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Abstract

The liberalisation of regional and global commodity markets over the last several decades

resulted in certain commodity price behaviours that require new modelling and estimation

approaches. Such new approaches have important implications to the valuation and utili-

sation of commodity derivatives. Derivatives are becoming increasingly crucial for market

participants in hedging their exposure to volatile price swings and in managing risks asso-

ciated with derivative trading. The modelling of commodity-based variables is an integral

part of risk management and optimal-investment strategies for commodity-linked portfo-

lios. The characteristics of commodity price evolution cannot be captured sufficiently by

one-state driven models even with the inclusion of multiple factors. This inspires the adop-

tion of regime-switching methods to rectify the one-state multi-factor modelling inadequa-

cies. In this research, we aim to employ higher-order hidden Markov models (HOHMMs)

in order to take advantage of the latent information in the observed process recorded in

the past. This hugely enhances and complements the regime-switching features of our ap-

proach in describing certain variables that virtually determine the value of some commodity

derivatives such as contracts dependent on temperature, electricity spot price, and fish-price

dynamics. Our push for the utility of the change-of-probability-measure technique facil-

itates the derivation of recursive filtering algorithms. This then establishes a self-tuning

dynamic estimation procedure. Both the data-fitting and forecasting performances of vari-

ous model settings are investigated.

This research work emerged from four related projects detailed as follows. (i) We start

with an HMM to model the behaviour of daily average temperatures (DATs) geared to-

wards the analysis of weather derivatives. (ii) The model in (i) is extended naturally by

showcasing the capacity of an HOHMM-based approach to simultaneously describe the

DATs’ salient properties of mean reversion, seasonality, memory and stochasticity. (iii) An

HOHMM-driven jump process augments the HOHMM-based de-seasonalised temperature

process to capture price spikes, and the ensuing filtering algorithms under this modelling

framework are constructed to provide optimal parameter estimates. (iv) Finally, a multi-

dimensional HOHMM-modulated set up is built for futures price-curve dynamics pertinent

to financial product valuation and risk management in the aquaculture sector. We examine

the performance of this new modelling set up by considering goodness-of-fit and out-of-

sample forecasting metrics with a detailed numerical demonstration using a multivariate

i



data set compiled by the Fish Pool ASA.

This research offers a collection of more flexible stochastic modelling approaches for pric-

ing and risk analysis of certain commodity derivatives on weather, electricity and fish

prices. The novelty of our techniques is the powerful capability to automate the param-

eter estimation. Consequently, we contribute to the development of financial tools that aid

in selecting the appropriate and optimal model on the basis of some information criteria

and within current technological advancements in which continuous flow of observed data

are now readily accessible in real time.

Keywords: regime-switching model, commodity-derivatives valuation, change of refer-

ence probability measure, optimal parameter estimation, multivariate HOHMM filtering

method
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Chapter 1

Introduction

1.1 Research motivation and objectives

Amongst the most pressing concerns of today’s contemporary society include climate change,

worldwide political uncertainty, resiliency of power resource generation, food sustainabil-

ity, and development of new or revised regulatory frameworks. Undoubtedly, these issues

have impact on the financial, energy, agriculture, and aquaculture sectors. This research

work delves on the development of mathematical models that support the creation of finan-

cial solutions, in the above-mentioned industries, to mitigate, hedge and transfer relevant

risks closely tied to potential huge economic losses arising from such societal pressing is-

sues.

The financial solutions refer to exotic commodity-based derivatives whose values are de-

pendent on weather measurements, and prices in the electricity and fish markets. Taking

suitable positions comprising the correct number of contracts in derivatives trading forms

strategies in managing risk exposure to certain pertinent factors. Research studies in the

aforementioned markets are based on one-state models. However, they might not accu-

rately capture the stylised behaviours of price evolution, especially during periods of fi-

nancial crises or when positive news affect market sentiments that drive prices suddenly.

These situations require models with more capabilities to account for abrupt fluctuations of

various statistics, and one simple but powerful way is the embedding of a regime-switching

approach enriched by a memory-capturing mechanism.

In particular, to meet the goals of mathematical modelling developments in the context

of considerations as described above, the following will be carried out: (i) Construct

1
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an Ornstein-Uhlenbeck (OU) modelling framework modulated by hidden Markov mod-

els (HMM) and higher-order hidden Markov models (HOHMM) to adequately delineate

important characteristics of market primitives. (ii) Add a compound-Poisson process into

the HOHMM-OU setting to pick up the spike dynamics in the observed time series. (iii)

Extend the HOHMM setting into a multi-dimensional framework tailored for multivariate

data series. (iv) Develop self-calibrating algorithms and dynamic estimation procedures for

the proposed models. (v) Derive recursive filters for quantities that are functions of both

HMM and HOHMM, and use such filters to obtain models’ optimal parameter estimates.

(vi) Assess and compare performances under both HMM and HOHMM settings using error

analyses and likelihood-based information criteria.

1.2 Literature review

In this section, we will first introduce the theory and assumptions of HMMs, and then ex-

tend the concepts to HOHMMs. Besides expanding the HMM analytical framework, we

will review four fundamental results at an intuitive level for the HOHMM construction and

filtering relevant to the objectives of our research. They consist of (i) evaluation (ii) de-

coding (iii) training, and (iv) change of measure method. The first three issues are notable

problems and throughly addressed within HMMs; see [1], [19], and [3], whilst we will

examine them under the HOHMM setting by following [2]. A summary of the change of

probability measure technique will be given to reduce an HOHMM to an equivalent first-

order representation for our filtering processes.

1.2.1 Overview of HMMs

Since initially introduced in the late 1960s, HMMs have been widely utilised as a ubiqui-

tous instrument in many fields of engineering and physical sciences, such as speech recog-

nition, data compression, and molecular physics. The comprehensive mathematical struc-

ture of HMMs constructs a solid theoretical foundation and provides a great performance

in practice. The study of applying this tool in the financial field was pioneered by Hamil-

ton [8]. There have been systematic methodologies and extensive applications of HMMs

developed to capture variables in finance and economy since then.
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The general mechanism of HMMs in finance can be concisely explained by the signal the-

ory, well-known in engineering. Outputs produced from any processes in both theory and

practice normally are considered as signals. In finance, we then can treat collected data as

observed signals, such as prices and indices of underlying assets. However, these observa-

tions might contain noise or be distorted by various errors from their generating procedures.

The estimation and measurements for real sources might be corrupted. It is then not possi-

ble to reveal the hidden state of the model only through the observed symbols. Fortunately,

the application of HMMs is capable of filtering the noise out and unravelling the distortion.

The hidden variables and information in our observations then can be efficiently estimated

and further investigated.

Following Cappé et al. [3], an HMM comprises a bivariate discrete process {Xt,Ot} with

t ∈ Z+
0 . Let {Xt} be a Markov chain encapusulated in an observed process {Ot}, which is a

corrupted version of {Xt} due to some noise. Even though the latent process {Xt} is hidden

to the outside, it can be observable through {Ot} under an HMM. As in Rabiner [29], a set

of parameters (N, n,Π,Λ,P) needs to be introduced in order to define an HMM completely.

• N, the number of hidden states in the model. Even though they are latent, physical

significance to the states can be detected for many practical applications. We denote

the state in the model as qt at time t, and individual states as

S t = {s1, s2, . . . , sN}

• n, the number of distinct observation signals per hidden state at time t. For instance,

“rainy day” and “non-rainy day” can be treated as two distinct observed symbols. We

denote the signal as “Yt” at time t. The individual signals are presented by

Yt = {y1, y2, . . . , yn}

• Π = {π ji} stands for the state transition probability distribution that governs transi-

tions among states, where

π ji = P
(
qt+1 = si | qt = s j

)
, 1 ≤ i, j ≤ N,

and
∑N

i=1 π ji = 1, π ji ≥ 0.

• Λ = {Λ j} denotes the initial state distribution, where

Λ j = P
(
q1 = s j

)
, 1 ≤ j ≤ N.
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• P = {pi(m)} denotes the probability distribution of observed symbols in hidden state

i , where

pi(m) = P (Ot = ym | qt = si) , 1 ≤ i ≤ N, 1 ≤ m ≤ n,

and
∑n

m=1 pi(m) = 1, {pi(m) ≥ 0}.

Before implementing HMMs in generating observations, we need to explicitly state three

important assumptions in the theory of HMMs [29] as follows:

• Assumption 1: Markov assumption

P
(
qt+1 = si | qt = s j, qt−1 = sl, . . . , q0 = sh

)
= P

(
qt+1 = si | qt = s j

)
= π ji.

We assume the Markov property holds. As shown in its definition, the current state st

is independent of all the states prior to t − 1, given st−1. The observed symbols meets

the Markov assumption as well with respect to their corresponding states.

• Assumption 2: Stationarity assumption

P
(
qt+1 = si | qt = s j

)
= P

(
qk+1 = si | qk = s j

)
, for 1 ≤ i, j ≤ N and ∀k, t ∈ Z+

0 .

The intuitive explanation for this assumption is that the state transition distribution

over next state given current state does not change over time.

• Assumption 3: Output independence assumption

P (O | q1, q2, . . . , qT ,N, n,Π,Λ,P) =

T∏
t=1

P (Ot | qt,N, n,Π,Λ,P) .

Let O = O1,O2, . . . ,OT be an observation sequence, in which T denotes the total

number of observations. Every observation Ot, 1 ≤ t ≤ T , is one of the signals from

Yt. This assumption indicates that the current output observations are statistically

independent of previous ones.

Once proper values are assigned to the set of parameters (N, n,Π,Λ,P) under the afore-

mentioned assumptions, the HMM then can be utilised to produce an observation sequence

O, the general procedures of which include the following steps. We start with setting an

initial state in terms of Λ and then choose Ot = ym according to pi(m). π ji will be applied

when transiting to another state qt+1 = si. By taking increment by 1 for t till T , we shall

produce O through an appropriate HMM.
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1.2.2 Extension to HOHMMs

HMM-based approaches and strategies are in widespread use with its structural simplic-

ity and straightforward computation. In view of the definitions in Section 1.2.1, an HMM

formulation is generally capable of resolving first-order transition among hidden states.

However, it might be inadequate for some real-world applications. For instance, the lim-

ited validities in assumptions basically indicates that only the present information affects

what you are about to express next in speech recognition, one of the most extensive fields

of HMMs application. It seems improper since long-term dependence might be necessary

to retain a robust speech structure. As presented in Juang and Rabiner [9], HMMs are not

sufficient under higher levels of a recognition system, including syntactic or semantic pro-

cessing.

Various literatures also find out the longer memory property in many financial series, such

as the long term dependence in the volatility of S&P 500 returns [12] and in percentage

changes on Treasury debt security yields [13]. For this sort of financial series, a growing

body of evidence suggests that a regular HMM cannot effectively capture their stylised be-

haviours ([17] and [21]), thereby raising a need to expand the HMM literature. It results

in some scholars examing applications of HOHMMs in the financial field. For instance,

Siu et al. proposed a higher-order Markov-switching model with the drift and the volatility

modulated by a discrete-time high-order Markov chain for measuring risk of a risky port-

folio [28]. Xi et al. introduced an analysis of asset allocation strategies under both HMM

and HOHMM settings, and concluded that the HOHMM-based approach outperforms the

HMM-based strategy for certain levels of transaction costs [20].

As an extension of a normal Markov model, a higher-order Markov model builds longer

memories into a Markov process by specifying that a current state depends on other pre-

vious states, not only on the previous one. Analogically, we can find out an HOHMM

involves some features presented in Section 1.2.1 with two major differences. The state

transition probability distribution becomes

πit−k+1,...,it+1 = P
(
qt+1 = sit+1 | qt = sit , . . . , qt−k+1 = sit−k+1

)
, for 1 ≤ k ≤ t ≤ T, (1.1)

and the initial k states distribution is defined as

πi1,...,ik = P
(
q1 = si1 , . . . , qk = sik

)
. (1.2)
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Equations (1.1) and (1.2) increase the number of parameters exponentially in terms of the

order of the HOHMM setting. They lead to more complicated processes to address the

three classic problems originally in HMMs, the results of which will be elaborated in the

following sections.

1.2.3 Evaluation with forward-backward algorithm

Given an observation sequence O = O1, . . . ,OT and a parameter set S = (Π,Λ,P), we

can solve the evaluation problem under the HOHMM setting by finding P(O | S ). Even

though straightforward probabilistic arguments is one of options to address this issue, it is

not feasible in practice considering the computation in order of NT . Therefore, we adopt

the forward-backward algorithm [29] to efficiently compute the probability of the observed

outputs. We firstly define a forward variable as follows

αt (it−k+1, . . . , it) = P
(
O1, . . . ,Ot, qt−k+1 = sit−k+1 , . . . , qt = sit | S

)
, for 1 ≤ k ≤ t ≤ T.

It is a joint conditional probability that the subsequence of first t observed outcomes is

O1, . . . ,Ot and the last m hidden states of an HOHMM at time t are sit−k+1 , . . . , sit . The

forward probability αT (iT−k+1, . . . , iT ) can then be calculated through the forward algorithm

by the following recursion,

αt+1 (it−k+2, . . . , it+1) =

N∑
it−k+1=1

(
αt (it−k+1, . . . , it) P

(
Ot+1 | S , qt+1 = sit+1

)
·

P
(
qt+1 = sit+1 | S , qt−k+1 = sit−k+1 , . . . , qt = sit

) )
=

N∑
it−k+1=1

αt (it−k+1, . . . , it) πit−k+1,...,it+1 pit+1 (Ot+1) , (1.3)

where αk (i1, . . . , ik) = Λi1,...,ik ·
∏k

j=1 pi j

(
O j

)
, for 1 ≤ j ≤ k. The required probability is then

obtained by P (O | S ) =
∑N

iT−k+1,...,iT =1 αT (iT−k+1, . . . , iT ) as the sum of all forward variables.

Instead of computing variables forward in time, the backward algorithm proceeds in a

similar way but backward in time. The backward variable is defined as

βt (i1, . . . , ik) = P
(
Ot+k, . . . ,OT | S , qt = sit , . . . , qt+k−1 = sit+k−1

)
, for 1 ≤ t ≤ T − k.
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As in the case of the forward algorithm, this joint conditional probability can be obtained

through a recursive equation given by

βt (i1, . . . , ik) =

N∑
it+k=1

(
P

(
Ot+k+1, . . . ,OT | S , qt+1 = sit+1 , . . . , qt+k = sit+k

)
·

P
(
Ot+k | S , qt+k = sit+k

)
· P

(
qt+k = sit+k | S , qt = sit , . . . , qt+k−1 = sit+k−1

) )
=

N∑
j=1

βt+1 (i2, . . . , ik, j) πi2,...,ik , j p j (Ot+k) , (1.4)

where βT−t(i1, . . . , ik) = 1, for 0 ≤ t ≤ k − 1, and 1 ≤ i1, . . . , ik ≤ N. This quantity will

be required for the development of the Baum-Welch algorithm [1] to solve the learning

problem in Section 1.2.5.

1.2.4 Decoding with Viterbi algorithm

Given a particular HOHMM with the parameter set S , we attempt to find out the most

probable sequence of underlying hidden states, Q = q1, q2, . . . , qT , from an observation

sequence O = O1,O2, . . . ,OT . That is equivalent to caluclate argmaxQP (Q | S ,O). Since

we have

argmaxQP (Q | S ,O) = argmaxQ
P (Q,O | S )

P (O | S )
,

and P (O | S ) does not depend on Q, if argmaxQP (Q,O | S ) is uncovered, we then resolve

the recoding problem. As a technique based on dynamic programming method for verifying

the existence of the best state sequence, the Viterbi algorithm [19] is an efficient approach

to decode the observation sequence O. To facilitate the calculation, we define a variable as

θt (it−k+1, . . . , it) = maxq1,...,qt−k P
(
q1 = si1 , . . . qt = sit ,O1, . . . ,Ot | S

)
,

where 1 ≤ k ≤ t ≤ T . θt (it−k+1, . . . , it) is the maximum probability of the partial observation

sequence up to time t and the state sequence ending at sit . The following recursive algorithm

holds for 1 ≤ k + 1 ≤ t ≤ T and 1 ≤ it+1 ≤ N

θt+1 (it−k+2, . . . , it+1) = max
q1,...,qt−k+1

(
P

(
qt+1 = sit+1 ,Ot+1 | S , q1 = si1 . . . qt = sit ,O1, . . . ,Ot

)
·

P
(
q1 = si1 . . . qt = sit ,O1, . . . ,Ot | S

) )
= max

1≤qt−k+1≤N

(
θt (it−k+1, . . . , it) · P

(
Ot+1 | S , qt+1 = sit+1

)
·

P
(
qt+1 = sit+1 | S , qt−k+1 = sit−k+1 , . . . , qt = sit

) )
=pit+1 (Ot+1)

(
max

1≤qt−k+1≤N
θt (it−k+1, . . . , it) πit−k+1,...,it+1

)
,
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where for 1 ≤ j ≤ k and 1 ≤ i1, . . . , ik ≤ N, the initialisation is given by

θk (i1, . . . , ik) = P
(
q1 = si1 . . . qk = sik ,O1, . . . ,Ok | S

)
= P

(
q1 = si1 . . . qk = sik | S

)
·

k∏
j=1

P
(
O j | S , q j = si j

)
= Λi1,...,ik

k∏
j=1

pi j

(
O j

)

Eventually, we can find out argmax1≤qt−k+1,...,qT≤NθT (iT−k+1, . . . , iT ) through the Viterbi itera-

tion. To recover entire most likely state sequence, we further define a back-tracked array

that traces θt (it−k+1, . . . , it) for each t and it−k+1, . . . , it as

φt+1(it−k+2, , . . . , it+1) = argmax
1≤qt−k+1≤N

θt (it−k+1, . . . , it) · πit−k+1,...,it+1 .

Since we have φT (iT−k+1, , . . . , iT ) = argmax1≤qt−k+1,...,qT≤NθT (iT−k+1, . . . , iT ), the remaining qt

then can be obtained recursively by setting φk(i1, , . . . , ik) = 0.

1.2.5 Training with expectation-maximisation algorithm

Both evaluation and decoding issues associated with HOHMMs in Sections 1.2.3 and 1.2.4

are solved under a measurable circumstance where the set of parameters S is known in

advance. However, we might encounter the situation in practice when parameters are not

directly foreknown and have to be estimated. This is the training problem that adjusts

model parameters by maximising the probability of the observed sequence under the given

HOHMM. Regular maximum likelihood criteria might not generate an optimal solution es-

pecially with unknown state paths. P(O | S ), however, can be locally maximised under the

HOHMM setting by the Baum-Welch algorithm [1], a special version of the expectation-

maximum (EM) algorithm [4]. It provides an efficient method for researching parameter

estimation in the further application of HOHMMs. We first present the general EM algo-

rithm, and then describe results of the Baum-Welch algorithm under the HOHMM setting

by following [2].

Generally, there are two main applications of the EM algorithm. One situation occurs

when likelihood functions are not analytically solvable but can be tractable by assuming

the occurrence of additional missing parameters. The other one happens where data is

incomplete or missing owing to the possible limitation of observations. In our study of
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HOHMMs, the state sequence Q is hidden and viewed as the missing data, whilst the

process O is observed. The EM algorithm is presented in the discrete density case for

the subsequent discussion of the Baum-Welch algorithm and to remain consistent with the

previous discussion in evaluation and decoding. We assume the complete-data likelihood

function L(S | Q,O) = P(Q,O | S ), and have

P (Q,O | S ) = P (Q | O,S ) P (O | S ) . (1.5)

Let Ŝ be the set of reestimated parameters that generates an improved model compared

to that of S . Considering equation (1.5) and the log likelihood function l(Ŝ | Q,O) =

log P
(
O | Ŝ

)
=

∑
Q log P

(
Q | Ŝ

)
, we get

log P
(
Q,O | Ŝ

)
= log P

(
Q | O, Ŝ

)
+ log P

(
O | Ŝ

)
(1.6)

By taking a sum over Q and multiplying equation (1.6) by P(Q | O,S ), we can further

transform it into

log
P

(
O | Ŝ

)
P (O | S )

=
∑

Q

P (Q | O,S ) log P
(
O,Q | Ŝ

)
−

∑
Q

P (Q | O,S ) log P (O,Q | S )

+
∑

Q

P (Q | O,S )

log
P (Q | O,S )

P
(
Q | O, Ŝ

) . (1.7)

It is straightforward to show that
∑

Q P (Q | O,S )
(
log P(Q|O,S )

P
(
Q|O,Ŝ

)) ≥ 0. Let A
(
S , Ŝ

)
=∑

Q P (Q | O,S ) log P
(
O,Q | Ŝ

)
. With the previous notation, we can rewrite equation

(1.7) as

l
(
Ŝ | O

)
− l (S | O) ≥ A

(
S , Ŝ

)
− A (S ,S ) , (1.8)

where the strict inequality holds unless P
(
Q | O, Ŝ

)
= P (Q | O,S ) or Ŝ = S . The EM

procedure is iteratively constructed from the sequence
{
Ŝ (k)

}
k≥1

initiating with some value

Ŝ (0). Every iteration contains two steps:

1. Expectation step: calculate A
(
S , Ŝ (k)

)
.

2. Maximisation step: determine Ŝ (k+1) = argmaxS A
(
S , Ŝ (k)

)
.

When Ŝ , S in equation (1.8), an improved estimate Ŝ is produced by the iteration until

a stopping criterion is met to make Ŝ ≈ S . Then a local maximum of the likelihood is
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reached.

Two auxiliary variables need to be defined first in terms of forward and backward variables

for properly presenting the Baum-Welch algorithm. We denote εt (i1, . . . , ik+1) as the prob-

ability of being in state si1 , . . . , sik+1 at time t, . . . , t + k correspondingly given the model and

the observation sequence, where

εt (i1, . . . , ik+1) = P
(
qt = si, . . . qt+k = sik+1 | O,S

)
=

P
(
qt = si, . . . qt+k = sik+1 ,O1, . . . ,Ot+k− | S

)
P (O | S )

=
αt+k−1 (i1, . . . , ik) βt+1 (i2, . . . ik+1) πi1,...,ik+1 pik+1 (Ot+k)

P (O | S )
. (1.9)

The second variable ξt (i1, . . . , ik) is the probability of being in state si1 , . . . , sik at time

t, . . . , t + k − 1 correspondingly, given the observation sequence and the model. It can

be expressed by εt (i1, . . . , ik+1) as

ξt (i1, . . . , ik) =

T∑
ik+1=1

εt (i1, . . . , ik+1) (1.10)

By summing εt (i1, . . . , ik+1) over t, we get the expectation number of transitions from the

state sequence si1 , . . . , sik+1 . The expectation number of transitions from the state sequence

si1 , . . . , sik can be generated alike by summing up ξt (i1, . . . , ik) over t. Re-estimation for-

mulas then can be given by

ε̂t (i1) = ξ̂t (i1) (1.11)

π̂i1,...,ik+1 =

∑T−k
t=1 εt (i1, . . . , ik+1)∑T−k

t=1
∑N

ik+1=1
εt (i1, . . . , ik+1)

(1.12)

p̂ j (yk) =

∑T−k
t=1,s.t Ot=yk

ξt ( j)∑n
k=1

∑T−k
t=1,s.t Ot=yk

ξt ( j)
(1.13)

The Baum-Welch training process thereby can be performed by assuming a starting set of

parameters S0. Forward and backward variables, αt and βt, are then computed according to

equations (1.3) and (1.4) respectively, followed by calculating auxiliary variables εt and ξt

using equations (1.9) and (1.10). The parameters are re-estimated iteratively by equations



1.2. Literature review 11

(1.11) to (1.13) till estimates converge. As we mentioned before, the Baum-Welch algo-

rithm is viewed as a special case of the EM algorithm with the same goal of maximising

P(O | S ) by adjusting S given an HOHMM. To deal with hidden states and incomplete

data, the EM algorithm becomes significantly powerful in the parameter estimation and

filtering processes of HOHMMs.

1.2.6 Change of measure method in HOHMMs

To address filtering problems of HOHMMs in our research, relevant processes and optimal

filters can be generated generally through two ways: the semi-martingale method and the

change of probability measure approach. The prior one is direct but extremely complicated,

whilst the latter one is indirect but efficient in filtering applications. Zakai [22] pioneers

the application of change of measure technique in stochastic filtering. Elliott et al. [6] de-

rive optimal filters with this method for HMMs based on Girsanov’s Theorem. Mamon et

al. [14] develop closed-form solutions of the recursive filters for estimating optimally the

parameters of a commodity price model via change of measure.

Considering the wide use of this approach mostly in HMMs, one additional but critical

step ought to be implemented for our HOHMM setting. That is to transform a higher-order

Markov chain into a first-order Markov chain rather than to derive the change of probability

measure for HOHMMs directly. Kriouile et al. [10] develop an equivalent model specific

to transiting a second-order discrete HMM to a regular HMM. An detailed example is de-

scribed to convert a second-order two state Markov chain into a regular 2-state one with

efficient recursive algorithms [15]. Based on these previous work for processing second-

order HMMs, Du Preez extends order-reducing algorithms to a general HOHMM setting,

which enables any HOHMM to be transformed into its corresponding first-order HMM [5].

The essential idea is similar to the common method that converts higher-order differential

equations into a system of first-order differential equations. We follow their computing

algorithms by introducing a mapping variable that transforms a higher-order Markov chain

into a regular one. Then the change of probability measure method can be utilised to find

our filtering algorithms.

Equivalent to the real world measure P, an ideal measure P̃ is defined as a reference prob-

ability from a discrete-time version of Girsanov’s Theorem [9]. Under P̃, observations are

independent and identically random variables, and the Markov chain follows the same dy-
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Figure 1.1: Reference measure optimal filter derivation for HOHMMs

namics as those under P. To find optimal filters, an easy-to-compute framework then can

be carried out by Fubini’s Theorem, which allows the interchange of expectations and sum-

mations [11]. The results and calculations under the ideal measure P̃ can be traced back to

the real world measure P by invoking a reverse measure change. The derivation process of

reference probability optimal filters can be explicitly illustrated in Figure 1.1.

1.3 Structure of the thesis

This thesis consists of six chapters. An overview of HMMs and underpinnings of HOHMMs

is given in this Chapter; see previous section. The main contents focus on the results of

four related projects. We develop HMM and HOHMM settings for the dynamics of daily

average temperatures (DATs) for weather derivatives in Chapters 2 and 3, respectively. The

modelling, filtering and estimation problems for the respective electricity-spot and salmon

futures prices are addressed in Chapters 4 and 5. Some concluding remarks are given in

Chapter 6. The synopsis of the projects are briefly introduced below.
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1.3.1 Putting a price tag on temperature

A model for the evolution of DATs is put forward to support the analysis of weather deriva-

tives. The goal is to capture simultaneously the mean-reversion, seasonality and stochas-

ticity properties of the DATs process. An OU process modulated by an HMM is proposed

to model the both mean-reversion and stochasticity of a deseasonalised component. The

seasonality part is modelled by a combination of linear and sinusoidal functions. OU-

HMM filtering algorithms are established for the evolution of switching model parameters.

Consequently, adaptive parameter estimates are obtained. Numerical implementation of

the estimation technique using a data set compiled by the National Climatic Data Center

(NCDC) was conducted. A sensitivity analysis of the option prices with respect to model

parameters is included.

1.3.2 A self-updating model driven by a higher-order hidden Markov
chain for temperature dynamics

We develop a model for the evolution of DATs that could benefit the analysis of weather

derivatives in finance and economics as well as the modelling of time series data in meteo-

rology, hydrology and other branches of the sciences and engineering. Our focus is to cap-

ture the mean-reverting, seasonality, memory and stochastic properties of the temperature

movement and other time series exhibiting such properties. To model both mean-reversion

and stochasticity, a deseasonalised component is assumed to follow an OU process mod-

ulated by a higher-order hidden Markov chain, which takes into account short/long range

dependence in the data. The seasonality part is modelled through a combination of linear

and sinusoidal functions with appropriate coefficients and arguments. Furthermore, we put

forward a parameter estimation approach that establishes recursive HOHMM filtering algo-

rithms customised for the regime-switching evolution of model parameters. Quantities that

are functions of HOHMC characterise these filters. Utilising the EM method in conjunction

with the change of measure technique, optimal and self-updating parameter estimates are

obtained. We illustrate the numerical implementation of our model and estimation tech-

nique using a 4-year Toronto DATs data set compiled by the NCDC. We perform pertinent

model selection and validation diagnostics to assess the performance of our methodology.

It is shown that a 2-state HOHMM-based model best captures the empirical character-

istics of the temperature data under examination on the basis of various error-based and

information-criterion metrics.
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1.3.3 A higher-order Markov chain-modulated model for electricity
spot-price dynamics

Over the last three decades, the electricity sector worldwide underwent massive deregula-

tion. Power market participants have encountered a growing number of challenges due to

competition and other pertinent factors. As electricity is a non-storable commodity, its price

is extremely sensitive to changes in supply and demand. The evolution of electricity prices

exhibits pronounced mean reversion and cyclical patterns, possesses extreme volatility and

relatively frequently occurring spikes, and manifests presence of memory property. These

observed features necessitate the development of models aimed to simultaneously capture

such price characteristics for forecasting, risk management, and valuation of electricity-

driven derivatives. This study tackles the modelling and estimation problems under a new

paradigm that integrates the deterministic calendar seasons and stochastic factors govern-

ing electricity prices. The de-seasonalised component of our proposed model has both the

jump and mean-reverting properties to account for spikes and periodic cycles alternating

between lower price returns and compensating periods of higher price returns. The pa-

rameters of the de-seasonalised model components are also modulated by a higher-order

hidden Markov chain (HOHMC) in discrete time. This provides a mechanism to extract

latent information from historical data. The HOHMC’s state is interpreted as the “state of

the world” resulting from the interaction of various forces impacting the electricity market.

Filters are developed to generate optimal estimates of HOHMC-relevant quantities using

the observation process, and these provide online estimates of model parameters. Empiri-

cal demonstrations using the daily electricity spot prices, compiled by the Alberta Electric

System Operator (AESO), show that our HOHMM approach has considerable merits in

terms of price data fitting and forecasting metrics. Implications of our model to the pricing

of an electricity forward contract are also examined.

1.3.4 Modelling and forecasting futures-prices curves in the Fish Pool
market

This project aims to capture the evolution and salient features of fish-futures prices with a

flexible and dynamic approach via a higher-order hidden Markov model (HOHMM). The

parameters of a proposed futures-price model under a multivariate setting are governed by

a discrete-time HOHMM to account for the random switching of market or economic states

over time. Multi-dimensional filters derived, along with the application of the expectation-
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maximisation (EM) algorithm, give rise to a complete on-line estimation of futures-price

model parameters. Our numerical implementation analyses the Fish Pool’s salmon futures

prices. The goodness of fit and forecasting performance of our approach are assessed using

appropriate statistical metrics. Our empirical findings illustrate that the HOHMM-based

approach possesses better fitting capacity and excellent short-run predictive ability of fu-

tures prices vis-á-vis certain modelling benchmarks.
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Chapter 2

Putting a price tag on temperature

2.1 Introduction

We are all familiar with car and home insurance policies. The cost and overall value of these

contracts are determined by the likelihood of occurrence of particular calamities, disasters

and accidents, amongst other risk factors. But, how does one insure against the vagaries of

weather? Specifically, what is the price of a contract whose value depends on how hot or

cold it will be on a given day in the future?

We shall consider a modelling approach that provides support for temperature-linked con-

tracts and weather-related derivatives. It is estimated that about 39.1% of the U.S. gross do-

mestic product is weather-sensitive [13], and over 90% of weather derivatives are temperature-

based [14]. The first weather-derivative transaction took place in 1997 executed by Aquila

Energy and embedded in a power contract [8], and in 1999 the first exchange-traded tem-

perature derivative was launched in the Chicago Mercantile Exchange (CME). The volume

of weather derivatives, since then, has grown rapidly both in the exchange and over-the-

counter (OTC) markets.

Weather-driven futures and options trading in the CME are written on the following indices:

temperature heating degree days (HDD), cooling degree days (CDD) and cumulative av-

erage temperature (CAT). These indices are not tradeable or storable. Hence, the usual

no-arbitrage valuation methodology is not necessarily valid in pricing such contracts [10].

Assuming the existence of an appropriate pricing measure, our aim is to develop a model

that could accurately capture the salient features of the temperature data aiding the accurate

pricing of weather derivatives.

18
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In the literature, several studies were conducted to deal with the valuation of weather deriva-

tives. The historical burn analysis (HBA) is adopted by most investors given its ease of

replication [12]. This is because the HBA assumes that the distribution of the expected

value of the temperature-based derivatives simply follow the historical data; there is no

construction of any stochastic models and fitting for the dynamics of the underlying vari-

ables. It is argued, however, in [25] that HBA is bound to be biased and prone to large

pricing errors. As a suitable alternative, time-series methods are proposed [25] and the

marginal substitution value principle of mathematical economics could be employed for

pricing [10]. Indifference pricing was also considered in [38], and a comparison of HBA,

Black-Scholes-Merton approximation, and an equilibrium Monte Carlo simulation was ex-

amined in [32].

The Ornstein-Uhlenbeck (OU) process is tapped in reproducing the dynamic behaviour of

the DATs and hence in generating the temperature-based indices. This is aligned to the

concept of adopting a continuous-time stochastic process to capture the dynamics of tem-

perature [11]. Incorporating seasonalities [1] enriches the model. In [3], DAT variations

are modelled with an OU process with innovations following the generalised hyperbolic

Levy process.

A one-state stochastic process cannot describe the behaviour of temperature with great pre-

cision and flexibility, especially when there are drastic changes in regimes attributed to

occasional climatic changes. Thus, the regime-switching OU model is considered in [14],

which seems to be the first paper embedding a regime-switching approach to capture the

evolution of the time series temperature data. However, no dynamic estimation, not even

a static one, was provided in [14] leaving a big gap in implementing a regime-switching

approach involving observed data until the publication of [37] that employs a higher-order

HMM. We note though that [37], extending the developments in [36], focuses only estima-

tion and model fitting, and the pricing and risk measurement of pertinent contracts under

such a model setting remain unaddressed. In this chapter, we apply hidden Markov model

(HMM) filtering algorithms to provide optimal parameter model estimates for a successful

implementation of the valuation and risk management of weather futures and option prod-

ucts.

Our exposition is organised in the following way. Section 2.2 presents a self-contained for-
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mulation of the temperature modelling using a discrete-time HMM modulating the model

parameters. In Section 2.3, we derive recursive filtering equations for various quantities

of HMM via the change of reference probability measure method. Our self-updating pa-

rameter estimation scheme is laid out in Section 2.4. Numerical work demonstrating the

applicability of our proposed model and estimation technique to a four-year Toronto tem-

perature data set is detailed in 2.5; and in this section, mechanics of the best-model selection

are also outlined through forecasting and penalised log-likelihood criteria. In Section 2.6,

the valuation of a temperature option is discussed and a sensitivity analysis of the option

price with respect to parameters of our proposed model is included. Section 2.7 gives some

concluding remarks.

2.2 Model description

Notation: All vectors and matrices will be denoted by bold English/Greek letters in lower-

case and bold capitalised English/Greek letters, respectively.

2.2.1 Model for temperature derivatives

As weather derivatives are written on HDD, CDD and CAT, we put forward a model to

capture these measurements. HDD and CDD quantify the respective demands of heating

and cooling of a particular location. Since temperature could be observed at any time of a

given day, given the time interval [τ1, τ2] with τ1 < τ2, we can regard it as an Itô process so

that the respective continuous-time functional forms of HDD, CDD and CAT are

HDD =

∫ τ2

τ1

max (Tbase − Ts, 0) ds,

CDD =

∫ τ2

τ1

max (Ts − Tbase, 0) ds,

and CAT =

∫ τ2

τ1

Tsds, (2.1)

where Tbase is the base temperature, usually given as 65◦F, or 18◦C in the market. In

practice, the daily average temperatures (DATs) are measured on a daily basis so that the
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temperature-based indices must be considered in discrete time defined by

HDD =

τ2∑
t=τ1

max (Tbase − Tt, 0) , CDD =

τ2∑
t=τ1

max (Tt − Tbase, 0) , and CAT =

τ2∑
t=τ1

Tt,

(2.2)

where Tt is the DAT on day t computed as
Tmax + Tmin

2
. Clearly, CAT is simply the sum

of DATs over the contract period. Weather contracts typically mature in a month or sea-

son. An HDD contract’s period spans the period covering October in one year to April of

the next year. A CDD contract’s period covers the warm season, i.e., starting April until

October of the same year. Overlapping months, October and April, in the CDD and HDD

contracts are termed as transition or shoulder months. Following the rationale in [5], the

needed indices as well as the dynamic representation of DATs will be obtained from Tt,

which we are going to model.

Suppose (Ω,F , P) is an underlying probability space for the process Tt given by,

Tt = Xt + S t. (2.3)

Equation (2.3) is composed of Xt that follows an OU process with HMM-driven parameters

and S t described by a deterministic function to capture the seasonal trends. Motivated by

[5], the seasonal component is

S t = at + b +

3∑
h=1

[
ch sin

(
dht

2π
365

)
+ eh cos

(
dht

2π
365

)]
, (2.4)

where d1 = 1, d2 = 2, d3 = 4 to account for the respective yearly, semi-annual and quarterly

patterns.

2.2.2 The HMM-modulated OU process

The OU process Xt in (2.3) satisfies the stochastic differential equation (SDE)

dXt = α(θ − Xt)dt + ξdBt, (2.5)

where Bt is a standard Brownian motion under P. The solution, by Itô’s lemma, of (2.5) is

Xt = Xse−α(t−s) + (1 − e−α(t−s))θ + ξe−αt
∫ t

s
eαudBu (2.6)
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for s ≤ t. The explicit representation of the temperature process Tt is then given by

Tt = S t + Xse−α(t−s) + (1 − e−α(t−s))θ + ξe−αt
∫ t

s
eαudBu. (2.7)

The discretised versions of (2.6) and (2.7), by approximating the distributions of their re-

spective stochastic-integral components, are given by

Xk+1 = e−α4tk+1 Xk +
(
1 − e−α4tk+1

)
θ + ξ

√
1 − e−2α4tk+1

2α
zk+1, (2.8)

where 4tk+1 = tk+1 − tk and {zk+1} is a sequence of independent and identically distributed

(IID) standard normal random variables.

As indicated in Section 2.1, having constant parameters in the OU process might not be

adequate in describing the dynamic switches of regimes resulting from the interactions of

various market and economic factors. In the succeeding discussion, the parameters in (2.8)

will be governed by a homogeneous Markov chain yk with finite states in discrete time to

model the behaviour of Xt and hence, Tt.

To simplify the ensuing algebraic calculations, the state space is associated with the canon-

ical basis of RN , which is {e1, e2, . . . , eN}, ei = (0, . . . , 0, 1, 0, . . . , 0)> with 1 in the ith

position. Here, N is the total number of states and > denotes the transpose of a matrix.

The dynamics of yk is yk+1 = Πyk + ζk+1, where Π = (π ji) ∈ RN×N , ζk+1 is a martingale

increment, and π ji = P(yk = e j|yk−1 = ei) with
∑N

j=1 π ji = 1. Let P = (p ji) ∈ RN×N de-

note the intensity matrix for the continuous-time Markov chain process at time t, where,

p ji = lim∆t→0
π ji(t, t+∆t)

∆t , for j , i, (cf Cox and Miller [7]), with p ji ≥ 0 and
∑N

i=1 p ji = 0.

Given that our HMM filtering methodology is under the discrete-time framework, it is nec-

essary to recall the connection of the rate matrix P to the transition probability matrix Π,

which is its discrete-time counterpart providing inputs to the recursive filtering equations

in Section 2.3 and eventually to the option pricing formulae in Section 2.6. From Grimmett

and Stirzaker [27] (see as well Siu, et al [33]), Π is the exponential matrix of P, i.e.,

Π = exp (P) =

∞∑
k=0

Pk

k!
. (2.9)

A handy technique to convert an N × N matrix P into an N × N Π is to take advantage

of the diagonalisability of P inherent in our modelling formulation. If P has eigenvalues
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b1, b2, . . . , bN and corresponding eigenvectors j1, j2, . . . jN , then P = JBJ−1, where B is a

diagonal matrix with b1, b2, . . . , bN as its diagonal elements, and J = {j1, j2, . . . jN} is an

invertible matrix. Furthermore,

exp (P) = exp
(
JBJ−1

)
=I + JBJ−1 + J

B2

2!
J−1 + · · ·

=J
(
I + B +

B2

2!
+ · · ·

)
J−1

=J exp (B) J−1. (2.10)

Both (2.9) and (2.10) can be evaluated numerically by almost all mathematical or statistical

software packages nowadays.

We assume the process Xk in (2.8) have parameters that depend on yk, i.e.,

Xk+1 = e−α(yk)4tk+1 Xk + (1 − e−α(yk)4tk+1)θ(yk) + ξ(yk)

√
1 − e−2α(yk)4tk+1

2α(yk)
zk+1, (2.11)

and Tk+1 = S k+1 + e−α(yk)4tk+1 Xk + (1 − e−α(yk)4tk+1)θ(yk) + ξ(yk)

√
1 − e−2α(yk)4tk+1

2α(yk)
zk+1.

(2.12)

With yk’s state space, αk := α(yk) = 〈α, yk〉, θk := θ(yk) = 〈θ, yk〉, and ξk := ξ(yk) = 〈ξ, yt〉,

where 〈·, ·〉 is the inner product in RN . Clearly, yk makes the models in (2.11) and (2.12)

regime-switching.

2.3 Recursive filtering

2.3.1 Change of reference probability measure

We shall introduce an ideal probability measure P̃, where calculations of the recursive fil-

ters are manageable to carry out. This is because under P̃, the observations are independent,

identically distributed (IID) random variables. The real measure P can be recovered via the

change of measure technique. The state of the HMM will be estimated from the noisily ob-

served data set. Under the reference measure P̃, the dynamics of yk remain unchanged but
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are independent of the observed data series; see the underlying principle utilised in Elliott

et al. [19].

A discrete-time version of the Girsanov’s theorem enables us to back out P from P̃ [19].

The real-world measure P is recovered by considering the Radon-Nikodym derivative

dP
dP̃

∣∣∣∣∣
Fk

= Ψk =

k∏
l=1

ϕl, k ≥ 1,

where

ϕl =

φ
{
ξ(yl−1)−1

[(
1−e−2α(yl−1)4tl−1

2α(yl−1)

)− 1
2
]
β(yl−1)

}
(
ξ(yl−1)

√
1−e−2α(yl−1)4tl−1

2α(yl−1)

)
φ (Xl)

. (2.13)

In (2.13), φ is the probability density function of a standard normal random variable,

ϕ0 = 1, {ϕl, l ∈ Z+} is an Fl-martingale under P, and β(yl−1) = Xl − e−α(yl−1)Xl−1 − (1 −

e−α(yl−1)4tl−1)θ(yl−1). With the aid of (2.13), the derivation of the recursive filters for yk and

related quantities under P̃ is facilitated, and then the calculated results can be re-interpreted

under P via a reverse change of measure.

2.3.2 Calculation of recursive filters

Suppose Xk is the filtration generated by the observations of Xk, which ‘conceal’ the ‘true’

state of yk. We aim to obtain optimal estimates of quantities that are functions of yk under P

through their adaptive filters calculated using the conditional expectations Xk under P̃ and

using the Bayes’ theorem.

So, for instance, to estimate a scalar quantity U under P, Bayes’ theorem for conditional

expectation gives

E[Uk|Xk] =
Ẽ[ΨkUk|Xk]
Ẽ[Ψk|Xk]

(2.14)

where E[ · ] and Ẽ[ · ] are the conditional expectations under P and P̃, respectively. As in

[18], we consider an Fl-adapted Ul, having the form

Ul = Ul−1 + gl + 〈hl, ol〉 + rl f (Xl) (2.15)

where g, hl, and rl are F -predictable; and f is a scalar-valued function and ol = yl +Πyl−1.
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Write γk(Uk) := Ẽ[ΨkUk|Xk]. Therefore, equation (2.14) can be expressed as
γk(Uk)
γk(1)

.

Since γk(Uk) = γk(Uk〈1, yk〉) = 〈1, γk(Ukyk)〉, the filter for any adapted process U has the

representation

E[Uk|Xk] =
〈1, γk(Ukyk)〉
〈1, γk(yk)〉

.

Invoking Theorem (5.3) of [15] and tailoring it to our modelling framework and notation,

the recursion for γk(Ukyk) is

γk(Ukyk) =

N∑
i=1

Λi(Xk)
[
〈ei, γk−1(Uk−1yk−1)〉Πei + 〈ei, γk−1(gkyk − 1)〉Πei

+ (diag(Πei) −Πei ⊗Πei)γk−1(hk〈ei, yk−1)〉 + γk−1(rk〈ei, yk−1〉) f (Xk)Πei

]
,

(2.16)

where ⊗ stands for the tensor product of vectors, diag( · ) is a diagonal matrix, and Λi(Xk)

is defined by

Λi(Xl) = exp

−
[
e−αi4(l−1) Xl−1 + (1 − e−αi4(l−1))θi

]
Xl(

ξi

√
1−e−2αi4(l−1)

2αi

)2 −

[
e−αi4(l−1) Xl−1 + (1 − e−αi4(l−1))θi

]2

2
(
ξi

√
1−e−2αi4(l−1)

2αi

)2

 .
(2.17)

For the estimation of model parameters in the next section, we require the recursive filters

of the following scalar quantities.

(i) The number of jumps from state er to state es up to time k:

J sr
k =

k∑
l=1

〈yl−1, er〉〈yl, es〉 = J sr
k−1 + πsr〈yk−1, es〉 + 〈yk−1, er〉〈ok, es〉. (2.18)

(ii) The number of occupations up to time k, i.e., the amount of time that yk spent in state

er:

O r
k =

k∑
l=1

〈yl−1, er〉 = O r
k−1 + 〈yk−1, er〉. (2.19)

(iii) The auxiliary process dependent on yk for the function f up to time k in state er:

T r
k ( f ) =

k∑
l=1

f (Xl)〈yl−1, er〉 = T r
k−1( f ) + f (Xk)〈yk−1, er〉. (2.20)
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The estimator for the state ei of yk is readily obtained by taking Uk = U0 = 1, gk = hk =

rk = 0 in equation (2.15). It has the simplified form

γk(yk) =

N∑
i=1

Λi(Xk)Πei〈ei, γk−1(yk−1)〉. (2.21)

By virtue of (2.16) with U0 = 0,Uk = J sr
k , gk = πsr〈yk−1, er〉, hk = 〈yk−1, er〉es and rk = 0,

we get

γk(J sr
k yk) =

N∑
i=1

Λi(Xk)〈γk−1(J sr
k−1yk−1), ei〉Πei + Λr(Xk)γk−1(〈yk−1, er〉)πsres. (2.22)

Setting U0 = 0,Uk = O r
k , gk = 〈yk−1, er〉, and hk = rk = 0 in (2.16) and using (2.14), we

obtain

γk(O r
kyk) =

N∑
i=1

Λi(Xk)〈γk−1(O r
k−1yk−1), ei〉Πei + Λr(Xk)γk−1(〈yk−1, er〉)Πer. (2.23)

For the auxiliary process T r
k in (2.20), where f has the form f (X) = X, f (X) = X2, or f (X) =

Xl+1Xl, we utilise (2.16) with Uk = T r
k ( f ),U0 = gk = hk = 0, and rk = 〈yk−1, er〉 to have

γk(T r
k ( f )yk) =

N∑
i=1

Λi(Xk)〈γk−1(T r
k−1( f )yk−1), ei〉Πei + Λr(Xk)〈γk−1(yk−1), er〉 f (Xk)Πer.

(2.24)

2.4 Optimal parameter estimation

We recall the Expectation-Maximisation (EM) algorithm [17] starting with a family of

probability measures {Pυ, υ ∈ Υ} on (Ω, F ), where Υ is the set of parameters. Let Pυ be

absolutely continuous with reference to a fixed probability measure P0. Assume that the

observations {x1, x2, · · · , xk} of Xk are available and Xk ⊂ Fk. The likelihood as a function

of information in Xk is

L(υ) = E0
[
dPυ

dP0

∣∣∣∣∣∣Xk

]
. (2.25)



2.4. Optimal parameter estimation 27

The goal is to find the estimate of υ that maximises L(υ), υ̂ ∈ argmaxυ∈ΥL(υ). Now, consider

Q(υ; υ̂m) = Eυ̂m

[
log

dPυ

dPυ̂m

∣∣∣∣∣∣Xk

]
. (2.26)

The EM algorithm is implemented as follows. First, let m = 0 and choose the initial value

υ̂0 for υ. The first iteration is computed as Q(υ; υ̂0) = Eυ̂0[log dPυ

dPυ̂0
|Xk], and υ̂1 is found to

make Q(̂υ1; υ̂0) ≥ Q(υ; υ̂0). Second, the E-step computes (2.26). Third, the M-step finds

υ̂m+1 such that Q(̂υm+1; υ̂m) ≥ Q(υ; υ̂m); υ̂m+1 ∈ argmaxυ∈ΥQ(υ; υ̂m). The E-step and M-step

are repeated until some stopping criterion is met, e.g., |̂υm+1−υ̂m| < ε, where ε is sufficiently

small.

Let δ (yk) = e−α(yk)4tk and η (yk) =
(
1 − e−α(yk)4tk

)
θ (yk) . From (2.8), Xk+1 has a normal

distribution with

mean µ(yk) = δ (yk) Xk + η (yk) and variance ε2 (yk) = ξ2(yk)
1 − e−2α(yk)4tk

2α(yk)
.

Hence, at state i,

αi = −
1
4tk

log δi, θi =
ηi

1 − δi
and ξ2

i =
−

2ε2
i
4tk

log δi

1 − δ2
i

. (2.27)

The complete parameter estimation of (2.8) is attained by applying the EM algorithm and

using the adaptive filters (2.18), (2.19) and (2.20). We then have the next result.

Proposition 2.4.1 The EM estimates for model parameters are

δ̂i =
T̂ i

k (Xk−1, Xk) − ηiT̂ i
k (Xk−1)

T̂ i
k (X2

k−1)
, (2.28)

η̂i =
T̂ i

k (Xk) − δiT̂ i
k (Xk−1)

Ô i
k

, (2.29)

ε̂2
i =

T̂ i
k

(
X2

k

)
+ δ2

i T̂
i

k

(
X2

k

)
+ η2

i B̂
i
k + 2η2

i δiT̂ i
k (Xk−1) − 2δiT̂ i

k (Xk−1, Xk) − 2ηiT̂ i
k (Xk)

Ô t
k

,

(2.30)
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and

π̂ ji =
Ĵ ji

k

Ô i
k

. (2.31)

Proof The proofs of (2.28)–(2.31) are outlined in Appendix A.

Remark 1: Having calculated δi, ηi and ε2
i in conjunction with (2.27), our proposed model

in (2.8) is fully determined as {α̂i, ξ̂i, θ̂i} is explicitly available. The establishment of the

recursive filters implies that parameter estimates are self-calibrating, i.e., they are updated

automatically every time there is new information.

Remark 2: The filtering and parameter estimation procedure, as laid out above, is distinct

from and more clear-cut than the one given in Erlwein and Mamon [19]. In this research

work, the EM estimates are provided directly for each parameter appearing in the mean of

the OU process; whereas in [19], the EM estimates rely first on the estimate of the entire

drift component.

2.5 Numerical implementation

We implement the results from Section 2.4 on the four-year Toronto DATs (01 Jan 2011 –

31 Dec 2014 with 1461 data points) compiled by the NCDC. The seasonal component S t

is removed from Tt (see equation (2.3)) before applying the recursive filters to Xt. The data

set is then grouped into batches of equal sizes to perform the filtering.

2.5.1 The deterministic component

The deterministic component S t in equation (2.3) is fitted to the entire data set to obtain

the estimates of its coefficients and arguments. Noting that S t is a linear combination of

sinusoidal functions, we use the built-in function of linear regression in the R software to

accomplish the fitting process. This is complemented by a stepwise regression procedure

to identify the dependent variable relevant to S t. The R function ‘step’ is then applied to

perform the selection of explanatory variables.
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Mean Std Deviation Std Error Min Max Skewness Kurtosis

8.88 10.65 0.28 -19.25 31.5 -0.23 -0.92

Table 2.1: DATs’ descriptive statistics

Parameter Estimate 95% confidence interval

a -0.0018 (-0.00235, -0.00127)

b 10.2111 (9.75806, 10.66405)

c1 -5.2948 (-5.61554, -4.97416)

c2 -0.6385 (-0.95550, -0.32341)

c3 -0.4131 (-0.72794, -0.09821)

e1 -12.7240 (-13.03831, -12.40979)

Table 2.2: Parameter estimates for the seasonality component S t

Table 2.1 shows the DATs’ descriptive statistics, which could guide in selecting initial val-

ues. Table 2.2 presents the parameter estimates of the deterministic S t with an adjusted

R-squared (coefficient of determination) of 0.835. This means 83.5% of the variation in

the response Tt can be explained well by the model given the regressor variables in equa-

tion (2.4) except for e2 and e3. Therefore, these variables were eliminated. The fitted

seasonality component S t is presented in Figure 2.1 together with the actual DATs. The

characteristics of the plotted S t are congruous with the temperature movement in both the

summer and winter seasons. With the given values of Tt and S t, Xt is calculated and then

treated as the observation process for our filtering and parameter estimation implementa-

tion.

2.5.2 The stochastic component

The seasonal trend of the actual data is adequately captured even in the presence of Xt

and some noise. The deseasonalised stochastic component Xt = Tt − S t from (2.3) is also

depicted in Figure 2.2. We process Xt in 73 groups with 20 data points in each processing

window, where 4t = 1 day. So, we are updating roughly every 3 weeks with the aid of the

recursive filtering equations. Other filtering window sizes were also tested and we find that

the size only slightly affects the results; similar outcomes are produced even with different

window sizes.
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Figure 2.1: Fitted seasonal component and actual observations
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Figure 2.2: Deseasonalised stochastic component Xt
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2.5.2.1 Initial values for the parameter estimates

We assign
1
N

for the initial transition probabilities. The other initial parameter values for

the filtering equations are based on the parameter estimates for the Xt process under a single

state. We consider the single-state version of (2.8), which is

Xk+1 = δXk + η + εzk+1, (2.32)

where

δ = e−α4tk , η =
(
1 − e−α4tk) θ, ε2 = ξ2 1 − e−2α4tk

2α
.

Using equation (2.32), the likelihood function of Xk is

L (Xk; δ, η, ε) =

m∏
k=1

1
√

2πε
exp

(
−

(Xk − η − δXk−1)2

2%2

)
, (2.33)

where 1 ≤ m ≤ 1460 in our case. Equation (2.33) entails the solution to

argmax
(
log L (Xk; δ, η, ε)

)
=

m∑
k=1

(
log

1
√

2πε
−

(Xk − η − δXk−1)2

2ε2

)
. (2.34)

We use, with appropriate adjustments in our problem formulation, the R function ‘optim’

to solve equation (2.34). The results are δ̂ = 0.6518, η̂ = −0.001624 and ε̂ = 0.4271.

These are employed as benchmarks to select initial values for parameter estimates in the

modelling framework with more than 1 regime. They serve as a good guide in launching

the filtering recursions producing optimal values for various quantities leading to the EM

parameter estimates of the model. We must also ensure that ε > 0 to avoid bizarre outcomes

when equation (2.34) is applied.

2.5.2.2 Evolution of parameter estimates

To process the data, we apply recursive filtering equations (2.22)-(2.24), and then use the

results in 73 passes to feed into (2.28)-(2.31) to find the optimal parameter estimates. The

implementation was made on two-state and three-state HMCs, and Figure 2.3 displays the

movement, through each algorithm pass, of the optimal estimates for θ, α, and ξ under a

2-state set up. All three parameters exhibit convergence regardless of the choice of initial

values provided they do not substantially deviate from the values suggested in our one-state

ML estimation.
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The choice of initial values could impact the speed of convergence, but eventually all pa-

rameter estimates approach certain unique values. The parameter estimates in the second

state are characterised by lower mean-reverting speed, but higher mean-reverting level and

volatility in comparison to those in state 1. Figure 2.4 depicts the transition probabilities

with stable evolutions. A similar pattern in the evolution of parameter estimates for θ, α,

and ξ under the 3-state model is shown in Figure 2.5. In this case, we see that the mean-

reverting level and volatility in state 1 are the highest but with the lowest speed. The prob-

ability transition estimates π ji are displayed in Figure 2.6. The behaviours of the parameter

evolutions in a two-state setting are similar. Stability in the evolution of estimates for θ, α, ξ

and Π is attained by the self-calibrating HMM algorithm after approximately 26 algorithm

passes in both the 2-state and 3-state HMM settings. To quantify the variance of the various

estimators, we calculate the Fisher information matrix I (v) = −Ev
(
∂2

∂v2 log L (X; v)
)
, which

bounds the asymptotic variance of the MLEs and v is a vector of parameters. The MLE is

consistent and possesses an asymptotically normal sampling distribution [36]. Hence, we

utilise the limiting distribution of the MLE for v̂ to dynamically obtain the 95% confidence

interval. For a generic (scalar) MLE v̂i ∈ v̂, this is given by v̂i ± 1.96
1√

I
(̂
v
)

ii

.

The entries of the Fisher information matrix are derived from the log-likelihood expressions

given in the Appendix A and the results are summarised below.

I
(
π ji

)
=

Ĵ ji
k

π2
ji

, I (δi) =
T̂ i

k

(
X2

k−1

)
ε2

i

, I (ηi) =
Ô i

k

ε2
i

, and

I (εi) = −
Ô i

k

ε2
i

+
3
ε4

i

(
T̂ i

k

(
X2

k

)
+ Ô i

kϑ
2
t + δ2

i T̂
i

k

(
X2

k−1

)
− 2T̂ i

k (Xk) ηi

− 2T̂ i
k (Xk−1, Xk) δi + 2T̂ i

k (Xk−1) ηiδi

)
.

The standard errors (SEs) of all parameter estimates for the 1-, 2- and 3-state models are

getting smaller as more algorithm passes are being run. The narrow ranges of the SEs

shown in Table 2.3 indicate that precise estimates are achieved by the proposed estimation

technique here (via HMM filtering and the EM algorithm).

2.5.3 Analysis of regime and model selection

In order to find out the best-fitting model that captures the dynamics of the process Xt, we

perform a one-step ahead forecasting under the HMM setting, i.e., comparing the predic-

tions of the stochastic component and DATs. This is supplemented with an AIC analysis
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Figure 2.3: Evolution of parameter estimates for θ, α, and ξ under a 2-state model
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Figure 2.4: Evolution of transition probability under a 2-state model

Parameter 1-state model 2-state model 3-state model

Estimates Bound of SEs

Lower Upper Lower Upper Lower Upper

δ̂i 3.62152×10−90 0.84905 2.88315×10−93 5.69605×10−2 1.23351×10−89 0.50619

η̂i 3.13262×10−90 0.81819 2.49571×10−93 5.04276×10−2 1.28888×10−89 0.50535

ε̂i 2.21510×10−90 0.54026 1.08302×10−93 2.36474×10−2 7.17870×10−90 0.34230

π̂ ji 4.79291×10−90 1.08185 1.24810×10−93 3.60257×10−2 3.52893×10−90 0.34041

Table 2.3: Interval of standard errors for parameter estimates under 1-, 2- and 3-state mod-

els
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Figure 2.6: Evolution of transition probability under a 3-state model

as a guide in choosing the optimal number of states.

2.5.3.1 Assessment of predicted temperature values

We evaluate the one-step ahead predictions for DATs as an additional diagnostic for model

fitting. The expected value of the Xk+1 given the available information up to time k provides

the forecast

E (Xk+1 | Xk) = E (δ (yk) Xk + η (yk) + ε (yk) zk+1 | Xk) =
〈
δ, ŷk

〉
Xk +

〈
η, ŷk

〉
. (2.35)

Figures 2.7 illustrates the one-step ahead forecasts for the deseasonalised process Xk vis-á-

vis DATs under a 2-state HMM set-up in accordance with (2.35).

A comparison of the observed seasonal HDD and the expected seasonal HDD for the en-

tire period (2011-2014) under the 2-state model is presented in Figure 2.8. Clearly, the

expected seasonal HDD obtained from the model follows closely the actual seasonal HDD.

Furthermore, we examine an upward 6-month period, in a magnified view of forecasting,

of the DATs under all 3 states settings as shown in Figure 2.9. Visually, all forecasts are

quite close to the actual DATs and the temperatures’ trends and dynamics are captured well

by our proposed self-calibrating estimation approach.



2.5. Numerical implementation 37

01
/0

2/
20

11

03
/0

2/
20

11

05
/0

2/
20

11

07
/0

2/
20

11

09
/0

2/
20

11

11
/0

2/
20

11

01
/0

2/
20

12

03
/0

2/
20

12

05
/0

2/
20

12

07
/0

2/
20

12

09
/0

2/
20

12

11
/0

2/
20

12

01
/0

2/
20

13

03
/0

2/
20

13

05
/0

2/
20

13

07
/0

2/
20

13

09
/0

2/
20

13

11
/0

2/
20

13

01
/0

2/
20

14

03
/0

2/
20

14

05
/0

2/
20

14

07
/0

2/
20

14

09
/0

2/
20

14

11
/0

2/
20

14

-15

-10

-5

0

5

10

15

T
em

pe
ra

tu
re

 (
C

el
si

us
)

times

actual deseasonalized observations
forecast of deseasonalized observations

01
/0

2/
20

11

03
/0

2/
20

11

05
/0

2/
20

11

07
/0

2/
20

11

09
/0

2/
20

11

11
/0

2/
20

11

01
/0

2/
20

12

03
/0

2/
20

12

05
/0

2/
20

12

07
/0

2/
20

12

09
/0

2/
20

12

11
/0

2/
20

12

01
/0

2/
20

13

03
/0

2/
20

13

05
/0

2/
20

13

07
/0

2/
20

13

09
/0

2/
20

13

11
/0

2/
20

13

01
/0

2/
20

14

03
/0

2/
20

14

05
/0

2/
20

14

07
/0

2/
20

14

09
/0

2/
20

14

11
/0

2/
20

14

-20

-10

0

10

20

30

T
em

pe
ra

tu
re

 (
C

el
si

us
)

times

actual DATs
forecast of DATs

Figure 2.7: One-step ahead forecasts under a 2-state model
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Figure 2.8: Comparison of the expected HDD and actual HDD in a 2-state model
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Figure 2.9: Comparison of one step ahead forecasts in 1-, 2-, and 3-state HMMs
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HMM setting Deseasonalised Xk DATs Tk

1-state 2-state 3-state 1-state 2-state 3-state

MSE 0.42702 0.42700 0.42757 10.67538 10.67504 10.68929

RMSE 0.65346 0.65345 0.65389 3.26732 3.26727 3.26945

MAE 0.50467 0.50465 0.50584 2.52334 2.52324 2.52921

RAE 0.74435 0.74432 0.74608 0.27539 0.27538 0.27603

Table 2.4: Results of error analysis for Xk and Tk under different model settings

2.5.3.2 Likelihood-based model selection and error analysis

Visual inspection is not sufficient in deciding which model does the job well especially

when the actual values are very close to the predicted values under several competing mod-

els. We, therefore, provide quantitative approaches in gauging the ‘best-performing’ model

on the basis of information-criterion and minimised-error metrics. Following [19], we ex-

amine the mean-squared error (MSE), root-mean-squared error (RMSE), absolute-mean

error (MAE), and relative-absolute error (RAE) in assessing the one-step ahead predictions

under the 1-, 2- and 3-state HMMs. Suppose, k = 1, 2, . . . , Xk is the actual value of the

process at time k, X̂k is the predicted value at time k given available data up to time k− 1, X̄

is the mean of all Xk’s, and K = 1460 is the total number of predicted observations. Then

the error metrics are computed as

MSE =

∑K
k=1

(
X̂k − Xk

)2

K
, RMSE =

√∑K
k=1

(
X̂k − Xk

)2

K
,

MAE =

∑K
k=1 |X̂k − Xk|

K
, and RAE =

∑K
k=1 |X̂k − Xk|∑K
k=1 |X̂k − X̄|

.

Table 2.4 displays the various error values concerning the one-step ahead predictions for

the model’s stochastic component Xk and observed DATs Tk. Whilst the differences in er-

rors are generally small, the 2-state model outperforms the 1- and 3-state models under all

4 error measures. We also investigated the 4-state HMM but found no evidence of even

further minimal improvements. Increasing the number of regimes may outweigh the bene-

fit of model flexibility as there is a corresponding increase as well in the parameters to be

estimated.



40 Chapter 2. Putting a price tag on temperature

To evaluate the statistical significance for the mean difference of errors, a t-test involving

three pairs of model settings is conducted on the RMSEs generated using the bootstrapping

method. Firstly, a bootstrapped sample of the same size 1460 is generated by sampling

with replacement from the original squared errors for each model setting. Secondly, the

square root of the average squared errors for every bootstrapped sample is computed. After

running the two-step bootsrapped procedure 10,000 times, the bootstrapped RMSEs are

then produced for the paired t-test.

We report in Table 2.5 the Bonferroni-corrected p-values accounting for the pairwise set-

tings. With a significance level of 5%, we see that the results for the 1- and 2-state settings

are statistically different and the same conclusion holds for the results involving 1- and 3-

state settings. The results for the 2- and 3-state settings though are not statistically different.

This implies two things: (1) there is a benefit in adding regime-switching features to the

model setting; and (2) a 2-state model is sufficient for the DATs series under examination.

These findings support the observations in Section 2.5.3.1.

1-state 1-state 2-state

t-test vs vs vs

2-state 3-state 3-state

p-value 0.01259 7.06352×10−5 0.57193

Table 2.5: Bonferroni-adjusted p-values of a t-test applied on bootsrapped-generated RM-

SEs

To balance the model’s goodness of fit and complexity, we also adopt the Akaike Infor-

mation Criterion (AIC) in choosing the ‘best-performing’ model. The AIC is calculated

as

AIC = −2 log L (X; v) + 2ω, (2.36)

where ω is the number of estimated parameters included in the model, and log L (X; v)

denotes the model’s loglikelihood evaluated using the data X and a set of parameters v. The

preferred model has the lowest AIC value. In terms of the observed Xk’s and parameter set

v, the loglikelihood is given by

log L (Xk; v) =

B∑
k=1

log
 1
√

2πε (yk−1)

 − Xk − η (yk−1) − δ (yk−1)
2ε2 (yk−1)

 , (2.37)
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where B is the number of observations in each algorithm pass.

From equation (2.36), a model that has high loglikelihood is favoured and a complex model

(in the sense of having many parameters) is penalised. Looking at (2.11) and Π, we obtain

the number of parameters to be estimated for each model setting and this is shown in Table

2.6. These inputs are necessary to complete the calculation of (2.36).

Setting 1-state 2-state 3-state N-state

No. of parameters 3 8 15 3N + (N − 1) N

Table 2.6: Number of parameters to be estimated under HMM

With the aid of equation (2.37) and Table 2.6, we calculated the AIC values in Table 2.7

for the HMM settings as well as the setting with no regime-switching. Table 2.7 shows that

both the 2- and 3-state HMM settings have lower AIC values than that of the 1-state model.

It indicates that there is merit in embedding the regime-switching feature into the model.

Also, the 2-state HMM model produces the lowest AIC value. So, this result together with

the error analysis leads us to conclude that the 2-state HMM setting is the most suitable for

our data set under examination.

Model Number of parameters AIC

1-state model 3 2899.7982

2-state HMM 8 2888.4031

3-state HMM 15 2897.7614

Table 2.7: AIC analysis

2.6 Application to the pricing of temperature-dependent
contracts

The parameter estimation and error analysis performed in the previous sections indicate

that a 2-state HMM framework presents a better performance in capturing the dynam-

ics of DATs and HDD index. Therefore, we shall utilise the optimal estimates generated

through the filtering recursions in pricing weather contracts. In this section, mathematical

expressions for the price of HDD futures and options are derived with the consideration

of the price of risk. Furthermore, a numerical example on pricing a European-call op-

tion via simulation is presented. A sensitivity analysis, under a 2-state HMM setting, is
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Regions Contract types Contract periods One contract size

Monthly HDD Oct-Apr $20

North America Monthly CDD Apr-Oct

(US & Canada) Seasonal HDD Nov-Mar & Dec-Feb

Seasonal CDD May-Sept & Jul-Aug

Europe Monthly CAT Apr-Oct e20 or £20

(Schengen Areas & UK) Seasonal CAT 2-7 consecutive months

from Apr-Oct

Table 2.8: Specifications of typical CME temperature-based contracts

also implemented to examine the extent of each parameter’s influence to the value of a

temperature-based derivative.

2.6.1 Temperature-based derivatives

Although there are various underlying variables for weather derivatives such as tempera-

ture, air pressure, humidity, etc, the most commonly used underlying is a temperature-based

index. Temperature-based futures and options are the main financial products trading in

the CME covering many regions and countries around the globe. These temperature index-

linked products quantify weather and make it as tradeable as some other regular underlying

assets such as stocks and commodities. They are currently geared to average monthly and

seasonal weather in several north American and European cities.

In the United States and Canada, the CME weather contracts are mainly written on the HDD

or CDD index with a monthly or seasonal duration, whilst weather derivatives in Europe are

normally based on the CAT index. Table 2.8 summarises the specifications of typical CME

temperature-based futures and options. These products written on accumulated indices

over a calendar duration are financially settled at the end of the index or contract period.

The most common option style so far is a European-type option in both the OTC market

and CME, which may only be exercised at its expiration date. A cap on the maximum

payout is normally set for OTC weather contracts, whereas there is currently no such limit

for those trading in the CME. In contrast to temperature-based option contracts, regular

options traded in the CME typically specify index futures as the underlying variables. A

standardised temperature-based contract normally contains five basic elements listed in

Table 2.9.
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Element Description

Underlying variable A temperature-based index or index futures

Contract period Accumulated and consecutive calendar period

Contract (tick) size A dollar amount attached to each HDD, CDD or CAT point

Land-based station A specific station that reports observations

including temperature for a particular area

Payoff function A function that converts a tradeable temperature-based index

into a cash flow in terms of the above four elements.

Table 2.9: Elements of a standardised temperature-based contract

2.6.2 Pricing of temperature-based index futures and options

In the literature, there are two mainstream approaches in modelling the underlying geared

towards the pricing of temperature-driven contracts. The first approach is to employ a

continuous-time process modelling the DATs. For instance, Bellini [3] proposed an ex-

tended OU model for DATs and to price HDD/CDD contracts assuming a Lévy-type noise

process. Benth and Šaltytė-Benth [5] computed futures and option prices using a continuous-

time autoregressive model for the temperature dynamics under a normality assumption.

The second approach is to adopt a discrete-time process to model DATs considering that

temperature indices are defined as discrete sums of DATs rather than integrals over a spe-

cific period. Moreno [30] demonstrated that it is not necessary to estimate DATs continu-

ously and the goodness of fit using a discrete-time process is deemed satisfactory.

The first approach facilitates various computations for valuation via stochastic calculus and

the latter one is mostly used in the actuarial field under a discrete-time framework. The

pricing conducted in this chapter employs a continuous-time OU process but such a pro-

cess is discretised in order to estimate the model parameters. Once parameter estimates are

available, as in our case, any temperature-based derivative can be theoretically valued by

taking the expectation of its discounted payoff at contract’s maturity. We derive the pricing

formulae for temperature-based futures and options, and include a specific pricing example

via simulation.

The market of weather derivatives is relatively less liquid and this complication is exacer-

bated as well by the fact that the temperature itself cannot be either stored or traded. A

zero risk premium could not be necessarily assumed because weather contract prices are
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not independent of the regime shifts in our model and investors’ risk aversions especially

in such a somewhat illiquid market. Hence, the price of risk process λt of the underlying

variable ought to be considered in order to determine a fair price for a temperature-based

contract.

2.6.3 The price of risk and risk-neutral measure Q

In a complete market, there is a unique risk-neutral probability measure equivalent to the

real-world probability measure, where the price of any contingent claim is the expected

value of its payoff discounted at the risk-free rate. However, the weather-derivatives mar-

ket is incomplete because the underlying variable (temperature index) is not storable or

tradable. This hampers a straightforward adoption of the no-arbitrage arguments to price

weather-derivative instruments. Notwithstanding this difficulty, a risk-neutral valuation can

still be utilised in incomplete markets; see Xu et al. [38]. In an incomplete market, there

are several equivalent-martingale or risk-neutral measures to choose from. More specifi-

cally, there is a risk-neutral measure Q equivalent to the objective measure P for pricing

weather derivatives; see [31]. The rationale in selecting or constructing this Q is detailed

in the subsequent discussion.

We first note that there is also an issue regarding the risk-neutral valuation for illiquid and

incomplete markets such as the market for weather derivatives. This arises from the lack

of observed market prices that supposedly could determine the risk-neutral parameters and

the martingale measure Q. In any event, the price obtained under Q can be regarded as a

benchmark similar to the idea of pricing other exotic and structured products not yet avail-

able in the market. This “benchmarking principle” was espoused in Gao et al. [25] in which

the risk-neutral valuation was still employed to get no-arbitrage prices for a guaranteed an-

nuity option; this was done even though market information is insufficient to reflect certain

conditions concerning insurance-related contingent claims. Moreover, the risk-neutral val-

uation was applied to price a product dependent on an underlying (i.e., mortality rate) that

is also non-tradeable and storable.

Akin to the pricing under Q is the concept of the market price of risk λt at time t, which

links the P to the Q−dynamics of the underlying variable. The quantity λt could be assumed

zero if only to attain simplicity and tractability. But, some recent findings indicate that λt

associated with the temperature variable is significantly different from 0; see Xu et al. [38],
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Benth et al. [4], and Elias et al. [14]. In this chapter, we shall investigate the impact of λt in

the pricing of weather contracts. This in turn requires an explicit expression for Tt under Q.

The formal justification for a risk-neutral measure Q utilised for weather-derivative pricing

in our set up follows from Weron’s work [31], which is anchored intimately on λt that is

assumed a real-valued measurable and bounded process.

Through the Girsanov’s theorem, there are probability measures Q and Qλ equivalent to P,

such that

BQλ

t = Bt +

∫ t

0
λsds = Bt + λtt, (2.38)

where BQλ
is a standard Brownian motion under Qλ and Bt is a P−Brownian motion driv-

ing our deseasonalised process Xt in equation (2.5). Benth and Šaltytė-Benth [5] stated the

existence of a flexible class of risk-neutral probabilities (e.g., Qλ) that can be obtained from

the time-varying λt to fit the forward curves. As Qλ is a risk-adjusted or risk-neutral prob-

ability measure (see page 151 of [31] and page 173 of [2]), this signifies that Qλ coincide

with the needed Q for the purpose of our valuation.

Referring to the construction arguments in [31], we obtain the condition θQ = θ− λtξ

α
, where

θQ is defined under Q. So extending [31] to our framework, λt links the parameters of our

proposed model through

θ∗(yt) = θ(yt) −
λtξ(yt)
α(yt)

, (2.39)

where α(yt), ξ(yt), and θ(yt) are given in equation (2.11). Here, θ∗(yt) is the new parameter

under Q that replaces θ(yt) in the OU process after taking into account λt, which encapsu-

lates both the (i) price of risk due to regime switching and (ii) market price of risk (due to

the shocks from Bt).

Remark 3: The introduction of Q essentially introduces a market price of risk parame-

ter λt. As such, we refer to λt as a form of an ‘insurance premium’ for taking uncertainty

risks as notably identified in (i) and (ii) above.

A rigourous construction of a regime-switching λt under a discrete-time OU process in

the context of bond pricing is given in [20]. Such construction in our option-pricing frame-

work is a separate issue and not within the scope of this research. For illustrative intent,

we assume that λt is a non-zero constant for all regimes in the HMM setting, but we shall
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investigate the effect of its variation in the succeeding sensitivity analysis. For weather-

derivative valuation, we utilise

dXt = α(yt)(θ∗(yt) − Xt)dt + ξ(yt)dBQ
t (2.40)

and

dTt = dS t + α(yt)(θ∗(yt) − Xt)dt + ξ(yt)dBQ
t . (2.41)

Consequently, we have the explicit form

Tt = S t + Xse−α(yt)(t−s) + (1 − e−α(yt)(t−s))θ∗(yt) + ξ(yt)e−α(yt)t
∫ t

s
eα(yu)udBQ

u . (2.42)

As asserted in Geman and Leonardi [26], the hypothesis for accumulated-degree days in

pricing weather contracts on temperature indices being normally distributed is accepted

by both researchers and practitioners. In Benth and Šaltytė-Benth [5], the DATs are mod-

elled by an OU process having a seasonal volatility, and the HDD/CDD-index pricing was

accomplished under the normality assumption. More recently, Alexandridis and Zapranis

[2] verified the suitability of such a normality assumption. Under the same assumption

together with the principles employed in [2] and [5], we derive pricing formulae for HDD

futures and options under the OU-HMM settings.

It is assumed that the contract’s period is [τ1, τ2], the contract size is 1 monetary unit for

each index point, and the risk-free interest rate r f is constant with continuous compound-

ing. The HDD futures price FH (t, τ1, τ2) is evaluated under two scenarios: (i) at time t

before the contract period, i.e., 0 ≤ t ≤ τ1 < τ2, and (ii) at a time t within the contract

period, i.e., 0 ≤ τ1 ≤ t < τ2.

From Benth and Šaltytė-Benth’s reasoning [5], e−r f (τ2−t)EQ
[ ∫ τ2

τ1
max (Tbase − Tv, 0) dv

−FH (t, τ1, τ2)
∣∣∣Ft

]
= 0; and so the HDD futures price, as an Ft-adapted stochastic process,

must be defined as

FH (t, τ1, τ2) = EQ

[∫ τ2

τ1

max (Tbase − Tv, 0) dv
∣∣∣∣Ft

]
. (2.43)

For the European HDD call option, we consider two types: a call dependent on the HDD

itself and a call dependent on the HDD futures price. The pricing results, whose proofs

are given in Appendix B, are presented in Propositions 2.6.1– 2.6.3 below under the model

described in (2.41).
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Proposition 2.6.1 The HDD futures price for the contract period 0 ≤ τ1 < τ2 is given by

FH (t, τ1, τ2) = EQ [H|Ft] =



∫ τ2

τ1

A (t, v) D
(

M (t, v, Xt)
A (t, v)

)
dv 0 ≤ t ≤ τ1 < τ2

∫ t

τ1

max (Tbase − Tu, 0) du 0 ≤ τ1 ≤ t < τ2,

+

∫ τ2

t
A (t, v) D

(
M (t, v, Xt)

A (t, v)

)
dv

where

H =

∫ τ2

τ1

max (Tbase − Tv, 0) dv,

M (t, v, Xt) =Tbase − S v − Xteα(yt)(v−t) + (1 − eα(yt)(v−t))θ∗(yt),

and A2 (t, v) =ξ2(yt)e2α(yt)v
∫ v

t
e2α(yt)udu, D (x) = xΦ (x) + φ (x)

with Φ and φ are the cumulative and probability density functions of a standard normal

distribution, respectively.

Proposition 2.6.2 The price of a European call option written on an HDD futures price at

time t is given by

CFH (t,K, τT ) = e−r(τT−t)
∫ Fm

K

(
FH − K

)
g
(
FH

)
dFH ,

where

FH =

∫ τ2

τ1

A (t, v) D
(

M (t, v, Xt)
A (t, v)

)
dv, Fm = max

(
FH

)
,

τT is the expiration date, t ≤ τT ≤ τ1 ≤ τ2, K is the strike price, r is the risk-free interest

rate, and g(x) is the probability density function of a random variable X.

Proposition 2.6.3 The price of a European call option written on HDD at time t is given

by

CH (t,K, τT ) = e−r(τT−t)
∫ Hm

K
(H − K) g (H) dH,



48 Chapter 2. Putting a price tag on temperature

where

H =

∫ τT

t
max (Tbase − Tv, 0) dv, Hm = max (H) ,

τT is the expiration date, t ≤ τT , K is the strike price, r is the risk-free interest rate, and

g(x) is the probability density function of a random variable X.

2.6.4 Pricing of a temperature-based contract

When pricing HDD options in Alaton et al. [1], the distribution of HDD is Gaussian and the

probability of max(Tbase−Tv, 0) = 0 is close to zero during the winter period. Adopting this

assumption to Proposition 2.6.3 with Mc and A2
c for the mean and variance of H, respec-

tively, setting Hm to infinity, and employing the method in deriving the result in Proposition

2.6.1, we have

CH (t,K, τT ) = e−r(τT−t)
∫ Hm

K
(H − K) g (H) dH

= e−r(τT−t)
[
(Mc − K) Φ

(
Mc − K

Ac

)
+ φ

(
Mc − K

Ac

)]
= e−r(τT−t)AcD

(
Mc − K

Ac

)
. (2.44)

The normal distribution for modelling HDD provides a good fit in several winter months

for almost all locations [28]. However, it is almost impossible to obtain a good fit in mod-

elling the HDD in other months with the use of the normal distribution most especially in

December when cold temperatures give rise to heavy tails in the empirical distribution of

the HDD. Therefore, this assumption is not quite realistic for Proposition 2.6.3 in pricing a

one-month weather option contract. Although an analytic valuation formula can be gener-

ated due to the simplicity of a Gaussian distribution, such distribution is probably going to

be adequate only in valuing a seasonal HDD option rather than a contract for one month.

To compute the prices of futures and options written on HDD, we note the path-dependent

nature of the expected payoff, which can be calculated efficiently using the Monte-Carlo

(MC) simulation method. We perform the valuation under a 2-state HMM model and

include as well the price of the risk process. In particular, we evaluate

Fd
Hd (t, τ1, τ2) = VEQ

[
Hd

∣∣∣Ft

]
, (2.45)
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Cd
Hd (t,K, τT ) = e−r(τT−t)VEQ

[
max

(
Hd − K, 0

) ∣∣∣Ft

]
, (2.46)

where V is the contract size, and Hd is defined as
∑τ2
τ1

max (Tbase − T, 0) in (2.45) and∑τT
t max (Tbase − T, 0) in (2.46) consistent with the respective notations employed in Propo-

sitions 2.6.1 and 2.6.3.

We examine closely the valuation of HDD call options through a sensitivity analysis. Also,

in order to make a valid comparison between the option prices generated under our model

and the results in Elias et al. [14], we make certain conditions uniform between the con-

tract in our study and that in [14]. Consider a European call with effectivity of 01 – 31 Dec

2012, and t = 0, V = $20, and K = $580 in equation (2.46). We set r = 1%, which is

the 1-year T-bill’s yield as published by the Bank of Canada in 2012, to proxy the interest

rate. Having optimal estimates for θ (yk), α (yk), and ξ (yk) in Section 2.5, and granting λt is

known or assigned, a value for θ∗(yt) in accordance with (2.39) is immediate. Moreover, T

and Hd can be calculated based on equations (2.41) and (2.46), respectively. The optimal

estimates for parameters to compute T and Hd are shown in Table 2.10.

Unlike a regular underlying variable, temperature varies geographically over swaths of a

particular region, and this further adds to the difficulty of determining the appropriate level

of λt. The market price of risk associated with the temperature variable is deemed signifi-

cant in pricing weather futures and options. Risk premia, across a range of risk aversions,

for several cities in America were established in terms of the contemporaneous correlation

levels between aggregate dividends and temperature in [9]. Here, aggregate dividends refer

to the total consumption of investors so that temperature-related contingent claims can be

priced by considering the corresponding payoff and the utility function on consumption.

In particular, risk premia for temperature-dependent call options in Chicago and New York

were estimated to be 5.73% and 7.63% respectively.

Assuming that the risk premium solely depends on the market price of risk associated

with the underlying variable, the average of the two risk premium values for the two cities

(Chicago and New York) located close to Toronto, which is λt = 6.68%, is utilised in our

illustrative example.

In their pricing calculations, Elias et al. [14] assumed r = 5% in 2008, and used an expected
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Parameter estimate δ̂ η̂ ε̂ θ̂ α̂ ξ̂ θ̂∗

Regime 1 0.7146 0.0390 0.6229 0.1367 0.3361 0.7301 -0.0084

Regime 2 0.5166 -0.0889 0.6929 -0.1839 0.6604 0.9301 -0.2779

Table 2.10: Optimal parameter estimates for the 2-state HMM model with and without the

market price of risk

HDD in their payoff function. In our case, after simulating the underlying variable Hd using

the optimal estimates in Table 2.10, we perform 10,000 simulations to evaluate the expected

payoff in (2.46). Then, by embedding λt into a 2-state HMM-based model, we get the call

option price written on HDD as

Cd
Hd

(
0, 580,

31
365

)
= e−0.01 31

365 20EQ
[
max

(
Hd − 580, 0

) ∣∣∣∣F0

]
= $861.33. (2.47)

If λt is not considered in equation (2.47), the price is just $507.53. The SEs of the MC

simulations with and without λt are 8.9369 and 6.3323 respectively, and the corresponding

95% confidence intervals are [843.81, 878.85] and [495.12, 519.94]. In this case, 10,000

simulations are sufficient to obtain a desired level of accuracy at the significance level of

5%.

Figure 2.10 exhibits the variation of the HDD option prices with and without the price of

risk process, over a range of strike HDD. As the strike price K increases from 540 to 620,

both option prices decline. They reach zero at K = 623.10 and K = 605.49 respectively.

Indeed, the price of risk process does make a substantial difference in pricing an HDD call

option for each strike HDD.

2.6.5 Sensitivity analysis of temperature-based option price

Sensitivity analysis entails the variation of one model parameter over a certain range, whilst

holding the rest of the parameters fixed, in order to see the impact on the option price. Sim-

ilar to the idea in Siu et.al [33], we shall do such an analysis under a 2-state HMM model,

which turned out to be the best-fitting model given our data set. Using the pricing example

highlighted in Section 2.6.4, we perform sensitivity analyses on the price of risk process,

Markov chain’s intensity matrix, and other model parameters.

Figure 2.11 shows the influence of λt on the HDD call option price by changing its value

from 0 to 20%. The option price rises with an increasing λt, which is consistent with the
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Figure 2.10: One-month call option price with initial state 1 versus HDD strike

results from Elias et. al [14] and it constitutes a significant portion of the temperature-based

derivative’s price.
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Figure 2.11: HDD call option price with initial state 1 versus market price of risk

To easily interpret our numerical results, we denote states 1 and 2 as “hot” and “cold”

regimes, respectively, corresponding to the hot and cold fronts in the 2-state HMM-temperature
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model setting. The intensity matrix P is then given by

P =

 −p p

p −p

 ,
where p, the intensity parameter, is the rate of entering into/leaving from one state to an-

other. The use of the matrix P facilitates in probing the option-price sensitivity associated

with the jump probability of the Markov chain as we only have one parameter to focus on,

which is p in this case. For such a purpose, a convenient and practical representation of

matrix Π, defined in (2.9), is

Π = exp (P) =
1
2

 1 1

1 1

 +
1
2

e−2p

 1 −1

−1 1

 . (2.48)

In our numerical demonstration, the values of p are set to 0.1, 0.3, 0.5, 0.7, and 0.9 and our

simulations consider starting states 1 and 2 at t = 0 separately. The tremendous impact of

the intensity parameter is shown in Table 2.11; a comparison with the pricing results for

the HDD call options with no-regime switching model is included. When the initial regime

is state 2 (cold), the intensity negatively affects the HDD call option, i.e., a higher intensity

implies a faster rate of switching into a “hot” state. This leads to a smaller HDD, and so

a lower option price based on equation (2.46). When we start with a “cold” regime and

during the month of December as considered in our example, HDD calculated from the

two-state HMM model ought to be generally higher than the ones generated from simula-

tion with initial state 1 (hot).

On the other hand, when the initial regime is state 2 (cold), lower p’s produce higher op-

tion prices. This is because when p is low, the probability of remaining in the initial state

is high. Option prices produced by a no-regime switching model are very close to the ones

generated from the 2-state HMM model with p = 0.1 and initial state 2 in Table 2.11. This

is expected since a very small p indicates a very slow switching from the “cold” state to a

“hot” state within the context of the December contract period.

We utilise an increment level of 0.2 for the sensitivity analyses involving θ∗, α, and ξ.

The values of optimal estimates listed in Table 2.10 are regarded as starting benchmarks

when adding or lowering increment levels. Figure 2.12 depicts the option prices computed

through varying values of θ∗1. It is apparent that a change in θ∗1 greatly influences the option
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price. With initial state 1, as θ∗1 increases, the option price dramatically decreases and with

initial state 2, we have the opposite conclusion for the option price. This is because when

the mean-level θ∗ is low (cold), HDD is high giving a high positive HDD payoff. Figure

2.13 depicts the impact of varying θ∗2 on the option price. Even though the prices decline

along with the increase of θ∗2 similar to the impact trend of θ∗1, the prices under θ∗2 are a

bit more spread out upwards compared to those under θ∗1. This is because θ∗2 represents the

mean level under a cold state. Once we increase θ∗2, even though option prices decline, any

subsequent switches to the hot state is not sufficient to drastically perturb the price level

under state 2.

Figures 2.14 and 2.15 display the respective plots of option prices by varying the values of

α1 and α2. Although a slight increase in option price can be identified with a corresponding

increase in α1, no drastic fluctuations appear under both “cold” and “hot” initial regimes.

The same can be observed in the option prices when α2 is varied in Figure 2.15. However,

the option prices can be seen to be a wee bit higher under initial state 2 for both α1 and α2.

The impact of ξ1 on the option price starting with the respective “hot” and “cold” states

is illustrated in Figure 2.16. The effect of varying ξ2 on the option price is also presented

in Figure 2.17. The option price decreases with increasing ξ1 irrespective of whether the

initial state is 1 or 2, whilst the opposite is true for the option price when ξ2 increases.

Moreover, ξ1 seems to have a slightly more effect on the variability of option prices than

ξ2 does given the same increment. An increasing volatility under state 1 (hot) leads to a

rising temperature level, which in turn yields a decreasing option price. The results also

suggest that the variation of ξ2 under initial state 2 contributes more to the variation of the

option prices when compared to those obtained from the same variation levels of ξ2 under

the initial state 1 as shown in Figures 2.16 and 2.17. Higher volatility ξ2 under the initial

“cold” state results to higher option prices along with the fact that the sensitivity analysis

is conducted for the cold month period of December in our illustrative case.

Remark 4: The standard errors of option prices calculated in (2.47) of subsection 2.6.4,

as well as of those displayed in Figure 2.11 and Table 2.11 of subsection 2.6.5 fall in the

range [$6.67, $9.61].
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Strike HDD Kc = 520 Kc = 530 Kc = 540 Kc = 550 Kc = 560 Kc = 570 Kc = 580

1-state model 1993.40 1798.78 1607.25 1420.29 1239.71 1066.88 903.97

p = 0.1 1642.04 1442.20 1242.37 1042.54 842.71 642.88 443.05
Initial p = 0.3 1652.74 1452.91 1253.08 1053.25 853.42 653.59 453.76
state 1 p = 0.5 1808.83 1609.00 1409.17 1209.34 1009.51 809.68 609.85

(Hot state) p = 0.7 1918.75 1718.92 1519.09 1319.26 1119.43 919.60 719.77
p = 0.9 1919.37 1719.54 1519.71 1319.88 1120.05 920.22 720.39

p = 0.1 2045.34 1845.51 1645.68 1445.85 1246.02 1046.19 846.36
Initial p = 0.3 2037.09 1837.26 1637.43 1437.60 1237.77 1037.94 838.11
state 2 p = 0.5 1925.11 1725.28 1525.45 1325.62 1125.79 925.95 726.12

(Cold state) p = 0.7 1908.94 1709.16 1509.28 1309.45 1109.62 909.78 709.95
p = 0.9 1863.26 1663.43 1463.60 1263.77 1063.94 864.11 664.28

Table 2.11: HDD call option price for varying intensities p
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Figure 2.13: HDD call option price for varying θ∗2
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Figure 2.14: HDD call option price for varying α1
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Figure 2.15: HDD call option price for varying α2
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Figure 2.17: HDD call option price for varying ξ2

2.7 Conclusion

We implemented the parameter estimation of a temperature model, comprising of seasonal

and stochastic components with mean reversion, designed to accurately capture the charac-

teristics unique to the dynamics of the DATs. As the model parameters are modulated by

HMM, the HMM-based filtering technique, via change of reference probability measure,

along with the EM algorithm was employed to provide self-tuning parameters. We tested

the model and estimation method on a 4-year Toronto’s DATs. The one-step ahead fore-

casting errors and the AIC metrics were generated, and on their bases, the 2-state HMM is

deemed to adequately model the 4-year Toronto DATs data set. Furthermore, we derived

an expression for the price of HDD futures and option contracts by taking into account the

price of risk process. Sensitivity analyses, under a 2-state HMM setting, were also per-

formed by probing the behaviour of the option price as the intensity of the transition matrix

and other model parameters were varied. We found that the mean-reverting level θ and

volatility ξ have significant effects on pricing temperature-linked options.

Our work complements that in [14] and further elevates the use of regime-switching model

for temperature modelling at a level that supports an interactive platform, given a data set,

for the pricing and risk management of weather derivatives. A natural extension of this

work is to investigate dynamic risk management under our setting and using filtered and

optimal parameter estimates obtained from our estimation approach. The results could

then be benchmarked with those from current estimation methodology for weather-linked
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contracts. A stress-testing comparison using the framework put forward here and other

modelling approaches could be pursued as well in the context of portfolio optimisation,

in the spirit of [24] for instance; or risk measurement similar to the objectives of [25]

but for weather derivatives instead; and modelling of weather futures prices constituting a

multivariate time series resembling to the analysis in [12].
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Chapter 3

A self-updating model driven by a
higher-order hidden Markov chain for
temperature dynamics

3.1 Introduction

Over $2.4 trillion in economic losses and nearly 2 million deaths globally have been re-

ported as a result of weather-related hazards since 1971; see [34]. Catastrophes, such as

floods, tornadoes and hurricanes, are well-publicised as a result of the heavy casualties and

enormous property losses that they cause. But, whilst these weather-driven disasters are

getting more attention, we note that even some slight abberations of weather conditions, al-

though non-catastrophic, could undeniably still be matters of consequence too. They may

not produce immediately tremendous losses, yet their accompanying potential risks could

materialise later in the future with more frequency as well as lead to more widespread im-

pact on business and economy. Weather risk, for instance, is best depicted by crop yields

that may drop substantially due to prolonged droughts or rainy season. Poor weather hugely

affects planned construction schedules. Cold winters increase operational costs of energy

consumers.

Dutton and John [13] concluded that weather and climate risks exist in nearly 33.3% of

the private industry activities and 39.1% of the U.S. gross domestic product is weather-

sensitive. In order to hedge the risks associated with such non-catastrophic weather condi-

tions, the so-called weather derivatives were created. Their values depend on the underlying

63
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variables governed by weather-related measurements, such as temperature, humidity, rain-

fall and snowfall. As documented in Considine [8], the first weather-derivative transaction

took place in 1997, which was executed by Aquila Energy and embedded in a power con-

tract. It is noted in Cao and Wei [9] that the Chicago Mercantile Exchange (CME) launched

the first exchange-traded weather derivatives linked to temperature in 1999. Since then,

the volume of weather derivatives grew rapidly both in the exchange and over-the-counter

(OTC) markets. Notional values of weather derivative contracts processed in the exchange

market are greater than those in the OTC market. Yet, interestingly, investors and other

market participants are more actively involved in the OTC market according to the survey

reported by Price Waterhouse Coopers (PwC); see [28].

In contrast to the traditional financial derivatives whose underlying assets are typically

bonds and stocks, weather derivatives are dependent on non-negotiable underlying indices

that have no price themselves. Such indices are introduced to quantify weather phenomena

but casually employed to construct the basis of a weather derivative contract. As stated

by Elias et al. [14], over 90% of weather derivatives are temperature-based. Weather fu-

tures and options traded in the CME are written on temperature heating degree day (HDD),

cooling degree day (CDD) and cumulative average temperature (CAT) indices. The most

distinctive feature of these temperature-based indices is that, unlike conventional financial

underlying asset, they are not tradeable or storable. Therefore, the traditional no-arbitrage

pricing approach, utilised in the Black-Scholes modelling framework, is not applicable to

pricing weather derivatives [10]. Without delving into the challenges of derivative valua-

tion concerning the choice of an appropriate pricing measure, which are outside the scope

of this research, our aim is to develop a model that could accurately capture the salient

features of the evolution of temperature data. Our proposed model then may be useful in

accurately pricing weather derivatives.

In the literature, several studies were conducted to address the pricing of weather deriva-

tives. It is asserted in Dorfleitner and Wimmer [12] that the historical burn analysis (HBA)

is normally adopted by most investors given its straightforwardness and ease of replication.

Nevertheless, Jewson and Brix [25] argued that HBA is bound to be biased and prone to

large pricing errors, and so, time-series methods are proposed in [25] instead. Davis [10]

dealt with weather derivative pricing by relying on the marginal substitution value principle

of mathematical economics.
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More recent studies considered the Ornstein-Uhlenbeck (OU) process in reproducing the

dynamic behaviour of the temperature series. In comparison to simulating temperature

indices in the HBA method, modelling the daily average temperature (DAT) directly gen-

erates more accurate outcomes since it contains more information under both regular and

extreme conditions. The estimated DAT model is then utilised to develop corresponding

temperature indices. These indices are used to determine the price of various weather

derivatives together with their risk management. Dischel [11] first proposed the concept

of adopting a continuous-time stochastic process to capture the dynamics of temperature.

Alaton et al. [1] improved Dischel’s model by incorporating seasonalities in the mean with

a sinusoidal function. Benth and Saltyte-Benth [3] studied DAT variations with an OU pro-

cess, where the noise follows a generalised hyperbolic Lévy process.

However, the application of a one-state stochastic process in almost all of the above-

mentioned papers may not describe the behaviour of temperature with great accuracy, es-

pecially during drastic changes in regimes or emergence of entirely different states as in

the occurrence of occasional climatic changes. This consideration inspires the extension of

the typical OU mean-reverting process with the addition of the regime-switching feature. It

seems that the research of Elias et al. [14] was by far the only paper that employs a regime-

switching approach to model the stochastic behaviour of temperature. They applied lattices

to construct corresponding models and concluded that the HDD and CDD generated by a

two-state process were closer to the observed data than those obtained by a single stochas-

tic process.

To take several steps of research progress farther away from the accomplishments in [14],

the purpose of this work is to develop self-calibrating higher-order hidden Markov model

(HOHMM) filtering algorithms that provide improved accuracy in capturing the behaviour

and features of temperature, which will be beneficial for better valuation and risk man-

agement of weather futures and option products. An HOHMM of order k is an HMM

that takes into account the HMM values up to lag k; in the literature, HOHMM is also

termed as a weak HMM as the memoryless assumption is weakened or relaxed to account

for information revealed in the last k steps. The usual HMM has found many financial

and economic applications, and pioneering developments, with the illustration of a two-

state regime-switching model, are highlighted in Hamilton [22]. Elliott et al. [6] made

significant landmarks in the estimation methodology of HMM via the change of measure

technique for model identification after processing batches of data. Since then, researchers
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put forward HMM-modulated models to address various problems in quantitative finance,

insurance, economics, epidemiology, and other branches of the sciences and engineering.

Erlwein and Mamon [18] is a precursor to our development of an HOHMM driving a mean-

reverting process. We note that Mamon et al. [26] devised a 2-state HMM in modelling

commodity prices and then analysed h-step ahead price predictions. Nonetheless, the mem-

oryless property in the regular Markov assumption is a real drawback as models must also

capture long-range dependency in the observed economic and financial data. To this end,

Xi and Mamon [32], for instance, promoted the modelling of risky asset’s log returns with

the use of an HOHMM for a more flexible framework and possibility of better forecasting

performance. This promising approach is primarily applied in speech recognition although

its application in finance has started gradually to take momentum in recent years. For ex-

ample, Ching et al. [7] priced exotic options assuming the variable’s dynamics are under

the HOHMM setting. With the aid of a higher-order Markov model, Siu et al. [28] in-

vestigated some aspects of risk management and examined the model’s influence on risk

measures through back testing.

The departure of our contributions from the current state of the art in Markov-switching

temperature modelling is highlighted by the following accomplishments in the study: (i)

Our proposed modelling approach simultaneously captures four important stylised facts of

temperature evolution, which are the mean-reversion, seasonality, memory and stochas-

ticity. (ii) Although adopted from the literature in Markovian regime-switching models

for economic and financial variables, to the best of our knowledge, this research is the

first to put forward a dynamic estimation procedure that readily gives parameter updates

whenever a new set of data becomes available. (iii) The embedding of the HOHMM in

the OU-modelling framework is also new in an attempt to capture the memory property in

the temperature data series. (iv) Within the OU-modelling set up, we develop the filtering

results relying on a transformation that converts a second-order HOHMM into a regular

HMM [26]; hence, our approach enables the estimation of higher-order HOHMM to be

implemented via an HOHMM-order reduction. (v) Finally, systematic and sufficient model

implementation details are laid out including various diagnostics and validation based on

techniques from statistical analysis and inference. Such details are beneficial for practition-

ers in building efficient computing platforms and interfaces with their business software as

well as to other scientists in constructing a modelling framework that examines the move-

ments and ability to control the dynamics of similar or related phenomena.
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The remaining parts of this chapter are structured as follows. Section 3.2 presents the for-

mulation of temperature modelling with a discrete-time higher-order hidden Markov chain

governing the model parameters. In Section 3.3, the change of probability measure is ap-

plied to derive recursive filtering equations for quantities that are functions of HOHMM and

necessary to carry out an online parameter estimation scheme in Section 3.4. The numer-

ical implementation of our proposed model and estimation method is detailed in Section

3.5 involving a data set of daily temperatures collected at the Toronto Pearson Airport. The

determination of the most appropriate model setting is given in Section 3.5 by comparing

the respective forecasting performance and penalised-log likelihood of different competing

set ups. Section 3.6 concludes.

3.2 Model description

3.2.1 Model for temperature derivatives

Majority of futures and option contracts on weather derivatives in the OTC and exchange-

traded markets are written on HDD, CDD and CAT measurements. We, therefore, con-

centrate on the modelling of the above-mentioned indices. In particular, HDD and CDD

were actualised to measure the demands of heating and cooling, respectively, of a certain

location, and CAT is simply the sum of DATs over the contract period. Their corresponding

values over the time interval [τ1, τ2] with 0 ≤ τ1 < τ2 are given by

HDD =

τ2∑
t=τ1

max (Tbase − Tt, 0) ,

CDD =

τ2∑
t=τ1

max (Tt − Tbase, 0) and CAT =

τ2∑
t=τ1

Tt,

where Tbase is the base temperature, usually given as 65◦F, or 18◦C in the market, Tt is the

daily average temperature on day t, computed as
Tmax + Tmin

2
. The contracts written on

these indices have a weekly, monthly or seasonal duration. HDD contracts typically cover

the cold months from October in one year to April of the following year, whilst the period

of the CDD contracts is the warm season that runs from April to October of the same year.

The overlapping months, October and April, are called the transition or shoulder months.

Some authors of previous papers (e.g., Dorfleitner and Wimmer [12]) attempted to price
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temperature derivatives using an index-modelling approach by modelling the aforesaid in-

dices directly. However, Benth et al.[2] argued that it is not appropriate to model the indices

directly to derive option prices because the dynamics for the futures price could not even

be obtained. Thus, for the valuation of temperature derivatives, we focus on modelling Tt

that yields the needed indices as well as the dynamic representation of DATs.

Suppose (Ω,F , P) is an underlying probability space that supports the modelling of the

observed process Tt, the DAT on day t. Following Benth et al. [2],

Tt = Xt + S t. (3.1)

Equation (3.1) has two components: Xt that is assumed to follow an OU process with an

HOHMM-governed parameters and S t, which is a deterministic function devised to pin

down the seasonal trends and DATs’ mean reversion. As in Campbell and Diebold [5], the

seasonal component is given by

S t = at + b +

3∑
h=1

[
ch sin

(
dht

2π
365

)
+ eh cos

(
dht

2π
365

)]
, (3.2)

where d1 = 1, d2 = 2, d3 = 4 to cover the yearly, semi-annual and quarterly patterns,

respectively.

3.2.2 Ornstein-Uhlenbeck (OU) process in the temperature model

We consider an OU model for the Xt component of the temperature model in (3.1). In the

succeeding discussions, we denote all vectors by bold English/Greek letters in lowercase

and all matrices are represented by bold capitalised English/Greek letters.

3.2.2.1 HMM-modulated OU process

Consider the stochastic differential equation (SDE) for the OU process Xt given by

dXt = α(θ − Xt)dt + ξdBt, (3.3)

where Bt is a standard Brownian motion on some probability space. By Itô’s lemma and

for s ≤ t, the SDE in (3.3) has the solution

Xt = Xse−α(t−s) + (1 − e−α(t−s))θ + ξe−αt
∫ t

s
eαudBu. (3.4)
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By utilising the Euler approximation, the discretised version of (3.4) is

Xk+1 = e−α4tk+1 Xk +
(
1 − e−α4tk+1

)
θ

+ ξ

√
1 − e−2α4tk+1

2α
zk+1, (3.5)

where 4tk+1 = tk+1 − tk and {zk+1} is a sequence of independent and identically distributed

(IID) standard normal random variables.

We assume that we have a homogeneous Markov chain yk with finite states in discrete time.

Its state space is associated with the canonical basis {e1, e2, . . . , eN}, where ei = (0, . . .

, 0, 1, 0, . . . , 0)> ∈ RN with 1 in the ith position, N stands for the total number of states, and

> denotes the transpose of a matrix. In a typical OU-HMM setting (e.g., Date et al. [9]),

Xk with representation in (3.5) has parameters dependent on the Markov chain yk, i.e.,

Xk+1 = e−α(yk)4tk+1 Xk + (1 − e−α(yk)4tk+1)θ(yk)

+ ξ(yk)

√
1 − e−2α(yk)4tk+1

2α(yk)
zk+1. (3.6)

In equation (3.6), the speed of mean-reversion α, the mean level of the process θ, and

the volatility ξ are all governed by yk making the model regime switching. Given the

representation of the Markov chain’s state space, αk := α(yk) = 〈α, yk〉, θk := θ(yk) =

〈θ, yk〉, and ξk := ξ(yk) = 〈ξ, yt〉, where 〈·, ·〉 is the inner product in RN .

3.2.2.2 HOHMM-modulated Ornstein-Uhlenbeck process

The second-order hidden Markov chain will be used as a prototype to develop the HOHMM

setting; such prototype’s simplicity will facilitate the discussion of concepts associated with

a generalised Markov chain of lag k (k = 1, 2, . . .). Under this setting, the parameters α, θ

and ξ are governed by a second-order Markov chain yw
k , which is defined on the stochastic

basis (Ω,F , {Fk}, P) with the canonical basis {e1, e2, . . . , eN}. Write Fk := F w
k ∨F B

k for

the global filtration, where F w
k is the filtration generated by σ{yw

0 , . . . , y
w
k } and F B

k is the

filtration generated by Bt.

A discrete-time second-order hidden Markov chain yw
k at current time k depends on states

that occurred at two prior lag times k − 1 and k − 2. The key principle in the filtering

and estimation of HOHMM is the utility of a mapping that transforms an HOHMM into a
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regular HMM. In our case, a mapping, say, ζ converts the second-order Markov chain into

the usual Markov chain. The transformation ζ is defined as

ζ(eb, ec) = ebc, for 1 ≤ b, c ≤ N, (3.7)

where ebc denotes a unit vector with 1 in its ((b−1)N +c)th position. Then, the new Markov

chain satisfies the relation

〈ζ(yw
k+1, y

w
k ), ebc〉 = 〈yw

k+1, eb〉〈yw
k , ec〉 (3.8)

and has the semi-martingale representation

ζ(yw
k+1, y

w
k ) = Πζ(yw

k , y
w
k−1) + δw

k+1, (3.9)

where {δw
k+1}k≥1 is a martingale increment. So, EP[δw

k+1|F
w
k ] = 0 and Π is the associated

N2 × N2 probability transition matrix.

3.3 Recursive filtering

3.3.1 Reference probability measure

Deriving recursive filters under the real-world probability P, where there is dependence

amongst the observations, presents some difficulty. We construct an ideal probability mea-

sure Q that makes computations manageable because under such an ideal measure, the

observed Xk’s are IID. The calculations are then reverted back to the measure P via an ap-

propriate discretised version of the Girsanov density.

Suppose yw
k is a second-order hidden Markov chain that drives the model parameters of Xk.

Write

Hdcb := P(yw
k+1 = ed|yw

k = ec, yw
k−1 = eb),

where k ≥ 1, and d, c, b ∈ {1, 2, . . . ,N}. As in Siu et al. [28], H is an associated N × N2

probability transition matrix given by

H =


h111 h112 · · · h11N · · · h1N1 h1N2 · · · h1NN

h211 h212 · · · h21N · · · h2N1 h2N2 · · · h2NN
...

...
. . .

... · · ·
...

...
. . .

...

hN11 · · · hN1N · · · hNN1 hNN2 · · · hNNN


.
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Since we constructed ζ to transform a second-order Markov chain into a regular Markov
chain, its corresponding N2×N2 matrix of transition probabilitiesΠ can be defined in terms
of H as

Π =



h111 · · · h11N 0 · · · 0 · · · 0 · · · 0

0 · · · 0 h121 · · · h12N · · ·
...

. . .
...

...
. . .

... 0 · · · 0 · · · 0 · · · 0

0 · · · 0
...

. . .
... · · · 0 · · ·

hN11 · · · hN1N 0 · · · 0 · · ·
...

. . .
...

0 · · · 0 hN21 · · · hN2N · · · 0 · · · 0
...

. . .
... 0 · · · 0 · · · h1N1 · · · h1NN

0 · · · 0
...

. . .
... · · · 0 · · · 0

0 · · · 0 0 · · · 0 · · ·
...

. . .
...

...
. . .

...
...

. . .
... · · · 0 · · · 0

0 · · · 0 0 · · · 0 · · · hNN1 · · · hNNN


where π ji = hdcb = P(yw

k+1 = ed|yw
k = ec, yw

k−1 = eb) for j = (d − 1)N + c, i = (c − 1)N + b,

and π ji = 0 otherwise.

Under the HOHMM framework, the model for Xk in (3.6) is modified to

Xk+1 = κ
(
yw

k
)

Xk + ϑ
(
yw

k
)

+ %
(
yw

k
)

zk+1, (3.10)

where

κ
(
yw

k
)

= e−α(yw
k )4tk+1 , ϑ

(
yw

k
)

=
(
1 − e−α(yw

k )4tk+1
)
θ
(
yw

k
)
,

%
(
yw

k
)

= ξ
(
yw

k
) √√√

1 − e−2α(yw
k )4tk+1

2α
(
yw

k

) .

As we do not observe the state of yw
k , it needs to be estimated and to this end, we work as

noted above under an ideal reference probability measure Q whose existence is justified by

the Kolmogorov’s extension theorem. Again, under Q, {zk}k≥1 is a sequence of IID N(0, 1)

random variables and also independent of yw
k .

Let Xk = σ(X0, X1, . . . , ). We introduce the Girsanov’s density to back out P from Q given
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an Xk-adapted process Ψw
k defined by

Ψw
k =

dP
dQ

∣∣∣∣∣
X w

k

=

k∏
l=1

ϕw
l , k ≥ 1, Ψ0 = 1 (3.11)

and ϕw
l =

φ
{
%
(
yw

l−1

)−1 [
Xl − ϑ

(
yw

l−1

)
− κ

(
yw

l−1

)
Xl−1

]}
%
(
yw

l−1

)
φ (Xl−1)

.

3.3.2 Calculation of recursive filters

Our goal is to obtain optimal parameter estimates under the real-world measure P through

self-updating filters that are functions of yw
k . The conditional expectation of any F w-

adapted process given Xk is then needed. As mentioned above, calculations performed

under the Q measure could be done with ease. Moreover, the Bayes’ theorem for con-

ditional expectations provides a connection between values calculated under P and those

calculated under Q.

We establish adaptive filtering processes, under P, for estimators of quantities that are

functions of ζ(yw
k+1, y

w
k ) as per equations (3.8) and (3.9), but by doing the analysis and

computations under measure Q. Write

sk (cb) : = P
(
yw

k = ec, yw
k−1 = eb |Xk

)
= E

[
〈ζ(yw

k , y
w
k−1), ecb〉 |Xk

]
(3.12)

and sk = (sk (11) , . . . , sk (cb) , . . . , sk (NN))> ∈ RN×N . From the Bayes’ theorem for

conditional expectation,

sk = E
[
ζ(yw

k , y
w
k−1) |Xk

]
=

EQ[Ψw
k ζ(yw

k , y
w
k−1)|Xk]

EQ[Ψw
k |Xk]

. (3.13)

Write vk := EQ
[
Ψw

k ζ(yw
k , y

w
k−1)|Xk

]
, and note that

N∑
c,b=1

〈ζ(yw
k , y

w
k−1), ecb〉 = 〈ζ(yw

k , y
w
k−1), 1〉 = 1, (3.14)

where 1 is an RN2
-vector with 1 in all of its entries. Then, we have

N∑
c,b=1

〈vk, ecb〉 =

N∑
c,b=1

〈
EQ [

Ψw
k ζ(yw

k , y
w
k−1)|Xk

]
, ecb

〉
= EQ

Ψw
k

N∑
c,b=1

〈
ζ(yw

k , y
w
k−1), ecb

〉
|Xk


= EQ [

Ψw
k |Xk

]
. (3.15)
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Along with equations (3.14) and (3.15), the conditional expectation of ζ(yw
k+1, y

w
k ) under the

real-world probability measure P could be written explicitly as

sk =
vk∑N

c,b=1 〈vk, ecb〉
=

vk

〈vk, 1〉
. (3.16)

As noted in Xi and Mamon [32], a diagonal matrix is needed to put recursive processes

in place under an HOHMM. Let Dk be an N2 × N2 diagonal matrix to estimate several

functions of ζ(yw
k+1, y

w
k ), where

Dk =



d1
k 0 · · · 0

0 . . . 0
...

... 0 dN
k

. . .

. . .

. . . d1
k 0

...
... 0 . . . 0

0 · · · · · · 0 dN
k


with diagonal elements

di
k =

φ
(
(Xk − ϑi − κiXk−1) %−1

i

)
%φ (Xk)

. (3.17)

We define below various processes needed for the parameter estimation in the next section.

1. The number of jumps from state (er, es) to state et up to time k, 2 ≤ l ≤ k and

r, s, t = 1, . . . ,N, is denoted by

Atsr
k :=

k∑
l=2

〈yw
l−2, er〉〈yw

l−1, es〉〈yw
l , et〉. (3.18)

2. The number of occupations up to time k, which is the length of time that Markov

chain yw spent in state et, 2 ≤ l ≤ k and t = 1, . . . ,N, is given by

Bt
k :=

k∑
l=2

〈yw
l−1, et〉 = Bt

k−1 + 〈yw
k−1, et〉. (3.19)

3. The number of occupations up to time k with the length of time that Markov chain

yw spent in state (et, es), 2 ≤ l ≤ k and s, t = 1, . . . ,N, is calculated as

Bts
k :=

k∑
l=2

〈yw
l−1, et〉〈yw

l−2, es〉. (3.20)
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4. The auxiliary process related to the Markov chain yw for the function f up to time k

in state et, 2 ≤ l ≤ k, t = 1, . . . ,N, is computed as

Ct
k( f ) : =

k∑
l=2

f (Xl)〈yw
l−1, et〉 = Ct

k−1( f )

+ f (Xk)〈yw
k−1, et〉, (3.21)

where f has the form f (X) = X, f (X) = X2, or f (X) = Xl−1Xl.

5. The conditional expectation of ζ(yw
k+1, y

w
k ) in Equation (3.16) can be written recur-

sively in terms of the diagonal matrix Dk+1 as

sk+1 = ΠDk+1sk. (3.22)

Let Gk be any Xk-measurable generic process defined in equations (3.18)-(3.21). From

Bayes’ theorem for conditional expectation, the ‘best estimate’ for Gk is

Ĝk = EP [Gk|Xk] =
EQ

[
Ψw

k Gk|Xk

]
EQ

(
Ψw

k |Xk

)
=

EQ
[
Ψw

k Gk|Xk

]
∑N

c,b=1 〈vk, ecb〉
=

EQ
[
Ψw

k Gk|Xk

]
〈vk, 1〉

. (3.23)

In order to get dynamic updates for Gk every time an observed value Xk arrives or a batch

of Xk’s becomes available, we provide recursions via the vector quantity Gkζ(yw
k , y

w
k−1) that

will ultimately lead to an efficient updating of the scalar quantity Ĝk.

Write

γk
w(Gk) := EQ [

Ψw
k Gk|Xk

]
. (3.24)

By equation (3.14), the scalar γw
k (Gk) can be calculated using the vector quantity Gkζ(yw

k , y
w
k−1)

by noticing

γw
k (Gk) = γw

k (Gk〈ζ(yw
k , y

w
k−1), 1〉)

= γw
k
(
〈Gkζ(yw

k , y
w
k−1), 1〉

)
=

〈
γw

k
(
ζ(yw

k , y
w
k−1)

)
, 1

〉
= EQ (

Ψw
k Gk

〈
ζ(yw

k , y
w
k−1), 1

〉
|Xk

)
. (3.25)
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Therefore, equation (3.23) can be further calculated as

Ĝk =
EQ

[
Ψw

k Gk|Xk

]
〈vk, 1〉

=
γw

k (Gk)
〈vk, 1〉

, (3.26)

which shows Ĝk can be obtained purely from calculations under Q and can be updated

dynamically if we have recursions for γw
k (Gk). So, to implement (3.26) for the quantities

Atsr
k , Bt

k, Bts
k , and Ct

k( f ), we utilise the semi-martingale representation (3.9) to derive their

unnormalised recursive filtered estimates.

Adopting Xi and Mamon [32], let

Kt, 1 ≤ t ≤ N

be an N2×N2 matrix with eit on its ((i − 1) N + t)th column and 0 elsewhere. Then we have

the following result.

Proposition 1: The vector recursions involving the respective quantities in equations (3.18)–

(3.21) are

γw
k+1

(
Atsr

k+1ζ(yw
k+1, y

w
k )

)
=ΠDk+1γ

w
k
(
Atsr

k ζ(yw
k , y

w
k−1)

)
+ 〈sk, esr〉dt

k+1〈Πesr, ets〉ets, (3.27)

γw
k+1

(
Bt

k+1ζ(yw
k+1, y

w
k )

)
=ΠDk+1γ

w
k
(
Bt

k+1ζ(yw
k , y

w
k−1)

)
+ Ktdt

k+1Πsk, (3.28)

γw
k+1

(
Bts

k+1ζ(yw
k+1, y

w
k )

)
=ΠDk+1γ

w
k
(
Bts

k+1ζ(yw
k , y

w
k−1)

)
+ 〈sk, ets〉dt

k+1Πets, (3.29)

γw
k+1

(
Ct

k+1( f )ζ(yw
k+1, y

w
k )

)
=ΠDk+1γ

w
k
(
Ct

k+1( f )ζ(yw
k , y

w
k−1)

)
+ f (Xk+1)Ktdt

k+1Πsk. (3.30)

Proof The derivations are similar to those given in Mamon et al. [26].

3.4 Optimal parameter estimation

In this section, we present the optimal estimates for the parameters of our proposed temper-

ature model using the maximum-likelihood approach. Since maximising the likelihood or
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log-likelihood functions is not straightforward for such functions with complicated struc-

tures like ours, we employ the EM algorithm, which is an effective iterative method for

parameter estimation especially for an exponential family of models [29].

We shall show that our EM results give optimal estimates in terms of the filters in (3.22)

and (3.27)–(3.30). Consider a family of probability measures {Pυw
, υw ∈ Υw} on (Ω,F w).

The algorithm is implemented by setting the initial Pυ0 and then changing from Pυ0 to Pυw

reflecting the variation of the data to the updated parameters.

We refer to Υw = {κt, ϑt, %t, htsr, 1 ≤ t, s, r ≤ N} as the set of parameters under our HOHMM

setting. The corresponding maximum likelihood (ML) estimator is

υ̂w ∈ argmaxυw∈ΥwL(υw) and L(υw) = Eυ0

[
dPυw

dPυ0

∣∣∣∣∣∣Xk

]
.

The sequence of log likelihoods yields monotonically non-decreasing ML estimates, which

locally converges [35].

A change of measure from Pυ0 to Pυw
is performed to estimate the entries of matrix H

thereby giving Π updated entries through the filtering algorithms of the relevant quantities.

Recall that yw is an HOHMC with transition matrix H = (htsr) under Pυw
. Hence, a new

probability measure Pυ̂w
must be constructed, under which yw is still an HOHMC but with

transition matrix Ĥ = (̂htsr), where ĥtsr = Pυ̂w
(yw

k+1 = et|yw
k = es, yw

k−1 = er) with ĥtsr ≥ 0.

From Elliott et al. [6], the appropriate density in conjunction with the EM algorithm for

our successive estimation of the transition probabilities is

dPυw

dPυ0

∣∣∣∣∣∣
Xk

= Λk, Λ0 = 1 and

Λk =

k∏
l=2

N∏
t,s,r=1

 ĥtsr

htsr

〈yw
l−2,er〉〈yw

l−1,es〉〈yw
l ,et〉

. (3.31)

When htsr = 0, ĥtsr = 0; in this case, we set
ĥtsr

htsr
= 1. The resulting expression for ĥtsr and

those for the rest of the parameters, computed as well via the EM algorithm, are given in

the succeeding summary.

Proposition 2: The EM estimates, at state t based on a data series up to time k (k ≥ 1), for
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the parameters of the model in (3.10) are as follows:

κ̂t =
Ĉt

k (Xk−1, Xk) − ϑtĈt
k (Xk−1)

Ĉt
k

(
X2

k−1

)
=
γw

k

(
Ĉt

k (Xk−1, Xk)
)
− ϑtγw

k

(
Ĉt

k (Xk−1)
)

γw
k

(
Ĉt

k

(
X2

k−1

)) , (3.32)

ϑ̂t =
Ĉt

k (Xk) − κtĈt
k (Xk−1)

B̂t
k

=
γw

k+1

(
Ĉt

k (Xk)
)
− κtγw

k

(
Ĉt

k (Xk−1)
)

γw
k

(
B̂t

k

) , (3.33)

%̂2
t =

Ĉt
k

(
X2

k

)
+ κ2

t Ĉt
k

(
X2

k−1

)
+ ϑ2

t B̂t
k + 2ϑtκtĈt

k (Xk−1)

B̂t
k

−2κtĈt
k (Xk−1, Xk) − 2ϑtĈt

k (Xk)

B̂t
k

(3.34)

ĥtsr =
Âtsr

k

B̂sr
k

, ∀ pairs (t, s) , t , s. (3.35)

Proof The proofs of (3.32)-(3.35) can be found in the Appendix C.

Thus, when a temperature series is available at time k, we could get automatically new

parameters κt, ϑt, %t, and htsr by running the filtering recursions of the Markov chain given

in Proposition 1.

3.5 Numerical implementation

We implement our recursive HOHMM filtering algorithms on DAT series collected by the

NCDC. The data were recorded from 01 Jan 2011 to 31 Dec 2014 comprising of 1461

data points. Since the DAT data have high presence of seasonality, we first remove the

deterministic cyclical pattern S t from Tt in equation (3.1), after which our filtering equa-

tions are implemented to obtain optimal parameter estimates of the OU component Xt. The

data set is then divided into batches with an equal size to perform the implementation of

the self-tuning process with recursive filtering equations under both HMM and HOHMM

settings.
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Mean Sd Dev SE Min Max Skew Kurtosis

8.88 10.65 0.28 -19.25 31.5 -0.23 -0.92

Table 3.1: Descriptive statistics for daily average temperature(DAT)

Parameter Estimate 95% confidence interval

a 10.2111 (-0.0024, -0.0013)

b -0.0018 (9.7581, 10.6641)

c1 -5.2949 (-5.6155, -4.9742)

c2 -0.6395 (-0.9555, -0.3234)

c3 -0.4131 (-0.7279, -0.0982)

e1 -12.7241 (-13.0383, -12.4098)

Table 3.2: Parameter estimates for the seasonality component S t

3.5.1 Analysis of the deterministic component

We fit S t described in (3.1) into the entire data set. Since S t is a linear combination of

sinusoidal functions and a linear mapping, the built-in function of the software R’s linear

regression is competent to execute this fitting process. In fact, a stepwise regression proce-

dure was carried out to identify the best fitting model for S t using the R function ‘step’ to

perform the selection of explanatory variables.

Table 3.1 shows some descriptive statistics for the DAT, which guided us with certain refer-

ences in choosing the initial values in the implementation process. The values of estimated

parameters from best fitting our data to the specified S t are exhibited in Table 3.2. The

adjusted coefficient of determination R2 shows that 83.5% of the variation in the response

Tt can be well explained by the model with all the regressor variables in equation (3.2)

except for e2 and e3. Consequently, these predictors are eliminated during the process of

variable selection on the basis of the scoring criteria built in the function ‘step’, including

the adjusted R2 and Akaike information criterion (AIC).

The fitted seasonality component S t is plotted in Figure 3.1 together with the actual DAT,

which displays high-seasonality property. The plot depicts four crests and four troughs

occurring in summer and winter, respectively, of the 4-year period. The main characteristics

of the two graphs neatly jibe with the temperature movements in the four seasons of each

year. The remaining component Xt is treated as our observation process which we shall use
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Figure 3.1: Fitted seasonal component versus actual DAT series

to test our proposed filtering and parameter estimation methods.

3.5.2 Analysis of the stochastic component

The cyclical component of the model captures very well the underlying seasonal trend of

the actual data amidst the noisy values of Xt. The deseasonalised stochastic component

Xt = Tt − S t is displayed in Figure 3.2.

We process the data set in 73 batches, and so there are 20 data points in each group with

4t = 1 day. This means that the parameters are updated roughly every 3 weeks. Other

filtering-window sizes can certainly be adopted in the data processing. Our experiment

shows that the choice of the window size has little effect on the numerical outcomes. A

batch of 20 data points is fairly adequate to cover the arrival of new temperature recordings

that might influence changes in temperature such as wind power, ocean currents, and other

meteorological events.
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Figure 3.2: Deseasonalised stochastic component Xt

3.5.3 Validity of model evaluation

We are aware that a valid statistical analysis of a proposed model entails testing using a

data set that was not used in the model estimation. Otherwise, if the model is not tested

on a different data set from the same population, it is difficult to determine if any patterns

found are simply due to chance. Thus, showing the formulated model’s predictive power

necessitates waiting for new data to come in. This ensures that there is no hand-tailoring

of the predictive ability of the model to the data on hand as the upcoming weather data are

not yet available.

Our online filtering method is consistent with the above statistical principle because we

use the past and current data through Xt to obtain parameter updates that encapsulate the

information up to present time t. Such parameter updates are used to process a new batch

of accumulated information in order to obtain a succeeding new set of parameter updates.

Also, utilising the same parameter updates, we obtain our predicted values for the calcu-

lation of error analysis metrics. Hence, the data set, used in prediction and calculation of

log-likelihood measures for testing goodness of fit and assessing model complexity in sec-

tion 3.5.5, is different from and does not overlap with that used in model estimation.
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Parameter [Min, Max]

a [10.0900, 10.5300]

b [-0.0027, -0.0017]

c1 [-5.3220, -4.9600]

c2 [-0.6500, -0.4489]

c3 [-0.5062, -0.3337]

e1 [-12.8700, -12.6900]

Table 3.3: Minimum and maximum parameter estimates for S t’s coefficients covering

twelve 4-year moving windows as described in Section 3.5.3

Our method may appear not in agreement though with the above principle if S t is taken

into account. This is because the S t function must be calculated first using the entire data

set before the Xt data series can be produced. We argue that there is no inconsistency here

whenever the coefficients of the S t component remain almost constant as time evolves.

Such is exactly the case for the S ′ts coefficients estimated from our daily temperature read-

ings covering the 4-year period under study (01 Jan 2011 – 31 Dec 2014) and coefficients

estimated from the twelve prior 4-year period moving windows going backwards (i.e., Data

Window I: 01 Jan 2007– 31 Dec 2010; Data Window II: 01 Dec 2006 – 30 Nov 2010; Data

Window III: 01 Nov 2006 – 31 Oct 2010; etc). Table 3.3 displays the [minimum, max-

imum] values of the 12 estimates for each coefficient. Clearly, the variation is so small.

Thus, we take the average of each set of 12 estimates as a proxy for a given coefficient

value so that the use of values in Table 3.2 (as close approximations to the corresponding

proxies) for S t to determine Xt is justified in adherence to the above statistical principle.

3.5.4 Implementation aspects of the HOHMM-OU filtering

To detect the presence of memory, we estimate the order of differencing d in the autore-

gressive fractionally integrated moving average framework [16]. For 0 < d < 0.5, there

is presence of finite long memory, and short memory for d = 0. Estimating d could be

done via the Geweke-Porter-Hudak estimator, approximate MLE, and the smoothed peri-

odogram method with the R functions ‘fdGPH’, ‘fdML’, and ‘fdSperio’ respectively. We

relied on ‘fdSperio’ proposed by Reisen [30] as it has no constraint on d and applies to non-

stationary series, but the same cannot be said for the ‘fdGPH’ and ‘fdML’ functions. Our

data set yields a rough estimate of d = 1/4, implying it possesses some form of memory.

We acknowledge the limitation of our modelling, which is the imposition of a second-order
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lag and our current HOHMM approach still does not include a mechanism to provide an

optimal lag estimate based on the data series. However, for the purpose of illustrating our

filtering implementation, we verified that our temperature data series exhibits memory, val-

idating the appropriateness of the HOHMM.

Remark: Indeed, if for a given data set, a lag order of greater than 2 is formally nec-

essary (in a statistical-inference sense), then the transformation in (3.7) can be repeatedly

utilised until a 2nd-order HOHMM set up is obtained, and therefore, our current filtering

and estimation results could be applied in a straightforward manner. Despite the capac-

ity for sophistication of being able to include as many lags as needed, there is also the

practical consideration, especially from the perspective of implementation in the industry,

to balance between the benefit of having a flexible but complex model and the associated

formidable computational cost. Of course, given the power of supercomputers, we envision

that our optimal processing results in this chapter for large lags can be efficiently imple-

mented someday and the dreaded curse of dimensionality can be appreciably alleviated.

With the rapid continuing development in computing architectures, we hope to see that

the complicated part of re-coding and extension of filtering algorithms as the lag becomes

bigger could be facilitated with much ease.

3.5.4.1 Initial values for the parameter estimation

The filtering algorithms are implemented by first finding the initial estimates of parameters

under the assumption that the Xt is a-single state process. A value of
1
N

is given to each

non-zero element of the matrix Π. We detail the procedures in setting initial values for κ,

ϑ, and %. Given that {zk+1} in (3.10) are IID standard normal, the likelihood function of Xk+1

is

L (Xk+1; κ, ϑ, %) =

m∏
k=1

1
√

2π%
exp

(
−

(Xk+1 − ϑ − κXk)2

2%2

)
(3.36)

where 1 ≤ m ≤ 1460 in our case. Equivalently, our task is to seek for the maximisers of the

sum of log-likelihood, i.e.,

argmax
(
log L (Xk+1; κ, ϑ, %)

)
=

m∑
k=1

log
1
√

2π%
−

(Xk+1 − ϑ − κXk)2

2%2

 . (3.37)



3.5. Numerical implementation 83

10 20 30 40 50 60 70

0
.0

0
.4

0
.8

Algorithm steps

T
ra

n
s
iti

o
n

 p
ro

b
a

b
ili

tie
s

h111h211h112h212h121h221h122h222

Figure 3.3: Evolution of transition probabilities under a 2-state HOHMM-based model

We employ the R function ‘optim’ to solve the optimisation problem in (3.37), and get

κ = 0.6518, ϑ = −0.001624 and % = 0.4271 acting as benchmarks in selecting initial

values for the parameter estimation of frameworks with more than 1 regime.

3.5.4.2 Evolution of parameter estimates and comparison under HMM and HOHMM
settings

Propositions 1 and 2 aid in getting numerical results from running the self-tuning filtering

algorithms (3.27)-(3.30) on batches of data. Filtered estimates are then fed correspondingly

into parameter estimate representations in (3.32)-(3.35). The filters process new informa-

tion, and in turn, optimally update the parameter estimates. One algorithm run constitutes

an algorithm pass, and we have 73 passes in total. In every algorithm pass beyond the initial

pass, the parameter estimates from the previous pass serve as initial parameter values for

the succeeding pass. The filtering algorithm is implemented on the process Xt driven by

two-state and three-state HOHMCs.

For a complete comparison of model settings, we also perform filtering implementations on

two special cases: 2-state and 3-state HMM frameworks. Note that HMM is a special case

of HOHMM when the lag order is 1. Although not plotted, similar dynamic characteristics

for the evolution of parameter estimates under both the 2-state and 3-state HMM settings

are obtained when compared to the results from the HOHMM settings. The dynamic move-

ments of the estimates are depicted in Figures 3.3–3.5. These gradually converge to certain
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unique values after approximately 25 passes in both the 2-state and 3-state HOHMM set

ups.

Akin to the reliability of parameter estimates is the quantification of their variability. There-

fore, we examine the variance of the various estimators via the Fisher information I (vw) =

−Evw

[
∂2

∂v2
w

log L (X; vw)
]
, which bounds the asymptotic variance of the ML estimates. The

MLE is consistent and has an asymptotically normal sampling distribution [36]. So, we

utilise the limiting distribution of the ML estimator v̂w to obtain the 95% confidence inter-

val for the estimated vw in the form v̂w ± 1.96
1√

I
(̂
vw) . The Fisher information involved

in each estimator is derived straightforwardly from the log-likelihood functions in the EM

algorithm calculations detailed in the Appendix C, and the final results of such derivations

are listed below.

I (htsr) =
Âtsr

k

h2
tsr
, (3.38)

I (κt) =
Ĉt

k

(
X2

k−1

)
%2

t
, (3.39)

I (ϑt) =
B̂t

k

%2
t
, (3.40)

I (%t) = −
B̂t

k

%2
t

+
3
%4

t

(
Ĉt

k

(
X2

k

)
+ B̂t

kϑ
2
t + κ2

t Ĉt
k

(
X2

k−1

)
− 2Ĉt

k (Xk)ϑt,

− 2Ĉt
k (Xk−1, Xk) κt + 2Ĉt

k (Xk−1)ϑtκt

)
. (3.41)

The 95% confidence intervals for the parameters κ, ϑ, and % in the 2-state HOHMM-based

model are shown in Figure 3.6.

The 95% confidence intervals generated for estimated parameters throughout the 73 algo-

rithm passes are extremely narrow and this is attributed to the declining standard errors.

Standard errors of all parameter estimates for the 1-, 2- and 3-state models under both the

HMM and HOHMM settings were examined and they all become smaller as the the number

of algorithm passes increases. The narrow ranges exhibited in Table 3.4 reflect that precise

estimates are achieved by the EM algorithm with our filtering approach.
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model
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HMM

Parameter 1-state model 2-state model 3-state model

Estimates Bound of SE

Lower Upper Lower Upper Lower Upper

δ̂i 3.62152 ∗ 10−90 0.84905 2.88315 ∗ 10−93 5.69605 ∗ 10−2 1.23351 ∗ 10−89 0.50619

η̂i 3.13262 ∗ 10−90 0.81819 2.49571 ∗ 10−93 5.04276 ∗ 10−2 1.28888 ∗ 10−89 0.50535

ε̂i 2.21510 ∗ 10−90 0.54026 1.08302 ∗ 10−93 2.36474 ∗ 10−2 7.17870 ∗ 10−90 0.34230

p̂ ji 4.79291 ∗ 10−90 1.08185 1.24810 ∗ 10−93 3.60257 ∗ 10−2 3.52893 ∗ 10−90 0.34041

HOHMM

Parameter 1-state model 2-state model 3-state model

Estimates Bound of SE

Lower Upper Lower Upper Lower Upper

κ̂t 3.62152 ∗ 10−90 0.84905 1.21738 ∗ 10−96 6.33495 ∗ 10−2 1.53624 ∗ 10−90 7.84591 ∗ 10−1

ϑ̂t 3.13262 ∗ 10−90 0.81819 8.94466 ∗ 10−97 5.67838 ∗ 10−2 1.33044 ∗ 10−90 7.57304 ∗ 10−1

%̂t 2.21510 ∗ 10−90 0.54026 6.32678 ∗ 10−97 3.59050 ∗ 10−2 9.40836 ∗ 10−91 4.96797 ∗ 10−1

ĥtsr 4.79291 ∗ 10−90 1.08185 4.74425 ∗ 10−97 7.03355 ∗ 10−2 6.79239 ∗ 10−91 8.85929 ∗ 10−1

Table 3.4: Interval of standard errors for the parameter estimates under 1-, 2-, 3-state

HMM- and HOHMM-based models

3.5.5 Model selection and other diagnostics

One-step ahead forecasts from both the HMM and HOHMM settings are compared. We

also present a forecasting error analysis accompanied by an AIC analysis on the selection

of optimal number of HMM and HOHMM states.

3.5.5.1 Assessment of predicted temperatures

To make predictions of the DAT values over a one-step ahead time interval, we evaluate the

expected value of the observation process at time k + 1. Given Xk+1 in (3.10), we have

E [Xk+1 |Xk] = E
[
κ
(
yw

k
)

Xk + ϑ
(
yw

k
)

+ %
(
yw

k
)

zk+1 |Xk
]

=
〈
κ, ŷw

k
〉

Xk +
〈
ϑ, ŷw

k
〉
. (3.42)

Figure 3.7 depicts the one-step ahead forecasts both for the deseasonalised data Xk and

DATs under the 3-state HOHMM-based model using (3.42). The very short-term predic-

tions for Xk and DATs are very close to the actual data series, and the same can also be

said for for Xk and DATs under the HMM-based models. We also present a comparison
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Figure 3.7: One-step ahead forecasts under a 3-state HOHMM-based model

between the observed seasonal HDD and the predicted seasonal HDD covering the entire

period (2011-2014) under the 3-state HOHMM-based settings in Figure 3.8. Similar com-

parison was performed, though not shown, under the HMM-based settings. The seasonal

HDD forecasts obtained from the proposed models follow closely the actual seasonal HDD.

Furthermore, the magnified view of the predicted DATs under the HOHMM set ups is given

in Figure 3.9 covering a 6-month period; DATs forecasts under the HMM setting are also

generated but not shown here. All forecasts are relatively close to the actual DATs. The

dynamics and trends of the temperature series are captured well by our filtering algorithms

and self-calibrating parameter estimation method.
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Figure 3.8: Comparison of the expected HDD and actual HDD in a 3-state HOHMM-based

model
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Figure 3.9: Comparison of one-step-ahead forecasts in 1-, 2-, and 3-state HOHMM-based

models
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3.5.5.2 Error analysis and model selection

We perform an error analysis to quantify the goodness of fit of various HMM and HOHMM

settings using the criteria put forward in Erlwein et al. [19], which are the mean square error

(MSE), root mean square error (RMSE), absolute mean error (MAE) and relative absolute

error (RAE). Suppose Xk denotes the actual value at time k, X̂k stands for the one-step

ahead prediction value at time k, Ȳ is the mean of Xk’s, and n = 1460 is the total number of

predicted values.

MSE =

∑n
k=1

(
X̂k − Xk

)2

n
, RMSE =

√∑n
k=1

(
X̂k − Xk

)2

n
,

MAE =

∑n
k=1 |X̂k − Xk|

n
and RAE =

∑n
k=1 |X̂k − Xk|∑n
k=1 |Xk − X̄|

.

Table 3.5 displays the error-analysis results involving Xk and DATs data under the HMM

setting whilst Table 3.6 contains the error-analysis results under the HOHMM setting. Al-

though the errors are generally small, the error metrics illustrate that the 2-state model

outperforms the 1- and 3-state models under both HMM and HOHMM frameworks. In

addition, the 1-, 2- and 3-state HOHMM-based models produce better forecasts than those

generated by their corresponding HMM settings as far as error measures are concerned.

The 4-state HMM-based and HOHMM-based settings were also examined, but no evi-

dence of even minimal improvement is achieved by making the model more complex such

as including 64 parameters in its probability transition matrix.

To determine if the error-mean differences are statistically significant in each pairwise set-

ting, we perform a t-test using the bootstrapped method. We generate RMSEs for all pos-

sible paired HOHMM settings, and then calculate, using the R function ‘p.adjust’, the

adjusted p-values with the Bonferroni’s method to control the familywise error rate. For

the 1-state HOHMM versus the 2-state HOHMM, the p-value is smaller than 0.01 so that

we can conclude there is sufficient evidence of significant difference after adding one more

regime into the one-state model. For the 2-state HOHMM vis-á-vis the 3-state HOHMM,

the p-value is much greater than 0.05, meaning that we cannot reject the null hypothesis

of no difference. The estimated p-values covering three pairs of model settings are shown

in Table 3.7. On the basis of a 5% significance level, the 1- and 2-state, and 1-and 3-state

models in both the HMM and HOHMM frameworks are statistically different, whilst the 2-

and 3-state settings are not. This suggests that there is benefit to using a regime-switching
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HMM setting Deseasonalized Xt DATs Tt

1-state 2-state 3-state 1-state 2-state 3-state

MSE 0.42702 0.42700 0.42887 10.67538 10.67504 10.72172

RMSE 0.65346 0.65345 0.65488 3.26732 3.26727 3.27440

MAE 0.50467 0.50465 0.50728 2.52333 2.52324 2.53640

RAE 0.74435 0.74432 0.74821 0.27539 0.27538 0.27681

Table 3.5: Results of error analysis on HMM-based models

HOHMM setting Deseasonal Xt DATs Tt

1-state 2-state 3-state 1-state 2-state 3-state

MSE 0.42702 0.42686 0.42698 10.6754 10.67142 10.67445

RMSE 0.65346 0.65334 0.65344 3.26732 3.26671 3.26718

MAE 0.50467 0.50448 0.50463 2.52334 2.52239 2.52315

RAE 0.74435 0.74407 0.74430 0.27539 0.27528 0.27537

Table 3.6: Results of error analysis on HMM-based models

model, and the 2- and 3-state HMM and HOHMM settings possess similar capability to

capture the DAT dynamics. That is, a two-state model is sufficient for our data.

We complement our error analysis with a likelihood-based model selection analysis via the

AIC. This estimates the Kullback-Leibler information under the ML paradigm, and given

by

AIC = −2 log L (X; v) + 2g,

where g is the number of estimated parameters in the model, and log L (X; v) denotes

the log-likelihood function of the model given the data X and a set of parameters v. A

Setting HMM HOHMM

1-state 1-state 2-state 1-state 1-state 2-state

t-test vs vs vs vs vs vs

2-state 3-state 3-state 2-state 3-state 3-state

p-value 0.01259 7.06352×10−5 0.57193 0.00678 0.01495 1.00000

Table 3.7: Bonferroni-corrected p-values for a paired t-test applied to RMSEs
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model deemed the best and is chosen if it is able to balance between fitness (maximise the

log-likelihood function) and complexity (minimise the penalty from too many parameters)

yielding the lowest AIC value. As a function of the observation Xt, parameter sets v∗ and

vw, the log-likelihood functions under the respective HMM and HOHMM settings are

log L (Xk; v∗) =

β∑
k=1

[
log

 1
√

2πσ (yk)


−

Xk+1 − µ (yk)
2σ2 (yk)

]
, (3.43)

log L (Xk; vw) =

β∑
k=1

N∑
t=1

〈yw
k , et〉

[
log

 1
√

2π% (yk)


−

Xk+1 − κ
(
yw

k

)
Xk − ϑ

(
yw

k

)
2%2

(
yw

k

) ]
, (3.44)

where β denotes the number of observations in each pass, and N is the number of regimes.

From equation (3.10) and the matrix of transition probabilities, we can determine the total

number of parameters in each of the HMM and HOHMM settings and these are presented

in Table 3.8.

Setting 1-state 2-state 3-state N-state

HMM 3 8 15 3N + (N − 1) N

HOHMM 3 10 27 3N + (N − 1) N2

Table 3.8: Number of estimated parameters under the HMM and HOHMM settings

Employing equations (3.43) and (3.44), and Table 3.8, we compute the AIC values for

each model as we run through the algorithm passes. Figure 3.10 illustrates the evolution

of the computed AIC values for all candidate models. As the number of regimes grows

in a model, there is a substantial increase in the number of parameters especially coming

from the number of transition probabilities. Our results show that the 2-state HOHMM has

the smallest AIC value and a more stable pattern in the entire data period. Therefore the

2-state model is the best-fitting model for the dynamics of our data set, which agrees with

our error analysis.

Although it is typical in the statistical analysis of a proposed financial model to bench-

mark it against say, random walk, log-normal and ARCH-type models (see Tenyakov et al.

[32] and Hardy [23], for example), these common benchmarks are incompatible with our
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Figure 3.10: Evolution of AIC for 1-, 2-, and 3-state HMM- and HOHMM-based models

modelling situation. More specifically, these models for benchmarking do not have the ca-

pability to capture the important property of mean-reversion for temperature data and thus,

they are inordinately disadvantaged in comparison to mean-reverting models. Hence, the

only meaningful benchmark not involving any Markov chain in our case is the one-state

OU process, where there is no switching of regimes. From Figure 3.10, the 1-state model

(i.e., no Markov chain) is performing poorly relative to the 2- and 3-state models. This is

also supported by the HDD error-analysis metrics shown in Table 3.9.

HDD HMM setting HOHMM setting

1-state 2-state 3-state 1-state 2-state 3-state

MSE 4725.2238 4724.6591 5754.0650 4725.2238 4705.0409 4724.9993

RMSE 68.7403 68.7362 75.8556 68.7403 68.5933 68.7386

MAE 51.4458 51.4237 57.3876 51.4458 51.3215 51.4243

RAE 0.0504 0.0504 0.0562 0.0504 0.0503 0.0504

Table 3.9: Results of error analysis for the HDD on HMM- and HOHMM-based models
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3.6 Conclusion

The major contribution of this chapter is the development of a model flexible enough to

describe a data set that exhibit seasonality, randomness, mean-reversion and memory. Such

is the case for the dynamics of DATs series, which is the most utilised underlying variable

in the creation of weather-dependent derivatives. In particular, we put forward a model fol-

lowing a deterministic seasonality component and the mean-reversion is governed by the

OU process. The stochasticity is generated by the use of the Brownian motion in the diffu-

sion component. Embedding an HOHMM facilitated the switching of parameters amongst

various conceivable regimes and also captures short or long-range dependence.

Our estimation procedure for all the model parameters is successfully achieved through

the extension of the HMM-OU filtering techniques applied to a proposed transformed

HOHMM. With the change of probability measure and EM algorithm, self-tuning HOHMM

recursive filters were obtained that supports online parameter estimation. Our results also

encompass the special case of HOHMM with lag 1, which is the case for the usual HMM

recursive filters. Our modelling methodology was tested on Toronto’s DATs covering a

4-year period. Our post-modelling diagnostics reveal reliable one-step ahead forecasts un-

der various settings. We must note though that the 2-state HOHMM provides the best

framework for the data that we investigated. This is validated by the AIC analysis and the

accompanying error analyses.

The current HMM-modulated models have been employed in many areas of finance and

economics, such as the modelling of commodity futures prices, developing asset allo-

cation strategies, valuing interest-rate products, and so on. HMM- and HOHMM-based

methods in weather derivatives are virtually nonexistent until the publication of the 2-state

regime-switching temperature model of Elias et al.[14]. This work further elevates that

development temperature modelling for weather derivatives in three respects: (i) provision

of dynamic estimation with efficient algoritms, (ii) generalisation of the usual HMM to

take advantage of information beyond lag one, and (iii) empirical results that reinforce the

choice of the optimal regime dimension. We believe that our proposed method offers an

effective alternative to available approaches in efficient modelling and forecasting temper-

ature dynamics with easily interpretable results.

A natural direction to pursue further is to price weather derivatives by finding a risk-neutral
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measure and linking this pricing measure to the optimal estimates produced from our pro-

posed filtering procedure. Whilst this is beyond the objectives of this study, we have laid

down some groundwork to motivate that kind of research exploration. It would be also

worth examining this HOHMM-based filtering algorithms and the parameter estimates in

relation to the modelling of other weather measurements such as wind speed, level of rain-

fall, etc, either for the purpose of financial pricing or meteorological modelling and fore-

casting. Finally, an apparent weakness of this research is the modeller’s prescription of

HOHMM’s lag order before the filtering algorithms could be implemented. It is hoped that

this could be rectified in future research through the construction of statistical inference

techniques that estimate the correct lag order as implied by the data.
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[3] F. Benth, J. Šaltytė-Benth, Stochastic modelling of temperature variations with a view

towards weather derivatives, Applied Mathematical Finance, 12 (1) (2005), 53–85.

[4] J. Beran, Statistics for Long-Memory Processes, Chapman and Hall, New York

(1994).

[5] S. Campbell, F. Diebold, Weather forecasting for weather derivatives, Journal of the

American Statistical Association, 100 (469) (2005) 6–16.

[6] M. Cao, J. Wei, Weather derivatives: a new class of financial instruments, University

of Toronto Web, http://www.rotman.utoronto.ca/ wei/research/JAI.pdf (2003), Ac-

cessed March 2016.

[7] W. Ching, T. Siu, L. Li, Pricing exotic options under a high-order Markovian regime

switching model, Journal of Applied Mathematics and Decision Sciences., (2007)

1–15, doi:10.1155/2007/18014.

[8] G. Considine, Introduction to weather derivatives, CME Group Web,

http://web.math.pmf.unizg.hr/ amimica/pub/lapl.pdf, Accessed March 2016

[9] P. Date, A. Tenyakov, R. Mamon, Filtering and forecasting commodity futures prices

under an HMM framework, Energy Economics, 40 (2013) 1001-1013.

[10] M. Davis, Pricing weather derivatives by marginal value, Quantitative Finance, 1 (3)

(2001) 305–308.

97



98 REFERENCES

[11] B. Dischel, At least: a model for weather risk, Weather Risk Special Report, Energy

and Power Risk Management, March issue (1998) 3032.

[12] G. Dorfleitner, M. Wimmer, The pricing of temperature futures at the Chicago Mer-

cantile Exchange, Journal of Banking and Finance, 34(6) (2010) 1360–1370.

[13] J. Dutton, Opportunities and priorities in a new era for weather and climate services,

Bulletin of the American Meteorological Society, 83 (9) (2002) 1303-131.

[14] R. Elias, M. Wahab, L. Fang, L., A comparison of regime-switching temperature

modeling approaches for applications in weather derivatives, European Journal of

Operational Research, 232 (3) (2014) 549–560.

[15] R. Elliott, Exact adaptive filters for Markov chains observed in Gaussian noise, Auto-

matica, 30 (1994) 1399–1408.

[16] R. Elliott, L. Aggoun, J. Moore, J., Hidden Markov Models: Estimation and Control,

Springer, New York (1995).

[17] R. Elliott, V. Krishnamurthy, New finite-dimensional filters for parameter estimation

of discrete-time linear Gaussian models, IEEE Transactions on Automatic Control,

44 (5) (1999) 938-051.

[18] C. Erlwein , R. Mamon, An online estimation scheme for a HullWhite model with

HMM-driven parameters, Statistical Methods and Applications, 18 (1) (2009) 87–

107.

[19] C. Erlwein, F. Benth, R. Mamon, HMM filtering and parameter estimation of an elec-

tricity spot price model, Energy Economics, 32 (5) (2010) 1034–1043.

[20] D. Gujarati, Basic Econometrics (4th ed), McGraw-Hill, New York (2003).

[21] C. Granger, R. Joyeux, An introduction to long memory time series models and frac-

tional differencing, Journal of Time Series Analysis, 1 (1980) 49–64.

[22] J. Hamilton, Rational expectations econometric analysis of changes in regime: an

investigation of term structure of interest rates, Journal of Economic Dynamics and

Control, 12 (1988) 385–423.

[23] M. Hardy, A regime-switching model of long-term stock returns, North American

Actuarial Journal, 5 (2) (2001) 41–53.



REFERENCES 99

[24] J. Hull, A. White, Pricing interest-rate-derivative securities, Review of Financial Stud-

ies, 3 (4) (1990) 573–592.

[25] S. Jewson, A. Brix, C. Ziehmann, Weather Derivative Valuation: The Meteorological,

Statistical, Financial and Mathematical Foundations, Cambridge University Press,

Cambridge (2005).

[26] R. Mamon, R. Elliott, Hidden Markov Models in Finance: International Series in

Operations Research and Management Science, 104, Springer, New York, (2007).

[27] R. Mamon, C. Erlwein, B. Gopaluni, Adaptive signal processing of asset price dy-

namics with predictability analysis, Information Sciences, 178 (1) (2008) 203–219.

[28] Price Waterhouse Coopers, 2011 Weather risk derivative survey, Weather Risk

Management Association,

http://library.constantcontact.com/download/get/file/1101687496358-

153/PwC+Survey+Final+Presentation+20110519PRESS.pdf

(2011), Accessed March 2016

[29] L. Rabiner, A tutorial on hidden Markov models and selected applications in speech

recognition, Proceedings of the IEEE, 77 (2) (1989) 257–286.

[30] V. Reisen, Estimation of the fractional difference parameter in the ARIMA( p, d, q)

model using the smoothed periodogram, Journal of Time Series Analysis, 15 (1994)

335–350.

[31] T. Siu, W. Ching, E. Fung, M. Ng, X. Li, A high-order markov-switching model for

risk measurement, Computers and Mathematics with Applications, 58 (1) (2009) 1–

10.

[32] A. Tenyakov, R. Mamon, M. Davison, Modelling high-frequency FX rate dynamics:

A zero-delay multi-dimensional HMM-based approach, Knowledge-Based Systems,

101 (2016) 142–155.

[33] A. van der Vaart, Asymptotic Statistics, Cambridge University Press, Cambridge and

New York (1998).

[34] World Meteorological Organization (WMO) and the Centre for Research on the Epi-

demiology of Disasters (CRED) of the Catholic University of Louvain (UCL), Atlas



100 REFERENCES

of Mortality and Economic Losses from Weather, Climate and Water Extremes 1970-

2012, WMO Press, Belgium (2014).

[35] C. Wu, On the convergence properties of the EM Algorithm, Annals of Statistics, 11

(1) (1983) 95–103.

[36] X. Xi, R. Mamon, Parameter estimation of an asset price model driven by a weak

hidden markov chain, Economic Modelling 28 (1) (2011) 36–46.



Chapter 4

A higher-order Markov
chain-modulated model for electricity
spot-price dynamics

4.1 Introduction

Electricity contributed greatly to technological revolution and hastened industrial progress.

As one of the pivotal mankind’s discoveries, it is indispensable in our modern society. It

changed, in a significant way, almost every aspect of our daily lives. It would be hard

to imagine a world without electronics, machines, equipments and inventions that are en-

ergised by electric power nowadays. Considering the advantages of economies of scale

and steady industrial productivity, regulation of electricity supply was centralised; but, this

inhibited any competition at all. In terms of economic efficiency, microeconomic theory

maintains that introducing competition can motivate production innovation, increase sup-

ply diversity, and offer most benefits to consumers. Since privatisation and competition

were first introduced to electric power systems in Chile [28], electricity markets have ex-

perienced restructuring and deregulations in many countries. Electricity is now a daily ne-

cessity; given its prime importance, it is a commodity actively trading in the financial mar-

kets. Consequently, we are witnessing increasing price uncertainties and risks in electricity-

driven investment portfolios. So, models capable of adequately capturing electricity price

dynamics for electricity- contract pricing and risk management are sought. Existing re-

search studies attempt to formulate electricity pricing models that mimick model-pricing

developments in the commodity market. However, due to the unique characteristics of

101
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electricity spot prices, many financial models designed for regular commodities cannot be

adapted necessarily to the electricity markets.

Compared to common and tangible assets in the capital markets, electricity is non-storable;

when produced, it must be consumed almost instantly. This non-storability feature makes

its spot price highly sensitive to demand and supply in real time. As a result, electricity

has more dramatic price evolutions than those of other energy sources, such as crude oil

and natural gas. Since electricity cannot be stored, electricity prices are largely dependent

upon supply and demand, which exhibit pronounced seasonality patterns. Somewhat dif-

ferent from general seasonality, highly occurring multi-cyclical nature of prices is evident

in electricity markets. Annual and quarterly patterns, for example, are attributed princi-

pally to the variations in temperature and duration of daylight, especially during winter and

summer. Cyclical patterns also occur weekly, daily and even intra-daily caused by quantity

demanded that is varying in time.

Similar to other energy commodities, it is also critical to incorporate the mean-reverting

property in electricity prices as argued in Schwartz [31]. Owing to demand fluctuations,

the price can deviate from the long-run mean. However, the production cost and supply

adjustments are capable of hauling it back to the mean level over time, hence, the mean-

reverting behaviour of electricity prices. Unbalanced supply-and-demand situation that

happens expectedly or unexpectedly from time to time could bring about abrupt and large

jumps on the prices. Capturing simultaneously the above-mentioned properties of the price

dynamics is a great challenge in electricity spot-price modelling in the framework of any

deregulated markets. Yet, this difficulty must be dealt with in order to address the concerns

nestled in the trading and hedging of electricity-dependent derivatives.

Modelling electricity prices can be divided into two roughly categorical approaches. The

first approach focuses on the modelling of the entire forward curve akin to the valuation of

associated derivatives and short-term prediction of futures prices; see Islyaev and Date [19]

and Fanelli et al. [12]. The second approach concentrates on model formulation of spot

prices taking into account several and only the most relevant fundamental price drivers

observed in electricity markets; see Ziel et al. [47]. The emphasis of our research is on

the latter approach. Early research works mainly put forward stochastic models that only

capture seasonality and mean reversion in prices. The seasonal systematic patterns are typ-

ically described by sinusoidal functions [23] and the Ornstein-Uhlenbeck (OU) process is
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prevalently utilised to model the mean reversion as noted in Schwartz [31]. A two-factor

model in an OU-inspired setting was developed by Schwartz and Smith [32] in an effort

to explicitly portray seasonal patterns and short-term mean-reverting variations in prices at

the equilibrium level. However, most of these early literature did not take into account the

peculiarity of electricity prices and examine it thoroughly.

Motivated by the phenomenon of frequent but large price jumps observed in the electric-

ity markets, scholars began to develop modelling capabilities that can handle spikes in

electricity-price fluctuations. Deng [6] pioneered the use of jump-diffusion models with

a mean-reverting process to replicate the distinct characteristics of electricity-spot prices;

such models were fitted to data from the American markets. Benth et al. [1] added jumps

to a general exponential multi-factor mean-reverting model and performed calibration em-

ploying data from the Nord-Pool market. In Seifert and Uhrig-Homburg [34], different

models for the jump component in the electricity markets were explored and the effec-

tiveness of different jump specifications compared; such models were applied to the Euro-

pean Energy Exchange (EEX) market. Many research proponents advanced the utility of

Poisson-jump models, whilst others, in recent literature, argued that modelling the ‘jumpy’

attribute could be achieved better by introducing a regime-switching approach. Huisman

and Mahieu [18] proposed a regime-shifting jump process with a recovery state and con-

cluded that it performed better than a stochastic jump model whilst a two-regime-switching

model with ‘abnormal’ and ‘normal’ states was shown superior to a Poisson-jump model

in De Jong [7] in capturing electricity-price dynamics. Wu et al. [37] studied the Al-

berta electricity-spot market via a hidden Markov model with a multi-model identification

approach. Alberta electricity pool prices are divided into five classes, and the last three

classes with prices over $100/MWh are deemed high-pool-price regions. It was found that

price-forecasting performance could be improved substantially, especially in high-pool-

price regions, by incorporating a Markovian regime-switching mechanism.

In the context of regime-switching approaches, hidden Markov models (HMMs) have been

widely successful in many engineering, economic and financial applications; see Mamon

and Elliott [20, 25]. HMMs are beneficial for modelling processes illustrating regime-

switching dynamics via Markov chains with latent states. This approach was previously

applied in the examination of electricity-price behaviour. A non-stationary model based

on input-output HMM was developed to model time series of spot prices in the Spanish

electricity market [15]. As well, Yu and Sheblé [46] utilised HMMs to efficiently model
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price movements in the electricity market and provide good forecasts adjudged from the

perspective of accuracy and dynamic information in the US market.

The assumption of first-order state transition dependency in HMM renders this model de-

ficient in taking advantage of the information content of historical data. Thus, researchers

introduced recently higher-order hidden Markov models (HOHMMs), also called weak

hidden Markov models. An HOHMM is a doubly embedded stochastic process having

an observation series and an underlying unobserved Markov chain. The probability dis-

tribution of the Markov chain’s state transition at present depends not only on the most

recent state but also on states at prior epochs into the past. The primary aim in practice

is to obtain the best estimate of the Markov chain’s current or future state, which repre-

sents the ‘filtered’ or ‘predicted’ state of the market or economic system. This estimation is

performed by taking the conditional expectations of functions of the Markov chain and ob-

served electricity spot prices that are regarded as offshoot of the interaction of many latent

factors, such as market participants’ actions, production and consumption, weather condi-

tions, transmission network, etc. In our context, HOHMM setting is designed to capture the

presence of memories in electricity market prices that will provide additional information

in the estimation and forecasting of economic regimes and other model parameters.

An array of HOHMMs’ applications can be found in speech recognition and finance,

amongst other research areas. An HOHMM for piecewise linear processes was developed

by Lee and Jean [22] to approximate the behaviour of a real process in speech recogni-

tion. Xiong and Mamon [43] demonstrated that an HOHMM captures more accurately the

empirical characteristics of a data set on daily average temperature (DAT) when compared

to the usual HMM. With the aid of HOHMMs, Xi and Mamon [38] devised a more flexi-

ble framework and showed better performance in forecasting the risky asset’s log returns.

Other HOHMM-related works in financial modelling include [39], [40], [41], and [42].

To the best of our knowledge, this research is the first to build an HOHMM-modulated

electricity spot-price model. The regular HMM approach is extended in our approach

and the HOHMM’s prediction performance is examined. Our work can viewed both as

an update and extension of Erlwein et al.’s model construction [7] that was based on an

exponential-OU process with a jump component under the HMM setting; albeit Erlwein et

al.’s empirical application covers the Nord-Pool market whilst ours investigates the Alberta

electricity market. The structure of the electricity industry in Alberta is unique in North
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America and apparently different from that of Norway, as the former is developed from

a set of uniquely distinguishable circumstances. In particular the Alberta Electric System

Operator (AESO) relies on wind farms; and to avoid power shortages when wind drops off

and does not blow consistently, coal and natural gas plants have to take up the slack.

Modelling the behaviour of electricity spot prices is of utmost importance because they

serve as the underlying variable for the values of many traded electricity contracts and

they are key indicators in the strategic planning and investment-decision making of various

stake holders in the electricity market. Our main research contribution is the creation of

an HOHMM-OU-Poisson framework that simultaneously delineates five salient properties

of electricity spot prices. The implementation portion of this work highlights model val-

idation and post-modelling diagnostics. Capitalising on Erlwein et al.’s use of HMM on

electricity spot price modelling [7], this research further highlights HOHMC-modulated

model parameters to address memory in time series data. Our recursive filters are also ex-

pressed more compact compactly in a matrix notation.

This chapter is organised as follows. In Section 4.2, we building an electricity spot price

model whose parameters are governed by an HOHMM in discrete time. Through a change

of reference probability technique, adaptive filters are presented in Section 4.3 for the

states of the HOHMH and related quantities of the observation process. We outline the

self-calibrating parameter estimation scheme in terms of the recursive filters via the EM al-

gorithm in Section 4.4. Numerical implementation, which includes assessment of model’s

goodness of fit and prediction ability, is performed on a 4-year AESO data in Section 4.5.

Implication to forward pricing of our proposed HOHMM-modulated electricity spot price

model is also illustrated. Section 4.6 provides some concluding remarks.

4.2 Model formulation

4.2.1 Model for electricity spot price

As noted above, studies in the earlier literature employ time series models to describe the

price process of electricity. An OU process with a predictable component is a germane

example, and this was adopted by Lucia and Schwartz [23] to replicate the unfolding of

the log-spot prices in the Nordic exchange. Yousef [45] applied mean-reverting diffusion
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models to the Alberta electricity market; however, these models could not produce spikes in

the dynamics of electricity spot prices. Invoking Benth et al. [1], we suppose the electricity

spot price S t at time t, defined on some probability space (Ω,F , P), is given by

S t = DteXt . (4.1)

Equation (4.1) comprises two components to handle seasonality, and stochasticity coming

from normal perturbations and jump behaviours. The deterministic function Dt accounts

for regularities in the price evolutions and periodic trends. The stochastic part Xt is as-

sumed to be an OU process (to rationalise the tendency to return to a long-run mean) plus

a compound Poisson process that deals with excessive volatilities and spikes.

Trigonometric functions were applied by various authors to capture processes’ seasonality

in different complex systems. In the power market for instance, Lucia and Schwartz [23]

included sinusoidal and dummy variables for prices in the Nordic market. Linear trend and

cosine functions were introduced to model spot prices’ seasonality in the US electricity

market by Geman and Roncoroni [14]. As in Xiong and Mamon [43, 44], daily temperature

data series can be modelled by a combination of sinusoidal functions, with varying seasonal

frequencies, and a linear trend. Following [43] and [1], Dt has the specification

Dt =at + b +

3∑
h=1

[
ch sin

(
dht

2π
365

)
+ eh cos

(
dht

2π
365

)
+ gh sin

(
dht

2π
7

)
+ jh cos

(
dht

2π
7

) ]
, (4.2)

where d1 = 1, d2 = 2, and d3 = 4 to cover periodic trends including the annual, semi-

annual, quarterly, monthly, weekly, and mid-week patterns. The constants a, b, ch, eh, gh,

and jh are recovered from a data set of prices. Such a deterministic function D(t) may be ex-

tended with the augmentation of more terms to elucidate other possible factors at play (e.g.,

effects of generation capacity and holidays). We argue, however, that since temperature is

a major driver for electricity demand and contributes substantially to seasonal variations,

equation (4.2) can sufficiently portray the seasonal characteristics of electricity spot prices.

4.2.2 The fusion of HOHMM, OU and compound Poisson models

In the ensuing exposition, we shall denote all vectors and matrices by bold small En-

glish/Greek letters and bold capitalised English/Greek letters, respectively. The desea-

sonalised component Xt in (4.2) follows an OU model and an additive compound-Poisson
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component; these equip the capability to model mean reversion, price variations and spike

dynamics. The process Xt in equation (4.1) satisfies the stochastic differential equation

(SDE)

dXt = α(θ − Xt)dt + ξdWt + dJt, (4.3)

where α, θ, and ξ stand for the speed of mean reversion, mean-reverting level, and volatility,

respectively. A Brownian motion {Wt} models the random price fluctuations under a stable

market condition, whilst {Jt} is designed to pick up the price spikes. A compound Poisson

process affords capacity to model jumps, as adduced in [11, 20] and similar to their settings,

we let dJt = βdPt, where Pt is a Poisson process with a constant intensity ς and a normally

distributed jump size β ∼ N
(
µβ, σ

2
β

)
. For s ≤ t, the continuous-time solution of equation

(4.3), by Itô’s lemma, is

Xt =Xseα(t−s) +
(
1 − e−α(t−s)

)
θ + ξe−αt

∫ t

s
eαudWu

+

∫ t

s
e−α(t−u)dJu. (4.4)

By approximating the distributions of the stochastic integrals in (4.4), the discrete-time

version of the solution is

Xk+1 =Xke−α4tk+1 +
(
1 − e−α4tk+1

)
θ + ξ

√
1 − e−2α4tk+1

2α
zk+1

+

P4tk+1∑
m=1

e−α(4tk+1−υm)βm, (4.5)

where 4tk+1 = tk+1 − tk for k ∈ Z∗ := Z+ ∪ {0}, υm is the occurrence time of the mth jump,

and {zk+1} is a sequence of independent and identically distributed (IID) standard normal

random variables.

To create a regime-switching model for electricity spot prices, we begin with a homoge-

neous Markov chain yk with a finite state space {e1, e2, . . . , eN}, where ei = (0, . . . , 0, 1, 0, . . .

, 0)> ∈ RN with 1 in the ith position, > is the matrix transpose operator, and N is the state-

space dimension. Model parameters in equation (4.5) switch randomly, in accordance with

the dictates of yk, amongst different electricity-market regimes as time progresses. With

the canonical basis as yk’s state space, we have αk := α(yk) = 〈α, yk〉, θk := θ(yk) = 〈θ, yk〉,

ξk := ξ(yk) = 〈ξ, yk〉, and βk := β(yk) = 〈β, yk〉, where 〈·, ·〉 is the inner product in RN . The
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stochastic process Xk in equation (4.5) then can be written as

Xk+1 =Xke−α(yk)4tk+1 +
(
1 − e−α(yk)4tk+1

)
θ(yk)

+ ξ(yk)

√
1 − e−2α(yk)4tk+1

2α(yk)
zk+1

+

P4tk+1∑
m=1

e−α(yk)(4tk+1−υm)βm(yk). (4.6)

To completely characterise the parameter estimation and filtering under the HOHMM set-

ting, we concentrate on a second-order hidden Markov chain. Of course, in theory and

principle, the estimation and filtering for the generalised Markov chain with order greater

than 2 can be extended in a straightforward manner, notwithstanding the corresponding

computational challenge. Suppose yw is a second-order hidden Markov chain regulating

the evolution of α, θ, ξ, and β. We define Fk := F w
k ∨F z

k ∨F J
k as the global filtration,

where F w
k , F z

k , and F J
k are filtrations generated by {yw

k }, {Wt} and {Jt}, respectively. Under

the probability space (Ω,F , {Fk}, P), the discrete-time hidden Markov chain yw
k at the cur-

rent step k depends on the information revealed at two prior steps k−1 and k−2. Following

[28], write T for the RN×N2
transition probability matrix, and specified as

T :=


p111 p112 · · · p11N · · · p1N1 p1N2 · · · p1NN

p211 p212 · · · p21N · · · p2N1 p2N2 · · · p2NN
...

...
. . .

... · · ·
...

...
. . .

...

pN11 · · · pN1N · · · pNN1 pNN2 · · · pNNN

 ,
where pdcb := P(yw

k+1 = ed|yw
k = ec, yw

k−1 = eb) with k ≥ 1 and d, c, b ∈ {1, 2, . . . ,N}, which

stands for the probability that the Markov chain will be in state d at time k + 1, given that

it is in state c at time k and in state b at time k − 1.

A vital strategy in the estimation and filtering of HOHMMs is a mapping that converts an

HOHMM into an HMM, and then the usual HMM filtering methods can then be conve-

niently applied. For our second-order HMC, let $ be a transformation defined by

$(eb, ec) = ebc, for 1 ≤ b, c ≤ N, (4.7)

where ebc is a unit vector with 1 in its ((b − 1)N + c)th position. We obtain a new Markov

chain $(yw
k+1, y

w
k ), whose state space is the canonical basis of RN2

, and

〈$(yw
k+1, y

w
k ), ebc〉 = 〈yw

k+1, eb〉〈yw
k , ec〉. (4.8)
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The corresponding dynamics are

$(yw
k+1, y

w
k ) = A$(yw

k , y
w
k−1) + mw

k+1, (4.9)

where {mw
k+1}k≥1 is a sequence of martingale increments with E[mw

k+1|F
w
k ] = 0 under the

real-world measure P. The matrix A = (a ji) is the RN2×N2
probability transition matrix with

entries a ji := pdcb = P(yw
k+1 = ed|yw

k = ec, yw
k−1 = eb) for j = (d − 1)N + c, i = (c − 1)N + b,

and a ji = 0 otherwise.

4.3 Recursive filtering

4.3.1 Change of reference probability measure

Deriving recursive filters, under the real-world probability P with the realistic supposition

of dependent observations, could be computationally expensive and cumbersome. To this

end, we shall perform the recursive filtering involving yw
k under an ideal reference proba-

bility measure P̃. Under P̃, the observed Xk’s are IID and yw
k has the same dynamics under

both P and P̃. We assume further that the jump component of the stochastic process Xt is

unaffected by the change of reference probability measure following Merton [29]. The esti-

mated processes’ dynamics, under measure P̃, can be recovered via a discrete-time version

of the Girsanovs theorem [9] following a reverse measure change.

To aid the filtering computations in our HOHMM setting, we re-express Xk+1 in equation

(4.6) as

Xk+1 = κ
(
yw

k
)

Xk + ϑ
(
yw

k
)

+ %
(
yw

k
)

zk+1 + τ
(
yw

k
)
, (4.10)

where

κ
(
yw

k
)

= e−α(yw
k )4tk+1 , (4.11)

ϑ
(
yw

k
)

=
(
1 − e−α(yw

k )4tk+1
)
θ
(
yw

k
)
, (4.12)

%
(
yw

k
)

= ξ(yw
k )

√
1 − e−2α(yw

k )4tk+1

2α(yw
k )

, (4.13)
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τ
(
yw

k
)

=

P4tk+1∑
h=1

e−α(yw
k )(4tk+1−vh)βh(yw

k ). (4.14)

Akin to the change of measure is an ideal reference measure P̃, whose construction is

justified by the Kolmogorov’s extension theorem [3]. As noted earlier, the corresponding

dynamics of Jk and yw
k are unaltered by the measure change. We may recover P from P̃

given an F w
k -adapted process, for k ≥ 1, through the Radon-Nikodym derivative

Ψw
k =

dP

dP̃

∣∣∣∣∣
F w

k

=

k∏
l=1

ϕw
l (4.15)

and

ϕw
l =

φ
{(
%2

(
yw

l−1

))−1 [
Xl − ϑ

(
yw

l−1

)
− κ

(
yw

l−1

)
Xl−1 − τ

(
yw

l−1

)]}
(
%2

(
yw

l−1

))
φ (Xl)

= exp

 −
(
ϑ
(
yw

l−1

)
+ κ

(
yw

l−1

)
Xl−1 + τ

(
yw

l−1

))
Xl

%2
(
yw

l−1

)
−

(
ϑ
(
yw

l−1

)
+ κ

(
yw

l−1

)
Xl−1 + τ

(
yw

l−1

))2

2%2
(
yw

l−1

) ,
where φ is the probability density function of a standard normal random variable and Ψ0 =

1, {Ψl, l ∈ Z+} is an F w
l -adapted martingale under P.

4.3.2 Calculation of recursive filters

Under P̃ where the observation process is IID, calculations and derivations needed for the

filtering and parameter estimation are manageable to carry out. Suppose Xk is the filtration

generated by Xk, which will be used to estimate the HOHMC yw
k . The Bayes’ theorem for

conditional expectation is a handy tool in getting optimal estimates of various quantities

under P, using the results from recursive filters under P̃.

In particular, let gk =
(
gk (1) , gk (2) , . . . , gk (cb) , . . . , gk (NN)

)>
∈ RN2

, where gk (cb) :=

P
(
yw

k = ec, yw
k−1 = eb | Xk

)
= E

[
〈$(yw

k , y
w
k−1), ecb〉 |Xk

]
. A filter for $(yw

k , y
w
k−1) under P is

given by

gk: = E
[
$(yw

k , y
w
k−1) |Xk

]
=

EP̃[Ψw
k$(yw

k , y
w
k−1)|Xk]

EP̃[Ψw
k |Xk]

. (4.16)
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Write γk := EP̃
[
Ψw

k$(yw
k , y

w
k−1)|Xk

]
. Since

∑N
c,b=1〈$(yw

k , y
w
k−1), ecb〉 = 〈$(yw

k , y
w
k−1), 1〉 = 1,

where 1 is an RN2
vector with 1 in all of its entries, we have

N∑
c,b=1

〈
γk, ecb

〉
=

N∑
c,b=1

〈
EP̃ [

Ψw
k$(yw

k , y
w
k−1)|Xk

]
, ecb

〉
= EP̃

Ψw
k

N∑
c,b=1

〈
$(yw

k , y
w
k−1), ecb

〉
|Xk


= EP̃ [

Ψw
k |Xk

]
. (4.17)

Therefore, the filter of $(yw
k+1, y

w
k ) in equation (4.16) under P has an explicit representation

given by

gk =
γk∑N

c,b=1
〈
γk, ecb

〉 =
γk〈
γk, 1

〉 . (4.18)

To derive recursive processes and estimate relevant quantities in terms of $(yw
k+1, y

w
k ), we

need to construct two N2 × N2 matrices by following Xi and Mamon [38]. These are Kt

with eit on its ((i − 1) N + t)th column and 0 elsewhere for 1 ≤ i, t ≤ N, and a diagonal

matrix Hk, where

Hk =



h1
k 0 · · · 0

0 . . . 0
...

... 0 hN
k

. . .

. . .

. . . h1
k 0

...
... 0 . . . 0

0 · · · · · · 0 hN
k


with diagonal entries

hi
k =

φ
{(
%2

)−1
[Xk − ϑ − κXk−1 − τ]

}
(
%2) φ (Xk)

. (4.19)

Following Xiong and Mamon [43], we define certain scalar processes of interest involving

the HOHMC yw
k . These are as follows:
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(i)

A tsr
k =

k∑
l=2

〈yw
l−2, er〉〈yw

l−1, es〉〈yw
l , et〉, (4.20)

which refers to the number of jumps from state (er, es) to state et up to time k, where

2 ≤ l ≤ k and r, s, t = 1, . . . ,N;

(ii)

Bt
k =

k∑
l=2

〈yw
l−1, et〉 = Bt

k−1 + 〈yw
k−1, et〉, (4.21)

which gives to the occupation time up to time k or the length of time that yw
k spent in

state et, where 2 ≤ l ≤ k and t = 1, . . . ,N;

(iii)

Bts
k =

k∑
l=2

〈yw
l−1, et〉〈yw

l−2, es〉, (4.22)

which represents to the occupation time up to time k or the length of time that yw
k

spent in state (et, es), where 2 ≤ l ≤ k and s, t = 1, . . . ,N;

(iv)

C t
k ( f ) =

k∑
l=2

f (Xl)〈yw
l−1, et〉

=C t
k−1( f ) + f (Xk)〈yw

k−1, et〉, (4.23)

which is an auxiliary process related to yw
k for some function f up to time k in state

et, where 2 ≤ l ≤ k, t = 1, . . . ,N. Here, f takes the functional forms f (X) = X,

f (X) = (X)2 or f (X) = Xk−1Xk.

Consequently, the conditional expectation of $(yw
k+1, y

w
k ) in equation (4.18) can be written

recursively as

gk+1 = AHk+1gk. (4.24)

Suppose Uk is any Xk-measurable process, denoting any of the quantities in equations

(4.20)-(4.23). Write Dw
k [Uk] := EP̃

[
Ψw

k Uk |Xk

]
and Ûk := E [Uk |Xk]. Here, Ûk is

regarded as the ‘best estimate’ of Uk. Similar to the steps in establishing equation (4.18),

the conditional expectation of Uk given Xk can be obtained using calculations that are

entirely under P̃ by observing that

Ûk = E [Uk |Xk] =
EP̃[Ψw

k Uk |Xk]

EP̃[Ψw
k |Xk]

=
Dw

k (Uk)〈
γk, 1

〉 . (4.25)
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Evaluating the numerator of (4.25) (cf Mamon et al. [26]) for each quantity defined in equa-

tions (4.20)–(4.23) and taking advantage of the semi-martingale representation in (4.9), re-

cursive filtering equations are obtained that will provide self-calibrating estimates of the

HOHMM parameters. This will be elaborated further in Section 4.4.

Proposition 1: The filtering recursions for the respective quantity in equations (4.20)–

(4.23) are

Dw
k+1

(
A tsr

k+1$(yw
k+1, y

w
k )

)
=AHk+1Dw

k
(
A tsr

k $(yw
k , y

w
k−1)

)
+ 〈gk, esr〉ht

k+1〈Aesr, ets〉ets, (4.26)

Dw
k+1

(
Bt

k+1$(yw
k+1, y

w
k )

)
=AHk+1Dw

k
(
Bt

k+1$(yw
k , y

w
k−1)

)
+ Ktht

k+1Agk, (4.27)

Dw
k+1

(
Bts

k+1$(yw
k+1, y

w
k )

)
=AHk+1Dw

k
(
Bts

k+1$(yw
k , y

w
k−1)

)
+ 〈gk, ets〉ht

k+1Aets, (4.28)

and

Dw
k+1

(
C t

k+1( f )$(yw
k+1, y

w
k )

)
=AHk+1Dw

k
(
C t

k+1( f )$(yw
k , y

w
k−1)

)
+ f (Xk+1)Ktht

k+1Agk. (4.29)

Proof The proofs of (4.26)-(4.29) are similar to those given in Mamon et al. [26].

4.4 Optimal parameter estimation

In this section, we derive the optimal estimates for the parameters of the stochastic process

Xt through the maximum-likelihood approach. We employ the Expectation-Maximisation

(EM) algorithm to deal with the somewhat involved nature of our recursive filtering re-

lations, which aptly requires an efficient iterative approach. Refer to [7], [43], and [38],

amongst others, for further details of the EM algorithm.

A key step in the EM-algorithm implementation is to characterise the probability den-

sity function (pdf) of Xt, which is needed in the maximisation of the appropriate expected
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log-likelihood function given the information reflected in Xt. Model parameters are gov-

erned by yw
t but suppose that the HOHMM and all model parameters remain unchanged

over the infinitesimal interval [s, t]. Then, the regular HOHMM-modulated OU process

without jumps has a normal distribution with mean Xseα(t−s) +
(
1 − e−α(t−s)

)
θ and variance

ξ2(1−e−2α(t−s))
2α .

The pdf of Xt can be derived completely if the distribution of the jump component Jt is also

determined. As stated in Section 4.2.2, Jt relies on β and P. We recall that β ∼ N
(
µβ, σ

2
β

)
and P has a constant jump intensity ς. Utilising the integral approximation

∫ t

s
e−α(t−u)dJu ≈

e−α(t−u) (Jt − Js) in Erlwein et al. [7], the density of the jump component is

ΦJt−s (x) =

∞∑
m=0

(ς (t − s))m

m!
e−ς(t−s)

× φ
(
x; µβe−α(t−s)m, σ2

βe
−2α(t−s)m

)
. (4.30)

By noting the stationarity of the compound Poisson process, equation (4.30) is also the

density function of the increment Jt − Js.

In equation (4.4), Xt is the sum of a regular OU process and a jump term. As in [17], and

just focusing first on the non-switching setting, we can utilise the convolution of the OU

and Jt’s densities to get the probability density of Xt given Xs, which turns out to be an

expectation of a normal density. That is,

ΦXt |Xs (x) =

∞∑
m=0

(ς (t − s))m

m!
e−ς(t−s)

× φ
(
x; Xseα(t−s)

+
(
1 − e−α(t−s)

)
θ + µβme−α(t−s),

ξ2
(
1 − e−2α(t−s)

)
2α

+ σ2
βme−2α(t−s)

)
=EP4t

[
φ
(
x; Xseα(t−s) +

(
1 − e−α(t−s)

)
θ

+ µβP4te−α(t−s),
ξ2

(
1 − e−2α(t−s)

)
2α

+ σ2
βP4te−2α(t−s)

)]
, (4.31)

where P4t denotes a Poisson counter.
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Going back to the implementation of the EM algorithm under our HOHMM setting, let P4t

be q and assume (for tractability) that Pt is independent of other parameters in the model.

From (4.10) and (4.31), the discrete-time process Xk+1, under the HOHMM framework, is

set to follow a mixture of normal distributions with

µX
(
yw

k
)

= κ
(
yw

k
)

Xk + ϑ
(
yw

k
)

+ µβ(yw
k )qκ

(
yw

k
)
,

and

σ2
X
(
yw

k
)

= %2 (
yw

k
)

+ σ2
β(yw

k )qκ
2 (

yw
k
)
.

We now compute the maximum likelihood estimates (MLEs) of model parameters via the

EM algorithm. Define Ew = {κt, ϑt, %t, µβt , σβt , ptsr, 1 ≤ t, s, r ≤ N} as the set of HOHMM-

based parameters. Starting with the set Ew
0 of initial parameters, the recursive parameter

updates yield an updated set Êw of MLEs, where Êw ∈ argmaxEwL(Ew) and L(Ew) =

EE0

[
dPE

w

dPE0

∣∣∣∣Xk

]
. Following Xiong and Mamon’s arguments [43], the estimation of the ma-

trix T of transition probabilities can also be facilitated by a change of measure from PE0

to PE
w

and entries are updated automatically through the filtering processes. It should be

noted that yw
k is still an HOHMC under both PE

w
and PÊ

w
but each has the corresponding

transition matrices T = (ptsr) and T̂ =
(
p̂tsr

)
. To estimate the transition probabilities in

succession, i.e., by substituting T with T̂, we utilise the likelihood function in combination

with the EM algorithm and consider

ΛT
k =

dPE
w

dPE0

∣∣∣∣∣Xk =

k∏
l=2

N∏
t,s,r=1

(
p̂tsr

ptsr

)〈yw
l−2,er〉〈yw

l−1,es〉〈yw
l ,et〉

, (4.32)

where
p̂tsr

ptsr
= 1 for ptsr = 0 and p̂tsr = 0. The estimation of parameters given the observa-

tion process following equation (4.10) is accomplished by blending the EM algorithm and
recursive filters in (4.26)-(4.29). The resulting outcomes for p̂tsr and the rest parameters
are given as follows.

Proposition 2: The EM estimates, at state t given a series of observations Xk+1 for k ≥ 0,
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are

κ̂t =
Ĉ t

k (Xk, Xk+1) − ϑtĈ t
k (Xk) + µβt qĈ t

k (Xk+1) − ϑtqµβtB̂
t
k

Ĉ t
k

(
X2

k

)
+ 2µβt qĈ t

k (Xk) +
(
µβt q

)2
B̂t

k

=
Dw

k

(
C t

k (Xk, Xk+1)
)
− ϑtDw

k

(
C t

k (Xk)
)

+ µβt qDw
k

(
C t

k (Xk+1)
)

Dw
k

(
C t

k

(
X2

k

))
+ 2µβt qDw

k

(
C t

k (Xk)
)

+
(
µβt q

)2
Dw

k

(
Bt

k

)
−

ϑtqµβt D
w
k

(
Bt

k

)
Dw

k

(
C t

k

(
X2

k

))
+ 2µβt qDw

k

(
C t

k (Xk)
)

+
(
µβt q

)2
Dw

k

(
Bt

k

) , (4.33)

ϑ̂t =
Ĉ t

k (Xk+1) − κtĈ t
k (Xk) − κtµβt qB̂t

k (Xk)

B̂t
k

=
Dw

k

(
C t

k (Xk+1)
)
− κtDw

k

(
C t

k (Xk)
)
− κtµβt qDw

k

(
Bt

k

)
Dw

k

(
Bt

k

) , (4.34)

%̂2
t =

Ĉ t
k

(
X2

k+1

)
+ κ2

t Ĉ
t
k

(
X2

k

)
B̂t

k

+

B̂t
k

(
ϑ2

t +
(
κtµβt q

)2
+ 2ϑtκtµβt q − σ

2
βt
κ2

t q
)

B̂t
k

+
Ĉ t

k (Xk)
(
2µβt qκ

2
t + 2ϑtκt

)
B̂t

k

−

(
2ϑt + 2κtµβt q

)
Ĉ t

k (Xk+1) + 2κtĈ t
k (Xk+1Xk)

B̂t
k

, (4.35)

µ̂βt =
Ĉ t

k (Xk+1) − ϑtB̂t
k (Xk) − κtĈ t

k (Xk)

κtqB̂t
k (Xk)

=
Dw

k

(
C t

k (Xk+1)
)
− ϑtDw

k

(
Bt

k (Xk)
)
− κtDw

k

(
C t

k (Xk)
)

κtqDw
k

(
Bt

k (Xk)
) (4.36)

σ̂2
βt

=
Ĉ t

k

(
X2

k+1

)
+ κ2

t Ĉ
t
k

(
X2

k

)
B̂t

kκ
2
t q

+

B̂t
k

(
ϑ2

t +
(
κtµβt q

)2
+ 2ϑtκtµβt q − %

2
t

)
B̂t

kκ
2
t q

+
Ĉ t

k (Xk)
(
2µβt qκ

2
t + 2ϑtκt

)
B̂t

kκ
2
t q

−

(
2ϑt + 2κtµβt q

)
Ĉ t

k (Xk+1) + 2κtĈ t
k (Xk+1Xk)

B̂t
kκ

2
t q

, (4.37)

p̂tsr =
Â tsr

k

B̂sr
k

=
Dw

k

(
A tsr

k

)
Dw

k

(
Bsr

k

) , ∀pairs (t, s) , t , s. (4.38)
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Proof See Appendix D.

For ease of numerical implementation, we assume q = 1 in Section 4.5. The filtering re-

cursions in Proposition 1 yield new estimates for κt, ϑt, %
2
t , µβt , σ

2
βt

, and ptsr, 1 ≤ t, s, r ≤ N

whenever a new sequence of electricity spot prices becomes available up to time k.

The development of these recursive filters thereby implies that the parameter estimates

under our HOHMM setting are self-calibrating. The results in Propositions 1 and 2 con-

stitute further research progress relative to those given in Erlwein et al. [7], and Xiong

and Mamon [43] in the following respects. Firstly, self-calibrating filtering algorithms for

electricity spot prices in a regular HMM setting [7] are extended to a general HOHMM

case. Secondly, we include a compound Poisson process to depict the spikes in the price

dynamics; such inclusion was not a consideration item in the HOHMM setting of [43].

Thirdly, Erlwein et al. [7] went though the route of estimating first the entire drift compo-

nent before being able to compute an estimate for the mean-reverting level κ. In our case,

we directly dealt with the MLE of κ by providing an explicit solution as a function of filter-

ing recursions. The required sequence of computations in recovering the model parameters

is clarified.

4.5 Numerical application

To evaluate the performance of our proposed model in conjunction with its associated fil-

tering algorithms in section 4.4, we implement them on the daily electricity spot prices

(DESP) recorded by the Alberta Electric System Operator (AESO). The AESO data set

contains 1461 observations covering a 4-year period from 01 Jan 2011 to 31 Dec 2014. In

the context of this data set, let us first consider the seasonality and stochastic components

as underscored in the DESP model in accordance with equation (4.1).

4.5.1 Analysis of the deterministic component

Alberta launched the first wholesale electricity market in Canada. It prescribes that if the

wholesale electrical energy generated in the province is not consumed on site, it must flow

through the Power Pool operated by the AESO [27]. The AESO, on behalf of Albertans,

runs a fair and openly competitive electricity market and offers a reliable and economic
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operation of the Alberta Interconnected Electric System (AIES) [5].

From Figure 4.1, we observe prices displaying strong mean reversion, high periodicities,

and numerous spikes. Despite variations and jumps, DESP exhibit a long-run mean-

reverting level and cyclical patterns. For instance, there are more extreme values and

changes in temperature values during the winter and summer seasons, whilst off-peak pe-

riods exist in springs and autumns. The seasonality aspect mainly originates from market

supply and demand, which depend on electricity generation capacity, human activities, and

weather conditions. To execute the recursive filtering equations on the deseasonalised part

of the model, we perform data fitting on the component Dt using the statistical software R’s

built-in regression functions; this then removes the discernible seasonal pattern following

equation (4.1). A ‘step’ function is further applied in selecting the suitable number of ex-

planatory variables in terms of the adjusted-R2 and the Akaike information criterion (AIC).

The descriptive statistics, presented in Table 4.1, guide the parameters’ initialisation in the

implementation procedure. Table 4.2 summarises the estimated parameters for Dt.

Mean Std Deviation Std Error Median

67.53 89.77 2.35 32.34

Min Max Skewness Kurtosis

5.61 669.89 2.98 9.74

Table 4.1: Descriptive statistics for daily electricity spot price (DESP)

Parameter Estimate 95% confidence interval

a −0.0181 (−0.0290,−0.0071)

b 80.7214 (71.5387, 89.9041)

c1 −6.4621 (−12.9686, 0.0445)

c2 8.9067 (2.4942, 15.3191)

g2 −7.6311 (−14.0103,−1.2519)

e1 −6.2641 (−12.6405, 0.1123)

j1 −20.1426 (−26.5187,−13.7664)

Table 4.2: Parameter estimates for the seasonal component Dt

Figure 4.1 displays the plots of the fitted seasonality-component function and the actual

DESP data. A zoom-in view of the data evolution from 01 Jan 2013 - 31 Dec 2014 is
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Figure 4.1: Fitted seasonal component and observed spot prices

presented in Figure 4.2. Even though the seasonal component Dt has a notably crucial role

for DESP modelling, the spot-price behaviour is still hugely influenced by stochasticity;

refer to Figures 4.1 and 4.2.

4.5.2 Application of filtering algorithms for the HOHMM-OU process
with jumps

4.5.2.1 Data processing with the filtering algorithm

Electricity spot prices are gathered with daily frequency and so we assign 4t = 1. We

process the observations in 73 batches with 20 data points in each batch. In this sense,

the parameters are updated roughly every 3 weeks. Other filtering window sizes can be

explored too; however, within the data set that we analyse, our experimentation produces

similar outcomes, telling us that with different window sizes have negligible effect. We note

that a 20-point data length for the HOHMM filtering procedure is fairly sufficient and not

numerically onerous in processing the continual flow of new information including those

resulting from abrupt changes in the DESP dynamics due to extreme weather, supply out-

ages, and excess demand, amongst others. In general, practitioners in other fields applying

online HOHMM-based filtering methods have the freedom to choose a data window size

befitting their circumstances such as computational resources and frequency of data gener-

ation.
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Figure 4.2: Zoom-in view of the fitted seasonal component versus observed prices

(Jan/01/2014 - Dec/31/2014)
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Figure 4.3: Deseasonalised stochastic component of DESP
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HOHMM filtering calls for the verification of memory presence, and determination of ini-

tial values in connection with parameter estimation. To detect memory in our data, we

evaluate the fractional-differencing parameter d in Granger and Joyeux’s autoregressive

fractionally integrated moving average (ARFIMA) methodology [16]. When 0 < d < 0.5,

there is a finite long memory in the data; and d = 0 signifies short memory. In computing d,

one may employ the Geweke-Porter-Hudak estimator, approximated MLE, and smoothed

periodogram approach; estimated values for d could be easily returned by utilising the R

functions ‘fdGPH’, ‘fdML’, and ‘fdSperio’, respectively. In our case, we employ ‘fdSpe-

rio’, proposed by Reisen [30], since unlike the two former algorithms, the latter algorithm

has no restriction and is applicable to a non-stationary process. Our de-seasonalised data

set gives d̂ = 0.20.

We wish to get the optimal estimates for the parameter set Ew = {κ,ϑ, %, µβ, σβ, p} ; for em-

phasis, these parameters are driven by a discrete-time finite-state HOHMC. This goal is ac-

complished by initialising estimates and updating subsequently the parameter set. Bench-

marks for starting values are attained by treating Xt as a single-regime process. This implies

that the transition probability matrix T is identity. From (4.10), the likelihood function of

Xk+1 is

L
(
Xk+1; κ, ϑ, %, µβ, σβ

)
=

m∏
k=1

exp
(
−

(Xk+1−ϑ−κXk−µβqκ)2

2
(
%2+σ2

βqκ2
)

)
√

2π
(
%2 + σ2

βqκ2
) , (4.39)

where 1 ≤ m ≤ 1460 in our implementation. This is equivalent to minimising the negative
of the log likelihood, i.e.

m∑
k=1

log
√

2π
(
%2 + σ2

βqκ
2
)

+

(
Xk+1 − ϑ − κXk − µβqκ

)2

2
(
%2 + σ2

βqκ
)

 . (4.40)

The R function ‘optim’ is applied to equation (4.40) producing κ̂ = 0.6394, ϑ̂ = −0.1515, %̂ =

0.6443, µ̂β = −0.4945, and σ̂β = 0.0103.

4.5.2.2 Implementing the filtering procedure

Propositions 1 and 2, in conjunction with the initial parameter estimates, obtained in Sec-

tion 4.5.2.1 are put into use for the estimation of the proposed model interfacing the
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HOHMM, OU and jump attributes. Our dynamic parameter estimation proceeds by first

evaluating the filtering recursions (4.26)-(4.29) and then employing their numerical out-

comes to provide optimal estimates through equations (4.33)-(4.38); processing comple-

tion of one batch of data values constitutes one algorithm step or pass.

The final value in an algorithm step is used as the initial value for the filtering recurions

to complete the succeeding algorithm step. Once the optimal estimates of the parameters

in equation (4.10) are obtained through our self-calibrating process after certain number of

algorithm steps, we can back out, via equations (4.11)-(4.13), the optimal parameter esti-

mates of the proposed model with the original specifications in equation (4.5).

The filtering algorithms are implemented on the process Xt under the 1-,2-, and 3-state set-

tings driven by both HOHMC and HMC. Estimated parameters evolve as shown in Figures

4.4-4.7. The parameter evolutions under the 2-state HOHMM (Figures 4.4-4.5) are differ-

ent from those under the 3-state HOHMM (Figures 4.6-4.7). Nonetheless, there is gradual

convergence to certain values after approximately 55 passes for each sequence of param-

eter estimates. Whilst the parameters’ initial values might affect the convergence speed,

as long as they do not deviate substantially from the benchmark values under the 1-state

setting in section 4.5.2.1, the evolution of estimates for each parameter will eventually ap-

proach a specific value. Although not plotted here, parameter estimates under the HMMs

exhibit similar realisations. It is worth mentioning that with HOHMM, the movements of

the parameter estimates under the 1- and 2-state HOHMM settings exhibit analogous dy-

namic patterns and converge to similar optimal values; whilst the evolution of parameter

estimates under 3-state HOHMM setting is distinct. It indicates that a 2-state HOHMM

might be adequate to capture the dynamics of DESP and reflect the economic and market

information. This is further supported by the analysis of model performance in subsection

4.5.3.

We quantify the variability of the parameter estimates by considering the variance of the

estimators using the Fisher information I(Ew). This is given by

I (Ew) = −EEw

[
∂2

∂E2
w

log L (X; Ew)
]
.

This provides a bound on the asymptotic variance of the MLEs. The ML estimator is

consistent and has an asymptotically normal sampling distribution; see [36]. We utilise the

limiting distribution of the MLE, Êw, to get the 95% confidence interval. For a generic
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(scalar) estimate εw, this is ε̂w ± 1.96 1√
I(̂εw)

. Derivation of I (εw) makes use of the the log-

likelihood functions, and this is delegated in the Appendix D. The results are summarise

below.

I
(
p̂tsr

)
=

Â tsr
k

p2
tsr
, I

(
ϑ̂t

)
=

B̂t
k

%2
t
, I

(̂
µβt

)
=
κtqB̂t

k

%2
t

,

I
(̂
κt
)

=
Ĉ t

k

(
X2

k

)
+ 2µβtqĈ t

k (Xk) +
(
µβtq

)2
B̂t

k

%2
t

,
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(̂
%t
)

= −
B̂t

k

%2
t

+
3
%4

t

(
Ĉ t

k

(
X2

k+1

)
+ κ2

t Ĉ
t

k

(
X2

k

)
+ B̂t

k

(
ϑ2

t +
(
κtµβt p

)2
+ 2ϑtκtµβtq − σ

2
βt
κ2

t q
)

+ Ĉ t
k (Xk)

(
2µβtqκ

2
t + 2ϑtκt

)
−

(
2ϑt + 2κtµβt p

)
Ĉ t

k (Xk+1) − 2κtĈ
t

k (Xk+1Xk)
)
,

I
(
σ̂βt

)
= −

1
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t κ
2
t q

+
3

%4
t κ

2
t q

(
Ĉ t

k

(
X2
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)
+ κ2

t Ĉ
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k

(
X2

k

)
+ B̂t

k

(
ϑ2

t +
(
κtµβt p

)2
+ 2ϑtκtµβtq − σ

2
βt
κ2

t q
)

+ Ĉ t
k (Xk)

(
2µβtqκ

2
t + 2ϑtκt

)
−

(
2ϑt + 2κtµβt p

)
Ĉ t

k (Xk+1) − 2κtĈ
t

k (Xk+1Xk)
)
.

Our recursive filtering is an adaptive approach and it has the mechanism for optimal es-

timates to be iteratively produced. As the estimates obtained manifest reasonably well

convergence and stability properties the SEs become smaller as we go further down the

algorithm steps. Moreover, Table 4.3 evinces that we have robust parameter estimates as

implied by the substantially narrow ranges of all SEs throughout the algorithm passes.

4.5.3 Discussion of model performance

4.5.3.1 Forecasting and error analysis

We shall generate and assess the one-step ahead forecasts for Xt and DESP under the

HOHMM-with-jump settings. To do these, we first compute the expected value of the
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HMM

Parameter 1-state model 2-state model 3-state model

Estimates Bound of SE

Lower Upper Lower Upper Lower Upper

κ̂i 1.0834 × 10−6 0.3113 2.4645 × 10−8 0.1574 4.45092 × 10−7 0.3113

ϑ̂i 8.8910 × 10−7 0.2568 2.0532 × 10−8 0.2127 3.2596 × 10−7 0.2568

%̂i 9.4071 × 10−8 0.0254 3.1251 × 10−9 0.1377 4.1097 × 10−8 0.0254

µ̂βi 1.0480 × 10−6 0.3162 2.2175 × 10−9 0.4088 4.0512 × 10−7 0.1253

σ̂βi 6.7328 × 10−8 0.0171 3.1251 × 10−9 0.0346 2.6396 × 10−8 0.0170

p̂ ji 6.3839 × 10−7 0.2063 3.2075 × 10−8 0.1785 6.3839 × 10−7 1.6160

HOHMM

Parameter 1-state model 2-state model 3-state model

Estimates Bound of SE

Lower Upper Lower Upper Lower Upper

κ̂t 1.0834 × 10−6 0.3113 7.4602 × 10−7 0.3827 2.2600 × 10−6 0.3858

ϑ̂t 8.8910 × 10−7 0.2568 6.3506 × 10−7 0.2766 1.6974 × 10−6 0.2676

%̂t 9.4071 × 10−8 0.0254 1.0576 × 10−7 0.4424 1.3078 × 10−7 0.0221

µ̂βt 1.0480 × 10−6 0.3162 8.3156 × 10−8 0.3357 2.0243 × 10−6 0.3265

σ̂βt 6.7328 × 10−8 0.0171 7.4834 × 10−8 0.0243 9.1683 × 10−8 0.0150

q̂tsr 6.3839 × 10−7 0.2063 3.7525 × 10−9 1.2956 4.3980 × 10−9 0.8859

Table 4.3: Interval of standard errors for parameter estimates under the 1-, 2-, 3-state

HMMs and HOHMMs
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stochastic component in (4.10). This gives

E [Xk+1 |Xk] =E
[
κ
(
yw

k
)

Xk + ϑ
(
yw

k
)

+ %
(
yw

k
)

zk+1

+

G4tk∑
m=1

e−α(yw
k )(4tk−τm)βm(yw

k )

∣∣∣∣∣∣Xk

]
=

〈
κ, ŷw

k
〉

Xk +
〈
ϑ, ŷw

k
〉

+ q
〈
κ, ŷw

k
〉 〈
µβ, ŷw

k

〉
. (4.41)

Equation (4.41) brings about one-step ahead forecasts under the non-regime-switching

model, and 2-state and 3-state settings driven by HOHMMs. Figure 4.8 presents the graphs

showing the movements of the one-step ahead predictions for Xk and DESP under the 3-

state HOHMM setting. A magnified view of the predicted DESP is depicted in Figure 4.9

covering a one-year period. The forecasts follow closely the actual dynamics of DESP dur-

ing ‘normal’ periods. Models with regime-switching features outperform the 1-state model

during periods with jump occurrences, and HOHMMs are more accurate than the HMMs

in predicting spikes in DESP.

Visually, the DESP’s dynamics and spikes are captured very reasonably by our self-calibrating

algorithm and filtering processes under the regime-switching setting. But, more formally,

we wish to quantify the difference, in terms of accuracy and fitting performance, between

the HOHMMs and HMMs. To assess the goodness of fit, as a by product of the pre-

dictability performance, an error analysis following the criteria in Erlwein et al. [7] is

undertaken. We shall rely on the following error metrics: mean-squared error (MSE), root-

mean-squared error (RMSE), absolute mean error (MAE), relative absolute error (RAE),

and median absolute percent error (MdAPE). They are calculated as follows:

MSE =

∑m
k=1

(
X̂k − Xk

)2

m
, RMSE =

√∑m
k=1

(
X̂k − Xk

)2

m
,

MAE =

∑m
k=1 |X̂k − Xk|

m
, RAE =

∑m
k=1 |X̂k − Xk|∑m
k=1 |X̂k − X̄|

,

and MdAPE = Md

∣∣∣∣∣∣ X̂k − Xk

Xk

∣∣∣∣∣∣,
where Xk denotes the actual value of the observation at time k; X̂k stands for its correspond-

ing prediction; X̄ is the mean of all Xk’s; and m = 1460, which is the total number of
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Figure 4.8: One-step ahead forecasts for Xk and S k under a 3-state HOHMM
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Figure 4.9: Comparison of one-step ahead forecasts in 1-, 2-, 3-state HMMs and HOHMMs

predicted values.

The results of our error analyses are presented in Table 4.4; they bespeak that a non-regime-

switching model is less adequate than a regime-switching model in describing the dynamics

of our data. Under the HMM setting, the 3-state framework outperforms the 1- and 2-state

frameworks; whilst under the HOHMM setting, the 2-state model is the best in predicting

the stochastic component and DESP. Furthermore, the HOHMM beats the regular HMM

with respect to the four metrics; this finding agrees with the output revealed in Figure 4.9.

The 2-state HOHMM has the best over-all prediction amongst all state settings. The 4-state

HMMs and HOHMMs were also tested but no significant improvement is achieved. Ad-

ditionally, the computational cost of using HMMs and HOHMMs with state dimensions

higher than 4 outweighs the benefits. Results of the t-test for the RMSEs’ mean differ-

ences under various modelling set ups are displayed in Table 4.5. The adjusted p-values

in our pairwise comparison were computed via the Bonferroni’s method using the R func-

tion ‘p.adjust’; this addresses the issue caused by familywise errors. The p-values for the

comparison of 2-state versus 3-state HOHMMs are large; so, we cannot reject the null

hypothesis of no RMSE-mean differences at a significance level of 5%. This agrees with

Figures 4.8 and 4.9, where regimes 2 and 3 behave similarly. Thus, introducing a third

state will generate minimal gain (if any). Error metrics for the 2-state and 3-state settings
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HMM setting Deseasonalised component Xt Electricity daily spot price S t

1-state 2-state 3-state 1-state 2-state 3-state

MSE 0.4152 0.2870 0.2828 5454.2 2840.2 2769.0
RMSE 0.6443 0.5357 0.5318 73.852 53.293 52.621

MdAPE 46.712 42.440 40.724 37.534 32.332 31.675
MAE 0.4828 0.4062 0.4016 36.738 27.883 27.259
RAE 0.7317 0.6156 0.6086 0.6445 0.4892 0.4782

HOHMM setting Deseasonalised component Xt Electricity daily spot price S t

1-state 2-state 3-state 1-state 2-state 3-state

MSE 0.4152 0.2542 0.2768 5454.2 1906.9 1996.6

RMSE 0.6443 0.5042 0.5261 73.852 43.668 44.683

MdAPE 46.712 39.156 40.289 37.534 31.104 36.238

MAE 0.4828 0.3825 0.3938 36.738 24.253 24.373

RAE 0.7317 0.5797 0.5967 0.6445 0.4255 0.4276

Table 4.4: Error analysis of the HMM- and HOHMM-based models for DSP

Setting HMM HOHMM

1-state 1-state 2-state 1-state 1-state 2-state

t-test vs vs vs vs vs vs

2-state 3-state 3-state 2-state 3-state 3-state

p-value 9.2771 × 10−12 2.8685 × 10−15 0.7771 1.0775 × 10−12 1.3966 × 10−15 0.8502

Table 4.5: Bonferroni-corrected p-values for the t-test performed on the RMSEs involving

the DSP

in Table 4.4 show very close results. However, comparison tests demonstrate that the 1-

state and 2-state settings’ error metric values are statistically different, and the same can be

said concerning those for the 1-state and 3-state settings. Additionally, Figure 4.9 and Ta-

ble 4.4 lend support to such an outcome, which clearly suggests the merit of incorporating

regime-switching features in the model for our data.

4.5.3.2 Selection of suitable model setting

We use an information selection criterion that emphasises the trade-off between bias and

variance for our HMM and HOHMM settings. Similar to Erlwein et al. [7], and Xi and
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Mamon [38]), we consider the Akaike Information Criterion (AIC), to provide a measure

that balances the relative goodness of fit and complexity of various model settings. The

AIC is given by

AIC = − 2 log L (X; Ew) + 2l, (4.42)

where l is the number of model parameters to be estimated, and log L (X; Ew) is the log-

likelihood function associated with the model. For the observation process Xk+1, the corre-

sponding log-likelihood under the HOHMM setting is

log L
(
Xk+1; κ,ϑ, %,µβ,σ

2
β

)
=

B∑
k=1

N∑
t=1

〈yw
k , et〉× log
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2π
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%2 (

yw
k
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+ σ2
βqκ
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yw
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))− 1

2
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−
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(
yw

k

)
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(
yw
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(
yw

k

)
qκ

(
yw

k

))2

2
(
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(
yw

k

)
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(
yw

k

)
qκ2

(
yw

k

)) , (4.43)

where B is the number of observed values and N is the number of states. The number of

parameters to be estimated depends upon N, and this is summarised in Table 4.6. As ex-

pected, there is a significant increase in the number of parameters to be estimated as the

number of states grows in a model.

Given the form of the AIC in equation (4.42), the selection principle hinges on minimising

the AIC. From Table 4.7, the 1-state model has the highest AIC values. Clearly, the two-

regime HOHMM-OU-jump setting outperforms all other settings given our data as model

inputs.

Model 1-state 2-state 3-state N-state

HMM 5 12 21 N2 + 4N

HOHMM 5 14 33 N3 − N2 + 5N

Table 4.6: Number of estimated parameters under HMM-OU-jump and HOHMM-OU-

jump settings
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Model Number of parameters AIC

1-state model 5 3005.51

2-state HMM 12 2877.48

3-state HMM 21 2821.99

2-state HOHMM 14 2657.84
3-state HOHMM 33 2897.54

Table 4.7: Comparison of selection criteria AIC

The AIC metric lacks the asymptotic-consistency property as pointed out by Bozdogan

[4]. This puts into question the AIC’s optimality as the best-model criterion (cf [33]) when

one is confronted by a collection of models with different dimensions and numbers of pa-

rameters. The Bayesian information criterion (BIC) is an alternative metric, which admits

the data set’s sample size on top of other inputs included in the AIC. As comprehensively

discussed in Kuha [21], if the two criteria agree on the best-model choice, robustness in

model selection is achieved. For this reason, we also adopt the BIC in evaluating the set of

candidate models to choose from.

The AICs in Table 4.7 come from a static estimation. We complement this with the gen-

eration of BIC values generated by our dynamic parameter estimation method. The BIC is

computed as

BIC = −l log B + 2 log L (X; E) . (4.44)

By setting B as the number of observations in each algorithm pass when employing equa-

tion (4.43), a series of BIC values are obtained as the data set is processed in its entirety.

Given the model choice-metric form in equation (4.44), the underlying principle of selec-

tion is to maximise the BIC function. Figure 4.10 depicts the evolution of the calculated

BIC values for the 1-, 2-, and 3-state models.

For the 1-state model, we get higher BIC values for almost all of the periods spanned by

the algorithm passes in the whole data set. We note, nonetheless, that for periods where

jumps occur, the BIC values markedly drop under the 1-state model. The drastic decline of

the BIC during DESP’s spike occurrences insinuates that this criterion is unable to sustain

robustness with one-state modelling. In contrast, the BIC values produced by the regime-

switching models have more stable patterns. Furthermore, the 2-state HOHMM even pro-

duces BIC values higher than those from the 1-state HOHMM/HMM for algorithm steps
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Figure 4.10: Evolution of BIC values under the 1-, 2-, 3-state HMM- and HOHMM-based

models

that encompass periods of jump events. This tells us that the 1-state model is not able to

capture the market well in situations where jumps could be present. On the other hand, the

2-state HOHMM can describe satisfactorily the dynamics of data with jump characteristics.

This is also supported by the results from our error and AIC-based analyses. Undoubtedly,

it is worthy to embed regime-switching capabilities, and in the case of our data set, the

2-state HOHMM setting is regarded as the most appropriate choice.

4.5.3.3 The valuation of expected future spot at delivery

As a consequence of electricity-market deregulation, power producers and wholesale buy-

ers turn to derivatives and recent financial-product innovations in an effort to manage their

risk exposure. Futures and forward written on electricity prices are commonly used for

hedging, which entails the pricing of these contracts. Forward/futures price modelling can

be categorised into two strands of study in the current literature. The first strand is to di-

rectly construct forward-price curves from market data (e.g., Fleten and Lemming [13]).

The second strand is to derive forward prices as the expected future spot prices at delivery

(EFSP) (e.g., Benth et al. [2]).

In this research, we first identify the best-fitting model for our DESP data. Then, optimal

estimates using our filtering-based calibration are fed into the chosen model for EFSP.
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Regime κ̂ ϑ̂ %̂ µ̂β σ̂β α̂ θ̂ ξ̂

State 1 0.7169 -0.4722 0.1281 0.5312 1.6664 × 10−4 0.3328 -1.6679 0.1499

State 2 0.6388 -0.5643 0.6473 0.6457 1.5808 × 10−4 0.4482 -1.5622 0.7965

Table 4.8: Optimal parameter estimates for the 2-state HOHMM

Let G(t,T ) denote the expected value of the spot price for delivery at future time T , and

assume that the current time is t. With EFSP as the underlying variable, the theoretical

forward price F(t,T ) of an electricity contract is computed as

F (t, T ) = λ (t, T ) + G (t, T ) , (4.45)

where λ (t, T ) is the price of the risk process. In our OU process with jumps, λ (t, T ) has

two contributing parts: (i) the price of risk due to switching of regimes and (ii) the premium

due to the market price of risk. Under the real-world probability measure P, the EFSP as a

function of HOHMMs is calculated as

G (t, T ) =E [S T |Xt]

=D (T ) exp
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Derivation details of (4.46) are similar to those given in Benth et al. [2]. The optimal pa-

rameter estimates in the evaluation of the EFSP in equation (4.46) are shown in Table 4.8.
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Figure 4.11: Expected future spot price on delivery (EFSP) under a 2-state HOHMM

It is reasonable to assume a constant Markov chain when pricing EFSP over a short-term

delivery period. For a longer maturity of T > 30 days, EFSP has to be numerically com-

puted with a dynamic Markov chain involved, as recommended in Erlwein et al. [7].

The reasonableness of the “constant Markov-chain” assumption for contracts with short

delivery horizon remains disputable. In our implementation, we simulate dynamic states

through an HOHMC to obtain estimated values of the EFSP for a general delivery period.

Figure 4.11 shows the simulated EFSP with time t mapping the last 30 days of our dataset

for maturities T = 1, . . . , 30 days. Salient features of the data are replicated by our pro-

posed model such as the short-term fluctuations, seasonal patterns, and spikes of electricity

prices. Our pricing application is of practical significance, as forward contract valuation is

immediate once λ (t, T )’s estimate is available. Determing the appropriate λ (t, T ) is be-

yond the scope of this article. But, we certainly recognise its critical impact on the pricing

of electricity contracts. This warrants a separate investigation that could utilise our current

results and exposition serving the necessary groundwork.
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4.6 Conclusion

A new framework, possessing regime-switching and data memory-capturing mechanisms,

is proposed for the modelling and forecasting of electricity spot prices. The spot price

is modelled as an exponential of an OU process, and augmented by a compound Poisson

term to deal with the mean-reverting, stochastic and spiked components. The exponential

part of the model is scaled by a suitable deterministic combination of trigonometric and

linear functions to account for the cycles and other type of attributes of certain price de-

terminants. The parameters in the exponential component are modulated by a higher-order

hidden Markov chain in discrete time, which drives the random switching between differ-

ent economic regimes.

The work of Erlwein et al. [7] appears to be the only online HMM filtering algorithms for

the analysis of electricity spot prices. An improvement of their approach was accomplished

in our model development. Empirical implementation based on our extended HOHMM fil-

ters confirmed that the predominant features of seasonality, mean reversion and extremely

large spikes in electricity prices are all captured quite well. The various insights from this

study reinforce the findings of Erlwein et al. [7]. We further showed that HOHMMs offer a

much better fit than those achieved by the usual HMMs. The 2-state HOHMM outperforms

other model settings for our data in accordance with an information-criterion evaluation.

This study showcased two key research contributions: (i) new filters that support self-

updating parameter estimation of the HOHMM-OU-jump model thereby enriching the lat-

est research of Xiong and Mamon [43] with the inclusion of spikes; and (ii) extension of

the Erlwein et al.’s model [7] by incorporating HOHMMs for electricity price modelling

geared towards derivative valuation and risk measurement. A direct and natural direction

of this work is further empirical test of the modelling framework and estimation being put

forward in the analysis of various contracts (more sophisticated than forwards) in the elec-

tricity market for investment and hedging. The HOHMM with lag order 2, which we fixed,

is the focus of this research; certainly, the implementation of the HOHMM filtering with

a higher lag order, and statistical inference for the estimation of the optimal lag are all

worthwhile future research endeavours.
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Chapter 5

Modelling and forecasting futures-prices
curves in the Fish Pool market

5.1 Introduction

Commodity futures markets provide a mechanism for investors to hedge a price risk or pos-

sibly profit from price changes at the futures contract’s maturity. These markets, in essence,

offer social and economic benefits through the efficient allocation of resources and making

some form of insurance accessible to businesses. The analysis of commodity futures typi-

cally covers the energy and agriculture sectors with the intertwined objectives of modelling

price formation and risk management. The literature on futures contracts dealing with the

needs of the aquaculture and fisheries industries remain rather scanty, owing to the chal-

lenges in establishing efficient markets in these two sectors.

We note that frozen shrimp was the very first commodity from the seafood industry to be

traded in the Chicago Mercantile Exchange back in the 1960s. Unfortunately, it was a

thin market and only lasted for 3 years; see [19]. Three decades later, the Minneapolis

Grain Exchange introduced the first exchange-traded shrimp futures contract in 1994 to

help market participants hedge their risk exposure to shrimp prices. Alas, the market was

also terminated in 2000 due to low trading volumes and lack of interest, as per the account

of Quagrainie and Engle [24].

The aquaculture-based futures markets in North America were short-lived and apparently

failed unluckily. In contrast, the Fish Pool ASA, located in Norway, has been successful

144
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since its launch in 2005. Furthermore, it has a strong connection with the rapidly expand-

ing farmed salmon industry over the course of several decades. Primarily owned by Oslo

Børs ASA, the Fish Pool has become a global exchange serving a venue to mitigate price

risk and an instrument to reckon in sustaining the fish and seafood markets. It operates as

a regulated marketplace for trading financial derivatives with the salmon price as the un-

derlying variable. Fish Pool is a very active exchange in the trading of salmon derivatives.

As reported in [23], the volume of salmon traded in the futures exchange has increased

dramatically from approximately 3, 600 tonnes in 2006 to 90, 445 tonnes in 2016 with a

record cash value of 5.8 billion Norwegian Krone (NOK).

The Fish Pool plays a critical role in the pricing and management of fresh farmed salmon.

The creation and trading of salmon forward and futures contracts bring financial and eco-

nomic improvements in terms of increasing the producers’ profitability, enhancing market

efficiency, and facilitating risk hedging. It is thereby vital to model the dynamics of the

process that underlies the value of the futures contract. In this chapter, we put forward

a regime-switching model that is capable of accurately describing the joint dynamics of

salmon futures prices. Our modelling is geared towards the valuation other pertinent finan-

cial derivatives on salmon, hedging against volatile salmon price swings, and optimising

harvesting and investment strategies of seafood resources.

A number of models for salmon prices are deterministic simply to keep the financial-

modelling framework analytically tractable; see for example, Cacho [3], and Guttorm-

sen [15]. In our case, we deal with, using stochastic processes, the uncertainty of market

prices. Although Solibakke [27] built a stochastic volatility model for the Fish Pool mar-

ket, their framework only considered the time-varying dynamics of front months contracts

only, rather than the entire term structure of the the futures prices. Ewald [11] derived

explicit formulae for prices of fish futures and call options under the assumption that the

stock level of salmon follows a stochastic logistic growth. The assumption in [11] is some-

what problematic because such governing dynamics in the pricing framework refer to wild

catches of fresh salmon from an open-access fishery source and not catches via fish farm-

ing. According to the UN’s Food and Agriculture Organisation (FAO) [18], the farmed-fish

industry has surpassed the wild-fish sector for a few decades now in terms of production

volume. Moreover, as a widely traded commodity, farmed salmon, and not wild ones, form

the foundation of the Fish Pool’s market structure.
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Certain studies in the literature feature the construction of salmon futures pricing frame-

work starting with the spot-price evolution; then this is followed by estimating the spot-

price model using a Kalman-filtering method (e.g., Schwartz [26]). Ankamah-Yeboah et

al. [23] presented the price-formation development in the salmon/aquaculture futures mar-

ket via a risk-premium model, whereby spot prices lead to price discovery of futures con-

tracts. Asche et al [1] studied the spot-forward relationship by treating futures price with

maturities up to six months as an unbiased estimator of spot prices. The popular two-factor

commodity model for spot prices, with a stochastic convenience yield explicitly included,

is widely applied to examine salmon futures prices and aquaculture-farming considera-

tions; see details in Ewald et al. [13] and [12]. Alternatively, research investigations would

also focus directly on futures prices when performing the analysis of the Fish Pool salmon

market.

Of particular interest about the Fish Pool is that the salmon’s spot prices and futures prices

are observed weekly and daily, respectively. Thus, spot prices missing on certain days

could be recovered from futures prices collected at a daily frequency. However, if the daily

futures-price modelling begins with a spot price description, generating spot prices with

daily frequency (from data with weekly frequency) is necessary, and this presents an added

difficulty as noted in [1]. Another Fish Pool’s striking characteristic is that on every trading

day, closing futures prices, corresponding to various maturities that varies from months to

years, are available. But then, as we move forward in time, the remaining time to maturity

of the contract also decreases; and futures prices corresponding to the remaining time to

maturity are available as well. This complication, in the context of multivariate modelling,

creates a heavy computational challenge when capturing the term structure of futures prices

at the Fish Pool whilst ensuring that every futures price in the entire data set is processed,

without overlap (i.e., taken as input only once), in the estimation of model parameters.

Such a complication identified above is certainly a gap in the current literature, which we

shall address in Section 5.4 of this chapter. The usual approach so far to circumvent this

issue in model estimation is simply to average actual maturities; see Ankamah-Yeboah et

al. [23], Ewald et al. [13] and Ewald et al. [12].

Our research is distinguished from the aforementioned works by the following contribu-

tions: (i) Instead of using the classical two-factor model, we construct a Markovian regime-

switching model to capture the memory and stochasticity of salmon futures prices. (ii) This

chapter is the first to pin down the modelling of the term structure of salmon futures prices
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without assuming approximate maturities of the contracts in the estimation procedure. (iii)

We directly investigate the dynamic behaviour of salmon futures prices, thereby avoid-

ing the use of weekly spot prices. (iv) As an alternative to the Kalman filtering method,

we put forward a self-calibrating estimation method based on a regime-switching model

modulated by a higher-order Markov chain, which is capable of modelling empirical dis-

tributions of virtually all shapes.

Markov regime-switching models capture the dynamics of price evolution more accurately

and provide better forecasting performance as per the findings in Erlwein et al. [10], Date et

al. [5], and Xiong and Mamon [38]. In the context of a Markovian regime-switching mech-

anism, hidden Markov models (HMMs) have been widely utilised encompassing many ap-

plications in engineering, and the natural and social sciences; for examples of applications

concentrating in the fields of economics, insurance and finance, see Mamon and Elliott

[20, 21]. HMMs drive the model’s regime-switching attribute via Markov chains with hid-

den states; although the assumption of first-order state transition dependency in HMMs

does not take advantage of information from historical past that may be beneficially useful.

This gives rise to the concept of higher-order hidden Markov model (HOHMM), which

is a doubly stochastic process in that there is a stochastic model for the observation pro-

cess and for which the parameters are modulated by a higher-order hidden Markov chain

(HOHMC). An ultimate aim is to obtain the best estimate of the latent Markov chain’s cur-

rent or future state. In Xi and Mamon [32], it was shown that the HOHMM setting yields

better forecasting performance in modelling the risky assets log returns. Xiong and Mamon

[37] found that HOHMM-based models could capture better the empirical characteristics

of Toronto’s daily average temperature compared to the capability of HMM-based models.

Our investigation reveals that Date et al. [5] is by far the only paper that utilised the HMM-

filtering algorithms to model and forecast commodity futures prices. In [5], model cali-

bration uses heating-oil futures price data; results showed that Markov regime-switching

models outperformed a one-regime model. This work can be deemed as an extension and

updated version of [5], but with more advancements in various aspects of futures-price

modelling described as follows: (i) Model parameters in this chapter are modulated by an

HOHMM, which has a memory-capturing “configuration” that may enable the extraction of

possibly useful information from past data. (ii) HOHMM filtering algorithms, under a mul-

tivariate setting, are devised for estimation. (iii) The multi-step ahead forecasts are analysed

to evaluate the prediction performance of all proposed models under both the HMM and
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HOHMM settings. (iv) Finally, and most importantly, we design a crafty moving-window

scheme for our data-filtering algorithm passes; this new data-processing scheme covers the

whole life cycle of all futures contracts under study, and ensures that no data point is missed

out or entered more than once into the filtering equations.

We start with the modelling of futures prices under a one-state set up, assuming that the

spot price process is lognormally distributed. A finite-state HOHMM is then embedded

into the framework, regulating the stochastic switching amongst regimes. Our best esti-

mate (in the sense of an expected value given a history of past and current information) of a

regime reflects a state or level generated by the interactions of competing market forces that

affect the futures prices. Filters for the HOHMMs are established by first transforming the

HOHMMs into HMMs, and then usual techniques are applied to obtain optimal parameter

estimates of the HOHMM-based models.

The remainder of this chapter is structured as follows. Section 5.2 presents the formula-

tion of the multi-dimensional model, the parameters of which are driven by a discrete-time

HOHMC. In Section 5.3, adaptive filters for the states of the HOHMC and relevant quan-

tities are derived through a change of reference probability technique. We then draw up

a self-calibrating parameter-estimation scheme; this takes into account the recursive filters

via the Expectation-Maximisation (EM) algorithm. Numerical application of our proposed

models is conducted on a data set of daily salmon future prices collected from the Fish

Pool in Section 5.4. Both proposed model’s goodness of fit and prediction performance are

assessed. Some concluding remarks are given in Section 5.5.

5.2 Model setup

Following Ross [25] and Schwartz [26], we begin with the assumption that the commodity

price evolves under a risk-neutral probability measure Q. Let Pt denote the spot price of

salmon at time t, and suppose Pt behaves in accordance with the stochastic differential

equation (SDE)

dPt = α(θ − log Pt)Ptdt + ξPtdWQ
t , (5.1)

where α, θ and ξ are positive constants, and WQ
t is a standard Brownian motion under Q.
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Write Xt := log Pt. By Itô’s lemma, the log-spot price Xt is a mean-reverting stochastic

process with stochastic dynamics

dXt = α(µ − Xt)dt + ξdWQ
t , (5.2)

where α measures the speed of mean reversion moving to the long-run mean level of log

price, µ = θ − ξ2

2α , and ξ denotes the volatility of the process. Employing the Brownian-

motion and Itô-isometry properties, the conditional distribution of X under Q at time T ,

where T > t, is normal with respective mean and variance given by

EQ [XT | Ft] = Xte−α(T−t) +
(
1 − e−α(T−t)

)
µ, (5.3)

and VarQ [XT | Ft] =
ξ2

[
1 − e−2α(T−t)

]
2α

, (5.4)

where Ft is an WQ
t -generated filtration.

From Manoliu and Tompaidis [17], the price Ft at time t of a futures contract with maturity

T is the expected price of the underlying commodity at time T under Q. That is,

Ft = EQ [PT | Ft] = EQ
[
eXT | Ft

]
.

Using the results from equations (5.3) and (5.4), the log-expected value of the spot price is

Gt = log Ft

=EQ [XT | Ft] +
1
2

VarQ [XT | Ft]

=Xte−α(T−t) +
(
1 − e−α(T−t)

)
µ +

ξ2
(
1 − e−2α(T−t)

)
4α

. (5.5)

As noted in Schwartz [26] and Weron [31], it is reasonable to assume that the dynamics of

salmon spot prices follow a mean-reverting stochastic process under an objective measure,

and to introduce the price of risk λt. We shall be working under the objective (or real-world

probability) measure P when implementing a filtering-based estimation using observed

market data in Sections 5.3 and 5.4. To facilitate the estimation, a change of measure

will be employed; this is independent from the concept of risk-neutral measure involved

in valuation. The construction of λt, connecting Q and P, in pricing temperature-based



150 Chapter 5. Modelling and forecasting salmon futures-prices curves

derivatives is elaborated in Xiong and Mamon [38]. Elliott et al. [8] proposed a modified

version of the Esscher transform that takes into account λt when implementing a discrete-

time regime-switching Gaussian model and its continuous-time version. Research findings

in [8] and [38] form the basis in our development of a regime-switching model for salmon

futures prices under the arbitrage-free assumption. In particular, the log-spot price Xt under

P evolves as

dXt = α(µP − Xt)dt + ξdWt, (5.6)

where Wt is a Wiener process under P, and µP = µ +
λtξ

α
. By Itô’s lemma, along with

equations (5.5), the dynamics of (5.6) under P are

dGt =

(
λtξe−α(T−t) −

1
2
ξ2e−2α(T−t)

)
dt + ξe−α(T−t)dWt. (5.7)

Salmon futures prices are assumed available at each time tg, g ∈ Z+ with maturities

T 1,T 2, . . . ,T g. Let Fh
th be the price of a futures contract at time th with maturity T h for

h = 1, . . . , g. Using the Euler method and invoking the results in Date et al. [5], the

g-dimensional discretisation of equation (5.7) is

Gh
k+1 =Gh

k +
1
αh

(
1 − e−α

h4thk+1

)
ξhe−α

h(Th−thk+1)
(
λh

k −
1
4
ξhe−α

h(Th−thk+1)
(
1 + e−α

h4thk+1

))

+ ξe−α
h(Th−thk+1)

√
1 − e−2αh4thk+1

2αh zh
k+1, (5.8)

where 4th
k+1 = th

k+1 − th
k for k ∈ Z+

0 , and {zh
k+1} are sequences of independent and identically

distributed (IID) N (0, 1) random variables.

Remark 1: In the succeeding discussion, all vectors are denoted by bold lowercase let-

ters and all matrices are represented by bold capitalised letters.

To incorporate the impact of changes in market conditions and economic regimes on fu-

tures prices, we embed an HOHMM following the formulation in Xiong and Mamon [37];

morever, the modelling framework is extended to a multi-dimensional set up. Let yk be a

discrete-time homogeneous Markov chain with a finite-state space in RN under a probabil-

ity space (Ω,F , P). We associate the state space with the canonical basis of RN , which is
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{e1, e2, . . . , eN}, where ei := (0, . . . , 0, 1, 0, . . . , 0)> ∈ RN with 1 in the ith position; also, >

stands for the transpose of a vector and N is the state-space dimension. To equip the model

with a regime-switching capability, the g-dimensional process in equation (5.8) will have

parameters that are governed by yk so that

Gh
k+1 =Gh

k +
1

αh(yk)

(
1 − e−α

h(yk)4thk+1

)
ξh(yk)e−α

h(yk)(Th−thk+1)
(
λh(yk)

−
1
4
ξh(yk)e−α

h(yk)(Th−thk+1)
(
1 + e−α

h(yk)4thk+1

) )

+ ξh(yk)e−α
h(yk)(Th−thk+1)

√
1 − e−2αh(yk)4thk+1

2αh(yk)
zh

k+1. (5.9)

Taking advantage of the algebraic simplification due to yk’s state-space representation, we

have αh(yk) = 〈αh, yk〉, λh(yk) = 〈λh, yk〉, and ξh(yk) = 〈ξh, yk〉 in equation (5.9), where

〈·, ·〉 is the inner product in RN . The IID random variables {zh
k+1} are independent of the

higher-order Markov chain yk.

To facilitate the conceptual discussion of the filtering processes, we focus on a second-

order Markov chain yw
k to construct and implement the multi-dimensional HOHMM filter-

ing method. Concentrating on a second-order yw
k as a prototype on this modelling breaks

down the complexity in discerning the sequence and structure of algorithms in implement-

ing a generalised HOHMC yk with a lag order k, k ∈ N+. A second-order yw
k is a Markov

chain at the current step k that depends on information available at prior two steps k−1 and

k − 2. As in Siu et al. [28], we define an RN×N2
transition probability matrix P, given as

P =


p111 p112 · · · p11N · · · p1N1 p1N2 · · · p1NN

p211 p212 · · · p21N · · · p2N1 p2N2 · · · p2NN
...

...
. . .

... · · ·
...

...
. . .

...

pN11 · · · pN1N · · · pNN1 pNN2 · · · pNNN


,

where pdcb := P(yw
k+1 = ed|yw

k = ec, yw
k−1 = eb) with k ≥ 1 and d, c, b ∈ {1, 2, . . . ,N}. The

quantity pdcb is interpreted as the probability that the Markov chain will be in state d given

that currently it is in state c and was in state b immediately prior to being in the present

state. The observation process in equation (5.9) can be expressed as

Gh
k+1 = Gh

k + νh(yw
k ) + σh(yw

k )zh
k+1, (5.10)
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where

νh(yw
k ) =

1
αh(yw

k )

(
1 − e−α

h(yw
k )4thk+1

)
ξh(yw

k )e−α
h(yw

k )(Th−thk+1)

×

(
λh(yw

k ) −
1
4
ξh(yw

k )e−α
h(yw

k )(Th−thk+1)
(
1 + e−α

h(yw
k )4thk+1

) )
= 〈νh(k), yw

k 〉, (5.11)

where νh(k) =
(
νh

1(k), νh
2(k), . . . , νh

N(k)
)>
∈ RN , and

σh(yw
k ) =ξh(yw

k )e−α
h(yw

k )(Th−thk+1)

√
1 − e−2αh(yw

k )4thk+1

2αh(yw
k )

= 〈σh(k), yw
k 〉, (5.12)

where σh(k) =
(
σh

1(k), σh
2(k), . . . , σh

N(k)
)>
∈ RN . (5.13)

The stochastic basis (Ω,F , {Fk}, P) serves as the modelling background and supports the

stochastic processes considered in our framework. The global filtration Fk is defined as

Fk := F w
k ∨F z

k , where F w
k and F z

k are filtrations generated by yw
k and Wt (a P-Wiener

process), respectively.

It is important to note that yw
k is latent rather than directly observable from the salmon

futures market. In particular, the state of the HOHMM is hidden in the noisy observation

process Gh
k+1, which is evolving under P. Following the ideas common in papers [32]-[37],

a transformation that converts yw
k into a regular Markov chain is employed, after which the

usual HMM-filtering estimations apply. Consider the mapping η(eb, ec) := ebc, for 1 ≤

b, c ≤ N, where ebc is an RN2
unit vector with 1 in its ((b − 1)N + c)th position. The

semi-martingale representation of the new Markov chain η(yw
k+1, y

w
k ) is then given by

η(yw
k+1, y

w
k ) = Bη(yw

k , y
w
k−1) + εw

k+1, (5.14)

where {εw
k+1}k≥1 is a martingale increment, and B is a RN2×N2

probability transition matrix

with entries b ji := pdcb for j = (d − 1)N + c, i = (c − 1)N + b, and b ji = 0 otherwise.

5.3 Filtering and parameter estimation

We rely on Elliott et al. [6] in adopting an approach that introduces an equivalent probabil-

ity measure P̃ under which the observation process is a sequence of IID random variables.
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The ensuing calculations are facilitated by the IID assumption. So, filters are computed un-

der P̃, and then they are related back to P with the justification via the Girsanov’s theorem.

Remark 2: The reference measure P̃ for filtering is not the same as the equivalent risk-

neutral measure Q used in pricing. The purpose of having a P̃ is to circumvent the direct

calculations under P, which necessitates hard semi-martingale computations.

Under our modelling framework, the suitable Radon-Nikodým derivative of P with respect

to P̃ is constructed as

Ψk :=
dP

dP̃

∣∣∣∣∣
Fk

=

g∏
h=1

k∏
l=1

ϕh
l , k ≥ 1, Ψ0 = 1,

ϕh
l =

φ
((
σh(yw

l−1)
)−1 (

Gh
l −Gh

l−1 − ν
h(yw

l−1)
))

σh(yw
l−1)φ

(
Gh

l

)
=

1
σh(yw

l−1)
exp

1
2

( (
Gh

l

)2
−

(
σh(yw

l−1)
)−2
×

(
Gh

l −Gh
l−1 − ν

h(yw
l−1)

)2
),

where φ is the probability density function of an N (0, 1) random variable, and Fk is the

filtration generated by the observation process Gk. Every parameter driving the multivari-

ate observation process in equation (5.10) is modulated by the same yw
k . Even though the

correlation of salmon futures prices is not explicitly modelled, it is implicitly encapsulated

in the underlying higher-order Markov chain regulating to G′ks multivariate dynamics with

possibly dependent variates.

The general principle of obtaining optimal estimates of pertinent quantities under P for a

multi-dimensional HOHMM setting is first to construct filters, which are conditional expec-

tations under the reference measure P̃ involving functions of η(yw
k , y

w
k−1). Then, the filters

under P̃ will be used to recover the model’s parameter estimates under P.

Write qk = (qk (11) , . . . , qk (cb) , . . . , qk (NN))> ∈ RN×N , where

qk (cb) := P
(
yw

k = ec, yw
k−1 = eb | Fk

)
= E

[
〈η(yw

k , y
w
k−1), ecb〉 | Fk

]
. (5.15)

By the Bayes’ theorem for conditional expectations, a filter of η(yw
k , y

w
k−1) under P can be

computed as

qk = E
[
η(yw

k , y
w
k−1) | Fk

]
=

EP̃[Ψkη(yw
k , y

w
k−1)|Fk]

EP̃[Ψk|Fk]
. (5.16)
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Let sk := EP̃
[
Ψkη(yw

k , y
w
k−1)|Fk

]
. Since

∑N
c,b=1〈η(yw

k , y
w
k−1), ecb〉 = 〈η(yw

k , y
w
k−1), 1〉 = 1, where

1 := (1, . . . , 1)> ∈ RN2
, we have

N∑
c,b=1

〈sk, ecb〉 =

N∑
c,b=1

〈
EP̃ [

Ψkη(yk, yw
k−1)|Fk

]
, ecb

〉
= EP̃

Ψk

N∑
c,b=1

〈
η(yw

k , y
w
k−1), ecb

〉
| Fk


= EP̃ [Ψk | Fk] . (5.17)

Plugging in the result from equation (5.17) into equation (5.16), together with the construc-

tion of sk, yields

qk =
sk∑N

c,b=1 〈sk, ecb〉
=

sk

〈sk, 1〉
. (5.18)

As with Xi and Mamon [32], we also define the following relevant quantities:

A tsr
k =

k∑
l=2

〈yw
l−2, er〉〈yw

l−1, es〉〈yw
l , et〉, (5.19)

Bt
k =

k∑
l=2

〈yw
l−1, et〉 = Bt

k−1 + 〈yw
k−1, et〉, (5.20)

Bts
k =

k∑
l=2

〈yw
l−1, et〉〈yw

l−2, es〉, (5.21)

C t
k

(
f
(
Gh

k

))
=

k∑
l=2

f (Gh
l )〈yw

l−1, et〉 = C t
k−1

(
f
(
Gh

k−1

))
+ f (Gh

k)〈yw
k−1, et〉, (5.22)

where r, s, t = 1, . . . ,N, 2 ≤ l ≤ k, 1 ≤ h ≤ g, and f has the form f
(
Gh

)
= Gh,

or f
(
Gh

)
= (Gh)2. Equations (5.19), (5.20) and (5.21) refer, respectively, to the Markov

chain’s number of jumps from state (er, es) to et, amount of time spent in state et, and oc-

cupation time in state (et, es) up to time k. The auxiliary process C t
k ( f ) in equation (5.22)

is the level sum for the states et.

We define two N2×N2 matrices C and D (similar to Xiong and Mamon [37]) for deriving the

filters of η(yw
k+1, y

w
k ). Recursive filtering relations for ζw

k+1

(
A tsr

k+1η(yw
k+1, y

w
k )

)
, ζw

k+1

(
Bt

k+1η(yw
k+1, y

w
k )

)
,

ζw
k+1

(
Bts

k+1η(yw
k+1, y

w
k )

)
, and ζw

k+1

(
C t

k+1( f )η(yw
k+1, y

w
k )

)
are obtained with the aid of equations

(5.14) and (5.18).
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Proposition 5.3.1 Let Ck+1 be an diagonal matrix

Ck+1 =



c1
k+1 0 · · · 0

0 . . . 0
...

... 0 cN
k+1

. . .

. . .

. . . c1
k+1 0

...
... 0 . . . 0

0 · · · · · · 0 cN
k+1


,

where

ci
k+1 =

g∏
h=1

1
σh(yw

k )
exp

1
2

( (
Gh

k+1

)2
−

(
σi

h(yw
k )

)−2

×
(
Gh

k+1 −Gh
k − ν

h
i (yw

k )
)2

),
for k ≥ 0 and 1 ≤ b, c ≤ N. Then

sk+1 =BCk+1sk (5.23)

ζw
k+1

(
A tsr

k+1η(yw
k+1, y

w
k )

)
=BCk+1ζ

w
k
(
A tsr

k η(yw
k , y

w
k−1)

)
+ 〈sk, esr〉ct

k+1〈Besr, ets〉ets (5.24)

ζw
k+1

(
Bt

k+1η(yw
k+1, y

w
k )

)
=BCk+1ζ

w
k
(
Bt

k+1η(yw
k , y

w
k−1)

)
+ Dtct

k+1Bsk (5.25)

ζw
k+1

(
Bts

k+1η(yw
k+1, y

w
k )

)
=BCk+1ζ

w
k
(
Bts

k+1η(yw
k , y

w
k−1)

)
+ 〈sk, ets〉ct

k+1Bets (5.26)

ζw
k+1

(
C t

k+1( f h)η(yw
k+1, y

w
k )

)
=BCk+1ζ

w
k

(
C t

k+1( f h)η(yw
k , y

w
k−1)

)
+ f (Gh

k+1)Dtct
k+1Bsk, (5.27)

where Dt, 1 ≤ t ≤ N is an N2 × N2 matrix with eit on its ((i − 1) N + t)th column and 0

elsewhere.

Proof The derivations are analogous to the proofs provided in Xi and Mamon [32], or

Xiong and Mamon [37].

Remark 3: Expressions for our recursive filters (5.23)-(5.27) in matrix notation are more

compact and ‘neater’ than those presented in Erlwein and Mamon [10], engendering a
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more efficient evaluation using software with intensive matrix-manipulation capability. Ad-

ditionally, these results are extensions of the filtering equations derived by Date et al. [5]

for commodity futures prices under a regular HMM framework.

To estimate the optimal parameters, we adopt the Expectation-Maximisation (EM) algo-

rithm for the multi-dimensional HOHMM framework. The estimates of νh(yw
k ), σh(yw

k ),

and the transition probability P are functions of the recursive filters in Proposition 5.3.1.

Proposition 5.3.2 For a g-dimensional observation process Gh
k+1 in equation (5.10), k ≥ 0,

1 ≤ h ≤ g, the EM estimates of its parameters are given by

p̂tsr =
Â tsr

k+1

B̂sr
k+1

=
ζw

k+1

(
A tsr

k+1η(yw
k+1, y

w
k )

)
ζw

k+1

(
Bsr

k+1η(yw
k+1, y

w
k )

) , ∀pairs (t, s) , t , s, (5.28)

ν̂t
h

=
Ĉ t

k+1

B̂t
k+1

=
ζw

k+1

(
C t

k+1( f h)η(yw
k+1, y

w
k )

)
ζw

k+1

(
Bt

k+1η(yw
k+1, y

w
k )

) , (5.29)

σ̂h
t =

ζw
k+1

(
C t

k+1

(
( f h)

)2
η(yw

k+1, y
w
k )

)
ζw

k+1

(
Bt

k+1η(yw
k+1, y

w
k )

) −
2 f h

t ζ
w
k+1

(
C t

k+1( f h)η(yw
k+1, y

w
k )

)
ζw

k+1

(
Bt

k+1η(yw
k+1, y

w
k )

)
+

(
f h
t

)2
ζw

k+1

(
Bt

k+1η(yw
k+1, y

w
k )

)
ζw

k+1

(
Bt

k+1η(yw
k+1, y

w
k )

) 
1
2

. (5.30)

Proof See Appendix E.

Once the quantities in Proposition 5.3.1 are all determined, model parameter estimates are

immediate from Proposition 5.3.2.

5.4 Numerical application

5.4.1 Fish pool exchange and data description

Our numerical implementation utilises data from the Fish Pool ASA exchange market. The

Fish Pool contracts, mainly composed of futures and options, are settled financially rather

than settled by physical delivery of salmon. All contracts traded at the Fish Pool ASA are

settled on a monthly basis with the Fish Pool Index (FPI) as a reference price reflecting

the actual spot price of fresh Atlantic salmon. FPI is a weighted average (cf [14]) of three
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indices (weights given in parenthesis): Nasdaq Salmon Index (85%), Fish Pool European

Buyers Index (10%), and Statistics Norway customs statistics (5%). To avoid issues con-

cerning deliverable grades, the FPI makes use of the weighted average of the most traded

weight categories: 3-4 kg, 4-5 kg, 4-6 kg with contributions of 30%, 40%, and 30%, re-

spectively, to the averaging procedure.

Spot prices are accessible at the Fish Pool on a weekly basis for immediate delivery. On

the other hand, forward prices are available on a daily basis, reflecting the expectations

of market participants for future trading. The interest rate is assumed deterministic rather

than stochastic because forward prices in the Fish Pool are equivalent to futures prices for

numerical application. To the best of our knowledge, research studies in the literature on

pricing salmon futures would transform daily futures prices into weekly or monthly fre-

quency. This is evident from the futures price modelling formulation of Ankamah-Yeboah

et al. [23], Asche et al. [1], and Ewald et al. [13], which contains weekly spot prices.

Remark 4: Our approach differs significantly from the current methodology on salmon

futures price modelling. Instead of averaging futures prices to generate a proxy for the

weekly spot prices as the common practice in various papers, we directly use daily futures

price observations for modelling and forecasting the dynamics of futures prices in the near

or medium-term horizons.

We customise a filtering method tailored to our proposed multivariate model; this is then

implemented on data concerning futures contracts with maturities up to 6 months. These

are short-term contracts that are more frequently traded than others in the salmon market;

see Ankamah-Yeboah et al. [23] and Ewald et al. [13]. We consider a data set of daily

log-return series of futures prices collected by the Fish Pool; this data set comprises 1515

data points. The 12 maturity dates are denoted by T h, where h = 1, . . . , 12, and they

are set to be the last business day in the months of January 2016, February 2016 , . . . ,

December 2016. When the filtering procedure is carried out on the multivariate data, a

moving window is going over time th until the entire trajectory of futures price curves is

exhaustively processed. Futures, with maturities from 1 to 6 months, are traded on any

business date between the starting th and ending th as shown in Table 5.1.
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h-dimension Starting th Ending th Maturity T h

1 03Aug2015 28Jan2016 29Jan2016

2 01Sept2015 26Feb2016 29Feb2016

3 01Oct2015 30Mar2016 31Mar2016

4 02Nov2015 28Apr2016 29Apr2016

5 01Dec2015 30May2016 31May2016

6 01Jan2016 29Jun2016 30Jun2016

7 01Feb2016 28Jul2016 29Jul2016

8 01Mar2016 30Aug2016 31Aug2016

9 01Apr2016 29Sept2016 30Sept2016

10 02May2016 28Oct2016 31Oct2016

11 01Jun2016 29Nov2016 30Nov2016

12 01Jul2016 29Dec2016 30Dec2016

Table 5.1: Illustrating the data periods of future contracts (maturities of 1–6 months) cov-

ered by the moving window in the filtering procedure

To further elucidate the relevance of the information in Table 5.1, consider futures contracts

with expiry data T 1 (29 Jan 2016) and refer to Table 5.2.

Futures contract Time to maturity Trading date

6 −month



T 1 − t1
1, t1

1 : 03Aug2015

T 1 − t1
2, t1

2 : 04Aug2015
...

...

T 1 − t1
21, t1

21 : 31Aug2015

5 −month


T 1 − t1

22, t1
22 : 01Sept2015

...
...

T 1 − t1
43, t1

43 : 30Sept2015
...

1 −month


T 1 − t1

108, t1
108 : 04Jan2016

...
...

T 1 − t1
126, t1

126 : 28Jan2016

Table 5.2: Futures contracts with maturity up to 6 months and expiration on 29 Jan 2016
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If a market participant enters into a futures contract on any business day between t1
1 (03 Aug

2015) and t1
21 (31 Aug 2015), then he owns has a 6-month futures contract with maturity

date T 1; In this case, the contract could have between 151 to 180 days until expiration.

A similar reasoning can be made when owning 5-month, . . . , 1-month contracts until

the expiration T 1 is reached. Our algorithm, with moving window going through time

points th, is applied to futures contracts with maturity dates T 2, T 3, . . . , T 12. This proposed

data-reorganisation scheme ensures that for times to maturity T h − th
k , 1 ≤ k ≤ 126 (k

expressed as number of trading days), we have 12 data points corresponding to each tk.

More importantly, this scheme will create a multivariate time series without missing or

causing a double entry of any data point.

Remark 5: A novelty of this work arises from realistically treating the remaining time to

maturity T h − th
k to be varying. This gives the benefit of using all available raw information

without any additional data transformation in the process of modelling and parameter es-

timation.

Table 5.3 presents the descriptive statistics of our data set. Low volatility as well as skew-

ness and kurtosis of low magnitude are observed for the log-futures price data.

Maturity T h Mean Sd Dev Min Max Skew Kurtosis

29Jan2016 3.8814 0.0868 3.7796 4.0993 0.8528 -0.2463

29Feb2016 3.8987 0.0844 3.7773 4.0535 0.1215 -1.2253

31Mar2016 3.9511 0.1012 3.8022 4.1431 0.2419 -1.0862

29Apr2016 3.9572 0.0978 3.8308 4.1026 0.2493 -1.5814

31May2016 3.9883 0.1090 3.8351 4.2047 0.1825 -1.2799

30Jun2016 3.9951 0.1227 3.8199 4.2413 0.4316 -0.9328

29Jul2016 4.0411 0.1498 3.8133 4.3470 0.5050 -0.7739

31Aug2016 4.0108 0.0727 3.8712 4.1109 -0.4151 -1.3396

30Sept2016 3.9949 0.0535 3.8918 4.0673 -0.7087 -0.5837

31Oct2016 4.0309 0.0503 3.9551 4.1636 1.2693 0.8055

30Nov2016 4.1498 0.0584 4.0518 4.287 0.6630 -0.3971

30Dec2016 4.2321 0.0705 4.1431 4.3307 0.0789 -1.7328

Table 5.3: Descriptive statistics for log-futures prices (maturities of 1 – 6 months)
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5.4.2 Implementation of filters and estimation

As pointed out in Xiong and Mamon [37], the autoregressive fractionally integrated moving

average (ARFIMA) method could be utilised to verify presence of memory (in the sense

of current data value’s dependence on previous data points). For our data set, fractional-

differencing parameter u is assessed against these benchmarks: u = 0 implies the time

series data exhibits short memory, and 0 < u < 0.5 implies there is finite long memory in

the time series data. We use the R function ‘fdSperio’, which is suitable for non-stationary

processes, in examining the memory property of our data set. We obtained û = 0.0633 in-

dicating short memory. This rationalises our use of the 2nd-order HOHMM set-up, which

is sufficient to tackle short memory.

Coming up with the appropriate initial parameter values in the implementation of our self-

calibrating estimation could make use of the least-square method suggested in Erlwein and

Mamon [10] or the likelihood maximisation mentioned in Date et al. [5]. In our case,

we adopt the latter method. Considering Gt as a one-state process, the maximiser of the

associated log-likelihood function, given a series of observations, is given by

argmax
(
log L (Gk+1; ν, σ)

)
=

m∏
k=1

 log
1
√

2πσ
−

(Gk+1 −Gk − ν)2

2σ2

, (5.31)

where m = 120 in this numerical application. For a g-dimensional setting, the log-likelihood

to be maximised must simultaneously take into account all futures prices spanning matu-

rities T h, 1 ≤ h ≤ g, where g = 12. The aim is to find maximisers νh and σh for equation

(5.10). Given that {zh
k+1} is a sequence of IID N(0, 1), we must solve the optimisation prob-

lem

argmax
(
log L (Gk+1; ν, σ)

)
=

g∏
h=1

m∏
k=1

 log
1

√
2πσh

−

(
Gh

k+1 −Gh
k − ν

h
)2

2
(
σh)2

. (5.32)

Invoking Date et al. [5], it is reasonable to assume that the speed of mean reversion is fixed

and independent of the Markov chain when modelling the log-futures prices of a commod-

ity. In fact, we validated that the estimates of α in our model remains relatively stable using

prices of the short-term futures. A fixed α is justified and provides some simplification

in the computation. We emphasise that both λ and ξ are still governed by yw, and their

estimated values are required to update ν(yw) and σ(yw) in equation (5.10). We address
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problem (5.32) using both R functions ‘nlm’ and ‘optim’, generating initial parameter esti-

mates α̂ = 0.9864, λ̂ = 4.2257, and ξ̂ = 0.1855; these estimates are used as benchmarks in

selecting starting values for the multi-regime HOHMMs.

Each variate in our multivariate HOHMM has the same number of regimes and every vari-

ate’s switching is driven by the same HOHMC’s transition matrix P. The time increment

∆t = 1 trading day in the processing of our data, which is divided into 24 batches. Each

batch, for one algorithm, has 5 vectors (i.e., 5 th
k for all T h, h = 1, 2, . . . , 12), and it gives a

window size covering an entire week of trading. One week of multivariate data is deemed

sufficient to accumulate new information that could impact the futures market, such as sub-

stantial changes in supply and demand, climactic conditions (e.g., sea-surface temperature,

water currents, etc), economic and political events, amongst other market factors. Thus,

our algorithm formulation updates quantities that are functions of HOHMM every trading

week through the online filters (5.23)-(5.27).

The filtered estimates are then fed into equations (5.28)-(5.30) to get new parameter esti-

mates. The estimates from the most recent algorithm pass serve as initial parameter values

for the next algorithm pass via the recursive filtering equations. We experimented on var-

ious combinations of different initial parameter values and other filtering windows. It is

found that, for majority of the times during the filtering process, convergence of parameter

estimates could be achieved without any iteration failures. When this is true, window sizes

and starting values only impact the convergence speed, but they do not substantially pro-

duce different results.

Figures 5.1 and 5.2 depict the movement of the entries for the transition probability matrix

P under the 2-state and 3-state settings, respectively. The jumps in the evolution of proba-

bilities reflect possible market-state changes and price fluctuations. Under both 2-state and

3-state settings, noticeable changes occur from the 11th to 15th algorithm pass; and after

approximately 19 algorithm passes, stability of transition probability evolution is attained.

Evidence of regime switching is also detected in the evolution of other parameter estimates

for the process Gt in equation (5.10).

When estimates of ν andσ are generated and with the the value of α computed from solving

the aforementioned optimisation in (5.32), the evolution of the estimates for λ and ξ can

be obtained through equations (5.11) and (5.12). Figures 5.3 and 5.4 show the evolution of
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Figure 5.1: Evolution of transition probabilities under a 2-state HOHMM for futures prices

with expiry T h.

parameters, under both 2- and 3-state HOHMM set ups, using prices from contracts with

expiration on the last maturity date T 12. The small magnitude of volatilities ξ and σ is

consistent with the descriptive statistics of the data portrayed in Table 5.3. Figures 5.1 and

5.2 illustrate that the behaviour of parameter estimates is relatively stable after a period of

dramatic switches. Also, the general downward pattern of parameter dynamics is a shared

characteristic of Figures 5.3 and 5.4.

5.4.3 Model performance and selection

For a comprehensive evaluation of model performance, we also implement our filtering al-

gorithm on 2- and 3-state HMM frameworks, which are two special cases of an HOHMM

with lag order 1. It is a common post-diagnostic check to compare the forecasting perfor-

mance of a proposed model with other benchmarked models, such as the random walk and

ARCH-type models; see Hardy [16]. However, these typical benchmarks are incompatible

with the HMM and HOHMM frameworks. This is because we directly model multivariate

futures prices and incorporate memory property of the market into the setting, whereas ran-

dom walk and ARCH models deal with univariate spot prices. We also rely on Mamon et

al. [22] whereby it was found that ARCH and GARCH models are unable to beat the reg-

ular HMMs’ performance with respect to capturing short- and medium-term predictability

of a data series. To find the ‘best-performing’ model that captures the main features of the
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Figure 5.2: Evolution of transition probabilities under a 3-state HOHMM for prices of

futures with expiry T h.
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Figure 5.3: Evolution of parameter estimates ξ, λ, ν, and σ under a 2-state HOHMM for

prices of futures with expiry 30 Dec 2016.
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Figure 5.4: Evolution of parameter estimates ξ, λ, ν, and σ under a 3-state HOHMM for

prices of futures with expiry 30 Dec 2016.
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salmon futures prices, we evaluate the prediction of Gt under the 1-, 2-, and 3-state HMMs

and HOHMMs. The one-step ahead forecasts in Date et al. [5] are extended; additionally,

the d-step ahead predictions for all proposed models are assessed.

Proposition 5.4.1 Given information up to time k, the ‘best’ estimate of the d-step ahead

forecast of the g-dimensional observation process Gh
k+1 = log Fh

k+1 is

E
[
Fh

k+d | Fk

]
= Fh

k

d∏
l=1

N∑
j,i=1

〈Bl−1ql, e ji〉 exp

νh
j +

(
σh

j

)2

2

 . (5.33)

Proof See Appendix F.

Figure 5.5 depicts the one-step ahead prediction, taking d = 1 in equation (5.33), for salmon

futures prices under the 3-state HOHMM setting with maturity dates of 28 Oct 2016, 29

Nov 2016 and 29 Dec 2016. We can observe that the one-step ahead forecasts are quite

close to the actual market data. Although not shown here, similar patterns can be found

for the one-step ahead forecasts under the HMM setting as well. The forecasts, with very

short term, from our proposed models follow closely the actual prices at the Fish Pool. The

trends and dynamics of salmon futures prices, from visual inspection, are captured well by

our filtering algorithms and estimation procedure.

A formal way of quantifying forecasts’ quality is through an error analysis, i.e, examining

the goodness of fit for all the proposed HMMs and HOHMMs. Following the criteria in

Erlwein et al. [7] and Date et al. [5, 4], we evaluate the root-mean-squared error (RMSE),

absolute-mean error (AME), relative-absolute error (RAE), and mean-absolute-percent er-

ror (MAPE) of the proposed and competing multi-dimensional models. We extend further

the assessment of the error metrics to the case of d-step ahead forecasts.

The results of error analyses for d = 1, 2, . . . , 5, i.e., spanning the entire next week’s trading

days, are presented in Table 5.4. For all d, the 3-state model outperforms other HOHMM-

state settings. Except for the 1-step ahead forecasting case, where the 2-state HMM yields

better fit than those obtained from the 1-and 3-state HMMs, the HOHMM with 3 states is

adjudged better than any HMM set up in terms of goodness of fit. Compared to the HMM

settings, the HOHMM settings produce smaller errors in one-step ahead predictions, whilst

no pronounced difference is detected as the forecasting horizons become longer. The 4-

state HMM and HOHMM settings, which were examined as well, effect only negligible

improvements. Therefore, there is no practical motivation to pursue an HOHMM with a
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d-step ahead HMM setting RMSE MAPE AME RAE

1-state 0.5104 0.5195 0.2962 0.0498

1 2-state 0.5036 0.4926 0.2859 0.0481
3-state 0.5055 0.5051 0.2876 0.0484

1-state 0.8062 0.9130 0.5181 0.0878

2 2-state 0.7852 0.8718 0.4941 0.0840

3-state 0.7842 0.8654 0.4909 0.0834
1-state 1.0685 1.2607 0.7104 0.1213

3 2-state 1.0388 1.2053 0.6791 0.1165

3-state 1.0387 1.2021 0.6776 0.1162
1-state 1.3048 1.5741 0.8804 0.1514

4 2-state 1.2655 1.5013 0.8397 0.1453

3-state 1.2650 1.4903 0.8338 0.1443
1-state 1.5298 1.8622 1.0334 0.1788

5 2-state 1.4782 1.7672 0.9812 0.1713

3-state 1.4779 1.7537 0.9738 0.1701
d-step ahead HOHMM setting RMSE MAPE AME RAE

1-state 0.5104 0.5195 0.2962 0.0498

1 2-state 0.5029 0.4964 0.2824 0.0476

3-state 0.5021 0.4926 0.2804 0.0472
1-state 0.8062 0.9130 0.5181 0.0878

2 2-state 0.7851 0.8131 0.4614 0.0787

3-state 0.7847 0.8114 0.4605 0.0785
1-state 1.0685 1.2607 0.7104 0.1213

3 2-state 1.0389 1.1290 0.6372 0.1100

3-state 1.0386 1.1276 0.6364 0.1099
1-state 1.3048 1.5741 0.8804 0.1514

4 2-state 1.2653 1.4192 0.7959 0.1392

3-state 1.2651 1.4188 0.7956 0.1391
1-state 1.5298 1.8622 1.0334 0.1788

5 2-state 1.4778 1.7024 0.9480 0.1678

3-state 1.4777 1.7024 0.9480 0.1678

Table 5.4: Error analysis of HMM- and HOHMM-based models under 1-, 2-, and 3-state

settings for salmon futures prices
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Setting HMM HOHMM

1-state 1-state 2-state 1-state 1-state 2-state

t-test vs vs vs vs vs vs

2-state 3-state 3-state 2-state 3-state 3-state

p-value 4.3026 × 10−7 4.3225 × 10−4 0.8564 2.5657 × 10−5 1.6071 × 10−8 1.0000

Table 5.5: Bonferroni-corrected p-values for the paired t-test performed on the RMSEs

involving salmon futures prices

number of states greater than 3. In fact, it is also prohibitive to consider a large number of

states since the size of the transition probability entries becomes unwieldy even with just

one regime addition; see Figures 5.1 and 5.2. Notwithstanding the small fitting errors seen

in general for the 1-, 2- and 3-state HMM and HOHMM settings, HMM and HOHMM

with a regime-switching feature clearly outperform the special case, 1-state model, across

all forecasting metrics. This indicates the indisputable benefit of incorporating regime-

switching and memory-capturing capabilities into models. Overall, the 3-state HOHMM is

the best modelling framework in accurately describing the dynamics of our salmon futures-

price data set.

The statistical significance of the error-mean differences in each pairwise setting of our

proposed models is evaluated by a t-test based on a 95% confidence level. The adjusted

p-values are computed with the Bonferroni’s approach to control the family wise error rate.

Table 5.5 displays the estimated Bonferroni-corrected p-values for the three pairs of model

settings.

For the 2-state HMM versus 3-state HMM and the 2-state HMM versus 3-state HOHMM

models, the p-values are larger than 0.05. Therefore, the null hypothesis of no significant

difference cannot be rejected. This tells us that the 2-state and 3-state HMM settings (also

2-state and 3-state HOHMM settings) have similar capability in capturing the dynamics

of the observation process although Table 5.4 shows the 3-state is slightly better than the

2-state setting. For the 1-state versus 2-state and 1-state versus 3-state setting under HMM

(also, 1-state versus 2-state and 1-state versus 3-state setting under HOHMM ) the p-values

are appreciably smaller than 0.01. So, the RMSE differences between the HMM-based

switching and no-switching models (also, between the HOHMM-based switching and no-

switching models) are statistically significant.
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Model 1-state 2-state 3-state N-state

HMM 2 6 12 N2 + 2N

HOHMM 2 8 24 N3 − N2 + 2N

Table 5.6: Number of estimated parameters under HMM and HOHMM settings for salmon

futures prices

The results of our error analyses will be reinforced by information-criterion assessments in

identifying the ‘best-performing’ model. Information-criteria assessment techniques aim to

provide a balance between model’s goodness of fit and complexity (i.e., increased number

of parameters). To put it simply, the information-criterion metrics provide a comprehensive

trade-off between bias and variance of our HMM and HOHMM settings. Here, we make

use of the Akaike information criterion (AIC), the small-sample-size corrected version of

AIC (AICc), and the Bayesian information criterion (BIC).

The AIC emphasises the penalty for increasing the number of parameters. The AICc is

the AIC with a correction for a relatively small size of model parameters by increasing the

penalty for model complexity. The BIC strengthens the AIC and AICc by selecting the

‘best’ model from a set of candidate models with a different penalty for the addition of

parameters. The AIC, AICc and BIC are computed as

AIC = −2 log L (Θ) + 2l, (5.34)

AICc = −2 log L (Θ) + 2l +
2l (l + 1)
m − l − 1

, (5.35)

BIC = −2 log L (Θ) + 2l log m, (5.36)

where l is the number of model parameters to be estimated as summarised in Table 5.6. In

(5.36), m is the number of data points, and log L (Θ) is the log-likelihood function associ-

ated with the model given by

log L (Θ) =

g∑
h=1

B∑
k=1

N∑
t=1

〈yw
k , et〉

 log

 1
√

2πσh
(
yw

k

) −
(
Gk+1 −Gk − ν

(
yw

k

))2

2
(
σh

(
yw

k

))2

 (5.37)

with B being the number of observations in each algorithm pass. The model that gives the

smallest information-criterion assessment value obtained using equations (5.34)– (5.36)

is preferred. We compute the values of AIC, AICc and BIC for the 1-, 2- and 3-state

HMMs and HOHMMs after each algorithm step. The evolution of the calculated values of

these information-criterion metrics is plotted in Figure 5.6. We observe that the the 1-state
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model generates the largest values and the most volatile patterns throughout the entire data

period. Even though the 3-state HOHMM produces higher values than those from other

regime-switching models at the earlier part of the algorithm pass, it generally has stable

patterns and smaller AIC/AICc/BIC values thereafter. These findings fortify the results of

the above-mentioned error analyses, selecting the 3-state HOHMM as the best model for

the data set studied in this chapter.

Probing the models’ forecasting performance entails as well running the model on data

set covering the out-of-sample period, i.e., the data period not used in model estimation.

The empirical evidence from the in-sample performance is commonly less reliable than the

those generated from analysing forecasts in the out-of-sample period, which better reflects

the information available in ‘real time’; see White [30], and Stock and Watson [29]. As

the d−step ahead prediction is forward-looking and does not overlap with the period en-

compassing the data used for the filtering and estimation of parameters, our approach is

distinctly consistent with the out-of-sample forecasting.

This section on numerical demonstration culminates with an appraisal of all model settings

on their one-step ahead prediction ability using price data of futures with maturities after

30 Dec 2016. Specifically, this out-of-sample forecasting exercise focuses on futures with

maturities up to 6 months that expire on the last business day of Jan 2017, Feb 2017, . . .,

Jun 2017. Figure 5.7 exhibits the comparison between the actual and predicted futures

prices under the 3-state HOHMM. It shows that the movement of the one-step ahead pre-

dictions resemble the actual data. Such a result is also in agreement with what Figure 5.5

reveals. The results of the out-of-sample error analysis under the 1-, 2- and 3-state HMMs

and HOHMMs are also reported in Table 5.7. The 2- and 3-state HMMs and HOHMMs

incontestably outperform the 1-state model with respect to all forecasting metrics whilst

the 3-state HOHMM has the smallest forecast errors. Summing up altogether the pertinent

evidence from error analyses, information-criteria evaluations, and out-of-sample predic-

tions, it is ascertained that there is merit in putting forward the regime-switching settings

for the modelling and forecasting of Fish Pool’s futures prices. The 3-state HOHMM turns

out to be the best-fitting model for the chosen sample data within the intent of our empirical

analysis.
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HMM setting HOHMM setting

1-state 2-state 3-state 1-state 2-state 3-state

RMSE 0.4517 0.4369 0.4434 0.4517 0.4370 0.4367
MAPE 0.4745 0.4250 0.4256 0.4745 0.4250 0.4239
AME 0.3231 0.2889 0.2890 0.3231 0.2889 0.2881
RAE 0.0742 0.0665 0.0666 0.0742 0.0665 0.0663

Table 5.7: Out-of-sample error analysis of HMM- and HOHMM-based models under 1-,

2-, and 3- state settings for futures prices

5.5 Conclusion

In this work, we put forward a multi-dimensional HOHMM-based approach in examining

the evolution of salmon futures prices. It is assumed that the parameters of the arbitrage-

free log-futures prices model are driven by a second-order hidden Markov chain in discrete

time. The usual approach to solve for the MLEs is to utilise the classic Kalman filtering un-

der a univariate setting, which is common in the price discovery research of the aquaculture

literature. But in light of the correlated multivariate nature of the data for salmon futures

prices, we developed suitable and congruous self-calibrating filtering algorithms, given in

matrix representations, for optimal parameter estimation and short-term price prediction.

To illustrate the implementability and prediction performance of our approach, we provided

a numerical demonstration utilising fresh-farmed salmon futures prices publicly available

at the Fish Pool. The HOHMM settings were tested on an extensive data set of daily fu-

tures contracts that are actively traded in the market and mature within 6 months. The

innovation of our implementation, in conjunction with our self-tuning estimation frame-

work, emanates from the design of data processing scheme that exhausts every possible

raw price information despite the complexity brought by the varying maturities of futures

contracts trading in the Fish Pool market. Parameter estimates were generated by filter-

ing recursions under the paradigm of shifting market regimes. We conducted post model

diagnostics for our proposed HOHMM setting, and also benchmarked it with the regular

HMM setting. A comparative analysis of model-validation metrics was performed concen-

trating on error analysis, charting dynamic information-criteria evolution, and d−day ahead
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forecasts for d = 1, . . . , 5. It is shown that the inclusion of a regime-switching and memory-

description features into the model brings about advantages in attaining better goodness of

fit and price-forecasts accuracy of salmon futures prices. The 3-state HOHMM has the ut-

most sufficiency to describe the essential attributes of the data set gathered for the empirical

analysis in this chapter.

This work contributes to the widening of the collection of available quantitative techniques,

enabling further the use of financial technologies in the management of price risk and

volatilities in the fisheries sector and aquaculture industry. Our results could be extended

in a number of directions, such as applying the proposed framework to develop dynamic

hedging strategies and explore optimisation of portfolios with direct exposure to prices of

fish and seafood.
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Figure 5.5: One-step ahead predictions for futures prices with expiries on 28 Oct 2016, 29

Nov 2016, and 29 Dec 2016.
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salmon futures prices.
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References

[1] F. Asche, B. Misund, A. Oglend, The spot-forward relationship in the Atlantic salmon

market, Aquaculture Economics and Management, 20(2)(2016), 222–234.

[2] I. Ankamah-Yeboah, M. Nielsen, R. Nielsen, Price formation of the salmon aqua-

culture futures market, Aquaculture Economics and Management, (2017) 1–24. DOI:

10.1080/13657305.2016.1189014

[3] O. Cacho, Systems modelling and bioeconomic modelling in aquaculture, Aquacul-

ture Economics and Management, 1(1-2)(1997), 45–64.

[4] P. Date, L. Jalen, R. Mamon, A partially linearised sigma point filter for latent state

estimation in nonlinear time series models, Journal of Computational and Applied

Mathematics, 233(2010) 2675–2682.

[5] P. Date, R. Mamon, A. Tenyakov, Filtering and forecasting commodity futures prices

under an HMM framework, Energy Economics, 40(2013) 1001–1013.

[6] R. Elliott, L. Aggoun, J. Moore, J., Hidden Markov Models: Estimation and Control,

Springer, New York (1995).

[7] C. Erlwein, F. Benth, R. Mamon, HMM filtering and parameter estimation of an elec-

tricity spot price model, Energy Economics, 32 (5) (2010) 1034–1043.

[8] R. J. Elliott, T. Kuen Siu, A. Badescu, Bond valuation under a discrete-time regime-

switching term-structure model and its continuous-time extension, Managerial Fi-

nance, 37(11)(2011) 1025–1047.

[9] C. Erlwein, R. Mamon, M. Davison, An examination of HMM-based investment

strategies for asset allocation, Applied Stochastic Models in Business and Industry,

27(3)(2011), 204–221.

176



REFERENCES 177

[10] C. Erlwein, R. Mamon, An online estimation scheme for a Hull-White model with

HMM-driven parameters, Statistical Methods and Applications, 18(1)(2009) 87–107.

[11] C. Ewald, Derivatives on nonstorable renewable resources: Fish futures and options,

not so fishy after all, Natural Resource Modeling, 26(2) (2013), 215–236.

[12] C. Ewald, R. Ouyang, T. K. Siu, On the market-consistent valuation of fish farms:

Using the real option approach and salmon futures, American Journal of Agricultural

Economics, 99(1)(2017), 207–224.

[13] C. Ewald, R. Ouyang, T. K. Siu, The market for salmon futures: An empirical anal-

ysis of the Fish Pool using the Schwartz multi-factor model. Quantitative Finance,

16(12)(2016), 1823–1842.

[14] Fish Pool Index. http://fishpool.eu/price-information/spot-prices/fish-pool-index/ (ac-

cessed Oct 2017).

[15] A. Guttormsen, Faustman in the sea: Optimal rotation in aquaculture. Marine Re-

source Economics, 23(4)(2008), 401–410.

[16] M. Hardy, A regime-switching model of long-term stock returns, North American

Actuarial Journal, 5 (2) (2001), 41–53.

[17] M. Manoliu, S. Tompaidis, Energy futures prices: Term structure models with

Kalman filter estimation, Applied Mathematical Finance, 9(1)(2002) 21–43.

[18] Market competition between farmed and wild fish: A literature survey, Food and

Agriculture of the United Nations. http://www.fao.org/3/a-i5700e.pdf (accessed Oct

2017).

[19] J. Martı́nez–Garmendia, J. Anderson, Hedging performance of shrimp futures con-

tracts with multiple deliverable grades, Journal of Futures Markets, 19(8)(1999), 957–

990.

[20] R. Mamon, R. Elliott, Hidden Markov Models in Finance, International Series in

Operations Research and Management Science, 104, Springer, New York, 2007.

[21] R. Mamon, R. Elliott, Hidden Markov Models in Finance: Further Developments and

Applications, International Series in Operations Research and Management Science,

104, Springer, New York, 2014.



178 REFERENCES

[22] R. Mamon, C. Erlwein, R. Gopaluni, Adaptive signal processing of asset price dy-

namics with predictability analysis. Information Sciences, 178(2008), 203–219.

[23] Press release, Fish Pool turned over 90000 tons of salmon last year, 2017,

http://ilaks.no/fish-pool-snudde-over-90-000-tonn-laks-ifjor/ (accessed Oct 2017).

[24] K. Quagrainie, C. Engle, A latent class model for analysing preferences for catfish,

Aquaculture Economics and Management, 10(1)(2006), 1–14.

[25] S. Ross, S. Hedging long run commitments: Exercises in incomplete market pricing,

Economic Notes: Economic Review of Banca Monte dei Paschi di Siena. 26(2)(1997)

385–420.

[26] E. Schwartz, E. The Stochastic behavior of commodity prices: Implications for valu-

ation and hedging, Journal of Finance, 52(3)(1997) 923–973.

[27] P. Solibakke, Scientific stochastic volatility models for the salmon forward market:

Forecasting (un-)conditional moments. Aquaculture Economics and Management,

16(3)(2012), 222–249.

[28] T. Siu, W. Ching, E. Fung, M. Ng, X. Li, A high-order Markov-switching model

for risk measurement, Computers and Mathematics with Applications, 58(1) (2009)

1–10.

[29] J. Stock, M. Watson, Introduction to Econometrics (3rd ed.). Boston: Addison-

Wesley. (2011)

[30] H. White, A reality check for data snooping. Econometrica, 68(5)(2000), 1097–1126.

[31] R. Weron, Modeling and Forecasting Electricity Loads and Prices: A Statistical Ap-

proach. Hoboken, NJ; Chichester, England: John Wiley and Sons. (2006).

[32] X. Xi, R. Mamon, Parameter estimation of an asset price model driven by a weak

hidden Markov chain, Economic Modelling 28(1) (2011) 36–46.

[33] X. Xi, R. Mamon, Yield curve modelling using a multivariate higher-order HMM. In

Zeng, Y. and Wu, S. (eds), State-Space Models and Applications in Economics and

Finance. New York, Springer (2013) 185–203.



REFERENCES 179

[34] X. Xi, R. Mamon, M. Davison, A higher-order hidden Markov chain-modulated

model for asset allocation, Journal of Mathematical Modelling and Algorithms in

Operations Research 13(1) (2014) 59–85.

[35] X. Xi, R. Mamon, Parameter estimation in a WHMM setting with independent and

volatility components. In Mamon, R. and Elliott, R (eds), In: Hidden Markov Models

in Finance: Volume II (Further Developments and Applications). New York, Springer

(2014) 227–240.

[36] X. Xi, R. Mamon, Capturing the regime-switching and memory properties of interest

rates, Computational Economics, 44(3) (2014), 307–337.

[37] H. Xiong, R. Mamon, A self-updating model driven by a higher-order hidden Markov

chain for temperature dynamics, Journal of Computational Science, 17 (2016), 47–61.

[38] H. Xiong, R. Mamon, Putting a price tag on temperature, Computational Management

Science, (2017), https://doi.org/10.1007/s10287-017-0291-8



Chapter 6

Conclusion

6.1 Summary of research contributions

In this thesis, we developed more extensions of the the regime-switching models governed

by HOHMCs. The corresponding filtering algorithms to support the new models’ dynamic

parameter estimation were fully constructed. The usual Markov assumption in regime-

switching approaches was relaxed in our HOHMM setting by having dependency of data

beyond the first-order lag times. In turn, such a relaxation of the Markov assumption equips

a capacity to exploit information from time series data recorded in the past. Various empiri-

cal implementations were put forward, and they were specifically designed to capture some

stylised behaviours of commodity prices and indices for support of derivative valuation and

risk management. Modelling set ups were especially tailored for the dynamics of variables

that primarily affect values of weather, electricity, and aquaculture-based contracts.

The higher-order hidden Markov process modulates the parameters in discrete time to cap-

ture the random shifts amongst different economic regimes resulting from the interaction

of various factors. We derived, via some ‘idealised’ reference probability measure, the

recursive filters for the state of the Markov chain and auxiliary quantities of the observa-

tion process. EM parameter estimates are expressed in terms of the adaptive filters, which

produces self-calibrating modelling methodology. The performance of the four proposed

models was assessed and benchmarked against present standard models in the literature

and current practice, comparing various statistical metrics that quantify the model’s good-

ness of fit (i.e., minimised forecasting errors) and the balance between model’s maximised

likelihood and inherent complexity.
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This research work offers further developments and valuable insights in both the theoreti-

cal and practical aspects of regime-switching models covering recent financial innovations

in the commodity markets. As a recapitulation, the accomplishments of this research be-

gan with the modelling in Chapter 2 of the DATs under a discrete-time HMM; an online

parameter estimation scheme and evaluation of a temperature-based option with parame-

ter sensitivity analysis were also presented. The formulation of a temperature model with

a discrete-time HOHMC governing the model parameters was introduced in Chapter 3.

Recursive filtering equations for various quantities as a function of HOHMM were aided

smoothly by the probability-measure-change technique, and we underscored a numerical

implementation on a data set of 4-year Toronto’s DATs. We created a modelling set-up

combining OU and jump processes, both of which are modulated by a HOHMC, in the de-

piction of electricity spot-price movement in Chapter 4. The model was applied to a desea-

sonalised series of AESO-collected data. Chapter 5 advanced the use of multi-dimensional

HOHMM in the modelling and very short-term prediction of futures prices in the aquacul-

ture industry. An empirical illustration was carried out on salmon futures prices in the Fish

Pool market for the purpose of model validation.

Over all, the significant research contributions in this thesis highlight the: (i) generali-

sation of the regular HMM-OU framework to a modelling set up that possesses the means

to extract information from the data observed beyond a unit time lag, hence incorporating

the flexibility to capture data’s memory property; (ii) development of dynamic model cali-

bration procedures, through HOHMM-filtering, that addresses the need for financial tech-

nologies for automation in the context of today’s artificial-intelligence-driven world; (iii)

valuation and risk measurement of temperature-linked derivatives under a regime-switching

approach; (iv) enrichment of the HOHMM-OU model with a compound Poisson process

to accurately chart electricity spot price dynamics; and (v) design of multi-dimensional

HOHMM filters and predictors in the analysis of salmon futures prices, whereby the dy-

namic estimation picks up and processes all available raw data points once only and no

observed values are discarded or transformed into proxy values that yield more approxima-

tion errors and uncertainty of model results.
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6.2 Further research directions

We recognise that, despite the extensions achieved in our proposed models, shortcomings

in our approaches remain that will open avenues for research investigations. We laid down

some of the ground work to push further the theoretical and practical considerations in-

volved in HOHMM filtering techniques to bolster their potential benefit as new kinds of

data series unfold in the areas of finance, engineering, and social sciences. Several off-

shoots and ramifications of this research work are itemised below.

• As indicated in this thesis, we just utilised an HOHMC with a lag order 2, as a

paradigm that simplifies the elaboration of details in the HOHMM-setting develop-

ment. This helps in the rough quantification of the computational complexity when

reducing the lag order from, say k to k − 1, for k = 2, 3, . . .. Ideally, however, it is de-

sirable to come up with statistical inference techniques that will give the HOHMM’s

optimal lag order k̂ suitable for a given data set.

• The construction of our HOHMM filtering algorithms is aligned with the discrete-

time nature of the observed time series. As an alternative, we have yet to see the

development of the HOHMMs and their filters in continuous time. For example, re-

cent regime-switching models with continuous-time HMM filters were formulated in

[1]. Although this type of filters requires discretisation and integral approximations,

there are instances that filter derivations are more straightforward because they are

standard continuous-time stochastic calculus computations. Thus, there is merit to

consider continuous-time filtering for HOHMMs, which is still an inchoate area in

stochastic modelling.

• Our HOHMM-based modelling set ups have a Gaussian-noise term. Similar to

HMM-based set ups as espoused in [2], filtering recursions under non-Gaussian noise

terms could be considered for an even greater flexibility of capturing a variety of

shapes of statistical distributions in the context of big data and new kinds of data

given recent financial-market innovations and regulatory developments. Implemen-

tation of new filters under non-normal correlated multivariate models is also antici-

pated to entail more advanced computing platforms to attain efficiency of self-tuning

parameter estimation.

• A natural direction in modelling the DATs under the HOHMM framework is the

pricing and dynamic hedging of other weather-linked products. For instance, the
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modelling of weather futures prices can be pursued by multivariate HOHMM-based

filtering algorithms. The filtered-based EM parameter estimates require a connection

with a suitable risk-neutral measure via the construction a quantity that encapsulates

the risk premium (i.e., price and switching risks). Optimisation of portfolios contain-

ing products linked to weather indices is another closely related problem that could

benefit from our HOHMM approach.

• With regard to the modelling of electricity-spot, further applications to the pricing

of more complicated electricity derivatives other than just forward contracts could

be explored. Applications that consider both weather and electricity derivatives in

tandem will be of a particular interest to practitioners. For instance, a dynamic risk

management strategy involving electricity and temperature-based futures could be

supported by the HOHMM filtering algorithms in finding optimal hedge ratios.

• Climate change in recent times significantly disturbs salmon population dynamics

and leads to harvest uncertainty. For instance, sea surface temperature (SST), with

new peculiarities, is a key factor that affects the fish futures market; see L. Little et

al. [3]. A regime-switching SST model that includes spatial and temporal variables

could be proposed, and the HOHMM-filtering recursions for parameter estimation

could be derived. Furthermore, co-integration between SST and fish futures prices

could be examined to offer risk managers with possible toolkits in dealing with the

problem of estimating the optimal fish-farm harvesting time, and in engineering ap-

propriate hedging strategies.
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Appendix A

Derivations of the model’s optimal
parameter estimates in chapter 2

A.1 Optimal estimate for δ

Define a new measure Pυ̂∗ via

dPυ̂∗

dPυ∗

∣∣∣∣∣∣
Xk

= Ψδ
k =

k∏
l=1

ϕδl .

where

ϕδl =

exp
(
− 1

2ε2(yl−1)

(
Xl − δ̂ (yl−1) Xl−1 − η (yl−1)

)2
)

exp
(
− 1

2ε2(yl−1) (Xl − δ (yl−1) Xl−1 − η (yl−1))2
) .

Therefore, the log likelihood for Ψ̃δ
k is

log Ψδ
k =

k∑
l=1

(
−
δ̂2 (yl−1) X2

l−1 − 2Xl̂δ (yl−1) Xl−1 + 2η (yl−1) δ̂ (yl−1) Xl−1

2ε2 (yl−1)
+ R (δ (yl−1))

)

=

k∑
l=1

 n∑
i=1

〈yl−1, ei〉

(
−
δ̂2

i X2
l−1 − 2Xl̂δiXl−1 + 2ηîδiXl−1

2ε2
i

+ R(δi)
).

Since R(δi) does not contain δ̂i, such remainder has no affect on the result of the derivation.

From equations (2.19) and (2.20), and considering Ûl = E(Ul|Xk), we have

L(δ̂i) =

N∑
i=1

E
[
−

1
2ε2

i

(̂
δ2

i T
i

k

(
X2

k−1

)
− 2̂δiT

i
k (Xk−1, Xk) + 2ηîδiT

i
k (Xk−1)

) ∣∣∣∣∣Xk

]
+ R (δi)

=

N∑
i=1

−
1

2ε2
i

(̂
δ2

i T
i

k

(
X2

k−1

)
− 2̂δiT

i
k (Xk−1, Xk) + 2ηîδiT

i
k (Xk−1)

)
+ R (δi) .
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We differentiate L(̂δi) with respect to δ̂i and set the result to zero giving

δ̂i =
T̂ i

k (Xk−1, Xk) − ηiT̂ i
k (Xk−1)

T̂ i
k (X2

k−1)
.

A.2 Optimal estimate for η

Define a new measure Pυ̂∗ through
dPυ̂∗

dPυ∗

∣∣∣∣∣∣
Xk

= Ψ
η
k =

k∏
l=1

ϕ
η
l ,

where ϕηl =
exp

(
− 1

2ε2(yl−1)

(
Xl − δ (yl−1) Xl−1 − η̂ (yl−1)

)2
)

exp
(
− 1

2ε2(yl−1) (Xl − δ (yl−1) Xl−1 − η (yl−1))2
) leading to the log likelihood

log Ψ
η
k =

k∑
l=1

(
−
η̂2 (yl−1) − 2Xl̂η (yl−1) + 2̂η (yl−1) δ (yl−1) Xl−1

2ε2 (yl−1)
+ R (η (yl−1))

)
.

Invoking equations (2.19) and (2.20) and then taking expectation of the log likelihood in-

volving Xk, we obtain L(̂η) = E
[
log Ψ

η
k | Xk

]
with

E
[
log Ψ

η
k | Xk

]
=

k∑
l=1

E
 N∑

i=1

(
−
〈yl−1, ei〉

2ε2
i

(̂
η2

i − 2Xl̂ηi + 2̂ηiδiXl−1

))
+ R (ηi)

 ∣∣∣∣∣Xk

 .
Differentiation of L(̂η) and setting the result to 0, we get η̂i =

T̂ i
k (Xk) − δiT̂ i

k (Xk−1)

Ô i
k

.

A.3 Optimal estimate for ε2

Construct a new measure Pυ̂∗ by setting

dPυ̂∗

dPυ∗

∣∣∣∣∣∣
Xk

= Ψε2

k =

k∏
l=1

ϕε
2

l ,
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where ϕε
2

l =
ε(yl−1)exp

(
− 1

2̂ε2(yl−1) (Xl − δ (yl−1) Xl−1 − η (yl−1))2
)

ε̂(yl−1)exp
(
− 1

2ε2(yl−1) (Xl − δ (yl−1) Xl−1 − η (yl−1))2
) . The log likelihood of Ψε2

k

is calculated as

log Ψε2

k =

k∑
l=1

(
log

(
1

ε̂(yl−1)

)
+

(
−

1
2̂ε2(yl−1)

)
(Xl − δ (yl−1) Xl−1 − η (yl−1))2 + R (ε(yl−1))

)
,

where R
(
ε2

)
does not have ε̂. From equations (2.19)–(2.20), we have the expectation of the

log likelihood as a function of Xk, denoted by L(̂ε2), which is given by

E
[
log Ψε2

k | Xk

]
=

k∑
l=1

E
 N∑

i=1

〈yl−1, ei〉

(
log

(
1

ε̂(yl−1)

)
+

(
−

1
2̂ε2(yl−1)

)
(Xl − δ (yl−1) Xl−1 − η (yl−1))2

)
+ R (εi) .

Differentiating L(̂ε2) with respect to ε̂2 and equating the result to 0 yield

ε̂2
i =

T̂ i
k

(
X2

k

)
+ δ2

i T̂
i

k

(
X2

k

)
+ η2

i B̂
i
k + 2η2

i δiT̂ i
k (Xk−1) − 2δiT̂ i

k (Xk−1, Xk) − 2ηiT̂ i
k (Xk)

Ô t
k

.

A.4 Optimal estimate for π ji

Define the Radon-Nikodym derivative of Pυ̂∗ with respect to Pυ∗ as
dPυ̂∗

dPυ∗

∣∣∣∣∣∣
Xk

= Ψπ
k =

k∏
l=1

ϕπl ,

where ϕπl =

n∏
j,i=1

(
π̂ ji

π ji

)〈yl−1,ei〉〈yw
l ,e j〉

. Taking expectation of the log likelihood in conjunction

with equation (2.18), we have

E
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]
=E
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 ∣∣∣∣Xk


=E

 n∑
j,i=1

log π̂ jiJ
tsr

k

 + R
(
π ji

)
,
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where R
(
π ji

)
is free of π̂ ji. Noting

∑n
t=1 π̂ ji = 1 and introducing a Lagrange multiplier ς,

we maximise

L
(̂
π ji, ς

)
=

n∑
j,i=1

log π̂ jiJ
ji

k + ς

 n∑
j=1

π̂ ji − 1

 + R
(
π ji

)
.

Differentiation of L
(̂
π ji, ς

)
with respect to π̂ ji and ς and then setting each partial derivative

to 0 would result to

1
π̂ ji

Ĵ ji
k + ς = 0.

Since
∑n

j=1 π̂ ji = 1 and
∑n

j=1 J ji
k = O i

k, we have
n∑

j=1

π̂ ji =

∑n
j=1 Ĵ ji

k

−ς
=

O i
k

−ς
= 1, which can

be re-expressed as
n∑

j=1

π̂ ji =

∑n
j=1 Ĵ ji

k

Ô i
k

Therefore, the optimal estimate for p is given by

π̂ ji =
Ĵ ji

k

Ô i
k

.



Appendix B

Proofs of Propositions in chapter 2

B.1 Proof of Proposition 2.6.1

Proof The HDD futures price is calculated as the expected value of HDD over the contract

period given the current value at time t under the risk-neutral measure Q. Based on the

the Fubini-Tonelli theorem, expectation and integration can be interchanged. We firstly

perform the proof for the case of 0 ≤ t ≤ τ1 < τ2 as follows

FH (t, τ1, τ2) =EQ
[
H
∣∣∣∣Ft

]
=EQ

[∫ τ2

τ1

max (Tbase − Tv, 0) dv
∣∣∣∣Ft

]
=

∫ τ2

τ1

EQ
[
max (Tbase − Tv, 0)

∣∣∣∣Ft

]
dv.

To solve for the futures price, it is necessary to compute the value of EQ
[
max (Tbase − T, 0)

∣∣∣Ft

]
.

We suppose α(yt) is deterministic so that
∫ t

s
eαudBu in equation (2.7) is a Wiener process (cf

Benth and Šaltytė-Benth [2]). The integral
∫ t

s
eα(yu)udBQ

u in equation (2.42), when evaluated

using the optimal parameter estimates under the HMM settings, is then a Wiener process

that incorporates deterministic regime-switching with filtration extended to time t. Under

the normality assumption, Tbase−Tv is normally distributed with EQ
(
max (Tbase − T, 0)

∣∣∣Ft

)
=

M (t, v, Xt), and Var
(
max (Tbase − T, 0)

∣∣∣Ft

)
= A2 (t, v). Write M := M (t, v, Xt) and A2 :=
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A2 (t, v) . Let T ∗ =
Tbase − T − M

A2 , which has a standard normal distribution as well. Then

EQ
[
max (Tbase − T, 0)

∣∣∣∣Ft

]
=

∫ Tbase

−∞

− (Tbase − T )
1
√

2π
e−

(T−(Tbase−M))2

2A2 dT

=

∫ ∞

− M
A

(AT ∗ + M)
1
√

2πA
e−

(Tbase−AT∗−M−(Tbase−M))2

2A2 AdT ∗

=

∫ ∞

− M
A

M
1
√

2π
e−

(T∗)2

2 dT ∗ +

∫ ∞

− M
A

AT ∗
1
√

2π
e−

(T∗)2

2 dT ∗

=M

1 − ∫ − M
A

−∞

1
√

2π
e−

(T∗)2

2 dT ∗
 + A

− 1
√

2π
e−

(T∗)2

2

∣∣∣∣∣∣∣
∞

− M
A


=M

(
1 − Φ

(
−

M
A

))
+ A

1
√

2π
e−

( M
A )2

2

=MΦ

(M
A

)
+ Aφ

(M
A

)
.

Therefore, in terms of M(t, v, Xt), A2(t, v), and D (x) = xΦ (x)+φ (x), the HDD futures price

for the period 0 ≤ t ≤ τ1 < τ2 is given by

FH f (t, τ1, τ2) =

∫ τ2

τ1

M (t, v, Xt) Φ

(
M (t, v, Xt)

A (t, v)

)
+ A (t, v) φ

(
M (t, v, Xt)

A (t, v)

)
dv

=

∫ τ2

τ1

A (t, v)
(

M (t, v, Xt)
A (t, v)

Φ

(
M (t, v, Xt)

A (t, v)

)
+ φ

(
M (t, v, Xt)

A (t, v)

))
dv

=

∫ τ2

τ1

A (t, v) D
(

M (t, v, Xt)
A (t, v)

)
dv.

For the scenario 0 ≤ τ1 ≤ t < τ2, based on the result from the first case and the fact that if

Z is Ft-measurable, EQ(Z |Ft) = Z, we have

FH (t, τ1, τ2) =EQ

[∫ τ2

τ1

max (Tbase − Tv, 0) dv
∣∣∣∣Ft

]
=EQ

[∫ t

τ1

max (Tbase − Tv, 0) dv +

∫ τ2

t
max (Tbase − Tv, 0) dv

∣∣∣∣Ft

]
=

∫ t

τ1

max (Tbase − Tu, 0) du + EQ

[∫ τ2

t
max (Tbase − Tv, 0) dv

∣∣∣∣Ft

]
=

∫ t

τ1

max (Tbase − Tu, 0) du +

∫ τ2

t
A (t, v) D

(
M (t, v, Xt)

A (t, v)

)
dv.



191

B.2 Proof of Proposition 2.6.2

Proof Since FH is independent of Ft, its conditional expectation given Ft is equal to

EQ[FH]. Thus,

CFH (t,K, τT ) =e−r(T−t)EQ

[
max

(∫ τ2

τ1

A (t, v) D
(

M (t, v, Xt)
A (t, v)

)
dv − K, 0

) ∣∣∣∣Ft

]
=e−r(T−t)EQ

[
max

(
FH − K, 0

) ∣∣∣∣Ft

]
=e−r(T−t)EQ (

max
(
FH − K, 0

))
=e−r(T−t)

∫ Fm

K

(
FH − KF

)
g
(
FH

)
dFH .

B.3 Proof of Proposition 2.6.3

Proof It can be straightforwardly derived from the HDD formula and employing similar

arguments in the proof of Proposition 2.6.2.



Appendix C

Derivations of the model’s optimal
parameter estimates in chapter 3

C.1 Optimal estimate for κ

Write κ := (κ1, κ2, · · · , κN)> ∈ RN . To update the estimates κ̂ =
(̂
κ1, κ̂2, · · · , κ̂N

)>
∈ RN ,

define a new measure Pυ̂w
in accordance with equation (3.11) and via

dPυ̂w

dPυw

∣∣∣∣∣∣
Xk

= Ψwκ
k =

k∏
l=1

ϕwκ
l , where ϕwκ

l =

exp
(
− 1

2%2(yw
l−1)

(
Xl − ϑ

(
yw

l−1

)
− κ̂

(
yw

l−1

)
Xl−1

)2
)

exp
(
− 1

2%2(yw
l−1)

(
Xl − ϑ

(
yw

l−1

)
− κ

(
yw

l−1

)
Xl−1

)2
) . This means that

log Ψwκ
k =

k∑
l=1

[
−
κ̂2

(
yw

l−1

)
X2

l−1 − 2Xl̂κ
(
yw

l−1

)
Xl−1 + 2ϑ

(
yw

l−1

)
κ̂
(
yw

l−1

)
Xl−1

2%2
(
yw

l−1

) + R
(
κ
(
yw

l−1
)) ]
,

where R (κt) is independent of κ̂t. We consider the expectation of the log likelihood, i.e.,

L(̂κ) = E
(
log Ψwκ

k |Xk

)
. By virtue of (3.21),

E
[
log Ψwκ

k |Xk
]

=

k∑
l=1

E
 N∑

t=1

(
−
〈yw

l−1, et〉

2%2
t

(̂
κ2

t X2
l−1

− 2Xl̂κtXl−1 + 2ϑt̂κtXl−1
))

+ R (κt)
∣∣∣∣∣Xk

]
.

Differentiation of L(̂κ) with respect to κ̂ and setting the resulting expression to 0, we get the

optimal estimate of κ̂, given the observations Xk+1, as κ̂t =
Ĉt

k (Xk−1, Xk) − ϑtĈt
k (Xk−1)

Ĉt
k

(
X2

k−1

) .
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C.2 Optimal estimate for ϑ

Associated with the change from ϑ = (ϑ1, ϑ2, · · · , ϑN)> ∈ RN to ϑ̂ =
(
ϑ̂1, ϑ̂2, · · · , ϑ̂N

)>
∈

RN is a new measure Pυ̂w
, based on equation (3.11), via

dPυ̂w

dPυw

∣∣∣∣∣∣
Xk

= Ψwϑ
k =

k∏
l=1

ϕwϑ
l , where

ϕwϑ
l =

exp
(
− 1

2%2(yw
l−1)

(
Xl − ϑ̂

(
yw

l−1

)
− κ

(
yw

l−1

)
Xl−1

)2
)

exp
(
− 1

2%2(yw
l−1)

(
Xl − ϑ

(
yw

l−1

)
− κ

(
yw

l−1

)
Xl−1

)2
) . Thus,

log Ψwϑ
k =

k∑
l=1

(
−
ϑ̂2

(
yw

l−1

)
− 2Xlϑ̂

(
yw

l−1

)
+ 2ϑ̂

(
yw

l−1

)
κ
(
yw

l−1

)
Xl−1

2%2
(
yw

l−1

) + R
(
ϑ
(
yw

l−1
)) )

,

where R (ϑ) is a remainder not containing ϑ̂t. Applying equations (3.19) and (3.21), the

expectation of the log likelihood depending on Xk is L(ϑ̂) = E
(
log Ψwϑ

k |Xk

)
, where

E
[
log Ψwϑ

k |Xk

]
=

k∑
l=1

E
[( N∑

t=1

(
−
〈yw

l−1, et〉

2%2
t

(
ϑ̂2

t − 2Xlϑ̂t + 2ϑ̂tκtXl−1

) )
+ R (ϑt)

) ∣∣∣∣∣∣ Xk

]
.

We differentiate L(ϑ̂) with respect to ϑ̂ and equate the result to 0. The optimal estimate ϑ̂

may be be derived as ϑ̂t =
Ĉt

k (Xk) − κtĈt
k (Xk−1)

B̂t
k

.

C.3 Optimal estimate for %

Consider a transformation from % = (%1, %2, · · · , %N)> ∈ RN to %̂ =
(̂
%1, %̂2, · · · , %̂N

)>
∈ RN

using the Radon-Nikodym derivative in equation (3.11), i.e.,

dPυ̂w

dPυw

∣∣∣∣∣∣
Xk

= Ψ
w%
k =

k∏
l=1

ϕ
w%
l ,

where ϕw%
l =

%
(
yw

l−1

)
exp

(
− 1

2%̂2(yw
l−1)

(
Xl − ϑ

(
yw

l−1

)
− κ

(
yw

l−1

)
Xl−1

)2
)

%̂
(
yw

l−1

)
exp

(
− 1

2%2(yw
l−1)

(
Xl − ϑ

(
yw

l−1

)
− κ

(
yw

l−1

)
Xl−1

)2
) . So,

log Ψ
w%
k =

k∑
l=1

[
log

 1

%̂
(
yw

l−1

) +

− 1

2%̂2
(
yw

l−1

) (Xl − ϑ
(
yw

l−1
)
− κ

(
yw

l−1
)

Xl−1
)2

+ R
(
%
(
yw

l−1
)) ]
.
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where R (%t) does not include %̂t. By equations (3.19) and (3.21),

E
[
log Ψ

w%
k |Xk

]
=

k∑
l=1

E
 N∑

t=1

〈yw
l−1, et〉

(
log

 1

%̂
(
yw

l−1

)
+

− 1

2%̂2
(
yw

l−1

) (Xl − ϑ
(
yw

l−1
)
− κ

(
yw

l−1
)

Xl−1
)2

) + R (%t) .

We differentiate L(̂%) with respect to %̂ ignoring the remainder and equate the derivative to

0. The optimal estimate for parameter %̂ is given by

%̂2
t =

Ĉt
k

(
X2

k

)
+ B̂t

kϑ
2
t + κ2

t Ĉt
k

(
X2

k−1

)
+ 2Ĉt

k (Xk−1)ϑtκt

B̂t
k

− 2
Ĉt

k (Xk)ϑt + Ĉt
k (Xk−1, Xk) κt

B̂t
k

.

C.4 Optimal estimate for h

Consider a new measure Pυ̂w
defined in equation (3.31) via

dPυ̂w

dPυw

∣∣∣∣∣∣
Xk

= Ah
k ,

where Ah
k =

k∏
l=2

N∏
t,s,r=1

 ĥtsr

htsr

〈yw
l−2,er〉〈yw

l−1,es〉〈yw
l ,et〉

. By equation (3.18), the expectation of the

log-likelihood on Xk is

E
[
log Ah

k |Xk

]
= E

 k∑
l=2

N∑
t,s,r=1

log
 ĥtsr

htsr

〈yw
l−2,er〉〈yw

l−1,es〉〈yw
l ,et〉 ∣∣∣∣Xk

 ,
where R (htsr) is a remainder independent of ĥtsr. With the constraint

∑N
t=1 ĥtsr = 1, we

introduce the Lagrange multiplier ρ and obtain the function to maximise as

L
(̂
htsr, ρ

)
=

N∑
t,s,r=1

log ĥtsrAtsr
k + ρ

 N∑
t=1

ĥtsr − 1

 + R (htsr) .

Differentiating L
(̂
htsr, ρ

)
with respect to htsr and ρ and setting the derivatives to 0, we have

1

ĥtsr

Âtsr
k +ρ = 0. Since

∑N
t=1 ĥtsr = 1 and

∑N
t=1 Atsr

k = Bsr
k , we get

N∑
t=1

ĥtsr =

∑N
t=1 Âtsr

k

−ρ
=

Bsr
k

−ρ
=
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1, which can be rewritten as
N∑

t=1

ĥtsr =

∑N
t=1 Âtsr

k

B̂sr
k

. This means that the optimal estimate ĥtsr

is given by ĥtsr =
Âtsr

k

B̂sr
k

.
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Derivations of the model’s optimal
parameter estimates in chapter 4

D.1 Optimal estimate for κ

Define the Radon-Nikodym derivative of PÊ
w

with respect to PE
w

following equation (4.15)

as
dPÊ

w

dPEw

∣∣∣∣
Xk

= Ψwκ
k =

k∏
l=1

ϕwκ
l , where

ϕwκ
l =

exp
(
− 1

2%2(yw
l−1)

(
Xl − ϑ

(
yw

l−1

)
− κ̂

(
yw

l−1

)
Xl−1 − µβ(yw

l−1)qκ
(
yw

l−1

))2
)

exp
(
− 1

2%2(yw
l−1)

(
Xl − ϑ

(
yw

l−1

)
− κ

(
yw

l−1

)
Xl−1 − µβ(yw

l−1)qκ
(
yw

l−1

))2
) .

Thus,

log Ψwκ
k =

k∑
l=1

− κ̂2
(
yw

l−1

) (
X2

l−1 + 2µβ(yw
l−1)qXl−1 +

(
µβ(yw

l−1)q
))

2%2
(
yw

l−1

)
−

2̂κ
(
yw

l−1

) (
Xl−1 + µβ(yw

l−1)q
) (
ϑ
(
yw

l−1

)
− Xl

)
2%2

(
yw

l−1

) + R
(
κ
(
yw

l−1
))

=

k∑
l=1

( N∑
t=1

(
−
〈yw

l−1, et〉

2%2
t

(̂
κ2

(
X2

l−1 + 2µβqXl−1 +
(
µβq

))
+ 2̂κ

(
Xl−1 + µβq

)
(ϑ − Xl)

))
+ R (κt)

)
,
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where R (κt) is a remainder free of κ̂t. With equations (4.21) and (4.23), we consider the

expectation of the log likelihood, i.e., L(̂κ) = E
[
log Ψwκ

k |Xk

]
, where

E
[
log Ψwκ

k |Xk
]

=

k∑
l=1

E
[( N∑

t=1

(
−
〈yw

l−1, et〉

2%2
t

(̂
κ2

(
X2

l−1 + 2µβqXl−1 +
(
µβq

))
+ 2̂κ

(
Xl−1 + µβq

)
(ϑ − Xl)

))
+ R (κt)

)∣∣∣∣∣Xk

]
.

By differentiating L(̂κ) with respect to κ̂ and setting the result to 0, we get the optimal

estimate κ̂, which is

κ̂t =
Ĉ t

k (Xk−1, Xk) − ϑtĈ t
k (Xk−1) + µβtqĈ t

k (Xk) − ϑtqµβtB̂
t
k

Ĉ t
k

(
X2

k−1

)
+ 2µβtqĈ t

k (Xk−1) +
(
µβtq

)2
B̂t

k

.

D.2 Optimal estimate for ϑ

Define a new measure PÊ
w

based on equation (4.15). Consider the construction
dPÊ

w

dPEw

∣∣∣∣
Xk

=

Ψwϑ
k =

k∏
l=1

ϕwϑ
l , where

ϕwϑ
l =

exp
(
− 1

2%2(yw
l−1)

(
Xl − ϑ̂

(
yw

l−1

)
− κ

(
yw

l−1

)
Xl−1 − µβ(yw

l−1)qκ
(
yw

l−1

))2
)

exp
(
− 1

2%2(yw
l−1)

(
Xl − ϑ

(
yw

l−1

)
− κ

(
yw

l−1

)
Xl−1 − µβ(yw

l−1)qκ
(
yw

l−1

))2
) .

So,

log Ψwϑ
k =

k∑
l=1

 − ϑ̂2
(
yw

l−1

)
− 2Xlϑ̂

(
yw

l−1

)
+ 2κ

(
yw

l−1

)
ϑ̂
(
yw

l−1

) (
Xl−1 + µβ(yw

l−1)q
)

2%2
(
yw

l−1

)
+ R

(
ϑ
(
yw

l−1
)) 

=

k∑
l=1

 N∑
t=1

 − 〈yw
l−1, et〉

2%2
t

(
ϑ̂2 − 2Xlϑ̂ + 2κϑ̂

(
Xl−1 + µβq

))
+ R (ϑt)

,
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where R (ϑt) is a remainder that does not contain ϑ̂t.

On the basis of equations (4.21) and (4.23), the expectation of the log-likelihood depending

on Xk is L(ϑ̂) = E
[
log Ψwϑ

k |Xk

]
, where

E
[
log Ψwϑ

k |Xk

]
=

k∑
l=1

E
( N∑

t=1

(
−
〈yw

l−1, et〉

2%2
t

(
ϑ̂2 − 2Xlϑ̂

+ 2κϑ̂
(
Xl−1 + µβq

) ))
+ R (ϑt)

)∣∣∣∣∣Xk

.

Solving
∂L(ϑ̂)

∂ϑ̂
and equating the result to 0, we get the optimal estimate

ϑ̂t =
Ĉ t

k (Xk) − κtĈ t
k (Xk−1) − κtµβtqB̂t

k (Xk−1)

B̂t
k

.

D.3 Optimal estimate for %

Define a new measure PÊ
w
, using equation (4.15), by setting

dPÊ
w

dPEw

∣∣∣∣
Xk

= Ψ
w%
k =

k∏
l=1

ϕ
w%
l ,

where

ϕ
w%
l =

%
(
yw

l−1

)
exp

−
(
Xl−ϑ(yw

l−1)−κ(yw
l−1)Xl−1−µβ(yw

l−1)qκ(yw
l−1)

)2

2
(̂
%2(yw

l−1)+σ2
β(yw

l−1)
qκ2(yw

l−1)
)


%̂
(
yw

l−1

)
exp

−
(
Xl−ϑ(yw

l−1)−κ(yw
l−1)Xl−1−µβ(yw

l−1)qκ(yw
l−1)

)2

2
(
%2(yw

l−1)+σ2
β(yw

l−1)
qκ2(yw

l−1)
)


.
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From which, we have

log Ψ
w%
k =

k∑
l=1

 log

 1

%̂
(
yw

l−1

) + R
(
%
(
yw

l−1
))

−

(
Xl − ϑ

(
yw

l−1

)
− κ

(
yw

l−1

)
Xl−1 − µβ(yw

l−1)qκ
(
yw

l−1

))2

2
(̂
%2

(
yw

l−1

)
+ σ2

β(yw
l−1)qκ

2
(
yw

l−1

)) 
=

k∑
l=1

 N∑
t=1

(
〈yw

l−1, et〉

(
log

(
1
%̂

(
yw

l−1
))

−

(
Xl − ϑ

(
yw

l−1

)
− κ

(
yw

l−1

)
Xl−1 − µβ(yw

l−1)qκ
(
yw

l−1

))2

2
(̂
%2

(
yw

l−1

)
+ σ2

β(yw
l−1)qκ

2
(
yw

l−1

)) ))
+ R (%t)

,
where R (%t) is independent of %̂t. As per (4.21) and (4.23), we have

E
[
log Ψ

w%
k |Xk

]
=

k∑
l=1

E
( N∑

t=1

(
〈yw

l−1, et〉
(

log
(
1
%̂

(
yw

l−1
))

−
1

2
(̂
%2

(
yw

l−1

)
+ σ2

β(yw
l−1)qκ

2
(
yw

l−1

))
×

(
Xl − ϑ

(
yw

l−1
)
− κ

(
yw

l−1
)

Xl−1

− µβ(yw
l−1)qκ

(
yw

l−1
))2

)))∣∣∣∣∣Xk


+ R (%t) .

Equating to 0 the mathematical derivative (with respect to %̂) of L(̂%) = E
[
log Ψ

w%
k |Xk

]
,

our optimal estimate of %̂2 is

%̂2
t =

Ĉ t
k

(
X2

k

)
+ κ2

t Ĉ
t

k

(
X2

k−1

)
+ B̂t

k

(
ϑ2

t +
(
κtµβt p

)2
+ 2ϑtκtµβtq − σ

2
βt
κ2

t q
)

B̂t
k

+
Ĉ t

k (Xk−1)
(
2µβtqκ

2
t + 2ϑtκt

)
B̂t

k

−

(
2ϑt + 2κtµβt p

)
Ĉ t

k (Xk) + 2κtĈ t
k (Xk−1Xk)

B̂t
k

.
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D.4 Optimal estimate for µβ

Starting with equation (4.15), define a new measure PÊ
w

through
dPÊ

w

dPEw

∣∣∣∣
Xk

= Ψ
wµβ
k =

k∏
l=1

ϕ
wµβ
l , where

ϕ
wµβ
l =

exp
(
− 1

2%2(yw
l−1)

(
Xl − ϑ

(
yw

l−1

)
− κ

(
yw

l−1

)
Xl−1 − µ̂β(yw

l−1)qκ
(
yw

l−1

))2
)

exp
(
− 1

2%2(yw
l−1)

(
Xl − ϑ

(
yw

l−1

)
− κ

(
yw

l−1

)
Xl−1 − µβ(yw

l−1)qκ
(
yw

l−1

))2
) .

Thus,

log Ψ
wµβ
k =

k∑
l=1

(
−

(̂
µβ(yw

l−1)qκ
(
yw

l−1

)
− 2Xl + 2

(
κ
(
yw

l−1

)
+ ϑ

(
yw

l−1

)))
2%2

(
yw

l−1

)
×

(̂
µβ(yw

l−1)qκ
(
yw

l−1

))
+ R

(
µβ(yw

l−1)
) )

=

k∑
l=1

 N∑
t=1

(
−
〈yw

l−1, et〉

2%2
t

µ̂β(yw
l−1)qκ

(
yw

l−1

) (̂
µβ(yw

l−1)qκ
(
yw

l−1

)
− 2Xl

+ 2
(
κ
(
yw

l−1

)
+ ϑ

(
yw

l−1

)) )) + R
(
µβt

)
,

where R
(
µβt

)
does not contain µ̂βt . Again, by (4.21) and (4.23),

E
[
log Ψ

wµβ
k |Xk

]
=

k∑
l=1

E
( N∑

t=1

(
−
〈yw

l−1, et〉

2%2
t

µ̂β(yw
l−1)qκ

(
yw

l−1

)
̂µβ(yw

l−1)qκ
(
yw

l−1

)
− 2Xl + 2

(
κ
(
yw

l−1

)
+ ϑ

(
yw

l−1

)) ))∣∣∣∣∣Xk

 + R
(
µβt

)
.

Following the same optimisaiton procedure as above,

µ̂βt =
Ĉ t

k (Xk) − ϑtB̂t
k (Xk−1) − κtĈ t

k (Xk−1)

κtqB̂t
k (Xk−1)

.
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D.5 Optimal estimate for σβ

From equation (4.15), define a new measure PÊ
w

by setting
dPÊ

w

dPEw

∣∣∣∣
Xk

= Ψ
wσβ
k =

k∏
l=1

ϕ
wσβ
l ,

where

ϕ
wσβ
l =

σβ(yw
l−1) exp

−
(
Xl−ϑ(yw

l−1)−κ(yw
l−1)Xl−1−µβ(yw

l−1)qκ(yw
l−1)

)2

2
(
%2(yw

l−1)+σ̂2
β(yw

l−1)
qκ2(yw

l−1)
)


σ̂β(yw

l−1) exp

−
(
Xl−ϑ(yw

l−1)−κ(yw
l−1)Xl−1−µβ(yw

l−1)qκ(yw
l−1)

)2

2
(
%2(yw

l−1)+σ2
β(yw

l−1)
qκ2(yw

l−1)
)


.

This yields the log likelihood

log Ψ
wσβ
k =

k∑
l=1

 log
 1
σ̂β(yw

l−1)


−

(
Xl − ϑ

(
yw

l−1

)
− κ

(
yw

l−1

)
Xl−1 − µβ(yw

l−1)qκ
(
yw

l−1

))2

2
(
%2

(
yw

l−1

)
+ σ̂2

β(yw
l−1)qκ

2
(
yw

l−1

))
+ R

(
σβ(yw

l−1)

) 
=

k∑
l=1

N∑
t=1

〈yw
l−1, et〉

(
log

 1
σ̂β(yw

l−1)


−

(
Xl − ϑ

(
yw

l−1

)
− κ

(
yw

l−1

)
Xl − µβ(yw

l−1)qκ
(
yw

l−1

))2

2
(
%2

(
yw

l−1

)
+ σ̂2

β(yw
l−1)qκ

2
(
yw

l−1

)) )
+ R

(
σβt

)
,

where R (%t) does not depend on %̂t. Invoking equations (4.21) and (4.23),
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E
[
log Ψ

wσβ
k |Xk

]
=

k∑
l=1

E
( N∑

t=1

(
〈yw

l−1, et〉

 log
 1
σ̂β(yw

l−1)


−

1

2
(
%2

(
yw

l−1

)
+ σ̂2

β(yw
l−1)qκ

2
(
yw

l−1

))
×

(
Xl − ϑ

(
yw

l−1
)
− κ

(
yw

l−1
)

Xl − µβ(yw
l−1)qκ

(
yw

l−1
))2 )))∣∣∣∣∣Xk

 + R
(
σβt

)
=

N∑
t=1

log
(

1
σ̂β

)
−

 1

2
(
%2 + σ̂2

βqκ2
) (Xl − ϑ − κXl−1 − µβqκ

)2


+ R
(
σβt

)
.

The optimal estimate for σ̂2
β is

σ̂2
βt

=

Ĉ t
k

(
X2

k

)
+ κ2

t Ĉ
t

k

(
X2

k−1

)
+ B̂t

k

(
ϑ2

t +
(
κtµβtq

)2
)

B̂t
kκ

2
t q

+
B̂t

k

(
2ϑtκtµβtq − %

2
t

)
+ Ĉ t

k (Xk−1)
(
2µβtqκ

2
t + 2ϑtκt

)
B̂t

kκ
2
t q

−

(
2ϑt + 2κtµβtq

)
Ĉ t

k (Xk) + 2κtĈ t
k (Xk−1Xk)

B̂t
kκ

2
t q

.

D.6 Optimal estimate for ptsr

To define a new measure PÊ
w

described in equation (4.32), consider the Radon-Nikodym

derivative
dPÊ

w

dPEw

∣∣∣∣
Xk

= Λ
p
k , where

Λ
p
k =

k∏
l=2

N∏
t,s,r=1

(
p̂tsr

ptsr

)〈yw
l−2,er〉〈yw

l−1,es〉〈yw
l ,et〉

.
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With the aid of equation (4.20),

E
[
log Λ

p
k |Xk

]
= E

 k∑
l=2

N∑
t,s,r=1

log
(

p̂tsr

ptsr

)〈yw
l−2,er〉〈yw

l−1,es〉〈yw
l ,et〉 ∣∣∣∣Xk


= E


 k∑

l=2

N∑
t,s,r=1

(
log p̂tsr − log ptsr

)
〈yw
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l , et〉

 ∣∣∣∣Xk


= E

 N∑
t,s,r=1

log p̂tsrA
tsr

k

∣∣∣∣Xk

 + R (ptsr) ,

where R (ptsr) is a p̂tsr-free expression. With the constraint
∑N

t=1 p̂tsr = 1, we introduce the

Lagrange multiplier ρ and consider the function

L
(
p̂tsr, ρ

)
=

N∑
t,s,r=1

log p̂tsrA
tsr

k + ρ

 N∑
t=1

p̂tsr − 1

 + R (ptsr) .

Differentiating L
(
p̂tsr, ρ

)
with respect to ptsr and ρ, and then setting the resulting mathe-

matical derivatives to 0, we have

1
p̂tsr

Â tsr
k + ρ = 0.

Given that
∑N

t=1 p̂tsr = 1 and
∑N

t=1 A tsr
k = Bsr

k , we have
∑N

t=1 p̂tsr =
∑N

t=1 Â tsr
k

−ρ
=

Bsr
k
−ρ

= 1, and

consequently,
∑N

t=1 p̂tsr =
∑N

t=1 Â tsr
k

B̂sr
k

. Henceforth,

p̂tsr =
Â tsr

k

B̂sr
k

.



Appendix E

Derivation of the model’s optimal
parameter estimates in chapter 5

E.1 Optimal estimate for νh

Following the EM estimation given in Xi and Mamon [32], we define the Radon-Nikodym

derivative of PΘ̂w
with respect to PΘw

as
dPΘ̂w

dPΘw

∣∣∣∣
Fk

= Ψwνh

k =

k∏
l=1

ϕwνh

l , where

ϕwνh

l =

exp
(
− 1

2(σh)2(yw
l−1)

(
Gl − ν̂

h
(
yw

l−1

)
−Gl−1

)2
)
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(
− 1

2(σh)2(yw
l )

(
Gl − νh

(
yw

l−1

)
−Gl−1

)2
) .

Thus,

log Ψwνh

k =

k∑
l=1

ν̂h
(
yw

l−1

) (
2Gl − 2Gl−1 − ν̂

h
(
yw

l−1

))
2
(
σh

(
yw

l−1

))2 + R
(
νh (

yw
l−1

))
=

k∑
l=1

N∑
t=1

〈yw
l−1, et〉

2
(
σh

t

)2 ν̂
h (

yw
l−1

) (
2Gl − 2Gl−1 − ν̂

h (
yw

l−1
))

+ R
(
νh

t

) ,
where R

(
νh

t

)
is a ν̂h

t -free expression. With equations (5.20) and (5.22), we consider the

expectation of the log likelihood, i.e., L(ν̂h) = E
[
log Ψwνh

k | Fk

]
, where

E
[
log Ψwνh

k | Fk

]
=

k∑
l=1

E
[ N∑

t=1

〈yw
l−1, et〉

2σ2
t

ν̂h (
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) (

2Gl − 2Gl−1 − ν̂
h (

yw
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)) ∣∣∣∣∣Fk

]
+ R

(
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t

)
.
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By differentiating L(̂νh) with respect to ν̂h and setting the result to 0, we get

ν̂t
h

=
Ĉ t

k

B̂t
k

=
ζw

k

(
C t

k ( f h)η(yw
k , y

w
k−1)

)
ζw

k

(
Bt

kη(yw
k , y

w
k−1)

) .

E.2 Optimal estimate for σh

Define a new measure PΘ̂w
via

dPΘ̂w

dPΘw

∣∣∣∣
Fk

= Ψwσh

k =

k∏
l=1
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l , where
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)
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−
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2

) .
Consequently,
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k =

k∑
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(
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2
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(
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) + R
(
σh

t

)
,

where R
(
σh

t

)
is independent of σ̂h

t . From equations (5.20) and (5.22), we have

E
[
log Ψwσh
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]
=
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)
.

When the above expression is differentiated with respect to σ̂h and the resulting derivative
is set to 0, the optimal estimate is

σ̂h
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t ζ
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)
ζw

k

(
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kη(yw
k , y

w
k−1)

) 
1
2

.
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E.3 Optimal estimate for ptsr

To define a new measure PΘ̂w
, consider the Radon-Nikodym derivative

dPΘ̂w

dPΘw

∣∣∣∣
Fk

= Λ
p
k ,

where

Λ
p
k =

k∏
l=2

N∏
t,s,r=1

(
p̂tsr

ptsr

)〈yw
l−2,er〉〈yw

l−1,es〉〈yw
l ,et〉

.

By equation (5.19),

E
[
log Λ

p
k | Fk

]
= E

 k∑
l=2

N∑
t,s,r=1

log
(

p̂tsr

ptsr

)〈yw
l−2,er〉〈yw

l−1,es〉〈yw
l ,et〉 ∣∣∣∣Fk


= E


 k∑

l=2

N∑
t,s,r=1

(
log p̂tsr − log ptsr

)
〈yw

l−2, er〉〈yw
l−1, es〉〈yw

l , et〉

 ∣∣∣∣Fk

 = E

 N∑
t,s,r=1

log p̂tsrA
tsr

k

∣∣∣∣Fk

 + R (ptsr) ,

where R (ptsr) is a remainder free of p̂tsr. The constraint
∑N

t=1 p̂tsr = 1 is dealt with by

introducing a Lagrange multiplier % and the function

L
(
p̂tsr, %

)
=

N∑
t,s,r=1

log p̂tsrA
tsr

k + %

 N∑
t=1

p̂tsr − 1

 + R (ptsr) .

Differentiating L
(
p̂tsr, %

)
with respect to ptsr and %, and then setting the resulting mathe-

matical derivatives to 0, we obtain

1
p̂tsr

Â tsr
k + % = 0.

Noting that
∑N

t=1 p̂tsr = 1 and
∑N

t=1 A tsr
k = Bsr

k , we then have
∑N

t=1 p̂tsr =
∑N

t=1 Â tsr
k

−%
=

Bsr
k
−%

= 1.

Hence,

p̂tsr =
Â tsr

k

B̂sr
k

.



Appendix F

Derivation of the d-step ahead
forecasting formula in chapter 5

From equation (5.14), the conditional expectation of the new Markov chain η(yw
k+1, y

w
k ),

given information up to time k, is

E
[
η(yw

k+1, y
w
k ) | Fk

]
= Bη(yw

k , y
w
k−1) = Bqk. (F.1)

Since all non-zero entries in B are elements of P, equation (F.1) gives E
[
yw

k+1 | Fk

]
= Pqk.

The construction of P along with equation (5.15) leads to

E
[
η(yw

k+d, y
w
k+d−1) | Fk

]
= Bdqk, (F.2)

and from equation (F.2),

E
[
yw

k+d | Fk

]
= Pqk+d−1 = PBd−1qk. (F.3)

Employing Gh
k+d −Gh

k = log Fh
k+d

Fh
k

, and equations (5.10) and (F.3),

E
[
log

Fh
k+d

Fh
k

| Fk

]
=

〈
νh,E

[
yw

k+d | Fk

]〉
=

〈
νh,PBd−1qk

〉
. (F.4)

As per equation (5.10), log Fh
k+d

Fh
k

is characterised by a mixture of normal distributions having

the density function
∑N

j,i=1

〈
qk+d−1, e ji

〉
φ
(
G; νh

j , σ
h
j

)
. The 1-step ahead forecasts for Fh

k+1 is

then

E
[
Fh

k+1 | Fk

]
= Fh

k

N∑
j,i=1

〈qk, e ji〉 exp

νh
j +

(
σh

j

)2

2

 . (F.5)
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For d = 2, assume that Fh
k+1 = E

[
Fh

k+1 | Fk

]
. Thus,

E
[
Fh

k+2 | Fk

]
= Fh

k

2∏
l=1

N∑
j,i=1

〈Bl−1qk, e ji〉 exp

νh
j +

(
σh

j

)2

2

 . (F.6)

The d-step ahead forecasts for Fh
k+d can be obtained straightforwardly through

E
[
Fh

k+d | Fk

]
= Fh

k

d∏
l=1

N∑
j,i=1

〈Bl−1qk, e ji〉 exp

νh
j +

(
σh

j

)2

2

 (F.7)

by the principle of mathematical induction.
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