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Abstract

A new additive structure of multivariate GARCH model is proposed where the dy-

namic changes of the conditional correlation between the stocks are aggregated by the

common risk term. The observable sequence is divided into two parts, a common risk

term and an individual risk term, both following a GARCH type structure. The condi-

tional volatility of each stock will be the sum of these two conditional variance terms.

All the conditional volatility of the stock can shoot up together because a sudden peak

of the common volatility is a sign of the system shock.

We provide sufficient conditions for strict stationarity and ergodicity of the model.

The ergodicity of the model cannot be studied in the standard way because of the non-

linearity. After reforming the original mathematical representation of the model into a

complicated Markovian structure, the systematic theory for Markov chain from Meyn

and Tweedie (2009) is applied.

All the parameters in the model are identifiable in terms of the second conditional

moments under mild assumptions. Then there exists a unique solution of parameters in

the domain which maximizes the likelihood function for a sufficiently large sample size.

The choice of starting values is unimportant within the parameter space defined by the

ergodicity theorem. Under some general assumptions we proposed, without specifying

the distribution of the innovation, different initial values will lead to the same estimates

asymptotically. Once both assumptions for ergodicity and identifiability are satisfied,

the quasi maximum likelihood (QML) has become a reasonable method to estimate pa-

rameters in practice. The sufficient conditions for the strong consistency and asymptotic

normality of the QML estimator are proposed.

The Monte Carlo simulation example is included in this thesis to demonstrate how to

verify the assumptions in the strict stationarity and asymptotic normality theorems. The

numeric issues for the estimating process in practice are addressed with possible solutions.
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Chapter 1

Introduction

The log returns are commonly used in econometrics for some reasons. The raw prices are

restricted to be positive whereas the log returns can be any real numbers. Let S 0, S 1, . . .

be a sequence of daily stock closing prices. Then the log return xt (or return in the

following sections) is defined as

xt = log(S t/S t−1) ≈
S t − S t−1

S t−1
.

The right hand side of the approximation sign is obtained by Taylor expansion. The

log returns can be interpreted as continuously compounded returns and the log return

values do not depend on monetary units of the original asset prices (see Figure 1.1 and

4.1). Moreover, the weekly or monthly log returns can be easily computed by summing

up the daily returns. Most of the observations plotted in Figure 4.1 fall into a relatively

narrow range with only few above 5% or below -5%.

As a measure of riskiness in financial securities, it is necessary to estimate the volatility

of the log returns instead of the raw prices for the financial modeling. Though the

volatility of the log returns does not tell which direction the log return goes, it can tell

us how far on average the returns move. It can be used in derivative pricing and risk

control.
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Figure 1.1: The original daily closing prices and the log returns

In early studies of financial models, the log returns are assumed to be independent

and identically distributed with a mean and a variance which remain the same over time.

This type of structure is motivated by the Black-Scholes-Merton (BSM) model (Black

and Scholes, 1973; Merton, 1973) which is an important framework to derive the option

prices. In the BSM model,

dS t/S t = µdt + σdWt.

After discretizing the time interval in this formula, this formula leads to the conclusion

that the daily log returns follow an independent and identically normal distribution with

mean (µ −
1
2
σ2) and variance σ2. Therefore, the volatility of the log returns can be

estimated by the sample standard deviation. If x̄ =
1
n

∑n
i=1 xi, then

σ =

√√
1
n

n∑
i=1

(xi − x̄)2.

Such an assumption does not hold in practice for all kinds of different reasons. If

the log returns are normally distributed, the sample density will be close to the normal

density. However, the sample density in Figure 1.2 has a much higher peak and fatter tails
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Figure 1.2: The plot on the left: the solid black line shows the sample density of WFC
log return, the blue dashed line shows the corresponding normal density. The plot on the
right: the sample autocorrelation of WFC log return.

compared to the corresponding theoretical normal density. This phenomenon is known

as leptokurtosis. Another noticeable violation is that a large value tends to be followed

by another large value, and a small value tends to be followed by another small value,

regardless of signs. This characteristic of financial time series is called volatility clustering.

One more evidence of such a feature is based on the sample autocorrelation functions.

Though the sample autocorrelations of the log return sequence are mostly within the

confidence bands around 0, the sample autocorrelations of the transformed sequences,

both the absolute values and the squared values, decay to 0 slowly in Figures 1.2 and 1.3.

All of these suggest that the second order of the log returns or volatilities is changing

dynamically depending on the previous values.

1.1 Heteroskedasticity Models

The conditional heteroskedasticity models have played an important role in financial

world today by taking the nature of the financial log return series into consideration.
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Figure 1.3: The sample autocorrelation plots of transformed WFC log returns (absolute
values on the left and squared values on the right).

Assume {xt : t > 0} is the observed process and let Ft be a set (σ-field) generated by

{xt, xt−1, . . .}, then the general form of the conditional heteroskedasticity model is written

in a multiplicative structure. The variance of the log return depends on the observations

up to one-step before the current time. In mathematical equations,


xt = εtσt

E(xt|Ft−1) = 0

E(x2
t |Ft−1) = σ2

t
.

(1.1)

The innovations {εt : t ∈ T } are i.i.d. random noise with mean 0 and variance 1. Moreover,

the innovations are independent of Ft−1, and σt’s are Ft−1 adapted.

Engle (1982) introduced the autoregressive conditional heteroskedasticity (ARCH)

model with the unique ability of capturing volatility clustering in financial time series at

the time. The ARCH(q) model defines the conditional variance of xt to be

σ2
t = ω +

q∑
i=1

αix2
t−i.
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However, the selected lag q tends to be large when the model is applied to real market

data. Subsequently, Bollerslev (1986) extended the formula of σ2
t by adding its autore-

gressive terms, then the number of terms on the right hand side can be notably reduced.

The conditional variance of the univariate GARCH(p,q) model is defined as

σ2
t = ω +

q∑
i=1

αix2
t−i +

p∑
j=1

β jσ
2
t− j.

If the backshift operator is used in the representation, the univariate GARCH(p,q) model

can be written as an ARCH(∞) model. The ARCH(∞) model is

σ2
t = φ0 +

∞∑
i=1

φiε
2
t−i.

The detailed equalities of the coefficients can be found in Francq and Zakoian (2010).

Other extensions of the univariate GARCH model try to characterize the asymme-

try effect, which include exponential GARCH model (Nelson, 1991), threshold GARCH

model (Zakoian, 1994), double threshold (G)ARCH model (Li and Li, 1996), dynamic

asymmetric GARCH model (Caporin and McAleer, 2006). The theories and applications

of univariate (G)ARCH type models are well developed, while the multivariate cases are

much harder in general.

When there is more than one time series, it becomes necessary to understand the

co-movements of the returns. It is well known that the volatilities of stock returns are

correlated with each other. In contrast to the univariate cases, the multivariate volatility

estimations based on a GARCH dependence are much more flexible. There are two

possible ways to build a parametric model in the multivariate GARCH models. One

is to model the conditional second moment directly and the other one is to model the

conditional correlation along with the marginal conditional variance for each sequence

together.

The multivariate GARCH models are specified based on the first two conditional
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moments as well as the univariate cases. A multivariate volatility model, called half-Vec

(vech) GARCH model (Bollerslev et al., 1988), is also one of the most general forms of

multivariate GARCH models. Let vech denote the vector-half operator, which stacks the

lower triangular elements of an m×m matrix as a vector with length m× (m + 1)/2. Then


xt = H1/2

t εt ,

ht = c +

q∑
i=1

Aiηt−i +

p∑
j=1

B jht− j,
(1.2)

where

ht = vech(Ht),

ηt−i = vech(εtεt
ᵀ),

εt
i.i.d.
∼ (0, Im),

and Ai, B j are m × m coefficient matrices.

In this class of models, the conditional covariance matrix is modeled directly. The

number of parameters in the general m-dimensional case is

(p + q)
[
m(m + 1)

2

]2

+
m(m + 1)

2

.

It increases at a rate proportional to m4, which makes it difficult to get the estimations.

Another famous class of the multivariate GARCH models built on Ht is the BEKK

model (Bollerslev et al., 1988; Engle and Kroner, 1995). The conditional covariance

matrix is considered as

Ht = CCᵀ +

K∑
k=1

q∑
i=1

Aikεtεt
ᵀAᵀik +

K∑
k=1

p∑
i=1

BikHt−iB
ᵀ
ik

where C, Aik and Bik are m by m matrices. C is a triangular matrix, Aik and Bik are not

necessarily symmetric. The number of parameters is (p + q)Km2 +
m(m + 1)

2
, which is

much smaller than the Vech version.

There are simpler ways of specifying Ht by using the method in the second category
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mentioned above. The constant correlation coefficient (CCC) GARCH model is presented

by Bollerslev (1990), who assumes that the conditional correlation matrix R is time-

invariant, where

R =



1 ρ1,2 . . . ρ1,m

ρ1,2 1 . . . ρ2,m

...
...

. . .
...

ρ1,m ρ2,m . . . 1


m×m

The number of parameters is reduced to O(m2) from O(m4) in the Vech GARCH model.

The model is defined as 

xt = H1/2
t εt ,

Ht = S tRS t,

∆t = c +

q∑
i=1

Aixt−i
2 +

p∑
j=1

B j∆t− j,

(1.3)

where ∆t is a m dimensional vector of diagonal elements of the conditional covariance

matrix Ht, S t is the diagonal matrix of the elements in
√

∆t, and the square vector xt−i
2

is (x2
1,t−i, · · · , x

2
m,t−i)

ᵀ.

A less restrictive time-variant conditional correlation version, called the dynamic cor-

relation coefficient (DCC) GARCH, is studied by Engle (2002), Tse and Tsui (2002).

The conditional correlation is changed to be dynamic in the structure of Ht.

Ht = S tRtS t

where the elements in Rt, ρi j,t =
qi j,t
√qii,tq j j,t

. The terms in both the denominator and the

numerator can be written as a weighted average of their past values and the element in

matrix εtεt
ᵀ, may or may not with a constant. In matrix form,

Qt = (1 − λ)(εtεt
ᵀ) + λQt−1
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or

Qt = S (1 − α − β) + α(εtεt
ᵀ) + βQt−1.

Both CCC-GARCH and DCC-GARCH models are built by modelling the conditional

variance of each series and the conditional correlation between series.

There are additional extensions to the multivariate GARCH models as described

above, e.g. the generalized orthogonal GARCH (Van der Weide, 2002) and the vector

ARMA-GARCH model (Ling and McAleer, 2003).

1.2 Factor models

The strong positive association between the equity variance and several explanatory vari-

ables is confirmed by Christie (1982). The volatilities of equities are driven by the same

underlying process which is related to some variables besides the returns. A successful

class of the multivariate models is the capital asset model and its extension, factor mod-

els. The asset pricing model (Treynor, 1962, 1961; Sharpe, 1964) has been introduced by

economists by comparing the sensitivity, β’s, of the series with the overall market risk.

Later, Fama and French expanded the variables in the asset returns model to a three

factor model (Fama and French, 1993) and a five factor model (Fama and French, 2015).

In the earliest setup, there is only one factor which is the market return. The model is

Exi = x f + βi(Exm − x f )

where xi is the return of asset i, x f is the risk-free rate of interest and βi is the sensitivity

of the expected excess asset returns to the expected excess market returns. In such a

setup, the correlation between two expected returns, ρi, j = βiβ j, is a constant over time.

These models only consider the relative risk between the individual series and the general

market performance. They treat the market index or some overall market variables as
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the common risk factors which do not take the dynamic change along with time into

consideration.

One way to improve the model is to change the static factors into hidden dynamic

factors. The generalized factor model (Forni et al., 2000) assumes the individual log

return is a linear combination of K factors with an idiosyncratic risk,

xi,t =

K∑
j=1

β j ft, j + ηi,t, i = 1, 2, . . . ,m.

or in a matrix form

xt = B ft + ηt

where B is a loading matrix with m rows and K columns, the idiosyncratic risk are corre-

lated with a covariance matrix Ω. The factors have the following conditional specification

Et−1( ft) = 0,

Et−1( ft ft
ᵀ) = Λt

where Λt is a positive definite matrix.

The conditional covariance matrix of xt is

Ht = BΛtBᵀ + Ω.

The identifiability in the dynamic factor models is a problem since any full rank square

matrix T can be used to premultiply the factor ft, then the conditional second moment

remains the same which means

Ht = (BT )(T−1Λt(Tᵀ)−1)(BT )ᵀ.

Therefore, the solution of the parameters is not unique based on the conditional second
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moment. The number of parameters increases at a rate proportional to m2 because the

number of elements in B is m(m + 1)/2.

The factor GARCH model (Vrontos et al., 2003) is a special case of the factor model

with Ω = 0 and the number of factors equals to the dimensions of the observed process,

K = m. Moreover, Λt is assumed to be a diagonal matrix with GARCH specified diagonal

elements σ2
i,t where

σ2
i,t = ωi + αi f 2

i,t−1 + βiσ
2
i,t−1, i = 1, . . . ,m.

Hafner and Preminger (2009a) solve the identification problem by putting constraints on

the constant terms ωi’s in the GARCH structure such that all of them are set to be one

in the equation above.

Though the dynamic factor model has many good features, it has some problems in

practice. In the general dynamic factor model settings, the number of factors K need to

be specified at the beginning (see Hallin and Lǐska, 2007). As in the principal component

analysis, the factors may lack practical interpretations.

Another way to improve the static factor model is to build the model with economic

reasoning. The risk can be divided in to systematic and idiosyncratic risk factors with

an additive structure. Using the idea from Vasicek (1987),

xi,t = ρiε0,t +

√
1 − ρ2

i εi,t

where ε0,t is the systematic risk and εi,t’s are the idiosyncratic risks. The systematic risk

and each of the idiosyncratic risks are independent of each other. In this setting, the

correlation between assets i and j remains constant over time, which is ρiρ j. Berd et al.

(2007) modified the model into a one-factor (G)ARCH model that

xi,t = br0,t + σεi,t
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where b ≥ 0 and r0,t is the market risk factor (systematic risk). The market risk factor r0,t

has a conditional distribution with mean 0 and variance σ2
0,t, where σ2

0,t has the structure

of a univariate GARCH conditional variance. The model has been introduced without

any statistical property.

Generally speaking, the factor models with loading matrices have identifiability prob-

lem. If the conditional distribution of the factors remains the same over time (e.g. the

constant conditional mean and variance), then the loadings can be simply determined

by the unique solution of a linear regression. However, if the conditional distribution of

the factors is changing dynamically, the number of solutions of the loading matrix can

be infinity without additional constraints.

1.3 Model Specification

With information flowing around the world instantaneously, most markets (Asian, Euro-

pean, and American) will react to the same events (good news or bad news). Currently,

most stock prices will go up or down together following big events (random shocks).

Carr and Wu (2009) found that a common stochastic variance risk factor exists among

the stocks by using the market option premiums. We want to introduce a simple common

risk model which keeps the GARCH structure and involves the stock returns only. We

propose a new additive GARCH type model by using a common risk term to characterize

the internal relationship among series explicitly. The common risk term could be used as

an indicator of the shock among series. The conditional correlations aggregated by this

common risk term are changing dynamically.

The univariate GARCH model has a huge success in financial practice, while most

of the multivariate GARCH models extensions do not have a simple way to capture the

common risk among different stocks. The goal of this section is to propose a model which

defines the common conditional variance term directly. The model will have a structure
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similar to the univariate GARCH model, and it will also have characteristics similar to

the univariate GARCH model. The idea is borrowed from the factor models to use an

additive structure. Not like the class of DCC GARCH models, asymptotic theorems can

be provided in this new setting.

Some empirical studies show that GARCH model with p = q = 1 is the most com-

monly used one in applied econometrics, so we only define the model as an extension of

GARCH(1,1) process here. The model could be easily generalized based on GARCH(p,q)

case, although the statistical study of the generalized model will be much harder.

Consider an Rm-valued stochastic process {xt , t ∈ Z} on a probability space (Ω,A,P)

and a multidimensional parameter θ in the parameter space Θ where

θ = (ρ1,2, · · · , ρm−1,m, ω1, · · · , ωm, α1, · · · , αm, β1, · · · , βm, β01, · · · , β0m)ᵀ,

which belongs to a parameter space of the form

Θ ⊂ [−1, 1]
m(m−1)

2 × [0,∞)4m.

Denote a m + 1 dimensional real valued innovation process by {εt , t ∈ Z}, and the infor-

mation set (σ-field) denote the information set available at time t by Ft = σ(εt , εt−1, . . .).

Assume that the innovations are independent and identically distributed with mean 0

and covariance matrix Σ which is also a correlation matrix,

Σ =

Rm×m 0m×1

01×m 1


where R is the same matrix defined above. The elements in the R matrix represent the

internal connections between shocks. When R is an identity matrix, the model becomes

a two factor model with the loading coefficients set to be 1.

The innovation at each time t can be divided into two parts as εt
ᵀ = (εᵀ

t,ind
, ε0,t) where
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εt,ind = (ε1,t, ε2,t, . . . , εm,t)ᵀ. The first part is an m-dimensional vector of correlated individual

shocks εt,ind and the second part is a univariate independent common shock term ε0,t.

We say that xt is a common risk model with an additive GARCH structure if, for all

t ∈ Z, we have 

x1,t = ε1,tσ1,t + ε0,tσ0,t

x2,t = ε2,tσ2,t + ε0,tσ0,t

· · · · · ·

xm,t = εm,tσm,t + ε0,tσ0,t

(1.4)

where σ1,t, . . . , σm,t are following a GARCH structure and σ0,t is related to all of them,



σ2
1,t = ω1 + α1x2

1,t−1 + β1σ
2
1,t−1

σ2
2,t = ω2 + α2x2

2,t−1 + β2σ
2
2,t−1

· · · · · ·

σ2
m,t = ωm + αmx2

m,t−1 + βmσ
2
m,t−1

σ2
0,t = β01σ

2
1,t + · · · + β0mσ

2
m,t.

(1.5)

Introduce the following notations,

Dt = diag{σ1,t, σ2,t · · · , σm,t}, 1 = (1, 1, · · · , 1)ᵀ.

Then (1.4) could be written in a matrix form:

xt = Dtεt,ind + σ0,tε0,t1. (1.6)

So the model could either be specified by (1.5) and (1.6) together or (1.4) and (1.5)

together.

The main idea of this setup has been published in Chu et al. (2016) but in a slightly

different mathematical form. The identifiability theorem in Chapter 3 of this thesis was
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also included in that proceeding manuscript without proof, whereas this thesis gives

additional details. Aside from the reason to obtain the parameter identifiability, the

structure of the covariance matrix Σ has its own interpretation. For a bivariate case, this

model allows two stock returns to be correlated through the individual innovations even

in the absence of the common shock. An independent external shock is applied to the

two stocks in the same way which drives the returns simultaneously.

The number of parameters is increasing at the rate O(m2) which is similar to the

CCC-GARCH model. We could partition the vector of unknown parameters into two

parts: the parameters in the innovations correlation matrix Σ and the coefficients in

(1.5). The number of total parameters is s = s1 + 3m + 1, where s1 =
m(m − 1)

2
is the

number of parameters in R. There is no redundancy in defining the dependency among

the returns through the matrix Σ and the common factor σ2
0,t in the model. The process

is the same as a CCC-GARCH(1,1) process when β01 = β02 = · · · = β0m = 0. Therefore,

CCC-GARCH(1,1) is a special case of this process. Note that for ρ1,2 = · · · = ρm−1,m = 0,

the process further reduces to m independent univariate GARCH(1,1) series.

The conditional covariance matrix of xt, Ht = cov(xt |Ft−1), can be computed from the

definition,

Ht =



σ2
0,t + σ2

1,t σ2
0,t + ρ1,2σ1,tσ2,t . . . σ2

0,t + ρ1,mσ1,tσm,t

σ2
0,t + ρ1,2σ1,tσ2,t σ2

0,t + σ2
2,t . . . σ2

0,t + ρ2,mσ2,tσm,t

...
...

. . .
...

σ2
0,t + ρ1,mσ1,tσm,t σ2

0,t + ρ2,mσ2,tσm,t . . . σ2
0,t + σ2

m,t


.

Ht can be written as the sum of two parts: Ht = σ2
0,tJ + DtRDt where

J =


1 1 . . . 1
...

...
. . .

...

1 1 . . . 1


m×m

= 11ᵀ.
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Each term on the left hand side (1.5) has its own lower bound,

σ2
1,t ≥ ω1, . . . , σ

2
m,t ≥ ωm and σ2

0,t ≥ β01ω1 + · · · + β0mωm.

Hence, the conditional variance of each component in xt at time t has different lower

bound as well.

The conditional correlation between series i and series j can be represented by the

elements in Ht matrix

ρi j,t =
cov(xi,t, x j,t)√

var(xi,t) var(x j,t)

=
σ2

0,t + ρi, jσi,tσ j,t√
(σ2

0,t + σ2
i,t)(σ

2
0,t + σ2

j,t)

=

1 + ρi, j


σi,t

σ0,t



σ j,t

σ0,t

√√√√√√√√
1 +


σi,t

σ0,t


2
√√√√√√√√

1 +


σ j,t

σ0,t


2
.

From the equations above, the conditional correlation matrix tends to be J when the

common term σ0,t is much larger than both σi,t and σ j,t. In this case, the common risk

term is dominant, and all the log return series are nearly perfectly correlated. On the

contrary, the conditional correlation matrix will be approaching the constant correlation

matrix R when the common risk term is much smaller than σi,t and σ j,t or is really close

to 0. Then, the conditional correlation will become time invariant which is the same as

a CCC-GARCH model. Mathematically,

Rt → J when σ0,t → ∞,

Rt → R when σ0,t → 0.
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Based on the specification in (1.5), Rt cannot be neither J or R as σ2
0,t is a linear com-

bination of σ2
i,t for i = 1, 2, · · · ,m. Nonetheless, the expression for σ2

0,t can have other

possibilities which might involve terms like σ2
0,t−1, x2

i,t−1 or σ2
i,t−1. This is only a demon-

stration of the potential of the model with the additive structure in (1.4).

1.4 Statistical Theory of multivariate models

Since the model proposed in the previous section follows a GARCH type structure, the

main tool used in this thesis can be borrowed from the GARCH models. The theories in

this thesis include the stationarity and ergodicity theorem, the consistency theorem and

the asymptotic normality theorem.

The strict stationarity of the univariate GARCH(1,1) model is proved in Klüppelberg

et al. (2004) by rewriting the conditional variance σ2
i,t as an infinite sum of the past

squared innovations {ε2
t }. Whether the process is strictly stationary depends on γ where

γ = E logαη2
t + β. The necessary and sufficient conditions for a univariate GARCH(p, q)

model is provided in Nelson and Cao (1992) and Tsai and Chan (2008). In the general

univariate GARCH (p,q), the latest p conditional variance can be combined with the last

q observed points to construct a linear representation in vector form. The top Lyapunov

exponent of the spectral radius of the coefficient matrix in the new form is used to control

the strong consistency.

The local consistency and asymptotic normality theorem of the QMLE in the uni-

variate GARCH(1,1) model is provided in Lumsdaine (1996). A local neighbourhood of

the true parameter is defined, then the consistency theorem is built inside this neigh-

bourhood under very restrictive assumptions. Lee and Hansen (1994) provide the strong

consistency among the whole parameter space in the univariate GARCH(1,1) setting un-

der the strictly stationary and ergodic assumption. The finite moment requirement is

only needed with the 4th moment to obtain the asymptotic normality. The consistency
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and asymptotic normality theorems in a univariate GARCH(p,q) model is very similar to

the GARCH(1,1) case which uses the top Lyapunov exponent and the finite 4th moment

plus some other conditions (see Berkes et al., 2003; Francq and Zaköıan, 2004).

The theories of the multivariate GARCH models are very complicated. The method-

ology in univariate cases cannot be extended to multivariate GARCH models. The results

of the multivariate models are studied case by case including both the stationary theory

and the asymptotic normality theory. Jeantheau (1998) proves the strong consistency

theory of the estimator under the strict stationary and the identifiable assumptions. As

an example, the detailed conditions to check the strict stationarity and the identifiability

for the CCC-GARCH model are included in the paper. Comte and Lieberman (2003) con-

tinues the next stage of the asymptotic theory which is the normality of the QMLE with

the finite 8th moment. The Markov chain theory in Meyn and Tweedie (2009) is used

to prove the stationarity and ergodicity of the BEKK GARCH model (Boussama et al.,

2011), the Vech GARCH model (see Hafner and Preminger, 2009b for the GARCH(1,1)

case, Jiang (2011) for the general GARCH (p,q) case) and the factor GARCH model

(Hafner and Preminger, 2009a). For the asymptotic normality, both Hafner and Pre-

minger (2009b) and Jiang (2011) prove it under the finite 6th moment while Hafner and

Preminger (2009a) requires only the finite 4th moment with the factor GARCH setting.

All of the proof of the asymptotic normality mentioned above follow the framework in

Chapter 4 of Amemiya (1985).

Francq and Zakoian (2010) provide a comprehensive summary of some multivariate

GARCH models in Chapter 11, including the BEKK, Vech and CCC GARCH models.

The stationarity theory is proved for Vech and CCC GARCH model while the estimation

theory with asymptotic results is only provided for CCC GARCH. For the DCC-GARCH

model, the theoretically sound statistical inference procedures do not yet exist, as noted

in Caporin and McAleer (2006).
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1.5 Organization of the Thesis

The notations and the new common underlying risk model have been introduced in

Section 1.3 above as well as some properties. The terms on the left hand side of (1.5) can

have other specifications. The main idea in this class of models is that both of these parts

are determined by the previous values iteratively. The similar theoretical derivation in

this thesis can be followed under moderately varying assumptions.

Chapter 2 states the stationarity and ergodicity theorem of our model, which is crucial

in time series. The sufficient but not necessary conditions are provided in the theorem. In

Chapter 3, the parameter estimation method using Gaussian quasi-maximum likelihood

is discussed. The strong consistency and the asymptotic normality of the estimator, two

important large sample results, are provided in this chapter. One of the assumptions

in this chapter can be substituted by the conditions in the previous chapter. Chapter 4

addresses the results of the Monte Carlo simulation study based on a bivariate exam-

ple. The example chosen in this chapter satisfies all the assumptions in Chapter 2 and

Chapter 3. Furthermore, some numeric issues and possible solutions are discussed in this

chapter. The last chapter, Chapter 5, concludes all the results and presents future work.



Chapter 2

Ergodicity and Stationarity

2.1 Introduction

The asymptotic theory of the quasi maximum likelihood estimator needs to be established

if the observed time series is stable in some kind of form. Moreover, the reliability of the

forecasting highly depends on this kind of stability. If a process is stable, the statistics

obtained from the sample could be used to describe the future behavior of the process.

In addition, some of the statistical properties of the process will remain the same in the

future as the observed past. The type we would like to choose to describe the stability

in this multivariate time series model is the stationarity and geometric ergodicity.

The stationarity of a stochastic process has two different forms, the strict (or strong)

stationarity and the weak (or second order) stationarity. The strong stationarity is defined

in terms of the joint distribution while the weak one is based on the first and second

moments. Their definitions can be found in almost any textbook on time series analysis,

see Tsay (2010) and Francq and Zakoian (2010) as examples.

Definition 2.1 (Weak Stationarity)

The process {Yt} is weakly stationary if,

1. the mean of the process does not change over time which means

19
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EYt = µ for all t ∈ Z,

2. the autocovariance of the process is finite and it does not change when time is shifted

cov(Yt,Yt+l) = γ(l) for all l, t ∈ Z and γ(0) < ∞.

Definition 2.2 (Strict Stationarity)

The process {Yt} is said to be strictly stationary if the joint distribution of (Yt1 , · · · ,Ytk) is

identical to that of (Yt1+l, · · · ,Ytk+l) for all l ∈ Z , where k is an arbitrary positive integer

and (t1, ..., tk) is any collection of k integers. It is written as

(Yt1 , · · · ,Ytk)
d
= (Yt1+l, · · · ,Ytk+l),

where
d
= means equal in distribution.

On the one hand, the weak stationarity does not imply strict stationarity since the

higher moments of the process may depend on time t, but on the other hand, a strictly

stationary process with a finite second moment is weakly stationary. A measurable

function of a strictly stationary variable is still strictly stationary, but this is not true for

the weakly stationary variables. In this section, we will prove the strict stationarity of

the process in Section 1.3.

The definition of an ergodic process is very technical. Intuitively, if a process is

ergodic, the initial values will be irrelevant in the long run. The ergodicity is the requisite

to apply the ergodic theorem, which is a law of large numbers of the stochastic process.

By the ergodic theorem, the average of time series converges to the same limit as the

ensemble average when the sample size gets large, and this limit could be considered as

the center of the process, then the process will return to the center in a finite time on

average or we can say that the expected return time to the center is finite.
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The form of ergodicity used in Hafner and Preminger (2009b) is the V-geometric er-

godicity which means that the difference between the t-step transition probability mea-

sure Pt(y, ·) and the stationary probability measure converges at a geometric rate under

the V-norm distance measure. The form we choose here is the V-uniform ergodicity which

is a special case of the V-geometric ergodicity.

Definition 2.3 (V-Uniform Ergodicity, Ch16 in Meyn and Tweedie (2009))

Consider an ergodic Chain Y on the state space S , and let P(y, ·) be the transition proba-

bility, π(·) be its stationary distribution. V is a positive function such that V : S → [1,∞).

The chain is said to be V-uniform ergodic if

∥∥∥∣∣∣Pt(y, ·) − π(·)
∣∣∣∥∥∥

V
→ 0, t → ∞

where Pt(y, ·) is the t-step transition probability and the V-norm distance between P1 and

P2 is defined as

‖|P1 − P2|‖V := sup
y∈S

‖P1(y, ·) − P2(y, ·)‖V
V(y)

= sup
y∈S

sup|g|≤V |P1(y, g) − P2(y, g)|

V(y)
.

From the definitions listed above, we could see that both the stationarity and er-

godicity require the process to remain unchanged but in different ways. The stationarity

requires that some properties of the process do not change over time, while the ergodicity

demands the behavior of the sequence stays the same not only over time but also over the

defined state space. Hence the stationarity is a necessary but not a sufficient condition

for ergodicity (Bendat and Piersol, 2010).

When the parameters in our defined model satisfy certain conditions, they will gen-

erate the process which has the desired statistical properties. We provide the sufficient

conditions for a common risk process to be stationary and ergodic in this chapter.

In the appendix of Hafner and Preminger (2009b), a technique is provided to show

us how to rewrite a multivariate GARCH(1,1) model as a suitable state space expres-
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sion when they prove Theorem 1, and Jiang (2011) extends this theorem into a general

multivariate GARCH(p,q) model. The same methodology in their paper is used to proof

the stationarity and ergodic theorem in this thesis. The observed process is combined

with the unobservable conditional volatility terms to form a higher dimensional recursive

formula. Then, this specification can be reduced to a lower dimensional representation

which depends on the volatilities and innovations only. Therefore, the new specification

can be treated as a chain to use the theorems in Meyn and Tweedie (2009).

2.2 Markovian Process and Nonlinear State Space

Model

The first step is to change the model in Section 1.3 into a special form such that the

classical well-developed theory of Markov Chains can be applied.

The general model specified by (1.5) and (1.4) can be rewritten in a different form

in order to apply the standard theory of Markovian structures. The last term in (1.5),

σ2
0,t−1, is replaced by other terms. Hence, the stochastic process at time t, xt, can be

written as a function of previous conditional variances σ2
1,t−1, σ

2
2,t−1, · · · , σ

2
m,t−1 and the

current innovation variables εt.



x1,t =ε0,t

√
β01[ω1 + α1x2

1,t−1 + β1σ
2
1,t−1] + · · · + β0m[ωm + αmx2

m,t−1 + βmσ
2
m,t−1]

+ ε1,t

√
ω1 + α1x2

1,t−1 + β1σ
2
1,t−1

· · · · · ·

xm,t =ε0,t

√
β01[ω1 + α1x2

1,t−1 + β1σ
2
1,t−1] + · · · + β0m[ωm + αmx2

m,t−1 + βmσ
2
m,t−1]

+ εm,t

√
ωm + αmx2

m,t−1 + βmσ
2
m,t−1

σ2
1,t =ω1 + α1x2

1,t−1 + β1σ
2
1,t−1

· · · · · ·

σ2
m,t =ωm + αmx2

m,t−1 + βmσ
2
m,t−1,

(2.1)
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Then, a 2m-dimensional Markovian process {Z t} is formed where Z t = (Z1,t, · · · ,Z2m,t)ᵀ =

(x1,t, · · · , xm,t, σ
2
1,t, · · · , σ

2
m,t)
ᵀ at each time point t. Then

Z t = G(Z t−1, εt) =



g1(Z t−1, εt)
...

gm(Z t−1, εt)

gm+1(Z t−1, εt)
...

g2m(Z t−1, εt)


.

(2.2)

where g1, · · · , g2m are some deterministic non-linear functions.

Meyn and Tweedie (2009) summarized the tools to study stochastic processes follow-

ing different kinds of chain structures. Our model written in (2.1) fits into the framework

of a multidimensional nonlinear state space model defined in Chapter 2.2.2 of Meyn and

Tweedie (2009).

Definition 2.4 (Nonlinear State Space Model or NSS(F))

A stochastic process Y = {Yt} is called a nonlinear state space model driven by F with

control set Ow or NSS(F) if

NSS1 for each t ≥ 0, Yt and Wt are random variables on Rn and Rp respectively, satisfying

inductively for t ≥ 1,

Yt = F(Yt−1,Wt)

for some smooth (C∞) function F : S × Ow → S , where S is an open subset of Rn

and Ow is an open subset of Rp;

NSS2 the random variables {Wt} form an i.i.d. disturbance sequence on Rp, whose

marginal distribution Γ possesses a density γw which is supported on an open set

Ow.
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Define the sequence of inductive mappings: {Ft : S × Ow → S : t ≥ 0}:

F0(y0) = y0, F1(y0, u1) = F(y0, u1),

Ft(y0, u1, u2, · · · , ut) = F(Ft−1(y0, u1, u2, · · · , ut−1), ut) for t > 1

At each time t, the latter half of the multivariate function G in (2.2) from gm+1 to g2m is

completely determined by the past Z t−1 which does not involve any randomness from the

innovation in any sense. We could use the relationship between Z t and (Z t−1, εt) in the

first half of this G function and substitute the corresponding terms in the second half.

Therefore,



σ2
1,t = ω1 + α1

(
ε1,t−1σ1,t−1 + ε0,t−1

√
β01σ

2
1,t−1 + · · · + β0mσ

2
m,t−1

)2

+ β1σ
2
1,t−1

σ2
2,t = ω2 + α2

(
ε2,t−1σ2,t−1 + ε0,t−1

√
β01σ

2
1,t−1 + · · · + β0mσ

2
m,t−1

)2

+ β2σ
2
2,t−1

· · · · · ·

σ2
m,t = ωm + αm

(
εm,t−1σm,t−1 + ε0,t−1

√
β01σ

2
1,t−1 + · · · + β0mσ

2
m,t−1

)2

+ βmσ
2
m,t−1.

(2.3)

After all these operations, the original 2m dimensional Markov model above is reduced

into an m dimensional formulation. This new m dimensional representation still follows

a Markovian structure.

Define

Yt = F(Yt−1,Wt), (2.4)

where Yt = (σ1,t, σ2,t, · · · , σm,t)ᵀ and Wt = εt−1. This process can be treated as a homoge-

neous Markov chain. The process {Yt} written in (2.4) is an NSS(F) where F is a smooth

function with S ∈ (0,∞)m and an m + 1 dimensional innovation process Wt satisfying

NSS2 on the control set.

Definition 2.5 (The Associated Control Model CM(F))
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CM1 The deterministic system

yt = Ft(y0, u1, u2, · · · , ut), t ∈ N+,

where the sequence of maps {Ft : S × Ot
w → S , t ∈ N} has been defined above,

is called the associated control system for the NSS(F) model, denoted by CM(F),

given the deterministic control sequence {u1, u2, · · · , ut−1, ut, t ∈ N+} lies in the control

set Ow ⊆ R
p.

For an m dimensional vector Y = (Y1,Y2, · · · ,Ym)ᵀ and another m + 1 dimensional vector

U = (U1, · · · ,Um,Um+1), we define functions f1, . . . , fm as

f1(Y,U) =

√
ω1 + α1

(
U1Y1 + Um+1

√
β01Y2

1 + · · · + β0mY2
m

)2

+ β1Y2
1

f2(Y,U) =

√
ω2 + α2

(
U2Y2 + Um+1

√
β01Y2

1 + · · · + β0mY2
m

)2

+ β2Y2
2

· · · · · ·

fm(Y,U) =

√
ωm + αm

(
UmYm + Um+1

√
β01Y2

1 + · · · + β0mY2
m

)2

+ βmY2
m.

It is easy to see that these functions are the components of the function F in (2.4), which

means

Yt = F(Yt−1,Wt) =


f1(Yt−1,Wt)

...

fm(Yt−1,Wt)

 . (2.5)

The irreducibility of the original stochastic process could be studied based on the associ-

ated control model driven by F. The control model associated with F defined in (2.4) is

denoted by yt given the control sequence {u1,u2, · · · ,ut−1,ut} where yt = (y1,t, y2,t, · · · , ym,t).

Hence the sequence of function {Ft} is specified by
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F1(y0,u1) = F(y0,u1),

yt = Ft(y0,u1,u2, · · · ,ut−1,ut) t > 1.

If we could prove the geometric ergodicity of the process {Yt}, then it is natural that

{Zt−1} and the original process {xt} are ergodic as well (Proposition 4 of Carrasco and

Chen 2002).

2.3 Ergodicity and Stationarity Theorem

The main result of this chapter is included in this section. The observable process xt

will be stationary and ergodic under the four assumptions. These four assumptions are

sufficient but not necessary for the conclusion in this theory.

Theorem 2.3.1 (Geometric Ergodicity)

Consider the stochastic process Xt defined by (1.4) and (1.5) and its matching dimension

reduced form in (2.5). Assume that:

A1 The marginal distribution of {εt} is given by a lower semi continuous density fεt w.r.t.

the Lebesgue measure which has support of an open set on Rm+1. The initial value

Y0 in (2.5) is independent of {εt};

A2 αi > 0 and ωi > 0 for i = 1, 2, . . . ,m;

A3 αi + βi < 1 for i = 1, 2, . . . ,m;

A4 There exist a positive integer p1 and a positive number s3 ≤ 2 such that

sup
ȳ
E

[
‖B(ȳ, εt)‖s3

p1

]
< 1, where B is the partial derivative of function F(Y,W) with

respect to the first variable Y, and the matrix norm ‖·‖ is the operator norm corre-

sponding to a given vector p-norm.
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Under Assumptions A1 − A4, the process {Yt} is geometrically ergodic and a time invari-

ant measure π exists. Then the original process {Xt} is also geometrically ergodic. If

the process {Xt} starts from the stationary distribution, it becomes a strictly stationary

process.

The first assumption, A1, is a regular constraint with respect to the distribution of

the innovations. It is easily satisfied by all well defined continuous densities such as the

normal density and the student-t density. Assumptions A1 and A2 are needed for forward

accessibility which means the chain can be controlled using a certain control sequence for

all possible states in the space defined. In addition, Assumptions A2 and A3 lead to the

conclusion that a universal attracting point exists for any starting state.

The last assumption is associated with the drift of the chain. When this assumption

is satisfied, the mean of the one-step drift is controlled by the current state. If the current

state is far from the attracting state, the chain has a tendency to pull the process back

near the attracting point in the next step. The last assumption seems really abstract and

the verification of such an assumption is not easy. The detailed steps of verification are

included in Chapter 4, which includes performing a Monte Carlo simulation.

There are two existence conditions included in the last assumption, s3 and p1. This

assumption could be modified. The existence of p1 might be weakened by using the

spectral radius of the matrix since it is the lower bound of the matrix induced norm.

Both Hafner and Preminger (2009b) and Jiang (2011) proposed the ergodic theory for

multivariate Vech GARCH model based on similar assumptions. Assumption 2.3 in

Hafner and Preminger (2009b) and Assumption A4 in Jiang (2011) are special cases of

Assumption A4 here. In their setting, the integer p1 has been set to be 2 and the existence

of s3 was proved by the continuity of an exponential function.

The moment conditions, Assumption 2.2 in Hafner and Preminger (2009b) and As-

sumption A2 in Jiang (2011), are needed here as well. These conditions are embedded in

the model setup since the second moment of εt is Σ which is finite.
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2.4 Proof of the Theorem

Some of the definitions from Meyn and Tweedie (2009), which are used in this chapter,

are provided in Appendix B.

The drift condition V4 as (15.28) in Meyn and Tweedie (2009) is essential when we

want to prove the theorem in this chapter. We start this section by introducing the

concept of geometric drift towards some set C which is the drift condition V4 in Meyn

and Tweedie (2009).

Geometric Drift Towards C

There exist an extended-real values function V : Z → [1,∞], a measurable set C,

and constants δ > 0, ν < ∞, such that

∆V(z) ≤ −δV(z) + ν1C(z), z ∈ Z, (2.6)

where ∆V(z) is the one step ‘mean-drift’ on a chain which is defined as

∆V(z) :=
∫

P(z, dy)V(y) − V(z) = E[V(Xt+1)|Xt = z] − V(z), z ∈ Z. (2.7)

The proof of Theorem 2.3.1 will be divided into two main parts,

� the NSS(F) model is a ψ-irreducible aperiodic T-chain in Lemma 2.4.1 below,

� there is a V function which satisfies the drift condition above on a petite set C in

Lemma 2.4.4 below.

The existence of such a V function will lead to the geometric ergodicity of the process

{Yt}, given that {Yt} is a ψ-irreducible aperiodic chain (Theorem 15.0.1 and Theorem

16.0.1 of Meyn and Tweedie, 2009).

If the function V used in the geometric drift condition is unbounded on the whole state

space but bounded on C, then the chain is positive recurrent with invariant probability
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measure π (Theorem 15.0.10 of Meyn and Tweedie, 2009). As in (i) of Theorem 15.0.10

of Meyn and Tweedie (2009), for all x ∈ C,
∣∣∣Pt(y,C) − P∞(C)

∣∣∣→ 0 when t → ∞ such that

P∞ = π.

The same assumptions lead to the V-uniform ergodicity of the process {Yt}, which is

a more general form of ergodicity than the geometric ergodicity (see Chapter 16 of Meyn

and Tweedie, 2009 and Jiang (2011)).

Lemma 2.4.1 Under Assumptions A1−A3, the CM(F) associated with NSS(F) in (2.4)

is a ψ-irreducible aperiodic T-chain.

Proof Under Assumptions A1 and A2, the NSS(F) is a T-chain (Definition B.1 in Ap-

pendix B) since the CM(F) is forward accessible by Proposition 7.1.4 of Meyn and

Tweedie (2009) (the proof of forward accessibility refers to Lemma 2.4.2 below). An

equivalent form of the M-irreducibility of the CM(F) (Definition B.4 in AppendixB),

which is the existence of a fixed globally attracting point y∗ (Theorem 7.2.5 of Meyn and

Tweedie, 2009), has been proved in Lemma 2.4.3 under Assumption A3. The control

sequence {yt} will converge to this y∗ as t → ∞ under a control sequence {ut = u∗} from

any possible initial state y0. So the M-irreducible CM(F) leads to the conclusion that the

NSS(F) is ψ-irreducible (Theorem 7.2.5 and Theorem 7.2.6 of Meyn and Tweedie, 2009).

Such a control model has a minimal set M (the same set in M-irreducible) which can

be uniquely (in some sense) partitioned into finite disjoint closed sets Q = {Qi : 1 ≤ i ≤ l}

for an integer l ≥ 1 (i.e. M =
⋃l

i=1 Qi) and Q is a periodic orbit (Theorem 7.3.3 of Meyn

and Tweedie, 2009). Since there is a globally attracting point y∗ contained in the minimal

set M, y∗ is reachable at almost any time. In other words, y∗ belongs to each Qi, so we

conclude that l is 1 and the minimal set is aperiodic.

By Theorem 7.3.5 of Meyn and Tweedie (2009), the NSS(F) model is a ψ-irreducible

aperiodic T-chain if the CM(F) is an M-irreducible chain and its unique minimal set M

is aperiodic. �
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Therefore, the proof of Theorem 2.3.1 is equivalent to verifying the following conditions:

1. The associated control model driven by F, yt, is forward accessible under Assump-

tions A1 and A2.

2. The globally attracting point of the CM(F) y∗ exists if Assumption A3 is satisfied.

3. The drift condition (2.6) is satisfied under Assumption A4 with an unbounded drift

function V with a petite set C.

These three conditions are verified in different lemmas below.

Lemma 2.4.2 If Assumptions A1 and A2 are satisfied, then the associated control model

driven by F defined in (2.5) is forward accessible.

Proof For a given initial value in the support, y0 ∈ S , and a control sequence {ut :

ut ∈ Ow, t ∈ N+}, let {Bt+1 : t ∈ N} denote the partial derivative matrix of function F

with respect to the first variable and let {At+1 : t ∈ N} denote the partial derivative

matrix of function F with respect to the second variable, both evaluated at (yt ,ut+1).

Mathematically,

Bt+1 = Bt+1(y0,u1,u2, · · · ,ut+1) = B(yt ,ut+1) :=
[
∂F
∂y

]
(yt ,ut+1)

,

At+1 = At+1(y0,u1,u2, · · · ,ut+1) = A(yt ,ut+1) :=
[
∂F
∂u

]
(yt ,ut+1)

,

where yt = Ft(y0,u1,u2, · · · ,ut).

A short notation γ(yt) is used to replace the expression
√
β01y2

1,t + · · · + β0my2
m,t in all

the equations below. Hence, the complicated expressions contained in the elements of

the matrices At+1 and Bt+1 can be simplified in writing.

As we can see, the elements of At+1 and Bt+1 are functions of yt and ut+1. Bt+1 is

an m × m square matrix while At+1 is an m by m + 1 matrix. Moreover, matrix At+1
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can be divided into an m dimensional diagonal matrix AA(yt ,ut+1) and a column vector

AB(yt ,ut+1).

Specifically,

B(yt ,ut+1) =



bb1,1 bb1,2 . . . bb1,m−1 bb1,m

bb2,1 bb2,2 . . . bb2,m−1 bb2,m

...
...

. . .
...

...

bbm−1,1 bbm−1,2 . . . bbm−1,m−1 bbm−1,m

bbm,1 bbm,2 . . . bbm,m−1 bbm,m


and

A(yt ,ut+1) =

(
AA(yt ,ut+1)m×mAB(yt ,ut+1)m×1

)
=



aa1,1 0 . . . 0 ab1,m+1

0 aa2,2 . . . 0 ab2,m+1

...
...

. . .
...

...

0 0 . . . aam,m abm,m+1


,

where

bbi,i =

αi(ui,t+1yi,t + um+1,t+1γ(yt))(ui,t+1 +
um+1,t+1β0iyi,t

γ(yt)
) + βiyi,t

fi(yt ,ut+1)

for i = 1, · · · ,m,

bbi, j =
αi(ui,t+1yi,t + um+1,t+1γ(yt))um+1,t+1β0 jy j,t

fi(yt ,ut+1)γ(yt)

for i , j and i, j = 1, · · · ,m and

aai,i =
αi(ui,t+1yi,t + um+1,t+1γ(yt))yi,t

fi(yt ,ut+1)
. (2.8)

abi,m+1 =
αi(ui,t+1yi,t + um+1,t+1γ(yt))γ(yt)

fi(yt ,ut+1)

for i = 1, · · · ,m.
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Denote the generalized controllability matrix along with the control sequence u1,u2, . . . ,ut

by Ct
y0
, t = 1, 2, 3, . . .,

Ct
y0

:= [Bt · · · B2A1|Bt · · · B3A2| · · · |BtAt−1|At].

The non-linear control model driven by F is forward accessible if and only if for each initial

value y0 ∈ S , there exist t ∈ N+ and a sequence of control variables −→u 0 = (u1
0, · · · ,ut

0) ∈

Ot
w such that the rank of Ct

y0
is full ( Proposition 7.1.4 of Meyn and Tweedie, 2009).

In this transformed setup, we need to find a t and a control sequence which satisfies

rankCt
y0

(−→u 0) = m. (2.9)

Starting from t = 1, we will move on to t = 2 if we cannot find a −→u 0 = (u1) to satisfy the

rank condition in (2.9) under Assumption A2.

When t = 1,

Ct
y0

= (A1)m×(m+1) = (AA(y0,u1)m×mAB(y0,u1)m×1),

where AA is the diagonal matrix. If AA is a full rank matrix with rank m, we could

conclude that the CM(F) is forward accessible because the condition in (2.9) is met.

Then, the sufficient condition for the forward accessibility is changed to find a suitable

u1 such that the diagonal elements of matrix AA defined above in (2.8) are non-zero. From

the model setup and Assumption A2, it is easy to see αi > 0, yi,0 > 0 and fi(y0,u1) > 0.

Hence, any m + 1 dimensional u1 satisfies

(ui,1yi,0 + um+1,1γ(y0)) , 0 for i = 1, 2, . . . ,m (2.10)

would work here. �

We will determine the value of this control variable u1 in the next part of this section
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so that it can serve the purpose of both the 1st and the 2nd conditions in the proof of

this theorem.

In the rest of this chapter, we are going to measure the distances between vectors and

work with the mean value theorem in multivariate cases. The partial derivative of the

multidimensional function F with respect to a vector is a matrix. Thus, the first question

we need to answer is how to define an appropriate vector norm as well as a matrix norm.

The vector norm used in this thesis is the Lp norm and the matrix norm is chosen

to be the corresponding induced operator norm. For p ≥ 1, the Lp norm of a vector

y = (y1, . . . , yn) is

‖y‖p :=

 n∑
i=1

|yi|
p

1/p

.

The operator norm of a m × n matrix A corresponding to a given vector p-norm is

defined as

‖A‖p : = sup
y

{
‖Ay‖p

‖y‖p
: y ∈ Rn, ‖y‖p , 0

}
= sup

y

{
‖Ay‖p : y ∈ Rn, ‖y‖p = 1

}
.

There is no easy way to calculate the induced matrix norm for a general p except

for these special values, 1, 2 and ∞. However, if A is a diagonal matrix, the p-norm of

A is always the absolute value of the largest diagonal element by the definition of the

operator norm. The searching process in this section takes advantage of this property,

which helps reduce the complication of the induced matrix norms.

Lemma 2.4.3 There exists a globally attracting point in the associated control model

driven by F under Assumption A3.

Proof Given an induced matrix norm ‖·‖p, the mean value theorem of multidimensional

variables has been applied on the difference between the control points yt+1 and yt under

the control sequence {ut = u∗}. There exists a m dimensional vector yt
∗ between these
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two points, such that

‖yt+1 − yt‖p = ‖F(yt ,u∗) − F(yt−1,u∗)‖p

=

∥∥∥∥∥∥(yt − yt−1) ·
[
∂F
∂y

]
(yt∗,u∗)

∥∥∥∥∥∥
p

= ‖(yt − yt−1) · B(yt
∗,u∗)‖p

≤ ‖yt − yt−1‖p ‖B(yt
∗,u∗)‖p .

(2.11)

where p is a fixed positive integer.

If

‖B(yt ,u∗)‖p < 1 (2.12)

is true for any yt in the space with a fixed u∗, then we can find a constant ρ0 on the cord

of sup
y
‖B(yt ,u∗)‖p and 1, and apply the inequality in (2.11) iteratively. So,

‖yt+1 − yt‖p ≤ ‖yt − yt−1‖p ρ0 ≤ . . . ≤ ρ
t
0 ‖y1 − y0‖p .

The change between time steps ‖yt+1 − yt‖p, given the control variable u∗, is approaching

0 when t goes to infinity, i.e.

yt → y∗ as t → ∞.

This proves the existence of the globally attracting point y∗ in the control model.

In order to prove the existence of the globally attracting point, we only need to find

a control variable u∗ which satisfies the condition in (2.12). Since both p and u∗ are

unknown, a straightforward way to simplify the condition is to set the last element of u∗,

u∗m+1, to be zero. Then the matrix B is changed to be a diagonal matrix, the value of p will

not have any effect on the result of ‖B(yt ,u∗)‖p. Therefore, the condition in (2.12) becomes

‖B(yt ,u∗)‖p = max

 α1u∗21 y1 + β1y1√
ω1 + α1u∗21 y2

1 + β1y2
1

, . . . ,
αmu∗2m ym + βmym√

ωm + αmu∗2m y2
m + β1y2

m

 < 1. (2.13)
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Then the inequality above could be further simplified as

(αiu∗2i + βi)(αiu∗2i + βi − 1)y2
i − ωi < 0

for i = 1, . . . ,m. The first m elements in u∗ could be chosen as any combination of

−

√
1 − β1

α1
≤ u∗1 ≤

√
1 − β1

α1
, . . . ,−

√
1 − βm

αm
≤ u∗m ≤

√
1 − βm

αm
,

so that αiu∗2i + βi − 1 ≤ 0, which makes the inequality in (2.13) true for any y in the state

space.

By Assumption A3, for any θ in the parameter space, we could choose the control

variable to be u∗ = (1, . . . , 1, 0), which will satisfy the condition in (2.12) and lead to the

existence of a globally attracting point.

This control variable does not only satisfy (2.13) but also fulfill the full rank condition

(2.10) in Lemma 2.4.2. �

The last piece of the puzzle is to find the fixed constant p so that both the vector

norm and the induced matrix norm can be defined.

The drift condition V4 in Meyn and Tweedie (2009) needs to be verified under the

original stochastic model Yt instead of the associated control model yt in the previous

subsections.

Lemma 2.4.4 The drift condition (2.6) is satisfied under Assumption A4 with an un-

bounded drift function V with a petite set C.

Define a function V as

V(Y) = 1 + ‖Y‖s3
p1
, (2.14)

where s3 and p1 are the same numbers as the ones stated in Assumption A4.

Proof Suppose the globally attracting point in Lemma 2.4.3 is denoted by y∗. By the

mean value theorem, we can get
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V(Yt) = 1 + ‖Yt‖
s3
p1

= 1 + ‖F(Yt−1,Wt) − F(y∗,Wt) + F(y∗,Wt)‖
s3
p1

= 1 + ‖B(Yt−1
′,Wt) · (Yt−1 − y∗) + F(y∗,Wt)‖

s3
p1

Yt−1
′ is between Yt−1 and y∗

= 1 + ‖F(y∗,Wt) − B(Yt−1
′,Wt)y∗ + B(Yt−1

′,Wt)Yt−1‖
s3
p1
.

(2.15)

By Minkowski’s inequality,

E[V(Yt+1)|Yt = y]

=1 + E ‖F(y∗,Wt+1) − B(yt
′,Wt+1)y∗ + B(yt

′,Wt+1)y‖s3
p1

≤1 + E ‖F(y∗,Wt+1) − B(yt
′,Wt+1)y∗‖s3

p + ‖y‖sp E ‖B(yt
′,Wt+1)‖s3

p1

≤1 + E ‖F(y∗,Wt+1)‖s3
p1

+ ‖y∗‖s3
p E ‖B(yt

′,Wt+1)‖s3
p1

+ ‖y‖s3
p1
E ‖B(yt

′,Wt+1)‖s3
p1 .

For any given y, yt
′ is a fixed point between y and the globally attracting point y∗ without

any randomness. Assumption A4 is equivalent to that E ‖B(yt
′,Wt+1)‖s3

p1
< 1 is true for

any points yt
′ within that interval and for any possible y. The value in Assumption A4,

sup
ȳ
E

[
‖B(ȳ,Wt+1)‖s3

p1

]
, is denoted by λ in the following statements.

So,

E[V(Yt+1)|Yt = y] ≤ λV(y) + ν (2.16)

where

ν = 1 − λ + E ‖F(y∗,Wt+1)‖s3
p1

+ ‖y∗‖s3
p1
E ‖B(yt

′,Wt+1)‖s3
p1
.

Then drift function defined in (2.7) becomes

∆V(y) = E[V(Yt+1)|Yt = y] − V(y) ≤ (λ − 1)V(y) + ν.

The measurable set C is chosen as
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C =

{
Y : V(Y) = 1 + ‖Y‖s3

p1
≤

2
1 − λ

ν

}
. (2.17)

We can see that
2

1 − λ
≥ 2, it is easy to tell that C is not an empty set.

Since C is a union of closed intervals on real numbers, C is a compact set. By

Theorem 6.2.5 in Meyn and Tweedie (2009), C has to be a petite set since the chain Yt

is a ψ-irreducible T-chain.

For Y ∈ C, since λ < 1 and V(Y) > 0,

∆V(Y) ≤
λ − 1

2
V(Y) + ν.

For Y < C, so V(Y)
1 − λ

2
> ν,

∆V(Y) ≤
λ − 1

2
V(Y).

Let δ =
1 − λ

2
and the measurable set C to be the one in (2.17). The task left in the

drift condition (2.6) is to verify that ν is finite. The finiteness of ν is equivalent to the

finiteness of E ‖F(y∗,Wt+1)‖s3
p1

and E ‖B(Yt
′,Wt+1)‖s3

p1
. By the model setup, E ‖Wt+1‖

2 is Σ

which is finite, so E ‖Wt+1‖
s3
p1

is finite when s3 ≤ 2. This model setup would lead to the

finiteness of E ‖F(y∗,Wt+1)‖s3
p1

.

From the previous proof, we can get

E ‖B(yt
′,Wt+1)‖s3

p1
≤ λ < 1.

The finiteness of ν follows. �
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Gaussian QMLE and its Asymptotic

Theory

In this chapter, a parameter estimation method called Gaussian quasi-maximum like-

lihood (QML) will be used to find the parameter values. The estimator (QMLE) will

converge as the sample size increases, which leads to two important asymptotic results.

The first one is the estimator converges to the true value almost surely, and the other one

is, after choosing a scale related to the sample size, the difference between the estimator

and the true parameter converges to a normal distribution. In brief, we will establish

the strong consistency and the asymptotic normality theorem under certain conditions

in this chapter.

3.1 Gaussian Quasi-Maximum Likelihood Estimator

A distribution must be specified for the innovation εt process in order to form the likeli-

hood function. The maximum likelihood (ML) method is particularly useful in statistical

inferences because it usually provides an estimator which is both consistent and asymp-

totically normal. The quasi-maximum likelihood (QML) method could draw statistical

inferences based on an even misspecified distribution of the innovations while the ML

38
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method assumes that the true distribution of the innovations is the specified distribu-

tion. ML method essentially is a special case of the QML method with no specification

error.

The observations xt’s are assumed to follow a realization of an m-dimensional common

risk process with an unknown true parameter

θ0 = (ρ(0)
1,2, · · · , ρ

(0)
m−1,m, ω

(0)
1 , · · · , ω(0)

m , α(0)
1 , · · · , α(0)

m , β(0)
1 , · · · , β(0)

m , β(0)
01 , · · · , β

(0)
0m)ᵀ,

which belongs to a parameter space of the form

Θ ⊂ [−1, 1]
m(m−1)

2 × [0,∞)4m. (3.1)

Under the assumption of normally distributed driving innovations , εt’s, we could estimate

θ0 by constructing the Gaussian quasi likelihood function based on the one-step ahead

density of conditional distribution xt |Ft−1.

The observations in (1.4) can be written as linear combinations of normally distributed

variables given the past. Therefore, the conditional distribution of the observations xt’s

are multivariate normal too, e.g. xt |Ft−1 ∼ N(0,Ht). The model in (1.4) and (1.5) can be

revised to a different form as



xt |Ft−1 = H1/2
t ξt

Ht =



σ2
0,t + σ2

1,t σ2
0,t + ρ1,2σ1,tσ2,t . . . σ2

0,t + ρ1,mσ1,tσm,t

σ2
0,t + ρ1,2σ1,tσ2,t σ2

0,t + σ2
2,t . . . σ2

0,t + ρ2,mσ2,tσm,t

...
...

. . .
...

σ2
0,t + ρ1,mσ1,tσm,t σ2

0,t + ρ2,mσ2,tσm,t . . . σ2
0,t + σ2

m,t


,

(3.2)

where the innovations ξt are a sequence of i.i.d m-dimensional standard normal variables.

Then the quasi log likelihood function for n observations is conditional on an initial in-
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formation set F0, up to an additive constant and a constant scale, given by

Ln(θ) = −
1
n

n∑
t=1

{log|Ht(θ)| + xt
ᵀHt(θ)−1xt} = −

1
n

n∑
t=1

lt(θ). (3.3)

where Ft = σ{εt , εt−1, . . .}.

Theoretically, {x1,0, · · · , xm,0, σ1,0, · · · , σm,0}, which are drawn from their stationary dis-

tribution or depends on the infinite past. However, we do not possibly know their station-

ary distribution in practice, which makes this likelihood impossible to work with. What

we can do is to work with the likelihood function conditional on some finite given initial

values or a finite past. Define L̃n(θ) as the target function or the quasi log likelihood

which is conditional on a set of initial values {x̃1,0, · · · , x̃m,0, σ̃1,0, · · · , σ̃m,0}. The choice of

the the initial value is almost arbitrary, the only constraint is that σ̃1,0, · · · , σ̃m,0 need to

take some non negative values.

Based on this initial value, we define σ̃1,t, · · · , σ̃m,t for t ≥ 2 iteratively as



σ̃2
1,t = ω1 + α1x2

1,t−1 + β1σ̃
2
1,t−1

σ̃2
2,t = ω2 + α2x2

2,t−1 + β2σ̃
2
2,t−1

· · · · · ·

σ̃2
m,t = ωm + αmx2

m,t−1 + βmσ̃
2
m,t−1.

For t = 1, we just change the values x1,0, · · · , xm,0 to x̃1,0, · · · , x̃m,0 in the iteration above.

Then, other terms H̃t(θ), l̃t(θ) and L̃n(θ) can be defined analogously,

L̃n(θ) = −
1
n

n∑
t=1

{log|H̃t(θ)| + xt
ᵀH̃t(θ)−1xt} = −

1
n

n∑
t=1

l̃t(θ). (3.4)

This L̃n is called the observed likelihood which is also a conditional quasi likelihood, and

the corresponding filtration F̃t = σ{εt , εt−1, . . . , ε0} for t ≥ 0. It is found that H̃1 is a fixed

matrix since all the elements are determined by x̃1,0, · · · , x̃m,0. The similarity between

these two likelihood functions is visible, we will explain more on their difference. (3.4) is
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conditional on any possible initial values whereas (3.3) is conditional on the stationary

distribution (or a random variable based on infinite past). L̃n(θ) is a statistic which can

be calculated from the observable data, whereas it is not possible to get Ln(θ) based on

the observations. The impact of any two different initial sets will vanish when the sample

size approaches to infinity. Despite that, the choice of the initial value does have its

practical effect on other aspects when we solve the optimization problem numerically,

such as computational cost, efficiency, etc. L̃n in (3.4) is the quasi likelihood function in

this chapter while it may have different meanings in another context.

The QML estimator is defined on the workable function in (3.4) as

θ̂n = arg max
θ∈Θ

L̃n(θ)

= arg min
θ∈Θ

1
n

n∑
t=1

{log|H̃t(θ)| + xt
ᵀH̃t(θ)−1xt}

= arg min
θ∈Θ

1
n

n∑
t=1

l̃t(θ).

(3.5)

We are investigating the statistical property of this estimator in the rest of this chapter.

3.2 Strong Consistency

The first asymptotic result we are interested in is the consistency since the consistency

describes the relationship between the sample size and how far the estimate is from the

true value. As the sample size increase indefinitely, the estimate can be arbitrarily close

to the true value in some sense. In this section, we show that the estimate converges to

the true value almost surely as the sample size approaches infinity.

We start this section with the concept of parameter identifiability, which is crucial for

the strong consistency.

Definition 3.1 (Parameter Identifiability)
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Suppose that Ht(θ) be the conditional second moment of xt, Θ be the parameter space.

Then Ht(θ) is identifiable if ∀θ1, θ2 ∈ Θ and all t ∈ Z

Ht(θ1) = Ht(θ2) a.s.⇒ θ1 = θ2.

Since the model is a parametric model, the parameter identifiability and the model

identifiability are the same in this setting. This definition of identifiability is consistent

with Jeantheau (1998). We note that we are dealing with a stochastic process whose

conditional distribution belongs to a location-scale family. The location has been set to

be 0, and the conditional scale is Ht(θ).

The principal term σ0,t contributes to all the conditional volatilities at the same time.

It is necessary to study the condition of parameter identification since the parameter

estimates are based on maximizing the likelihood function. If the parameters are not

identifiable, we could end up with different estimates when we choose different initial

searching points.

Theorem 3.2.1 (Model Identifiability Theorem)

Assume that:

A5 The law of εt is such that there is no quadratic form q for which q(εt) = c a.s. with

some c ∈ R.

Under Assumptions A1−A5, if m ≥ 2, then the conditional second moment matrix Ht(θ) is

identifiable. There exists a unique solution of θ ∈ Θ which maximizes the quasi likelihood

function if n is sufficiently large. In other words, the model is identifiable.

Remark In Lemma 3.2.4, we require m to be equal or greater than 2.

Proof The fundamental step to prove this theorem is Lemma 3.2.3 below. If Assump-

tions A5 and A2 are satisfied, Lemma 3.2.4 tells us that the parameters are identifiable

from Ht, the conditional second moment of xt. Suppose that θ0 is the true value of the
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parameters, then E(Ln(θ0)) > E(Ln(θ)) for all θ , θ0 and all n by Lemma 3.2.5. Under

Assumptions A1 − A4, the process xt is ergodic and stationary, therefore there will be a

unique solution of θ0 in the parameter space Θ which maximizes the likelihood function

when the sample size n is sufficiently large. �

The first assumption is necessary for the invertibility so that the current σ’s in (3.3)

can be written as a function of the infinite past. Assumption A5 is a mild constraint on

the innovation distribution as Assumption A1, which can be easily satisfied by a wide

range of well-defined distributions. As explained in Chapter 2, Assumptions A1 − A4 are

not equivalent to a stationary and ergodic process since equivalence means necessary and

sufficient conditions. Assumptions A1, A3 and A4 can be substituted by the conclusion

of Theorem 2.3.1, the observable process xt is stationary and ergodic while Assumption

A2 is always needed.

Theorem 3.2.2 (Consistency Theorem)

Consider the stochastic process xt defined by (1.4) and (1.5) with true parameter θ0

satisfying the following assumptions:

B1 The parameter space Θ is compact;

B2 The observed sequence {xt} is strictly stationary and ergodic;

B3 For the observed sequence {xt}, there exists a positive constant v1 such that E ‖xt‖
v1 is

finite;

B4 The model is identifiable.

Under Assumptions B1 − B4 the quasi maximum likelihood estimator in (3.5) is strongly

consistent, i.e.

θ̂n
a.s.
−−→ θ0 as n→ ∞.
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Remark

1. ‖·‖ in Assumption B3 is the Euclidean norm of a vector, e.g. p = 2 as a L2 norm.

Since all the p-norms are equivalent, E ‖xt‖
v
p is also finite for any integer p.

2. Assumption B3 is related to the stochastic equicontinuity of Ln(θ0) when n→ ∞.

3. Though the uniqueness of θ̂n is not guaranteed when n is finite, Lemma 3.2.8 tells

us that every sequence of θ̂n converges to θ0 almost surely.

The assumptions we proposed are similar to the ones in Hafner and Preminger

(2009b), Hafner and Preminger (2009a) and Liu (2011). The norms in this theorem

and all context below are the L2 vector norm and the corresponding induced matrix

norm. The first assumption, B1, is needed for the compactness argument so that we can

use the finite subcover to finish the proof. We assume that the stationary solution with

a finite moment is observed in Assumptions B2 and B3. The stationarity assumption is

crucial to apply the ergodic theorem. The existence of v1 is the key while the value of v1

is not that important. The difference between (3.3) and (3.4) will approach zero with the

increased sample sizes if such a v1 exists . As mentioned in the identifiability theorem,

we can use Assumptions A2 and A5 to replace the last Assumption B4 .

3.2.1 Proof of Theorem 3.2.2

Hafner and Preminger (2009a) state their consistency theorem as Theorem 2 and provide

the proof in their Appendix A. The proof of the consistency theorem in this thesis uses

a similar compactness argument.

For any θ ∈ Θ and any positive number c, let Vc(θ) be the open ball with center θ

and radius c and V̄c(θ) be the closed ball with the same center and radius.

We will prove the theory using contradiction method. Suppose that θ̂n 9 θ0 a.s., then

there exists at least one ω within the sample space such that limn→∞ θ̂n(ω) , θ0. If we
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use Λc to denote the space Θ\Vc(θ0), then by Heine-Borel theorem, Λ is also a compact

space. We can see that
∥∥∥θ̂n(ω) − θ0

∥∥∥ ≥ c infinite often, or θ̂n(ω) ∈ Λ infinite often, for

any arbitrarily small c. For each of these ω’s stated above, we can find a subsequence

θ̂nl → θ1 where θ1 ∈ Λ (see Chapter 7 in Kolmogorov and Fomin, 1970). Since θ̂nl(ω)

is the MLE with sample size nl, we will focus on the sequence of increased sample sizes

n1, n2, . . .. For a positive integer k, there exists k′ such that
∥∥∥θ̂nl(ω) − θ1

∥∥∥ ≤ 1/k for any

l ≥ k′. In other words, θ̂nl ∈ V̄1/k(θ1) ∩ Λ for any l ≥ k′.

Eθ0lt(θ0)

= lim
l≥k′
l→∞

1
nl

nl∑
t=1

lt(θ0)

= lim
l≥k′
l→∞

1
nl

nl∑
t=1

l̃t(θ0)

≥ lim inf
l→∞

inf
θ∈Θ

1
nl

nl∑
t=1

l̃t(θ)

= lim inf
l≥k′
l→∞

1
nl

nl∑
t=1

l̃t(θ̂nl) (3.6)

≥ lim inf
l≥k′
l→∞

1
nl

nl∑
t=1

lt(θ̂nl) − lim sup
l≥k′
l→∞

sup
θ∈Θ

∣∣∣∣∣∣∣ 1
nl

nl∑
t=1

lt(θ) −
1
nl

nl∑
t=1

l̃t(θ)

∣∣∣∣∣∣∣
≥ lim inf

l≥k′
l→∞

inf
θ∈V̄1/k(θ1)∩Λ

1
nl

nl∑
t=1

lt(θ)

≥ lim inf
l≥k′
l→∞

1
nl

nl∑
t=1

inf
θ∈V̄1/k(θ1)∩Λ

lt(θ) (3.7)

The first two equations hold because of Lemma 3.2.7 and the ergodic theorem. (3.6)

is obtained by the definition of the quasi MLE. The second inequality results from

Lemma 3.2.8 and the last line is true because of the assumption we started with. Now

we will focus on the last term in the inequality above.

We can see that, for any θ within the compact set V̄1/k(θ1)∩Λ, the sequence {lt(θ)}t is



46 Chapter 3. Gaussian QMLE and its Asymptotic Theory

stationary and ergodic since every lt(θ) is a measurable transformation of the observable

sequence, i.e. lt(θ) = f (θ, yt , yt−1, . . .) and f is a measurable function. By the uniform

ergodic theorem (Theorem A.1 and Exercise 7.3 in Francq and Zakoian, 2010), we can

conclude that {infθ∈V̄1/k(θ1)∩Λ lt(θ)}t is also a stationary and ergodic sequence. The modified

ergodic theorem can be applied, so

lim inf
l≥k′
l→∞

1
nl

nl∑
t=1

inf
θ∈V̄1/k(θ1)∩Λ

lt(θ) = E inf
θ∈V̄1/k(θ1)∩Λ

lt(θ).

Thus, (3.7) above becomes

Eθ0lt(θ0) ≥ E inf
θ∈V̄1/k(θ1)∩Λ

lt(θ)→ Elt(θ1)

as k → ∞. The convergence is obtained by Beppo Levi’s theorem since Elt(θ1) is well

defined (Lemma 3.2.6) and E infθ∈V̄1/k(θ1)∩Λ lt(θ) is monotone increasing to Elt(θ1) as k goes

to infinity.

To conclude, if θ̂n < Vc(θ0) ∩Θ for arbitrarily small c, it will lead to Elt(θ0) ≥ Elt(θ1),

which contradicts that θ0 is the unique minimum of Elt in Lemma 3.2.5. Therefore, θ̂n

must be within Vc(θ0) ∩Θ. The strong consistency θ̂n
a.s.
−−→ θ0 follows as c→ 0.

3.2.2 Lemmas

Lemma 3.2.3 If U is a r × d matrix and Vr×1 is an Ft−1-measurable vector,

if U



x2
1,t

x2
2,t

...

x2
d,t


= V ⇒ U = 0 and V = 0

Proof Similar to the proof for Lemma 3.1 in Jeantheau (1998).

The information contained in the σ(Ft−1) includes xt−1, σ1,t−1, · · · , σm,t−1, σ0,t−1 and
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σ1,t, · · · , σm,t, σ0,t. The first line of the equation could be written as

d∑
i=1

U1ih2
i (σ1,t, · · · , σm,t, σ0,t, εt) =

d∑
i=1

U1iki(σ1,t, · · · , σm,t, σ0,t, εt) = V1

where hi functions are corresponding to the rules specified in (1.4) (non degenerate func-

tion).

Let function ki = h2
i , i = 1, 2, · · · , d, then ki’s are the quadratic functions of εt for given

σ1,t, · · · , σm,t, σ0,t.

U1,i and V1 are constants with respect to σ(Ft−1) while the innovation term at time t,

εt, is independent of σ(Ft−1). Let µ be the measure of (σ1,t, · · · , σm,t, σ0,t,U11, · · · ,U1d,V1).

We get,

1 =P(
d∑

i=1

U1iki(σ1,t, · · · , σm,t, σ0,t, εt) = V1)

=

∫
P(

d∑
i=1

u1iki(σ1,t, · · · , σm,t, σ0,t, εt) = v1)dµ(σ1,t, · · · , σm,t, σ0,t, u11, · · · , u1d, v1).

Then,

P(
d∑

i=1

u1iki(σ1,t, · · · , σm,t, σ0,t, εt) = v1) = 1 µ a.s.

u11 = · · · = u1d = v1 µ a.s. because of the Assumption A6 above. Hence, U11 = · · · = U1d =

V1, P a.s. It means that all the coefficients U1i equal to 0 almost surely, so does V1. For

other elements of U and V, it is also true. �

Lemma 3.2.4 Under Assumptions A2, A5 and A6, the conditional second moment ma-

trix in (3.2) is identifiable when m ≥ 2. If θ1, θ2 ∈ Θ,

Ht(θ1) = Ht(θ2) a.s.⇒ θ1 = θ2.

Remark The proof below, specifically (3.12) and (3.13), requires U1 and U2 having at

least two distinguish rows. This only happens when m is equal or greater than 2.
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Proof Assume Ht(θ1) = Ht(θ2) where

θ1 := (ρ1,2, · · · , ρm−1,m, ω1, · · · , ωm, α1, · · · , αm, β1, · · · , βm, α01, · · · , α0m, β01, · · · , β0m)T

θ2 := (ρ′1,2, · · · , ρ
′
m−1,m, ω

′
1, · · · , ω

′
m, α

′
1, · · · , α

′
m, β

′
1, · · · , β

′
m, α

′
01, · · · , α

′
0m, β

′
01, · · · , β

′
0m)T .

Use the standard backshift operator B (Bix2
t = x2

t−i for any integer i), (1.5) can be

written in a more compact way:


(1 − β1B)σ2

1,t =ω1 + α1Bx2
1,t

· · · · · ·

(1 − βmB)σ2
m,t =ωm + αmBx2

m,t

(3.8)

By Assumption A6, the above equations are invertible.



σ2
1,t =

ω1

1 − β1
+

α1Bx2
1,t

(1 − β1B)

· · · · · ·

σ2
m,t =

ωm

1 − βm
+

αmBx2
m,t

(1 − βmB)

σ2
0,t =β01σ

2
1,t + · · · + β0mσ

2
m,t

=β01

 ω1

1 − β1
+

α1Bx2
1,t

(1 − β1B)

 + · · · + β0m

 ωm

1 − βm
+

αmBx2
m,t

(1 − βmB)



(3.9)

The diagonal elements in the conditional covariance matrix Ht can be expressed as

following:

Hii,t =σ2
i,t + σ2

0,t

=β01σ
2
1,t + · · · + (β0i + 1)σ2

i,t · · · + β0mσ
2
m,t

=β01

 ω1

1 − β1
+

α1Bx2
1,t

(1 − β1B)

 + · · · + (β0i + 1)

 ωi

1 − βi
+

αiBx2
i,t

(1 − βiB)

 +

· · · + β0m

 ωm

1 − βm
+

αmBx2
m,t

(1 − βmB)

 .
(3.10)
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Hii,t(θ1) = Hii,t(θ2) holds for all possible past values of xt , xt−1, xt−2, · · · . It is easy to see

the constant terms on both sides are equal,

β01
ω1

1 − β1
+ · · · + (1 + β0i)

ωi

1 − βi
+ · · · + β0m

ωm

1 − βm

=β′01

ω′1
1 − β′1

+ · · · + (1 + β′0i)
ω′i

1 − β′i
+ · · · + β′0m

ω′m
1 − β′m

.

(3.11)

From (3.10), we can extract the diagonal equations Hii,t(θ1)−Hii,t(θ2) = 0 for i = 1, . . . ,m.

Let

U1 =



(β01 + 1)α1 − (β′01 + 1)α′1 β02α2 − β
′
02α
′
2 · · · β0mαm − β

′
0mα

′
m

β01α1 − β
′
01α
′
1 (β02 + 1)α2 − (β′02 + 1)α′2 · · · β0mαm − β

′
0mα

′
m

...
...

. . .
...

β01α1 − β
′
01α
′
1 β02α2 − β

′
02α
′
2 · · · (β0m + 1)αm − (β0m + 1)′α′m


Then,

U1



x2
1,t−1

x2
2,t−1

...

x2
m,t−1


= V1. (3.12)

The vector on the right hand side of the above equation V1 is a function of x2
t−2
, x2

t−3
, · · · ,

so it is an Ft−2-measurable vector. According to Lemma 3.2.3, this equation leads to the

conclusion U1 = 0 and V1 = 0.(i.e. U1x2
t−1

= V1 ⇒ U1 = 0). Therefore, we can have

αi = α′i and β0i = β′0i based on Assumption A2.

Similarly, let U2 denote the following matrix



(β01 + 1)α1β1 − (β′01 + 1)α′1β
′
1 β02α2β2 − β

′
02α
′
2β
′
2 · · · β0mαmβm − β

′
0mα

′
mβ
′
m

β01α1β1 − β
′
01α
′
1β
′
1 (β02 + 1)α2β2 − (β′02 + 1)α′2β

′
2 · · · β0mαmβm − β

′
0mα

′
mβ
′
m

...
...

. . .
...

β01α1β1 − β
′
01α
′
1β
′
1 β02α2β2 − β

′
02α
′
2β
′
2 · · · (β0m + 1)αmβ

′
m − (β0m + 1)′α′mβ

′
m


then
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U2



x2
1,t−1

x2
2,t−1

...

x2
m,t−1


= V2. (3.13)

and V2 is an Ft−3-measurable vector ⇒ U2 = 0⇒ βi = β′i .

The next step to go back to the constant term in (3.11) based on the identities we

got above.



(β01 + 1)
ω1

1 − β1
+ β02

ω2

1 − β2
+ · · · + β0m

ωm

1 − βm
=(β01 + 1)

ω′1
1 − β1

+ β02
ω′2

1 − β2
+ · · · + β0m

ω′m
1 − βm

β01
ω1

1 − β1
+ (1 + β02)

ω2

1 − β2
+ · · · + β0m

ωm

1 − βm
=β01

ω′1
1 − β1

+ (1 + β02)
ω′2

1 − β2
+ · · · + β0m

ω′m
1 − βm

· · ·

β01
ω1

1 − β1
+ β02

ω2

1 − β2
+ · · · + (1 + β0m)

ωm

1 − βm
=β01

ω′1
1 − β1

+ (1 + β02)
ω′2

1 − β2
+ · · · + (1 + β0m)

ω′m
1 − βm
(3.14)

We could subtract the second line from the first line,

ω1

1 − β1
−

ω2

1 − β2
=

ω′1
1 − β1

−
ω′2

1 − β2

Since 1 − β1 > 0,

ω2 − ω
′
2 =

1 − β2

1 − β1
(ω1 − ω

′
1).

The difference between ωi − ω
′
i could be expressed in terms of ω1 − ω

′
1,

ω2 − ω
′
2 =

1 − β2

1 − β1
(ω1 − ω

′
1)

ω3 − ω
′
3 =

1 − β3

1 − β1
(ω1 − ω

′
1)

· · ·

ωm − ω
′
m =

1 − βm

1 − β1
(ω1 − ω

′
1).

Plug all these equalities back into the first line of (3.14),
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(
1 + β01

1 − β1
+

β02

1 − β2
·

1 − β2

1 − β1
+ · · · +

β0m

1 − βm
·

1 − βm

1 − β1

)
(ω1 − ω

′
1) = 0.

Then,

1 + β01 + β02 · · · + β0m

1 − β1
(ω1 − ω

′
1) = 0.

Since 1 + β01 + β02 · · ·+ β0m > 0 and 1− β1 > 0, we can get that ω1 = ω′1. Like the manner,

each time we can convert the first line in (3.14) into different positive numbers multiply

ωi−ω
′
i . Then, we could end up with the conclusion that all the constants are identifiable

ωi = ω′i for i = 1, 2, · · · ,m.

Up to this point, all the parameters in σ1,t, · · · , σm,t, σ0,t have been identifiable. The

identifiability of the parameters in the correlation matrix (ρ1,2, · · · , ρm−1,m) = (ρ′1,2, · · · , ρ
′
m−1,m)

will follow from the equality of the non-diagonal terms in Ht(θ1) = Ht(θ2). �

Lemma 3.2.5 At each time index t, E(lt(θ0)) < E(lt(θ)) for all θ , θ0

Proof

Eθ0(lt(θ)) − Eθ0(lt(θ0))

= Eθ0 log
|Ht(θ)|
|Ht(θ0)|

+ Eθ0(xt
′H−1

t (θ)xt) − Eθ0(xt
′Ht(θ0)−1xt)

= Eθ0 log
|Ht(θ)|
|Ht(θ0)|

+ Eθ0(ξt
′H1/2

t (θ0)H−1
t (θ)H1/2

t (θ0)ξt) − Eθ0(ξt
′ξt)

= Eθ0 log
|Ht(θ)|
|Ht(θ0)|

+ Eθ0[tr(ξt
′H1/2

t (θ0)H−1
t (θ)H1/2

t (θ0)ξt)] − m

= Eθ0 log
|Ht(θ)|
|Ht(θ0)|

+ Eθ0[tr(ξtξt
′H1/2

t (θ0)H−1
t (θ)H1/2

t (θ0))] − m

= Eθ0 log
|Ht(θ)|
|Ht(θ0)|

+ Eθ0[tr(H1/2
t (θ0)H−1

t (θ)H1/2
t (θ0))] − m

= Eθ0 log
|Ht(θ)|
|Ht(θ0)|

+ Eθ0[tr(H1/2
t (θ0)H1/2

t (θ0)H−1
t (θ))] − m

= Eθ0 log
|Ht(θ)|
|Ht(θ0)|

+ Eθ0[tr(Ht(θ0)H−1
t (θ))] − m

> Eθ0 log
|Ht(θ)|
|Ht(θ0)|

+ Eθ0[log |Ht(θ0)H−1
t (θ)| + m] − m = 0
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If Am∗m is a positive definite matrix, then log |A| ≤ tr(A) −m where the equal sign holds if

and only if A = Im. The inequality in last line holds due to this statement from Lemma

A.1 of Bollerslev and Wooldridge (1992). Then by Lemma 3.2.4, Ht(θ0)H−1
t (θ) , I for all

t if and only if θ , θ0. �

Lemma 3.2.6 At each time index t, E(lt(θ)) is well defined in R ∪ {+∞} for any θ ∈ Θ.

The theoretical average of the time series converges, which means

1
n

n∑
t=1

lt(θ)→ Eθ0lt(θ) a.s..

Proof Since Ht(θ) is a conditional covariance matrix for each time index t, it is positive

definite by the definition. Let us denote the eigenvalues of the m by m square matrix

Ht(θ) by {λit(θ)}mi=1, then all the eigenvalues λit(θ) are positive for i = 1, . . . ,m.

The eigenvalues are continuous functions of the matrix elements based on the compact

parameter space assumption and the Wielandt-Haffman theorem. Therefore, we could

find a positive real number γ such that λit(θ) ≥ γ for ∀θ ∈ Θ and all i, t. The constant γ

needs to satisfy that 0 < γ ≤ infθ∈Θ λit(θ). Hence,

|Ht(θ)| =
m∏

i=1

λit(θ) ≥ γm > 0

Eθ0 l
−
t (θ) ≤ Eθ0 log− |Ht(θ)| ≤ max{0,−m log γ} < +∞

E(lt(θ)) is well defined.

Next, the sequence {lt(θ)}t is stationary and ergodic since it is noted as a measurable

transformation of the strictly stationary sequence {xt , xt−1, . . .}. We could apply the stan-

dard ergodic theorem for stationary series to lt(θ) from Doob (1990). Therefore, for any

θ ∈ Θ,

1
n

n∑
t=1

lt(θ)→ Eθ0lt(θ) a.s.,

where lt(θ) is the theoretical function depending on the infinite past. �
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Lemma 3.2.7 At each time index t, Eθ0lt(θ0) < +∞.

Proof The eigenvalues of Ht(θ) are denoted by {λit(θ)}mi=1, the same notation used in the

proof of previous lemma.

Eθ0lt(θ0) = Eθ0 log |Ht(θ0)| + Eθ0(xt
′Ht(θ0)−1xt)

= Eθ0 log |Ht(θ0)| + Eθ0(ξt
′ξt)

=
2m
v1
Eθ0 log |Ht(θ0)|v1/2m + m

≤
2m
v1

logEθ0 |Ht(θ0)|v1/2m + m

=
2m
v1

logEθ0

 m∏
i=1

λit(θ0)

v1/2m

+ m (3.15)

≤
2m
v1

logEθ0

(
max

i=1,2,··· ,m
λit(θ0)

)v1/2
+ m

≤ C1 logEθ0 ‖Ht(θ0)‖v1/2
p + m

≤ C2 logEθ0 ‖ht(θ0)‖v1/2
p + m

The process is strictly stationary under the true value of parameter θ0. The existence

of a finite v1th moment of the observed sequence in Assumption B3 leads to the finite

v1/2th moment of ht(θ0) regardless what induced matrix norm we choose. Hence, the last

line in the above inequality is finite. �

Lemma 3.2.8 lim supn→∞ supθ∈Θ

∣∣∣∣∣1n ∑n
t=1 lt(θ) −

1
n

∑n
t=1 l̃t(θ)

∣∣∣∣∣ = 0 a.s..

Proof In the following proof, C1,C2, . . . and a1, b1, c1, a2, b2, c2 . . . will represent some

finite constants and they may have different values in different inequalities below. The

difference between lt(θ) and l̃t(θ) will be measured at the exponent v1/8 where v1 is defined

in Assumption B3.

sup
θ∈Θ
|lt(θ) − l̃t(θ)|v1/8 (3.16)
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= sup
θ∈Θ

∣∣∣log |Ht(θ)| − log |H̃t(θ)| + xt
′Ht(θ)−1xt − xt

′H̃t(θ)−1xt
∣∣∣v1/8

≤C1 sup
θ∈Θ

∣∣∣log |Ht(θ)| − log |H̃t(θ)|
∣∣∣v1/8

+ C1 sup
θ∈Θ

∣∣∣∣xt
′
[
Ht(θ)−1 − H̃t(θ)−1

]
xt

∣∣∣∣v1/8

The first job is to show that supθ∈Θ
∥∥∥H−1

t (θ)
∥∥∥

p
and supθ∈Θ

∥∥∥H̃−1
t (θ)

∥∥∥
p

are finite.

The constant γ in Lemma 3.2.6 needs to satisfy that 0 < γ ≤ infθ∈Θ λit(θ). Therefore,

the eigenvalues of Ht(θ)−1 are {λit(θ)−1}mi=1 and the positive real number γ satisfies

1
γ
≥

1
infθ∈Θ λit(θ)

≥ sup
θ∈Θ

∥∥∥H−1
t (θ)

∥∥∥
2
≥ sup

θ∈Θ

∥∥∥H−1
t (θ)

∥∥∥
p

for any θ ∈ Θ and all i, t and p ≥ 2.

Similarly, we could find a finite absolute boundary for supθ∈Θ
∥∥∥H̃−1

t (θ)
∥∥∥

p
given the same

norm p. Hence, there exists a positive number a1 such that both supθ∈Θ
∥∥∥H̃−1

t (θ)
∥∥∥

p
and

supθ∈Θ
∥∥∥H−1

t (θ)
∥∥∥

p
are smaller than a1.

Next, it is time to study the two terms in the last line of (3.16). The first term, which

is the absolute difference between log |Ht(θ)| and log |H̃t(θ)|, could be bounded above.

sup
θ∈Θ

∣∣∣log |Ht(θ)| − log |H̃t(θ)|
∣∣∣v1/8

= sup
θ∈Θ

(
log

∣∣∣∣Im +
[
Ht(θ) − H̃t(θ)

]
H̃−1

t (θ)
∣∣∣∣)v1/8

≤ sup
θ∈Θ

(
m log

∥∥∥∥Im +
[
Ht(θ) − H̃t(θ)

]
H̃−1

t (θ)
∥∥∥∥

p

)v1/8

≤ sup
θ∈Θ

[
m log

(
‖Im‖p +

∥∥∥∥[Ht(θ) − H̃t(θ)
]

H̃−1
t (θ)

∥∥∥∥
p

)]v1/8
(3.17)

≤ sup
θ∈Θ

[
m log

(
1 +

∥∥∥∥[Ht(θ) − H̃t(θ)
]

H̃−1
t (θ)

∥∥∥∥
p

)]v1/8

≤mv1/8 sup
θ∈Θ

∥∥∥Ht(θ) − H̃t(θ)
∥∥∥v1/8

p

∥∥∥H̃−1
t (θ)

∥∥∥v1/8

p

≤mv1/8 sup
θ∈Θ

∥∥∥Ht(θ) − H̃t(θ)
∥∥∥v1/8

p
av1/8

1

Using (8) in Appendix A, we could get the first inequality. The triangle inequality leads
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to the second inequality, while (1) in Appendix A points to the fourth inequality.

The second term in the last line of (3.16) can be bounded above as well. Applying

(7), (8) and (9) in Appendix A, we have

sup
θ∈Θ

∣∣∣∣xt
′
[
Ht(θ)−1 − H̃t(θ)−1

]
xt

∣∣∣∣v1/8

= sup
θ∈Θ

∣∣∣∣tr(xt
′H̃t(θ)−1

[
Ht(θ) − H̃t(θ)

]
Ht(θ)−1xt)

∣∣∣∣v1/8

= sup
θ∈Θ

∣∣∣∣tr(H̃t(θ)−1
[
Ht(θ) − H̃t(θ)

]
Ht(θ)−1xt xt

′)
∣∣∣∣v1/8

=C2 sup
θ∈Θ

∥∥∥H̃t(θ)−1
∥∥∥v1/8

p

∥∥∥Ht(θ) − H̃t(θ)
∥∥∥v1/8

p

∥∥∥Ht(θ)−1
∥∥∥v1/8

p
‖xt xt

′‖
v1/8
p (3.18)

≤C3 sup
θ∈Θ

∥∥∥H̃t(θ)−1
∥∥∥v1/8

p

∥∥∥Ht(θ) − H̃t(θ)
∥∥∥v1/8

p

∥∥∥Ht(θ)−1
∥∥∥v1/8

p
‖xt‖

v1/4
p

≤C3av1/8
1 sup

θ∈Θ

∥∥∥Ht(θ) − H̃t(θ)
∥∥∥v1/8

p
av1/8

1 ‖xt‖
v1/4
p

≤C4 sup
θ∈Θ

∥∥∥Ht(θ) − H̃t(θ)
∥∥∥v1/8

p
‖xt‖

v1/4
p .

Now, based on the results above, (3.16) can be further simplified as

sup
θ∈Θ
|lt(θ) − l̃t(θ)|v1/8

≤C5 sup
θ∈Θ

∥∥∥Ht(θ) − H̃t(θ)
∥∥∥v1/8

p
+ C4 sup

θ∈Θ

∥∥∥Ht(θ) − H̃t(θ)
∥∥∥v1/8

p
‖xt‖

v1/4
p (3.19)

Our interest lies in the difference between H̃t(θ) and Ht(θ). The diagonal terms and non-

diagonal terms of Ht need to be considered separately. Let vech be the Half-vectorization

of the symmetric conditional covariance matrix Ht. By (5) in Appendix A,

‖vech(Ht)‖v1/8
p =


m∑

i=1

Hp
ii,t +

∑
i, j=1,··· ,m

i< j

Hp
i j,t


v1/8p

≤


m∑

i=1

|Hii,t| +
∑

i, j=1,··· ,m
i< j

|Hi j,t|


v1/8

Then for any t > 1, we have
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sup
θ∈Θ

∥∥∥Ht − H̃t

∥∥∥v1/8

p

≤C6 sup
θ∈Θ

∥∥∥vech(Ht) − vech(H̃t)
∥∥∥v1/8

p

≤C6 sup
θ∈Θ


m∑

i=1

|Hii,t − H̃ii,t| +
∑

i, j=1,··· ,m
i< j

|Hi j,t − H̃i j,t|


v1/8

(3.20)

≤C6 sup
θ∈Θ


m∑

i=1

|σ2
i,t + σ2

0,t − σ̃
2
i,t − σ̃

2
0,t| +

∑
i, j=1,··· ,m

i< j

|ρi, jσi,tσ j,t − ρi, jσ̃i,tσ̃ j,t|


v1/8

≤C6 sup
θ∈Θ


m∑

i=1

|σ2
i,t − σ̃

2
i,t| + m|σ2

0,t − σ̃
2
0,t| +

∑
i, j=1,··· ,m

i< j

|ρi, j| · |σi,tσ j,t − σ̃i,tσ̃ j,t|


v1/8

≤C6 sup
θ∈Θ


m∑

i=1

(mβ0i + 1)|σ2
i,t − σ̃

2
i,t| +

∑
i, j=1,··· ,m

i< j

|ρi, j| · |σi,tσ j,t − σ̃i,tσ̃ j,t|


v1/8

≤C6 sup
θ∈Θ


m∑

i=1

(mβ0i + 1)v1/8|σ2
i,t − σ̃

2
i,t|

v1/8 +
∑

i, j=1,··· ,m
i< j

|ρi, j|
v1/8 · |σi,tσ j,t − σ̃i,tσ̃ j,t|

v1/8


We could get the difference between σ2

i,t and σ̃2
i,t by iterating (1.5).

σ2
i,t =σ2

i,0β
t
i +

t−2∑
j=0

β
j
i (ωi + αix2

i,t−1− j) + βt−1
i ωi + αiβ

t−1
i x2

i,0

=
ωi

1 − βi
+

∞∑
j=0

αiβ
j
i x2

i,t−1− j

(3.21)

σ̃2
i,t =σ̃2

i,0β
t
i +

t−2∑
j=0

β
j
i (ωi + αix2

i,t−1− j) + βt−1
i ωi + αiβ

t−1
i x̃2

i,0 (3.22)

The v1/8th moment of σ2
i,t based on the infinite past is finite because of the finiteness of

E ‖xt‖
v1 in Assumption B3.
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E sup
θ∈Θ

(σ2
i,t)

v1/2 =E sup
θ∈Θ

(
ωi

1 − βi
+

∞∑
j=0

αiβ
j
i x2

i,t−1− j)
v1/2

≤ sup
θ∈Θ

 ωv1/2
i

(1 − βi)v1/2
+

∞∑
j=0

αv1/2
i β

jv1/2
i E(x2

i,t−1− j)
v1/2


≤ sup
θ∈Θ

 ωv1/2
i

(1 − βi)v1/2
+

αv1/2
i

1 − βv1/2
i

C7


≤a2 < ∞

(3.23)

We could get similar finiteness result for some lower moments of σ2
i,t,

E sup
θ∈Θ

(σ2
i,t)

v1/4 ≤ a3

E sup
θ∈Θ

(σ2
i,t)

v1/8 ≤ a4.

(3.24)

All a2, a3 and a4 are finite constants, which satisfy the above inequalities for any i from

1 to m.

From Assumption B1 and the model setup, there exist b1 and ρ0 such that 0 ≤ βi ≤

b1 < 1 for i = 1, 2, · · · ,m and |ρi, j| ≤ ρ0 < 1.

Then,

|σ2
i,t − σ̃

2
i,t|

v1/2 ≤(|σ2
i,0 − σ̃

2
i,0|β

t
i)

v1/2 + (αiβ
t−1
i |x

2
i,0 − x̃2

i,0|)
v1/2

≤βtv1/2
i [(σ2

i,0)v1/2 + (σ̃2
i,0)v1/2 + αiβ

−v1/2
i (x2

i,0)v1/2 + αiβ
−v1/2
i (x̃2

i,0)v1/2] (3.25)

≤Miβ
tv1/2
i ≤ Mib

tv1/2
1

Mi is a random variable that depends on the infinite past values {xi,t, t ≤ 0}. The expec-

tation of Mi is finite which could be obtained from (3.23).

E sup
θ∈Θ
|σ2

i,t − σ̃
2
i,t|

v1/2 ≤E sup
θ∈Θ

(|σ2
i,0 − σ̃

2
i,0|β

t
i)

v1/2 + E sup
θ∈Θ

(αiβ
t−1
i |x

2
i,0 − x̃2

i,0|)
v1/2

≤E sup
θ∈Θ

Miβ
tv1/2
i ≤ a5btv1/2

1

(3.26)

Related results can be easily obtained following the steps above because of the existence
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of the finite numbers a2, a3 and a4 in (3.23) and (3.24). So we have

E sup
θ∈Θ
|σ2

i,t − σ̃
2
i,t|

v1/4 ≤ a6btv1/4
1

E sup
θ∈Θ
|σ2

i,t − σ̃
2
i,t|

v1/8 ≤ a7btv1/8
1 .

(3.27)

The finite constants a5, a6 and a7 are assumed to be universally applied to i = 1, 2, · · · ,m.

The differences between the cross terms are much more complicated than the diagonal

terms. Then,

|σi,tσ j,t − σ̃i,tσ̃ j,t|
v1/4 =|σi,tσ j,t − σ̃i,tσ j,t + σ̃i,tσ j,t − σ̃i,tσ̃ j,t|

v1/4

≤
(
σ j,t|σi,t − σ̃i,t| + σ̃i,t|σ j,t − σ̃ j,t|

)v1/4
(3.28)

≤

(
σ j,t

σi,t + σ̃i,t
· |σ2

i,t − σ̃
2
i,t| +

σ̃i,t

σ j,t + σ̃ j,t
· |σ2

j,t − σ̃
2
j,t|

)v1/4

≤C8(σ2
j,t)

v1/4|σ2
i,t − σ̃

2
i,t|

v1/4 + C9(σ̃2
i,t)

v1/4
∣∣∣σ2

j,t − σ̃
2
j,t

∣∣∣v1/4
.

From the representations of σ̃2
i,t in (3.22) above, we could bound this last line by

adding up the expectation of xt
2,

(σ̃2
i,t)

v1/2

≤[(σ̃2
i,0β

t
i)

v1/2 +

t−2∑
k=0

βkv1/4
i (ωv1/2

i + αv1/2
i xv1

i,t−1−k) + β(t−1)v1/2
i ωv1/2

i + αv1/2
i β(t−1)v1/2

i x̃v1
i,0]

≤(σ̃2
i,0β

t
i)

v1/2 +

t−2∑
k=0

βkv1/4
i (ωv1/2

i + αv1/2
i ‖xt−1−k‖

v1) + β(t−1)v1/2
i ωv1/2

i + αv1/2
i β(t−1)v1/2

i x̃v1
i,0.

Hence,

E sup
θ∈Θ

(σ̃2
i,t)

v1/2

≤E sup
θ∈Θ

[(σ̃2
i,0β

t
i)

v1/2 +

t−2∑
k=0

βkv1/4
i (ωv1/2

i + αv1/2
i ‖xt−1−k‖

v1) + β(t−1)v1/2
i ωv1/2

i + αv1/2
i β(t−1)v1/2

i x̃v1
i,0]

≤(σ̃2
i,0)v1/2 sup

θ∈Θ
βtv1/2

i +

t−2∑
k=0

sup
θ∈Θ

βkv1/2
i αv1/2

i E ‖xt−1−k‖
v1 + a8 ≤ a9 < ∞
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The upper bound of E supθ∈Θ(σ̃2
i,t)

v1/4 would be obtained likewise,

E sup
θ∈Θ

(σ̃2
i,t)

v1/4 ≤ a10. (3.29)

Now we proof that the expectation of the cross term decays exponentially. Using (3.23),

(3.26) and (3.29), we have

E sup
θ∈Θ
|ρi, j|

v1/4|σi,tσ j,t − σ̃i,tσ̃ j,t|
v1/4

≤C8 sup
θ∈Θ
|ρi, j|

v1/4E sup
θ∈Θ

(σ2
j,t)

v1/4|σ2
i,t − σ̃

2
i,t|

v1/4 + C9 sup
θ∈Θ
|ρi, j|

v1/4E sup
θ∈Θ

(σ̃2
i,t)

v1/4|σ2
j,t − σ̃

2
j,t|

v1/4

≤C10[E sup
θ∈Θ

(σ2
j,t)

v1/2E sup
θ∈Θ
|σ2

i,t − σ̃
2
i,t|

v1/2]1/2 + C11[E sup
θ∈Θ

(σ̃2
i,t)

v1/2E sup
θ∈Θ
|σ2

j,t − σ̃
2
j,t|

v1/2]1/2

≤C10[a2 · a5btv1/2
1 ]1/2 + C11[a9a5btv1/2

1 ]1/2

=O(btv1/4
1 ).

Similarly, by (3.24), (3.27) and (3.29), we can get

E sup
θ∈Θ
|ρi, j|

v1/8|σi,tσ j,t − σ̃i,tσ̃ j,t|
v1/8 ≤ C14btv1/8

1 = O(btv1/8
1 ). (3.30)

Thus,

∞∑
t=1

E

[
sup
θ∈Θ

∥∥∥Ht − H̃t

∥∥∥v1/8

p

]

≤C6

∞∑
t=1

E sup
θ∈Θ


m∑

i=1

(mβ0i + 1)v1/8|σ2
i,t − σ̃

2
i,t|

v1/8 +
∑

i, j=1,··· ,m
i< j

|ρi, j|
v1/8 · |σi,tσ j,t − σ̃i,tσ̃ j,t|

v1/8


≤C6

∞∑
t=1


m∑

i=1

(m + 1)v1/8E sup
θ∈Θ
|σ2

i,t − σ̃
2
i,t|

v1/8 +
∑

i, j=1,··· ,m
i< j

E sup
θ∈Θ
|ρi, j|

v1/8|σi,tσ j,t − σ̃i,tσ̃ j,t|
v1/8


≤C6

∞∑
t=1

(
m(m + 1)v1/8a7btv1/8

1 +
m(m − 1)

2
C14btv1/8

1

)
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≤

∞∑
t=1

O(btv1/8
1 ) ≤ d1 < ∞ (3.31)

by using the fact that b1 is smaller than 1.

Cauchy-Schwarz inequality and (3) in Appendix A are used one more time on the

second term in (3.19) to study the summation of this term from t = 1 to infinity. Thus,

∞∑
t=1

E

[
sup
θ∈Θ

∥∥∥Ht − H̃t
∥∥∥v1/8

p ‖xt‖
v1/4
p

]

≤

∞∑
t=1

(E sup
θ∈Θ

∥∥∥Ht(θ) − H̃t(θ)
∥∥∥v1/4

p E ‖xt‖
v1/2
p )1/2

≤C16

∞∑
t=1

(E sup
θ∈Θ

∥∥∥Ht(θ) − H̃t(θ)
∥∥∥v1/4

p )1/2

≤C17

∞∑
t=1


m∑

i=1

(m + 1)v1/4E sup
θ∈Θ
|σ2

i,t − σ̃
2
i,t|

v1/4 +
∑

i, j=1,··· ,m
i< j

E sup
θ∈Θ
|ρi, j|

v1/4|σi,tσ j,t − σ̃i,tσ̃ j,t|
v1/4


1/2

≤C17

∞∑
t=1

[
m(m + 1)v1/4a6btv1/4

1 +
m(m − 1)

2
C12btv1/4

1

]1/2

≤

∞∑
t=1

O(btv1/8
1 ) ≤ d2 < ∞ (3.32)

To complete the proof of the strong consistency, for any c > 0, by Markov inequality,

(3.31) and (3.32) a few lines above,

∞∑
t=1

P(sup
θ∈Θ
|lt(θ) − l̃t(θ)| > c)

=

∞∑
t=1

P(sup
θ∈Θ
|lt(θ) − l̃t(θ)|v1/8 > cv1/8)

≤

∞∑
t=1

E supθ∈Θ |lt(θ) − l̃t(θ)|v1/8

cv1/8

≤

∞∑
t=1

E supθ∈Θ |lt(θ) − l̃t(θ)|v1/8

cv1/8

≤

∞∑
t=1

E[C5 supθ∈Θ
∥∥∥Ht(θ) − H̃t(θ)

∥∥∥v1/8

p
+ C4 supθ∈Θ

∥∥∥Ht(θ) − H̃t(θ)
∥∥∥v1/8

p
‖xt‖

v1/4
p ]

cv1/8



3.3. Asymptotic Normality 61

≤
C5d1

cv1/4
+

C4d2

cv1/4

<∞.

By the 1st Borel-Cantelli lemma, we could conclude that supθ |lt(θ) − l̃t(θ)| → 0 a.s..

We have thus shown the desired result by the Cesàro mean theorem since

lim
n→∞

sup
θ∈Θ

∣∣∣∣∣∣∣1n
n∑

t=1

lt(θ) −
1
n

n∑
t=1

l̃t(θ)

∣∣∣∣∣∣∣ ≤ lim sup
n→∞

sup
θ∈Θ

1
n

n∑
t=1

∣∣∣lt(θ) − l̃t(θ)
∣∣∣ .

�

3.3 Asymptotic Normality

After establishing the strong consistency in the last section, it is time to move on to study

the convergence speed of the quasi maximum likelihood estimator. More specifically, the

distribution of the difference between the estimator θ̂n and the true parameter θ0 would

approach a normal distribution with a certain speed under some conditions.

The convergence speed generally is a monotone increasing function of the sample size

n. For instance, if {X1, X2, . . .} is a sequence of independently and identically distributed

random varaibles with mean µ and finite variance σ2. Then, by the classical central

limit thoery, an estimator of the mean denoted by µ̂n =
1
n

∑n
i=1 Xi, converges to a normal

distrbution, i.e.
√

n (µ̂n − µ)
D
−→ N(0, σ2).

We can state another asymptotic result if the following assumptions are satisfied.

C1 The observed sequence xt has a finite 8th moment.

C2 The parameter θ0 is an interior point of Θ.

Theorem 3.3.1 (Asymptotic Normality)

Under Assumptions B1 − B2, B4 and C1 − C2, the QMLE θ̂n defined by (3.5) has an

asymptotic normal distribution around the true value θ0, which means
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√
n(θ̂n − θ0)

D
−→ N(0, J−1V J−1)

where

J = −E

[
∂2lt(θ0)
∂θ∂θᵀ

]
and V = E

[
∂lt(θ0)
∂θ

∂lt(θ0)
∂θᵀ

]
.

Assumption C2 is very common in proving the asymptotic distribution under some rate

since the derivatives are needed. In Assumption C1, the finite 8th moment requirement

is very conservative because of our own convenience. Like Assumption 3.6 of Hafner and

Preminger (2009b), the finite 6th moment would work if the corresponding neighbourhood

υ(θ0) ∈ Θ around θ0 can be found such that for all i1, i2 and i3,

E sup
θ∈υ(θ0)

∣∣∣∣∣∣ ∂3lt(θ)
∂θi1∂θi2∂θi3

∣∣∣∣∣∣ < ∞.
The finite 8th moment leads to the largest neighbourhood since E

∣∣∣∣∣∣ ∂3lt(θ)
∂θi1∂θi2∂θi3

∣∣∣∣∣∣ < ∞ is

true for any θ in Θ.

3.3.1 Proof of Theorem 3.3.1

Under Assumptions B1− B4, we have the strong consistency result above. For a point in

any compact set around θ0, the results in Lemma 3.2.3- 3.2.8 will follow. Therefore, we

can always select a proper set υ(θ0) for a large n such that θ̂n ∈ υ(θ0).

The mean-value expansion is applied to the score function around the true parameter

θ0. Hence,

0 =
1
√

n

n∑
t=1

∂l̃t(θ̂n)
∂θ

=
1
√

n

n∑
t=1

∂l̃t(θ0)
∂θ

+

1
n

n∑
t=1

∂2l̃t(θ̃)
∂θ∂θᵀ

 √n(θ̂n − θ0) (3.33)

where θ̃n is on the chord between θ̂n and θ0 and θ̃ is between θ̃n and θ0.
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The proof of this theorem will be divided into the following intermediate steps:

1. E

∥∥∥∥∥∂lt(θ0)
∂θ

∂lt(θ0)ᵀ

∂θ

∥∥∥∥∥ < ∞ .

2. E

∥∥∥∥∥∥∂2lt(θ0)
∂θ∂θᵀ

∥∥∥∥∥∥ is finite.

3.
1
√

n
∑n

t=1
∂lt(θ0)
∂θ

D
−→ N(0,V).

4.

∣∣∣∣∣∣ 1
√

n
∑n

t=1
∂lt(θ0)
∂θ

−
∂l̃t(θ0)
∂θ

∣∣∣∣∣∣ = op(1).

5. There exists a neighbourhood υ(θ0) ∈ Θ around θ0 such that

sup
θ∈υ(θ0)

∣∣∣∣∣∣∣1n
n∑

t=1

∂2lt(θ0)
∂θ∂θᵀ

−
∂2l̃t(θ0)
∂θ∂θᵀ

∣∣∣∣∣∣∣ = op(1).

6. There exists a neighbourhood υ(θ0) ∈ Θ around θ0 such that for all i1, i2 and i3,

E sup
θ∈υ(θ0)

∣∣∣∣∣∣ ∂3lt(θ)
∂θi1∂θi2∂θi3

∣∣∣∣∣∣ < ∞.
Once again, L2 vector norm and the corresponding induced matrix norm are used through-

out this section. (7) in Appendix A tells us that all the inequalities will remain the same

subject to a scale when the norm is changed to some other Lp norms. We will prove these

steps one by one. Some notations are used in the following proof, including iḢt =
∂Ht(θ)
∂θi

,

i jḢt =
∂2Ht(θ)
∂θi∂θ j

and i jkḢt =
∂2Ht(θ)
∂θi∂θ j∂θk

.

1. First derivative criterion.

We will calculate the components of the score function, which are given by

∂lt(θ)
∂θi

=
∂

∂θi
log |Ht(θ)| +

∂

∂θi
tr(xt

′Ht(θ)−1xt)

= |H−1
t (θ)|

∂

∂θi
|Ht(θ)| + tr(xt xt

ᵀ ∂

∂θi
Ht(θ)−1)
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= |H−1
t (θ)|

∂

∂θi
|Ht(θ)| + tr(xt xt

ᵀ ∂

∂θi
Ht(θ)−1)

= tr(H−1
t (θ) iḢt(θ)) + tr(xt xt

ᵀHt(θ)−1
iḢt(θ)Ht(θ0)−1)

= tr[(Im − xt xt
ᵀHt(θ)−1) iḢt(θ)H−1

t (θ)]. (3.34)

Therefore, when θ = θ0, we have

E

[
∂lt(θ0)
∂θ

∣∣∣∣Ft−1

]
=tr[(Im − E

(
H1/2

t (θ0)ξtξt
ᵀH1/2

t (θ0)
∣∣∣Ft−1

)
Ht(θ0)−1) iḢt(θ0)H−1

t (θ0)]

=tr[(Im − Im) iḢt(θ0)H−1
t (θ0)] = 0. (3.35)

Now we move on to prove that E

∥∥∥∥∥∂lt(θ0)
∂θ

∂lt(θ0)ᵀ

∂θ

∥∥∥∥∥ is finite. The elements in the

target matrix are

E

∣∣∣∣∣∣∂lt(θ0)
∂θi

∂lt(θ0)
∂θ j

∣∣∣∣∣∣
≤C1E(

∥∥∥Im − xt xt
ᵀHt(θ0)−1

∥∥∥2 ∥∥∥iḢt(θ0)
∥∥∥ ∥∥∥ jḢt(θ0)

∥∥∥)

≤2C1E
[(

1 +
∥∥∥Ht(θ0)1/2ξtξt

ᵀHt(θ0)−1/2
∥∥∥2

) ∥∥∥iḢt(θ0)
∥∥∥ ∥∥∥ jḢt(θ0)

∥∥∥]
≤2C1

(
1 + E ‖ξtξt

ᵀ‖
2
)
E

(∥∥∥iḢt(θ0)
∥∥∥ ∥∥∥ jḢt(θ0)

∥∥∥)
≤C2

[
E

(∥∥∥iḢt(θ0)
∥∥∥)2

]1/2 [
E

(∥∥∥ jḢt(θ0)
∥∥∥)2

]1/2

<∞

Lemma 3.2.8 has proved that
∥∥∥Ht(θ0)−1

∥∥∥ < ∞. This result along with (8) in Ap-

pendix A bring us the first inequality. The second inequality uses the Cr inequality

and the fact that the model follows (3.2) at θ0. We note that
∥∥∥Ht(θ0)1/2ξtξt

ᵀHt(θ0)−1/2
∥∥∥2
≤

C1 ‖ξtξt
ᵀ‖

2
≤ C2 ‖ξt‖

4 a.s.. The third inequality is obtained by this result, the in-

dependence between ξt and Ht, and also the independence between ξt and Ht’s

derivatives. The second last line was implied by the Cauchy-Schwarz inequality
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and Assumption C1. The last line results from Lemma 3.3.2.

2. By (19) and (20) in Appendix A, the second derivative with respect to the ith and

jth parameter can be rewritten as following

∂2lt(θ)
∂θi∂θ j

=
∂

∂θ j
tr
[
(Im − xt xt

ᵀHt(θ)−1) iḢt(θ)H−1
t (θ)

]
.

=tr
[

i jḦt(θ)H−1
t (θ) + iḢt(θ)

H−1
t (θ)
∂θ j

− xt xt
ᵀ(H−1

t (θ)
∂θ j

iḢt(θ)H−1
t (θ)

+ H−1
t (θ) i jḦt(θ)H−1

t (θ) + H−1
t (θ) iḢt(θ)

∂H−1
t (θ)
∂θ j

)]
=tr

[
i jḦt(θ)H−1

t (θ) + iḢt(θ)H−1
t (θ) jḢt(θ)H−1

t (θ) + xt xt
ᵀH−1

t (θ)(
jḢt(θ) iḢt(θ) − i jḦt(θ) + iḢt(θ)H−1

t (θ) jḢt(θ)
)

H−1
t (θ)

]
=tr

[
(Im − xt xt

ᵀH−1
t (θ))(i jḦt(θ)H−1

t (θ) − iḢtH−1
t (θ) jḢt(θ)H−1

t (θ))

+ xt xt
ᵀH−1

t (θ) iḢt(θ)H−1
t (θ) jḢt(θ)H−1

t (θ)
]

(3.36)

Using the fact that ξt and Ht are independent given the past, the expectation of

the same element is

E

∣∣∣∣∣∣∂2lt(θ0)
∂θi∂θ j

∣∣∣∣∣∣
=E

{
tr
[
(Im − xt xt

ᵀH−1
t (θ))(i jḦt(θ)H−1

t (θ) − iḢtH−1
t (θ) jḢt(θ)H−1

t (θ))

+ xt xt
ᵀ

iḢt(θ)H−1
t (θ) jḢt(θ)H−1

t (θ)
]}

≤C1E
∥∥∥∥(Im − xt xt

ᵀH−1
t (θ))

(
i jḦt(θ)H−1

t (θ) − iḢtH−1
t (θ) jḢt(θ)H−1

t (θ)
)∥∥∥∥

+ C1E
∥∥∥xt xt

ᵀ
iḢt(θ)H−1

t (θ) jḢt(θ)H−1
t (θ)

∥∥∥
≤C2E

[
‖xt xt

ᵀ‖
( ∥∥∥i jḦt(θ)

∥∥∥ + 2
∥∥∥iḢt(θ)

∥∥∥ ∥∥∥ jḢt(θ)
∥∥∥ )]

+ C3E
∥∥∥i jḦt(θ)

∥∥∥ + C4E
( ∥∥∥iḢt(θ)

∥∥∥ ∥∥∥ jḢt(θ)
∥∥∥ )

≤2C2

(
E ‖xt‖

6
)1/3(
E

∥∥∥iḢt(θ)
∥∥∥3 )1/3(

E
∥∥∥ jḢt(θ)

∥∥∥3 )1/3
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+ C2(E ‖xt‖
4)1/2(E

∥∥∥i jḦt(θ)
∥∥∥2

)1/2 + C3E
∥∥∥i jḦt(θ)

∥∥∥
+ C4

(
E

∥∥∥ jḢt(θ)
∥∥∥2

)1/2 (
E

∥∥∥iḢt(θ)
∥∥∥2

)1/2
< ∞ (3.37)

The first inequality holds because of Minkowski’s inequality and the second in-

equality results from that
∥∥∥H−1

t (θ)
∥∥∥ has an upper bound. By repeatedly using the

Cauchy-Schwarz inequality, we can get the third inequality. Assumption C1 and

(ii) in Lemma 3.3.3 lead to the finiteness result in the end.

3. The results in the previous two parts imply the existence of the matrix V and

the asymptotic normality of the score function. Similar to the argument in Sec-

tion 3.2.1, an extension of the martingale central limit theorem in Billingsley (1961)

can be applied here because that
∂lt(θ)
∂θ

is stationary and ergodic, see page 61 of

Jiang (2011) for more details. The desired result follows.

4. By the generalized Chebyshev inequality and the Cr inequality we have for ε > 0

and 1/4 > v2 > 0,

P(

∣∣∣∣∣∣∣ 1
√

n

n∑
t=1

∂lt(θ0)
∂θ

−
∂l̃t(θ0)
∂θ

∣∣∣∣∣∣∣ ≥ ε) ≤ n−0.5v2

n∑
t=1

E

∣∣∣∣∣∣∂lt(θ0)
∂θ

−
∂l̃t(θ0)
∂θ

∣∣∣∣∣∣v2

. (3.38)

Hence, it is sufficient to show that for some v2 > 0, the summation is finite.

Based on the score function in (3.34), the terms on the right hand side can be

written as (θ0 was dropped from the equations for simplicity)

E

∣∣∣∣∣∣∂lt(θ0)
∂θ

−
∂l̃t(θ0)
∂θ

∣∣∣∣∣∣v2

≤C1E
∥∥∥∥(Im − xt xt

ᵀH−1
t

)
iḢtHt −

(
Im − xt xt

ᵀH̃−1
t

)
i

˙̃HtH̃t

∥∥∥∥v2

=C1E
∥∥∥∥ (
Im − xt xt

ᵀH̃−1
t )

(
i

˙̃HtH̃−1
t − iḢtH−1

t

)
+ xt xt

ᵀ
(
H−1

t − H̃−1
t

)
iḢtH−1

t

∥∥∥∥v2

=C1E
∥∥∥∥ (
Im − xt xt

ᵀH̃−1
t )

[(
i

˙̃Ht − iḢt

)
H̃−1

t + iḢt

(
H̃−1

t − H−1
t

)]
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+ xt xt
ᵀH̃−1

t

(
H̃t − Ht

)
H−1

t iḢtH−1
t

∥∥∥∥v2

From the Cr inequality, the Cauchy inequality and both supθ∈Θ
∥∥∥H̃−1

t (θ)
∥∥∥ and supθ∈Θ

∥∥∥H̃−1
t (θ)

∥∥∥
are bounded by constants by the proof in Lemma 3.2.8, we have

E

∣∣∣∣∣∣∂lt(θ0)
∂θ

−
∂l̃t(θ0)
∂θ

∣∣∣∣∣∣v2

≤C1E
∥∥∥∥(Im − xt xt

ᵀH̃−1
t

)[(
i

˙̃Ht − iḢt

)
H̃−1

t + iḢtH−1
t

(
Ht − H̃t

)
H̃−1

t

]∥∥∥∥v2

+ C2E
∥∥∥∥xt xt

ᵀH̃−1
t

(
H̃t − Ht

)
H−1

t iḢtH−1
t

∥∥∥∥v2

≤C1E
[(

C3 + C4‖xt‖
2v2

)(
‖i

˙̃Ht − iḢt‖
v2 +

∥∥∥∥ iḢt

∥∥∥∥v2
‖Ht − H̃t‖

v2
)]

+ C5E
[∥∥∥∥xt‖

2v2‖H̃t − Ht

∥∥∥∥v2
∥∥∥∥ iḢt

∥∥∥∥v2]
≤C1C3E

∥∥∥∥ i
˙̃Ht − iḢt‖

v2 + C1C4

(
E
∥∥∥∥xt

∥∥∥∥4v2)1/2(
E
∥∥∥∥ iḢt

∥∥∥∥4v2)1/4
(E

∥∥∥∥Ht − H̃t

∥∥∥∥4v2
)1/4

+ C1C3

(
E
∥∥∥ iḢt

∥∥∥2v2
)1/2(
E
∥∥∥Ht − H̃t

∥∥∥2v2
)1/2

+ C1C4

(
E
∥∥∥xt

∥∥∥4v2
)1/2(
E
∥∥∥ i

˙̃Ht − iḢt

∥∥∥2v2
)1/2

+ C5E
(∥∥∥xt

∥∥∥4v2
)1/2(
E
∥∥∥H̃t − Ht

∥∥∥4v2
)1/4(
E
∥∥∥ iḢt

∥∥∥4v2
)1/4

(3.39)

Similar to the arguments when we prove Lemma 3.2.8, for some v2 > 0, E‖xt‖
4v2 < ∞.

Using the results in Lemma 3.3.3 and Lemma 3.3.4 and the Markov inequality, we

can tell, for the same v2 > 0, that E‖iḢt‖
4v2 < ∞,

∑∞
t=1 E‖i

˙̃Ht − iḢt‖
v2 < ∞ and∑∞

t=1

(
E‖i

˙̃Ht − iḢt‖
2v2

)1/2
< ∞.

Then, the finiteness of the summation in (3.38) has been verified.

∞∑
t=1

E

∣∣∣∣∣∣∂lt(θ0)
∂θ

−
∂l̃t(θ0)
∂θ

∣∣∣∣∣∣v2

< ∞ (3.40)

This leads to that

∣∣∣∣∣∣ 1
√

n
∑n

t=1
∂lt(θ0)
∂θ

−
∂l̃t(θ0)
∂θ

∣∣∣∣∣∣ converges to 0 almost surely. Therefore,∣∣∣∣∣∣ 1
√

n
∑n

t=1
∂lt(θ0)
∂θ

−
∂l̃t(θ0)
∂θ

∣∣∣∣∣∣ = op(1).

5. We can use the result in (3.37) to get the expectation of the difference between lt(θ)



68 Chapter 3. Gaussian QMLE and its Asymptotic Theory

and l̃t(θ). If 0 < v3 < 1/4, then

E
∣∣∣∣∂2lt(θ)
∂θi∂θ j

−
∂2l̃t(θ)
∂θi∂θ j

∣∣∣∣v3

=Etr
[(
Im − xtx

ᵀ
t H−1

t

)(
i jḦtH−1

t − iḢtH−1
t jḢtH−1

t

)
−

(
Im − xtx

ᵀ
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t

)(
i j

¨̃HtH̃−1
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˙̃HtH̃−1
t j

˙̃HtH̃−1
t

)
+ xtx

ᵀ
t H−1

t jḢtH−1
t iḢtH−1

t − xtx
ᵀ
t H̃−1

t j
˙̃HtH̃−1

t i
˙̃HtH̃−1

t

]
≤C1E

∥∥∥∥[(Im − xtx
ᵀ
t H−1

t

)(
i jḦtH−1

t − iḢtH−1
t jḢtH−1

t

)
−

(
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ᵀ
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t

)(
i j

¨̃HtH̃−1
t − i

˙̃HtH̃−1
t j

˙̃HtH̃−1
t

)
+ xtx

ᵀ
t H−1

t jḢtH−1
t iḢtH−1

t − xtx
ᵀ
t H̃−1

t j
˙̃HtH̃−1

t i
˙̃HtH̃−1

t

]∥∥∥∥
≤C1E

{∥∥∥∥(Im − xtx
ᵀ
t H−1

t

)
i jḦtH−1

t −
(
Im − xtx

ᵀ
t H̃−1

t

)
i j

¨̃HtH̃−1
t

∥∥∥∥
+

∥∥∥∥(Im − xtx
ᵀ
t H−1

t

)(
iḢtH−1

t jḢtH−1
t − i
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t j

˙̃HtH̃−1
t
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ᵀ
t

(
H−1

t − H̃−1
t

)
i

˙̃HtH̃−1
t j
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t

∥∥∥∥
+

∥∥∥∥xtx
ᵀ
t H̃−1

t

(
i

˙̃HtH̃−1
t j

˙̃HtH̃−1
t − iḢtH−1

t jḢtH−1
t

)
− xtx

ᵀ
t

(
H−1

t − H̃−1
t

)
iḢtH−1

t jḢtH−1
t

∥∥∥∥}v3

≤C1

{
E
∥∥∥∥(Im − xtx

ᵀ
t H̃−1

t

)(
i jḦtH−1

t − i j
¨̃HtH̃−1

t

)
+ xtx

ᵀ
t

(
H̃−1

t − H−1
t

)
i j

¨̃HtH̃−1
t

∥∥∥∥}v3

+ E
∥∥∥∥(Im − xtx

ᵀ
t H̃−1

t

)[(
iḢtH−1

t − i
˙̃HtH̃−1

t

)
j

˙̃HtH̃−1
t + iḢtH−1

t

(
j

˙̃HtH̃−1
t − jḢtH−1

t

)]∥∥∥∥v3

+ E
∥∥∥∥xtx

ᵀ
t H̃−1

t

(
Ht − H̃t

)
H−1

t iḢtH−1
t j

˙̃HtH−1
t

∥∥∥∥v3

+ E
∥∥∥∥xtx

ᵀ
t H−1

t ( jḢtH−1
t − j

˙̃HtH̃−1
t ) iḢtH−1

t − j
˙̃HtH̃−1

t (i
˙̃HtH̃−1

t − iḢtH−1
t )

∥∥∥∥
+ E

∥∥∥∥xtx
ᵀ
t H̃−1

t

(
Ht − H̃t

)
H−1

t j
˙̃HtH̃−1

t i
˙̃HtH̃−1

t

∥∥∥∥v3

≤C1E
∥∥∥∥(Im − xtx

ᵀ
t H̃−1

t

)[
(i jḦt − i j

¨̃Ht

)
H−1

t + i j
¨̃HtH̃−1

t (Ht − H̃t)H−1
t

]∥∥∥∥v3

+ E
∥∥∥∥xtx

ᵀ
t H̃−1

t (Ht − H̃t)H−1
t i j

¨̃HtH̃−1
t

∥∥∥∥v3

+ E
∥∥∥∥(Im − xtx

ᵀ
t H̃−1

t
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(iḢt − i

˙̃Ht)H−1
t + iḢtH̃−1

t (Ht − H̃t)H−1
t

]
j

˙̃HtH̃−1
t

∥∥∥∥v3

+ E
∥∥∥∥(Im − xtx

ᵀ
t H−1

t

)
iḢtH−1

t [( jḢt − j
˙̃Ht)H−1

t + j
˙̃HtH̃−1

t (Ht − H̃t)H−1
t ]

∥∥∥∥v3

+ E
∥∥∥∥xtx

ᵀ
t H̃−1

t (Ht − H̃t)H−1
t iḢtH−1

t j
˙̃HtH−1

t

∥∥∥∥v3
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+ E
∥∥∥∥xtx

ᵀ
t H−1

t [( jḢt − i
˙̃Ht)H−1

t + j
˙̃HtH̃−1

t (H̃t − Ht)H−1
t ] iḢtH−1

t

∥∥∥∥v3

+ E
∥∥∥∥xtx

ᵀ
t H−1

t j
˙̃HtH̃−1

t [( j
˙̃Ht − jḢt)H−1

t + i
˙̃HtH̃−1

t (Ht − H̃t)H−1
t ]

∥∥∥∥v3

+ E
∥∥∥∥xtx

ᵀ
t H̃−1

t (Ht − H̃t)H−1
t j

˙̃HtH̃−1
t i

˙̃HtH̃−1
t

∥∥∥∥v3

≤C2E
∥∥∥∥ i jḦt − i j

¨̃Ht

∥∥∥∥v3
+ C3E

∥∥∥∥xt

∥∥∥∥2v3
∥∥∥∥ i jḦt − i j

¨̃Ht

∥∥∥∥v3
+ C4E

∥∥∥∥H̃t − Ht

∥∥∥∥v3
∥∥∥∥ i j

¨̃Ht

∥∥∥∥v3

+ C5E
∥∥∥∥xt

∥∥∥∥2v3
∥∥∥∥H̃t − Ht

∥∥∥∥v3
∥∥∥∥ i j

¨̃Ht

∥∥∥∥v3
+ C6E

∥∥∥∥xt

∥∥∥∥2v3
∥∥∥∥ iḢt − i

˙̃Ht

∥∥∥∥v3
∥∥∥∥ j

˙̃Ht

∥∥∥∥v3

+ C7E
∥∥∥∥(iḢt − i

˙̃Ht)
∥∥∥∥v3

∥∥∥∥ j
˙̃Ht

∥∥∥∥v3
+ C8E

∥∥∥∥ i
˙̃Ht

∥∥∥∥v3
∥∥∥∥Ht − H̃t

∥∥∥∥v3
∥∥∥∥ j

˙̃Ht

∥∥∥∥v3

+ C9E
∥∥∥∥xt

∥∥∥∥2v3
∥∥∥∥ i

˙̃Ht

∥∥∥∥v3
∥∥∥∥Ht − H̃t

∥∥∥∥v3
∥∥∥∥ j

˙̃Ht

∥∥∥∥v3
+ C10E

∥∥∥∥ iḢt

∥∥∥∥v3
∥∥∥∥ jḢt − j

˙̃Ht

∥∥∥∥v3

+ C11E
∥∥∥∥ iḢt

∥∥∥∥v3
∥∥∥∥ jḢt − j

˙̃Ht

∥∥∥∥v3
∥∥∥∥xt

∥∥∥∥2v3
+ C12E

∥∥∥∥ j
˙̃Ht

∥∥∥∥v3
∥∥∥∥Ht − H̃t

∥∥∥∥v3
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∥∥∥∥ j

˙̃Ht

∥∥∥∥v3
∥∥∥∥Ht − H̃t

∥∥∥∥v3
∥∥∥∥xt

∥∥∥∥2v3
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∥∥∥∥ j
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∥∥∥∥Ht − H̃t

∥∥∥∥v3
∥∥∥∥xt

∥∥∥∥2v3
∥∥∥∥ i

˙̃Ht

∥∥∥∥v3
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∥∥∥∥ j
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∥∥∥∥v3
∥∥∥∥Ht − H̃t

∥∥∥∥v3
∥∥∥∥xt

∥∥∥∥2v3
∥∥∥∥ iḢt

∥∥∥∥v3
. (3.41)

By using Assumption C1 and Cauchy-Schwarz inequality repeatedly, the summation

can be rewritten as

∞∑
t=1

E
∣∣∣∣∂2lt(θ)
∂θi∂θ j

−
∂2l̃t(θ)
∂θi∂θ j

∣∣∣∣v3

≤

∞∑
t=1

C2E
∥∥∥∥ i jḦt − i j

¨̃Ht

∥∥∥∥v3
+ C3

(
E
∥∥∥∥xt

∥∥∥∥4v3
E
∥∥∥∥ i jḦt − i j

¨̃Ht

∥∥∥∥2v3)1/2
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(
E
∥∥∥∥H̃t − Ht

∥∥∥∥2v3
E
∥∥∥∥ i j

¨̃Ht

∥∥∥∥2v3)1/2
+ C5

(
E
∥∥∥∥xt

∥∥∥∥6v3
E
∥∥∥∥H̃t − Ht

∥∥∥∥3v3
E
∥∥∥∥ i j

¨̃Ht

∥∥∥∥3v3)1/3
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(
E
∥∥∥∥xt

∥∥∥∥6v3
E
∥∥∥∥ iḢt − i

˙̃Ht

∥∥∥∥3v3
E
∥∥∥∥ j

˙̃Ht

∥∥∥∥3v3)1/3
+ C7

(
E
∥∥∥∥(iḢt − i

˙̃Ht)
∥∥∥∥2v3
E
∥∥∥∥ j

˙̃Ht

∥∥∥∥2v3)1/2
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(
E
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˙̃Ht

∥∥∥∥3v3
E
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E
∥∥∥∥ j
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E
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∥∥∥∥4v3)1/4

+ C11

(
E
∥∥∥∥ iḢt
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E
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E
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E
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E
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E
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≤

∞∑
t=1

k1E
∥∥∥∥ i jḦt − i j

¨̃Ht

∥∥∥∥v3
+ k2

(
E
∥∥∥∥ i jḦt − i j

¨̃Ht

∥∥∥∥2v3)1/2
+ k3

(
E
∥∥∥∥H̃t − Ht

∥∥∥∥2v3)1/2

+ k4

(
E
∥∥∥∥ iḢt − i

˙̃Ht

∥∥∥∥3v3)1/3
+ k5

(
E
∥∥∥∥H̃t − Ht

∥∥∥∥3v3)1/3
+ k6

(
E
∥∥∥∥ iḢt − i

˙̃Ht

∥∥∥∥2v3)1/2

+ k7

(
E
∥∥∥∥ jḢt − j

˙̃Ht

∥∥∥∥2v3)1/2
+ k8

(
E
∥∥∥∥H̃t − Ht

∥∥∥∥4v3)1/4
+ k9

(
E
∥∥∥∥ jḢt − j

˙̃Ht

∥∥∥∥3v3)1/3

(3.42)

In Lemma 3.3.3 and 3.3.4, each of these summations has been proved to be finite.

Hence,

∞∑
t=1

E sup
θ∈υ(Θ)

∣∣∣∣∂2lt(θ)
∂θi∂θ j

−
∂2l̃t(θ)
∂θi∂θ j

∣∣∣∣v3
< ∞ (3.43)

By Borel-Cantelli lemma, supθ∈υ(Θ)

∣∣∣∣1n ∑n
t=1

∂2lt(θ0)
∂θ∂θᵀ

−
∂2 l̃t(θ0)
∂θ∂θᵀ

∣∣∣∣ = o(1) a.s..

6. We will apply Results (19) and (18) in Appendix A on the third derivatives. Based

on the terms and steps in (3.36),

∂3lt(θ)
∂θi1∂θi2∂θi3

=
∂

∂θ j
tr
[ (
Im − xt xt

ᵀH−1
t (θ)

) (
i jḦt(θ)H−1

t (θ) − iḢtH−1
t (θ) jḢt(θ)H−1

t (θ))

+ xt xt
ᵀ

iḢt(θ)H−1
t (θ) jḢt(θ)H−1

t (θ)
]

=tr
[(
Im − xt xt
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t

){
i jk

...
HtH−1

t − i jḦtH−1
t kḢtH−1

t − ikḦtH−1
t kḢtH−1

t

+ iḢtH−1
t kḢtH−1

t jḢtH−1
t − iḢtH−1

t jkḦtH−1
t + iḢtH−1

t jḢtH−1
t kḢtH−1

t

}
+ xt xt

ᵀH−1
t

{
kḢtH−1

t i jḦtH−1
t − kḢtH−1

t iḢtH−1
t jḢtH−1

t + ikḦtH−1
t jḢtH−1

t

− kḢtH−1
t iḢtH−1

t jḢtH−1
t − iḢtH−1

t kḢtH−1
t jḢtH−1

t + iḢtH−1
t jkḦtH−1

t H−1
t

− iḢtH−1
t jḢtH−1

t kḢtH−1
t

}]
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[
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ᵀ‖
2 E

∥∥∥∥( i jk
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Ht
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3 E
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E
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+ c4

[
E ‖xt xt
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E

∥∥∥kḢt

∥∥∥4
E
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[
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E
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∥∥∥3 ]1/3
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[
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4 E
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E

∥∥∥ jḢt

∥∥∥4
E

∥∥∥kḢt

∥∥∥4 ]1/4

+ c7E
∥∥∥i jk

...
Ht

∥∥∥ + c8

[
E

∥∥∥i jḦt

∥∥∥2
E

∥∥∥kḢt

∥∥∥2 ]1/2
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[
E

∥∥∥ikḦt
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E
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∥∥∥2 ]1/2

+ c10

[
E

∥∥∥iḢt
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E

∥∥∥kḢt
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E

∥∥∥ jḢt
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+ c11

[
E

∥∥∥iḢt

∥∥∥2
E

∥∥∥ jkḦt
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+ c12

[
E
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E

∥∥∥ jḢt
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E

∥∥∥kḢt

∥∥∥3 ]1/3
(3.44)

Lemma 3.3.3 and Assumption C1 tell us that every term in the last inequality is

finite. The result is true for any θ ∈ Θ, so we can definitely find such a set υ(θ0)

around θ0 to satisfy this finite result.

After proving all the intermediate steps above, it brings us back to (3.33). By Steps 3

and 4 above, we can get that

1
√

n

n∑
t=1

∂l̃t(θ0)
∂θ

=

 1
√

n

n∑
t=1

∂l̃t(θ0)
∂θ

−
1
√

n

n∑
t=1

∂lt(θ0)
∂θ

 +
1
√

n

n∑
t=1

∂lt(θ0)
∂θ

D
−→ N(0,V)

since the term in the bracket converges to 0 in probability and the second term converges

to a normal distribution with 0 mean and variance V.

Apply the Taylor expansion on the stationary second derivative term around θ0,

1
n

n∑
t=1

∂2lt(θ̃)
∂θ∂θᵀ


i1i2

=

1
n

n∑
t=1

∂2lt(θ0)
∂θ∂θᵀ


i1i2

+
1
n

n∑
t=1

∂

∂θᵀ

(
∂2lt(θ∗)
∂θ∂θᵀ

)
i1i2

(θ̃n − θ0) (3.45)

where θ∗ is between θ̃n and θ0.

θ̃n is within the neighbourhood of θ0 because of the strong consistency. Moreover,
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within the same compact set υ(θ0), when the sample size n is sufficiently large,

lim sup
n→∞

∥∥∥∥∥∥∥1
n

n∑
t=1

∂

∂θᵀ
(∂2lt(θ∗)
∂θ∂θᵀ

)
i1i2

∥∥∥∥∥∥∥
≤ lim sup

n→∞

1
n

n∑
t=1

sup
θ∈υ(θ0)

∥∥∥∥∥∥ ∂

∂θᵀ
(∂2lt(θ∗)
∂θ∂θᵀ

)
i1i2

∥∥∥∥∥∥
≤E sup

θ∈υ(θ0)

∥∥∥∥∥∥ ∂

∂θᵀ
(∂2lt(θ∗)
∂θ∂θᵀ

)
i1i2

∥∥∥∥∥∥ < ∞ (3.46)

by Step 6 above. This leads to another convergence result,

1
n

n∑
t=1

∂

∂θᵀ

(
∂2lt(θ∗)
∂θ∂θᵀ

)
i1i2

(θ̃n − θ0)
D
−→ 0.

The first term in (3.45) converges to J in probability by applying the ergodic theorem,

1
n

n∑
t=1

∂2lt(θ0)
∂θ∂θᵀ

 P
−→ J.

Then, the left side of (3.45) converges,

1
n

n∑
t=1

∂2lt(θ̃)
∂θ∂θᵀ

 P
−→ J.

By Step 5, the same results apply to the term within the bracket in (3.33),

1
n

n∑
t=1

∂2 l̃t(θ̃)
∂θ∂θᵀ

=
1
n

n∑
t=1

∂2lt(θ̃)
∂θ∂θᵀ

+

1
n

n∑
t=1

∂2 l̃t(θ̃)
∂θ∂θᵀ

−
1
n

n∑
t=1

∂2lt(θ̃)
∂θ∂θᵀ

 P
−→ J (3.47)

The final step in this proof is to use the Slutsky’s theorem, the desired result can be

obtained.

3.3.2 Lemmas

Lemma 3.3.2 Under Assumption C1 −C2,
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(i) Eσ8
i,t < ∞ and Eσ̃8

i,t < ∞. In addition, E
(
σi,tσ j,t

)4
< ∞ and E

(
σ̃i,tσ̃ j,t

)4
< ∞for

i, j = 1, . . . ,m, i , j. Therefore, E ‖Ht‖
4 < ∞ and E

∥∥∥H̃t

∥∥∥4
< ∞.

(ii) E
(∑∞

l=0 β
l
ix

2
i,t−1−l

)4
< ∞

(iii) E
(∑∞

l=1 lβl−1
i x2

i,t−1−l

)4
< ∞

(iv) E
(∑∞

l=2 l(l − 1)βl−2
i x2

i,t−1−l

)4
< ∞

(v) E

∑∞l=0 β
l
ix

2
i,t−1−l

σi,t

8

< ∞ and E

 (
∑∞

l=0 β
l
ix

2
i,t−1−l)

2

σ3
i,t

8

< ∞.

(vi) E

∑∞l=1 lβl−1
i x2

i,t−1−l

σi,t

8

< ∞, E

 (
∑∞

l=1 lβl−1
i x2

i,t−1−l)
2

σ3
i,t

8

< ∞

and E

 (
∑∞

l=1 lβl−1
i x2

i,t−1−l)
3

σ5
i,t

8

< ∞ .

(vii) E

 (
∑∞

l=0 β
l
ix

2
i,t−1−l)(

∑∞
l=1 lβl−1

i x2
i,t−1−l)

σ3
i,t

8

< ∞

(viii) E

∑∞l=2 l(l − 1)βl−2
i x2

i,t−1−l

σi,t

8

< ∞ and E

∑∞l=3 l(l − 1)(l − 2)βl−3
i x2

i,t−1−l

σi,t

8

< ∞.

(ix) E

 (
∑∞

l=2 l(l − 1)βl−2
i x2

i,t−1−l)(
∑∞

l=1 lβl−1
i x2

i,t−1−l)

σ3
i,t

8

< ∞.

Proof a, b, c, d, a1, b1, c1, d1 . . . will be used to represent some finite constants and they

may have different values in lines in the following proof.

(i) Apply Holder’s and Minkowski’s inequality ((14) and (15) in Appendix A), for

i = 1, 2, . . . ,m,

Eσ8
i,t =E

 ωi

1 − βi
+

∞∑
j=0

αiβ
j
i x2

i,t−1− j


4

≤

 ωi

1 − βi
+

∞∑
j=0

αiβ
j
i

[
E(x2

i,t−1− j)
4
]1/4


4

< ∞
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The last line is from Assumption C2, Ex8
i,t is finite. Then by (3) in Appendix A, the

second result follows.

For the practical term,

Eσ̃8
i,t =E

σ̃2
i,0β

t
i +

t−2∑
j=0

αiβ
j
i x2

i,t−1− j +

t−1∑
j=0

β
j
iωi + αiβ

t−1
i x̃2

i,0


4

≤a1

(σ̃2
i,0β

t
i)

4 + E

 ∞∑
j=0

αiβ
j
i x2

i,t−1− j


4

+ a2 + a3β
(t−1)4
i

 < ∞
The second part of the result follows by Cauchy-Schwarz inequality.

Move to the last part of this result, both expectations will be proved following

the same logic. The diagonal elements of Ht are finite summations of σ2
i,t and the

non-diagonal elements are finite summations of both σ2
i,t and σi,tσ j,t. By (4) in

Appendix A, E ‖Ht‖
4 is finite . So is E

∥∥∥H̃t

∥∥∥4
.

(ii) From (i) above and (4) in Appendix A, the term on the left hand side becomes

E

 ∞∑
l=0

βl
ix

2
i,t−1−l

4

=E

[
(σ2

i,t −
ωi

1 − βi
)/αi

]4

≤a
E(σ2

i,t/αi)4 +

(
ωi

(1 − βi)αi

)4 < ∞.
(iii) The inequality follows by applying (14) and (15) in Appendix A.

E

 ∞∑
l=1

lβl−1
i x2

i,t−1−l

4

=

 ∞∑
l=1

lβl−1
i

[
E

(
x2

i,t−1−l

)4
]1/4


4

< ∞.

(iv) The results (10), (11) and (12) in Appendix A lead to

E

 ∞∑
l=2

l(l − 1)βl−2
i x2

i,t−1−l

4

≤

 ∞∑
l=2

l(l − 1)βl−2
i E

(
x8

i,t−1−l

)1/4


4

< ∞.



3.3. Asymptotic Normality 75

(v) The denominator σi,t can be reduced according to the terms in the numerator.

E

∑∞l=0 β
l
ix

2
i,t−1−l

σi,t

8

=E


∑∞

l=0 β
l
ix

2
i,t−1−l√

ωi
1−βi

+ αi
∑∞

k=0 β
k
i x2

i,t−1−k


8

≤E


∞∑

l=0

βl
ix

2
i,t−1−l√

ωi
1−βi

+ αiβ
l
ix

2
i,t−1−l


8

≤E

 ∞∑
l=0

√
βl

ix
2
i,t−1−l/

√
αi

8

≤

 ∞∑
l=0

[
E(

√
βl

ix
2
i,t−1−l/

√
αi)8

]1/8
8

≤

 ∞∑
l=0

βl/2
i

α1/2
i

(
Ex8

i,t−1−l

)1/8
8

< ∞

The Holder’s and Minkowski’s inequality can be applied afterwards to get an upper

bound of the summation in the second last line. The first inequality holds, then we

can apply the same technique and transform the terms on the left hand side of the

second inequality.

Therefore,

E

 (
∑∞

l=0 β
l
ix

2
i,t−1−l)

2

σ3
i,t

8

=E


σ2

i,t − ωi/(1 − βi)

αi

2

/σ3
i,t}

8

≤a

E  σ4
i,t

α2
iσ

3
i,t

)8 +

(
ωi

(1 − βi)αi
)8
]

=a
1
α2

i

E

σ8
i,t) + a

(
ωi

(1 − βi)αi

)8

< ∞.

(vi) Using (10) and (11) in Appendix A, and the similar arguments in both (v) and (iv),

E

∑∞l=1 lβl−1
i x2

i,t−1−l

σi,t

8

≤aE

 ∞∑
l=0

l
√
βl−1

i x2
i,t−1−l

8
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≤a

 ∞∑
l=0

lβ(l−1)/2
i

[
E(x8

i,t−1−l)
]1/8

8

< ∞.

The other two inequalities can be proved as well using the same method. Then,

E

 (
∑∞

l=1 lβl−1
i x2

i,t−1−l)
2

σ3
i,t

8

≤b1E

 ∞∑
l=1

lβl−1
i x2

i,t−1−l

(αiβ
l
ix

2
i,t−1−l)

3/4

16

≤b2

 ∞∑
l=1

lβ(l−1)/4
i [E(x1/2

i,t−1−l)
16]1/16

16

< ∞

and

E


(∑∞

l=1 lβl−1
i x2

i,t−1−l

)3

σ5
i,t


8

≤c1E

 ∞∑
l=1

lβl−1
i x2

i,t−1−l

(αiβ
l
ix

2
i,t−1−l)

5/6

24

≤c2

 ∞∑
l=1

lβ(l−1)/6
i

[
E

(
x1/3

i,t−1−l

)24
]1/24

24

< ∞.

(vii) By transforming the term inside the first pair of brackets in the numerator and

applying the result in (vi),

E


(∑∞

l=0 β
l
ix

2
i,t−1−l)

(∑∞
l=1 lβl−1

i x2
i,t−1−l)

σ3
i,t


8

≤E

σ2
i,t/αi(

∑∞
l=1 lβl−1

i x2
i,t−1−l)

σ3
i,t

8

≤aE

∑∞l=1 lβl−1
i x2

i,t−1−l

σi,t

8

< ∞.

(viii) Using (10) and (11) in Appendix A, and the result (vi) above in this lemma, we

can get

E

∑∞l=2 l(l − 1)βl−2
i x2

i,t−1−l

σi,t

8

≤aE

 ∞∑
l=2

l(l − 1)
√
βl−2

i x2
i,t−1−l

8
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≤a

 ∞∑
l=1

l(l − 1)β(l−2)/2
i

[
E(x8

i,t−1−l)
]1/8

8

< ∞.

Similarly, the second inequality becomes

E

∑∞l=3 l(l − 1)(l − 2)βl−3
i x2

i,t−1−l

σi,t

8

≤aE

 ∞∑
l=3

l(l − 1)(l − 2)
√
βl−3

i x2
i,t−1−l

8

≤b

 ∞∑
l=3

l(l − 1)(l − 2)β(l−3)/2
i

[
E(x8

i,t−1−l)
]1/8

8

<∞.

(ix) We can use (vi) in the second line of the inequality below in order to get the desired

finiteness.

E


(∑∞

l=2 l(l − 1)βl−2
i x2

i,t−1−l

) (∑∞
l=1 lβl−1

i x2
i,t−1−l

)
σ3

i,t


8

=E

 (
∑∞

l=2 l(l − 1)βl−2
i x2

i,t−1−l)

σ3/2
i,t

(
∑∞

l=1 lβl−1
i x2

i,t−1−l)

σ3/2
i,t

8

≤

√√√
E

∑∞l=2 l(l − 1)βl−2
i x2

i,t−1−l

σ3/2
i,t

12

E

∑∞l=1 lβl−1
i x2

i,t−1−l

σ3/2
i,t

16

≤a

√√
E

∑∞l=2 l(l − 1)βl−2
i x2

i,t−1−l

(βix2
i,t−1−l)

3/2

16

≤b

√√√
E

 ∞∑
l=2

l(l − 1)β(l−2)/2
i x1/2

i,t−1−l

16

≤c

√√√ ∞∑
l=2

l(l − 1)β(l−2)/2
i

[
E(x1/2

i,t−1−l)
16
]1/16


16

< ∞.

�

Lemma 3.3.3 Under Assumptions C1 −C2,

(i) max(E
∣∣∣∣∣∂σ2

i,t

∂ωi

∣∣∣∣∣z1

,E

∣∣∣∣∣∂σ2
i,t

∂αi

∣∣∣∣∣z1

,E

∣∣∣∣∣∂σ2
i,t

∂βi

∣∣∣∣∣z1

) ≤ kz1 < ∞ for i = 1, . . . ,m and any positive number
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z1 ≤ 4. Therefore, E
∥∥∥iḢt

∥∥∥4
< ∞, where iḢt =

∂Ht

∂θi
, represents the first derivative of

matrix Ht with respect to the i-th parameter.

(ii) max(E
∣∣∣∣∣∂σ̃2

i,t

∂ωi

∣∣∣∣∣z2

,E

∣∣∣∣∣∂σ̃2
i,t

∂αi

∣∣∣∣∣z2

,E

∣∣∣∣∣∂σ̃2
i,t

∂βi

∣∣∣∣∣z2

) ≤ k̃z2 < ∞ for i = 1, . . . ,m and any positive number

0 < z2 ≤ 4. In addition, E
∥∥∥∥i

˙̃Ht

∥∥∥∥4
< ∞.

(iii) E
∥∥∥i jḦt

∥∥∥4
< ∞, where i jḦt =

∂2Ht

∂θi∂θ j
.

(iv) E
∥∥∥i jl

...
Ht

∥∥∥4
< ∞, where i jl

...
Ht =

∂3Ht

∂θi∂θ j∂θl

(v) E
∥∥∥∥i j

¨̃Ht

∥∥∥∥z3
< ∞, where i j

¨̃Ht =
∂2H̃t

∂θi∂θ j
for any positive number 0 < z3 < 1.

Proof We can see from (7) in Appendix A and the proof of Lemma 3.2.8, the norm

constant p is irrelevant here when we work on (iii), (iv) and (v). Therefore, it is equivalent

to prove that the partial derivative of each element of the matrix Ht with respect to θi

has a finite absolute third moment.

Since Ht(θ) is a symmetric matrix, we could denote the element in the ith row and

jth column of Ht(θ) by Hi j,t, and assume i < j and l ≤ k in ρl,k without loss of generality,

i, j, l, k = 1, . . . ,m. The lower case letters with or without a subscript, a, b, a1, b1, . . ., have

been used as symbols to represent some finite constants, they may have distinct values

in different lines below.

(i) The first derivatives of σ2
i,t with respect to the parameters can be easily calculated.

By using the inequalities in Lemma 3.3.2 and (4) in Appendix A, the following

inequalities can be obtained.

E

∣∣∣∣∣∣∣∂σ
2
i,t

∂ωi

∣∣∣∣∣∣∣
4

=

(
1

1 − βi

)4

< ∞

E

∣∣∣∣∣∣∣∂σ
2
i,t

∂αi

∣∣∣∣∣∣∣
4

=E(
∞∑

l=0

βl
jx

2
j,t−1−l

4

< ∞

E

∣∣∣∣∣∣∣∂σ
2
i,t

∂βi

∣∣∣∣∣∣∣
4

=E

 ωi

(1 − βi)
+

∞∑
l=1

lαiβ
l−1
i x2

i,t−1−l

4

< ∞
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≤a
(
1i= j + β0 j

)4
( ω j

(1 − β j)

)4

+ E

 ∞∑
l=1

lα jβ
l−1
j x2

j,t−1−l

4 < ∞
It is easier to consider the diagonal terms and the other terms of Ht(θ) separately.

E

(
∂Hii,t

∂ω j

)4

=E

∂Hii,t

∂σ2
j,t

∂σ2
j,t

∂ω j

4

=
(
1i= j + β0 j

)4
E
∣∣∣∣∂σ2

i,t

∂ω j

4

< ∞

E

(
∂Hii,t

∂α j
)4 =

(
1i= j + β0 j

)3
E

∣∣∣∣∣∣∣∂σ
2
i,t

∂α j

∣∣∣∣∣∣∣
4

< ∞

E

(
∂Hii,t

∂β j

)3

=
(
1i= j + β0 j

)4
E

∣∣∣∣∣∣∣∂σ
2
i,t

∂β j

∣∣∣∣∣∣∣
4

< ∞

E

(
∂Hii,t

∂β0 j

)4

=E
(
σ2

j,t

)4
< ∞

E

(
∂Hii,t

∂ρl,k

)4

=0

The first derivatives of the diagonal elements have been proved. Then, for the

non-diagonal terms, we have the similar finiteness result.

E
(∂Hi j,t

∂ωl

)4
=E

(
1i=lρi, j

σ j,t

2σl,t
+ 1 j=lρi, j

σi,t

2σl,t
+ β0l

)4 (
1

1 − βl

)4

< ∞

E

(
∂Hi j,t

∂αl

)4

=E

(
1i=lρi, j

σ j,t

2σl,t
+ 1 j=lρi, j

σi,t

2σl,t
+ β0l

)4  ∞∑
k=0

βk
j x

2
l,t−1−k

4

≤E
(
1i=lρi, jσ j,t + 1 j=lρi, jσi,t + 2β0lσl,t

)4
∑∞k=0 β

k
j x

2
l,t−1−k

2σl,t

4

≤

E (
1i=lρi, jσ j,t + 1 j=lρi, jσi,t + 2β0lσl,t

)8
E

∑∞k=0 β
k
j x

2
l,t−1−k

2σl,t

8


1/2

<∞

Based on (4) in Appendix A and ρi, j ∈ [−1, 1],

E

(
∂Hi j,t

∂βl

)4

=E

(1i=lρi, j
σ j,t

2σl,t
+ 1 j=lρi, j

σi,t

2σl,t
+ β0l)4

 ωl

(1 − βl)2 +

∞∑
k=1

kαlβ
k−1
l x2

l,t−1−k

4
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≤E

(σ j,t

σi,t
+
σi,t

σ j,t
+ β0l)

ωl

(1 − βl)2 +

(
σ j,t

σi,t
+
σi,t

σ j,t
+ β0l

)
(
∞∑

k=1

kαlβ
k−1
l x2
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4

≤4E
[(
σ j,t

σi,t
+
σi,t

σ j,t
+ β0l

)
ωl

(1 − βl)2

]4

+ 4E

(σ j,t

σi,t
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σi,t

σ j,t
+ β0l

)  ∞∑
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kαlβ
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l x2

l,t−1−k

4

≤aE
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σ j,t
√
ωi
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σi,t
√
ω j

+ β0l
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ωl

(1 − βl)2
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+ bE

σ j,t
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 ∞∑
k=1

kαiβ
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i x2
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4

+ bE

σi,t
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 ∞∑
k=1

kα jβ
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j x2
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4

+ bE
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 ∞∑
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kαlβ
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l x2
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4

≤aE
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σ j,t
√
ωi

+
σi,t
√
ω j

+ β0l

)
ωl

(1 − βl)2

]4

≤c + d

Eσ8
j,tE

∑∞k=1 kαiβ
k−1
i x2

i,t−1−k

σi,t

8
1/2

+ d

Eσ8
i,tE

∑∞k=1 kα jβ
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j x2

j,t−1−k

σ j,t
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1/2

+ bE

β0l

 ∞∑
k=1

kαlβ
k−1
l x2

l,t−1−k

4

< ∞.

E

(
∂Hi j,t

∂β0l

)4

=E
(
σ2

l,t

)3
< ∞

E

(
∂Hi j,t

∂ρl,k
)4 =E

[
1i=l1 j=kσl,tσk,t

]4
≤ E

(
σl,tσk,t

)4 < ∞

The desired result follows.

(ii) We can easily write down the first derivatives of σ̃2
i,t in (3.22).

E

∣∣∣∣∣∣∣∂σ̃
2
i,t

∂ωi

∣∣∣∣∣∣∣
4

=

(
1 − βt

i
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E
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2
i,t

∂αi
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4

=E
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βl
jx

2
j,t−1−l + βt−1

i x̃2
1,0

4

≤aE

 ∞∑
l=0

βl
jEx2

j,t−1−l

4

+ aβ(t−1)4
i x̃8

1,0 ≤ b + cβtv3
i < ∞

It is worth to notice that the first part in the second inequality is a continuous

function with respect to any fixed βi. It is easy to see that this term has a maximum

a on t ∈ N+ which leads to the result in the last line.
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The last term, the derivative of σ̃2
i,t with respect to βi is
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∣∣∣∣∣∣∣∂σ̃
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i,t

∂βi

∣∣∣∣∣∣∣
4

=E

tβt−1
i σ̃2

i,0 +

t−2∑
l=1

lβl−1
i

(
αix2

i,t−1−l + ωi

)
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4

+ (t − 1)4β(t−2)4
i α4

i x̃8
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≤c1t4βt4

i + c2 + c3(t − 1)vβt4
i .

The last line of the inequality above is a continuous function of t, h1(t). Since βi < 1,

we can prove that h1(t) has a maximum. The term E
∣∣∣∣∂σ̃2

i,t

∂βi

∣∣∣∣4 is finite for any t > 0.

We move on to the first derivative of the practical conditional covariance matrix ˙̃Ht.

We study all the elements in our target and start with the diagonal elements. By

the results above in this lemma,
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Similar results are true for the 4th moment of the non-diagonal terms as following.

Suppose that i < j and l < k,

E

∣∣∣∣∣∣∂H̃i j,t

∂ρlk

∣∣∣∣∣∣
4

=1i=l1 j=kE
∣∣∣σ̃i,tσ̃ j,t

∣∣∣4 < ∞,
E

∣∣∣∣∣∣∂H̃i j,t

∂ωl

∣∣∣∣∣∣
4

=E

∣∣∣∣∣∣∣
(
1i=lσ j,t + 1 j=lσi,t

σl,t
ρi j + β0l

)
σ2

l,t

ωl

∣∣∣∣∣∣∣
4

< ∞,

E

∣∣∣∣∣∣∂H̃i j,t

∂αl

∣∣∣∣∣∣
4

=E

∣∣∣∣∣∣∣
(
1i=lσ j,t + 1 j=lσi,t

σl,t
ρi j + β0l

)
σ2

l,t

αl

∣∣∣∣∣∣∣
4

< ∞,



82 Chapter 3. Gaussian QMLE and its Asymptotic Theory
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(iii) A sufficient condition is that all absolute elements of the second partial derivative

of Ht are finite in terms of the third moment. Only the non-zero terms are listed

below because the number of all second derivative elements is large.
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Above proved the finiteness of the absolute diagonal terms of the second derivative.

The non-diagonal elements will be shown below.
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All the absolute third moments of the terms have been proved to be finite. The

elements which are not listed above have the value 0. The desired result, E
∥∥∥i jḦt

∥∥∥4

p
<

∞, follows.

(iv) Among all the third derivatives of the diagonal elements, only 6 terms are not zero

and they are listed below.
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The non-diagonal elements have more non-zero terms. By Lemma 3.3.2 and (3),

(4) in Appendix A, we could prove the following results.
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βh
i1 x2

i1,t−1−h

∣∣∣∣∣∣4 < ∞
E

∣∣∣∣∣∣ ∂3Hi j,t

∂ρl,k∂ωi1∂αi2

∣∣∣∣∣∣4 =E

[
1i=l1 j=k

(
1i=i11 j=i2 + 1 j=i11i=i2

4σ j,tσi,t(1 − βi1)

) ∞∑
h=0

βh
i2 x2

i2,t−1−h

]4

< ∞

E

∣∣∣∣∣∣ ∂3Hi j,t

∂ρl,k∂ωi1∂βi1

∣∣∣∣∣∣4 =E

∣∣∣∣∣∣ −
(
1i=i1σ j,t + 1 j=i1σi,t

4σ3
i1,t

(1 − βi1)

)(
αi1

∞∑
h=1

hβh−1
i1 x2

i1,t−1−h

+
ωi1

(1 − βi1)2

)
+
1i=i1σ j,t + 1 j=i1σi,t

2σi1,t(1 − βi1)2

∣∣∣∣∣∣41i=l1 j=k

≤b

√√
(Eσ8

i + Eσ8
j)E

(
αi1

∑∞
h=1 hβh−1

i1
x2

i1,t−1−h

σ3
i1,t

)8

+ aE(σi + σ j)4 < ∞ (3.50)

E

∣∣∣∣∣∣ ∂3Hi j,t

∂ρl,k∂ωi1∂βi2

∣∣∣∣∣∣4 =E

[
1i=l1 j=k

(
1i=i11 j=i2 + 1 j=i11i=i2

4σ j,tσi,t(1 − βi1)

)( ∞∑
h=1

hβh−1
i2 x2

i2,t−1−h

+
ωi2

(1 − βi2)2

)]4

≤cE
( ∞∑

h=1

hβh−1
i2 x2

i2,t−1−h +
ωi2

(1 − βi2)2

)4

< ∞

E

∣∣∣∣∣∣ ∂3Hi j,t

∂ρl,k∂αi1∂αi1

∣∣∣∣∣∣4 =E

∣∣∣∣∣∣ − 1i=l1 j=k

(1i=i1σ j,t

4σ3
i1,t

+
1 j=i1σi,t

4σ3
i1,t

)
(
∞∑

h=0

βh
i1 x2

i1,t−1−h)2

∣∣∣∣∣∣4
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≤a

√√
E(σ8

i,t + σ8
j,t)E

( (
∑∞

h=0 β
h
i1

x2
i1,t−1−h)2

σ3
i1,t

)8

< ∞ (3.51)

E

∣∣∣∣∣∣ ∂3Hi j,t

∂ρl,k∂αi1∂αi2

∣∣∣∣∣∣4 =E

[
1i=l1 j=k

(
1i=i11 j=i2 + 1 j=i11i=i2

4σi1,tσ j,t

)
(
∞∑

h=0

βh1
i1

x2
i1,t−1−h1

)(
∞∑

h2=0

βh2
i2

x2
i2,t−1−h2

)
]4

≤b

√
E

(∑∞
h1=0 β

h1
i1

x2
i1,t−1−h1

σi1,t

)8

E

(∑∞
h2=0 β

h2
i2

x2
i2,t−1−h2

σi2,t

)8

< ∞ (3.52)

E

∣∣∣∣∣∣ ∂2Hi j,t

∂ρl,k∂αi1∂βi1

∣∣∣∣∣∣4 =E

∣∣∣∣∣∣ − 1i=l1 j=k

(
1i=i1σ j,t

2σi1,t
+
1 j=i1σi,t

2σi1,t

)[∑∞
h=0 β

h
i1

x2
i1,t−1−h

2σ2
i1,t

(
∞∑

h=1

αi1hβ
h−1
i1 x2

i1,t−1−h +
ωi1

(1 − βi1)2 ) +

∞∑
h=0

βh−1
i1 hx2

i1,t−1−h

]∣∣∣∣∣∣4
≤

{
a
[
E

( (
∑∞

h=0 αi1β
h
i1

x2
i1,t−1−h)(

∑∞
h=1 αi1hβ

h−1
i1

x2
i1,t−1−h)

σ3
i1,t

)8]1/2

+ b
[
E

(∑∞
h=1 αi1hβ

h−1
i1

x2
i1,t−1−h

σ3
i1,t

)8]1/2

+ c
[
E

(∑∞
h=1 αi1hβ

h−1
i1

x2
i1,t−1−h

σi1,t

)8]1/2}√
Eσ8

i,t + Eσ8
j,t

<∞ (3.53)

E

∣∣∣∣∣∣ ∂3Hi j,t

∂ρl,k∂αi1∂βi2

∣∣∣∣∣∣4 =E

[
1i=l1 j=k

(
1i=i11 j=i2 + 1 j=i11i=i2

4σi1,tσ j,t

)( ∞∑
h=0

βh1
i1

x2
i1,t−1−h1

)
( ∞∑

h2=0

αi2β
h2
i2

x2
i2,t−1−h2

+
ωi2

(1 − βi2)2

)]4

≤a

√
E

(∑∞
h1=0 β

h1
i1

x2
i1,t−1−h1

σi1,t

)8

E

(∑∞
h2=0 αi2β

h2
i2

x2
i2,t−1−h2

σi2,t

)8

+ bE
(∑∞

h1=0 β
h1
i1

x2
i1,t−1−h1

σi1,t

)4

< ∞ (3.54)

E

∣∣∣∣∣∣ ∂3Hi j,t

∂ρl,k∂βi1∂βi1

∣∣∣∣∣∣4 =E

∣∣∣∣∣∣ − 1i=l1 j=k

(
1i=i1σ j,t

2σi1,t
+
1 j=i1σi,t

2σi1,t

)
[(∑∞

h=1 αi1hβ
h−1
i1

x2
i1,t−1−h

2σ2
i1,t

+
ωi1

2σ2
i1,t

(1 − βi1)2

)2
+

2ωi1

(1 − βi1)3 +

∞∑
h=2

αi1h(h − 1)βh−2
i1 x2

i1,t−1−h

]∣∣∣∣∣∣4
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≤a
{
E

[ (
∑∞

h=1 αi1hβ
h−1
i1

x2
i1,t−1−h)2

σ3
i1,t

]8}1/2 √
E(σ8

i,t + σ8
j,t)

+ c

√
E

[∑∞
h=2 αi1h(h − 1)βh−1

i1
x2

i1,t−1−h

σi1,t

]8 √
E(σ8

i,t + σ8
j,t)

+ bE(σ4
i,t + σ4

j,t) < ∞

E

∣∣∣∣∣∣ ∂3Hi j,t

∂ρl,k∂βi1∂βi2

∣∣∣∣∣∣4 =E

[
1i=l1 j=k

(
1i=i11 j=i2 + 1 j=i11i=i2

4σi1,tσ j,t

)( ∞∑
h=1

αi1hβ
h−1
i1 x2

i1,t−1−h

+
ωi1

(1 − βi1)2

)( ∞∑
h2=0

αi2β
h2
i2

x2
i2,t−1−h2

+
ωi2

(1 − βi2)2

)]4

≤a

√
E

(∑∞
h1=0 β

h1
i1

x2
i1,t−1−h1

σi1,t

)8

E

(∑∞
h2=0 αi2β

h2
i2

x2
i2,t−1−h2

σi2,t

)8

+ bE
(∑∞

h1=0 β
h1
i1
αi1 x2

i1,t−1−h1

σi1,t

)4

+ cE
(∑∞

h2=0 β
h2
i2
αi2 x2

i2,t−1−h1

σi2,t

)4

+ d < ∞ (3.55)

E

∣∣∣∣∣∣ ∂3Hi j,t

(∂ωi1)3

∣∣∣∣∣∣4 =E

∣∣∣∣∣∣1i=i1ρi, j
3σ j,t

8σ5
i1,t

+ 1 j=i1ρi, j
3σi,t

8σ5
i1,t

∣∣∣∣∣∣4
(

1
(1 − βi1)3

)4

< ∞

E

∣∣∣∣∣∣ ∂3Hi j,t

(∂ωi1)2∂ωi2

∣∣∣∣∣∣4 =E

∣∣∣∣∣∣
(

1i=i11 j=i2ρi, j

8σ3
i1,t
σi2,t(1 − βi1)2(1 − βi2)

)∣∣∣∣∣∣4 < ∞
E

∣∣∣∣∣∣ ∂3Hi j,t

(∂ωi1)2∂αi1

∣∣∣∣∣∣4 =E

(∣∣∣∣∣∣1i=i1σ j,t + 1 j=i1σi,t

∣∣∣∣∣∣3ρi, j
∑∞

h1=0 β
h1
i1
αi1 x2

i1,t−1−h1

8σ5
i1,t

(1 − βi1)2

)4

≤a

√√
E(ρi, j

∑∞
h1=0 β

h1
i1
αi1 x2

i1,t−1−h1

σ5
i1,t

)8
√
E(σ8

i + σ8
j) < ∞

E

∣∣∣∣∣∣ ∂3Hi j,t

(∂ωi1)2∂αi2

∣∣∣∣∣∣4 =E

∣∣∣∣∣∣ − 1i=i11 j=i2ρi, j

8σ3
i1,t
σi2,t(1 − βi1)2

∞∑
h1=0

βh1
i2

x2
i2,t−1−h1

∣∣∣∣∣∣4 < ∞
E

∣∣∣∣∣∣ ∂3Hi j,t

(∂ωi1)2∂βi1

∣∣∣∣∣∣4 =E

∣∣∣∣∣∣(1i=i1σ j,t + 1 j=i1σi,t

4σ3
i1,t

)[
−

2ρi, j

(1 − βi1)3 +

( ∞∑
h=1

αi1hβ
h−1
i1 x2

i1,t−1−h +
ωi1

(1 − βi1)2

)2 3ρi, j

2σ2
i1,t

(1 − βi1)2

]∣∣∣∣∣∣4
≤a

{
E
[∑∞h=1 αi1hβ

h−1
i1

x2
i1,t−1−h

σ5
i1,t

]8
}1/2 √

E(σ8
i,t + σ8

j,t)

+ c

√
E
[∑∞h=2 αi1h(h − 1)βh−1

i1
x2

i1,t−1−h

σi1,t

]8 √
E(σ8

i,t + σ8
j,t)
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+ bE(σ4
i,t + σ4

j,t) < ∞

E

∣∣∣∣∣∣ ∂3Hi j,t

(∂ωi1)2∂βi2

∣∣∣∣∣∣4 =E

∣∣∣∣∣∣(ρi, j
1i=i11 j=i2 + 1i=i21 j=i1

8σi,tσ j,t(1 − βi1)2
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αi1hβ
h−1
i2 x2

i2,t−1−h

+
ωi1

(1 − βi1)2

]∣∣∣∣∣∣4 < ∞
E

∣∣∣∣∣∣ ∂3Hi j,t

∂ωi1∂ωi2∂αi1

∣∣∣∣∣∣4 =(1i=i11 j=i2 + 1i=i21 j=i1)E

∣∣∣∣∣∣ − ρi, j

∑∞
h1=0 β

h1
i1

x2
i1,t−1−h1

8σ3
i1,t
σi2,t(1 − βi1)(1 − βi2)

∣∣∣∣∣∣4
≤aE

( ∞∑
h1=0

βh1
i1

x2
i1,t−1−h1

)4
< ∞

E

∣∣∣∣∣∣ ∂3Hi j,t

∂ωi1∂ωi2∂βi1

∣∣∣∣∣∣4 =E

∣∣∣∣∣∣ ρi, j

4σi1,tσi2,t(1 − βi1)(1 − βi2)
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−

∑∞
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h1
i1

x2
i1,t−1−h1

2σ2
i1,t

−

ωi1

(1 − βi1)22σ2
i1,t

+
1

1 − βi1

]∣∣∣∣∣∣4(1i=i1 + 1 j=i1) < ∞

E

∣∣∣∣∣∣ ∂3Hi j,t

∂ωi1(∂αi1)2
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∣∣∣∣∣∣ρi, j
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∑∞

h1=0 β
h1
i1

x2
i1,t−1−h1
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8σ5
i1,t

(1 − βi1)

∣∣∣∣∣∣4
≤aE

(∑∞h1=0 β
h1
i1

x2
i1,t−1−h1

σ5
i1,t

)4
< ∞

E

∣∣∣∣∣∣ ∂3Hi j,t

∂ωi1∂αi1∂αi2

∣∣∣∣∣∣4 =E

∣∣∣∣∣∣−ρi, j
∑∞
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h1
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x2
i1,t−1−h1

∑∞
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i2,t−1−h2

8σ3
i1,t
σi2,t(1 − βi1)

∣∣∣∣∣∣4
(1i=i11 j=i2 + 1 j=i11i=i2) < ∞

E

∣∣∣∣∣∣ ∂3Hi j,t

∂ωi1∂αi1∂βi1
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∣∣∣∣∣∣ ρi, j

4σ3
i1,t

(1 − βi1)
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−

∑∞
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1 − βi1

+
3
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h1
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i1,t−1−h1

2σ2
i1,t

(
αi1

∞∑
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h2β
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x2
i1,t−1−h2

+
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(1 − βi1)2

)∣∣∣∣∣∣4

≤a
[√√
E
( (

∑∞
h=0 β

h
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x2
i1,t−1−h)(αi1

∑∞
h=1 hβh−1

i1
x2

i1,t−1−h)

σ3
i1,t
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+ d

√√
E(

(
∑∞

h=0 β
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i1

x2
i1,t−1−h)(αi1
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h=1 hβh−1

i1
x2
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σ3
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+ c

√
E(

∑∞
h=0 β

h
i1

x2
i1,t−1−h

σi1,t
)8
]√
E(σ8

i + σ8
j)

+ bE(
∞∑

h=0

βh
i1 x2

i1,t−1−h)4 < ∞ (3.56)

E
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βh2−1
i2
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≤c

√
E
(∑∞h1=0 β

h1
i1
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i1,t−1−h1

σi1,t
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σi2,t

)8

+ dE(
∞∑

h1=0

βh1
i1

x2
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)4 < ∞ (3.57)

E

∣∣∣∣∣∣ ∂3Hi j,t
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h
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(1 − βi1)

∣∣∣∣∣∣4 < ∞ (3.58)

E

∣∣∣∣∣∣ ∂3Hi j,t

∂ωi1∂αi2∂βi1
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∑∞
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h=1
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ωi1
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≤a

√
E
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i1,t−1−h

]2
∣∣∣∣∣∣4

≤a
√
Eσ8

i,t + Eσ8
j,t

√
E
(∑∞h=1 hβh−1

i1
x2

i1,t−1−h

σi1,t

)8

+ b(Eσ4
i,t + Eσ4

j,t) + c

+ d
√
Eσ8

i,t + Eσ8
j,t

√
E
(∑∞h=2 h(h − 1)βh−2

i1
x2

i1,t−1−h

σi1,t

)8

+ e
√
Eσ8

i,t + Eσ8
j,t

√√
E
( (

∑∞
h=1 hβh−1

i1
x2

i1,t−1−h)2

σ3
i1,t

)8
< ∞ (3.61)

E

∣∣∣∣∣∣ ∂3Hi j,t

∂2αi1βi1βi2

∣∣∣∣∣∣4 =E

∣∣∣∣∣∣ (1i=i11 j=i2 + 1i=i21 j=i1)ρi, j

4σi1,tσi2,t(1 − βi1)2

[ ωi1

(1 − βi1)2 +

∞∑
h=1

hβh−1
i1 x2

i1,t−1−h

]
−

(1i=i11 j=i2 + 1i=i21 j=i1)ρi, j

8σ3
i1
σi2(1 − βi1)

[ ωi1

(1 − βi1)2 + αi1

∞∑
h=1

hβh−1
i1 x2

i1,t−1−h

]
[ ωi2

(1 − βi2)2 +

∞∑
h=1

hβh−1
i2 x2

i2,t−1−h

]∣∣∣∣∣∣4

≤a

√
E
(∑∞h=1 hβh−1

i1
x2

i1,t−1−h

σi1

)8

√
E
(∑∞h=1 hβh−1

i2
x2

i2,t−1−h

σi2

)8

+ bE(
∞∑

h=1

hβh−1
i1 x2

i1,t−1−h)4 + c < ∞ (3.62)

E

∣∣∣∣∣∣ ∂2Hi j,t

∂αi1∂βi2∂βi2

∣∣∣∣∣∣4 =E

∣∣∣∣∣∣ (1i=i11 j=i2 + 1i=i21 j=i1)ρi, j

4σi1,tσi2,t(1 − βi1)2

[
αi2

∞∑
h=2

h(h − 1)βh−2
i2 x2

i2,t−1−h

+
2ωi2

(1 − βi2)3

]
−

(1i=i11 j=i2 + 1i=i21 j=i1)ρi, j

8σ3
i2
σi1,t(1 − βi1)
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[ ωi2

(1 − βi2)2 + αi2

∞∑
h=1

hβh−1
i2 x2

i2,t−1−h

]2
∣∣∣∣∣∣4

≤aE(
∞∑

h=2

h(h − 1)βh−2
i2 x2

i2,t−1−h)4 + b

+ cE
( (

∑∞
h=1 hβh−1

i2
x2

i2,t−1−h)2

σ3
i2,t

)4
< ∞ (3.63)

E

∣∣∣∣∣∣ ∂3Hi j,t

∂ωi1∂βi1∂β0i1

∣∣∣∣∣∣4 =(1i=i1 + 1 j=i1)
[ 1
(1 − βi1)2

]4
< ∞

E

∣∣∣∣∣∣ ∂3Hi j,t

(∂αi1)3

∣∣∣∣∣∣4 =E

∣∣∣∣∣∣ (1i=i1σ j,t + 1 j=i1σi,t)ρi, j

8σ5
i1,t

(
∞∑

h=0

βh
i1 x2

i1,t−1−h)3

∣∣∣∣∣∣4

≤a
√
Eσ6

i,t + Eσ8
j,t

√√
E
( (

∑∞
h=0 β

h
i1

x2
i1,t−1−h)3

σ5
i1,t

)8
< ∞ (3.64)

E

∣∣∣∣∣∣ ∂3Hi j,t

(∂αi1)2∂αi2

∣∣∣∣∣∣4 =E

∣∣∣∣∣∣ − (1i=i11 j=i2 + 1 j=i11i=i2)ρi, j

8σ3
i1,t
σi2,t

(
∞∑

h=0

βh
i1 x2

i1,t−1−h)2

(
∞∑

h=0

βh
i2 x2

i2,t−1−h)

∣∣∣∣∣∣4

≤a

√√
E
( (

∑∞
h=0 β

h
i1

x2
i1,t−1−h)2

σ3
i1

)8

√
E
( (

∑∞
h=0 β

h
i2

x2
i2,t−1−h)

σi2,t

)8

<∞ (3.65)

E

∣∣∣∣∣∣ ∂3Hi j,t

(∂αi1)2∂βi1

∣∣∣∣∣∣4 =E

∣∣∣∣∣∣3(1i=i1σ j,t + 1 j=i1σi,t)ρi, j

8σ5
i1,t

(
∞∑

h=0

βh
i1 x2

i1,t−1−h)2
[ ωi1

(1 − βi1)2

+

∞∑
h=0

βh
i1 x2

i1,t−1−h

]
− (

∞∑
h=0

βh
i1 x2

i1,t−1−h)(
∞∑

h=1

hβh−1
i1 x2

i1,t−1−h)

(1i=i1σ j,t + 1 j=i1σi,t)ρi, j

2σ3
i1,t

∣∣∣∣∣∣4
≤E

∣∣∣∣∣∣|ρi, j(σi,t + σ j,t)
σ5

i1,t

(σ2
i1,t

αi1

)2[ ωi1

(1 − βi1)2 +

∞∑
h=0

βh
i1 x2

i1,t−1−h

]
−
σ2

i1,t

αi1
(
∞∑

h=1

hβh−1
i1 x2

i1,t−1−h)
σ j,t + 1 j=i1)ρi, j

2σ3
i1,t

∣∣∣∣∣∣4

≤a
√
E(σ8

i + σ8
j)

√
E
(∑∞h=1 hβh−1

i1
x2

i1,t−1−h

σi1

)8

+ bE(σ4
i + σ4

j) < ∞ (3.66)
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E

∣∣∣∣∣∣ ∂3Hi j,t

(∂αi1)2∂βi2

∣∣∣∣∣∣4 =E

∣∣∣∣∣∣ − (1i=i11 j=i2 + 1 j=i11i=i2)ρi, j

8σ3
i1,t
σi2,t

(
∞∑

h=0

βh
i1 x2

i1,t−1−h)

[ ωi2

(1 − βi2)2 + αi2

∞∑
h=1

hβh−1
i2 x2

i2,t−1−h

]∣∣∣∣∣∣4
≤E

∣∣∣∣∣∣ − ρi, j

8σ3
i1,t
σi2,t

σ2
i1,t

αi1

[ ωi2

(1 − βi2)2 + αi2

∞∑
h=1

hβh−1
i2 x2

i2,t−1−h

]∣∣∣∣∣∣4
≤aE

[ ωi2

(1 − βi2)2 + αi2

∞∑
h=1

hβh−1
i2 x2

i2,t−1−h

]4

≤b + cE(αi2

∞∑
h=1

hβh−1
i2 x2

i2,t−1−h)4 < ∞ (3.67)

E

∣∣∣∣∣∣ ∂3Hi j,t

∂αi1(∂βi1)2

∣∣∣∣∣∣4 =E

∣∣∣∣∣∣3(1i=i1σ j,t + 1 j=i1σi,t)ρi, j

8σ5
i1,t

(
∞∑

h=0

βh
i1 x2

i1,t−1−h)
[ ωi1

(1 − βi1)2

+ αi1

∞∑
h=1

hβh−1
i1 x2

i1,t−1−h

]
+ (

∞∑
h=2

h(h − 1)βh−2
i1 x2

i1,t−1−h)

(1i=i1 + 1 j=i1)ρi, j

σi1,t
−

(1i=i1σ j,t + 1 j=i1σi,t)ρi, j

2σ3
i1,t

[ ωi1

(1 − βi1)2

+ αi1

∞∑
h=1

hβh−1
i1 x2

i1,t−1−h

]
(
∞∑

h=1

hβh−1
i1 x2

i1,t−1−h)

−
(1i=i1σ j,t + 1 j=i1σi,t)ρi, j

4σ3
i1,t

[ 2ωi1

(1 − βi1)3

+ αi1

∞∑
h=1

hβh−1
i1 x2

i1,t−1−h

]
(
∞∑

h=2

h(h − 1)βh−2
i1 x2

i1,t−1−h)

∣∣∣∣∣∣4
≤E

∣∣∣∣∣∣3(σ j,t + σi,t)ρi, j

8σ5
i1,t

σ2
i1,t

αi1

[ ωi1

(1 − βi1)2 + αi1

∞∑
h=1

hβh−1
i1 x2

i1,t−1−h

]
+ (

∞∑
h=2

h(h − 1)βh−2
i1 x2

i1,t−1−h)
ρi, j

σi1,t
−

(σ j,t + σi,t)ρi, j

2σ3
i1,t[ ωi1

(1 − βi1)2 + αi1

∞∑
h=1

hβh−1
i1 x2

i1,t−1−h

]
(
∞∑

h=1

hβh−1
i1 x2

i1,t−1−h)

−
(σ j,t + σi,t)ρi, j

4σ3
i1,t

[ 2ωi1

(1 − βi1)3 + αi1

∞∑
h=1

hβh−1
i1 x2

i1,t−1−h

]σ2
i1,t

αi1

∣∣∣∣∣∣4

≤aE(σ4
i + σ4

j) + b
√
E(σ8

i + σ8
j)

√
E
(∑∞h=1 hβh−1

i1
x2

i1,t−1−h

σi1,t

)8
(3.68)

+ c
√
E(σ8

i + σ8
j)

√
E
(∑∞h=2 h(h − 1)βh−2

i1
x2

i1,t−1−h

σi1,t

)8
(3.69)
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+ d
√
E(σ8

i + σ8
j)
[√
E
(∑∞h=1 hβh−1

i1
x2

i1,t−1−h

σi1,t

)8

+

√√
E
( (

∑∞
h=1 hβh−1

i1
x2

i1,t−1−h)2

σ3
i1,t

)8
(3.70)

+

√
E
( (

∑∞
h=2 h(h − 1)βh−2

i1
x2

i1,t−1−h)2

σi1,t

)8]
< ∞ (3.71)

E

∣∣∣∣∣∣ ∂3Hi j,t

∂αi1∂βi1∂βi2

∣∣∣∣∣∣4 =E

∣∣∣∣∣∣ (1i=i11 j=i2 + 1 j=i11i=i2)ρi, j

4σi1,tσi2,t
(
∞∑

h=1

hβh−1
i1 x2

i1,t−1−h)

[ ωi2

(1 − βi2)2 + αi2

∞∑
h=1

hβh−1
i2 x2

i2,t−1−h

]
− (

∞∑
h=0

βh
i1 x2

i1,t−1−h)

(1i=i11 j=i2 + 1 j=i11i=i2)ρi, j

8σ3
i1,t
σi2,t

[
αi2

∞∑
h=1

hβh−1
i2 x2

i2,t−1−h

+
ωi2

(1 − βi2)2

][ ωi1

(1 − βi1)2 + αi1

∞∑
h=1

hβh−1
i1 x2

i1,t−1−h

]∣∣∣∣∣∣4

≤a

√
E
(∑∞h=1 hβh−1

i1
x2

i1,t−1−h

σi1,t

)8

√
E
(∑∞h=1 hβh−1

i2
x2

i2,t−1−h

σi2,t

)8

+ cE

∣∣∣∣∣∣ρi, jσ
2
i1,t/αi1

σ3
i1,t
σi2,t

[ ωi2

(1 − βi2)2 + αi2

∞∑
h=1

hβh−1
i2 x2

i2,t−1−h

]
[ ωi1

(1 − βi1)2 + αi1

∞∑
h=1

hβh−1
i1 x2

i1,t−1−h

]∣∣∣∣∣∣4
+ bE(

∞∑
h=1

hβh−1
i1 x2

i1,t−1−h)4

≤d1 + d2E(
∞∑

h=1

hβh−1
i1 x2

i1,t−1−h)4 + d3E(
∞∑

h=1

hβh−1
i2 x2

i2,t−1−h)4

+ d4

√
E
(∑∞h=1 hβh−1

i1
x2

i1,t−1−h

σi1,t

)8
E
(∑∞h=1 hβh−1

i2
x2

i2,t−1−h

σi2,t

)8
< ∞ (3.72)

E

∣∣∣∣∣∣ ∂3Hi j,t

∂αi1(∂βi2)2

∣∣∣∣∣∣4 =E

∣∣∣∣∣∣ (1i=i11 j=i2 + 1 j=i11i=i2)ρi, j

4σi1,tσi2,t
(
∞∑

h=0

βh
i1 x2

i1,t−1−h)

[ 2ωi2

(1 − βi2)3 + αi2

∞∑
h=2

h(h − 1)βh−2
i2 x2

i2,t−1−h

]
−

(1i=i11 j=i2 + 1 j=i11i=i2)ρi, j

8σi1,tσ
3
i2,t

[
αi2

∞∑
h=1

hβh−1
i2 x2

i2,t−1−h
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+
ωi2

(1 − βi2)2

]2
(
∞∑

h=0

βh
i1 x2

i1,t−1−h)

∣∣∣∣∣∣4
≤aE

∣∣∣∣∣∣σ2
i1,t/αi1

σi1,tσi2,t

[
αi2

∞∑
h=2

h(h − 1)βh−2
i2 x2

i2,t−1−h +
2ωi2

(1 − βi2)3

]
−
σ2

i1,t/αi1

σi1,tσ
3
i2,t

[
αi2

∞∑
h=1

hβh−1
i2 x2

i2,t−1−h +
ωi2

(1 − βi2)2

]2
∣∣∣∣∣∣4

≤b + c
√
Eσ8

i1,t

√
E
(∑∞h=2 h(h − 1)βh−2

i2
x2

i2,t−1−h

σi2,t

)8
(3.73)

+ d
√
Eσ8

i1,t

√√
E
( (

∑∞
h=2 h(h − 1)βh−2

i2
x2

i2,t−1−h)2

σ3
i2,t

)8
(3.74)

<∞

E

∣∣∣∣∣∣ ∂3Hi j,t

∂αi1∂βi1∂β0i1

∣∣∣∣∣∣4 =E(
∞∑

h=1

hβh−1
i1 x2

i1,t−1−h)3 < ∞

E

∣∣∣∣∣∣∂3Hi j,t

(∂βi1)3

∣∣∣∣∣∣4 =E

∣∣∣∣∣∣3(1i=i1σ j,t + 1 j=i1σi,t)ρi, j

8σ5
i1,t

[ ωi1

(1 − βi1)2

+ αi1

∞∑
h=1

hβh−1
i1 x2

i1,t−1−h

]3

−
(1i=i1σ j,t + 1 j=i1σi,t)ρi, j

4σ3
i1,t

[
αi1

∞∑
h=2

h(h − 1)βh−2
i1 x2

i1,t−1−h

+
2ωi1

(1 − βi1)3

][ ∞∑
h=1

hβh−1
i1 x2

i1,t−1−h +
ωi1

(1 − βi1)2

]
−

(1i=i1σ j,t + 1 j=i1σi,t)ρi, j

2σ3
i1,t

[
αi1

∞∑
h=2

h(h − 1)βh−2
i1 x2

i1,t−1−h

+
2ωi1

(1 − βi1)3

]
+

[ (1i=i1σ j,t + 1 j=i1σi,t)ρi, j

2σi1,t
+ β0i1(1i=i1 + 1 j=i1)

]
[
αi1

∞∑
h=3

h(h − 1)(h − 2)βh−3
i1 x2

i1,t−1−h +
6ωi1

(1 − βi1)4

]∣∣∣∣∣∣4

≤aE(σ4
j,t + σ4

i,t) +

√
E(σ8

i,t + σ8
j,t)

[
b1

√√
E
( (

∑∞
h=1 hβh−1

i1
x2

i1,t−1−h)3

σ5
i1,t

)8

+ b2

√
E
(∑∞h=1 hβh−1

i1
x2

i1,t−1−h

σi1,t

)8
+ b3

+ b4

√√
E
( (

∑∞
h=1 hβh−1

i1
x2

i1,t−1−h)(
∑∞

h=2 h(h − 1)βh−2
i1

x2
i1,t−1−h)

σ3
i1,t

)8
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+ b5

√
E
(∑∞h=2 h(h − 1)βh−2

i1
x2

i1,t−1−h

σi1,t

)8

+ b6

√
E
(∑∞h=3 h(h − 1)(h − 2)βh−3

i1
x2

i1,t−1−h

σi1,t

)8]∣∣∣∣∣∣ < ∞ (3.75)

E

∣∣∣∣∣∣ ∂3Hi j,t

(∂βi1)2∂βi2

∣∣∣∣∣∣4 =E

∣∣∣∣∣∣ − (1i=i11 j=i2 + 1 j=i11i=i2)ρi, j

8σ3
i1,t
σi2,t

[ ∞∑
h=1

hβh−1
i1 x2

i1,t−1−h

+
ωi1

(1 − βi1)2

]2[ ∞∑
h=1

hβh−1
i2 x2

i2,t−1−h +
ωi2

(1 − βi2)2

]
+

(1i=i11 j=i2 + 1 j=i11i=i2)ρi, j

4σi1,tσi2,t

[ ∞∑
h=1

hβh−1
i1 x2

i1,t−1−h

+
ωi1

(1 − βi1)2

][ ∞∑
h=1

hβh−1
i2 x2

i2,t−1−h +
ωi2

(1 − βi2)2

]∣∣∣∣∣∣4

≤a + b1

√√
E
( (

∑∞
h=1 hβh−1

i1
x2

i1,t−1−h)2

σ3
i1,t

)8

√
E
(∑∞h=1 hβh−1

i2
x2

i2,t−1−h

σi2,t

)8

+ b2E(

∑∞
h=1 hβh−1

i1
x2

i1,t−1−h

σi1,t
)4 + b3E(

∑∞
h=1 hβh−1

i2
x2

i2,t−1−h

σi2,t
)4 + b4

+ b5

√
E
(∑∞h=1 hβh−1

i1
x2

i1,t−1−h

σi1,t

)8

√
E
(∑∞h=1 hβh−1

i2
x2

i2,t−1−h

σi2,t

)8

<∞ (3.76)

E

∣∣∣∣∣∣ ∂3Hi j,t

(∂βi1)2∂β0i1

∣∣∣∣∣∣4 =E

∣∣∣∣∣∣ 2ωi1

(1 − βi1)3 + αi1

∞∑
h=2

h(h − 1)βh−2
i1 x2

i1,t−1−h

∣∣∣∣∣∣3 < ∞ (3.77)

As of now, we have proofed that all the elements of E
∥∥∥i jl

...
Ht

∥∥∥4
are finite.

(v) Similar to the proof of (iii) above, only the non-zero terms are listed below because

the number of all second derivative elements is large. The only difference is that

these elements have an initial value (x̃0, σ̃0) while the ones in (iii) have infinite past.

E

∣∣∣∣∣∣ ∂2H̃ii,t

∂ω j∂β0 j

∣∣∣∣∣∣z3

=(
1 − βt

j

1 − β j
)z3 < ∞

E

∣∣∣∣∣∣ ∂2H̃ii,t

∂ω j∂β j

∣∣∣∣∣∣z3

=(1i= j + β0 j)z3(
tβt−1

j

1 − β j
)2z3
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E

∣∣∣∣∣∣ ∂2H̃ii,t

∂α j∂β0 j

∣∣∣∣∣∣z3

=E(
t−2∑
l=0

βl
jx

2
j,t−1−l + βt−1

j x̃ j,0)z3

≤

t−2∑
l=0

Eβlz3
j x2z3

j,t−1−l + β(t−1)z3
j x̃2z3

j,0 (3.78)

E

∣∣∣∣∣∣ ∂2H̃ii,t

∂α j∂β j

∣∣∣∣∣∣z3

=(1i= j + β0 j)z3E(
t−2∑
l=1

lβl−1
j x2

j,t−1−l + (t − 1)βt−2
j x̃2

j,0)z3

≤a + (t − 1)z3β(t−2)z3
j x̃z3

j,0) (3.79)

E

∣∣∣∣∣∣ ∂2H̃ii,t

∂β j∂β0 j

∣∣∣∣∣∣z3

=E

(
tβt−1

j σ̃2
j,0 +

t−1∑
l=1

lβl−1
j ω j +

t−2∑
l=1

lβl−1
j α jx2

j,t−1−l + (t − 1)α jβ
t−2
j x̃2

j,0

)z3

≤a + tz3β(t−1)z3
j σ̃2z3

j,0 + (t − 1)z3αz3
j β

(t−2)z3
j x̃2z3

j,0 (3.80)

E

∣∣∣∣∣∣ ∂H̃ii,t

∂β j∂β j

∣∣∣∣∣∣z3

=(1i= j + β0 j)z3E

[
t(t − 1)βt−2

j σ̃2
j,0 +

t−1∑
l=2

l(l − 1)βl−2
j ω j

+

t−2∑
l=2

l(l − 1)α jβ
l−2
j x2

j,t−1−l + (t − 1)(t − 2)α jβ
t−3
j x̃2

j,0

]z3

≤a +

[
t(t − 1)βt−2

j σ̃2
j,0

]z3

+ b
[
(t − 1)(t − 2)α jβ

t−3
j x̃2

j,0

]z3

(3.81)

Since x̃ and σ̃0 are fixed, the terms in (3.78) - (3.81) are functions of t, all have

maximum on t ∈ N+. Then, above proved the finiteness of the absolute diagonal

terms of the second derivative.

The non-diagonal elements will be shown below.

E

∣∣∣∣∣∣ ∂2H̃i j,t

∂ρl,k∂ωi1

∣∣∣∣∣∣z3

=E

[
1i=l1 j=k

(
1i=i1σ̃ j,t(1 − βt

i)
2σ̃i,t(1 − βi)

+
1 j=i1σ̃i,t(1 − βt

j)

2σ̃ j,t(1 − β j)

)]z3

≤aE(σ̃i,t)z3 + bE(σ̃ j,t)z3 < ∞

E

∣∣∣∣∣∣ ∂2H̃i j,t

∂ρl,k∂αi1

∣∣∣∣∣∣z3

=E

[
1i=l1 j=k

(
1i=i1σ̃ j,t

2σ̃i,t
+
1 j=i1σ̃i,t

2σ̃ j,t

)
∂σ̃2

i1,t

∂αi1

]z3

≤a
[
Eσ̃2z3

i,t E

(
∂σ̃2

j,t

∂α j

)2z3]1/2

+ b
[
Eσ̃2z3

j,t E

(
∂σ̃2

i,t

∂αi

)2z3]1/2

< ∞

E

∣∣∣∣∣∣ ∂2H̃i j,t

∂ρl,k∂βi1

∣∣∣∣∣∣z3

=E

[
1i=l1 j=k

(
1i=i1σ̃ j,t

2σ̃i,t
+
1 j=i1σ̃i,t

2σ̃ j,t

)
∂σ̃2

i1,t

∂βi1

]z3
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≤a
[
Eσ̃2z3

i,t E

(
∂σ̃2

j,t

∂β j

)2z3]1/2

+ b
[
Eσ̃2z3

j,t E

(
∂σ̃2

i,t

∂βi

)2z3]1/2

< ∞

E

∣∣∣∣∣∣ ∂2H̃i j,t

∂ωl∂ωk

∣∣∣∣∣∣z3

=E

∣∣∣∣∣∣1i=l1 j=kρi, j

4σ̃l,tσ̃k,t

∂σ̃2
l,t

∂ωl

∂σ̃2
k,t

∂ωk
1l,k − 1l=kρi, j

(
1i=lσ̃ j,t

4σ̃3
l,t

+
1 j=lσ̃i,t

4σ̃3
l,t

)(
∂σ̃2

l,t

∂ωl

)2∣∣∣∣∣∣z3

≤a
[
E

(
∂σ̃2

l,t

∂ωl

)2z3

E

(
∂σ̃2

k,t

∂ωk

)2z3]1/2

+ b
[
Eσ̃2z3

i,t E

(
∂σ̃2

j,t

∂ω j

)4z3]1/2

+ c
[
Eσ̃2z3

j,t E

(
∂σ̃2

i,t

∂ωi

)4z3]1/2

< ∞

E

∣∣∣∣∣∣ ∂2H̃i j,t

∂ωl∂αk

∣∣∣∣∣∣z3

=E

∣∣∣∣∣∣1i=l1 j=kρi, j1l,k

4σ̃i1,tσ̃i2,t

∂σ̃2
i1,t

∂ωi1

∂σ̃2
i2,t

∂αi2

+
−(1i=lσ̃i,t + 1 j=lσ̃ j,t)ρi, j1l=k

4σ̃3
l,t

∂σ̃2
l,t

∂ωl

∂σ̃2
k,t

∂αk

∣∣∣∣∣∣z3

≤a
[
E

∣∣∣∣∣∣∂σ̃2
l,t

∂ωl

∣∣∣∣∣∣2z3

E

∣∣∣∣∣∣∂σ̃2
k,t

∂αk

∣∣∣∣∣∣2z3]1/2

+ b
[
Eσ̃3z3

j,t E

∣∣∣∣∣∣∂σ̃2
i,t

∂ωi

∣∣∣∣∣∣3z3

E

∣∣∣∣∣∣∂σ̃2
i,t

∂αi

∣∣∣∣∣∣3z3]1/3

+ c
[
Eσ̃3z3

i,t E

∣∣∣∣∣∣∂σ̃2
j,t

∂ω j

∣∣∣∣∣∣3z3

E

∣∣∣∣∣∣∂σ̃2
j,t

∂α j

∣∣∣∣∣∣3z3]1/3

< ∞

E

∣∣∣∣∣∣ ∂2H̃i j,t

∂ωl∂βk

∣∣∣∣∣∣z3

=E

∣∣∣∣∣∣ (1i=l1 j=k + 1i=k1 j=l)ρi, j1k,l

4σ̃l,tσ̃k,t

∂σ̃2
l,t

∂ωl

∂σ̃2
k,t

∂βk

−
(1i=lσ̃ j,t + 1 j=kσ̃i,t)1k=lρi, j

4σ̃3
l,t

∂σ̃2
l,t

∂ωl

∂σ̃2
l,t

∂βl

∣∣∣∣∣∣z3

≤a
[
E

∣∣∣∣∣∣∂σ̃2
l,t

∂ωl

∣∣∣∣∣∣2z3

E

∣∣∣∣∣∣∂σ̃2
k,t

∂βk

∣∣∣∣∣∣2z3]1/2

+ b
[
Eσ̃3z3

j,t E

∣∣∣∣∣∣∂σ̃2
i,t

∂ωi

∣∣∣∣∣∣3z3

E

∣∣∣∣∣∣∂σ̃2
i,t

∂βi

∣∣∣∣∣∣3z3]1/3

+ c
[
Eσ̃3z3

i,t E

∣∣∣∣∣∣∂σ̃2
j,t

∂ω j

∣∣∣∣∣∣3z3

E

∣∣∣∣∣∣∂σ̃2
j,t

∂β j

∣∣∣∣∣∣3z3]1/3

< ∞

E

∣∣∣∣∣∣ ∂2H̃i j,t

∂αl∂αk

∣∣∣∣∣∣z3

=E

[∣∣∣∣∣∣ − (1i=lσ̃ j,t + 1 j=lσ̃i,t)
4σ̃3

l,t

1k=lρi, j

∣∣∣∣∣∣
(
∂σ̃2

l,t

∂αl

)2

+ (1i=l1 j=k)
ρi, j

4σ̃l,tσ̃k,t

∂σ̃2
l,t

∂αl

∂σ̃2
k,t

∂αk

]z3

≤a
[
Eσ̃2z3

i,t E

(
∂σ̃2

j,t

∂α j

)4z3]1/2

+ b
[
Eσ̃2z3

j,t E

(
∂σ̃2

i,t

∂αi

)4z3]1/2

+ c
[
E

(
∂σ̃2

j,t

∂α j

)2z3

E

(
∂σ̃2

k,t

∂αk

)2z3]1/2

< ∞

E

∣∣∣∣∣∣ ∂H̃i j,t

∂αl∂βk

∣∣∣∣∣∣z3

=ρz3
i, jE

∣∣∣∣∣∣
[( t−2∑

k=1

kβk
j x

2
l,t−1−k + (t − 1)βt−2

j x̃2
j,0

)(
1i=lσ̃ j,t

2σ̃l,t
+
1 j=lσ̃i,t

2σ̃l,t

)
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− (
1i=lσ̃ j,t

4σ̃3
l,t

+
1 j=lσ̃i,t

4σ̃3
l,t

)
∂σ̃2

l,t

∂αl

∂σ̃2
l,t

∂βl

]
1l=k +

(1i=l + 1 j=l)1k,l

4σ̃l,tσ̃k,t

∂σ̃2
l,t

∂αl

∂σ̃2
k,t

∂βk

∣∣∣∣∣∣z3

≤a
[
E

( ∞∑
k=1

kβk
j x

2
l,t−1−k

)2z3

(Eσ̃2z3
i,t + Eσ̃2z3

j,t )
]1/2

+ b
[
(t − 1)βt−2

j x̃2
j,0

]z3

(Eσ̃z3
i,t + Eσ̃z3

j,t)

+ c
[
(Eσ̃3z3

i,t + Eσ̃3z3
j,t )E

(
∂σ̃2

l,t

∂αl

)3z3

E

(
∂σ̃2

l,t

∂βl

)3z3]1/3

+ d
[
E

(
∂σ̃2

l,t

∂αl

)2z3

E

(
∂σ̃2

k,t

∂βk

)2z3]1/2

< ∞

E

∣∣∣∣∣∣ ∂H̃i j,t

∂αl∂β0k

∣∣∣∣∣∣z3

=E

∣∣∣∣∣∣(1i=l + 1 j=l)1l=k

∂σ̃2
l,t

∂αl

∣∣∣∣∣∣z3

< ∞

E

∣∣∣∣∣∣ ∂H̃i j,t

∂βl∂βk

∣∣∣∣∣∣z3

=E

∣∣∣∣∣∣ρi, j1i=l1 j=k

4σ̃l,tσ̃k,t

∂σ̃2
l,t

∂βl

∂σ̃2
k,t

∂βk
−

{
ρi, j
1i=lσ̃ j,t + 1 j=lσ̃i,t

4σ̃3
l,t

(
∂σ̃2

l,t

∂βl

)2

+

[
t(t − 1)σ̃2

l,0 +

t−2∑
h=2

h(h − 1)(αlβ
h−2
l x2

l,t−1−h + ωl)

+ (t − 1)(t − 2)βt−3
l (ωl + αl x̃2

l,0)
][
ρi, j(1i=lσ̃ j,t + 1 j=lσ̃i,t)

2σ̃l,t
+ β0l

]}
1k=l

∣∣∣∣∣∣z3

≤a1

[
E

(
∂σ̃2

l,t

∂βl

)2z3

E

(
∂σ̃2

k,t

∂βk

)2z3]1/2

+ a2

[
E

(
∂σ̃2

l,t

∂βl

)4z3

(Eσ̃2z3
i,t + Eσ̃2z3

j,t )
]1/2

+ a3

[
t(t − 1)σ̃2

l,0

]z3

(Eσ̃z3
i,t + Eσ̃z3

j,t + a4)

+ a5E

[
(1i=lσ̃ j,t + 1 j=lσ̃i,t + a6)

} ∞∑
h=2

h(h − 1)(αlβ
h−2
l x2

l,t−1−h + ωl)
]z3

+ a7

[
(t − 1)(t − 2)βt−3

l αl x̃2
l,0

]z3

(Eσ̃z3
i,t + Eσ̃z3

j,t)

≤b1

[
t(t − 1)

]z3

+ b2

{
(Eσ̃2z3

j,t + Eσ̃2z3
i,t )E

[ ∞∑
h=2

h(h − 1)βh−2
l x2

l,t−1−h

]2z3}1/2

+ b3 + b4

[
(t − 1)(t − 2)βt−3

l

]z3

< ∞

E

∣∣∣∣∣∣ ∂H̃i j,t

∂βl∂β0k

∣∣∣∣∣∣z3

=E

∣∣∣∣∣∣(1i=l1l=k + 1 j=l1l=k)
∂σ̃2

l,t

∂βl

∣∣∣∣∣∣z3

< ∞

All the absolute third moments of the terms have been proved to be finite. The

elements which are not listed above have the value 0. The desired result, E
∥∥∥i jḦt

∥∥∥z3
<
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∞, follows.

�

Lemma 3.3.4 Under Assumptions C1 −C2,

(i)
∑∞

t=1 E

∣∣∣∣∣∣∣∂(σ2
i,t − σ̃

2
i,t)

∂θ j

∣∣∣∣∣∣∣
4

< ∞ where θ j means the jth parameter.

(ii) E|σi,tσ j,t−σ̃i,tσ̃ j,t|
2 ≤ O(β2t

i )+O(β2t
j ) and E|σi,tσ̃ j,t−σ̃i,tσ j,t|

2 ≤ O(β2t
i )+O(β2t

j ). Therefore,

E

∣∣∣∣∣∣∂Hi j,t

∂σ2
i,t

−
∂H̃i j,t

∂σ̃2
i,t

∣∣∣∣∣∣2 = E

∣∣∣∣∣∣ρi jσ j,t

σi,t
−
ρi jσ̃ j,t

σ̃i,t
| ≤ O(β2t

i ) + O(β2t
j ).

(iii) E|σ3
i,t − σ̃

3
i,t|

2 ≤ O(βt2
i ).

(iv) E|
∂2Hi1 j1 ,t

(∂σ2
i1 ,t

)2 −
∂2H̃i1 j1 ,t

(∂σ̃2
i1 ,t

)2 |
z7 ≤ O(βtz7

i1
) + O(βtz7

j1
) for any 0 ≤ z7 ≤ 1.

(v) E|
∂2Hi1 j1 ,t

∂σ2
i1 ,t
∂σ2

j1 ,t
−

∂2H̃i1 j1 ,t

∂σ̃2
i1 ,t
∂σ̃2

j1 ,t
|2 ≤ O(βt2

i1
) + O(βt2

j1
)

(vi)
∑n

t=1 E

∥∥∥∥∥∥ i
˙̃Ht − iḢt

∥∥∥∥∥∥z9

< ∞ for any 0 < z9 < 1,
∑n

t=1

(
E

∥∥∥∥∥∥ i
˙̃Ht − iḢt

∥∥∥∥∥∥2z10)1/2

< ∞ for

any 0 < z10 < 1/2, and
∑n

t=1

(
E

∥∥∥∥∥∥ i
˙̃Ht − iḢt

∥∥∥∥∥∥3z11)1/3

< ∞ for any 0 ≤ z11 < 1/3 and

∑n
t=1

(
E

∥∥∥∥∥∥ i
˙̃Ht − iḢt

∥∥∥∥∥∥4z12)1/4

< ∞ for any 0 < z12 < 1/4.

(vii)
∑n

t=1 E

∥∥∥∥∥∥ i j
¨̃Ht − i jḦt

∥∥∥∥∥∥z13

< ∞ for any 0 ≤ z13 < 1/2,
∑n

t=1

(
E

∥∥∥∥∥∥ i j
¨̃Ht − i jḦt

∥∥∥∥∥∥2z14)1/2

< ∞ for

any 0 ≤ z14 < 1/4, and
∑n

t=1

(
E

∥∥∥∥∥∥ i j
¨̃Ht − i jḦt

∥∥∥∥∥∥4z15)1/4

< ∞ for any 0 ≤ z15 < 1/8.

(viii)
∑∞

t=1 E
∣∣∣σ2

i,t − σ̃
2
i,t

∣∣∣4 < ∞. Then,
∑∞

t=1 E
∥∥∥Ht − H̃t

∥∥∥4
< ∞,

∑∞
t=1(E

∥∥∥Ht − H̃t

∥∥∥2v16)1/2 < ∞

for any 0 < v16 < 1/2 and
∑∞

t=1(E
∥∥∥Ht − H̃t

∥∥∥4v17)1/4 < ∞ for any 0 < v17 < 1.

Proof After dropping the zero terms, the non-zero terms can be proved by the following

inequalities. Still, the lower case letters a, b, . . . have been used to represent some finite

constant, they may have distinct values in different lines.
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(i) Since the term σi,t only relates to ωi, αi, βi based on the expression. The derivative
∂(σ2

i,t − σ̃
2
i,t)

∂θ j
equals to 0 if θ j is not one of ωi, αi or , βi.

E

∣∣∣∣∣∣∂(σ2
i,t − σ̃

2
i,t)

∂ωi

∣∣∣∣∣∣4 =

∣∣∣∣∣∣ βt
iβ0i

1 − βi

∣∣∣∣∣∣4 = O(β4t
i )

E

∣∣∣∣∣∣∂(σ2
i,t − σ̃

2
i,t)

∂αi

∣∣∣∣∣∣4 ≤βt4
i

1
(1 − βi)4E(x8

i,t) + β(t−1)4
i E|x2

i,0 − x̃2
i,0|

4 = O(βt4
i )

E

∣∣∣∣∣∣∂(σ2
i,t − σ̃

2
i,t)

∂βi

∣∣∣∣∣∣4 ≤t4β(t−1)4
i E|σ2

i,0 − σ̃
2
i,0|

4

+ βt4
i

(
ω4

i

(1 − βi)24 + αi

∞∑
j=0

β
j−1
i x2

i,0− j

)
+ α4

i (t − 1)4β(t−2)4
i E|x2

i,0 − x̃2
i,0|

4 = O(βt4
i ) + O(t4βt4

i )

Since each of these summations is finite, so the result is true.

(ii) We can replace v1/4 by 2 in (3.30), then the first part has been proved. Following

the similar steps, the second part becomes

E|σi,tσ̃ j,t − σ̃i,tσ j,t|
2 ≤(Eσ4

i,tE|σ j,t − σ̃ j,t|
4)1/2 + (Eσ4

j,tE|σi,t − σ̃i,t|
4)1/2

≤(
Eσ4

i,t

(4ω j)2E|σ
2
j,t − σ̃

2
j,t|

4)1/2 + (
Eσ4

j,t

(4ωi)2E|σ
2
i,t − σ̃

2
i,t|

4)1/2

≤O(β2t
j ) + O(β2t

i ).

(iii) By (3.26), (i) in Lemma 3.3.2 and Cauchy-Schwarz inequality,

E|σ3
i,t − σ̃

3
i,t|

2 =E|σ2
i,tσi,t − σ̃

2
i,tσ̃i,t|

2

≤(E|σ2
i,t|

4)1/2(
E|σ2

i,t − σ̃
2
i,t|

4

(2
√
ωi)4

)1/2 + (E|σi,t|
4)1/2(E|σ2

i,t − σ̃
2
i,t|

4)1/2

=O(βt2
i ).

(iv) 0 < 2z7 ≤ 2, we can use (iii) in this same lemma to prove this result. Hence,
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E

∣∣∣∣∣∣∂2Hi1 j1,t

(∂σ2
i1,t

)2
−
∂2H̃i1 j1,t

(∂σ̃2
i1,t

)2

∣∣∣∣∣∣z7

=E

∣∣∣∣∣∣ρi1 j1σ j1,t

4σ3
i1,t

−
ρi1 j1σ̃ j1,t

4σ̃3
i1,t

∣∣∣∣∣∣z7

=E

∣∣∣∣∣∣ρi1 j1

σ j1,tσ̃
3
i1,t
− σ3

i1,t
σ̃ j1,t

4σ3
i1,t
σ̃3

i1,t

∣∣∣∣∣∣z7

≤
ρz7

i1 j1

4z7ω3z7
i1

E

∣∣∣∣∣∣σ j1,tσ̃
3
i1,t
− σ3

i1,t
σ̃ j1,t

4σ3
i1,t
σ̃3

i1,t

∣∣∣∣∣∣z7

≤a[(E|σ j1,t|
2z7E|σ̃3

i1,t − σ
3
i1,t|

2z7)1/2 + (E|σ̃3
i1,t|

2z7E|σ̃ j1,t − σ j1,t|
2z7)1/2]

≤O(βtz7
i1

) + O(βtz7
j1

).

(v) We can work on the derivative directly,

E

∣∣∣∣∣∣ ∂2Hi1 j1,t

∂σ2
i1,t
∂σ2

j1,t

−
∂2H̃i1 j1,t

∂σ̃2
i1,t
∂σ̃2

j1,t

∣∣∣∣∣∣2 =E

∣∣∣∣∣∣ ρi1 j1

4σ j1,tσi1,t
−

ρi1 j1

4σ̃ j1,tσ̃i1,t

∣∣∣∣∣∣2
≤aE

∣∣∣∣∣∣σ̃ j1,tσ̃i1,t − σ j1,tσi1,t

∣∣∣∣∣∣2
≤a[O(βt2

i ) + O(βt2
j )] < ∞

(vi) The proof will be based on the elements of the difference matrix as well. If θi ∈

{ωk, αk, βk}, it is easy to see the diagonal terms have finite summations,

n∑
t=1

E

∣∣∣∣∣∣∂H̃ j j,t − H j j,t

∂θi

∣∣∣∣∣∣
z9

=E

∣∣∣∣∣∣∂H j j,t

∂σ2
k,t

∂σ2
k,t

∂θi
−
∂H̃ j j,t

∂σ̃2
k,t

∂σ̃2
k,t

∂θi

∣∣∣∣∣∣z9

≤

n∑
t=1

(1k= j + β0i)z9E

∣∣∣∣∣∣∂(σ2
k,t − σ̃

2
k,t)

∂θi

∣∣∣∣∣∣z9

≤

n∑
t=1

O(βtz9
i ) + O(tz9βtz9

i ) < ∞

because of (i) in this lemma.

The next step is to check the non-diagonal terms. Assume i < j and l < k in ρl,k

without loss of generality, i, j, l, k = 1, . . . ,m. The total summation of any term that
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has not been included below is 0.

n∑
t=1

E

∣∣∣∣∣∣∂(Hi j,t − H̃i j,t)
∂ρi j

∣∣∣∣∣∣
z9

=

n∑
t=1

E

∣∣∣∣∣∣σi,tσ j,t − σ̃i,tσ̃ j,t

∣∣∣∣∣∣z9

< ∞

n∑
t=1

E

∣∣∣∣∣∣∂(Hi j,t − H̃i j,t)
∂ωl

∣∣∣∣∣∣
z9

=

n∑
t=1

E

∣∣∣∣∣∣
(
ρi j(1 j=lσi,t + 1i=lσ j,t)

σl,t
+ β0l1 j=l1i=l

)
∂σ2

l,t

∂ωl

−

(
ρi j(1 j=lσ̃i,t + 1i=lσ̃ j,t)

σ̃l,t
+ β0l1 j=l1i=l

)
∂σ̃2

l,t

∂ωl

∣∣∣∣∣∣z9

≤

n∑
t=1

a1i=l1 j=l(
ρi j

(1 − βl)
)z9E

∣∣∣∣∣∣σi,tσ̃ j,t − σ̃i,tσ j,t

σl,tσ̃l,t

∣∣∣∣∣∣z9

+

n∑
t=1

βtz9
l 1i=l1 j=l

(1 − βl)z9
E|ρi j

σi,t1 j=l + σ j,t1i=l

σ̃l,t
+ β0l|

z9

≤

n∑
t=1

(
O(βtz9

i ) + O(βtz9
j ) + O(βtz9

i β
tz9
j )

)
< ∞

n∑
t=1

E

∣∣∣∣∣∣∂(Hi j,t − H̃i j,t)
∂αl

∣∣∣∣∣∣
z9

=

n∑
t=1

E

∣∣∣∣∣∣(ρi j
σi,t1 j=l + σ j,t1i=l

2σl,t
+ β0l1 j=l1i=l)

∂σ2
l,t

∂αl

−

(
ρi j(1 j=lσ̃i,t + 1i=lσ̃ j,t)

2σ̃l,t
+ β0l1 j=l1i=l

)
∂σ̃2

l,t

∂αl

∣∣∣∣∣∣z9

≤a
n∑

t=1

E

∣∣∣∣∣∣∂(σ2
l,t − σ̃

2
l,t)

∂αl

∣∣∣∣∣∣z9

+ b
n∑

t=1

E

∣∣∣∣∣∣ρi j
σi,t1 j=l + σ j,t1i=l

σl,t

∂σ2
l,t

∂αl

− ρi j
σ̃i,t1 j=l + σ̃ j,t1i=l

σ̃l,t

∂σ̃2
l,t

∂αl

∣∣∣∣∣∣z9

Use (16) in Appendix A and (ii) in this lemma since 2z9 < 2, the second expectation

term becomes

n∑
t=1

E

∣∣∣∣∣∣σi,t1 j=l + σ j,t1i=l

σl,t

∂σ2
l,t

∂αl
−
σ̃i,t1 j=l + σ̃ j,t1i=l

σ̃l,t

∂σ̃2
l,t

∂αl

∣∣∣∣∣∣2z9

≤

n∑
t=1

c

√
E

(
σ j,t

σi,t

)2z9

E

∣∣∣∣∣∣∂(σ2
i,t − σ̃

2
i,t)

∂αl

∣∣∣∣∣∣2z9

+ d

√
E

(
∂σ̃i,t

∂αi

)2z9

E

∣∣∣∣∣∣σ j,t

σi,t
−
σ̃ j,t

σ̃i,t

∣∣∣∣∣∣2z9
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+

n∑
t=1

c

√
E

(
σi,t

σ j,t

)2z9

E

∣∣∣∣∣∣∂(σ2
j,t − σ̃

2
j,t)

∂αl

∣∣∣∣∣∣2z9

+ d

√
E

(
∂σ̃ j,t

∂α j

)2z9

E

∣∣∣∣∣∣σi,t

σ j,t
−
σ̃i,t

σ̃ j,t

∣∣∣∣∣∣2z9

≤

n∑
t=1

O(βtz9
i ) + O(βtz9

j ) + O(βtz9
j β

tz9
i ) < ∞

Then, we can get
∑n

t=1 E

∣∣∣∣∣∣∂(Hi j,t − H̃i j,t)
∂αl

∣∣∣∣∣∣
v2

< ∞

Similarly, the non-diagonal terms with respect to βl can be proved.

n∑
t=1

E

∣∣∣∣∣∣∂(Hi j,t − H̃i j,t)
∂βl

∣∣∣∣∣∣
z9

=

n∑
t=1

E

∣∣∣∣∣∣(ρi j
σi,t1 j=l + σ j,t1i=l

2σl,t
+ β0l1 j=l1i=l)

∂σ2
l,t

∂βl

−

(
ρi j(1 j=lσ̃i,t + 1i=lσ̃ j,t)

2σ̃l,t
+ β0l1 j=l1i=l

)
∂σ̃2

l,t

∂βl

∣∣∣∣∣∣z9

≤a
n∑

t=1

E

∣∣∣∣∣∣∂(σ2
l,t − σ̃

2
l,t)

∂βl

∣∣∣∣∣∣z9

+ b
n∑

t=1

E

∣∣∣∣∣∣ρi j
σi,t1 j=l + σ j,t1i=l

σl,t

∂σ2
l,t

∂βl

− ρi j
σ̃i,t1 j=l + σ̃ j,t1i=l

σ̃l,t

∂σ̃2
l,t

∂βl

∣∣∣∣∣∣z9

≤

n∑
t=1

O(βtz9
i ) + O(βtz9

j ) + O(tz9βtz9
l ) < ∞

After checking all the elements of the difference matrix, we can conclude that

n∑
t=1

E

∥∥∥∥∥∥ i
˙̃Ht − iḢt

∥∥∥∥∥∥z9

=

n∑
t=1

E

∥∥∥∥∥∥∂(Ht − H̃t)
∂θi

∥∥∥∥∥∥z9

≤

n∑
t=1

[ m∑
j=1

m∑
k=1

j,k

O(βtz9
j ) + O(tz9βtz9

j ) + O(βtz9
k ) + O(tz9βtz9

k ) + O(βtz9
k β

tz9
j )

]

+

n∑
t=1

[
O(βtz9

i ) + O(tz9βtz9
i ) +

m∑
j=1

O(βtz9
j ) + O(tz9βtz9

j )
]

≤

n∑
t=1

O(btz9
1 ) + O(b2tz9

1 ) + O(tz9btz9
1 )
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The desired results follow, e.g.

lim
n→∞

n∑
t=1

E

∥∥∥∥∥∥ i
˙̃Ht − iḢt

∥∥∥∥∥∥z9

< ∞

Simply apply (5) in Appendix A on the above inequalities, we can get

lim
n→∞

n∑
t=1

(
E

∥∥∥∥∥∥ i
˙̃Ht − iḢt

∥∥∥∥∥∥2z10)1/2

< ∞

lim
n→∞

n∑
t=1

(
E

∥∥∥∥∥∥ i
˙̃Ht − iḢt

∥∥∥∥∥∥3z11)1/3

< ∞

and

lim
n→∞

n∑
t=1

(
E

∥∥∥∥∥∥ i
˙̃Ht − iḢt

∥∥∥∥∥∥4z12)1/4

< ∞

since 0 ≤ 2z10 < 1, 0 ≤ 3z11 < 1 and 0 ≤ 4z12 < 1.

(vii) We need some preliminary inequalities before working on the non-diagonal elements.

One is

E

∣∣∣∣∣∣ ∂2Hi1 j1,t

∂ρi1 j1∂σ
2
i1,t

−
∂2H̃i1 j1,t

∂ρi1 j1∂σ̃
2
i1,t

|z13 = E|
σ j1,t

2σi1,t
−
σ̃ j1,t

2σ̃i1,t

∣∣∣∣∣∣z13

=E

∣∣∣∣∣∣σ j1,tσ̃i1,t − σ̃ j1,tσi1,t

2σi1,tσ̃i1,t

∣∣∣∣∣∣z13

< O(βtz13
i1

) + O(βtz13
j1

) (3.82)

for any 0 < z13 < 1 because of (ii) above.

The other set of inequalities is, for any z ≤ 4, we have

E

∣∣∣∣∣∣∂2σ2
i,t − σ̃

2
i,t

∂ωi∂βi

∣∣∣∣∣∣z =

(
tβt

i

(1 − βi)2

)z

= O(tzβtz
i )

E

∣∣∣∣∣∣∂2σ2
i,t − σ̃

2
i,t

∂αi∂βi

∣∣∣∣∣∣z =E

{[
tβt

i

βi(1 − βi)
+

βt
i

(1 − βi)2

]
x2

i,t + (t − 1)βt−2
i (x2

i,0 − x̃2
i,0)

}z

≤a[(tβt
i)

z + βtz
i ]Ex2z

i,t + a(t − 1)zβ(t−2)z
i Ex2z

i,0 + a(t − 1)zβ(t−2)z
i x̃2z

i,0

=O(tzβtz
i ) + O(βtz

i )



106 Chapter 3. Gaussian QMLE and its Asymptotic Theory

E

∣∣∣∣∣∣∂2σ2
i,t − σ̃

2
i,t

∂βi∂βi

∣∣∣∣∣∣z =E

∣∣∣∣∣∣ tβt
i

βi(1 − βi)2 +
2βt

i

(1 − βi)3 + tβt−1
i αi

∞∑
l=1

lβl−1
i x2

i,t−1−l + βt
iαi

∞∑
l=2

l(l − 1)βl−2
i x2

i,t−1−l

+
tβt−1

i

βi(1 − βi)
+

tβt−1
i

(1 − βi)2 + t(t − 1)βt−2
i αi

∞∑
l=0

βl
ix

2
i,t−1−l

+ tβt−1
i αi

∞∑
l=1

lβl−1
i x2

i,t−1−l − t(t − 1)βt−2
i σ̃2

i,0 + αi(t − 1)(t − 2)βt−3
i (x2

i,0 − x̃2
i,0)

∣∣∣∣∣∣z
≤a1(tzβtz

i + βtz
i ) + a2tzβ(t−1)z

i + a3β
tz
i + a4tz(t − 1)zβ(t−2)z

i + a5tzβ(t−1)z
i

+ (t − 1)z(t − 2)zβ(t−3)z
i

=O(tzβtz
i ) + O(βtz

i ) + O(tz(t − 1)zβtz
i ) (3.83)

and E

∣∣∣∣∣∣∂2σ2
i,t − σ̃

2
i,t

∂ωi∂ωi

∣∣∣∣∣∣ = E

∣∣∣∣∣∣∂2σ2
i,t − σ̃

2
i,t

∂ωi∂αi

∣∣∣∣∣∣ = E

∣∣∣∣∣∣∂2σ2
i,t − σ̃

2
i,t

∂ωi∂ωi

∣∣∣∣∣∣ = E

∣∣∣∣∣∣∂2σ2
i,t − σ̃

2
i,t

∂αi∂αi

∣∣∣∣∣∣ = 0.

Sufficiently, we will prove the finiteness of each element and start with the diagonal

terms. If θi and θl are both in the set {ωk, αk, βk},

n∑
t=1

E

∣∣∣∣∣∣∂2H̃ j j,t − H j j,t

θiθl

∣∣∣∣∣∣
z13

=E

∣∣∣∣∣∣ ∂2H j j,t

(∂σ2
k,t)

2

∂σ2
k,t

∂θ j

∂σ2
k,t

∂θl
−
∂2H̃ j j,t

(∂σ̃2
k,t)

2

∂σ̃2
k,t

∂θ j

∂σ̃2
k,t

∂θl

+
∂H j j,t

∂σ2
k,t

∂2σ2
k,t

∂θ j∂θl
−
∂H̃ j j,t

∂σ̃2
k,t

∂2σ̃2
k,t

∂θ j∂θl

∣∣∣∣∣∣z13

≤

n∑
t=1

(1 + β0k)z13E

∣∣∣∣∣∣ ∂2σ2
k,t

∂θ j∂θl
−
∂2σ̃2

k,t

∂θ j∂θl

∣∣∣∣∣∣z13

≤

n∑
t=1

O(βtz13
k ) +

n∑
t=1

O(tz13βtz13
k )

n∑
t=1

O(tz13(t − 1)z13βtz13
k ) < ∞.

If one of θi and θl is β0k, k = 1, 2, . . . ,m and the other one is in the set {ωk, αk, βk}.

Assume θi = β0k and θl is one element in {ωk, αk, βk}, then we can conclude from (i)

in Lemma 3.3.4 that

n∑
t=1

E

∣∣∣∣∣∣∂2H̃ j j,t − H j j,t

θiθl

∣∣∣∣∣∣
z13

=E

∣∣∣∣∣∣∂σ2
k,t

∂θl
−
∂σ̃2

k,t

∂θl

∣∣∣∣∣∣z13

< ∞

The next step is to check the non-diagonal terms. Assume i < j and l < k in ρl,k

without loss of generality, i, j, l, k = 1, . . . ,m.
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It is easier to start working with the non-diagonal elements in the matrix.

E|
∂2(Hi j,t − H̃i j,t)

∂ρlk∂ωi1
|z13

=E|
∂2Hi j,t

∂ρi j∂σ
2
i1,t

∂σ2
i1,t

∂ωi1
−

∂2H̃i j,t

∂ρi j∂σ̃
2
i1,t

∂σ̃2
i1,t

∂ωi1
|z13(1 j=k1i=l + 1 j=l1i=k)(1i1=i + 1i1= j)

≤(E|
∂2Hi j,t

∂ρi j∂σ
2
i1,t

−
∂2H̃i j,t

∂ρi j∂σ̃
2
i1,t

|2z13E|
∂σ2

i1,t

∂ωi1
|2z13)1/2(1i1=i + 1i1= j)

+ (E|
∂2H̃i j,t

∂ρi j∂σ̃
2
i1,t

|2z13E|
∂σ2

i1,t

∂ωi1
−
∂σ̃2

i1,t

∂ωi1
|2z13)1/2(1i1=i + 1i1= j)

≤O(βtz13
i ) + O(βtz13

j )

E

∣∣∣∣∣∣∂2(Hi j,t − H̃i ji,t)
∂ρlk∂αi1

∣∣∣∣∣∣z13

=E

∣∣∣∣∣∣ ∂2Hi j,t

∂ρi j∂σ
2
i1,t

∂σ2
i1,t

∂αi1
−

∂2H̃i j,t

∂ρi j∂σ̃
2
i1,t

∂σ̃2
i1,t

∂αi1

∣∣∣∣∣∣z13

(1 j=k1i=l + 1 j=l1i=k)(1i1=i + 1i1= j)

≤
(
E

∣∣∣∣∣∣ ∂2Hi j,t

∂ρi j∂σ
2
i1,t

−
∂2H̃i j,t

∂ρi j∂σ̃
2
i1,t

∣∣∣∣∣∣2z13

E

∣∣∣∣∣∣∂σ2
i1,t

∂αi1

∣∣∣∣∣∣2z13)1/2
(1i1=i + 1i1= j)

+
(
E

∣∣∣∣∣∣ ∂2H̃i j,t

∂ρi j∂σ̃
2
i1,t

∣∣∣∣∣∣2z13

E

∣∣∣∣∣∣∂σ2
i1,t

∂αi1
−
∂σ̃2

i1,t

∂αi1

∣∣∣∣∣∣2z13)1/2
(1i1=i + 1i1= j)

≤O(βtz13
i ) + O(βtz13

j )

E

∣∣∣∣∣∣∂2(Hi j,t − H̃i j,t)
∂ρlk∂βi1

∣∣∣∣∣∣z13

=E

∣∣∣∣∣∣ ∂2Hi j,t

∂ρlk∂σ
2
i1,t

∂σ2
i1,t

∂βi1
−

∂2H̃i j,t

∂ρlk∂σ̃
2
i1,t

∂σ̃2
i1,t

∂βi1

∣∣∣∣∣∣z13

(1 j=k1i=l + 1 j=l1i=k)(1i1=i + 1i1= j)

≤(E|
∂2Hi j,t

∂ρi j∂σ
2
i1,t

−
∂2H̃i j,t
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By using (i) above and Cauchy-Schwarz inequality to enlarge the terms repeatedly,
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By using Cauchy-Schwarz inequality to enlarge the terms repeatedly,
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Based on the preliminary results at the beginning and Cauchy-Schwarz inequality,
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We use the similar argument used above in (vi) and get the rest of the desired

results,
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since 0 ≤ 2z14 < 1/2 and 0 ≤ 4z15 < 1/2
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∣∣∣∣∣∣4 < ∞. The result along with
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∥∥∥Ht − H̃t

∥∥∥4
< ∞. The other inequities are true by applying the

same arguments used in (vi)and (vii).
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Chapter 4

Simulation Study

4.1 Introduction

A Monte Carlo simulation will be performed to study the asymptotic properties of the

QMLE for a given true value θ0, which satisfies all the assumptions regarding the param-

eter, including A2, A3, A4 in Chapter 2 and B1 in Chapter 3. When the innovations follow

the Gaussian distribution, then Assumptions A1 and A5 are satisfied. Assumptions A2

and A3 are explicit expressions which are easy to verify if we know the value of θ0, while

the other two assumptions A4 and B1 are complicated. The main problem we are facing

is that the stationary and ergodic parameter space is not explicitly known, so the search

area cannot be defined in the algorithm when we estimate the parameters.

In this chapter, we study a simplified version of the model with two-dimensional

data. Prior to the simulation, we want to find a proper value in the parameter space. For

Assumption B1, a closed interval is defined in the next section as a searching area so that

the algorithm is looking for the estimate in a compact space. With the general consensus

in financial economics, the log return series of stocks is stationary. We start with the

log returns of two stocks. After applying numeric optimization with the conditions in

Assumptions A2 and A3, we can get an estimate θ̂d from the real data which maximizes

114
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the likelihood function with some initial values. The Monte Carlo method is used in

the next section to verify whether the drift condition, Assumption A4, is satisfied. If

the estimate θ̂d passes the test, it will be used as “true” parameter θ0 when we use the

simulation method to study the statistical properties. Otherwise, a modification will be

implemented on θ̂d to create such a θ0 which meets Assumptions A1− A5 and B1, B3, B4.

It is worth to notice that even if θ̂d does not pass the drift condition in Assumption A4,

it does not mean that it cannot produce a stationary and ergodic observable sequence.

As a sufficient condition, Assumption A4 leads to a smaller space than the true stationary

and ergodic parameter space. Often the estimates obtained from real data analysis fail

to pass the drift condition test. We included the results obtained from the Monte Carlo

simulation on an artificial θ0 in this chapter which passed the drift condition. The same

simulation was also performed on θ̂d, and the convergence results are similar to we got

for θ0. This suggests that the sufficient drift condition A4 might be too strong.

4.2 Monte Carlo Study Preparation

To reduce the number of parameters and simplify the model, the contributions from each

individual stock to the common risk indicator σ2
0,t can be set to be equal, which means

β01 = β02 = · · · = β0m = β0. This setup not only serves the convenience purpose but also

saves the computation time. The number of parameters in σ2
0,t will be reduced to 2 from

m + 1, which we have before the simplification.

A bivariate example is shown in this section. The bivariate realization of the model

becomes
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Figure 4.1: Log return of IBM and CSCO from 1995-01-01 to 2007-12-31



x1,t = ε1,tσ1,t + ε0,tσ0,t

x2,t = ε2,tσ2,t + ε0,tσ0,t

σ2
1,t = ω1 + α1x2

1,t−1 + β1σ
2
1,t−1

σ2
2,t = ω2 + α2x2

2,t−1 + β2σ
2
2,t−1

σ2
0,t = β0(σ2

1,t + σ2
2,t).

(4.1)

and the number of parameters is 8. In order to choose a ‘true’ parameter θ0 in this

simulation study, we estimate the parameters based on the centered log returns of two

equity series (two stocks in American stock market): International Business Machines

Corporation (IBM) and Cisco Systems, Inc. (CSCO) from 1995 to 2007 with 3274 trading

days in total. As we can see from Figure 4.1, more than 90% of the log returns lie within

the range between -0.05 and 0.05.

The default searching box needs to be chosen by considering not only the assumptions

but also some additional constraints. One of the constraints is that the meaning of these

parameters. On the one hand, we want at least one of β0i’s to be larger than 0 so that the

common term σ2
0,t does not disappear. Therefore, in this case, a lower bound is needed

for β0 other than 0. On the other hand, we are not expecting the contribution from one

term to the common term σ2
0,t higher than itself, which means that the upper bound of

β0i is set to be 1 for β0i’s.
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The final searching region is chosen to be Θ = [−1, 1]× [ι, 1]2× [ι, 1]2× [0, 1− ι]2× [ι, 1]

where ι is set to be 10−40. Several numeric checks are added to verify the positive definite

constraints on both Ht and R matrices through the eigen decomposition. Further numeric

issues will be discussed in Section 4.4.

In Theorem 3.3.1, the observed xt have a finite 8th moment which can lead to the

weak stationarity. Let Eσ2
1,t =

ω1

1 − β1
+
α1Ex2

1,t

1 − β1
= w1, Eσ

2
2,t =

ω2

1 − β2
+
α2Ex2

2,t

1 − β2
= w2 and

Eσ2
0,t = w0, then w1,w2 can be solved by the last two equations in (4.1). Therefore,

w1 =
w0α1 + ω1

1 − α1 − β1
,

w2 =
w0α2 + ω2

1 − α2 − β2
.

To ensure these terms are positive, Assumption A3 is needed.

A non-linear optimization function nlminb in R with box constraints is used to es-

timate the parameter. While this function is extremely helpful, it has a few numeric

problems when we use it in such a high dimensional case. These problems will be dis-

cussed in Section 4.4. The output from nlminb gives a locally optimal solution but

without specifying whether it is the global ones. Varies methods in Section 4.4 are used

to increase the likelihood of being the global optimum.

The estimated values are shown in the first row of Table 4.1 as θ̂d. The next step is

to test whether this estimate satisfies Assumption A4.

A Monte Carlo study has been conducted to study the properties of the estimates in

a numeric way. In this verification, the integer p1 is set to be 2, then the corresponding

matrix induced norm is also called spectral norm. The positive number s is chosen to be

1. Theoretically, the conditional standard deviation (σ1,t, σ2,t) can reach positive infinity

without any upper bound. In theory, the expectation listed in Assumption A4 needs to

be verified for all possible y in the state space. Nonetheless, we only need to know that

the expectation is smaller than 1 within the sensible range from a practical point of view.
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The time series sequence, xt
ᵀ = (x1,t, x2,t), we are targeting is the daily stock return which

never has any value beyond the interval (−0.5, 0.5). From the expression in (4.1) and the

constraint αi + βi < 1, it is sensible to verify the conditional standard deviation using

the upper bound (1, 1)ᵀ. In the meantime. the lower bound of this region is set to be

(
√
ω1,
√
ω2)ᵀ.

In this bivariate case, the steps to verify the drift assumption for a given value θ,

1. Choose a sample size n, simulate n independent and identically distributed 3 di-

mensional innovations εt where εt’s are N(0,Σ).

2. Set up the region with ymin = (ymin,1, ymin,2)ᵀ = (
√
ω1,
√
ω2)ᵀ and ymax = (ymax,1, ymax,2)ᵀ =

(1, 1)ᵀ. We can discretize the interval between ymin and ymax by creating grids

using the weighted averages. The domain of each element in the 2 dimensional

weight variable s = (s1, s2), [0,1], can be divided into K3 equally spaced points

(0, 1/K3, · · · , (K3 − 1)/K3, 1). The grid points are set to be ys,t = ys1,s2,t = (s1ymin,1 +

(1 − s1)ymax,1, s2ymin,2 + (1 − s2)ymax,2)ᵀ, so the number of grids is (K3 + 1) × (K3 + 1).

3. For each grid point, the partial derivative matrix B(ys,t, εt) is calculated for these in-

novations εt. Then the average of these n values is obtained as the term E ‖B(ȳ, εt)‖2.

4. Finally, we can get the range of E ‖B(ȳ, εt)‖2 over the region defined. If the upper

bound of the range is smaller than 1, then we can conclude that Assumption A4 is

satisfied.

The steps are similar to the ones in Hafner and Preminger (2009b) and Jiang (2011), but

more complicated and computationally intensive. The sample n is set to be 200 and the

number of grids, K3, is 1001 in this example.

> range(EDriftOrg)

[1] 0.7148196 1.0071080
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Table 4.1: The numeric estimate from IBM and CSCO centered log return and the ‘True’
value used for the bootstrap simulations (rounded to two decimal digits)

ρ1,2 106ω1 106ω2 100α1 100α2 10β1 10β2 10β0

θ̂d 4.18 2.93 8.03 7.65 5.54 9.09 9.30 0.44

θ0 4.18 2.93 8.03 7.65 5.54 8.50 8.50 4.42

Unfortunately, the estimate θ̂d does not pass the test. So we need to modify the values

to create a θ0 which satisfies the conditions stated above.

Some testing runs have been performed to check which element has a larger effect on

this result. Only one value is changed at each run while the values of other elements of

the parameter remain the same as θ̂d in Table 4.1. As in the univariate or multivariate

GARCH models, the changes in βi have a significant impact on the partial derivative.

The “true” values of parameters in the second row are set to be the modified values based

on the first row by modifying the values of 3 parameters. The individual parameters

β1 and β2 are set to be 0.85, and β0 to be 10 times the estimate around 0.42. All the

numbers in the table are rounded to 2 decimal places for a better display where the more

accurate values are used in the simulation.

Once again, the same test is applied to this modified parameter value θ0.

> range(EDriftMod)

[1] 0.6990809 0.9907809

The upper bound of that expectation is smaller than 1, this θ0 satisfies all the assumptions

in Chapter 2 and 3 regarding the parameter. Thus, we can use this θ0 as the true value

in the following examples.

4.3 Simulated Results

In order to investigate the consistency and asymptotic normality, we need to know the

exact value of the true parameter. Then the simulated results can be compared with the
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theoretical values, which are calculated based on the theorems in the previous chapters.

The initial values are fixed at (x0,σ0) = (0.008, 0.008, σ0,1, σ0,2) where σ0,1, σ0,2, are the

default values obtained from the log returns of IBM and CSCO by the method described

in Section 4.4.3. Given the true value θ0 satisfying the assumptions, we could simulate

a path with i.i.d. normally distributed innovation and then estimate the parameters

by maximizing the Gaussian likelihood function based on the simulated path. If the

simulating and estimating processes were repeated for K times with K large enough,

we could numerically verify the asymptotic properties of the ML estimators with the

knowledge about the true parameter value.

The initial values (x0,σ0) and the true parameter θ0 are fixed as the values stated

above. For the ith path, the detailed steps to generate the estimates are shown as

following:

1. Generate K1 + K2 i.i.d multivariate normally distributed innovation ε1 with mean

0 and known covariance Σ, where K2 is the number of observations we desired and

K1 is the size of the burn-in period.

2. Calculate the simulated observations x1, . . . , xK1+K2 and the corresponding σ1, . . . ,σK1+K2

iteratively.

3. Drop the first K1 points from the sequences, the sequences left are xK1+1, . . . , xK1+K2

and σK1+1, . . . ,σK1+K2 .

4. Get the estimate θ̂
(i)
K2

by using the method in Section 4.4.

We repeat this process for N2 times, then examine the behavior of the estimates.

Some typical paths of xt and σt are shown in Figure 4.2 which represent the paths

x(i)
1 , . . . , x

(i)
K1+K2

in Step 1 and 2. Though the true parameter we used to generate the path

is an artificial θ0, the simulated observed paths xt still show a similar characteristic as the

original stock returns. They have similar ranges, the same volatility clustering feature

and both are heavy tail distributed.
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Figure 4.2: The simulated paths: the top three are the simulated xt (the black solid
line represents x1,t and the red dashed line represents x2,t) and the three below are the
corresponding σt (the black line represents σ2

1,t, the red line represents σ2
2,t and the blue

line represents σ2
0,t)
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Figure 4.3: The histogram of α̂1, α̂2, β̂1, β̂2 when K2 = 1000. The blue lines represent the
true values.
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Figure 4.5: The histogram of α̂1, α̂2, β̂1, β̂2 when K2 = 20000. The blue lines represent the
true values.
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Figure 4.6: The histogram of ρ̂, ω̂1, ω̂2, β̂0 when K2 = 20000. The blue lines represent the
true values.

We simulate 1000 paths (N2 = 1000) with different sample sizes K2 from 1000 to 20000

and set the burn-in size K1 to be 7000. Figure 4.3 and Figure 4.4 show the histogram of

the parameters. From these two figures, we can see that the estimate of ρ has a positive

bias while the estimate of β0 has a negative bias. Among the 1000 estimates of β0, 26

of them hit the upper bound of the searching region, 1. Though 1000 is about 4 years

of data in the stock market, it is still very small when we want to study the asymptotic

properties. Most of the histograms are skewed. When the sample size is increased to

20000, the histograms of the estimates in Figure 4.5 and 4.6 become more symmetric.

The centers of the bell shapes are much closer to the true values. Between these two

sample sizes, 1000 and 20000, 4 sample sizes are chosen for K2 and they are 3000, 5000,

7000 and 10000.

Section 4.4 uses a numeric optimizer, an element of the output gives an indicator

whether the numeric iteration converges based on the some numerical criteria. The

proportion of the convergenced estimates is 99.5% when the sample size equals to 1000.

Then the proportion gradually decays to 91.6% when we increase the sample size to

20000(98.3% for K2 = 3000, 96.1% for K2 = 5000, 94.7% for K2 = 7000 and 93.1% for
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K2 = 10000). Given the fact that the target function is summing up a large number

of terms, the rounding error may become overwhelming when the sample size increases.

The change in the convergence rate relates to the numerical stability which we have no

control. All the results below are based on the converged estimates.

Ignore the sign of the bias, the absolute bias of a parameter with true value θ0 is

defined as ∣∣∣∣ 1
N2

N2∑
i=1

θ̂(i)
K2
− θ0

∣∣∣∣.
Then, the absolute biases of each parameter with different sample sizes are shown in

Table 4.2. The absolute biases generally decrease as the sample size increases with few

exceptions. Since the estimate of one parameter is related to the estimate of other

parameters, the increasing of the absolute bias of one parameter may be because of the

reduction in the absolute bias of another parameter. We cannot compare the overall

effect for different sample sizes. It is important to realize that it is impossible to achieve

0 in any numeric study and the accuracy is limited by several factors. We define another

measure called relative absolute bias as

relative absolute bias (RAB) of θ =
absolute bias of θ

θ0

which takes the scale of the true parameter into account. The RABs for different pa-

rameters are comparable in terms of different K2. Table 4.2 is converted to Table 4.3

by using this new measure. In the last column, the vanishing trend of the total RAB is

clear as the sample size increases, which means the bigger the sample size, the better the

estimate will be.

In addition to the absolute bias, the root mean square error (RMSE) is used to

evaluate the performance of the estimate. The RMSE we used in this thesis is

RMSE of θ =

√√
1

N2

N2∑
i=1

(θ̂(i)
K2
− θ0)2
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Table 4.2: The absolute biases with different sample sizes (rounded to two decimal digits)

K2 ρ1,2(10−3) ω1(10−7) ω2(10−7) α1(10−3) α2(10−3) β1(10−3) β2(10−3) β0(10−3)

1000 1.82 14.80 31.31 2.79 5.19 9.22 28.64 5.45

3000 12.86 6.59 8.24 3.12 2.78 3.77 4.93 19.55

5000 6.23 2.68 4.95 1.28 1.54 1.21 3.31 9.15

7000 1.26 1.73 2.85 0.56 0.55 0.99 1.71 0.65

10000 1.35 1.25 3.01 0.45 0.66 0.44 2.25 1.14

20000 3.25 0.91 0.94 0.59 0.50 0.45 0.50 4.62

Table 4.3: The relative absolute biases with different sample size (%)

K2 ρ1,2 ω1 ω2 α1 α2 β1 β2 β0 total RAB

1000 0.43 50.51 38.98 3.65 9.36 1.08 3.37 1.23 108.63

3000 3.08 22.49 10.25 4.08 5.02 0.44 0.58 4.42 50.36

5000 1.49 9.14 6.16 1.68 2.77 0.14 0.39 2.07 23.84

7000 0.30 5.89 3.55 0.73 0.99 0.12 0.20 0.15 11.93

10000 0.32 4.28 3.74 0.58 1.19 0.05 0.26 0.26 10.69

20000 0.78 3.11 1.18 0.77 0.91 0.05 0.06 1.04 7.90

Unlike the one defined in Liu (2011), the mean of the estimates ¯̂θ is replaced by the true

value θ0. The numeric results are shown in Table 4.4. In this table, the reduction in

RMSE is dramatic when a larger sample is used to estimate the parameters. In terms

of the RMSE, it also implies that a larger sample size will lead to a more accurate point

estimate in most cases.

The histograms in Figure 4.5 and 4.6 both have nice bell shapes, but there are not

enough evidence to confirm the normal distribution proved in Chapter 3. More convincing

methods are used to check the normality in both graphical and statistical way. Instead

of the raw estimate θ̂
(i)

, the distribution of the rescaled estimates in Section 3.3 is studied

because
√

K2(θ̂K2 − θ0) is more informative.

The graphical tests include quantile-quantile(Q-Q) plots and the density plots for each
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Table 4.4: RMSE of the estimates (rounded to two decimal digits)

K2 ρ1,2(10−3) ω1(10−12) ω2(10−12) α1(10−4) α2(10−4) β1(10−4) β2(10−4) β0(10−2)

1000 17.78 21.74 104.13 4.16 3.54 25.03 109.18 4.11

3000 5.72 3.11 6.46 1.44 1.33 3.04 6.62 1.39

5000 3.21 1.41 3.56 0.73 0.72 1.51 3.81 0.76

7000 2.49 0.92 2.25 0.54 0.50 1.14 2.62 0.59

10000 1.87 0.71 1.52 0.40 0.37 0.73 1.64 0.44

20000 0.86 0.37 0.65 0.21 0.17 0.40 0.78 0.21

parameter. To save space, only the results for 4 parameters are included here despite the

fact that the number of parameters is 8. The change in the skewness and bias of ρ1,2 and

β0, which was shown in Figures 4.3 and 4.4, needs to be addressed. Other than these

two parameters, ω1 and β1 are chosen to represent the estimates in both extremely small

and relatively large scales. Figures 4.7 to 4.10 are the normal Q-Q plot of ρ1,2, ω1, β1

and β0. The qqnorm plot of ω1 has few extreme values at the tail when K2 = 1000

but this gradually changes when K2 increases to 20000. For the same 4 parameters,

the densities are plotted in Figure 4.11 to 4.14. A black solid line represents the kernel

density estimation and the blue dashed line shows the referenced normal density with

the same mean and variance. The kernel densities are far from the referenced normal

densities with a higher peak when K2 = 1000. With the largest sample size 20000, the

kernel estimations are close to the reference lines both in the centers and the tails.

From the numeric point of view, the distribution of
√

K2(θ̂K2 − θ0) stabilized to the

reference normal distribution and the kurtosis of kernel estimation is shown in Table 4.7

along with the skewness. The kurtosis of all parameters becomes stable around 3 which

is the standard for normal distribution. There are several normality tests implemented

in R, some of them are very sensitive to the tails or the size of the data. Though

the distributions of the rescaled estimates are approaching normal as the sample size

increases, there is no reason to expect these estimates to pass the normality tests even
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with the largest sample size 20000.

The assessments in the previous paragraphs show us that the distribution of
√

K2(θ̂K2−

θ0) is approaching a normal distribution with mean 0. The first 6 rows in Table 4.5

show the rescaled standard deviations calculated from the Monte Carlo simulation. The

rescaled standard deviations of the Monte Carlo simulation are relatively stable except

for the case when K2 = 1000. The last question we are interested in is that whether the

limiting standard deviation is determined by J−1V J−1 as stated in Section 3.3. Both the

first and second derivatives of lt(θ) are extremely hard to evaluate since they are given

by very complex iterative formulas in the proof of Theorem 3.3.1.

By the definition of J in Section 3.3, it is a symmetric matrix. The component in row i

and column j of this matrix can be computed by the limit of
1
n

∑n
t=1

∂2lt(θ0)
θi∂θ j

when n→ ∞,

which can be further simplified as
∂2Ln(θ0)
∂θi∂θ j

. The numeric methods can be used to estimate

the second derivatives of the negative target function for a simulated path. Therefore, a

numeric estimation of the matrix J is easily obtained. In the meantime, the elements in V

can be approximated by the expression −
1
n

∑n
t=1

∂lt(θ0)
∂θi

∂lt(θ0)
∂θ j

. However, this expression

requires us to compute the numeric first derivatives of lt at all time points, which means

it can not be further simplified to the numeric derivatives of the overall target function

Ln. After getting the numeric estimate of J and V, the diagonal elements of J−1V J−1 can

be computed, and they can be treated as the approximation of the asymptotic variance.

It is worth to note that the numeric estimates of J and V are calculated at θ̂ instead of

θ0 since the likelihood function reaches its maximum at θ̂ given a path, not at θ0. The

estimated estimated theoretical asymptotic standard deviations are included in the last

row of Table 4.5.

It is hard to conclude anything from the rescaled standard deviations of the Monte

Carlo simulation. As explained in the table of the absolute bias, the value of one pa-

rameter may get closer to the asymptotic standard deviation when the value of another

parameter is further away from the asymptotic standard deviation as the sample size
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Table 4.5: SD of
√

K2(θ̂K2 − θ0) and estimated asymptotic SD (rounded to two decimal
digits)

K2 ρ1,2 ω1(10−5) ω2(10−4) α1(10−1) α2(10−1) β1(10−1) β2 β0

1000 4.22 13.99 3.07 6.40 5.72 15.56 3.18 6.42

3000 4.09 8.97 1.32 6.36 6.14 9.33 1.38 6.36

5000 3.98 8.17 1.29 6.00 5.92 8.66 1.36 6.15

7000 4.18 7.91 1.23 6.16 5.90 8.90 1.35 6.43

10000 4.33 8.31 1.19 6.28 6.02 8.55 1.26 6.66

20000 4.12 8.48 1.14 6.45 5.80 8.89 1.25 6.39

Asy 4.15 8.36 1.20 6.39 5.95 8.90 1.27 6.45

Table 4.6: RASY with different sample sizes (%)

K2 ρ1,2 ω1 ω2 α1 α2 β1 β2 β0 total RASY

1000 1.56 67.33 155.62 0.15 3.87 74.82 150.37 0.46 454.17

3000 1.62 7.25 9.60 0.48 3.25 4.90 9.02 1.27 37.40

5000 4.12 2.23 7.19 6.12 0.42 2.69 7.21 4.55 34.54

7000 0.59 5.39 2.54 3.61 0.81 0.01 6.16 0.19 19.31

10000 4.18 0.55 0.61 1.71 1.16 3.97 0.78 3.26 16.23

20000 0.77 1.42 5.47 1.04 2.51 0.09 1.60 0.85 13.76

increases. Thus, a new measure called the relative absolute difference with respect to the

asymptotic standard deviation can be defined as

RASY of θ =
| SD of

√
K2(θ̂K2 − θ0) − asymptotic standard deviation|

asymptotic standard deviation
.

This measure uses the asymptotic standard deviation as a standard to compare the

performance of different sample sizes. Using this measure, Table 4.5 is converted to

Table 4.6. From the values in the last column, the total RASY is decreasing when the

sample size becomes larger. Overall, the standard deviations obtained from the Monte

Carlo simulation is getting closer to the asymptotic ones as the sample size increases.
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Figure 4.7: qqnorm of rescaled ˆρ1,2 with different sample sizes K2

The histograms, the relative absolute error and the root mean square error show that

the point estimator has a higher probability to fall into a close neighbourhood of the true

value when the sample size becomes larger. It is a rectification of the consistency in finite

samples. In the meantime, the distribution of
√

K2(θ̂K2 − θ0) is gradually moving towards

a stable normal distribution with the mean and variance specified in Theorem 3.3.1.

4.4 Numeric Issues with Solutions

4.4.1 The Scale Difference

Since the parameters are typical of quite different scales, the numerical algorithms to

obtain the estimation can be sensitive to this. We could take a univariate GARCH(1,1)

as an example since it is one of the most commonly used models for analyzing a single

sequence in the stock log returns. When a GARCH(1,1) model is fitted on a stock return,

the point estimates have considerable scale differences. The scale of ω̂ is in the order
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Figure 4.8: qqnorm of rescaled ω̂1 with different sample sizes K2
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Figure 4.10: qqnorm of rescaled β̂0 with different sample sizes K2
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Figure 4.11: The black solid line: kernel density of rescaled ρ̂1,2 with different sample
sizes K2. The blue dashed line: standard normal using the same mean and sd from the
estimates
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Figure 4.12: The black solid line: kernel density of rescaled ω̂1 with different sample
sizes K2. The blue dashed line: standard normal using the same mean and sd from the
estimates
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Figure 4.13: The black solid line: kernel density of rescaled β̂1 with different sample
sizes K2. The blue dashed line: standard normal using the same mean and sd from the
estimates
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Figure 4.14: The black solid line: kernel density of rescaled β̂0 with different sample
sizes K2. The blue dashed line: standard normal using the same mean and sd from the
estimates

Table 4.7: Kurtosis (skewness) of
√

K2(θ̂K2 − θ0) (rounded to one decimal digits)

K2 ρ1,2 ω1 ω2 α1 α2 β1 β2 β0

1000 3.7(−1.0) 156.7(9.2) 42.9(5.4) 3.0(0.3) 3.3(0.3) 171.8(−10.2) 43.9(−5.7) 3.5(0.9)

3000 5.4(−1.1) 4.5(0.8) 3.4(0.6) 3.0(0.1) 3.1(0.1) 3.4(−0.3) 3.8(−0.5) 5.4(1.2)

5000 3.7(−0.7) 3.0(0.3) 3.7(0.7) 3.1(0.0) 3.1(0.1) 2.8(−0.1) 3.9(−0.5) 3.7(0.7)

7000 4.0(−0.7) 3.1(0.3) 3.4(0.5) 3.4(−0.1) 3.0(0.1) 3.5(−0.2) 3.6(−0.4) 3.9(0.7)

10000 3.3(−0.5) 3.4(0.3) 3.5(0.3) 3.0(−0.0) 2.8(0.1) 2.8(−0.0) 3.1(−0.1) 3.3(0.5)

20000 3.2(−0.3) 3.1(0.3) 3.0(0.3) 3.1(0.1) 3.1(0.0) 3.0(−0.2) 3.0(−0.2) 3.2(0.2)



134 Chapter 4. Simulation Study

of 10−6 to 10−5 while α̂ and the scale of β̂ is in the order of 10−1. This leads one to

imagine that the estimate from our model has a big difference on the scales of ωi and

other parameters. In a more vivid picture, the optimization function begins the searching

in the neighbourhood of the starting value and finds a direction with the deepest descent

and moves in that direction with one step. Normally, the scale is related to the step size

and the step size would not differ much if everything is kept as the default.

There is an argument in R function nlminb called scale which can be used to adjust

the step size for each parameter and the default is 1. The larger the scale is, the smaller

the step size is. The scale of ωi’s is changed to a larger value while the scales of other

parameters remain as 1. Since no one knows what a proper scale is for ωi’s, the opti-

mization function is fed with a vector of alternative scales. The default argument in the

function is set to be a1 = (0, 1, 2, 3, 4, 5, 6, 7), which means the possible scales for ωi’s are

10a1. The function will start optimizing the negative log likelihood with the scale in the

middle of a1 and if the number of elements in a1, na1, is even, it will start with the smaller

one in the middle. Therefore, the scale will start from 103 in the default case and search

into the two ends of the vector 10a1 until the target function convergence numerically.

4.4.2 Computational Speed

Since the likelihood is built based on the conditional distributions, the likelihood value

needs to be calculated at each time point sequentially given a group of values for the

parameters. The inverse matrix operation needs to be performed at each time point.

The computation speed is a major problem when the maximum likelihood estimator is

desired.

Better than most of other statistical and graphical software, R provides a completely

programmable language for graphics, which makes the graphical capabilities of R extraor-

dinary. As a scripting language, the computation speed is one of its main drawbacks. In

the meantime, C++ is a relatively low-level compiled language. It is an object-oriented
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language with only some well-developed packages, which requires a higher cost in terms

of coding. To combine the advantage of both languages, Eddelbuettel and Sanderson

(2014) create a package RcppArmadillo which provides an interface to integrate C++

code within R. Since the optimization is a difficult job, it is not wise to code this part

by ourselves in C++. Thus, only the negative log likelihood function is written in C++

and the rest part of the job is done in R code.

The computation speed of repeatedly computing the likelihood written in R and Rcpp

was assessed. For simplicity, the assessment was running in a two-dimensional case. The

computation is based on the centered log returns of the daily closing prices between 1995-

1-1 to 2007-12-31, which is the same time range as Section 4.2. The closing price of IBM

and BAC from the technology and the finance sector are used in this two-dimensional

example. Both programs ran for 1000 times to compute the negative likelihood function

with everything fixed. Figure 4.15 summarizes the time spent on 1000 computation as

a violin plot. Note that the computation time of the Rcpp program is way faster than

the pure R program. It takes about 690 milliseconds to run the R program on average

while it only takes 9.5 milliseconds to do the same thing in Rcpp. It definitely has a huge

improvement when the target function is written in Rcpp.

4.4.3 Initial values and Starting Point

The initial value is (x̃0, σ̃0) which is needed in both the estimation and simulation pro-

cesses and the starting point is an argument in the estimating function which is used to

feed an initial value for the parameters to be optimized. The initial value is not important

asymptotically because of the ergodicity, but it does have some impact on the estimate

in the finite sample case. The longer the time series is, the smaller the difference will be

in the estimates. There is no way we can find a “perfect” initial value. One can choose

any value as long as it is a possible value. A good initial value means higher computation

efficiency and converges more quickly and it is common to believe that a value within
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Rlik()

100 10000
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Figure 4.15: Violin plot for 1000 computation time using the same target function written
in R and Rcpp

the high probability region is a good choice. Like the common choice in Zivot (2009), the

default initial value is generated based on the data. For m dimensional time series with

n observations, the default initial x̃0 is set to be x1 and the individual σ terms to be the

mean square of each sequence. Therefore, σ̃2
0,l =

1
n

∑n
t=1 x2

l,t for l = 1, . . . ,m.

The choice of starting point is much more important than the initial value. Since

this is a multivariate optimization problem and the surface of the likelihood function is

really flat, the starting value determines the neighbourhood the optimization function

looks into. Within the searching region, there are multiple local minimum points such

that the function nlminb in R outputs them as the numeric convergences are reached.

In all the studies in this chapter, the value of (x̃0, σ̃0) is set as the default mentioned

a few lines above and θstart is chosen based on the estimated values from individual

GARCH(1,1) model. The starting values of all ρi, j’s are set to be 0 since Σ is guaranteed

to be positive definite. The starting values of ωi, αi and βi are chosen as ω̂ind,i,
α̂ind,i

2
and

β̂ind,i

2
where ω̂ind,i, α̂ind,i, β̂ind,i are the point estimates from univariate GARCH(1,1) models.

The importance of starting point can be seen in another highly related problem. The
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Table 4.8: Estimates and corresponding values of the negative likelihood from Windows
and Linux system: θ̂1 is the estimate from Windows system and θ̂2 is the estimate from
Windows system.

ρ1,2 ∗ 10 ω1(10−7) ω2(10−7) α1(10−2) α2(10−2) β1(10−1) β2(10−1) β0(10−3) NLL(103)

θ̂W −1.88 8.86 11.44 3.64 3.30 9.30 9.47 306.48 −58.64

θ̂L 2.73 11.85 17.33 3.86 4.68 9.58 9.51 0.12 −58.58

estimates under different operating systems are different. In Table 4.8, everything is the

same including the observed data, initial value, starting value and the negative log likeli-

hood function NLL. Surprisingly, the estimated values from Windows and Linux systems

are different. The difference between the estimates may be considered as rounding error

or precision problem except ρ̂ and β0. From the value of the target function, the estimate

from Windows system outperforms the one from Linux system which one would never

expect. This disagreement in the estimates starts from July 2017 and the estimates are

the same prior to that. The function nlminb calls some low-level C functions, so an up-

dated C library could cause such a difference. However, there is no clue what is changed

inside the C library on Linux systems. This disagreement is also an evidence to show

that the likelihood surface is flat.

A possible solution is proposed by adding another convergence criteria to the algo-

rithm other than the default ones in nlminb. It does not make sense to do anything with

the initial value since they are data oriented. The reasonable change needs to be done

with the starting point. An iteration method is used to update the starting value. The

convergence tag outputted from nlminb has two possible values, 1 means not converged

and 0 means converged. The proposed criteria include the steps below.

1. Input the initial values (x̃0, σ̃0) and the starting point θstart as well as the possible

scales for ωi’s. Select a small tolerance tol as the break trigger and a maximum

number of iteration I. Set the iteration counter as 1.

2. The output using nlminb includes the estimated value θ̂1, the convergence tag
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Table 4.9: Estimates and corresponding values of the negative likelihood from Windows
and Linux system using θstart,a and θstart,b.

ρ1,2 ∗ 10 ω1(10−7) ω2(10−7) α1(10−2) α2(10−2) β1(10−1) β2(10−1) β0(10−3) NLL(103)

θwin
start,a −1.88 8.86 11.44 3.64 3.30 9.30 9.47 306.48 −58.64

θwin
start,b −1.88 8.86 11.44 3.64 3.30 9.30 9.47 306.48 −58.64

θLin
start,a −1.88 8.86 11.44 3.64 3.30 9.30 9.47 306.48 −58.64

θLin
start,b −1.88 8.86 11.44 3.64 3.30 9.30 9.47 306.47 −58.64

Tag1 and the likelihood value L1. The selected scale power S cale1 for ωi’s are also

outputted.

3. Set the starting point θstart = θ̂1, optimize the target function again. The group of

values is outputted {θ̂2, Tag2, L2, S cale2}. Update the counter by adding 1 to the

current value.

4. Create a scale vector S such that it has the same length as the parameter vector,

and initialize the elements as 1. Change the elements for ωi’s to 10S cale2 .

5. If the summation of |θ̂2− θ̂1| ∗S is smaller than tol, the iteration is over. Otherwise,

update θ̂1 = θ̂2, and go back to Step 3 until the counter reaches I.

6. If Tag2 = 0 or Tag1 = 1, output θ̂2, Tag2, L2, S cale2. Otherwise output θ̂1, Tag1,

L1, S cale1.

The output is considered as a converged estimate if the maximum number of iteration is

not reached. The same data, initial value that produced Table 4.8 are used to gen-

erate an updated example. The estimating results using the iteration method with

two different starting values are shown in Table 4.9. The first starting point θstart,a

uses what was described in the last paragraph and the second one θstart,b equals to

(0, 0.00001, 0.00001, 0.1, 0.1, 0.5, 0.5, 0.1).

From the table, two starting points lead to the same optimization result in both
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Windows and Linux systems after applying the iteration method. Any reasonable starting

point can be used in the algorithm since the effect of starting point becomes minimum.



Chapter 5

Concluding Remarks

In this thesis, a multivariate time series with a GARCH type structure has been proposed

to address the common risk within multiple selected stock returns. Although it has been

defined in an implicit form, the stationary and ergodic parameter space exists using

the T-chain theory in Meyn and Tweedie (2009). The asymptotic theories of the quasi

maximum likelihood estimator have been provided for the general model, including the

consistency and asymptotic normality.

The geometrically ergodic theorem has been presented in Chapter 2. The initial values

can be any possible state in the space since it has a positive chance to eventually get to

all other states from the initial state. Jeantheau (1998) and Aue et al. (2009) show us

a sufficient condition to control the stochastic process depending on the top Lyapunov

exponent for the strict stationarity of CCC-GARCH models. The condition A4 used to

control the drift in this model was much more complicated since the matrix norm of

the partial derivative matrix B is not trackable in an implicit formula. It is possible to

explore the stationary and ergodic theory further since the assumptions in this thesis are

the sufficient conditions but not the necessary ones. The true space can be much larger

than what has been studied in Chapter 2. The practical verification of Assumption A4

was done with a truncated state space within the sensible range. A deeper understanding

140
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of the process is needed to find a systematic method to check the assumption.

The Gaussian quasi likelihood function has been obtained by assuming that the in-

novations are i.i.d normally distributed. Under Assumptions A1 − A5 in Sections 2 and

3.2.1, the quasi maximum likelihood (QML) has become a sensible method to estimate

the parameters in practice since the ergodicity and identifiability conditions were sat-

isfied. The most desired statistical properties of the estimator (i.e. consistency and

asymptotic normality) were wanted to ensure that the QMLE is approaching the true

parameter value as the sample size increases no matter the actual innovation is consistent

with Gaussian distribution or not. In addition to the assumptions for stationarity and

ergodicity, the finite 8th moment plus some regular conditions have led to both desired

asymptotic properties. It has a really high chance that the moment condition can be

relaxed to the 6th moment instead of 8th as Hafner and Preminger (2009b) proved for

multivariate GARCH models.

A parameter value satisfying all the conditions has been used to study the QMLE

numerically. In Monte Carlo simulations, the simulated processes behaved similarly to

a long memory time series. The numeric issues in R have been solved when the best

nonlinear multivariate optimization function nlminb was used. The proposed solutions

were useful, but the computation was time-consuming, there may exist certain ways to

obtain the initial value and starting point such that a higher efficiency can be achieved.

Despite our effort, we still do not have a good handle on the parameter space, or how

widely the assumptions are met by the financial data. In the simulation example, the

estimate typically converges with a sensible result when we apply the algorithm to a path

with sample size 1000 (about 4 years daily data). With the largest sample size in our

study, 20000 is unrealistic in practice. The algorithm needs a relatively large sample size

in order to get a good estimate. Nevertheless, a long log return sequence in the stock

market could have a structural change which will violate the stationarity assumption. A

study on the sample size is needed in the future.
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The financial application of this model needs to be addressed in the future with a

comparison with the classical models. One possible application is to use this model

to manage portfolios. This model will allow us to study different stocks which have

comovements. The log returns might be highly correlated in certain periods, while they

may be uncorrelated in other periods. Better insights into the dynamic correlation based

on this model could affect the results of the portfolio optimization. If a portfolio only

consists of fixed income securities and equities, the model we proposed here could be used

to determine the allocation of the weights on them. The common risk term can reflect the

shock within the series directly, which can be used as an indicator to provide guidance to

adjust the weights on the equities and fixed income securities of the investment portfolio.

More weights will be moved onto the fixed income securities when the common risks

of the stocks invested rise sharply. This model setup could change the results in the

portfolio optimization because of the covariance structure. The default risk model might

benefit from this dynamic correlation setting as well.
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Appendix A

Useful algebra results

1. For x > −1, log(1 + x) ≤ x.

2. Jensen’s inequality. If X is a random variable and ψ is a convex function, then

ψ[E(X)] ≤ E[ψ(X)].

3. Cauchy-Schwarz inequality

|E(XY)|2 ≤ EX2EY2.

4. If a1, a2, · · · , an ≥ 0 and p ≥ 1, then

n∑
i=1

ap
i ≤ (

n∑
i=1

ai)p ≤ np−1
n∑

i=1

ap
i .

5. If a1, a2, · · · , an ≥ 0 and 0 < p < 1, then

n∑
i=1

ap
i ≥ (

n∑
i=1

ai)p ≥ np−1
n∑

i=1

ap
i .
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6. If a1, a2, · · · ≥ 0 and 0 < p < 1, then

∞∑
i=1

ap
i ≥ (

∞∑
i=1

ai)p.

7. All matrix induced norms are equivalent. A is a m by m square matrix, p1 and p2

are a positive integers. ‖·‖p1 and ‖·‖p2 are two induced matrix norm, then there are

positive constants l1 and l2 such that

l1 ‖A‖p1 ≤ ‖A‖p2 ≤ l2 ‖A‖p1 .

8. A and B are m by m square matrices, and p is a positive integer,

|tr(AB)| ≤ m ‖A‖2 ‖B‖2 .

9. A, B and C are m by m square matrices,

tr(ABC) = tr(BCA) = tr(CAB).

10.
∑∞

n=0 xn =
1

1 − x
if | x |< 1.

11.
∑∞

n=0 nxn =
x

(1 − x)2 if | x |< 1.

12.
∑∞

n=0 n2xn =
x(1 + x)
(1 − x)3 if | x |< 1.
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13.
∑∞

n=0 n3xn =
x(1 + 4x + x2)

(1 − x)4 if | x |< 1.

14. Holder’s Inequality: Suppose that X and Y are two random variables, and p, q > 1

satisfy 1/p + 1/q = 1

EXY ≤ E|XY | ≤ (E|X|p)1/p(E|Y |q)1/q.

15. Minkowski’s Inequality: Suppose that X and Y are two random variables, and

1 ≤ p < ∞. Then

(E|X + Y |p)1/p ≤ (E|X|p)1/p + (E|Y |p)1/p.

16. If 0 < p < 1, X and Y are two random variables, then

E|XY − X̃Ỹ |p ≤
√
E|X|2pE|Y − Ỹ |2p +

√
E|Ỹ |2pE|X − X̃|2p.

17. If 0 < p < 1, X, Y, Z are three random variables, then

E|XYZ − X̃ỸZ̃|p ≤
√
E|XY |2rE|Z − Z̃|2r +

√
E|XZ̃|2pE|Y − Ỹ |2p +

√
E|ỸZ̃|2pE|X − X̃|2p

18.
∂|X|
∂X

= |X|X−1.

19. If x ∈ R and A(x) is a matrix that the elements are functions of x,
dA(x)−1

dx
=

−A(x)−1 dA(x)
dx

A(x)−1.

20. If |X| > 0,
∂ log |X|
∂X

= (Xᵀ)−1.
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Some Definitions in Markov Chain

Definition B.1 (T-Chains)

If Φ is a Markov Chain for which there exists a sampling distribution a such that Ka

possesses a continuous component T, with T (x, X) > 0 for all x, then Φ is called a T -

chain.

Definition B.2 (Minimal Sets)

A set M is called minimal for the deterministic control model CM(F), if it is (topological)

closed, invariant, and does not contain any closed invariant set as a proper subset.

Definition B.3 (ψ-irreducible)

A chain Φ = {Φt} is called ψ-irreducible if there exists a measure ψ in B(X) such that,

whenever ψ(A) > 0, we have L(x, A) = Px(τA < ∞) > 0 for all x ∈ X.

Definition B.4 (M-irreducible Control Models)

If CM(F) is indecomposable and also possesses a minimal set M, then CM(F) will be

called M-irreducible.

Definition B.5 (Petite Set)

A set C ∈ B(X) is νa-petite if the sampled chain satisfies the bound
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Ka(x, B) ≥ νa(B),

for all x ∈ C, B ∈ B(X), where νa is a non-trivial measure on B(X).

Definition B.6 (Period and Aperiod Chains)

Suppose that Φ is a ψ-irreducible Markov Chain. The largest d for which a d-cycle occurs

for Φ is called the period of Φ.

When d = 1, the chain Φ is called aperiod.

Definition B.7 (Harris Recurrence)

Define the occupation time random variable ηA :=
∑∞

t=1 1{Φ ∈ A}. For x ∈ X, A ∈ B(X),

we consider the event that Φ ∈ A infinitely often and define

Q(x, A) := Px(Φ ∈ A i.o.).

The set A is called Harris recurrent if

Q(x, A) = Px(ηA = ∞) = 1, x ∈ A.

A chain Φ is called Harris recurrent if it is ψ-irreducible and every set in B+(X) is Harris

recurrent.

Definition B.8 (Positive Recurrence)

Define the hitting time random variables τA := in f {t ≥ 1 : Φt ∈ A}. For x ∈ X, A ∈ B(X),

we consider the expected hitting time ExτA. If ExτA < ∞, we say the set A is positive

recurrent. A chain Φ is called positive recurrent if it is ψ-irreducible and every set in

B+(X) is positive recurrent.
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Other Mathematical definitions

Definition C.1 (Converge in probability)

The sequence of random variables X1, X2, . . . converges in probability to random variable

X, denoted as Xn
P
−→ X, if

lim
n→∞

P(|Xn − X| > ε) = 0

for all ε > 0.

Definition C.2 (Converge in distribution)

Consider a sequence of random variables X1, X2, . . . and a corresponding sequence of cu-

mulative distribution functions (cdfs), FXi. The sequence X1, X2, . . . is said to converge in

distribution to a random variable X with cdf FX if

lim
n→∞

FXn(x) = FX(x)

for every x ∈ R at which FX is continuous.

Definition C.3 (Almost sure convergence)

The sequence of random variables X1, X2, . . . converges almost surely to random variable

X, denoted as Xn
a.s.
−−→ X, if
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P({ω : lim
n→∞

Xn(ω) = X(ω)}) = 1.

Definition C.4 (Consistent estimator)

There are two kinds of consistent estimator, the weakly consistent estimator and the

strongly consistent estimator.

An estimator θ̂n of parameter θ0 is said to be weakly consistent, if it converges in proba-

bility to the true value of the parameter,

θ̂n
P
−→ θ0.

An estimator θ̂n of parameter θ0 is said to be strongly consistent, if it converges almost

surely to the true value of the parameter,

θ̂n
a.s.
−−→ θ0.

Definition C.5 (Stochastic equicontinuity)

A stochastic {Xn(θ)} is stochastically equicontinuous on Θ if ∀ε > 0,∀δ > 0,∃η > 0 such

that

lim sup
n→∞

P(sup
θ∈Θ

sup
θ′∈B(θ,η)

|Xn(θ) − Xn(θ′)| > ε) < δ

where B(θ, η) is a open ball around the center θ with radius η.
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