties,

the most obvious of which might be the symmetry between the left and right hemi-

spheres. However, even here there seems to be symmetry breaking with regards to

the division of functional modules in the brain. For example, the Broca’s area of the

brain, a region link to language processing (Kennison, 2013) found in the dominant
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hemisphere (usually left) (Cantalupo and Hopkins, 2001; Van Essen et al., 2011),

does not redundantly exist on the opposite hemisphere. While redundancy most def-

initely exists in the structure of the brain, this symmetry is judiciously broken for

certain brain functionality and architecture. An active field of research is involved

with accurately imaging and analyzing the structural connectivity of the brain where

current research indicates that the brain is organized like a hierarchically modular

small-world network (Kaiser, 2011; Meunier et al., 2009, 2010; Sporns, 2010; Sporns

et al., 2004). While there may be major sources of symmetry to take advantage of

when analyzing the brain, the task is clearly much more nuanced than the ideal-

izations in the classical ensembles where translational and rotational symmetry are

usually employed to simplify calculations. This increase in topographic complexity is

further compounded by the non-linear and long-range neuronal activation functions.

Another vital detail of the thermodynamic perspective of the brain is the fact

that the brain is an open system with matter and energy capable (and necessary) of

being exchanged. These kinds of open systems tend not to fit the simpler paradigms

of equilibrium thermodynamics and are in need of their own specific treatment. One

particular emerging paradigm to understand the organization of such open systems

is that of self-organized criticality (SOC) (Bak and Chen, 1991). However, the scale

of description from the SOC perspective may not be sufficient for the control of those

systems and is likely in need of a finer-grained understanding of these complex, non-

linear open systems.

2.1.5 The Need for a Non-equilibrium Theory

The problem of understanding non-equilibrium systems is at the heart of many nat-

ural phenomena and indeed life itself. From the energy poured onto Earth from the

Sun, the heat and density differentials and winds and ocean currents emerge. Rivers

cut valleys into mountains, glaciers scrape lakes as they creep, bacteria metabolizes
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its free energy and life, complexity, and consciousness are born. While we have made

a great many leaps in understanding our natural world through the thermodynamics

and statistical mechanics of equilibrium systems, there is yet a new chapter to write

on non-equilibrium systems. Perhaps in the same way that thermodynamics revolu-

tionized our understanding of the macroscopic dynamics of the world and the nature

of their emergence, a non-equilibrium theory may allow us to understand the nature

of diversity and the juxtaposition of chaos and order which seems to permeate all

complex phenomena.

Indeed, the role of physics in understanding the brain will be a crucial one in

the decades to come. In the same way that statistical mechanics was the bridge

that connected microscopic physics to macroscopic observables, a new theory must

emerge to build the bridge between the neuronal micro-scale to the macro-scale of

consciousness. In fact if one takes seriously the task of deriving the emergence of

macroscopic variables in the brain one must make some kind of judicious choice in

their macro-variable. From the subjective phenomenological perspective our thoughts

and experiences and qualia are the most natural macroscopic observables, however

these observables are only subjectively accessible and do not lend themselves easily

to the rigors of the science method. Instead we might be forced to set the bar a

bit lower and settle for mesoscopic observables that can come from brain imaging.

These mesoscopic variables will ultimately be treated like an order parameter and

used to describe the state of the system in some way. For example, analogous to the

case of the Kuramoto model (Acebrón et al., 2005; Kuramoto and Araki, 1975) the

global synchrony of the brain could act as an order parameter if this order parameter

was useful for describing the condition of the brain. In this regard, the Integrated

Information Theory of consciousness describes a new measure that aims to do exactly

this.
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2.2 The Ising Model

From the middle of the 20th century onwards, the Ising model has been the work horse

of the statistical mechanics world. Due in large part to its initial simplicity it has

been retro-fitted to model a plethora of phenomenon. In this project, the Ising model

is used extensively in computer simulation models of the brain. This section will give

a brief overview of the history of the Ising model, its ubiquity in the scientific world,

its contributions to interdisciplinary science, and its contributions to the philosophy

of science.

2.2.1 A Brief Overview of the Ising Model

The Ising model was originally introduced by Wilhelm Lenz (1920) and given to his

PhD student Ernst Ising to be solved (Brush, 1967). The goal was to discover phase

transitions in a simple mathematical model of ferromagnetism. The original version

of the model was a 1 dimensional network of nodes which represented atomic spins.

Each node is connected to its neighbours. Each node could be in one of two possible

states, spin up or spin down. The Hamiltonian of the system (Equation 2.1) is defined

by the interaction terms between the spins with coupling Jij between nodes i and j

and the applied field hi acting on the nodes i. In the classical version of the model,

the interactions between spins are restricted to nearest-neighbour interactions which

is denoted in the Hamiltonian sum as 〈ij〉. In one dimension there are only ever 2

nearest-neighbours, in the two dimensional square lattice there are 4 and so forth.

H = −
∑
〈ij〉

Jijsisj −
∑
i

hisi (2.1)

At the end of his PhD in 1924, Ising had solved the 1 dimensional case of the

model and had found that no phase transitions exist in the model (Ising, 1925). He

erroneously extrapolated his results to higher dimensions claiming that no phase tran-
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sitions exist above the 1 dimensional case also. It would take another 20 years until

Onsager rectified this mistake and solved the 2D case of the model, discovering that

the model does in fact exhibit a phase transition. This was a very powerful discovery

for the world of solid state physics and statistical mechanics. It demonstrated that

a seemingly simple mathematical model that could abstractly represent the physical

world could exhibit a rich and diverse set of behaviours that where far from trivial

to derive (Brush, 1967). The innocuous Hamiltonian of the model has shown to be

capable of demonstrating behaviours that pierce into the heart of the physics of co-

operation, many-bodied systems, and complexity in general. Since Onsager’s results,

attempts to solve the Ising model for higher dimensions or for finite systems have not

yet succeeded. For larger than 4 dimensions, a mean field theory of the Ising model

is capable of describing the system, but the 3 dimensional Ising model remains an

enigma that is thought to be analytically intractable (Taroni, 2015).

This project numerically simulates the Ising model using Monte Carlo Metropolis

methods. The transition probability for a spin to flip is given by the Boltzmann

factor:

p = e
−4E
kBT if4 E < 0 (2.2)

where 4E is the change in energy if the spin were to flip, kB is the Boltzmann

factor which we can set to unity, and T is the temperature of a connected heat bath

which we can use as our control parameter. Each iteration a random node is picked, a

random number between 0 and 1 is rolled and compared to the transition probability.

If the random number is less than the probability of a transition then the spin will

flip. If 4E ≥ 0 then p = 1. The system is thermalized by running the simulation

for hundreds of iterations (500). Statistical measures are accumulated by observing
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the system for thousands of iterations (2000). These methods were tested in the

undergraduate thesis precursor to this project Khajehabdollahi (2015).

2.2.2 Criticality & Universality

The utility of the Ising model to abstractly represent a multitude of different sys-

tems hints at a deep fundamental relationship between the phenomena that it can

model. The nodes of the model, originally representing atomic spins, where eventually

generalized to model molecular species, lattice gases, social behaviour, political affili-

ation, economic modeling (Bourgine and Nadal, 2013; Zhou and Sornette, 2007) (see

references within), and more recently, neurological modeling (Fraiman et al., 2009;

Haimovici et al., 2013; Marinazzo et al., 2014). The model is essentially the sim-

plest (maximum entropy) way to represent some kind of causal network (Mora and

Bialek, 2011) so naturally it has diffused and mutated into all reaches of scientific

endeavor. To what extent does the abstraction and generalization of causal systems

help in understanding these systems? What about predicting them? Is there even a

distinction? The answers to these questions seem to lie somewhere murky, near the

concepts of universality, criticality, and phase transitions.

Phase Transitions

A phase transition is a complex concept to nail down and define. The concept of a

phase transition is a mix of phenomenology and mathematics. A system is said to

undergoes a phase transition when certain defining properties of it change discontin-

uously or drastically. For example, when water freezes, it obtains a completely new

property it did not have before, rigidity. As (relatively) macroscopic beings, we ob-

serve the macroscopic phenomena of phase transitions quite commonly. When water

melts or freezes, when the roads are filled with cars during rush hour and then empty

again at night, when stock markets crash, mass migrations occur, systems collapse of
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entire societies, all these phenomena exhibit the characteristic nature that seemingly

small quantitative changes result in massive qualitative changes. This characteristic

of our complex world has not gone unnoticed. Karl Marx for example made this

observation at the socioeconomic scale: “quantitative changes turn into qualitative

ones” (Anderson et al., 1972).

A phase transition can roughly be thought as the transition between different

qualities of organization. More generally, one side of a phase transition, its sub-

critical regime, can be thought of as an ordered state, and the other side, the super-

critical regime, can be thought of as a disordered state. The phase transition itself

lies at the critical point somewhere in between (Binney et al., 1992; Stanley, 1971).

Generally, there exists an entire taxonomy of the possible modes of order and the

phase transitions that lead to them. (This phenomenon can be observed in a plethora

of systems, for example in hydrodynamic systems which readily exhibit a rich variety

of phase transitions, for example in flow-phase diagram of Taylor-Couette flow. Small

quantitative changes in the Reynolds numbers of the apparatus give yield to a rich

variety of flow structures (Andereck et al., 1986; Grossmann et al., 2016)). As the

symmetries in the system are broken towards the sub-critical regime, more and more

complex forms of matter and organization may emerge. Conversely, in the direction

of the super-critical regime, quantitative differences in the system which, in the sub-

critical regime would separate into different ordered states, would coalesce and merge

into symmetry. This concept is not foreign to cosmologists and particle physicists

that expect a grand unification regime in the early stages of the universe, where

the currently distinct forces are expected to become unified (Chaisson, 2001; Layzer,

1991).
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Modular Hierarchy of Knowledge

To this end, one can look to the modular and hierarchical organization of the sciences

to further witness the emergence of new order and quality from fluctuations in quan-

tity. Why is it that chemistry is so qualitatively different from physics to the point

that the tools and rules used to understand chemistry are qualitatively different than

those used to understand physics? Is chemistry not the logical conclusion of physics?

As is biology the natural extension of chemistry, followed by psychology, sociology,

and economics and politics. Why is our understanding of the world so compartmen-

talized when science tells us that it should all be inter-related? Surely if one has

knowledge of the microscopic, the macroscopic conclusions should follow, albeit with

some work. Statistical mechanics at the turn of the century was a resounding success

in confirming that macroscopic phenomena can, in principle, be deduced from the mi-

croscopic. Recently, a new paradigm is taking hold to try to explain the hierarchical

organization of, not just science, but the entire universe (Morowitz, 2004; Smith and

Morowitz, 2016). These ideas revolve around the notion that our universe, from the

big bang, to the formation of its stars, galaxies, planetary systems, Earth, life, and

consciousness has been a cascade of phase transitions, each bifurcating our universe

into a new realm of complexity with new modalities of description. To quote Edward

Robert Harrison, “Hydrogen is a light, odorless gas, which, given enough time, turns

into people.”

Criticality

There is more to the phase transition than the order (or disorder) on the other side.

The transition has shown to be an interesting regime in and of itself and is where many

disparate systems converge to universal behaviours across essentially all orders of

magnitude (Stanley, 1999; Watkins et al., 2016). At this critical point, the microscopic

features of the system become less important. It enters a behavioural regime that is
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less contingent on the microscopic causal nature of the system but rather something

more invariant. This is observed in systems whose microscopic structures are different

but will still converge to the same class of systems at their critical points. Another

defining property of criticality is its self-similar nature. Critical systems have no

specific characteristic length. Like a fractal, there are structures at all scales. Unlike

the ideal fractal, in nature these structures usually have some sort of cut-off and

are not perfectly self-similar (breaking more symmetries). While nature might not

be ideally fractal as a result of these cut-offs and broken symmetries, it can still

be self-similar for a broad regime. The convergences of these broad phenomena to

similar modes of organization can be seen when a microscopic system is rescaled into

a macroscopic set of variables.

Renormalization Group Flow

Renormalization group flow explains this phenomenon by making a distinction be-

tween relevant, irrelevant, and marginal variables. In general, all the variables needed

to describe a microscopic system are not required to describe a macroscopic one.

Relevant observables increase in magnitude with the scale of the system, irrelevant

observables decrease with scale, and some observables may change non-monotonically

(Wilson, 1975). Renormalization group flow demonstrated how one can traverse the

scales of a system and observe the flow of the observables of interest. This powerful

technique was able to explain how universal behaviours can emerge by demonstrating

how most microscopic observables become irrelevant leaving just a few variables to

describe the macroscopic system. The scaling relations of these variables are defined

succinctly by a set of critical exponents. Close to the critical point, variables like the

order parameter (an abstract variable that represents some form of order in the sys-

tem, like Magnetization, or Integrated Information), the susceptibility of the system

to some driving force, the specific heat, etc., are described simply by their distance to
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the critical point and a scaling exponent. The convergence of the critical exponents

of a variety of disparate systems demonstrates this property of universality.

While universality as a phenomenon gives hope that science can keep complex,

many-body problems tractable, there is still a diversity of universality classes to

understand as well. Not all critical systems converge to the same critical exponents

and this requires a taxonomy of the variety of universality classes. However, if such

a catalog can be made then there may be hope that complex systems such as the

neuronal dynamics of the brain or global financial dynamics can be understood in the

paradigm of some universality class. While this paradigm may still not allow precise

predictions of micro-variables, it may in principle allow us to make accurate forecasts

of the macro-variables, the phases, and impending transitions these systems may face.

One particular vein of this frontier is the process of renormalization on networks

(Gandhi; Newman and Watts, 1999; Rozenfeld et al., 2010). Combined with Monte

Carlo renormalization group methods (Pawley et al., 1984; Swendsen, 1979) these

techniques may prove to be not just useful, but necessary to tackle some of the

intractable problems and scales of complex systems like the ecosystems, the brain,

society, etc.

Properties of Critical Systems

Critical systems essentially lie in a Goldilocks zone between two (or more) regimes

dominated by different forces (Crutchfield, 2012; Stanley, 1971). In the Ising model

this is characterized by the integrating forces of the interactions that spins have with

their neighbours opposing the random perturbations of the heat bath it lies in con-

tact with. As the temperature approaches zero (sub-critical), the interaction forces

become so strong relative to the fluctuations that the system falls into a (meta-)stable

minimum energy state without much probability of fluctuating. Conversely, as the

temperature approaches infinity, the random fluctuations become so dominant that
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any interaction forces between elements in the model are completely drowned out by

the noise induced by the heat bath. Between these two extremes there is a sweet spot

where the integrative nature of the interaction forces and the segregating nature of

the heat bath are balanced in such a way to give rise to patterns and organization that

neither extreme is capable of. The Ising model at criticality has a scale-invariance

in the size of the structures that it is composed of. There is no preferential scale of

the model at criticality and this concept is fundamental to the definition of criticality

in general. Critical systems tend to also have very strong, long-range correlations

characterized by a diverging correlation length. If interaction forces are too high,

the system is too constraint to fluctuate and allow for strong perturbations in time.

Conversely, if the temperature is too high the system is too random for any pertur-

bative information to travel far either in space or time. However, critical systems

are highly susceptible to perturbative forces as their perturbations tends to persist

in both time and space as integration ensures that information can travel far and

segregations ensures that the perturbations can actually occur in the first place. The

maximization of susceptibility gives rise to a high dynamic range, information capac-

ity, and information fidelity (due to error-correction) (Beggs, 2008; Hesse and Gross,

2014; Shew and Plenz, 2013). The strong, long-range correlations that persist in crit-

ical systems give rise to redundancy in the way information propagates throughout

the network. Thus, if a propagating perturbation is randomly mutated by the heat

bath, essentially adding error to the information being propagated, the redundantly

correlated network can correct such errors as other information channels can average

out any errors that accumulate. In critical dynamical systems the divergence of the

system’s susceptibility that manifests itself temporally defines the concept of criti-

cal slowing down. In ecological systems that are undergoing critical slowing down,

perturbations of the system will not dissipate on time scales corresponding to the

characteristic cycles that exist in that system and may ultimately force an ecological
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system to collapse or transition into a new phase (Scheffer et al., 2015). Therefore it

is crucial to develop our understanding of critical systems in order to be cognizant

of the dynamic phases our natural environment may reside in, be it in neurological,

financial, or ecological systems.

Detecting Criticality with Power Laws

One hallmark of critical systems, and indeed of many complex systems in general, are

‘heavy-tailed’ distributions for a number of variables of the system (Watkins et al.,

2016). As opposed to something like the normal distribution, heavy-tailed distribu-

tions tend to have much larger probabilities for ‘rarer’ events. For example if one

was to naively use a normal distribution to predict the frequency that different size

earthquakes would occur, one would underestimate the probabilities associated with

very large or very small events. There exist many different families of heavy-tailed

distributions and distinguishing between them is often a tricky but necessary task for

understanding the causal origins (Buzsáki and Mizuseki, 2014). Power law distribu-

tions are observed in a wide variety of phenomena from the famous Gutenberg-Richter

law that relates the total number of occurrences of an earthquake given a minimum

intensity (Gutenberg and Richter, 1954), to Zipf’s law for natural language that states

the frequency of a word is inversely related to the frequency rank of that word (Zipf,

1935), or the Pareto distribution which was originally used to describe wealth distri-

bution in society (Pareto, 1964). These observations extend to a variety of different

systems such as the population distribution of cities (Reed and Jorgensen, 2004),

area damaged by forest fires (Schoenberg et al., 2003), stock market fluctuations

(Coronel-Brizio and Hernandez-Montoya, 2005), or starquakes and plasma instabil-

ities in astro/plasma-physics (Bak, 1996). The ubiquity of power law distributions

arises from the concepts discussed earlier involving scale-invariance. In scale-invariant

systems events of all sizes can occur as the system has no characteristic size where this
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property manifests itself as power law distributions in a set of defining observables

for that system (Bak, 2013).

While it is erroneous to assume that all power law distributions are a result of

critical phenomena, it is quite natural for critical phenomena which by definition

have scale-invariant properties to have observables obeying power law distributions.

This non-mutual relationship has for decades been a source of contention as many

researchers simply tend to look for power laws in order to make the claim that a

process is indeed critical (Beggs and Timme, 2012; Watkins et al., 2016), and while

this may usually be true and an efficient technique to quickly assess whether or not a

system has the capacity to be critical, there can be false positives so one must tread

carefully in these regards.

2.2.3 Self-organized Criticality in Nature

The ubiquity of power laws and critical systems poised at the cusp of different phases

is a worthwhile mystery in and of itself. From the outset, to create a critical sys-

tem a control parameter of some kind generally needs to be fine-tuned to a critical

point until the system is constraint to be in a critical state. In the Ising model the

temperature T acts as this control parameter (though this parameter can be general-

ized/extended by combining the temperature and interaction weights Jij into a new

parameter K). How is it that so many systems tend to be critical (Bourgine and

Nadal, 2013; Hesse and Gross, 2014; Scheffer et al., 2015; Schwab et al., 2014; Tagli-

azucchi et al., 2012; Taroni, 2015; Zhou and Sornette, 2007)? How do these systems

get tuned to criticality and why do they stay there? Bak and Chen (1991) coined the

term self-organized criticality to encapsulate the idea that many systems become crit-

ical by self-organizing themselves in an evolutionary sense to arrive at such a critical

point. Using simple sandpile, earthquake or domino models as illustrative examples,

this succinct perspective on the organization of the universe has made reverberations



52

in the understanding of complex, many-body systems. The idea hopes to explain

the dynamics of these large interacting systems all the way from the genetic scale up

to ecological, geological, and astrophysical systems. Much like the self-similar sys-

tems it was meant to describe, the concept of self-organized criticality has created a

catastrophic avalanche of ideas, good ones, bad ones and controversial ones, which in

all likelihood will correlate and reverberate well into the future of humanity and the

sciences as it diffuses into all disciplines and regimes of existence.

2.2.4 The Critical Brain

With the realization that essentially all complex systems of energetically interacting

elements seem to self-organize to criticality, the observation that the brain also ex-

hibits critical properties might then be no surprise (Beggs, 2008; Beggs and Plenz,

2003; Brochini et al., 2016; Chialvo, 2004; de Arcangelis and Herrmann, 2010; Expert

et al., 2011; Hesse and Gross, 2014; Moretti and Muñoz, 2013; Tagliazucchi et al.,

2012; Timme et al., 2016). Critical brains seem to be the ideal candidate for a learn-

ing (Carrasquilla and Melko, 2017), adaptive (Hidalgo et al., 2014), dynamic system

that is capable of a wide range of behaviours to perturbations in its environment.

The observations of power laws and critical behaviors in a variety of measurements of

the brain in conjunction with what is already known about critical systems hints at

a deep underlying relationship between the physics/mathematics of phase transitions

and computation and evolution.

2.2.5 The Generalized Ising Model of the Brain

In this project, the classical 2 dimensional Ising model is generalized to fully connected

graphs. The connectivity matrix J composed of elements Jij defines the interactions

between nodes i and j. This matrix, or equivalently, this graph, is largely what defines

the type of Ising model we are interested in. Modifications of the connectivity can
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transform the classical Ising model of ferromagnetism into, for example, a model on

social segregation (Bourgine and Nadal, 2013; Zhou and Sornette, 2007). In order to

contextualize the model to the brain, this project uses connectivity matrices that are

inspired by and have been imaged using diffusion tensor imaging (DTI) of the human

brain in the Human Connectome Project (Andersson and Sotiropoulos, 2015, 2016;

Andersson et al., 2003; Fischl, 2012; Glasser and Van Essen, 2011; Glasser et al., 2013;

Jenkinson et al., 2002, 2012; Van Essen et al., 2011).

Apart from this distinction, the Generalized Ising Model of the Brain is not very

different from the classical version. It extends the concept of nearest neighbour in-

teractions to a global level where every element is connected to every other element

with weight Jij. These weights, in the case of the human connectome, are acquired

through Diffusion Tensor Imaging (DTI) of the brain which roughly maps the white

matter tracts in the brain. Each weight Jij therefore represents the number of tracts

that connect region i to region j. In this project, the raw voxel-space images of the

full brain human connectome are parcellated into 84 labeled regions (see Appendix

A) using FSL, Freesurfer and MRTrix. For the simulations in this project pertaining

to Integrated Information Theory a further reduction scheme is utilized in order to

ensure that IIT algorithms will halt in reasonable time. This reduction scheme, ex-

plained in more detail in chapter 2 simply separates the brain into 9 different resting

state networks (RSNS) representing each module independently using just 5 nodes.

Each of these networks represents, crudely, one of the RSNs of the brain (Auditory,

Default Mode, Executive Control L/R, Salience, Sensorimotor, and Visual Lateral/-

Medial/Occiptal). As computational power increases and IIT algorithms improve,

future work may extend such methods to larger networks that more accurately rep-

resent the active networks in the brain.
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2.2.6 Summary

The development of the Ising model started off as a mathematical exercies to model

the phenomenon of phase transitions. While Ernst Ising’s work was ultimately unable

to model phase transitions in 1 dimension, his contribution triggered an avalanche

of investigative research on the model that resulted in a new found appreciation for

the complexity that could arise from such simplicity. Though the Ising model can

be thought of as one of the most well-studied models in physics, it continues to

this day to shine new light on the most complex systems in our universe. It has

pushed the boundaries of physics, recruited the help of mathematicians, piqued the

interest of sociologists, economists, and now computational neuroscientists, and tied

it all together with the ubiquitous concepts of universality and criticality. What was

originally a model aimed to discover the microscopic origins of magnetism has carved

out a path to discover the nature of emergence and in doing so has triggered a chain of

events that has been entangling and integrating the entire tree of human knowledge.

2.3 Thesis Statement and Contribution

In order to explore the utility of the Integrated Information Theory of Consciousness

and to gauge its ability to describe consciousness this thesis connects IIT to empirical

brain dynamics by proxy of the Generalized Ising Model of the Brain. As it stands,

IIT’s main difficulties lie in the fact that the computations in the theory remain in-

tractable for large systems and therefore it is hard to apply and therefore test the

theory to empirical data from the brain. Our novel approach to bring together the

simple Ising model of the critical brain and analyze it with the tools and machinery

that arise with IIT is, to our knowledge, the first such attempt to apply IIT’s tools on

critical systems resembling the brain. The journey of this research project has illumi-

nated the notion that the emergence of complexity and criticality are ubiquitous/u-
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niversal phenomenon and that the concepts in the physics of statistical mechanics,

complexity, and consciousness are all inter-related such that understanding any of

them in any deep way requires the integration of all these branches of knowledge.

This project adds further support to the hypothesis that self-organization towards

criticality is an evolutionary attractor and the emergence of conscious systems are an

inevitable conclusion of matter entropically self-organizing in a complex world.
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Chapter 3

The Emergence of Integrated

Information, Complexity, and

Consciousness at Criticality

A growing body of evidence in the past few decades has emerged suggesting that

many disparate natural and particularly biological phenomena reside in a critical

regime of dynamics on the cusp between order and disorder (Beggs, 2008; Beggs and

Plenz, 2003; Brochini et al., 2016; Crutchfield, 2012; de Arcangelis and Herrmann,

2010; Expert et al., 2011; Hesse and Gross, 2014; Moretti and Muñoz, 2013; Tagli-

azucchi et al., 2012; Timme et al., 2016). This seemingly ubiquitous phenomena

has sparked a renaissance of new ideas attempting to understand the self-organizing

nature of our world (Bak and Chen, 1991). More specifically, it has been shown

that the Ising model at criticality models the statistics of brain dynamics quite well

(Deco et al., 2012; Fraiman et al., 2009b; Haimovici et al., 2013; Marinazzo et al.,

2014), which combined with evidence of critical variables in brain dynamics has led to

the emergence of the critical brain hypothesis (Beggs, 2008; Hesse and Gross, 2014).

Systems tuned to criticality, self-organized or otherwise, exhibit a number of useful
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informational properties that allow for the efficient distribution of and susceptibility

to information (Beggs, 2008; Marinazzo et al., 2014; Shew and Plenz, 2013; Timme

et al., 2016). These ideas have been further developed to suggest more broadly that

critical systems are evolutionary advantageous and stable attractors for systems living

in complex environments as they are more effective at reacting to their environment

and ensuring their continued survival (Goldenfeld and Woese, 2011; Hidalgo et al.,

2014; Mora and Bialek, 2011). In this paper we attempt to understand an emerging

theory of consciousness, the integrated information theory of consciousness (IIT), by

modeling a toy-brain using a generalized version of the Ising model (Oizumi et al.,

2014). Integrated information, or Φ (big Phi), is calculated for the model as a func-

tion of the temperature T and for different connectivity networks. We find that the

susceptibility of Φ maximizes at criticality, a property deemed important for systems

that are immersed in complex environments (Hidalgo et al., 2014). These results

further support the critical brain hypothesis suggesting that conscious systems likely

self-organize/evolve towards criticality in order to maximize the repertoire of environ-

ments that they can survive. These results also reconcile one particular criticism of

IIT that claims that ‘intuitively unconscious’ simple systems are capable of generating

high Φ, and therefore paradoxically experience consciousness contradicting the phe-

nomenological motivations of IIT (Aaronson, 2014). Our results highlight the point

that what intuitively separates ‘life’ systems from ‘inanimate-yet-sentient’ systems is

that life-like systems are animated, dynamic, and susceptible to their surrounding.

While the low-temperature limit of the Ising model is capable of generating high Φ,

only at criticality is Φ maximally susceptible. If evolution is in fact strongly attracted

to criticality then consciousness also likely falls under the purview of this very general

phenomenon.

The integrated information theory of consciousness (IIT) is a top-down, phe-

nomenological approach to defining consciousness (Oizumi et al., 2014). Starting
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from phenomenological axioms the theory constructs mathematical postulates that

create a workspace for scientists to test and explore this particular definition of con-

sciousness. Unfortunately, many calculations in the theory prove to be intractable,

scaling super-exponentially with respect to the size of the system of interest. If one

wants to analyze the brain with the perspective of IIT, some sort of bridge needs to

be built to link IIT and brain dynamics. In this paper, the generalized Ising model

acts as this bridge by proxy. The Ising model acts as a proxy to brain dynamics

by allowing function to be simulated from structure. In one set of simulations, the

model is first fitted to empirical functional connectivity (FC) maps of the human

brain starting with a structural connectivity (SC) map inspired from diffusion brain

imaging. In the second, a large number of randomly generated non-sparse SCs are

used to generate broader statistical results. IIT calculations are embedded within

the simulations where measurements of Φ are calculated on a state-by-state basis. By

using this simple model as a proxy we make the utility of IIT more accessible allowing

for the exploration of the properties and predictions of the theory.

The main measure in IIT is integrated information (Φ), big Phi. Though other

measures exist (Sarasso et al., 2015) which try to capture some form of integration or

complexity, this paper will use Φ as its main metric. For a wholesome overview of the

mathematical taxonomy of the possible variations in defining integrated information,

see (Tegmark, 2016).

To measure integrated information one needs to have access to the transition

probabilities of the system. Naturally this is information we are not always privy to

when it comes to complex phenomena like brain dynamics. This problem is circum-

vented by using a sufficiently simple model where the transition rates can be readily

calculated, in this case the generalized Ising model. The 2D Ising model which was

famously found to exhibit a phase transition at a critical temperature has been shown

to also exhibit similar statistical properties to that of the brain which is also thought
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to be critical (Beggs, 2008; Beggs and Plenz, 2003; Brochini et al., 2016; Chialvo,

2004, 2010; de Arcangelis and Herrmann, 2010; Expert et al., 2011; Fraiman et al.,

2009a; Haimovici et al., 2013; Hesse and Gross, 2014; Moretti and Muñoz, 2013; On-

sager, 1944; Tagliazucchi et al., 2012; Timme et al., 2016). We then generalize the

2D Ising model such that its interactions are not confined to only nearest-neighbors

and instead can use any SC that is given as input.

Reduced SC matrices (see methods) from diffusion tensor images (DTI) of the

brain are taken as input for the Ising model’s interaction couplings which are then

simulated with the Metropolis algorithm (Hastings, 1970). 159 randomly generated

non-sparse connectivity matrices are also generated and simulated within the model.

From these results 2 different important temperatures (our fitting parameter in the

model) are searched for; 1. Tc, the critical temperature which maximizes the magnetic

susceptibility and corresponds to the transition point of the model from an ordered

(magnetized) phase to a disordered (non-magnetized) phase, and 2. Tmin, the tem-

perature that minimizes the distance between our simulated FC and empirical FC.

Our results corroborate previous results that the critical temperature of the model

is the point which fits best with the empirical statistics and furthermore suggests that

integrated information as an order parameter also undergoes a phase transition near

the critical point when analyzing the fluctuations of Φ as a function of temperature.

Furthermore, these results fit into a larger paradigm that seeks to understand the

nature of evolution and the adaptive advantage of critical systems.

The brain-like networks are then compared to the random simulations. We find

that while the random networks and brain networks can be similar in many ways, the

brain networks generally demonstrate improvements over the random networks to pre-

dict the empirical connectivity, and in the case of the Default Mode Network, did so

significantly. Furthermore, a rich variety of qualitative behaviours were demonstrated

by each network. For example some networks generated their maximal integrated in-
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formation at criticality while others did not. These results were initially surprising

as our hypothesis going into this project was that integrated information would be

maximized exclusively near criticality. While initially we were able to confirm this

hypothesis using a simpler algorithm for φ (small phi) written in MATLAB not pre-

sented in this paper, the published algorithm pyPhi for calculating Φ (Big Phi) was

not able to recreate these results with consistency. It remains a task for future works

to explore more rigorously the relationship between criticality and integrated infor-

mation, however this paper illustrates provisional results indicating that Φ seems to

undergo its own transition point near criticality. These results contextualized within

the paradigm of the physics/mathematics of emergence and complexity hint that

consciousness, criticality, and complexity are deeply intertwined concepts that may

strongly overlap with the physics of phase transitions and universality.

3.1 Results

3.1.1 Integrated Information and Criticality

159 Ising simulations are generated using N = 5 nodes, fully-connected networks with

random weights. The magnetic susceptibility χ, the variance of integrated information

(which we consider generally to be the susceptibility of Φ) and integrated information

for each simulation is calculated as a function of the fitting parameter T .

χ =
〈M2〉 − 〈M〉2

T

σ2(Φ) = 〈Φ2〉 − 〈Φ〉2
(3.1)

Averaging these properties across all random simulations shows a strong relationship

between the susceptibility of the system and the integrated information it generates

(Figure 3.1). Near the onset of criticality, which can generally be approximated by the
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peak of the susceptibility curve (Severino et al., 2016), integrated information, much

like the magnetization in the Ising model, also seems to undergo a phase transition

which is seen as a peak in the variance of Φ. The Ising model at criticality has already

been shown to model the functional connectivity of the brain and our results show that

this also coincides with the regime where the fluctuations of integrated information

is maximized which suggests a transition point for integrated information as an order

parameter (Fraiman et al., 2009a; Haimovici et al., 2013). Of the 159 of random

networks simulated, only 6 demonstrated the ability to maximize Φ at criticality

while the rest had the general tendency to decrease Φ as a function of temperature,

though not necessarily monotonically.

9 brain networks of size N = 5 are also simulated in the Ising model. These

networks are coarse representations of 9 major resting state networks in the brain

(see Methods for details). Like the random networks, simulating these networks in

the Ising model gives the susceptibility and integrated information as a function of

temperature. In contrast to the 6/159 of random networks that had Φ maximize

at criticality, 3 of the 9 brain networks (Auditory, Default Mode, Visual Medial)

demonstrated that their Φ maximizes near criticality. While it’s difficult to say that

these provisional results are significantly characteristic of brain networks, it does

show that certain networks have Φ(T ) profiles that are capable of maximizing their

integrated information at criticality, which combined with maximal susceptibility may

be evolutionary advantageous.

In Figure 3.2 we plot the results from these 9 simulations where the values are

normalized for comparison. Integrated information is seen to be capable of a number

of diverse forms across the different simulations. Notably, all the networks seem to

have two branches in their Φ curve as the temperature approaches 0. For as of yet

undiscovered reasons, the integrated information generated by the model seems to

be capable of spontaneous symmetry breaking where the different minimum energy
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Figure 3.1: The summary statistics for the two order parameters, Magnetization M
and Φ (panels a, c) across all the 159 random network simulations are shown. The
variance of Φ, σ2

t (Φ) (panel g) is interpreted as a susceptibility of Φ and is compared
to the magnetic susceptibility χ (panel e). These susceptibilities peak at the same
critical temperature indicating the phase transition of the integrated information as
an order parameter. The variance of both order parameters and their susceptibilities
across different connectivities are also compared. These are the σ2

J plots (panels b,
d, f, h). These plots demonstrate the susceptibility of these variables with respect
to changes in the connectivity. The variation σ2

J in the susceptibilities drop to a local
minimum near criticality with local maxima on the outset.

states corresponding to the opposite magnetizations of ±1 are each unique in their

capability of generating Φ. In Figure 3.1 some summary statistics for the random

networks are shown. Magnetization M and its corresponding susceptibility χ, are

plotted in the top row, first and third columns from the left respectively. Φ and its

variance σ2
t (Φ) are plotted in the second row. The variance of these variables across

the different connectivities are plotted along the second and fourth columns from

the left respectively: σ2
J(M), σ2

J(χ), σ2
J(Φ), σ2

J(σ2(Φ)). The variances summarize the

tendency for these variables to fluctuate within simulation and across simulations,

quantifying their susceptibility to environmental fluctuations and internal connectiv-
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Figure 3.2: The 9 networks representative of the resting state networks of the brain
are simulated and the Φ, χ, and σ2

t (Φ) are plotted as a function of the temperature
T . The minimum temperature Tmin where the model fit best with the empirical FCs
are marked with the dotted line and labeled.

ity fluctuations. We note that at the critical temperature, denoted roughly by the

peaks of χ, the ‘susceptibility’ of Φ, σ2
t (Φ) also peaks. When looking at Φ across

different simulations, σ2
J(Φ), we observe that there seems to be two transition points.

One transition point at low temperatures leading into a plateau region followed by

a second transition close to the classical critical point where the variations in Φ be-

gin to fall off. These results illustrate the regions where changes in the structural

connectivity of the model have the most influence on the generation of integrated

information. While the magnetization of the model near criticality is maximally sen-

sitive to changes in the structural connectivity, integrated information instead has

a broad plateau region of uniform sensitivity. This result is useful in assessing how

structural changes in a system can lead to functional changes which are capable of

generating integrated information or consciousness.
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3.1.2 Model Fitting

To be able to access the tools offered by IIT the Ising model was chosen as a proxy.

The intractable nature of the calculations involved with IIT force us away from large

datasets and/or simulations. So any analysis involving IIT must be for small sys-

tems (in our case, N = 5 nodes). Furthermore, the theory requires one to have a

complete knowledge of the transition rates of the system for all possible configura-

tions (though there have been work-arounds introduced under a Gaussian assumption

Oizumi et al. (2016); Tegmark (2016)). We can further contextualize our analysis of

IIT on neurological systems by choosing an appropriate model. As a neurologically

motivated choice, the Ising model at criticality has demonstrated in a wide variety

of applications to emulate the statistics of the brain Chialvo (2004, 2010); Fraiman

et al. (2009a); Haimovici et al. (2013). Furthermore, the Ising model simulated on the

Metropolis algorithm can be viewed as a Markov chain Teif (2007) and therefore its

transition rates can be readily calculated. For these reasons the Ising model was jus-

tified to be the proxy for exploring the utility of IIT while simultaneously maintaining

a neurological motivation.

To assess how well our simulations from the 5-node brain networks are capable

of fitting the empirical FCs, the Euclidean distance between the fisher-transformed

(z ≡ arctanh(r)) simulated FCs and empirical FCs are calculated as a function of

temperature. The empirical FCs are generated from the average over 69 resting-

state fMRI FCs from healthy control subjects (see Methods). The temperature Tmin

corresponding to the point of minimum distance dmin = d(Tmin) marks the value of T

where the model best fits the data. For larger simulations not presented in this paper

(for example N = 84) Tmin is very close to Tc, however for our N = 5 simulations

of the brain networks the variability can be much larger. To assess the significance

of these fluctuations, randomly generated networks of the same size are simulated

to generate a null distribution of minimum distances (see Methods). Comparing the
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minimum distances from the random networks to the results from the brain networks

gives the significance for each of the 9 brain networks ability to model its respective

network (Figure 3.3).
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Figure 3.3: To assess the capacity of the 5-node Ising brain networks to predict
the empirical FCs of human brains the minimum euclidean distances between the
simulations and FCs are binned. The random networks act as a null-distribution to
assess the significance of our results. All simulations were on the left of the null-
distribution, so none in general did worst than random chance. Most however were
not significantly better than random with the sole exception of the DMN, which the
random networks were not readily able to predict. This is likely due to the particularly
sparse DMN network.

Not surprisingly, we find that a few of the brain networks did not have a signifi-

cantly smaller distance to the empirical FCs than the random networks indicating that

these particular 5-node brain networks did not predict brain functional connectivity

any better than the distribution of random networks. For example, the Auditory

network, Salience network, Visual Medial network, and the Executive Control Left

network had p-values of pAUD = 0.36, pSAL = 0.34, pV ISM
= 0.14, pECNL

= 0.14

which were among the least predictive networks. The rest of the networks in our
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analysis all had p < 0.1. Looking at the magnitudes of the minimum distances it is

clear that some of the networks were in general better represented by the Ising model

than others. These results summarize the capability of the coarse 5-node brain-like

networks utilized in this paper to predict the empirical functional connectivity of the

networks in the human brain. With an awareness that these networks are essentially

cartoon representations of the brain networks we can try to interpret these results to

generalize how integrated information can behave in Ising-like systems.

3.2 Discussion

To investigate the properties of this new measure of integrated information intro-

duced by IIT we have in this study employed the relatively simple Ising model to act

as a proxy to the real brain. The Ising model is generalized to use any graph as its

connectivity where in this study we have looked at 159 random networks of 5 nodes as

well as 9 networks representing the human brain RSNs also composed of just 5 nodes.

The results from the Ising model analyzed with IIT show that integrated information

tends to be maximally susceptible at the critical temperature. The statistics of the

159 random networks summarize these results across variations of fully connected

connectivity matrices to show that while there exists a rich variety of Φ(T ) curves, on

average the ‘susceptibility’ of Φ(T ), (σ2(Φ(T ))), behaves quite similarly to the mag-

netic susceptibility that is normally the marker for the second order phase transition

of the classical 2D Ising model. These results indicate that integrated information as

an order parameter likely has its own class of phases which a system can transition

to and from. To generate a taxonomy of the possible phases that integrated informa-

tion could exhibit would require a much more thorough exploration of the possible

structural connectivities and dynamical rules that a system could obey. This project

confined itself to the Ising model on fully connected graphs obeying the Metropolis
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algorithm. In the future as more efficient algorithms for calculating Φ emerge (or

as a compromise accurate correlates of Φ) combined with Monte Carlo and network

renormalization group methods (Gandhi; Newman and Watts, 1999; Pawley et al.,

1984; Rozenfeld et al., 2010; Swendsen, 1979; Wilson, 1975) the exploration of larger

networks of different classes (e.g. sparse, modular hierarchical, small-world, fractal)

could lead to the identification of a rich taxonomy of phases of integrated information.

The exploration of integrated information in the context of critical systems under-

going phase transitions motivates a few new questions in regards to the relationship

between evolution, complexity, and consciousness. In the work done by Albantakis

et al. (2014); Joshi et al. (2013) on complexity and the evolution of neural models and

integrated information, it was shown that fitness can correlate strongly with Φ when

the system is constrained in size/resources. While it is not always true that a system

will evolve to generate high Φ under more liberal constraints (infinite resources), it

does seem to be that there may be some evolutionary advantage for having high Φ.

Since Φ essentially measures the emergence of higher-order concepts within a sys-

tem, intuitively it may not be surprising that systems that are capable of generating

higher-order concepts will be capable of representing a more diverse set of states

than systems that cannot. Therefore for resource-limited systems, having an efficient

means to represent internal and external states may automatically give rise to high

Φ or consciousness.

It is fair to think of integrated information as a type of complexity measure as it

aims to measure how mechanisms in a system interact and constrain each other in

emergent and irreducible ways. The theory aims to measure emergent properties of a

system that cannot be explained by independent (or semi-independent) components

of that system. The measure is sensitive to not just information, which in general

can be maximized by deterministic systems with unique pasts and futures, but also

to the distribution and integration of information which in general can be maximized
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by strongly coupled systems. To have a system that is both strongly coupled and

informative requires a balance between segregating forces that act to differentiate

the system into diverse states as well as integrating forces that create new forms of

information that could not otherwise arise from the components. In a system like

the Ising model, it is expected that these exact properties emerge near the critical

temperature at the onset of its phase transition.

By definition, critical systems have diverging correlation lengths and critical slowing-

down (integration in space and time), and simultaneously exhibit distinct and segre-

gated structures at all scales (scale-invariance). They are generally found in regimes

of systems undergoing some kind of transition between different phases (e.g. magne-

tized vs. non-magnetized in the Ising model, synchrony vs. asynchrony in the Kura-

muto model (Acebrón et al., 2005; Cumin and Unsworth, 2007; Hansel et al., 1993;

Kuramoto, 2012; Kuramoto and Araki, 1975)) . In contrast to sub-critical regimes

which can become completely uniform due to their strong coupling (high integration,

low differentiation) and super-critical regimes which can become completely noise

driven (low integration, high differentiation), critical systems sit in the sweet spot to

generate non-negligible Φ that is maximally susceptible to the perturbations of its

environment and its own state. Our results indicate that while sub-critical regimes

are quite capable of generating Φ, the variations in Φ in this regime are negligible.

Only near the critical point does Φ have both large values and large fluctuations in-

dicating that the critical point of the system is maximally receptive to its internal (or

external) states.

Timme et al. (2016) showed that in neural tissues and in a cortical branching model

(which is not too different from the classical Ising model) that neural complexity is

maximized at criticality. Bak (1996); Bak and Paczuski (1995) even define the origins

of complexity as the ”tendency of large dynamical systems to organize themselves

into a critical state”. The novelty of this study is that by using IIT we argue that



75

consciousness arises at criticality and that the brain self-organizes into states that

maximize both its magnitude of consciousness and its susceptibility to internal and

external states.

3.3 Methods

3.3.1 Empirical Networks

A set of sixty-nine healthy subjects, between 22 to 35 years old, were studied during

wakefulness. Informed consent to participate in the study was obtained from every

subject. The Ethics Committee of the Washington University and the University of

Minnesota approved the study. Structural and functional data were acquired at the

Washington University - University of Minnesota Consortium of the Human Connec-

tome Project (WU-Minn HCP). Details about the data acquisition and preprocessing

can be found here (Andersson and Sotiropoulos, 2015, 2016; Andersson et al., 2003;

Fischl, 2012; Glasser and Van Essen, 2011; Glasser et al., 2013; Jenkinson et al., 2002,

2012; Van Essen et al., 2011). The raw voxel-space images of the full brain human

connectome is parcellated into 84 labeled regions using FSL, Freesurfer and MRTrix.

Due to the sparse nature of the SC map, a new transformed SC is constructed from

the inverse of the minimum distances of the original SC. The inverse of the minimum

distances removes the sparsity from the SC. This process is necessary due to the small

size of our simulations. SCs that are too sparse may give disconnected networks when

the 5-node sub-networks are extracted which will then behave trivially in Ising sim-

ulations. The inverse minimum distances are used to circumvent this problem. For

larger simulations this step can be skipped since the SC will not have disconnected

nodes. The inverse-minimum-distance SC maps are then normalized such that their

largest weight is unity. This process is visualized in Figure 3.4.

9 sub-networks are then extracted from the SC map where each sub-network
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Figure 3.4: A: The connectivity matrix averaged across the 69 subjects imaged in
the HCP. B: The shortest paths to each neighbour give us the distance matrix. C:
The inverse of the distance matrix gives back a matrix that is less sparse than our
original map by considering once removed connections. This helps stabilize results
by avoiding almost disconnected edges.

is modeled after resting state networks in the brain. The nine RSNs were identified

from an independent set of nineteen healthy controls Demertzi et al. (2014); Ribeiro de

Paula et al. (2017) and an average z-map template was created for each RSN. For each

z-map template, the top five most representative ROIs were chosen to represent each

of the nine networks (see Appendix). The ROIs were chosen such that hemispheric

redundancies were removed. Future studies that include the symmetric redundancies

can be of interest as well, though in this particular study this was unfeasible due to

the constraints imposed by IIT on the network size. Using five representative ROIs

for each of the nine RSNs, an SC sub-network is extracted from the larger whole-

brain SC map. Similarly, FC sub-networks are also extracted from the whole-brain

FC map. This process leaves us with 9 SCs and FCs maps, one for each RSN. The SC

maps are then used to define the connectivity of the Ising model, and the FC maps

are used to fit the model to empirical results and find Tmin. This process for each

connectivity matrix is summarized in Figure 3.5.
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Figure 3.5: A: Empirical DTI-weighted brain tractography and fMRI images taken
from the HCP are used to simulate and fit the Ising model of the brain respectively.
B: The connectivity matrices obtained from the tractography are the only inputs used
to model the brain in the Ising model. C: From the Ising simulations, timeseries, cor-
relation matrices and state/transition probabilities are generated. D: The empirical
correlation distribution is compared with the simulated correlation distribution by
measuring the euclidean-distance of the fisher-transformed correlation coefficients to
find the temperature which minimizes their distance. This minimum temperature,
Tmin fits the Ising model to empirical results. Tmin tends to be around the critical
temperature Tc. E: Using the state/transition probabilities, integrated information
(Φ) is calculated. F: The results of this project are summarized by functions Φ(T )
and its susceptibility, σ2

Φ(T ) and where Tmin highlights the regions where the model
fits best.
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3.3.2 Random Networks

One major limitation of the methods used in this study comes from the fact that

the simulated networks contain only 5 nodes, which we take to represent an entire

functional network in the brain. To assess how well the empirically extracted brain

networks represent the real brain, we compare their results with randomly generated

networks. 159 fully connected networks with random weights uniformly sampled

between 0 and 1 are generated. The networks are then normalized such that their

strongest weight is always unity. Under the null-hypothesis that the empirically

driven SCs and the randomly generated SCs are identical, the results obtained from

the random networks are used as a null-distribution to assess the significance of the

results obtained from the brain networks.

3.3.3 Phi

Integrated Information (Φ) is calculated in the 5-node Ising model for 2000 iterations

after the model reaches a steady-state which is assumed to be achieved after 500

iterations. The transition probability matrix (TPM) for the entire system of 5 nodes

is calculated. Φ is calculated using the pyPhi toolbox (Oizumi et al., 2014) for each

state of the simulation across all its iterations. These measurements are gathered into

ensemble averages of temperature bins, measuring Φ(T ).
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Chapter 4

Conclusion

The ethereality and allure of consciousness can perhaps be tamed by philosophy,

probabilities, and Boltzmann distributions and this project has been an attempt to

bring two contrasting perspectives together to help understand what it means to be

conscious, or at least integrated.

Integrated information theory summons a definition of consciousness following a

set of phenomenological axioms. It claims that the integrated information Φ gener-

ated by a system is a measure and description of, consciousness (or at least the human

variety). Integrated Information is a function of the causal structure of the system

and calculations are made by marginalizing over partitioned probabilities whose com-

putational complexity scales super-exponentially (with some variance depending on

which algorithm you choose).

The thermodynamic generalized Ising model simulates a system of nodes that os-

cillate and resemble what it might be to be a network of neurons. A population of

these kinds of systems of neurons are analyzed. By varying the control parameter

temperature, T , we push the systems from an ordered state through a phase transition

into a disordered state. We observe that our measurement resembling a generalized

susceptibility of integrated information maximizes near criticality. Maximally sus-
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ceptible systems of the critical variety offer computational and adaptive advantages

among other things. A system at criticality operates with its integrated information

being maximally susceptible to ’stimulus’ in the form of concepts it can ’feel’.

Critical (self-organizing) systems are ubiquitous in the pockets of complexity in

our universe and it seems that integrated information, or consciousness, is yet another

example of a system riding the tide of criticality. Is consciousness just another branch

off the phase diagram of our universe?

4.0.1 Future Work

One of the largest reservoirs of entropy when dealing with Ising networks is the dif-

ferent motifs of graphs you can make with real valued weights for edges. However,

the pruning of a network is also a concept that can also be appreciated entropically

via evolutionary algorithms. Understanding how the brain develops and grows into

this learning machine is equivalent to understanding a magnificent growth/pruning

process. Evolutionary thermodynamic systems, driven non-equilibrium systems, and

self-organizing critical systems are all fascinating vectors to explore to better under-

stand the statistics of evolution and development and can be easily explored with

simple simulations of little Boltzmann machines.

The extension of these integrated Ising networks into larger interacting communi-

ties also seems to be a promising idea. Seeing how the networks would adapt to their

neighbours over time would certainly be interesting as well. Contextualizing these

communities/simulations in the framework of statistical mechanics and criticality can

help package the complexity of these worlds and help understand the emergence of

complexity. For example by identifying power laws, scaling exponents can help sum-

marize the system statistics and help contain the complexity of critical systems.



Chapter 5

Appendix

5.1 Resting State Networks

9 resting state networks are defined with their associated region labels using the 84

node Freesurfer parcellation. For each RSN, the top 5 most representative regions

were picked. In many cases there were redundancies between the left and right hemi-

spheres and in such cases only one regions in one of the hemispheres were chosen. The

only exception to this case is in the Visual Medial network where the right precuneus

region is strongly a part of this network.

Auditory

1. L-transversetemporal

2. L-insula

3. L-superiortemporal

4. L-supramarginal

5. L-postcentral

Default Mode

1. L-isthmuscingulate

2. L-rostralanteriorcingulate

3. L-parahippocampal

4. L-precuneus

5. L-inferiorparietal

Executive Control Left

1. L-inferiorparietal

2. L-parsorbitalis

3. L-parsopercularis

4. L-caudalmiddlefrontal

5. L-parstriangularis
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Executive Control Right

1. R-parsorbitalis

2. R-parsopercularis

3. R-inferiorparietal

4. R-rostralmiddlefrontal

5. R-caudalmiddlefrontal

Salience

1. R-parsopercularis

2. R-insula

3. R-caudalanteriorcingulate

4. R-parstriangularis

5. R-rostralmiddlefrontal

Sensorimotor

1. L-paracentral

2. L-postcentral

3. L-posteriorcingulate

4. L-precentral

5. L-transversetemporal

Visual Lateral

1. R-lateraloccipital

2. R-fusiform

3. R-parahippocampal

4. R-lingual

5. R-superiorparietal

Visual Medial

1. L-cuneus

2. L-pericalcarine

3. L-lingual

4. L-isthmuscingulate

5. R-precuneus

Visual Occipital

1. L-pericalcarine

2. L-lateraloccipital

3. L-lingual

4. L-cuneus

5. L-fusiform
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5.2 Code

A collection of the scripts used to simulate the Ising model and calculating Φ is

available online: https://github.com/heysoos/Ising_Phi.

The ’atom’ of this code is the Monte Carlo simulation of the (generalized) Ising

model. This atom is upgraded into a ’molecule’ by introduction of the functions

necessary to calculate integrated information. In the Parallel folder are run scripts

to mass produce these simulations in parallel. This letst us play with population

scale statistics that work to smooth out pretty nicely in face of the small-scale Ising

models. A series of load files run the scripts necessary to make the figures in the

paper.

There are MATLAB functions that calculate Φ but also python scripts to measure

Φ using the pyPhi library: https://github.com/wmayner/pyphi. The figures shown

in this thesis were based on the results from the latter method.

https://github.com/heysoos/Ising_Phi
https://github.com/wmayner/pyphi


88



Curriculum Vitae

Name: Sina Khajehabdollahi

Post-
Secondary
Education:

Master of Physics, 2016-present
Western University, London, Canada

Honours Specialization in Astrophysics, 2011-2015
Western University

Related Work
Experience:

Teaching Assistant, 2016-present
Western University

Research Assistant, 2014-present
Western University

Awards and
Collabora-
tions:

Long-term visitor at ELSI: Origins Network Winter 2018
Earth-Life Science Institute, Tokyo Institute of Technology

Travel Award from OIST Spring 2017
ISSA Summer School 2017, Okinawa Institute of Science and
Technology

Ranked top 2% in the COMAP: MCM Winter/Spring 2015
Representing Western University internationally at the Consor-
tium for Mathematics and its Applications: Mathematical Con-
test in Modeling

89


	Phase transitions of Integrated Information in the Generalized Ising Model of the Brain
	Recommended Citation

	Abstract
	Co-Authorship Statement
	Acknowledgments
	Table of Contents
	List of Figures
	List of Acronyms
	Consciousness
	What is Consciousness?
	To be or not to be
	Subjectivity and Objectivity
	To feel
	Loss of Consciousness & Brain Injury

	Integrated Information Theory
	Axioms
	Postulates
	IIT Calculations and Methods
	Summary


	Modeling the Brain
	Thermodynamics of the Brain
	Reductionism
	Traversing Different Scales
	The Emergence of Macro-variables and Order Parameters
	The Brain as a Thermodynamic System
	The Need for a Non-equilibrium Theory

	The Ising Model
	A Brief Overview of the Ising Model
	Criticality & Universality
	Self-organized Criticality in Nature
	The Critical Brain
	The Generalized Ising Model of the Brain
	Summary

	Thesis Statement and Contribution
	Bibliography

	The Emergence of Integrated Information, Complexity, and Consciousness at Criticality
	Results
	Integrated Information and Criticality
	Model Fitting

	Discussion
	Methods
	Empirical Networks
	Random Networks
	Phi

	Bibliography

	Conclusion
	Future Work

	Appendix
	Resting State Networks
	Code


