
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

1-31-2018 11:00 AM

Efficient Alignment Algorithms for DNA Sequencing Data Efficient Alignment Algorithms for DNA Sequencing Data

Nilesh Vinod Khiste, The University of Western Ontario

Supervisor: Lucian Ilie, The University of Western Ontario

: NA, The University of Western Ontario

: NA, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree

in Computer Science

© Nilesh Vinod Khiste 2018

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Bioinformatics Commons, Computational Biology Commons, Genomics Commons, and

the Other Computer Engineering Commons

Recommended Citation Recommended Citation
Khiste, Nilesh Vinod, "Efficient Alignment Algorithms for DNA Sequencing Data" (2018). Electronic Thesis
and Dissertation Repository. 5192.
https://ir.lib.uwo.ca/etd/5192

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F5192&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=ir.lib.uwo.ca%2Fetd%2F5192&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/28?utm_source=ir.lib.uwo.ca%2Fetd%2F5192&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/30?utm_source=ir.lib.uwo.ca%2Fetd%2F5192&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=ir.lib.uwo.ca%2Fetd%2F5192&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/5192?utm_source=ir.lib.uwo.ca%2Fetd%2F5192&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract

The DNA Next Generation Sequencing (NGS) technologies produce data at a low cost, en-

abling their application to many ambitious fields such as cancer research, disease control, per-

sonalized medicine etc. However, even after a decade of research, the modern aligners and

assemblers are far from providing efficient and error free genome alignments and assemblies

respectively. This is due to the inherent nature of the genome alignment and assembly prob-

lem, which involves many complexities. Many algorithms to address this problem have been

proposed over the years, but there still is a huge scope for improvement in this research space.

Many new genome alignment algorithms are proposed over time and one of the key differ-

entiators among these algorithms is the efficiency of the genome alignment process. I present a

new algorithm for efficiently finding Maximal Exact Matches (MEMs) between two genomes:

E-MEM (Efficient computation of maximal exact matches for very large genomes). Comput-

ing MEMs is one of the most time consuming step during the alignment process. E-MEM can

be used to find MEMs which are used as seeds in a genome aligner to increase its efficiency.

The E-MEM program is the most efficient algorithm as of today for computing MEMs, and it

surpasses all competitors by large margins.

There are many genome assembly algorithms available for use, but none produces perfect

genome assemblies. It is important that assemblies produced by these algorithms are evaluated

accurately and efficiently.This is necessary to make the right choice of the genome assembler

to be used for all the downstream research and analysis. A fast genome assembly evalua-

tor is a key factor when a new genome assembler is developed, to quickly evaluate the out-

come of the algorithm. I present a fast and efficient genome assembly evaluator called LASER

(Large genome ASsembly EvaluatoR), which is based on a leading genome assembly evaluator

QUAST, but significantly more efficient both in terms of memory and run time.

The NGS technologies limit the potential of genome assembly algorithms because of short

read lengths and nonuniform coverage. Recently, third generation sequencing technologies

have been proposed which promise very long reads and a uniform coverage. However, this

i

technology comes with its own drawback of high error rate of 10 - 15% consisting mostly of

indels. The long read sequencing data are useful only after error correction obtained using self

read alignment (or read overlapping) techniques. I propose a new self read alignment algorithm

for Pacific Biosciences sequencing data: HISEA (Hierarchical SEed Aligner), which has very

high sensitivity and precision as compared to other state-of-the-art aligners. HISEA is also

integrated into Canu assembly pipeline. Canu+HISEA produces better assemblies than Canu

with its default aligner MHAP, at a much lower coverage.

Keywords: Bioinformatics, De novo genome assembly, E-MEM, Genome assembly eval-

uation, HISEA, HiSeq, Illumina, LASER, Long read alignment, Maximal exact matches, Next-

generation sequencing, Pacific Biosciences, Sequence alignment

ii

It has been a very good experience coming back to academia after a long stint in industry.

However, it was a very tough decision to leave behind a set career path. I could not have done

it without the support of my family. I dedicate this work to them.

iii

Acknowlegements

I would like to express my sincere gratitude to everyone involved in the completion of

this dissertation. Most importantly, I would like to thank my supervisor Dr. Lucian Ilie for

introducing me to the amazing research field of Bioinformatics and string algorithms. His con-

tinuous encouragement helped me to explore various interesting problems in Bioinformatics

and use my research to propose efficient solutions for some of them. I really appreciate his

extraordinary patience in reviewing my manuscripts, research proposals, presentations and this

dissertation. His critical feedback and suggestions were always helpful in enhancing the qual-

ity of these documents. I am very grateful to my supervisor for the valuable time he spent

discussing my ideas and guiding me.

I am thankful to the Department of Computer Science at the University of Western Ontario

for awarding me with the Western Graduate Research Scholarship (WGRS). I am also grateful

to the Ministry of Training, Colleges and Universities (Ontario) for awarding me the Ontario

Graduate Scholarship (OGS) for two consecutive years.

I am also thankful to my examiners and members of my supervisory committee Dr. Ming

Li, Dr. Kathleen Hill, Dr. Roberto Solis-Oba, Dr. Anwar Haque and Dr. Kaizhong Zhang. I

am thankful to my colleagues Dr. Mike Molnar and Yiwei Li for all the technical discussions

around various topics. I would like to thank my friends and family members for their constant

support and encouragement which kept me going and led to the completion of this research

work, which is one of the biggest accomplishments of my life.

iv

Contents

Abstract i

Dedication iii

Acknowlegements iv

List of Figures x

List of Tables xiii

List of Appendices xv

1 Introduction 1

1.1 DNA sequencing . 3

1.1.1 Sanger method . 3

1.1.2 Next generation sequencing . 5

1.1.3 Third generation sequencing . 7

1.2 Maximal Exact Matches . 10

1.3 Assembly Evaluation . 11

1.4 Sequence Alignment . 12

2 Maximal Exact Matches: E-MEM 14

2.1 Background . 14

2.1.1 Basic Notions and Definitions . 14

Suffix tree and suffix array . 15

v

FM-index . 16

LCP interval . 17

2.1.2 MUMmer . 17

2.1.3 Vmatch . 17

Computation of MEMs using Enhanced Suffix Array 20

2.1.4 SparseMEM . 21

Computation of MEMs using Sparse Suffix Array 22

Parallelization technique in sparseMEM 23

2.1.5 EssaMEM . 24

2.1.6 BackwardMEM . 25

Computing Parent Intervals . 26

Computation of MEMs using the FM-index 27

Compressed Suffix Array implementation 28

2.1.7 SlaMEM . 29

Sampled LCP Array . 29

Sampled Smaller Values . 29

2.1.8 Comparison . 30

2.2 E-MEM algorithm . 31

2.3 Sequence Storage . 34

2.4 Efficient k-mer Storage . 34

2.5 Hash Table and hashing function . 35

2.6 Searching query . 36

2.7 Handling redundant MEM matches . 37

2.8 Dealing with ambiguous bases (N) . 38

2.9 Split parameter - memory reduction . 39

2.10 Very large number of MEMs . 39

2.11 Output formats . 40

vi

2.12 Results . 41

2.12.1 Evaluation . 41

2.12.2 Human vs Mouse . 42

Minimum MEM length 100 . 42

Minimum MEM length 300 . 45

2.12.3 Human vs Chimp . 47

Minimum MEM length 100 . 47

Minimum MEM length 300 . 49

2.12.4 Triticum aestivum vs Triticum durum 51

Minimum MEM length 100 . 51

Minimum MEM length 300 . 52

2.13 Conclusions . 54

3 Assembly Evaluation: LASER 55

3.1 Background . 55

3.2 QUAST Introduction . 57

3.2.1 Contig sizes . 58

3.2.2 Misassemblies and structural variations 59

3.2.3 Genome representation . 59

3.2.4 NAx and NGAx . 60

3.2.5 Visualizations . 60

Cumulative length . 61

Nx plot . 61

NAx plot . 62

NGx plot . 62

NGAx plot . 63

GC content plot . 63

3.3 LASER Improvements . 64

vii

3.3.1 E-MEM integration . 64

3.3.2 Code remodeling . 65

3.3.3 NUCmer changes . 65

3.4 Results . 65

3.5 Conclusions . 68

4 Genome Alignment: HISEA 69

4.1 Background . 69

4.1.1 BLASR . 73

4.1.2 DALIGNER . 74

4.1.3 GraphMap . 74

4.1.4 MHAP . 75

4.1.5 Minimap . 77

4.2 HISEA Introduction . 77

4.3 HISEA algorithm . 78

4.3.1 Storing reads and hashing the reference set 78

4.3.2 Searching the query set . 79

4.3.3 Filtering and clustering . 80

4.3.4 Computing and extending alignments 83

4.4 Alignment evaluation method . 86

4.4.1 Compute Dynamic Programming Alignment 87

4.4.2 Sensitivity computation . 88

4.4.3 Specificity computation . 89

4.4.4 Precision computation . 90

4.4.5 F1 score computation . 91

4.5 Results . 91

4.5.1 Alignment results . 92

Standalone comparison . 92

viii

Sensitivity - a deep dive . 95

Sensitivity vs overlap size . 97

MHAP sketch size and Minimap minimizers 98

4.5.2 Assembly results . 100

Sensitivity of HISEA and MHAP - assembly pipeline 101

4.6 Conclusions . 115

5 Conclusions and Future Research 116

5.1 Conclusions . 116

5.2 Future research . 117

Bibliography 119

A E-MEM Results For MEM Computation 126

A.1 Human vs Mouse . 127

A.1.1 Minimum MEM length 100 . 127

A.1.2 Minimum MEM length 300 . 128

A.2 Human vs Chimp . 129

A.2.1 Minimum MEM length 100 . 129

A.2.2 Minimum MEM length 300 . 130

A.3 Triticum aestivum vs Triticum durum . 131

A.3.1 Minimum MEM length 100 . 131

A.3.2 Minimum MEM length 300 . 131

Curriculum Vitae 132

ix

List of Figures

1.1 DNA molecule structure [7] . 2

1.2 Comparison of Sanger methods - gel-electrophoresis ladder (left) and flores-

cent labels (right) [53]. The arrow shows the direction of DNA sequence from

5’ end to 3’ end. 5

1.3 Bridge amplification of DNA fragments in Illumina technologies [41]. 7

1.4 (A) ZMW containing template and polymerase. (B) Event sequence of DNA

incorporation [20]. 8

1.5 Pacific Biosciences unbiased coverage [9]. 9

1.6 Pacific Biosciences Consensus Accuracy [8] 9

1.7 Alignment example. 12

2.1 The suffix tree for S = acaaacatat [2]. 15

2.2 The lcp-interval tree of the string S = acaaacatat [2]. 18

2.3 k-mer hashing technique: only the k-mers shown are stored 34

2.4 Efficient k-mer matching . 36

2.5 Redundant MEMs . 37

2.6 Example: 3-column output . 40

2.7 Example: 4-column output . 41

2.8 Homo sapiens vs Mus musculus; MEMs of minimum length 100. The top plot

is for serial mode, the bottom for parallel. Note the different scale of the plots. . 44

2.9 Homo sapiens vs Mus musculus; MEMs of minimum length 300. The top plot

is for serial mode, the bottom for parallel. Note the different scale of the plots. . 46

x

2.10 Homo sapiens vs Pan troglodytes; MEMs of minimum length 100. The top plot

is for serial mode, the bottom for parallel. Note the different scale of the plots. . 48

2.11 Homo sapiens vs Pan troglodytes; MEMs of minimum length 300. The top plot

is for serial mode, the bottom for parallel. Note the different scale of the plots. . 50

2.12 Triticum aestivum vs Triticum durum; MEMs of minimum length 100. 52

2.13 Triticum aestivum vs Triticum durum; MEMs of minimum length 300. 53

3.1 N50 example. 56

3.2 QUAST genome assembly evaluation flow [24]. 56

3.3 Structural Variations [25] . 59

3.4 Cumulative contig length . 61

3.5 Nx values . 61

3.6 NAx values . 62

3.7 NGx values . 62

3.8 NGAx values . 63

3.9 GC content . 64

3.10 Visual performance comparison of QUAST and LASER 67

4.1 Alignment example. 69

4.2 Global vs Local Alignment [14] . 70

4.3 Overview of BLASR algorithm; Chaisson et al. [16] 73

4.4 MinHash overview; Berlin et al. [6] . 76

4.5 All k-mer matches between reads q and r before (a) and after (b) clustering. . . 80

4.6 Computing the alignment. The dark grey region contains all k-mer matches

and is extended by the light grey ones using k′-mer matches. 83

4.7 Relationship between alignments reported by program and real alignments . . . 86

4.8 Sensitivity as a function of mean overlap length. 97

4.9 Mummer plot for E.coli 30x . 105

xi

4.10 Mummer plot for E.coli 50x . 106

4.11 Mummer plot for S.cerevisiae 30x . 107

4.12 Mummer plot for S.cerevisiae 50x . 108

4.13 Mummer plot for C.elegans 30x . 109

4.14 Mummer plot for C.elegans 50x . 110

4.15 Mummer plot for A.thaliana 30x . 111

4.16 Mummer plot for A.thaliana 50x . 112

4.17 Mummer plot for D.melanogaster 30x . 113

4.18 Mummer plot for D.melanogaster 50x . 114

xii

List of Tables

1.1 Output information for Illumina large scale sequencing platforms. 6

2.1 FM-index of the string S = acaaacatat . 16

2.2 Count array C[p] . 17

2.3 Suffix array of the string S = acaaacatat with LCP: Longest Common Prefix,

BWT: BurrowsWheeler transform, SA: Suffix Array, ISA: Inverse Suffix Array,

child table and suffix link tables. 20

2.4 Sparse suffix array of the string S = acaaacatat with LCP, and ISA 21

2.5 PS V and NS V tables of the string S = acaaacatat. 27

2.6 A nutshell comparison of applications. Notations used in the table: ST (Suf-

fix Tree); ESA (Enhanced Suffix Array); SSA (Sparse Suffix Array); ESSA

(Enhanced Sparse Suffix Array); LCP (Longest Common Prefix); CT (Child

Table); BS (Binary Search). 31

2.7 Genomes used for testing . 42

3.1 Sequencing data used for comparison . 66

3.2 Assembly generation and evaluation time comparison 66

3.3 QUAST and LASER comparison . 67

4.1 Smith-Waterman alignment for sequences TGGTTACT and TAGTAGTTACT . 72

4.2 SMRT datasets used in for evaluation . 92

4.3 Comparison for the 1 Gbp datasets. 93

4.4 Time and memory comparison for the 1 Gbp datasets. 95

xiii

4.5 Comparison of several types of sensitivity computations on the 1 Gbp datasets. 96

4.6 Effect of increasing sketch size on MHAP sensitivity. 99

4.7 Effect of increasing number of minimizers on Minimap sensitivity. 100

4.8 Sensitivity, specificity, precision and F1-score for HISEA and MHAP program

output within the Canu pipeline. 101

4.9 Assembly comparison; Canu assembler is used with MHAP and HISEA as read

aligners. 103

4.10 Assembly time and space comparison. 104

A.1 Homo sapiens vs Mus musculus; MEMs of minimum length 100. 127

A.2 Homo sapiens vs Mus musculus; MEMs of minimum length 300. 128

A.3 Homo sapiens vs Pan troglodytes; MEMs of minimum length 100. 129

A.4 Homo sapiens vs Pan troglodytes; MEMs of minimum length 300. 130

A.5 Triticum aestivum vs Triticum durum; MEMs of minimum length 100. 131

A.6 Triticum aestivum vs Triticum durum; MEMs of minimum length 300. 131

xiv

List of Appendices

Appendix A . 126

xv

Chapter 1

Introduction

It has been known for decades that evolution is a change in inherited characteristics of biolog-

ical populations. In 1859, Charles Darwin was the first person to propose a scientific theory

of evolution which was associated with the population genetics theory. Population genetics is

the study of the frequency and interactions of alleles and genes in populations. A gene is the

molecular unit of heredity of a living organism. The genetic information within a particular

gene may not be the same for different organisms and therefore different copies of a gene may

give different instructions. Each unique form of a single gene is called an allele. As an exam-

ple, one allele for the gene for hair color could instruct the body to produce a lot of pigment,

producing black hair, while a different allele of the same gene might give garbled instructions

that fail to produce any pigment, giving white hair.

Genes are made from a long molecule called DNA (Deoxyribonucleic acid), which is

copied and inherited across generations. DNA is a molecule that encodes the genetic instruc-

tions used in the development and functioning of all known living organisms and many viruses.

DNA molecules consist of a double stranded structure forming a double helix. The two DNA

strands are known as polynucleotides since they are composed of simpler units called nu-

cleotides. Each nucleotide is composed of a nitrogen-containing nucleobase, either guanine

(G), adenine (A), thymine (T), or cytosine (C) as well as a monosaccharide sugar called de-

1

2 Chapter 1. Introduction

oxyribose and a phosphate group. The nucleotides are joined to one another in a chain by

covalent bonds between the sugar of one nucleotide and the phosphate of the next, resulting

in an alternating sugar-phosphate backbone. According to base pairing rules (A with T and C

with G), hydrogen bonds bind the nitrogenous bases of the two separate polynucleotide strands

to make double-stranded DNA. The two strands of DNA run in opposite directions. The two

ends of a single stranded DNA in forward direction are identified by 5’ (five prime) and 3’

(three prime) ends. Figure 1.1 shows a DNA molecule structure with A-T and G-C hydrogen

bonds.

Figure 1.1: DNA molecule structure [7]

DNA sequencing is the process of determining the precise order of nucleotides within a

DNA molecule. It includes any method that is used to determine the order of the four bases

in a strand of DNA. The advent of rapid DNA sequencing methods has greatly accelerated

biological and medical research and discovery.

1.1. DNA sequencing 3

1.1 DNA sequencing

The attempt for gene sequencing started in the early 1970s and the first known successful gene

sequencing was done by Gilbert and Maxam [23] in 1973. They were able to produce a gene

sequence of 24 base pairs by a method known as wandering-spot analysis. The method was

very labor intensive and time consuming when used with real biological datasets, given the ex-

treme length of biological sequences. This situation changed when Frederick Sanger developed

several faster, more efficient techniques to sequence DNA. Frederick Sanger’s work [51] in this

area was groundbreaking and it led to his being a recipient of the Nobel Prize in Chemistry in

1980. Although the basic Sanger method was still being used to sequence whole genomes, time

and cost considerations continued to make it expensive, thus limiting the number of genomes

that could be completed. Using Sanger sequencing, the Human Genome Project took more

than 10 years and incurred a cost of nearly $3 billion [1].

1.1.1 Sanger method

The Sanger sequencing method [51], also know as chain-termination method requires a single-

stranded DNA template, a DNA primer, a DNA polymerase, normal deoxynucleotidetriphos-

phates (dNTPs), and modified di-deoxynucleotidetriphosphates (ddNTPs) for sequencing to be

performed. In this method, the templates are divided into four separate sequencing reactions

containing DNA polymerase and all four dNTPs. Only one ddNTP is added to each sample

which produces many DNA polymerized sequences of varying length each ending in corre-

sponding ddNTP. These polymerized sequences can then be separated by a technique called

gel-electrophoresis based on sequence length. The base identification is performed by dena-

turing polyacrylamide-urea gel with each of the four reactions. The terminal ddNTP indicates

whether an A, T, G, or C occurs in that position on the template strand. When a gel is stained

with a DNA-binding dye, the DNA fragments can be seen as bands, each representing a group

of same-sized DNA fragments. The DNA bands are then visualized by radiography or UV

4 Chapter 1. Introduction

light.

Over the years, this process has been greatly simplified. The sequencing can be performed

in a single reaction. The chain termination based kits are commercially available which are

ready to use and contain all the reagents needed for sequencing. The DNA polymerized se-

quences are terminated by incorporating fluorescently labeled nucleotide thereby producing a

DNA ladder which makes it easier to determine the DNA sequence of the original DNA frag-

ment. The process is repeated many times until it is guaranteed that a ddNTP is incorporated

at every single position of template DNA. At this point, the samples contain fragments of dif-

ferent lengths, ending at each of the nucleotide positions in the DNA template. Figure 1.2

shows a comparison between two sequencing techniques - a gel based radioactive method and

a fluorescent method. The image on the left is an example of the Sanger method using the

gel-electrophoresis ladder. The image on the right is the automated Sanger method using flo-

rescent labels through a capillary tube [53]. The short fragments move faster and pass through

the capillary tube first followed by longer fragments. The smallest fragment is created by in-

corporating only one nucleotide after the primer. The color of the dye is used for detection of

nucleotide at the end of the tube, which produces original DNA sequence - one nucleotide at a

time.

The Sanger method was expensive and time consuming due to usage of gels. It limited

the application of this method to small viruses and bacterial genomes. New sequencing meth-

ods [54] utilizing automated reloading of the capillaries with polymer matrix instead of slab

gels were introduced to speed up the sequencing process. The automated sequencing methods

increased total throughput and decreased costs gradually for Sanger sequencing. These auto-

mated methods were successfully employed in the human genome project and reduced both

cost and time required to complete the project.

Sanger sequencing provided remarkable opportunities to life sciences and improved the

knowledge and understanding of cellular mechanisms and diseases. However, limitations in-

cluding throughput, speed and sequencing quality remained big obstacles in its widespread

1.1. DNA sequencing 5

Figure 1.2: Comparison of Sanger methods - gel-electrophoresis ladder (left) and florescent
labels (right) [53]. The arrow shows the direction of DNA sequence from 5’ end to 3’ end.

application to various genomics projects. Several new methods for DNA sequencing were de-

veloped in the mid to late 1990s. These techniques comprise many next-generation sequencing

(NGS) methods. All of NGS techniques achieve high throughput by simultaneously sequenc-

ing many DNA sequence templates.

1.1.2 Next generation sequencing

NGS techniques are inexpensive and produce an enormous amount of sequencing data in a

short amount of time. The data produced by NGS is much cheaper and faster to obtain than the

Sanger reads, however the data contain more errors. Some of the NGS platforms are Roche 454,

Ion Torrent and Illumina. The most popular NGS platform is Illumina, which has dominated

sequencing space for the last decade. It can sequence small fragments of DNA, called reads,

that are between 100 to 300 bp long. The details of current Illumina platforms are listed in

Table 1.1.

6 Chapter 1. Introduction

Table 1.1: Output information for Illumina large scale sequencing platforms.

Sequencing Maximum Maximum Maximum
Platform Read Length Reads Per Run Output

NextSeq 2 x 150 bp 400 million 120 Gb
HiSeq 2000 2 x 100 bp 2 billion 200 Gb
HiSeq 2500 (High output mode) 2 x 125 bp 4 billion 1000 Gb
HiSeq 2500 (Rapid run mode) 2 x 250 bp 600 million 300 Gb
HiSeq 3000 2 x 150 bp 2.5 billion 750 Gb
HiSeq 4000 2 x 150 bp 5 billion 1500 Gb
HiSeqX Ten 2 x 150 bp 6 billion 1800 Gb
NovaSeq 2 x 150 bp 20 billion 6000 Gb

The Illumina sequencing technology can be summarized in three core steps - amplify, se-

quence and analyze. The process begins by breaking up a DNA sequence into smaller frag-

ments. These fragments are attached with adapters. An adapter is the oligos bound to the 5’

and 3’ end of each DNA fragment which act as a reference points throughout the rest of the

process. The modified DNA is immobilized on a flow cell surface, called cluster station, which

facilitates access to enzymes while ensuring stability of surface bound DNA templates. The

DNA is then amplified by adding unlabeled nucleotides through a process called bridge am-

plification. During this process, the enzymes incorporate nucleotides to build double-stranded

bridges on the surface and then make copies of it. Several million copies of double stranded

DNA are generated in each cluster of the flow cell. Primers and flourescently labeled termina-

tors are added to the flow cell that allow primers to add only one nucleotide at a time. A camera

is used to take a picture of the cell and a computer determines the base by the wavelength of

the fluorescent tag. The process of Illumina sequencing is described in Figure 1.3.

One of the biggest drawback of Illumina technology is the short read length produced by it.

Illumina sequencing platform also suffers from biases. A bias in DNA sequencing technology

is defined as the deviation from the ideal uniform distribution of reads. Both, the short reads

and bias limit the application of Illumina sequencing data in downstream applications.

Recently, the focus has shifted from NGS technologies to Third Generation Sequencing

1.1. DNA sequencing 7

Figure 1.3: Bridge amplification of DNA fragments in Illumina technologies [41].

technologies. One of the most promising third generation sequencing technology is Pacific

Biosciences SMRT (Single Molecule, Real Time) sequencing. The SMRT sequencing technol-

ogy produces very long reads (> 60Kbp) and uniform coverage across the genome but has

error rates even higher than NGS technologies.

1.1.3 Third generation sequencing

SMRT relies on sequencing by synthesis approach and real time detection of incorporated flu-

orescently labeled nucleotides. It is a parallelized single molecule DNA sequencing method.

The two core elements of SMRT sequencing are zero-mode waveguides (ZMWs) and phos-

pholinked nucleotides. The process begins by affixing a single DNA molecule and DNA poly-

merase at the bottom of the ZMW as shown in Figure 1.4 (A). ZMWs allow light to illuminate

only at the bottom of the well as a DNA molecule is incorporated. Phospholinked nucleotides

allow observation of the DNA strand as it is produced. The four bases are tagged with differ-

ent florescent dyes and are attached to the phosphate chain of the nucleotide. When the DNA

molecule is incorporated, the florescent dye is cleaved off from the phosphate chain. A detec-

8 Chapter 1. Introduction

tor detects the fluorescent signal and the base call is made according to the color of the dye.

Figure1.4 (B), shows the details of the incorporation process.

Figure 1.4: (A) ZMW containing template and polymerase. (B) Event sequence of DNA in-
corporation [20].

The Pacific Biosciences SMRT technology offers long reads with relatively higher error

rate (15 − 20%) compared to NGS technologies. The technology is free from biases due to

GC rich regions of the genome [49]. For NGS, the coverage levels drop significantly in GC

rich regions which makes it impossible to reconstruct these regions of the genome. Since these

biases do not exist in SMRT technology, it ensures the uniform coverage of entire genome.

Coverage is defined as the average number of times each base pair in a genome is sequenced.

Given a dataset of n reads of length l with a genome length of L, the coverage is defined as:

Coverage = n×l
L

Unlike NGS, the single molecule technology does not require DNA amplification and there-

fore sampling related biases are also not present. A coverage plot against GC% was plotted for

A.thaliana genome and shown in Figure 1.5.

The sampling of reads and the errors in reads are completely random. Hence, with sufficient

coverage, the effect of high error rate can be mitigated. Figure 1.6 shows a plot between phred

quality value and amount of coverage. Phred quality value (QV) is defined as Q = −10 log10P,

where P is the base calling error probabilities. Clearly, it can be seen that as the coverage

increases, higher accuracy can be achieved. For this example, 80x coverage results in perfect

1.1. DNA sequencing 9

Figure 1.5: Pacific Biosciences unbiased coverage [9].

consensus. A consensus sequence is a DNA sequence which is used to describe a number of

related but non identical sequences. A perfect consensus sequencing data has 100% coverage

of nucleotides in reference genome.

Figure 1.6: Pacific Biosciences Consensus Accuracy [8]

10 Chapter 1. Introduction

1.2 Maximal Exact Matches

In the remaining part of the introduction, we describe the problems that we are interested in

this thesis. In this section, we describe the Maximal Exact Matches (MEMs) computation prob-

lem followed by two other sections where we describe the assembly evaluation and sequence

alignment problems. MEMs play an important role in genome alignments and comparisons

when sequences are relatively similar. MEMs act as seeds in the alignment of high-throughput

sequencing reads and are used as anchor points in genome-genome comparisons. Recently,

MEMs have been used in Jabba [42] for error correction of long reads obtained from third gen-

eration sequencing platforms like Pacific Biosciences and Oxford Nanopore. MEMs are exact

matches between two sequences that cannot be extended in either direction without allowing

for a mismatch. A related concept with an additional constraint of having a single unique copy

in each sequence, called maximal unique matches (MUMs), is also used widely for the same

purpose. There are two popular algorithmic approaches have been used in past for computa-

tion of MEMs. In the first approach, a compressed index structure of concatenation of both

sequences is created and MEMs are computed by iterating over the index structure. This ap-

proach has higher memory requirement as both the sequences are used for index creation. In

the second approach, the index is created for one of the sequences (reference), and MEMs are

computed by matching the second sequence (query) against the index. The second approach

has obvious advantages over the first approach in terms of size and re-usability of the index

structure.

The E-MEM [30] algorithm is based on the second approach discussed above, where it cre-

ates an index for the reference sequence and then computes MEMs by matching and extending

k-mers from the query sequence. A k-mer is defined as a small sequence of k characters in the

DNA sequence. E-MEM surpasses the state-of-the-art in MEM computation. The details of

E-MEM algorithm and techniques are discussed in Chapter 2.

1.3. Assembly Evaluation 11

1.3 Assembly Evaluation

Genome assembly is one of the most fundamental problems in Bioinformatics, with many

applications. A genome assembler is a program which is used to construct the original DNA

(or genome) sequence from the reads produced by DNA sequencing. The degree of accuracy

in recreating the original DNA from fragments (reads) depends on the error rate, coverage

and the relationship between the length of reads and the length of repeats in the DNA being

assembled. Assuming low error rate and sufficient coverage, the solution largely depends on

the lengths of reads and repeats. A repeat is a pattern of DNA sequences which occur in

multiple copies throughout the genome. If all repeats are shorter than read length, the solution

is trivial. If some repeats are larger than read length, the solution requires trying an exponential

number of arrangements which can be computationally very expensive. If most of the repeats

are larger than read length, it might be impossible to reconstruct the genome even after trying

an exponential number of arrangements. The coverage plays an equally important role, no

coverage or very low coverage can adversely affect the accuracy and reconstruction of the

genome. Based on the available sequencing technologies, most of the full genome sequences

cannot be reconstructed efficiently and reliably. Rather, a fragmented and generally error-prone

assembly is produced. Numerous algorithms have been developed and newer algorithms are

proposed all the time, trying to achieve accurate genome assembly and longer contigs. A contig

is a set of overlapping DNA segments that together represent a consensus region of DNA. It is

important to evaluate the quality of produced assembly before being used in further research.

The LASER [29] program is a highly efficient version of the QUAST [25] program, which

is more than five times faster and requires only half the memory for large genomes. LASER

replaces MUMmer [34, 19, 18] with E-MEM for the MEM computation module in QUAST

and makes other changes which result in significant performance improvements. The details

of the changes for the LASER program are discussed in Chapter 3.

12 Chapter 1. Introduction

1.4 Sequence Alignment

Genome or sequence alignment algorithms have been around for more than half a century now.

These algorithms have been improved over the years to enhance performance. Figure 1.7 shows

a simple example of genome alignment between sequences GAACTA and TAGAA. The gaps

or mismatches in the alignment are shown with an underscore character.

Figure 1.7: Alignment example.

In the last decade, many new algorithms have been developed which are specific to a given

sequencing technology. In particular, we are interested in alignment algorithms developed for

Pacific Biosciences SMRT sequencing technology. This is a challenging problem because none

of the previously developed approaches work well with SMRT data. The SMRT sequencing

data suffers from very high error rate, most of the errors being indels. Indels refers to an

insertion or deletion of nucleotides in the genome of an organism. Further, long read length

also poses a significant challenge in maintaining good performance.

The HISEA [31] algorithm is developed in an effort to improve the currently available long

read alignment algorithms. An alignment is a way of arranging the DNA sequences to identify

regions of similarity which exists due to evolutionary relationships between the sequences.

The goal was to develop an aligner with a very high sensitivity and specificity. Sensitivity and

Specificity are statistical measures which compute true positive rate and true negative rate in

a given sample of data respectively. The HISEA program consists of many newly developed

algorithms which contribute in making it the most sensitive aligner among the other state-

of-the-art long read aligners. HISEA is integrated into the Canu assembly pipeline which

produces better assemblies than default the Canu pipeline [33]. This validates our hypothesis

that a more sensitive aligner can improve the quality of assembly produced by the genome

1.4. Sequence Alignment 13

assembly pipelines for long read sequencing data. The details of the algorithms and techniques

for HISEA are discussed in Chapter 4.

Chapter 2

Maximal Exact Matches: E-MEM

2.1 Background

The work outlined here is based on our publication of a new and efficient algorithm for com-

puting Maximal Exact Matches, called E-MEM [30]. E-MEM computes all MEMs larger than

a given minimum length between two sets of genome sequences. The first set is called a refer-

ence sequence and the second is called a query sequence. E-MEM is the best available MEMs

computation program in terms of performance. Our program beats all competition with a large

margin especially when it comes to large genomes.

2.1.1 Basic Notions and Definitions

Let Σ = {$, A,C,G,T,N} be a finite alphabet of ordered characters and let Σ∗ be the set of

all strings over Σ, including the empty string ε. The lexicographical order of characters is

$ < A < C < G < T < N, where ’N’ represents an ambiguous base and ’$’ is a sentinel

character. Let S is a string of length n over Σ which is always terminated by the character $.

For 0 ≤ i < n, S [i] denotes the character at position i in S . For i ≤ j, S [i.. j] denotes the

substring of S starting with the character at position i and ending with the character at position

j. The substring S [i.. j] is also denoted by the pair (i, j) of positions.

14

2.1. Background 15

Figure 2.1: The suffix tree for S = acaaacatat [2].

Suffix tree and suffix array

Given a string S of n characters, a suffix tree for the string S is a rooted directed tree with

exactly n + 1 leaves numbered 0 to n. Each internal node, other than the root, has at least two

children and each edge is labeled with a nonempty substring of S $. No two edges out of a

node can have edge-labels beginning with the same character. The key feature of the suffix tree

is that for any leaf i, the concatenation of the edge-labels on the path from the root to leaf i

exactly spells out the string S i, where S i = S [i...n − 1]$ denotes the i−th nonempty suffix of

the string S $, 0 ≤ i ≤ n. Figure 2.1 shows the suffix tree for the string S = acaaacatat.

The suffix array S A of the string S is an array of integers in the range 0 to n, specifying

the lexicographic ordering of the n + 1 suffixes of the string S $. That is, S S A[0], S S A[1], ..., S S A[n]

is the sequence of suffixes of S $ in ascending lexicographic order as shown in Table 2.3. The

suffix array requires 4n (8n on 64-bit) bytes of memory hence it is not very memory efficient

and cannot be used for large sequences.

The lcp-table LCP (Longest Common Prefix) is an array of integers in the range 0 to n. We

define LCP[0] = 0 and LCP[i] to be the length of the longest common prefix of S S A[i−1] and

S S A[i], for 0 ≤ i ≤ n. The lcp-table can be computed as a by-product during the construction of

the suffix array or alternatively, in linear time from the suffix array. The lcp-table requires 4n

(8n on 64-bit) bytes in the worst case.

The inverse suffix array ISA is a table of size n + 1 such that IS A[S A[q]] = q for any

16 Chapter 2. Maximal ExactMatches: E-MEM

Table 2.1: FM-index of the string S = acaaacatat

Occurrence table

BWT t c a $ a c t a a a a

i 0 1 2 3 4 5 6 7 8 9 10

$ 0 0 0 1 1 1 1 1 1 1 1

a 0 0 1 1 2 2 2 3 4 5 6

c 0 1 1 1 1 2 2 2 2 2 2

t 1 1 1 1 1 1 2 2 2 2 2

0 ≤ q ≤ n. ISA can be computed in linear time from the suffix array and needs 4n bytes.

The table BWT [15] contains the Burrows and Wheeler transformation which is a popular

algorithm used in data compression. It is a table of size n + 1 such that for every i, 0 ≤ i ≤ n,

BWT [i] = S [S A[i] − 1] if S A[i] , 0. BWT [i] is undefined if S A[i] = 0. The table BWT is

stored in n bytes and constructed in one scan over the suffix array in O(n) time.

FM-index

An FM-index [22] is a compressed full-text substring index based on the BWT, with some

similarities to the suffix array. It consists of BWT , Count array C[p] and Occurrence table

Occ(p, k). Tables 2.2 and 2.1 show an example of FM-index data structure for string S =

acaaaacatat.

For each character p in alphabet, Count Array C[p] is defined as the number of occurrences

of lexically smaller characters in the string. The table Occ(p, k) is defined as the number of

occurrences of character p in BWT [0..k]. A major distinction between FM-index and suffix

array is the way searching is performed. FM-index searches strings backward while in suffix

array string matching is done in forward direction.

2.1. Background 17

Table 2.2: Count array C[p]

Count array of tca$actaaaa

p $ a c t

C[p] 0 1 7 9

LCP interval

An interval [i.. j], 0 ≤ i < j ≤ n, is an lcp-interval of lcp-value ` if

1. LCP[i] < `

2. LCP[k] ≥ ` for all k with i + 1 ≤ k ≤ j,

3. LCP[k] = ` for at least one k with i + 1 ≤ k ≤ j,

4. LCP[j + 1] < `

A shorthand notation `−interval (or ` − [i.. j]) for an lcp-interval [i.. j] of lcp-value ` is used.

Every index k, i + 1 ≤ k ≤ j, with LCP[k] = ` is called `−index. The set of all `−indices of an

`−interval [i.. j] is denoted by `Indices(i, j).

2.1.2 MUMmer

MUMmer [34, 19, 18] is a modular and versatile utility that relies on a suffix tree data structure

for efficient pattern matching. Suffix trees are suitable for large datasets because they can be

constructed and searched in linear time and space. However they have a large memory footprint

and that grows rapidly with increasing genome size.

2.1.3 Vmatch

Vmatch [2] is a collection of utilities based on Enhanced suffix array (ESA). The ESA is a data

structure consisting of a suffix array and additional tables required to mimic complete suffix

18 Chapter 2. Maximal ExactMatches: E-MEM

tree behavior. The concept of virtual LCP-interval tree was introduced as a part of ESA data

structure and it helps to simulate all kinds of suffix tree traversal very efficiently.

The classical method of solving the exact string matching problem using suffix array re-

quires O(m log n) time, where m is the length of pattern P and n is the length of the text. It was

later proved by Manber et al. [40] that it can be improved to O(m + log n) using an additional

table. With ESA, the exact string matching problem can be solved in O(m + z) time, where z is

the number of occurrences of pattern P in the reference string.

DEFINITION

An m−interval [l..r] is said to be embedded in an `−interval [i.. j] if it is a subinterval of [i.. j]

(i.e., i ≤ l < r ≤ j) and m > `. The `−interval [i.. j] is then called the interval enclosing [l..r].

If [i.. j] encloses [l..r] and there is no interval embedded in [i.. j] that also encloses [l..r], then

[l..r] is called a child interval of [i.. j].

Figure 2.2: The lcp-interval tree of the string S = acaaacatat [2].

Based on this definition, a parent-child relationship is created between lcp-intervals, which

is called an lcp-interval tree of the suffix array. The root node of this lcp-tree is 0 − [0..n].

The lcp-interval tree is equivalent to a suffix tree without leaves and there is a one-to-one

correspondence between the internal nodes of suffix tree and lcp-interval tree. A leaf of the

suffix tree which corresponds to a suffix S S A[l] can also be represented in lcp-interval tree with

a singleton interval [l..l]. Figure 2.2 shows an example of lcp-interval tree of the string S =

acaaacatat.

The suffix array approach of finding exact matches using binary search requires O(m log n)

2.1. Background 19

time. In order to get the optimal O(m) time complexity, one must be able to determine a child

interval in constant time from any lcp-interval ` − [i.. j] instead of O(log n) used for binary

search. This is achieved by an additional table called child table.

DEFINITION

The childtab is a table of size n + 1 indexed from 0 to n and each entry contains three values:

up, down, and next`Index. Formally, the values are defined as follows:

• childtab[i].up = min{q ε [0..i − 1] | LCP[q] > LCP[i] and ∀k ε [q + 1..i − 1] : LCP[k] ≥

LCP[q]}

• childtab[i].down = max{q ε [i+1..n] | LCP[q] > LCP[i] and ∀k ε [i+1..q−1] : LCP[k] >

LCP[q]}

• childtab[i].next`Index = min{q ε [i + 1..n] | LCP[q] = LCP[i] and ∀k ε [i + 1..q − 1] :

LCP[k] > LCP[i]}

The child table stores the parent-child relationship of lcp-intervals. If ` − [i.. j] is an

`−interval and i1 < i2 < ... < ik are the `−indices in ascending order, then child intervals of [i.. j]

are [i..i1 − 1], [i1..i2 − 1],...,[ik.. j]. Table 2.3 shows the child table of the string S = acaaacatat.

Now, we have to simulate suffix links using suffix arrays so that string matching is per-

formed in an efficient manner. It is a property of suffix trees that for any internal node v in the

tree with label aω, where a is a character and ω is a non-empty string, there exists an internal

node u with label ω. A pointer from node v to node u is called a suffix link of v.

DEFINITION

Let S S A[i] = aω. If index j, 0 ≤ j < n, satisfies S S A[j] = ω, then we denote j by link[i] and call

it the suffix link (index) of i.

The suffix link of i can be computed with the help of the ISA as follows

link[i] = IS A[S A[i] + 1].

20 Chapter 2. Maximal ExactMatches: E-MEM

Note that the suffix link interval obtained using ISA and S A may not correspond to the

actual lcp-interval. Given ` − [i.. j], the smallest lcp-interval [l..r] satisfying the inequality

l ≤ link[i] < link[j] ≤ r is called the suffix link interval of [i.. j]. The suffix link intervals are

stored at the first `−index position of interval ` − [i.. j] and lcp value of suffix link interval is

` − 1. Table 2.3 shows an example of suffix link interval of string S = acaaacatat.

Table 2.3: Suffix array of the string S = acaaacatat with LCP: Longest Common Prefix, BWT:
BurrowsWheeler transform, SA: Suffix Array, ISA: Inverse Suffix Array, child table and suffix
link tables.

childtab suflink
i S S A[i] BWT S A LCP ISA up down next`Index l r
0 $ t 10 0 3
1 aaacatat$ c 2 0 7 3 7
2 aacatat$ a 3 2 1 1 6
3 acaaacatat$ 0 1 2 2 4 5 0 10
4 acatat$ a 4 3 4 7 8
5 atat$ c 6 1 8 4 6
6 at$ t 8 2 5 9 10
7 caaacatat$ a 1 0 9 3 8 9
8 catat$ a 5 2 6 1 6
9 tat$ a 7 0 10 8 10

10 t$ a 9 1 0 0 10

Computation of MEMs using Enhanced Suffix Array

One approach of computing MEMs is to create an ESA of concatenation of sequences X and Y

of length m and n respectively. However, this approach is not space efficient. A space efficient

approach is to create ESA of X and then MEMs are computed by matching suffixes of Y against

the ESA of X. The following steps describe the MEMs computing algorithm (more details can

be found in [2]). A prefix of a string is a substring that occurs at the beginning of a string.

A suffix of a string is a substring that occurs at the end of a string. A left maximal match is

the match which cannot be extended in left of each sequence without a mismatch. Similarly, a

right maximal match cannot be extended to the right without a mismatch.

1. Create an ESA of string X.

2.1. Background 21

2. Match all suffixes of Y against ESA of X , starting with the longest suffix.

3. Find lower and upper bounds (i.e. LCP intervals of X say [l..r]) of a longest prefix match

of suffix Y . All the prefixes found are right maximal.

4. Do a depth first traversal (on the virtual LCP interval tree) of all right maximal LCP

intervals found in the previous step. Each time a leaf node is encountered, check if

X[i− 1] , Y[j− 1], where i = S A[l′], l′ is the singleton lcp-interval corresponding to the

leaf node and j is the current suffix position in Y .

5. The match found is longer than minimum MEM length, report it as MEM.

6. Continue with next suffix of Y .

The MEMs computing algorithm using ESA requires much less memory compared to suffix

tree implementation in MUMmer. Later, newer approaches were developed to reduce memory

either by compromising runtime performance or by adopting completely new data structures

and algorithms. The approaches are discussed in the following sections.

2.1.4 SparseMEM

Table 2.4: Sparse suffix array of the string S = acaaacatat with LCP, and ISA

i S S A[i] S A LCP ISA

0 $ 10 -1 2

1 aaacatat$ 2 0 1

2 acaaacatat$ 0 1 3

3 acatat$ 4 3 4

4 atat$ 6 1 5

5 at$ 8 2 0

22 Chapter 2. Maximal ExactMatches: E-MEM

In order to reduce the memory footprint of algorithms based on ESA, an approach based on

sparse suffix array was developed [28]. The sparse suffix array is a text index based on every

Kth suffix (K = 1, 2, ..., n) of a string. For K = 1, the sparse suffix array acts as a full index

based on suffix array.

SparseMEM [28] is a MEMs computing program based on this approach. Unlike Vmatch,

SparseMEM does not pre-compute suffix link information. Instead, it is computed whenever

required. The suffix link can be computed with the help of the inverse suffix array as follows:

l = IS A[S A[l]/K + 1] and r = IS A[S A[r]/K + 1]

where l and r are the left and right bounds of the suffix link interval respectively. Note

that the suffix link interval may require to be extended in both directions for correct results [3].

The ISA computation requires minor adjustments to account for sparse suffix index. ISA is

computed as follows:

IS A[S A[j]/K] = j where j =, ..., n/K − 1

An example of sparse suffix array and corresponding LCP and ISA values is shown in

Table 2.4.

Computation of MEMs using Sparse Suffix Array

Consider two strings S1 and S2 and suppose L is the minimum length of MEMs. The following

steps describe the MEMs computing algorithm (more details can be found in [28]):

1. Create a sparse suffix array of string S1.

2. For any position p in string S2, find two lcp intervals using binary search. The first lcp

interval d : [s..e] is found by matching at most L − (K − 1) characters while the second

interval q : [l..r] is found by matching as many characters as possible i.e. longest possible

match. For above two intervals, d and q are the length of the matches, s and l are the start

2.1. Background 23

positions and e and r are the end positions of lcp-intervals respectively. Since q : [l..r] is

a subinterval of d : [s..e], therefore s ≤ l, r ≤ e and q ≥ d holds.

3. The right maximal matches are found by un-matching characters from interval q : [l..r].

(a) The first right maximal match is interval q : [l..r].

(b) The next interval is the parent lcp-interval of q : [l..r]. Since LCP[l] < q and

LCP(r + 1) < q, the next lcp-value q′ = max (LCP[l], LCP[r + 1]). The boundary

position of the parent interval is obtained by extending interval to the left i.e. l =

l − 1 until LCP[l] < q′ and to the right i.e. r = r + 1 until LCP[r + 1] < q′.

(c) The expansion continues till q′ ≥ d.

4. The right maximal matches found in the previous step are now checked for left maximal-

ity. Since the index is sparse by a factor of K, all the left maximal matches are found by

scanning upto K characters to the left of the right maximal matches.

5. Advance to the next suffix of S2 and continue the matching process.

In the last step of the algorithm, suffix link can be used to find the initial lcp-intervals for

the next suffix position. This is referred as suffix link acceleration in SparseMEM algorithm.

Parallelization technique in sparseMEM

The suffix link acceleration works best with smaller values of K. Note that for an index based

on sparse suffix array, moving one suffix position is equivalent to moving K character positions

in the string. In step 5 of the previous algorithm, suffix link can only be used if matching for all

0 to K − 1 positions in string S2 is complete. Due to this limitation, improvement from suffix

link acceleration starts to diminish for larger values of K.

The performance drop due to increase in sparseness factor is addressed by introducing the

concept of parallelization. SparseMEM uses an obvious approach for parallelization which

comes directly from the limitation of suffix link application. For all 0 to K − 1 positions in

24 Chapter 2. Maximal ExactMatches: E-MEM

string S2, a process is spawned on a separate processor. The results from these K processes are

combined before suffix link acceleration is used for moving to the next suffix position.

2.1.5 EssaMEM

An enhanced version of sparse suffix array data structure which includes sparse child array is

called Enhanced Sparse Suffix Array (ESSA). EssaMEM [59] is a MEM computation program

based on ESSA which is faster in practice than sparseMEM with the same memory footprint.

The essaMEM program proposes two major improvements over the sparseMEM program dis-

cussed in the previous section. They are:

1. The addition of sparse child array which allows the traversal of virtual sparse suffix tree

in constant time.

2. A new skip parameter s, which introduces sparseness in query sequence.

The construction of sparse child array remains the same as discussed previously. Typically,

any compressed SA based approach for computing MEMs involves two phases - finding right

maximal matches and then extending these right maximal matches to the left for finding left

maximal matches. The second phase is usually much faster than the first phase. Based on this

observation, the skip parameter s is introduced, that increases the work of second phase while

decreases the work of first phase by a factor of s. This is achieved by finding right maximal

matches of minimum length L − s.K + 1 characters, which increases the number of right max-

imal suffixes. The left maximality is checked for s.K characters to ensure that all the MEMs

are larger than length L.

The optimized value of skip parameter can greatly improve the performance of MEMs

computation algorithm. For optimizing s, the runtime for a maximum of five successive values

of s is taken [59]. The largest value of s is set to be the value for which L − s.K + 1 ≥ 10.

2.1. Background 25

The skip parameter does not work well with simulated sparse suffix links, which are suffix

links for ESSA. Combination of the two requires a mechanism of controlling sparseness factor

K for suffix links along with skip parameter s of query sequence. This has not been tried out

and therefore when suffix links are used, the skip parameter s is set to 1.

The MEMs computation algorithm for essaMEM is same as that of sparseMEM, with the two

enhancements discussed above.

2.1.6 BackwardMEM

The algorithms discussed so far used indexing techniques to search strings in forward direction.

The backwardMEM [46] algorithm uses a data structure which allows searching in backward

direction. The data structure used for indexing in backwardMEM is called FM-index and it is

discussed in section 2.1.1. A typical backwardSearch algorithm is shown in Algorithm 2.1.1.

The interval [i.. j] corresponds to the currently matched string in suffix array. The character p is

the next character in backward search and the new interval is obtained using backwardSearch

algorithm.

Algorithm 2.1.1: backwardSearch(p, [i.. j])

i← C[p] + Occ(p, i − 1)

j← C[p] + Occ(p, j) − 1

if i ≤ j

then return ([i.. j])

else return (NULL)

26 Chapter 2. Maximal ExactMatches: E-MEM

Computing Parent Intervals

The backwardSearch algorithm generates right maximal matches for a given position in query

string. The right maximal matches found correspond to an lcp-interval in a virtual lcp-interval

tree. To find the next right maximal match, backwardMEM program stores two tables, previous

smaller values (PSV) and next smaller values (NSV).

The PSV and NSV table entries are computed as follows:

PS V[i] = max{k | 0 ≤ k < i and LCP[k] < LCP[i]}

NS V[i] = min{k | i < k ≤ n and LCP[k] < LCP[i]}

Once the PS V and NS V information is stored as part of the data structure, the parent

interval for an lcp-interval [i.. j] with LCP[i] = p and LCP[j + 1] = q is determined as:

parent([i.. j]) =


p − [PS V[i]..NS V[i] − 1 if p ≥ q

q − [PS V[j + 1]..NS V[j + 1] − 1] if p < q

Table 2.5 shows an example of the PS V and NS V values for string S = acaaacatat.

2.1. Background 27

Table 2.5: PS V and NS V tables of the string S = acaaacatat.

i S S A[i] BWT S A LCP PS V NS V

0 $ t 10 0

1 aaacatat$ c 2 0

2 aacatat$ a 3 2 1 3

3 acaaacatat$ 0 1 1 7

4 acatat$ a 4 3 3 5

5 atat$ c 6 1 1 7

6 at$ t 8 2 5 7

7 caaacatat$ a 1 0

8 catat$ a 5 2 7 9

9 tat$ a 7 0

10 t$ a 9 1 9

Computation of MEMs using the FM-index

Consider two strings S1 and S2 and suppose L is the minimum length of MEMs. The following

steps describe the MEMs computing algorithm:

1. Create an FM-index data structure of string S1.

2. Start with the right most character of string S2. Use backwardSearch algorithm for

finding right maximal matches of length ≥ L. The right maximal match is a triplet

(q, [l..r], p′2), where q is the length of the match, [l..r] is the left and right bounds in suf-

fix array and p′2 is the position in S2 for this match. The current match in string S2 is

indicated by the length p′2 + q − 1.

3. For each triplet (q, [l..r], p′2) and q ≥ L,

(a) The left maximality is checked by checking BWT [k] , S 2[p′2−1], where l ≤ k ≤ r.

28 Chapter 2. Maximal ExactMatches: E-MEM

(b) If left maximal, report MEM.

(c) Find parent interval of (q, [l..r]). Continue until q ≥ L for parent interval.

4. Continue with the current position in string S2.

In order to get a smaller memory footprint, the FM-index (LF−mapping) is stored in a

wavelet tree [60]. A wavelet tree is a data structure which stores sequences in compressed

form. Note that it is not necessary to store BWT , which is only required during left maximal

comparison. This is because the wavelet tree allows to access LF−mapping without it, and

we have BWT [k] , p if and only if LF(k) < [i.. j], where [i.. j] is the current p−interval

(e.g., backwardsearch(p, [1..n]) returns [i.. j]). This is same as replacing the test BWT [k] ,

S 2[p′2 − 1] with the test LF(k) < [i.. j], where [i.. j] is the S 2[p′2 − 1]−interval.

Compressed Suffix Array implementation

BackwardMEM also supports a version of program based on compressed suffix array. There is

a difference between a compressed suffix array and a sparse suffix array - a compressed suffix

array stores each kth entry of the suffix array S 1 while a sparse suffix array stores each Kth

suffix of S 1.

The obvious advantage of compressed suffix array is a smaller memory footprint. This is

further reduced by storing the compressed suffix array in a wavelet tree which requires only

(n log n)/k bits, where n is length of string S 1 and k is the compress parameter. The size and

access time for compressed suffix array depends on compress parameter k ≥ 1. For k = 1,

the compressed suffix array acts as a full suffix array and the access time is constant. For

k > 1, every kth entry of suffix array is stored and the remaining entries are constructed in k/2

steps [46] with LF−mapping.

2.1. Background 29

2.1.7 SlaMEM

The MEMs computing program slaMEM [21] is an improvement to the data structures used

in BackwardMEM [46]. There is no difference in MEMs computing algorithm as far as the

logical steps are concerned. Instead, new remodeled data structures have been proposed for

improving runtime performance and reducing the memory footprint. The improvements are

based on following observations:

1. LCP array is accessed most frequently for resolving parent intervals. A fast mechanism

of retrieving lcp-values helps in improving the performance.

2. To compute the parent intervals, only boundary lcp-values are needed. Having only

boundary lcp-values reduces the memory footprint.

Sampled LCP Array

Based on the above observations, slaMEM samples only boundary values for the LCP array.

The PSV and NSV arrays are also computed for these sampled LCP positions. The boundary

positions are sampled as follows:

TopCorners = {i : (i + 1) , n and LCP[i] < LCP[i + 1]}

BottomCorners = {i : (i + 1) = n or LCP[i] > LCP[i + 1]}

where TopCorners and BottomCorners represent the boundary positions of lcp-interval

corresponding to a BWT string.

Sampled Smaller Values

The computation of parent intervals requires only a PS V value corresponding to TopCorners

and NS V value corresponding to BottomCorners. Therefore, it is sufficient to keep a single

Sampled Smaller Value (SSV) array instead of both PS V and NS V arrays. The array S S V[i]

will hold a value of PS V[i] if the position corresponds to TopCorners or NS V[i] if the position

corresponds to BottomCorners. This can be represented by following equations:

30 Chapter 2. Maximal ExactMatches: E-MEM

S S V[i′] = PS V[i], if S S V[i′] < i

S S V[i′] = NS V[i + 1] − 1, if S S V[i′] > i

where i′ is the number of sampled positions in the interval [0, (i − 1)] because S S V does

not have the same size as PS V/NS V .

It is possible to have overlapping left or right interval positions for two or more intervals.

In such cases, the S S V[i] will store the left or right most parent interval of the overlapping

positions. The missing intervals are found by a scan of closest top or bottom corners around

that position. Since the SLCP is sampled, the search is much faster than using full LCP array.

2.1.8 Comparison

Table 2.6 summarizes the important differences and similarities among the applications dis-

cussed in this text. The memory requirement of each tool is shown in terms of bytes per char-

acter. The K and k are sparseness factor and compress parameter respectively. Once the index

is created, each of these algorithms can find MEMs in theoretical time complexity proportional

to the length of the pattern.

2.2. E-MEM algorithm 31

Table 2.6: A nutshell comparison of applications. Notations used in the table: ST (Suffix
Tree); ESA (Enhanced Suffix Array); SSA (Sparse Suffix Array); ESSA (Enhanced Sparse
Suffix Array); LCP (Longest Common Prefix); CT (Child Table); BS (Binary Search).

MUMmer Vmatch sparseMEM essaMEM backwardMEM slaMEM

Text Index ST ESA SSA ESSA FM-index FM-index

Parallelization Yes No Yes No No No

Initial Search ST LCP
CT

BS LCP
CT

Count &
Occ Tab

Count &
Occ Tab

Suffix Link Yes Yes Yes No No No

Memory
(bytes)

17n 10n (9/K + 1)n (9/K + 1)n (4/k + 2)n 2.2n

Flexibility
(Memory vs Time)

No No Yes Yes Yes No

Search Order Forward Forward Forward Forward Backward Backward

Commercial open
source

closed
source

open
source

open
source

open
source

open
source

2.2 E-MEM algorithm

As discussed in previous sections, a typical MEM computation algorithm creates an index

of the reference sequence, which is used for quickly finding seed matches. The seeds are

then extended to find a possible MEM. Depending on the indexing technique, the extension

of seeds may or may not use the index during the extension phase. E-MEM is designed by

using an efficient implementation of simple algorithmic ideas. The algorithm creates an index

based on double hashing which stores k-mers and its positions in the reference. All query

k-mers are matched against this index. The matches are extended while ensuring that any k-

mer matches resulting in a previously discovered MEM are discarded. E-MEM does not rely

on the index during the extension phase. A high-level overview of the E-MEM algorithm is

provided in Algorithm 2.2.1. The algorithm requires three mandatory input parameters - a

reference sequence R, a query sequence Q and minimum MEM length minL. An optional

parameter, division factor (D), is also supported for memory reduction which is discussed

32 Chapter 2. Maximal ExactMatches: E-MEM

in Section 2.9. The default value of this parameter is set to one, which means no splitting is

performed and full genomes are used. The input sequences are required to be in FASTA format.

FASTA [37] is a text based format for representing DNA sequences in which nucleotides are

represented by a single character codes. It also allows the sequence names and comments to

precede the sequences. An exact match between two sequences R and Q is a triple (len, s1, s2)

such that len ≥ minL, s1 ∈ [0, |R| − len], s2 ∈ [0, |Q| − len], and R[s1..s1 + len − 1] =

Q[s2..s2 + len− 1]. An exact match is left maximal if R[s1− 1] , Q[s2− 1] and right maximal

if R[s1 + len] , Q[s2 + len]. A maximal exact match (MEM) is a left and right maximal exact

match.

The algorithm starts by encoding and hashing the reference sequence R. The hash table

size is kept roughly two times the number of k-mers in the sequences. The number of k-mers

is estimated based on an approximation which uses total number of base pairs in reference, the

k-mer size and minimum MEM length minL . Next, a query sequence Q is encoded and then

iterated over for a possible k-mer match in the reference hash. If a query k-mer match is found

in the hash table for the reference, this k-mer is extended, both in left and right direction until a

mismatch is encountered. If the length of the match is greater than minL, the match is reported

as a MEM. The E-MEM program can run in serial and parallel mode. The parallelization is

done using OpenMP directives. The algorithm 2.2.1 uses a CurrMEM (linked list) - to keep

track of the previously discovered MEMs. The MEMs spanning across D spits are tracked in a

vector MEMext which are merged before final MEMs are reported.

2.2. E-MEM algorithm 33

Algorithm 2.2.1: E-MEM(R,Q,minL)

comment: Input - two sequences R and Q and a minimum MEM length minL

Choose a division factor D

Split R into R1,R2, ...,RD; Split Q into Q1,Q2, ...,QD

comment: Splitting details discussed in Section 2.9

for i← 1 to D

do



Encode Ri

comment: Encoding discussed in Section 2.3

l← minL − k + 1

comment: k is k − mer size

while (l <= |Ri| − k + 1)

do


Hash the k − mer at position l of Ri

l← l + minL − k + 1

for j← 1 to D

do



Encode Q j

for l← 1 to |Q j| − k + 1)

do



Get the k − mer q at position l in Q j

Search for k − mers r = q in the hash table of Ri

for Each occurrence of r with extension >= minL

do



Check CurrMEMs

if ((q, r) discovers a new MEM)

then if (MEM at ends of Ri or Q j)

then Add to MEMext

else Add to file (by start position in Q j)

Update CurrMEMs

Remove Hash table for Ri

Process MEMext to extend MEMs

Move MEMs from MEMext to appropriate files

for Each file with MEMs

do


Sort MEMs by position in Q

Remove duplicates

Output MEMs

34 Chapter 2. Maximal ExactMatches: E-MEM

2.3 Sequence Storage

The E-MEM program uses many techniques to reduce memory and improve performance. To

reduce memory requirements, the sequences are read from FASTA files and stored in a 2-bit

encoding scheme. All four nucleotides can be represented with 2-bits as {A=00, C=01, G=10,

T=11}. The storing of a nucleotide in 2-bits instead of a byte reduces memory requirement by

a factor of 4. An array of unsigned 64-bit integers is used to store the entire genome with a

single unsigned 64-bit holding 32 nucleotides. The genome sequence containing base pair N

(an ambiguous base) are replaced with a random nucleotide and the position is tracked for final

MEM reporting. The details of unknown base handling are discussed in Section 2.8.

2.4 Efficient k-mer Storage

We observed that storing all k-mers in the reference sequence is unnecessary as it leads to

redundant MEM discovery. To avoid redundant hits, k-mers are stored at intervals of length

minL − k + 1, where minL is minimum MEM length and k is the k-mer size. This ensures

that at least one k-mer is stored in any possible MEM of length minL. Figure 2.3 shows three

consecutive positions for k-mer hashing. It is clearly seen that storing k-mers at an interval

reduces memory requirement and processing time for hashing. It also avoids redundant hits

during later stages, which results in significant performance improvements.

Figure 2.3: k-mer hashing technique: only the k-mers shown are stored

2.5. Hash Table and hashing function 35

2.5 Hash Table and hashing function

The E-MEM algorithm uses hashing to efficiently store and search k-mers for matching be-

tween query and reference sequences. The technique involves creation of an associate array

abstract data structure, called hash table. A hash table uses a hash function to compute an in-

dex which locates the desired value. The average time complexity of insert, delete and search

operation is O(1) which makes hashing a very efficient data structure.

The input to E-MEM hashing function is an unsigned value obtained from 2-bit represen-

tation of k-mers. The hash function then computes a modulus of input value with the size of

the hash table, which is used as an index in the hash table. The hash table size is a prime num-

ber to ensure that all indexes are probed. It is possible that hash function maps two different

k-mer values to same index in the hash table. This is called collision and over the years many

techniques are developed to deal with collision in hashing algorithms. A popular method for

collision resolution in hash tables is called Open Addressing. In this method, the collisions are

resolved by searching through alternate locations in hash table until either the key is found or

an unused location is found, which indicates that the key does not exist in the hash table. The

three most common open addressing approaches are Linear Probing, Quadratic Probing and

Double Hashing. The objective of any good hashing technique is to distribute the keys evenly

to avoid collisions while maintaining constant time performance of basic operations.

E-MEM uses double hashing technique for efficient storage and retrieval of k-mer values.

The load factor is kept under 50% to maintain high performance. At each index in the hash

table where a k-mer maps, a list of reference position are stored. The positions are maintained

in an array which grows in powers of 2. The first position in the array stores the number of

reference positions in the array. The array grows dynamically as it becomes full and space is

needed for adding new reference positions.

36 Chapter 2. Maximal ExactMatches: E-MEM

2.6 Searching query

Storing all k-mers in the reference sequence is not necessary, as mentioned in Section 2.4

however all k-mers in the query sequence have to be considered. For every query k-mer, all

matching k-mer positions in the reference are investigated for a possible MEM. An efficient

implementation is achieved by performing bit level operations. A 64-bit sliding window is

used to read query sequence and a bit mask of 2k 1’s extracts the k-mer bits. Moving the

sliding window by 2 bits to the right gives the next k-mer in the query sequence. To maintain

an efficient sliding operation, a byte (8 bits) is shifted each time instead of two bits. This

restricts the max k-mer size to 28 nucleotides.

Once a k-mer hit between query and reference is found, it needs to be extended efficiently

in both directions for a possible MEM. Extending one character at a time will result in a very

inefficient algorithm. Since the sequences are stored in blocks of 64 bits, comparisons are

performed using very few bit operations as shown in Figure 2.4.

Figure 2.4: Efficient k-mer matching

For example, Figure 2.4 shows a k-mer match of size 14 or 28-bits found between query

and reference sequence. Next, the extension is performed by matching the query sequence in

2 blocks of 28 and 36 bits. A 64-bit block is compared using two comparison operations and

few bit operations, which makes the entire process very efficient.

2.7. Handling redundantMEM matches 37

2.7 Handling redundant MEM matches

The E-MEM program uses many techniques to make it more efficient. The algorithm extends

initial k-mer hits between query and reference sequences to find a MEM. Since every k-mer

in the query sequence is looked up in the reference hash, it is expected that a MEM longer

than minimum MEM length minL is discovered by at least two k-mers. The second k-mer hit

simply rediscovers the previously found MEM. Figure 2.5 shows a possible scenario for one

such case. It is important that all such cases are discovered quickly and discarded for efficient

functioning of the E-MEM program.

Figure 2.5: Redundant MEMs

The E-MEM algorithm avoids redundant computation of MEMs by keeping track of the

relative distance of the current k-mer position with respect to the already discovered MEMs in

the query sequence. The relative distance thus obtained is used with the current k-mer position

in the reference sequence to compute MEM coordinates. If the computed MEM coordinates

match with a previously discovered MEM, the k-mer is discarded, otherwise k-mer is extended

for a possible MEM. Discarding k-mers based on above computation results in significant

performance improvement. Figure 2.5 has a reference and a query sequence marked Re f erence

and Query respectively. The two different k-mers, k1 and k2 are shown with bidirectional lines.

The semi-elliptical shapes represent the MEMs of length l > minL. Two MEMs (A, P, l) and

(C, P, l) are discovered by extending k-mer match k1 between query and reference where A

and C are starting positions of MEMs in the reference sequence and P is the starting position

of MEM in the query sequence. The k-mer match k2 is embedded in a previously discovered

38 Chapter 2. Maximal ExactMatches: E-MEM

MEM. Therefore, it is not extended, as shown with a dotted line with a cross on it. To avoid the

redundant computation, a check is performed to ensure that extension of this k-mer is not going

to produce a previously discovered MEM. The relative distance of k2 from left and right side in

query sequence is i− P and Q− j respectively, where i and j are start and end positions for k2.

This information is now used to compute a MEM coordinate in reference i.e. if x−i+P = A and

y+ Q− j = B, then k-mer k2 is discarded. Note that only matches of k-mer k2 which rediscover

an existing MEM are discarded. All other matches of k2 are still checked for a possible MEM

(not shown in Figure 2.5).

2.8 Dealing with ambiguous bases (N)

E-MEM uses 2 bits to represent four nucleotides which reduces memory requirements. How-

ever, genome sequences sometimes have an unknown or ambiguous base represented by the

character N. Since E-MEM can store only four bases with 2 bit memory representation, it

randomly replaces the ambiguous base with a valid nucleotide. This may result in inaccurate

MEM reporting if not handled properly. E-MEM keeps track of all blocks of N’s separately

for reference and query sequences. This information is used at various stages in E-MEM algo-

rithm.

First, it is used to avoid storing of any k-mers with an ambiguous base during reference

hashing. Similarly, when query k-mers are read, this information is again used to ignore all

k-mers with an ambiguous base. The above ensures that no k-mer matching is performed with

an ambiguous base, as all such k-mers have already been filtered out. However, there is still a

possibility of reporting a MEM with an ambiguous base. During the k-mer extension phase, it

is possible that the extension matches with an ambiguous base which was randomly replaced

during the sequence storing process. This scenario is very unlikely, but still possible. To ensure

that no MEMs are reported with an ambiguous base, checks are performed with stored blocks

of N’s.

2.9. Split parameter - memory reduction 39

2.9 Split parameter - memory reduction

To reduce the memory requirements further, E-MEM also provides an optional division of

sequences into smaller parts. The E-MEM program works by loading smaller parts of se-

quences - one at a time, which reduces memory requirement by a factor of D - the number

of divisions, also called the division factor. It is not possible to cut the sequences in D ≥ 1

equal subsequences since this may result in loss of MEMs which span across the cut. To

avoid this problem, we keep D sequences overlapping such that each subsequence has a length

l = 1
D (|R|+ (D− 1)minL) and an overlap of minL− 1. One can clearly see that MEMs spanning

across the cut boundary need to be merged before being reported. All MEMs starting or ending

at a subsequence border are tracked and merged before reporting.

Theoretically, one can divide sequences into as many smaller parts as possible. However,

divisions have a negative impact on performance, therefore more than 10 divisions are not

recommended. The program requires extra computation time to merge and process the MEMs

which span across these divisions.

2.10 Very large number of MEMs

For large genomes which are highly similar, the number of MEMs can increase drastically.

This situation can also arise if minimum MEM length is very small. In such cases, if all the

MEMs are stored in memory, this would increase memory requirements by many folds. We

observed this behavior when computing MEMs for Human versus Chimp, which resulted in

more than 100 million MEMs. To avoid this problem, the MEMs are stored in temporary files,

sorted according to the query start position. Once the processing of MEMs is complete, the

duplicates are removed from the temporary files and all MEMs are merged in the right order.

40 Chapter 2. Maximal ExactMatches: E-MEM

2.11 Output formats

The E-MEM program prints MEMs on standard output (stdout). The output format varies

depending on the command line options used. In the default mode, 3-column output is printed

as shown in Figure 2.6. By default, the E-MEM program computes and prints MEMs only

in forward direction. It is possible to enable MEM reporting in both forward and reverse

complement directions. For each query sequence, the sequence name or ID is reported on the

first line followed by a > character. The sequence name will be reported even if there are

no MEMs found for this sequence. For example, the query sequence in “Reverse” reports a

sequence name with no matching MEMs in Figure 2.6. Note that, for each query sequence, the

reverse complemented MEMs immediately follow the forward MEMs. For each match, the 3-

columns list the start position in the reference sequence, the start position in the query sequence

and the length of the match respectively. For reverse matches, the positions are reported relative

to the reverse query sequence.

Figure 2.6: Example: 3-column output

The 3-column output is sufficient for reporting matches between one reference sequence

and one or more query sequences. For multiple reference sequences, 4-column output is re-

quired. E-MEM provides an option -F to print 4-column output which also prints the reference

2.12. Results 41

sequence name or ID for each match. Figure 2.7 shows an example of 4-column output. The

first column represents the name or ID of the reference sequence followed by the 3-column

output format as described above.

Figure 2.7: Example: 4-column output

2.12 Results

The performance of E-MEM was compared against state-of-the-art software programs from

other research groups. The programs used are essaMEM [59], slaMEM [21], sparseMEM [28]

and Vmatch [2]. Other programs which were also considered are backwardMEM [46] and

MUMmer [34, 19] but dropped from consideration as they fail to run or are very slow with

our datasets. The genomes used for testing performance are shown in Table 2.7. Note that the

wheat genome is about 17Gbp, however the available sequence is of size 4.3Gbp only. All the

programs were first tested manually for correctness using smaller datasets. The correctness is

further ensured by computing MEMs for larger datasets and verifying it against output of other

programs. Any deviation from majority is considered an error in program output.

2.12.1 Evaluation

Tests were performed in various settings including different minimum MEM length, serial

mode and parallel mode. The MEMs were computed between human vs mouse, human vs

chimp and common wheat vs durum wheat. Minimum MEM length of 100 and 300 bps were

42 Chapter 2. Maximal ExactMatches: E-MEM

Table 2.7: Genomes used for testing

Datasets Size (Mbs) Number of Sequences

Homo sapiens (Human) 3,137 93
Mus musculus (Mouse) 2,731 66
Pan troglodytes (Chimp) 3,218 24,132
Triticum aestivum (Common wheat) 4,391 731,921
Triticum durum (Durum wheat) 3,229 5,671,204

used to check any bias towards it. All tables showing results use a dash (-) for the programs

that could not run that test for some reason. For example, a dash in serial mode result means

that output was incorrect or empty, whereas a dash in the parallel mode means that it was not

supported by the program.

The competing programs were run according to the specifications in their respective man-

uals, websites, and readme files. All tests were run on the Shared Hierarchical Academic

Research Computing Network (SHARCNET), with a DELL PowerEdge R620 computer with

12 cores Intel Xeon at 2.0GHz and 256GB of RAM, running Linux Red Hat, CentOS 6.3.

2.12.2 Human vs Mouse

The test was conducted with whole human and mouse genomes. Tables A.1 and A.2 show

results for minimum MEM length 100 and 300 respectively.

Minimum MEM length 100

For human vs mouse, there are 537,491 MEMs of minimum length 100 reported by each pro-

gram. In serial mode, the least memory was reported by slaMEM, which was 3.5GB. However,

slaMEM took 17 hours to complete the test. The best performance among the competing pro-

grams is by essaMEM, which uses 4GB of memory, but takes only 2.5 hours to complete the

test. essaMEM was able to complete the test in little over one hour, but the memory was in-

creased enormously to 19GB. E-MEM can run within as little as 623MB and complete in less

than two hours or in half an hour using 4GB of memory, which makes it clearly superior with

2.12. Results 43

respect to both parameters of memory and time.

E-MEM has the best performance gains when serial mode is changed to parallel model,

between 5 and 6 times on a 12 core machine. The gains in essaMEM varies between 1.3 and

4.5 times. We observed that sparseMEM has a performance gain comparable to that of E-

MEM, but its running time in serial mode is way higher. Therefore, even after the gains similar

to E-MEM, the difference remains large. Among all competing programs, the best results come

from essaMEM, that consistently outperforms the others - 23 min and 6GB or one hour and 5.4

GB. E-MEM can complete the test in 6 minutes and 4.7GB or 10 minutes and less than 2GB.

Refer Appendix A for detailed results.

The time and space are plotted in Figure 2.8. Programs closer to the origin are faster and

need less memory. The top plot is for serial mode and the bottom is for parallel. The area is

very large in the serial plot, due to the large memory requirements of Vmatch and long running

times required by slaMEM and sparseMEM. Since the two programs do not run in parallel, the

plot giving the time/space values for the parallel testing gives a more clear picture.

Only essaMEM, sparseMEM, and E-MEM are able to run in parallel. The memory required

for the same sparseness factor by essaMEM is slightly less than that of sparseMEM. However,

essaMEM is much faster than sparseMEM. This is expected because essaMEM program is an

improvement of sparseMEM algorithm and it use the same codebase. All three programs trade

time for space but the results of E-MEM are much closer to origin.

44 Chapter 2. Maximal ExactMatches: E-MEM

0 10000 20000 30000 40000

10
00
0

30
00
0

50
00
0

Memory (MB)

Ti
m

e
(s

)

0

0 10000 20000 30000 40000

10
00
0

30
00
0

50
00
0

0 10000 20000 30000 40000

10
00
0

30
00
0

50
00
0

0 10000 20000 30000 40000

10
00
0

30
00
0

50
00
0

0 10000 20000 30000 40000

10
00
0

30
00
0

50
00
0

essaMEM
sparseMEM
slaMEM
Vmatch
E-MEM

0 5000 10000 15000 20000

20
00

40
00

60
00

80
00

10
00
0

Memory (MB)

Ti
m

e
(s

)

0

0 5000 10000 15000 20000

20
00

40
00

60
00

80
00

10
00
0

0 5000 10000 15000 20000

20
00

40
00

60
00

80
00

10
00
0

essaMEM
sparseMEM
E-MEM

Figure 2.8: Homo sapiens vs Mus musculus; MEMs of minimum length 100. The top plot is
for serial mode, the bottom for parallel. Note the different scale of the plots.

2.12. Results 45

Minimum MEM length 300

Similar to minimum MEM length 100, results for minimum length 300 show that E-MEM has

best performance for both serial and parallel mode. There are 390 MEMs of minimum length

300 reported by each program. Figure 2.9 shows time and space plot for all the programs.

E-MEM involves a post processing step and its time is dependent on the number of MEMs

reported. Since the number of MEMs is much lower compared to MEMs for minimum MEM

length 100, the post processing step requires less time and hence there is an improvement in

overall performance of E-MEM. Refer Appendix A for detailed results.

46 Chapter 2. Maximal ExactMatches: E-MEM

0 10000 20000 30000 40000

20
00
0

40
00
0

60
00
0

80
00
0

Memory (MB)

Ti
m

e
(s

)

0

0 10000 20000 30000 40000

20
00
0

40
00
0

60
00
0

80
00
0

0 10000 20000 30000 40000

20
00
0

40
00
0

60
00
0

80
00
0

0 10000 20000 30000 40000

20
00
0

40
00
0

60
00
0

80
00
0

0 10000 20000 30000 40000

20
00
0

40
00
0

60
00
0

80
00
0 essaMEM

sparseMEM
slaMEM
Vmatch
E-MEM

0 5000 10000 15000 20000

20
00

40
00

60
00

80
00

10
00
0

Memory (MB)

Ti
m

e
(s

)

0

0 5000 10000 15000 20000

20
00

40
00

60
00

80
00

10
00
0

0 5000 10000 15000 20000

20
00

40
00

60
00

80
00

10
00
0

essaMEM
sparseMEM
E-MEM

Figure 2.9: Homo sapiens vs Mus musculus; MEMs of minimum length 300. The top plot is
for serial mode, the bottom for parallel. Note the different scale of the plots.

2.12. Results 47

2.12.3 Human vs Chimp

The test was conducted with whole human and chimp genomes. Tables A.3 and A.4 show

results for minimum MEM length 100 and 300 respectively.

Minimum MEM length 100

For human vs chimp,132,368,058 MEMs of minimum length 100 are reported by all programs.

The performance of E-MEM program slightly diminishes as a result, since all these MEMs

need to be post processed. (The very large number of MEMs is also the reason why the program

is slightly slower for D = 1 as compared to D = 2.) The details are given in Table A.3. The

whole picture as given in Figure 2.10 is similar with the one for the first test, human vs mouse

Figure 2.8 except that the difference between the running times is not as high. The top plot is

for serial mode, the bottom for parallel. Refer Appendix A for detailed results.

48 Chapter 2. Maximal ExactMatches: E-MEM

0 10000 20000 30000 40000

10
00
0

30
00
0

50
00
0

Memory (MB)

Ti
m

e
(s

)

0

0 10000 20000 30000 40000

10
00
0

30
00
0

50
00
0

0 10000 20000 30000 40000

10
00
0

30
00
0

50
00
0

0 10000 20000 30000 40000

10
00
0

30
00
0

50
00
0 essaMEM

sparseMEM
Vmatch
E-MEM

0 5000 10000 15000 20000

20
00

40
00

60
00

80
00

10
00
0

Memory (MB)

Ti
m

e
(s

)

0

0 5000 10000 15000 20000

20
00

40
00

60
00

80
00

10
00
0

0 5000 10000 15000 20000

20
00

40
00

60
00

80
00

10
00
0

essaMEM
sparseMEM
E-MEM

Figure 2.10: Homo sapiens vs Pan troglodytes; MEMs of minimum length 100. The top plot
is for serial mode, the bottom for parallel. Note the different scale of the plots.

2.12. Results 49

Minimum MEM length 300

For minimum MEM length 300 - 951,561 MEMs are reported by all programs. It can be clearly

seen that performance of E-MEM is much better than competing programs. The performance

of E-MEM for minimum MEM length 300 improves compared to minimum length 100 as the

number of MEMs is greatly reduced. Refer Appendix A for detailed results.

50 Chapter 2. Maximal ExactMatches: E-MEM

0 10000 20000 30000 40000 50000

20
00
0

40
00
0

60
00
0

Memory (MB)

Ti
m

e
(s

)

0

0 10000 20000 30000 40000 50000

20
00
0

40
00
0

60
00
0

0 10000 20000 30000 40000 50000

20
00
0

40
00
0

60
00
0

0 10000 20000 30000 40000 50000

20
00
0

40
00
0

60
00
0

0 10000 20000 30000 40000 50000

20
00
0

40
00
0

60
00
0

essaMEM
sparseMEM
slaMEM
Vmatch
E-MEM

0 5000 10000 15000 20000

20
00

40
00

60
00

80
00

10
00
0

Memory (MB)

Ti
m

e
(s

)

0

0 5000 10000 15000 20000

20
00

40
00

60
00

80
00

10
00
0

0 5000 10000 15000 20000

20
00

40
00

60
00

80
00

10
00
0

essaMEM
sparseMEM
E-MEM

Figure 2.11: Homo sapiens vs Pan troglodytes; MEMs of minimum length 300. The top plot
is for serial mode, the bottom for parallel. Note the different scale of the plots.

2.12. Results 51

2.12.4 Triticum aestivum vs Triticum durum

For the last test, two wheat genomes were tested that are larger than the mammalian genomes

used in the previous tests. Only E-MEM and Vmatch could run this test and the results for

minimum MEM length 100 and 300 are presented in Tables A.5 and A.6 respectively. Other

programs either reported wrong number of MEMs or crashed during the execution.

Minimum MEM length 100

For minimum MEM length 100 - 3,668,632 MEMs are reported by all programs. E-MEM out-

performs Vmatch with a great margin. Figure 2.12 shows a comparison for time and memory

of each tool. Note that this figure is slightly different than previous figures for similar plots. In

Figure 2.12, both serial and parallel results are presented in the same plot for E-MEM, since

Vmatch program cannot be run in parallel mode. E-MEM runs this test very efficiently and

beats Vmatch by a big margin. All E-MEM results are close to origin, while Vmatch result is

on top right corner. In serial mode, it uses less than 1GB of memory and in parallel it requires

only 16 min and 2GB of memory. Refer Appendix A for detailed results.

52 Chapter 2. Maximal ExactMatches: E-MEM

0 10000 20000 30000 40000 50000

10
00

30
00

50
00

70
00

Memory (MB)

Ti
m

e
(s

)

0

0 10000 20000 30000 40000 50000

10
00

30
00

50
00

70
00

0 10000 20000 30000 40000 50000

10
00

30
00

50
00

70
00

E-MEM serial
E-MEM parallel
Vmatch

Figure 2.12: Triticum aestivum vs Triticum durum; MEMs of minimum length 100.

Minimum MEM length 300

For minimum MEM length 300- 613,607 MEMs are reported. Similar to Figure 2.12, results

for serial and parallel mode for E-MEM are combined with Vmatch serial results in Figure 2.13.

Again, E-MEM outperforms Vmatch in every aspect of performance. Refer Appendix A for

detailed results.

2.12. Results 53

0 10000 20000 30000 40000 50000

50
00

15
00
0

25
00
0

Memory (MB)

Ti
m

e
(s

)

0

0 10000 20000 30000 40000 50000

50
00

15
00
0

25
00
0

0 10000 20000 30000 40000 50000

50
00

15
00
0

25
00
0 E-MEM serial

E-MEM parallel
Vmatch

Figure 2.13: Triticum aestivum vs Triticum durum; MEMs of minimum length 300.

54 Chapter 2. Maximal ExactMatches: E-MEM

2.13 Conclusions

E-MEM provides an efficient solution for finding MEMs between arbitrarily large genomes. It

can be used as a stand alone program or as a drop-in replacement for the MUMmer3 software

package [34]. The test results show that E-MEM is many times faster than other state-of-the-

art programs and also requires significantly less memory. The split parameter capability of E-

MEM makes it unique - which is very useful when computing MEMs for very large genomes.

Results show that memory reduction techniques used in other programs are not as effective and

most programs fail to run genomes beyond 4 Gbp.

Chapter 3

Assembly Evaluation: LASER

3.1 Background

Over the last decade, N50 metric has been used to evaluate the quality of genome assembly.

N50 is defined as the length of the shortest contig for which longer and equal length contigs of

at least that length cover at least 50% of the assembly. A related and widely used parameter is

NG50, which is similar, except that it uses genome size instead of assembly size. Figure 3.1

shows a dummy example of N50 computation. The contigs are arranged in decreasing order

of size. The contig sizes are added in the order shown until it accounts for 50% of the total

assembly size. The last or the smallest contig in this set is the N50 value of the genome

assembly.

Recently, it was realized that programs tend to produce longer contigs either erroneously

or purposely, giving an impression of better assembly in terms of N50 and NG50 matrices.

For accurate evaluation of genome assemblies, the generated contigs are aligned to a reference

genome and only the aligned blocks of contigs are used to compute N50 and NG50 values,

which are called NA50 and NGA50 respectively. The alignment with a reference genome also

provides opportunities to further classify misassemblies. The misassemblies can be classified

as misjoins, indels and mismatches. Misjoins are the most undesirable type of misassembly

55

56 Chapter 3. Assembly Evaluation: LASER

Figure 3.1: N50 example.

in which two far apart fragments are joined producing longer contigs. The three types of mis-

joins are inversion, relocation and translocation. An inversion occurs when the orientation of

a contig is inverted with respect to the reference, a relocation occurs when a contig is mis-

placed within a single chromosome and a translocation occurs when a contig is misplaced into

different chromosomes.

Figure 3.2: QUAST genome assembly evaluation flow [24].

Figure 3.2 shows a typical genome assembly process with assembly evaluation stages. The

assembly evaluation is performed on contigs produced by genome assembler and scaffolds

3.2. QUAST Introduction 57

produced by scaffolding programs such as Minimus [56] or Bambus [47]. Scaffolding is a

process in genome assembly in which contigs are arranged in right order and orientation. The

contigs will either overlap or separated by gaps of known length. The most popular genome

assembly evaluation programs are QUAST [25] and GAGE [50]. However, all these programs

are very slow for evaluation of large genomes. It is important to perform evaluation efficiently

along with its accuracy, therefore there is a need to develop newer algorithms.

The de novo genome assembly problem is one of the most fundamental problems in Bioin-

formatics. Both, NGS and third generation sequencing technologies have limitations which

pose challenges in assembling genomes. The NGS technologies produce very short reads and

have non uniform coverage. Similarly, third generation sequencing technology has very high

error rate. Various assembly algorithms using NGS, third generation or hybrid sequencing data

have been designed and they all claim to produce longer and more reliable contigs. Methods

to reliably assess the quality and accuracy of these assemblies are required for choosing the

most suitable assembly for downstream analysis. Many approaches with new evaluation met-

rics have been proposed in recent years. In the following section, we discuss the features and

metrics offered by QUAST evaluation program.

3.2 QUAST Introduction

The QUAST [25] (QUality ASsessment Tool) program is a state-of-the-art genome and meta-

genome assembly evaluator which has introduced many new metrics. Meta-genome assembly

is a fairly new research field and it is focused on the analysis of sequencing data derived from

mixtures of organisms. QUAST can evaluate assemblies both with and without a reference

genome. It produces many reports and plots to better understand the quality. The biggest

drawback of QUAST was very high time and memory requirement which was a bottleneck for

many large genome assembly evaluations. We tested QUAST performance on various human

genome assemblies and it required around 4 days and 120GB of RAM to finish the evaluation.

58 Chapter 3. Assembly Evaluation: LASER

This is a problem, since the actual assembly generation takes much less time to produce.

LASER (Large genome ASsembly EvaluatoR) [29] is a new genome assembly evaluator

based on QUAST, but it is much faster than QUAST and requires half the memory. Tradition-

ally, assembly evaluation programs have been heavily relying on Nx (0 ≤ x ≤ 100) statistics,

which can be artificially increased by concatenating contigs, which can happen either erro-

neously or deliberately. The Nx approaches will fail to capture this error giving an impression

of better assembly in such cases. QUAST produces an evaluation statistics called NAx, which

computes Nx after aligning contigs with a reference genome. The NAx is computed using only

the aligned blocks of contigs. Any contigs which are joined artificially, are broken at a point of

misassembly. Some of the commonly used metrics for assembly evaluation are summarized in

the following subsections.

3.2.1 Contig sizes

The metrics in this category can be evaluated with or without a reference genome. The program

allows ignoring very small contigs which are not useful.

• No. of contigs: Total number of contigs in assembly

• Largest contig: The largest contig in the assembly

• Total length: Total length of all the generated contigs in base pairs

• Nx (0 ≤ x ≤ 100): The length of the largest contig L, such that adding all contigs of

length ≥ L accounts for x% of total length

• NGx: The length of the largest contig L, such that adding all contigs of length ≥ L

accounts for x% of reference genome length

3.2. QUAST Introduction 59

Figure 3.3: Structural Variations [25]

3.2.2 Misassemblies and structural variations

The metrics under this category are produced after aligning contigs with a reference genome.

Any alignment differences are attributed to misassemblies, structural variations or due to se-

quencing errors. Structural variations can further be divided into relocations, inversions and

translocations. A relocation is a breakpoint where the left flanking sequence aligns some dis-

tance away from the right flanking sequence. An inversion is a breakpoint where the flanking

sequence aligns with its reverse complement. A translocation is a breakpoint where flanking

sequences are some distance away and align on a different chromosome. Figure 3.3 shows a

pictorial representation of structural variations.

• No. of misassembled contigs: The number of contigs which are joined erroneously and

are broken during the alignment

• Misassembled contig length: The total number of bases in contigs with misassemblies

• No. of unaligned contigs: Number of contigs which could not be aligned with the refer-

ence

3.2.3 Genome representation

The metrics in this category provide an insight into the genome. These metrics cannot be

produced without a reference genome.

• Genome fraction (%): The percentage of total aligned bases with respect to genome

size.

60 Chapter 3. Assembly Evaluation: LASER

• Duplication ratio: This is the ratio of total number of aligned bases in assembly with

total number of aligned bases in reference. The ratio > 1 indicates that repeat count has

been over estimated.

• GC (%): The GC content of an assembly is the percent of nucleotides which account for

a base G or C. This metric can be computed without a reference genome.

• No. of mismatches per 100 kb: The average number of mismatches per 100 kb.

• No. of genes and operons: The number of genes and operons are predicted based on user

provided annotations. Operons is group of genes or a segment of DNA that functions as

a single transcription unit.

3.2.4 NAx and NGAx

These are new powerful metrics which are similar to Nx and NGx statistics where x varies from

0 to 100. The idea is to split original contigs at a breakpoint identified in previous definitions.

A breakpoint can occur due to unaligned blocks in the contig or due to structural variations.

Once the aligned contig blocks have been identified, the NAx and NGAx are computed as the

Nx and NGx statistics using these contigs.

3.2.5 Visualizations

Here, we are also including some of the plots supported by QUAST. These plots have been

generated for dataset H5 in Table 3.1. These are dynamic plots and when viewed in the browser,

the details appear by hovering the mouse along the plot.

3.2. QUAST Introduction 61

Cumulative length

This plot shows the growth of total contig length when arranged in decreasing order of size.

Figure 3.4: Cumulative contig length

Nx plot

This plot shows Nx values where x varies from 0 to 100%.

Figure 3.5: Nx values

62 Chapter 3. Assembly Evaluation: LASER

NAx plot

This plot shows NAx values where x varies from 0 to 100%.

Figure 3.6: NAx values

NGx plot

This plot shows NGx values where x varies from 0 to 100%.

Figure 3.7: NGx values

3.2. QUAST Introduction 63

NGAx plot

This plot shows NGAx values where x varies from 0 to 100%.

Figure 3.8: NGAx values

GC content plot

This plot shows the distribution of GC content in certain range. The x-axis has the GC content

percent value while y-axis has the number of contigs for corresponding GC percent value. This

value on y-axis is computed by finding GC content of non-overlapping window of size 100.

The GC content plot shows two curves when reference genome is available. The curve in red

indicates the GC content plot for the assembly while the dotted line curve is for the reference

genome. For meta-genome assemblies, the plot will show multiple peaks, one corresponding

to each genome.

64 Chapter 3. Assembly Evaluation: LASER

Figure 3.9: GC content

3.3 LASER Improvements

QUAST is the current state-of-the-art in assembly evaluation program which provides a thor-

ough evaluation of assemblies by means of many new metrics and visualizations as discussed

in Section 3.2. However, for large genomes, the high time and memory usage requirements are

still a bottleneck for many researchers. We tested five different data sets of human genomes

and in most cases, it requires over 4 days and 120 GB of RAM to assess the quality of a single

human genome assembly.

LASER has been designed and implemented to inherit the advantages of QUAST while

improving its performance. The following subsections describe the major improvements im-

plemented in LASER and compare its performance with QUAST on several human datasets.

3.3.1 E-MEM integration

One of the key changes in LASER is the use of E-MEM [30], in place of NUCMmer [34].

NUCMmer is one of the most widely used program for MEM computation and genome align-

ment. NUCMmer uses suffix tree data structure for creating an index which requires huge

amount of memory and is very slow. E-MEM, as discussed in Chapter 2, is currently the

3.4. Results 65

best program for MEM computation and it is many times faster than NUCMmer, which gives

LASER a significant improvement in memory and run time.

3.3.2 Code remodeling

During the E-MEM integration for LASER, it was realized that there are many data structures

in QUAST which can be enhanced to further improve the performance and reduce the memory

requirements. The QUAST code is written in Python which is an interpreted language and

could be slow if not used properly. Efficient data structures and functions were used to remodel

the QUAST code. The major changes include simplifying nested dictionaries and replacement

of class objects with simple tuple based data structures. The changes improved performance

and drastically reduced the memory requirements.

3.3.3 NUCmer changes

The genome evaluation process requires the alignment of contigs with reference genome. The

alignment information is used for identification of Single Nucleotide Polymorphisms (SNPs)

and indels. This is achieved by another utility from NUCMer tool-set called show-snps. The

analysis of the utility with GNU profiler revealed functions which were consuming excessive

amount of time. Minor changes including some code rearrangements were done to improve

the performance of show-snps utility. The NUCmer was also modified to use temporary files

instead of pipes.

3.4 Results

The performance of LASER and QUAST was compared on five different variants of human

genome sequencing data. The data set details are provided in Table 3.1. Performance evalu-

ation has been performed using the facilities of the Shared Hierarchical Academic Research

Computing Network (SHARCNET: www.sharcnet.ca) and Compute Canada. All tests were

66 Chapter 3. Assembly Evaluation: LASER

performed on a DELL PowerEdge R620 computer with 12 cores Intel Xeon at 2.0GHz and

256GB of RAM, running Linux Red Hat, CentOS 6.3.

Table 3.1: Sequencing data used for comparison

Datasets Organism Accession number Read Length Number of reads Coverage

H1 Homo sapiens SRR1302280 101 1,287,175,558 41
H2 Homo sapiens ERR194146 101 1,626,361,156 51
H3 Homo sapiens ERR194147 101 1,574,530,218 50
H4 Homo sapiens ERR324433 101 1,614,713,636 51
H5 Homo sapiens ERX069505 101 1,708,169,546 54

Table 3.2: Assembly generation and evaluation time comparison

Datasets k-mer size Assembly time (s) Evaluation time (s)

H1 71 64,880 184,356
H2 71 60,480 359,615
H3 71 81,720 351,867
H4 71 71,640 358,743
H5 65 77,400 349,227

The tests were initially performed on small datasets and significant improvements were

noticed. However, the idea of LASER was to improve performance on large datasets. First, as-

semblies were generated using the SOAPdenovo2 [36] assembler for all the datasets mentioned

in Table 3.1. These assemblies were then evaluated using QUAST. The time comparison of as-

sembly generation and evaluation are shown in Table 3.2. QUAST requires 4 days to evaluate

an assembly which took less than a day for generation. This makes it nearly impossible to use

QUAST for evaluating the quality of an assembler being developed.

Table 3.3 gives the time and memory comparison between QUAST and LASER on the

SOAPdenovo2 [36] assemblies produced from the datasets in Table 3.1. A better visual com-

parison is shown in Figure 3.10. LASER is 5.6 times faster than QUAST while using half the

memory. For dataset H1, the performance results are different from other datasets due to the

smaller coverage for this dataset.

3.4. Results 67

Dataset Time (s) Memory (GB)
QUAST LASER QUAST LASER

H1 184,356 35,715 101.1 50.9
H2 359,615 64,368 123.3 61.2
H3 351,867 62,879 122.3 60.3
H4 358,743 63,917 124.3 61.0
H5 349,227 62,291 121.0 59.8

Table 3.3: QUAST and LASER comparison

Figure 3.10: Visual performance comparison of QUAST and LASER

68 Chapter 3. Assembly Evaluation: LASER

3.5 Conclusions

Genome assembly evaluation is an essential step in assessing the quality of an assembly. Un-

fortunately, it is often ignored or done improperly due to lack of understanding or absence of

required computing resources. With the introduction of LASER, proper evaluation can be per-

formed efficiently. A detailed overview of genome assembly evaluation process and metrics

is provided. LASER is an important program for the research community that improves on

drawbacks of QUAST and provides the benefit in efficient analysis of assemblies and its anno-

tations. After the LASER publication, QUAST program has replaced MUMmer with E-MEM

in order to improve performance. LASER has additional changes which still makes it faster

than QUAST.

Chapter 4

Genome Alignment: HISEA

4.1 Background

The information in DNA is encoded in large sequences. To decode this information, techniques

are needed to compare two or more sequences. Sequence Alignment is a method which is

used to compare and understand the similarity or differences among sequences. The method

involves arranging sequences such that similar regions are aligned to each other. These regions

are separated by one or more gaps, whenever mismatches are encountered. Figure 4.1 shows

an alignment between sequences TGGTTACT and TAGTAGTTACT. The gaps or mismatches

in the alignment are shown with an underscore character.

Figure 4.1: Alignment example.

A very small sequence can be aligned by hand, see example in Section 1.4. However,

complex genomic sequences require computational methods to be developed for faster and

optimal alignment. Computational methods for sequence alignment fall in two categories -

Global Alignment and Local Alignment. Global Alignment is used to compare similar sized

69

70 Chapter 4. Genome Alignment: HISEA

sequences and it forces the alignment to span the entire length of the sequence. On the other

hand, a local alignment is used to find the shared subsequences within two otherwise divergent

sequences. Local alignments are preferred but it is often more difficult to compute than global

alignments. Figure 4.2 shows a conceptual representation of two methods.

Figure 4.2: Global vs Local Alignment [14]

The first global alignment algorithm was developed by Saul B. Needleman and Christian D.

Wunsch [45] in 1970, which was based on dynamic programming. In 1981, Temple F. Smith

and Michael S. Waterman [55] proposed a local alignment algorithm based on a similar idea.

The algorithms based on dynamic programming are guaranteed to find an optimal alignment.

However, the algorithm has quadratic time complexity and does not scale up very well with

increasing sequence sizes. Given two sequences for alignment, A = a1a2...an and B = b1b2...bm

of length n and m respectively, the recurrence relation for Smith-Water algorithm is as follows:

4.1. Background 71

T i j = max



Ti−i, j−1 + s(ai, b j), where s(ai, b j) =


+1, if ai = b j

−1, if ai , b j

Ti−1, j − gapPenalty, and (1 ≤ i ≤ n and 1 ≤ j ≤ m)

Ti, j−1 − gapPenalty,

0

Here T is a scoring matrix of size (n + 1) ∗ (m + 1) and Ti j represents a cell in this matix at

an intersection of row i and column j. The similarity score of the two elements is defined by

s(ai, b j) and gapPenalty is the penalty for opening or extending the gaps. In general, matches

are assigned positive scores, and mismatches are assigned negative or relatively lower scores.

The recurrence shows an example of similarity scoring where matches get +1 and mismatches

get -1. A gap is created when there is an insertion or deletion in one sequence with respect

to other. In order to make accurate alignment decisions, gaps are penalized via various gap

penalty scoring methods. A simplest gap penalty method is to assign a constant negative score

to every gap, regardless of its length. This scheme is inaccurate because it does not account for

the length of insertion and deletion. A linear gap penalty solves this problem by accounting for

the length of the alignment. The most widely used gap penalty function is the affine gap penalty.

The affine gap penalty combines the advantages of both constant and linear gap penalty into

the scoring system. This scheme closely model the biological evolution process. Vingron et

al. [58] provides a detailed discussion on gap penalty schemes and its implication on sequence

alignment.

The algorithm start by constructing a scoring matrix T of size (n+1)∗(m+1) and initializes

its first row and first column with 0s. Then, starting with top left corner, values for each Ti j are

computed by using the recurrence relation. It is clear from the recurrence that smallest possible

value for a cell is 0, meaning that sequences up to this position have no similarities. Table 4.1

shows an example of scoring matrix computed for alignment of DNA sequences TGGTTACT

72 Chapter 4. Genome Alignment: HISEA

and TAGTAGTTACT. The similarity score of +1 for a match and -1 for a mismatch is used. A

linear gap penalty score of -1 is used for both gap opening and extension.

Table 4.1: Smith-Waterman alignment for sequences TGGTTACT and TAGTAGTTACT

- T G G T T A C T

- 0 0 0 0 0 0 0 0 0

T 0 1 0 0 1 1 0 0 1

A 0 0 0 0 0 0 2 1 0

G 0 0 1 1 0 0 1 1 0

T 0 1 0 0 2 1 0 0 2

A 0 0 0 0 1 1 2 1 1

G 0 0 1 1 0 0 1 1 0

T 0 1 0 0 2 1 0 0 2

T 0 1 0 0 1 3 2 1 1

A 0 0 0 0 0 2 4 3 2

C 0 0 0 0 0 1 3 5 4

T 0 1 0 0 1 1 2 4 6

The optimal local alignment is found by tracing back from the highest score value to its

source recursively until 0 is encountered. For example in Table 4.1, the highest score is 6

and traceback is shown with arrows starting at this position. Similarly, the second best local

alignment is obtained by tracing back from second highest score excluding the best alignment.

Over the years, focus has shifted on heuristic algorithms for sequence alignment which

are very fast, but do not guarantee an optimal alignment. Heuristic alignment algorithms have

many applications and are widely used in Bioinformatics. One of the most popular heuristic

alignment algorithm is Basic Local Alignment Search Tool (BLAST) [4]. BLAST was designed

for NGS technologies. It does not work well with long reads due to high error rate. The long

4.1. Background 73

read sequencing technologies have error rate of 10-15% and the most dominant errors are

indels. This is different from NGS sequencing technologies where read lengths are short and

error rate is below 2%. Hence, the alignment algorithms developed for NGS technologies

cannot be directly utilized for long reads.

Recently, many new alignment algorithms have been proposed. Typically, all alignment

algorithms for long reads follow the same methodology - find the candidate overlap, estimate

overlap distance and identify the approximate overlap region. In the following sections I briefly

discuss some of the recently published long read alignment algorithms.

4.1.1 BLASR

Basic Local Alignment with Successive Refinement (BLASR) [16] was the first algorithm used

for long reads alignment. The algorithm was developed as a long read mapper and can be used

for alignment with some parameter tuning. BLASR can use either a suffix array or FM-index to

find the exact matches between sequences. Figure 4.3 shows an overview of BLASR alignment

process. The exact matches (or k-mers) are shown in colored arrows.

Figure 4.3: Overview of BLASR algorithm; Chaisson et al. [16]

All exact matches are clustered and a score is assigned to each cluster. The scores for

three clusters are shown as 3, 6 and 4 in figure 4.3 (A). All clusters with a score above the

minimum threshold are aligned using sparse dynamic programming as shown in figure 4.3 (B).

High scoring alignments from the last step are realigned using dynamic programming over a

subset of cells guided by sparse dynamic programming alignment - Figure 4.3 (C). BLASR

74 Chapter 4. Genome Alignment: HISEA

has high computing requirements as it uses dynamic programming which is known to have

large runtime requirements. BLASR is used in the PBcR assembly pipeline which was the first

genome assembly pipeline for long reads data [32].

4.1.2 DALIGNER

DALIGNER [44] was the first program designed for Pacbio read-vs-read alignment. To deter-

mine the similarity between two sequences, the algorithm finds a set of k-mers in each read,

sorts each set according to k-mers and merges common k-mers to a new set. These k-mers are

later extended to find local alignment using an algorithm of progressive “waves” of furthest

reaching points [43].

DALIGNER has many techniques implemented for efficiency. It utilizes 3-level cache

hierarchy architecture of modern computers to achieve faster memory fetch operations. The

radix sort algorithm is used to increase the sorting performance and thread level parallelization

is implemented for runtime efficiency. DALIGNER is used in the FALCON [10] assembly

pipeline.

4.1.3 GraphMap

GraphMap [57] was originally designed as a read mapper for Oxford Nanopore Technology

(ONT). It enables an overlap detection mode under an option ‘-owler’. GraphMap is the only

program which uses spaced seed for detecting similarity between sequences. The concept of

space seed was introduced in PatternHunter [39], where the seeds do not consist of consecutive

matches. The seed used in PatternHunter is 111*1**1*1**11*111, which looks for 18 con-

secutive nucleotides in each sequence such that only nucleotides at 1’s position are required to

match. GrpahMap uses a hard coded spaced seed 111111*111111 of size 13. The space seed

matches 13 base pairs and allows a mismatch or an indel at the position number 7. The iden-

tified k-mers are filtered to find a longest common subsequence of these matches. The bounds

of the longest subsequence is returned as the alignment bound.

4.1. Background 75

4.1.4 MHAP

MinHash Alignment Process (MHAP) [6] implements MinHash algorithm by Broder [13] to

detect similarity between two sequences. MinHash is an efficient hashing technique which

uses multiple hash functions and stores the smallest hashed values in a sketch list. Thus, each

sequence is represented by its own sketch irrespective of the read length. The sketch size

depends on the number of hash functions used. Higher number of hash functions increases

sensitivity but has a negative impact on the performance. An example of minHash is shown in

Figure 4.4. The example uses four hash functions for two sequences S 1 and S 2. The k-mer size

is 3. The sketch for sequences are shown in Figure 4.4 (c).

76 Chapter 4. Genome Alignment: HISEA

Figure 4.4: MinHash overview; Berlin et al. [6]

Similarity is computed by the Jaccard index over the sequence of sketches. The Jaccard

index [26] is defined as the size of the intersection divided by the size of the union of the sample

sets. Given two sets A and B, the Jaccard index J(A, B) = |A∩B| ÷ |A∪B| and 0 ≤ J(A, B) ≤ 1.

The overlapping region is identified by computing the median of relative positions of matches.

These are further validated against sketches of smaller k-mer size for correctness. In practice,

MHAP is very fast due to the use of MinHash, but requires more memory as the code has been

implemented in JAVA. MHAP is used in Canu [33] assembly pipeline.

4.2. HISEA Introduction 77

4.1.5 Minimap

Minimap [35] is the most recent aligner and it improves on many ideas introduced in previous

aligners. It uses hash table to store k-mers similar to the alignment programs BLAT [27]. It

uses minimizers, Roberts et al. [48], an idea similar to sketch in MHAP for reduced represen-

tation of sequences. A minimizer is the smallest k-mer in a window of w consecutive k-mers.

Similar to DALIGNER, it uses sorting to reduce heap allocation and avoid cache misses. The

core algorithm flow is similar to other algorithms where minimizers are used to identify the

similarity between sequences. A longest increasing subsequence of k-mers gives the bounds of

the approximate alignment. Minimap is used in the Miniasm assembly pipeline [35].

4.2 HISEA Introduction

An essential step in assembling SMRT data is the detection of alignments, or overlaps, between

reads. High error rate and very long reads in the Pacbio sequencing data make this a much more

difficult problem as compared to Illumina data. We present a new pairwise read aligner, or

overlapper, HISEA (HIerarchical SEed Aligner) [31] for SMRT sequencing data. The HISEA

algorithm has the best alignment detection sensitivity among all programs for SMRT data.

We compared the sensitivity of our aligner with BLASR [16], DALIGNER [44], GraphMap

[57], MHAP [6], and MiniMap [35]. Note that the terms “alignment” and “overlap” are used

interchangeably.

The comparatively high cost of SMRT sequencing has prevented its widespread use. It is

very expensive to sequence large genomes with high coverage using SMRT technology, there-

fore it is still beyond the reach of many research labs. Recently, Koren et al. [33] showed

that their Canu assembler can generate assemblies using only 20x coverage that are compara-

ble with 150x coverage hybrid assemblies generated with SPAdes [5]. They have also shown

that it can achieve maximum assembly continuity around 50x coverage. As indicated by Ko-

ren et al. [33], Canu is currently the best pipeline. Therefore, we have incorporated HISEA

78 Chapter 4. Genome Alignment: HISEA

in this assembly pipeline, replacing the MHAP aligner [6] with HISEA. We have compared

the two pipelines, Canu+MHAP and Canu+HISEA for five organisms, E.coli, S.cerevisiae,

C.elegans, A.thaliana, and D.melanogaster at two coverage levels: 30x and 50x. The pipeline

using HISEA is shown to produce better assemblies for both coverage levels. Moreover, the

Canu+HISEA assemblies for 30x coverage are comparable with those of Canu+MHAP for

50x coverage.

HISEA software is implemented in C++ and OpenMP. It can be used as a stand alone

aligner or as an all-vs-all read aligner in other assembly pipelines.

4.3 HISEA algorithm

Let Σ = {A,C,G,T } be the DNA alphabet; Σ∗ is the set of all DNA sequences, that is, all finite

strings over Σ. Assume two sets of reads: the set of reference reads, R = {r1, r2, ..., rn} ⊂ Σ∗,

and the set of query reads, Q = {q1, q2, ..., qm} ⊂ Σ∗. A k-mer is a string of length k over Σ.

4.3.1 Storing reads and hashing the reference set

All reads and their reverse complement are stored in memory. In order to keep memory re-

quirements low, each read ri is encoded using 2 bits per nucleotide and stored as an array of

unsigned 64-bit integers, that is, as blocks of 32 nucleotides. This reduces memory requirement

by 4 folds compared to storing them as one byte per character. The reverse complement of r is

stored in the same array and it starts at the next unsigned 64-bit integer. A precomputed 16-bit

reverse complement array of all possible values is used to quickly compute the reverse com-

plement of reads. Since the size of the sequence is known, accessing the reverse complement

simply requires movement of a pointer to the right location.

All k-mers that occur in reads of R and its reverse complement are quickly computed using

bitwise operations and bit masking. This is achieved by sliding a window of k-mer size through

the sequence and extracting k-mers using bit operation. These k-mers are stored in a hash table

4.3. HISEA algorithm 79

using double hashing technique, similar to what we discussed in Section 2.5. The hashing is

implemented in parallel using OpenMP directives. As a first step, a temporary hash is used

for storing the k-mers by dynamically growing the hash table. Once all the k-mers are added,

the final hash table is created by moving k-mers in this table. Each hash table entry stores the

value of the k-mer and a pointer to a second hash table. The second hash table is a dynamic

hash table (a map container class from Standard Template Library), which stores the set of

read ids r j, and positions within r j, where this k-mer occurs. As a pre-filtering step, any k-mers

appearing more than a specified upper bound threshold or less than a lower bound threshold

are ignored for hashing. Ignoring these k-mers does not impact the alignment results. Instead,

it helps in reducing memory and improving performance in later stages of the algorithm. The

default value of the lower bound and the upper bound is 2 and 10,000 respectively.

4.3.2 Searching the query set

The k-mers occurring in the query read set Q are not stored; they are quickly computed as

needed using bit operations. Similar to reference storing, this is achieved by using a window

of k-mer size and going over the entire sequence. Again, the use of bit operations makes the

computation very efficient. Next, each k-mer from the query set is efficiently searched in the

hash table built for the set R. Every time a matching k-mer is found in the hash table, the

corresponding reference read identifier and its position are recorded. The information is stored

in a complex data structure which consists of a hash containing array of vectors. All the basic

data structures are directly used from STL container classes except the hashing as discussed in

the previous section.

It is important to note that the reads in the query set are only searched in forward direction,

as the reference hash contains k-mers in both forward and reverse directions.

80 Chapter 4. Genome Alignment: HISEA

4.3.3 Filtering and clustering

The next step in the process is to filter and cluster the k-mer matches. In the previous step, for

each query q ∈ Q and a reference read r ∈ R, the reference read direction and all matching

k-mer positions are stored. For a pair of reads (q, r), further processing is considered only

either in forward or reverse direction of r. The decision is taken based on the read direction of

r which has a higher number of matching k-mers.

At this point, we have all k-mer matches of a given size between query sequence q and

reference sequence r. Some of these matches appear just by chance or may not correspond to

the best possible alignment. A clustering step is performed to group the k-mers such that each

cluster contains a consistent set of k-mers. A consistent set of k-mer matches is defined as a

set of all k-mer matches arranged in ascending order of their positions and are equidistant from

neighboring k-mer matches within a defined threshold. The threshold is dependent on error rate

which can also be controlled by a command line parameter. Figure 4.5 shows an example of all

k-mer matches between read q and read r before and after clustering. The example shown here

is one simple case; in reality many complex cases are possible where clustering is essential.

(a)

(b)

Figure 4.5: All k-mer matches between reads q and r before (a) and after (b) clustering.

Clustering is an essential step in identifying the best alignment out of multiple possible

alignments. We report only the best alignment out of all possible alignments between a pair

of reads. The initial matches can have contradictory information, such as the ones in Fig-

ure 4.5(a). The clustering phase involves collecting together consistent matches which helps in

4.3. HISEA algorithm 81

determining the best possible alignment. Figure 4.5(b) shows the set of k-mers as divided into

three consistent groups. It can be seen from the diagram that the rightmost cluster of k-mers is

expected to produce the best alignment results.

Algorithm 4.3.1 gives the details of the clustering process. The input to the algorithm is an

array V which contains all k-mer matches for a pair of reads (q, r). The input k-mer matches in

V are sorted beforehand, first by query read positions and then by reference read positions. If

the clustering algorithm fails to produce any meaningful clusters, we reverse the sort order i.e.

first sort by reference read positions and then by query read positions and retry the algorithm.

The algorithm uses two global parameters, kmerSize and maxShift. The parameter kmerSize is

the size of the k-mers used for the initial hashing. The parameter maxShift is a user configurable

parameter that accommodates the indel errors during k-mer matching, clustering and extension

algorithms. The default value of this parameter has been experimentally determined to be 0.2

(or 20%). The output of the clustering algorithm is a set of matches, ClusterArray, segregated

in groups such that each group has a consistent set of k-mers. Note that the first two values in

ClusterArray store the left and right k-mer positions in V for that cluster. The third and fourth

values are the number of matching base pairs and k-mer hit counts respectively.

82 Chapter 4. Genome Alignment: HISEA

Algorithm 4.3.1: ClusterKmers(V)

global kmerSize,maxShift

local k ← 0, j← 0,ClusterArray← (0, 0, kmerSize, 1)

local found ← false , refDiff ← 0, queryDiff ← 0

for k ← 1 to V.size

do



found ← false

for j← 0 to ClusterArray.size

do



refDiff ← (V[k].r − V[ClusterArray[j][1]].r)

if (refDiff < 0)

then continue

queryDiff ← (V[k].q − V[ClusterArray[j][0]].q)

if (queryDiff < 0)

then continue

if (refDiff and queryDiff within maxShift limits)

then


found ← true

Update values in ClusterArray[j]

if (f ound = false)

then


comment: Add new cluster in ClusterArray

ClusterArray[j + 1]← (k, k, kmerSize, 1)

return (ClusterArray)

From the output of Algorithm 4.3.1, the cluster with the maximum number of matching

base pairs is selected for further processing. The expected number of k-mer matches is esti-

mated with the help of k-mer bounds in read q and read r; see Figure 4.6.

4.3. HISEA algorithm 83

Figure 4.6: Computing the alignment. The dark grey region contains all k-mer matches and is
extended by the light grey ones using k′-mer matches.

The leftmost and rightmost query k-mers start and end at positions qL and qR respectively.

Similarly, the corresponding positions in the reference read are rL and rR. The alignment length

is L = rR + querySize − qR, if there exists a perfect overlap between r and q. The number of

k-mer hits in the overlapping region is approximated as a binomial distribution with probability

p = (1−e)2k and L trials. Overlaps that have fewer k-mer matches than three standard deviations

below the mean, that is, less than µ − 3σ = Lp − 3
√

Lp(1 − p), are eliminated as having too

low similarity. This procedure is employed several times during different steps of the algorithm

and will be referred to as the µ − 3σ criterion.

4.3.4 Computing and extending alignments

The alignment between the two given reads starts at the boundary defined by the set of k-mers

in the cluster identified by Algorithm 4.3.1, shown in dark grey in Figure 4.6. This region is

extended using a smaller seed, that is, using k′-mer matches, for some k′ < k. The default

values are k = 16 and k′ = 12. These values have been determined experimentally to produce

reasonably good results for most datasets. HISEA implementation allows these values to be

modified from the command line.

The first step is to compute the maximum bounds of the alignment considering the max-

imum amount of allowable indels in the overlapping region. This is given by the user con-

figurable parameter maxShift mentioned above. As an example, for the situation depicted in

84 Chapter 4. Genome Alignment: HISEA

Figure 4.6, we set the maximum bounds for read q and read r as (queryStart, querySize) and

(0, refEnd) respectively (see Figure 4.6) where:

queryStart = qL − (1 + maxShift)rL

refEnd = rR + (1 + maxShift)(querySize − qR)

Algorithm 4.3.2: ExtendAlignment(queryBound, refBound,V)

local refDiff ← 0, queryDiff ← 0, hits← 0, currIndex← −1

for i← 1 to V.size

do



if (currIndex = −1)

then


refDiff ← |refBound − V[i].r|

queryDiff ← |queryBound − V[i].q|

else


refDiff ← |V[currIndex].r − V[i].r|

queryDiff ← |V[currIndex].q − V[i].q|

if (refDiff and queryDiff within maxShift limits)

then



estimate← µ − 3σ

if (hits ≥ estimate)

then


hits← hits + 1

currIndex← i

else if (currIndex , −1)break

if (currIndex , −1)

then return (V[currIndex].r,V[currIndex].q)

else


comment: Could not extend bounds

return (0)

At this point, we compute all k′-mer matches (k′ < k) within three regions - two light grey

4.3. HISEA algorithm 85

regions and one dark grey region as shown in Figure 4.6 using similar methods as discussed

in Section 4.3.2 and 4.3.3. However, now it does not go through the clustering step as the

region is already identified as the best alignment region based on k-mer matches. The k′-mers

are computed to accurately estimate the extension of the alignment using the µ − 3σ criterion.

Next, the dark grey region is extended by the light grey region on both sides as shown in

Figure 4.6. Each new k′-mer match is added with the ones already found as long as they satisfy

the µ − 3σ criterion. Algorithm 4.3.2 provides details of this process. The input bounds are

either (qL, rL) or (qR, rR).

Finally, all the k′-mers within the initial region – dark grey colour in Figure 4.6 – are

computed. Note also that the process is now guided by the original k-mers and therefore the

clustering step is not required. The µ − 3σ criterion is applied once more to the total number

of k′-mer matches for the entire overlap (light and dark grey). If the criterion is satisfied, the

reads are considered to be overlapping and the alignment is reported.

Note that HISEA computes only the alignment boundaries, not the actual alignments. This

does not guarantee the optimal alignment bounds but we show in Section 4.4 that HISEA al-

gorithm produces alignments which are very close to optimal. We have compared HISEA

algorithm with other programs, such as MHAP [6], Minimap [35] and GraphMap [57], all of

which produce approximate alignment bounds. As we know, optimal alignment is computed

using Smith-Waterman [55] dynamic programming algorithm and using it for all-vs-all read

alignment will be very time consuming. Further, the heuristic approach provides a very ef-

ficient solution and the approximate alignment bounds reported are very close to optimal. It

is important to understand that HISEA - generated alignments are sufficient for downstream

usage, particularly in genome assembly algorithm using large read sequencing technologies.

86 Chapter 4. Genome Alignment: HISEA

4.4 Alignment evaluation method

The EstimateROC utility estimates the sensitivity, specificity and precision for the alignments

reported. The original EstimateROC utility of Berlin et al. [6] relies heavily on BLASR map-

pings for the verification of reported alignments. This is not an accurate procedure since

BLASR can make errors. Ideally, each alignment needs to be verified against the optimally

computed alignment using the Smith-Waterman [55] dynamic programming algorithm. Since

each program reports millions of alignments, verifying each and every alignment is very time

consuming and hence not feasible. We used BLASR mapping to randomly choose a pair of

reads where alignment exists and then evaluate it against the optimal alignment computed us-

ing Smith-Waterman dynamic programming algorithm. The EstimateROC utility provides a

skeleton for estimating sensitivity, specificity and precision. We have modified or re-written

all the functions provided by EstimateROC to suit our evaluation process . Figure 4.7 shows a

relationship between true and false alignments.

Figure 4.7: Relationship between alignments reported by program and real alignments

The smaller circle contains all the alignments reported by the program and it divides all

alignments into four regions shown in different colors. An alignment in each region represents

4.4. Alignment evaluation method 87

one of the values corresponding to true positive, true negative, false positive and false negative.

These values are used for computing the sensitivity, specificity, precision and F1-scores. A true

positive alignment is a true (or real) alignment between a pair of reads which is correctly

identified by the program. A true negative alignment is a false (or non existing) alignment

which is correctly rejected i.e. not reported by the program. A false positive alignment is a

false alignment which is incorrectly reported by the program and a false negative alignment is

a real alignment which is not reported by the program.

4.4.1 Compute Dynamic Programming Alignment

As explained in the previous section, the program reported alignments were compared against

optimal alignments computed using Smith-Waterman algorithm. The original code in Esti-

mateROC utility used Smith-Waterman for some specific cases. For example, during specificity

computation, if a program reported alignment is missing from BLASR mapping, dynamic pro-

gramming is used to evaluate the correctness of the alignment. This is done only if the user

has enabled dynamic programming option. We use a modified version of the code which has

stricter checks for lengths and bounds. The modified function ComputeDP first computes an

optimal alignment, Aopt, between two reads using the Smith-Waterman dynamic programming

algorithm. It is ensured that this is a good alignment as per the evaluation criterion, other-

wise this alignment is ignored. Next, we check if the program has reported a corresponding

alignment. If no alignment is found, it is considered as a missing alignment in the program

output. The Algorithm 4.4.1 provides the details of checks performed with respect to optimal

alignment. Assume that the program reported an alignment, Arep. We then compare the length,

direction and bounds of the alignment reported by the program with those of the optimal align-

ment. This step is essential for correctness because the program could report a very different

alignment between the same reads. The use of an optimal alignment algorithm increases the

accuracy of evaluation.

88 Chapter 4. Genome Alignment: HISEA

Algorithm 4.4.1: ComputeDP(r1, r2, Arep)

Aopt ← optimal alignment between r1 and r2

if (Aopt.length < minOverlapLength) or

(Aopt.score < minOverlapScore)

then return (bad Aopt)

if (Arep = void)

then return (no Arep)

if (Aopt.direction , Arep.direction) or

(|Aopt.length − Arep.length| < 0.3Aopt.length) or

(|Aopt.left − Arep.left| > 0.3Aopt.length) or

(|Aopt.right − Arep.right| > 0.3Aopt.length)

then return (bad Arep)

return (good Arep)

The three functions used for evaluation, EstimateSensitivity, EstimateSpecificity and Esti-

matePrecision, are modified to correspond with our new ComputeDP function. The evaluation

performed with our method is more accurate and strict therefore all programs exhibit a decline

in performance. The Results section contains a comparison of several evaluation procedures.

4.4.2 Sensitivity computation

Sensitivity is a standard statistical measure which computes true positive rate or the positive

cases which are correctly identified in a given sample of data. Statistically, it is computed as

T P÷ (T P+ FN). The Algorithm 4.4.2 gives details of the sensitivity computation. Note that in

the algorithm, we account for a given alignment only if there exists a valid optimal alignment

4.4. Alignment evaluation method 89

between pair of reads.

Algorithm 4.4.2: EstimateSensitivity()

for i← 1 to numTrials

do



Pick random overlap from BLASR reference mapping.

Assume the reads are r1 and r2.

if (ComputeDP(r1, r2, Arep) , bad Aopt)

then


if (ComputeDP(r1, r2, Arep) = good Arep)

then TP← TP + 1

else FN ← FN + 1

return (TP
TP+FN)

4.4.3 Specificity computation

Specificity measures the true negative rate or all the negative cases which are correctly identified

in a given sample of data. Statistically, it is computed as T N÷ (T N +FP). The Algorithm 4.4.3

gives details of the specificity computation. We start by randomly generating two sequence ids.

The optimal alignment is computed between the sequences. Depending on optimal alignment

and program output, it is categorized as false positive or true negative.

90 Chapter 4. Genome Alignment: HISEA

Algorithm 4.4.3: EstimateSpecificity()

for i← 1 to numTrials

do



Generate two random read IDs: r1 and r2.

if (overlap Arep(r1, r2) exists in program output)

then


if (ComputeDP(r1, r2, Arep) , good Arep)

then FP← FP + 1

else


if (ComputeDP(r1, r2, Arep) = bad Aopt)

then TN ← TN + 1

return (TN
TN+FP)

4.4.4 Precision computation

Precision is the measure of consistency of results when an experiment is repeated certain num-

ber of times. Statistically, it is defined as the fraction of true alignments among the total

alignments reported by the program or T P ÷ (T P + FP). Similar to other algorithms, decision

of correctness is based on the optimal alignment reported by the Smith-Waterman algorithm.

Algorithm 4.4.4 provides details of the precision computation.

Algorithm 4.4.4: EstimatePrecision()

for i← 1 to numTrials

do



Pick random alignment Arep(r1, r2) from program output.

if (ComputeDP(r1, r2, Arep) = good Arep)

then TP← TP + 1

else FP← FP + 1

return (TP
TP+FP)

4.5. Results 91

4.4.5 F1 score computation

The statistical measures such as precision and recall (same as sensitivity) give us a very good

understanding of the program’s characteristics. However, it is possible that a program depicts

a characteristic of low sensitivity, high specificity and a very high precision at the same time.

For genome alignment, such cases may not give a clear indication of correctness and accuracy

of the algorithm.

F1 = 2 × precision×recall
precision+recall

To counter such cases, we decided to compute one more statistical measure, called F1 score.

F1 score is a measure of accuracy and it is defined as the harmonic mean of the precision and

the recall for a given sample of data. The measure is an average of the two when precision and

recall are very close.

4.5 Results

HISEA is evaluated against the most popular programs for PacBio read alignment: BLASR

[16], DALIGNER [44], GraphMap [57], MHAP [6] and Minimap [35]. Also, we assessed the

performance of HISEA for assembling PacBio data by including HISEA in the Canu assembly

pipeline [33] and compared it with the assembly generated using MHAP as the aligner in the

same pipeline.

All the programs were run according to their own developers’ suggestions as provided in

their respective publications or websites. Minimap and DALIGNER were run as suggested.

We tested BLASR with default parameters and the results were very poor. BLASR program’s

sensitivity is primarily affected by the bestn parameter which controls the number of alignments

to be reported for each read. To get the highest sensitivity bestn parameter is tweaked for each

dataset. Our test indicates bestn values similar to what has been used by MHAP. Hence BLASR

was run with exactly same parameters as in MHAP paper. GraphMap was run with default

92 Chapter 4. Genome Alignment: HISEA

parameters as the only choice available in overlapping mode. MHAP was run with default

parameters, except the number of hashes, which was set to 1256, instead of the default 512, for

increased sensitivity. Minimap was run with window size 5 (default is 10), as recommended by

the designers. MHAP and Minimap were also tested on varying number of hashes and window

sizes respectively. The results for these tests are shown in Table 4.6 and 4.7 respectively.

HISEA was run with default parameters. All tests were performed on a DELL PowerEdge

R620 computer with 12 cores Intel Xeon at 2.0 GHz and 256 GB of RAM, running Linux Red

Hat, CentOS 6.3.

The datasets have been downloaded from Pacific Biosciences DevNet Datasets

(https://github.com/PacificBiosciences/DevNet/wiki/Datasets). The datasets used for this eval-

uation are given in Table 4.2.

Table 4.2: SMRT datasets used in for evaluation

Genome Reference Coverage Chemistry Genome size
number (Mbp)

E.coli NC 000913 85x P5C3 4.64
S.cerevisiae NC 001133.9 117x P4C2 12.16
C.elegans WS222 80x P6C4 100.2
A.thaliana TAIR10 110x P4C2 134.6
D.melanogaster Ref v5 90x P5C3 129.7

4.5.1 Alignment results

Standalone comparison

It is very time consuming to test full datasets for all possible alignments. So, to assess the

quality of the competing programs, a subset of 1Gbp dataset was created by randomly sampling

reads from the original datasets. The two smallest genomes E.coli and S.cerevisiae, use full

datasets since they are close to 1Gbp with the given coverage. The sensitivity, specificity,

precision and F1 score values for all programs are given in Table 4.3. They were computed

using the EstimateSensitivity, EstimateSpecificity and EstimatePrecision procedures that we

https://github.com/PacificBiosciences/DevNet/wiki/Datasets

4.5. Results 93

described in the Section 4.4. The values for sensitivity, specificity, precision and F1-score are

given in percentages. A dash for a value means that the program crashed with segmentation

fault. The coverage corresponding to 1Gbp dataset is also shown in parenthesis along with the

dataset name. The best value for a test is shown in bold and is represented by a darker green

color. At the bottom of the table, the average values are computed for each program from

corresponding results for each dataset in the table.

Table 4.3: Comparison for the 1 Gbp datasets.

Genome (Coverage) Parameter BLASR DALIGNER GraphMap MHAP Minimap HISEA

E.coli (85x) Sensitivity 96.44 76.26 41.03 83.74 91.80 97.06
Specificity 98.61 99.82 99.83 99.90 99.93 99.87
Precision 98.21 83.56 39.66 97.15 97.13 97.95
F1-score 97.32 79.74 40.33 89.95 94.39 97.50

S.cerevisiae (117x) Sensitivity 21.72 – 4.41 62.08 9.35 91.70
Specificity 99.61 – 99.95 99.77 99.98 99.77
Precision 96.25 – 45.48 89.29 94.30 94.31
F1-score 35.44 – 8.04 73.24 17.01 92.99

C.elegans (10x) Sensitivity 92.71 73.96 36.21 80.43 85.38 93.38
Specificity 98.62 99.97 99.98 99.97 99.98 99.97
Precision 93.23 78.24 38.65 45.46 89.80 88.83
F1-score 92.97 76.04 37.39 58.09 87.53 91.05

A.thaliana (8x) Sensitivity 6.69 64.13 10.83 76.19 23.55 90.89
Specificity 99.99 99.86 99.97 99.91 99.97 99.89
Precision 98.72 83.09 47.98 88.78 84.00 94.58
F1-score 12.53 72.39 17.67 82.00 36.79 92.70

D.melanogaster (8x) Sensitivity 40.69 68.85 17.76 71.86 40.72 91.40
Specificity 99.90 99.90 99.98 99.94 99.99 99.93
Precision 94.14 77.45 37.76 72.47 83.93 90.10
F1-score 56.82 72.90 24.16 72.16 54.84 90.75

Average Sensitivity 51.65 70.80 22.05 74.86 50.16 92.89
Specificity 99.35 99.89 99.94 99.90 99.97 99.89
Precision 96.11 80.59 42.72 78.63 89.83 93.15
F1-score 59.02 75.27 18.04 75.09 58.11 93.00

The mandatory inputs to EstimateROC are the reference genome, the reads, minimum

alignment length, number of trials and the mapping of the reads to the reference. The mapping

94 Chapter 4. Genome Alignment: HISEA

of the reads to the reference is computed using the BLASR program. It is used as a guidance

to pick random reads with possible overlaps for evaluation as explained in Section 4.4. The

minimum alignment length is set to 2,000 bps and all trials were conducted with a sample of

50,000 alignment with no repetition.

HISEA has the best sensitivity for all datasets. On average, it has 16% higher sensitivity

than the second best program - MHAP. Specificity is high for all the programs and it is more

than 99% for all of them. Comparing absolute values of specificity indicate that Minimap has

the highest specificity for all datasets but at the same time it has very low sensitivity. BLASR

has the highest precision but again its sensitivity values vary a lot for each dataset and on an

average it has a low sensitivity. HISEA has the highest sensitivity and it comes a close second

for precision. It is not clear if one should use a program with best sensitivity or best precision.

To better understand the relationship between them, we have computed the F1-scores (defined

in Section 4.4.5), also shown in Table 4.3. The F1-score for HISEA is much higher than all the

other programs which makes it a clear winner. The F1 scores for DALIGNER and MHAP fall

behind by 18% and 19% respectively. The remaining three programs BLASR, Minimap and

GraphMap have F1 scores of 59.02%, 58.11% and 18.04% respectively which are very low as

compared to HISEA.

The time and memory comparison for the same 1Gbp datasets is presented in Table 4.4.

Minimap and GraphMap are clearly the fastest and BLASR the slowest. HISEA is in the

middle, behind MHAP and DALIGNER. Space-wise, Minimap is again the best, followed

closely by BLASR. HISEA comes third, with GraphMap following behind it. MHAP and

DALIGNER used the most memory. MHAP is implemented in JAVA which generally requires

more memory because of the Java Virtual Machine. The java command-line parameter -Xmx

is used to set the maximum heap size for MHAP stand alone invocation. The default maximum

java heap size depends on the platform and the amount of memory in the system. For our

systems, the default heap size was not sufficient to perform the tests. We set -Xmx parameter

to 200G which was sufficient for all tests but it does not capture true overlapper memory for

4.5. Results 95

MHAP. The reported memory usage for MHAP is a sum of the overlapper memory and the

memory required for Java Virtual Machine environment. The best values are in bold and a

dash means a segmentation fault in program output. The time is reported in CPU hours and

memory is in GB.

Table 4.4: Time and memory comparison for the 1 Gbp datasets.

Genome Time (h) BLASR DALIGNER GraphMap MHAP Minimap HISEA
Memory (GB)

E.coli Time 113.0 3.0 0.3 3.0 0.1 4.0
Memory 7.1 124.6 42.3 210.0 8.8 25.5

S.cerevisiae Time 283.2 – 0.6 10.6 0.3 23.5
Memory 13.3 – 71.0 210.0 15.1 56.5

C.elegans Time 333.6 4.1 0.6 4.3 0.2 23.6
Memory 14.5 248.2 59.0 210.0 9.8 46.4

A.thaliana Time 43.2 8.1 0.6 5.9 0.2 12.2
Memory 10.3 248.2 60.0 210.0 9.9 45.3

D.melanogaster Time 355.2 12.5 0.4 4.8 0.1 95.1
Memory 16.7 204.2 59.0 210.0 9.7 48.1

Sensitivity - a deep dive

It was observed that our sensitivity numbers are lower when compared with original Estimate-

ROC utility from Berlin et al. [6]. We expected it as we added evaluation checks which are

stricter than those of Berlin et al. [6]. We wanted to understand the performance of each

program when these checks are relaxed. Table 4.5 shows results for four different ways of

evaluating the sensitivity under relaxed criterion. The strictest check is one which is used in

our evaluation and involves checking of precise bounds of all alignments - in the table this is

labelled as “bounds”. This condition is relaxed in our next sensitivity test and it is referred

to in the table as “length” - which only checks for length of the alignment. This condition is

further relaxed to simply check for the presence of the alignment and it is referred to in the

table as “presence”. This is our weakest test and we expected all programs to perform well

under this criterion. However, the results in Table 4.5 do not validate our hypothesis except

96 Chapter 4. Genome Alignment: HISEA

for DALIGNER, MHAP and HISEA. Further, to be fair with the evaluation, we also include

the results from original EstimateROC utility and it is referred as “ Berlin et al.” in the table.

While there are differences among all these sensitivity modes, HISEA clearly remains at the

top, followed by DALIGNER and MHAP. The other three programs perform very poorly. It

is interesting to note the very high sensitivity of DALIGNER in the “presence” only scenario.

This indicates that even though many alignments were found by DALIGNER, their length and

bounds are not close to optimal.

Table 4.5: Comparison of several types of sensitivity computations on the 1 Gbp datasets.

Genome Sensitivity BLASR DALIGNER GraphMap MHAP Minimap HISEA

E.coli presence 98.99 99.57 83.49 85.00 97.12 99.12
length 96.60 76.68 70.52 83.92 91.95 97.20
bounds 96.44 76.26 41.03 83.74 91.80 97.06
Berlin et al. 97.35 80.41 84.74 84.82 94.11 97.86

S.cerevisiae presence 22.60 – 9.27 67.43 10.31 98.02
length 21.96 – 4.63 63.93 9.35 93.93
bounds 21.72 – 4.41 62.08 9.35 91.70
Berlin et al. 29.70 – 12.06 71.92 13.23 91.82

C.elegans presence 98.99 99.68 75.91 87.37 93.39 98.97
length 96.64 78.08 59.37 85.40 88.47 97.01
bounds 92.71 73.96 36.21 80.43 85.38 93.38
Berlin et al. 92.48 78.59 73.02 79.77 87.04 92.60

A.thaliana presence 6.83 92.11 21.21 85.69 29.76 99.15
length 6.72 69.09 12.21 83.14 24.00 96.84
bounds 6.69 64.13 10.83 76.19 23.55 90.89
Berlin et al. 11.11 65.52 14.17 60.86 17.99 74.71

D.melanogaster presence 42.59 97.74 36.48 82.53 47.48 98.25
length 41.26 71.77 21.74 76.69 41.80 94.38
bounds 40.69 68.85 17.76 71.86 40.72 91.40
Berlin et al. 41.67 75.62 35.94 78.19 43.36 89.81

Average presence 54.00 97.28 45.27 81.60 55.61 98.70
length 52.64 73.91 33.69 78.62 51.11 95.87
bounds 51.65 70.80 22.05 74.86 50.16 92.89
Berlin et al. 54.46 75.04 43.99 75.11 51.15 89.36

4.5. Results 97

Sensitivity vs overlap size

All the programs used in this evaluation produce approximate alignment bounds based on some

heuristics. Since the evaluation allows an error of around 30% in length and bounds, it is easier

to find long overlaps with correct bounds as compared to short overlaps. To understand the

impact on sensitivity performance of each program with increasing overlap length, the aligners

sensitivity is plotted as a function of mean overlap length. The mean overlap is computed for

a window of size 1000 base pairs. For example, the first point represents a mean value for

a window of overlap length 1001-2000, second point is a mean value for a window of size

2001-3000 and so on.

2000 4000 6000 8000 10000

0
20

40
60

80
10

0

E.coli

Mean Overlap Length

S
en

si
tiv

ity

●

●

●

● ●

● ● ●

●

2000 4000 6000 8000 10000

0
20

40
60

80
10

0

S.cerevisiae

Mean Overlap Length

S
en

si
tiv

ity

●
●

●
●

●

●

●
●

●

2000 4000 6000 8000 10000

0
20

40
60

80
10

0

C.elegans

Mean Overlap Length

S
en

si
tiv

ity

●

●

●

●

●

●
●

●

●

2000 4000 6000 8000 10000

0
20

40
60

80
10

0

A.thaliana

Mean Overlap Length

S
en

si
tiv

ity

●

●
●

● ●

●

●

●

●

2000 4000 6000 8000 10000

0
20

40
60

80
10

0

D.melanogaster

Mean Overlap Length

S
en

si
tiv

ity

●

● ●

●
●

●
●

●

●

●

BLASR
DALIGNER
GraphMap
MHAP
Minimap
HISEA

Figure 4.8: Sensitivity as a function of mean overlap length.

Figure 4.8 shows plots for all the datasets. As expected, the sensitivity increases with the

overlap length for all aligners except DALIGNER. The sensitivity of HISEA remains very

high for both short and long overlaps and it improves with longer overlap lengths. MHAP

98 Chapter 4. Genome Alignment: HISEA

shows a similar trend but its sensitivity for short overlaps is very low. BLASR, Minimap and

GraphMap seem to have been optimized for more recent pacbio chemistries. Their result are

better for newer chemistries compared to their own results on older ones. They perform poorly

on oldest chemistry P4C2 datasets.

MHAP sketch size and Minimap minimizers

Both MHAP and Minimap can have their parameters adjusted to improve sensitivity. Again,

to be fair with these programs, we investigated the effect of changing these parameters on

sensitivity.

MHAP is based on a technique called MinHash [12] in order to compute the overlaps.

MinHash reduces any sequence into a fixed number of fingerprints, called a sketch. The number

of fingerprints in a sketch depends on the number of hash functions used. Once a sequence is

converted into a sketch, the entire sequence is represented by it and the sequence is never

referenced directly again. This makes all the operations related to sequences very efficient.

However, in this process, some sequence information is lost. Hence, it is expected that larger

sketch size (meaning more hash functions) will better capture sequence information, but it

impacts the processing time negatively. Based on this observation, it is clear that using a larger

sketch size increases the sensitivity at the cost of run time performance.

MHAP is one of the fastest aligner and it is worth investigating the effect of this parameter.

The sensitivity results in Table 4.3 used a sketch size 1256 instead of the default 512, for

improved sensitivity. Table 4.6 shows the results for increasing sketch size with increments of

512, starting from 1256. The sensitivity increases slightly but never comes close to HISEA.

Also, precision decreases and so the F1-score increases very little (or decreases dramatically, as

it happens for C.elegans). The running time increases up to 10 times when changing sketch size

from 1256 to 3816. Overall, increasing the sketch size is clearly not improving the performance

of MHAP. Note that the results for the first column (sketch size 1256) appear also in Table 4.3.

They are repeated here for the convenience of comparison.

4.5. Results 99

Table 4.6: Effect of increasing sketch size on MHAP sensitivity.

Genome Parameter MHAP skecth size

1256 1768 2280 2792 3304 3816

E.coli Sensitivity 83.74 85.75 86.52 86.87 87.05 87.16
Specificity 99.90 99.86 99.84 99.82 99.81 99.80
Precision 97.15 96.99 96.82 96.89 96.88 97.70
F1-score 89.95 91.02 91.38 91.61 91.70 92.13

S.cerevisiae Sensitivity 62.08 63.67 64.32 64.52 64.62 64.69
Specificity 99.77 99.72 99.66 99.63 99.58 99.56
Precision 89.29 88.79 88.69 88.62 88.55 88.30
F1-score 73.24 74.16 74.56 74.67 74.72 74.67

C.elegans Sensitivity 80.43 81.81 82.37 82.62 82.69 82.73
Specificity 99.97 99.93 99.90 99.88 99.85 99.82
Precision 45.46 35.71 29.32 25.80 23.75 22.13
F1-score 58.09 49.72 43.25 39.32 36.90 34.92

A.thaliana Sensitivity 76.19 77.05 77.38 77.49 77.55 77.57
Specificity 99.91 99.87 99.86 99.85 99.84 99.83
Precision 88.78 88.50 88.68 88.35 88.55 88.33
F1-score 82.00 82.38 82.65 82.56 82.69 82.60

D.melanogaster Sensitivity 71.86 73.36 73.89 74.12 74.24 74.30
Specificity 99.94 99.92 99.91 99.88 99.87 99.86
Precision 72.47 72.00 72.07 72.46 71.45 71.62
F1-score 72.16 72.67 72.97 73.28 72.82 72.94

Similarly, the sensitivity of Minimap can be increased by using more minimizers. A mini-

mizer is the smallest k-mer in a window of w consecutive k-mers. The default value is w = 10

but the recommended value by the designers for all-vs-all PacBio read self-mapping is w = 5

and this is what we have used in our tests. We have investigated the effect of increasing the

number of minimizers by decreasing w. The results are presented in Table 4.7. The improve-

ment is more significant for Minimap, but it starts from lower values. The improved perfor-

mance is still far from HISEA, MHAP and DALIGNER. Note that the results for the first

column (w = 5) appear also in Table 4.3. They are repeated here for the convenience of com-

parison.

100 Chapter 4. Genome Alignment: HISEA

Table 4.7: Effect of increasing number of minimizers on Minimap sensitivity.

Genome Parameter Minimap window size

5 4 3 2 1

E.coli Sensitivity 91.80 93.08 94.13 95.24 96.29
Specificity 99.93 99.92 99.93 99.92 99.91
Precision 97.13 97.22 97.42 97.51 97.58
F1-score 94.39 95.10 95.75 96.36 96.93

S.cerevisiae Sensitivity 9.35 9.64 9.94 10.36 11.00
Specificity 99.98 99.98 99.97 99.97 99.97
Precision 94.30 94.18 93.28 91.90 88.58
F1-score 17.01 17.49 17.97 18.62 19.57

C.elegans Sensitivity 85.38 86.63 87.63 88.77 89.80
Specificity 99.98 99.98 99.98 99.98 99.97
Precision 89.80 89.77 89.05 88.11 85.76
F1-score 87.53 88.17 88.33 88.44 87.73

A.thaliana Sensitivity 23.55 26.90 31.21 37.08 45.56
Specificity 99.97 99.98 99.96 99.96 99.96
Precision 84.00 84.77 85.48 86.43 87.94
F1-score 36.79 40.84 45.73 51.90 60.02

D.melanogaster Sensitivity 40.72 42.82 45.51 49.11 54.00
Specificity 99.99 99.98 99.98 99.98 99.97
Precision 83.93 83.12 82.87 81.85 81.25
F1-score 54.84 56.52 58.75 61.39 64.88

4.5.2 Assembly results

The HISEA aligner has been integrated in the Canu assembly pipeline, which uses MHAP as

the primary aligner. We refer to the new pipeline as Canu+HISEA and the original pipeline

as Canu+MHAP. The assembly results are generated for the same five datasets mentioned in

Table 4.2. We believe that better assembly is generated by alignments of high sensitivity and

high precision. In the following section, we first compare the sensitivity of the alignment

produced within the pipeline and then compare the assembly outcome.

4.5. Results 101

Sensitivity of HISEA and MHAP - assembly pipeline

Table 4.8: Sensitivity, specificity, precision and F1-score for HISEA and MHAP program out-
put within the Canu pipeline.

Genome Cov. Sensitivity Specificity Precision F1-score
MHAP HISEA MHAP HISEA MHAP HISEA MHAP HISEA

E.coli 30x 92.05 95.31 99.87 99.94 92.93 98.65 92.49 96.96
50x 77.47 93.95 99.93 99.94 96.74 98.59 86.04 96.21

S.cerevisiae 30x 85.01 92.94 99.72 99.77 88.06 94.24 86.51 93.59
50x 72.12 94.07 99.89 99.82 90.80 94.29 80.39 94.18

C.elegans 30x 82.64 93.24 99.80 99.97 7.21 91.37 13.26 92.30
50x 67.59 93.98 99.99 99.98 76.53 91.77 71.78 92.86

A.thaliana 30x 80.94 88.02 99.88 99.90 87.42 95.02 84.06 91.39
50x 57.06 82.79 99.93 99.90 89.46 95.71 69.68 88.78

D.melanogaster 30x 79.72 91.82 99.93 99.95 64.60 90.25 71.37 91.03
50x 55.26 89.59 99.97 99.94 74.86 90.52 63.58 90.05

Averages 30x 84.07 92.27 99.84 99.91 68.04 93.91 69.54 93.05
50x 65.90 90.88 99.94 99.92 85.68 94.18 74.29 92.42

MHAP uses an optimized set of options for generating alignments within the Canu assembly

pipeline. This is different from running it in stand alone mode. It is therefore important to

compare the sensitivity, specificity and precision of the alignment produced by the two pro-

grams before assembly outcome is compared. The assembly is generated for two different

coverage levels: 30x and 50x. The 30x and 50x coverage datasets were sampled using the

utility fastqSample available from the Canu pipeline [33]. It is still very expensive to get high

coverage Pacbio sequencing data. Therefore, we aim to produce better assembly with smaller

amount of coverage. Koren et al. [33] claims that Canu+MHAP pipeline reaches the best as-

semblies around 50x coverage, so this was considered as the higher bound of the coverage. We

believe that 30x coverage data can produce assembly comparable to 50x coverage by using a

better aligner.

The alignments computed by MHAP and HISEA while run in the Canu pipeline were

extracted and analyzed in Table 4.8. HISEA has better sensitivity, precision and F1 score

102 Chapter 4. Genome Alignment: HISEA

in all tests with very large differences for the 50x coverage datasets. The specificity of both

programs is very high for all tests, with HISEA edging ahead for 30x coverage and MHAP for

50x. Similar to previous results, the best values are shown in bold and average is computed at

the bottom of the table.

The assemblies produced by the two pipelines, Canu+MHAP and Canu+HISEA, have been

evaluated using a modified version of our LASER program [29], which we discussed in Chap-

ter 3. As explained, LASER computes many parameters for each assembly. The assembly

results are shown in Table 4.9. We compare the number of contigs, NG50, the maximum con-

tig size, the fraction of the genome covered by the assembly, the identity with the reference

and the number of breakpoints (inversions, relocations and translocations). The Canu+HISEA

pipeline has better values in 80% of the tests for the number of contigs, NG50, max contig size

and genome fraction. Generally, the NG50 value for the Canu+HISEA assemblies is much

larger than that of the Canu+MHAP. Canu+MHAP has fewer breakpoints than Canu+HISEA

but the difference in number of breakpoints is usually small. Both pipelines have high identity

with the reference. Overall, the assemblies computed by the Canu+HISEA pipeline are better.

Moreover, the assemblies computed by Canu+HISEA for 30x coverage are comparable with

those produced by Canu+MHAP for 50x coverage.

4.5. Results 103

Table 4.9: Assembly comparison; Canu assembler is used with MHAP and HISEA as read
aligners.

Genome Parameter Canu + MHAP Canu + HISEA

30x 50x 30x 50x

E.coli Contig # 7 3 8 1
NG50 2,771,323 3,969,196 1,223,211 4,642,165
Max contig 2,771,323 3,969,196 1,525,215 4,642,165
% Ref 99.85 99.97 99.82 100.00
Avg idy 99.97 99.99 99.97 99.99
Breakpoints 3 3 3 3

S.cerevisiae Contig # 43 31 35 29
NG50 540,299 687,498 682,168 774,485
Max contig 964,505 1,534,125 1,537,586 1,534,133
% Ref 98.90 99.35 99.12 99.58
Avg idy 99.81 99.88 99.82 99.88
Breakpoints 17 14 17 14

C.elegans Contig # 393 170 127 133
NG50 636,401 1,987,017 2,140,282 2,032,954
Max contig 2,648,207 4,224,025 4,227,561 5,669,072
% Ref 96.00 99.84 99.81 99.80
Avg idy 99.76 99.91 99.85 99.91
Breakpoints 431 423 390 435

A.thaliana Contig # 159 99 140 122
NG50 3,331,858 6,715,370 5,069,662 8,124,422
Max contig 12,892,206 14,177,369 12,890,806 15,940,320
% Ref 92.22 92.55 92.37 92.51
Avg idy 99.17 99.22 99.17 99.22
Breakpoints 2,550 2,693 2,680 2,704

D.melanogaster Contig # 597 390 553 372
NG50 1,933,939 4,983,913 6,417,268 13,672,005
Max contig 8,238,062 17,900,724 17,366,974 25,767,672
% Ref 95.08 98.55 96.47 98.65
Avg idy 99.80 99.89 99.80 99.87
Breakpoints 1,039 1,383 1,254 1,461

The MHAP program is very fast and it makes the Canu+MHAP pipeline faster, as seen

from the time values shown in Table 4.10. However, as noticed above, similar assemblies

are produced by Canu+HISEA for 30x coverage, and those are always faster than those by

104 Chapter 4. Genome Alignment: HISEA

Canu+MHAP for 50x coverage. The memory consumption is always much lower for the

Canu+HISEA pipeline. Note that in Table 4.10 the times are reported as wall clock times,

since CPU times used by the overlapping programs are not available. Also, only the peak

memory used by the entire assembly pipeline is available.

The java command-line parameter -Xmx is used to set the maximum heap size during

MHAP invocation from the pipeline. The value of parameter -Xmx is set by corMhapMem-

ory pipeline parameter which is user configurable. For this evaluation, the value of parameter

corMhapMemory is set to 200 Gb for all datasets. The peak memory in each case is reported as

210 Gb. Similar configuration for Canu+HISEA pipeline uses much smaller memory footprint

(less than 100 Gb) for all datasets.

The Canu+MHAP pipeline requires more memory in all cases, as seen from the space

values shown in Table 4.10. The peak memory of this pipeline can be reduced by setting a

smaller value for corMhapMemory. However, it impacts the overall assembly runtime. Similar

behavior is expected in modified Canu+HISEA pipeline. To ensure unbiased evaluation, all

parameter values are kept identical for both pipelines.

Table 4.10: Assembly time and space comparison.

Genome Canu + MHAP MHAP Canu + HISEA HISEA

30x 50x 30x 50x 30x 50x 30x 50x

time space time space time time time space time space time time

E.coli 0.4 210 0.6 210 0.1 0.1 0.4 25 0.7 40 0.1 0.1
S.cerevisiae 1.1 210 2.0 210 0.3 0.4 1.2 63 2.9 76 0.2 0.6
C.elegans 24.5 210 59.6 210 2.4 2.5 37.7 83 75.5 82 11.5 17.1
A.thaliana 23.8 210 56.6 210 4.1 9.6 42.3 90 98.0 90 15.3 35.0
D.melanogaster 27.0 210 62.4 210 3.4 5.2 51.8 94 112.8 94 19.7 33.6

We also generated mummer dot plots of all Canu+HISEA assemblies and corresponding

reference genome from Table 4.2. A dot plot shows the relationship between the assembled

contig and the reference genome. For all the dot plots, the assembled contig is on x-axis while

the reference genome is on y-axis. A red dot indicates a forward-strand match, while a blue

4.5. Results 105

dot indicates a reverse-complement match. The dotted vertical and horizontal lines indicate

the contig and the chromosome boundaries. A diagonal indicates concordant matches while

off-diagonal matches indicate assembly errors or differences with respect to the reference.

Figure 4.9: Mummer plot for E.coli 30x

106 Chapter 4. Genome Alignment: HISEA

Figure 4.10: Mummer plot for E.coli 50x

Figures 4.9 and 4.10 shows the dot plots for E.coli 30x and 50x assemblies respectively. In

both plots, a single contig matches the entire reference genome. The origin of the assembly is

shifted due to the circular genome of E.coli and it is not an assembly error.

4.5. Results 107

Figure 4.11: Mummer plot for S.cerevisiae 30x

108 Chapter 4. Genome Alignment: HISEA

Figure 4.12: Mummer plot for S.cerevisiae 50x

Figures 4.11 and 4.12 shows the dot plots for S.cerevisiae 30x and 50x assemblies respec-

tively. For both coverage levels, the majority of chromosomes are assembled into single contig.

Clearly, 50x assembly is better than 30x as seen from the mummer plot.

4.5. Results 109

Figure 4.13: Mummer plot for C.elegans 30x

110 Chapter 4. Genome Alignment: HISEA

Figure 4.14: Mummer plot for C.elegans 50x

Figures 4.13 and 4.14 shows the dot plots for C.elegans 30x and 50x assemblies respec-

tively. For both coverage levels, the assembly is equally good, as indicated by the assembly

results in Table 4.9.

4.5. Results 111

Figure 4.15: Mummer plot for A.thaliana 30x

112 Chapter 4. Genome Alignment: HISEA

Figure 4.16: Mummer plot for A.thaliana 50x

Figures 4.15 and 4.16 shows the dot plots for A.thaliana 30x and 50x assemblies respec-

tively. This is one of the difficult genomes to assemble. Although the assembled contigs are in

many pieces, the plot show that they map correctly on the reference genome. A small inversion

(blue line) is visible in the top right corner of the plot.

4.5. Results 113

Figure 4.17: Mummer plot for D.melanogaster 30x

114 Chapter 4. Genome Alignment: HISEA

Figure 4.18: Mummer plot for D.melanogaster 50x

Figures 4.17 and 4.18 shows the dot plots for D.melanogaster 30x and 50x assemblies

respectively. Some of the contigs represent full chromosomes. The highly fragmented region

toward the top right corner is highly repetitive region and is not associated with a particular

chromosome in the reference.

The HISEA program produces alignment output in M4 format [11] used by BLASR and

MHAP. HISEA can also be integrated in other assembly pipelines, e.g., Miniasm [35] and

4.6. Conclusions 115

Falcon [17], by converting HISEA output to the format required by these pipelines.

4.6 Conclusions

Pacific Biosciences SMRT technology is a relatively new sequencing method that produces

long but noisy reads. The aligners developed for previous sequencing methods do not perform

well on this type of data. Our new HISEA algorithm for computing read alignments has in-

troduced several new ideas, such as clustering of k-mer matches, estimating and filtering of

matches based on error rate, and techniques for extending the alignments with shorter k-mer

matches.

The HISEA algorithm currently produces alignments with highest sensitivity and compara-

ble specificity with other algorithms. Integrated in the Canu pipeline [33], currently the best for

assembling PacBio data, it produces better assemblies than Canu+MHAP. Moreover, the as-

semblies of Canu+HISEA at lower coverage, 30x, are comparable with those of Canu+MHAP

at 50x coverage, while being faster and cheaper. We plan to modify HISEA in the future to

work also with Oxford Nanopore sequencing technology [52].

Chapter 5

Conclusions and Future Research

5.1 Conclusions

We have addressed several fundamental problems in bioinformatics and provided significantly

improved solutions. E-MEM is a new and efficient algorithm for computing MEMs between

large genomes. It uses much lower memory and it is many times faster than other state-of-the-

art MEM computation programs. The split parameter functionality of E-MEM significantly

reduces the memory requirements. There is no theoretical upper bound on number of splits,

which makes it unique and one of the most useful MEM computation program for very large

genomes. E-MEM can be run as a stand alone program or a drop in replacement for any

application where MEMs are used as seeds or anchor points.

LASER provides a practical solution for genome assembly evaluation problem. It inher-

its its functionality from QUAST, which is a leading program for genome and meta-genome

assembly evaluation. It produces many metrics and visualizations for a thorough evaluation

of genome assemblies. LASER provides significant improvement in terms of performance on

QUAST, which is a bottleneck when it comes to evaluating very large genomes.

HISEA is a new algorithm for long read alignment, specifically designed for Pacific Bio-

sciences SMRT sequencing data. HISEA is the most sensitive aligner as compared to others

116

5.2. Future research 117

and its specificity is comparable with other competing programs. The HISEA algorithm intro-

duces new techniques for clustering, filtering and extension of k-mer matches which produce a

highly sensitive alignment. Canu+HISEA pipeline produces better or comparable assemblies

at 30x coverage than 50x coverage assemblies by Canu+MHAP pipeline. This makes it 40%

cheaper which is significant given the high cost of Pacific Biosciences sequencing.

5.2 Future research

E-MEM is the fastest MEM computation program but there is still a scope for improving its

performance for datasets with a large number of MEMs or the minimum MEM length is very

small resulting in too many MEMs. The implementation relies on link list data structure for

searching and eliminating redundant MEMs, which can become a bottleneck for above situa-

tions.

The core idea of E-MEM can be extended to find exact repeats or approximate repeats

within a genome. This is an important problem in bioinformatics and it provides an insight

into genomic evolution. The approach of E-MEM can be generalized to work with spaced

seeds [38] in order to search efficiently for approximate matches. E-MEM has been developed

as a stand alone program, however there is a scope to develop utilities around E-MEM for the

purpose of read mapping and genome alignment.

Pacific Biosciences is a relatively new sequencing technology with very high error rate.

HISEA can be used for the error correction of these long reads. HISEA algorithm produces

alignments with highest sensitivity which is a key differentiator between HISEA and other

state-of-the-art aligners. HISEA is currently integrated into Canu assembly pipeline, which is

optimized for MAHP aligner. Having a new assembler specifically designed for HISEA will

greatly improve the assembly results. HISEA algorithm can further be extended to support

other long read sequencing technologies, most promising of which is Oxford Nanopore.

It would be interesting to enhance HISEA algorithm to align mixed sequencing data i.e. it

118 Chapter 5. Conclusions and Future Research

can be enhanced to align Illumina sequencing data with 2% error rate and Pacific Biosciences

SMRT sequencing data with 15% error rate. This kind of alignment will have many applica-

tions. One such promising application would be to develop a hybrid genome assembler. The

short reads from Illumina can be used for the construction of assembly graph. The graph sim-

plification process can be guided by the alignment of long reads over short reads produced by

HISEA. Aligning reads from two different sequencing technologies is a challenging problem

and may require a significant changes. Currently, HISEA is a bit slower compared to MHAP

and Minimap. There is also a scope for improving HISEA runtime performance.

Bibliography

[1] National human genome research institute - http://www.genome.gov/11006943.

[2] Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Replacing suffix

trees with enhanced suffix arrays. Journal of Discrete Algorithms, 2(1):53–86, 2004.

[3] Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Enhanced suffix

arrays and applications. Handbook of Computational Molecular Biology, Computer and

Information Science Series, 2006.

[4] Stephen F Altschul, Thomas L Madden, Alejandro A Schäffer, Jinghui Zhang, Zheng

Zhang, Webb Miller, and David J Lipman. Gapped blast and psi-blast: a new generation

of protein database search programs. Nucleic acids research, 25(17):3389–3402, 1997.

[5] Dmitry Antipov, Anton Korobeynikov, Jeffrey S McLean, and Pavel A Pevzner. hy-

bridSPAdes: an algorithm for hybrid assembly of short and long reads. Bioinformatics,

page btv688, 2015.

[6] Konstantin Berlin, Sergey Koren, Chen-Shan Chin, James P Drake, Jane M Landolin,

and Adam M Phillippy. Assembling large genomes with single-molecule sequencing and

locality-sensitive hashing. Nature biotechnology, 33(6):623–630, 2015.

[7] Pass NCEA Biology. Dna molecule structure, 2015. URL http://www.passbiology.

co.nz/biology-level-2/gene-expression.

119

http://www.passbiology.co.nz/biology-level-2/gene-expression
http://www.passbiology.co.nz/biology-level-2/gene-expression

120 BIBLIOGRAPHY

[8] Pacific Biosciences. Consensus accuracy, 2013. URL http://www.pacb.com/

smrt-science/smrt-sequencing/accuracy/.

[9] Pacific Biosciences. Unbiased coverage, 2013. URL http://www.pacb.com/

uncategorized/new-data-release-arabidopsis-assembly/.

[10] Pacific Biosciences. Falcon assembly pipeline, 2017. URL https://github.com/

PacificBiosciences/FALCON.

[11] Pacific Biosciences. Blasr output format, 2017. URL https://github.com/

PacificBiosciences/blasr/wiki/Blasr-Output-Format.

[12] Andrei Z Broder. On the resemblance and containment of documents. In Compression

and Complexity of Sequences 1997. Proceedings, pages 21–29. IEEE, 1997.

[13] Andrei Z Broder. On the resemblance and containment of documents. In Compression

and Complexity of Sequences 1997. Proceedings, pages 21–29. IEEE, 1997.

[14] Stuart M Brown. Global vs local alginment, 0000. URL http://slideplayer.com/

slide/4463200/.

[15] Michael Burrows and David J Wheeler. A block-sorting lossless data compression algo-

rithm. 1994.

[16] Mark J Chaisson and Glenn Tesler. Mapping single molecule sequencing reads using

basic local alignment with successive refinement (BLASR): application and theory. BMC

Bioinformatics, 13(1):238, 2012.

[17] Chen-Shan Chin, Paul Peluso, Fritz J Sedlazeck, Maria Nattestad, Gregory T Concepcion,

Alicia Clum, Christopher Dunn, Ronan O’Malley, Rosa Figueroa-Balderas, Abraham

Morales-Cruz, et al. Phased diploid genome assembly with single molecule real-time

sequencing. bioRxiv, page 056887, 2016.

http://www.pacb.com/smrt-science/smrt-sequencing/accuracy/
http://www.pacb.com/smrt-science/smrt-sequencing/accuracy/
http://www.pacb.com/uncategorized/new-data-release-arabidopsis-assembly/
http://www.pacb.com/uncategorized/new-data-release-arabidopsis-assembly/
https://github.com/PacificBiosciences/FALCON
https://github.com/PacificBiosciences/FALCON
https://github.com/PacificBiosciences/blasr/wiki/Blasr-Output-Format
https://github.com/PacificBiosciences/blasr/wiki/Blasr-Output-Format
http://slideplayer.com/slide/4463200/
http://slideplayer.com/slide/4463200/

BIBLIOGRAPHY 121

[18] Arthur L Delcher, Simon Kasif, Robert D Fleischmann, Jeremy Peterson, Owen White,

and Steven L Salzberg. Alignment of whole genomes. Nucleic Acids Research, 27(11):

2369–2376, 1999.

[19] Arthur L Delcher, Adam Phillippy, Jane Carlton, and Steven L Salzberg. Fast algorithms

for large-scale genome alignment and comparison. Nucleic acids research, 30(11):2478–

2483, 2002.

[20] John Eid, Adrian Fehr, Jeremy Gray, Khai Luong, John Lyle, Geoff Otto, Paul Peluso,

David Rank, Primo Baybayan, Brad Bettman, et al. Real-time dna sequencing from

single polymerase molecules. Science, 323(5910):133–138, 2009.

[21] Francisco Fernandes and Ana T Freitas. slaMEM: efficient retrieval of maximal exact

matches using a sampled LCP array. Bioinformatics, page btt706, 2013.

[22] Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications.

In Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium on,

pages 390–398. IEEE, 2000.

[23] Walter Gilbert and Allan Maxam. The nucleotide sequence of the lac operator. Proceed-

ings of the National Academy of Sciences, 70(12):3581–3584, 1973.

[24] Genome Assembly Group. Quast flow, 2014. URL http://compgenomics2015.

biology.gatech.edu/index.php/Genome_Assembly_Group.

[25] Alexey Gurevich, Vladislav Saveliev, Nikolay Vyahhi, and Glenn Tesler. QUAST: quality

assessment tool for genome assemblies. Bioinformatics, 29(8):1072–1075, 2013.

[26] Paul Jaccard. Distribution de la flore alpine dans le bassin des dranses et dans quelques

régions voisines. Bull Soc Vaudoise Sci Nat, 37:241–272, 1901.

[27] W James Kent. Blatthe blast-like alignment tool. Genome research, 12(4):656–664, 2002.

http://compgenomics2015.biology.gatech.edu/index.php/Genome_Assembly_Group
http://compgenomics2015.biology.gatech.edu/index.php/Genome_Assembly_Group

122 BIBLIOGRAPHY

[28] Zia Khan, Joshua S Bloom, Leonid Kruglyak, and Mona Singh. A practical algorithm

for finding maximal exact matches in large sequence datasets using sparse suffix arrays.

Bioinformatics, 25(13):1609–1616, 2009.

[29] Nilesh Khiste and Lucian Ilie. Laser: Large genome assembly evaluator. BMC research

notes, 8(1):709, 2015.

[30] Nilesh Khiste and Lucian Ilie. E-MEM: efficient computation of maximal exact matches

for very large genomes. Bioinformatics, 31(4):509–514, 2015.

[31] Nilesh Khiste and Lucian Ilie. Hisea: Hierarchical seed aligner for pacbio data. BMC

bioinformatics, 18(1):564, 2017.

[32] Sergey Koren, Michael C Schatz, Brian P Walenz, Jeffrey Martin, Jason T Howard,

Ganeshkumar Ganapathy, Zhong Wang, David A Rasko, W Richard McCombie, Erich D

Jarvis, et al. Hybrid error correction and de novo assembly of single-molecule sequencing

reads. Nature biotechnology, 30(7):693–700, 2012.

[33] Sergey Koren, Brian P Walenz, Konstantin Berlin, Jason R Miller, and Adam M Phillippy.

Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat

separation. bioRxiv, page 071282, 2016.

[34] Stefan Kurtz, Adam Phillippy, Arthur L Delcher, Michael Smoot, Martin Shumway, Co-

rina Antonescu, and Steven L Salzberg. Versatile and open software for comparing large

genomes. Genome biology, 5(2):R12, 2004.

[35] Heng Li. Minimap and miniasm: fast mapping and de novo assembly for noisy long

sequences. Bioinformatics, page btw152, 2016.

[36] Ruiqiang Li, Chang Yu, Yingrui Li, Tak-Wah Lam, Siu-Ming Yiu, Karsten Kristiansen,

and Jun Wang. Soap2: an improved ultrafast tool for short read alignment. Bioinformat-

ics, 25(15):1966–1967, 2009.

BIBLIOGRAPHY 123

[37] David J Lipman and William R Pearson. Rapid and sensitive protein similarity searches.

Science, 227(4693):1435–1441, 1985.

[38] Bin Ma, John Tromp, and Ming Li. PatternHunter: faster and more sensitive homology

search. Bioinformatics, 18(3):440–445, 2002.

[39] Bin Ma, John Tromp, and Ming Li. Patternhunter: faster and more sensitive homology

search. Bioinformatics, 18(3):440–445, 2002.

[40] Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string searches.

siam Journal on Computing, 22(5):935–948, 1993.

[41] Michael L Metzker. Sequencing technologiesthe next generation. Nature reviews genet-

ics, 11(1):31–46, 2010.

[42] Giles Miclotte, Mahdi Heydari, Piet Demeester, Pieter Audenaert, and Jan Fostier. Jabba:

Hybrid error correction for long sequencing reads using maximal exact matches. In In-

ternational Workshop on Algorithms in Bioinformatics, pages 175–188. Springer, 2015.

[43] Eugene W Myers. An o (nd) difference algorithm and its variations. Algorithmica, 1(1):

251–266, 1986.

[44] Gene Myers. Efficient local alignment discovery amongst noisy long reads. In Interna-

tional Workshop on Algorithms in Bioinformatics, pages 52–67. Springer, 2014.

[45] Saul B Needleman and Christian D Wunsch. A general method applicable to the search

for similarities in the amino acid sequence of two proteins. Journal of molecular biology,

48(3):443–453, 1970.

[46] Enno Ohlebusch, Simon Gog, and Adrian Kügel. Computing matching statistics and

maximal exact matches on compressed full-text indexes. In String Processing and Infor-

mation Retrieval, pages 347–358. Springer, 2010.

124 BIBLIOGRAPHY

[47] Mihai Pop, Daniel S Kosack, and Steven L Salzberg. Hierarchical scaffolding with bam-

bus. Genome research, 14(1):149–159, 2004.

[48] Michael Roberts, Wayne Hayes, Brian R Hunt, Stephen M Mount, and James A Yorke.

Reducing storage requirements for biological sequence comparison. Bioinformatics, 20

(18):3363–3369, 2004.

[49] Michael G Ross, Carsten Russ, Maura Costello, Andrew Hollinger, Niall J Lennon, Ryan

Hegarty, Chad Nusbaum, and David B Jaffe. Characterizing and measuring bias in se-

quence data. Genome Biology, 14(5):1, 2013.

[50] Steven L Salzberg, Adam M Phillippy, Aleksey Zimin, Daniela Puiu, Tanja Magoc,

Sergey Koren, Todd J Treangen, Michael C Schatz, Arthur L Delcher, Michael Roberts,

et al. Gage: A critical evaluation of genome assemblies and assembly algorithms.

Genome research, 22(3):557–567, 2012.

[51] Frederick Sanger, Steven Nicklen, and Alan R Coulson. Dna sequencing with chain-

terminating inhibitors. Proceedings of the national academy of sciences, 74(12):5463–

5467, 1977.

[52] Grégory F Schneider and Cees Dekker. DNA sequencing with nanopores. Nature biotech-

nology, 30(4):326–328, 2012.

[53] Let’s Talk Science’s Education Services. Sanger sequencing, 2012. URL https://

explorecuriocity.org/Explore/ArticleId/2027/sanger-sequencing-2027.

aspx.

[54] Lloyd M Smith, Jane Z Sanders, Robert J Kaiser, Peter Hughes, Chris Dodd, Charles R

Connell, Cheryl Heiner, Stephen BH Kent, and Leroy E Hood. Fluorescence detection in

automated dna sequence analysis. 1986.

https://explorecuriocity.org/Explore/ArticleId/2027/sanger-sequencing-2027.aspx
https://explorecuriocity.org/Explore/ArticleId/2027/sanger-sequencing-2027.aspx
https://explorecuriocity.org/Explore/ArticleId/2027/sanger-sequencing-2027.aspx

BIBLIOGRAPHY 125

[55] Temple F Smith and Michael S Waterman. Identification of common molecular subse-

quences. Journal of Molecular Biology, 147(1):195–197, 1981.

[56] Daniel D Sommer, Arthur L Delcher, Steven L Salzberg, and Mihai Pop. Minimus: a

fast, lightweight genome assembler. BMC bioinformatics, 8(1):64, 2007.

[57] Ivan Sović, Mile Šikić, Andreas Wilm, Shannon Nicole Fenlon, Swaine Chen, and Niran-

jan Nagarajan. Fast and sensitive mapping of nanopore sequencing reads with GraphMap.

Nature communications, 7, 2016.

[58] Martin Vingron and Michael S Waterman. Sequence alignment and penalty choice: Re-

view of concepts, case studies and implications. Journal of molecular biology, 235(1):

1–12, 1994.

[59] Michaël Vyverman, Bernard De Baets, Veerle Fack, and Peter Dawyndt. essaMEM:

finding maximal exact matches using enhanced sparse suffix arrays. Bioinformatics, 29

(6):802–804, 2013.

[60] Shih-Hao Wang and Yuan-Pei Lin. Wavelet tree quantization for copyright protection

watermarking. IEEE Transactions on Image Processing, 13(2):154–165, 2004.

Appendix A

E-MEM Results For MEM Computation

126

A.1. Human vsMouse 127

A.1 Human vs Mouse

MEM computation results for Human vs Mouse.

A.1.1 Minimum MEM length 100

Table A.1: Homo sapiens vs Mus musculus; MEMs of minimum length 100.

Program Time (s) Memory (MB)
serial 12 cores serial 12 cores

essaMEM K = 1 – – – –
K = 2 4,076 3,107 19,065 19,697
K = 4 8,291 3,174 11,264 11,896
K = 8 9,243 2,069 7,394 8,282
K = 16 4,437 1,385 5,468 6,394
K = 32 6,245 3,520 4,508 5,396
K = 64 9,044 5,119 4,029 4,917

slaMEM 62,099 – 3,480 –
sparseMEM K = 1 – – – –

K = 2 3,845 2,947 20,182 20,750
K = 4 19,797 6,833 12,426 13,250
K = 8 58,325 10,217 8,548 9,327
K = 16 50,703 9,169 6,609 7,497
K = 32 46,492 8,853 5,640 6,528
K = 64 41,396 9,398 5,155 6,043

Vmatch 7,370 – 39,377 –
E-MEM D = 1 1,792 324 3,979 4,705

D = 2 2,241 392 2,138 2,864
D = 3 2,864 505 1,513 2,239
D = 4 3,266 596 1,211 1,937
D = 5 3,900 699 1,009 1,735
D = 6 4,327 799 884 1,610
D = 7 4,841 903 786 1,512
D = 8 5,340 1,048 722 1,448
D = 9 5,855 1,097 669 1,395
D = 10 6,296 1,209 623 1,349

128 Chapter A. E-MEM Results ForMEM Computation

A.1.2 Minimum MEM length 300

Table A.2: Homo sapiens vs Mus musculus; MEMs of minimum length 300.

Program TIME (s) SPACE (MB)
serial 12 cores serial 12 cores

essaMEM K = 1 – – – –
K = 2 4,004 3,095 19,065 19,697
K = 4 3,217 3,497 11,264 11,998
K = 8 3,325 1,150 7,394 8,282
K = 16 3,884 1,408 5,468 6,356
K = 32 6,399 3,618 4,508 5,396
K = 64 5,739 4,671 4,029 7,314

slaMEM 68,727 – 3,480 –
sparseMEM K = 1 – – – –

K = 2 18,245 2,922 20,874 20,814
K = 4 40,490 6,768 12,426 13,314
K = 8 89,314 10,200 8,548 9,436
K = 16 82,083 9,218 6,737 7,497
K = 32 70,068 9,053 6,370 6,528
K = 64 68,637 9,467 6,370 6,043

Vmatch 10,217 – 40,675 –
E-MEM D = 1 929 199 2,293 3,019

D = 2 1,466 313 1,262 1,988
D = 3 1,977 399 924 1,650
D = 4 2,471 495 754 1,480
D = 5 2,899 574 652 1,378
D = 6 3,443 664 581 1,307
D = 7 3,957 745 530 1,256
D = 8 4,554 867 492 1,219
D = 9 4,834 897 464 1,190
D = 10 5,149 961 442 1,168

A.2. Human vs Chimp 129

A.2 Human vs Chimp

MEM computation results for Human vs Mouse.

A.2.1 Minimum MEM length 100

Table A.3: Homo sapiens vs Pan troglodytes; MEMs of minimum length 100.

Program Time (s) Memory (MB)
serial 12 cores serial 12 cores

essaMEM K = 1 – – – –
K = 2 3,452 2,642 19,057 19,633
K = 4 25,328 7,887 11,384 12,088
K = 8 24,220 4,422 7,386 8,282
K = 16 10,404 1,850 5,588 6,356
K = 32 12,381 3,661 4,628 5,396
K = 64 16,048 5,275 4,149 4,917

sparseMEM K = 1 – – – –
K = 2 10,169 2,511 20,174 20,814
K = 4 20,346 4,898 12,606 13,250
K = 8 57,390 9,049 8,540 9,436
K = 16 56,946 9,413 6,601 7,535
K = 32 58,210 9,267 5,632 6,528
K = 64 49,807 10,083 5,147 6,043

Vmatch 7,696 – 39,725 –
E-MEM D = 1 7,611 1,992 4,123 4,849

D = 2 6,780 1,933 2,210 2,937
D = 3 6,838 2,022 1,562 2,288
D = 4 7,056 2,136 1,247 1,973
D = 5 7,772 2,250 1,039 1,765
D = 6 8,077 2,408 908 1,634
D = 7 8,868 2,487 807 1,533
D = 8 9,018 2,630 741 1,467
D = 9 9,436 2,707 686 1,412
D = 10 10,014 2,795 638 1,364

130 Chapter A. E-MEM Results ForMEM Computation

A.2.2 Minimum MEM length 300

Table A.4: Homo sapiens vs Pan troglodytes; MEMs of minimum length 300.

Program TIME (s) SPACE (MB)
serial 12 cores serial 12 cores

essaMEM K = 1 – – – –
K = 2 8,393 2,527 19,193 19,697
K = 4 15,578 2,982 11,502 11,960
K = 8 13,383 1,879 7,520 8,282
K = 16 20,600 2,118 7,314 6,356
K = 32 19,317 4,207 7,314 5,396
K = 64 11,351 4,678 7,314 4,917

sparseMEM K = 1 – – – –
K = 2 11,675 2,361 20,874 20,942
K = 4 33,141 5,315 12,554 13,122
K = 8 71,839 8,967 8,548 9,372
K = 16 70,550 9,410 6,609 7,497
K = 32 69,767 9,381 5,766 6,528
K = 64 57,938 10,337 5,283 6,043

slaMEM 75,705 – 51,628 –
Vmatch 9,431 – 40,675 –
E-MEM D = 1 1,416 289 2,438 3,164

D = 2 1,753 403 1,335 2,061
D = 3 2,629 525 973 1,699
D = 4 2,993 647 790 1,516
D = 5 3,103 742 682 1,408
D = 6 3,603 871 605 1,331
D = 7 4,294 970 551 1,277
D = 8 5,019 1,083 511 1,237
D = 9 5,116 1,174 481 1,207
D = 10 7,384 1,256 457 1,183

A.3. Triticum aestivum vs Triticum durum 131

A.3 Triticum aestivum vs Triticum durum

MEM computation results for Triticum aestivum vs Triticum durum.

A.3.1 Minimum MEM length 100

Table A.5: Triticum aestivum vs Triticum durum; MEMs of minimum length 100.

Program Time (s) Memory (MB)
serial 12 cores serial 12 cores

E-MEM D = 1 1,073 352 5,847 6,573
D = 2 1,610 462 3,105 3,831
D = 3 2,388 611 2,216 2,942
D = 4 2,830 724 1,700 2,426
D = 5 3,472 849 1,426 2,152
D = 6 4,095 947 1,237 1,963
D = 7 4,690 1,069 1,108 1,834
D = 8 5,175 1,186 1,008 1,734
D = 9 5,664 1,314 900 1,626
D = 10 6,429 1,413 926 1,652

Vmatch 6,932 – 56,987 –

A.3.2 Minimum MEM length 300

Table A.6: Triticum aestivum vs Triticum durum; MEMs of minimum length 300.

Program TIME (s) SPACE (MB)
serial 12 cores serial 12 cores

E-MEM D = 1 870 328 3,367 4,093
D = 2 1,902 391 1,822 2,548
D = 3 2,321 530 1,344 2,071
D = 4 2,832 649 1,045 1,771
D = 5 4,381 755 922 1,618
D = 6 4,830 845 826 1,522
D = 7 4,937 975 731 1,457
D = 8 5,666 1,047 678 1,404
D = 9 6,044 1,181 641 1,367
D = 10 7,046 1,273 657 1,383

Vmatch 29,084 – 56,987 –

132 Chapter A. E-MEM Results ForMEM Computation

Curriculum Vitae

Name: Nilesh Vinod Khiste

Post-Secondary University of Western Ontario
Education and London, Canada
Degrees: 2013 - 2018 Ph.D.

Indian Institute of Technology
Delhi, India
2009 - 2009 Course in Low Power Design

Banaras Hindu University
Varanasi, India
1998 - 2000 M.Sc.

Banaras Hindu University
Varanasi, India
1995 - 1998 B.Sc.

Honours and Ontario Graduate Scholarship (OGS)
Awards: 2017-2018

Ontario Graduate Scholarship (OGS)
2016-2017

Graduate Student Teaching Award
2016 University of Western Ontario

Texas Instrument Low Power Team Award
2011 Cadence Design Systems

Related Work Teaching Assistant
Experience: The University of Western Ontario

2013 - 2017

Research and Development Engineer
Cadence Design Systems
2005 - 2013

Senior Software Engineer
Tata Consultancy Services
2000 - 2005

A.3. Triticum aestivum vs Triticum durum 133

Publications:

Khiste, N. and Ilie, L., 2017. HISEA: HIerarchical SEed Aligner for PacBio data. BMC

bioinformatics, 18(1), p.564.

Khiste, N. and Ilie, L., 2015. LASER: Large genome ASsembly EvaluatoR. BMC research

notes, 8(1), p.709.

Khiste, N. and Ilie, L., 2015. E-MEM: efficient computation of maximal exact matches for

very large genomes. Bioinformatics (Oxford, England), 31(4), p.509.

	Efficient Alignment Algorithms for DNA Sequencing Data
	Recommended Citation

	Abstract
	Dedication
	Acknowlegements
	List of Figures
	List of Tables
	List of Appendices
	Introduction
	DNA sequencing
	Sanger method
	Next generation sequencing
	Third generation sequencing

	Maximal Exact Matches
	Assembly Evaluation
	Sequence Alignment

	Maximal Exact Matches: E-MEM
	Background
	Basic Notions and Definitions
	Suffix tree and suffix array
	FM-index
	LCP interval

	MUMmer
	Vmatch
	Computation of MEMs using Enhanced Suffix Array

	SparseMEM
	Computation of MEMs using Sparse Suffix Array
	Parallelization technique in sparseMEM

	EssaMEM
	BackwardMEM
	Computing Parent Intervals
	Computation of MEMs using the FM-index
	Compressed Suffix Array implementation

	SlaMEM
	Sampled LCP Array
	Sampled Smaller Values

	Comparison

	E-MEM algorithm
	Sequence Storage
	Efficient k-mer Storage
	Hash Table and hashing function
	Searching query
	Handling redundant MEM matches
	Dealing with ambiguous bases (N)
	Split parameter - memory reduction
	Very large number of MEMs
	Output formats
	Results
	Evaluation
	Human vs Mouse
	Minimum MEM length 100
	Minimum MEM length 300

	Human vs Chimp
	Minimum MEM length 100
	Minimum MEM length 300

	Triticum aestivum vs Triticum durum
	Minimum MEM length 100
	Minimum MEM length 300

	Conclusions

	Assembly Evaluation: LASER
	Background
	QUAST Introduction
	Contig sizes
	Misassemblies and structural variations
	Genome representation
	NAx and NGAx
	Visualizations
	Cumulative length
	Nx plot
	NAx plot
	NGx plot
	NGAx plot
	GC content plot

	LASER Improvements
	E-MEM integration
	Code remodeling
	NUCmer changes

	Results
	Conclusions

	Genome Alignment: HISEA
	Background
	BLASR
	DALIGNER
	GraphMap
	MHAP
	Minimap

	HISEA Introduction
	HISEA algorithm
	Storing reads and hashing the reference set
	Searching the query set
	Filtering and clustering
	Computing and extending alignments

	Alignment evaluation method
	Compute Dynamic Programming Alignment
	Sensitivity computation
	Specificity computation
	Precision computation
	F1 score computation

	Results
	Alignment results
	Standalone comparison
	Sensitivity - a deep dive
	Sensitivity vs overlap size
	MHAP sketch size and Minimap minimizers

	Assembly results
	Sensitivity of HISEA and MHAP - assembly pipeline

	Conclusions

	Conclusions and Future Research
	Conclusions
	Future research

	Bibliography
	E-MEM Results For MEM Computation
	Human vs Mouse
	Minimum MEM length 100
	Minimum MEM length 300

	Human vs Chimp
	Minimum MEM length 100
	Minimum MEM length 300

	Triticum aestivum vs Triticum durum
	Minimum MEM length 100
	Minimum MEM length 300

	Curriculum Vitae

