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Abstract  

With the development of nanotechnology and nanomaterials, biosensors incorporated with 

novel nanomaterials and nanostructures have shown significant potential in point-of-care 

medical devices because of their rapid interaction with target analytes and their 

miniaturized systems. Nanomaterials and nanostructures with special chemical, physical 

and biological characteristics are able to enhance biosensors’ performance in terms of 

sensitivity and selectivity. Therefore, my study focused on development of special 

nanostructures used for advanced glucose biosensor. Monitoring of blood glucose level is 

essential for diabetes management. However, current methods require people with diabetes 

to have blood test with 5−8 times per day. Compared to other methods, optical and 

magnetic techniques have a potential in developing minimally invasive or non-invasive, 

and continuous glucose monitoring nanostructured biosensors. Consequently, this thesis 

presented nanostructured optical and magnetic glucose biosensors by incorporating novel 

nanomaterials and fabricating nanostructures for the next generation of glucose biosensor 

in the tears. The glucose biorecognition biomolecule used in the biosensors was 

Concanavalin A (Con A). Con A is a lectin protein that has strong affinity to glucose.  

Fluorescence resonance energy transfer (FRET) technique was applied to develop optical 

glucose biosensors. FRET biosensor is a distance-dependent biosensor. The fluorescence 

emission of a donor molecule could be used to excite acceptor when the distance between 

donor and acceptor is close enough (< 20 nm). Three different types of nanostructures were 

developed and used as the donors of the glucose FRET biosensors. The first type of sensor 

is a ZnO/quantum dots-based glucose biosensors. Hybrid ZnO nanorod array with 

decoration of CdSe/ZnS quantum dots were prepared and coated on silicone hydrogel 

which is a common materials of contact lens. The patterned nanostructured FRET sensor 

could quickly measure rats’ tear glucose in an extremely small amount (2 µL) of diluted 

tear sample. The second type of biosensor is based on upconversion nanomaterials. 

Upconversion NaGdF4: Yb, Er nanoparticles with diameter of about 40±5 nm have been 

prepared by polyol process and coated on silicone hydrogel to directly sense the tear 

glucose level on the rats’ eye surface. The results show that the upconversion nanomaterials 
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based lens sensor is able to quickly measure glucose in rats’ blood samples. The third type 

of sensor utilizes the unique optical properties of carbon nanomaterial, fluorescent carbon 

dots and graphene oxide nanosheets. The carbon dots with tunable fluorescence were 

developed by a microwave-assisted process. The carbon dots are used as a fluorescence 

donor in the biosensor, the chitosan coated graphene oxide acts as the fluorescence acceptor 

to quench the emission of carbon quantum dots. In the presence of glucose, the emission 

of carbon quantum dots could be restored as a function of the concentration of glucose. 

Two linear relationships of the restored emission of the sensor and the concentration of 

glucose were observed, in the range of 0.2 mM to 1 mM, and 1 mM to 10 mM, respectively.  

On the other hand, a magnetoresistive (MR) nanostructured glucose biosensor has been 

developed by exploiting hybrid graphene nanosheets decorated with FeCo magnetic 

nanopartciles. The Fe3O4/silica core/shell nanoparticles are used as the magnetic label of 

glucose, which could bind onto the surface of FeCo/graphene nanocomposited sensor. The 

binding of magnetic label onto the hybrid graphene nanosheets can result in the change of 

the magnetoresistance. The MR signal as a function of the glucose level of diluted rat blood 

samples is measured in a range of 2 mM to 10 mM.  

In summary, novel nanomaterials and nanostructures with special fluorescent and 

magnetoresistive properties are fabricated for developing nanostructured glucose 

biosensors, which could bring alternative approaches for convenient management diabetes.  

Keywords  

Diabetes, glucose sensing, nanostructured glucose biosensor, ZnO nanorod, quantum dots, 

upconverting nanoparticles, silicone hydrogel, carbon dots, graphene oxide, FeCo 

nanoparticles, graphene, fluorescence, magnetoresistance.  
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Chapter 1   

1 General Introduction and Motivation  

1.1 Overview  

1.1.1 Diabetes Mellitus  

Diabetes mellitus is recognized as a chronic disease that is characterized by impaired 

glucose metabolism which often contributes to long-term high blood levels of glucose 

(hyperglycemia) and is reflected by blood glucose concentrations higher or lower than the 

normal range of 80 mg/mL−120 mg/mL (4.4 mM−6.6 mM). [1-3]  

According to the report of World Health Organization (WHO), over 400 million people in 

2014 have to live with diabetes. The global prevalence of diabetes mellitus has caused 

significant economic burden on health care system in the world. Blood glucose levels in 

diabetes mellitus patients could fluctuate greatly throughout the day, causing serious 

complications including heart attacks, strokes, high blood pressure, kidney failure, 

blindness and limb amputation etc. [4-6] Therefore, the diagnosis and management of 

diabetes mellitus require a tight monitoring of patients’ blood glucose level and the apply 

corresponding treatments. The importance of sensing blood glucose is reflected on the fact 

that glucose biosensors account for about 85% of the entire biosensor market. [7-8]  

Nanotechnology is the term used to cover the design, construction and utilization of 

functional structures with at least one characteristic dimension measured in nanometers. 

[9] Such materials and systems could be designed to exhibit novel and significantly 

improved physical, chemical and biological properties, phenomena and processes as a 

result of the limited size of their constituent structures, particles or molecules. The reason 

for such interesting and very useful behavior is that when characteristic structural features 

are intermediate in extent between isolated atoms and bulk macroscopic materials; i.e., in 

the range of about 109 m to 107 m (1 nm to 100 nm), the objects may display special 

attributes substantially different from those displayed by either atoms or bulk materials. 
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Ultimately this could lead to new technological opportunities as well as new challenges. 

[10-12] The application of nanotechnology to glucose biosensor area are promising to 

develop highly sensitive and selective nanostructured glucose biosensor. The 

nanostructured glucose biosensors are promising to be minimally invasive or non-invasive 

and be more compliant and smart for management and therapy of diabetes. Current 

glucometers are designed to measure blood glucose levels of 3 mM to 25 mM. The sensing 

target could be other body fluids other than blood. For example, tear or saliva, their glucose 

concentration is much lower than blood glucose concentration. As the sensing analyte is in 

low concentration, the sensing error would be a concern. Especially in the nanostructured 

sensor, sensitivity and reproducibility are parameters that influence sensing results greatly. 

Therefore, we need highly sensitive nanostructured glucose biosensor to have correct 

results.  

1.1.2 Nanostructured Glucose Biosensor  

A biosensor is a device for the detection of an analyte that combines a biological sensing 

component (enzyme, antibody, protein, DNA (deoxyribonucleic acid), RNA (ribonucleic 

acid) etc.) with a physicochemical detector component, it consists of three parts: [13-17]  

 The sensitive biological element, including biological material.  

 The transducer in between.  

 The detector element.  

 

Figure 1.1 Schematic of a biosensor.  

Biological
Recognition

Transducer

Signal

Data processing
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Nanomaterials and nanostructures have novel characteristics and special chemical, 

physical and biological properties. The unique size-dependent tunable electronic, optical, 

magnetic and mechanical properties of nanoscale materials (1−200 nm) offer excellent 

platform for developing novel bioelectronics and biosensing devices. Nanostructured 

biosensors are promising to enhance or supersede current analytical assays, and innovate 

research and clinical practice. So far the unique optical nanomaterials suit themselves ideal 

for biosensing application. Fluorescent exerting/interacting nanomaterials and 

nanostructures are especially intriguing as they yield strong optical responses to incident 

light and the response signal is linked with the target analyte, yielding extremely sensitive 

detection. [18-23] In past years, most of the researches have been focusing on the 

fluorescent quantum dots (QDs) and plasmonic gold nanoparticles (Au NPs). Recently, 

new nanoscale materials have been developed including carbon-based nanostructures, 

fluorescent polymer/silica nanoparticles, silicon dots, upconversion nanomaterials, alloyed 

plasmonic nanoparticles, and gold and silver nanoclusters etc. [24-30]  

Magnetic nanoparticles have special magnetic properties like superparamagnetic, 

paramagnetic, ferrimagnetic and ferromagnetic etc. properties. These properties are 

attributed to different compositions, crystal structures and temperatures etc. Especially the 

superparamagnetic iron oxide (Fe3O4) have been widely used in biomedical applications 

like thermal therapy, drug delivery etc. [31-32] Other magnetic nanomaterials are mostly 

composed of magnetic elements of Fe, Co and Ni and applied in biomedical, catalysis and 

energy areas. [33-34] Magnetic nanoscale materials are promising for developing 

magnetoresistive biosensors.  

Nanoscale materials normally need a surface covering as a barrier between the 

nanomaterials and its ambient environment. This layer is usually composed of capping 

molecules that bind directly to the surface and ideally prevents nanoparticles aggregating 

or modifies nanostructures surface properties, so to disperse nanoparticles in water at a 

various range of pH values or biological surrounding, and facilitate the contact between 

modified nanostructures and external environment. The surface modification prevents 

nonspecific adsorption of surrounding molecules onto the nanomaterials and 

nanostructures surface, but also provides a conjugation place for functional biomolecules. 
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Functional nanomaterials could hold manifold perspectives e.g. miniaturization, novel 

materials properties and special functions, and complexity of technical device 

developments. Nanomaterials conjugation with biomolecules could offer excellent signal 

transduction of biological phenomena in the development of electronic, optical or magnetic 

biosensors. Optical sensing is more advantageous in biosensor design because it has high 

sensitivity, wide dynamic range, and multiplexing capabilities. [35-37] In contrast to 

organic dyes and fluorescent proteins, nanoscale probes e.g. fluorescence resonance energy 

transfer (FRET) nanomaterials and nanostructures provide enormous advantages in aspects 

like signal brightness, photo-stability, and emission of multicolored light. [38-40] 

Magnetic sensing uses magnetic nanoscale materials and nanostructures and is gaining 

interest over recent years. One reason is that magnetic sensing in biological systems could 

have almost zero noise due to the lack of magnetic elements in most biological components. 

[41] 

1.1.3 Fluorescence Resonance Energy Transfer  

Fluorescence resonance energy transfer (FRET) is a nonradioactive process. In this 

process, external excitation light excites the donor. The excited state fluorophore (donor) 

could transfer energy to a nearby ground state fluorophore (acceptor), normally the distance 

between donor and acceptor is 1 nm to 20 nm. FRET process is shown in the figure 1.2 

below. The energy transfer efficiency is dependent on the distance between the donor and 

acceptor, the closer they are, the higher efficient the FRET process is. [42-45]  

 

Figure 1.2 Schematic of fluorescent resonance energy transfer (FRET) process, r is 

the distance between the donor and acceptor.  
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Fluorescent nanoscale materials and nanostructures are suitable as either donor or acceptor 

for construction of FRET sensor. Some fluorescence quenching molecules or 

nanomaterials are also used as fluorescence acceptor to quench the fluorescence. Quantum 

dots, carbon dots, upconversion nanomaterials are usually used as either donor or acceptor. 

[46-48] Noble plasmonic nanoparticles like gold or silver nanoparticles are often used as 

fluorescence quencher, graphene oxide [49] are also used as fluorescence quenchers due to 

their π electrons which could quench fluorescence. [50]  

1.1.4 Upconversion Fluorescence  

Upconversion is an optical anti-Stokes process. In the upconverting process, the 

upconverting nanomaterials are excited by an excitation of near-infrared light (normally 

980 nm) and then emits visible light of blue light, green light or yellow light. The emission 

are adjustable by choosing different element dopants. [51-53] One advantage of using 

upconversion nanostructured glucose biosensor is that near-infrared excitation are much 

less harmful to human tissue than UV light. [54-58]  

 

Figure 1.3 Schematic principle of (a) conventional photoluminescence (Stokes) 

process, and (b) upconversion photoluminescence (anti Stokes) process.  
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Figure 1.3 presents the schematic of convention (Stokes shift) and upconverting (anti 

Stokes shift) fluorescence process. The upconverting photoluminescence could be induced 

by low-power and incoherent excitation sources, such as continuous-wave lasers, standard 

xenon or halogen lamps, or even focused sunlight. [59] The primary theory of the 

upconversion luminescence process (figure 1.3 (b)) is that a luminescent center at the 

ground state 1 could absorb energy from either an excitation photon or a corresponding 

energy transfer process to reach the excited state 2. Subsequently, another excitation 

photon or a corresponding energy transfer process would promote the luminescent center 

from excited state 2 to the excited state 3. Then, a radiative transition from this excited 

state 3 back to the ground state or some other lower-energy state, results in a higher-energy 

photon emission. In the upconversion luminescence process, the metastable intermediate 

excited state is attained. This metastable intermediate excited state is expected to have a 

relatively long lifetime so as to maintain a high population in the intermediate excited state 

ahead of the second excitation energy. [60-62]  

1.1.5 Magnetoresistance  

Magnetic immunoassay is a novel immunoassay for early disease diagnosis compared to 

traditional radioimmunoassay or fluoroimmunoassay. This assay utilizes magnetic 

nanoparticle as biolabel and magnetoresistive sensor chip as detector. Most of the 

biological components do not have magnetic background, therefore the magnetoresistive 

sensor could have very high sensitivity. With careful design, MR sensor can even measure 

the presence of single glucose molecules. As the ultra-high sensitivity of MR sensor, we 

can use MR sensor to sense glucose in other body fluids like urine, saliva etc. For 

electrochemical and optical sensing of urine, the urine is a complicated mixture and would 

cause great errors for the detection. But MR sensor does not affected by the complicated 

urine compositions. Magnetoresistance is an electron spin effect phenomenon. The 

magnetoresistance effect was discovered early in the 1850s. At the early days, this effect 

was smaller than 5%. Until the discovery of Giant Magnetoresistance (GMR) in the late 

1980s, which has boosted the hard disk development in computer industry. The 

magnetoresistance value is commonly calculated by the following equation: [63-66]  
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MR% =
R(H) − R(0)

R(0)
× 100% 

Where R(H) is the resistance under magnetic field H, R(0) is the resistance without external 

magnetic field.  

Normally a magnetic multilayer structure or magnetic multicomponent structure chip are 

the format of a magnetoresistive chip. Under the external applied magnetic field, the 

resistance of the MR chip is influenced, a magnetic nanoparticle label binding to the chip 

surface would cause a minute magnetic field influence. This minute magnetic field could 

be detected by the magnetoresistive sensor chip into resistance signal. [67-71] The 

schematics of multilayer and multicomponent magnetoresistive chip is shown below.  

 

Figure 1.4 Schematic of multilayer magnetoresistive system.  

In the multilayer system, ferromagnetic layers and non-magnetic conductive layers are 

sandwiched, the layer thickness is in the values of several or tens of nanometers. When the 

two magnetic layers are magnetized parallel, the electrons antiparallel to magnetization 

could travel through the magnetic layer smoothly. In condition without external applied 

field, the magnetization direction in the system are antiparallel, either spin up electron or 

spin down electron would scatter when passing the layers. As a result, this condition would 

have a higher resistance. When the multilayer magnetization are paralleled by external field, 

one spin direction of the electron could move smoothly through the layers, thus having a 

smaller resistance. [72-77]  
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In the multicomponent system, the magnetoresistance principle is similar. The more 

scattering of electrons, the larger resistance it has. Some multicomponent systems are based 

on graphene nanocomposites, doping magnetic nanoparticles like Fe3O4, FeNi3 [78-83] 

onto graphene nanosheet could have magnetoresistive effects.  

 

Figure 1.5 Schematic of multicomponent magnetoresistive system.  

1.2 Current Challenges in Glucose Sensor for Diabetics  

Currently, diabetes mellitus is a worldwide public health problem and the diagnosis and 

management of diabetes mellitus requires a tight monitoring of blood glucose levels. [3] 

Blood glucose levels in diabetics fluctuate significantly throughout the day, causing great 

challenge of reliable and convenient glucose sensing. [7] The electrochemical glucometer 

is the most widely used glucose sensor in daily use. However, the marketed glucometers 

have certain level of invasiveness (blood required, often by finger prick to obtain a small 

drop of blood) to patients. And the diabetics may need several times of finger pricks per 

day. And this invasive sensing are often characterized by infection risks and discomfort to 

diabetics.  

Table 1.1 Summary of current glucose sensing methods.  

Glucose 

sensing 

methods 

Electrochemical Optical 

Impedance and 

electromagnetic 

spectroscopies 
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Advantage  

Most developed, 

commercial product 

available  

Room for potential 

boost 

Non-invasiveness, 

externally 

accessible (skin, 

saliva, tears), high 

sensitivity 

Do not need patient 

blood samples, 

minimally or 

noninvasive  

Disadvantage  

Invasive, finger prick 

several, times per day, 

infection risk, 

discomfort, 

inconvenient  

Less developed, not 

much commercial 

product  

Poor accuracy, 

temperature and 

disease state impact 

[84-86] 

Table 1.1 summarizes the current glucose sensing profiles, electrochemical and optical are 

the major two sensing mechanisms. Other noninvasive optical techniques include optical 

coherence tomography, polarimetry, thermal infrared spectroscopy, photo acoustic 

spectroscopy, and Raman spectroscopy etc. [87-90] However, these methods required big 

machines in hospital and are not convenient for patients’ home care of measuring glucose.  

The challenge in the glucose sensing lies in the development of minimally invasive or non-

invasive glucose sensors with high selectivity and sensitivity. Optical sensing approach is 

a sensitive and much minimally invasive path for glucose sensing. Magnetoresistive (MR) 

sensing is a highly sensitive sensing technique. Because most of the biological components 

are free of magnetic noise, therefore, MR sensing has very low or zero background noise 

and very sensitive to target analyte with magnetic labelling. The highly sensitive MR 

sensor could be designed to measure tear glucose or other body fluid glucose.  

Other body fluids of skin sweat, urine, saliva, tears etc. have been studied and used as 

glucose sensing target. Certain accuracy of sensing glucose has been attained. However, 

each body fluid has its pros and cons. For example, sweat from different position may have 

different components and causing measure errors. Urine is a colored mixture of various 
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different compositions like protein, ions, impurities etc. and urine is varied from person to 

person that have different diets. Saliva and tear are more adequate for accurate continuous 

glucose sensing target. [91-94] Comparatively speaking, tear is more stable and continuous 

than saliva. And tear glucose level has certain relationship to blood glucose. Other affecting 

factors could be eye diseases which could affect the tear composition. This could be solved 

by survey enough patients’ tear to get more understanding of tear glucose levels.  

Table 1.2 shows the tear glucose level and blood glucose level for diabetics and healthy 

person. Statistic results shows that blood glucose is approximately two times higher in 

diabetics (circa 11 mM) compared with non-diabetes (circa 5 mM). Also, the average 

concentrations of tear glucose for diabetes patients and non-diabetes are 0.35±0.04 mM 

and 0.16±0.03 mM. [95-96] There is clearly enough evidence of a correlation between tear 

glucose and blood glucose to justify continued efforts on developing tear glucose sensing 

approach, although this correlation is not yet fully characterized. [95-97]  

Table 1.2 Tear glucose level. [95-96]  

Minimally invasive or non-invasive 

optical/magnetic approaches  
Glucose level  

Tear  

Better accessible, continuously 

obtainable, stable, less susceptible 

than urine, saliva, sweat etc.  

 Diabetes  Non-diabetes  

Blood  11 mM  5 mM  

Tear  
0.35±0.04 

mM  

0.16±0.03 

mM  

However, the tear glucose level is very low, for diabetes patients and non-diabetes tear 

glucose concentrations are 0.35±0.04 mM and 0.16±0.03 mM. And the other considering 

factor is the acquisition of enough tear. Tear is not like urine, saliva or blood, average tear 

flow rate is at about 1.2 µL/min with a range of 0.5 to 2.2 µL/min and the average normal 

tear volume is about 6.2±2 µL. [98] Therefore, highly sensitive sensors are necessary for 



 

11 

 

development of tear glucose sensors. Nanoscale materials and nanostructures are 

promising to develop such highly sensitive and selective glucose sensors.  

In order to measure the minute tear glucose concentration, sensitive sensor are required. 

The tear glucose concentration is in the range of 0.1 mM to 0.5 mM. The tear amounts 

needed are dependent on the sensitivity and design of the sensor. The marketed glucometer 

could be designed to measure glucose concentrations in the range of 0.1 mM to 0.5 mM. 

However, it required electrochemical reader, which would limit the glucometer 

incorporated into contact lens. Another concern is that as the glucometer sensing range 

decreases to 0.1 mM to 0.5 mM, the sensing errors are needed to be considered. For 

example if the sample collecting sensing cell is designed to be 100 nm cubic which absorbs 

sample by capillary effects or microfluidic control, the amounts of samples would be 0.001 

µL. Therefore, highly sensitive sensors are necessary to construct such glucometer. 

Magnetoresistive (MR) sensors are highly sensitive and able to measure up to several 

glucose molecules. The development of MR glucose sensors are promising to sensing 

glucose in tears and other body fluids.  

The unique fluorescent, magnetonetoresistive nanomaterials and nanostructures have 

special chemicophysical properties which make them ideal for biosensing with high 

sensitivity and selectivity. [99-101] First of all, nanomaterials and nanostructures have 

large surface area, which could greatly increase the sensor contact with target analyte. Thus 

nanostructures sensor could sense very minute samples of tens of µL volume sample with 

nanofabricated sensing cells in the nanoliter range. Secondly, nanoscale materials have 

special size-dependent properties, novel chemical, physical and biological properties, these 

properties enhance nanostructured sensor sensitivity as well. Moreover, the size-dependent 

properties provide practical approach to control nanomaterials and nanostructures 

properties. Various chemical methods, physical methods, top-down, bottom-up approaches 

have been developed to synthesize and fabricate different nanoscale materials and 

nanostructures with controlled surface fluorescent and magnetoresistive properties.  

The fluorescent based nanostructures are promising for developing contact lens based tear 

glucose sensor. This contact lens based glucose sensor is a minimally invasive or non-
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invasive approach. On the other hand, the magnetoresistive method provide high sensitivity 

sensing technique. Although the MR sensor is currently quite difficult to be incorporated 

into contact lens sensor to sense tear glucose, it is worthy to develop MR glucose sensor to 

sense blood glucose, urine glucose, sweat glucose, saliva glucose or other body fluids 

glucose. These body fluids are clear of magnetic interference and MR glucose sensor could 

provide highly sensitive results.  

 

Figure 1.6 Schematic of current challenge of marketed electrochemical glucometer 

and possible solving method by development of fluorescent, magnetoresistive 

nanostructured glucose biosensor.  

In summary (figure 1.6), the design and fabrication of fluorescent, magnetoresistive 

nanostructured glucose biosensors are promising to solve the current electrochemical 

glucometer problem of invasiveness, finger pricks, possible infections etc. while providing 

diabetics with much compliant glucose sensing alternatives and better management of 

diabetes diseases.  

1.2.1 Objectives and Outcomes  

The major motivation of my work is that the development of minimally invasive or non-

invasive sensitive and selective glucose measurement method is urgent for diabetes 

patients. Optical approaches are less developed and have potential development. The 
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optical approaches meet the requirement of minimal invasiveness or non-invasiveness, 

highly sensitivity and highly selectivity. Magnetoresistive technique also has high 

sensitivity and selectivity due to lack of magnetic interference in most biological 

components. Therefore, fluorescent, magnetoresistive nanostructured glucose biosensor 

are promising in replacing current marketed electrochemical glucometer.  

 

Figure 1.7 Schematic of my work on four nanostructured glucose biosensors.  

The overall outcome of my work (figure 1.7) is to utilize various nanoscale materials and 

fabricated nanostructures to construct nanostructured glucose biosensors for tear glucose 

sensing and blood glucose sensing. The fluorescent and magnetoresistive approaches are 

studied. Several goals are set up to fulfill the objective as stated below.  

[1] To synthesize a variety of fluorescent, magnetic nanomaterials and fabrication of 

nanostructures.  

[2] To develop efficient methods for surface functionalization and bioconjugation of 

nanomaterials’ and nanostructures’ surface.  

[3] To fabricate nanostructured glucose biosensors using the synthesized fluorescent, 

magnetic nanomaterials.  
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[4] To explore the nanostructured glucose biosensors (based on the synthesized 

fluorescent, magnetic nanomaterials) for tear glucose sensing, blood glucose 

sensing applications.  

To achieve these goals, the following specific objectives are sought in various chapters of 

the thesis.  

 Chapter 1 General Introduction and Motivation  

This chapter provides an overview of diabetes mellitus, biosensors, nanostructured 

glucose biosensors, sensing techniques/mechanisms, current challenge in glucose 

sensing area and the outline of objectives and layout of the thesis.  

 Chapter 2 Background and Literature Review  

This chapter presents a general review of fluorescent exerting/interacting nanoscale 

materials (quantum dots, upconversion nanoparticles, nanocarbon materials of 

carbon dots, graphene oxide and graphene) and magnetoresistive nanomaterials for 

nanostructured glucose biosensors.  

 Chapter 3 Development of ZnO/QD Patterned Nanostructured Glucose Biosensor  

The objective of this chapter was to develop a fluorescence resonance energy 

transfer nanostructured glucose biosensor. This chapter presents the preparation of 

patterned ZnO nanorod array decorated with CdSe/ZnS quantum dots on hydrogel 

film. The surface of the patterned nanostructured was modified with Con A protein 

and binding with malachite green dextran. This nanostructured glucose biosensor 

was used to measure rats tear glucose.  

 Chapter 4 Development of Upconversion NaGdF4: Yb, Er Glucose Biosensor  

The objective of this chapter was to develop upconversion NaGdF4: Yb, Er 

nanomaterials based fluorescence resonance energy transfer nanostructured 

glucose biosensor. This chapter presents the preparation of upconversion NaGdF4: 

Yb, Er nanomaterials by a polyol process. The surface of the upconversion 
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nanomaterials was as-synthesized modified by amine groups ( − NH2). The 

nanoparticles was further surface modified with Con A and deposited onto hydrogel 

film surface to construct nanostructured glucose biosensor to measure rats’ blood 

glucose.  

 Chapter 5 Development of Carbon Dots/Graphene Oxide Glucose Biosensor  

The objective of this chapter was to develop nanocarbon materials based 

fluorescence resonance energy transfer glucose nanobiosensor using carbon 

dots/graphene oxide. This chapter presents the preparation of fluorescent carbon 

dots by a microwave assisted process. Graphene oxide was prepared by a 

Hummers’ method. Carbon dots work as fluorescence donor with surface modified 

with Con A, graphene oxide work as fluorescent acceptor (fluorescent quencher). 

This glucose nanobiosensor was explored to measure rats’ blood glucose.  

 Chapter 6 Development of FeCo/graphene Magnetoresistive Nanostructured 

Glucose Biosensor  

The objective of this chapter was to develop FeCo/graphene magnetoresistive 

nanostructured glucose biosensor. This chapter presents the preparation of FeCo 

magnetic nanoparticle, graphene nanomaterials and FeCo/graphene nanocomposite 

by a polyol process. Fe3O4/silica core/shell nanoparticles were prepared and used 

as magnetic label. The FeCo/graphene nanocomposite film surface was modified 

with Con A, the magnetic label surface was modified with phenylboronic acid (can 

bind to glucose molecule). The magnetoresistive nanostructured glucose biosensor 

was used to measure diluted rats’ blood glucose.  

 Chapter 7 Summary and Recommendations  

This chapter provides a general conclusion of the above studies and 

recommendations for future work on the nanostructured glucose biosensors.  
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Chapter 2  

2 Background and Literature Review  

2.1 Nanomaterials for Glucose Biosensing  

Historically, the glucose was analyzed by colorimetric reaction methods. The most widely 

used method is Miller’s colorimetric method. [1] Because glucose solution has no 

absorbance, no fluorescence in visible range, most of the analysis method in early days was 

dependent on the glucose chromogenic reaction. Take Miller method as demonstration, the 

glucose carbonyl group (C=O) is oxidized and at the same time, 3, 5-dinitrosalicylic acid 

(DNS) is reduced to 3-amino, 5-nitrosalicylic acid under alkaline conditions with colored 

products. The glucose content is related to the colorimetric products which could be 

quantified by UV-vis spectroscopy.  

Sensing glucose is very important in food industry, pharmaceutical industry and specially, 

glucose monitoring is critical for diabetes management. Diabetes symptom is characterized 

with long term hyperglycemia and the monitoring of patients glucose state is required for 

the disease therapy. Although the electrochemical method for sensing glucose is marketed 

and widely used among diabetes patients, the multiple times of finger pricks daily to get 

minute blood for glucose sensing may cause patients with weak immune systems with 

infections and uncomfortable feelings. Therefore, more patient friendly, minimally 

invasive or non-invasive fluorescent detection methods has gained focus recently. [2-5] 

Fluorescent sensing has the following advantages: [6-9] (a) extremely sensitive, (b) 

minimally invasive or non-invasive, (c) fluorescence intensity and fluorescence lifetime 

could be utilized, (d) could provide structure and micro-environment of molecules, (e) 

fluorescence resonance energy transfer (FRET) technique could be utilized. Another 

promising glucose sensing approach is magnetoresistive method which has high sensitivity 

due to absence of magnetic interference in most biological components.  
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Nanotechnology has brought profound influence in biosensors area, the most favorable 

advantage of nanostructured sensor is their high sensitivity and selectivity and the 

miniaturization of sensor device. The development of nanotechnology allows materials to 

be prepared and fabricated in reduced dimensions at the nanoscale, forming construction 

of nanoscale structures for high throughput assay with the integration of microfluidics 

devices, and strengthening the biological activity of the biological components by using 

novel nanoscale materials and nanostructures. Nanomaterials and nanostructures have 

special chemical, physical and biological properties compared to their bulk counterpart. 

[10-14] The fluorescent, magnetoresistive nanomaterials and nanostructures have distinct 

novel properties and provide extensive nanoplatform for developing new nanostructured 

biosensors for glucose sensing. [15-20] Biosensors are sensors composed of or involved 

with a biological component. [21-24] Because the biological components have high 

sensitivity and selectivity to specific molecules, thus the utilization of biological 

component create highly accurate sensing devices for a variety of molecules including 

glucose, urea, cholesterol etc.  

Biosensors are widely applied in the areas of food industry, pharmaceutical industry, 

environment monitoring and medical diagnostics etc. The early biosensors were using 

biocomponents decorating on the electrode surface as target recognizing parts. As the 

nanotechnology flourished, the conjugation of biocomponents onto nanomaterials and 

nanostructures has formed nanostructured biosensors with prevalent applications. The 

conjugation may need further control to offer reproducibility. As the equivalent size of 

nanoscale materials and nanostructures to biological systems, the nanostructured 

biosensors are promising tools for sensing biological activity in vivo and in vitro. [25-28] 

Some common biological receptors have been used in detection of glucose in fluorescent 

nanostructured biosensors, like Concanavalin A (Con A), glucose oxidase, glucose 

dehydrogenase and hexokinase/glucokinase, glucose binding proteins etc.  

2.2 Detection Principles of Nanostructured Fluorescent 
Biosensor  

Fluorescent nanomaterials and nanostructures are suitable signal transducers for 

correlating the glucose signals into fluorescent signals, either in peak intensity, peak shift, 
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or fluorescent lifetime etc. Fluorescence resonance energy transfer (FRET) is 

acknowledged as a sensitive and reliable analytical technique and has been widely 

employed in the fluorescence biosensing systems. Fluorescent nanomaterials and 

nanostructures could work as a good platform for the bioconjugation of glucose recognized 

biomolecules. The bioconjugation methods include chemical bioconjugattion or physical 

adsorption onto the nanomaterials and nanostructures. The biomolecules are greatly 

stabilized when bioconjugated or adsorbed onto the nanomaterials and nanostructures with 

higher biological activity and stability.  

The primary sensing mechanisms include glucose direct binding, glucose competitive 

binding and fluorescent dye release etc., which would introduce corresponding 

fluorescence intensity changes, fluorescence turn-on or turn-off, fluorescent lifetime 

changes etc. Another type of sensing mechanisms employs the glucose catalysis oxidation 

reaction. The reaction products often contain hydrogen peroxide (H2O2) and/or gluconic 

acid (causing pH change). The oxidizing and acidic products then influence the 

fluorescence signal. Some of the glucose catalysis reactions are shown in the following 

equation 1−4.  

Glucose + Concanavalin A ⇋ Concanavalin A∗ Equation 1 

 

 Glucose + Glucose binding protein ⇋ Glucose binding protein∗ Equation 2 

In equation 1 and 2, the glucose binding reaction is dynamic and reversible, the * mark 

represent the biomolecules binding with glucose. The fluorescence change could be 

induced by, (a) binding protein is labeled with fluorescent dye or fluorescent protein. The 

binding state would change the fluorescence of the fluorescent label. (b) binding protein is 

originally binding with other saccharide molecules, glucose competitively bind to the 

protein and replace the other saccharide molecules. The saccharide molecules could have 

optical properties, e.g. fluorescence, absorbance, etc. Therefore, the change of the optical 

signal could be correlated with glucose concentration; and the optimal parameters for 

improving sensor’s performance include the types of the glucose binding proteins, and the 
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ratio of the glucose and glucose binging proteins. The Concanavalin A binds glucose and 

does not produce products.  

Glucose + Oxygen
Glucose oxidase
→           Gluconic acid + Hydrogen peroxide Equation 3 

 

Glucose + Oxygen
Glucose dehydrogenase
→                 Gluconic acid

+ Hydrogen peroxide 
Equation 4 

Equation 3 and 4 represent the glucose catalysis reactions. The products contain gluconic 

acid and/or hydrogen peroxide. Provided the fluorescence of nanomaterials and 

nanostructures would be affected by the hydrogen peroxide and pH change. Thus the 

glucose content could be analyzed by correlating with the fluorescence change.  

2.3 Glucose Recognition Biomolecules  

Various glucose recognized biomolecules have been investigated and they include direct 

glucose binding by Concanavalin A, glucose binding proteins etc. Glucose catalytic 

oxidization reaction employ certain oxidase like glucose oxidase, glucokinase, hexokinase 

and glucose dehydrogenase. Concanavalin A (Con A) is a plant lectin protein extracted 

from Jack beans. Con A tetramer molecule has four binding sites for glucose molecules 

and has been widely used in glucose sensing assays.  

Another type of glucose sensing biomolecules is the glucose binding proteins (GBP), which 

is one of the binding proteins found bacteria like Escherichia coli. These glucose binding 

proteins have extremely high selectivity and sensitivity for glucose, of which the binding 

constants of the proteins to glucose are in the micromolar (µM) range. The sensitivity and 

selectivity of glucose binding proteins render them ideal for GBP based glucose biosensor 

development for sensing tear glucose and other non-blood body fluids glucose. [29] The 

sensitivity and selectivity of GBP could be engineered by recombinant protein technique. 

[30-31]  
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2.4 Fluorescent Exerting/Interacting Nanomaterials 

The mostly researched fluorescent exerting nanomaterials include fluorescent 

semiconductor quantum dots (QDs), dye-doped silica nanoparticles (DDSNs), lanthanide 

doped nanomaterials and upconversion nanoparticles (UCNPs), fluorescent gold/silver 

metal nanoclusters etc. [32-35] Some other nanomaterials are fluorescent interacting 

quenchers and have been investigated in the fluorescent assays as well. Plasmonic 

gold/silver nanoparticles are employed as fluorescent quenchers. [36]  

Another big family of nanomaterials is the carbon nanomaterials, some carbon based 

nanomaterials are fluorescent and others are fluorescent quenchers. Graphene/graphene 

oxide, carbon dots, carbon nanotubes etc. carbon nanomaterials have been heavily studied 

in the fluorescent glucose biosensing. [37-39] Graphene/graphene oxide nanomaterials are 

fluorescent quenchers due to their large π electron plane on the nanosheet plane, which 

could quench fluorescence through fluorescence resonance energy transfer (FRET). On the 

contrary, carbon dots and carbon nanotubes are promising strong fluorescent nanomaterials 

for biosensing applications. Carbon dots could be prepared by many facile methods and 

the scale up production of carbon dots is not difficult. Carbon nanotubes emit fluorescence 

in the near-infrared range. This characteristic make carbon nanotubes very favorable for 

biomedical applications. However, currently the carbon nanotubes have not yet been able 

to be prepared facilely. [40]  

Some other fluorescent nanomaterials include metal oxide nanostructured nanomaterials. 

As metal oxide nanostructures provide large effective surface areas for biomolecules 

immobilization, which could maintain better conformation, desired orientation and high 

biological activity of immobilized biomolecules. Thus a superior sensing characteristics 

was achieved. ZnO nanostructure film is a typical weak fluorescent nanomaterials, which 

is often used as substrate for nanobiosensing. For other metal oxide nanostructures, they 

are often used in electrochemical biosensing due to their good electrical properties. But 

still, these metal oxide nanostructures are potential candidates as device for fluorescent 

glucose biosensing, and they could be further incorporated into other devices. [41-44]  
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Figure 2.1 General steps involved in the application of functional nanomaterials. 

Reprinted with permission from [45], Copyright (2010) American Chemical Society. 

(Permission in Appendix 1)  

 

Figure 2.2 Examples of nanomaterials and their functional groups for biological 

applications. Reproduced from [46] with permission of the Royal Society of 

Chemistry. (Permission in Appendix 2)  

The nanomaterials and nanostructures normally need surface functionalization to obtain 

desirable physiochemical properties for various applications. As shown in figure 2.1, from 

the synthesis of a nanoparticle, then surface coating is applied to form core-shell 
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nanoparticle. Continuously, ligand exchange and functional groups are grafted or 

bioconjugated on the outer surface. The modification and functionalization of 

nanomaterials and nanostructures could make them more water soluble and biocompatible 

for further application in biosensing systems.  

Nanomaterials and nanostructures surface functionalization aims to utilize them in 

catalysis, adsorption, drug delivery carrier, bioimaging, nanobiosensor and nanomedicine 

etc. applications. The surface properties have great influence on the nano-bio interface. 

Hydrophilic and hydrophobic surfaces can affect the interaction of nanomaterials with 

biomolecules and proteins adsorption. Related nanomaterials and nanostructures surface 

modification reviews [46-51] have demonstrated various chemical, physical modifications 

and bioconjugation methods. Various functional groups and applications of nanomaterials 

and nanostructures could be visualized with suitable surface modification and fabrications 

as shown in figure 2.2. 

2.4.1 Semiconductor Quantum Dots  

Quantum dots are tiny semiconductor nanoparticles with diameters in the range of 2−10 

nm, containing roughly 200 − 10,000 atoms and characterized by size-dependent 

fluorescent property, broad excitation range, narrow emission peak, large Stokes shift, 

ultrahigh brightness, high quantum yield and photo-stability. The synthesis method of the 

quantum dots are mature and abundant. The organic phase synthesis could yield high 

quality quantum dots, which are oil phase soluble, thus further surface modification is 

necessary to render their usage in biological sensing. [52-54] However due to the 

semiconductor elements’ cytotoxicity (Cd element), the bio-application of quantum dots 

are hindered greatly. Normally a coating layer like silica shell, polymer shell or carbon 

shell would be coated on the surface of the semiconductor quantum dots to improve their 

water solubility and biocompatibility. [55-58] Compared to traditional fluorescent dye, 

Green Fluorescent Proteins (GFP) or enhanced GFP, quantum dots has superior 

luminescent properties like photo-stability to ambient environment, high quantum yield 

and bright size-dependent excitation photoluminescence. These luminescent properties of 

the semiconductor nanocrystals favor them as nanobiosensing probes. [59-60]  
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Figure 2.3 Chemical structure of the QDs-Con A-β-CDs-Au NPs nanobiosensor and 

schematic illustration of its FRET-based operating principles. Reproduced from [61] 

with permission of the John Wiley and Sons. (Permission in Appendix 3)  

An assembled competitive fluorescent glucose nanobiosensor was constructed (figure 2.3). 

[61] The designed nanobiosensor composed of modified quantum dots and plasmonic gold 

nanoparticles. As schematic shows in figure 2.3, the sensing mechanism is through the 

Fluorescence Resonance Energy Transfer (FRET) between quantum dots (energy donor) 

and gold nanoparticles (energy quenching acceptor). Concanavalin A were modified onto 

the quantum dots surface and β-SH-cyclodextrin were modified on the gold nanoparticle 

surface. Before glucose was introduced, the quantum dots and gold nanoparticles were 

connected by the Concanavalin A binding of the β-SH-cyclodextrin, and the fluorescence 

of the quantum dots was quenched by the plasmonic gold nanoparticles. After the glucose 

was introduced, the glucose competed for the binding to the Concanavalin A, then the 

plasmonic gold nanoparticles were separated from the quantum dots. As a result, the 

emission of quantum dots was recovered. Experimental results illustrated that the increase 

in fluorescence intensity was proportional to glucose concentration in the range of 0.1−50 

µM when optimized experimental conditions were reached. Also the serum test results 

showed that this fluorescent glucose nanobiosensor has excellent glucose selectivity over 

other sugars and most biological interferents.  
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Figure 2.4 The glucose dehydrogenase biocatalyzed generation of NADH by the 

oxidation of glucose enables the fluorescence detection of glucose by methylene-blue-

functionalized CdSe/ZnS quantum dots. Reproduced from [62] with permission of the 

John Wiley and Sons. (Permission in Appendix 4)  

Another quantum dots based glucose nanobiosensor was developed utilizing glucose 

catalytic reaction (figure 2.4). [62] Glucose dehydrogenase modified CdSe/ZnS quantum 

dots were prepared to sense glucose. The sensing technique is fluorescence resonance 

energy transfer (FRET). The nanobiosensing mechanism is demonstrated in figure 2.4. 

Before adding glucose, the fluorescence of the quantum dots was quenched by the 

methylene blue. After adding glucose, the biocatalytic reactions took place and the 

fluorescence of quantum dots was recovered. In the biocatalytic reaction, glucose was 

converted to gluconic acid, the glucose dehydrogenase biocatalytic reaction was mediated 

by the NADH−NAD+ (reduced-oxidized form of NAD)pair (NAD=Nicotinamide adenine 

dinucleotide), methylene blue was reduced by NADH to colorless MBH, then the 

fluorescence resonance energy transfer between quantum dots and methylene blue was 

terminated. The detection limit of this fluorescent glucose nanobiosensor was as low as 10-

5 M.  

A fluorescent nanostructured glucose biosensor chip utilizing glucose oxidase was 

developed by Tang et al. (figure 2.5), [63] in which a layer-by-layer assembly technique 

was used to fabricate the thin film sensor. The facile step by step process is shown in figure 

2.5, firstly polymer poly(allylamine hydrochloride) (PAH) and CdTe quantum dots were 

assembled on a substrate. Then three bilayers of polymer film of poly(allylamine 
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hydrochloride) (PAH) and polystyrenesulfonate (PSS) were assembled on top to avoid 

possible interference. Next, glucose oxidase (GOD or GOx) and PAH were deposited. The 

layer-by-layer thin film structure of (PAH/CdTe)x(PAH/PSS)3(PAH/GOD)y was 

constructed. The fluorescence of CdTe quantum dots was quenched by the H2O2 produced 

by the glucose catalytic oxidization reaction. This glucose sensor has the advantage of 

adjustment of the quantum dots layer composition and the glucose oxidase layer 

compositions for adaptation to different sensing environment. Experimental results showed 

that the glucose responsive range for (PAH/CdTe)12(PAH/PSS)3(PAH/GOD)3 was 0.5 

mM−16 mM.  

 

Figure 2.5 Sensing assembly: (a) top 3 bilayers of PAH/GOD, (b) 3 bilayers of 

PAH/PSS, and (c) 12 bilayers of PAH/CdTe QDs. PAH=poly(allylamine 

hydrochloride), GOD=glucose oxidase, PSS=polystyrenesulfonate, QD=quantum 

dots. Reprinted with permission from [63], Copyright (2009) American Chemical 

Society. (Permission in Appendix 5)  

2.4.2 Fluorescent Polymer/Silica Nanomaterials  

Another fluorescent nanomaterials are dye-doped silica nanoparticles or polymer 

nanoparticles. As polymers nanoparticles could employ many different monomers and thus 

they are varied from each other, but the idea is more or less the same with dye-doped silica 

nanoparticles by incorporating fluorescent elements inside polymerized matrix. Silica is a 

highly biocompatible material and the dye could be covalently conjugated or by physical 
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doping into the silica matrix. Due to the silica protection of doped dye, the photo-stability 

of doped dye is greatly improved. Moreover, the silica matrix provides a very good surface 

platform for surface functionalization and construction of various silica structures, 

including solid silica nanoparticles, mesoporous silica nanoparticles, hollow silica 

nanoparticles, core-shell silica nanoparticles and Janus silica nanoparticles etc. [64-65] 

The universal silane chemistry could be well adapted to functionalize the silica matrix with 

various functional groups like amine group (−NH2), carboxylic group (−COOH), thiol 

group (−SH) and epoxy group (−CHOCH2) etc. The most common silane monomer is 

Tetraethyl Orthosilicate (TEOS), and the most used synthesis process is sol-gel process. 

The mesoporous silica nanomaterials have a large specific surface area and the mesopores 

are good container for loading fluorescent reporters. The mesopores could be gated by 

some target molecule. Silica or polymer nanoparticles represent useful tools for glucose 

sensing.  

 

Figure 2.6 Schematic illustration of the process for protein encapsulation in silica 

nanoparticles. After formation of a microemulsion, silica nanoparticles are formed 

by addition of ammonium hydroxide to increase the pH. In a last step, the inverse 

microemulsion is redispersed in water to give an aqueous silica dispersion with the 

FRET-based biosensor encapsulated in the silica nanomatrix. A specific interaction 

between the silica matrix and the biosensor is mediated by a silica–calcium–hexa-
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histidine-tag complex. Reproduced from [66] with permission of the Royal Society of 

Chemistry. (Permission in Appendix 6)  

A fluorescence resonance energy transfer (FRET)-based glucose biosensor stabilized by 

incorporating into silica nanoparticle were prepared (figure 2.6). [66] The incorporation 

process is shown in figure 2.6, a microemulsion fabrication method is adopted in the 

synthesis. Silica matrix greatly stabilized the FRET biosensor from thermal and chemical 

denaturation. The specific interaction between hex-histidine-tag of the biosensor protein 

and a calcium silica complex was achieved, and the affinity to glucose was preserved. This 

study revealed that silica matrix has the stabilization effect of biomolecules compared to 

bare FRET-biosensor. This silica coated fluorescent glucose nanobiosensor was very 

promising for in vitro and in vivo sensing glucose.  

 

Figure 2.7 Ru(bipy)3
2+ loaded mesoporous silica capped with cyclodextrin-modified 

glucose oxidase (CD-GOx) for the detection of glucose. Reproduced from [35] with 

permission of the Royal Society of Chemistry. (Permission in Appendix 7)  
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A gated mesoporous silica nanobiosensor for glucose sensing was prepared (figure 2.7). 

[35] This nanobiosensor was shown in figure 2.7, the fluorescent reporter (ruthenium 

bipyridine complexes) was loaded into the silica mesopores. The mesopores outlets were 

grafted with propylbenzimidazole moieties. Then the cyclodextrins modified glucose 

oxidase (CD-GOx) bioconjugates interacted with propylbenzimidazole groups by forming 

the inclusion complex, which blocked the loaded fluorescent reporters. After glucose was 

introduced, gluconic acid was produced and causing the protonation of benzimidazole 

group. Then the CD-GOx bioconjugates were detached from the silica nanoparticles, 

triggering the release of fluorescent ruthenium bipyridine complexes. A linear glucose 

responsive range of 0.1 mM to 10 mM was achieved by this nanobiosensor assays. Blood 

glucose levels of healthy and diabetics are 3 mM−8 mM and 9 mM−40 mM respectively. 

This gated mesoporous silica nanobiosensor were promising for the design of fluorescent 

nanobiosensor for glucose detection.  

2.4.3 Upconverting Nanomaterials  

Upconversion nanoparticles (UCNPs) is a large family of fluorescent nanomaterials. 

Upconverting nanomaterials have superior luminescent properties like long luminescent 

lifetime, large anti-Stokes shift, narrow emission bands and high photo-stability compared 

to quantum dots. Moreover upconverting nanomaterials could be modified with proper 

surface coatings and functional groups, thus having high biocompatibility and low toxicity 

that would favor them as a new generation of fluorescent nanoprobes for biomedical 

applications. [67-71] Normally, near-infrared 980 nm excitation is used to excite the 

upconverting nanomaterials to emit green, yellow or red light in the visible range (400−700 

nm). The emission peaks are sharp and tunable by adjusting the doping lanthanide elements 

and corresponding ratios. Commonly used doping elements include Er, Tm, To etc., of 

which Er dopant enhances the green emission, Ho dopant enhances the yellow light while 

the Tm dopant enhances the red light, respectively. [72-74]  
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Figure 2.8 (a) Schematic diagram for the selective detection of H2O2 and glucose and 

the specific recognition of H2O2 by HRP and TMB. (b) The colorless TMB was 

oxidized into blue oxTMB by polymerization. (For interpretation of the references to 

color in this scheme legend, the reader is referred to the web version of this article.) 

Reprinted from [75], Copyright (2015), with permission from Elsevier. (Permission 

in Appendix 8)  

An upconverting nanomaterials based fluorescent glucose nanobiosensor was studied as 

shown in figure 2.8. [75] In the sensing assay, glucose was first incubated with glucose 

oxidase at 37 oC. This reaction produced hydrogen peroxide. The produced H2O2 mixed 

with green emitting NaYF4: Yb3+/Er3+ upconverting nanoparticles and colorless 3, 3’, 5, 

5’-tetramethylbenzidine (TMB) and horseradish peroxidase (HRP). The mixture was 

further incubated at room temperature for 10 minutes before measuring the fluorescence. 

The sensing mechanism was that the H2O2 oxidized colorless TMB into blue oxidized TMB 

(oxTMB) by assistance of HRP. As a result, the upconverting green emission was quenched 

by the oxidized TMB. Their results showed that the glucose sensing linear range was 100 

nM−4 µM and the analysis results of serum glucose samples were in good accordance with 

hospital detecting results.  
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Figure 2.9 Design and principle for H2O2 and glucose detection using a MnO2-

nanosheet-modified UCNP nanocomposite. Reprinted with permission from [76], 

Copyright (2015) American Chemical Society. (Permission in Appendix 9)  

Another upconversion fluorescence turn-on nanosystem was developed (figure 2.9). [76] 

Manganese dioxide (MnO2) nanosheets were modified on upconverting nanoparticle 

surface and quenched the upconversion. Glucose oxidase catalyzed glucose and produced 

gluconic acid and H2O2. The H2O2 reduced the MnO2 nanosheets to Mn2+. Consequently 

the upconverting fluorescence was then turned on. By correlating the upconverting 

fluorescence at 450 nm, glucose concentrations range of 0 µM−400 µM could be detected.  

2.4.4 Gold/Silver Nanoparticles/Nanoclusters  

Noble metal nanoparticles show distinct Surface Plasmon Resonance (SPR) phenomenon 

and noble metal nanoparticles are often utilized as fluorescence quenchers. Typical noble 

metal nanoparticles include gold nanoparticle, silver nanoparticle, platinum nanoparticles 

etc. These plasmonic nanoparticles are widely used in biosensing applications. 

Interestingly, as the size of the noble metal nanoparticles decrease to the extent of several 

to tens of atoms, roughly smaller than 1 nm. These noble metal nanoclusters would exhibit 

fluorescence properties and the fluorescence is tunable by controlling the nanoclusters size 

or atom numbers. [77-80]  
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Plasmonic gold metal nanoparticles are inert and stable in biological systems, representing 

a high biocompatibility. Also the gold atoms on the surface are especially prone to attach 

with thiol groups ( − SH), which facilitate the surface functionalization of gold 

nanoparticles. These properties make gold nanoparticles as a very useful as fluorescent 

quenching nanobiomaterials for biosensig. [81-82] In the synthesis of most metal quantum 

clusters, proteins are always used to assist formation and stabilization of the nanoclusters. 

Nanoclusters are size-equivalent to biological systems, have high biocompatibility and 

strong fluorescence. The size of noble nanoclusters are less than 1 nm. The compositions 

are gold or silver which is inert to biocomponents. The strong fluorescence comes from the 

discrete band gap due to their smaller size compared to gold/silver nanoparticles (2-50 nm). 

They have been widely investigated and applied in biosensing area. [83-84]  

 

Figure 2.10 Schematic sensing mechanism of the sensor for urea and Glucose 

detection. Reproduced from [85] with permission of the Nature Publishing Group. 

(Permission in Appendix 10)  

Fluorescent silver nanoclusters conjugate was developed as a nanobiosensor for glucose 

sensing (figure 2.10). [85] Silver nanoclusters were synthesized and its sensitivity to pH 

was used for sensing glucose as indicated in figure 2.10. The pH sensitivity originated from 

the carboxylic groups (−COOH) on the silver nanoclusters surface. These carboxylic 

groups could create an easily formed molecular interaction (e.g. hydrogen bond) among 

silver nanoclusters. And the interaction is pH-switchable. This interaction consequently 

affected the fluorescence of silver quantum clusters. Therefore, the gluconic acid produced 



 

41 

 

by the glucose biocatalytic reaction could influence the fluorescence of the silver 

nanoclusters. The measured results indicated the glucose sensing range was 0.3 mM−13 

mM and the silver quantum clusters could be regenerated by recovering the pH (urea 

sensing, urea catalyzed by urease to increase the pH).  

2.4.5 Fluorescent Carbon Nanomaterials  

Fluorescent carbon nanomaterials are a broad family of carbon nanotube, graphene oxide, 

graphene quantum dots and carbon dots. Although the fluorescent mechanisms of some 

carbon nanomaterials are not yet fully understood, they have already been widely 

researched and applied in biosensing. [86-91] The main reason for their intense study is 

due to the benign nature of nanocarbon materials in biological systems and their special 

fluorescent characteristics. With proper surface coating of nanocarbon materials, their 

cytotoxicity are greatly lowered and benign to biological systems. Among these fluorescent 

carbon nanomaterials, graphene oxide also has weak fluorescence, graphene quantum dots 

and carbon dots, carbon nanotubes have good fluorescence. Multicolor graphene quantum 

dots and carbon dots have been widely studied. Graphene quantum dots (1−10 nm) 

sometimes are categorized into minimized sized graphene oxide (several hundred µm). The 

graphene quantum dots are also categorized as one kind of single sheet carbon dots. Here, 

we would take carbon dots as a representative for fluorescent carbon nanomaterials and 

discuss their fluorescent properties. The most distinguished fluorescent characteristics of 

carbon dots is their excitation-dependent emission. For the majority carbon dots 

investigated so far, they possess this special character. As the excitation moves across from 

UV to even near-infrared, the carbon dots emission moves in correspondence with the 

excitation wavelength. [92-99] Some carbon dots have stabilized emission position even 

by shifting excitation wavelength, some carbon dots even possess upconversion 

fluorescence when excited by near-infrared light. [100-102]  

Compared to other glucose recognized biomolecules, the glucose binding proteins are non-

enzymatic glucose bioreceptors. And GBP could bind glucose with high sensitivity and 

selectivity. The binding event could naturally occur and no by-products are produced. After 

the GBP is binding with glucose. The conformation of binding proteins would change 

accompanied with hinge bending. This hinge bending behavior could be used to transduce 
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the binding event into fluorescent signal by using nanomaterials and nanostructures. 

Efficient glucose biosensing could be realized by using this kind of glucose binding 

protein. Taking advantage of recombinant protein engineering techniques, various glucose 

binding proteins could be design and produced as versatile nanobiotools for glucose 

sensing.  

 

Figure 2.11 Glucose-binding protein (GBP) covalently conjugated to a fluorescent 

single-walled carbon nanotube (SWNT) is shown to act as an optical switch. Hinge-

bending response to glucose causes a reversible exciton quenching of the SWNT 

fluorescence with high selectivity. Reproduced from [103] with permission of the John 

Wiley and Sons. (Permission in Appendix 11)  

A glucose binding protein-single carbon wall nanotube nanobiosensor was developed 

(figure 2.11). [103] The mechanism of this nanoscale glucose sensing device was shown 

in figure 2.11. First the carbon nanotube was wrapped and stabilized by carboxylated 

poly(vinyl alcohol) (cPVA). Then the glucose binding protein (GBP) was covalently 

bioconjugated with the cPVA. The emission of the single walled carbon nanotube was in 

the near-infrared area, which is the biological transparent windows. The adding of glucose 

led to the GBP hinge bending and conformation change. This allosterically change 

influenced the near-infrared fluorescence of carbon nanotube. Experimental data showed 

that the glucose sensing range was 2.5 mM−50 mM and the fluorescence change was 

reversible due to the reversible GBP binding behavior.  
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An important advantage of carbon dots over other fluorescent nanomaterials is their high 

water solubility and high biocompatibility after proper surface modification, which renders 

them very suitable for biomedical applications. Moreover, the surface of carbon dots often 

consist of carboxylic groups (−COOH), amine groups (−NH2) and other groups for further 

functionalization.  

 

Figure 2.12 Fluorescence turn-on strategy for glucose detection based on combination 

of Carbon nanodots supported on silver nanoparticles and GOx-mediated oxidation 

of glucose. Reprinted with permission from [104], Copyright (2016) American 

Chemical Society. (Permission in Appendix 12)  

A fluorescence turned-on strategy for glucose sensing was achieved by incorporating 

fluorescent carbon dots inside plasmonic silver nanoparticles shown in figure 2.12. [104] 

Fluorescent carbon dots were first incorporated inside the plasmonic silver nanoparticles 

during the synthesis silver nanoparticles. The glucose was oxidized by glucose oxidase and 

produced gluconic acid and H2O2. The hydrogen peroxide etched silver nanoparticles and 

consequently the inclusion of carbon dots were released. The advantage of this glucose 

nanobiosensor is the high biocompatibility of carbon dots and silver nanoparticles. 

Analytical results showed a linear response to glucose concentration at the range of 2 

µM−10 µM.  
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2.4.6 Graphene Nanomaterials  

Some nanomaterials were fluorescence quenchers, like noble plasmonic gold/silver metal 

nanoparticles and graphene/graphene oxide etc. In the glucose analysis process, these 

fluorescent interacting nanomaterials could quench the fluorescent component through the 

non-radiative transfer of electronic excitation energy to the π electron system of graphene. 

When glucose is introduced, the fluorescence would be either turned on or turned off 

depending on the sensor design. Reduced graphene oxide (RGO) or graphene oxide (GO) 

are widely used in the glucose sensing assay. Pure graphene is difficult to be stabilized and 

functionalized. Reduced graphene oxide or graphene oxide are more prevalently studied. 

RGO and GO have good water solubility and are also biocompatible, which favor their 

application in biosensing areas. [105-110] RGO/GO offer a large surface area and could 

be functionalized by various groups or decorated with various nanomaterials. The original 

existing carboxylic groups, epoxy groups and carbonyl groups on RGO/GO plane provide 

the anchoring place for further chemical modifications with molecule and biomolecule or 

other nanoscale materials. [111-113] 

In summary, the above discussed fluorescent nanomaterials of semiconductor quantum 

dots, dye-doped silica nanoparticles and upconverting nanomaterials are mostly 

investigated and used in fluorescent glucose nanobiosensing. Besides that, fluorescent 

quenching nanomaterials like plasmonic gold/silver nanoparticle, graphene/graphene oxide 

nanomaterials are also heavily involved and used as fluorescence quenching components 

in the glucose nanobiosensing assays.  

2.5 Magnetoresistive Nanomaterials  

Magnetoresistance is a spin effect. Spin up electron and spin down electron scatter at the 

magnetic structures. The more scattering of the path, the larger resistance it has. Magnetic 

nanomaterials and non-magnetic conductive metals like Cr, Cu etc. are sandwiched or 

mixed as multilayer and/or multicomponent formats in nanoscale to form a 

magnetoresistive chip. Magnetoresistive biosensors has been developed by several 

research groups to sense proteins, antibody, antigen etc. [114-116] The Wang Group in 

Stanford [117] has contributed greatly to magnetoresistive biosensors. They have 
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developed a giant magnetoresistance (GMR) sensor arrays for quantification of protein 

interactions and solution transport. [118] This GMR sensor chip is a multilayer 

nanostructure, the target antibody were labeled with magnetic nanoparticle. They have also 

developed another GMR sensor for multiplex proteins assay. [119] Wang’s group mainly 

focus on protein sensing and assays. Other groups like Wang group of nanospin research 

in University of Minnesota [120] has developed magnetoresistive biosensor for ion sensing, 

[121] influenza virus sensing etc. [122] The magnetoresistance biosensor are promising for 

future clinical applications. To our best knowledge, no glucose magnetoresistance 

biosensor has been developed yet. Therefore my work on the magnetoresistive 

nanostructured glucose biosensor is novel and important to MR biosensor development.  

Graphene/magnetic nanoparticle composites are novel format for developing the 

magnetoresistive biosensor. Graphene or reduced graphene oxide are conductive and have 

no or very weak magnetic properties. The magnetic nanoparticle/graphene systems have 

been studied by several groups. [123-127] One study decorated magnetic FeNi3 

nanoparticles onto graphene nanocomposites to obtain enhanced magnetoresistance of 

pressed pellets of graphene/FeNi3 nanoparticle composites. [128] An iron oxide/graphene 

oxide nanocomposite based magnetoresistive random access memory device was 

developed by Wee et al. [129] Therefore, magnetic carbon nanomaterials are promising for 

developing magnetoresistive biosensors.  

2.6 Summary  

In glucose nanobiosensing, biocompatibility and enhanced fluorescent properties are the 

major developing trends for highly sensitive and selective nanostructured biosensor. Most 

of the investigated fluorescent nanomaterials have mature synthesis and surface 

modification methods and superior fluorescent properties and they have been widely used 

in glucose nanobiosensing.  

For semiconductor quantum dots, its high quantum yield and photo-stability boost its 

development. However the cytotoxicity of semiconductor quantum dots limits its clinical 

in vivo application. In order to improve the biocompatibility of QDs, a biocompatible 

coating layer is often applied to coat quantum dots before their further application in vivo 
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and in vitro. Dye-doped silica nanomaterials have high biocompatibility. Example like 

Cornell dots with high brightness and biocompatibility demonstrate the great potential for 

the in vivo and in vitro applications of silica nanomaterials. And the silica matrix structure 

and mesoporosity are facilely controllable. Moreover silica nanomaterials could be 

modified with various chemical group and functionalization under the universal silane 

chemistry. Encouragingly, the Cornell dots’ clinical human trial [130] and clinical 

translation report [131] proved its biocompatibility and non-cytotoxicity effect for clinical 

application. The upconversion nanomaterials (UCNPs) are very suitable for in vivo 

applications in biosensing due to their high biocompatibility and superior upconverting 

fluorescence characteristics (line like emission, long fluorescence lifetime and photo-

stability). Plasmonic gold/silver nanoparticles are often used as fluorescent quenching 

components, while fluorescent gold/silver nanoclusters are utilized as fluorescent 

components. These plasmonic noble metal nanoparticles and noble metal quantum clusters 

show high biocompatibility which have attracted intensive research in glucose 

nanobiosensing applications.  

Carbon nanomaterials represent a broad nanotools for applications in glucose 

nanobiosensing. They have high biocompatibility, facile modification chemistry, facile 

preparation, multiple choice of different carbon nanomaterials. Nanocarbon family 

members have graphene/graphene oxide, graphene quantum dots, carbon dots, single-

walled/multi-walled carbon nanotubes, carbon nanodiamonds and carbon nanohorns etc. 

They could be used as either fluorescent donor or fluorescence quenching acceptor in the 

glucose nanobiosensor design. Moreover, nanocomposites of graphene/magnetic 

nanomaterials are promising for constructing magnetoresistive nanostructures. Therefore, 

carbon nanomaterials have gained more and more attention in the development of 

nanostructured glucose biosensor.  

Currently, the marketed electrochemical glucometer could provide accurate glucose 

measuring. But this measuring require certain amounts of blood, the blood is often obtained 

by finger prick. However the glucometer could only measure the blood glucose level at 

that time. Therefore, several finger pricks are applied to diabetics per day. The pricks are 

very uncomfortable for people and are susceptible to risks of infections. In a word, the 
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prevalent glucometer is invasive to people but in the market there is barely alternative 

available economic, minimally invasive or non-invasive glucose sensors for diabetics. 

Nanomaterials and nanostructures could have novel chemical, physical and biological 

properties. Nanostructured biosensors have high sensitivity and selectivity and are 

promising for developing minimally invasive or non-invasive glucose sensors. Especially 

the fluorescent and magnetoresistive nanomaterials and nanostructures are suitable for 

development of minimally invasive or non-invasive glucose biosensor with high sensitivity 

and selectivity.  

In the long run, integrated nanostructured sensor chip device for continuous 

fluorescence/magnetoresistance glucose nanobiosensing should be the major developing 

strategy. Biocompatibility, stability, selectivity and sensitivity as well as economic benefit 

are the major progressing considering parameters. These chips are promising to integrate 

into in vitro nanostructured chips, microfluidics or semi in vivo contact lens and in vivo 

implanted device with convenient data acquisition models for long termed, human-

friendly, real time, and dynamic measuring glucose levels in healthy people and diabetes 

people. For the glucose sensing in food, pharmaceutical industries etc., the stability and 

durability against all kinds of harsh environments like heat or cold, saline, acidic or basic 

etc. need to be taken into considerations for long-termed usage of nanostructured glucose 

biosensors.  
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Chapter 3  

This chapter reuses the published journal paper (Biosensors and Bioelectronics 2017, 91, 

393-399.). Permission is in Appendix 13.  

3 Development of ZnO/QD Patterned Nanostructured 
Glucose Biosensor  

3.1 Introduction  

In this chapter, a nanostructured glucose biosensor was developed to detect glucose in rats' 

tear by using fluorescence resonance energy transfer (FRET) quenching mechanism. The 

designed FRET pair, including the donor, CdSe/ZnS core/shell structured quantum dots 

(QDs), and the acceptor, dextran-binding malachite green (MG-dextran), was conjugated 

to concanavalin A (Con A), an enzyme with specific affinity to glucose. In the presence of 

glucose, the quenched emission of QDs through the FRET mechanism was restored by 

displacing the binding dextran from Con A. To have a dual-modulation sensor (one module 

is by fluorescence spectra and the other is by image pixel) for convenient and accurate 

detection, the nanostructured FRET sensors were assembled onto a patterned ZnO nanorod 

array deposited on the synthetic silicone hydrogel. Consequently, the concentration of 

glucose detected by the patterned sensor could be converted to fluorescence spectrum with 

high signal-to-noise ratio and calibrated image pixel value. The photoluminescence 

intensity of the patterned FRET sensor increased linearly with increasing concentration of 

glucose from 0.03 mmol/L to 3 mmol/L, which covered the range of tear glucose levels for 

both diabetics and healthy subjects. Meanwhile, the calibrated values of pixel intensities of 

the fluorescence images captured by a handhold fluorescence microscope increased with 

increasing glucose. Four male Sprague-Dawley rats with different blood glucose 

concentrations were utilized to demonstrate the quick response of the patterned FRET 

sensor to 2 µL of diluted tear samples (2 µL rats’ tear mixed with 5 µL PBS solution).  



 

60 

 

Tear fluid cleans and lubricates the eye while nourishing. Over 20 components have been 

found in tears, including salt water, proteins, glucose, and some small metallic ions, etc. 

[1] Diagnosis of biomolecules in tear fluid pertaining to ocular diseases such as ocular 

rosacea, have been performed primarily by clinicians to examine the high molecular-mass 

glycoproteins in tears. [2] The detection of ocular glucose dates back to 1930. [3] 

Following that, Michail and his collaborators first demonstrated the level of glucose in 

tears is often elevated in diabetic patients. [4] Sen and Sarin studied over 200 cases, their 

statistic results indicated the blood glucose is about 2 times higher in diabetic patients than 

that in non-diabetics, whereas tear glucose levels are about 5 times higher in diabetics than 

that in the general population. [5] In past decades, different research groups found a definite 

relationship between tear glucose and blood glucose, concluding hyperglycemia could be 

detected by measuring tear glucose levels. [6-8] Recent studies indicate tear glucose mean 

values were 0.35±0.04 mM and 0.16±0.03 mM, for patients with diabetes and healthy 

subjects, respectively. [9] It is also noted that time lag in measuring tear glucose is common 

to other glucose meters as it takes 5−15 minutes to allow the change of glucose in blood 

to eventually reflect in tear/interstitial fluids; [10] while it could be solved by a series of 

calibrations. [11-12]  

However, it is very difficult to acquire enough tear samples in a short period. Furthermore, 

the concentration of glucose in tears is much lower than that in blood. Very few methods 

so far could measure such low concentration of glucose in a rapid fashion. [13-14] 

Compared to many other techniques, fluorescence resonance energy transfer (FRET), an 

inexpensive and very sensitive method, has been used in molecule imaging and glucose 

test. [14-16] It is a distance-dependent energy transfer from a fluorophore donor (D) to a 

fluorophore acceptor (A) in a nonradioactive process. When the distance of the two 

fluorophores is very close (<10 nm), the excited D would transfer some of its energy to 

excite A that then emits light at a longer wavelength. [17] Using FRET technique for 

detecting the competitive reactions of glucose and other polysaccharide, such as dextran, 

to Concanavalin A (Con A), a protein, may result in accurate and convenient measures. 

[18-20] However, fluorophores/organic dyes used in FRET pair are subject to low 

fluorescent intensity, and poor signal responses influenced by the decay of chromophores 

and external environment. [21] Fluorescence nanostructures have been recognized as 
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excellent materials used in FRET sensor due to their photo-stability and narrow emission 

peaks. [22] We developed a nanostructured glucose biosensor by using fluorescence 

resonance energy transfer (FRET) technique which was able to be incorporated into 

hydrogel-based contact lens for measuring low concentration of glucose directly. [23-24] 

While, most reported FRET sensors have an inversely proportional relationship between 

the ratio of the fluorescence intensity of the donor to that of the acceptor (
ID
IA
⁄ ) and the 

amount of the targeted molecules because the rate constant of the energy transfer, kFRET, 

decreases while the distance between the FRET pair increases. Consequently, most 

reported FRET sensors have significant measurement errors when detecting the increase 

of concentration of the targeted molecules because of the low fluorescence signal-to-noise 

ratio.  

Quite recently, fluorescent quenching-based assay in which the donor fluorescence could 

be quenched by the acceptor without target analytes has shown significant advantages in 

biosensing, as it allows the restored fluorescence signal proportional response to the 

concentration of target analytes and lower background fluorescence. [16, 25] 

Consequently, a new nanostructured sensor by applying FRET quenching mechanism was 

developed here to detect small concentration of tear glucose from very small volume of 

tear samples in a fast and accurate fashion.  

Fig. 3.1 (a) displayed a FRET pair-labeled Concanavalin A (Con A), an enzyme with 

specific affinity to glucose. [18-20] The donor in this designed FRET transducer was made 

of quantum dots with an emission (λem) in the visible range; the acceptor was dextran-

bound malachite green (MG) which has an absorption at the same wavelength of the 

emission of the quantum dots. The emitted fluorescence of the quantum dots could be 

quenched by malachite green through the FRET mechanism. In the presence of glucose, 

the binding between Con A and dextran was out competed by the affinity of Con A for 

glucose. As a result, dextran-bound MG would not quench the fluorescence of quantum 

dots, and therefore fluorescence intensity was restored. The change in fluorescence 

intensity was correlated to the amount of glucose reacting with Con A.  
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Figure 3.1 (a) Illustration of the designed FRET transducer made of Con A-

conjugating quantum dots (donor) and MG (acceptor) for detecting glucose. 

Competitive affinity for glucose displaces MG to restore the quenched fluorescence. 

(b) Immobilization of the nanostructured FRET transducers on ZnO nanorod array 

deposited on silicone hydrogel.  

In addition, we would like to further develop a dual-method for detecting glucose through 

both of fluorescence spectra and fluorescence images. To quickly and accurately detect the 

amount of glucose in a very small volume of tear sample by measuring the changes of 

fluorescence intensity of the sensor, the numerous nanostructured FRET sensors were 

immobilized on a single ZnO nanorod (NR) which have a high surface area to volume ratio 

as shown in Fig. 3.1 (b). This design allowed numerous FRET biosensors located at a 

nanoscale, and therefore, was able to amplify the resolution of the sensor. [26] Moreover, 

to quickly and accurately detect the amount of glucose in a very small volume of tear 
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sample by fluorescence images, the designed pattern made of ZnO NR array was utilized 

here which could be recognized easily through fluorescence image process. The pixel 

intensity values in a taken fluorescence image corresponding to the concentration of 

glucose could be calculated through an imaging process. Consequently, the patterned 

nanostructured FRET sensor on silicone hydrogel could realize the dual modulation for 

monitoring glucose level in tear samples through both of fluorescence spectrum and 

calibrated image pixel value.  

3.2 Experimental  

3.2.1 Synthesis of CdSe/ZnS Core Shell QDs  

Cadmium selenium/zinc sulfide (CdSe/ZnS) core-shell quantum dots (QDs) were chosen 

as the donor of the FRET pair. The core-shell QDs were further functionalized with amine 

groups. [27] Selenium precursor prepared by dissolving 0.79g selenium powder in 10 mL 

trioctylphosphine (TOP). In one flask, 0.46g Cadmium Acetate dissolved in 10 mL TOP 

and heated to 100 °C under argon for 1 hour. Selenium precursor injected and allowed to 

stay at 80 °C. In another flask, a mixture of 20g TOPO, 10g hexadecylamine (HAD), and 

5 mL TOP was heated 120 °C under vacuum for 2−3 hours. Mixture further heated to 340 

°C under argon protection (slowly purge argon before heating). Once the mixture was 

heated to 340 °C, inject the precursor solution (20g TOPO, 10g hexadecylamine (HAD), 

and 5 mL TOP) inside the reaction. Temperature will decrease to 240 °C. Maintain the 

temperature for 5 min for 655 nm QDs. Remove heating mantle and cool reaction down to 

room temperature. Purify the CdSe QDs by adding excess methanol.  

Mixture of hexadecylamine (HAD) (4g) and trioctylphosphine oxide (TOPO) (8g) were 

loaded into a 100 mL 3-neck flask and then degassed and heated to 180 °C. At 180 °C, the 

purified CdSe particles (50mg) was dispersed in 2 mL chloroform and added to solution. 

After the chloroform was completely pumped out, the flask was filled with argon gas. 

Temperature of reaction was then increased to 180−185 °C. Mixture of zinc acetate (54mg) 

and bis(trimethylsilyl)sulfide (0.05mL) was dissolved in 1.0 mL TOP and 1mL oleylamine. 

Then it was injected drop-wise for 5−10 min. After the injection, mixture was stirred for 

1 hour at 180−185 °C. Solution was then cooled down to room temperature and the 
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particles were purified using chloroform and methanol.Collect and purify using 3 fold 

centrifugation and redispersion with methanol at 8000 rpm for 15 min.  

Briefly, CdSe/ZnS (20 mg) dissolved in 3 mL of chloroform was mixed with a solution of 

cysteamine (Cys) hydrochloride (100 mg) dissolved in 5 mL of water. The solution was 

sonicated until the chloroform layer became clear. The remaining cysteamine was reacted 

with the addition in excess of 2-mercaptoethanol (20 mmol/L). CdSe/ZnS/Cys QDs were 

purified by threefold centrifugation (15 min at 10000 rpm) and rinsed with ethanol. Purified 

particles were re-dispersed in water.  

3.2.2 Preparation of ZnO/Silicone Hydrogel  

Silicone hydrogel with 150 µm in thickness was produced using a photochemical process. 

[28] In a small 20mL glass bottle, add in sequence as N,N-dimethylacrylamide (0.86 mL), 

3-[tris(trimethylsiloxy)silyl]propyl methacrylate (1.72 mL), macromer bis-alpha,omega-

(methacryloxypropyl) polydimethylsiloxane (0.42 mL), 1-vinyl-2-pyrrolidinone (0.18 

mL), ethylene glycol dimethacrylate (15 µL), and add 0.3 mL absolute ethanol for better 

dissolve the chemicals. Then introduce Nitrogen or Argon into the solution for about 10 

min. Then add 8mg diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide and add 0.1 mL 

absolute ethanol to dissolve the powder, add the solution into the Nitrogen degassed 

solution and keep on the Nitrogen for another 5 min. The solution is ready for ultraviolet 

to initiate the polymerization process. Set up the glass reactor by using a piece of glass and 

a piece of hard paper, exploit the transparent adhesive tape to rap the glass and the paper 

well, add 4 binder clips to hold the structure and add the solution into the gap, then put it 

into the ultraviolet oven for 50 min photo polymerization. The gel is washed with deionized 

water.  

A well-aligned ZnO nanorod array was grown on hydrogel through modifying a previously 

reported method. [29] Briefly, zinc acetate dehydrate (0.01 M) was dissolved in 100 mL 

ethanol as a seed solution. The seed solution was dropped on a hydrogel substrate 

repeatedly followed by a heat treatment at 100 °C for 1 hour. The ZnO seed-coated 

hydrogel film was then immersed in a mixed solution of zinc nitrate hexahydrate (0.025 

M) and hexamethylenetetramine (HMTA; 0.025 M) in 200 mL of distilled deionized water. 
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After heating at 90 °C for 3 h, the ZnO nanorod array was grown on the hydrogel. Samples 

were rinsed with distilled deionized water and dried at room temperature.  

3.2.3 Fabrication Patterned QDs Decorated-ZnO NRs Array on 
Silicone Hydrogel  

The patterned ZnO nanorod (NR) array was fabricated on the silicone hydrogel by a lift-

off process (figure 3.2). The surface modification of the patterned ZnO NR array with 

amino groups was described as follows; the ZnO NR array on silicone hydrogel was 

immersed into 2 mL DMSO and 270 µL 3-aminopropyltriethoxysilane (3-APS) 

suspension. After having reacted at 120 °C for 2 h, the ZnO hydrogel was taken out and 

washed with ethanol to remove unreacted compounds. [30-31] Please note that a small 

corner of the ZnO NR array on silicone hydrogel was not modified by 3-APS for further 

conjugation of FRET pair which would be used as a control area for imaging analysis.  

 

Figure 3.2 A lift-off process for fabricating the patterned ZnO nanorod array on 

silicone hydrogel.  

The lift off process is described here. Photoresist (PR) (Shipley 1827) was deposited on 

the ZnO NR arrays by spin coating and the PR was UV (Karl Suss MJB3, Hg Arc Lamp) 
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irradiated over a patterned photomask for 30 seconds followed with post-baking. After the 

post-baking, the non-irradiated area was treated with a developer (Shipley Microposite 

MF-319) for 2 minutes treatment and rinsed with DI water. A wet chemical etching method 

was used to remove the ZnO area without PR by immersion in a diluted acetic acid solution. 

After washing with DI water, the remaining PR was washed away using ethanol. The final 

products were dried for further application.  

Prior to coating QDs-based FRET sensor onto the surface of lithographically patterned 

ZnO NRs, glutaraldehyde first reacted with amino group modified ZnO NRs. Following 

that, ZnO NRs array on silicone hydrogel merged in a 20 mL CdSe/ZnS solution for 3 days 

at 4 °C, then washed with DI water to remove excess glutaraldehyde and CdSe/ZnS QDs. 

The obtained film was dried in the dark under vacuum to preserve sensing capabilities.  

3.2.4 Synthesis of Malachite Green Dextran  

Malachite green (MG) isothiocyanate and 70,000 MW amino-dextran purchased from Life 

Technologies (Burlington, Ontario, Canada) were mixed in a sodium bicarbonate buffer 

with 0.05 M at pH 9.6. [32] Successful conjugation of the isothiocyanate and dextran to 

form MG-dextran was verified by thin layer chromatography as shown in Fig. 3.3. 

Concentration of MG-dextran (ε=105 M-1cm-1 for malachite green at 621 nm) was 

determined by UV/Vis.  

 

Figure 3.3 Chromatography of the conjugation of MG to dextran.  
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The isothiocyanate and MG-dextran had an Rf value of approximately 1.0 and less than 

0.25, respectively. Concentration of MG-dextran (ε=105 M-1cm-1 for malachite green at 

621 nm) was determined by UV/Vis using the Beer-Lambert Law:  

A = εlc 

Where A is the absorbance,  the molar absorptivity, l the path length, and c the 

concentration (mol/L).  

3.2.5 Synthesis and Optimization of FRET Sensor  

Briefly, the dropwise application of Con A bonded with MG-dextran to the surface of QDs-

decorated ZnO NRs with the aid of glutaraldehyde. The weight ratio of CdSe/ZnS/Cys QDs 

to Con A bonded with MG-dextran was 7:1. Non-conjugated Con A was rinsed off with 

DI water.  

 

Figure 3.4 FRET signal (fluorescence intensity) vs. the weight ratio of QDs to Con A 

loading with acceptor.  
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The optimization ratio was described here. Con A protein was first loaded with MG-

dextran at a molar ratio of 4:1 MG-dextran to Con A in water and agitated for 2 hours. 

Following that, glutaraldehyde was added to the above solution at 1:1 molar ratio and 

agitated for another 2 hours. The conjugation of MG-dextran to Con A was verified by the 

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). To ensure 

maximum sensitivity in the presence of glucose, CdSe/ZnS quantum dots (QD) were 

conjugated to Con A bonded with MG-dextran at weight ratios of 10:1, 5:1, 3:1, 2:1, and 

1:1, respectively, to determine the degree of quenching and when an increase in QD weight 

becomes negligible to the change in fluorescence. In this study, the weight ratio of the 

donor (QDs) to enzyme (Con A) bonded with the acceptor (MG-dextran) was maintained 

at 7:1. From the trend of the curve, it is going to reach a plateau after ratio of 9:1. After the 

ratio of 7:1, the FRET signal is not enhancing much. Considering the signal and economy, 

we chose the ratio of 7:1.  

3.2.6 Sensor Measurement  

10 µL of glucose in different concentrations at pH=7.0, 0.03 mmol/L, 0.05 mmol/L, 0.2 

mmol/L, 0.75 mmol/L, 1 mmol/L, 2 mmol/L, 3 mmol/L, were dropped on the patterned 

FRET sensors on silicone hydrogels with 30 seconds of interacting time. The fluorescence 

response of the patterned FRET sensors on silicone hydrogels to different concentrations 

of aqueous glucose were recorded by the fluorospectrometer at excitation wavelength (λex) 

=490 nm. At least five independent measures were conducted to measure the response of 

the sensor according to each glucose level. The standard deviation for each measured points 

was also calculated.  

3.2.7 Fluorescence Sensor Signal Converting to Image Pixel 
Intensity  

A USB powered portable digital microscope, MiScope, from Zarbeco (40X, pixels 

640×480), was used to measure and digitally capture the fluorescence intensity of the 0.5 

mg of glucose sensor conjugated onto ZnO NRs. 10 µL of various concentrations of 

glucose was added; 0.03 mM, 0.05 mM, 0.2 mM, 0.75 mM, 1 mM, 2 mM, and 3 mM. 
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Glucose was allowed to react with the sensor for 5 min prior to fluorescent measurement. 

The donor molecule was excited with the UV light built into the MiScope.  

The captured images were converted to RBG colors using Matlab as our previous reported 

results. [24] Both green and red channels were applied to record the pixel intensity pixel 

values. The values of pixel intensity of the patterned sensors responding to glucose 

amounts were calculated in comparison with that of the control areas where no FRET pair 

was conjugated. The recorded fluorescence images taken by the handhold fluorescence 

microscope could be converted to the value of pixel intensity through Matlab’s imaging 

process. In this imaging conversion process, the image matrix of the control area were used 

to compare with that of sensing area of the FRET sensor to obtain the value of pixels 

intensity corresponding to the concentration of glucose. The captured FRET sensing image 

with pixels ∑XY is calibrated in comparison with the image of the control area (lowest 

fluorescence signal from substrate) with pixels ∑X′Y′. The calibrated pixel intensity (Ip) 

generated from FRET sensors could be expressed as follow;  

IP =∑I(XiYi) −∑I(Xi
′Yi
′) 

Where, i is the number of pixels in the chosen areas. 

3.2.8 Cellular Viability 

Cellular viability of the glucose biosensor was conducted in the Lab of Dr. David Litchfield 

in the Department of Biochemistry of the University of Western Ontario. UTA-06 human 

osteosarcoma cells were used in this work, which were derived from the human 

osteosarcoma cell line U2-OS. The cell line was a generous gift from Dr. Christoph Englert, 

Forschungszentrum Karlsruhe, Germany. This assay could provide a model to test the 

cytotoxicity of the sensor.  

UTA-06 cells were cultured and grown under sterile conditions in Dulbecco's Modified 

Eagle Medium (DMEM) supplemented with 10% FBS and 100 units/mL penicillin and 

100 µg/mL streptomycin, kept at 37 °C with 5% CO2. 250 000 cells were transferred into 

each well of a 24 well culture plate and incubated overnight to ensure adhesion to the plate. 
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Various amounts of patterned nanostructured FRET sensors (QDs-based FERT sensors 

assembled on ZnO NRs), i.e. 0.03 mg, 0.07 mg, 0.10 mg, 0.15 mg, deposited on the surface 

of silicone hydrogels with dimensions 1 cm × 1 cm. Samples were sterilized under UV for 

10 minutes.  

In quadruplicate, the UTA-06 cells were cultured with the above sensors deposited on 

hydrogel samples for 24 hours. After the incubation period the sensor samples were 

removed, and a MTT cell viability assay was performed. The absorbance of the plates was 

measured at λem=490 nm, and the relative cellular viability was calculated.  

 

Figure 3.5 Relative cell viability vs. the amount of the patterned FRET sensors 

deposited on silicone hydrogel.  

Figure 3.5 indicates relative cell viability ([Cr/Co] 100%) vs. the amount of patterned FRET 

sensors on silicone hydrogel. The relative cell viabilities (%) of UTA-06 human 

osteosarcoma cells treated by patterned nanostructured FRET sensors are correspondingly 

normalized to the control sample. Here, Co is the viable cell numbers of the control sample 

(bare silicone hydrogel), and Cr the viable cell numbers treated with the patterned FRET 

sensors. The error bars were the calculated standard deviation.  



 

71 

 

3.2.9 Animal Tear Test  

This part was cooperated with Dr James Melling lab (Kinesiology, UWO). Following the 

positive results of cytotoxicity (figure 3.5), we conducted the animal test to evaluate the 

response of designed sensor to tear glucose. Four male Sprague-Dawley rats (Charles River 

Laboratories, St. Constant, QC, Canada) were housed in a 12-h light/dark cycle room with 

humidity (50%) and temperature (21.5 °C) kept constant. Rats were given water and chow 

ad libitum and made diabetic with streptozotocin (STZ; Sigma-Aldrich, Oakville, ON, 

Canada). Intraperitoneal injections of STZ (20 mg/kg) dissolved in a citrate buffer (0.1 M, 

pH 4.5) were given over five consecutive days. Following the confirmation of diabetes 

(two blood glucose readings larger than 18 mmol/L) subcutaneous insulin pellets were 

implanted in the abdominal region of rats. Rats were anesthetized with isoflurane for ease 

of application of the sensors to their eyes. Tear fluid was collected from the ocular surface 

with a 1 µL glass capillary tube (P1424 SIGMA). 2 µL of rat tear sample were collected 

from each male Sprague-Dawley rats. All samples were diluted by PBS (5 µL) with pH=7.0 

into 7 µL total volume. Diluted tear samples (2 µL) were then dropped on the FRET 

sensors. The standard deviation for each measured points was also calculated. 

Fluorospectrometry was used to measure the fluorescence intensity of quantum dots 

(donor) after tear samples interact with FRET sensor for 30 seconds. A blood sample was 

taken from the saphenous vein concurrently with the application of the sensor for blood 

glucose concentration (Freestyle Lite Blood Glucose Monitoring System, Abbott Diabetes 

Care Inc., Mississauga, Ontario). Ethics approval was obtained through the University of 

Western Ontario Research Ethics Board, in accordance with Canadian Council on Animal 

Care guidelines.  

3.3 Results and Discussion  

3.3.1 Characterization of Nanostructured FRET Sensor Deposited 
on Silicone Hydrogel  

The ZnO NR array pattern was fabricated on the silicone hydrogel using it as a substrate 

by a lift-off process shown in figure 3.2. SEM was used to study the patterned ZnO NR 

array deposited on the synthetic silicone hydrogel as shown in Fig. 3.6 (a) and (b). The 
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designed pattern is made for easy identification of the captured fluorescence images to 

calibrate the pixel intensity depending on the concentration of glucose.  

 

Figure 3.6 Characterization of nanomaterials by electron microscopes. (a) SEM 

micrographs of patterned ZnO NRs deposited on a silicone hydrogel. The small inset 

is the photomask. (b) The magnified SEM micrograph of ZnO nanorod array 

deposited on a silicone hydrogel. (c) SEM micrograph of ZnO nanorods. (d) SEM 
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micrograph of QDs coated ZnO nanorods. (e) TEM micrograph of QDs coated ZnO 

nanorods. (f) HRTEM of CdSe/ZnS QDs.  

The patterned ZnO NR arrays grown on the synthetic silicone hydrogel were modified with 

amino groups (−NH2) to immobilize CdSe/ZnS QDs onto the ZnO NRs. Glutaraldehyde 

first reacted with −NH2 functionalized ZnO NRs following the linkage formed by the 

reaction of glutaraldehyde with the amino group modified QDs. In Fig. 3.6 (c), the 

hexagonal rods with a smooth surface were grown on the silicone hydrogel. The average 

dimensions of the ZnO NRs are estimated at 120±5 nm in diameter and 2.00±0.05 µm in 

length. The rough surface of the NRs could be observed when decorated with QDs, as 

shown in Fig. 3.6 (d). Furthermore, the TEM micrograph (Fig. 3.6 (e)) clearly shows the 

QDs are decorated on the ZnO NRs. The HRTEM micrograph (Fig. 3.6 (f)) further 

indicates the core-shell CdSe/ZnS QDs with 5±2 nm in diameter are decorated on the 

highly crystalline ZnO NRs with a lattice fringe of 0.255 nm, which corresponds to the 

(0002) lattice planes. [33]  

 

Figure 3.7 FTIR spectra of the cysteamine (Cys) modified QDs and ZnO nanorod 

(NR), and the hybrid ZnO NR coated with QDs (ZnO NR-QDs).  
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Fig. 3.7 shows the FTIR spectra of the ZnO NRs with surface modification, amino modified 

QDs, and the hybrid ZnO NRs coated with QDs (ZnO NR-QDs). All samples demonstrate 

the typical −CH stretch, and −CH2 stretch in the FTIR spectra. The −C=O stretch at 1750 

cm−1 is observed when glutaraldehyde was modified onto ZnO NRs, while this stretch does 

not show up to sample of ZnO NR-QDs. The −C=N stretch of the imine group, and 

−C=N−R located around 1620 cm−1 appears in the spectrum of ZnO NRs-QDs. Thus, two 

carbon-nitrogen double bonds (C=N), i.e. Schiff bases, were formed to allow QDs to coat 

on the ZnO NRs through the linkage of glutaraldehyde.  

3.3.2 Fluorescence Intensity of the FRET Sensor as a Function of 
Glucose Level in Aqueous  

 

Figure 3.8 Photoluminescence of ZnO NR arrays on silicone hydrogel with/without 

QDs, and QDs-based fret sensors, and the UV-vis absorption of MG.  

The optimization of the weight ratio of the donor (QDs) to enzyme (Con A) bonded with 

the acceptor (MG-dextran) was determined at 7:1 as shown in the figure 3.4. The 

photoluminescence (PL) properties of the nanostructured FRET transducer-coating ZnO 

NR array (i.e. the patterned FRET sensor), the nanostructured donor of the sensor (i.e. 
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CdSe/ZnS QDs) were studied by a fluorospectrometer in the range of 550−700 nm. In Fig. 

3.8, the photoluminescence (PL) spectrum of ZnO in the visible range is observed with 

centering at 628 nm.  

The maximum intensity of PL spectrum of CdSe/ZnS QDs is observed at 648 nm. The PL 

spectrum of ZnO NR-QDs is dominated by the decorated QDs because of the large amount 

of QDs on a single ZnO NR, centered at 648 nm. When the acceptor of FRET sensor, MG-

dextran, bound to QDs through Con A, the PL peak of ZnO NRs could be observed with 

centering at 652 nm; whereas the PL peak at 652 nm attributed to the donor (QDs) of the 

patterned FRET sensor is significantly suppressed. The slight redshift of the emission of 

QDs may be caused by the surface conjugation of Con A and the acceptor of MG-dextran. 

MG quenches the fluorescence signal of QDs through the FRET mechanism because of its 

broad absorbance around 655 nm.  

 

Figure 3.9 A linear relationship between fluorescence intensity of the designed sensor 

and the concentration of glucose.  
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10 µL of aqueous glucose of various concentrations were dropped onto the patterned FRET 

sensors on silicone hydrogels with 30 seconds of interaction time. The fluorescence 

measurements were determined by fluorospectrometry. As shown in the illustration of Fig. 

3.1, the fluorescence emission of the donor (CdSe/ZnS QDs) of the designed FRET sensor 

was quenched by the acceptor MG. In the presence of glucose, the quenched fluorescence 

of QDs is restored after the addition of glucose and the fluorescence emission of the 

patterned FRET sensors centered at 652 nm increases with increasing aqueous glucose. 

The FRET emission (λem=652 nm) as a function of the concentration of aqueous glucose 

were measured. The relative fluorescence intensity (Ire) is calculated by using the equation 

below;  

Ire =
I′

Io
 

Where, I′ is the restored intensity according to a glucose level, Io is the intensity of the 

sensor without glucose. Fig. 3.9 shows that two linear regions; (1) from 0.03 mM to 3 mM; 

and (2) from 0 mM to 0.03 mM. It is noted that the concentration of glucose in the range 

of 0.03 mM−3 mM could cover the tear glucose lever of both the diabetes and healthy 

subject. The linear relationship between relative fluorescence intensity and glucose 

concentration in the range of 0.03 mM−3 mM could be expressed as follows;  

Y = 0.239X + 1.132 

3.3.3 Pixel Intensity Value of Fluorescence Image of FRET Sensor 
as a Function of Glucose Level in Aqueous  

The fluorescence images of the patterned FRET sensors on silicone hydrogel interacting 

10 µL of various concentrations of aqueous glucose were monitored by a handheld 

fluorescence microscope. Fig. 3.10 (a) shows two fluorescence images of the patterned 

FRET sensor interacting with two samples of aqueous glucose; 0.04 mmol/L (sample A) 

and 0.4 mmol/L (sample B). The recorded images by the handheld microscope were 

converted to the readable signal through Matlab's imaging process. The pixel intensity was 

calibrated using MatLab to plot the intensity as a function of aqueous glucose 

concentration. The calibrated pixel intensities of the patterned FRET sensor is clearly 
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increasing as glucose increases from 0.03 mmol/L to 0.6 mmol/L as shown in Fig. 3.10 (b). 

The difference in pixel intensity value does not change significantly when the 

concentration of glucose is beyond 0.6 mmol/L. It is expected that a more advanced 

fluorescence microscope would be able to overcome the limit.  

 

Figure 3.10 Fluorescence images of the patterned FRET sensor on silicone hydrogel 

and the relative pixel intensities of the sensors responding to the concentrations of 

glucose. (a) Fluorescence images of the patterned FRET sensor to aqueous glucose 

with 0.04 mmol/L and 0.4 mmol/L, respectively. (b) The relative pixel intensities of 

the sensors vs. the concentration of aqueous glucose.  

3.3.4 Response of Designed FRET Sensor to 2 µL Rat Tears  

The concentrations of blood glucose of the rats used in the current study were maintained 

in a range similar to patients with ‘poorly’ managed Type 1 diabetes. [34] Specifically, rats 
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were representative of low to moderate hyperglycemic patients with Type 1 diabetes 

mellitus under conventional insulin therapy. [35] Typically blood glucose concentrations 

in patient populations with type 1 diabetes fluctuate considerably; therefore, four rats with 

a range of blood glucose concentrations were utilized in the experiment to demonstrate.  

The photoluminescence spectra of the patterned FRET sensor deposited on silicone 

hydrogels corresponding to the diluted rats’ tear samples (2μL) could be seen in Figure 

3.11 after interacting with rat tears.  

 

Figure 3.11 Photoluminescence spectra of designed sensor responding to tear samples 

from rats with different glucose level in blood.  

The rats’ tear samples were diluted 3.5 times. The patterned FRET sensor deposited on 

silicone hydrogels were used to measures the 2 µL diluted rats’ tear samples. The PL 

spectra of the sensor corresponding to glucose in tears are shown in Fig. 3.11 after 

interacting with rat tears. The detected glucose level in rats’ tear samples were calculated 

by using Eq. Y=0.239X+1.132. Meanwhile, the blood glucose levels to the four rats were 

measured by Freestyle Lite Blood Glucose Monitoring System, Abbott Diabetes Care Inc.  
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Table 3.1 shows the glucose level in rats’ tear samples measured by the nanostructured 

FRET sensor as compared to the blood glucose level of the four rats. The small value of 

the calculated standard deviation of the measurement indicates the repeatability of the 

measure.  

Table 3.1 Glucose level in rats’ tear samples measured by the nanostructured FRET 

sensor as compared to the blood glucose level of the four rats.  

Blood glucose (mmol/L) Tear glucose (mmol/L) 

5.3 0.14±0.03 

9.7 0.42±0.04 

12.3 0.95±0.05 

18.2 1.28±0.05 

3.3.5 Selectivity of Designed FRET Sensor  

 

Figure 3.12 Relative sensing signal (Itest sample/Iglucose) to different biomolecules.  
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The selectivity of the designed sensor towards glucose detection was further verified. 1 

mM glucose in PBS solution and some possible interfering molecules, sucrose, fructose, 

mannose, lactose, maltose, mannitol, histidine, cysteine, ascorbic acid, and cholesterol at 

1 mM, were tested by the designed sensor, respectively. The relative sensing signal is 

referring to the normalization of the fluorescence intensity of the designed sensor 

responding to 1mM test sample to the sensor’s fluorescence intensity in the presence of 1 

mM glucose (Itest sample/Iglucose). Figure 3.12 suggests that the designed sensor has a high 

selectivity to glucose.  

3.4 Conclusion  

In summary, the patterned nanostructured FRET sensor deposited on the synthesized 

silicone hydrogel were designed for monitoring glucose in tears. The emission (λem)=655 

nm of the CdSe/ZnS QDs could be quenched by the acceptor of dextran-bound malachite 

green (MG) which has an absorption at the same wavelength of the emission of the QDs. 

The dual modulation of detection is realized by depositing CdSe/ZnO QDs-based FRET 

sensors on the ZnO nanorod array. When the interaction time was maintained at 30 

seconds, a linear relationship of the photoluminescence of the patterned nanostructured 

FRET sensor to the concentration of glucose from 0.03 mmol/L to 3 mmol/L is observed. 

It is noted that the tear glucose of diabetics is>0.35±0.04 mmol/L, and the average value 

of tear glucose for healthy subjects is around 0.16± 0.03 mmol/L. Meanwhile, the 

calibrated values of pixel intensities are increasing with increasing glucose from 0.03 

mmol/L to 0.6 mmol/L. Four rats with a range of blood glucose concentrations were 

utilized in the experiment. The results clearly show that the patterned nanostructured FRET 

sensor is capable of quickly monitoring tear glucose in an extremely small drop (2 µL) of 

tear sample. Consequently, our designed nanostructured FRET glucose sensor is suitable 

for monitoring tear glucose in a non-invasive and quick manner.  
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Chapter 4  

Part of this chapter reuses part of the published journal paper (RSC Advances 2017, 7 (43), 

26770-26775.). Permission is in Appendix 14.  

4 Development of Upconversion NaGdF4: Yb, Er Glucose 
Biosensor  

4.1 Introduction  

In this chapter, a one-pot process was developed to produce NaGdF4: Yb, Er upconversion 

nanocubes (UCNCs) with amine group surface modifications. The amine groups facilitated 

further surface conjugation of upconverting nanomaterials. After sufficient conjugation of 

the amine groups and suitable PEGylation, the adsorption of other proteins could be 

effectively avoided. The upconverting nanomaterials were used to fabricate an 

upconverting nanostructured glucose biosensor. The photoluminescence and magnetic 

properties of the amine modified unpconversion nanocubes (UCNCs) were investigated. 

The emissions of green light at 541 nm and red light at 655 nm were observed under near-

infrared excitation (λex=980 nm). In addition, the magnetic susceptibility of the nanocubes 

was 1.049×10-4 emu·g-1·Oe-1 at room temperature, which was 29 % larger than the reported 

value. NIH/3T3 mouse fibroblast cell line was used to study the cytotoxicity of the UCNCs. 

The produced UCNCs with surface modification did not impose toxic effect on cells. Then, 

a nanostructured glucose biosensor was constructed based on this upconversion 

nanomaterials.  

Upconversion nanoparticles could convert excited light with a lower energy into emission 

light with a higher energy because of the multiphoton excitation-involving nonlinear 

process, which could be applied in various areas, including luminescent display devices, 

optical devices, photo-therapy, and medicine, etc. [1-4] Most studies indicated that the 

dopants of lanthanide, such as Er, Tm, and Ho, could produce emission as the optically 

active centres due to the 4f–4f orbital electronic transitions. Fluoride materials, e.g. NaYF4 
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and NaGdF4, normally act as the excellent host lattices because of their high chemical 

stability and good optical transparency over a wide wavelength range. [5-6] Unique 

properties of lanthanide-doped upconversion nanomaterials have attracted extensive 

attention, e.g. optical-magnetic bi-functional properties of NaGdF4: Yb, Er. [7-8]  

Various methods have been developed to produce upconversion nanocubes (UCNCs), 

including hydro(solvo)-thermal reaction, thermal decomposition of rare earth organic 

precursors, and ionic liquids methods etc. [9-11] Hydro(solvo)-thermal reaction and 

thermal decomposition could produce highly crystalline and monodispersed nanocubes, 

while the reactions need highly controlled reaction parameters, e.g. temperature, and toxic 

organic rare earth precursors which bring barriers to further modification for biomedical 

applications. Whereas, the ionic liquids-related methods yield less uniform nanocubes, but 

are relatively easy to control the process parameters. [12-13] Therefore, facile synthesis 

strategies for high-quality UCNCs with controlled composition, crystalline phase, particle 

size, are highly demanded. [14-15]  

On the other hand, studies show that fluorescence properties of upconversion nanoparticles 

could be affected by energy levers of rare earth ions, the surface modification, etc. [16-17] 

Riman and his co-workers reported that the effects of three different surfactants; 

trioctylphosphine, polyethylene glycol monooleate, and polyvinylpyrrolidone on the 

emissions of NaYF4: Yb3+, Er3+ nanomaterials. The emission intensity of NaYF4: Yb3+, 

Er3+ dried powder decreased following the order, polyvinylpyrrolidone > polyethylene 

glycol monooleate > trioctylphosphine > unmodified nanoparticles because of the reduced 

reflectance loss at the boundary between upconversion nanoparticles with different 

surfactants and the air. Song et al. [18] reported that NaYF4: Yb3+, Er3+ nanoparticles 

modified with thioglycolic acid could transfer hydrophobic upconversion nanoparticles 

into hydrophilic upconversion nanoparticles. And the results indicated that the blue 

emission (2H9/2→4I15/2) and red emission (4F9/2→4I15/2) with respect to the green emission 

(2H11/2, 
4S3/2→4I15/2) have been enhanced after surface modification.  

In this chapter, we developed a modified solvothermal method to have a one-pot synthesis 

of NaGdF4: Yb3+, Er3+ UCNCs with amine surface modification. It is noted that amine 
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functional group normally increases the hydrophilicity of nanomaterials, and is useful for 

further conjugating to different molecule. In order to avoid the amine groups interaction 

with other proteins. We deposited these upconversion nanoparticles onto silicone hydrogel 

surface and modified with a layer of PEGylation. As gadolinium-based upconversion 

nanomaterials could be used as a dual contrast agent and fluorescence imaging. The 

fluorescence and magnetic properties of the UCNCs with surface modification were 

investigated. The cytotoxicity of the produced UCNCs was also investigated for potential 

applications in bio-imaging.  

With over decades’ efforts, tear glucose is considered as a biomarker for diagnosis of 

diabetes. [19-20] The mean values of tear glucose were measured at 0.35 mM±0.04 mM 

and 0.16 mM±0.03 mM, for patients with diabetes and healthy subjects, respectively. [21] 

Most commercialized glucose meter is used for detecting glucose in bood with the testing 

range from 3 mM to 25 mM. The difficulties on using this tear glucose lies in quickly 

collecting enough tears for test, and accureatly measuring such low concentration of 

glucose in tears. Here, we demonstrated that a nanostructured biosensor deposited on 

silicone hydrogel substrate could be used to detect rat’s tear glucose in vivo. The designed 

biosensor was composed of protein (Con A) conjugated upconvension nanoparticles 

(UCNPs) incorporating with hydrogel, a contact lens materials.  

Since Leonardo da Vinci introduced the concept of a contact lens in the year 1508, it has 

been one of the most commonly worn biomedical devices in the 21st century. [22] Future 

benefits of this wearable medical device from the developments of nanobiotechnology are 

not limited in vision correction, but also are promising for the topical eye treatment. [23-

24]  Quite recently, the engineered contact lenses for monitoring tear glucose was 

recognized as a means for non-invasive diagnosis and monitoring for diabetics. [25-26] 

Fluorescein eye stain test is common in eye exam. [27] Consequently, fluorescence sensors 

incorporating contact lens may be used for wearing on eyes and detecting components in 

tears directly. Small handheld fluorescent microscopy could be developed to measure the 

contact lens fluorescent signal. Though the discrepancy in the correlation between tear 

glucose and blood glucose were found caused by the collection methods and time lag in 

tear measurement. [28-29] detection of tear glucose could provide a non-invasive method 
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to be supplementary to the current blood glucose tests. Furthermore, glucose concentrations 

in diabetic individuals in comparison to healthy individuals were found to be 4 times and 

2 times higher when assessed in ocular tears and blood respectively. [29]  

Luminescence resonance energy transfer (LRET) is a distance-dependent nonradioactive 

process. When the distance of the two fluorophores is very close (< 10 nm), the excited 

fluorophore donor (D) would transfer some of its energy to excite fluorophore acceptor 

(A). [30-31] LRET pair-labeled enzyme sensors have been used in studying protein-protein 

interactions. [32-35] Upconversion nanostructures are the emerging luminescent 

nanomaterials, which have the unique capability to convert the excited light with a lower 

energy to the emission light with a higher energy because of the multiphoton excitation-

involving nonlinear process. [12] In addition, upconversion nanostructures show 

advantages over conventional fluorophores, including high signal-to-noise ratio, superior 

photo-stability, and low toxicity. [36-39] In comparison, semiconductor quantum dots 

require external excitation energies close to the ultraviolet range, which could result in 

profound effects leading to photic damage. [40] The upconversion materials are excited by 

lower frequency near-infrared radiation and emit higher energy radiation in the visible light 

spectrum. Lanthanide-doped upconversion nanostructures show enhanced emission in the 

visible region (400 nm < λem < 700 nm) with the near-infrared excitation wavelengths (700 

nm < λex < 1200 nm). [41-42] The upconversion nanostructures utilizing near-infrared 

radiation (760 nm to 1400 nm) are very ineffective in producing retinal injuries and 

therefore much safer for ocular applications. [43-44]  

Figure 4.1 showed the designed LRET sensor incorporating contact lens for detecting tear 

glucose directly. Concanavalin A (Con A), an enzyme with specific affinity to glucose, 

[45] was conjugated with the donor, NaGdF4: Er, Yb upconversion nanoparticles (NPs), 

through two Schiff bases (C=N). The acceptor of the LRET sensor was dextran-binding 

malachite green (MG) which has an absorption at the same wavelength of the red emission 

of the NaGdF4: Er, Yb, upconversion NPs. The emitted fluorescence of the donor was 

quenched by malachite green (MG) through the LRET mechanism. Dextran is a saccharide 

with affinity for Concanalin A. [46] In the presence of glucose, the binding between Con 

A and dextran could compete over by the binding between Con A and glucose. The most 
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significant advantages of using upconversion nanostructures include: (1) the 

nanostructures acted as an analyte (tear glucose) collector to achieve high concentration of 

analyte reacting with the LRET enzyme sensor due to the large surface area to volume 

ratio; (2) the nanostructures exhibited stable optical signals as shown in figure 4.1; and (3) 

large surface-to-volume ratio of enzyme-immobilized nanostructures could lead to higher 

selectivity for glucose sensing. The fluorescence intensity (I) of the LRET sensor as a 

function of the concentration of glucose has been investigated thoroughly in vitro and in 

vivo.  

 

Figure 4.1 Schematic of LRET sensor sensing mechanism.  

4.2 Experimental  

4.2.1 Synthesis of Polyethylenimine (PEI) Modified Upconversion 
Nanostructures  

40±5 nm paramagnetic upconversion NPs were synthesized by polyol method. [47] In a 

typical synthesize process, 1.6 mmol Gd(NO3)3·6H2O, 0.36 mmol Yb(NO3)3·5H2O, 0.38 

mmol Er(NO3)3·5H2O, 0.7 g branched polyethylenimine (PEI), and 20 mL ethylene glycol 
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were added into a 100 mL three-neck round-bottom flask and dissolved by magnetic 

stirring. Then, 8 mmol NaF dissolved in 10 mL ethylene glycol were added dropwise into 

the 100 mL flask. Under reflux, the solution was heated to around 198 °C to keep ethylene 

glycol boiling for 6 hours under nitrogen gas protection. The as-synthesized upconversion 

nanocubes were centrifuged and purified with ethanol and water several times, then dried 

at 60 °C overnight.  

4.2.2 Synthesis of Malachite Green Dextran  

Malachite green dextran was synthesized according to the method by McCartney et al. [35, 

46] In short, malachite green (MG) isothiocyanate and 70,000 MW amino-dextran 

purchased from Life Technologies (Burlington, Ontario, Canada) were mixed in a sodium 

bicarbonate buffer (0.05 M, pH 9.6). Successful conjugation of the isothiocyanate and 

dextran to form MG-dextran was verified by thin layer chromatography. The 

isothiocyanate and MG-dextran had an Rf value of approximately 1.0 and less than 0.25, 

respectively (chapter 3 at section 3.2.2).  

4.2.3 Conjugation of Glucose Sensor Components  

In short, the Con A solution 1 mg/mL, 2 mL was conjugated to upconverting nanoparticle 

1 mg/mL, 2 mL with 200 µL 0.5 % glutaraldehyde solution at room temperature for 2 hours 

under mild ellipsoidal shaking. 10 mg malachite green-dextran was added and allowed to 

bind to Con A for an additional 2 hours. The biosensor was collected after thrice 

centrifugation for 5 minutes at 9000 rpm and resuspended in deionized water.  

4.2.4 Sensor Deposition onto Silicone Hydrogel  

As a medium to contain the upconverting nanoparticle glucose biosensor, we deposited 

200 µL of the glucose sensor suspended in water solution onto pieces of silicone hydrogels 

and put in 4 °C fridge to let dry. The hydrogel was sterilized by soaking in 75% ethanol.  

4.2.5 In Vivo Animal Model  

This part was cooperated with Dr James Melling lab (Kinesiology, UWO). Six male 

Sprague-Dawley rats (Charles River Laboratories, St. Constant, QC, Canada) were housed 
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in a 12-hour light/dark cycle room with humidity (50%) and temperature (21.5°C) kept 

constant. Intraperitoneal injections of STZ (20 mg/kg) dissolved in a citrate buffer (0.1M, 

pH 4.5) were given over five consecutive days were given to induce diabetes. Following 

the confirmation of diabetes (two blood glucose readings greater than 18mM) subcutaneous 

insulin pellets were implanted in the abdominal region of rats.  

Ethics approval was obtained through the University of Western Ontario Research Ethics 

Board, in accordance with Canadian Council on Animal Care guidelines.  

4.3 Results and Discussion  

4.3.1 TEM and XRD  

 

Figure 4.2 (a) TEM micrograph of NaGdF4: Yb3+, Er3+ UCNCs, the small inset is the 

size distribution histogram chart. (b) HRTEM image of as-synthesized NaGdF4: Yb3+, 

Er3+ UCNCs.  

TEM and HRTEM were used to characterize the as-synthesized NaGdF4: Yb, Er UCNCs. 

Fig. 4.2 (a) showed the TEM micrograph of highly uniform nanocubes. The average length 

of the nanocubes was approximately 40±5 nm. Fig. 4.2 (b) showed the HRTEM image of 

as-synthesized upconversion nanocubes with highly crystalline structure. The measured 

inter-planar distance between two adjacent lattice planes was 0.312 nm, corresponding to 

the (1 1 1) plane of cubic phase NaGdF4 (JCPDS 27-0697).  
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Figure 4.3 XRD profile of NaGdF4: Yb3+, Er3+ upconverting nanoparticles and the 

line pattern of standard cubic phase of NaGdF4 (JCPDS 27-0697) and hexagonal 

phase of NaGdF4 (JCPDS 27-0699).  

The XRD profile was shown in Fig. 4.3. The XRD profile indicated that standard cubic 

phase (JCPDS 27-0697) dominated in the crystal structures. [48] It was also noted that 

there were two small peaks around 2 theta at around 30, which could be caused by the other 

phase, hexagonal NaGdF4 crystal (JCPDS 27-0699). Compared to the thermal 

decomposition for producing cubic UCNPs at high temperature over 300 °C, [8, 11] the 

one-pot method utilized ethylene glycol polyol solution at 198 °C to produce PEI modified 

upconverting nanoparticles. In addition, the dopants, i.e. Yb, and Er ions, normally would 

not change the crystal structures, but may slightly change the lattice strain of the crystals. 

Therefore, the characteristic peaks of cubic NaGdF4 crystal acting as the host have a slight 

shift as compared to the standard cubic phase of NaGdF4 (JCPDS 27-0697) crystal 

structure.  
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4.3.2 FTIR Spectrum of PEI Modified Upconverting Nanoparticles  

 

Figure 4.4 FTIR spectrum of PEI capped NaGdF4: Yb, Er upconversion nanocubes.  

The successful capping of as-synthesized upconversion nanocubes with PEI to 

functionalize the surface with amine groups was confirmed by Fourier transform infrared 

(FTIR) spectroscopy. The obtained FTIR spectroscopy was similar to previous results. [49-

51] As shown in figure 4.4, the broad peak at 3300 cm-1 was attributed to the −NH− 

stretching. The small peak present at 1640 cm-1 was due to the −NH− bending. The peak 

at 1500 cm-1 was the vibration of the amine groups. And peak at 1400 cm-1 was due to the 

stretching vibrations of C−N bonds. [24] These results confirmed the successful binding 

of PEI onto the nanocube surface.  
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4.3.3 Upconverting Fluorescence  

 

Figure 4.5 Photoluminescent spectrum of NaGdF4: Er, Yb solution (1 mg/mL). (a) 

Photoluminescence as a function of laser light powered in the range of 0.5 W to 1.5 

W. (b) Power dependence of red and green emissions.  

The fluorescence spectra of the upconverting nanoparticles were shown in Fig. 4.5. Under 

excitation at 980 nm, varied excitation density, two upconversion emission bands of green 

light at 541 nm and red light at 655 nm were observed. The green light emission (λem=541 

nm) was attributed to 4S3/2→4I15/2 electronic transition, while red light emission (λem=655 

nm) was attributed to 4F9/2→
4I15/2 electronic transitions. Emission features of the 

synthesized upconversion nanoparticles were comparable to the reported results. [52-53] 

The two emission bands observed at 541 nm and 655 nm were attributed to a two-photon 

upconversion process.  

4.3.4 Magnetic Properties Analysis 

The magnetic properties of as-synthesized NaGdF4: Yb3+, Er3+ upconversion nanocubes 

was measured with a Vibrating Sample Magnetometer (VSM). Fig. 4.6 (a) showed the 

hysteresis loop of NaGdF4: Yb3+, Er3+ upconversion nanocubes under a magnetic field of 

±10 kOe under various temperatures, 85 K, 125 K, 150 K, 200 K, 250 K and 295 K. The 

UCNCs showed typical paramagnetic properties. [54-55]  
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Figure 4.6 (a) Magnetic hysteresis curves of PEI capped NaGdF4:Yb3+, Er3+ 

nanocubes with temperatures. (b) Magnetic susceptibility of NaGdF4:Yb3+, Er3+ 

nanocubes at various temperatures.  

The magnetic susceptibility (χ) of the UCNCs was calculated by using Curie law; [56]  

χ =
M

H
 

Where M is the magnetization per weight, H is the magnetic field. Fig.4.6 (b) displayed 

the χ value of the UCNCs as a function of temperature (T), which was a typical curve for 

paramagnetic materials. At room temperature (295 K), χ value was 1.049×10-4 emu·g-1·Oe-

1, which was 29% larger than the reported value of the NaGdF4: Yb3+, Er3+ upconversion 

nanoparticles, ∼0.813×10-4 emu·g-1·Oe-1. [56-57] It increased with decreasing 

temperature, when temperature was 85 K, χ value of the UCNCs was 3.361×10-4 emu·g-

1·Oe-1, due to thermal fluctuation reduction at low temperatures. [58-59] Our produced 

UCNCs exhibited paramagnetic properties. Therefore, the magnetization (M) normally 

increased with reducing particle size as reduced particles size normally leaded to single 

domain, or low internal energy barrier. [60] In addition, the cubic structure could allow the 

nanoparticles to have easy magnetization along certain orientation, leading to the reduced 

magnetic field for saturating UCNCs. Reports have demonstrated that suitable surface 

modification could result in desired nanostructured in term of uniform particle size, and 
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shape. [61] Thus, the stronger magnetic susceptibility of the produced UCNCs could be 

related to their cubic structures, the small particle size, and surface modification.  

4.3.5 Cytotoxicity Study  

 

Figure 4.7 Relative cell viability as a function of the concentration of UCNCs with 

surface modification.  

NIH/3T3 mouse fibroblast cells were used for the cytotoxicity test. The cells without the 

treatment of UCNCs was used as a control. The relative cell viability of UCNCs with PEI 

modification were over 110% when the concentration of UCNCs increased from 5 to 40 

μg mL−1, it decreased to 97.3% when the concentration of UCNCs increased to 100 μg 

mL−1 as shown in Fig. 4.7. The relative cell viability for materials with good 

biocompatibility was normally beyond 85%. [62] Therefore, the as-made UCNCs modified 

with amine functional group did not impose toxic effect on NIH/3T3 mouse fibroblast cells.  

4.3.6 Sensitivity of Sensor Construct to Detect Glucose in Solution 

In order to monitor a broad range of glucose levels (0.01 mM to 10 mM) quickly, with a 

high signal response, two different synergistic materials were used to avoid high external 
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energy excitation of the LRET sensor; (1) NIR/IR excitable donor consisting of 

upconversion nanomaterials, and (2) an acceptor molecule competitively binding with a 

lectin protein with a high glucose affinity. NaGdF4: Er, Yb upconversion NPs modified 

with Polyethylenimine (PEI) was conjugated to Concanavalin A (Con A) protein using 

glutaraldehyde to covalently link the primary amino groups of the PEI and Con A. The 

nanobiosensors were then loaded with malachite green-dextran.  

The premise of our biosensor construct utilizes Luminescence Resonance Energy Transfer 

(LRET) [30, 63] to monitor glucose levels as shown in figure 4.1. The donor molecule, 

upconversion NPs, once excited by NIR/IR radiation would emit energy at a higher energy 

than the initial excitation energy. In the absence of glucose, the malachite green-dextran 

acceptor absorbs this energy to decrease the detected fluorescence. In the presence of 

glucose, the malachite green dextran is competitively displaced from the Con A thus 

increasing the fluorescence as a function of glucose concentration.  

4.3.7 In Vivo Sensing of Glucose in Murine Tears  

Four male Sprague-Dawley rats (Charles River Laboratories, St. Constant, QC, Canada) 

were treated with streptozotocin (STZ; Sigma-Aldrich, Oakville, ON, Canada) to induce 

diabetes. Rats were anesthetized with isoflurane for ease of application of the sensors to 

their eyes. Tear fluid was also collected from the ocular surface with a 1 µL glass capillary 

tube for reference. A blood sample was taken from the saphenous vein concurrently with 

the application of the sensor for blood glucose concentration (Freestyle Lite Blood Glucose 

Monitoring System, Abbott Diabetes Care Inc., Mississauga, Ontario).  

The glucose sensor deposited on silicone was gently applied PEG side towards the murine 

subject’s eye for 15 seconds and removed. Samples were measured by the 

fluorespectrometery with excitation at 980 nm. Dynamic sensing are possible by 

developing or incorporating products like Google Lens.  

4.3.8 Contact Lens-like Material Incorporation of Glucose Sensor  

Silicone hydrogel are more suitable as contact lens material in comparison to commercial 

lens materials as they contain enhanced features. In addition to great biocompatibility, 
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transparency, and stable chemical structures ideal for contact lens, the presence of siloxane 

groups increases oxygen transmissibility. [64-66]  

The upconversion glucose nanobiosensors were deposited onto the surface of silicone 

hydrogels as a concentrated material droplet and allowed to dry. A uniform thin layer of 

polyethylene glycol (PEG) was coated over the silicone surface with a method similar to 

pulsed laser deposition to prevent dissociation of the sensor. [67-69]  

 

Figure 4.8 SEM image of contact lens nanostructured glucose biosensor surface.  

The as-synthesized PEI capped upconversion nanoparticles were surface functionalized 

with amine group (−NH2). As a result, the polyethylenimine (PEI) capped upconversion 

nanoparticles were well disperse in water. The successful surface modification by PEI was 

confirmed by Fourier transform infrared (FTIR) spectroscopy (figure 4.4). The amine 

group provides suitable opportunity to covalently adhere proteins through the use of 

chemical functional groups such as hydroxyl and amine groups. These groups were 

conjugated with Con A. In the tear, the present proteins could be avoided by applying the 

PEGylation of sensor surface. Figure 4.8 presented the SEM image of nanostructured 

glucose sensor chip surface. Some protein aggregates are present in the figure.  
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As shown in Figure 4.9, the sensor deposited onto silicone showed a linear response to 

plasma glucose with a R2=0.97 in the range of about 5 mM to 13 mM. Because the figure 

has not yet been published, we will keep the error bars etc. data before published.  

 

Figure 4.9 Nanostructured upconverting glucose biosensor response to plasma 

glucose.  

4.4 Conclusion  

Our findings indicated upconversion nanomaterials are attractive as donor for noninvasive 

glucose sensing in contact lens. Its ability to be excited at the NIR range not only improves 

emission efficiency but ensures the safety of the retina. [43] The Con A protein 

demonstrated a high affinity for glucose resulting in an immediate change in fluorescent 

intensity with a linear response in a laboratory setting. Testing of the contact lens sensor 

on murine patients under normal and diabetic glucose conditions demonstrated a similar 

linear response.  
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Chapter 5  

5 Development of Carbon Dots/Graphene Oxide Glucose 
Biosensor  

5.1 Introduction  

In this chapter, a facile microwave-assisted polyol process was developed to prepare 

fluorescent carbon dots. Graphene oxide was synthesized by the typical Hummers’ method. 

A Glucose nanobiosensor was developed based on the carbon dots and graphene oxide for 

demonstration of carbon dots application in biosensing area. Both carbon dots and 

graphene oxide are highly biocompatible. We found that the photoluminescence of carbon 

dots could be adjusted by simply varying the ratio of carbon source to ethylene glycol, 

which has not yet been reported before. Other methods for preparing different 

photoluminescent carbon dots often used oxidative/reductive and/or acid/alkaline 

chemicals. Our method is facile and environmental friendly. The tunable 

photoluminescence range could extend from 470 nm to 540 nm in this system (excitation 

of 400 nm).  

Carbon dots are a new member of carbon nanomaterials, the other carbon nanomaterials 

include graphene nanomaterials, carbon nanotube, bucky ball etc. [1] Their attracted 

properties include good biocompatibility, inertness, facile surface modification and special 

photoluminescent properties. [2-3] Various synthetic approaches have been explored for 

preparing carbon dots from bottom-up and/or top-down paths. [4-6] Due to carbon dots 

favorable fluorescence and low cytotoxicity, they have been broadly applied in areas of 

biosensing and bioimaging etc. [7-12] However, the mechanisms of carbon dots special 

fluorescence properties are still under debate among investigators. [13-17]  

Microwave-assisted synthesis and modification of carbon nanomaterials has been explored 

due to carbon materials’ strong interaction with microwave radiation. [18] Microwave 

assisted approach represents energy-saving and time-saving strategy for carbon dots 
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synthesis. Other common methods for carbon dots like hydrothermal method would often 

require several hours or days, high temperature and high pressure procedures. Many 

research groups used microwave to fast synthesize carbon dots. [19-23] Different carbon 

dots could show excitation-dependent or excitation-independent fluorescence. For 

multicolour carbon dots preparation, the reaction parameters like reaction temperature, 

reaction additives, doping elements (N, S etc.), pH, reaction time etc. have been widely 

investigated. [24-27]  

Herein, we developed a facile strategy of synthesizing photoluminescent adjustable carbon 

dots at a certain range (470 nm to 540 nm under excitation of 400 nm) by varying 

precursors’ concentrations. Zhu et al. [28] has prepared varied precursor concentrations 

carbon dots, but the fluorescence change of the carbon dots was within 10 nm range. Our 

method could tune carbon dots emission shift up to 70 nm range (sample 1 at 470 nm and 

sample 4 at 540 nm under 400 nm excitation). Fluorescent nanomaterials are affected by 

various parameters like surface states, solution pH, temperature etc. These parameters are 

needed for delicate consideration for nanomaterials in vivo and in vitro applications. In our 

carbon dots synthesis, the difference of all samples was the precursor concentration which 

could cause different carbon dots surface states. The main reason causing this phenomenon 

could be the different ratio of carbon precursors to ethylene glycol. Ethylene glycol is a 

reductive agents in the polyol process [29] which acts both as reaction solution and 

reductive agents. Comparatively, the solution of ethylene glycol was kept at the same 

volume in all the microwave assisted synthesis. The higher carbon precursor concentration 

environment are less reductive compared to lower precursor concentrations. As a result, 

the higher precursor carbon dots would have a higher oxidative surface state, therefore they 

were red-shifted. This speculation was in consistent with other references. [30-31] A higher 

oxidative surface state of carbon dots could cause the red-shift phenomenon.  

At the same time, even though different samples of carbon dots displayed different colours 

under 312 nm UV panel excitation, each sample also behaved the typical excitation-

dependent fluorescence properties (figure 5.9). Although the mechanism for this 

photoluminescence change has not been fully explained. This facile synthesis of carbon 

source concentration-induced multicolour carbon dots provided a multicolour platform for 
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many applications like electronic display, printing inks, and biosensors. The synthesized 

carbon dots were further constructed as glucose nanobiosensor. We developed a 

nanostructured glucose biosensor by using fluorescence resonance energy transfer (FRET) 

technique. Fluorescence resonance energy transfer (FRET) is an inexpensive and very 

sensitive method and has been used in molecule imaging and glucose test. [32-34] FRET 

is a distance-dependent energy transfer process from a fluorophore donor (D) to a 

fluorophore acceptor (A) in a nonradioactive process. FRET technique has been utilized 

for sensing the competitive reactions of glucose and other polysaccharide, such as dextran, 

to Concanavalin A (Con A) (a lectin protein that can bind glucose). [35-37]  

 

Figure 5.1 Schematic mechanism of carbon dots/graphene oxide glucose 

nanobiosensor.  

In this study, we constructed a novel FRET glucose nanobiosensor using carbon dots 

(fluorescence donor) and graphene oxide (fluorescence acceptor, quencher). Both carbon 

dots and graphene oxide are highly biocompatible. [38-40] Various studies showed the 

biocompatibility of carbon dots and graphene oxide. Also the compositions of them are 

mostly carbon elements and hydrogen elements. As shown in figure 5.1, Concanavalin A 

(Con A) was bioconjugated onto carbon dots surface, the graphene oxide was modified 

with chitosan as the fluorescence quenching component. Carbon dots-Con A (CD-CA) 

were binding to the graphene oxide-chitosan (GO-CS) and the fluorescence was quenched 
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by the graphene oxide. The chitosan we used here are small molecule weight chitosan 

which are not so sticky. After the glucose was introduced, the CD-CA were released from 

the GO-CS and as a result, the carbon dots fluorescence was recovered.  

5.2 Experimental  

5.2.1 Materials  

Citric acid (251275), L-histidine (H8000, ≥99%), dialysis tube (PRUG10020, MWCO 1 

kDa), Concanavalin A from Canavalia ensiformis (Jack bean) (C2010), N-(3-

Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (03450), N-

Hydroxysuccinimide (130672), Chitosan (448877) were purchased from Sigma-Aldrich. 

Graphite flake, natural, -325 mesh, 99.8% (metals basis) (CAAA43209-18) was purchased 

from VWR. Ethylene glycol was purchased from Caledon laboratories Ltd. All chemicals 

were used as received. Graphite flakes (natural, -325 mesh, 99.8%) was purchased from 

VWR International. Paraffin oil was purchased from Caledon Laboratory Chemicals. 

Sulfuric acid (H2SO4, 95.0 %−98.0 %), potassium persulfate (K2S2O8), phosphorus 

pentoxide (P2O5), Potassium permanganate (KMnO4), hydrogen peroxide (H2O2, 30 wt. 

%), hydrochloric acid (37 %), hydrazine solution (35 wt. %), ammonium hydroxide 

solution (28.0−30.0 wt. %) were purchased from Sigma-Aldrich. The water used in 

experiments were of 18.2 MΩ resistivity provided by Barnstead Water Purification System.  

5.2.2 Preparation of Carbon Dots  

A polyol microwave assisted method was adopted in the preparation of carbon dots. [41-

42] For synthesizing the carbon dots used for constructing the glucose nanobiosensor, a 

typical process was as following: in a 20 mL glass vial, 100 mmol ethylene glycol, 0.5 

mmol L-histidine and 0.5 mmol citric acid were added into the vial and mixed well. Then 

the vial was put in a home microwave oven and heated for 20 minutes. The deep brown 

color indicated the formation of carbon dots. The solutions was dialyzed against water and 

freeze-dried to obtain carbon dots powder sample. The powder samples were stored in 4 

°C. For synthesizing a series of photoluminescent carbon dots, the chemical quantity were 

showed in table 5.1. Five samples were prepared.  
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Table 5.1 Summary of carbon source and ethylene glycol quantity.  

Sample 

Ethylene 

glycol (EG)  

(mmol)  

Histidine 

(mmol)  

Citric acid 

(mmol)  

Carbon 

source to 

EG ratio 

(%) 

Particle 

size 

(nm)  

1 100  0.1  0.1  0.2  25±1.52  

2 100  0.3  0.3  0.6  40±2.13  

3 100  0.5  0.5  1.  19±1.12  

4 100  1  1  2  40±2.12  

5 100  3  3  6  25±1.91  

 

5.2.3 Preparation of CD-Con A Conjugates:  

1 mg carbon dots were firstly dissolved in 10 mL PBS buffer (0.1 mg/mL). EDC (1 mg) 

and sulfo-NHS (3 mg) were added to the carbon dots solution. The mixture was shaken for 

1.5 hour at room temperature. Then the mixture was put to dialysis to remove excess small 

molecules. Then 2 mg Con A (dissolved in 2 mL PBS) was added and shaken at 4 °C for 

2 hours, the solution was dialyzed against water and stored in 4 °C for future usage.  

5.2.4 Preparation of Graphite Oxide  

The graphite flakes were first preoxidized according to reference. [43] The oxidizing 

solution was prepared by adding 10 g of potassium persulfate and 10 g of phosphorus 

pentoxide into 30 mL concentrated sulfuric acid. Then 20 g of graphite flakes was added 

into the oxidizing solution. The oxidization process was continued under stirring and at 80 

°C for a period of 6 hours. The mixture was diluted with water, filtered and washed until 

pH became neutral. The preoxidized graphite flakes was dried in air at room temperature.  
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The graphite oxide was prepared according to Hummers’ method. [44] The preoxidized 

graphite flakes (10 g) were added into 230 mL cold concentrated sulfuric acid in ice-water 

bath. Then 30 g KMnO4 was added gradually with stirring and cooling so to keep the 

temperature of the mixture below 20 °C. Then the mixture was stirred at 35 °C for 2 hours. 

Then the mixture was diluted by 1,500 mL water and the reaction was terminated by adding 

25 mL H2O2 (30 wt. %). The mixture color changed into bright yellow. The graphite oxide 

was filtered and washed by 2,500 mL diluted HCl (3.7%) to remove metal ions and then 

washed by plenty water. The product was dried in air at room temperature. To completely 

remove the metals ions and acid, the graphite oxide was suspended in water to prepare a 

viscous, brown 2 wt. % dispersion and put to dialysis. Purified graphite oxide suspension 

was diluted into a 0.05 wt. % dispersion and used for following experiments.  

5.2.5 Preparation of Graphene Oxide Solution   

Graphene oxide was obtained by ultrasonication exfoliation of the 0.05 wt. % graphite 

oxide dispersion for 30 minutes. The obtained dispersion was centrifuged at 3,000 rpm for 

30 minutes to remove unexfoliated graphite oxide.  

 

Figure 5.2 UV-vis spectrum of graphene oxide solution.  
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Figure 5.2 showed the UV-vis spectrum of graphene oxide solution, it has an absorbance 

peak of 231 nm. This result is consistent with previous reports, [45-46] confirming the 

successful preparation of graphene oxide.  

5.2.6 Preparation of GO-CS Conjugates:  

Graphene oxide solution (0.05 mg/mL) 10 mL was reacted with 2 mg EDC for 1 hour at 

room temperature. Then 2 mg chitosan was added and reacted overnight. Final product was 

dialyzed against water and stored in 4 °C for future usage.  

5.2.7 GO-CS Titration  

GO-CS concentrations were varied. Carbon dots 200 µL (0.1 mg/mL) mixed with 200 µL 

GO-CS solutions and incubated for 1 hour before fluorescence measurement.  

5.2.8 Glucose Nanobiosensing  

In a typical sensing process, 100 µL CDs-Con A solution was mixed with 100 µL (5 

µg/mL) GO-CS solution. Thereafter, varied concentration glucose (1 µL) were added and 

incubated for 1.5 hour before fluorescence measurement. 1 mM−10 mM: Carbon dots-Con 

A 100 µL, GO-CS 100 µL, 5 µg/mL; 0.2 mM−1 mM: Carbon dots-Con A 10 µL + 90 µL 

water, GO-CS 100 µL, 1 µg/mL; the mixture was put on a shaker for shaking 40 minutes 

at 120 RPM before measure their fluorescence. For the rat blood samples sensing, the 

aqueous glucose solution was replaced by rat blood samples.  

5.2.9 Rat Blood Samples 

This part was cooperated with Dr James Melling lab (Kinesiology, UWO). Four male 

Sprague-Dawley rats (Charles River Laboratories, St. Constant, QC, Canada) were housed 

in a 12-h light/dark cycle room with humidity (50%) and temperature (21.5 °C) kept 

constant. Rats were given water and chow ad libitum and made diabetic with streptozotocin 

(STZ; Sigma-Aldrich, Oakville, ON, Canada). Intraperitoneal injections of STZ (20 mg/kg) 

dissolved in a citrate buffer (0.1 M, pH 4.5) were given over five consecutive days. 

Following the confirmation of diabetes (two blood glucose readings greater than 18 

mmol/L) subcutaneous insulin pellets were implanted in the abdominal region of rats. A 
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blood sample was taken from the saphenous vein and measured blood glucose 

concentration by a glucometer (Freestyle Lite Blood Glucose Monitoring System, Abbott 

Diabetes Care Inc., Mississauga, Ontario). 

Ethics approval was obtained through the University of Western Ontario Research Ethics 

Board, in accordance with Canadian Council on Animal Care guidelines. 

5.2.10 Characterizations  

The fluorescent emission spectrum of carbon dots aqueous solutions were measured by 

fluorophotometry (QuantaMster TM 30, PTI). The size and morphology of the carbon dots 

were measured by transmission electron microscope (TEM, Philips CM-10 transmission 

electron microscope operating at 80 kV). Fourier transform infrared (FTIR, Bruker Vector 

22 in the range of 400 cm-1−4000 cm-1) was used to obtain FTIR spectrum. UV-vis 

spectrum were obtained by Agilent Cary 60 UV-Vis.  

5.3 Results and Discussion  

5.3.1 Photoluminescent Tunable Carbon Dots  

 

Figure 5.3 Photo image of carbon dots under room light and under 312 nm excitation 

from UV panel.  

Varied carbon dots samples solution were prepared in the concentration of 0.1 mg/mL. 

Figure 5.3 showed the carbon dots solution under ambient light and under the UV panel of 
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312 nm excitation light. In the ambient environment, slightly yellow colour change were 

observed and the colour deepened from sample 1 to sample 5. Under the UV panel 

excitation (312 nm), varied colour emission were presented from blue emission to green 

emission to light yellow colour.  

 

Figure 5.4 (a) Photoluminescence spectrum of color tunable carbon dots excited by 

400 nm and UV-vis absorbance spectrum of graphene oxide solution; (b) Emission 

peaks of carbon dots samples versus carbon source/ethylene glycol ratio (%).  
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The fluorescence spectrum of the carbon dots (0.1 mg/mL) was recorded as shown in figure 

5.4 (a). Excitation of 400 nm was used to obtain the photoluminescence spectra. Sample 1 

to sample 5 has emission peaks at 477 nm, 496 nm, 508 nm, 537 nm and 515 nm, 

respectively. The emission peak of sample 5 went back to about the same emission peak 

position as sample 3. Figure 5.4 (b) showed the relationship of fluorescence emission peaks 

and the ratio of carbon source to ethylene glycol (under excitation of 400 nm). A 

polynomial fitting was applied with equation below, with R2=0.996.  

Y = 468.34 + 47.47X − 6.61X2 

 

Figure 5.5 UV-vis absorbance spectrum of carbon dots samples.  

The UV spectra of various carbon dots solution were measured and shown in figure 5.5. 

Typical absorbance curves of carbon dots were obtained similar to other research results. 

[47-50] Sample 3 and sample 5 has an obvious absorbance peak in 300 nm to 500 nm range. 

Sample 1, sample 2 and sample 4 showed comparatively weak absorbance peak in 300 nm 

to 500 nm range.  
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5.3.2 TEM Images of Carbon dots  

TEM images of various carbon dots samples were measured (figure 5.6 and figure 5.7), but 

there was not a clearly relationship between the carbon dots particle size and their 

fluorescence. Although there was reports of nanoparticles size causing fluorescence 

changes, however, this was not the situation. Though the mechanism for precursor amount 

induced fluorescence change was not yet fully understood. This facile photoluminescent 

tunability provided an easy and environmental friendly method for producing certain 

colour emission of carbon dots. Due to the carbon composition of carbon dots, they 

normally possessed high biocompatibility and were very suitable for applications such as 

biosensing, bioimaging.  

 

Figure 5.6 TEM image of sample 3 carbon dots.  

The following parts were focused on constructing biocompatible glucose nanobiosensor 

based on sample 3 carbon dots. Figure 5.6 showed the TEM image of sample 3. It has an 

average particle size of about 19±1.2 nm. Figure 5.7 showed the TEM images of samples 
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1, 2, 4 and 5. Respectively, their average particle size were 25±1.52 nm, 40±2.13 nm, 

40±2.12 nm, 25±1.91 nm.  

 

Figure 5.7 TEM images of carbon dots sample 1, 2, 4 and 5.  
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5.3.3 Fluorescence of Carbon Dots and Carbon Dots-Con A 
Bioconjugate  

Figure 5.8 showed the excitation-dependent fluorescence of carbon dots samples 1, 2, 4 

and 5 (all 0.1 mg/mL). Figure 5.9 showed the carbon dots (sample 3 for the glucose 

nanobiosensor in the following text) fluorescence spectra. Typical excitation-dependent 

fluorescence was observed. The excitation wavelength changed from 340 nm to 500 nm 

with an increment of 20 nm. The strongest emission was located at about 500 nm by the 

excitation of 400 nm or 420 nm.  

 

Figure 5.8 Fluorescent spectrum of carbon dots sample of 1, 2, 4 and 5 (all 0.1 mg/mL).  

The fluorescence of carbon dots-Con A bioconjugates were measured and shown in figure 

5.10. Figure 5.10 showed similar pattern to figure 5.9 of unmodified carbon dots except 



 

118 

 

the twisted spectra were present. The spectrum curve twisted changes indicated the carbon 

dots fluorescence changed after the Con A bioconjugation. It reflected the Con A has been 

bioconjugated to the carbon dots. While the carbon dots-Con A bioconjugate remained the 

excitation-dependent fluorescence. The maxima emission peak was at 492 nm at the 

excitation of 400 nm.  

 

Figure 5.9 Fluorescence spectrum of sample 3 carbon dots, (a) Measured spectrum 

and (b) Normalized fluorescence intensity spectrum.  

 

Figure 5.10 Fluorescence spectrum of bioconjugate Con A-carbon dots (sample 3), (a) 

Measured spectrum and (b) Normalized spectrum.  



 

119 

 

5.3.4 UV-vis Spectrum  

 

Figure 5.11 UV-Vis absorbance spectrum of carbon dots, Con A and carbon dots-Con 

A bioconjugate.  

Con A and carbon dots-Con A bioconjugate were measured to confirm the successful 

bioconjugation. Figure 5.11 showed the UV-Vis spectra of carbon dots, Con A and Con A-

carbon dots bioconjugate. Carbon dots have an absorbance peak at 339 nm, Con A has an 

absorbance peak at 280 nm. The bioconjugate of carbon dots-Con A has two peaks and the 

two peaks position were slightly shifted from single component peak. The two peaks 

position were at 258 nm (shifted from Con A absorbance peak at 280 nm) and 342 nm 

(shifted from carbon dots peak at 339 nm). The bioconjugate has two shifted peaks 

compared to their single components. This indicated the successful bioconjugation of Con 

A to carbon dots. [51-52]  

5.3.5 FTIR Spectrum  

Figure 5.12 showed the FTIR spectrum of graphene oxide, graphene oxide-chitosan 

conjugate and chitosan. The FTIR spectra indicated successful conjugation of chitosan onto 

graphene oxide. The peaks of graphene oxide-chitosan conjugate in the 2981 cm-1 and 2884 
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cm-1 indicated the −CH2− groups from chitosan. The graphene oxide peak at 1714 cm-1 

disappeared in the GO-CS conjugate showed the EDC conjugation of chitosan to the 

carboxylic groups on graphene oxide. The amine group peaks of 1621 cm-1 and 1542 cm-1 

of chitosan shifted to 1631 cm-1 and 1567 cm-1 in the GO-CS chitosan also indicated the 

bond status changed after conjugation. [53]  

 

Figure 5.12 FTIR spectrum of (a) graphene oxide, (b) graphene oxide-chitosan and 

(c) chitosan.  

5.3.6 GO-CS Titration of Con A-Carbon Dots  

Varied GO-CS concentration solution were mixed and incubated with certain carbon dots-

Con A bioconjugate solutions. The fluorescence results were measured as shown in figure 

5.13. The quenching effects of GO-CS were clearly presented and a linear quenching 

effects was observed. As the GO-CS concentration increased from 0 µg/mL to 10 µg/mL, 

the fluorescence of carbon dots were heavily quenched. The curve data were collected from 

the intensity at 492 nm.  
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Figure 5.13 Fluorescence spectra of GO-CS titration of Con A-carbon dots.  

5.3.7 Glucose Nanobiosensing  

The glucose biosensing of two range of glucose levels were performed as data shown in 

figure 5.14, one glucose range was in the blood glucose level of 1 mM to 10 mM. Another 

glucose range was in the tear glucose range of 0.2 mM to 1 mM. Both results suggested 

good linear data. Except the lower glucose level biosensing showed less linearity. The 

reason may be due to the higher signal to noise ratio. In the 1 mM to 10 mM range, a higher 

concentration of graphene oxide-chitosan and carbon dots-Con A were used. In the lower 

glucose concentration of 0.2 mM to 1.0 mM, a lower concentration of carbon dots 

nanobiosensor were used in order to enlarge the signal-to-noise ratio.  
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Figure 5.14 Glucose biosensing of two ranges of glucose level. (a) and (b) shows the 

sensing results of glucose level in 1 mM to 10 mM; (c) and (d) shows the sensing results 

of glucose in 0.2 mM to 1 mM.  

Various diluted rat blood samples of glucose concentration of 3 mM, 4.5 mM, 6 mM, 7.5 

mM, 9 mM and 10.5 mM were prepared by dilution of rat blood and measured by the 

carbon dots/graphene oxide nanobiosensor. The result was shown in figure 5.15, a good 

linearity was obtained. Compared to aqueous glucose solution (figure 5.14 (a) and (b)), the 

blood samples has a lower fluorescent intensity. This might be caused by the other 

interferents presented in the blood compositions, like red blood cell, blood platelet etc. 

These interferents could cause autofluorescence and attenuate the excitation light and 
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carbon dots fluorescence. Nonspecific binding of proteins onto carbon dots may also cause 

the decrease of fluorescent signal.  

 

Figure 5.15 Biosensing of diluted rat blood samples with glucose concentrations of 3 

mM, 4.5 mM, 6 mM, 7.5 mM, 9 mM and 10.5 mM.  

5.4 Conclusion  

A facile microwave assisted polyol synthesis of carbon dots method was developed. The 

photoluminescence of carbon dots could be adjusted at a certain range (470 nm to 540 nm 

under 400 nm excitation) by facile control of carbon source concentrations. Although the 

mechanism is not fully revealed, but this fluorescence control approach is facile and 

environmental friendly. Furthermore, a glucose nanobiosensor based on the carbon 

dots/graphene oxide was constructed for biosensing of glucose. Two glucose range of 

blood glucose level of 1 mM to 10 mM and tear glucose level of 0.2 mM to 1 mM were 

measured and good sensing results were obtained. We also measured the glucose 

concentration of a series of diluted rat blood samples and good linearity were obtained. The 

flexibility and broad sensing range of the carbon dots/graphene oxide nanobiosensor could 

be promising in glucose sensing.  
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Chapter 6  

6 Development of FeCo/graphene Magnetoresistive 
Nanostructured Glucose Biosensor  

6.1 Introduction  

In this chapter, a facile polyol process, one-step redox reaction, was used to synthesize 

Fe50Co50 magnetic nanocrystals and to fabricate magnetic graphene/Fe50Co50 hybrid 

nanosheets (MGFCs). The as-synthesized Fe50Co50 magnetic nanocrystals with diameter 

around 400 nm have high saturation magnetization of 203.3 emu/g under 1 Tesla. Different 

weight ratios of graphene sheets to FeCo nanocrystals were synthesized and optimized to 

construct a nanostructured glucose biosensor using magnetoresistive mechanism.  

Magnetoresistive structures are promising materials for applications in magnetic sensors, 

spintronic devices and magnetic random access memory (MRAM) devices. Recently, 

graphene based carbon magnetoresistive materials have attracted great interest due to 

graphene’s excellent physicochemical properties. [1-2] Graphene nanosheets have high 

Young’s modulus (~1 TPa), large specific surface area (2630 m2 g-1), high intrinsic 

mobility (200 000 cm2 v-1 s-1) and high thermal conductivity (~5000 W m-1 K-1), optical 

transmittance (~97.7 %) and good electrical conductivity. These outstanding properties of 

graphene make them suitable materials for field effect transistors, sensors, biomedical 

applications, transparent conductive films, graphene/crystal composites and memory 

devices etc. [3-9]  

Specifically, graphene/nanomaterials hybrid nanocomposites are being developed as novel 

nanosheets for diverse applications. These graphene/nanocrystals hybrid nanostructures 

often display advantageous synergistic properties of graphene and crystals. [10-13] 

Magnetic graphene composites were prepared by decorating magnetic crystals like FeCo, 

NixCo100-x, CoFe2O4, Fe3O4, FeNi3 etc. onto graphene nanosheets. These magnetic 

graphene composites have large surface area and were mostly utilized as nanocatalysts. 
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And these catalysts were easily separated and purified from solution by external magnetic 

field. [14-19] Besides, the magnetic graphene composites were also investigated for their 

magnetoresistance applications.  

Other nanomaterials and nanostructures were also studied for their magnetoresistive 

properties, like electrodeposited single crystal bismuth thin film, [20] non-magnetic silver 

chalcogenides. [21] MgO tunnel barriers. [22] These materials and structures showed large 

MR values, while graphene have excellent properties and easy synthesis methods, 

functionalization and fabrication. More importantly, graphene materials are recognized as 

supreme materials for magnetoresistive devices. Both theory studies [23-24] and 

experimental studies [25-26] already revealed the suitability of graphene based structures 

for magnetoresistive devices. Although at the very stage, magnetoresistance researches 

exploited multilayer magnetic/non-magnetic sandwiched structures, granular-matrix 

structures were later found to exert magnetoresistive effects as well. Graphene is a very 

suitable non-magnetic material for magnetoresistive matrix. The ferromagnetic granular 

particles are decorated onto graphene nanosheets with strategy for novel structures and 

functions.  

In this chapter, we synthesized magnetic graphene/Fe50Co50 hybrid nanosheets (MGFCs) 

by decorating Fe50Co50 crystals onto graphene nanosheets via a facile polyol process. The 

crystal structure, morphology, magnetic properties and magnetoresistance of FeCo, 

FeCo/graphene nanomaterials were studied. The Fe50Co50 crystals and MGFCs showed 

excellent ferromagnetic properties with very high saturation magnetization. For 

convenience, FeCo was used for representing Fe50Co50 in the thesis. We prepared a series 

of FeCo/graphene nanocomposites by changing the graphene quantity from 30 mg to 120 

mg with 10 mg step size. The magnetoresistance of the FeCo/graphene samples were 

measured and analyzed. Then we selected a ratio (80 mg graphene/FeCo) of 

FeCo/graphene nanocomposites as magnetoresistive sensor chip to construct a 

nanostructured glucose biosensor. Fe3O4/silica core/shell nanoparticle was used as the 

magnetic label. The sensor is shown in the figure 6.1. The sensor chip surface were 

modified with Con A, and the magnetic label surface was modified with phenylboronic 

acid. The magnetic label thus binded with glucose and sandwiched onto the chip surface. 
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The presence of magnetic label changed the magnetoresistance, which would be the 

glucose signal.  

 

Figure 6.1 Schematic of nanostructured magnetoresistive glucose biosensor. (a) Facile 

polyol process of production of magnetic graphene/Fe50Co50 hybrid nanosheets. (b) 

TEM image graphene nanosheet, scale bar 1000 nm. (c) TEM image of magnetic 

graphene (120 mg) /Fe50Co50 hybrid nanosheets, scale bar 1000 nm. (d) Hydraulic 

press for making magnetic graphene/Fe50Co50 hybrid nanosheets and 

magnetoresistance measurements.  

6.2 Experimental  

6.2.1 Synthesis of Graphene Nanosheets  

The graphene sheets used in this study was synthesized through a modified Hummers’ 

method according to reference. [27] In the synthesis procedure, 1 g of graphite was mixed 

with 50 mL concentrated sulfuric acid, then 3 g of potassium permanganate was added 
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slowly into the mixture in ice-water bath to avoid overheating. This mixture was then 

stirred at room temperature for 20 minutes followed by 10 minutes of sonication. This 

stirring-sonication process was repeated for 12 times and then 200 mL water was added 

into the mixture. The solution was ultrasonicated for extra 2 hours and the pH was tuned 

to neutral by 1 M sodium hydroxide solution. This dispersion was treated with sonication 

for another 1 hour. The reduction of the graphene oxide to graphene sheets was carried out 

by adding 50 mL hydrazine hydrate into mixture after the mixture temperature reached 95 

°C. The reduction process was lasted for 3 hours at 95 °C and then cooled to room 

temperature. The black graphene product was filtered and washed by 1 M hydrochloric 

acid and water to neutral pH. The black precipitate was freeze-dried store at room 

temperature.  

6.2.2 Synthesis of Magnetic Fe50Co50 Crystals  

The magnetic Fe50Co50 crystals were synthesized through a modified polyol process 

according to reference. [28] In a typical synthesis, 2.5 mmol FeCl2·4H2O and 2.5 mmol 

Co(CH3COO)2·4H2O metal salts precursors were mixed with 200 mmol sodium hydroxide 

in 100 mL ethylene glycol. The mixture was stirred under nitrogen gas protection and 

heated to 130 °C. After 1 hour reaction at 130 °C, the black FeCo nanocrystals were 

collected by magnet and washed by pure ethanol. The crystals were dried in vacuum under 

room temperature.  

6.2.3 Synthesis of FeCo/graphene Magnetic Nanocomposites  

The synthesis procedure was same as synthesis of FeCo. In a typical synthesis, varied mass 

of graphene powder (30 mg to 120 mg with increment of 10 mg), 2.5 mmol FeCl2·4H2O 

and 2.5 mmol Co(CH3COO)2·4H2O metal salts precursors were mixed with 200 mmol 

sodium hydroxide in 100 mL ethylene glycol. The mixture was stirred under nitrogen gas 

protection and heated to 130 °C. After 1 hour reaction at 130 °C, the black FeCo 

nanocrystals were collected by magnet and washed by pure ethanol. The crystals were dried 

in vacuum under room temperature. Graphene/FeCo composites were pressed and cut by 

hole punch into disk with diameter of 3.175 mm, thickness was about 100 µm. The 

modification area (single side) is π (
3.175 mm

2
)
2

= 7.92 mm2  
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6.2.4 APTES Modification of GMR Sensor Surface  

The graphene/FeCo surface was first cleaned by water and dried by nitrogen gas. APTES 

solution in DMSO (5%, w/v, 2 µL) was carefully applied to the graphene/FeCo surface 

area and kept for 4 hours at room temperature. Then the surface was carefully washed by 

water and dried by nitrogen gas. Glutaraldehyde solution (10%, 2 µL) was applied to the 

surface for 2 hours then the chip was washed and dried by nitrogen gas.  

6.2.5 Con A Modification of GMR Sensor Surface  

Con A solution (1 mg/mL) of 2 µL was applied to the surface for 2 hours at 4 °C then the 

chip was washed, dried and stored in −20 °C. The wash solution was diluted to 100 µL for 

BCA protein assay. The adsorbed Con A was measured as 0.162 µg per film (figure 6.2). 

The chip surface was first modified with APTES to form the amine groups (−NH2). Then 

the Con A were bioconjugated to the amine groups using glutaraldehyde solution. BCA 

protein assay was used to measure the Con A quantity. The adsorbed Con A was measured 

as 0.162 µg per film.  

 

Figure 6.2 Standard curve of Con A quantification by UV absorbance and quantity 

of Con A adsorbed on each MR film.  
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6.2.6 Iron Oxide/Silica Surface Modification  

Iron oxide (core 7 nm)/silica (shell 22 nm) (total about 50 nm) doped with FITC was 

prepared following reference. [29] GLYMO-APB (GA) was prepared following reference. 

[30] Glycidyloxypropyltrimethoxysilane (GLYMO) and 3-aminophenylboronic acid 

monohydrate (APB) were reacted to prepare boronic-acid bonded GLYMO. Typically, 

APB of 50 mg was dissolved in 20 mL of deionized water. The pH of solution was adjusted 

to 9.18 by 1 M aqueous NaOH. The, 40 µL of GLYMO was slowly added into the APB 

solution with stirring while the solution was put at an ice-bath. The mixed solution was 

heated to 40 °C for reaction of 6 h with stirring. Subsequently the solution was placed into 

an ice-bath for 5 min, and 40 µL of GLYMO was added and mixed again. Then the solution 

was raised to 60 °C for another 6 h with stirring. The prepared GA solution was stored in 

a refrigerator for usage. In a typical modification process, 5 mL GA solution, 20 mg iron 

oxide/silica was stirring at 75 °C for 2 hours and followed by centrifuge and wash. Then 

another 5 mL GA was added to the product for modification. Final product was washed 

and centrifuged.  

6.2.7 Preparation of 3, 5-Dinitrosalicylic Acid (DNS) Solution  

 

Figure 6.3 Standard curve of glucose concentration by DNS assay and quantity of 

glucose adsorbed on each magnetic nanoparticle.  
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The DNS solution [31-32] was prepared by the following step. 3, 5-dinitrosalicylic acid 

2.5 g, phenol 0.5 g, sodium sulfite 0.075 g, sodium hydroxide 2.5 g, and potassium sodium 

tartrate 50 g were dissolved and mixed well in water and the final volume was 500 mL. 

After mixing well, the DNS solution was stored in 4 °C fridge. The colorimetric process 

was as following. Standard glucose solution 0.25 mL, DNS solution 0.75 mL, mixed and 

put in boiling water for 5 minutes. Then use tap water to cool down the solution to room 

temperature. Then add 2 mL water to each sample. And put in dark environment at room 

temperature for 20 minutes and then measure their UV-vis absorbance. The absorbance at 

550 nm was used to draw the standard curve.  

 

Figure 6.4 Standard curve of glucose concentration by DNS assay and quantity of 

glucose adsorbed on each MR film.  

Glucose/Nanoparticle ratio was measured by DNS glucose colorimetric assay with range 

0.2 mg/mL to 1 mg/mL, interval 0.2 mg/mL. 1 mg magnetic nanoparticle label adsorbed 

0.220 mg glucose (figure 6.3); each magnetoresistive chip adsorbed 0.011 mg glucose 

using the DNS assay (figure 6.4).  
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Figure 6.3 showed the glucose standard curve analyzed by DNS colorimetric assay. After 

the glucose colorimetric reaction, the DNS solution was measured by UV-vis and the 

absorbance at 550 nm was used to quantify the glucose quantity. The calculation was that 

1 mg magnetic nanoparticle label adsorbed 0.220 mg glucose.  

Similarly, using DNS glucose assay, the glucose adsorbed on each MR sensor was 

calculated to be 0.011 mg glucose per film. The glucose contained in 3 µL glucose solution 

of 10 mM was 0.0054 mg, which is smaller than the maxima glucose adsorbed on each 

film of 0.011 mg.  

6.2.8 MR Measurement  

 

Figure 6.5 Quantification of fluorescent magnetic label by doped dye (FITC) 

absorbance at 502 nm.  

In a typical MR measure, samples of known concentrations of glucose solutions (3 µL, 0. 

2 mM to 10 mM) was applied and stayed for 1 hour. Then the chip was washed and dried 

by nitrogen gas. Then, 3 µL magnetic nanoparticle solution (10 mg/mL) was added and 

stayed at room temperature for 1 hour. The magnetic label solution was washed and 

collected into 600 µL volume (~50 µg/mL) for UV measurement. Standard curve was 

measured at range from 20 µg/mL to 100 µg/mL, interval 20 µg/mL (figure 6.5).  
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The magnetic label was iron oxide/silica core/shell nanoparticle. The shell was doped with 

FITC dye, which has an UV-vis absorbance at 502 nm as shown in figure 6.5 (a). Using 

the magnetic label fluorescence standard curve (figure 6.5 (b)), we could measure the 

amount of magnetic label adsorbed on each MR sensor chip as shown in figure 6.6.  

Using figure 6.5, the amount of magnetic label adsorbed on each MR sensor under different 

glucose concentrations could be measured as shown in figure 6.6. Because the MR sensor 

was first applied with a glucose solution. Then certain amounts of Con A was occupied by 

the glucose molecule. Then the magnetic label (saturated by excessive glucose) was 

applied, therefore, if the glucose solution has a higher glucose concentration, more Con A 

would be occupied. The less magnetic label could be bound onto the sensor.  

 

Figure 6.6 Adsorbed fluorescent magnetic label on each MR sensor chip under 

different glucose concentrations.  

6.2.9 Rat Blood Samples Sensing  

This part was cooperated with Dr James Melling lab (Kinesiology, UWO). In a typical MR 

measure. Samples of known concentrations of diluted blood samples (1 µL, 0. 2 mM to 10 

mM) was applied to the sensor for 1 hour. Then the sensors were washed and dried by 
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nitrogen gas. Ethics approval was obtained through the University of Western Ontario 

Research Ethics Board, in accordance with Canadian Council on Animal Care guidelines.  

6.3 Results and Discussion  

6.3.1 Magnetic Nanoparticle Label Characterization  

 

Figure 6.7 (a) TEM image of iron oxide nanoparticle and inset of iron oxide/silica 

core/shell nanoparticle, scale bar 100 nm; (b) Fluorescence spectra of FITC doped 

iron oxide/silica core/shell nanoparticle; (c) FTIR spectrum of GA modified FITC-

iron oxide/silica nanoparticle;  
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The iron oxide nanoparticles were prepared by thermal decomposition approach. From the 

iron oxide nanoparticles TEM image, an average nanoparticle size of 7 nm±0.21 nm was 

measured by calculating over 100 nanoparticles. The size distribution was narrow. 

Furthermore, the iron oxide was surface coated with a silica layer doped with fluorescein 

isothiocyanate (FITC) dye. The dye has an excitation wavelength of 492 nm and an 

emission wavelength at 527 nm. The doping dye worked as fluorescence label to quantify 

the magnetic label using the fact that FITC has UV absorbance at 502 nm.  

The silica shell thickness was average 22 nm±3.42 nm. The silica surface was modified 

with phenylboronic acid. The phenylboronic acid recognizes glucose and could bind 

glucose through a diol hydrogen bond. The FTIR spectrum of the core/shell nanoparticles 

confirmed the successful conjugation of phenylboronic acid on silica surface.  

 

Figure 6.8 (a) Magnetic hysteresis loop of Fe3O4 nanoparticles; (b) Magnetic 

hysteresis loop of FITC-iron oxide/silica core/shell nanoparticle.  

The magnetic properties of iron oxide core and core/shell nanoparticle were characterized 

by the vibrating sample magnetometer (VSM). The iron oxide core was superparamagnetic 

with a magnetization of 58 emu/g at 1 T. After coated with a shell of silica the 

magnetization of the core/shell nanoparticle dropped down to about 0.5 emu/g at 1 T. The 

reason should be the silica coating. But from the hysteresis loop of the core/shell 

nanoparticle, the core/shell nanoparticles were still superparamagnetic.  
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6.3.2 Magnetoresistance Chip Characterization  

 

Figure 6.9 (a) TEM image of graphene (scale bar 2000 nm), (b) XRD pattern of 

graphite and graphene, (c) TEM image (scale bar 100 nm) of single Fe50Co50 crystal, 

inset image is corresponding electron diffraction pattern of Fe50Co50 crystal, and (d) 

Energy-dispersive X-ray analysis of Fe50Co50 crystals.  

Graphene nanosheets were prepared by the Hummers’ method. The FeCo nanoparticle 

were prepared by a polyol process. Then varied graphene nanosheets were added into the 

FeCo polyol process to obtain the FeCo/graphene magnetic nanocomposites. The graphene 

nanosheets were characterized by TEM and XRD as shown in figure 6.9 (a) (b). From the 

characteristic XRD spectrum of graphite, graphene oxide and graphene, and compared 
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them with references. [33-35] Successful preparation of graphene nanosheets was 

confirmed. The FeCo nanoparticle was characterized by TEM and EDX in figure 6.9 (c) 

(d). The electron diffraction of FeCo nanoparticle confirmed the FeCo crystal structure. 

The EDX spectra showed the FeCo element. The C and Cu signal came from the carbon 

copper grid.  

 

Figure 6.10 Magnetic hysteresis loop of graphene nanosheets.  

The graphene nanosheets hysteresis loop was shown in figure 6.10, from the weak signal 

of the loop (0.02 emu/g at 1 T), we could neglect the graphene nanosheets magnetization 

here.  

The FeCo nanoparticle size was calculated from figure 6.11 (a) at about average 500 nm. 

From the TEM image, the FeCo nanoparticle were severely connected and aggregated. This 

may be caused by the particles ferromagnetic property and ultra-strong magnetization of 

FeCo nanoparticle (202 emu/g at 1 T in figure 6.11 (b)). Figure 6.11 (c) showed one of the 

samples of graphene (30 mg)/FeCo magnetic nanocomposite. The FeCo nanoparticles size 

was about 440 nm, and they were dispersed around the graphene nanosheets. The magnetic 

hysteresis loops of 3 magnetic FeCo/graphene nanocomposites were presented in figure 
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6.11 (d), respectively samples of graphene (30 mg, 60 mg and 120 mg)/FeCo. They have a 

magnetization at 1 T of 97 emu/g, 78 emu/g and 40 emu/g for graphene 30 mg, 60 mg and 

120 mg. The insets in figure 6.11 (b) (d) demonstrated the ferromagnetic property of FeCo 

nanoparticle and graphene/FeCo nanocomposites.  

 

Figure 6.11 Samples morphology and magnetic properties of Fe50Co50 crystals and 

magnetic graphene/Fe50Co50 hybrid nanosheets samples: (a) Fe50Co50 crystal (scale 

bar 500 nm), (b) FeCo magnetic hysteresis loop, inset showing the enlarged area near 

Field=0, (c) G30FeCo hybrids (graphene 30 mg) (scale bar 2000 nm), (d) G30FeCo, 

G60FeCo and G120FeCo magnetic nanocomposites magnetic hysteresis loop, inset 

showing the enlarged area near Field=0.  
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Table 6.1 summarized the magnetic FeCo/graphene nanocomposites samples.  

Table 6.1 Magnetic data of FeCo crystal and graphene/FeCo magnetic 

nanocomposites at room temperature.  

Samples Ms (emu/g) Mr (emu/g) 
Mr

Ms
⁄  Hc (Oe) 

Fe50Co50 crystal  203.3  12.81  0.063  110.9  

G30FeCo  97.5  5.37  0.055  175.1  

G60FeCo  78.0  3.83  0.049  212.1  

G120FeCo 39.9  1.59  0.040  174.5  

 

 

Figure 6.12 Actual FeCo weight ratio data from SEM-EDX spectra of a series of 

magnetic graphene/FeCo samples.  



 

144 

 

A series of varied quantity of graphene powder to FeCo ratio were prepared and their 

magnetoresistance were measured. The graphene quantity were 30 mg up to 120 mg with 

10 mg increment. Together we have prepared 10 magnetic graphene/FeCo samples. These 

samples were analyzed by SEM-EDX and scanned several spots per sample to get the 

actual average FeCo nanoparticles weight percentage in each sample as shown in figure 

6.12. The Y axis was the FeCo EDX average measured data, x axis was the added graphene 

mass. Figure 6.12 showed that by keeping the FeCo reaction condition unchanged, the 

increasing of graphene nanosheets decreased the FeCo nanoparticle weight ratio on the 

nanocomposites. A decline trend could be envisioned and fitted using Boltzmann function.  

 

Figure 6.13 Magnetoresistance of a series of varied graphene mass graphene/FeCo 

samples.  

These samples magnetoresistance were measured as shown in figure 6.13. Y axis was the 

magnetoresistance, x axis was the Fe weight ratio. The label in the graph indicated the 

added graphene quantity. As the magnetic label was Fe3O4/silica, therefore we made the X 

axis into Fe weight ratio. The binding of magnetic label increased the Fe content on the 

MR sensor chip. The sample of graphene (80 mg)/FeCo was at a sharp dropping point, 
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which showed that a minute increasing of magnetic label could decreased the MR in a 

sharp way. Therefore, the graphene (80 mg)/FeCo sample was chosen as the MR sensor 

chip.  

6.3.3 Glucose Biosensing of Diluted Rats Blood Samples  

Figure 6.14 showed the SEM image of FeCo/graphene nanopcomposite sensor chip 

surface. The rat blood glucose concentration were measured by marketed glucometer. 

Diluted rat blood samples of known glucose concentrations of 2 mM, 4 mM, 6 mM, 8 mM 

and 10 mM were measured by the MR sensor chip as showed in figure 6.15. In the sensing 

process, diluted blood was applied to the sensor chip surface. Then magnetic label 

(saturated by excessive glucose) was applied. Therefore, if the sample has a higher glucose 

concentration, the binding of magnetic label would be less. The MR signal was increasing 

as the glucose increased.  

 

Figure 6.14 SEM image of nanostructured magnetoresistive glucose biosensor chip 

surface.  
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Figure 6.15 Nanostructured magnetoresistive biosensor sensing diluted rat blood 

glucose concentration.  

6.4 Conclusion  

In conclusion, we have developed a magnetoresistive nanostructured glucose biosensor. 

The MR chip detector was constructed by magnetic graphene/FeCo nanocomposite with 

surface bioconjugated with Con A. The magnetic label was iron oxide/silica core/shell 

nanoparticle with surface modified with phenylboronic acid. Diluted rat blood samples 

with certain glucose concentrations were measured with this MR biosensor with good 

results.  
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Chapter 7  

7 Summary and Recommendations  

7.1 Summary and Conclusion  

 

Figure 7.1 Schematic of my work on four nanostructured glucose biosensors.  

The overall objective of my PhD work was to develop nanostructured glucose biosensor 

(figure 7.1), which utilizes nanomaterials and nanostructures to construct glucose biosensor 

with high selectivity and sensitivity. A variety of nanomaterials were prepared and 

integrated into several different glucose nanobiosensors. These nanostructured glucose 

biosensors were properly functionalized with suitable biomolecules and functional 

chemical groups. Rats tear and blood samples were analyzed by the designed 

nanobiosensors and good results were achieved. The sensing results demonstrated various 

fluorescent/magnetoresistive nanomaterials and nanostructures could be exploited as 

glucose biosensors. Three glucose biosensors were based on fluorescence resonance 

energy transfer mechanism, respectively ZnO/QD biosensor, upconverting nanomaterials 

biosensor and carbon dots-graphene oxide biosensor. The last glucose biosensor was based 



 

151 

 

on magnetoresistance mechanism, this MR sensor was composed of FeCo/graphene 

magnetoresistive chip and magnetic label of Fe3O4/silica core/shell nanoparticles. The brief 

summary of each glucose biosensor are stated below.  

Development of ZnO/QD Patterned Nanostructured Glucose Biosensor  

In chapter 3, a nanostructured glucose biosensor was developed to detect glucose in tear 

by using fluorescence resonance energy transfer (FRET) quenching mechanism. The 

designed FRET pair were CdSe/ZnS quantum dots (donor) and dextran-binding malachite 

green (MG-dextran) (quencher). Concanavalin A (Con A) is a lectin protein with specific 

affinity to glucose and Con A is bioconjugated onto quantum dots. Con A can also bind 

other saccharides like dextran with much lower affinity. The quantum dots-Con A-dextran-

MG structure was formed. In the presence of glucose, the quenched emission of QDs 

through the FRET mechanism was restored by displacing the dextran-MG from Con A. To 

have a dual-modulation sensor for convenient and accurate detection, the nanostructured 

FRET sensors were assembled onto a patterned ZnO nanorod array deposited on the 

synthetic silicone hydrogel. Consequently, the concentration of glucose detected by the 

patterned sensor could be converted to fluorescence spectrum with high signal-to-noise 

ratio and calibrated image pixel values. The photoluminescence intensity of the patterned 

FRET sensor increased linearly with increasing glucose concentration from 0.03 mM to 3 

mM, which covered the range of tear glucose levels for both diabetics and healthy people. 

Meanwhile, the calibrated values of pixel intensities of the fluorescence images captured 

by a handhold fluorescence microscope increased with increasing glucose concentration. 

Four male Sprague-Dawley rats with different blood glucose concentrations were utilized 

to demonstrate the quick response of the patterned FRET sensor to 2 µL of diluted tear 

samples (2 µL original tear mixed with 5 µL PBS solution). The highlights are listed below:  

1. This nanostructured biosensor was designed for dual detection of tear glucose.  

2. Fluorescence intensity increased linearly with glucose level from 0.03 mM to 3 

mM.  

3. Image pixel intensity value of the sensor was corresponding to the glucose level.  
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4. Animal test indicated that the sensor could measure the glucose concentration in 2 

µL diluted rat tear within 30 seconds.  

Development of Upconversion NaGdF4: Yb, Er Glucose Biosensor  

In chapter 4, a nanostructured glucose biosensor was designed using upconverting 

nanomaterials to sense rat tear glucose in vivo. The fluorescence resonance energy transfer 

donor was upconverting nanomaterials with surface bioconjugated of Con A. The modified 

upconverting nanomaterials were excited by 980 nm near-infrared light and emited visible 

light at 541 nm and 655 nm. The acceptor was the malachite green-dextran (MG-dextran), 

which could quench the fluorescence emission of 655 nm from upconversion 

nanomaterials. These upconverting nanomaterials glucose nanobiosensors were deposited 

onto hydrogel surface and applied as contact lens prototype sensor to sense rat tear glucose 

in vivo. In the presence of glucose, the quenched emission of upconverting nanomaterials 

was restored by displacing the dextran-MG from Con A. The highlights are listed below:  

1. The nanostructures acted as an analyte (tear glucose) collector to achieve high 

concentration of analyte reacting with the FRET sensor.  

2. The upconverting nanostructures exhibited stable fluorescence signals.  

3. Large surface-to-volume ratio of the nanostructures could lead to higher selectivity 

for glucose sensing.  

4. The fluorescence intensity (I) of the FRET sensor as a function of the glucose 

concentration have been investigated in vitro and in vivo.  

Development of Carbon Dots/Graphene Oxide Glucose Biosensor  

In chapter 5, a facile microwave assisted synthesis method of tunable photoluminescent 

carbon dots was developed. Glucose nanobiosensor based on this carbon dots and graphene 

oxide was constructed. Both carbon dots and graphene oxide are highly biocompatible. We 

found that the photoluminescence of carbon dots could be adjusted (within a certain range) 

by simply varying carbon source amount, which has not yet been reported before. Other 

methods for preparing different photoluminescent carbon dots often use oxidative and/or 
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reductive chemicals. While our method is facile and environmental friendly. The tunable 

photoluminescence range could extend from 470 nm to 540 nm in this system. The 

highlights are listed below:  

1. Facile microwave assisted polyol process for preparation of carbon dots, and the 

carbon dots fluorescence was tunable by simply adjusting precursor quantity with 

a range from 470 nm to 540 nm.  

2. This glucose nanobiosensor composed of biocompatible carbon dots (donor) and 

graphene oxide (acceptor or quencher) using fluorescence resonance energy 

transfer (FRET) quenching technique.  

3. Glucose sensing range was adjustable by applying adequate quantity of donor and 

acceptor (quencher). Linearity of glucose level of 1 mM to 10 mM and glucose 

level of 0.2 mM to 1 mM was obtained.  

4. Diluted rat blood samples were measured by carbon dots/graphene oxide based 

nanobiosensor with good linearity.  

Development of FeCo/graphene Magnetoresistive Nanostructured Glucose Biosensor  

In chapter 6, a facile polyol synthesis process was developed to fabricate Magnetic 

Graphene/FeCo hybrid nanosheets (MGFCs). These MGFCs were then pressed into thin 

films and applied as nanostructured magnetoresistive chip for glucose biosensor. The 

magnetoresistive chip surface was modified with Con A, the magnetic nanoparticle label 

was Fe3O4/silica with surface modified with phenylboronic acid. The presence of glucose 

would connect the magnetic labels to the magnetoresistive chip surface, thus causing the 

magnetoresistance signal change. Diluted rat blood samples were measured by the 

magnetoresistive biosensor. The tear samples are collected from Dr James Melling’s lab in 

Kinesiology, UWO. And the amounts of tear samples collected are very little. Therefore, 

in some measurement, we used diluted blood samples. Although diluted blood samples are 

not the same with tear samples, the sensing results are useful for future study when we have 

enough tear samples. The highlights are listed below:  
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1. Facile polyol preparation of FeCo/graphene nanocomposites, and the composition 

was tunable by adjusting the FeCo precursor’s quantity and graphene quantity.  

2. The MGFCs chip showed magnetoresistive properties and the magnetoresistance 

was tunable by using different ratio Fe, Co and graphene quantity.  

3. Diluted rat blood samples were measured by this nanostructured magnetoresistive 

glucose biosensor with range of 0 mM to 4 mM.  

7.2 Contributions of the Research to the Current State of 
Knowledge  

Diabetes is a worldwide spread disease among populations. It is a chronic disease 

characterized by longtime high glucose level of patients. Many complications often 

accompany with diabetes disease, causing great suffering to diabetic patients. [1-5] The 

high glucose concentration is present in blood and other body fluid like tear, urine, saliva, 

sweat etc. [6-7] Therefore, glucose level in human body fluids is the direct biomarker for 

diabetes. Controlling blood glucose concentration is currently prevalent approach to 

manage diabetes. Measuring blood glucose is the prevalent method to monitor glucose 

level in human body. The widely used marketed glucometer is based on electrochemical 

sensing technique. But the glucometer requires a certain amount of blood, which is invasive 

and sometimes causing infection risk to people. The implanted electrochemical glucometer 

on the other hand may have problems like biocompatibility, biofouling of the sensing 

electrode and longevity, calibration etc. [8-9] Tear is a continuous body fluid and a good 

target for continuous glucose sensing. Certain relationship of tear glucose and blood 

glucose does exist and have been investigated since 1930s. Compared to blood glucose 

which is often in the level of 4 mM to 20 mM, tear glucose concentration is in the level of 

0.1 mM to 0.5 mM. [10-15] Nanomaterials and nanostructures have novel chemical, 

physical and biological properties and nanostructured glucose biosensor could have higher 

sensitivity and selectivity, which could be integrated into other devices or chips. Contact 

lens based nanostructured glucose biosensor is one promising developing direction. Some 

limitations include the whether every person is suitable to wear contact lens and the tear 

glucose are affected by every person’s eye status (eye disease etc.). These limitations may 
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be solved by setting up personal care systems and applied corresponding managements to 

individual situations.  

All in all, nanostructured glucose biosensor are promising for better monitoring glucose 

level and my PhD work is focused on developing fluorescent and magnetoresistive 

nanostructured glucose biosensors. A variety of nanomaterials and nanostructures were 

prepared and integrated into several glucose nanobiosensors. Good glucose sensing results 

were obtained and rat tear samples and rat blood samples were analyzed by the designed 

glucose nanobiosensors.  

To have a whole view on the nanomaterials and nanostructures studied in my work, let’s 

look at the fluorescent nanomaterials chapters. In chapter 3, we used CdSe/ZnS quantum 

dots, the coating layer of ZnS greatly lowered the toxicity of the CdSe quantum dots and 

enhance its fluorescence. The coating could seal the Cd element inside. This quantum dots 

glucose nanobiosensor used UV light as fluorescent source. The emission could be tuned 

by tuning quantum dots size. Single UV excitation could excite different emission quantum 

dots, which was promising for multiplex sensing.  

Comparatively, in chapter 4, we adopted upconverting nanomaterials which were excited 

by near-infrared light of 980 nm and emitted visible light at 541 nm and 655 nm. On the 

other hand, the use of 980 nm near-infrared excitation could avoid the auto-fluorescence 

effect. Therefore, the upconverting nanomaterials based glucose biosensor was a step 

forward to enhance the sensor’s signal-to-noise ratio. Moreover, upconverting 

nanomaterials have better biocompatibility than the semiconductor quantum dots.  

In chapter 5, we used carbon dots, a new nanocarbon materials discovered in 2006, to 

develop the fluorescent glucose nanobiosensor. Carbon dots are commonly synthesized by 

carbonization of biomolecules or molecules. The composition has carbon, hydrogen, 

oxygen elements, sometimes doped with other elements like sulfur, nitrogen etc. Carbon 

dots has good biocompatibility and has no toxic elements compared to quantum dots. 

Carbon dots has strong fluorescence and excitation-dependent fluorescence properties. 

Some carbon dots are reported to have even upconverting properties. Therefore, carbon 

dots are promising for biosensor development.  
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Table 7.1 Summary of investigated fluorescent nanomaterials.  

Fluorescent 

nanomaterial 
Pros Cons 

CdSe/ZnS 

quantum dots 

Stable and strong fluorescence  

Multiplex sensing  

Toxic elements like Cd  

UV excitation tissue auto-

fluorescence 

Upconverting 

nanomaterial 

980 nm excitation low 

background noise  

Biocompatible  

Stable fluorescence  

Fluorescence difficult to tune  

Carbon dots  

(carbon 

nanomaterial) 

Highly biocompatible  

Facile preparation by various 

methods  

Fluorescence strong/stable 

enough for biosensing  

Excitation-dependent emission, 

tunable by doping nitrogen etc. 

elements  

Possible upconverting 

fluorescence  

Fluorescence mechanisms not 

fully understood  

Reproducibility  
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Last chapter was focused on carbon nanomaterials based magnetoresistive nanostructured 

glucose biosensor. FeCo/graphene nanocomposites were used as magnetoresistive chip and 

iron oxide/silica was used as magnetic label.  

Development of ZnO/QD Patterned Nanostructured Glucose Biosensor  

Quantum dots have stable and strong fluorescent properties, which favor their usage in 

various applications. One application of quantum dots is used as fluorescent sensor 

transducer. The quantum dots are prepared and the surface modification protocols have 

been developed and accumulated. [16-21] The main stream quantum dots contains toxic 

semiconductor elements like Cd element, which limit their biomedical applications and 

disposal. And the traditional synthesis method would use high boiling point organic 

solutions, which are unfriendly to human and environment. Coating of quantum dots is one 

method to make them biocompatible, but coating could affect the photoluminescence 

properties. In recent years, more and more research has focused on aqueous synthesis of 

quantum dots and non-toxic elements containing quantum dots. [22-24] In the ZnO/QD 

nanostructured glucose biosensor, we assembled the quantum dots nanobiosensor onto 

ZnO nanorod arrays chip. The chip was then patterned using photolithography to show 

contrast between sensing parts and non-sensing parts. The large surface area of ZnO 

nanorod arrays could enlarge the fluorescent signal. Thus the sensor has high sensitivity. 

The chip was deposited on biocompatible hydrogel, making it promising to integrate into 

contact lens glucose biosensor. Rat tear samples were measured with good results.  

Development of Upconversion NaGdF4: Yb, Er Glucose Biosensor  

Upconversion is an anti-Stokes luminescence phenomenon. The excitation source of 

upconverting nanomaterials is near-infrared light (normally 980 nm). [25-28] Therefore, 

upconverting nanomaterials are very suitable for biosensing applications. Similarly, the 

prepared upconverting nanomaterials are surface modified with biocompatible layers like 

inorganic or polymer coatings. In the upconverting nanomaterials glucose biosensor. We 

developed a method to prepare upconverting nanomaterials with as-synthesized surface 

modified by amine group (−NH2). Then Con A was bioconjugated to upconverting 

nanomaterials surface. The modified upconverting nanomaterials were integrated into 
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hydrogel materials and applied to sense rat tear in vivo and rat blood sample in vitro with 

good results. This nanostructured glucose biosensor demonstrated a contact lens prototype 

model for tear glucose sensing.  

Development of Carbon Dots/Graphene Oxide Glucose Biosensor  

Carbon dots are novel nanocarbon materials. It has good biocompatibility and intriguing 

fluorescence properties. Although the exact mechanisms of their fluorescence properties 

are not fully uncovered. Their facile synthesis and strong fluorescence properties has 

attracted intense research and applied in glucose biosensors area. [29-32] In the carbon dots 

glucose nanobiosensor study, we developed a facile microwave assisted polyol preparation 

method for synthesizing carbon dots. We found that the carbon dots fluorescence was 

tunable from 470 nm to 540 nm by adjusting precursor’s quantity. The precursors were 

histidine and citric acid. The polyol process was adopted with solution of ethylene glycol. 

Further, we constructed a glucose nanobiosensor using this carbon dots (fluorescence 

donor) and graphene oxide (fluorescence quencher). Both the fluorescence donor and 

quencher are highly biocompatible and their quantity are adjustable to accommodate 

different sensing environment. Rat blood samples were measured by the carbon dots 

nanobiosensor with good results.  

Development of FeCo/graphene Magnetoresistive Nanostructured Glucose Biosensor  

Because most biocomponents do not contain magnetic elements, the magnetic sensing has 

zero background noise and high sensitivity. Magnetoresistive biosensors have been 

developed and used in sensing other biomolecules, proteins, cells etc. [33-37] In this 

magnetoresistive glucose biosensor, we endeavored to develop a magnetoresistive glucose 

biosensor. FeCo/graphene nanocomposites were prepared by a polyol process. The 

composition of Fe, Co and graphene are tunable by adjusting the precursor ratio. We used 

Fe50Co50 nanoparticle formula and change the graphene quantity to study the 

magnetoresistance. Then we found a sharp dipping position (graphene (80 mg)/FeCo) of 

the magnetoresistance versus graphene quantity curve. We then used the graphene/FeCo 

nanocomposites at that dipping point to develop magnetoresistive chip sensor. The 

magnetic label of iron oxide/silica core/shell nanoparticles were prepared by thermal 
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decomposition and then surface coating with dye-doped silica. Con A was modified onto 

chip surface, while the magnetic label were surface modified with phenylboronic groups. 

Rat blood samples were measured by this magnetoresistive biosensor with good results.  

7.3 Future Studies  

My PhD work focused on synthesizing and fabricating different nanomaterials and 

nanostructures for glucose biosensor application. Therefore, I would be discussing the 

nanomaterials and nanostructures synthesis, surface modification, fabrication and 

chemicophysical properties in the following paragraphs. These aspects would greatly affect 

biosensors’ biocompatibility, selectivity, sensitivity.  

Development of ZnO/QD Patterned Nanostructured Glucose Biosensor  

First the toxicity of quantum dots is a general concern for its practical application. However 

this problem is intrinsic for Cd quantum dots. A layer of ZnS coating was applied to the 

CdSe quantum dots to improve the biocompatibility. A reliable surface modification could 

sufficiently lower the quantum dots’ toxicity while retaining the fluorescence. [38-40] 

Second the assembling of quantum dots nanobiosensor onto ZnO nanorod could be difficult 

to control. Therefore the reproducibility is a concern. The current conjugation method was 

using glutaraldehyde. Better conjugation method is required to be able to control the 

conjugation process. Third the sensor longevity needs to be considered as well.  

Development of Upconversion NaGdF4: Yb, Er Glucose Biosensor  

The upconversion nanomaterials used was the NaGdF4, Yb, Er. First the synthesis method 

was polyol process at 200 °C at round bottom flask. At this condition, the crystal structures 

of the upconverting nanoparticle was difficult to control. XRD results indicated mixed 

hexagonal and cubic crystal structures both present in the nanoparticles. The crystal 

structure affected greatly the upconverting fluorescence. Hexagonal structure shows 

superior fluorescence intensity compared to the cubic. [41-43] So other methods of high 

reaction temperatures or using autoclave could better control the crystal structures. Second 

consideration was the controlled deposition of upconverting nanomaterials on hydrogel and 
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immobilization approach. We used drop casting method and then covered the sensors with 

polyethylene glycol. This might need further improvements.  

Development of Carbon Dots/Graphene Oxide Glucose Biosensor  

This glucose nanobiosensor used carbon nanomaterials, carbon dots (fluorescence donor) 

and graphene oxide (fluorescence quencher). Firstly, the graphene oxide reproducibility 

was a concern. Graphene oxide is a mixture of different size nanosheets. [44-47] Different 

batches of graphene oxide might need calibration to obtain signal reproducibility. 

Secondly, the excitation light was 400 nm, which could cause tissue auto-fluorescence 

problem. Some research reported the upconverting fluorescence from carbon dots, which 

could be excited by 980 nm. [48-50] Therefore, developing upconverting carbon dots or 

graphene quantum dots would be advantageous for carbon dots application in biosensors.  

Development of FeCo/graphene Magnetoresistive Nanostructured Glucose Biosensor  

This study involved also carbon nanomaterials. Graphene nanosheets were decorated with 

FeCo nanoparticles through polyol process and iron oxide/silica core/shell magnetic 

nanoparticles were used as magnetic label. Firstly, different size of graphene nanosheets 

would be a concern. Secondly, other ratios of FeCo nanoparticle to graphene are also 

needed to be studied. The FeCo nanoparticle used throughout the experiment was Fe50Co50. 

Other FeCo ratios like Fe25Co75 or Fe75Co25 etc. could have different magnetoresistive 

effects. Thirdly, the chip surface nanostructures would need more controllable fabrication 

process.  
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