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Abstract 

We live in a rich visual world, surrounded by many different kinds of objects. While we 

may not often reflect on it, our ability to recognize what an object is, detect whether an 

object is familiar or novel, and bring to mind our general knowledge about an object, are 

all essential components of adaptive behavior. In this dissertation, I investigate the neural 

basis of object representations, focusing on medial temporal lobe (MTL) structures, 

namely, perirhinal cortex, parahippocampal cortex, and hippocampus. I use what type of 

thing an object is, or more specifically, the broader category (e.g., “face” or “house”) or 

domain (e.g., “animate or “inanimate”) to which an object belongs to probe MTL 

structures. In the Chapter 2, I used fMRI to explore whether object representations in 

MTL structures were organized by animacy, and/or real-world size. I found domain-level 

organization in all three MTL structures, with a distinct pattern of domain organization in 

each structure. In Chapter 3, I examined whether recognition-memory signals for objects 

were organized by category and domain in the same MTL structures. I found no evidence 

of category or domain specificity in recognition memory-signals, but did reveal a 

distinction between novel and familiar object representations across all categories. 

Finally, in Chapter 4, I used a neuropsychological approach to discover a unique 

contribution of the hippocampus to object concepts. I found that an individual with 

developmental amnesia had normal intrinsic feature knowledge, but less extrinsic, or 

associative feature knowledge of concepts This decreased extrinsic feature knowledge led 

to abnormalities specific to non-living object concepts. These results show that the 

hippocampus may play an important role in the development of object concepts, 

potentially through the same relational binding mechanism that links objects and context 

in episodic memory. Taken together, these findings suggest that using object category or 

domain to probe the function of MTL structures is a useful approach for gaining a deeper 

understanding of the similarities and differences between MTL structures, and how they 

contribute more broadly to our perception and memory of the world.  
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Chapter 1  

1 Introduction 

We live in a rich visual world, surrounded by many kinds of objects. While we may not 

often reflect on it, our ability to recognize what an object is, detect whether an object is 

familiar or novel, and bring to mind our general knowledge about an object, are essential 

components of adaptive behavior. Ultimately, these abilities guide how we interact with 

objects in our world. Our perception and interaction with objects is guided by what type 

of thing an object is, or more specifically, the broader category (e.g., “face” or “house”) 

or domain (e.g., “animate” like a face, or “inanimate” like a house) to which that object 

belongs. For example, imagine you are at the local park to meet your friends for a picnic. 

You are surrounded by many types of objects, including animate objects (dogs, people), 

small inanimate objects (your friend’s guitar, silverware for the picnic), and large 

inanimate objects (trees, park benches). When encountering an animate object, you may 

want to know if it is moving towards you or away from you, or whether it appears hostile 

and friendly, whereas with a small inanimate object you might want to pick it up, and use 

it to make music, or eat lunch. This is quite different from a large inanimate object, such 

as a tree, which you might use as a landmark to meet your friends for the picnic. 

Interestingly, not only do object category and domain appear to guide our perception and 

behavior, but they are also reflected in our neural organization. One of the most striking 

examples is that brain damage can cause category or domain specific deficits (for a 

review see Capitani et al., 2003). Additionally, measuring activity in the healthy brain 

while participants view objects has revealed category and domain level organization 

across the ventral visual stream (VVS), a neural pathway involved in object processing 

running from occipital cortex through ventral to anterior lateral and medial temporal 

cortex (Mishkin & Ungerleider, 1982; Mishkin et al., 1983; Goodale & Milner, 1992; 

Goodale et al., 2008; Kravitz et al., 2013). Within the VVS, there are contiguous regions 

that show more activity for objects from a certain category than objects from other 

categories. Perhaps most well-known is the fusiform face area (FFA), a region on the 

right fusiform gyrus that shows higher neural activity for faces than for other object 

categories (Kanwisher et al., 1997), but similar regions have been reported for scenes 
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(parahippocampal place area, Epstein et al., 1999), body parts (extrastriate body area, 

Downing et al., 2001), and words (visual word form area, McCandliss et al., 2003). 

Further, these category preferring regions are not randomly strewn throughout the ventral 

visual stream, but fall within a broader functional organization by domain. For example, 

the FFA falls within a larger zone of lateral cortex that shows more activity for animate 

objects than inanimate objects, whereas the PPA falls within a medial zone that prefers 

inanimate objects (for a review see Grill-Spector & Weiner, 2014). More recently, 

Konkle et al. (2013, 2012) have shown that this medial inanimate preference zone is for 

objects whose real-world size is large, and there is a separate zone located more 

dorsolaterally that shows a preference for small inanimate objects. This distinction by 

real-world size is not present in the animate domain, leaving this organizational principle 

to be referred to as the “tripartite distinction”. In addition to finding continuous regions of 

cortex that show more activation on average for one category or domain over another, 

similar category and domain level organization is observed when taking a less 

anatomically specific approach than looking for continuous preference zones, and 

examining the representational space of object-evoked responses across the VVS. 

Specifically, patterns of activity across the VVS are more densely clustered, or more 

similar to each other for certain categories of objects (e.g., faces), and category clustering 

is embedded within a broader domain organization, where animate objects are 

represented more similarly to each other than to inanimate objects, and vice versa 

(Kriegeskorte et al., 2008; Proklova et al., 2016). Real-world size also appears to matter 

in representational space, with large inanimate objects evoking more similar patterns of 

activity to each other than to small inanimate objects and vice versa (Julien et al., 2016).  

Research on category and domain specificity in the VVS has focused on the more 

posterior and lateral portions of the temporal lobe, and typically has not included the full 

extent of the medial temporal lobe (MTL). MTL structures include perirhinal cortex 

(PrC), parahippocampal cortex (PhC), entorhinal cortex (EC), and the hippocampus 

(HpC). It should be noted that some studies have included a portion of the PhC, given the 

anterior aspect of the PPA is often functionally localized to both the lingual gyrus and the 

posterior portion of PhC. However, PhC in its entirety as defined anatomically has not 

been included in these studies. This lack of inclusion of the MTL in the vision literature 
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is likely due to the fact that a prominent view has held that MTL structures are part of a 

system dedicated to declarative memory, and distinct from the VVS (Squire et al., 1991). 

However, evidence primarily from studies focused on the PrC has challenged this view. 

Specifically, evidence suggests that PrC is crucial for recognition memory of objects as 

well as fine-grained object perception (Murray and Bussey, 1999; Bussey et al., 2007). 

According to one theory, the representational hierarchical theory (R-H theory), PrC is 

crucial for both object memory and object perception because it represents the 

convergence of low-level visual features into holistic object representations (Murray and 

Richmond, 2001; Barense et al., 2012; Erez et al., 2015; for a review see Cowell et al., 

2010).  

The view that PrC is the apex of object processing in the VVS can also be seen in 

memory focused theories of the MTL. For example, according to the Binding of Items in 

Context model, or BIC model of episodic memory, PrC sends object information to the 

hippocampus where it is bound to context information to form an episodic memory 

(Eichenbaum et al., 2007; Diana et al., 2007 Davachi, 2006). In the BIC model, PhC 

represents context information, including spatial scene context. This notion aligns with 

work from the vision literature showing that the more posterior portion of PhC is often 

functionally localized by scenes (Epstein & Kanwisher, 1998). However, the picture 

becomes more complicated when considering that posterior PhC also shows a preference 

for buildings and other large objects (Aguirre et al., 1998; Epstein & Kanwisher, 1998; 

Bar & Aminoff, 2003; Mullally & Maguire, 2011; Konkle & Oliva, 2012; Troiani et al., 

2012; Magri et al., 2016). Further, Martin et al. (2013, 2016) has shown category-specific 

recognition memory signals for objects in PhC. Thus, it remains an open question as to 

whether PrC is involved in object processing in a domain-general manner, or whether 

both PrC and PhC contribute to object processing, but differ by the category or domains 

to which they are sensitive. The HpC is generally not considered as being involved in 

object processing, or to show category or domain level organization, but this has not been 

thoroughly tested. Specifically, the HpC is thought to receive both object and spatial 

context information, and bind that information together, resulting in representations that 

are a combination of objects from different categories and their spatial context - and are 
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therefore category and domain general (for a review on the BIC model see Eichenbaum et 

al., 2007). 

In the current dissertation, I used object domain as a tool to explore how MTL structures 

contribute to object perception, memory, and semantic knowledge of objects. To 

investigate these questions, I used two approaches, fMRI in healthy adults, and 

behavioral testing in individuals with selective damage to MTL structures. Specifically, 

in Chapter 2, I explore how object representations are organized by category and domain 

across MTL structures using fMRI. In Chapter 3, I interrogate the same fMRI data to ask 

whether object recognition-memory signals themselves are organized by category or 

domain in MTL structures, and whether memory is coded by average changes in signal, 

or by pattern based changes in representation. In Chapter 4, I explore a unique way that 

one MTL structure, the HpC, may contribute to object knowledge specific to the 

nonliving domain.  

To motivate the following chapters, in the remainder of the Introduction I first provide a 

brief overview of the evidence for category and domain specific neural organization in 

three parts: 1) category and domain specific deficits in neuropsychological research; 2) 

fMRI evidence for category and domain specific VVS organization in anatomical space; 

and 3) fMRI evidence for category and domain specific VVS organization in 

representational space. I then briefly cover R-H theory because it provides motivation for 

viewing MTL regions as a continuous part of the VVS, and therefore for exploring 

organization in a similar manner. Additionally, I introduce how R-H theory models of 

PrC motivated us to investigate whether memory signaling in this region was category or 

domain specific. I then provide a brief overview of the BIC model, which further 

motivated exploring content differences across MTL structures, and whose HpC model 

formed the basis for our investigation of how the HpC might contribute to semantic 

knowledge of objects. I then discuss current fMRI work on content differences, in 

particular category specificity, across different MTL structures. Finally, I provide a brief 

overview of feature-based models of object concepts, and how they differ by domain.  
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1.1 Category and domain specific deficits in 
neuropsychological research 

One well-known type of category-specific impairment is prosopagnosia, or “face 

blindness”, which is a neurological disorder in which individuals are impaired 

specifically at recognizing faces. Prosopagnosia can be acute (acquired) or congenital 

(Behrmann & Avidal, 2005). This disorder generally occurs when there is damage to the 

fusiform face area (Gruter et al., 2008), or to connections from the FFA to other brain 

areas (Thomas et al., 2009). Selective impairments have also been reported for 

knowledge of tools (see Johnson-Fray, 2004 for a review). While to our knowledge there 

are no cases of specific impairments for buildings, cases of landmark agnosia have been 

reported, in which individuals can no longer recognize or orient themselves in their 

environment by familiar landmarks, generally after damage to the PPA (Takahashi et al., 

2002; Claessen et al., 2017). Overall, these results suggest that there is some category 

specificity in the neural organization of object knowledge, at least for some categories.  

At the broader domain level, a number of studies have described individuals with domain 

specific deficits in object knowledge due to focal brain damage (for a review see Capitani 

et al., 2003). The earliest report of disproportionate impairments in certain categories of 

knowledge over others were those by Warrington, Shallice, and McCarthy (1984). They 

reported 4 patients who had made a partial recovery from herpes encephalitis, all of 

whom showed extensive bilateral temporal damage on CT scans. Interestingly, each 

patient showed significantly more impairment for knowledge of living things and foods 

than for nonliving objects. These impairments occurred in both the verbal and visual 

domain. This pattern of more severe impairment for living objects relative to inanimate 

holds in the majority of cases. Capitani et al., (2003) reviewed 79 published case studies 

of category specific deficits, and found 61 cases with individuals who had a 

disproportionate impairment for biological categories relative to artefacts, and 18 

showing a disproportionate impairment for artefacts. Further, they argue that patterns of 

category selective impairment can be fractionated into animate objects, inanimate 

biological objects (fruits and vegetables), and artefacts. While there are some cases of 

more highly specific category impairments, most commonly the impairment covers a 
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broader domain, with an obvious distinction between living things and artefacts. What 

about evidence for a distinction between large and small inanimate objects? This is 

somewhat less clear in the current literature, as usually objects used in testing are smaller 

(tools) so these dimensions have not been thoroughly pit against each other in the 

neuropsychology literature.  

  

1.2 Category and domain organization: Anatomical 
space 

 

One of the most well-known examples of category-specific neural organization was the 

discovery of the fusiform face area (FFA). Kanwisher et al. (1997) showed participants 

images of faces as well as images of other object types, and found that a univariate 

contrast to evaluate whether any regions show higher average activity for faces revealed a 

contiguous region in the right fusiform gyrus appears fairly robustly across individuals. 

This finding has since been widely replicated, and has sparked a lively debate as to 

whether the FFA is a module dedicated to face processing (Grill-Spector et al, 2004; 

Grill-Spector et al., 2006; Gauthier et al., 1999, 2000). Importantly, it is possible to 

decode patterns of activity specific to other object categories within the FFA (Haxby, 

2001), suggesting that it may not be exclusively involved in processing faces. However, a 

region that prefers faces, even if not dedicated, does suggest some category-level 

functional organization of visual cortex. Additionally, a number of other regions have 

been found in occipital and temporal cortex that show differential increase in activity for 

specific categories, including, for example, for scenes, places, and buildings 

(parahippocampal place area, PPA) (Epstein & Kanwisher, 1998; Epstein et al., 1999), 

for bodies (extrastriate body area) (Downing et al., 2001), and for tools (Chao et al., 

1999). 

 

Interestingly, regions with preferential responses to specific categories are not organized 

randomly in their spatial relationships. Instead, they fall within broader functional zones, 

where inanimate objects more strongly activate a large swath of cortex medial to the mid 
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fusiform sulcus, and animate objects more strongly activate the area lateral to the sulcus 

(for a review see Grill-Spector and Weiner, 2014). In other words, the FFA and EBA are 

embedded within a larger animacy zone, and the PPA within a larger inanimate zone. 

More recently, fMRI based work by Konkle et al. (2012, 2013) has shown that this 

inanimate medial zone is specialized for inanimate objects whose real-world size is large, 

whereas there is a separate zone located more dorsal and lateral to the animate zone that 

prefers objects whose real-world size is small (including a tool-preferring region). There 

is no evidence for an equivalent divide in zones by real-world size for animate objects, 

leaving this organization schema to be referred to as “tripartite” (Konkle et al., 2013). 

Importantly, these domain preference zones can be identified in a variety of tasks, 

whether it be passive viewing of images, low level perceptual tasks, or object 

categorization, but the majority of work in this area has used fairly low-level perceptual 

tasks to ensure subjects are paying attention. Some work has shown that task might 

impact the involvement of more posterior or anterior VVS regions, for example, Taylor et 

al. (2012) show more posterior areas are involved in naming object domain, whereas 

naming a specific object engages more anterior areas. It is an open question therefore, as 

to whether anterior areas such as the MTL which may be more involved in processing 

individual objects, still show category and domain organization.  

 

Figure 1.1: Category and domain level anatomical organization in the ventral visual 

stream (Grill-Spector & Weiner, 2014). 
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1.3 Category and domain organization: 
Representational space 

Evidence from univariate analyses, as described above, has shown contiguous regions in 

the VVS that show more activity for certain categories or domains of objects. In this 

approach, activity is averaged across voxels for each category or domain, and then 

average activity levels are contrasted between categories or domains, and thresholded by 

looking for continuous clusters of voxels that show a similar response. Both category and 

domain level organization of visual cortex can also be seen using a quite different 

analysis approach, representational similarity analysis (RSA; for a review see 

Kriegeskorte et al., 2008b). In RSA, brain activity is measured by assessing how fine-

grained patterns of activity evoked by different objects relate to one another. RSA, 

therefore, does not require that voxels in the same areas across subjects show the same 

response patterns, as stimuli are now compared in “representational space”, where a 

“representation” is defined by the pattern of activity evoked across voxels in a given 

region in response to a distinct stimuli. For example, Kriegeskorte et al. (2008a) showed 

participants a large number of objects spanning a number of categories and domains, 

while participants performed a low-level visual task (press a button when the fixation 

cross appears red). Patterns of activity evoked across the entire VVS for each object were 

compared to the patterns of activity evoked for each of the other objects using a 

dissimilarity measurement (1-Pearson’s correlation), and were then plotted in a 

representational dissimilarity matrix (RDM) (see fig. 3). From this data driven approach 

one can see both category and domain level organization of object evoked responses. For 

example, there is a dark blue square indicating the responses for face stimuli compared to 

other face stimuli are more highly similar to each other than they are to other object 

categories. Perhaps even more striking is the domain level organization across all stimuli, 

in which animate objects are more similar to each other than they are to inanimate 

objects, and vice versa. Interestingly, a similar representational space can be revealed in 

nonhuman primates when comparing patterns of activity in neural firing across visual 

cortex during viewing of the same stimuli (Kriegeskorte et al., 2008a).  
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Using a similar RSA approach, a recent study showed that real-world size is an 

organizing principle across representational space in visual cortex (Julien et al., 2016). 

Participants were scanned while they viewed inanimate objects from 20 different 

categories, whose real world size was large or small (while retinal size was controlled 

for). They were instructed to memorize each object to ensure that they paid careful 

attention. Patterns of activity evoked by large objects were more similar to other large 

objects than they were to small objects and vice versa, when evaluated across a large 

region spanning temporo-parietal-occipital cortex, similar to the large cortical volume 

examined by Kriegeskorte et al. (2008). This pattern of organization was also apparent 

when evaluating representations in smaller functionally defined regions known to show 

average increased activity for scenes or large objects (PPA, retrosplenial cortex, occipital 

place area), as well as object responsive regions that do not show increased average 

activity for large objects (lateral occipital cortex, posterior fusiform gyrus), but this 

organization was not present in early visual cortex.  

 

Figure 1.2: Category and domain level organization of representational space in the 

ventral visual stream (Kriegkeskorte et al., 2008). 
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1.4 Representational-Hierarchical theory 

Research on category and domain-level functional organization of object evoked 

responses in the brain has centered on the occipital lobe, and on the posterior and lateral 

temporal lobe, generally leaving out the anterior medial temporal lobe, which includes 

PhC, PrC, EC, and the HpC. The posterior portion of PhC is sometimes included in these 

studies because the anterior portion of the PPA is localized here. However, the entire 

structure defined anatomically, as well as the PrC, EC and HpC, are typically not 

examined. Some of the reasons for this might be historical, as MTL structures were 

generally considered to be part of a dedicated declarative memory system (Squire et al., 

1991), and therefore outside of the purview of object recognition. Indeed, category and 

domain organization has been mostly studied in passive viewing paradigms or during 

low-level perceptual tasks. However, at least one theory, the representational-hierarchical 

theory (R-H theory) has challenged the view that MTL structures should be considered as 

dedicated to memory, and argued for the inclusion of these structures as an extension of 

the VVS (Murray & Bussey, 1999; Murray & Richmond, 2001; Saksida & Bussey, 2010; 

Cowell et al., 2010). The R-H theory has guided this research by motivating us to extend 

category and domain specific mapping to MTL structures, and to ask questions about 

links between memory signaling and representational content. The central tenet of R-H 

theory is that, in general, there are no brain regions dedicated to one specific 

psychologically defined process, such as memory or perception. Instead, functional 

differences between brain regions are better characterized by their representational 

content, or the form of information they carry. This content may be used in different 

processes, e.g., perception or memory. In what follows, I will describe evidence for the 

R-H view of MTL structures.  
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According to R-H theory, the key difference across VVS regions, from early visual 

cortex through HpC, is that representations become more highly conjunctive as you move 

along the posterior to anterior axis of occipital and ventral temporal cortex. Therefore, 

brain damage to a particular region should disrupt performance on any task for which 

representations at that level of complexity and specificity are required. For example, in 

pairwise visual discrimination tasks of objects, PrC lesions in non-human primates and 

rodents do not impair performance when the objects can be discriminated by a single 

low-level feature, but impair performance when feature conjunctions must be used (i.e., 

when feature ambiguity is high, or individual features are highly overlapping) (Buckley 

and Gaffan, 1998; Bussey et al., 2002, 2003; Bartko et al., 2007). The same pattern is 

seen in the HpC, for even more highly conjunctive content than single objects, for 

example, in the discrimination of complex scenes with spatial object conjunctions (Lee et 

al., 2006; 2012). Overall, a role of the MTL in visual perception has been reported in 

rodents, non-human primates, and humans, using a variety of methodologies, providing 

strong evidence for a causal role of MTL structures in perception, as opposed to just 

memory, although there is still an avid debate (for reviews see, Graham et al., 2010; 

Saksida and Bussey, 2010; Murray et al., 2007; but see Squire & Zola-Morgan, 1991; 

Squire et al., 2004; Suzuki et al., 2004, Suzuki, 2009a, 2009b).  

Research guided by the R-H view has also accounted for patterns of memory impairment 

in cases of MTL damage. One powerful approach has been to test predictions derived 

from computational models based solely on a network organized by conjunctive 

representations. Cowell et al. (2006) created a connectionist model in which inputs were 

object features, and a lower layer represented caudal, or more posterior VVS areas with 

feature-based representations, and an upper layer corresponding the PrC, which 

represented the conjunctions of those features (whole objects). When the PrC layer of the 

model was lesioned, susceptibility to interference was increased, as there was no way to 

disambiguate objects with overlapping features relying solely on the caudal layer. The 

same susceptibility to interference was shown in rats with PrC lesions (Bartko et al., 

2010, but see Clark et al., 2011), and humans with amnesia (Barense et al., 2012, but see 

Kim et al., 2011; Suzuki, 2009). Similarly, increased impairments in object recognition 

memory are seen with delays, as a result of feature interference from stimuli encountered 
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during the delay period. This feature interference from stimuli is thought to be akin to 

real-life situations, during which there is almost always a continuous stream of visual 

information incoming. This computational evidence provides an explanation for delay-

dependent impairments on discrimination tasks in human and non-human animals 

(Meunier et al., 1993; Mumby and Pinel, 1994). This model also generated a new 

prediction - which impairment in amnesia should actually be due to detecting novel 

stimuli as familiar, because without high-level conjunctive representations, the high 

amount of feature overlap in novel stimuli should lead to familiarity signals. McTighe et 

al. (2010) tested this prediction by familiarizing rodents with an object during a study 

period, and then by putting rodents in a dark cage (no visual interference), or a regular 

cage (visual interference) for a delay period. Rodents were tested to determine how they 

explored novel or familiar stimuli (rodents spend more time exploring novel stimuli 

naturally). Rodents in the visual interference condition treated novel stimuli as familiar, 

but this pattern of results was not present in the group with no visual interference. These 

results suggest that delay-dependent memory impairments can be accounted for by 

considering representations in PrC alone. Without high-level object representations, there 

is a high amount of feature interference, which causes novel objects to appear familiar. 

Importantly, this changes the mainstream conception of amnesia, as an inability to 

recognize things as familiar, to a discrimination problem where everything feels familiar.  

These findings provide strong evidence for R-H theory, and have motivated consideration 

of MTL structures as a part of the VVS in the current thesis. If one considers MTL 

structures to be a part of the VVS, it is therefore important to explore the organization of 

object representations in these regions along the same category and domain lines that 

have previously been explored in more posterior and lateral VVS regions. Further, 

computational R-H models provide a mechanism by which representations in these 

regions can lead to memory signals, thereby directly motivating our analyses in Chapter 

3, where we asked if memory signals were organized by category and domain. 

Specifically, connectionist models represent objects with overlapping features more 

similarly, and recognition memory signals come directly from activation of these 

representations (Cowell et al., 2006). Finally, this view encourages “thinking out of the 

box” in terms of how MTL representations might contribute to any process that requires a 
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particular form of content, closely in line with our finding in the final chapter that HpC 

contributes to semantic memory (and not only episodic memory) through creating 

representations of items linked to contextual information.  

 

Figure 1.5. Representational-Hierarchical theory (Barense et al., 2012) 

 

 

1.5 Binding of items in context model 

While R-H theory has focused on an inclusion of MTL structures as an extension of the 

VVS, with an emphasis on content, characterizations of MTL structures with a focus on 

their contribution to long term memory share some overlap with R-H theory. In 

particular, the binding of items in context model, or BIC model, has focused on how 

MTL structures differ in their contributions to long term memory in terms of the types of 

information each structure contributes. Like the R-H model, the BIC model also places 

PrC at the apex of the VVS, containing high level object representations. Similar to much 

of the empirical work on object processing in PrC, the model treats PrC as being domain 

general, leaving an investigation of domain and category specificity unexamined. In 

terms of the PhC, the BIC model argues that this structure represents spatial context, a 

view that must be reconciled with its role in object specific processing, which work in our 
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lab and in the current dissertation addresses. Finally, the BIC model has focused on the 

role of the HpC as binding item and context information for the service of episodic 

memory, a role which we expand in the current thesis to domain specific object 

knowledge.  

The BIC model was proposed Eichenbaum et al. (2007), although a similar model 

(without the addition of functional differentiation between lateral and medial entorhinal 

cortex) was proposed by Davachi (2006). The model describes two pathways converging 

in the HpC, the VVS pathway that culminates in the PrC and lateral entorhinal cortex, 

which contains high-level item information, and a dorsal stream pathway that culminates 

in the PhC and medial entorhinal cortex containing context, including “where” 

information. Because both the lateral and medial entorhinal cortex provide input to the 

HpC, these two streams converge in the HpC. It is thought that a key function of the HpC 

is to bind this item and context information into a holistic representation – the basis for 

rich coherent episodic memory (Eichenbaum et al., 2007; Davachi, 2006; Diana et al., 

2007, first proposed by Mishkin, 1983). Importantly, the model includes the assumption 

that information flow is not purely hierarchical; there are projections from the 

hippocampus through the EC back to PrC and PhC, which have their own back 

projections to more posterior visual areas. It should be noted that emphases on the lateral 

and medial EC initially came from animal work, given EC is difficult to image in 

humans, although recent work has found initial evidence for a functional distinction in 

humans (Maass et al., 2015). According to this model, the functional role of back-

projections is to reinstate previously encountered information, providing the neural basis 

for episodic recollection. For example, a single cue, such as an object, can activate a 

previously stored HpC pattern, which can then cause reinstatement of an episode by 

reactivating the original object and context information in the ventral and dorsal visual 

stream. In what follows, I overview some evidence for the BIC model of MTL function, 

and then discuss some of the shortcomings of the model. Finally, I discuss this model in 

relation to the R-H model and the questions about MTL structures posed in this 

dissertation.  
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Evidence supporting the BIC model comes from fMRI, human MTL lesion studies, as 

well as non-human animal models. Some of the evidence arose from attempts to 

understand whether MTL regions contribute differentially to two subjective experiences 

of remembering, termed familiarity and recollection. Familiarity refers to the experience 

of feeling a sense of familiarity for an object or entity (a face you see on the bus), while 

recollection refers to recalling contextual information specific to your initial encounter 

with that object or entity (recalling that the person on the bus is a butcher, and a time you 

went to buy a pork-chop in the shop last week). Notably, the content of these two 

experiences differ, in the case of familiarity you have only an item or object, and in the 

case of recollection you re-experience an episode with that object/entity, but also 

contextual information (and often multiple other objects or entities). These two types of 

remembering involve different MTL regions, patients with selective HpC damage have 

more difficulty with recollection, but preserved item familiarity (Yonelinas et al., 2002; 

Aggleton et al., 2005), and a patient with PrC/EC damage and a preserved HpC showed 

abnormalities in familiarity but not recollection (Bowles et al., 2007), although it should 

be noted that the damage also included anterior lateral temporal cortex. Interestingly, 

while most evidence suggests a dichotomy between HpC and PrC, one patient with 

damage more posterior, in PhC, also showed more impairments in recollection than 

familiarity (Cipolotti et al., 2006). Similar dissociations are seen in non-human animals. 

For example, monkeys and rodents with PrC lesions can no longer perform delayed-non-

match-to-sample tasks in which they are required to identify which object is novel after a 

delay period, whereas those with damage restricted to the HpC still can (Nemanic et al., 

2004; Mumby, 2001). PhC and HpC do impair object recognition, but only when the 

novelty consists of putting the object in a new location or context (Eacott and Norman, 

2004; Mumby et al., 2002). Lastly, electrophysiology shows neurons in PrC are sensitive 

to changes in the amount of experience with an object, whereas HpC and PhC neurons do 

not show the same selectivity (but show stronger spatial coding) (for a review see Brown 

and Xiang, 1998).  

In terms of fMRI studies, there is also evidence to suggest that PrC is involved primarily 

in object/item processing, PhC context, and the HpC in the binding of items in content. 

The evidence is both rich and complex, and here I provide only a brief overview of some 
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examples. At encoding, HpC activity is higher for items that are later recollected, and is 

also higher during recollection (for review see Eichenbaum et al., 2007). PrC, on the 

other hand, has been shown to track familiarity at encoding, by showing more activity for 

items later associated with a stronger familiarity response (Ranganath et al., 2004), and 

has also shown decreased responding at retrieval that tracks the strength of subjective 

item familiarity (Yassa and Stark, 2008). This PrC BOLD pattern of response is similar to 

the pattern of responses in neurons recorded in monkey and rodent PrC. HpC activity has 

been found when participants remember whether two items were presented together 

(Kirwan et al., 2004; Jackson et al., 2004; Sperling et al., 2003), remembering the context 

an item was presented in (Davachi et al., 2003; Ranganath et al., 2004), or remembering 

the location an item was presented in (Staresina et al., 2006). A key difference seems to 

be whether the encoding of information is within the object, or associative by nature. For 

example, Diana et al. (2009) had subjects either encode color as part of an object “The 

elephant is red because it is sunburned” or external to the object “The elephant stopped at 

the light because it was red”. At retrieval, HpC and PhC activity correlated with recalling 

the associative encoding, whereas PrC activity correlated with successful retrieval only 

when the color was encoded as a feature of the object.  

Unlike the R-H model, the BIC model is framed specifically around explaining how MTL 

structure contribute to different types of memory. At first glance this focus on the 

division between PrC and HpC in terms of their contributions to recollection or 

familiarity may seem antithetical to an R-H view, given that the R-H view stresses that 

brain structures are not modules dedicated to processes. However, a link can be made 

when considering how the representations in PrC and HpC might differently contribute to 

the subjective states of recollection and familiarity. Specifically, representations of 

objects/entities in PrC contribute to familiarity, which is by definition based on a signal 

from an object or entity alone. On the other hand, associative or items-in-context 

representations in HpC necessarily contribute to recollection because it is defined by the 

experience of this type of information (see Graham et al., 2010; Cowell et al., 2010). 

Indeed, the idea that moving beyond process memory based distinctions to evaluating 

MTL structures based on content or representations can be clearly understood from the 

BIC model perspective. For example, Davachi (2006) concludes by emphasizing that 
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“Future work should focus on revealing the nature of representational capacities of 

the MTL cortical input structures” (Davachi, 2006, pg. 698).  

 

Figure 1.6. Binding of items-in-context (BIC) model (Eichenbaum et al., 2007).  

 

1.6 Object processing in the medial temporal lobes 

In light of characterizing MTL structures based on their differential content, a number of 

questions still remain, one of which pertains to PhC content. In the BIC model, PhC has 

been characterized as being involved in context (i.e., remembering a scene that is 

associated with a face), and spatial information more generally. One obvious challenge to 

this characterization of PhC is that in the vision literature the PPA (which partially covers 

posterior PhC) shows sensitivity to buildings and other large objects (Magri et al., under 

review). Martin et al. (2013, 2017) have shown recognition memory signals for objects 

from some categories in PhC, namely buildings, furniture, and trees. However, aside 

from this research, there have not been many other experiments exploring PhC object-

based content, particularly during object memory tasks. Therefore, it remains an open 
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question as to whether PrC represents most types of objects, or how object content is 

divided across regions. While some studies suggest interesting content differences (see 

next section), this has not been mapped out with a large number of object categories or by 

object domain.  

A number of studies have explored differences in content, or representations, in MTL 

structures. For the most part, these studies have used stimuli from a small number of 

categories shown to be prominent in VVS organization more posteriorly, such as faces or 

scenes, and generally treated objects as a single undifferentiated category. However, even 

with this small sample of stimuli types, interesting patterns of category selectivity emerge 

across structures. For example, Litman et al. (2010) had participants perform a 1-back on 

images of scenes, faces, and objects. They found that there was a shift in average activity 

from PhC to PrC along a posterior to anterior gradient, with the strongest responses to 

scenes present in the most posterior part of the parahippocampal gyrus, and objects and 

faces in more anterior regions. While there was a shift in preference, it is notable that 

both structures showed above baseline responses to all stimuli. Similarly, in a target 

detection task, Liang et al (2012) found increased responding for scenes in PhC and faces 

in PrC. Neither study found any stimuli type preference in HpC response.  

Multivariate analyses, exploring patterns of activity evoked in response to different 

stimuli types across MTL structures, have found somewhat similar results. Liang et al. 

(2012) decoded both scene and face stimuli from PhC and PrC, but decoding accuracy 

was higher for scenes in PhC than PrC. Similar results were found when participants 

viewed images and completed a low level perceptual task (indicating when a border came 

up on the image), or judged the image as pleasant or unpleasant. Decoding scenes from 

faces was highest in PhC, but objects versus faces could also be decoded above chance 

(Huffman and Stark, 2014). In PrC, the highest decoding accuracy was between faces and 

objects, but was also above chance between faces and scenes. Diana et al. (2008) used an 

expanded stimuli set in a 1-back task, which included scenes, faces, toys, objects, and 

abstract shapes. In PhC scenes were had the highest decoding accuracy, indicating the 

most distinct categorical responses relative to other object categories. However, it was 

also possible to distinguish faces and toys from other categories, which the authors 
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interpreted as evidence that PhC does not solely represent scene information. LaRocque 

et al. (2013) explored patterns of responses in MTL structures while participants 

performed a low-level perceptual task (i.e., to press a button when fixation changes 

colors) on objects from many different categories, scenes, and faces. They found distinct 

object representations in both PhC and PrC, scenes in PhC and faces in PrC. In the 

majority of these studies, the HpC showed no stimulus category selectivity, gaining it the 

title of being “agnostic” (Huffman and Stark, 2014), although in one study scene 

information was decoded in the posterior portion of hippocampus (Liang et al., 2012). 

This evidence supports the idea that the HpC is agnostic because it is a convergence zone 

for both object and spatial information. This information is thought to be bound together 

to form a distinct episode, that would be category and domain general because it is a 

unique conjunction of different kinds of information. Further, it is thought that a key 

function of the HpC is pattern separation, or the process of orthogonalizing 

representations to reduce interference in memory (for a review see Yassa & Stark, 2003), 

a process that would also reduce any shared category information between stimuli.  

While the studies outlined above have evaluated whether responses of MTL structures to 

stimuli are organized by category based on activity evoked while the stimuli are 

displayed and participants are performing a fairly low level task, to our knowledge only 

one set of studies has evaluated whether recognition memory signals in these regions 

(i.e., patterns of response to perceived novel or familiar stimuli) are categorical in nature, 

and whether this differs across structures. Specifically, Martin et al. (2013, 2017) asked 

for which categories it was possible to decode the distinction between perceived novel 

and familiar stimuli in each MTL structure. Importantly, in these studies any contribution 

of PhC due to context was removed by focusing exclusively on item-based familiarity 

responses. In PrC it was possible to decode memory signals for faces, furniture, and 

planes, and in PhC buildings, furniture and trees. The authors argue that a key dimension 

guiding PhC sensitivity to object category is navigational relevance, given that buildings, 

furniture, and trees are all stable and can be used for navigation, whereas planes, are 

highly mobile and therefore are less suited to navigation. In these studies it was not 

possible to decode category specific memory signals for any category in the 

hippocampus.  
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While these findings point to interesting differences and similarities in content 

representation between PhC and PrC, and a likely agnostic HpC, the small number of 

stimuli types used and/or a lack of differentiating object types makes it hard to 

understand more broadly what the differences are between structures. Further, the 

relation between category specificity in response to stimuli, or in memory coding, or 

both, is still unclear. Both of these gaps are addressed in Chapter 2 and Chapter 3 of this 

dissertation.  

 

1.7 Feature-based object concept models 

Thus far, we have considered the importance of object recognition (identifying an object) 

and object recognition memory (identifying an object as novel of familiar), and the neural 

organization of object responses by category and domain across VVS and MTL. 

However, we have yet to discuss how any such organization relates to stored concepts 

(i.e., object knowledge) derived from years of experience. Here I use the term “object 

concept” to refer to our semantic knowledge of an object. For example, our concept of a 

hammer includes what it looks like (wooden handle, metal head) but also what its 

function is, how we use it, and where we might find it. Indeed, thinking about what our 

knowledge of objects entails, and how that might drive brain organization, has a rich 

literature (Mahon & Caramazza, 2009; Martin et al., 2000; Martin et al., 2001; McRae & 

Cree, 2002). This literature can be used to derive hypotheses about how MTL structures 

contribute to object knowledge, and how it might differ by domain or category. Here, I 

cover only a slim portion of this vast literature, focusing on feature-based models of 

object concepts. First I cover how feature-based models have been used to explore the 

role of MTL structures, in particular PrC, in terms of how it represents objects, and how 

this is linked to object perception and memory. Second, while most attention to feature-

based object models in the MTL has been in using them to understand PrC function, we 

show that they can be expanded to explore a previously unknown contribution of the HpC 

to object processing. This motivated the study presented in Chapter 4, where we 

investigated whether the HpC is involved in conceptual representations, and whether this 

involvement differs by object domain.  
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According to feature-based models of object concepts, object concepts are composed of a 

number of features bound together. Characterizing objects based on the relations among 

their features is a useful approach for understanding how they relate to each other in 

terms of category and domain organization in both psychological and brain space. 

Specifically, one can build a model of how objects relate to each other in semantic space, 

in terms of how many features they share (Cree and McRae, 2003). Semantic space can 

be derived from normative studies in which participants are presented with a concrete 

concept and list as many features as they can think of that make up that concept. Models 

based on these features have been shown to reflect representational space in PrC when 

participants name visually presented objects (Clark & Tyler, 2014) and perform a 

property verification task on object words (specific to left PrC; Bruffaerts et al., 2013). 

Importantly, feature-based object models account for patterns of semantic impairments 

after brain damage, such as the observation that impairment in knowledge for living 

things occurs more often than impairments for nonliving things (Cree and McRae, 2003). 

This distinction between living and nonliving things can be captured by differences in 

feature statistics, in particular living things are more highly similar to each other in terms 

of semantic feature overlap (Taylor et al., 2012). Tyler et al. (2013) used a precise 

feature-based statistical measure, correlation by distinctiveness, to capture the challenge 

of differentiating similar objects, and showed that this measure modulates bold activity in 

left PrC during a picture naming task (Tyler et al., 2013). Overlap in semantic features 

has also been shown to be causally related to PrC function. Specifically, Kivisaari et al. 

(2012) examined the volume of PrC, EC, and HpC in individuals with varying levels of 

atrophy due to Alzheimer’s disease. They found that volume in PrC, but not the other 

structures, predicted latencies when naming living, but not nonliving things, they 

concluded that these results show the importance of PrC in disambiguating semantically 

similar objects. Indeed, PrC has been shown to show more average activity when naming 

living than nonliving things (Bruffaerts et al., 2013).  

Beyond differences between the living and nonliving domain by feature distinctiveness 

and feature overlap, these domains differ in terms of the types of features that are salient 

to their representations. For example, features can be classified into knowledge types, 

which can be further subdivided by whether those types of knowledge are intrinsic to, or 
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a part of the object itself (i.e., color), or extrinsic to the object (i.e., function of the object, 

or location it is found; McRae et al., 2005). The importance of intrinsic versus extrinsic 

feature knowledge has been shown to differ by whether an object is living or nonliving. 

Specifically, extrinsic knowledge is more important for nonliving objects, whereas 

intrinsic knowledge is more central for living things (Barr and Kaplan, 1987). While the 

terminology differs in the semantics literature, we note that extrinsic features could be 

considered “associative” or “contextual” in nature. This opens up the possibility that 

while the HpC is usually thought not to be involved in object processing, and to be 

“agnostic” in terms of object category and domain information, it may play a previously 

undiscovered role in people’s extrinsic semantic knowledge, and therefore in representing 

one domain of objects - namely nonliving objects.  

 

1.8 Summary of literature review  

In summary, object processing, whether it be recognition of an object, detecting whether 

that object is familiar or novel, or using semantic object knowledge, is a crucial part of 

human behavior. Unsurprisingly then, a large swath of the cortex, in particular the 

occipital and temporal lobe, are involved in object processing through a hierarchical 

information stream - the ventral visual stream. This neural basis of object processing is 

organized, both anatomically, as seen in category preference regions and larger domain 

preferring regions (i.e., the tripartite organizing schema), and in representational space. 

However, anterior medial temporal lobe regions have been less thoroughly explored, 

despite the fact that content may play a key role in their differential involvement in both 

object perception and memory, according to at least two key theories- the R-H theory and 

the BIC model. While there is some evidence of differential organization by stimuli type, 

with PhC being sensitive to scenes and large objects, and PrC perhaps more involved in 

faces, a careful examination across a large number of object categories is still needed. 

Further, examining domain organization in these regions has not been done, and can be a 

useful way to characterize their differential contributions. Additionally, a further 

examination of the link between stimuli based categorical responses and their relation to 

object memory signaling in these regions can potentially provide support for an R-H 
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based account of MTL function. Lastly, we can use insights from the object concept 

literature to further test the limits of how MTL regions are involved in object processing 

for certain domains.  

 

1.9 Goals of the current dissertation 

In this dissertation, I address these gaps through three empirical studies. In Chapter 2, I 

first explore object category and domain organization for a large number of categories in 

each MTL structure, in the context of a continuous recognition memory task for objects. 

In Chapter 3, I ask whether the memory signals for these objects themselves are 

organized by category and domain, and whether this differs across structures in relation 

to their stimuli-response based organization. Further, I ask whether memory status is 

coded by repetition suppression, or pattern based representational changes and relate this 

to the R-H model that suggests memory is computed directly from stimuli 

representations. In Chapter 4, I turn to one specific MTL region, the HpC, often thought 

not to be involved in object processing and agnostic to domain, and provide some 

evidence that challenges these views. The important implications of this research are tied 

to the idea that the HpC binds items-in-context, or is involved in representations that have 

object and spatiotemporal conjunctivity.  

 



24 

 

 

1.10 References 

 

Aggleton, J. P., Vann, S. D., Denby, C., Dix, S., Mayes, A. R., Roberts, N., & Yonelinas, 

A. P. (2005). Sparing of the familiarity component of recognition memory in a 

patient with hippocampal pathology. Neuropsychologia, 43(12), 1810-1823. 

 

Aguirre, G. K., Zarahn, E., & D’esposito, M. (1998). An area within human ventral 

cortex sensitive to “building” stimuli: evidence and implications. Neuron, 21(2), 

373-383. 

 

Bar, M., & Aminoff, E. (2003). Cortical analysis of visual context. Neuron, 38(2), 347-

358. 

 

Barense, M. D., Groen, I. I., Lee, A. C., Yeung, L. K., Brady, S. M., Gregori, M., ... & 

Henson, R. N. (2012). Intact memory for irrelevant information impairs 

perception in amnesia. Neuron, 75(1), 157-167. 

 

Barr, R. A. et Kaplan LJ (1987). Category representations and their implications for 

category structure. Memory and Cognition, 15(5), 397-418. 

 

Bartko, S. J., Winters, B. D., Cowell, R. A., Saksida, L. M., & Bussey, T. J. (2007). 

Perirhinal cortex resolves feature ambiguity in configural object recognition and 

perceptual oddity tasks. Learning & Memory, 14(12), 821-832. 

 

Behrmann, M., & Avidan, G. (2005). Congenital prosopagnosia: face-blind from birth. 

Trends in cognitive sciences, 9(4), 180-187. 

 

Bowles, B., Crupi, C., Mirsattari, S. M., Pigott, S. E., Parrent, A. G., Pruessner, J. C., ... 

& Köhler, S. (2007). Impaired familiarity with preserved recollection after 

anterior temporal-lobe resection that spares the hippocampus. Proceedings of the 

National Academy of Sciences, 104(41), 16382-16387. 

 

Brown, M. W., & Xiang, J. Z. (1998). Recognition memory: neuronal substrates of the 

judgement of prior occurrence. Progress in neurobiology, 55(2), 149-189. 

 

Bruffaerts, R., Dupont, P., Peeters, R., De Deyne, S., Storms, G., & Vandenberghe, R. 

(2013). Similarity of fMRI activity patterns in left perirhinal cortex reflects 

semantic similarity between words. Journal of Neuroscience, 33(47), 18597-

18607. 

 

Buckley, M. J., & Gaffan, D. (1998). Perirhinal cortex ablation impairs visual object 

identification. Journal of Neuroscience, 18(6), 2268-2275. 

 



25 

 

 

Bussey, T. J., Saksida, L. M., & Murray, E. A. (2002). Perirhinal cortex resolves feature 

ambiguity in complex visual discriminations. European Journal of Neuroscience, 

15(2), 365-374. 

 

Bussey, T. J., Saksida, L. M., & Murray, E. A. (2003). Impairments in visual 

discrimination after perirhinal cortex lesions: testing ‘declarative’vs.‘perceptual‐
mnemonic’views of perirhinal cortex function. European Journal of 

Neuroscience, 17(3), 649-660. 

 

Capitani, E., Laiacona, M., Mahon, B., & Caramazza, A. (2003). What are the facts of 

semantic category-specific deficits? A critical review of the clinical evidence. 

Cognitive Neuropsychology, 20(3-6), 213-261. 

 

Chao, L. L., Haxby, J. V., & Martin, A. (1999). Attribute-based neural substrates in 

temporal cortex for perceiving and knowing about objects. Nature neuroscience, 

2(10), 913-919. 

 

Cipolotti, L., Bird, C., Good, T., Macmanus, D., Rudge, P., & Shallice, T. (2006). 

Recollection and familiarity in dense hippocampal amnesia: A case study. 

Neuropsychologia, 44(3), 489-506. 

 

Claessen, M. H., & van der Ham, I. J. (2017). Classification of navigation impairment: A 

systematic review of neuropsychological case studies. Neuroscience & 

Biobehavioral Reviews, 73, 81-97. 

 

Clark, R. E., Reinagel, P., Broadbent, N. J., Flister, E. D., & Squire, L. R. (2011). Intact 

performance on feature-ambiguous discriminations in rats with lesions of the 

perirhinal cortex. Neuron, 70(1), 132-140. 

 

Clarke, A., & Tyler, L. K. (2014). Object-specific semantic coding in human perirhinal 

cortex. Journal of Neuroscience, 34(14), 4766-4775. 

 

Cohen, L., Dehaene, S., Naccache, L., Lehéricy, S., Dehaene-Lambertz, G., Hénaff, M. 

A., & Michel, F. (2000). The visual word form area: spatial and temporal 

characterization of an initial stage of reading in normal subjects and posterior 

split-brain patients. Brain, 123(2), 291-307. 

 

Cowell, R. A., Bussey, T. J., & Saksida, L. M. (2006). Why does brain damage impair 

memory? A connectionist model of object recognition memory in perirhinal 

cortex. Journal of Neuroscience, 26(47), 12186-12197. 

 

Cowell, R. A., Bussey, T. J., & Saksida, L. M. (2010). Components of recognition 

memory: dissociable cognitive processes or just differences in representational 

complexity?. Hippocampus, 20(11), 1245-1262. 

 



26 

 

 

Cowell, R. A. (2012). Computational models of perirhinal cortex function. Hippocampus, 

22(10), 1952-1964. 

 

Cree, G. S., & McRae, K. (2003). Analyzing the factors underlying the structure and 

computation of the meaning of chipmunk, cherry, chisel, cheese, and cello (and 

many other such concrete nouns). Journal of Experimental Psychology: General, 

132(2), 163. 

 

Davachi, L., Mitchell, J. P., & Wagner, A. D. (2003). Multiple routes to memory: 

distinct medial temporal lobe processes build item and source memories. 

Proceedings of the National Academy of Sciences, 100(4), 2157-2162. 

 

Davachi, L. (2006). Item, context and relational episodic encoding in humans. Current 

opinion in neurobiology, 16(6), 693-700. 

 

Diana, R. A., Yonelinas, A. P., & Ranganath, C. (2007). Imaging recollection and 

familiarity in the medial temporal lobe: a three-component model. Trends in 

cognitive sciences, 11(9), 379-386. 

 

Diana, R. A., Yonelinas, A. P., & Ranganath, C. (2008). High‐resolution multi‐voxel 

pattern analysis of category selectivity in the medial temporal lobes. 

Hippocampus, 18(6), 536-541. 

 

Diana, R. A., Yonelinas, A. P., & Ranganath, C. (2010). Medial temporal lobe activity 

during source retrieval reflects information type, not memory strength. Journal of 

cognitive neuroscience, 22(8), 1808-1818. 

 

Downing, P. E., Jiang, Y., Shuman, M., & Kanwisher, N. (2001). A cortical area 

selective for visual processing of the human body. Science, 293(5539), 2470-

2473. 

 

Eacott, M. J., & Norman, G. (2004). Integrated memory for object, place, and context in 

rats: a possible model of episodic-like memory?. Journal of Neuroscience, 24(8), 

1948-1953. 

 

Eichenbaum, H., Schoenbaum, G., Young, B., & Bunsey, M. (1996). Functional 

organization of the hippocampal memory system. Proceedings of the National 

Academy of Sciences, 93(24), 13500-13507. 

 

Eichenbaum, H., Yonelinas, A. P., & Ranganath, C. (2007). The medial temporal lobe 

and recognition memory. Annu. Rev. Neurosci., 30, 123-152. 

 

Epstein, R., Harris, A., Stanley, D., & Kanwisher, N. (1999). The parahippocampal place 

area: recognition, navigation, or encoding?. Neuron, 23(1), 115-125. 

 



27 

 

 

Epstein, R., & Kanwisher, N. (1998). A cortical representation of the local visual 

environment. Nature, 392(6676), 598-601. 

 

Erez, J., Cusack, R., Kendall, W., & Barense, M. D. (2015). Conjunctive coding of 

complex object features. Cerebral Cortex, 26(5), 2271-2282. 

 

Gauthier, I., Skudlarski, P., Gore, J. C., & Anderson, A. W. (2000). Expertise for cars and 

birds recruits brain areas involved in face recognition. Nature neuroscience, 3(2), 

191-197. 

 

Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and 

action. Trends in neurosciences, 15(1), 20-25. 

 

Graham, K. S., Barense, M. D., & Lee, A. C. (2010). Going beyond LTM in the MTL: a 

synthesis of neuropsychological and neuroimaging findings on the role of the 

medial temporal lobe in memory and perception. Neuropsychologia, 48(4), 831-

853. 

 

Grill-Spector, K., Knouf, N., & Kanwisher, N. (2004). The fusiform face area subserves 

face perception, not generic within-category identification. Nature neuroscience, 

7(5), 555-562. 

 

Grill-Spector, K., Sayres, R., & Ress, D. (2006). High-resolution imaging reveals highly 

selective nonface clusters in the fusiform face area. Nature neuroscience, 9(9). 

 

Grüter, T., Grüter, M., & Carbon, C. C. (2008). Neural and genetic foundations of face 

recognition and prosopagnosia. Journal of Neuropsychology, 2(1), 79-97. 

 

Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., & Pietrini, P. 

(2001). Distributed and overlapping representations of faces and objects in ventral 

temporal cortex. Science, 293(5539), 2425-2430. 

 

Huffman, D. J., & Stark, C. E. (2014). Multivariate pattern analysis of the human medial 

temporal lobe revealed representationally categorical cortex and 

representationally agnostic hippocampus. Hippocampus, 24(11), 1394-1403. 

 

Jackson, O., & Schacter, D. L. (2004). Encoding activity in anterior medial temporal lobe 

supports subsequent associative recognition. Neuroimage, 21(1), 456-462. 

 

Johnson-Frey, S. H. (2004). The neural bases of complex tool use in humans. Trends in 

cognitive sciences, 8(2), 71-78. 

 

Julian, J. B., Ryan, J., & Epstein, R. A. (2016). Coding of Object Size and Object 

Category in Human Visual Cortex. Cerebral Cortex, bhw150. 

 



28 

 

 

Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: a module 

in human extrastriate cortex specialized for face perception. Journal of 

neuroscience, 17(11), 4302-4311. 

 

Kim, S., Jeneson, A., van der Horst, A. S., Frascino, J. C., Hopkins, R. O., & Squire, L. 

R. (2011). Memory, visual discrimination performance, and the human 

hippocampus. Journal of Neuroscience, 31(7), 2624-2629. 

 

Kirwan, C. B., & Stark, C. E. (2004). Medial temporal lobe activation during encoding 

and retrieval of novel face‐name pairs. Hippocampus, 14(7), 919-930. 

 

Kivisaari, S. L., Tyler, L. K., Monsch, A. U., & Taylor, K. I. (2012). Medial perirhinal 

cortex disambiguates confusable objects. Brain, 135(12), 3757-3769. 

 

Konkle, T., & Oliva, A. (2012). A real-world size organization of object responses in 

occipitotemporal cortex. Neuron, 74(6), 1114-1124. 

 

Konkle, T., & Caramazza, A. (2013). Tripartite organization of the ventral stream by 

animacy and object size. Journal of Neuroscience, 33(25), 10235-10242. 

 

Kravitz, D. J., Saleem, K. S., Baker, C. I., Ungerleider, L. G., & Mishkin, M. (2013). The 

ventral visual pathway: an expanded neural framework for the processing of 

object quality. Trends in cognitive sciences, 17(1), 26-49. 

 

Kriegeskorte, N., Mur, M., & Bandettini, P. (2008). Representational similarity analysis–

connecting the branches of systems neuroscience. Frontiers in systems 

neuroscience, 2. 

 

Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky, H., ... & 

Bandettini, P. A. (2008). Matching categorical object representations in inferior 

temporal cortex of man and monkey. Neuron, 60(6), 1126-1141. 

 

LaRocque, K. F., Smith, M. E., Carr, V. A., Witthoft, N., Grill-Spector, K., & Wagner, 

A. D. (2013). Global similarity and pattern separation in the human medial 

temporal lobe predict subsequent memory. Journal of Neuroscience, 33(13), 

5466-5474. 

 

Lee, A. C., Buckley, M. J., Gaffan, D., Emery, T., Hodges, J. R., & Graham, K. S. 

(2006). Differentiating the roles of the hippocampus and perirhinal cortex in 

processes beyond long-term declarative memory: a double dissociation in 

dementia. Journal of Neuroscience, 26(19), 5198-5203. 

 

Lee, A. C., Yeung, L. K., & Barense, M. D. (2012). The hippocampus and visual 

perception. Frontiers in human neuroscience, 6. 

 



29 

 

 

Liang, J. C., Wagner, A. D., & Preston, A. R. (2012). Content representation in the 

human medial temporal lobe. Cerebral Cortex, 23(1), 80-96. 

 

Litman, L., Awipi, T., & Davachi, L. (2009). Category‐specificity in the human medial 

temporal lobe cortex. Hippocampus, 19(3), 308-319. 

 

Maass, A., Berron, D., Libby, L. A., Ranganath, C., & Düzel, E. (2015). Functional 

subregions of the human entorhinal cortex. Elife, 4, e06426. 

 

Magri, C., Konkle, T., & Caramazza, A. (2016). Visual object responses of the ventral 

stream reflect both size and motor-relevance. Journal of Vision, 16(12), 505-505. 

 

Mahon, B. Z., & Caramazza, A. (2009). Concepts and categories: A cognitive 

neuropsychological perspective. Annual review of psychology, 60, 27-51. 

 

Mahon, B. Z., & Caramazza, A. (2011). What drives the organization of object 

knowledge in the brain?. Trends in cognitive sciences, 15(3), 97-103. 

 

Martin, A., & Chao, L. L. (2001). Semantic memory and the brain: structure and 

processes. Current opinion in neurobiology, 11(2), 194-201. 

 

Martin, A. (2007). The representation of object concepts in the brain. Annu. Rev. 

Psychol., 58, 25-45. 

 

Martin, C. B., McLean, D. A., O'Neil, E. B., & Köhler, S. (2013). Distinct familiarity-

based response patterns for faces and buildings in perirhinal and parahippocampal 

cortex. Journal of Neuroscience, 33(26), 10915-10923. 

 

Martin, C. B., Sullivan, J. A., Wright, J., & Köhler, S. (2018). How landmark suitability 

shapes recognition memory signals for objects in the medial temporal lobes. 

NeuroImage, 166, 425-436. 

 

McRae, K., & Cree, G. S. (2002). Factors underlying category-specific semantic deficits. 

Category-specificity in brain and mind, 211-249. 

 

McRae, K., Cree, G. S., Seidenberg, M. S., & McNorgan, C. (2005). Semantic feature 

production norms for a large set of living and nonliving things. Behavior research 

methods, 37(4), 547-559. 

 

McTighe, S. M., Cowell, R. A., Winters, B. D., Bussey, T. J., & Saksida, L. M. (2010). 

Paradoxical false memory for objects after brain damage. Science, 330(6009), 

1408-1410. 

 

Meunier, M., Bachevalier, J., Mishkin, M., & Murray, E. A. (1993). Effects on visual 

recognition of combined and separate ablations of the entorhinal and perirhinal 

cortex in rhesus monkeys. Journal of Neuroscience, 13(12), 5418-5432. 



30 

 

 

 

Milner, A. D., & Goodale, M. A. (2008). Two visual systems re-viewed. 

Neuropsychologia, 46(3), 774-785. 

 

Mishkin, M., Ungerleider, L. G., & Macko, K. A. (1983). Object vision and spatial 

vision: two cortical pathways. Trends in neurosciences, 6, 414-417. 

 

Mishkin, M., & Ungerleider, L. G. (1982). Contribution of striate inputs to the 

visuospatial functions of parieto-preoccipital cortex in monkeys. Behavioural 

brain research, 6(1), 57-77. 

 

Mullally, S. L., & Maguire, E. A. (2011). A new role for the parahippocampal cortex in 

representing space. Journal of Neuroscience, 31(20), 7441-7449. 

 

Mumby, D. G., & Pinel, J. P. (1994). Rhinal cortex lesions and object recognition in rats. 

Behavioral neuroscience, 108, 11-11. 

 

Mumby, D. G. (2001). Perspectives on object-recognition memory following 

hippocampal damage: lessons from studies in rats. Behavioural brain research, 

127(1), 159-181. 

 

Mumby, D. G., Gaskin, S., Glenn, M. J., Schramek, T. E., & Lehmann, H. (2002). 

Hippocampal damage and exploratory preferences in rats: memory for objects, 

places, and contexts. Learning & Memory, 9(2), 49-57. 

 

Murray, E. A., & Bussey, T. J. (1999). Perceptual–mnemonic functions of the perirhinal 

cortex. Trends in cognitive sciences, 3(4), 142-151. 

 

Murray, E. A., & Richmond, B. J. (2001). Role of perirhinal cortex in object perception, 

memory, and associations. Current opinion in neurobiology, 11(2), 188-193. 

 

Murray, E. A., Bussey, T. J., & Saksida, L. M. (2007). Visual perception and memory: a 

new view of medial temporal lobe function in primates and rodents. Annu. Rev. 

Neurosci., 30, 99-122. 

 

Nemanic, S., Alvarado, M. C., & Bachevalier, J. (2004). The 

hippocampal/parahippocampal regions and recognition memory: insights from 

visual paired comparison versus object-delayed nonmatching in monkeys. Journal 

of Neuroscience, 24(8), 2013-2026. 

 

Proklova, D., Kaiser, D., & Peelen, M. V. (2016). Disentangling representations of object 

shape and object category in human visual cortex: The animate–inanimate 

distinction. Journal of cognitive neuroscience. 

 



31 

 

 

Ranganath, C., Yonelinas, A. P., Cohen, M. X., Dy, C. J., Tom, S. M., & D’Esposito, M. 

(2004). Dissociable correlates of recollection and familiarity within the medial 

temporal lobes. Neuropsychologia, 42(1), 2-13. 

 

Ranganath, C., Cohen, M. X., Dam, C., & D'Esposito, M. (2004). Inferior temporal, 

prefrontal, and hippocampal contributions to visual working memory maintenance 

and associative memory retrieval. Journal of Neuroscience, 24(16), 3917-3925. 

 

Saksida, L. M., & Bussey, T. J. (2010). The representational–hierarchical view of 

amnesia: Translation from animal to human. Neuropsychologia, 48(8), 2370-

2384. 

 

Sperling, R., Chua, E., Cocchiarella, A., Rand-Giovannetti, E., Poldrack, R., Schacter, D. 

L., & Albert, M. (2003). Putting names to faces:: Successful encoding of 

associative memories activates the anterior hippocampal formation. Neuroimage, 

20(2), 1400-1410. 

 

Squire, L. R., & Zola-Morgan, S. (1991). The medial temporal lobe memory system. 

Science, 253(5026), 1380. 

 

Squire, L. R., Stark, C. E., & Clark, R. E. (2004). The medial temporal lobe. Annu. Rev. 

Neurosci., 27, 279-306. 

 

Staresina, B. P., & Davachi, L. (2006). Differential encoding mechanisms for subsequent 

associative recognition and free recall. Journal of Neuroscience, 26(36), 9162-

9172. 

 

Suzuki, W. A., & Amaral, D. G. (2004). Functional neuroanatomy of the medial temporal 

lobe memory system. Cortex, 40(1), 220-222. 

 

Suzuki, W. A. (2009). Perception and the medial temporal lobe: evaluating the current 

evidence. Neuron, 61(5), 657-666. 

 

Suzuki, W. A., & Baxter, M. G. (2009). Memory, perception, and the medial temporal 

lobe: a synthesis of opinions. Neuron, 61(5), 678-679. 

 

Takahashi, N., & Kawamura, M. (2002). Pure topographical disorientation—the 

anatomical basis of landmark agnosia. Cortex, 38(5), 717-725. 

 

Taylor, K. I., Devereux, B. J., Acres, K., Randall, B., & Tyler, L. K. (2012). Contrasting 

effects of feature-based statistics on the categorisation and basic-level 

identification of visual objects. Cognition, 122(3), 363-374. 

 

Thomas, C., Avidan, G., Humphreys, K., Jung, K. J., Gao, F., & Behrmann, M. (2009). 

Reduced structural connectivity in ventral visual cortex in congenital 

prosopagnosia. Nature neuroscience, 12(1), 29-31. 



32 

 

 

 

Troiani, V., Stigliani, A., Smith, M. E., & Epstein, R. A. (2012). Multiple object 

properties drive scene-selective regions. Cerebral Cortex, 24(4), 883-897. 

 

Tyler, L. K., Chiu, S., Zhuang, J., Randall, B., Devereux, B. J., Wright, P., ... & Taylor, 

K. I. (2013). Objects and categories: feature statistics and object processing in the 

ventral stream. Journal of Cognitive Neuroscience, 25(10), 1723-1735. 

 

Warrington, E. K., & Shallice, T. (1984). Category specific semantic impairments. Brain, 

107(3), 829-853. 

 

Yassa, M. A., & Stark, C. E. (2008). Multiple signals of recognition memory in the 

medial temporal lobe. Hippocampus, 18(9), 945-954. 

 

Yonelinas, A. P. (2002). The nature of recollection and familiarity: A review of 30 years 

of research. Journal of memory and language, 46(3), 441-517. 

 



33 

 

 

Chapter 2  

2 Animacy and real-world size shape object 
representations in the medial temporal lobes  

2.1 Introduction 

 

The ability to identify the objects we encounter in our daily lives, and know which ones 

we have seen before, is a crucial aspect of human behavior. What type of object a ‘thing’ 

is, and whether it is familiar or novel, can drastically change how we might interact with 

it, including, for example, whether to approach or avoid it. Despite the importance of 

object recognition, and the relative fluidity with which most humans perform it, a 

detailed understanding of the neural functional architecture that supports this ability is 

still elusive. One promising approach to understanding the neural architecture of object 

perception and memory is to explore how object representations are organized. In 

particular, it is possible to examine similarities between patterns of brain activity that 

different types of objects evoke, and to map this neural representational space to relevant 

dimensions in perception and behavior.  

 

It is known that some correspondence exists between how objects are represented in the 

brain and how we behaviorally categorize them. Crucial evidence comes from 

neuropsychological research in patients with focal brain lesions who have category 

specific behavioral deficits in object processing (Warrington & Shallice, 1984; Hart et al., 

1985; for a review see Caramazza & Mahon, 2003). Interestingly, patients have been 

reported who have impairments for a broad domain of object types, such as either living 

or nonliving objects (for a review see Capitani et al., 2003), while other patients have 

shown deficits for specific categories that fall within these domains, such as faces or tools 

(Damasio et al., 1982; De Renzi et al., 1994; for a review see Johnson-Frey, 2004). Loss 

of category specific knowledge, and the more common loss of domain knowledge beg 

questions of how objects from different categories and domains are represented in the 

brain.  
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Some initial answers to these questions have come from functional magnetic resonance 

imaging (fMRI) investigations of object processing in the ventral visual stream 

(VVS).  Numerous fMRI studies have revealed regions within the VVS that preferentially 

respond to particular stimulus categories with high ecological relevance, including faces, 

scenes, bodies, and words (see Op de Beeck et al., 2008, for review). Specifically, in 

extrastriate cortex, distinct circumscribed regions have been reported that prefer one of 

these categories over other categories, such as the fusiform face area or the 

parahippocampal place area (Kanwisher et al., 1997; Epstein & Kanwisher, 1998; 

Downing et al., 2001; for a review see Kanwisher & Dilks, 2013). Interestingly, these 

functionally circumscribed regions are systematically organized within broader 

preference zones. Medial aspects of occipito-temporal cortex typically show a preference 

for inanimate objects, whereas lateral aspects show a preference for animate objects 

(Martin, 2007; Grill-Spector & Weiner, 2014; Sha et al., 2015). In addition to the 

animacy dimension, a number of fMRI studies have revealed large-scale organization of 

the VVS has also been linked to real-world size (Konkle & Caramazza, 2013; Konkle, et 

al., 2012; Mitchell & Cusack, 2016). It has been found that there is a preference zone for 

large inanimate objects in medial occipito-temporal cortex and for small inanimate 

objects in more dorsolateral aspects, but no corresponding size-based distinction has been 

found for animate objects in lateral occipito-temporal cortex. This pattern of preferences 

has sometimes been referred to as a tripartite organizing schema (Konkle & Oliva, 2012; 

Konkle & Caramazza, 2013).  

 

These findings, that some regions show higher levels of activity on average for one 

category over another (e.g., FFA), or for one domain over another (e.g., medial VVS for 

inanimate objects) have primarily been mapped in fMRI studies by contrasting averaged 

BOLD activity for one category or domain of stimuli with another. Notably, however, 

revealing differential activity using this approach does not necessarily imply that a given 

region only represents stimuli from categories or domains to which it is maximally 

responsive. In fact this has been shown not to be the case within the FFA, where it is 

possible to detect differentiation between non-face categories of objects using 

multivariate pattern analysis (MVPA) (Haxby et al., 2001). In this approach, activity is 



35 

 

 

not averaged across voxels, but the similarity between patterns of activity evoked by 

different stimuli within a given region are compared. If stimuli within a category evoke 

more similar patterns of activity than stimuli from different categories, the brain region is 

considered to contain representations of that category. Inasmuch as the pattern of activity 

across voxels can be labeled a neural representation of an object, one can think of the 

comparisons between categories as now existing in “representational 

space”.  Interestingly, Kriegeskorte et al., (2008) applied this approach across the entire 

ventral temporal cortex for a wide variety of objects, and found a highly consistent 

category- and domain-based organization, with evidence for a distinction between 

animate and inanimate objects, as well as varying degrees of similarity between 

categories within these domains (see also Proklova, 2016). A recent fMRI study with a 

similar focus on representational similarities has shown that real-world size is also an 

organizing dimension of objects across a large swath of temporo-parieto-occipital cortex, 

as well as within a number of subregions across the VVS (Julian et al., 2016).  

 

Category and domain preferences have been most thoroughly characterized in the 

posterior and lateral aspects of the VVS. At present, evidence that speaks to the 

organization of object representations in medial temporal structures, specifically 

perirhinal cortex (PrC) and parahippocampal cortex (PhC), is more limited. To be more 

precise, the more posterior aspect of the PhC has been well characterized, given that it 

comprises a significant proportion of the parahippocampal place area, a functionally-

defined region that preferentially responds to scenes and large objects, in particular those 

with navigational relevance (Aguirre et al., 1998; Epstein and Kanwisher, 1998; Epstein 

& Vass, 2014; Troiani et al., 2012; Konkle & Oliva, 2012). 

 

However, it is less clear whether this characterization holds for PhC as a whole, and, 

precisely how object representations in PrC differ from those in PhC in terms of 

organization. The lack of evidence is surprising given that PrC has been proposed to be 

the apex of the VVS (Murray and Bussey, 1999; Bussey et al., 2007). In particular, it has 

been argued that PrC contains high-level visual object representations, composed of 

conjunctions of lower-level visual feature information that converges from downstream 
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visual areas. According to this representational-hierarchy view, these high-level visual 

object representations tend to be particularly relevant for the recognition that an object 

has been seen before, because they correspond to the types of things in the world for 

which humans and other animals form distinct declarative memories (e.g., a specific 

person’s face). However, they are also thought to be crucial for visual perception to the 

extent that the task at hand requires fine-grained discrimination between objects with 

many overlapping features (e.g., distinguishing a horse from a donkey). The 

characterization of object representations in PhC, primarily in the parahippocampal place 

area (PPA), by contrast, has focused less on the role of feature conjunctions and instead 

addressed the sensitivity to specific types of visual features, such as texture, spatial 

frequency, and real-world size (Cant & Goodale, 2007; Park & Park, 2017; Rajimehr, 

2011; Julian et al., 2016; Konkle and Oliva, 2012) as well as sensitivity to functional 

aspects, such as whether objects are space-defining, or have navigational relevance 

(Janzen & van Turennout, 2004; Mullaly & Maguire, 2011; Troiani et al.,2012; Martin et 

al., under review). A direct comparison of representational space for PrC and PhC across 

many object categories or larger domains is missing at present. Specifically, it is not 

known whether the major dimensions that have been shown to shape representations in 

the posterior VVS, i.e., animacy and real-world size, also shape organization of object 

categories in PrC and PhC.  

 

Anatomically, evidence from studies of structural connectivity in non-human primates as 

well as functional connectivity studies in humans suggest that both PhC and PrC have 

strong connectivity with downstream areas in the VVS and other posterior cortical 

regions (see Ranganath & Ritchey, 2012, for a review). Interestingly, these connections 

are at least in part distinct. Both tract tracing data from monkeys, and functional 

connectivity data in humans show the following differential connectivity between the two 

regions. PhC is highly connected to earlier occipital and temporal areas as well as densely 

connected to the retrosplenial cortex (RsC), whereas PrC is more densely connected to 

higher order regions within the ventral temporal cortex, such as the anterior fusiform 

gyrus. PhC and PrC also have differential connectivity patterns with structures outside of 

the VVS. Specifically, PhC is connected to the medial parietal cortex, precuneus, 
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ventrolateral parietal cortex and medial prefrontal cortex (default mode areas), while PrC 

is more densely connected with the amygdala, orbitofrontal cortex, and anterior 

ventrolateral temporal cortex (Kahn et al., 2008; Libby et al., 2012).  One possibility is 

that the differential structural and functional connectivity of PrC and PhC leads to 

differences in the organization of objects representations in both structures.  

 

Research with direct comparisons of visual stimulus responses in PrC and PhC has shown 

robust differences for processing of faces, objects, and scenes across both structures. At 

the univariate level, PhC shows a scene preference, while PrC, in particular anterior 

portions, show a face preference (Liang et al., 2012; Litman et al., 2010; O’Neil et al., 

2013; see Collins and Olson, 2014, for review). In MVPA based studies it has been 

shown that object, scene, and face information can be distinguished at the category level 

in both PhC and PrC. In general scene decoding is much higher in PhC, and face 

responses can be better decoded from PrC (LaRocque et al., 2013; Huffman & Stark, 

2014, Liang et al., 2012), although Diana et al. 2008, did not find above chance decoding 

of objects or faces in PrC.  While there is clearly a distinction between face and scene 

representations across both structures, it is less clear whether there are also differences in 

representations of different types of objects categories. This is in large part due to the fact 

that most studies probed mixed groups of objects without any systematic attempt to probe 

category based distinctions. In recent work from our lab, Martin et al. (2013; 2016) 

explored this issue in the context of recognition memory judgments, using chairs, faces, 

and buildings as categorized stimuli. We reported that it was possible to decode the 

perceived familiarity of faces from activity patterns in PrC, the familiarity of buildings 

from patterns in PhC, and familiarity for chairs from patterns in both structures. While 

these findings go beyond showing a distinctions between scenes and faces in the MTL, 

they do not allow for a broader characterization of representational space across a wider 

variety of object categories.   

 

Our primary interest in the present study was in a comparison of object representations 

across the PrC, PhC, and in the hippocampus (HpC). While previous work shows some 

object category specificity in PrC and PhC, the hippocampus has been seen as more 
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“agnostic”, or insensitive to visual stimulus category (Huffman & Stark, 2014; LaRocque 

et al., 2013; Diana et al., 2009). It has been posited that this is because the HpC binds 

together object and spatial information received from the PrC and PhC (Eichenbaum et 

al., 2012; Ranganath & Ritchey, 2012). More specifically, if the HpC represents complex 

conjunctions of many different kinds of objects and the spatial backdrop of those objects, 

it may be difficult to reveal any category specificity (e.g., in a complex scene there may 

be objects from many different categories). Interestingly, one study reported above-

chance decoding of scene information from posterior HpC (Liang et al., 2012). This 

selective above chance decoding of scene stimuli converges with a body of research 

suggesting the HpC is differentially involved in scene processing (Hodgett’s et al., 2016; 

Lee et al., 2005; Barense et al., 2015; Zeidman et al., 2015,; for a review see Murray et 

al., 2017).  At the univariate level, the HpC often shows more activity for scenes as 

compared to other stimulus categories such as objects or faces, which has led to the 

suggestion it be considered a part of the core scene-network (Hodgetts et al., 2016). 

Furthermore, individuals with hippocampal damage have been reported to show 

impairments in vividly recalling scenes, maintaining scenes in working memory, or 

constructing scenes in their imagination (Hassabis et al., 2007; Mullally et al., 2012; 

Addis et al., 2007). Additionally, distinct hippocampal activation patterns have been 

reported in response to these different aspects of scene processing in fMRI research 

(Zeidman et al., 2015). This suggests that the HpC may not be entirely agnostic to the 

nature of stimulus categories encountered. As such, it is possible that it may also be 

sensitive to stimulus domain. 

 

In the present fMRI study, we directly aimed to address whether and how animacy and 

real-world size affect the organization of object categories in the MTL. We tested the 

hypothesis that object-evoked responses in perirhinal and parahippocampal cortex show 

evidence for domain-level organization along both dimensions. To this end, we scanned 

participants while they performed a continuous recognition memory task on objects from 

12 different categories. We chose a continuous recognition memory task because it 

required participants to make memory decisions (i.e., “old” or “new”) for specific 

exemplars from these categories, thus maximizing the need to disambiguate objects with 
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substantial feature overlap. To address our questions of interest, we employed 

representational similarity analyses (RSA). With these analyses we first asked whether 

PrC, PhC and the HpC represent distinct categories of objects. We then explored whether 

the categories were organized along an animate/inanimate divide, and whether or not 

inanimate objects were organized by their real-world size.   

. 

 

2.2 Materials and methods 

2.2.1 Participants 

 

Fifteen individuals participated in the study (20-32 years of age, mean age = 27.5 years; 8 

females). All participants were right-handed with normal or corrected-to-normal vision, 

and no history of psychiatric or neurological disorders. Data from two participants were 

excluded due to technical difficulties. Participants received financial compensation for 

their participation, and provided informed consent according to procedures approved by 

the University of Western Ontario Health Sciences Research Ethics Board 

 

2.2.2 Stimuli 

 

Stimuli were color images depicting exemplars from 12 different object categories, 

including 4 categories of animate objects (faces, bodies, monkeys, insects), 4 categories 

of large inanimate objects (buildings,  vehicles, trees, furniture), and 4 categories of small 

inanimate objects (flowers, fruits, musical instruments, and tools). Size and animacy 

classification was based on prior research (Konkle et al., 2013) and confirmed through 

ratings in pilot work in a separate group of participants for all stimuli employed here. 

Twenty-eight objects were chosen from each category, for a total of 336 experimental 

stimuli. In addition, 3 filler items were presented in each run, one of which was repeated 

early on in the run to ensure that participants would immediately be prepared for 
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repetitions. The second and third filler items were presented towards the end of the run to 

increase the proportion of novel stimuli at that stage. Filler items were chosen from 

categories other than (and unrelated to) those employed on experimental trials. Images of 

objects were obtained from the Konkle lab database (http://konklab.fas.harvard.edu/#) 

and through an additional Google image search. Each image was presented in isolation on 

a uniform grey background. The size of each image was bound at a maximum of 500 x 

500 pixels, with at least one dimension exactly corresponding to these limits. Across 

categories, there were no significant differences in the area covered by objects in the 

images, their aspect-ratio, or their mean luminance (all p > 0.05).  

 

Figure 2.1: Stimuli from 12 different object categories, separated by animacy and 

real-world size for inanimate objects. Categories were grouped into animate: 

faces, bodies, monkeys, insects, inanimate small: flowers, fruits, tools, 

musical instruments, and inanimate large: buildings, trees, vehicles, 

furniture. 

 

2.2.3 Experimental procedure 
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During fMRI scanning, participants performed a continuous recognition memory task 

that required recognition of repeated presentation of specific exemplars (Figure 2.2). 

Exemplars were presented twice, with repetitions always occurring in the same run. 

Images were presented for 1200 ms, and participants were asked to indicate whether the 

image was “novel” (1st presentation), or “old” (2nd presentation) with button presses 

using their middle or index finger. To encourage rapid responding and mark the time 

window for responding, a red border surrounding the image appeared 600 ms after 

stimulus onset and stayed on screen until stimulus offset. Participants were instructed to 

respond as soon as the red border appeared. Mapping of responses to buttons was 

counterbalanced across participants. Each stimulus presentation was followed by a 

jittered ITI (2000-6000 ms) during which participants viewed a fixation cross centered on 

a grey background. Jitter was distributed such that the average delay between first and 

second presentation of items was matched across categories (average time = 84.1 s, range 

= 19.0-316.0 s). In addition, the average number of images between repetitions was 

matched across categories (average number of intervening images =17, range =16-18). 

Each run consisted of 4 objects from each of the 12 categories, resulting in a total of 8 

image presentations per category, or 96 experimental trials per run. In addition, each run 

contained 3 filler trials. Across runs, presentations of objects from each category were 

preceded and followed by an object from each of the other categories with roughly equal 

frequency (8-11 times). Participants completed seven runs. Three different run orders 

were created for the purpose of counterbalancing across participants. Prior to scanning, 

each participant completed a 5-minute practice task with images from categories that 

were unrelated to those used during scanning in order to be familiarized with task 

requirements and response deadline.  
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Figure 2.2: Continuous recognition memory task. An image depicting an object 

from one of the twelve categories was presented on screen for 1200ms total. 

After 600ms, a red border popped up around the image, and participants 

had the remaining 600ms to respond “novel” indicating it was the first time 

they had seen that image, or “familiar” indicating that it was the second time 

they had seen that image. Each run contained different stimuli, so repetitions 

were on a within-run basis. There were a number of intervening stimuli 

between repetitions (on average 20 intervening stimuli).  

 

 

2.2.4 Image acquisition 

 

MRI data was acquired on a Siemens TIM Trio 3-Tesla scanner. Functional MRI volumes 

were collected using a highly accelerated gradient-echo EPI sequence (Center for 

Magnetic Resonance Research, University of Minnesota) with a multiband acceleration 
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factor 4 and GRAPPA in-plane acceleration of 2. The following parameters were 

used:  TR=650 ms, TE=30 ms, slice thickness = 2 mm, FOV = 192 mm X 192 mm, flip 

angle = 54 degree . Each functional volume included 40 slices collected in an interleaved 

manner. To optimize MR signal in the anterior temporal lobes, a transverse orientation was 

chosen for acquisition, which allowed for inclusion of the entire temporal and occipital 

lobes, with partial coverage of frontal and parietal cortices, in all participants. T1-weighted 

anatomical images were obtained using an ADNI MPRAGE sequence (192 slices, TR = 

2300 ms, TE =2.98 ms, 1 mm isotropic voxels, FOV = 240 X 256 mm, flip angle = 

9degrees).  

 

2.2.5 Neuroimaging analyses 

2.2.5.1 Pre-processing and modeling 

 

fMRI data were analyzed using SPM8 (Welcome Institute of Cognitive Neurology; 

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/), employing an analysis pipeline as 

implemented in the automatic analysis system (aa) 

(www.github.com/rhodricusack/automaticanalysis), (Cusack et al., 2015). Functional data 

were motion corrected and high pass-filtered to remove low frequency noise (drift); slice-

time correction was not implemented due to the use of a multiband sequence. Four 

dummy scans at the start of each session were discarded to allow for T1 relaxation. For 

each participant, the mean functional image was then co-registered with the participant-

specific anatomical image. Following co-registration two separate pipelines were 

initiated: a univariate pipeline and an MVPA pipeline. For the univariate pipeline, co-

registered data was normalized to MNI space and smoothed using a three-dimensional 

Gaussian kernel with a full-width at half maximum of 8 mm. For the MVPA pipeline, co-

registered images were kept in native space for each participant, and no spatial smoothing 

was applied in order to preserve high-spatial resolution. Functional data were convolved 

using a canonical hemodynamic response function. Categories were modeled, regardless 

of whether a trial was a 1st or 2nd presentation (12 regressors per run) using a general linear 

model. Regressors were constructed from boxcars with a durations of each stimulus 

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://www.github.com/rhodricusack/automaticanalysis
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(1200ms), and were convolved with SPM’s canonical hemodynamic response function. 

Beta estimates for each category were derived based on 4 exemplars and their repetition 

in each run. Regressors of no interest included 6 motion regressors. Beta estimates 

derived from these models were used as input for the univariate and multivariate 

analyses. Medial temporal lobe ROIs were demarcated manually for each participant on 

the high-resolution structural images in native space, using the anatomical protocols 

published by Pruessner et al. (2000; 2002) with adjustments to the posterior border of 

PhC as specified by Franko et al. (2014). 

 

2.2.5.2 Univariate analyses  

 

Univariate analyses were conducted for feature selection of voxels to be included in the 

multivariate analyses. Towards this end, we contrasted all experimental trials against 

baseline (gray screen with a fixation cross), which resulted in robust activation 

throughout occipital and temporal cortex (including MTL) in each participant. We then 

contrasted each anatomically defined region of interest in the MTL, and selected the 20% 

of voxels with the highest beta values in this contrast (i.e., stimuli vs baseline). These 

voxels for all remaining multivariate analyses (see Kriegeskorte et al., 2008, 2008b for 

rationale).  

 

2.2.5.3 Representational similarity analysis 

Multivariate analyses were computed on a between-run basis to ensure the different 

comparisons did not vary in temporal proximity (Linke et al., 2011). To explore the 

representational space in each ROI, for each subject, we first extracted beta values for 

each category and computed the Pearson’s correlation for each category compared to 

each other category. Prior to computing the correlations, the grand mean (i.e., the cocktail 

mean) for each run was subtracted across all voxels for that run (Walther et al. 2015). 

This resulted in a 12 x 12 representational similarity matrix (RSM) for each participant, 
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for each ROI, with within category similarity values (across runs) on the diagonal, and 

between category information (across runs) on the off diagonal. RSMs were then 

averaged across participants, resulting in a final group similarity matrix for each ROI. For 

visualization purposes, group RSMs were ordered in the following way: animate objects, 

small inanimate objects, and large inanimate objects. Note that RSM’s are not 

symmetrical in the visualization, this is because the upper half of each matrix shows the 

mean from a subset of across run correlations (i.e., cell 1, 2 is condition in the even runs 

correlated with condition 2 in the odd runs, whereas cell 2, 1, is condition 1 in the odd 

runs correlated with condition 2 in the even runs) (Figure 2.4). To test whether the 

representational space was modulated by category, animacy, and size within inanimate 

objects, we created linear models (predefined contrasts) specifying which RSM 

correlation values were to be subjected to a t-test that tested models (see Figure 2.5). 

These analyses were performed on data in single-subject RSMs, with the group statistics 

calculated from the average results.   

 

We first asked whether there was evidence of category-level organization in each ROI. 

To test for this, we defined a contrast of category representation (see Fig. 2.5), in other 

words, a linear model where all within category (diagonal) patterns were more highly 

correlated than between category (off diagonal) patterns. In the initial analysis, we tested 

an omnibus contrast (i.e., model) that probed for the presence of any category-specific 

information in each ROI. We then tested for information relating to each of the 12 

categories individually. Specifically, we tested whether the patterns of activation across 

voxels were more similar within each category compared to the 11 other categories, using 

subject as a random effect.   

 

In our second set of analyses, we asked whether or not the animate v. inanimate object 

distinction that has been found to shape the organization of object representations in more 

posterior aspects of the VVS was also an organizing dimension in the MTL. This analysis 

was identical to the previously described analyses, except that for the purpose of 

evaluating differences in correlations (i.e., within vs between) we focused on the domains 

of animate as compared to inanimate objects rather than individual categories (see Figure 
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2.5). Importantly, in these analyses we removed the diagonal from our model in order to 

discard the influence of within category similarities.  

 

In our third and final set of analyses, we asked whether real world size is an organizing 

dimension within the domain of inanimate objects in MTL, again as has been reported for 

object representations in more posterior aspects of the VVS. Here, we divided inanimate 

objects into groups of small or large objects, large objects included trees, furniture, 

vehicles and buildings, and small objects including fruit, flowers, musical instruments, 

and tools. The analysis was identical to the previous one except that within versus 

between similarities were computed across all categories of large or small inanimate 

objects (see Figure 2.5). As in the analyses on animacy described above, we did not 

include the diagonal in testing of this model.  

     

 

2.3 Results  

2.3.1 Behavioural  

 

Recognition-memory accuracy, indexed using the discriminability index d’, and reaction 

times are shown in Table 2.1 for all categories. Critically, memory discrimination as 

measured with d’ was matched across dimensions of interest. Specifically, we found no 

differences in performance between animate and inanimate objects (Mean d’ inanimate = 

1.76, SD=0.78, Mean d’ animate =1.94, SD=0.71, t(12) =-1.30, p = .2 (Figure 2.3)). 

There were also no differences based on real-world size, i.e., between large inanimate 

and small inanimate objects (Mean d’ small inanimate = 1.96, SD=0.77, Mean d’ large 

inanimate = 2.00, SD=0.80, t (12) = -.452, p = .7 (Figure 2.3)). We did find differences in 

RTs between animate and inanimate categories (Mean RT animate = 1.00, SD = 0.036, 

Mean RT inanimate = 1.012 SD = 0.036 t(12) = -2.709, p < 0.02), as well as large 

inanimate and small inanimate objects (Mean RT large inanimate = 1.007s, SD = 0.40, 

Mean RT small inanimate = 0.993, SD = 0.033, t(12) = 3.413, p < 0.005). 
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Figure 2.3: Behavioral performance: continuous recognition memory task. Average 

recognition memory performance on dimensions of interest across all 

subjects, as measured by d’. There were no significant differences in 

recognition memory between animate and inanimate objects (p = .2), or 

between large inanimate and small inanimate objects (p = .7). 
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Table 2.1: Behavioral performance on the continuous recognition memory task by 

object category. Significant differences are listed for reaction times (shown here in 

seconds) pooled (correct rejections and hits) for each object category, as well as for 

category differences in overall performance as measured by d’. cr’s indicates correct 

rejections.  
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2.3.2 fMRI 

2.3.2.1 Category 

 

We first tested a model that probed for the presence of category-specific information by 

comparing within versus between category similarity across all categories combined, we 

employed Bonferroni correction for the number of ROIs (3) (Figure 2.5). We found that 

all MTL regions showed sensitivity to category membership (PhC: t(12) = 6.41, p = 

.00006; PrC: t(12) =5.01, p = .0006; HpC: t(12) = 3.67, p = .009 (Figure 2.5). Next we 

examined sensitivity to information about each category individually, asking for each 

category whether the within pattern similarity for that category (across runs) was more 

similar than the between pattern similarity (for that category compared to all other tested 

categories across runs). To adjust for the larger number of corresponding comparisons, 

we employed Bonferroni correction in these analyses. In PhC, we found significant 

effects for buildings (t(12) = 5.62, p = .001), furniture (t(12) = 3.85, p =.02), vehicles 

(t(12) = 4.15, p = .01), and faces (t(12) = 4.23, p = .01). In PrC we found category related 

effects for monkeys (t(12) = 4.28, p < .01), and a trend towards significance for faces 

(t(12) = 3.17, p < 0.08, uncorrected p = 0.007). In the HpC, we only found one category 

that showed a trend towards significance, namely buildings (t(12) = 3.37, p < .06, 

uncorrected p = 0.005).  

 

2.3.2.2 Animacy 

 

In our next set of analyses we turned to domain-level organization of object 

representations based on groupings of multiple categories. Specifically, we asked whether 

MTL regions hold information shared between categories at the domain level of animacy. 

To address this question, we probed whether representations for objects within a domain 

(animate or inanimate, respectively) share more similarity with each other than they do 

with representations from the other domain. In order to remove any impact of category-

level effects (as described in the previous section), we removed the diagonal in this 
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model (Figure 2.5). We found that the representational structure in both PhC and PrC 

reflected the animacy divide (PhC: t(12) = 3.73, p = .002; PrC: t(12)= 3.02, p = .02). By 

contrast, we found no evidence for organization of object representations by animacy in 

the HpC (t(12) = 2.04, p = 0.18) (Figure 2.5).  

 

2.3.2.3 Real-world size 

 

In a further set of analyses, we examined domain-level organization related to the size of 

inanimate objects. To address this question, we probed whether representations for 

objects within the domain of small or large inanimate objects, respectively, share more 

similarity with each other than they do with representations from the other domain. 

Again, we removed the diagonal in this model in order to remove any impact of category-

level effects (Figure 2.5). We found evidence for size related organization in both the 

PhC and HpC (PhC: t(12) = 4.14, p = .003; HpC: t(12) = 4.07, p = .003). By contrast we 

found no such evidence in PrC (t(12) =2.67, p = 0.06) (Figure 2.5).  



51 

 

 

 

Figure 2.4: Representational space for object-evoked responses in the medial 

temporal lobe. Representational similarity matrices for the three MTL structures. 

Matrices show Pearson’s correlations between patterns of activity evoked by each 

object category compared to each other object category. Note that the diagonal 

shows within-category correlations across runs (each run had different exemplars 

from the given category). 
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Figure 2.5: Organization of object-evoked responses in the medial temporal lobe. All 

Bar plots show beta fits between model of organization tested and RSM for each 

MTL structure. a) model of category representation in the MTL. All three 

structures show significant category representation b) model of animacy 

organization in the MTL, PhC and PrC show animacy organization PhC but not 

HpC c) model of real-world size for the inanimate domain, PhC and HpC show 

organization by real world size, we found no such evidence in PrC. Error bars 

indicate standard error of the mean SEM.  
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2.3.2.4 Visualization of representational space  

 

In a final step we visualized the representational space for all object categories in each of 

the ROIs examined using hierarchical clustering (Figure 2.6). This data driven approach 

can be useful in that it can reveal properties that drive the organization of representations 

without any a priori hypotheses (Kriegeskorte et al., 2008). In PhC, the most dominant 

dimension of organization is that that between large inanimate objects and all other 

categories. In PrC, the most dominant dimension of organization is animacy. Unlike in 

PhC, large inanimate objects do not form a separate grouping. Finally, in HpC the most 

notable distinction is that between buildings and all other object categories. 

 

Figure 2.6: Visualization of representational space for object-evoked responses in 

the medial temporal lobe. Hierarchical clustering for all object categories in each 

MTL structure.  
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2.4 Discussion 

 

In the current study we set out to explore the organization of object representations in 

MTL structures and to examine whether dimensions of organization prominent in 

upstream VVS were present in the MTL. Specifically, we asked (i) whether there is 

category specificity in object representations in the MTL, (ii) whether there is domain 

specificity along an animate-inanimate divide, (iii) whether there is specificity in 

representations for inanimate objects related to real-world size, and (iv) whether these 

dimensions of organization differ across MTL structures. We found that similar to VVS 

representational organization, MTL structures display sensitivity to category 

membership, animacy, and real-world size for inanimate objects while participants 

performed a recognition-memory task. Importantly, we also found differentiation across 

MTL structures. PhC showed organization by category, animacy, and real-world size for 

inanimate objects; PrC, by contrast, showed organization by category and animacy, but 

did not show evidence of further size-based distinctions among inanimate objects. 

Furthermore, there were differences in the specific types of categories represented in both 

structures. The HpC was largely agnostic to category membership and displayed no 

sensitivity to animacy, but showed sensitivity to real-world size for inanimate objects. 

Our findings pertaining to category specificity in the MTL replicate and extend previous 

findings in other task contexts. Specifically, a number of studies have reported PrC and 

PhC to be sensitive to object category information. In the present study we identified 

category specificity based on models that revealed significantly higher within- than 

between category similarities in patterns of activity evoked by presentation of objects. 

We found that PrC and PhC showed category specificity for a number of categories, 

while the HpC was not selective for any of the twelve categories consistent with previous 

studies (Huffman 2014; LaRocque 2013; Diana 2008; but see Liang et al., 2013). 

However we did find a trend towards category representation for buildings. In line with 

previous studies showing face specificity (Huffman 2014; LaRocque 2013; Liang et al., 

2013), we also found a trend towards face-specificity in PrC, and in addition PrC 
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represented items from another animate category, monkeys. PhC, by contrast, primarily 

represented items from large inanimate object categories, namely, buildings, furniture, 

and vehicles, but also faces. Some prior studies have reported decoding of faces above 

chance in PhC (Diana et al., 2008; Huffman & Stark 2014; Liang et al., 2013, but see 

Martin et al., 2013) although those using a decoding approach typically report higher 

decoding accuracy in PrC (Liang et al., 2013; Huffman & Stark, 2014). Specificity of 

response patterns for buildings and furniture has previously been reported in PhC during 

recognition memory judgments (Martin et al., 2013). However to our knowledge distinct 

representations for vehicles has not been previously explored in this structure. Taken 

together, our results extend previous findings that relied on a limited number of object 

categories that produce contiguous “blobs” across the VVS using univariate analyses. We 

found distinct representations for several categories in PhC and PrC, in line with findings 

employing representational-based analyses to explore organization across the VVS 

(Haxby et al., 2001; Kriegeskorte et al., 2008; Sha et al., 2015) 

    

The sensitivity to a broader number of categories we report raises interesting questions 

about the principles of organization of object representations in MTL structures. 

Therefore, we also examined whether these structures are sensitive to two prominent 

dimensions that have been investigated extensively in the VVS, namely animacy and the 

real-world size of inanimate objects. To address this issue we examined whether models 

that distinguish animate from inanimate objects across all twelve categories, or between 

large and small objects across the eight inanimate categories, captured aspects of the 

representational space in each MTL structure. Importantly, we evaluated these models of 

animacy and size across MTL over and above any effect of category-based structure. We 

found that object representations in both PhC and PrC, but not the HpC, are organized 

along an animate/inanimate divide, whereas representations in PhC and the hippocampus, 

but not PrC, are organized by real-world size for inanimate objects. To our knowledge 

these findings provide the first evidence that principles of organization of object 

representations differ across all three MTL structures. 
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2.4.1 PrC 

 

PrC is the MTL structure that has most extensively been linked to object processing in 

prior research, however to our knowledge domain-level organization has been somewhat 

less explored. In terms of object processing PrC has been best characterized with respect 

to its role in recognition memory for objects, recent work suggests that object 

representations in PrC also play a critical role in perceptual and semantic tasks (Barense 

et al., 2010; Bussey et al., 2002; Kivisaari et al., 2012, Clarke & Tyler, 2014; Bruffaerts 

et al., 2013; see Graham et al., 2010, for review). However, the organization of object 

representations that support judgements in these tasks has received only limited 

investigation so far. As indicated earlier, it has been reported in a number of studies that 

activity in PrC shows specificity for the category of faces in recognition memory and 

perceptual tasks (Diana et al., 2007; Martin et al., 2013, 2016; O’Neil et al. 2013, 2014). 

To our knowledge, domain-level organization has only been explored previously in tasks 

that require object naming at the basic (rather than exemplar) level. Specifically, it has 

been reported that PrC shows higher levels of activity when participants have to name 

objects that are animate as compared to objects that are inanimate (Moss et al., 2005) and 

there is also evidence that damage to the PrC differentially affects naming for animate 

objects (Wright et al., 2015). This domain-specific pattern of findings has been attributed 

to the fact that animate objects are distinct from inanimate objects at the level of feature 

statistics. Specifically, one important dimension that differs across animate and inanimate 

objects is the amount of feature overlap and feature distinctiveness amongst members of 

those domains. It has been argued that overall animate objects have more feature overlap 

and less distinctive features than inanimate objects (McRae et al., 1997; Devlin et al., 

1998; Moss et al., 1998; Tyler et al., 2000; Tyler & Moss, 2001; McRae and Cree, 2002). 

In these studies feature overlap is typically defined based on listed features that can be 

classified as perceptual or semantic, and the level of representations tapped into by 

naming are at the basic level (i.e., distinguishing a horse from a zebra rather than two 

different horses from each other). These findings are particularly relevant for theories that 

view the PrC as the apex of the VVS, containing highly conjunctive object 

representations that allow for object disambiguation when features are highly 
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overlapping, such as those, for example, between a horse and a zebra. Indeed, an fMRI 

study that employed RSA to examine object representations in PrC found that while 

category-level object information could be identified in more posterior VVS regions, PrC 

uniquely held information at the individual objects level. Specifically, patterns of activity 

evoked by visually presented objects were best modeled by their semantic feature overlap 

(Clarke & Tyler, 2014; see also Bruffaerts et al., 2013) for related findings in PrC based 

on written words denoting different objects). In the context of the continuous recognition 

memory task used in the current study, participants were required to make 

discriminations similar, if not more fine-grained to those required for naming an 

individual exemplar. Namely, the task required recognition of prior occurrence of 

specific exemplars, such as whether a particular building had been presented previously. 

Thus, although our study did not aim to test specific hypotheses about the impact of 

feature overlap on representational similarities, one possibility is that the animacy-related 

organization we report reflects differences on this dimension between the animate and 

inanimate objects we employed.   

 

An alternative, not mutually exclusive account of the sensitivity of PrC to the animate 

inanimate distinction is that it may preferentially process animate objects due to the long 

range connectivity it maintains with other cortical and subcortical regions. The idea that 

large scale connectivity may drive differential sensitivity between stimuli of different 

domains, such as animate or large inanimate objects, has been investigated with regards 

to VVS organization in more posterior regions. Using a data-driven approach with 

resting-state fMRI connectivity data, Konkle & Caramazza (2016) identified three 

distinct resting state networks that ‘route through’ the large domain-preferring tripartite 

regions of VVS. Specifically, animate object preferring regions were more strongly 

coupled with the anterior temporal lobe, small inanimate object preferring regions were 

more strongly coupled with aspects of parietal cortex, and large inanimate object 

preferring regions were more correlated with the medial temporal lobe, as well as early 

visual cortex regions differentially involved in processing stimuli in the peripheral visual 

fields. 
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To our knowledge no studies have looked specifically at long range connectivity in PrC 

that is related to particular object domains or categories. However, several studies have 

examined the resting state connectivity profiles that characterize this structure (Kahn et 

al., 2008; Libby et al., 2012). These studies have shown that PrC shows patterns of 

connectivity that differ from those in PhC. For example, at the whole brain level, PrC 

shows distinct connectivity with other structures within the anterior temporal lobes, 

amygdala, and lateral orbitofrontal cortex. In terms of distinct connectivity with more 

posterior VVS areas, PrC shows higher connectivity with the fusiform gyrus than PhC 

(Libby et al., 2012). These connectivity findings have led to the suggestion the PrC is part 

of a cortical network, referred to as the anterior-temporal network that plays a unique 

functional role in memory and cognition (Ranganath & Ritchey, 2012). It has been 

argued that relative to a posterior-medial system of which PhC is a central component, 

this anterior system is preferentially involved in object recognition as well as processing 

the social and emotional aspects of objects and animate entities, semantic knowledge, and 

reward learning. Interestingly, although the Konkle et al. 2016 did not examine PrC 

specifically, aspects of the anterior temporal lobe were part of a resting state network 

connected to the posterior cortex preferring animate objects in the VVS. Although the 

model does not explicitly consider differences between specific object categories or 

domains, to the extent that the information processed in the anterior system pertains to 

ecologically relevant information, whether something is dangerous, this kind of 

processing may be more relevant to animate objects. As such, the position of PrC in this 

system could offer an account of PrC’s sensitivity to domain-level organization by 

animacy. 

 

2.4.2 PhC 

 

The role of the PhC in object processing during naming and recognition memory tasks 

has been less explored than that of PrC, including evaluating any role of feature overlap. 

In the memory literature, PhC has been primarily explored in terms of its role in scene 

recognition and in context representation in tasks of associative memory (Ranganath & 
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Ritchey, 2012). However, recently, it has been shown that PhC also plays a role in object 

recognition memory, which may be selective for certain types of objects. Specifically, it 

is possible to distinguish whether an object is novel or familiar from patterns of activity 

in PhC for some categories of objects, namely buildings, furniture, and trees (Martin et 

al., 2013; Martin et al., under review). In the current study we also found category 

specificity for buildings, furniture, and trees, and additionally for vehicles. Notably, all of 

these categories refer to large inanimate objects. Beyond this categorical organization, at 

the domain level we observed organization by animacy, and unlike PrC, PhC also showed 

organization by real-world size for inanimate objects. This is notable because the PPA (or 

parahippocampal place area), which includes a portion of posterior PhC, has also been 

shown to have higher levels of activity for inanimate objects, even when contrasted with 

shape-matched animate objects (Proklova et al., 2016). Moreover, a number of studies 

have demonstrated that the PPA is more active for large than for small objects (Konkle et 

al., 2013; Aguirre et al, 1998; Julian et al., 2016 ), and most similar to our findings, that 

patterns of activity in the PPA distinguish between large and small objects (Julian et al., 

2016).  

 

As in our discussion pertaining to PrC, it is informative to consider the long-range 

connectivity of PhC in relation to the category and domain level organization reported 

here. Resting state connectivity studies at the whole brain level have shown that PhC is 

differentially connected to the retrosplenial cortex (RSC), posterior cingulate, precuneus, 

parietal cortex, and ventromedial prefrontal cortex, the thalamus. In addition, PhC is also 

more strongly connected to posterior medial occipital cortex as well as early visual areas 

(Libby et al., 2012). In light of these resting-state connectivity findings, it has been 

suggested that PhC is a component of the posterior medial network, with a functional role 

in memory and cognition that differs from that of the anterior-temporal network that 

includes PrC. These findings generally align with the Konkle et al. 2016 findings that 

large inanimate object preferring cortex in the medial VVS is highly connected to 

peripheral early visual areas, as well as MTL (although not clearly specified whether it is 

the posterior portion of the parahippocampal gyrus, it is distinct from the anterior 

temporal area more highly connected to lateral animate VVS cortex).  It has been argued 
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that this network is important for representing context in episodic memory and episodic 

simulation, as well as in spatial navigation (Ranganath & Ritchey, 2012). One possibility 

is that the sensitivity of PhC to the animacy divide we report here is linked to differential 

processing of large inanimate objects that are important for navigation, or are more likely 

to serve as episodic context. Compared to animate objects, large inanimate objects often 

evoke a stronger sense of surrounding space (Mullally & Maguire, 2011), and when 

stable, can also serve as landmarks (Martin et al. under review; Janzen & van Turennout, 

2004; Troiani et al., 2013). From this perspective, animacy plays a role in the 

organization of object representations in PhC because large inanimate objects share 

dimensions important for the general functions of a posterior-medial cortical system. 

 

2.4.3 HpC 

Interestingly, in our data we found that the HpC shows no sensitivity to the animacy 

divide and no clear-cut categorical representations of objects, although we observed a 

trend for the representation of buildings. Similar to PhC, the HpC was sensitive to the 

distinction between large and small inanimate objects. The lack of clear cut category-

specific representation in our findings is in line with previous suggestions that the HpC is 

agnostic to the nature or content of its representations at the item level. The agnosticity of 

the HpC has been attributed to its unique role in pattern separation of episodes (Huffman 

& Stark, 2014). According to this reasoning, the result of hippocampal pattern separation 

is that representations in the HpC are more dissimilar to each other than those in PrC and 

PhC, leading to the loss of specificity in organization by category that is present in these 

input structures. However, the evidence for domain-level organization related to size we 

report here suggests that the HpC may not be entirely insensitive to content.  

 

There is substantial evidence for a role of the HpC in scene perception and construction 

(Hodgetts et al., 2016; Lee et al., 2005; Barense et al., 2015; Zeidman et al., 2015; for 

review see Murray et al., 2017). For example, it has been demonstrated that the HpC is 

more active during perceptual oddity tasks for scenes than for other types of stimuli (Lee 

et al., 2008). Hodgetts et al. (2016) found clusters of activity in the HpC that are higher 
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for scenes than for other stimulus categories (faces, objects) while participants performed 

a 1-back task, and these clusters appeared as reliably as clusters in the traditional scene-

processing network (including PhC, RsC, and Transverse occipital sulcus). Based on 

these results, the authors suggested that the HpC should be considered as a component of 

the core scene processing network. Implied with this argument is the notion that the HpC 

is not entirely agnostic to stimulus content. More recent work by this group of researchers 

has provided some evidence to explain why some studies find evidence for differential 

involvements in scene processing and other do not (Hodgetts et al., 2017). In that fMRI 

study, conducted with ultra-high resolution, sensitivity to scene stimuli could be more 

precisely localized to a specific subfield of the HpC, namely the subiculum, with other 

subfields staying agnostic. It is possible that the sensitivity to real-world size of objects 

reported here, together with the hint for category specific representations for buildings in 

HpC are a result of similarities between large objects and scenes that are of particular 

relevance to processing in the subiculum.  

 

2.4.4 Conclusion 

 

Together, our findings show that stimulus properties that influence the representational 

structure of object information in the VVS also shape the organization of highly-specified 

object information in PRC, PHC, and the HpC. Moreover, they reveal that this 

organization differs across these MTL structures. An important direction for future 

research will be to test how differences in large-scale connectivity can account for these 

different organizational principles across structures, and how they relate to specific 

functional and perceptual properties of objects that differ across domains and categories. 

Other critical questions that deserve further investigation concern the extent to which 

these principles of organization are stable across different tasks and behavioral goals. 
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Chapter 3  

3 Organization of recognition memory signals for objects 
in the medial temporal lobes  

3.1 Introduction 

 

Recognizing the objects around us, and knowing whether those objects are novel or 

familiar, are crucial aspects of human behavior. The importance of these abilities become 

starkly apparent when they are lost, for example when the ability to identify an object is 

lost, such as in cases of object agnosia, or when the ability to remember an object is lost, 

for example in cases of severe amnesia where an individual may no longer recognize the 

faces of family members. Much work has been done exploring how our brains enable us to 

identify objects (object recognition, for a review see Grill-Spector & Weiner, 2015; Kravitz 

et al., 2013) and remember objects (object recognition memory, for a review see: Winters 

et al., 2008), but a number of issues remain, particularly with regards to the relation 

between our brain coding for what an object is, and whether that object is novel or familiar.  

 

Both object recognition and object recognition memory depend on processing in the 

ventral visual stream, an information processing stream running from the primary visual 

cortex through the inferior temporal lobe to the temporal pole (Grill-Spector & Weiner, 

2015; Kravitz et al., 2013). Interestingly, there appears to be a distinction between a more 

general level of object recognition - i.e. recognizing that an object is a face, and 

recognizing that that face is a distinct entity (i.e., the face of your mother in law). This 

latter ability - recognizing a distinct face, is thought to be tightly linked to detecting 

whether that face is familiar or novel, and the representation of distinct objects, as well as 

recognition memory for objects, both appear to depend on the more anterior medial 

aspects of the VVS (Cowell et al., 2006; Murray and Bussey, 1999; Bussey et al., 2007; 

O’Neil et al. 2009; 2007).  

 

A detailed account of this posterior to anterior distinction between object recognition at 

the category level (i.e., “a face”), object recognition at the exemplar level (i.e., a specific 
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face), and object recognition memory comes from representational-hierarchical theory. 

According to this view, the specificity of an object representation increases from the 

more posterior aspects to the more anterior aspects of the VVS. The medial temporal 

lobes form the apex of the processing stream, and, accordingly, contain the most highly 

specific object representations, those that correspond to the unique combination of 

features that form distinct objects or entities. Further, these representations are the kind of 

representation needed to recognize an object not just for what it is (i.e., face of a specific 

individual), but for whether or not that distinct object is familiar (i.e., whether you have 

seen that face before). Support for this theory comes from a large body of evidence 

showing that one MTL structure, the perirhinal cortex (PrC), is crucial for object 

recognition memory. For example, the PrC is sensitive to the novelty or familiarity of 

objects, over longer time scales than earlier VVS areas (Fahy et al., 1993). In addition to 

object recognition memory, PRC is involved in object perception, particularly in cases 

when one is required to make fine-grained perceptual or conceptual distinctions (Clarke 

& Tyler, 2014; Kivisaari et al., 2012; Moss et al., 2004, Barense et al., 2007). 

Interestingly, there is some evidence that, like more posterior areas, distinct object 

representations in PrC are organized by category and domain (Liang et al., 2012; Litman 

et al., 2010; LaRocque et al., 2013; Huffman & Stark, 2014; Diana et al., 2008; 

Blumenthal et al., under review; Martin et al., 2013, 2016, 2017).   

 

While PrC has primarily been the focus of object processing in the MTL, some evidence 

suggests the parahippocampal cortex (PhC) is also involved in object processing, 

although these studies have mostly been limited to looking at faces or undifferentiated 

object categories (Liang et al., 2012; Litman et al., 2010; LaRocque et al., 2013; Huffman 

& Stark, 2014; Diana et al., 2008). In the previous chapter we found categorical object 

representations in PhC for faces, and for four large inanimate object categories 

(Blumenthal et al., under review), and other work from our lab has shown memory 

signals for object categories in PhC that are partially distinct from PrC (Martin et al., 

2013, 2016, 2017), specifically for buildings and furniture, whereas PrC signals are for 

faces and furniture. The hippocampus, on the other hand, appears to be involved 

primarily in associative memory (i.e., object and scene), as opposed to object memory 
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alone; however some reports have shown distinct coding for scenes in the hippocampus 

(Liang et al., 2012). While we did not find category specificity for object representations 

in the hippocampus (although buildings was trending), we did find that object responses 

in the hippocampus are sensitive to the distinction between large and small inanimate 

objects (see Chapter 2). Therefore, whether object memory is computed in all three MTL 

structures, and whether this differs across structures based on their category and domain 

organization related to stimulus processing, has yet to be thoroughly explored. 

 

A number of open questions remain concerning the exact relation between the 

organization of distinct object representations related to stimulus processing, and coding 

of those objects in memory signals. More specifically, it is not yet understood how object 

memory is computed in these structures, in particular whether memory is tightly linked to 

stimulus information, such as category or domain, or if there is a more general memory 

code computed across all object types. Finally, understanding how memory status, 

whether it be category/domain specific or more general, is implemented in MTL 

structures, may aid in gaining a mechanistic account of memory signaling. One way to 

explore this is to evaluate whether object memory is coded by average decreases or 

increases in neural response within a structure, or by systematic changes in the patterns of 

activity evoked by new or old objects.  

3.1.1 Category-specific memory signals 

 

In two studies, Martin et al. (2013, 2017) examined whether novel and familiar object 

representations could be distinguished from each other in PrC, PhC, and HpC, and 

whether this distinction differed across structures based on object categories. In both 

studies, they employed a study-test paradigm. Specifically, participants completed a 

study session outside of the scanner, during which they viewed a large number of objects 

from three categories. Participants then completed a test phase in the scanner. In the test 

phase participants were shown objects from the study list, and novel objects from the 

same category, and asked to respond as to whether the object was novel or familiar. A 

linear classifier was then trained to distinguish between brain activity patterns evoked by 
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perceived novel and familiar stimuli within a category, and tested on a separate set of 

novel and familiar stimuli within that category. In the first study, the object categories 

employed were faces, buildings, and chairs, and in the second study, trees, planes, and 

chairs. It was possible to successfully decode object memory status within each category 

in the MTL, and this differed across MTL structures. Specifically, in PrC it was possible 

to classify novel from familiar faces, chairs, and planes, whereas in PhC it was possible 

to classify novel from familiar chairs, buildings, and trees. It was not possible to classify 

object memory status for any category in the hippocampus. Importantly, this 

classification between novel and familiar objects was only possible in a category-specific 

manner. In other words, a classifier trained on novel and familiar stimuli from one 

category, say faces, could not successfully classify stimuli from another category, such as 

chairs. While object memory status has been previously explored in PrC, to our 

knowledge there is little other work that addresses this issue in PhC; these results are 

novel in that they show PhC also computes object memory for some object categories. 

One possibility, as the authors suggest, is that the PhC is specialized for navigationally 

relevant object categories, objects that are generally large and stable, such as trees, and 

buildings, and to a lesser degree furniture. Planes, even though they are large, due to their 

frequent movement, do not serve as landmarks, and object memory signals for this 

category were found in PrC and not PhC. It is also notable that there appears to be a 

gradient and not a sharp distinction between structures, with memory signals for furniture 

being decodable in both structures. While these results suggest interesting differences in 

object memory representation between structures, exploration with a larger number of 

categories that differ across domains could help to further map out these distinctions. 

Additionally, the finding that decoding was category specific opens up the question as to 

whether this is a general property of how these structures are organized and contribute to 

memory. Therefore, it is important to see whether memory signals are category specific 

for a larger number of categories, as well as domain specific, and whether this is a 

general property in the organization of these regions, or varies by task-space.  
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3.1.2 Coding of memory signals  

 

A wealth of research has shown that PrC plays a critical role in object recognition 

memory in humans, non-human primates, and rodents (Brown et al., 2001; Murray et al. 

1999, 2007; Winters et al. 2004). Much of this work suggests that PrC codes for object 

novelty or familiarity through repetition suppression - or a decrease in neural response 

upon repeated exposure (or a decrease in response for a previously familiar stimuli). 

Recordings from monkey PrC have shown that subpopulations of neurons in PrC show 

decreases in activity for repeated stimuli on a continuous recognition memory task (Fahry 

et al., 1993), as well as on delayed-match to sample or non-match to sample tasks, where 

some objects incidentally become familiar across trials (Li et al., 1993; Miller et al., 

1993). Interestingly, PrC neurons have been reported that show a rapid single-trial 

decrease in firing (Fahry et al., 1993). In addition to this rapid responsiveness, neurons 

have been reported that continue to show decreases in response even after a number of 

intervening stimuli, and after delays as long as 24 hours (Fahry et al., 1993; Xiang & 

Brown, 1998). This sensitivity to object repetition at longer time-scales, such as 20+ 

trials of intervening stimuli, or 24 hour delays between recording sessions, differentiates 

repetition responses in PrC from more posterior VVS areas that show repetition only over 

short delays of a few seconds (Miller et al., 1993). Xiang and Brown (1998) categorized 

these PrC neuronal responses into 3 types: neurons that respond to recency of stimuli 

presentation (recency neurons), neurons that respond to familiarity (repeated exposure 

prior to testing), and novelty neurons. While both recency and familiarity neurons 

showed distinct decreasing response profiles, interestingly, in some cases, when stimuli 

became highly familiar over 20 presentations, a subpopulation of neurons actually 

showed differential increases in response. In fact, while decreases, or repetition 

suppression, have been most widely reported, other studies have reported increases. 

Miller et al. (1993) reported that some PrC neurons showed increased firing after 

hundreds of presentations of the same items in a DMS task, and Li et al. (1993) showed 

that on a DMS task, a small population of neurons (relative to those that showed 

decreases in response) showed increases, in conjunction with overall increases in baseline 

firing. These electrophysiological studies show compelling evidence that PrC neurons are 
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sensitive to object memory status, potentially for long-term memory, however a precise 

understanding of  how these memory differences are coded (by increases, decreases, or a 

combination) remains an open question.  

 

A further challenge is linking these findings to the human fMRI literature. Similar to 

electrophysiological findings, changes in overall levels of neural activity as measured 

with BOLD have been shown to differentiate novel from repeated stimuli. In a meta-

analysis of 48 fMRI studies, Kim (2011) showed that the bilateral medial temporal lobe 

reliably shows decreased activity when contrasting activity during hits (correctly 

identified old objects) with correct rejections (correctly identified new responses). 

Importantly, robust repetition suppression for object stimuli,  as measured by BOLD 

decreases,  has been reported in studies focusing on PrC (Heusser et al., 2013; Duke et 

al., 2017; Wang et al., 2014), but has also been reported in both PhC and PrC (Yassa & 

Stark, 2008; Gonsalves et al., 2005) in whole brain analyses. In PrC, these decreases in 

activity have been found to parametrically track repetition (Yassa & Stark, 2008; Duke et 

al., 2017), similar to the recency responses described in the electrophysiology literature. 

In PhC and PrC, decreases in response to old stimuli during retrieval track the strength of 

recognition memory, and in PrC decreases have also been shown to relate to implicit 

conceptual priming (Heusser et al., 2013; Wang et al., 2014). However, much like in the 

animal electrophysiology literature, the picture is more complicated - increases in activity 

related to repetition or familiarity have also been reported. Yassa and Stark (2008) 

showed that in a continuous recognition memory task, an area in anterior PRC shows 

decreases related to repetition, while an area in posterior PrC shows increases in BOLD 

response that track memory strength. Finally, Duke et al. (2017) showed that while 

recency is tracked by PrC suppression, the same area of PrC shows parametric increases 

with lifetime familiarity for an object.  

 

The above results are based on a univariate analysis approach to evaluating how PrC 

codes for memory. An alternative approach is to ask whether pattern based distinctions 

between novel and familiar stimuli are driven by increases, decreases, or a combination 

of both. This is particularly relevant in mvpa approaches given that a classifier can 



76 

 

 

leverage any of these changes to distinguish novel from familiar object evoked responses. 

To explore this, Martin et al. (2016) conducted a follow up study using the same data that 

showed category-based memory signals in PrC for faces, houses and chairs (Martin et al., 

2013). They addressed this question by selecting voxels in PrC that showed the greatest 

decreases, increases, or absolute changes between novel and familiar face presentations, 

and running the classification analysis using these voxels. All three forms of feature 

selection led to above chance classification between novel and familiar faces. However, 

interestingly, only classification accuracy using a combination of voxels that showed 

increases and decreases correlated with recognition memory performance across 

participants, with better classification correlating with better discrimination between 

novel and familiar faces. These findings suggest that memory signals are coded by both 

increases and decreases, however as the results are specific to faces in PrC, further 

research is required to understand whether this is true for a number of categories in 

different MTL structures.  

 

3.1.3 Goals of the current study 

 

In the current study, we replicated and extended Martin et al. (2013, 2016, 2017). We 

examined whether category-specific memory signals for a broad number of categories 

were present in MTL structures, and whether this category-specificity in the memory 

signal differed across structures. Additionally, based on our findings that object responses 

are organized by the domains animacy and real-world size during stimulus processing, 

we explored whether there were domain-specific memory signals, and whether this 

organization differs across MTL structures. We hypothesized that structures that 

represented a certain category in general would also show category-specificity in the 

memory signal, and further, structures that showed a domain organization in general 

would also show domain-specific memory signals. In Chapter 2, we evaluated object 

evoked response patterns regardless of memory status, and found that PhC distinctly 

represented faces, buildings, furniture, trees, and vehicles, whereas PrC represented 

monkeys, and at a lower statistical threshold faces, and the HpC showed no category 
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specificity, other than a trend for representing buildings. Based on these findings, we 

predicted that we would also find category-specificity in memory signals for these 

categories in each structure. Expanding on the idea that memory signals are stimulus 

specific, or at least category specific in nature in the MTL, we also asked if memory 

signals carried domain specific information, and whether this varied by the domain 

organization in each MTL structure. Specifically, based on our domain-level findings in 

Chapter 2, we hypothesized that it might be possible to distinguish novel from familiar 

patterns of activity within the animate or inanimate domains in PrC and PhC, and novel 

from familiar patterns within large or within small inanimate objects in PhC and the HpC. 

We took advantage of the continuous recognition memory task data used in Chapter 2 to 

explore these questions. Importantly, unlike in study-test paradigms where novel and 

familiar stimuli in the test phase are necessarily different subsets of stimuli, in a 

continuous recognition task stimuli are identical - the only difference is the memory 

status of that item. This design optimally ensures that distinctions between novel and 

familiar stimuli are due to memory status, and not to any perceptual or image-based 

differences between stimuli sets. We utilized the advantage of this design to investigate 

whether or not memory signals reflected category or domain, as well as to explore 

whether or not these distinctions were coded by repetition suppression, average increases 

in activity, or by changes across patterns of activity. Further, we asked whether pattern 

based changes were the result of average increases, decreases, or the pattern across 

increases and decreases. In the first set of analyses, we isolated memory signals for each 

category in each MTL structure, and asked whether the representational space of these 

memory signals were organized by category and domain. In the second set of analyses, 

we asked whether it was possible to distinguish novel from familiar object evoked 

responses within a category or within a domain in each structure. In the final set of 

analyses, we asked whether there was repetition suppression for each category in each 

ROI, and whether there was a change above and beyond repetition suppression in the 

patterns of activity for novel and familiar objects. 
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3.2 Materials and methods  

The data used in the current study are the same data used for a separate study, “Animacy 

and real-world size shape object representations in the medial temporal lobes” which was 

described in Chapter 2 of the current thesis. Therefore, please refer to the Chapter 2 

methods section, for information on participants, stimuli, experimental procedures, and 

image acquisition, which are identical. Importantly, in the current study the data were 

modeled differently. In general, multivariate analyses employed in the current study were 

highly similar to those described in Chapter 2, but procedures differed in some details in 

order to explore questions related to the memory status of object representations. 

Therefore, new methods sections are outlined below.   

3.2.1 Neuroimaging analyses  

3.2.1.1 Pre-processing and modeling 

fMRI data were analyzed using SPM8 (Welcome Institute of Cognitive Neurology; 

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/), employing an analysis pipeline as 

implemented in the automatic analysis system (aa) 

(www.github.com/rhodricusack/automaticanalysis), (Cusack et al., 2015). Functional data 

were motion corrected and high pass-filtered to remove low frequency noise (drift); slice-

time correction was not implemented due to the use of a multiband sequence. Four 

dummy scans at the start of each session were discarded to allow for T1 relaxation. 

Functional Images were then co-registered with participant-specific anatomical images. 

Following co-registration an MVPA pipeline was initiated in aa, co-registered images 

were kept in native space for each participant, and no spatial smoothing was applied in 

order to preserve high-spatial resolution. Functional data were convolved using a 

canonical hemodynamic response function. In order to explore memory signals, only 

trials in which the participant responded correctly on the 1st exemplar presentation 

(novel) and correctly on the 2nd presentation of the exact same exemplar (familiar) were 

modeled and included in the analysis. With this procedure, any comparisons between new 

and old stimuli differ only in memory status, since all images are identical. Regressors 

comprised the onsets and durations of these stimuli (onset + 1200ms).  While 

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://www.github.com/rhodricusack/automaticanalysis


79 

 

 

performance was high overall, for some participants, on some runs there were no trials in 

a certain category condition (e.g., “familiar faces”). In order to have enough power to 

model conditions with this performance criteria, modeling was collapsed across odd (1, 3, 

5, 7) and even (2, 4, 6) runs. Therefore, regressors were modeled at the category level for 

novel and old stimuli for odd runs and for even runs, for a total of 24 regressors per odd 

runs (e.g., “novel faces”, “old faces”, etc.) and 24 regressors for even runs (e.g., “novel 

faces”, “old faces”, etc.).With this modeling, beta estimates for each category were 

derived based on a maximum of 16 exemplars for novel, and 16 exemplars for familiar 

for odd runs, and 12 exemplars for novel and 12 exemplars for familiar for even runs 

(assuming the person was correct on every trial for that category), but differed based on 

subject’s performance. Regressors of no interest included 6 motion regressors. Beta 

estimates derived from these models were either subjected to a univariate contrast, after 

which the contrast values were used as input to the multivariate analyses, in the first set 

of analyses described, or were directly used as input for multivariate analyses, for the 2nd 

set of analyses described. Due to the high level of control, i.e., only modeling stimuli in 

which participants were correct on both exemplar presentations, we necessarily had less 

trials to model than in previous analyses (those described in chapter 1). Therefore, we 

later ran the identical set of analyses using data modeled on all correct novel and familiar 

stimuli, in order to ensure that the results were not due to power issues. We found that the 

results replicated, and therefore we report only the results from our targeted analysis 

based on trials in which participants correctly identified the novel and familiar exemplar. 

Medial temporal lobe ROIs were demarcated manually for each participant on the high-

resolution structural images in native space, using the anatomical protocols published by 

Pruessner et al. (2000; 2002) with adjustments to the posterior border of PhC as specified 

by Franko et al. (2014). 

3.2.1.2 Feature-selection: Isolating memory signals 

An important goal of the current study was to isolate brain activity patterns that 

corresponded to the memory component of the signal. With this in mind, we designed a 

continuous recognition memory task. Most traditional memory studies that employ a 

study-test paradigm, and evaluate activity at test for the familiar (i.e., studied) items, 
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compared to a different set of novel items. In contrast, in a continuous recognition 

memory task, novel and familiar stimuli are identical. The benefit of this approach is that 

any differences between novel and familiar stimuli must be due to their memory status 

alone, since there are no visual stimuli differences. We reasoned that in terms of brain 

activity, any difference in response between correctly identified novel (1st presentation) 

and correctly identified familiar (2nd presentation) trials of the same exemplar would 

correspond to the “memory” component of the response. Therefore, in our first set of 

analyses, to isolate the memory signal for each category, we conducted a univariate 

contrast between novel and familiar objects for each category, on a subject by subject 

basis, for odd runs and for even runs. This contrast was conducting using all voxels in 

each predefined ROI (PrC, PhC, and HpC), and resulted in 12 “memory signals” or 

contrast values across new and old objects for each category for odd runs, and for each 

category for even runs. Four different feature selection approaches were run using these 

contrast values. In the first schema, contrast values for all voxels were included in the 

analysis. In the second approach, in each ROI we selected the 20% of voxels with 

contrast values that showed the largest absolute difference between novel and familiar 

stimuli, in other words, voxels that showed the largest change between conditions 

regardless of direction of change. This was motivated by previous work in our lab 

showing that both increases and decreases in activity across voxels in PhC and PrC 

correlates with recognition memory behavior (Martin et al., 2013, 2016). In the third 

selection schema, motivated by the large literature on repetition suppression, or decreases 

in activity levels in response to repetition, we included the 20% of voxels in each ROI 

that showed the largest decrease across first and 2nd presentation. For the fourth feature 

selection schema, based on studies that show increases with repetition or familiarity, we 

included the top 20% of voxels that showed the greatest increases between novel and 

familiar stimuli. These methods of feature selection allowed us to explore whether 

increases, decreases, or a combination of both characterize memory signal in MTL 

structures.    

 



81 

 

 

3.2.1.3 Representational similarity analysis: Exploring organization 
of memory signals 

 

After extracting patterns of activity across voxels in each ROI that corresponded to the 

memory signal in each category, we used these category-based memory patterns as 

features (or input) to our multivariate analyses (Kriegeskorte et al., 2008). 

Representational similarity analyses were identical to those described in Chapter 2, with 

the important distinction that these analyses were now conducted on the memory signals, 

or difference in activity between novel and familiar, as opposed to modeled on the 

activity in response to stimulus presentation regardless of memory status. Additionally, 

unlike in Chapter 2 where we were able to model categories in each of the 7 runs and 

compute between run correlations, here we modeled stimuli in odd and even runs, and 

computed correlations for category memory signals between the odd and even runs. 

Importantly, similar to the between run approach used previously, computing correlations 

across odd and even runs ensured that comparisons were not made across regressors with 

close temporal proximity (Linke et al., 2011).  

 

To explore the memory-signal representational space in each ROI, for each participant, 

we computed the Pearson’s correlation for each category memory signal compared to 

itself, as well as to each other category memory signal. This resulted in a 12 x 12 

representational similarity matrix (RSM)  of the memory signal for each participant, for 

each ROI, with within category similarity values (between odd and even runs) on the 

diagonal, and between category information (between odd and even runs) on the off 

diagonal. RSM’s were then averaged across participants, resulting in a final group 

similarity matrix for each ROI (see Figure 3.1). For visualization purposes, group RSMs 

were ordered in the following way: animate objects, small inanimate objects, and large 

inanimate objects. We then tested whether the memory signal itself reflected the 

categorical and domain level organization that was present when modeling brain activity 

patterns in response to stimuli regardless of memory status (see Chapter 2). As in our 

previous study, we asked whether the representational space was modulated by category, 

animacy, and size within inanimate objects. To do this we created linear models 
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(predefined contrasts) specifying which RSM correlation values were to be subjected to a 

t-test (see Figure 3.2). These analyses were performed on data in single-subject RSMs, 

with the group statistics calculated from the average results.   

 

We first asked whether there was evidence of a category-level organization of the 

memory signals in each ROI. To test for this, identical to our approach in Chapter 2, we 

defined a contrast of category representation (see Chapter 2 Figure 2.5), in other words a 

linear model where all within category (diagonal) memory signal patterns were more 

hypothesized to be more highly correlated than between category memory signal (off 

diagonal) patterns. In the initial analysis, we tested an omnibus contrast (i.e., model) that 

probed for the presence of any category-specific information in each ROI. We then tested 

for information relating to each of the 12 categories individually. Specifically, we tested 

whether the patterns of the difference signal, across voxels were more similar within each 

category than between that category and the 11 other categories. Importantly, this 

analysis allows us to evaluate whether memory signals are organized categorically.  

 

In our second set of analyses, we asked whether or not the animate versus inanimate 

object distinction that we found to shape the organization of object representations in the 

MTL in our previous set of analyses was also present in the object-category memory 

signals. Specifically, we tested whether the memory signals for each category,  when 

compared to other categories within their domain,  still showed domain level similarities 

in correlations (i.e., whether memory signals within animate objects and within inanimate 

objects were more similar to each other than between domains) (see Chapter 2, Figure 

2.5). We hypothesized that the same areas that showed sensitivity to animacy in our 

previous analyses (PhC and PrC) while viewing stimuli without isolating a memory 

component, may also show domain organization in the memory signal. Importantly, in 

these analyses we removed the diagonal from our model in order to discard any possible 

influence of within-category memory similarities.  

 

In our third and final set of analyses, we asked whether real world size is an organizing 

dimension for memory signals within the domain of inanimate objects in MTL. 
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Specifically, we hypothesized that PhC and HpC memory signals might be sensitive to 

size, as these areas were sensitive to real-world size for stimuli irrespective of memory 

status. Here, we divided inanimate objects into groups of small or large objects, large 

objects included trees, furniture, vehicles and buildings, and small objects including fruit, 

flowers, musical instruments, and tools. This analysis was identical to the previous one, 

except that within versus between similarities were computed across all categories of 

large or small inanimate objects (see Chapter 2, Figure 2.5). As in the analyses on 

animacy described above, we did not include the diagonal when testing this model.  

 

3.2.1.4 Representational similarity analysis: Exploring perceived 
memory status 

 

In our first set of analyses described above, we isolated object category memory signals 

and explored the representational space of those signals. In particular, we asked whether 

the memory signals themselves reflected stimulus category and/or domain information. In 

the second set of analyses we explored the same question - whether object memory in 

these regions is organized categorically or by domain, employing a different approach. In 

this approach we did not conduct a contrast between old and new category responses, but 

instead asked if we could distinguish between old and new object presentations at the 

category or domain level. To do this we computed Pearson’s correlations between 

patterns of activity evoked across all voxels for all novel categories and all familiar 

categories (using correct responses on both exemplar presentations as previously 

described) for each subject in each ROI, resulting in a 24 X 24 matrix, with novel objects 

consisting of the first 12 cells (in order by animacy and size for inanimacy) and familiar 

objects for the last 12 cells. We then asked, for each category, whether you could 

distinguish perceived novel from perceived familiar conditions, by hypothesizing that 

patterns of activity for novel objects for that category would be more similar to each 

other, than to patterns of activity for familiar objects in the same category, and vice versa. 

Finally, we asked whether we can distinguish novel from familiar patterns of activity 

within our domains of interest. Specifically, we asked whether patterns evoked by novel 
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animate objects were more similar to each other than to patterns evoked by familiar 

animate objects, whether patterns evoked by novel inanimate objects were more similar 

to each other than patterns evoked by familiar inanimate objects, and lastly whether 

patterns evoked by novel large and small objects were more similar within the novel 

presentations than old, and vice versa. These hypotheses were tested using a linear 

models (see Figure 3.3) that were then regressed onto the RSM, in an identical approach 

to the analysis described in the previous chapter, but now comparing novel and old 

patterns of activity. As in the previous analyses, we removed the diagonal in our domain 

level models. Lastly, we asked whether or not you could distinguish between novel and 

familiar object presentations across all object categories (see Figure 3.3).  

 

3.2.1.5 Across-category memory signal: repetition suppression 

 

To foreshadow the results of the set of analyses just described, we found that for all 

ROI’s it was not possible to distinguish between novel and familiar object responses 

within any category, or within any domain. However, we did find that it was possible to 

distinguish novel from familiar responses across all object categories. One possible 

explanation of this general effect is that the pattern distinction is driven by a repetition 

effect, or a change in average signal response across all voxels within an ROI. Previous 

work has shown that pattern similarity is affected by average changes in the signal across 

conditions, specifically, when using Pearson’s correlations as a similarity measure; higher 

levels of activity can increase pattern similarity by shifting the origin of the patterns 

closer together (Walther et al., 2015). Therefore, we explored whether there was evidence 

for repetition suppression in each of our ROI’s, and whether repetition suppression, 

defined as an average decrease in activity upon second repetition, could account for the 

differences in similarity between new and old patterns in their entirety. To explore this 

issues, we used Euclidean distance as a similarity measure in combination with a per-

voxel pattern demeaning method within our conditions of interest (novel and familiar), 

which allowed us to effectively remove any effect of average activity levels on pattern 

similarity (Walther et al., 2016).  First, to evaluate whether there was repetition 
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suppression, we compared the Euclidean distance for each novel and familiar category 

relative to 0 (baseline) (Figure 3.4), and computed a t-test for novel response vs. familiar 

response across all object categories, and for each object category compared to itself, in 

each ROI.. After evaluating whether each ROI shows significant repetition suppression, 

we then performed pattern demeaning to remove the average change in activity across 

novel and familiar conditions. Specifically, within the novel condition and within the 

familiar condition, we subtracted the mean activity level across all categories on a voxel 

by voxel basis before computing a Euclidean dissimilarity matrix, which we then tested 

with our linear model that specifies a distinction between novel and familiar responses 

across all object categories (Figure 3.3).   

 

3.3 Results 

3.3.1 Behavioral 

 

A full table reporting d’ and reaction times for all correct rejections (novel trials) and hits 

(familiar trials) can be seen in Table 2.1 of chapter 1.  

 

3.3.2 fMRI results 

3.3.2.1 Representational similarity analysis: Exploring memory-
signal organization 

 

In our first set of analyses, we isolated the memory signal for each category by 

conducting a univariate contrast between novel and familiar objects in that category. We 

then used these differences, or contrast values, as input to our representational similarity 

pipeline. Specifically, we computed correlations between memory signals within and 

between all categories in each participant for each ROI, and averaged these memory 

signal RSMs across participants. Figure 3.1 shows the average memory signal RSM, or 

representational similarity matrix for each MTL ROI examined (PrC, PhC, and HpC). 
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The RSMs displayed here and subsequent analyses reported include all voxels in each 

ROI, but analyses were also conducted with initial feature selection, using the 20% of 

voxels showing the greatest change between novel and familiar trials, the greatest 

decrease between novel and familiar trials, or the greatest increase between novel and 

familiar trials. However since results did not differ, data are reported for only the first 

feature-selection approach in which we included all voxels. We then asked whether there 

was an effect of category in each ROI, by testing a model of higher within-category than 

between-category similarity. We found no evidence of category representation in any 

ROI (PhC = t(12) = 1.02, p=0.32, PrC =t(12) =0.64, p = 0.53, HpC = t(12) = -0.36, p = 

0.72). Individual category tests, in which we tested within category compared to between 

category similarity (12 tests) also revealed no significant effect for any ROI (see Table 

3.1). Lastly, we tested whether memory signal representational space was organized by 

domain. We tested a model of animacy and a model of real-world size for inanimate 

objects (see Figure 2.5, Chapter 2). Results were not significant in any ROI for either 

animacy organization (PhC = t(12) = 0.88, p=0.39, PrC =t(12) = 0.48, p = 0.63, HpC = 

t(12) = 0.63, p = 0.54), or real-world size organization for inanimate objects (PhC = t(12) 

= -0.73, p = 0.48, PrC =t(12) = 0.46, p = 0.65, HpC = t(12) = -1.46, p = 0.17) .  
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Figure 3.1: Recognition-memory signal representational similarity analysis for MTL 

structures. Pearson’s correlations between object memory signals (univariate 

difference between novel and familiar stimuli) for each of the 12 categories 

compared to each other, warmer colors indicate a higher similarity.  
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Table 3.1: Results from category specific linear contrast tests on the recognition-

memory signal in each MTL structure tested. The beta indicates the fit between a 

within-versus between linear contrast on the memory signal RSM, results are 

Bonferroni corrected for multiple comparisons (12 category tests for each ROI). 
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3.3.2.2 Representational similarity analysis: Exploring perceived 
memory status 

 

In our second set of analyses, we addressed the same question, i.e., whether or not the 

memory component of the signal in MTL contained category or domain information, 

using a different approach. Specifically, we tested whether it was possible to distinguish 

novel and familiar patterns of activity within categories or within domains. For each 

category, we tested a model that novel object evoked patterns from that category would 

have more similarity to each other as compared to familiar object evoked patterns, and 

vice-versa (Figure 3.2). We were not able to distinguish perceived novel from familiar 

evoked responses for any of the 12 categories in PhC, PrC, or HpC. Next we asked 

whether it was possible to distinguish novel from familiar object evoked responses within 

domains (e.g., whether novel animate objects evoke more similar patterns of activity to 

each other than to old animate objects) (Figure 3.2). We also found no evidence of a 

distinction in activity patterns by perceived memory status for animate object categories 

(PhC = t(12) = -1.91, p = .08, PrC =t(12) = -2.09, p = .06, HpC = t(12) = 0.07, p = .94), 

nor for inanimate object categories (PhC  t(12) = -0.33, p = 0.75, PrC =t(12) = 1.60, p = 

.13, HpC t(12) = 0/02, p = .98), or for large inanimate object categories (PhC t(12) = -

0.66, p = .52, PrC t(12) = 0.21, p = .83, HpC t(12) = -1.85, p = .09), nor small inanimate 

object categories (PhC t(12) = 0.02, p= .97, PrC t(12) = 0.42, p = .67, HpC t(12) = 1.3, p 

= 0.20). As a final analysis, we asked whether memory status overall (regardless of object 

category) could be detected in differing patterns of activity in each MTL region (Figure 

3.3). Interestingly, we found that in each ROI, we could distinguish perceived novel and 

familiar objects across all object categories (i.e., in analyses that were blind to category; 

PhC t(12) = 2.93, p = 0.01, PrC t(12) = 2.80, p = 0.01, HpC =t(12) = 2.29, p = 0.03). 
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Figure 3.2: Example of linear models used to test within category, within domain, 

and across category distinctions between perceived novel and familiar object 

stimuli. The first 12 columns and rows indicate data for perceived novel trials, and 

the last 12 columns indicate data for perceived familiar trials. Warmer colors 

indicate a higher hypothesized similarity. Models tested are indicated in the gold 

outlined boxes, using faces as an example for within-category, and animate objects 

as an example for within-domain tests. Note that in each category and domain test 

the other cells (indicated by the red diagonal and navy cells outside of the gold 

outlined example) were not included in each model.  
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Figure 3.3. Across category distinction between perceived novel and familiar object 

stimuli. Example linear model used to test the hypothesis that you can distinguish 

perceived novel from familiar object stimuli across all object categories, because 

novel object representations are more similar to each other than to familiar object 

representations, and vice versa (left). Results from the across-category linear 

contrast test for each MTL structure, the y axis shows a similarity index, which is 

the beta value of the fit between the linear model and the RSM in each structure. 

Memory status across all object categories can be distinguished in each MTL 

structure.  

 

 

 

 



92 

 

 

3.3.2.3 Across-category memory signal: repetition suppression? 

 

We examined whether or not a general repetition suppression effect, or decrease in 

average activity across all voxels in our regions of interest, could account for the 

distinction between patterns related to all perceived novel versus familiar object 

categories. We found significant repetition suppression across all categories in each ROI 

(PhC = t(12) = 3.42, p = 0.001, PrC =t(12) = 4.39, p = 0.0005, HpC = t(12) = 2.50, p = 

0.01). We then tested each individual category within each ROI to see whether there was 

significant repetition suppression, using Bonferroni correction for multiple comparisons 

(12 tests in each ROI). In HpC we found significant repetition suppression for furniture 

(t(12) = 3.27, p =0.03), in PhC we found repetition suppression for insects (t(12) = 3.50, 

p = 0.02, musical instruments (t(12) = 3.43, p = 0.02, and furniture (t(12) = 4.39, p = 

0.0005, and in PrC we found significant repetition suppression for bodies t(12) =3.28, p = 

0.03, and furniture t(12) =3.68, p = 0.01) (Figure 3.4). We then removed the repetition 

suppression effect by subtracting mean activity in each condition (novel and familiar) on 

a per voxel basis, and then examining the Euclidean distance between patterns for novel 

versus familiar items. After removal, there was still a significant difference between 

patterns for all novel versus all familiar items across all object categories in each MTL 

structure, and, interestingly, patterns of activity for novel objects were more dissimilar 

amongst themselves than patterns of activity for old objects within themselves (PhC = 

t(12) = -2.41, p =0.01, PrC =t(12) = -2.68, p = 0.007, HpC = t(12) = -2.87, p = 0.004) 

(Figure 3.5).  
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Figure 3.4: Repetition suppression in MTL structures. Repetition suppression is 

measured by Euclidean distance from 0. Each category is plotted in a different 

color, with the novel activity as the first data point, connected by a line to the 

familiar category data point. The average between all categories is shown by the 

black line. Repetition suppression, or an average decrease in BOLD activity was 

significant across all object categories in each MTL structure.  



94 

 

 

 

 

Figure 3.5: Representational dissimilarity matrices averaged across category for 

novel and familiar object stimuli, after pattern-based demeaning. There is a 

significant distinction between novel and familiar object evoked responses, and also 

a systematic change where novel patterns of activity are more dissimilar and 

familiar more similar (as indicated by lower dissimilarity, or the cooler shade in the 

bottom left “familiar” square in each RDM).   

 

 

3.4 Discussion 

 

In the current study, we explored whether object-based recognition memory signals in the 

MTL reflect the category or domain to which the object belongs, and whether any such 

category or domain specific recognition memory signals were present specifically in 

structures that represented that category or domain in response to stimuli presentation. 

Further, we asked whether or not recognition memory signals were coded in an overall 

change in signal (repetition suppression), or a pattern based change (pattern of increases 

and decreases). We tested the first question in two ways. First, we isolated the memory 
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signal by contrasting novel and familiar objects, and tested whether the representational 

space of the memory signal for each object category was organized by category and 

domain. Second, we tested whether we could distinguish patterns of activity evoked by 

perceived novel or familiar objects within category, within domain, or across all 

categories. We found no evidence for category or domain specific memory signals. We 

did, however, find that it was possible to distinguish novel from familiar objects by 

patterns of activity evoked across all object categories, in all three medial temporal lobe 

structures. Furthermore, while we observed significant repetition suppression in all MTL 

structures examined, the distinction between patterns of activity for novel and familiar 

objects was not simply the result of a generic average repetition suppression effect. 

Instead, we found patterns of activity for novel and familiar objects that could be 

distinguished even after an average signal change was removed, and, interestingly, there 

is a systematic change in similarity, with novel objects being more dissimilar than 

familiar objects.  

 

To our knowledge, our first analyses, in which we attempted to isolate the memory 

component of the signal, and explore the representational space of this signal, has not 

previously been done. Given this novelty, the fact that we did not find any category or 

domain organization using this approach is somewhat challenging to interpret. However, 

the findings from this analysis were in line with those from our second set of analyses 

which employed a more traditional approach. Specifically, in our second set of analyses 

we were unable to distinguish novel from familiar object-evoked responses within any of 

the categories or domains tested. This result was somewhat surprising, given category-

specific memory signals in PrC and PhC have been reported for a number of the 

categories tested (faces, trees, buildings, and furniture); Martin et al., 2013, 2016). 

Importantly, while we did not find category or domain specific memory signals, we did 

find that novel and familiar patterns of activity could be distinguished - but only across 

object categories. This differing pattern of results could be due to a number of factors, or 

differences between experiments. One stark difference in design is that Martin et al. 

(2013, 2016) used a small number of object categories, with high numbers of within 

category exemplars, which presumably led to higher interference as evidenced by lower 



96 

 

 

recognition memory performance; indeed d’ was 0.67 on average in the first study, and 

0.59 on average in the second study. In contrast, in our task we employed exemplars from 

12 different object categories, and, as a consequence, participants had relatively high 

recognition-memory performance (d’ =1.85). Another difference between studies is the 

analysis method.  While Martin et al. showed that it was possible to classify perceived 

novel and familiar stimuli within but not between category, using a support vector 

machine, we used representational similarity analysis to test whether within category 

similarity was greater than between category similarity. However, generally speaking, 

these analyses typically converge, given that higher within versus between category 

similarity would allow for classification. A final, and potentially key difference, is that 

novel and familiar stimuli were necessarily different in Martin et al.’s studies which 

employed a study-test paradigm, whereas in the current experiment, we used a continuous 

recognition memory paradigm with identical stimuli.  

 

In a study-test paradigm, because the novel stimuli are necessarily different from the 

repeated old stimuli, there is always the possibility that classification of novel and 

familiar stimuli is above chance, due to the classifier picking up on low-level differences 

between stimuli subsets, as opposed to the memory signal itself. A recent study by 

Huffman et al. (2017) provides some evidence that low-level confounds can potentially 

drive MVPA based findings that are thought to reflect mnemonic representations in the 

MTL. Specifically, patterns of activity in MTL evoked when subjects perform a standard 

associative memory task showed distinctions between contexts, items-in-context, and the 

temporal order of items-in-context. However, these seemingly high-level representations 

were also found in V1, and representations in both MTL and V1 showed a significant 

relationship to behavioral performance. Further, when low-level stimuli differences 

between items and contexts were highly controlled, these distinctions disappeared in 

MTL regions. One possibility is that the memory signal distinctions reported by Martin et 

al. were driven by similar low-level stimulus differences, an effect that might have 

disappeared when comparisons are made between identical new and old stimuli. 

However, stimuli employed in the Martin et al. tasks were controlled for a number of 

low-level features, and were counterbalanced across study and test, making this less 
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likely. Additionally, in the studies by Martin et al., recognition memory performance was 

correlated with classification exclusively when classification included voxels that showed 

increases and decreases between novel and familiar stimuli, despite the fact that condition 

could be classified by using voxels that showed only increases or decreases (Martin et al., 

2016). Overall, it is, thus, not clear that the differences across novel and familiar stimuli 

reported in these prior studies can be accounted for by low-level stimulus features. 

However, further experimentation is needed, such as testing whether the current pattern 

of results is present in V1. In particular, one could test the finding that the pattern of 

increases and decreases distinctly correlates with recognition memory performance.  

 

An alternative explanation of the differing pattern results between studies is that Martin 

et al.’s task drives MTL regions to compute memory in a more categorical manner, while 

our task drives the MTL to compute memory in a more general manner. Or, rather, the 

different tasks may influence different aspects of the representational space, one that 

reflects the space evoked by seeing many diverse objects, and the other that reflects the 

aspect of space evoked by seeing many highly similar objects from a small number of 

categories. 

 

In order to examine this possibility, it may be helpful to consider computational models 

of object processing in cortex, and how different models predict different results in terms 

of their category-specificity, as well as in terms of overall repetition suppression, or 

pattern based changes in coding. Representational-hierarchical computational models of 

PrC (Bussey & Saksida, 2002; Cowell et al., 2006) and complementary learning systems 

(CLS) models of medial temporal lobe cortex (MTLC) (Norman & O’Reilly, 2003), 

which share some commonalities in architecture and processing, can help us understand 

the differing memory signals in these two sets of results. In both models, objects are 

composed of conjunctive features so that when the network is initially presented with 

novel objects, these novel objects activate a large number of units (which can be 

conceptualized as neurons, or clusters of neurons) spread across the network (or MTL 

structure). As the same objects are repeated, through a process of Hebbian learning, the 

object representations are tuned, or a smaller number of local units are activated to a 
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greater degree. This process is referred to as “sharpening” (Cowell et al., 2006). Through 

this process, the network becomes topologically organized - similar objects (those with 

overlapping features) are represented more similarly to each other in terms of shared 

units. In these models, the degree of sharpening is read out as a measure of stimulus 

familiarity - or is the recognition memory signal itself.  

 

The link between recognition memory signals and stimuli are explicit in both of these 

models - the memory signal is a direct readout from the object representation. Because 

object representations are organized topologically (although to differing degrees in the 

CLS model and R-H models) this gives a precise explanation as to why memory signals 

can be categorical in nature (Cowell, 2006; Normal & O’Reilly, 2003). Indeed, if 

different object categories are represented distinctly in the network topology, it is 

understandable why training a classifier on activations of novel or familiar stimuli from 

one category (picking up on the pattern relevant to that specific topology or 

neighborhood) would not necessarily transfer to another category. Distinctions between 

novel and familiar stimuli can potentially be accounted for by the suggestion that novel 

stimuli activate a large number of distributed units, while objects, once repeated have a 

sharpened, and active a more distinct local topology (presumably these differences are 

what the classifier taps into). This latter explanation can potentially explain differences 

between novel and familiar stimuli within the same category or across all object 

categories. For example, the distinction between novel evoked responses that activate 

many units broadly spread throughout the network, and familiar evoked responses that 

activate a smaller number of units more strongly, may be reflected at both stimulus 

specific and stimulus general levels. If these interpretations of the models are correct, and 

there are both general and category-specific distinctions between novel and familiar 

stimuli, it remains an open question as to why Martin et al.’s tasks were sensitive to the 

category specific distinction, while our task was sensitive only to more general 

distinctions across category. It should be noted that in our initial analyses presented in 

Chapter 2, we do pick up on category and domain organization, which could be 

interpreted as picking up on the stimulus specific topology of the network. We no longer 

see this organization specifically when we evaluate memory signals.  
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In addition to shedding light on the category specificity or generality of recognition 

memory signals, these models also provide a mechanistic account of repetition 

suppression. Specifically, repetition suppression is a result of the decrease in the number 

of units responding when an item is repeated, so despite the fact that there is an increase 

in activity in some units, because so many units drop-out, there is an average decrease in 

activity in the network. This description of sharpening also fits the pattern based finding, 

described in Martin et al. (2016)  in which voxels that show the largest changes, in terms 

of increases or decreases, correlate with better memory performance, given it is the 

pattern of change across the network that reflects sharpening. This finding and account of 

the pattern based changes also generally aligns with our findings that there are changes in 

patterns of activity beyond an average repetition suppression effect between novel and 

familiar object representations. In a sharpening model, there are increases and decreases 

in units that form a distinct pattern across the network during novel and familiar objects 

presentations in addition to the average signal decrease, mirroring our pattern of results 

where we see both an average signal change and a pattern based change beyond this. In 

other words, our results can potentially be thought of as tapping into these two aspects of 

the sharpening process. One note of caution when interpreting novel and familiar object 

evoked responses in the tasks discussed in light of these models, is that these models are 

designed to predict how a network organizes and responds when objects are FIRST 

learned and repeated (or are truly novel). In our paradigm, while the exact exemplars 

used are novel to participants, they already have familiarity in general with the object 

categories. Therefore, they presumably have some organization already present within the 

network for that object category based on previous experience. 

 

3.4.1 Conclusion 

 

In the current set of analyses, we did not find evidence of category or domain specificity 

in recognition memory signals in the MTL. This is somewhat surprising, given we see 

category and domain specificity in object stimuli evoked responses (Chapter 1), and 
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previous work has shown category specific memory signals in MTL regions (Martin et 

al., 2013, 2017). One possibility is that we have decreased power in modeling our 

responses when split by novel and familiar (i.e., in chapter one we modeled all object 

evoked responses for each category regardless of whether it was novel or familiar, so our 

GLM estimates are based on more data points than in the current analyses). One straight-

forward way to examine this is to test category and domain specificity within novel or 

familiar object trials only, or to do permutations on a smaller subsample of stimuli (the 

same size as currently used). Alternatively, our task, which involved many object 

categories, may have tapped into a general recognition memory signal in the network. 

Suggesting that at least in this task context, and perhaps others, recognition memory 

signals in the MTL may be computed (or picked up) as general signals across the 

network, somewhat distinct from the stimuli themselves.   

 

In terms of how memory is coded, we replicated the finding that medial temporal lobe 

regions show robust decreases in average activity for repeated objects, previously 

reported at longer time lags (see meta-analysis: Kim, 2011). Moreover, beyond this 

repetition effect based on average activity, we showed that patterns evoked by repeated 

objects are distinct from patterns evoked by novel objects. These findings are generally in 

line with previous work showing that increases and decreases in voxels (beyond an 

average decrease or increase) best correlate with recognition memory (Martin et al., 

2016). They are also in line with findings that neural changes with repetition in medial 

temporal areas go beyond a general scaling effect seen in more posterior VVS regions, 

and also can involve changes at the pattern level (Weiner et al., 2010).  

 

Beyond finding a pattern-based change, we see a systematic change in how medial 

temporal lobe regions represent objects based on memory status, in which activity for 

familiar objects were more similar to each other overall than patterns of activity evoked 

by novel objects. This differs from previous work reporting changes that follow a 

“sharpening” pattern - where categories become more distinct from each other with 

repetition (Weiner et al., 2010). Therefore, it is curious that our findings show the 

opposite pattern - patterns evoked by objects from all categories become more similar 
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with repetition. One possibility is that in our continuous recognition task with a large 

number of objects biases the MTL towards a more general distinction between novel and 

familiar object representations, perhaps because we are picking up a global pattern 

matching signal at retrieval that reflects global activity shared by all object 

representations in the network. Future work is needed to elucidate whether memory 

signals in the medial cortex are category specific, or more general, and whether evidence 

for either is based on task context. Finally, the relationship between how these either 

general or category specific memory signals are coded, whether it be changes in the 

average level of activity, in patterns of activity, or in both, may aid in gaining a deeper 

understanding of the neural mechanisms of object familiarity.  

 

 



102 

 

 

3.5 References 

Aggleton, J. P., Brown, M. W., & Albasser, M. M. (2012). Contrasting brain activity 

patterns for item recognition memory and associative recognition memory: 

insights from immediate-early gene functional imaging. Neuropsychologia, 

50(13), 3141-3155. 

 

Brown, M. W., & Xiang, J. Z. (1998). Recognition memory: neuronal substrates of the 

judgement of prior occurrence. Progress in neurobiology, 55(2), 149-189. 

 

Brown, M. W., & Aggleton, J. P. (2001). Recognition memory: what are the roles of the 

perirhinal cortex and hippocampus?. Nature Reviews Neuroscience, 2(1), 51-61. 

 

Bussey, T. J., & Saksida, L. M. (2005). Object memory and perception in the medial 

temporal lobe: an alternative approach. Current opinion in neurobiology, 15(6), 

730-737. 

 

Bussey, T. J., & Saksida, L. M. (2007). Memory, perception, and the ventral visual‐
perirhinal‐hippocampal stream: thinking outside of the boxes. Hippocampus, 

17(9), 898-908. 

 

Bussey, T. J., Saksida, L. M., & Murray, E. A. (2002). Perirhinal cortex resolves feature 

ambiguity in complex visual discriminations. European Journal of Neuroscience, 

15(2), 365-374. 

 

Cowell, R. A., Bussey, T. J., & Saksida, L. M. (2006). Why does brain damage impair 

memory? A connectionist model of object recognition memory in perirhinal 

cortex. Journal of Neuroscience, 26(47), 12186-12197. 

 

Cusack R, Vicente-Grabovetsky A, Mitchell DJ, Wild CJ, Auer T, Linke AC, Peelle JE 

(2015) Automatic analysis (aa): Efficient neuroimaging workflows and parallel 

processing using Matlab and XML. Frontiers in Neuroinformatics 

8:90.http://dx.doi.org/10.3389/fninf.2014.00090.  

 

Davis, T., Xue, G., Love, B. C., Preston, A. R., & Poldrack, R. A. (2014). Global neural 

pattern similarity as a common basis for categorization and recognition memory. 

Journal of Neuroscience, 34(22), 7472-7484. 

 

http://dx.doi.org/10.3389/fninf.2014.00090


103 

 

 

Duke, D., Martin, C. B., Bowles, B., McRae, K., & Köhler, S. (2017). Perirhinal cortex 

tracks degree of recent as well as cumulative lifetime experience with object 

concepts. Cortex, 89, 61-70. 

 

Eichenbaum, H., Yonelinas, A. P., & Ranganath, C. (2007). The medial temporal lobe 

and recognition memory. Annu. Rev. Neurosci., 30, 123-152. 

 

Fahy, F. L., Riches, I. P., & Brown, M. W. (1993). Neuronal activity related to visual 

recognition memory: long-term memory and the encoding of recency and 

familiarity information in the primate anterior and medial inferior temporal and 

rhinal cortex. Experimental Brain Research, 96(3), 457-472. 

 

Frankó, E., Insausti, A. M., Artacho‐Pérula, E., Insausti, R., & Chavoix, C. (2014). 

Identification of the human medial temporal lobe regions on magnetic resonance 

images. Human brain mapping, 35(1), 248-256. 

 

Gonsalves, B. D., Kahn, I., Curran, T., Norman, K. A., & Wagner, A. D. (2005). Memory 

strength and repetition suppression: multimodal imaging of medial temporal 

cortical contributions to recognition. Neuron, 47(5), 751-761. 

 

Graham, K. S., Barense, M. D., & Lee, A. C. (2010). Going beyond LTM in the MTL: a 

synthesis of neuropsychological and neuroimaging findings on the role of the 

medial temporal lobe in memory and perception. Neuropsychologia, 48(4), 831-

853. 

 

Grill-Spector, K., & Weiner, K. S. (2014). The functional architecture of the ventral 

temporal cortex and its role in categorization. Nature Reviews Neuroscience, 

15(8), 536-548. 

 

Heusser, A. C., Awipi, T., & Davachi, L. (2013). The ups and downs of repetition: 

Modulation of the perirhinal cortex by conceptual repetition predicts priming and 

long-term memory. Neuropsychologia, 51(12), 2333-2343. 

 

Huffman, D. J., & Stark, C. E. (2014). Multivariate pattern analysis of the human medial 

temporal lobe revealed representationally categorical cortex and 

representationally agnostic hippocampus. Hippocampus, 24(11), 1394-1403. 

 

Konkle, T., & Caramazza, A. (2013). Tripartite organization of the ventral stream by 

animacy and object size. The Journal of Neuroscience, 33(25), 10235-10242. 



104 

 

 

 

Kim, H. (2013). Differential neural activity in the recognition of old versus new events: 

An Activation Likelihood Estimation Meta‐Analysis. Human Brain Mapping, 

34(4), 814-836. 

 

Kivisaari, S. L., Tyler, L. K., Monsch, A. U., & Taylor, K. I. (2012). Medial perirhinal 

cortex disambiguates confusable objects. Brain, 135(12), 3757-3769. 

 

Kriegeskorte, N., Mur, M., & Bandettini, P. A. (2008). Representational similarity 

analysis-connecting the branches of systems neuroscience. Frontiers in systems 

neuroscience, 2, 4. 

 

Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky, H., ... & 

Bandettini, P. A. (2008). Matching categorical object representations in inferior 

temporal cortex of man and monkey. Neuron, 60(6), 1126-1141. 

 

LaRocque, K. F., Smith, M. E., Carr, V. A., Witthoft, N., Grill-Spector, K., & Wagner, 

A. D. (2013). Global similarity and pattern separation in the human medial 

temporal lobe predict subsequent memory. Journal of Neuroscience, 33(13), 

5466-5474. 

 

Lee, A. C., Scahill, V. L., & Graham, K. S. (2007). Activating the medial temporal lobe 

during oddity judgment for faces and scenes. Cerebral Cortex, 18(3), 683-696. 

 

Li, L., Miller, E. K., & Desimone, R. (1993). The representation of stimulus familiarity in 

anterior inferior temporal cortex. Journal of neurophysiology, 69(6), 1918-1929. 

 

Liang, J. C., Wagner, A. D., & Preston, A. R. (2013). Content representation in the 

human medial temporal lobe. Cerebral Cortex, 23(1), 80-96. 

 

Linke, A. C., Vicente-Grabovetsky, A., & Cusack, R. (2011). Stimulus-specific 

suppression preserves information in auditory short-term memory. Proceedings of 

the National Academy of Sciences, 108(31), 12961-12966. 

 

Litman, L., Awipi, T., & Davachi, L. (2009). Category‐specificity in the human medial 

temporal lobe cortex. Hippocampus, 19(3), 308-319. 

 



105 

 

 

Martin, C. B., McLean, D. A., O'Neil, E. B., & Köhler, S. (2013). Distinct familiarity-

based response patterns for faces and buildings in perirhinal and parahippocampal 

cortex. The Journal of Neuroscience, 33(26), 10915-10923. 

 

Martin, C. B., Cowell, R. A., Gribble, P. L., Wright, J., & Köhler, S. (2015). Distributed 

category‐specific recognition‐memory signals in human perirhinal cortex. 

Hippocampus. 

 

Martin CB, Sullivan JS, Wright J, Köhler S. (2017). Recognition-memory signals for 

objects from different categories are graded across perirhinal and 

parahippocampal cortex. (under review).  

 

Miller, E. K., Li, L., & Desimone, R. (1993). Activity of neurons in anterior inferior 

temporal cortex during a short-term memory task. Journal of Neuroscience, 

13(4), 1460-1478. 

 

Moss, H. E., Rodd, J. M., Stamatakis, E. A., Bright, P., & Tyler, L. K. (2004). 

Anteromedial temporal cortex supports fine-grained differentiation among 

objects. Cerebral cortex, 15(5), 616-627. 

 

Pruessner, J. C., Li, L. M., Serles, W., Pruessner, M., Collins, D. L., Kabani, N., ... & 

Evans, A. C. (2000). Volumetry of hippocampus and amygdala with high-

resolution MRI and three-dimensional analysis software: minimizing the 

discrepancies between laboratories. Cerebral cortex, 10(4), 433-442. 

 

Norman, K. A., & O'reilly, R. C. (2003). Modeling hippocampal and neocortical 

contributions to recognition memory: a complementary-learning-systems 

approach. Psychological review, 110(4), 611. 

 

Pruessner, J. C., Köhler, S., Crane, J., Pruessner, M., Lord, C., Byrne, A., ... & Evans, A. 

C. (2002). Volumetry of temporopolar, perirhinal, entorhinal and 

parahippocampal cortex from high-resolution MR images: considering the 

variability of the collateral sulcus. Cerebral Cortex, 12(12), 1342-1353. 

 

Ringo, J. L. (1996). Stimulus specific adaptation in inferior temporal and medial temporal 

cortex of the monkey. Behavioural brain research, 76(1), 191-197. 

 



106 

 

 

Segaert, K., Weber, K., de Lange, F. P., Petersson, K. M., & Hagoort, P. (2013). The 

suppression of repetition enhancement: a review of fMRI studies. 

Neuropsychologia, 51(1), 59-66. 

 

Walther, A., Nili, H., Ejaz, N., Alink, A., Kriegeskorte, N., & Diedrichsen, J. (2016). 

Reliability of dissimilarity measures for multi-voxel pattern analysis. 

Neuroimage, 137, 188-200. 

 

Wang, W. C., Ranganath, C., & Yonelinas, A. P. (2014). Activity reductions in perirhinal 

cortex predict conceptual priming and familiarity-based recognition. 

Neuropsychologia, 52, 19-26. 

 

Xiang, J. Z., & Brown, M. W. (1998). Differential neuronal encoding of novelty, 

familiarity and recency in regions of the anterior temporal lobe. 

Neuropharmacology, 37(4), 657-676. 

 

Yassa, M. A., & Stark, C. E. (2008). Multiple signals of recognition memory in the 

medial temporal lobe. Hippocampus, 18(9), 945-954. 

 

Ye, Z., Zhu, B., Zhuang, L., Lu, Z., Chen, C., & Xue, G. (2016). Neural global pattern 

similarity underlies true and false memories. Journal of Neuroscience, 36(25), 

6792-6802. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



107 

 

 

Chapter 4 

4 Abnormal semantic knowledge in a case of 
developmental amnesia  

4.1 Introduction 

Developmental amnesia can result from early extended hippocampal system pathology, 

often due to perinatal hypoxia, and is characterized by a pronounced deficit in episodic 

recollection starting early in life. In addition to a lack of episodic recollection, individuals 

with developmental amnesia present with severe difficulties navigating in familiar 

environments, remembering where items are placed, and orienting themselves by date 

and time (Vargha-Khadem et al., 1997). In clinical neuropsychological tests of long-term 

memory, individuals with developmental amnesia score far below the general population. 

However, despite having severe episodic memory impairment, these individuals typically 

have normal IQs and progress successfully through mainstream schooling (Vargha-

Khadem et al., 1997). Indeed, individuals with developmental amnesia typically show 

average academic performance, as well as normal performance on reading and spelling 

tests, standardized vocabulary tests, and general information questions, such as “What is 

the capital of France?” These observations have been taken as evidence that semantic 

knowledge is preserved in developmental amnesia (Vargha-Khadem et al., 1997; Gadian 

et al., 2000; Bindschaedler et al., 2011; Brizzolara, 2003). This view has received further 

support from experimental studies showing that new semantic knowledge can be acquired 

in developmental amnesia (Guillery-Girard et al., 2004; Bindschaedler et al., 2011; 

Martins et al., 2007; but see Gardiner et al., 2008). 

Episodic and semantic memory are often considered to be separate, dissociable memory 

systems (Schacter and Tulving, 1994), and core retrieval processes from each system are 

thought to be independent. Despite being dissociable, there is a dependence between the 

two systems with respect to encoding of information; however, there are two distinct 

models of the direction of this dependence. According to the serial-parallel-independent 

(SPI) model (Tulving & Markowitsch, 1998; Tulving, 2002), episodic memory is a 

phylogenetically and ontogenetically later-developing system that grew out of semantic 
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memory. As such, encoding episodic information critically depends on semantic memory, 

whereas semantic memory encoding is independent of episodic memory. By contrast, 

models of memory transformation or consolidation (Winocur et al., 2010; McClelland et 

al., 1995) suggest that semantic information is encoded initially as hippocampal-

dependent episodic memory and then, either through repetition or gist extraction, 

becomes semantic. Evidence of intact semantic memory in developmental amnesia is 

considered one of the strongest sources of support for the SPI claim that semantic 

memory can be acquired independently of episodic memory (Vargha-Khadem, 1997; 

Tulving, 2002). 

The extent to which semantic and episodic memory are dissociable at the neural level has 

been widely debated, with some researchers arguing that both semantic and episodic 

memory are dependent on the integrity of the medial temporal lobes, including the 

hippocampus (Squire, 1987; Shimamura & Squire, 1987; Gabrieli et al., 1988; Zola-

Morgan, Cohen, & Squire, 1983; Squire & Zola, 1998). In contrast, others have argued 

that the medial temporal lobes are crucial for episodic but not semantic memory 

(Kinsbourne & Wood, 1975; Parkin, 1982). This latter view was supported largely by the 

finding that individuals with amnesia due to hippocampal damage seemed to show 

primarily deficits in episodic memory, with semantic memory being relatively preserved. 

The finding that individuals with developmental amnesia due to focal hippocampal 

damage had intact semantic memory added strong support to the notion that episodic but 

not semantic memory is dependent on the hippocampus.   

Since the publication of Vargha-Khadem (1997), the prevailing view has been that 

semantic memory is normal in developmental amnesia. However, some interesting 

variations have been noted. For example, a few studies report that patients can acquire 

new semantic information, but that they require a greater number of repetitions than do 

control participants (Gardiner et al., 2008; Guillery-Girard et al., 2004). Furthermore, one 

patient did not acquire facts about the world at the same rate as normal control 

participants (Bindschaedler et al., 2011). Another individual with developmental amnesia 

showed below average performance on the “information” I.Q. subtest (although normal 

performance on a questionnaire about world facts), as well as poor naming and 
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comprehension abilities (Vicari et al., 2007). These findings hint at possible subtle 

abnormalities in the development of semantic memory against a background of severe 

episodic memory impairment. However, it is critical to understand the nature of these 

abnormalities for a clearer view of the relative contribution of episodic memory and 

hippocampal function to the early formation of semantics. 

An important component of semantic memory that has yet to be explored in 

developmental amnesic cases is the structure of their conceptual knowledge. This can be 

explored through knowledge of concrete concepts such as “chair” and “dog”, and we 

focus on these types of concepts in this article. One of the dominant theoretical 

frameworks for understanding concrete concepts is feature-based models in which 

concepts are represented in terms of semantic features (Martin, 2007; Tyler et al., 2013). 

In these models, theoretically and empirically important distinctions have been made 

among the types of features of which concepts may be composed (Cree & McRae, 2003; 

Wu & Barsalou, 2009). Consider “hammer”. Learning the concept of hammer can be 

thought of in terms of learning its features, such as how it looks (elongated, has a handle), 

how it is used (grip the handle, swing back and forward), what it is used for (pounding 

nails into the wall), and where it is commonly found (the garage). Some aspects of 

people’s knowledge of objects such as hammers are intrinsic to, or physically part of, the 

object itself, whereas other aspects can be considered to be part of the contexts in which 

an object is encountered (Barr & Caplan, 1987). Contextually based information may 

include how or where a hammer is used, and can be considered as extrinsic to the object. 

For concrete living (cow) and nonliving things (hammer), important aspects of extrinsic 

information involve relations between the physical object itself and other types of objects 

and locations, as well as the ways in which people interact with the object. 

During development, individuals acquire both intrinsic and extrinsic feature knowledge 

as part of learning concrete concepts. In terms of neural mechanisms, the hippocampus 

may play an important role in binding extrinsic features to the intrinsic features that 

compose the object. A large body of evidence suggests that relational binding, or the 

forming of associations among an object and its context, is a core function of the 

hippocampus (Olsen et al., 2012; Eichenbaum & Cohen, 1993). Anatomically, the 
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hippocampus is well suited to the task because it receives object information from the 

visual ventral stream, as well as contextual information (e.g., found in a garage) from a 

number of unimodal and multimodal cortical areas (Lavenex & Amaral, 2000). Although 

typically this type of learning is considered with reference to individual episodes, some 

evidence suggests that acquisition of new conceptual knowledge may also rely on 

hippocampally mediated binding, particularly across multiple episodes that share 

regularities in object-context relationships (Kumaran et al., 2009). To the extent that 

developmental amnesia is the result of damage to the hippocampus or the extended 

hippocampal system in most, if not all, cases, one might expect extrinsic aspects of 

conceptual knowledge to develop abnormally. 

If extrinsic aspects of concept knowledge are impaired in developmental amnesia, how 

might this affect the structure of semantic memory? There exists a correspondence 

between Barr and Caplan’s (1987) distinction between intrinsic and extrinsic features and 

the distinction that has been made between sensory and functional features (or sensory 

and non-sensory features). Sensory information corresponds to intrinsic knowledge 

because people’s (somewhat abstract) knowledge of how something looks, smells, and 

sounds is intrinsic to the entity or object itself. In contrast, functional information reflects 

extrinsic information because how an object is used and what it is used for are based on 

relationships between the object and something else, such as actions performed on the 

object by some agent. In some cases, the term functional information has been used to 

refer to all knowledge about a concept that is not sensory (Warrington & Shallice, 1984). 

In this sense, in addition to information about how an object is used and what it is used 

for, functional (or actually “nonsensory”) information includes other extrinsic 

information, such as where an entity or object typically is located, when an object 

typically is used (e.g., during the winter), or what an object typically is used with. Note 

that researchers differ with regard to how various types of information are labelled or 

classified, and detailed classification schemes have been proposed and used (Cree & 

McRae, 2003; Wu & Barsalou, 2009). For our present purposes, what is centrally 

important is that sensory information is intrinsic to an object itself, whereas other types of 

knowledge about concrete concepts are extrinsic (Barr & Caplan, 1987). 
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Interestingly, a recent study showed that patient D.A., an individual with adult-onset 

amnesia associated with hippocampal damage, was impaired in learning new functional 

knowledge in an experimental setting. Specifically, although D.A. learned movements 

related to new, unfamiliar tools as quickly as control participants, he was subsequently 

unable to recall the functional significance of those objects (what they were used for) as 

well as controls (Roy & Park, 2010). An intriguing possibility, therefore, is that for 

concrete concepts, the learning of extrinsic features outside the laboratory also depends 

on hippocampal integrity, and may be impaired in developmental amnesia. 

Our goal was to test whether some aspects of semantic knowledge depend on the same 

relational binding mechanisms in the hippocampus that subserve episodic memory. 

Specifically, we explored whether extrinsic feature knowledge for concrete concepts is 

impaired in developmental amnesia. We investigated a previously described individual 

with developmental amnesia, HC, with well-documented impairments in episodic 

memory and a well-characterized lesion of the extended hippocampal system (Olsen et 

al., 2013). We tested HC on a semantic feature production task and a typicality rating 

task, both of which are sensitive to knowledge that underlies individual concepts. 

Although these tasks have been used frequently in the concepts literature on healthy 

adults, to our knowledge they have not been employed in research on semantic memory 

in developmental amnesia. In order to evaluate the anatomical specificity of any 

abnormalities, we also compared HC with an individual with anterior temporal lobe 

damage that spares the hippocampus, patient NB (Bowles et al., 2007; Bowles et al., 

2016). We predicted that any abnormalities HC showed on these tasks would result from 

her hippocampal lesion, and therefore we predicted that NB would not show any of the 

same abnormalities in our experimental tasks. 

In Experiment 1, we used a semantic feature production task to test whether HC would 

produce fewer extrinsic features than would control participants, while producing similar 

numbers of intrinsic features. We classified the features generated by participants using 

Cree and McRae’s (2003) feature-type taxonomy. A feature type was counted as an 

extrinsic feature if it described how the object is associated to other entities, objects, 

locations, and so forth, rather than being intrinsic to the object itself. Extrinsic features 
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included functional, encyclopedic, and taxonomic features, whereas intrinsic features 

included smell, taste, sound, colour, visual form and surface, and visual motion features. 

Note that tasks that require explicit feature generation may be sensitive to both abnormal 

acquisition of knowledge, and retrieval-related impairments. Because it has been shown 

that constructing relational conceptual representations ‘online’ is impaired in adult-onset 

amnesia (Rosenbaum et al., 2009; Waidergoren et al., 2012), we therefore included a 

second experiment that did not require explicit generation of feature names. 

In Experiment 2, we used a typicality rating task to test whether differences in knowledge 

of extrinsic versus intrinsic features results in HC producing abnormal ratings for 

nonliving things, but not for living things. Typicality ratings require participants to judge 

the “goodness” of a concept as a member of a particular category. For example, on a 1 to 

9 scale in which 9 corresponds to extremely typical of a category, a robin might be given 

a rating of 9 for the category of bird, whereas a penguin might be given a 2. In many 

theories, rating typicality for concrete concepts involves comparing feature-based 

knowledge of the lower-level concept (such as hammer) to either the representation of the 

higher-level concept (such as tool; Rosch & Mervis, 1975), or to other concepts within 

the same category (other tools; Medin & Schaffer, 1978). Intrinsic and extrinsic features 

are differentially weighted when people rate typicality for categories that are drawn from 

living and nonliving domains, respectively. Barr and Caplan (1987) showed that intrinsic 

features are primarily important for determining category membership for living things, 

whereas extrinsic (relational) features are primarily important for determining category 

membership for nonliving things (see also Keil, 1989). Similarly, it has been shown that 

function (which is extrinsic and relational) is central for adults when categorizing 

nonliving things, whereas appearance and behavior (both of which are intrinsic) are 

central for categorizing living things (Barton & Komatsu, 1989; Hampton et al., 2009). 

There also is developmental research that speaks to these issues. For example, Kalénine 

and Bonthoux (2008) conducted a triad task (which of 2 pictured objects goes with the 

base object?) with children 5 and 7 years of age, as well as with adults. All three groups 

had shorter latencies when using contextual/functional relationships for manipulable 

objects, and when using perceptually-based relations for living things. A number of 

studies also have shown that functional similarities strongly influence categorization, 



113 

 

 

induction, and name generalization for nonliving things from at least age 2 onward 

(Casler & Kelemen, 2007; Diesendruck, Markson, & Bloom, 2003; Kemler Nelson, Chan 

Egan, & Holt, 2004; Truxaw, Krasnow, Woods, & German, 2006). In contrast, children 

depend on perceptual similarity to categorize living things (Sloutsky, Kloos, & Fisher, 

2007; Sloutsky & Spino, 2004). Thus, from a very early age, children learn and use 

intrinsic and extrinsic knowledge of object concepts, and they are sensitive to the 

correspondence between these types of information and the living/nonliving distinction. 

Rating typicality is similar to categorization in that it can be considered a process of 

rating the ease with which something can be characterized as belonging to a category. 

Therefore, we used a typicality rating task with living and nonliving thing categories 

because it has been shown that these ratings differentially depend on knowledge of 

intrinsic and extrinsic features. Furthermore, because it is not a binary judgment, it 

provides a sensitive measure. We predicted that HC’s typicality ratings would be 

abnormal for nonliving things because these ratings depend primarily on extrinsic 

features. In contrast, HC’s typicality ratings for living things should be normal because 

they are based primarily on intrinsic features. 

With respect to NB, who has shown deficits in familiarity judgments, an advantage of 

using typicality ratings is that concept familiarity minimally influences typicality ratings. 

Of course, familiarity can influence typicality ratings in the sense that if a person has no 

knowledge of the concept, she will rate it as being atypical (Malt & Smith, 1982). 

However, the one study that directly investigated the relationship between rated concept 

familiarity and typicality found no relation between the two (Barsalou, 2003). This makes 

sense in that familiarity is not linked to any particular category, whereas typicality is. For 

example, lamp is an atypical member of furniture, but lamp itself is a highly familiar 

concept. Furthermore, snake, regardless of its familiarity, is a typical reptile, but an 

atypical animal. In general then, typicality ratings for concepts of common superordinate 

categories like those used in Experiment 2 are strongly influenced by aspects of 

conceptual structure, but are influenced by familiarity to only a minor extent (Barsalou, 

1985; Malt & Smith, 1982; Rosch, Simpson, & Miller, 1976). 
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4.2 Participants 

4.2.1 HC 

HC is a well-documented developmental amnesic person who has participated in several 

previous studies (Adlam et al., 2005, 2009; Kwan et al., 2010; Maguire et al., 2011; 

Olsen et al., 2013; Rabin et al., 2012; Rosenbaum et al., 2011, 2015; Vargha-Khadem et 

al., 2003). She is a right-handed female who was 22 years old at the time of testing. HC 

finished high school, one year of technical college, and an additional year in a post-

secondary vocational program (total education = 14 years). It initially was presumed that 

HC suffered hypoxia perinatally as a result of premature birth (gestational age = 32 

weeks; Vargha-Khadem et al., 2003). Her lesion has been characterized extensively in 

past studies, revealing bilateral volume reduction in the hippocampus (see Figure 4.1). 

High-resolution MR-based volumetric analyses of HC’s medial temporal-lobe structures 

revealed significantly reduced hippocampal volumes in anterior sections bilaterally and 

additional volume reductions in the right posterior hippocampus, as compared to controls 

matched in sex, age, and education (Olsen et al., 2013). Overall, hippocampal volume 

was reduced by approximately 30%. Critically, perirhinal (PRC), entorhinal (ERC), and 

parahippocampal (PHC) cortices were fully preserved and showed no volume reduction. 

In a follow-up study, it was found that HC has abnormal morphology of the fornix, 

absent mammillary bodies, and inverted hippocampal structure (Rosenbaum et al., 2014), 

suggesting that a prenatal etiology may account for her developmental amnesia. 

HC shows clear signs of amnesia with pronounced impairments on clinical 

neuropsychological tests of long-term memory, experimental tasks of recognition 

memory, and autobiographical memory tasks (see Table 4.1 for a comprehensive 

neuropsychological profile). To illustrate, on the California Verbal Learning Test, HC's 

impaired performance is reflected in a z-score of -4 for short delay free recall, -3 for long-

delay free recall, and -2 for long-delay recognition memory. Testing of autobiographical 

memory using the Autobiographical Interview (AI) and the Galton-Crovitz paradigms 

revealed that HC’s autobiographical recollections lack episodic details across her life-

span (for further detail, see Kwan et al., 2010; Rabin et al., 2012; Rosenbaum et al., 

2011). Despite her long-term memory deficits, HC appears to have normal intelligence 
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and semantic memory. Specifically, her WASI Full Scale IQ is in the 66th percentile, and 

semantic fluency, as tested using animals, is above the 90th percentile (see Rosenbaum et 

al., 2011, for a full neuropsychological profile). Research with HC as a participant was 

part of a larger program (directed by R.S. Rosenbaum) that was approved by the 

Research Ethics Boards of York University and Baycrest in Toronto. 

 

 

Figure 4.1. Coronal slice of T1-weighted MR image showing bilateral hippocampal 

volume reduction in HC and a representative control participant (Olsen et al., 

2013). 
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Table 4.1: Neuropsychological Profile of Patient HC 

 

Test Normed Score 

 

General Intellectual Function 

 WASI 

 Verbal IQ (percentile) 61st 

 Performance IQ (percentile) 66th 

 Full Scale IQ (percentile) 66th 

 AM-NART (standard score) 101.28 (estimated FSIQ) 

 

Semantic Knowledge and Academic Attainment 

 WASI Vocabulary (T-score) 55th 

 WAIS-III Information (scaled score) 12 

 WAIS-III Arithmetic (scaled score) 8 

 

Language Production 

 Boston Naming Test (z-score) 0.75 

 Semantic Fluency (animals)(percentile) >90th 
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Anterograde Memory 

 WMS-III 

 Logical Memory I – immediate recall (scaled score) 4 

 Logical Memory II – delayed recall (scaled score) 1 

 California Verbal Learning Test-II 38 

 Total trials 1-5 (T-score) 

 Short delay free recall (z-score) -4 

 Long delay free recall (z-score) -3 

 Recognition (z-score) -2 

 Rey Osterreith complex figure 

 Immediate recall (T-score) <20 

 Delayed recall (T-score) <20 

 Delayed recognition – total correct (T-score) 22 

 

Processing Speed 

 WAIS-III Digit Symbol (scaled score) 13 

 WAIS-III Symbol Search (scaled score) 14 

 

Visuospatial Function 

 WASI Block Design (T-score) 5 
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 Rey-Osterrieth Complex Figure – Copy (percentile) >16th 

 Judgement of Line Orientation (percentile) 56th 

 Benton Facial Recognition (percentile) 33-59th 

 

Attention and Executive Function 

 Stroop 

 Word full (seconds) (z-score) 3.65 

 Color full (seconds) (z-score) -0.03 

 Interference (seconds) (z-score) -0.57 

 Word errors (z-score) 0 

 Colour errors (z-score) -0.5 

 Interference errors (z-score) -0.13 

 Word self-corrections (z-score) -0.5 

 Colour self-corrections (z-score) -0.71 

 Interference self-corrections (z-score) 1.44 

 

 Trail Making Test 

 Part A (sec) (z-score) 0.69 

 Part B (sec) (z-score) -0.23 

 Phonemic Fluency (FAS) (percentile) 70-80th 
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 WASI Similarities (T-score) 50 

 WASI Matrix Reasoning (T-score) 55 

 Wisconsin Card Sorting Task – categories (T-score) 57 

 

Mood 

 CES-D no indication of depression 

 PANAS 

 Positive Affect (z-score) 1.06 

 Negative Affect (z-score) 0.21 
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4.2.2 NB 

Like HC, NB is a well-documented individual who has taken part in a number of 

experiments which have carefully documented her memory deficits and lesion 

characteristics (Bowles et al., 2007; 2010; 2011; 2016, & Martin et al., 2011). NB was 26 

at the time of testing, is right-handed, a native English speaker, and university educated. 

She underwent surgery to remove a mass in her left amygdala that was causing 

intractable epilepsy. Her surgical resection involved the most anterior portion of the 

medial and lateral left temporal lobe. Volumetric follow-up analyses showed that 

compared to the healthy right temporal lobe, the surgery resulted in removing large 

portions of her left amygdala, perirhinal cortex, and entorhinal cortex, sparing the 

hippocampus (Bowles et al., 2007). Additionally, evidence from an fMRI study suggests 

that her left hippocampus is functionally intact (Bowles et al., 2011). A post-surgical 

neuropsychological examination showed that NB has normal cognitive function in all 

domains, except for a low semantic fluency score (21st percentile) (see Supplementary 

Table 1 in Bowles et al., 2007).  

 

4.2.3 Control participants 

For HC, ten healthy control participants (Mean age = 22.1 years, SD= 1.9 years; 9 

females), predominantly attending college at the time of testing, took part in the study. To 

minimize potential effects of achievement differences in tests of semantic memory, they 

were matched closely in education to HC in both years (Mean = 14.2 years, SD = 0.93 

years) and level of education. It is important to note that while in many countries the 

terms college and university are used interchangeably, in Canada, “college” refers to a 

higher education institute in applied arts and technology that is more hands-on and 

career-oriented than a traditional university. Colleges usually offer either a 1 year 
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certificate program, or a 2-3 year bachelor program. In the current study, predominantly 

college rather than university participants took part; 5 went to college only, 2 attended 

both college-level and university-level courses, and 3 attended university-level only. 

Controls were screened in a brief interview to rule out the presence of any history of 

neurological disorders. Control participant testing was approved by the Research Ethics 

Boards of York University and Baycrest, as well as the Fanshawe College Human Ethics 

Board. The same control participants were tested in Experiments 1 and 2. 

Control participants for patient NB were 10 university-educated females (Mean age = 

23.3, SD = 1.8). These control participants took part in a battery of tests as part of a 

separate study on NB, approved by the Health Sciences Research Ethics Board and the 

internal Ethics Board of the Department of Psychology at Western University. 

 

4.3 Experiment 1: Feature production 

4.3.1 Materials 

The stimuli consisted of 40 concepts chosen from McRae, Cree, Seidenberg, and 

McNorgan (2005). There were 16 living things such as pig and potato, and 24 nonliving 

things such as shoes and blender. This number of concepts is approximately the upper 

limit that could reasonably be used for this intensive task, at least in a single session. By 

comparison, most semantic feature production studies have used approximately 20-25 

concepts per participant. 

 

4.3.2 Procedure 

For each concept, participants were presented with a piece of paper with a concept name 

at the top, and were given 90 seconds to write down as many features as possible. The 

instructions were identical to those employed by McRae et al. (2005; see their Appendix 

B), although that study did not incorporate a time limit. Features were defined to 

participants as properties of the concept to which the word refers. They were further 
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instructed that features could include: physical properties, such as internal and external 

parts; functional properties, such as what it is used for, as well as where, when, and by 

whom it is used; things that the concept is related to, such as the category that it belongs 

in; and other facts, such as how it behaves, or where it comes from. Participants were 

able to follow these instructions. For example, for squid, one control participant produced 

the following: <slimy>, < swims>, <eats fish>, <lives in the ocean>, <tentacles>, <floats 

in the water>, and <smaller than octopus>.  The instructions remained in plain view 

throughout the task, and reminders of the kinds of features that could be provided were 

given periodically to avoid the potential impact of memory impairments for the 

instructions on performance. The experiment took approximately one hour. 

 

4.3.3 Results 

The listed features were coded using McRae et al.’s (2005) procedures. The features were 

coded by three independent judges who were blind to whether the features had been 

produced by HC, NB, or controls. The features were coded initially into knowledge types 

using Cree and McRae’s (2003) brain region classification scheme. There are nine 

knowledge types in this classification scheme. Visual form and surface features denote 

parts of objects and entities (<has legs>, as well as shape (<is round>), and size (<is 

large>). Colour features denote colours of objects and entities (<is green>). Sound 

features describe the sounds that they make (<oinks>, <is loud>). Tactile features 

describe how an object or entity feels (<is soft>). There are also taste features (<tastes 

salty>). Visual motion features denote how an entity or object moves on its own 

(<swims>). Functional features denote how something is used, what it is used for, or who 

typically uses it (<used for repairs>). Encyclopedic features are somewhat less 

homogeneous than the other classes, although the majority of them convey information 

about location or time, such as <found on farms> or <worn in winter>. Finally, 

taxonomic features primarily denote the category (or categories) to which an object or 

entity belongs (<is an animal>), although some category co-ordinates and category 

exemplars were listed (<potbelly> for pig). 
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Our primary goal was to test whether HC demonstrates abnormalities in producing 

features that are extrinsic in nature. Because it often has been argued that the 

hippocampus encodes relations, or associations among types of information (Konkle & 

Cohen, 2012; Mayes et al., 2007) and extrinsic features are contextual or associative in 

nature, we hypothesized that HC would produce fewer extrinsic features for concrete 

concepts. Extrinsic features included functional, encyclopedic, and taxonomic features, 

whereas intrinsic features included smell, taste, sound, colour, visual form and surface, 

and visual motion features. The primary determinant of whether a feature type was 

counted as extrinsic was whether it described how the object is associated to other 

entities, objects, locations, and so forth, rather than being intrinsic to the object itself. 

Thus, learning these types of knowledge arguably relies on a relational binding 

mechanism. 

We first examined the total number of features produced by HC, NB, and controls, 

irrespective of feature type, across the 40 concepts. HC produced 8.3 features per 

concept, which was non significantly fewer than controls (M = 11.1, SD = 3.4; range = 

7.2 - 18.5), z = -0.82, p > .4. NB did not differ from controls in terms of overall number 

of features produced (NB Mean = 10.1, control Mean =10.4, SD = 1.6, range = 8.6 to 

12.2 z = 0.19, p > .8). 

To address the primary question of whether HC produces fewer extrinsic features than do 

controls, we averaged the number of features across all 40 concepts for HC and controls 

for each type of feature. HC produced on average 3.6 intrinsic features per concept (SD = 

1.7, range = 0 - 8), which was almost identical to the 3.7 intrinsic features per concept 

(SD = 0.9, range = 2.1 - 6.1) produced on average by control participants. In terms of 

extrinsic features, however, HC produced 4.7 per concept (SD = 1.8, range = 2 - 10), 

whereas controls produced 6.9 per concept (SD = 1.2, range = 5 - 10). Numerically, these 

data are in line with our predictions that HC has selective difficulties with extrinsic 

features. We first analyzed these data by using items (the 40 concepts) as the replication 

factor. Using items as the replication factor enabled conducting a mixed analysis of 

variance using the number of features produced as the dependent variable. The 

independent variables were feature type (intrinsic vs. extrinsic), which was a within-items 
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factor, and group (HC vs. controls), which was a between-items factor. Feature type and 

group interacted, F(1,78) = 16.59, p < .0001. Simple main effects analyses (using a 

pooled error term) showed that HC produced significantly fewer extrinsic features than 

did controls, F(1,153) = 44.54, p < .0001. The 0.1 features per concept difference for 

intrinsic features was nonsignificant, F < 1. 

Next, we analyzed the feature data in a manner that tests the difference between HC and 

controls for intrinsic and extrinsic features by using difference scores. This permitted an 

analysis based on participants, rather than items. First, the average number of intrinsic 

and extrinsic features for all 40 concepts was calculated for HC and for each control. A 

difference score was calculated by subtracting the average number of features of each 

type (intrinsic and extrinsic) produced by HC from each control participant's average. For 

extrinsic features, HC produced 2.2 fewer features on average than did controls, which 

was significantly different from 0 using a single-sample t-test, t(9) = 2.89, p < .02. In 

contrast, for intrinsic features, HC produced only 0.6 fewer features on average than did 

controls, t(9) = 1.35, p > .2. 

In contrast, NB showed no differences from her controls in feature production for either 

intrinsic or extrinsic features. NB produced on average 3.6 intrinsic features per concept 

(SD = 1.8), which was identical to the 3.6 intrinsic features per concept (SD = 1.5) 

produced on average by control participants. Importantly, unlike HC, NB produced 6.5 

extrinsic features per concept (SD = 1.9), which is almost identical to the 6.7 extrinsic 

features per concept produced by her controls (SD = 1.2). There was no interaction 

between feature type and group F(1,78) = 0.06, p > .8. Additionally, there were no 

significant differences in the number of extrinsic or intrinsic features produced, when 

using NB’s difference score, NB produced 0.2 fewer extrinsic features ( t(5) = 0.37, p > 

.7), and 0.1 fewer intrinsic features (t(5) = 0.33, p > .7).  

Experiment 1 demonstrates that HC produced significantly fewer extrinsic features 

relative to controls. In contrast, HC produced virtually the same number of intrinsic 

features. Importantly, an individual with medial temporal damage sparing the 

hippocampus, NB, produced the same number of intrinsic and extrinsic features as 
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controls. This supports our hypothesis that HC has specific abnormalities in her 

production of extrinsic knowledge of object concepts. That is, she lacks a rich store of 

extrinsic feature information, presumably because acquiring extrinsic knowledge relies 

on relational binding by the hippocampus. Note that this type of impairment in semantic 

knowledge would not be apparent in standard clinical tests of semantic memory. 

Consider, for example, that HC scored at the 90th percentile in category fluency when 

asked to produce names of animals. People’s knowledge of animals tends to be 

dominated by intrinsic knowledge, such as what an animal looks like, what it sounds like, 

or how it behaves on its own. On the other hand, people’s knowledge of many nonliving 

things such as types of tools or furniture, is dependent to a large degree on knowledge of 

how humans interact with these objects, or where they tend to be located. Because 

Experiment 1 provided a relatively direct measure of these types of knowledge, HC’s 

hippocampal-based impairment regarding extrinsic relational knowledge was evident. 

 

Figure 4.2: Mean intrinsic and extrinsic feature production for HC, NB, and their 

control participants. HC did not differ from controls in the number of intrinsic 

features produced, but produced significantly fewer extrinsic features (F(1,153)() = 
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44.54, p<0.0001). NB did not differ from controls in the number of features 

produced for intrinsic or extrinsic features. 

 

 

 

4.4 Experiment 2: Typicality ratings 

4.4.1 Materials 

The stimuli were 429 basic-level concepts taken from 10 nonliving (e.g., clothing-shirt) 

and 7 living (e.g., fruit-apple) superordinate categories. The categories and their 

exemplars were based on the taxonomic features produced by participants in McRae et 

al.’s (2005) feature production database. That is, as part of producing features, 

participants in McRae et al. provided the category to which basic-level concepts belong, 

and those responses were used to determine the superordinate categories and their 

exemplars. The number of exemplars per superordinate category ranged from 9 to 57, 

with a mean of 25 (see Table 2). Some concepts were included as exemplars of multiple 

categories (e.g., tractor was included both for the category vehicle and for machine). We 

excluded ambiguous concepts (such as bat) and those that do not fit cleanly into any 

category (e.g., some food items). 
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Table 4.2 Number of exemplars used in each object category in the typicality rating 

experiment 

Category Number of Exemplars Example Exemplars 

mammal 57 bat elk bear 

bird 39 blackbird flamingo hawk 

insect 13 hornet ant caterpillar 

reptile 10 salamander toad iguana 

carnivore 19 eagle fox hyena 

fruit 29 apple tomato cranberry 

vegetable 31 olive zucchini cauliflower 

appliance 14 toaster microwave blender 

utensil 22 mug paintbrush bowl 

tool 34 axe level microscope 

weapon 39 whip sword shield 

container 14 ashtry box urn 

furniture 15 bed couch stool 

clothing 39 shirt veil trousers 
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machine 9 tank catapult helicopter 

vehicle 27 yacht bus ship 

musical 18 accordion harp trumpet 

 

 

4.4.2 Procedure 

For each trial, participants were presented with a superordinate category label near the 

top of the computer screen, and an exemplar name below. They were asked to use a 9-

point scale to indicate how good of an example each basic-level concept is of the 

category listed above it, with ‘9’ corresponding to an extremely good member of a 

category, and ‘1’ to a poor category member. Participants rated all exemplars for a given 

category in random order, and then proceeded to the next category. The 17 categories 

also appeared in random order. All participants were instructed to pay close attention to 

subtle differences regarding the typicality dimension, and they were encouraged to use 

the entire scale. Ratings were self-paced and trials were separated by an ISI of 750 ms. 

Practice items to familiarize participants with the task used sports as the category. The 

experiment took approximately 40 minutes. 

 

4.4.3 Results 

We first assessed HC and NB’s performance in general by using analyses that did not 

distinguish between living and nonliving categories. We used either z-scores or a 

modified t-test that was developed specifically for experimental single-case studies 

(Crawford & Howell, 1998). HC’s overall mean typicality rating (6.28) did not differ 

significantly from that of controls (6.70), z = -0.53, p > .59. The standard deviation of 

HC’s (2.65) and controls’ (2.46) ratings also did not differ significantly, z = 0.58, p > .55. 
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NB did not differ in terms of her average typicality rating (6.54) from that of controls 

(6.85), z = -0.33, p > .7. The standard deviation of NB’s (2.20) and controls’ (2.25) 

typicality ratings also did not differ significantly, z = -0.21, p > .8. Thus, overall across 

all categories, neither HC nor NB provided significantly lower or higher typicality ratings 

than did controls. 

Our primary interest was to determine whether HC rates typicality differently for 

nonliving as compared to living thing categories. Specifically, we hypothesized that 

because HC has less well-developed extrinsic feature knowledge, her ratings would be 

abnormal when compared to controls, although we did not expect her to generally find 

nonliving items more or less typical than controls. Therefore, we evaluated both the 

pattern of typicality ratings across living and nonliving items (using correlations), as well 

as HC’s average typicality ratings for both categories. We used the correlational approach 

because we wanted to examine the pattern of typicality ratings, rather than their absolute 

magnitudes. In these ratings on a 1 to 9 scale, the absolute magnitude of the ratings is less 

important than are the relative ratings of typicality across the exemplars for each 

superordinate category. Our correlational approach was designed specifically to be 

sensitive to how participants rate various exemplars relative to one another. Given that 

NB did not differ from controls in terms of extrinsic feature knowledge in Experiment 1, 

we predicted that her pattern of typicality ratings would be similar to control participants 

for both living and nonliving things. To compare HC and NB’s typicality ratings to those 

of controls, we calculated item-based correlations between each individual’s typicality 

ratings and their controls’ typicality ratings. First, we correlated HC’s and NB’s ratings 

with each of the controls and then calculated the average correlation. For each control, we 

correlated their ratings with those of every other control participant, and then calculated 

an average correlation. As depicted in Figure 4.3, for all 17 superordinate categories 

combined, the mean correlation between HC's typicality ratings and those of the controls 

was numerically but not significantly lower than the mean correlation of each control 

with the other controls (control mean: r = .45; HC: r = .37; t(9) = -1.19, p > .26). NB’s 

overall correlation was similar to controls (control mean: r=0.48, NB mean: r =0.50; 

t(10) =0.621, p > .55).  
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The theoretically central analyses involved dividing the categories into living and 

nonliving things. HC's average correlation for living thing categories did not differ from 

those of controls (control mean: r = .33; HC: r = .30; t(9) = -0.26, p > .80). Importantly 

however, for nonliving thing categories, HC’s average correlation was the lowest, and 

was significantly lower than that of controls (control mean: r = .50; HC: r = .40; t(9) = -

2.33, p < .05). Furthermore, HC did not differ with respect to the mean typicality rating 

given to nonliving (control mean = 6.33; HC = 5.94; z = -0.57, p > .56) nor living things 

(control mean = 7.13; HC = 6.68; z = -0.44, p > .66). In fact, HC tended to provide 

slightly lower typicality ratings for both types of concepts (0.39 lower for nonliving 

things, 0.45 lower for living things). This demonstrates that abnormalities in typicality 

ratings for nonliving concepts cannot be explained by HC simply rating all concepts 

generally as high or low in typicality. Rather, it is the pattern of typicality across the 

nonliving things that is abnormal in HC. 

Unlike HC, NB’s pattern of typicality ratings did not differ from controls for nonliving 

things (control mean: r = 0.54, NB: r = 0.53, t(10) = -0.34, p > .74). Also, like HC, NB’s 

mean correlation did not differ for living thing categories (control mean: r = 0.37, NB: r 

= 0.44, t(10) = 0.92, p > .38). Finally, NB’s average typicality rating for the nonliving 

categories did not differ from controls (control mean = 6.55, NB mean = 6.28, t(10) = -

0.10, p > .92), and the same was true for living things (control mean = 7.23, NB mean = 

6.9, t(10) = -0.14, p > .90). 

An important question that arises is whether or not there are factors that differ in general 

between living and nonliving concepts that could account for HC’s abnormal typicality 

ratings aside from an explanation based on extrinsic features. For example, there could be 

differences in terms of the frequency that nonliving and living concepts appear in text, or 

the concreteness of the two domains. To explore these possibilities, we evaluated 

frequency, as measured by ln(BNC), the natural logarithm of the number of times each 

word occurs in the British National Corpus. Across all 541 concepts in McRae et al.’s 

(2005) norms, frequency was significantly higher for nonliving things (mean living = 5.8, 

SD = 1.6; mean nonliving = 6.7, SD = 1.8; t(539) = 5.86, p < .001). We also analyzed 

concreteness ratings obtained from Brysbaert, Warriner, and Kuperman (2014) for the 
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538 concepts from McRae et al.’s norms for which concreteness ratings were available. 

Concreteness, on a 1 to 5 scale with 5 being the most concrete, did not differ between 

living and nonliving things (mean living = 4.8, SD = 0.2; mean nonliving = 4.8, SD = 

0.2; t(536) = 1.37, p > .16). As would be expected, concreteness ratings for the living and 

nonliving things were uniformly extremely high. 

Furthermore, we were able to test more sensitively the possibility that HC’s difference in 

typicality ratings between nonliving and living things could be due to the possibility that 

HC is simply more familiar overall with living things. To test this, we used HC’s 

familiarity ratings for all 541 concepts from McRae et al. (2005). These ratings were 

collected as part of another project (Bowles et al., 2016). HC’s familiarity ratings did not 

differ from controls’ ratings for nonliving (controls: M = 5.91, SD = 1.00; HC: M = 4.83, 

z = - 1.08, p > .2) or for living things (controls: M = 4.55, SD = 1.37; HC: M = 3.30, z = 

0.92, p > .3). Although HC’s familiarity ratings are numerically lower than control 

participants’, if anything, the difference is larger for living than for nonliving things. 

More importantly, HC rated the nonliving things as being more familiar to her than the 

living things. It is also notable that in the literature on acquired category-specific deficits 

with adult onset, approximately 80% of reported patients have shown living thing deficits 

(Capitani, et al., 2003). Furthermore, prior to the use of improved designs in which 

familiarity was balanced across living and nonliving things, it had been argued that the 

preponderance of patients with living things deficits was due, at least in part, to living 

things being less familiar than nonliving things, rather than the other way around (Funnell 

& Sheridan, 1992). 
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Figure 4.3 Typicality judgements for living and nonliving object concepts for HC, 

NB, and their control participants. Separate control groups were chosen to best 

match each individual, for the highest level of control. HC's typicality ratings do not 

significantly differ from controls overall (control mean: r = 0.45; HC: r = 0.37; t(9) = 

−1.19, p>0.26), or in the living domain (control mean: r = 0.33; HC: r= 0.30; t(9) = 

−0.26, p>0.80), but were significantly less correlated with control’s ratings in the 

nonliving domain (control mean: r = 0.50; HC: r = 0.40; t(9) = −2.33, p<0.05). NB's 

typicality ratings did not differ from controls (overall: control mean: r=0.48, NB 

mean: r =0.50; t(10) =0.621, p>0.55; living: control mean: r = 0.37, NB: r = 0.44, t(10) 

= 0.92, p>0.38; nonliving: control mean: r = 0.54, NB: r = 0.53, t(10) = −0.34, 

p>0.74). 

 

 

4.5 Discussion 

Consistent with our main hypothesis, we found that HC, an individual with 

developmental amnesia, demonstrates some abnormalities in conceptual structure. These 

abnormalities appear to be specific to extrinsic features of object concepts. In Experiment 

1, when asked to generate individual features for concrete concepts, HC produced 

significantly fewer extrinsic features than control participants, but was able to generate as 
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many intrinsic features as controls. In Experiment 2, we used a typicality-rating task to 

test whether HC’s impoverished extrinsic feature knowledge would lead to abnormal 

ratings for nonliving object concepts. When asked to rate the typicality of concepts in 

relation to a superordinate category, HC’s ratings for nonliving concepts were 

significantly less correlated with control participants’ ratings than the control 

participants’ ratings were correlated with one another. Importantly, HC’s typicality 

ratings for living things did not show any such abnormalities. Critically, these results 

cannot be accounted for by reduced familiarity specific to nonliving objects (weapons, 

tools, etc.). When we examined HC’s lifetime familiarity ratings for all concepts used in 

our experiment, there were no significant differences between her ratings and those of 

control participants for both living and nonliving concepts. Additionally, NB, an 

individual with medial temporal lobe damage sparing the hippocampus, performed 

similarly to controls on both the feature generation and typicality tasks, suggesting the 

hippocampus specifically is important for extrinsic feature knowledge. Although caution 

is required when comparing patients with different etiologies, these findings provide 

some specificity as to the lesion location that may cause abnormalities in extrinsic feature 

knowledge. However, inasmuch as NB’s lesion was acquired later in life than HC’s, 

further research is required in other patients to shed light on this issue.  

As is typically the case in individuals with developmental amnesia (Vargha-Khadem et 

al., 1997), many aspects of semantic knowledge appear to be spared in HC. She performs 

normally on standard semantic knowledge tests, such as object naming, category fluency 

with animals, fact-based questionnaires about the world, and vocabulary tests (Table 1, 

see for further detail Rosenbaum et al., 2011). Such findings have been taken to support a 

strong claim that semantic memory acquisition precedes and is independent of 

hippocampally-based episodic memory (Tulving and Markowitsch, 1998; Tulving, 2002; 

Vargha-Khadem et al., 1997; de-Haan et al., 2006). However, the clinical 

neuropsychological tests of semantic memory that were used to establish preserved 

semantic memory were not designed to probe specific aspects of conceptual structure. 

The experimental tasks used in the current study, by contrast, allowed us to test specific 

hypotheses concerning the structure of concrete concepts. Experiment 1 allowed us to 

compare the generation of extrinsic and intrinsic features, and revealed an abnormality in 
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HC’s performance that is specific to the former. In Experiment 2, typicality ratings 

allowed us to show, building on a longstanding research strategy in the semantic memory 

and categorization literatures (Rosch & Mervis, 1975), that this abnormality in 

knowledge of extrinsic features has implications for the internal structure of some but not 

all categories and their exemplars.  

To the extent that the pathology in developmental amnesia centers around the 

hippocampus, and in HC includes the extended hippocampal system, extrinsic features of 

concepts are of particular relevance. Prominent theories of hippocampal functioning 

emphasize its role in relational binding, or the binding of disparate elements (such as 

objects and contextual information) across space and time. Traditionally, this binding 

function has been discussed in terms of its role in episodic memory (Davachi, 2006; 

Mayes et al., 2007; Konkel & Cohen, 2008; Cohen & Eichenbaum, 1993). However, our 

results suggest that hippocampal binding may also be important for certain aspects of 

semantic memory. 

The hippocampus is critical for binding objects with associated extrinsic or contextual 

information, such as the background scene or the specific list in which the item was 

initially presented (Mitchell & Johnson, 2009). When contextual information is external 

to the object itself, patients with hippocampal lesions are impaired in recalling the source 

(Ryan et al., 2000; Hannula et al., 2007). Critically, however, when individuals with 

hippocampal lesions are instructed to “unitize” an item and its context (e.g., imagine the 

object as having the same colour as the background, making the context part of the item), 

they are able to retrieve the unitized associations (Diana et al., 2009; cf. Ryan et al., 

2013; D’Angelo et al., 2015). Functional neuroimaging results demonstrate that when 

items are unitized during encoding, the perirhinal cortex, and not the hippocampus, is 

activated (Diana et al., 2009; Haskins et al., 2008). HC’s intact perirhinal cortex (Olsen et 

al., 2013) may therefore explain why she is unimpaired in producing intrinsic features, 

and normal in typicality measures for living things. 

The reported abnormalities following early hippocampal damage speak to the notion that 

at least some aspects of semantic memory are a result of a transformation process by 



136 

 

 

which information occurring within unique episodic experiences becomes more abstract 

and schematized over time as part of consolidation (Moscovitch et al., 2016; Winocur et 

al., 2010). This transformation process is thought to be supported by interactions between 

the hippocampus and ventromedial prefrontal cortex. The described abnormalities for 

extrinsic feature knowledge in H.C. can be interpreted as the outcome of impairments in 

this process, due to poorly bound episodic experiences related to pertinent concepts in 

initial hippocampal representations. As such, the present results on extrinsic feature 

knowledge are not easily accommodated by the SPI model of semantic and episodic 

memory (Tulving & Markowitsch, 1998), in which the development of semantic memory 

representations always precedes, and is necessary for, encoding in episodic memory. 

Thus, while the SPI model may account for the intact acquisition of some aspects of 

semantic knowledge in developmental amnesia, it appears that it does not hold for 

semantic learning universally.  

Other evidence linking semantic learning to hippocampal processing comes from 

functional neuroimaging research that has revealed a role for the hippocampus in binding 

information across multiple episodes. In a study by Kumaran et al. (2009), participants 

had to learn to predict outcomes (rain or shine) for patterns composed of two fractals 

based on either object-object pairings, or object-location pairings. The task was 

structured so that participants could extract diagnostic information across trials based on 

some commonality, against the background of varying irrelevant information. 

Accumulation of this conceptual knowledge was related to activity in a functionally 

coupled circuit between the hippocampus and ventromedial prefrontal cortex. The 

binding of outcome information (rain or shine) to a pattern (fractal combination) may be 

thought of as a process akin to extrinsic feature binding of  an object (scissors) to 

functional information about the object, such as its purpose (to cut). Developing a rich 

and stable concept requires binding an object with important extrinsic features which 

repeatedly co-occur across multiple episodes, or are particularly salient (i.e., the act of 

cutting). 

The notion that learning semantic knowledge that requires feature binding relies on the 

hippocampus also receives support from findings in individuals with adult-onset amnesia. 
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While a detailed consideration of this literature is beyond the scope of the current paper, 

we note that many studies have reported abnormalities in learning new semantic 

information. Holdstock et al. (2002) evaluated an individual, YR, on her ability to rapidly 

learn new semantic information. YR suffered an ischaemic accident leaving her with 

selective bilateral hippocampal lesions and anterograde amnesia, her neuropsychological 

profile shows she has normal intelligence, and intact recognition of visual and verbal 

items, with a fairly specific impairment in recall. In the current study, YR was tested on 

her ability to learn a set of new word-definition pairs, which were shown on index cards 

and read out loud in ten different sessions. YR’s recall was impaired relative to controls 

on testing immediately after each session, and after a 30 minute delay period, indicating 

that she was unable to rapidly learn new vocabulary words. The authors interpreted YR’s 

deficit in acquiring new semantic knowledge as an inability to bind orthographic 

information to its meaning, suggesting that the same hippocampal mechanisms that bind 

elements within an episode are also needed to acquire new semantic knowledge 

(Holdstock et al., 2000). In other studies on individuals with adult-onset amnesia, some 

acquisition of semantic knowledge has been reported, but typically at a slower rate than 

in control participants (Bayley & Squire, 2002; Verfaellie et al., 2000; O’Kane et al., 

2004; Tulving, Hayman, & MacDonald, 1991; but see Sharon et al., 2011). It has been 

suggested that this slow acquisition relies on cortical learning mechanisms that are 

distinct from relational-binding mechanisms supported by the hippocampus, perhaps 

including but likely not restricted to computations in perirhinal cortex and the anterior 

temporal lobes (Norman & O’Reilly, 2003). Adult amnesics may also be capable of rapid 

incidental concept learning when information is actively discovered by inference based 

on previous knowledge (‘fast-mapping’; Sharon et al., 2011; Merhav et al., 2014; but see 

Smith et al., 2014). Imaging and lesions studies point to the anterior temporal lobes as 

possible critical nodes for such learning (Merhav et al., 2015; Atir-Sharon et al., 2015). 

Fast-mapping is thought to be responsible for the prodigious rate at which children 

acquire vocabulary, and if it is cortically mediated independently of the hippocampus, 

that could account for preserved basic conceptual learning in developmental amnesia (as 

proposed by the SPI model discussed previously). Fast-mapping, however, only enables 
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acquisition of partial meaning of a concept, and deeper more extensive conceptual 

knowledge may only be acquired more gradually through multiple experiences. 

Interestingly, some recent evidence also shows that individuals with adult-onset 

amnesia due to hippocampal damage perform worse on measures of vocabulary depth 

and semantic richness even for premorbidly acquired concepts. While these individuals 

were not impaired in naming tasks and in tasks requiring matching a word to its 

definition, aspects of semantic knowledge which are thought to accumulate continuously 

over time and experience, such as vocabulary depth and semantic richness, were 

impoverished (Klooster et al., 2015; cf. Rosenbaum et al., 2009). The measure of 

semantic richness found to be affected in these patients required listing as many features 

as possible for a subset of concepts taken from McRae et al. (2005). In this task, 

individuals with adult onset amnesia produced fewer features overall, although the 

authors did not classify features into extrinsic and intrinsic domains as we did in the 

current study. One possible interpretation suggested by the authors is that the 

hippocampus is needed for incorporating or binding new features, even to a familiar 

concept, across repeated episodes. An important avenue for future research is to test 

whether incorporating new features is impoverished primarily for extrinsic features in 

adult-onset amnesia.  

Dissociations between knowledge for living and nonliving things in adult 

neuropsychological patients has been widely reported. In general, category-specific 

semantic deficits have been reported more frequently (approximately 80% of cases) for 

living than for nonliving things. However, there are some cases of deficits specific to the 

nonliving domain. A recent review by Capitani et al. (2003) describes 18 case studies in 

which individuals were reported with a primary nonliving thing (artefact) impairment (p. 

239).  Of these 18 reported cases, 6 reported damage in the temporal lobes. One 

interesting possibility is that some of these cases may have involved damage to the 

hippocampus. Of these 6 cases, 5 involved damage primarily to the left temporal lobe 

(Warrington & McCarthy, 1987; Lambon Ralph et al., 1998; Cappa et al., 1998; Silveri et 

al., 1997; Moss & Tyler, 2000), however due to the fact that most lesions were 

documented by CT scans, or the damage was fairly widespread within the left temporal 
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lobe, it is difficult to determine with any confidence whether the nonliving deficits 

reported in prior cases result from hippocampal damage. It seems to be an open question 

as to whether adult-onset amnesics with damage to the hippocampus show any 

abnormalities in extrinsic feature knowledge or processing nonliving objects, or as to 

whether the hippocampus is crucial for acquiring, but not retrieving/using extrinsic 

feature knowledge.   

There is some evidence from neuropsychological research that acquiring extrinsic 

features, specifically functional knowledge, is impaired in adult onset amnesia. In a novel 

tool use paradigm, amnesic individual DA showed impaired learning of functional 

information related to novel tools (Roy & Park, 2010). DA was able to learn the series of 

movements required to use the tools as quickly as control participants across a training 

session, and he retained these motor skills overtime, as evidenced during later testing. 

However, even after extensive exposures across multiple sessions, DA could not recall 

tool attributes, including their function. In addition to this verbal recall impairment for 

functional information, DA showed abnormalities on two measures of tool use that 

required expression of this newly learned functional semantic knowledge, in a grasp-to-

command and a use-to-command task. Notably, DA was also impaired in recalling the 

color of the tools, which is a perceptual intrinsic feature. This result contrasts with the 

preserved intrinsic feature knowledge we report here for HC. We also note however, that 

the test format used in this study involved a procedure that did not present color as an 

intrinsic feature of the tool, which may have limited demonstration of preserved 

perceptual knowledge. Specifically, a colored square separate from the tool itself was 

used to probe memory for tool color, i.e., acquired perceptual feature knowledge. It is 

possible that DA would perform better in a forced choice test in which color was 

presented as an intrinsic feature, as it would have been during learning. 

Additional support for the notion that functional information relies on the 

hippocampus comes from recent fMRI research in healthy participants. In Chen et al. 

(2015), participants were presented with names of commonly used tools, and were 

required to pantomime the tool’s corresponding action. Motor-actions for different types 

of tools could be successfully classified based on representations in dorsal and ventral 
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stream areas in the parietal and temporal lobes, whereas functional information about 

tools could be classified almost exclusively through activity patterns in the medial 

temporal lobes, including in the hippocampus (Chen et al., 2015). While this particular 

study did not examine the representation of intrinsic features, it adds to a body of fMRI 

studies that provide evidence for unique representations of functional knowledge as 

compared to other aspects of object knowledge (Mahon & Caramazza, 2011). 

On another level, the finding that medial temporal lobe structures represent tool 

function information during action pantomiming adds to a broader emerging literature 

that implicates the medial temporal lobes in tasks that require expression of semantic 

knowledge. For example, recent research has provided evidence that the hippocampus 

makes contributions to tasks such as object naming or conceptual fluency, that is, the 

speeded generation of exemplars from different semantic categories (Greenberg et al., 

2009; Ryan et al., 2008; Sheldon et al., 2012; Westmacott & Moscovitch, 2003; 

Whatmough & Chertkow, 2007). Building again on the view that this structure plays a 

critical role in binding items to episodic contexts (Cohen and Eichenbaum, 1993), such 

evidence has also led to the suggestion that hippocampal representations support 

cognition well beyond their widely accepted role in episodic memory (see Moscovitch et 

al., 2015, for detailed discussion). The conclusions of this broader literature converge 

with the findings on developmental amnesia reported here, in questioning a sharp 

distinction between episodic and semantic memory in functional brain organization. 
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4.5.1 Conclusion 

The current case study in developmental amnesia with HC and NB reveals an important 

role for the hippocampus in learning extrinsic semantic features of object concepts. While 

some aspects of semantics are intact in HC, consistent with the SPI model (Tulving and 

Markowitsch, 1998; Tulving, 2002) and prior experimental reports (Vargha-Khadem et 

al., 1997; Vargha-Khadem et al., 2003; Baddeley et al., 2001; Martins et al., 2006), our 

novel findings emphasize that the development of important aspects of conceptual 

knowledge might still depend on the hippocampus. Our results demonstrate that 

performance on semantic memory tasks that tap into the feature structure of concrete 

concepts can be affected by early hippocampal pathology for concepts that are 

characterized by high levels of extrinsic associative information. This role in extrinsic 

feature binding is consistent with the classic notion that the hippocampus binds objects to 

contexts. Although this notion is well established in the episodic memory literature, the 

current findings suggest that it also has implications for the representation of concepts in 

semantic memory. 
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Chapter 5 

5 General Discussion 

5.1 Object processing in the MTL: influence of object 
domain 

A wealth of evidence suggests that MTL structures are involved in object perception, 

recognition memory for objects, and object concepts. One useful approach to 

understanding how MTL structures contribute to object processing is by focusing on 

different types of objects, in terms of category membership and domain. A focus on 

differentiation in representational content across MTL structures by category and domain 

can contribute to our understanding of the role these structures play more generally in 

behavioral and cognitive processes. I explored how object category, and more centrally 

object domain, drives the organization of responses evoked by visual object stimuli 

across MTL structures (Chapter 2), whether object domain and category also shape 

recognition-memory signals within these structures (Chapter 3), and finally how one 

MTL structure, the HpC, contributes to the acquisition of object concepts in a domain-

specific manner (Chapter 4). In this General Discussion, I first review key findings from 

each chapter. I then discuss these findings and how they further our knowledge of MTL 

in the context of the broader theoretical literature, and make some suggestions for future 

research. I end with some broad conclusions and remaining open questions. 

 

5.2 Organization of object representations related to 
stimulus processing in the MTL 

An important aspect of understanding how MTL structures contribute to object 

perception and memory is understanding their sensitivity to content. While the previous 

literature suggested some differentiation in the types of stimuli represented by PhC and 

PrC, with the HpC generally being agnostic to stimulus type, prior to my study, this had 

not thoroughly been explored with a large number of object categories. Further, it was 

unclear whether these regions, like more posterior VVS regions, were organized by 
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broader domains - in particular animacy and real-word size for inanimate objects. To 

address these questions, we scanned participants on a continuous recognition memory 

task with exemplars from a large number of object categories that could be divided by 

whether objects were animate or inanimate, and in the inanimate domain, whether they 

were large or small. We then mapped out the organization of representational space in 

each structure for stimulus processing (Chapter 2) and memory signals (Chapter 3). 

In Chapter 2, we found that PhC represented the four large inanimate object categories 

tested (buildings, furniture, trees, and vehicles), as well as faces, and that representations 

were organized by both animacy and real-world size for inanimate objects. PrC was 

found to represent monkeys, with a trend for faces, and was organized more broadly by 

animacy but not real-world size. The HpC showed a trend for representing buildings, and 

was organized more broadly by real-world size for inanimate objects. 

 The focus of this fMRI study was to map out representational space for a large number 

of object categories, and to investigate whether animacy and real-world size are 

organizing dimensions within the MTL, as they are in much of visual cortex. Of course, 

this does not yet get at the question of why animacy and real-world size for inanimate 

objects are prominent dimensions at the level of anatomical and representational space. 

One possibility is that the MTL reflects the organization already present in upstream 

object processing regions that feed into these structures. Indeed, PrC, which we found to 

be organized by animacy but not real-world size, and which showed category 

organization for monkeys (with faces trending), has more dense innervations from the 

lateral temporal lobe, including posterior fusiform gyrus (Ranganath & Ritchey, 2012). 

PhC is more densely connected with posterior medial VVS regions, as well as scene 

sensitive regions such as retrosplenial cortex (Ranganath & Ritchey, 2012). 

Another possibility is that these domains are present as organizing principles in MTL not 

simply because of downstream organization, but because these structures are components 

of broader neural systems involved in different functional aspects of perceiving and 

interacting with different categories or domains of objects. These systems may be 

reflected in long range functional and structural connectivity patterns with domain 
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preferring or domain-organized cortex. Konkle et al. (2016) showed that the three 

prominent domain preference zones in the VVS (animate zone, large inanimate zone, and 

small inanimate zone) had different long-range connectivity patterns. For example, the 

dorsolateral zone that prefers small inanimate objects is more highly connected to parietal 

and motor regions involved in motor control. As a general framework, these regions may 

be part of functional systems that potentially are specialized for navigation, social 

interaction, and tool-use (for a recent review see Bi et al., 2016). Indeed, similar 

arguments have been made for MTL structures, based on their differential connectivity 

(Ranganath & Ritchey, 2012). PhC is connected to the medial parietal cortex, precuneus, 

ventrolateral parietal cortex and medial prefrontal cortex (default mode areas), while PrC 

is more densely connected with the amygdala, orbitofrontal cortex, and anterior 

ventrolateral temporal cortex (Kahn et al., 2008; Libby et al., 2012). This has led to the 

argument that these structures are part of systems that contribute differentially not just to 

memory processes, but to cognition overall. Specifically, according to this model PhC is 

part of a posterior-medial system (P-M system) essentially involved in creating situation 

models (i.e., a mental representation of the relationships between entities, actions, and 

outcomes) and PrC is a component of an anterior -temporal (A-T system) involved in 

assessing the significance of entities (people, objects). Therefore, perhaps animacy and 

real-world size organization in MTL structures more broadly reflects how these object 

representations may be functionally utilized, and how those structures contribute to those 

domains within a larger system. In support of this, recent work has shown that category-

specific recognition memory signals are organized along a gradient by landmark 

suitability (Martin et al., 2018). Specifically, the gradient in MTL follows behavioral 

ratings, with objects that are the most suitable as landmarks, such as buildings and trees, 

represented more posteriorly in PhC, and planes more anterior (anterior portion of PhC 

and posterior portion of PrC). The authors suggest that landmark suitability is important 

to navigation, and that navigation could be the broader dimension of organization that 

shapes object recognition within PhC. Navigational relevance may be more broadly 

linked to the P-M system, in parallel with situation model building, however this relation 

remains to be further investigated. 
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An alternative, yet non-mutually exclusive possibility is that animacy and real-world size 

organization across MTL structures is driven by the perceptual and/or semantic features 

of the individual stimuli. This is a potentially interesting difference between MTL and 

more posterior VVS regions. Specifically, in more posterior VVS, category and domain 

organization may be functionally purposeful, for example, by enabling a fast readout of 

category-level information before identifying a distinct entity, which has adaptive value 

(see Grill-Spector & Weiner, 2014). In MTL structures, this organization may arise 

secondarily from individual object relations. A number of studies have shown that PrC is 

sensitive to distinctions among objects, even highly similar objects (Erez et al., 2012; 

Clark & Tyler, 2014, Tyler et al., 2013; Taylor et al., 2012; Kivisaari et al., 2012). 

Therefore, animacy and real-world size may reflect that distinct object responses vary in 

their feature space along these domains. In other words, distinct responses for animate 

objects overall may be more similar in feature space (and therefore neural 

representational space) than inanimate objects, with the same pattern for real-world size. 

Indeed, Clarke and Tyler (2014) showed that a model based on semantic features of 

individual objects, identical to the feature-norming approach described in Chapter 4, 

better fit the representational space in PrC in response to the same objects than a number 

of other models. These features were not broken down by perceptual or semantic 

attributes, however, making it difficult to determine whether perceptual, semantic, or a 

combination of feature types drives organization of object-based responses in PrC. 

Recent work by Martin et al. (under review) addressed this issue, as well as the influence 

of task on responses in both PhC and PrC. Specifically, they orthogonalized semantic and 

visual features for a set of object concepts, and scanned participants during either a 

semantic or visual-perceptual task while stimuli were presented visually as words. 

Interestingly, a combination of the visual and semantic model best fit the representational 

space in PrC, and there was no influence of task. By contrast, in PhC only the semantic 

model fit and only during the conceptual task. It would be interesting to understand how 

this pattern of findings aligns with the current pattern of results obtained for images of 

these objects across MTL structures. Is real-world size a more semantic dimension in 

general, and animacy a combination of visual and semantic dimensions? Evidence from 

studies with congenitally blind individuals speak to this idea. Both scene-preferring 
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medial regions of the VVS, and small-object preferring dorsolateral occipital cortex are 

largely immune to visual experience and respond to many modalities of input, whereas 

selectivity for animate items in the lateral posterior fusiform gyrus requires visual 

experience, and is more closely tied to modality (for a review see Bi et al., 2016). A 

follow up study to examine MTL structure organization in congenitally blind and sighted 

individuals could be revealing. On the one hand, one might expect PrC organization to be 

dependent on visual experience, with less dependency for PhC and HpC. Alternatively, 

one might see that PrC is more dependent on visual experience than are PhC and HpC, 

but is less dependent on visual experience than is the lateral posterior fusiform, given that 

object representations in PrC are both visual and semantic in nature (as shown in Martin 

et al., under review). 

 

 

5.3 Organization of recognition memory signals for 
objects in the MTL 

Computational models of MTL function, such as those inspired by R-H theory, 

emphasize that memory signals are derived directly from representations (Cowell et al., 

2006, 2010). Supporting this, Martin et al. (2013; 2017) showed category-specific 

recognition memory signals in PrC and PhC. These findings fit predictions from 

computational models in which a network is organized by stimulus features. Specifically, 

if stimuli that share features (i.e., are from the same category) share more overlap in 

neural representation, and recognition memory signals are a read-out of these 

representations, one would expect to pick up category-specificity in the memory signal. 

We extended this work, exploring category-specificity of recognition memory by taking 

advantage of our continuous recognition memory data. The benefit of our continuous task 

was that novel and familiar stimuli were identical, allowing us to circumvent the 

possibility that distinctions between novel and familiar stimuli are due to differences in 

stimuli sets, as in a traditional study-test paradigm in which novel items at test are 

necessarily a different stimuli set. We used this tightly controlled data set to ask whether 
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we find evidence for the organization of memory signals by category and or domain for 

the large number of categories examined in our study. Further, we evaluated whether 

memory status was reflected in repetition suppression, a pattern-based change, or both. 

Surprisingly, we found no evidence of category or domain specificity in recognition-

memory signals for objects. However, we did find robust repetition suppression in each 

MTL structure, as well as a pattern-based distinction between perceived novel and 

familiar responses across all object categories, that was not simply the result of repetition 

suppression. 

 It is somewhat surprising that we did not find any evidence of category or domain 

specificity in recognition memory signals for objects, given previous work in our lab. 

One possibility that needs to be ruled out in further analyses is that this lack of specificity 

can be accounted for by differences in power; notably, fewer trials inevitably went into 

the GLM when categories were split into novel versus familiar (maximum of 4 rather 

than 8 trials for each category). To address this issue, we can perform the analyses 

described in Chapter 2 on a sample of data that is based on 4 trials instead of 8, for 

example by using only novel or familiar responses, or a permutation of either. If we 

replicate our results from Chapter 2, that will support the idea that the lack of category 

and domain specific organization is not simply a power issue. 

If power is not an issue and does not account for the results in Chapter 3, there are a 

number of alternative potential interpretations of the finding that memory-signals were 

not category or domain specific. One possible interpretation of these results is that it is 

simply not possible to assess distinctions between novel and familiar object 

representations when the stimuli are identical in both trial types. Another possibility is 

that in our task there was a contribution of recollection, or HpC feedback, when 

participants made their memory judgements. Indeed, if the original context of the novel 

encounter was reinstated during the memory decision, this might provide a shared 

memory signal across all object categories. This is possible in our study, because unlike 

in Martin et al.’s (2013; 2017) work in which they analyzed only familiarity responses, 

we did not employ a response procedure that distinguishes familiarity from recollection; 

instead participants simply responded with two options: new or old. However we did 
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employ a response deadline procedure to encourage object familiarity over recollection, 

but as we did not explicitly rule out the contribution of recollection it remains a possible 

difference between the studies. Along these lines, it should be noted that we found 

across-object memory distinctions in the HpC, whereas Martin et al. did not. Although 

HpC involvement cannot be interpreted as recollection (a reverse inference), it is a 

possibility. Another alternative explanation is that a general memory signal is computed 

or reflected when the task space includes a large number of categories. The idea that 

different tasks either change neural computations, or change how fMRI reflects the 

underlying neural computations, has some evidence in support. For example, Davis et al. 

(2014) showed that representational space in anterior temporal lobe reflects category 

when analyzing stimulus evoked responses during a categorization task, but reflects 

individual differences in stimuli during a recognition-memory task (which requires item-

based discrimination). Further, in the work described in the previous section by Martin et 

al. (under review). PhC showed task specific organization (i.e., conceptual organization 

in object evoked responses was observed during a conceptual task, but not during a 

perceptual task). It is possible that our task, which was associated with high performance 

due to the use of many different categories, did not emphasize category-specific memory 

processing the way previous work from our lab using a large number of exemplars from 

just a few categories did. Specifically, with a large number of different categories 

interleaved and less overall interference, perhaps distinct responses to individual stimuli 

were emphasized more than shared information across stimuli, leading to the across-

category but not within-category recognition memory signal finding. There are a number 

of ways these ideas could be further tested. One could manipulate the amount of 

interference (i.e., the number of different categories, or similarity of objects within a 

category), or change the type or parameters of the memory task. In addition, one could 

use different feature selection techniques in these different task versions, such as 

selecting voxels that show the largest change (increases of decreases) between novel and 

familiar stimuli. Specifically, in a sharpening model of object repetition, a large number 

of units are activated more weakly at first presentation, and a smaller number of units 

more strongly upon repetition (Cowell et al., 2006). Following this logic, selecting voxels 

with the greatest absolute changes should narrow down the analysis to include voxels 
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most involved in the representational change across novel and familiar presentations. If 

the network represents objects with overlapping features more similarly, one would 

expect that voxels involved in the sharpening of representations for objects from the same 

category would be more similar, leading to category-specific recognition memory signals. 

Presumably, voxels that show the greatest increase would also tap into these 

representations. Voxels with the greatest decrease might represent the voxels that drop 

out upon repetition, which may be informative in terms of a memory signal, but perhaps 

not in terms of stimulus specificity. Of course, caution should be taken when trying to 

relate fMRI data to computational models of sharpening, particularly when evidence of 

sharpening is usually at the neuronal level. For example, it is challenging to link increases 

or decreases of activity to excitatory or inhibitory neural activity, and a central premise of 

sharpening is that a set of neurons show increased firing for a representation with 

repetition, while the surrounding neurons are inhibitory (Kang et al., 2003). Overall, 

MVPA based approaches to analyzing object responses in fMRI data can aid in 

understanding how representations in MTL structures are organized, and how 

organization of representations is linked to their ability to contribute to object recognition 

memory. 

 

5.4 Abnormal semantic knowledge in case of 
development amnesia  

In Chapters 2 and 3, we investigated differences in content across MTL regions, and how 

this content contributes to recognition memory for objects. When thinking about content 

in the HpC, both R-H theory and the BIC model propose that HpC contains 

multidimensional representations that include objects and their spatio-temporal context. 

While the BIC model emphasizes the contribution that binding of items-in-context makes 

to episodic memory, focusing on how these types of representations could contribute 

processes beyond episodic memory led us to the novel idea that the HpC might be 

involved in object concepts, an important aspect of semantic memory. It has long been 

thought that the HpC contributes to episodic memory, but not semantic memory. 

Influential evidence for this theory came from the finding that individuals with 
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developmental amnesia, resulting from relatively selective HpC damage occurring early 

in life, had normal semantic knowledge despite their severe impairment in episodic 

memory. In Chapter 4, we challenged this sharp distinction by testing the hypothesis that 

the HpC is involved in some aspects of object knowledge not previously considered or 

tested. Specifically, we hypothesized that an item-in-context binding mechanism that 

serves episodic memory is also important for acquiring extrinsic feature-knowledge of 

objects, features that are particularly important for objects in the nonliving domain. We 

found that HC, an individual with developmental amnesia, produced fewer extrinsic 

features, despite producing a normal number of intrinsic features. NB, an individual with 

damage to the PrC and EC, but not HpC, by comparison did not differ from controls on 

intrinsic or extrinsic feature generation. Further, HC had abnormal typicality ratings 

specific to nonliving objects, objects that rely more heavily on extrinsic features. NB on 

the other hand, did not differ from controls in her typicality ratings for living or nonliving 

objects. 

 One key aspect of the interpretation of this study is that the HpC is necessary for gaining 

extrinsic feature knowledge for objects throughout development, but that conceptual 

knowledge becomes independent of the HpC as it becomes a part of the object concept 

itself. This view is supported by the complementary learning systems model of HpC and 

cortex, which emphasizes that information from episodes is transferred by the HpC to 

cortex, and often becomes schematized, or more semantic in nature (Norman &O’Reilly, 

2003). While the CLS view does not specify the part of cortex to which information is 

transferred, converging evidence suggests that both anterior medial temporal cortex (i.e., 

PrC and PhC) and lateral anterior temporal cortex may contain object concept 

representations. In general, the anterior temporal lobes are the target for damage in 

semantic dementia (Hodges et al., 1992; Patterson et al., 2007), and transcranial magnetic 

stimulation in healthy adults slows down naming of living and nonliving objects (Pobric 

et al., 2007). Further, some evidence suggests that semantic knowledge of extrinsic 

features for nonliving objects can be decoded from the anterior temporal lobes (Peelen 

and Caramazza, 2012). In terms of PrC, both visual and semantic object information is 

represented there (Martin et al., under review; Clark & Tyler, 2014; Bruffaerts et al., 

2013), whereas in PhC object concept information is represented in the context of a 
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conceptual task (Martin et al., under review). In Chapter 2 and 3 of the current 

dissertation work, while we did not focus on semantic representations, we do find that 

object representations for a set of nonliving object categories in PhC, and object evoked 

representations in both PhC and PrC are organized by whether an object is animate or 

inanimate. This converging evidence suggests that both anterior medial temporal cortex 

(i.e., PrC and PhC) and lateral anterior temporal cortex may contain object concept 

representations. However, the relationship between these representations and HpC 

function in potentially shaping the development of these representations is still an open 

area of inquiry. 

One way to further test ideas about HpC contributions to object concepts would be to 

evaluate whether young children, with protracted HpC development, have less extrinsic 

feature knowledge early on, which increases over time in relation to their HpC 

development or to connectivity between HpC and cortex. More specifically, one could 

test whether their object evoked representational space in PrC, PhC, or lateral anterior 

temporal cortex was organized by intrinsic features (a model of object relation based on 

intrinsic features only) early on, while later in development was best modeled by a 

combination of extrinsic and intrinsic features. Further, one could see whether these 

changes in representational space correlate with HpC development or connectivity with 

cortex. 

While this dependence on the HpC for acquiring extrinsic object knowledge might be 

most evident in development, when a wealth of new semantic knowledge is gained, it is 

possible the HpC continues to be needed for acquiring new extrinsic knowledge. For 

example, work by Duff and colleagues has shown decreased learning of new vocabulary 

in patients with HpC damage. Specifically, individuals with HpC damage had less 

vocabulary depth and semantic richness, both measures that track increasing semantic 

knowledge after initial acquisition of a concept (Klooster et al., 2013). One can consider 

linking an orthographic word to new meaning as a similar process to linking an object to 

an extrinsic feature (Konkel et al., 2008). These results would then suggest that even after 

a basic object concept is established (i.e., an object and some key concrete features), 

further elaboration of that concept (i.e., adding additional extrinsic or abstract features) 
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might continue to involve the HpC over the lifetime. In our study, we focused on 

concrete object concepts and features that come to mind immediately, which we presume 

are learned fairly early during development. However, an interesting prediction to test is 

whether more unusual or abstract features of object concepts require the HpC even in 

adulthood. 

A final open question is whether the HpC is needed to access previously learned extrinsic 

features. For example, it is not known whether the HpC needs to come online for such 

access in feature production tasks or typicality judgements. A nice follow up study to 

address this question would be to test adult-onset amnesics on our feature generation and 

typicality task. Specifically, we could test the hypothesis that adult-onset amnesics would 

perform normally on feature generation and typicality tasks, because concrete extrinsic 

features were acquired during development when they had an intact HpC, and this object-

knowledge was transferred to cortical representations that can still be accessed. This 

dissociation between developmental and adult onset HpC damage would strengthen our 

interpretation that the HpC is involved in the acquisition of concrete feature knowledge, 

and provide further support for a CLS model of HpC function (Norman & O’Reilly, 

2003). 

 

5.5 Benefits of exploring representational space and 
future directions  

The current findings add to a growing body of literature employing representational 

similarity analysis as an approach. Evaluating representational space is a fruitful 

approach for exploring the content of different brain structures, in order to better 

understand how structures contribute to broad aspects of cognition and behavior. One 

way to move forward with this approach is to push tracking changes in representational 

space. For example, task based influences on the space can help us to understand the 

flexibility or rigidity of a brain structures functional architecture. Further, examining 

changes in representational space across development and how these changes relate to 

structural and functional connectivity may provide insight into key differences between 
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different structures that underlie their shared or differential contributions to aspects of 

cognition and behavior. Lastly, evaluating stimulus-evoked space across structures in 

unique neurological conditions, such as in individuals who are congenitally blind, or in 

individuals with known abnormalities in semantic knowledge, such as in semantic 

dementia, can help both to inform our basic understand of neural function, and to enhance 

our understanding of these unique conditions. 

 

5.6 Conclusions and future directions 

The overarching goal of this dissertation research was to increase our understanding of 

the functional specialization and organization of MTL structures. Our approach was to 

move away from dichotomies between processes, such as memory versus perception, 

familiarity versus recollection, or episodic versus semantic memory, and instead focus on 

content and how content contributes to different aspects of cognition and behavior. We 

chose to focus on objects, and investigating content in relation to object category or 

domain, given this has led to a rich understanding of neural organization in the VVS. 

Further, while we know object perception and memory rely crucially upon MTL 

structures, a detailed model of how they contribute is still underway. We were guided by 

the R-H view, and evidence that a crucial distinction between brain areas may be in the 

representational complexity of content, with more anterior areas containing 

representations of higher dimensionality. However, the relation between the 

dimensionality of representations and differences in category or domain sensitivity and 

organization has yet to be well linked. Our attempts to map out the representational space 

in each structure during stimulus presentation, and in recognition memory signals, is an 

important step in this direction. 

Our findings on MTL content organization add further refinement to the current theories 

discussed, R-H theory and the BIC model. Similar to previous work in our lab, we show 

that the BIC model of PhC function is not fully comprehensive, as PhC is involved in 

object processing as opposed to only spatial episodic context. Instead, PhC may be better 

characterized by the way it contributes to both object and context representations. 
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Understanding how content in PhC changes across experiences, such as in recollection 

versus semantic knowledge use versus navigation, may help to create a cohesive model of 

this structure. The same is true for PrC, a structure that clearly contains high-level object 

representations, and as we show is organized by animacy but not real-world size. Further 

understanding the limitations of PrC object sensitivity or generality, as well as how these 

representations contribute to object perception versus recollection will help to get a full 

picture of this structure. Overall, a useful approach moving forward, is to understand 

content differences in PhC and PrC, by combining system-based and feature-based 

models. Beyond this, an exciting and important aspect of understanding the functions of 

these structures will be to understand how their content is utilized for different processes. 

This approach of using content as a way to characterize and understand the function of a 

structure becomes somewhat more challenging when examining the HpC. Taking an R-H 

view of the HpC, and focusing on how HpC content contributes to different aspects of 

cognition and behavior may provide an interesting challenge to both the R-H and the BIC 

model. For R-H view, it is a potential challenge as to whether we should think of the 

representational content (item-in-context) as a hippocampal representation per se. For the 

BIC model, the challenge concerns expanding the scope of binding items-in-context 

beyond a contribution to episodic memory. The R-H theory view of HpC is similar to the 

BIC view, in that it emphasizes HpC representations as associative, and often highly 

dimensional combinations of multiple objects and their spatio-temporal context (Cowell 

et al., 2010). However there is a difference in emphasis between the models, with R-H 

view emphasizing the type of representation, and the BIC model emphasizing binding of 

these elements as a key function. This brings us to a complicated question, as to whether 

HpC contains representations that are a mix of object and context information, or whether 

the representation in the HpC itself is abstracted away from its input, but serves to bind or 

link that input in cortex. Along these lines, theories have emphasized binding as a key 

computation that allows for linking cortical elements into an episodic representation, rich 

in detail and experienced holistically, despite the fact that item and context information 

within the episode are cortically distributed. Initially binding these elements during 

encoding of an episode can lead to later reactivation, thought to be the neural basis of 

recollection. However it is unclear whether HpC contains a rich multidimensional 
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representation of the episode itself, or creates an orthogonalized tag (sometimes described 

as a “bar code” or a pointer) for the distinct experience. Either one of these possibilities 

could explain the general finding that the HpC is agnostic to category or domain level 

organization of representations. If the HpC contains item-in-context representations, they 

likely combine a mix of different stimuli information which would not allow for easily 

capturing shared information across experiences, that is, category specific information. In 

the latter case, the “tags” for different episodes are thought to be orthogonalized to 

detract from interference, which would also decrease any shared stimuli information 

across representations. Importantly, in Chapter 2, we show that representations in the 

HpC are not entirely agnostic, with a trend for buildings and a broader organization by 

whether objects are large or small, and other studies have found the HpC is sensitive to 

scene stimuli. This suggests that at least for some stimuli in some circumstances HpC 

representations do reflect shared stimuli information, showing that further research into 

HpC content is needed. 

In general, focusing on content (either contained in, or orchestrated by) of the HpC as 

opposed to processes, led us to the novel hypothesis that binding of items- in-context is 

important for semantic memory. We found evidence confirming this hypothesis, 

presented in Chapter 4. This finding suggests that there is benefit in moving beyond and 

episodic-memory only focused view of the HpC, such as in the BIC mode. HpC function 

is not fully captured by considering representations within HpC during a task, as one 

might following an R-H theory approach either - as we show an important contribution of 

HpC to the development of representations presumably through interactions with cortex 

and binding. In other words, whether we consider binding items-in-context an HpC 

representation or a computation, it is important to consider the different aspects of 

learning and memory this structure can contribute to beyond one process (i.e., episodic 

memory). Our finding that the HpC may be especially important for concept knowledge 

in the nonliving domain is at the level of forming associative representations. It is 

important to examine this in development, where we can better assess whether 

representations within the HpC are contributing to object concepts, or representations are 

created by interactions between HpC and cortex. Specifically, one could ask whether 

initially these representations are created and maintained in the HpC and then transferred 
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to cortex? Or are these representations always created through HpC cortical interactions 

that allow for extrinsic feature information to be linked to objects, and ultimately 

integrated intro cortical object concept representations? 

Considering whether the HpC “contains” or “creates” multidimensional representations, 

and how this might change at different stages of development, brings up an important 

consideration when characterizing the function of MTL regions by the R-H or BIC 

model. Neither of these models capture the highly dynamic and potentially distributed 

basis of representations, or the different way representations are used when say, 

perceiving the world, or recollecting an episode. One way to address this within the realm 

of the current methods is to explore how representational space changes across different 

tasks, and, potentially to use more naturalistic stimuli to evoke representational space. 

Another important aspect to keep in mind is that, while much evidence suggests a 

hierarchy in representational complexity along the VVS, this information pathway is full 

of back projections and parallel projections (Kravitz et al., 2012). Further, a wealth of 

fascinating evidence suggests that top down or feedback effects can shape representations 

in earlier areas (Hindy et al., 2016; Rao & Ballard, 1999). Using techniques with high 

temporal resolution in parallel with fMRI techniques to investigate representational 

changes in a feedforward, feedback, and parallel manner is therefore highly important. 

Additionally, while focusing on the representations and/or computations in individual 

brain structures is important, it is also crucial to situate the patterns of results within 

structures to their corresponding larger-scale networks, in order to fully understand their 

contributions to cognition and behavior. A good example of this is the anterior-temporal 

and posterior-medial model of MTL structures (Ranganath & Ritchey, 2012). One can 

scale up even further, by looking at how these networks interact. This is especially 

important, given that our experiences and memories often involve animate objects, small 

and large inanimate objects, and a rich spatial and temporal context that we experience as 

an integrated and dynamic whole, for example when we imagine or remember meeting 

our friends in the park for a picnic. 
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