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Abstract 

High nutrient concentrations in surface water have been a serious concern that impacts 

water quality and ecology. High Phosphorus concentrations in Medway Creek indicate 

the presence of a pollution source in the watershed that needs to be identified and 

quantified. To investigate this issue, the Soil and Water Assessment Tool (SWAT) 

program has been used in this study with the Geographic Information System (GIS) to 

model the Medway Creek watershed and assess stream flow and nutrient flux. In this 

research, the SWAT model has been built, calibrated, and validated using two 

independent observed data sets to evaluate the SWAT efficiency on monthly and daily 

simulations. The model has been tested for monthly simulations for the period of 1989 to 

1999 and daily for the period 2014 to 2017 to simulate different water resource 

parameters in the Medway Creek watershed with a focus on stream flow and phosphorus. 

Discharge and nutrient components are quantified at sub-basin level with monthly and 

daily time intervals. SWAT-CUP software was incorporated into study by using SUFI-2, 

an optimization algorithm, to optimize the model parameters and examine the model 

uncertainty. The model was calibrated over the period of 1989 to 1999 and daily 

validated for the duration of 2016 to the present. The results show an excellent agreement 

between the calibrated results and measured data in monthly intervals.𝑅2and NSE of 0.85 

and 0.65 were achieved for the discharge calibration period and the model captured 92% 

of observed data, whereas 𝑅2and NSE for TP calibration was 0.67 for both, with 80% 

observed data captured in the calibration period. For daily simulations, SWAT 

successfully generated satisfactory results with lower performance compared to the 

monthly simulations. Moreover, the calibrated and a validated model used to estimate the 

future stream flow and TP in Medway Creek using different climate scenarios. The lack 

of high-frequency surface water monitoring data was the main obstacle during 

calibration. During the rapid alteration of the land use in the watershed, the developed 

model is useful for decision makers to assess future impacts and take actions accordingly.  
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1. Introduction  

Nutrient pollution is a global problem and environmental threat that affects surface water 

quality and deteriorates food resources and habitats in ecosystems (EPA, 2017). The 

increase in nutrients in the Great Lakes has caused undesirable implications, including 

the acceleration of algae proliferation, which impacts the health of aquatic organisms 

(Lazor, 2014). The United States and Canada have initiated and conducted many projects 

to reduce the loads of nutrients in the Great Lakes and identify the main sources that 

cause eutrophication. Therefore, in 2012, Environment Canada conducted a project to 

investigate the high nutrient loads in Lake Erie as a result of human activities. 

Phosphorus is an essential element of nutrients, and is exported from a land phase to a 

water phase. Thames River is one of the Canadian Heritage Rivers that is suffering from 

high phosphorus concentrations, as shown in Figure (1). The Thames River watershed 

includes many tributaries ,such as Medway Creek ,one of the developed tributaries  that 

contributes 7% of the Thames River volume, and has significant loads of TP that  are 

delivered to the north branch of Thames River annually (Nürnberg & Lazerte, 2015).As 

shown in Figures 2 and 3 ,the phosphorus concentrations in Medway Creek are 

significantly higher than the Ontario provincial water quality objective, which is 0.03 

mg/L. The high loads in Medway Creek have negatively impacted water quality and 

caused eutrophication in the creek. Medway Creek has a significant impact on the health 

of Thames River by exporting loads of total phosphorus every year. TP and TSS 

monitoring at the Medway Creek outlet is extremely high compared to the Thames River 

upstream(Nürnberg & Lazerte, 2015). Much attention has been paid to the Medway 

Creek watershed in the past two years to apply BMPs (Best Management Practices) in 

addition to water quality monitoring to reduce the phosphorus exported from the land, 

which is mainly agricultural, to Medway Creek. Recently, Phosphorus concentration at 

the Medway Creek upstream monitoring station has reached as high as 6.32 mg/L based 

on the daily sampling data for UTRCA.  
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 Nutrients are primarily nitrogen and phosphorus, which are needed for crop growing and 

soil fertilization; however, when the phosphorus concentration exceeds the needed level, 

it can harm the environment, including water, soil, and fish habitats (Radcliffe and 

Cabrera, 2007). This increase in phosphorus in the water has been recognized as the main 

reason for eutrophication and water quality degradation, and results in harmful algal 

blooms, anoxic conditions, and loss of biodiversity with other adverse effects (Schindler, 

1971; Pollman et al., 2002). 

Figure 1 : Annual Average Total phosphorus (mg/l) concentration in                           

Thames River. Source (Nürnberg & Lazerte, 2015) 

 

https://dl.sciencesocieties.org/publications/jeq/articles/38/5/1956#ref-85
https://dl.sciencesocieties.org/publications/jeq/articles/38/5/1956#ref-85
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 Land management activities are a large source of TP through moving sediments, soil 

 
   Figure 3 : Average phosphorus concentrations in Medway Creek. Source (Medway CBES 

report) 

Figure 2:  daily Phosphorus concentrations in Medway Creek. Source (UTRCA) 

0.116

0.08

0.18

0.57

0.23

0.126

0.21 0.2

0

0.1

0.2

0.3

0.4

0.5

0.6

P
h

o
sp

h
o

ru
s 

(m
g

/l
)

Time (m-y)

Ontario WQ Objective (0.03 mg/l)



4 
 

erosion, agricultural land, grazing, and runoff from urban areas (Young et al., 1989). 

Non-point source which is represented in agricultural areas in Medway Creek, is one of 

the main sources that exports a huge amount of phosphorus and sediments to Thames 

River (Nürnberg & Lazerte, 2015). There are different reasons for the increasing TP in 

freshwater, including fertilizer application and wastewater treatment plants (Conley et al., 

2009).                           

   1.1 Eutrophication and phosphorus flux 

Eutrophication is a widespread problem that degrades aquatic systems and impair the 

water quality so that it is no longer suitable for drinking but only for agricultural use 

(Carpenter et al., 1998). Even though Phosphorus and Nitrogen are the main nutrient 

responsible for water quality deterioration, P is the key to nutrients enrichment and its 

reduction translated to excellent improvements in freshwater throughout the world 

(Conley et al., 2009). Different P reduction strategies have been applied in different 

water systems with remarkable improvements in water quality. Medway Creek is one of 

the streams that is suffering from high phosphorus concentration, which can lead to 

undesirable changes in watercourses. Total phosphorus concentrations have been 

monitored in Medway Creek since 1979. Over this duration, the TP concentration has 

been consistently above the EPA’s (Environmental Protection Agency) guidelines and 

Ontario provincial water quality objectives. In some years, the phosphorus level has been 

as much as nine times the guidelines based on the City of London’s surface water 

monitoring data. Therefore, questions have been raised about the causes of high loads of 

TP into the stream phase. The nonpoint source represented in agricultural areas has a 

strong relationship with high loads of phosphorus that accelerate the eutrophication in 

Medway Creek. In 2007, the UTRCA (Upper Thames River Conservation Authorities) 

classified the Medway Creek watershed as a primary concern that must take precedence 

for environmental enhancement. The deterioration of water quality in Medway Creek 

regarding its high nutrients needs to be improved given the current and future 

circumstances. Increases in the intensity of nutrients  transported into aquatic ecosystems 

have been associated with human activities, geology, soil and vegetation (Alexander et 

al., 2008; Baker et al., 1985; Barton et al., 1997; Houser et al., 2010; Johnson et al., 
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1997; Sliva et al., 2001; Yates et al., 2006). Using high artificial fertilizer rates for 

growing crops is one of the human activities that increase phosphorus in surface water. 

Nowadays, humans are aware of the consequences of extensive usage of fertilizers and 

their role in surface water degradation  (Savci, 2012). Agricultural areas, urban areas and 

wastewater treatment plants are all considered non-point or point sources of phosphorus 

concentrations that carry P into surface water and groundwater. Recently, dozens of 

studies have been conducted to simulate phosphorus flux in different watersheds in 

Canada and all over the world in order to develop strategies for reduction of TP. 

Agricultural land is dominant in the Medway Creek watershed; therefore there is a high 

possibility of the presence of non-point source pollution in the watershed. In Medway 

Creek, phosphorus concentration has decreased in the last 10 years, which demonstrates 

an improvement in water quality in the watershed; however, more reduction is needed in 

anticipation of increasing urban growth and climate change. 

Source: Elyse Booth 

 

 

Figure 4:Aquatic plant growth at Arva Dam in Medway Creek 
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1.2 Water Quality and Land use  

Over the last few decades, climate and land use changes have received attention 

regarding their implications for water quantity and quality. Land-use changes are any 

alteration of natural landscapes for human use and changes in management systems for 

human-dominated lands (Turner et al.,2001). It is known that water quality and quantity 

are strongly related to land use and climate change (Tong & Chen, 2001). Altering land 

use is considered one of the main factors controlling changing hydrological components 

(Mander et al., 1998). Land use is one of the factors that affect hydrological processes 

that take place in the watershed (Tong & Chen, 2001). This effect varies from watershed 

to watershed and is based on the watershed characteristics and management systems that 

apply in that watershed. Land use change is relatively a quicker process and has a more 

noticeable impact than climate change, where the process takes longer to become 

noticeable (El-Khoury et al., 2015).  

There is a significant connection between land use and water quality in the watershed 

process (Tu, 2011). The water quality conditions of any surface water are a function of 

the properties of its catchment and are affected by topography, land use, and climate 

(Hynes,1975). Hundreds of studies have found a strong correlation between land use 

types and water quality parameters and the relationship varies from positive impacts to 

negative relationships. Rapid land use changes are leading to the alteration of associated 

hydrological response in each watershed. When a forest is changed to agricultural land or 

a pasture is developed in an urban area, that can have an impact on watershed hydrology 

(Baker & Miller, 2013).The alteration of watershed hydrology response includes changes 

in evapotranspiration, infiltration, interception, and ground water recharge(Chandler, 

2006). 

In part of this study, SWAT (Soil and Water Assessment Tool) is applied with ArcGis to 

investigate the relationship between land use change and watershed hydrology and water 

quality in Medway Creek Watershed. Land use in Medway Creek watershed has been 

altered due to growing population and extension of crop land. This alteration has had an 

impact on water quality and quantity in Medway Creek. Therefore, the present study is 

intended to simulate the consequences of the increasing population on stream flow and 
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total phosphorus. Agricultural areas contribute much higher levels of nutrients compared 

to other land use classifications (Tong & Chen, 2001). Taking into account RCP 8.5 and 

A1B emissions scenarios, the Medway Creek watershed was analyzed to examine the 

impact of future land use changes on stream flow and TP for the years 2022-2040. The 

calibrated SWAT model is used for this analysis and to understand the relationship 

between land use changes and water resources in the Medway Creek watershed. 

There have been various land use changes over the time in the southwestern Ontario 

region; however, the typical land use change is the conversion from grassland to either 

urban or agricultural area. The Medway creek Watershed is agriculturally dominant land 

with expanding urban land to the south. The watershed population is growing by 8% 

every 10 years in the south part of the watershed as shown in Figure (5). 

 

 

 

 

Figure 5 :Medway creek watershed Land use change from 

1990s to 2012 
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1.3 Hydrological Modeling  

Watershed models are used as a tool for examining and predicting the effect of watershed 

processes and management practices on soil and water resources (Moriasi et al., 2007). 

The applications of watershed models are to assess impact on water resources, determine 

main pollution sources, and develop management strategies (Singh, 1995a). Hydrological 

models are currently used as an essential tool for BMPs (Best Management Practices) to 

investigate and simulate all water resource components and processes that occur on the 

watershed. 

Different types of hydrologic and water quality models that predict water resources 

constituents are divided into categories based on the concept of simulation (Redcliffe & 

Cabrera, 2006). Theoretically, statistical models of regression and multivariate statistical 

techniques are used to predict and understand the relationships between the model 

variables. The Export Coefficient model (Jorgensen, 1980) is a common water quality 

model used to analyze the relationship between land use and surface water conditions. 

The Process based model calculates and represents the watershed hydrological process 

conceptually using mathematical equations. SWAT (Soil and Water Assessment Tool) is 

a popular process-based model that has been used widely throughout the world.   

 SWAT is a continuous, long-term, comprehensive process-based, semi-distributed 

hydrologic model, developed by the U.S. Department of Agriculture (Neitsch et al., 

2005; Zhang et al., 2008; Arnold et al., 2012; Gassman et al., 2007). SWAT simulates 

flow, surface runoff, sediment yield, nutrient loads, and agricultural chemical yields on 

daily time steps to long term simulations (Douglas-Mankin, 2010). SWAT model 

applications vary from a small watershed scale to a continental scale to assess the impact 

of land use changes and different climate scenarios on water resources. Many studies 

show the outstanding performance of the SWAT model in simulating different hydrology 

and water quality components as well as its ability to include most of the processes that 

take place in the watershed. SWAT is a widely used model constructed to break down the 

watershed into Hydrologic Response Units (HRUs) based on land use, soil type, and 

slope. All variables in SWAT are first calculated at an HRU level, then at a sub-basin 
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level and finally at the entire watershed level. Generally, the default SWAT model needs 

to be calibrated using manual or automatic calibration.  

SWAT-CUP (SWAT-Calibration and Uncertainty Procedures) has been recently 

developed to calibrate and validate the SWAT model using different optimization 

algorithms and multiple objective functions (K. C. Abbaspour et al., 2015). SWAT-CUP 

examines the uncertainty and sensitivity of the model to capture most hydrological 

processes that fall in the model uncertainty. The program allows users to parameterize 

the model input based on actual processes that happen in the watershed. SUFI-2 

(Sequential Uncertainty Fitting) is the algorithm that is utilized in this study as it was 

found to be a powerful method with high efficiency (K. C. Abbaspour et al., 2015). 

SUFI-2 analyzes the uncertainty of the model as a range of input parameters and 

distributes this uncertainty into the output which is expressed as 95PPP (95% of 

distribution) using Latin hypercube sampling ( K. C. Abbaspour,2014). Consequently, 

95PPU indicates a desirable performance of calibration and validation when most of the 

observed data is captured.  

The main purpose of the present study is summarized in the following objectives:  

1. Simulate hydrology and nutrient constituents for the Medway Creek watershed on a 

monthly and daily time-step basis using the SWAT model. 

2. Calibrate the SWAT model using 10 years of observed data.  

3. Investigate the SWAT model's uncertainty and parameter sensitivity. 

4. Validate the calibrated SWAT model using daily observed datasets at the upper 

Medway Creek. 

5. Predict the potential implication of land use change on discharge and TP in Medway 

Creek. 

6. Estimate future stream flow and total phosphorus in Medway Creek using different 

climate scenarios. 
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1.4 Water quality modeling Background 

The development of water quality modeling started more than 70 years ago by 

developing different methods and mathematical models to simulate and analyze water 

quality parameters. The evolution of water quality models is associated with surface 

water problems that happened and needed to be solved. 

1920-1970 

The first water quality modelling was originally created by Streeter and Phelps in 1925 

for the Ohio River, and focused on the investigation of oxygen level in the water as well 

as  effluent from urban areas (Chapra, 2008). The Streeter-Phelps model calculated DO 

and BOD in surface water systems with constant input and output sources (Koivo & 

Phillips,1976). Due to the lack of computerization, all the models in the early twentieth 

century used graphs, analytical tools and geometry to examine the one point source 

impact on surface water (Chapra, 2008). Furthermore, biofilm models were developed 

after that by Young & McCarty (Williamson& McCarty, 1976). 

1970 -1980 

In this period, numerical models were developed to investigate eutrophication and land 

management practices. Mathematical models were developed to assess non-point source 

pollution and investigate different land management impacts on surface water. Due to the 

development of computational tools, the focus turned to nonpoint sources after resolving 

and regulating the one point source problem. One of the models in this period was the 

Grand Traverse Bay Model in 1974, which intended to forecast water quality parameters 

in the bay by including predictions of nitrogen and phosphorus contents (Canale et al., 

1974). The development of water quality modeling in this period was associated with an 

increase in the awareness of environmental protection. 

1980 – Present  

Great research advances in modeling were made in this period using different strategies 

to represent all the processes that occur in the watershed in the models. Instead of 
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spending time and money on field work, the models have proved their capability in 

efficiently forecasting different water resource components and evaluating the impact of 

human activity on the environment. One of the comprehensive forms of the nonpoint 

source model is the AGNPS (Agricultural Nonpoint Source) model, which was 

developed by the Agricultural Research Service (ARS), the Minnesota Pollution Control 

Agency, and the Soil Conservation Service (SCS) (Young et al., 1989). This computer 

model is an event model that predicts different water quality components, as well as 

runoff and sediment transport from diffuse sources to surface water (Sharpley et 

al,.2002). The major limitation of AGNPS is its weakness in handling large basins. 

The Soil and Water Tool Assessment model that has been used in the present work was 

developed by USDA-ARS in the early 1990s to assess the influence of different land 

management practices on water and soil characteristics (Arnold et al., 2012). SWAT is a 

public domain software that has been improved over time with the incorporation of 

different models and modifications, including (CREAMS) The Chemicals, Runoff, and 

Erosion from Agricultural Management Systems, (GLEAMS) Groundwater Loading 

Effects of Agricultural Management Systems and Erosion Productivity Impact Calculator 

(EPIC) models (Knisel 1980; Leonard et al. 1987; Williams et al. 1984) as well as the 

carbon cycle (Kemanian, 2011), as shown in Figure (6). 
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1.4.1 How SWAT simulates Flow & Total Phosphorus  

The main concept of SWAT model is aggregation of the land and channel hydrology. 

The water mass balance is applied for the land hydrology equation (1) .All equations in 

this chapter were taken from SWAT theoretical documentation (Neitsch et al., 2005).  

𝑆𝑊𝑡 = 𝑆𝑊0 +  (𝑅𝑖 − 𝑄𝑖 − 𝐸𝑇𝑖 − 𝑃𝑖 − 𝑄𝑅𝑖)
𝑡
𝑡=1                                                                     (1) 

𝑆𝑊𝑡= soil water content (m
3
.m

-3
) after t days 

𝑆𝑊0= the initial soil water content (m
3
.m

-3
) 

     𝑖=time in days         𝑅=the daily precipitation (mm) 

    𝑄=runoff (mm/h) 

Figure 6: The development of SWAT model plan and processes.                     

Gassman et al., (2007); Arnold et al., (2012) 
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𝐸𝑇 =Evapotranspiration (mm) 

    𝑃 =Percolation (mm/h) 

 𝑄𝑅 =Return flow (m
3
/h) 

It is essential to understand all phosphorus component cycles as well as how SWAT 

simulates these components from the land phase all the way to the stream to assess all 

phosphorus portions and help manage all phosphorus forms. Phosphorus exists in 

different forms in soils and water; however, 6 forms of phosphorus in the soil are 

calculated in the SWAT model, and divided into organic phosphorus and inorganic 

phosphorus. 

The initial condition of soluble and organic P in soil must be identified by the user or 

using a SWAT default value, which is 5 mg P kg
-1 

for an unmanaged area under native 

vegetation and 25mg P kg
−1 

for crop areas (Neitsch et al. 2001a).   

 

 

Figure 7: Phosphorus forms diagram. Source: SWAT theoretical documentation   

(Neitsch et al.,2005) 
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The SWAT model takes mineralization, decomposition, and immobilization into account 

using the EPIC version of Jones et al. (1984). The SWAT model aggregates these forms 

to two main components in the output, the mineral P (tile and soluble P) and organic P 

(sediment P and organic P). TP is the summation of Mineral P and organic P, and 

represents the P level in the stream. 

The phosphorus in active mineral pool is defined from this equation:-  

min 𝑃𝑎𝑐𝑡𝑖𝑣𝑒 = 𝑃𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑙𝑦 .
1−𝑃𝑎𝑖

𝑝𝑎𝑖
                                                              (2) 

𝑚𝑖𝑛 𝑃𝑎𝑐𝑡𝑖𝑣  is the amount of active phosphorus in mineral pool (mg/kg). 

𝑃𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑙𝑦  is the amount of phosphorus in solution (mg/kg). 

𝑝𝑎𝑖  is the phosphorus availability index. 

Whereas the stable mineral phosphorus is initiated from the following equation:- 

                           min 𝑃𝑠𝑡𝑎𝑏𝑙𝑒 = 4. min 𝑃𝑎𝑐𝑡𝑖𝑣𝑒                                                                  (3) 

1.4.2 SWAT Performance  

 In a comparison of the performance of three models, namely SWAT, HSPF and 

SHETRAN, Nasr et al. (2007) found that SWAT was an appropriate model for 

simulating daily TP in its application to three catchments in Ireland. Moreover, Saleh and 

Du (2004) proved that SWAT is better than HSPF in terms of nutrient prediction and its 

process.  However, the complexity of the SWAT structure is one of the limitations that 

require extensive data input with which to build the model (Benaman et al., 2005).  

According to Borah & Bera (2004) SWAT accurately estimates both yearly and monthly 

simulations, but has low-efficiency predictions for daily simulations.  

The SWAT application is applicable in limited data watersheds. Nyeko (2015) used 

SWAT and other methods for a data scarce catchment to calculate missing variables, 

particularly in the soil. SWAT was able to generate satisfactory results. In the work by 
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Yang et al. (2013), SWAT demonstrated excellent performance in modeling different 

BMPs' impact on water quantity and quality for the Gully Creek watershed, which is 

located in the Ausable Bayfield Conservation Authority (ABCA). SWAT performance is 

highly dependent on the accuracy and availability of input data. High resolution, detailed, 

long term datasets are needed in the SWAT model input to represent the actual processes 

that occur in the watershed. Therefore, modelers may find it difficult to simulate 

ungauged watersheds that do not have monitoring stations for water quantity and quality. 

Due to the scarcity of high frequency datasets, modelers find they must assume the 

missing parameters to run the SWAT model successfully. Moreover, SWAT encounters 

difficulty when simulating variables in short period models as it requires warm up time to 

generate the initial conditions.  

Due to the assumptions in the SWAT model structure, the model predominately requires 

a calibration process, which is the parameterization of model input based on the 

watershed conditions to decrease model uncertainty (Arnold et al., 2012).  

2. Materials and methods 

2.1 Study Area 

The Medway Creek watershed is 205 km
2
 located in the western side of the Upper 

Thames River watershed in southwestern Ontario. The average slope in the area is 

1.29m/km. The watershed includes portions of the municipalities of Middlesex Centre 

(65%), Lucan Biddulph (20%), the City of London (10%) and Thames Centre (6%). 

Medway Creek flows for 214 km from the Mitchell moraine (elevation as high as 330 m 

above sea level) towards the north branch of the Thames River where the elevation is 240 

m above sea level. Medway Creek contributes to 7% of the flow of the Thames River and 

delivers loads of nutrients to the river (Medway Creek Community, 2008). The Medway 

Creek watershed has an abundance of natural features, including wetlands, forests, and 

surface water. The Granton wastewater treatment plant discharges into Medway Creek, 

and it is considered a point source for pollution in this study. Arva dam which is located 

in the watershed is not operational dam so it has no effect on the model in terms of 

impacting the stream flow or the creek hydrology.  
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Figure 8: Topography of Medway Creek Watershed 
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Figure 9,10 :Medway 

Creek watershed map 
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Agricultural land dominates the landscape of the Medway Creek watershed and forms 

83% of the total watershed area. Corn covers 36% of the watershed area, 21.36% is 

Soybeans, and 20.25% is Winter wheat see Table (2). The two vital activities that 

significantly influence the nutrient flux are synthetic fertilizer application and land 

operations, both of which increase the effect of non-point source pollution in the 

watershed. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Medway Creek Watershed Land use Map Figure 11: Medway Creek Watershed Land Use Map 
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2.2 The Soil and Water Assessment Tool (SWAT)  

SWAT simulates the impact of different management practices and climate on water, 

sediments, nutrients, and other agricultural components (Abbaspour et al., 2007). SWAT 

is a computational model that applies water balance to compute different variables at 

HRU levels. The foundation of the stream water quality model in SWAT derives from 

the QUAl2A (or Q2E) model (Brown and Barnwell 1987), which considers all nutrient 

cycle connections, algae growth, and oxygen demand (Abbaspour et al., 2007). For 

simulation of runoff, SCS (Soil Conservation Service) has been used in the model to 

estimate the surface runoff based on the curve number. Moreover, TSS and sediment flux 

are simulated in SWAT using the Modified Universal Soil Loss Equation. The 

calculation of nutrients is based on their cycling, which depends on soil nutrients and 

sediment flux (Neitsch et al.,2011; Asadzadeh et al., 2015) 

2.2.1 Data Acquisition and Processing  

During ArcSwat (SWAT extension for ArcGIS) procedures, different input data need to 

be integrated and prepared to properly format and run the SWAT model successfully. 

Geospatial data is an essential part of input data to build the SWAT model. Although 

different sources are available for the input data, the SWAT model requires high 

resolution data to identify all the features in the watershed. With collaboration from the 

UTRCA, the current monitoring data for Upper Medway Creek is applied in this study to 

simulate the current condition of the watershed. The monitoring data includes the soil 

sample data, fertilizer records, land operations, and water quality monitoring for the past 

two years. SWAT requires the following data in order to run the model:- 

1) Digital elevation model (DEM) 

DEM data is usually available in many different resolutions from different sources; 

however, in SWAT it is recommended to utilize high resolution DEM to be able to run 

the model and create accurate stream networks. The DEM used in this work has 10 m 

resolution after conversion to a raster format and preparation of SWAT input 

proceedings. LIO (Land Information Ontario) provides DEM datasets that cover all 
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Ontario with 10 m resolution. There is a variety of DEM sources for Canada and 

worldwide that can be freely obtained from the Internet, including Natural Resources 

Canada, Open Government Portal-Canada, and Scholars Geoportal. Moreover, UTRCA 

provides 1 m resolution of DEM for only Upper Medway Creek under the current project 

of Medway Creek Priority Sub-watershed Project. 

2) Stream Network Data 

Stream data plays an essential role in watershed delineation. Using a highly detailed 

stream network to delineate the whole watershed accurately without missing any parts is 

highly recommended. Stream data is offered as an integrated hydrologic data package by 

the Ministry of Natural Resources and Forestry. The stream data is prepared and clipped 

into the target area to use it as an input for the SWAT model. The Medway Creek 

watershed comprises 12 streams, including Medway, a tributary of the North Thames, 

Snake, Colbert, Medway East Branch, Mills-Guest, Risdon, Needham, White-Fitzgerald, 

Dickenson, Edgewood, Elginfield, and Cook. 

3) Land use Data 

The Ministry of Natural Resources provides a land use map through SOLRIS (Southern 

Ontario Land Resource Information System) for landscape of natural, rural and urban 

lands with a scale of (1: 100,000 to 1: 250,000). The agricultural land is specified in 

detail based on the crop types according to the OMAFRA datasets. Furthermore, crop 

rotation is incorporated into the model, and thus new land use classes have been built to 

apply these rotations. SWAT reclassifies land use based on its system, and any land use 

that does not exist in the SWAT database needs to be added to the SWAT database. 
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Figure 12: Medway Creek Watershed Reclassified Land Use Map 
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LAND USE                               CODE                AREA (HA)          PERCENTAGE%                                                                          

                    Corn                                            CORN                          7174.3720             35.01 

                   Agricultural Land-Generic        AGRL                          3997.0248               19.51 

                Industrial                                     UIDU                           169.1709               0.83 

                 Agricultural Land-Row Crops   AGRR                          4234.9103             20.67 

       Water                                           WATR                         79.2813                 0.39 

                   Forest-Mixed                               FRST                           1619.7744              7.90 

                   Residential                                  URBN                          1162.1564              5.67 

                            Pasture                                        PAST                            313.1861               1.53 

                     Hay                                               HAY                           1524.5494             7.44 

             Range-Grasses                           RNGE                           489.4867                0.97 

                     Orchard                                       ORCD                          15.2352                  0.07 

                    Commercial                                UCOM                          3.9807                   0.02 

   Table 1: reclassified land use in SWAT model  

The major three crops in Medway creek watershed according to UTRCA are Corn, 

Soybeans, and winter wheat. The following table shows the average crop percentage of 

total watershed. 

 

 

 

 

 

 

 Table 2: Crop percentage in Medway Creek Watershed 

Crop type  Area m
2
 Wat.Area %  

Corn  7556.132 36.87 

Soybeans  4377.685 21.36 

Winter wheat 4149.852 20.25 

Hay 1407.264 6.87 

Pasture 94.864 0.46 
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4) Soil Data 

Soil data was difficult to obtain especially when it is required to determine more detailed 

and specific soil properties. Nutrient modeling requires most soil properties including 

carbon matter, texture, and clay sand content. The Soil Survey Complex, which was 

developed by OMAFRA &AAFC, provides high quality soil data for Ontario with a scale 

of 1:50,000, however, there are properties missing, such as soil available water content, 

saturated hydraulic conductivity and bulk density.  

Soil characteristics 

 USLE- K (Soil erodibility factor) for soil, which represents the ability of soil to erode is 

one of the missing variables that is calculated based on texture and the organic matter 

following OMAFRA and Wischemies et al, (1971) method to accurately estimate the 

average rate of erosion. The soils in the Medway Creek watershed has an average OMC 

(Organic Matter Content) of 4.9 % of soil weight based on UTRCA soil sampling. The 

dominant soil texture in the Medway Creek watershed is Silt Loam. SPAW (Soil Plant 

Air Water) Software has the capability to calculate soil water tension, conductivity and 

water holding capability based on the soil texture, with adjustments to account for gravel 

content, compaction, salinity, and organic matter (USDA,2007). The SWAT database 

has been altered based on the watershed soil characteristics to update all soil properties in 

the database. The soil tributary in the SWAT database requires the flowing parameters in 

Table 3, in order to estimate runoff, groundwater recharge, evapotranspiration, sediments, 

and nutrients flux see Appendix A. 
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Variable  Definition  Source  

SNAM   Soil Name Soil ON 

HYDGRP Soil Hydraulic Group Soil ON 

SOL_ZMX          Maximum rooting depth of soil profile (mm) CASIS 

ANION_EXCL   Fraction of porosity (void space) Default value 

SOL_CRK           Potential or maximum crack volume of the soil profile Default value 

TEXTURE Texture of soil layer Soil ON 

SOL_Z Depth from soil surface to bottom of layer (mm) CASIS 

SOL_BD Moist bulk density (Mg/m³ or g/cm³). calculated 

SOL_AWC 
Available water capacity of the soil layer (mm H2O/mm 

soil) 
calculated 

SOL_K Saturated hydraulic conductivity (mm/hr) calculated 

SOL_CBN Organic carbon content (% soil weight) measured 

SOL_CLAY, 

SAND,SILT 
Soil,Clay,Silt content (% soil weight) Soil ON 

SOL_ ALB Moist soil albedo Default value 

SOL_ROCK Rock fragment content (% total weight Default value 

USLE_K USLE equation soil calculated 

Table 3: Soil variables for SWAT database input 
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Figure 13: soil texture map 

5) Weather Data 

Although Medway Creek is an un-gauged watershed for the simulation period of 1989 to 

1999, the London Int'l Airport station is used in the model for daily interval data as it 

neighbors the Medway Creek watershed and it has been monitoring precipitation and 

temperature since 1940. Temperature data were used to calculate Potential 

Evapotranspiration (PET) in SWAT model using the Penman/Monteith equation. 

Nevertheless, a few of the daily data were missing and they were collected from the 

nearby station (London Sharon Drive) which had those missing data.  
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Figure 14: Monthly distribution of Average measured precipitation and temperature in 

London International Airport in 2016 

 

Station  Latitude  Longitude  Elevation  Frequency 

London Int'l Airport 43°01'59.000" N 81°09'04.000" W 278.00m Daily  

London Sharon 

Drive 

43°02'00.000" N 

 

81°17'00.000" W 

 

274.30 m Daily 

London Cs 43°02'00.000" N         81°09'00.000" W 278.00m Daily 

Table 4: Climate data Stations for Medway Creek watershed 
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Figure 15: Medway Creek Watershed Monitoring Stations 
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6) Land Operations 

The SWAT model requires detailed information about the land operations that take place 

in the watershed to assess their impact on the surface water. Each operation should be 

scheduled at its date with detailed data, including the percentage of the watershed that 

applies these operations. The typical order of land operations in southern Ontario are 

followed based on Yang et al (2013). The land operation data that were obtained from 

UTRCA includes limited information about the land operations in the Upper Medway 

Creek watershed; therefore, both data are compared and the main land operations that are 

incorporated in the Medway Creek Watershed Model are: - 

 Planting  

 Crop Rotation  

 Harvest 

 Grazing  

 Winter cover crop 

 Tillage  

 Fertilizer Application 

Crop rotation in the watershed is a three- year system involving corn, soybeans, and 

winter wheat. The majority of farms follow this system; however, hay is predominantly 

not rotated for about 3 years according to UTRCA (Personal Communication, M.Funk).  

Tillage systems have a huge impact on the watershed's annual sediments by removing the 

land cover and making possible erosion through wind and runoff. According to the water 

quality team at UTRCA (Personal Communication, M. Funk and Craig), the tillage 

system in the Medway Creek watershed is mostly conventional with increasing 

conservative type in the last year. The typical tillage systems in south-western Ontario 

were followed in this study based on the literature review see Table (6). The 

conventional tillage system is still common in southern Ontario; even though, the 

conservative tillage significantly improves water quality by reducing TP and sediments 

loading that export to the streams. SWAT requires specific parameters about each tillage 
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system, including day and month of operation, tillage ID, and CNOP (SCS runoff curve 

number for moisture condition II).See Appendix A.    

 

 

 

 

 

Table 5:  the typical Tillage system in Medway Creek Watershed 

Fertilizer application rates are the main input in the watershed operation system as they 

are considered the main source of nutrients in surface water. After analyzing the 

recommended rates from OMAFRA and UTRCA datasets for applied fertilizer and rates 

in Leon et al. (2004) and Yang et al. (2013) in southern Ontario, the present study used 

average rates from previous sources and incorporated them into the SWAT model as 

shown in Table (7).  

In SWAT model, various fertilizer parameters are required, including date and other 

factors, and are shown in Table 6. 

 

Variable Definition 

FRT_KG 
Amount of N and P applied 

to HRU (kg/ha) 

FRT_SURFACE 
Fraction of fertilizer applied 

to top 10mm of soil 

FERT_ID 

Fertilizer identification 

number from fertilizer 

database 

Day Day of operation 

Month Month of operation 

Table 6: Fertilizer parameters in SWAT input  

Tillage type Time 

Conventional tillage April & Nov (corn &Soybeans) 

Conservative Tillage May &Oct 

No till Sep (Winter Wheat) 
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The default value of 0.2 was assigned for FRT-SURFACE parameter for all land covers. 

Each land cover has its own system of land operation as shown in Table (7) 

After incorporating all the land management operations that are applied in the Medway 

Creek watershed, SWAT will define these operations at HRU level and save them in 

"mgt2" table in the database. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7: Agricultural land operations in southern Ontario 

Year (Crop) Month  operations 

 

 

 

1 (Corn) 

April Disc Plow GE23ft 

May Grow Corn 

May Fertilizer: N 110kg/ha 

May Fertilizer: P 22kg/ha 

Nov Harvest 

Nov Mouldboard plow 

2 (Soybeans) May Grow Soybeans 

May Fertilizer: P 33kg/ha 

Oct Harvest 

3 (Winter wheat) April Fertilizer: N 70kg/ha 

July Harvest 

Nov Mouldboard plow 
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Land use  Month  Operations  

 

 

 

Hay 

May Plant /beginning of growing 

May  Fertilizer N 25Kg/ha 

May Fertilizer P 22Kg/ha 

May Harvest only 

May Fertilizer N 10Kg/ha 

July Harvest only 

July Fertilizer N 10Kg/ha 

August  Harvest and kill 

Forest 

May Planet/beginning of growing  

Oct Kill/end growing season 

Range grass 

April Planet/beginning of growing 

Oct Harvest and kill 

Urban area 

April Fertilizer N 12 kg/ha 

April Fertilizer P 5 kg/ha 

May Planet/beginning of growing 

June Fertilizer N 11 kg/ha 

August Fertilizer N 11 kg/ha 

Sep Harvest and kill 

Sep Fertilizer N 11 kg/ha 
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7) Tile Drainage 

According to OMAFRA datasets, tile drainage is a common practice in the Medway 

Creek watershed, and applies in most agricultural areas. For a tile drained area in SWAT, 

it is necessary to input a number of parameters, including the tile length and the depth to 

surface that were obtained from the OMAFRA layer. See Appendix A. 

Figure 16: Tile drained area in the Medway creek watershed. Source OMAFRA 
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Measured Data 

Stream flow & water quality data  

Given the lack of high frequency monitoring data for Medway creek, the City of London 

is the only source of long term data monitoring that cover the first period of the model, 

which is from 1989 to 1999. The City of London datasets provide monthly stream flow 

and water chemistry data from 1979 to present at the Medway Creek watershed outlet. 

However, a few months of data were missing and were estimated using simple linear 

proportion. The data has been evaluated and compared to the measured data obtained 

from UTRCA, which covers the last two years. The high flow usually occurs in winter 

and early spring, and associated with snow melting, see Appendix (A). TSS and TP data 

were collected for the same period and incorporated in the model to calibrate the model 

parameters. All measured data are shown in Appendix A. 

Years Flow m
3
/s Total Phosphorus mg/L Total suspended solid mg/L pH 

1992 
5.56 0.14 

- 7.81 

1993 
8.53 0.18 

14 7.89 

1994 
1.96 0.09   

16.71 7.92 

1995 
0.96 0.08 

29.25 8.01 

1996 
1.56 0.08 

17.4 8.14 

1997 
2.83 0.08 

21.54 8.1 

1998 
3.54 0.31 

21.84 8.01 

1999 
0.65 0.15 

15.18 8.16 

Table 8 : Average Yearly measured Flow, TP, TSS, and pH. Source City of London 
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UTRCA provided access to daily water quality data for the present study project under 

the GLACI program. The data monitoring started in Feb 2016, and continued until the 

present time. Water chemistry measured on samples collected in the Upper Medway 

Creek at Observatory Drive was used to validate the SWAT model in daily time step.   

8) Granton WWTP 

The Granton Wastewater Treatment Plant is considered the point source for the Medway 

Creek model and its information has been incorporated into the input to accurately 

estimate the model output.  The Granton plant is a rotating biological type process and it 

is located at Lot 27, Biddulph Township. The plant influent is discharged into the Upper 

Medway Creek at the northern sub-basin in the Medway Creek watershed. The 

population of Granton village is 300 and the WWTP is designed to accommodate 270 

(m
3
/d). The daily flow of the Granton plant ranges from 96.36 (m

3
/d) to 409 (m

3
/d); 

therefore, the average daily flow for the design period, 270 (m
3
/d), has been applied in 

the model. The annual average water chemistry parameters were captured from two 

sources: the Granton Wastewater Treatment Plant Operations Report 2017, and UTRCA 

data. See Appendix (A).  

2.3 Model set up  

The ArcGIS interface has been used to prepare the SWAT input data and set up the 

model. After collecting all geospatial input data, SWAT delineated Medway Creek 

watershed. To define the stream network, DEM and stream data are required in 

watershed delineation. Based on the DEM and stream network of 205 (km
2
) drainage 

area, ArcSWAT divided the Medway Creek watershed into 11 sub basins, which were 

further subdivided into 279 HRUs where each one has unique land-use, soil type, and 

slope. The number of divided sub-basins can be modified based on the modeler; 

however, the higher the number of divided sub-basins in the watershed, the more 

accurately the stream distribution would be delineated. The Medway Creek Watershed is 

normally divided into three sub-basins; however, in this study, the watershed was divided 

into 11 sub-basins. The SWAT program calculates the parameters in each HRU and 

further determines the overall watershed scale. The model was set up for the period of 



35 
 

January1, 1989 to December 31, 1999 with three years as a warm up period. Measured 

weather data were collected from the London International Airport station because of the 

lack of climate monitoring data available at the Medway creek watershed. Hydrology and 

water quality monitoring data from Windermere station, which is located at the 

watershed outlet, have been incorporated into the model for calibration purposes. The 

first 3 years, which were the warm up period, were excluded from the model to avoid 

involving the initial conditions in the calculation. Data availability from Medway creek is 

infrequent in terms of daily/monthly water quality data monitoring. Most water quality 

stations are only sampling Medway Creek after storm events and are reported by water 

quality agencies. To resolve this issue, we have made a simple linear interpolation for 

missing data, and analyzed the available data for the months around this gap to generate 

the missing data proportionality. 

The SWAT model provides the ability to add point source pollution, which represents 

treatment plants; so therefore, the Granton wastewater treatment plant is considered a 

point source discharge for the Medway creek watershed. Arva reservoir, which is in the 

Medway Creek watershed, is considered in SWAT calculation which may influence the 

flow and nutrients movement. In accordance with UTRCA, different management 

practices were incorporated into the Medway Creek watershed in the past 2 years; 

therefore, these strategies have been considered in SWAT simulation, as mentioned in 

the land management section. 

 

 

 

 

 

 

Figure (17) Sub-baisn division 

in SWAT set up 

 

Figure 17 : the division of sub-

basins in SWAT set up 
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2.4 Calibration, parameterization process 

Calibration is the process of adjusting the model input to obtain reasonable results. 

Models are less useful without calibration. SWAT-CUP was recently developed and 

provides a decision-making framework that incorporates a semi-automated approach 

(SUFI-2) using both manual and automated calibration and incorporating sensitivity and 

uncertainty analyses (Arnold,et al ,.2012). SWAT-CUP is linked to the SWAT model by 

text in file in the SWAT output. Therefore, SWAT-CUP has the ability to alter SWAT 

parameters and then compare them to the observed data. SUFI-2 was used in the model 

calibration and validation to assess uncertainty of the model and its parameters in order 

to obtain better calibrated results. By having parameter ranges, SUFI-2 can examine the 

parameter's uncertainties and calculate the model outputs based on 95PPU (95% 

prediction uncertainties). 95PPUs and objective functions represent the calibration output 

evaluation for parameter uncertainties.  

In SWAT-CUP, the modeler has to know the certain hydrological processes in the actual 

watershed that need to be calibrated based on the initial SWAT model results. For 

example, when the default SWAT model has not conducted enough information about 

the snow or groundwater contribution, this means the snow and groundwater parameters 

need to be calibrated to match the real values of these parameters. However, the default 

model should have somewhat acceptable results compared to the measured data, and 

should demonstrate a logical representation of the main process that happens in the 

watershed. Based on this concept, the model was calibrated using 16 different parameters 

and the measured data at the watershed outlet. In SUFI-2 the parameterization has a 

specific type of inputting the range of parameters with the ability to adjust certain 

parameters, in particular sub-basin or HRU. 

 

x__<parameter>.<ext>__<hydrogrp>__<soltext>__<landuse>__<subbsn>  

 

  x:  is  a  code  to  indicate  the  type  of  change   to  be  applied  to  the  parameter(K. C. 

Abbaspour et al., 2015).  
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The measured data for the simulation period is prepared in a specific format and 

incorporated into the SWAT-CUP with a number of the simulations in order to capture  

most of the observed data, the main idea in SWAT-CUP is to have back up file that has 

the original SWAT model files and have the same files that were altered during the 

parameterization. Therefore, the original values of the parameters are saved in the back 

up file while the alteration occurs in the other copies of these files and each alteration can 

be saved in a different file. Moreover, SWAT-CUP suggests different ranges of 

parameters after each alteration so the modeler can achieve the desirable alteration. 

Different objective functions can be used in model evaluation, including NSE and R
2
.  

2.5 Model Validation 

The model validation is the process of validating the calibrated model with an 

independent measured data beyond the calibrated period without any further adjustment 

to the input parameters. A high performance model in the validation process is the ability 

of the model to accurately simulate a particular period and match most of the measured 

data in that period. In this study, the calibrated model has been validated using daily 

observed data for the years 2016 and 2017.The daily data were obtained from UTRCA, 

as mentioned before, to test the calibrated model in daily simulation. Due to the lack of 

long term monitoring data for Medway Creek, The validation was done used two years as 

it is the only available data that covers the time after calibration processes. 

2.6 Model Evaluation 

SWAT-CUP has two more factors that represent model performance beside the objective 

functions. F-factor is the percentage of observed data that is bracketed during calibration 

processes. When F-factor equals 1, it means the model has captured 100% of measured 

data.  R-factor represents the thickness of the parameters range that has been used 

through parameterization. When R-factor equals 0, this means the parameters' uncertainty 

is 0, which is an ideal simulation. The Nash Sutcliffe Efficiency index (NSE) Nash and 

Sutcliffe (1970) equation (2) and 𝑅2 (3) were both used to evaluate the model efficiency.  
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Where Yi obs is the i th observation for the constituent being evaluated, Yi sim is the i th 

simulated value for the constituent being evaluated. NSE diverge from −∞ and 1.0, with 

NSE =1 being the optimal value. Values between 0.0 and 1.0 are ordinarily viewed as 

adequate levels of performance (Moriasi et al., 2007). 𝑅2 values vary from zero to one, 

with a value of zero demonstrating that the relationship between the observed value and 

the simulated value is a nonlinear relationship, whereas a value of one is the ideal value 

and a linear relationship between the observed and simulated variables.  

 

Figure 18: NSE rating standards for model evaluation based on ASABE guidelines. 

Source (Moriasi et al.,2007).(ASABE standard, 2017) 

3. Results and Discussion 

3.1 Default SWAT model  

The default SWAT model was built using all available data in the Medway Creek 

watershed and applies current conditions in the watershed in order to obtain reliable 

results and an appropriate model that adequately captures the hydrological processes in 

the watershed. The first run of the default SWAT model before calibration performed 
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fairly. The model results agreed somewhat with measured data; however, the model 

underestimated the flow peaks. The model-predicted TP values were poor. Two objective 

functions have been utilized in this model and the results are shown in Table 9 and 

Figure 19 below: -     

 

Table 9: Default model results 

 

 

 

                                                    

                                                   

 

 

Variable R2 NSE bR2 Mean_sim(Mean_obs)    StdDev_sim(StdDev_obs) 

FLOW  0.79   0.48    0.2684    1.23(3.42) 3.72(9.64) 

TP 0.37 -0.05   0.0001 60.18(3262.16) 8.74(14328.28) 
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Figure 19 : Monthly observed and simulated discharge in m
3
/s in the period 1992-1999 at  

Watershed outlet 
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3.2 Model calibration results 

SWAT-CUP (calibration and uncertainty procedure) consists of five various methods for 

model optimization and sensitivity analysis. The model was calibrated for the period of 

Jan, 1, 1992 to Dec, 31, 1999. The model was monthly calibrated at the watershed outlet 

using the City of London's observed data from the Windermere station, as shown in 

Figure 20. The SUFI-2 algorithm generated 95PPU based on the input parameters range 

that had been identified. The selection of altered parameters was based on different 

factors including the watershed condition, the literature review of similar watershed 

situations, and a full understanding of parameters sensitivity. SUFI-2 was found in this 

study to be efficient enough to simulate stream flow and TP with satisfactory results. In 

discharge calibration, P-factor (the percentage of captured measured data) was 0.82, 

whereas R-factor was 0.54.  𝑅2 of 0.85 was obtained with NSE of 0.65, which indicates 

desirable calibration performance based on the NSE rating standards Figure 18.  

Figure 20: Calibration results for stream flow simulation 
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TP calibration was challenging because it includes other processes, such as sediments, 

land operations, and fertilizer applications. Moreover, TP calibration requires extensive 

knowledge of the phosphorus processes that occur in the Medway Creek watershed, and 

how they interact with phosphorus flux .An understanding of all physical processes in the 

watershed helps the modeller to reduce the conceptual model uncertainty ( Abbaspour, 

2014). For the calibration period, the values of 0.8 and 1.03 were achieved for P and R 

factors respectively. The value of 0.67 was achieved for NSE and𝑅2, which demonstrates 

satisfactory calibration performance.  

                     Figure 21: Calibration results for TP simulation 

Both the phosphorus and sediments parameters were considered in the calibration 

process as they are highly connected. Most phosphorus transported to surface water is 

attached to sediments. Therefore, sediments and nutrients calibration was combined in 

one parameterization process. Moreover, there is no long term observed data for 

sediments in the period of 1989 to 1999; however, the sediments simulation will be 

included in the model validation.            
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3.3 Sensitivity analysis  

According to the Medway Creek Friends Community report (Medway Creek 

Community, 2008), groundwater has a strong relationship with Medway Creek, and 

stream flow is controlled by groundwater during dry seasons, which indicates the 

sensitivity of groundwater parameters in the Medway Creek watershed. For that reason, 

groundwater parameters need to be adjusted to best understand the processes between 

groundwater and stream flow. 

Ranges of parameters have been set up based on the most sensitive parameters for each 

variable. CN2 (runoff curve number), ALPHA_BF (Base flow alpha factor), SFTMP 

(snowfall temperature), and GWQMN (Threshold depth of water in the shallow aquifer) 

were the most sensitive parameters influencing discharge in Medway Creek. Moreover, 

Snow parameters have a huge impact on the model performance as Medway Creek 

watershed is a snow-dominant area. These parameters are including snowfall temperature 

and snow pack leg factor. Soil parameters, including soil water content and bulk density, 

were less sensitive to the discharge calibration. Table 10 below demonstrates the 

sensitive parameters that have been altered during calibration processes. 

Table 10: Sensitive parameters for stream flow calibration 

 

 

parameter Name Best Value

CN2.mgt runoff curve number ▲2%

ALPHA_BF.gw Baseflow alpha factor 0.296989

GW_DELAY.gw Groundwater delay 54.807404

GWQMN.gw Treshold depth of water in the shallow aquifer 1.891084

EPCO.bsn Plant uptake compensation factor 0.294067

SFTMP.bsn Snowfall temperature 0.526316

SMFMX.bsn Maximum melt rate for snow during year 5.234355

SMFMN.bsn Minimum melt rate for snow during the year 8.522861

SMTMP.bsn Snow melt base temperature -4.764058

TIMP.bsn Snow pack temperature lag factor 1.011266

SOL_AWC.sol Available water capacity of the soil layer ▼1.4%

SOL_K.sol Saturated hydraulic conductivity 0.446692

SOL_BD.sol Moist bulk density ▲15.4%
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Figure 22: Mean sensitivity of flow parameters 

TP calibration proceeded after flow calibration though it was challenging to obtain very 

good agreement with measured data because the TP cycle involves many components, 

including sediments, land operations, and fertilizer applications. In the present study, the 

model was found to be extremely sensitive to the USLE_K (equation for soil erodibility 

factor (K) because of the fundamental role of Sediments in exporting phosphorus from 

land to surface water. The following table shows the sensitive parameters for TP 

calibration.  

        Table 11: sensitive parameters for total phosphorus calibration 

 

parameter Name Best Value

USLE_K.sol equation soil erodibility (K) factor ▼85.9%

USLE_P.mgt USLE equation support 0.497757

GW_DELAY.gw Groundwater delay 183

GWQMN.gw Treshold depth of water in the shallow aquifer 1.881079

CH_N2.rte Manning's "n" value for the main channel 0.083667

CH_k2.rte Effective hydraulic conductivity 500

CANMX.hru Maximum canopy storage 100

ERORGP.hru Organic P enrichment ratio 3.066141

CN2.mgt runoff curve number ▲1.54%

ALPHA_BF.gw Baseflow alpha factor 0.379873
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Figure 23: Mean sensitivity of TP parameters 

3.4 Model validation results  

Under the current conditions of the Medway Creek watershed, the SWAT model has 

been tested for a daily TP simulation. The water quality monitoring station at the Upper 

Medway Creek do not cover the whole simulated period; however, it is the only available 

daily data for the watershed. The model set up for the period of Jan, 1st, 2016 to Oct, 

29th, 2017 for daily TP simulation to examine the calibrated SWAT model for daily 

prediction. Daily climate data was obtained from the London International Airport 

Station for the simulation period. 

 

 

 

 

 

         Figure 24: UTRCA monitoring Station at upper Medway Creek 

The monitoring station on Observatory Drive started to measure the water chemistry in 

March 2016. The station does not monitor daily flow and run off in the watershed. 
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Although there are gaps in the observed data, as shown in Figure (3), these are the only 

daily data representing TP and TN in Medway Creek. 

The calibrated models run over the validation period with no further adjustment by which 

to examine the calibrated SWAT model with an independent observed dataset. Only sub 

basin 1 & 2 are considered in the validation process as the monitoring station is located 

in the Upper Medway Creek, as shown in Figure 24. Daily stream flow, total phosphorus 

and total nitrogen are simulated at the Observatory station under the current conditions of 

the watershed as shown in Figures 26, 27, 28 and 29.  

  Figure 25: Daily precipitation (mm). source London Int’ Airport station) 

Figure 26:  Daily TP simulation for the Upper Medway Creek (at observatory station) 
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Figure 28: daily stream flow simulation at Medway creek watershed outlet 
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Figure 27: Daily total Nitrogen simulation (at observatory station) 

Figure 29: daily stream flow simulation at Observatory station 
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Figure 26 reveals the obvious agreement between simulated TP and observed data with 

more than 80% observed data captured.TP reaches the highest values in the high 

precipitation event to illustrate the dependence of phosphorus on flow. However, total 

nitrogen simulation in Figure 27 was underestimated with low agreement with the 

observed values, demonstrating the limitation of not including all nitrogen processes that 

occur in the watershed. Moreover, there is no monitoring data for daily flow to validate 

the simulated stream flow in Medway Creek as shown in Figures 28 and 29. The stream 

flow reaches the highest level in the winter of 2017 with an average of 3.87 (m
3
/s) at the 

watershed outlet. The average monthly TP was 0.94 mg/Land the average TN was 1.46 

mg/L in the simulation period at the watershed outlet.  

The model has been validated at sub-basin 4, where the UTRCA monitoring station is 

located (Observatory Drive). The model demonstrated excellent results in TP simulations 

as shown in Figure 26; however, SWAT was not able to simulate the daily total nitrogen,  

as shown in Figure 27.  

 Due to the influence of sediments in the nutrient flux, sediments parameters have a large 

impact on the nutrients; therefore they are incorporated into the calibration processes. 

The average sediments yield in the watershed before entering the stream was 0.44 

T/ha/yr. 

Figure 30: Average monthly TSS (mg/L) simulation at observatory station 

 

 

0

50

100

150

200

250

300

350

10/23/2015 01/31/2016 05/10/2016 08/18/2016 11/26/2016 03/06/2017 06/14/2017 09/22/2017 12/31/2017

Observed Simulated 



48 
 

Name Yield/ha The entire watershed Note 

Sediments 0.44 metric T/ha 9020 T Total sediments 

PP 4.51 kg /ha 92,455 kg particulate P 

DP 0.97 kg /ha 19,885 kg dissolved P 

TP 5.48 kg /ha 112,340 kg Total P 

PN 6.97 kg /ha 142,885 kg particulate N 

DN 1.63 kg /ha 33,415 kg dissolved N 

TN 8.60 kg /ha 176,300 kg Total N 

Table 12: Simulated average yearly sediment, TP and TN Yield at the watershed 

outlet in 2016 and 2017 

 

 

 

 

 

 

Figure 31: average yearly 

sediments T/ha in the Medway 

Creek watershed 
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Figure 32: Average yearly TP, TN (kg/ha) in Medway Creek watershed 

SWAT estimated the average sediments, TP, and TN yield at sub-basin levels as shown 

in Figures 31 and 32. At the watershed outlet, the average yearly TP loading was 112,340 

kg combined in particulate and dissolved forms. The average yearly TN loading was 

176,300 kg. 

4. Future scenarios for Medway Creek Watershed  

In this part, the calibrated and validated SWAT model is used to simulate how future 

land use scenarios influence the discharge and phosphors flux in the Medway Creek 

watershed. As mentioned in the introduction, land use and water quality have a strong 

relationship that needs to be understood and examined to predict possible impacts of 

future land use on water quality. This chapter attempts to apply the calibrated and 

validated SWAT model to predict and examine the hydrological influence of projected 

land use scenarios on discharge and total phosphorus. RCP 8.5 and A1B scenarios were 

considered for the period of 2019 to 2040 with three years of warm up to investigate the 

land use and climate scenario implications compared to the current conditions of the 

Medway Creek watershed. The analysis assumes that the watershed population will keep 
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growing at a constant rate, which will result in the conversion of hay/pastures to urban 

areas. Also, grassing areas would be converted to pastures with forested land maintained.  

This land use conversion scenario is based on the conversion trend in southern Ontario, 

which is converting from high to low agriculture with growths in population. Hay and 

pastures will convert to urban areas in the south part of the watershed as the population 

expands in that area. The grass land will turn into pastures as shown in Table 13. 

 

N Initial Land Use  Predicted land use  Year  

1 
%100 Hay  Urban  2020 

2 
% 100 Pasture Urban  2020 

3 
%100 Grass land  Pasture  2020 

Table 13: Land use conversion scenarios in the period 2019 to 2039 

Climate data  

RCP 8.5 and A1B scenarios have been applied in this study to investigate the effect of 

different future climate scenarios on stream flow and phosphorus. The climate data were 

obtained from Ontario Climate Change Data portal for the period of 2019 to 2040 and the 

data were prepared as inputs in the SWAT format. RCP 8.5 represents high climate 

change impact scenarios driven by boundary conditions from CanESM2 and assuming no 

policies will be implemented in the future to reduce greenhouse gases, whereas A1B is 

similar to RCP 6.0, which represents limiting of greenhouse emissions by applying 

climate change policies (Moss et al., 2010). CanESM2 which stands for Canadian Earth 

System Model is the combination of the Fourth Generation Atmospheric General 

Circulation Model and the Canadian Terrestrial Ecosystem Model (CTEM) (Arora and 

Boer, 2010; Chylek et al.,2011) See Appendix B. 

 



51 
 

Land Operations  

Recently, the Medway Creek watershed has improved its land management by working to 

implement best management practices (BMPs) for the majority of farms; however, today 

more management practices have been applied, especially in the upstream, with 

supervision by UTRCA under the Upper Medway Priority Sub-watershed Project, which 

is funded through GLASI (Great Lakes Agricultural Stewardship Initiative). BMPs have had 

a positive impact on the Medway Creek Watershed and have reduced the sediments and 

total phosphorus flux to the stream. Due to the lack of information about the projected 

land management plan and the future BMPs in the watershed, the model has been tested 

under the existing land management conditions.  

The calibrated/validated model was run at monthly intervals to simulate the impact of future 

land use on discharge and nutrients for two different climate scenarios. Discharge, TP, and 

TN were simulated at sub-basin levels in both scenarios.   

4.1 Results of RCP 8.5 scenario 

After applying the land use scenario shown in Table 13 and the climate data for the  RCP 8.5 

climate scenario (see Appendix B), SWAT was able to predict stream flow as well as the 

amount of nutrients exported to the stream. Figure 33 shows the predicted stream flow of 

Medway Creek at the watershed outlet for the period of 2022 to 2040. 

 

Figure 33: Predicted stream flow for RCP 8.5 scenario at Medway Creek outlet 

http://www.ontariosoilcrop.org/oscia-programs/glasi/
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The average stream flow under RCP8.5 is 2.2 (m
3
/s) and it reaches 11.2 (m

3
/s) in the 

beginning of 2035. Compared to the current average of Medway Creek (2.6 m
3
/s), there 

is a slight decrease in the stream flow. Figures 34 and 35 demonstrate the future change 

in stream flow and TP due to the change in land use and climate in the period of 2022 to 

2040. The estimated average TP in the stream at the watershed outlet is 0.85 mg/L in the 

eighteen-year simulation period, and it is close to the current conditions of Medway 

Creek. The estimated average monthly TN at the watershed outlet is 2.37 mg/L in the 

period of 2022 to 2040.   

  

Figure 34: Predicted TP under RCP 8.5 scenario at Medway Creek outlet 

 

 

 

 

 

Figure 35: Predicted TN under RCP 8.5 scenario at Medway Creek outlet 
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Table 14: Simulated average yearly sediment, TP,and TN Yield at the watershed 

outlet in the period 2022-&2040 under RCP 8.5 

Under RCP8.5 climate scenario, there is 15% increase in TP yield and 7.8% in TN yield, 

compared to the current condition in the Medway Creek watershed.  

 

 

 

 

 

 

 

 

 

 

Figure 36: average yearly TP kg/ha in the Medway Creek watershed under RCP8.5 

scenario 

Name Yield/ha The entire watershed Note 

Sediments 1.04 metric T/ha 21,320 T Total sediments 

TP 6.3 kg /ha 129,150 kg Total P 

TN 9.27 kg /ha 190,035 kg Total N 
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Figure 37: average yearly TN kg/ha in the Medway Creek watershed under RCP8.5 

scenario 

4.2 A1B scenario Results 

Using precipitation and temperature data in the A1B scenario, SWAT simulated different water 

resource components, as shown in Figures 38 and 39. Sediment and nutrient fluxes were 

simulated at sub-basin level for the period 2022 to 2040 to examine the impact of projected land 

use and A1B climate scenario on water quality and quantity.   
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Figure 38: Predicted stream flow under A1B scenario at Medway Creek outlet 

Figure 39: Predicted TP under A1B scenario at Medway Creek outlet 

The average monthly flow in the simulation period is 0.6 (m
3
/s). The average yearly TP yield is 

26,240 kg (1.28 kg/ha) which is lower than the current condition of the watershed. The results for 

A1B climate scenario show remarkable reduction in nutrients flux in the Medway Creek 

watershed. 

𝐓
𝐨
𝐭𝐚

𝐥 
𝐏
𝐡
𝐨
𝐬𝐩

𝐡
𝐨
𝐫𝐮

𝐬 
𝐦

𝐠
/𝐋

 



56 
 

 

Name Yield/ha The entire watershed Note 

Sediments 0.12 metric T/ha 2460 T Total sediments 

TP 1.28 kg /ha 26,240 kg Total P 

TN 3.03 kg /ha 62,115 kg Total N 

Table 15: Simulated average yearly sediment, TP, and TN Yields at the watershed 

outlet in the period 2022-2040 under A1B climate scenario. 

The drop in nutrient flux is most likely results from the conversion of high agricultural 

land to low agricultural land, which reduces the non point source of nutrients that could 

impact Medway Creek by exporting high levels of phosphorus and nitrogen. Moreover, 

the low emission scenario causes low stream flow which results in reduced sediments 

yields.  

 

 

 

 

 

 

 

 

Figure 40: average yearly TP 

kg/ha in the Medway Creek 

watershed under A1B climate 

scenario 
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5. Discussion 

The SWAT model performed successfully in the present study after the incorporation of 

SWAT-CUP to model the Medway Creek watershed. According to the default model 

results, SWAT requires a calibration process in order to achieve the best representation 

of the watershed. Calculated 𝑅2 and NSE values were excellent in flow calibrations, and 

this indicates the high efficiency of SUFI-2 in calibrating the flow. Moreover, 

groundwater, snow, and CN2 parameters were found to be the most sensitive in the 

Medway Creek flow calibration as groundwater contributed an appreciable percentage of 

the Medway Creek stream flow; however SWAT does not count the groundwater 

contribution of dissolved P to the stream TP as it is not considered as prime source of 

phosphorus (White et al.,2014). Sediments and soil characteristics were key to the 

nutrient export simulation. SWAT must contend with hundreds of parameters, but the 

Figure 41: average yearly TN 

kg/ha in the Medway Creek 

watershed under A1B scenario 
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calibration model requires a strong background in the actual hydrological process that 

occurs in the watershed to determine certain parameters that need to be adjusted. 

In the daily validation of the period of 2016 to 2017, the calibrated SWAT model 

captured most of the daily UTRCA observed data in the TP simulation with no further 

adjustment, indicating the effectiveness and the importance of the calibration to improve 

the SWAT model's performance. SWAT estimated the average yearly sediments and TP 

and TN Yield at the sub basin level. The highest TP and TN yields were in the same 

location as highest sediments yield. Sub basin 4 has the highest level of nutrient yield due 

to the high slope in that sub basin along with the extensive agricultural land in the sub-

basin, which is mostly corn. The Medway Creek Watershed exports an average of 

112,340 kg of TP and176, 300 kg of TN annually, both of which are as high as what 

Nurnberg estimated in her water Quality assessment of the Thames River Watershed 

(Nürnberg & Lazerte, 2015). The average TP in the stream at the watershed outlet in the 

period 2016 2017 is 0.9 mg/L which is quite high compared to the Ontario Guideline 

(0.03 mg/L). Moreover, 82.3% of the phosphorus yield is in particulate form, whereas 

81% of the nitrogen is particulate.The only explanation for the high TP is the fertilizer 

application rates that are applied in the most agricultural areas in the Medway Creek 

watershed. In addition, land management practices have an impact on surface water 

through conventional tillage practices that increase the sediments yield. The average 

simulated TSS is 58.7 mg/L at the watershed outlet, whereas Nurnberg estimated the 

average TSS of 77mg/l at the watershed outlet. High loads od TP And TN in Medway 

Creek that are delivered every year to the Thames River come mostly from the western 

part of the Medway Creek watershed, including sub basins 1, 2, 4, 9, and 11. Therefore, 

enhancement strategies are needed in these sub basins to reduce loads that export to 

surface water.     

In future scenarios involving climate and land use, the calibrated/validated model has 

estimated the nutrients flux for each scenario with increases in nutrient levels in RCP8.5 

by 15% in the TP simulation and 7.8% in the TN prediction. However, SWAT predicts a 

large reduction in nutrient yield under the A1B climate scenario by more than 50% in TP 

and TN yields. Phosphorus is extremely dependent on stream flow; therefore, a high 
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concentration of TP, usually at the beginning of the year, is associated with snow 

melting. The RCP8.5 climate scenario results show the conditions of future water quality, 

if no climate and land management policies have been applied, which will result in 

significant increases in nutrient yields in the watershed. On the other hand, the A1B 

scenario presented notable reductions in nutrients as well as sediments at the watershed 

outlet.  

5.1 Monitoring data and their impact on model performance 

One of the main issues that complicate the hydrologist's job in terms of modeling water 

quantity and quality is the scarcity of high frequency data for soil nutrients, surface water 

quality, ground water, fertilizer records, solar radiation, and climate data. Hydrological 

models rely on the availability of data to successfully perform the simulation, which 

requires accurate high frequency data to simulate the key hydrologic processes that occur 

in the watershed and obtain reliable results. Moreover, the more detailed the data used for 

building the model, the better the representation of the actual conditions of the 

watershed.  

With regards to the data collection step, there is no doubt that many surface water 

systems in Canada have ineffective monitoring systems and low frequency historical 

data. The Medway Creek watershed has two monitoring systems that are considered low 

frequency data monitoring as they only take samples after storm events, so there is a 

huge gap for modelers in modeling the watershed. The City of London samples Medway 

Creek at Windermere station monthly to measure water chemistry and flow. However, 

this monitoring usually starts from early spring to the end of the year, and ignores the 

most important period, the snow melting period, when the TP concentration increases to 

reach its highest levels. COL is the only source for long-term monitoring data for 

Medway creek. UTRCA monitors the Medway creek upstream through the Priority Sub 

Watershed Project; however, this project started in Feb 2016, and does not provide long-

term data for the Medway Creek simulation. The Priority Sub Watershed Project 

currently focuses on applying BMPs in the Upper Medway Creek watershed to see how 

they would impact the water quality in the stream. 
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Fertilizer is applied in the Medway Creek watershed without records, even though it is 

the main driver of nutrients in the stream. The Medway Creek watershed is an 

agricultural watershed that produces several crops annually. Artificial fertilizers are 

needed in most agricultural areas in the watershed. Therefore, synthetic fertilizer 

application records would be essential in water quality modelling to calculate nutrient 

yields that are exported from the agricultural land to the streams.  

Soil nutrient properties in the Medway Creek watershed are mostly unknown, including 

soil P level, organic matter content, which affects crop yield, as well as the TP export. 

Soil samples are needed every so often to measure soil nutrient levels and P loss from 

agricultural areas. Runoff and sediments are keys to P loss from non-point sources that 

are not measured in the Medway creek watershed. There is scarcity of data on sediments 

and runoff in the watershed, which was one of the reasons for simulating these 

components. 

 

Climate data are not measured within the watershed boundaries, which required using the 

nearby station with long term climate data. The model would have performed better if the 

watershed was gauged because using weather data outside of the watershed was not the 

most desired option and would have negatively impacted the results.  

6. Conclusions and recommendations 

A hydrology and phosphorus model was built for the Medway Creek watershed in 

southwestern Ontario using SWAT and SWAT-CUP. SWAT analyzed the current 

concerns of high nutrient levels in Medway Creek by simulating the nutrient flux at the 

sub-basin level and estimating the sediments, TP, and TN yields. The model results were 

found to be satisfactory to very good based on model evaluation. The model was run 

from 1989 to 1999 with three years warm up and was calibrated using COL observed at 

the watershed outlet. Different strategies were used in the calibration process to 

efficiently adjust SWAT parameters to improve SWAT prediction. The calibration 

processes improved SWAT performance to capture more than 80% of observed data. 

SWAT-CUP ran over 2000 times to analyze the model uncertainty and achieve the best 
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range of sensitive parameters. 𝑅2 and NSE were used to evaluate the model and the 

respective values of 0.85 and 0.65 were obtained during the calibration process.  

 The calibrated SWAT model was successfully validated using an independent daily 

observed dataset for the period of January 2016 to October 2017. The daily observed data 

on water chemistry was obtained from the UTRCA monitoring station on Observatory 

Drive. A high percentage of daily observed data captured by the calibrated SWAT model 

and average yearly nutrient yield were estimated at the watershed outlet. Large quantities 

of nutrients are exported to the Thames River every year and were estimated by SWAT 

to reach 5.48 kg/ha of TP and 8.60 kg/ha of TN. Sediment yields were calculated at the 

sub-basin level to reach 0.44 T/ha and 9020 T for the entire watershed. 

Land use and climate scenarios were set up for the calibrated/validated model to 

investigate the impact of these scenarios on water quantity and quality. A high increase 

in TP and TN in RCP 8.5 was observed, compared to an obvious reduction in nutrient 

levels in the A1B scenario. A TP load of 6.3 kg/ha was estimated under RCP8.5 while a 

value of s 1.28 kg/ha was estimated under the A1B scenario. A TN load of 9.27 kg/ha 

was predicted in RCP8.5 in contrast to TN, which was as low as 3.03kg/ha under the 

A1B scenario. The conversion of Agricultural land to urban land slightly reduced the 

nutrients flux at the watershed outlet. The model results could be used as an essential tool 

for decision makers to take actions towards the high yields of nutrients in the watershed 

and focus on the critical sub basins that export most of the phosphorus and nitrogen loads 

into Medway Creek. Moreover, this model identified the high sediments and nutrients 

fields that require BMPs to efficiently reduce the nutrients loads and improve the health 

of Medway Creek.   

6.1 Recommendations 

The research has highlighted a number of areas that require further studies and 

management. Based on the results, the following are recommended: 

1. Monitor nutrients concentrations continually along Medway Creek to track the 

increase in nutrient levels in the stream and improve land management accordingly.  
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2. Monitor sediment characteristics and load moving into Medway Creek watershed to 

help determine the source of sediments exported to the stream.   

3. Record application rates of either manure or artificial fertilizer in the watershed by 

surveying all farms to obtain a reliable estimate of total N and P applied to land. 

4. Sample soil every so often to measure soil nutrient and examine the loss of 

phosphorus by runoff. 

5. Monitor climatic conditions and trends in the watershed, including precipitation, solar 

radiation, wind speed, evapotranspiration, etc., to accurately model water resource 

components in the watershed. 

6. Monitor stream flow in Medway Creek effectively and frequently to capture flow 

fluctuations over the year. 

7. High TSS results in the model requiring an intense water quality system at the 

upstream and downstream locations. Monitoring is needed to help decision makers 

apply different strategies in the high TSS areas. 

8. Install automated water quality stations along Medway Creek, instead of random 

sampling systems, to provide water chemistry changes during the year.  

9. Monitor TP and TN loads in the upstream section (sub basin 4) of the Creek. High 

loads would require different actions, including regulating applied fertilizer loads, in 

that area and reducing sediment yields. It would also be necessary to monitor all 

management practices that occur in that area closely. 

10. Medway Creek watershed is an extensive agricultural Watershed that forms a non-

point source of pollution for surface water. It is therefore necessary to take steps to 

reduce the impact of this diffuse source on water quality.  

11. Reduce the conventional tillage system in the watershed, especially in sub-basin 4, 

and implement in-field erosion control structures in order to minimize sediment 

yields. 

12. Involve the public in the monitoring programs system by recording all the 

management practices that they apply on the land as well as increase their awareness 

of the consequences of these practices.   
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13. Improve the public consultations in the Medway Creek watershed to increase the 

public engagement in important initiatives that lead to enhance the water and land 

management in the watershed.  

6.2 Future Work 

After investigating the nutrient sources and modeling the nutrients flux in the Medway 

Creek watershed, extensive work is required to investigate the same issue in Lake Erie as 

it suffers from eutrophication. One of the SWAT model's advantages is that the model 

can be transferred to other similar watershed with the same characteristics. Therefore, a 

calibrated /validated SWAT model is able to be transferred to other watersheds, by re- 

characterizing the watershed conditions.  

In order to reduce the accelerated eutrophication in Medway Creek particularly, and in 

the Great Lakes generally, long term and efficient monitoring projects are presently 

necessary to improve the performance of similar models in southwestern Ontario. A daily 

monitoring project is required at Medway Creek's downstream location to analyze the 

impact of BMPs on water quality. 

Medway Creek Priority Sub watershed Project that is applying BMPs in the Medway 

Creek watershed requires a high performance modeling to examine the future impact of 

applied BMPs on the water quality. In addition, multiple scenarios are needed to 

determine the cost efficient practices and the suitable places for BMPs. 
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SWAT model's input data and observed data 
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 Observed data for monthly simulation   

Observed data used in this study is obtained from two sources as mentioned in the data 

acquisition chapter. The city of London data that has been used in the monthly simulation 

is showing in Table A-1: -  

 

DATA FLOW cms TP KG/m TP mg/L DATA FLOW cms TP KG/m TP mg/L

01/01/1992 3.94 919.1232 0.09 01/01/1996 0.842 87.28 0.1

02/01/1992 8.83 5082.6 0.175 02/01/1996 1.138 117.96 0.15

03/01/1992 13.72 9246.182 0.26 03/01/1996 1.434 148.64 0.05

04/01/1992 1.78 138.4128 0.03 04/01/1996 1.73 179.3664 0.04

05/01/1992 1.23 227.835 0.105 05/01/1996 2.27 117.6768 0.02

06/01/1992 0.68 317.2608 0.18 06/01/1996 1.61 292.1184 0.07

07/01/1992 0.23 83.4624 0.14 07/01/1996 1.13 231.03 0.113

08/01/1992 5.21 1890.605 0.14 08/01/1996 0.67 169.94 0.156

09/01/1992 8.98 6921.418 0.095 09/01/1996 0.21 108.864 0.2

10/01/1992 0.75 97.2 0.05 10/01/1996 1 103.68 0.04

11/01/1992 18.14 6112.454 0.13 11/01/1996 1.94 150.8544 0.03

12/01/1992 3.24 42026.1 0.255 12/01/1996 4.81 623.376 0.05

01/01/1993 79.13 77939.88 0.38 01/01/1997 3.265 512.3 0.07

02/01/1993 2.7 1679.616 0.24 02/01/1997 1.72 401.2416 0.09

03/01/1993 1.77 1422.23 0.31 03/01/1997 9.45 979.776 0.04

04/01/1993 8.28 3219.264 0.15 04/01/1997 1.17 121.3056 0.04

05/01/1993 1.1 142.56 0.05 05/01/1997 10.13 1050.278 0.04

06/01/1993 0.58 165.3696 0.11 06/01/1997 0.73 75.6864 0.04

07/01/1993 0.68 299.6352 0.17 07/01/1997 0.5 90.72 0.07

08/01/1993 0.37 86.3136 0.09 08/01/1997 0.25 51.84 0.08

09/01/1993 0.37 335.664 0.35 09/01/1997 0.25 25.92 0.04

10/01/1993 2.41 312.336 0.05 10/01/1997 0.34 44.064 0.05

11/01/1993 0.91 330.2208 0.14 11/01/1997 3.72 2506.982 0.26

12/01/1993 4.03 1044.576 0.1 12/01/1997 2.41 937.008 0.15

01/01/1994 4.01 1036.79 0.2 01/01/1998 33.44 92743.83 1.07

02/01/1994 3.99 1029.01 0.1 02/01/1998 1.2 186.624 0.06

03/01/1994 3.97 1021.248 0.1 03/01/1998 1.96 457.2288 0.09

04/01/1994 2.67 692.064 0.1 04/01/1998 1.99 825.2928 0.16

05/01/1994 4.39 568.944 0.05 05/01/1998 0.79 102.384 0.05

06/01/1994 1.51 273.9744 0.07 06/01/1998 0.3 54.432 0.07

07/01/1994 1.5 427.68 0.11 07/01/1998 1.91 4109.098 0.83

08/01/1994 0.48 74.6496 0.06 08/01/1998 0.03 41.9904 0.54

09/01/1994 0.17 44.064 0.1 09/01/1998 0.17 229.1328 0.52

10/01/1994 0.22 28.512 0.05 10/01/1998 0.13 57.2832 0.17

11/01/1994 0.17 30.8448 0.07 11/01/1998 0.21 32.6592 0.06

12/01/1994 0.45 58.32 0.05 12/01/1998 0.36 93.312 0.1
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Table A-1 City of London observed data at the Medway Creek watershed outlet 

 

 

Figure (A-1) TP monitoring at Medway Creek watershed outlet. 

Source: City of London 

 

 

 

 

01/01/1995 0.582 62.79 0.1 01/01/1999 0.915 694.397 0.22

02/01/1995 0.714 67.26 0.05 02/01/1999 1.47 1295.482 0.34

03/01/1995 0.846 71.73 0.035 03/01/1999 1.36 352.512 0.1

04/01/1995 0.98 76.2048 0.03 04/01/1999 0.79 238.464 0.11

05/01/1995 2.51 130.1184 0.02 05/01/1999 0.4 124.416 0.12

06/01/1995 1.84 810.7776 0.17 06/01/1999 0.63 146.9664 0.09

07/01/1995 0.48 236.3904 0.19 07/01/1999 0.28 108.864 0.15

08/01/1995 2.37 1044.317 0.17 08/01/1999 0.17 96.9408 0.22

09/01/1995 0.12 27.9936 0.09 09/01/1999 0.04 8.2944 0.08

10/01/1995 0.25 19.44 0.03 10/01/1999 0.15 58.32 0.15

11/01/1995 0.25 25.92 0.04 11/01/1999 1.14 325.0368 0.11

12/01/1995 0.546 56.6 0.05 12/01/1999 0.47 134.0064 0.11
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 Soil data and land use' attributes tables   

The soil layer has 267 polygons and each soil has 1 to 2 layers. All soil data prepared and 

integrated from different sources into SWAT format. The flowing table shows the structure of 

soil attributes table that has been prepared for SWAT input. 

OBJECTID MUID SEQN SNAM S5ID CMPPCT NLAYERS HYDGRP SOL_ZMX ANION_EXCL SOL_CRK TEXTURE

1 VT028 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SIL

2 VT028 1 TAVISTOCK - TILL PHASE CAN 100 2 C 1500 0.5 0.5 L

3 VT029 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SIL

4 VT027 1 COLWOOD CAN 100 1 C 1500 0.5 0.5 L

5 VT027 1 BRYANSTON CAN 100 2 B 1500 0.5 0.5 SIL

6 VT028 1 NOT MAPPED CAN 100 1 B 1500 0.5 0.5 SIL

7 VT030 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SIL

8 VT030 1 EMBRO CAN 100 2 C 1500 0.5 0.5 SIL

9 VT030 1 PERTH CAN 100 1 C 1500 0.5 0.5 SICL

10 VT023 1 ERODED CHANNEL CAN 100 1 B 1500 0.5 0.5 SL

11 VT023 1 EMBRO CAN 100 2 C 1500 0.5 0.5 SIL

12 VT023 1 PERTH CAN 100 1 C 1500 0.5 0.5 SICL

13 VT023 1 PERTH CAN 100 2 C 1500 0.5 0.5 SICL

14 VT025 1 TOLEDO CAN 100 1 D 1500 0.5 0.5 SICL

15 VT025 1 PERTH CAN 100 2 C 1500 0.5 0.5 SICL

16 VT025 1 HURON CAN 100 2 C 1500 0.5 0.5 SIL

17 VT025 1 TOLEDO CAN 100 2 D 1500 0.5 0.5 SICL

18 VT025 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SIL

19 VT043 1 PERTH CAN 100 2 C 1500 0.5 0.5 SIL

20 VT043 1 HURON CAN 100 2 C 1500 0.5 0.5 L

21 VT044 1 COLWOOD CAN 100 2 C 1500 0.5 0.5 L

22 VT017 1 NOT MAPPED CAN 100 1 C 1500 0.5 0.5 SIL

23 VT017 1 BRYANSTON CAN 100 2 B 1500 0.5 0.5 SIL

24 VT021 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SIL

25 VT033 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SICL

26 VT033 1 TAVISTOCK CAN 100 2 C 1500 0.5 0.5 L

27 VT033 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SIL

28 VT030 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SIL

29 VT032 1 PERTH CAN 100 2 C 1500 0.5 0.5 SICL

30 VT032 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SIL

31 VT033 1 EMBRO CAN 100 2 C 1500 0.5 0.5 SIL

32 VT033 1 CROMBIE CAN 100 1 C 1500 0.5 0.5 SIL

33 VT033 1 BEVERLY CAN 100 2 C 1500 0.5 0.5 SICL

34 VT034 1 PERTH CAN 100 2 C 1500 0.5 0.5 SICL

35 VT035 1 HURON CAN 100 2 C 1500 0.5 0.5 SIL

36 VT035 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SIL

37 VT036 1 HURON CAN 100 2 C 1500 0.5 0.5 SIL

38 VT036 1 PERTH CAN 100 2 C 1500 0.5 0.5 SICL

39 VT037 1 PERTH CAN 100 2 C 1500 0.5 0.5 SICL

40 VT004 1 COLWOOD CAN 100 2 C 1500 0.5 0.5 L

41 VT006 1 HURON CAN 100 2 C 1500 0.5 0.5 SIL

42 VT006 1 TOLEDO CAN 100 2 D 1500 0.5 0.5 SICL

43 VT037 1 PERTH CAN 100 2 C 1500 0.5 0.5 SICL

44 VT038 1 EMBRO CAN 100 2 C 1500 0.5 0.5 SIL

45 VT040 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SIL

46 VT040 1 EMBRO CAN 100 2 C 1500 0.5 0.5 SIL

47 VT040 1 PERTH CAN 100 1 C 1500 0.5 0.5 SICL

48 VT040 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SIL

49 VT040 1 HURON CAN 100 1 C 1500 0.5 0.5 SIL

50 VT042 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SIL

51 VT043 1 CROMBIE CAN 100 2 C 1500 0.5 0.5 SIL

52 VT044 1 VITTORIA - TILL PHASE CAN 100 2 C 1500 0.5 0.5 FSL

53 VT045 1 TAVISTOCK - TILL PHASE CAN 100 2 C 1500 0.5 0.5 L

54 VT045 1 FANSHAWE CAN 100 1 B 1500 0.5 0.5 SIL

55 VT021 1 CROMBIE CAN 100 2 C 1500 0.5 0.5 SIL

56 VT021 1 EMBRO CAN 100 2 C 1500 0.5 0.5 SIL

57 VT023 1 EMBRO CAN 100 2 C 1500 0.5 0.5 SIL

58 VT046 1 VITTORIA - TILL PHASE CAN 100 1 C 1500 0.5 0.5 FSL

59 VT046 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SIL

60 VT049 1 CROMBIE CAN 100 2 C 1500 0.5 0.5 SIL
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61 VT002 1 CROMBIE CAN 100 1 C 1500 0.5 0.5 SIL

62 VT002 1 PERTH CAN 100 2 C 1500 0.5 0.5 SICL

63 VT002 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SIL

64 VT002 1 BRYANSTON CAN 100 1 B 1500 0.5 0.5 SIL

65 VT002 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SIL

66 VT002 1 PERTH CAN 100 2 C 1500 0.5 0.5 SICL

67 VT003 1 PERTH CAN 100 2 C 1500 0.5 0.5 SICL

68 VT004 1 EMBRO CAN 100 2 C 1500 0.5 0.5 SIL

69 VT004 1 HURON CAN 100 2 C 1500 0.5 0.5 SIL

70 VT007 1 PERTH CAN 100 2 C 1500 0.5 0.5 L

71 VT007 1 TAVISTOCK - TILL PHASE CAN 100 2 C 1500 0.5 0.5 SICL

72 VT007 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 L

73 VT007 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SIL

74 VT007 1 COLWOOD CAN 100 2 C 1500 0.5 0.5 SIL

75 VT007 1 EMBRO CAN 100 2 C 1500 0.5 0.5 L

76 VT007 1 COLWOOD CAN 100 2 C 1500 0.5 0.5 SIL

77 VT007 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 L

78 VT008 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SIL

79 VT008 1 PERTH CAN 100 1 C 1500 0.5 0.5 SIL

80 VT009 1 PERTH CAN 100 2 C 1500 0.5 0.5 SICL

81 VT010 1 HURON CAN 100 1 C 1500 0.5 0.5 SICL

82 VT010 1 BURFORD CAN 100 2 A 1500 0.5 0.5 SIL

83 VT014 1 TAVISTOCK - TILL PHASE CAN 100 2 C 1500 0.5 0.5 GSL

84 VT015 1 COLWOOD CAN 100 2 C 1500 0.5 0.5 L

85 VT015 1 PERTH CAN 100 2 C 1500 0.5 0.5 L

86 VT016 1 PERTH CAN 100 2 C 1500 0.5 0.5 SICL

87 VT016 1 VALLEY COMPLEX CAN 100 1 C 1500 0.5 0.5 SICL

88 VT016 1 BRYANSTON CAN 100 2 B 1500 0.5 0.5 SIL

89 VT016 1 BROOKSTON CAN 100 1 D 1500 0.5 0.5 SIL

90 VT016 1 NOT MAPPED CAN 100 1 B 1500 0.5 0.5 SICL

91 VT016 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SIL

92 VT017 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SIL

93 VT017 1 COLWOOD CAN 100 2 C 1500 0.5 0.5 SIL

94 VT049 1 BRYANSTON CAN 100 2 B 1500 0.5 0.5 L

95 VT049 1 TEESWATER CAN 100 2 B 1500 0.5 0.5 SIL

96 VT050 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SIL

97 VT050 1 FANSHAWE CAN 100 2 B 1500 0.5 0.5 SIL

98 VT050 1 CAMILLA CAN 100 2 B 1500 0.5 0.5 SIL

99 VT051 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SL

100 VT051 1 CROMBIE CAN 100 2 C 1500 0.5 0.5 SIL

101 VT052 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SIL

102 VT053 1 BRYANSTON CAN 100 2 B 1500 0.5 0.5 SIL

103 VT053 1 FANSHAWE CAN 100 2 B 1500 0.5 0.5 SIL

104 VT055 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SIL

105 VT056 1 THORNDALE CAN 100 1 B 1500 0.5 0.5 SIL

106 VT056 1 CROMBIE CAN 100 2 C 1500 0.5 0.5 SIL

107 VT059 1 THORNDALE CAN 100 1 B 1500 0.5 0.5 SIL

108 VT059 1 EMBRO CAN 100 2 C 1500 0.5 0.5 SIL

109 VT059 1 EMBRO CAN 100 2 C 1500 0.5 0.5 SIL

110 VT059 1 NISSOURI CAN 100 1 C 1500 0.5 0.5 SIL

111 VT060 1 EMBRO CAN 100 2 C 1500 0.5 0.5 SIL

112 VT060 1 EMBRO CAN 100 2 C 1500 0.5 0.5 SIL

113 VT063 1 CROMBIE CAN 100 2 C 1500 0.5 0.5 SIL

114 VT065 1 EMBRO CAN 100 2 C 1500 0.5 0.5 SIL

115 VT065 1 COLWOOD CAN 100 2 C 1500 0.5 0.5 SIL

116 VT065 1 NISSOURI CAN 100 2 C 1500 0.5 0.5 L

117 VT065 1 EMBRO CAN 100 1 C 1500 0.5 0.5 SIL

118 VT065 1 TUSCOLA CAN 100 2 C 1500 0.5 0.5 L

119 VT066 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SIL

120 VT067 1 EMBRO CAN 100 2 C 1500 0.5 0.5 SIL

121 VT068 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SIL

122 VT068 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SIL

123 VT068 1 EMBRO CAN 100 2 C 1500 0.5 0.5 SIL

124 VT071 1 EMBRO CAN 100 2 C 1500 0.5 0.5 SIL

125 VT072 1 CROMBIE CAN 100 2 C 1500 0.5 0.5 SIL

126 VT072 1 BRYANSTON CAN 100 1 B 1500 0.5 0.5 L

127 VT075 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SIL

128 VT078 1 EMBRO CAN 100 2 C 1500 0.5 0.5 GSL

129 VT078 1 COLWOOD CAN 100 2 C 1500 0.5 0.5 SIL

130 VT079 1 EMBRO CAN 100 2 C 1500 0.5 0.5 SIL
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131 VT079 1 BURFORD CAN 100 2 A 1500 0.5 0.5 SIL

132 VT079 1 EMBRO CAN 100 2 C 1500 0.5 0.5 SIL

133 VT079 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SIL

134 VT079 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SIL

135 VT080 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 GSL

136 VT080 1 HURON CAN 100 2 C 1500 0.5 0.5 L

137 VT081 1 EMBRO CAN 100 2 C 1500 0.5 0.5 SIL

138 VT081 1 BURFORD CAN 100 2 A 1500 0.5 0.5 L

139 VT081 1 TUSCOLA CAN 100 2 C 1500 0.5 0.5 SIL

140 VT081 1 EMBRO CAN 100 2 C 1500 0.5 0.5 SIL

141 VT081 1 TUSCOLA CAN 100 2 C 1500 0.5 0.5 SIL

142 VT082 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SIL

143 VT082 1 FANSHAWE CAN 100 1 B 1500 0.5 0.5 SIL

144 VT082 1 CROMBIE CAN 100 2 C 1500 0.5 0.5 SIL

145 VT082 1 FANSHAWE CAN 100 2 B 1500 0.5 0.5 SICL

146 VT082 1 EMBRO CAN 100 2 C 1500 0.5 0.5 GSL

147 VT082 1 FANSHAWE CAN 100 1 B 1500 0.5 0.5 SIL

148 VT082 1 PERTH CAN 100 2 C 1500 0.5 0.5 SIL

149 VT082 1 BURFORD CAN 100 2 A 1500 0.5 0.5 SIL

150 VT082 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SIL

151 VT082 1 CROMBIE CAN 100 1 C 1500 0.5 0.5 SIL

152 VT082 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SIL

153 VT083 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SIL

154 VT083 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SIL

155 VT083 1 EMBRO CAN 100 2 C 1500 0.5 0.5 SICL

156 VT084 1 EMBRO CAN 100 2 C 1500 0.5 0.5 L

157 VT084 1 CROMBIE CAN 100 2 C 1500 0.5 0.5 SIL

158 VT084 1 PERTH CAN 100 2 C 1500 0.5 0.5 SIL

159 VT086 1 TUSCOLA CAN 100 2 C 1500 0.5 0.5 SIL

160 VT086 1 CROMBIE CAN 100 1 C 1500 0.5 0.5 SIL

161 VT086 1 CROMBIE CAN 100 1 C 1500 0.5 0.5 L

162 VT086 1 THORNDALE CAN 100 1 B 1500 0.5 0.5 SIL

163 VT087 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SIL

164 VT087 1 COLWOOD CAN 100 2 C 1500 0.5 0.5 SIL

165 VT087 1 EMBRO CAN 100 2 C 1500 0.5 0.5 SIL

166 VT087 1 EMBRO CAN 100 2 C 1500 0.5 0.5 SIL

167 VT087 1 CROMBIE CAN 100 1 C 1500 0.5 0.5 SIL

168 VT087 1 EMBRO CAN 100 2 C 1500 0.5 0.5 SIL

169 VT087 1 BRYANSTON CAN 100 2 B 1500 0.5 0.5 SIL

170 VT087 1 BRYANSTON CAN 100 1 B 1500 0.5 0.5 SIL

171 VT087 1 EMBRO CAN 100 2 C 1500 0.5 0.5 L

172 VT088 1 EMBRO CAN 100 2 C 1500 0.5 0.5 SIL

173 VT088 1 THORNDALE CAN 100 1 B 1500 0.5 0.5 SICL

174 VT089 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SIL

175 VT089 1 TUSCOLA CAN 100 2 C 1500 0.5 0.5 SIL

176 VT089 1 HURON CAN 100 2 C 1500 0.5 0.5 SIL

177 VT090 1 THORNDALE CAN 100 1 B 1500 0.5 0.5 SIL

178 VT090 1 PERTH CAN 100 2 C 1500 0.5 0.5 SICL

179 VT091 1 CROMBIE CAN 100 2 C 1500 0.5 0.5 SICL

180 VT091 1 NOT MAPPED CAN 100 1 C 1500 0.5 0.5 SIL

181 VT091 1 EMBRO CAN 100 2 C 1500 0.5 0.5 SL

182 VT091 1 EMBRO CAN 100 2 C 1500 0.5 0.5 SIL

183 VT091 1 PERTH CAN 100 2 C 1500 0.5 0.5 SICL

184 VT091 1 PERTH CAN 100 2 C 1500 0.5 0.5 SIL

185 VT093 1 BRYANSTON CAN 100 2 B 1500 0.5 0.5 SL

186 VT093 1 ERODED CHANNEL CAN 100 1 B 1500 0.5 0.5 SIL

187 VT093 1 BUILT UP AREA CAN 100 1 B 1500 0.5 0.5 SL

188 VT094 1 PERTH CAN 100 2 C 1500 0.5 0.5 SL

189 VT094 1 ERODED CHANNEL CAN 100 1 B 1500 0.5 0.5 SICL

190 VT094 1 THORNDALE CAN 100 1 B 1500 0.5 0.5 SICL

191 VT094 1 ERODED CHANNEL CAN 100 1 B 1500 0.5 0.5 SICL

192 VT094 1 BUILT UP AREA CAN 100 1 B 1500 0.5 0.5 SICL

193 VT094 1 PERTH CAN 100 1 C 1500 0.5 0.5 SICL

194 VT095 1 BUILT UP AREA CAN 100 1 C 1500 0.5 0.5 SIL

195 VT095 1 BUILT UP AREA CAN 100 1 C 1500 0.5 0.5 SIL

196 VT095 1 BUILT UP AREA CAN 100 1 C 1500 0.5 0.5 SIL

197 VT095 1 NOT MAPPED CAN 100 1 C 1500 0.5 0.5 SIL

198 VT096 1 PERTH CAN 100 2 C 1500 0.5 0.5 SIL

199 VT096 1 THORNDALE CAN 100 1 B 1500 0.5 0.5 SIL

200 VT096 1 HONEYWOOD CAN 100 1 B 1500 0.5 0.5 SIL
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Table A-2 Soil data attributes in SWAT set up 

201 VTW 1 BUILT UP AREA CAN 100 1 B 1500 0.5 0.5 SIL

202 VTPIT 1 BUILT UP AREA CAN 100 1 B 1500 0.5 0.5 SIL

203 VT094 1 BUILT UP AREA CAN 100 1 B 1500 0.5 0.5 SIL

204 VT094 1 TUSCOLA CAN 100 2 C 1500 0.5 0.5 SIL

205 VT094 1 HURON CAN 100 2 C 1500 0.5 0.5 SIL

206 VT095 1 BUILT UP AREA CAN 100 1 B 1500 0.5 0.5 SIL

207 VT095 1 BUILT UP AREA CAN 100 1 B 1500 0.5 0.5 SIL

208 VT095 1 BUILT UP AREA CAN 100 1 C 1500 0.5 0.5 SIL

209 VT095 1 BUILT UP AREA CAN 100 1 C 1500 0.5 0.5 SIL

210 VT096 1 BUILT UP AREA CAN 100 1 B 1500 0.5 0.5 SIL

211 VT096 1 BUILT UP AREA CAN 100 1 B 1500 0.5 0.5 SIL

212 VT096 1 BUILT UP AREA CAN 100 1 C 1500 0.5 0.5 SIL

213 VTW 1 BUILT UP AREA CAN 100 1 C 1500 0.5 0.5 SIL

214 VTPIT 1 BUILT UP AREA CAN 100 1 B 1500 0.5 0.5 SIL

215 VT094 1 BUILT UP AREA CAN 100 1 B 1500 0.5 0.5 L

216 VT094 1 BUILT UP AREA CAN 100 1 C 1500 0.5 0.5 SL

217 VT094 1 BUILT UP AREA CAN 100 1 C 1500 0.5 0.5 SL

218 VT095 1 BUILT UP AREA CAN 100 1 B 1500 0.5 0.5 SL

219 VT095 1 BUILT UP AREA CAN 100 1 B 1500 0.5 0.5 SL

220 VT095 1 BUILT UP AREA CAN 100 1 C 1500 0.5 0.5 SL

221 VT095 1 BUILT UP AREA CAN 100 1 C 1500 0.5 0.5 SL

222 VT096 1 COLWOOD CAN 100 2 C 1500 0.5 0.5 SL

223 VT096 1 ERODED CHANNEL CAN 100 1 B 1500 0.5 0.5 SL

224 VT096 1 BUILT UP AREA CAN 100 1 C 1500 0.5 0.5 SL

225 VTW 1 BUILT UP AREA CAN 100 1 B 1500 0.5 0.5 L

226 VTPIT 1 BUILT UP AREA CAN 100 1 C 1500 0.5 0.5 L

227 VT094 1 BUILT UP AREA CAN 100 1 B 1500 0.5 0.5 SIL

228 VT094 1 BUILT UP AREA CAN 100 1 C 1500 0.5 0.5 L

229 VT094 1 BUILT UP AREA CAN 100 1 B 1500 0.5 0.5 L

230 VT095 1 BUILT UP AREA CAN 100 1 C 1500 0.5 0.5 L

231 VT095 1 TUSCOLA CAN 100 2 C 1500 0.5 0.5 L

232 VT095 1 NOT MAPPED CAN 100 1 C 1500 0.5 0.5 L

233 VT095 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 LS

234 VT096 1 MAPLEWOOD CAN 100 2 C 1500 0.5 0.5 SIL

235 VT096 1 ERODED CHANNEL CAN 100 1 B 1500 0.5 0.5 L

236 VT096 1 BUILT UP AREA CAN 100 1 C 1500 0.5 0.5 SIL

237 VTW 1 BUILT UP AREA CAN 100 1 B 1500 0.5 0.5 SIL

238 VTPIT 1 BUILT UP AREA CAN 100 1 C 1500 0.5 0.5 SIL

239 VT094 1 BUILT UP AREA CAN 100 1 B 1500 0.5 0.5 SIL

240 VT094 1 FOX CAN 100 2 A 1500 0.5 0.5 SIL

241 VT094 1 EMBRO CAN 100 2 C 1500 0.5 0.5 SIL

242 VT095 1 TUSCOLA CAN 100 2 C 1500 0.5 0.5 L

243 VT095 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 L

244 VT095 1 HURON CAN 100 2 C 1500 0.5 0.5 L

245 VT095 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 L

246 VT096 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SL

247 VT096 1 THORNDALE CAN 100 1 B 1500 0.5 0.5 SIL

248 VT096 1 BRYANSTON CAN 100 2 B 1500 0.5 0.5 SIL

249 VTW 1 TUSCOLA CAN 100 2 C 1500 0.5 0.5 SIL

250 VTPIT 1 NOT MAPPED CAN 100 1 C 1500 0.5 0.5 SIL

251 VT094 1 NOT MAPPED CAN 100 1 C 1500 0.5 0.5 SIL

252 VT094 1 WATER CAN 100 1 C 1500 0.5 0.5 SIL

253 VT094 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SIL

254 VT095 1 ERODED CHANNEL CAN 100 1 B 1500 0.5 0.5 SL

255 VT095 1 EMBRO CAN 100 2 C 1500 0.5 0.5 SIL

256 VT095 1 EMBRO CAN 100 2 C 1500 0.5 0.5 SIL

257 VT095 1 EMBRO CAN 100 2 C 1500 0.5 0.5 SIL

258 VT096 1 EMBRO CAN 100 2 C 1500 0.5 0.5 SIL

259 VT096 1 EMBRO CAN 100 2 C 1500 0.5 0.5 SIL

260 VT095 1 EMBRO CAN 100 2 C 1500 0.5 0.5 SIL

261 VT095 1 PERTH CAN 100 2 C 1500 0.5 0.5 SICL

262 VT095 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SIL

263 VT096 1 PERTH CAN 100 2 C 1500 0.5 0.5 SICL

264 VT096 1 HURON CAN 100 2 C 1500 0.5 0.5 SIL

265 VT095 1 ERODED CHANNEL CAN 100 1 B 1500 0.5 0.5 SL

266 VT095 1 THORNDALE CAN 100 2 B 1500 0.5 0.5 SIL

267 VT095 1 NOT MAPPED CAN 100 1 B 1500 0.5 0.5 SIL
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OBJECTID SOL_Z1 SOL_BD1 SOL_AWC1 SOL_K1 SOL_CBN1 CLAY1 SILT1 SAND1 ROCK1 SOL_ALB1 USLE_K1 SOL_EC1

1 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.37 0

2 100 1.61 0.13 10.17 4.9 18 40 42 0 0.13 0.1 0

3 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.37 0

4 100 1.61 0.13 10.17 4.9 18 40 42 0 0.13 0.3 0

5 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

6 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

7 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

8 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

9 100 1.44 0.17 1.9 4.9 34 56 10 0 0.13 0.3 0

10 100 1.63 0.09 37.83 4.9 10 25 65 0 0.13 0.3 0

11 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

12 100 1.44 0.17 1.9 4.9 34 56 10 0 0.13 0.3 0

13 100 1.44 0.17 1.9 4.9 34 56 10 0 0.13 0.3 0

14 100 1.44 0.17 1.9 4.9 34 56 10 0 0.13 0.3 0

15 100 1.44 0.17 1.9 4.9 34 56 10 0 0.13 0.3 0

16 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

17 100 1.44 0.17 1.9 4.9 34 56 10 0 0.13 0.3 0

18 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

19 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

20 100 1.61 0.13 10.17 4.9 18 40 42 0 0.13 0.3 0

21 100 1.61 0.13 10.17 4.9 18 40 42 0 0.13 0.3 0

22 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

23 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

24 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

25 100 1.44 0.17 1.9 4.9 34 56 10 0 0.13 0.3 0

26 100 1.61 0.13 10.17 4.9 18 40 42 0 0.13 0.3 0

27 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

28 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

29 100 1.44 0.17 1.9 4.9 34 56 10 0 0.13 0.3 0

30 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

31 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

32 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

33 100 1.44 0.17 1.9 4.9 34 56 10 0 0.13 0.3 0

34 100 1.44 0.17 1.9 4.9 34 56 10 0 0.13 0.3 0

35 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

36 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

37 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

38 100 1.44 0.17 1.9 4.9 34 56 10 0 0.13 0.3 0

39 100 1.44 0.17 1.9 4.9 34 56 10 0 0.13 0.3 0

40 100 1.61 0.13 10.17 4.9 18 40 42 0 0.13 0.3 0

41 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

42 100 1.44 0.17 1.9 4.9 34 56 10 0 0.13 0.3 0

43 100 1.44 0.17 1.9 4.9 34 56 10 0 0.13 0.3 0

44 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

45 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

46 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

47 100 1.44 0.17 1.9 4.9 34 56 10 0 0.13 0.3 0

48 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

49 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

50 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

51 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

52 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

53 100 1.61 0.13 10.17 4.9 18 40 42 0 0.13 0.3 0

54 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

55 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

56 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

57 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

58 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

59 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

60 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0
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61 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

62 100 1.57 0.17 4.28 4.9 34 56 10 0 0.13 0.3 0

63 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

64 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

65 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

66 100 1.57 0.17 4.28 4.9 34 56 10 0 0.13 0.3 0

67 100 1.57 0.17 4.28 4.9 34 56 10 0 0.13 0.3 0

68 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

69 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

70 100 1.61 0.13 10.17 4.9 18 40 42 0 0.13 0.3 0

71 100 1.61 0.13 10.17 4.9 34 56 10 0 0.13 0.3 0

72 100 1.61 0.13 10.17 4.9 0 0 0 0 0.13 0.3 0

73 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

74 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

75 100 1.61 0.13 10.17 4.9 18 40 42 0 0.13 0.3 0

76 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

77 100 1.61 0.13 10.17 4.9 18 40 42 0 0.13 0.3 0

78 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

79 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

80 100 1.44 0.17 1.9 4.9 34 56 10 0 0.13 0.3 0

81 100 1.44 0.17 1.9 4.9 34 56 10 0 0.13 0.3 0

82 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

83 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

84 100 1.61 0.13 10.17 4.9 18 40 42 0 0.13 0.3 0

85 100 1.61 0.13 10.17 4.9 18 40 42 0 0.13 0.3 0

86 100 1.44 0.17 1.9 4.9 34 56 10 0 0.13 0.3 0

87 100 1.44 0.17 1.9 4.9 34 56 10 0 0.13 0.3 0

88 100 1.44 0.17 1.9 4.9 20 60 20 0 0.13 0.3 0

89 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

90 100 1.57 0.17 4.28 4.9 34 56 10 0 0.13 0.3 0

91 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

92 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

93 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

94 100 1.61 0.13 10.17 4.9 18 40 42 0 0.13 0.3 0

95 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

96 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

97 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

98 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

99 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

100 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

101 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

102 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

103 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

104 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

105 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

106 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

107 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

108 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

109 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

110 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

111 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

112 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

113 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

114 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

115 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

116 100 1.61 0.13 10.17 4.9 18 40 42 0 0.13 0.3 0

117 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

118 100 1.61 0.13 10.17 4.9 18 40 42 0 0.13 0.3 0

119 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

120 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0
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121 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

122 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

123 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

124 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

125 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

126 100 1.61 0.13 10.17 4.9 18 40 42 0 0.13 0.3 0

127 100 1.57 0.17 4.28 4.9 10 60 65 0 0.13 0.3 0

128 100 1.57 0.17 4.28 4.9 0 0 0 0 0.13 0.12 0

129 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

130 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

131 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

132 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

133 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

134 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

135 100 0 0 0 4.9 0 0 0 0 0.13 0.12 0

136 100 1.61 0.13 10.17 4.9 18 40 42 0 0.13 0.3 0

137 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

138 100 1.61 0.13 10.17 4.9 18 40 42 0 0.13 0.3 0

139 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

140 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

141 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

142 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

143 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

144 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

145 100 1.44 0.17 1.9 4.9 34 56 10 0 0.13 0.3 0

146 100 1.44 0.17 1.9 4.9 34 56 10 0 0.13 0.3 0

147 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

148 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

149 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

150 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

151 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

152 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

153 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

154 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

155 100 1.44 0.17 1.9 4.9 34 56 10 0 0.13 0.3 0

156 100 1.61 0.13 10.17 4.9 18 40 42 0 0.13 0.3 0

157 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

158 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

159 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

160 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

161 100 1.61 0.13 10.17 4.9 18 40 42 0 0.13 0.3 0

162 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

163 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

164 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

165 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

166 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

167 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

168 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

169 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

170 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

171 100 1.61 0.13 10.17 4.9 18 40 42 0 0.13 0.3 0

172 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

173 100 1.44 0.17 1.9 4.9 34 56 10 0 0.13 0.3 0

174 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

175 100 1.57 0.17 4.28 4.9 0 0 0 0 0.13 0.3 0

176 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

177 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

178 100 1.44 0.17 1.9 4.9 34 56 10 0 0.13 0.3 0

179 100 1.44 0.17 1.9 4.9 34 56 10 0 0.13 0.3 0

180 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0
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181 100 1.57 0.17 4.28 4.9 0 0 0 0 0.13 0.3 0

182 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

183 100 1.44 0.17 1.9 4.9 34 56 10 0 0.13 0.3 0

184 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

185 100 1.63 0.09 37.83 4.9 10 25 65 0 0.13 0.3 0

186 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

187 100 1.63 0.09 37.83 4.9 10 25 65 0 0.13 0.3 0

188 100 1.63 0.09 37.83 4.9 0 0 0 0 0.13 0.3 0

189 100 1.44 0.17 1.9 4.9 34 56 10 0 0.13 0.3 0

190 100 1.44 0.17 1.9 4.9 34 56 10 0 0.13 0.3 0

191 100 1.44 0.17 1.9 4.9 34 56 10 0 0.13 0.3 0

192 100 1.44 0.17 1.9 4.9 34 56 10 0 0.13 0.3 0

193 100 1.44 0.17 1.9 4.9 34 56 10 0 0.13 0.3 0

194 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

195 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

196 100 1.57 0.17 4.28 4.9 0 0 0 0 0.13 0.3 0

197 100 1.57 0.17 4.28 4.9 0 0 0 0 0.13 0.3 0

198 100 1.57 0.17 4.28 4.9 0 0 0 0 0.13 0.3 0

199 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

200 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

201 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

202 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

203 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

204 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

205 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

206 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

207 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

208 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

209 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

210 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

211 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

212 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

213 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

214 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

215 100 1.61 0.13 10.17 4.9 18 40 42 0 0.13 0.3 0

216 100 1.63 0.09 37.83 4.9 10 25 65 0 0.13 0.12 0

217 100 1.63 0.09 37.83 4.9 10 25 65 0 0.13 0.12 0

218 100 1.63 0.09 37.83 4.9 10 25 65 0 0.13 0.12 0

219 100 1.63 0.09 37.83 4.9 10 25 65 0 0.13 0.12 0

220 100 1.63 0.09 37.83 4.9 10 25 65 0 0.13 0.12 0

221 100 1.63 0.09 37.83 4.9 10 25 65 0 0.13 0.12 0

222 100 1.63 0.09 37.83 4.9 10 25 65 0 0.13 0.12 0

223 100 1.63 0.09 37.83 4.9 10 25 65 0 0.13 0.12 0

224 100 1.63 0.09 37.83 4.9 10 25 65 0 0.13 0.12 0

225 100 1.61 0.13 10.17 4.9 18 40 42 0 0.13 0.3 0

226 100 1.61 0.13 10.17 4.9 18 40 42 0 0.13 0.3 0

227 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

228 100 1.61 0.13 10.17 4.9 18 40 42 0 0.13 0.3 0

229 100 1.61 0.13 10.17 4.9 18 40 42 0 0.13 0.3 0

230 100 1.61 0.13 10.17 4.9 18 40 42 0 0.13 0.3 0

231 100 1.61 0.13 10.17 4.9 18 40 42 0 0.13 0.3 0

232 100 1.61 0.13 10.17 4.9 18 40 42 0 0.13 0.3 0

233 100 1.61 0.13 10.17 4.9 18 40 42 0 0.13 0.3 0

234 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

235 100 1.61 0.13 10.17 4.9 18 40 42 0 0.13 0.3 0

236 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

237 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

238 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

239 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

240 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0
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Table A-3 Soil data attributes for layer # (1) In SWAT set up 

 

      SLOPE             AREA            PERCENTAGE % 

        0-2.19                  13536.8196                 66.06 

                    >2.19                      6954.9104                33.94 

Table A-4 Slope reclassification in SWAT set up 

 

 

 

 

 

 

241 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

242 100 1.61 0.13 10.17 4.9 18 40 42 0 0.13 0.3 0

243 100 1.61 0.13 10.17 4.9 18 40 42 0 0.13 0.3 0

244 100 1.61 0.13 10.17 4.9 18 40 42 0 0.13 0.3 0

245 100 1.61 0.13 10.17 4.9 18 40 42 0 0.13 0.3 0

246 100 1.63 0.09 37.83 4.9 10 25 65 0 0.13 0.12 0

247 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

248 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

249 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

250 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

251 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

252 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

253 100 1.44 0.17 1.9 4.9 34 56 10 0 0.13 0.3 0

254 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

255 100 1.44 0.17 1.9 4.9 34 56 10 0 0.13 0.3 0

256 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

257 100 1.63 0.09 37.83 4.9 10 25 65 0 0.13 0.3 0

258 100 1.57 0.17 4.28 4.9 20 60 20 0 0.13 0.3 0

259 100 1.51 0.25 19.44 4.9 20 60 20 0 0.13 0.3 0

260 100 1.45 0.33 4.28 4.9 20 60 20 0 0.13 0.3 0

261 100 1.39 0.41 4.28 4.9 20 60 20 0 0.13 0.3 0

262 100 1.33 0.49 4.28 4.9 20 60 20 0 0.13 0.3 0

263 100 1.27 0.57 4.28 4.9 34 56 10 0 0.13 0.3 0

264 100 1.21 0.65 4.28 4.9 20 60 20 0 0.13 0.3 0

265 100 1.15 0.73 1.9 4.9 20 60 20 0 0.13 0.12 0

266 100 1.09 0.81 4.28 4.9 20 60 20 0 0.13 0.3 0

267 100 1.03 0.89 1.9 4.9 20 60 20 0 0.13 0.3 0
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LAND USE                               CODE                AREA (HA)          PERCENTAGE%                                                                          

                    Corn                                            CORN                          7174.3720             35.01 

                   Agricultural Land-Generic        AGRL                          3997.0248               19.51 

                Industrial                                     UIDU                           169.1709               0.83 

                 Agricultural Land-Row Crops   AGRR                          4234.9103             20.67 

       Water                                           WATR                         79.2813                 0.39 

                   Forest-Mixed                               FRST                           1619.7744              7.90 

                   Residential                                  URBN                          1162.1564              5.67 

                            Pasture                                        PAST                            313.1861               1.53 

                     Hay                                               HAY                           1524.5494             7.44 

             Range-Grasses                           RNGE                           489.4867                0.97 

                     Orchard                                       ORCD                          15.2352                  0.07 

                    Commercial                                UCOM                          3.9807                   0.02 

    

Table A-5 Land use reclassification SWAT set up 
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SOIL                                          AREA (HA)                        PERCENTAGE%                                                                          

                                              BEVERLY                                         46.6434                                   0.23 

                                            BROOKSTON                                  51.1660                                    0.25 

                                            BRYANSTON                                  368.2703                                  1.80 

                                        BUILT UP AREA                            1148.1196                                 5.60 

                                              BURFORD                                        298.9721                                 1.46 

                                              CAMILLA                                          6.7318                                    0.03 

                                              COLWOOD                                      747.9513                                   3.65 

                                              CROMBIE                                        569.4955                                   2.78 

                                      EMBRO                                            6147.4982                                30.00 

                                       ERODED CHANNEL                      526.1972                                  2.57 

                                             FANSHAWE                                    226.4435                                  1.11 

                                         FOX                                                  26.2187                                    0.13 

                                            HONEYWOOD                               30.1056                                     0.15 

                           HURON                                           719.8256                                   3.51 

                                            MAPLEWOOD                               360.2150                                   1.76 

                                             NISSOURI                                       17.3714                                     0.08 

                                           NOT MAPPED                                346.3867                                    1.69 

                              PERTH                                            2225.2425                                  10.86 

                                            TAVISTOCK                                   23.3113                                      0.11 

                               TAVISTOCK - TILL PHASE         303.5364                                    1.48 

                                            TEESWATER                                  9.3162                                        0.05 

                                            THORNDALE                                 4816.8899                                 23.51 

                                               TOLEDO                                         362.5076                                     1.77 

                                              TUSCOLA                                       336.7787                                    1.64 

                                       VALLEY COMPLEX                     722.2641                                     3.52 

                                VITTORIA - TILL PHASE             23.4155                                       0.11 

                                WATER                                           30.8559                                       0.15 

Table A-6 Soil reclassification in SWAT set up 
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Granton WWTP 

The water chemistry of Granton that is incorporated in SWAT model is attached in this 

table:-   

Figure A-2 TP concentration in Granton WWTP effluent 

Figure A-3 TN concentration in Granton WWTP effluent 

SWAT requires the input data of selected point source to be constant (average) daily 

loading, or in time step such as annual, monthly, or daily records. Due to the limited 

daily data of Granton WWTP, the average data of Granton plant were incorporated as 

shown in Table A-7. 
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Variable Value 

Flow (m
3
) 270 

Sediments (m) 3.13038 

Organic N (Kg) 0.7041214 

Organic P (kg) 0.0367 

Nitrate  NO3 (Kg) 4 

Ammonia NH3 (Kg) 0.022860009 

Nitrite NO2 (kg) 0.379 

Mineral P (Kg) 0.157 

CBOD Kg 0.321 

Table A-7 average daily variables in Granton WWTP effluent 

 Tile drainage parameters  

Note Value Parameters 

Depth of subsurface drain(mm) 900 DDRAIN_BSN 

Time to drain soil to field capacity (hours) 
24 TDRAIN-BSN 

Tile drain lag time (hours) 
3 GDRAIN_BSN 

effective radius of drain 50 RE-BSN 

Dist between two drains  15000 SDRAIN-BSN 

Drainage coefficient (default value)  10 DRAIN-CO-BSN 

Pump capacity (default value) 1.042 PC_BSN 

Multiplication factor (default value) 1 LATIKSATF_BSN 

Table A-8 Tile drainage parameters in SWAT input 
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Appendix B 

RCP 8.5 and A1B data 
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RCP 8.5 and A1B scenarios 

Precipitation and temperature data  

 

 

 

 

 

 

 

 

 

Figure A-4 future precipitation data for the period 2019 to 2040 under RCP 8.5 

 

 

Figure A-5 future min/max temperature Cᵒ for the period 2019 to 2040 under  

RCP 8.5 scenario 
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Figure A-6 future precipitation data for the period 2015 to 2045 under  

A1B scenario   

 

Figure A-7 future min/max temperature Cᵒ for the period 2015 to 2045 under  

A1B scenario 
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 RCP 8.5 Results 

   

 

 

 

Figure A-8 predicted Sediments (metric T) transported with water at the watershed 

outlet under RCP 8.5 scenario 
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