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Abstract
The Extended Hensel Construction (EHC) is a procedure which, for an input bivariate polyno-
mial with complex coefficients, can serve the same purpose as the Newton-Puiseux algorithm.
We show that the EHC requires only linear algebra and univariate polynomial arithmetic. We
deduce complexity estimates and report on a software implementation together with experi-
mental results. This work is motivated and illustrated by two applications. The first one is the
computation of real branches of space curves. The second one is the computation of limits of
real multivariate rational function. For the latter, we present an algorithm for determining the
existence of the limit of a real multivariate rational function q at a given point p which is an
isolated zero of the denominator of q. When the limit exists, the algorithm computes it, without
making any assumptions on the number of variables.

Keywords: Computer Algebra, Extended Hensel Construction, Limits of multivariate ra-
tional functions.
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Introduction
The Extended Hensel Construction (EHC) is an algorithm which is used for factorizing

univariate polynomials with power series coefficients. It was proposed in [SK99] by T. Sasaki
and F. Kako. Their goal was to provide a practically more efficient alternative to the classical
Newton-Puiseux method for univariate power series coefficients. In the same paper, Sasaki and
Kako proposed an extension of the EHC to power series coefficients in more than one variable.
Figure 0.1 illustrates our implementation of the EHC in the PowerSeries library, available at
www.regularchains.org.

Figure 0.1: EHC applied to a trivariate polynomial.

The work of Sasaki and Kako was further extended by their students, see the papers [IS07,
SI16,Iwa03,Ina05,SY98]. See also the works of S. Abhyankar [Abh89] and T.-C. Kuo [Kuo89].
The EHC relies on the so-called Yun-Moses polynomials originally introduced in [MY73], stud-
ied in [Tsu09], and called Lagrange interpolation polynomials in [SK99]. The definition of
those polynomials suggests to compute them by applying the Extended Euclidean Algorithm
(EEA) over a field of multivariate rational functions. In practice, this is a computational bot-
tleneck. In [SI16], Sasaki and D. Inaba suggest to use Gröbner bases instead and report on
favourable experimental results.

In this paper, we propose a new method for computing the Yun-Moses polynomials using
Wronskian matrices. For an input bivariate polynomial F (X,Y ) with coefficients in a field
K and total degree d, we show that the Yun-Moses polynomials (needed when applying the
EHC to F (X,Y )) can be computed within O(d3 M(d)) operations in K, where n 7−→ M(n) is a
(polynomial) multiplication time [GG03]. In addition, we exhibit a new strategy for performing
the lifting steps so that the k-th lifting step of the EHC applied to F (X,Y ) can be computed
within O(k d M(d)2) operations inK (instead of O(k2 d M(d)2) in a direct approach) or within
O(k d M(d)) operations in the algebraic closure of K. These enhancements of the EHC are
described in Chapters 3 to 4, and supported by the experimentation reported in Chapter 8.

In [KT78], H.T. Kung and J.F. Traub present a complexity analysis for the Newton-Puiseux
method over the field C of complex numbers. They show that the first k iterations of Newton-
Puiseux on an input bivariate polynomial of degree d requires O(d k M(k)) operations in C
using a linear lifting scheme (Theorem 5.2 in [KT78]) and O(d M(k)) operations in C using a
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quadratic lifting scheme (Corollary 5.1 in [KT78]). This latter estimate is improved in [CC86]
by D. V. Chudnovsky and G. V. Chudnovsky, yielding O(d k) operations in C. When the base
field K is finite, state of the art algorithms are presented by A. Poteaux and M. Rybowicz
in [PR15].

In both [KT78] and [CC86], the estimated cost is for computing a single branch. Thus,
for computing all branches, the costs of the linear and quadratic lifting schemes of [KT78]
become respectively O(d2 k M(k)) and O(d2 M(k)) operations in C. The EHC currently uses
a linear lifting scheme and, with the enhancements proposed in this paper, it computes all the
branches, for the first k operations, within O(k2 d M(d)) operations in C. The experimentation
reported in Chapter 8 show that, for problems of practical interest, an EHC implementation can
outperform counterparts based on the linear and quadratic lifting schemes of [KT78]. Since
we implemented both Kung and Traub’s algorithm and our enhanced EHC, let us go further
in comparing their algebraic complexity. All the above mentioned algorithms need to factor a
univariate polynomial over C. This is the Newton polynomial of F (X,Y ) in the case of the EHC
and the polynomial F (X, 0) for the algorithm of Kung and Traub. If both polynomials split into
linear factors over K, where K is Q or an algebraic extension of Q, and putting aside the cost
of factoring those polynomials (which can be regarded as similar), the total cost, counting
operations in C, of factoring F (X,Y ) into linear factors in X over C(〈Y ∗〉), computing k terms
in each branch, is O(d3M(d)+ k2 d M(d)) for the EHC and O(d2 k M(k)) (resp. O(d2 M(k)))
the algorithm of Kung and Traub using a linear (resp. quadratic) lifting scheme.

In practice, the EHC has the advantage that its computation flow has a simpler structure
and offers opportunities for efficient implementation. This observation is based on our expe-
rience with both approaches through a series of papers [ACM13, AMSV15, AKM16]. Indeed,
in addition to polynomial factorization, the EHC can be applied to the computation of limits
of multivariate rational functions [AKM16] and tangent cones [AMSV15]. Both types of com-
putation rely on the computation of real limit points, which are discussed in Chapter 5. With
respect to our ISSAC 2017 article [AAM17] this latter Chapter is substantially expanded and
provides proofs and detailed algorithms.

In [ACM13], an algorithm is proposed for computing the non-trivial limit points of the
quasi-component W (T ) of a regular chain T ⊂ Q[X1, . . . , Xn]. Those points form the set
W (T ) \W (T ), where W (T ) is the Zariski closure of W (T ).

In Chapter 5, we use the EHC for computing the non-trivial limit points of the real quasi-
component of T . To be precise, letting WR(T ) := ZR(T ) \ ZR(hT ), we are interested in the
set WR(T ) \WR(T ), where WR(T ) is the closure of WR(T ) in Rn endowed with the Euclidean
topology. Unfortunately, it is not true that the non-trivial limit points of WR(T ) are the non-
trivial limit points of W (T ) with real coordinates. Figure 0.2 yields a counter-example, which
illustrates how the factorization produced by the EHC helps computing the limit points of both
W (T ) (complex case) and WR(T ) (real case).

As mentioned above, computing the non-trivial limit points of real quasi-components can
be used to determine tangent cones and limits of multivariate rational functions. We dedi-
cate Chapters 6 and 7 to this latter question, extending the work initiated in the ISSAC 2016
article [AKM16].

Prior to our work, two papers had revitalized the search for such general procedures de-
termining the limits, when they exist, of real multivariate rational functions. In [XZ14] S.J.
Xiao and G.X. Zeng propose a first algorithm that, given a multivariate rational function
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Figure 0.2: Computational of limit points: complex and real cases.

q ∈ Q(X1, . . . , Xn), decides whether lim(x1,...,xn)→(0,...,0) q is zero or not. The “not-case” in-
cludes the situation where lim(x1,...,xn)→(0,...,0) q does not exist as well as the case where it exists
but it is not zero. Their algorithm is based on the observation that the posed question can be
phrased as a quantifier elimination problem, that the authors solve using triangular decompo-
sition of algebraic systems, rational univariate representation as well as adjoining infinitesi-
mal elements to the base field. A second algorithm reduces the question of deciding whether
lim(x1,...,xn)→(0,...,0) q exists or not (and computing it, when it exists) to calling the first algo-
rithm.

In [CMV13], C. Cadavid, S. Molina and J.D. Vélez propose an algorithm, now available
in MAPLE as the limit/multi command, for determining the existence and possible value of
limits of the form lim(x,y)→(0,0) q, where q is a bivariate rational function, and such that (0, 0)
is an isolated zero of the real algebraic set defined by the denominator of q. In a follow-up
preprint [VHC17], J.D. Vélez, P. Hernández and C. Cadavid extend the method of [CMV13] to
rational functions in three variables, still assuming that the origin is an isolated zero of the de-
nominator. Both papers [CMV13] and [VHC17] rely on the key observation that, for determin-
ing the existence and possible value of limits of the form lim(x,y)→(0,0) q and lim(x,y,z)→(0,0,0) q,
it is sufficient to study limits along a real algebraic set χ(q), that is, limits of the form
lim(x,y)→(0,0),(x,y)∈ χ(q) q and lim(x,y,z)→(0,0,0),(x,y,z)∈ χ(q) q. This latter notion is defined in Chap-
ter 6 of the present thesis. In the three-variable case, the method of [VHC17] requires to
compute the singular locus of χ(q) and the irreducible components of the algebraic set over C
associated with χ(q).

The method of S.J. Xiao and G.X. Zeng [XZ14] has the advantage of not making any
assumptions on the number of variables nor the zero set of the denominator. Meanwhile, the
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works of C. Cadavid, S. Molina, J.D. Vélez and P. Hernández avoid the use of infinitesimal
elements and rely on a deeper geometrical insight, through a notion of discriminant variety,
see Notation 2. Unfortunately, the recourse to singular loci and irreducible decomposition is a
limitation in view of an implementation.

In Chapter 7, we propose an algorithm for determining the existence and possible value of
lim(x1,...,xn)→(0,...,0) q, for an arbitrary number n of variables. As in [CMV13] and [VHC17],
we assume that the origin is an isolated zero of the denominator of the rational function
q. However, we avoid the computation of singular loci and decompositions into irreducible
components of the real and complex algebraic sets involved in the method of [VHC17]. In-
stead, we take advantage of the theory of regular chains and the RealTriangularize algo-
rithm [CDM+13b, CDM+13a] for decomposing semi-algebraic systems. The experimental
results reported in Chapter 8 suggest that our algorithm can solve more problems than the
algorithm of S.J. Xiao and G.X. Zeng, in particular when the number n of variables increases.

Broadly speaking, Lemma 9 says the following. Consider a regular semi-algebraic system
R := [Q,T, P>] in Rn (see Definition 1) where T is a regular chain such that the origin o of
Rn is in the closure (w.r.t. Euclidean topology) of the zero set ZR(R) of R in Rn. Let d be
the dimension of ZR(R) with 1 ≤ d < n. Let M be the (n − d + 1) × n matrix whose first
row is the vector (X1, . . . , Xn) and the other rows are the gradients ∇t j , for j = d + 1, . . . , n,
with T = {td+1, . . . , tn}. Then, there exists a non-empty set O ⊂ D∗ρ ∩ ZR(S), which is open
relatively to ZR(S) and which satisfies o ∈ O (that is, the origin is in the closure of O) such that
M is full rank at any point of O. To be even broader, this result says that there exists r > 0 such
that the intersection of D∗r ∩ ZR(S) (where D∗r is the punctured ball of radius r and centered at
the origin) and any sphere (or ellipsoid) centered at the origin is either empty or has dimension
less than d. This result allows us to take advantage if the method of Lagrange multipliers.

ix



Chapter 1

Preliminaries

The algorithms in Chapter 7 rely essentially on the technique of Lagrange multipliers, see Sec-
tion 1.1. The applicability of this technique is based on theoretical results gathered in Chapter 6
The key arguments come from the theories of regular chain, see Section 1.2, topology, see Sec-
tion 1.3, parametric polynomial systems, see Section 1.4, and regular semi-algebraic systems,
see Section 1.5. We also recall the notion of Puiseux series in Section 1.6 and refer to the book
of G. Fischer [Fis01] for details.

1.1 Lagrange multipliers

The following review is based on [Vap]. Let n,m be positive integers. Let Ω be an open set of
Rn, let f , g1, . . . , gm : Ω → R be C1 functions, let b = (b1, . . . , bm) ∈ Rm and let x∗ be a point
of Ω. Define Σb := {y ∈ Rn : g1(y) = b1, . . . , gm(y) = bm}. The point x? is called a local
conditional extremal point of f under the constraints g1 = b1, . . . , gm = bm, whenever there
exists a neighbourhood U of x? such that f (x) takes an extremal value (maximum or mini-
mum) at x = x∗ on Σb ∩ U. When this holds, the gradients ∇ f (x?),∇g1(x?), . . . ,∇gm(x?)
are linearly dependent. The above theorem is, in fact, usually stated when m < n holds and
∇g1(x?), . . . ,∇gm(x?) are linearly independent, i.e. when g(x?) is a regular value of the func-
tion g = (g1, . . . , gm) (at least if we restrict g to some neighbourhood V of x?). Then, the
necessary condition of the theorem can be translated into the identity

∇ f (x?) = λ?1∇g1(x?) + . . . + λ?m∇gm(x?) , (1.1)

for some real numbers λ?1, . . . , λ
?
m called Lagrange multipliers. Observe that, if we define the

Lagrange function

F (x, λ) = f (x) +
m∑

i=1

λi (bi − gi (x)) , (1.2)

then the conditions (1.1) and x? ∈ Σb, for some neighbourhood U of x? are equivalent to the
fact that (x?, λ?) is a critical point of F.

1



2 CHAPTER 1. PRELIMINARIES

1.2 Regular chain theory
This section is a brief summary of concepts and algorithms for which details can be found
in [CM12]. Throughout this paper, K is a field of characteristic 0 and K is its algebraic closure.
We say that K is an algebraic number field if it is a finite degree field extension of the field
Q of rational numbers. Here degree refers to the dimension of K as a vector space over Q.
Let K[X] be the polynomial ring over K and with ordered variables X = X1 < · · · < Xn.
Let p ∈ K[X]. Assume that p < K. Denote by mvar(p), init(p), and mdeg(p) respectively
the greatest variable appearing in p (called the main variable of p), the leading coefficient of
p w.r.t. mvar(p) (called the initial of p), and the degree of p w.r.t. mvar(p) (called the main
degree of p); denote by discrim(p) the discriminant of p w.r.t. mvar(p). For F ⊂ K[X], we
denote by 〈F〉 and V (F) the ideal generated by F inK[X] and the algebraic set ofK

n
consisting

of the common roots of the polynomials of F.
Triangular set. Let T ⊂ K[X] be a triangular set, that is, a set of non-constant polynomials

with pairwise distinct main variables. Denote by mvar(T ) the set of main variables of the
polynomials in T . A variable v ∈ X is called algebraic w.r.t. T if v ∈ mvar(T ), otherwise it
is said free w.r.t. T . If no confusion is possible, we shall always denote by U = U1, . . . ,Ud
and Y = Y1, . . . ,Ym the free variables and the main variables of T , respectively. We let d = 0
whenever T has no free variables. For v ∈ mvar(T ), we denote by Tv and T−v the polynomial
f ∈ T with mvar( f ) = v and the polynomials f ∈ T with mvar( f ) < v, respectively. Let
hT be the product of the initials of the polynomials in T . We denote by sat(T ) the saturated
ideal of T : if T is the empty triangular set, then sat(T ) is defined as the trivial ideal 〈0〉,
otherwise it is the ideal 〈T〉 : h∞T . The quasi-component W (T ) of T is defined as V (T ) \V (hT ).
The Zariski closure of W (T ) in K

n
, denoted by W (T ), is the intersection of all algebraic sets

V ⊆ K
n

such that W (T ) ⊆ V holds; moreover we have W (T ) = V (sat(T )). For f ∈ K[X],
we denote by res( f ,T ) the iterated resultant of f w.r.t. T , that is, f itself, if f is constant, or
res(res( f ,Tv, v),T−v ) if v ∈ mvar(T ) and v = mvar( f ) hold, or res( f ,T−v ) otherwise.
Regular chain. A triangular set T ⊂ K[X] is a regular chain if either T is empty, or letting
v be the largest variable occurring in T , the set T−v is a regular chain, and the initial of Tv is
regular (that is, neither zero nor zero divisor) modulo sat(T−v ). Let H ⊂ K[X]. The pair [T, H]
is a regular system if each polynomial in H is regular modulo sat(T ). If H consists of a single
polynomial h, then we also write [T, h], for short, instead of [T, H]. The dimension of T is the
dimension of its saturated ideal. A regular chain T , or a regular system [T, H], is square-free if
for all t ∈ T , the polynomial der(t) is regular w.r.t. sat(T ), where der(t) = ∂t

∂v and v = mvar(t).
By [T, H,], we denote the algebraic system consisting of the equations f = 0 for all f ∈ T and
the inequations h , 0 for h ∈ H ∪ {hT }.
Triangular decomposition. Let F ⊂ K[X]. Regular chains T1, . . . ,Te of K[X] form a trian-

gular decomposition of V (F) in the sense of Kalkbrener (resp. Wu and Lazard) whenever we
have V (F) = ∪e

i=1W (Ti) (resp. V (F) = ∪e
i=1W (Ti)). We denote by Triangularize an algorithm,

such as the one of [CM12], computing a Kalkbrener triangular decomposition.
Regularization. Let p ∈ K[X] and T ⊂ K[X] be a regular chain. The function call

Regularize(p,T ) computes a set of regular chains {T1, . . . ,Te} such that: (1) for each i =
1, . . . , e, either p ∈ sat(Ti) holds or p is regular w.r.t. sat(Ti); (2) we have W (T ) = W (T1) ∪
· · · ∪W (Te), and mvar(T ) = mvar(Ti) holds for each i = 1, . . . , e.
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Good specialization. Let [T, H] be a square-free regular system of K[X]. Recall that Y and

U = U1, . . . ,Ud stand respectively for mvar(T ) and X \Y . Let a = (a1, . . . , ad) be a point ofK
d
.

We say that [T, H] specializes well at a if: (i) for each t ∈ T the polynomial init(t) is not zero
modulo the ideal 〈U1− a1, . . . ,Ud − ad〉; (ii) the image of [T, H] modulo 〈U1− a1, . . . ,Ud − ad〉

is a square-free regular system.
Border polynomial [YHX01]. Let [T, H] be a square-free regular system of K[X]. Let bp be
the primitive and square free part of the product of all res(der(t),T ) res(h,T ) for h ∈ H and t ∈
T . We call bp the border polynomial of [T, H]. Proposition 1 follows from the specialization
property of sub-resultants and states a fundamental property of border polynomials.

Proposition 1. The system [T, H] specializes well at a ∈ K
d

if and only if the border polynomial
bp(a) , 0.

1.3 Topology

Limit points. Let (X, τ) be a topological space. A point p ∈ X is a limit of a sequence
(xn, n ∈ N) of points of X if, for every neighborhood U of p, there exists an N such that, for
every n ≥ N , we have xn ∈ U; when this holds we write limn→∞ xn = p. If X is a Hausdorff
space then limits of sequences are unique, when they exist. Let S ⊆ X be a subset. A point
p ∈ X is a limit point of S if every neighborhood of p contains at least one point of S different
from p itself. Equivalently, p is a limit point of S if it is in the closure of S \ {p}. In addition,
the closure of S is equal to the union of S and the set of its limit points. If the space X is
sequential, and in particular if X is a metric space, the point p is a limit point of S if and only
if there exists a sequence (xn, n ∈ N) of points of S \ {p} with p as limit. In practice, the
“interesting” limit points of S are those which do not belong to S. For this reason, we call such
limit points non-trivial and we denote by lim(S) the set of non-trivial limit points of S.
Relation between Zariski topology and the Euclidean topology. When K = C, the affine
space As of dimension n over C is endowed with both Zariski topology and the Euclidean
topology. The basic open sets of the Euclidean topology are the balls while the basic open sets
of Zariski topology are the complements of hypersurfaces. A Zariski closed (resp. open) set is
closed (resp. open) in the Euclidean topology on As. The following properties emphasize the
fact that Zariski topology is coarser than the Euclidean topology: every nonempty Euclidean
open set is Zariski dense and every nonempty Zariski open set is dense in the Euclidean topol-
ogy on As. However, the closures of a constructible set in Zariski topology and the Euclidean
topology are equal. More formally, we have the following (Corollary 1 in I.10 of [Mum99]) key
result. Let V ⊆ As be an irreducible affine variety and U ⊆ V be open in the Zariski topology
induced on V . Then, the closure of U in Zariski topology and the closure of U in the Euclidean
topology are both equal to V .

1.4 Parametric polynomial systems
The following is based on [LR07] and [MXX12]. In the sequel of this section, the field K is
either R or C. Let f1, . . . , f s, p1, . . . , pr ∈ Q[X], with, as before X = X1 < · · · < Xn. Consider
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the constructible set C = {x ∈ Cn : f1(x) = · · · = f s (x) = 0, p1(x) , 0, . . . , pr (x) , 0} and
the semi-algebraic set S = {x ∈ Rn : f1(x) = · · · = f s (x) = 0, p1(x) > 0, . . . , pr (x) > 0}.
Let 1 ≤ d < n. We view the variables X1, . . . , Xd as parameters and we rename them as
U = U1, . . . ,Ud . We denote by ΠU the canonical projection on the parameter space.

Discriminant variety in the complex case. Let δ be the dimension of ΠU (C) = ΠU (C). An
algebraic set W ⊂ Cd is a discriminant variety of C w.r.t. ΠU if the following four conditions
hold:

1. W ⊆ ΠU (C) holds,
2. W = ΠU (C) holds if and only if Π−1

U (u) ∩ C is infinite for almost all u ∈ ΠU (C),

3. the connected components U1, . . . ,Uk of ΠU (C) \W are analytic sub-manifolds of di-
mension δ, and

4. for all 1 ≤ i ≤ k, the pair (Π−1
U (Ui),ΠU ) is an analytic covering ofUi.

This latter condition implies that there exists finitely many disjoint connected subsets C1, . . . , Cik
of Cn such that their union equals Π−1

U (Ui) ∩ C and ΠU is a local diffeomorphism from Cj

onto Ui, for 1 ≤ j ≤ ik and 1 ≤ i ≤ k. Moreover, W contains the union of the critical values
of the restriction of ΠU to the regular locus of C, as well as the projection of the singular locus
of C.

Proposition 2 (Theorem 4, [MXX12]). Let [T, H] be a square-free regular system ofK[X] and
bp its border polynomial. Then, the zero set of bp in Kd is the ⊆-minimal discriminant variety
of [T, H,] regarded as a parametric polynomial system, for which the parameters are the free
variables of T .

The real case. In practice, studying the parametric semi-algebraic system S can be done by
1. computing a discriminant variety W of the parametric constructible set C, and
2. applying the following proposition.

Proposition 3 (Corollary 1, [LR07]). Assume that W , ΠU (C) holds. Then, (ΠU (C) \W ) ∩
Rd has finitely many connected components, U1, . . . ,Ue, which are real analytic manifolds.
Moreover, for each i = 1, . . . , e, the number of points of S overUi is constant, and if Π−1

U (Ui)∩
S is not empty, then (Π−1

U (Ui) ∩ S,ΠU ) is a real analytic covering ofUi.

1.5 Triangular decomposition of semi-algebraic sets
In this section, we recall that any semi-algebraic system decomposes into finitely many regu-
lar semi-algebraic systems (see Definition 1 for this term). For coherency with our software
implementation, we assume the base field K of our polynomial coefficients is Q instead of
R. See [CDM+13a] for details. Nevertheless, one can easily reduce the case where K is a
real algebraic extension of Q to the case K = Q by encoding this extension with a regular
semi-algebraic system given by polynomials with coefficients in Q.
Semi-algebraic system. Let us consider four finite polynomial subsets F = { f1, . . . , f s},

N = {n1, . . . , nt }, P = {p1, . . . , pr } and H = {h1, . . . , h`} of Q[X], where, as before, X stands
for n ordered variables X1 < · · · < Xn. Let N≥ denote the set of the inequalities {n1 ≥
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0, . . . , nt ≥ 0}. Let P> denote the set of the inequalities {p1 > 0, . . . , pr > 0}. Let H, denote
the set of inequations {h1 , 0, . . . , h` , 0}. We will denote by [F, P>] the basic semi-algebraic
system { f1 = 0, . . . , f s = 0, p1 > 0, . . . , pr > 0} and by S := [F, N≥, P>, H,] the semi-algebraic
system (SAS) which is the conjunction of the following conditions: f1 = 0, . . . , f s = 0, n1 ≥

0, . . . , nt ≥ 0, p1 > 0, . . . , pr > 0 and h1 , 0, . . . , h` , 0. The semi-algebraic set consisting
of the zeros of S in Rn is denoted by ZR(S) while the constructible set consisting of the zeros
of [F, N≥] in Cn is denoted by ZC([F, N≥]); if N≥ is empty we simply write V (F) instead of
ZC([F, N≥]). For an algebraic set W ⊆ Cn, we denote by W ∩ Rn the subset of Rn consisting
of the points of W with real coordinates.

Definition 1. Let T ⊂ Q[X] be a square-free regular chain. As before, let U = U1, . . . ,Ud and
Y = Y1, . . . ,Yn−d designate respectively the variables of X that are free w.r.t. T , and those that
are algebraic w.r.t. T . With P ⊂ Q[X] as above, assume that each polynomial in P is regular
w.r.t. sat(T ). Let Q be a quantifier-free formula over Q[X] involving only the U variables.
Let O be the semi-algebraic subset of Rd defined by Q. We say that R := [Q,T, P>] is a
regular semi-algebraic system if either d = 0 and the semi-algebraic system [T, P>] admits real
solutions, or d > 0 and the following conditions hold:

(i) O is a non-empty open subset in Rd ,
(ii) the regular system [T, P] specializes well at every point a of O,

(iii) at each point a of O, the specialized system [T (a), P(a)>] admits real solutions.
The zero set of R, denoted by ZR(R), is the set of points (a, ζ ) ∈ Rd × Rn−d such that Q(a)
holds, and t(a, ζ ) = 0, p(a, ζ ) > 0 both hold for all t ∈ T and all p ∈ P.

Remark 1. Using the notations of Definition 1, let R = [Q,T, P>] be a regular semi-algebraic
system. Since O is open, each connected component C of O in Rd is locally homeomorphic to
the hyper-cube (0, 1)d . From Property (ii), the zero set ZR(R) consists of disjoint graphs of
continuous semi-algebraic functions defined on each such C. Moreover, from Property (iii),
there is at least one such graph. For these reasons, the regular semi-algebraic system R can be
understood as a parameterization of the set ZR(R). Clearly, the dimension of ZR(R) is d.

Moreover, from Property (ii), together with Proposition 1 and Proposition 3, we deduce
that for every connected component C of O, (Π−1

U (C)∩ ZR(R),ΠU ) is a real analytic covering
of C. This implies that, at each point a of O, the Jacobian matrix of T (a) is full rank.

Proposition 4. As above, let S := [F, N≥, P>, H,] be a semi-algebraic system. Then, there
exists a finite family of regular semi-algebraic systems R1, . . . , Re such that ZR(S) equals the
union of ZR(R1), . . . , ZR(Re). We call R1, . . . , Re a triangular decomposition of S and we
denote by RealTriangularize an algorithm computing such a decomposition.

Remark 2. Expanding Remark 1, recall that we have observed that the dimension of ZR(R)
is d. In practice, this number is immediately deduced from the number of polynomials in the
regular chain T . Indeed, we have d = n − #(T ), where #(T ) denotes the number of elements of
T .

An important feature of the RealTriangularize algorithm [CDM+13a] is the fact that tri-
angular decompositions of semi-algebraic sets can be computed incrementally. Indeed, this
algorithm relies on a procedure, called Intersect, such that, for a given semi-algebraic con-
straint (that is, either a polynomial equation, or a polynomial inequality) C, the function call
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Intersect(R,C) returns regular semi-algebraic systems R1, . . . , Re such that ZR(R) ∩ ZR(C)
equals the union of ZR(R1), . . . , ZR(Re).

The algorithms of Section 7 use another important procedure: for a regular semi-algebraic
system R, one needs to check whether the origin o ofRn belongs or not to the closure of ZR(R) in
the Euclidean topology. The fact that the closure of ZR(R) is a semi-algebraic set can be proved
by constructing this set from other semi-algebraic sets by means if set-theoretic operations,
as well as projection. Algorithms for those latter operations are described in [CDM+13a]
and [CDM+13b]; this leads naturally to an algorithm for deciding whether or not o belongs to
the closure of ZR(R).

1.6 Puiseux series
This section is devoted to concepts and notations related to Puiseux series, taken from [Fis01].
Let K be an algebraic number field and K its algebraic closure. We denote by K[[X1, . . . , Xn]]
and K〈X1, . . . , Xn〉 the respective rings of formal power series and convergent power series in
X1, . . . , Xn with coefficients in K. When n = 1, we write U instead of X1. Thus K[[U]] and
K〈U〉 are the rings of formal and convergent univariate power series in U and coefficients in
K.
Puiseux series. We denote by K[[U∗]] =

⋃∞
`=1 K[[U

1
` ]] the ring of formal Puiseux series.

Hence, given ϕ ∈ K[[U∗]], there exists ` ∈ N>0 such that ϕ ∈ K[[U
1
` ]] holds. Thus, we can

write ϕ =
∑∞

m=0 amU
m
` , for some a0, . . . , am, . . . ∈ K. We denote by K((U∗)) the quotient

field of K[[U∗]]. Let ϕ ∈ K[[U∗]] and ` ∈ N such that ϕ = f (U
1
` ) holds for some f ∈ K[[U]].

We say that the Puiseux series ϕ is convergent if we have f ∈ K〈U〉. Convergent Puiseux
series form an integral domain denoted by K〈U∗〉; its quotient field is denoted by K(〈U∗〉). We
recall Puiseux’s theorem: if K is an algebraically closed field of characteristic zero, the field
K((U∗)) of formal Puiseux series over K is the algebraic closure of the field of formal Laurent
series over K; moreover, if K = C, then the field C(〈Y ∗〉) of convergent Puiseux series over C
is algebraically closed as well.
Puiseux parameterization. Let f ∈ K〈X1〉[X2] be of positive degree d in X2. A Puiseux

parametrization of f is a pair (ψ(U), ϕ(U)) of elements of K〈U〉 for some new variable U,
such that

1. ψ(U) = Uς , for some ς ∈ N>0;
2. f (ψ(U), ϕ(U)) = 0 holds in K〈U〉, and
3. there is no integer ` > 1 such that both ψ(U) and ϕ(U) are in K〈U`〉.

The index ς is called the ramification index of the parametrization (Uς, ϕ(U)). Assume that
f is general in X2 of order k ≥ 1, that is, f (0, X2) , 0 and the minimum degree of a term
in f (0, X2) is k. Then, Puiseux’s theorem guarantees that f admits Puiseux parameterizations
and Newton-Puiseux’s algorithm computes them. Assume further that f is monic in X2. Then,
there exist ϕ1, . . . , ϕd ∈ K〈U〉 such that we have f (Ud, X2) = (X2 − ϕ1(U)) · · · (X2 − ϕd (U)).



Chapter 2

Extended Hensel construction

This chapter is somehow detailed review of the EHC, which is required to understand the results
of the subsequent chapters Most of the proofs are omitted, though, and we refer to [SK99].

Notation 1. Let K be an algebraic number field and K its algebraic closure. Let F (X,Y ) ∈
K[X,Y ] be a bivariate polynomial with complex number coefficients. We assume that F is
monic and square-free as a univariate polynomial in X; we denote by d its partial degree w.r.t.
X . We assume that F has at least two terms and that F (X, 0) = X d holds. We explain in
Remark 4 how to reduce to this latter hypothesis. For f1, . . . , fm in some polynomial ring, we
denote by 〈 f1, . . . , fm〉 the ideal that f1, . . . , fm generate in that ring.

Newton line. We plot each non-zero term c X exY ey of F (X,Y ) to the point of coordinates
(ex, ey) in the Euclidean plane equipped with Cartesian coordinates. We call Newton Line the
straight line L passing through the point (d, 0) and another point, such that no other points lie
below L. The equation of L is ex/d + ey/δ = 1 for some δ ∈ Q. We define δ̂, d̂ ∈ Z>0 such that
δ̂/d̂ = δ/d and gcd(δ̂, d̂) = 1 both hold.
Newton polynomial. The sum of all the terms of F (X,Y ) which are plotted on the Newton
line of F is called the Newton polynomial of F. We denote it by F (0). Observe that the Newton
polynomial is a homogeneous polynomial in (X,Y δ/d). Let ζ1, . . . , ζr ∈ K be the distinct roots
of F (0) (X, 1), for some r ≥ 2. Note that the case where F (0) has only one distinct root is
covered by Remark 5. Hence we have ζi , ζ j for all 1 ≤ i < j ≤ r and there exist positive
integers m1 ≤ m2 ≤ · · · ≤ mr such that, using the homogeneity of F (0) (X,Y ), we have

F (0) (X,Y ) = (X − ζ1Y δ/d)m1 · · · (X − ζrY δ/d)mr .

The initial factors of F (0) (X,Y ) are G(0)
i (X,Y ) := (X − ζiY δ/d)mi, for 1 ≤ i ≤ r . For simplicity,

we put Ŷ = Y δ̂/d̂ .
The purpose of the EHC, as stated in Algorithm 1, is to factorize F (X,Y ) as F (X,Y ) =

G1(X,Y ) · · · Gr (X,Y ), with Gi (X,Y ) ∈ K(〈Y ∗〉)[X] and degX (Gi) = mi, for 1 ≤ i ≤ r . Thus,
the EHC factorizes F (X,Y ) over K(〈Y ∗〉), thus over C(〈Y ∗〉). However, degX (Gi) = 1 may not
hold for some i. Nevertheless, as shown in Section 2.1, factorizing F (X,Y ) into linear factors
is achieved by repeated applications of the EHC. Lemma 1 and Theorem 1 are the fundamental
results of the EHC.

7
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Lemma 1 (Yun-Moses polynomials). Let Ĝi (X, Ŷ ) ∈ C〈Ŷ 〉[X], for i = 1, . . . , r with r ≥ 2,
be homogeneous polynomials in (X, Ŷ ) such that gcd(Ĝi, Ĝ j ) = 1 for any i , j. Let d =
degX

(
Ĝ1 · · · Ĝr

)
and degX (Ĝi) = mi, for i = 1, . . . , r . Then, for each ` ∈ {0, . . . , d − 1}, there

exists a unique set of polynomials {W (`)
i (X, Ŷ ) ∈ C〈Ŷ 〉[X] | i = 1, . . . , r } satisfying

W (`)
1

((
Ĝ1 · · · Ĝr

)
/Ĝ1

)
+ · · · +W (`)

r

((
Ĝ1 · · · Ĝr

)
/Ĝr

)
= X `Ŷ

d−`
,

where degX (W (`)
i (X, Ŷ )) < degX (Ĝi (X, Ŷ )), i = 1, . . . , r . The polynomials W (0)

i , . . . ,W (d−1)
i

for 1 ≤ i ≤ r are homogeneous in (X, Ŷ ) of degree mi. We call Yun-Moses polynomials the
elements of {W (`)

i | (`, i) ∈ {0, . . . , d − 1} × {1, . . . , r }}.

Proof. We shall first prove that there exists only one set of polynomials {W (`)
i (x, 1) | i =

1, . . . , r } satisfying the condition in the above lemma, when Ŷ = 1. Using the extended Eu-

clidean algorithm, one can compute A1, . . . , Ar ∈ C[X] such that A1
Ĝ1···Ĝr

Ĝ1

+ · · ·+ Ar
Ĝ1···Ĝr

Ĝr

=

1. If we multiply both sides of the above equality by X `, then we have

A1X ` Ĝ1 · · · Ĝr

Ĝ1
+ · · · + Ar X ` Ĝ1 · · · Ĝr

Ĝr
= X ` . (2.1)

For each i = 1, . . . , r − 1, let Qi, Ri ∈ C[X] such that Ai X ` = QiĜi + Ri and degX (Ri) <

degX (Ĝi). Thus the last equality can be re-written as:

R1
Ĝ1 · · · Ĝr

Ĝ1
+ · · · + Rr−1

Ĝ1 · · · Ĝr

Ĝr−1
+ (Ar X ` +

r−1∑
i=1

QiĜr )
Ĝ1 · · · Ĝr

Ĝr
= X ` .

Observe that we have degX (Ri
Ĝ1···Ĝr

Ĝi

) < d for i = 1, . . . , r − 1, degX ( Ĝ1···Ĝr

Ĝr

) = d − mr , and

also ` < d. Combined with relation 2.1, we obtain

degX (Ar X ` +

r−1∑
i=1

QiĜr ) < mr = degX (Ĝr ).

Hence, we set W (`)
i (X, 1) = Ri, for i = 1, . . . , r − 1 and W (`)

r (X, 1) = Ar X ` +
∑r−1

i=1 QiĜr . Since

degX

(
W (`)

i (X, 1)
(
Ĝ1 · · · Ĝr

)
/Ĝi

)
< d,

we can homogenize in degree d both W (`)
i (X, 1) and Ĝi (X, 1), for i = 1, . . . , r , using Ŷ as ho-

mogenization variable. This homogenization process defines each W (`)
i (X, Ŷ ) uniquely. More-

over, we have degX (W (`)
i (X, Ŷ )) < degX (Ĝi). �

Theorem 1 (Extended Hensel Construction). Let F be as in Notation 1 and let F (0) (X,Y ) be
the Newton polynomial of F (X,Y ). We denote by G(0)

1 (X,Y ), . . ., G(0)
r (X,Y ) the initial factors

of F (0) (X,Y ). Hence we have

F (0) (X,Y ) = G(0)
1 (X,Y ) · · ·G(0)

r (X,Y ),
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where G(0)
i (X,Y ) = (X − ζiY δ̂/d̂ )mi for i = 1, . . . , r and ζi ∈ C. We define the ideal

Sk = 〈X dY (k+0)/d̂, X d−1Y (k+δ̂)/d̂, . . . , X0Y (k+dδ̂)/d̂〉, (2.2)

for k = 1, 2, . . .. Then, for all integer k > 0, we can construct G(k)
i (X,Y ) ∈ C〈Y 1/d̂〉[X], for

i = 1, . . . , r , satisfying

F (X,Y ) = G(k)
1 (X,Y ) · · ·G(k)

r (X,Y ) mod Sk+1, (2.3)

and G(k)
i (X,Y ) ≡ G(0)

i (X,Y ) mod S1, for all i = 1, . . . , r .

Proof. See Theorem 1 in [SK99]. The proof is constructive and by induction on k. Base case:
Since F (X,Y ) ≡ F (0) (X,Y ) mod S1, the theorem is valid for k = 0. Inductive step: Let the
theorem be valid up to the (k − 1)-th construction. We write:

G(k−1)
i = G(0)

i (X,Y ) + ∆G(1)
i (X,Y ) + · · · + ∆G(k−1)

i (X,Y ),

such that G(k ′)
i (X,Y ) ∈ Sk ′, and degX (∆G(k ′)

i (X,Y )) < degX (G(0)
i (X,Y )) = mi for k′ =

1, . . . , k − 1. These latter properties are part of the induction hypothesis. Now define

∆F (k) (X,Y ) := F (X,Y ) − G(k−1)
1 · · ·G(k−1)

r mod Sk+1.

It follows from the induction hypotheses that ∆F (k) (X,Y ) ∈ Sk holds. Thus, we can write

∆F (k) (X,Y ) = f (k)
d−1X d−1Y δ̂/d̂ + · · · + f (k)

0 X0Y dδ̂/d̂ (2.4)

where f (k)
`
= c(k)

`
Y k/d̂ and c(k)

`
∈ C for ` = 0, . . . , d − 1. We construct G(k)

i (X,Y ), and thus
∆G(k)

1 , . . . ,∆G(k)
r , such that we have:

G(k)
i (X,Y ) = G(k−1)

i (X,Y ) + ∆G(k)
i (X,Y ),

and ∆G(k)
i (X,Y ) ≡ 0 mod Sk . Then we have:

F (X,Y ) ≡
∏r

i=1

(
G(k−1)

i + ∆G(k)
i

)
mod Sk+1

≡ G(k−1)
1 · · ·G(k−1)

r + ∆G(k)
1

F (0)

G(0)
1
+ · · · + ∆G(k)

r
F (0)

G(0)
r

+ other terms︸       ︷︷       ︸
containing ∆G(k)

i (X,Y )∆G(k)
j (X,Y )

mod Sk+1

≡ G(k−1)
1 · · ·G(k−1)

r + ∆G(k)
1

F (0)

G(0)
r

+ · · · + ∆G(k)
r

F (0)

G(0)
r

mod Sk+1.

Indeed, we have ∆G(k)
i (X,Y )∆G(k ′)

j (X,Y ) ≡ 0 mod Sk+1 for k, k′ ≥ 0, from the induction
hypotheses and the relation Sk Sk ′ = Sk+k ′. Therefore, we have

∆F (k) ≡ ∆G(k)
1

F (0)

G(0)
1

+ · · · + ∆G(k)
r

F (0)

G(0)
r

mod Sk+1. (2.5)
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If in Lemma 1, we let Ĝi (X, Ŷ ) = G(0)
i (X, Ŷ ), combining Equations (2.4) and (2.5), one can

solve for ∆G(k)
1 , . . . ,∆G(k)

r

∑r
i=1 ∆G(k)

i
F (0)

G(0)
i

=
∑d−1
`=0 f (k)

`
X `Ŷ

d−`

=
∑d−1
`=0 f (k)

`

(∑r
i=1 W (`)

i
F (0)

G(0)
i

)
=

∑r
i=1

(∑d−1
`=0 f (k)

`
W (`)

i

)
F (0)

G(0)
i

.

Since degX ( f (k)
`

W (`)
i ) < degX (G(0)

i ) and degX (∆G(k)
i (X,Y )) < degX (G(0)

i ) both hold for i =
1, . . . , r , we deduce ∆G(k)

i (X,Y ) =
∑d−1
`=0 W (`)

i (X,Y ) f (k)
`

(Y ), for i = 1, . . . , r . �

Remark 3. Theorem 1 still holds if G(0)
1 (X,Y ), . . . , G(0)

r (X,Y ) just satisfy the same properties
as Ĝ1(X, Ŷ ), . . . , Ĝr (X, Ŷ ) of Lemma 1.

Remark 4. Write F (X, 0) = X d + a1X e1 + · · · + am X em + am+1. If the polynomial F doesn’t
satisfy the assumption F (X, 0) = X d , we apply to F (X,Y ) the change of variables (X,Y ) :=
(W/Y 1/d,Y ) and factor out 1/Y . We obtain a polynomial F (W,Y ) satisfying F (W, 0) = W d .
After applying the EHC to F, we multiply each computed factor by 1/Y 1/d and revert the change
of variables.

Remark 5. Assume the Newton polynomial factorizes to F (0) = (X − aY )d for some a ∈ K.
Since d ≥ 2, we split F (0) into at least two factors, as follows. Let Y = 1 and apply the
change of variables X := W − a/d, called the Shreedharacharya-Tschirnhaus trick in Lemma
1.8 of [MC13]. After homogenizing back, we obtain a polynomial F (W,Y ) whose Newton
polynomial splits into at least two co-prime factors. Applying the EHC to F (W,Y ) produces at
least two factors.
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Algorithm 1 Extended Hensel Construction on a given F as in Notation 1 and a positive integer
k

1: procedure EHC_LIFT(F, k)
2: Compute the Newton polynomial F (0) and δ̂, d̂;
3: Compute F (0) = G(0)

1 · · ·G
(0)
r , see Remark 3

4: if r = 1 then
5: Apply the change of variable in Remark 5
6: end if
7: Compute the Yun-Moses polynomial W (`)

i for i = 1, · · · , r and ` = 0, · · · , d − 1; (see
Section 3)

8: for j = 1, . . . , k do
9: Compute ∆F ( j) (X,Y ) := F (X,Y ) −

∏r
i=1 G( j−1)

i mod S̄j+1 (see Section 4 as well
as Page 13 of [SK99]);

10: Compute ∆G( j)
i =

∑m−1
`=0 W (`)

i f ( j)
`

, for i = 1, · · · , r;
11: Let G( j)

i = G( j−1)
i + ∆G( j)

i for i = 1, · · · , r;
12: end for
13: Reverse the change of variable, if any;
14: return G(k)

1 , . . . ,G(k)
r ;

15: end procedure

2.1 Complete factorization in C(〈Y ∗〉)[X]

To separate all the branches of the curve F (X,Y ) = 0 around the origin, one should use a
sufficient accuracy (that is, degree in Y ) for the lifted factors. Theorem 4.5 in [HS83] suggests
a minimum accuracy of B := 2 degX (F) degY (F).

After applying EHC_Lift(F, k) with k = d̂B − δ̂, which is the number of iteration needed
for accuracy B, one needs to re-apply the EHC on each lifted factor of multiplicity greater
than 1. For each additional call, with a lifted factor G := G(k)

i (X,Y ), the value of k is set to
d̂B′ − δ̂, where B′ := 2 degX (G) degY (G). Moreover, for each lifted factor G(k)

i (X,Y ), with
the notations of Theorem 1, we apply the change of coordinates X = X − ζiY . See [SK99] for
details. This process generates a tree of calls to the EHC. Obviously, one needs to do at most d
calls in total.

One may wonder what is the maximum total number of lifting steps along a branch of that
tree. One can easily verify that, after completing the factorization of F in C(〈Y ∗〉)[X] into
linear factors, this maximum is given by d̂B − δ̂.



Chapter 3

On the Yun-Moses polynomials

We use the notations of Chapter 2, including the proof of Theorem 1. Define
∼
Y = Y 1/d̂ . In

this section, we take advantage of the fact each Yun-Moses polynomial is a rational function in
X,Y , whose denominator is just a power of Y .

Lemma 2. We have ∆F (k) ∈ K[X,
∼
Y ], for all k = 1, 2, . . ..

Proof. From the Extended Hensel Construction, it is known that ∆F (k) ≡ F−G(k−1)
1 · · ·G(k−1)

r

mod Sk+1, where G(k−1)
i = G(0)

i + ∆G(1)
i + · · · + ∆G(k−1)

i . And we have

∆F (k) (X,
∼
Y ) = f (k)

d−1X d−1
∼
Y
δ̂
+ · · · + f (k)

0 X0
∼
Y

dδ̂

where f (k)
`
= c(k)

`

∼
Y

k
with c(k)

`
∈ C for ` = 0, . . . , d − 1. The goal is to prove c(k)

`
∈ K and we

prove it by induction. For k = 1, ∆F (1) ≡ F − F (0) mod S2. Since F, F (0) ∈ K[X,Y ], we have
∆F (1) ∈ K[X,

∼
Y ]. Now assume ∆F (k−1) ∈ K[X,

∼
Y ], thus G(k−2)

1 · · ·G(k−2)
r = F − ∆F (k−1) ∈

K[X,
∼
Y ]. We want to prove ∆F (k) ∈ K[X,

∼
Y ]. In modulo Sk+1, we have

∆F (k) ≡ F − G(k−1)
1 · · ·G(k−1)

r

≡ F − (G(k−2)
1 + ∆G(k−1)

1 ) · · · (G(k−2)
r + ∆G(k−1)

r )
≡ F − (G(k−2)

1 · · ·G(k−2)
r +

∑r
i=1 ∆G(k−1)

i
F (0)

G(0)
i

).

The last equivalence is valid, due to ∆G(k−1)
i ∆G(k−1)

j ≡ 0 mod Sk+1 and

(G(k−1)
1 · · ·G(k−1)

r )/G(k−1)
i ≡ (G(0)

1 · · ·G
(0)
r )/G(0)

i mod Sk+1.

On the other hand, ∆G(k−1)
i =

∑d−1
`=0 W (`)

i f (k−1)
`

. So, we have∑r
i=1 ∆G(k−1)

i
F (0)

G(0)
i

=
∑r

i=1
∑d−1
`=0 W (`)

i f (k−1)
`

F (0)

G(0)
i

=
∑d−1
`=0 f (k−1)

`

∑r
i=1 W (`)

i
F (0)

G(0)
i

=
∑d−1
`=0 f (k−1)

`
X d
∼
Y
δ̂(d−`)

,

12
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therefore, modulo Sk+1, we have

∆F (k) ≡ F − (G(k−1)
1 · · ·G(k−1)

r +
∑d−1
`=0 f (k−1)

`
X d
∼
Y
δ̂(d−`)

)

≡ F − (G(k−1)
1 · · ·G(k−1)

r +
∑d−1
`=0 c(k−1)

`
X d
∼
Y

(k−1)δ̂(d−`)
).

By induction assumption for k − 1, we have c(k−1)
`

∈ K and G(k−1)
1 · · ·G(k−1)

r ∈ K[X,
∼
Y ],

therefore, ∆F (k) ∈ K[X,
∼
Y ]. �

From Lemma 1, the Yun-Moses polynomials associated with the initial factors G(0)
1 , . . . ,G(0)

r

of F (0) satisfy
r∑

i=1

W (`)
i

F (0)

G(0)
i

= X `Ŷ
d−`

for ` = 0, · · · d − 1, (3.1)

where Ŷ = Y δ̂/d̂ with G(0)
i = (X − ζiŶ )mi where ζi is a root of F (0) (X, 1) and mi is its

multiplicity. Also, we have degX (W (`)
i ) < mi, thus, we write W (`)

i =
∑mi−1

j=0 w(`)
i, j (Ŷ )X j for any

`. Let us fix λ in {1, . . . , r }. Define the column vector X`λ = [w(`)
λ, j]. The goal is to find X`λ ,

what we shall do by solving a system of linear equations. Now for µ = 0, 1, . . . ,mλ − 1, we
take the µ-th derivative of each side in Equation (3.1) and let X = ζλŶ in those derivatives. In
other words, we have

∂µ

∂X µ
*
,

r∑
i=1

W (`)
i

F (0)

G(0)
i

+
-

����X=ζλŶ
=

∂µ

∂X µ
(X `Ŷ

d−`
) |

X=ζλŶ
.

On the left-hand side of the above equality, after evaluating at X = ζλŶ , all terms of the sum
become zero, except the λ-th term. Therefore, we have

∂µ

∂X µ
*
,
W (`)
λ

F (0)

G(0)
λ

+
-

����X=ζλŶ
=

∂µ

∂X µ
(X `Ŷ

d−`
) |

X=ζλŶ
.

Also we have W (`)
λ =

∑mλ−1
j=0 wλ, j (Ŷ )X j , thus, we have

mλ−1∑
j=0

∂µ

∂X µ
*
,

X j F (0)

G(0)
λ

+
-

����X=ζλŶ
w(`)
λ, j =

∂µ

∂X µ
(X `Ŷ

d−`
)

����X=ζλŶ
. (3.2)

On the other hand, we know that

∂µ

∂X µ
*
,

F (0)

G(0)
λ

+
-

����X=ζλŶ
=

1
mλ!

∂µ+mλ

∂X µ+mλ
(F (0))

����X=ζλŶ
.

Since F (0) ∈ K[X, Ŷ ], we have ∂µ

∂Xµ

(
F (0)

G(0)
λ

) ����X=ζλŶ
∈ K(ζλ )[Ŷ ]. So, Equation (3.2) is a system

of linear equationsWλX
(`)
λ = B

(`)
λ in K(ζλ )[Ŷ ] (also see [SK99]) with coefficient matrix

Wλ = [α j,µ] with α j,µ =
∂µ

∂X µ
*
,

X j F (0)

G(0)
λ

+
-

����X=ζλŶ
, (3.3)



14 CHAPTER 3. ON THE YUN-MOSES POLYNOMIALS

unknown vector X`λ = [w(`)
λ, j] and constant vector

B
(`)
λ = [βµ] with βµ =

∂µ

∂X µ
(X `Ŷ

d−`
) |

X=ζλŶ
(3.4)

for j, µ = 0, 1, . . . ,mλ−1. The matrixWλ is a Wronskian matrix. It is known that a Wronskian
matrix is invertible whenever the functions in the first row are analytic and linearly indepen-

dent, see [Boc00]. In our case, the functions
(
X j F (0)

G(0)
λ

)
|
X=ζλŶ

, for j = 0, 1, . . . ,mλ − 1, are,

indeed, linearly independent polynomials in K(ζλ )[Ŷ ], therefore, the Wronskian matrixWλ is
invertible.

Now let us find the inverse ofWλ . For simplicity of notations, let f :=
(

F (0)

G(0)
λ

)
|
X=ζλŶ

and

f (µ) :=
(
∂µ

∂Xµ
F (0)

G(0)
λ

) ����X=ζλŶ
for µ = 1, . . . ,mλ − 1.

Proposition 5. The inverse ofWλ isW−1
λ = M2M1 where M1 and M2 are square matrices of

order mλ , defined as follows. The matrix M1 writes M1 = M1(mλ−1) · · ·M11M10 such that, for
j = 0, · · · ,mλ − 1, we have

M1j =



1 0 · · · 0 0 0 · · · 0
0 1 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
...

0 0 · · · 1 0 0 · · · 0
0 0 · · · 0 1

j! f 0 · · · 0

0 0 · · · 0
(
j+1
j

)
− f ′

f 1 · · · 0
...

...
...

...
...

. . .
...

0 0 · · · 0
(
mλ−1

j

)
− f (mλ−1− j )

f 0 · · · 1



.

Hence, the matrix M1 j differs from the identity matrix only in its ( j +1)-th column. The matrix

M2 is an upper triangular matrix given by M2 = [γ j,k] with γ j,k = (−1) j+k
(

k
k− j

)
ζ

k− j
λ Ŷ

k− j
if

j ≤ k and γ j,k = 0 if j > k, for j, k ∈ {0, 1, . . . ,mλ − 1}.

Proof. To proveW−1
λ = M2M1, it is enough to show that M−1

2 = M1Wλ holds, where M−1
2 is

given by the next claim.
Claim: M−1

2 is upper triangular with
(

k
k− j

)
ζ

k− j
λ Ŷ

k− j
as ( j, k)−entry.

Proof of the claim: Let A be the upper triangular matrix with
(

k
k− j

)
T k− j as ( j, k)−entry

where T is a new variable. We show that A|
T=ζλŶ

· M2 = I where I is the identity matrix of

order mλ . Let us look at the dot product of the ( j + 1)-th row of A and the (k + 1)-th column
of M2 where k ≥ j. This dot product is:

k− j∑
l=0

(−1)k+ j+l
(

k
k − j − l

)
T l

(
j + l

l

)
ζ

k− j−l
λ Ŷ

k− j−l
.

The above quantity is also equal to each side of Equation (3.5):(
k
j

) k− j∑
l=0

(−1)k+ j+l
(
k − j

l

)
T lζ

k− j−l
λ Ŷ

k− j−l
=

(
k
j

)
(T − ζλŶ )k− j . (3.5)
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So for k = j, the right hand side of Equation (3.5) equals 1, and when k , j (i.e. k > j), by
evaluating T = ζλŶ , it is 0. Hence, we have A|

T=ζλŶ
· M2 = I and M−1

2 = A|
T=ζλŶ

, proving the

claim.
Now, it is enough to show that M−1

2 = M1 · Wλ holds. Observe that M1 j is the product of
some elementary matrices (which are obtained by applying one elementary row operation on
the identity matrix, like the above matrices). Let N j−1 := M1( j−1) · · ·M10Wλ . By multiplying
M1 j by N j−1, we are factoring out f from the ( j + 1)-th row and adding −

(
k
j

)
f (k) multiple of

the ( j + 1)-th row to the ( j + k)-th row for k = 2, . . . ,mλ − j − 1. Therefore, the factor f
will be removed from the ( j + 1)-th row. Furthermore, the term with highest derivative will
also be removed from all rows after the ( j +1)-th one. Hence, M1(mλ−1) · · ·M10Wλ is an upper
triangular matrix such that every entry in the upper triangle is given by multiplying the term

with lowest derivative of f by 1/( j! f ). Since the ( j + 1, k + 1)−entry ofWλ is ∂ j

∂X j

(
X k F (0)

G(0)
λ

)
at X = ζλŶ , the ( j + 1, k + 1)−entry of M1(mλ−1) · · ·M10Wλ is

1
j! f

k!
(k − j)!

ζ
k− j
λ Ŷ

k− j
f =

(
k

k − j

)
ζ

k− j
λ Ŷ

k− j
,

which is exactly M−1
2 . This completes the proof. �

Lemma 1 yields the following for Yun-Moses polynomials.

Corollary 1. If F (X,Y ) ∈ K[X,Y ], then W (`)
λ ∈ K(ζλ )〈Ŷ 〉[X], where ζλ is the root of the

initial factor of F (0) corresponding to W (`)
λ ,

Proof. From Lemma 1, we have W `
λ ∈ C〈Ŷ 〉[X]. Thus, it is enough to show that the co-

efficients of W `
λ are from K(ζλ ). First, observe that F (0) and G(0)

λ are two homogeneous
polynomials of degrees

∑
j m j and mλ in K[X, Ŷ ] and K(ζλ )[X, Ŷ ], respectively. For any

µ = 0, 1, . . . ,mλ − 1, we have

∂µ

∂X µ
*
,

F (0)

G(0)
λ

+
-

����X=ζλŶ
∈ K(ζλ )[Ŷ ].

Hence, the coefficients of all entries of W−1
λ , defined in Proposition 5, live in K(ζλ ). Also,

observe that the coefficients of all entries in matrix B (`)
λ defined in (3.4) live in the same field

K(ζλ ), therefore, wλ, j ∈ K(ζλ )〈Y 〉, for all j = 0, 1, . . . ,mλ − 1. Hence W (`)
λ ∈ K(ζλ )〈Y 〉[X]. �

3.1 Computing the polynomials Wλ

In this section, we discuss how we compute the Yun-Moses polynomials Wλ . We regard each
Wλ as a univariate polynomial in X , so we need to compute the coefficients of X j for j =

0, 1, . . . ,mλ−1, which are univariate polynomials in Ŷ = Y δ̂/d̂ . Therefore, we need to compute
the inverse of the Wronskian matrixWλ by computing M10, M11, . . . , M1(mλ−1) and M2 at X =
ζλŶ . Since F (0)

G(0)
λ

(X, Ŷ ) is a homogeneous polynomial, then f , as defined before Proposition 5,
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is just a term in Ŷ . Therefore, all entries ofW−1
λ are just terms in Ŷ ; so to computeW−1

λ =

M2M10 · · ·M1(mλ−1), we just need to do arithmetic on the coefficients of Ŷ and keep track of
the degree of Ŷ in each entry. We can observe that the degree of Ŷ in the ( j, k)−entry ofW−1

λ

is mλ − d − j + k (see Section 3.2). On the other hand, the degree of Ŷ in the j-th entry of B (`)
λ

is d − j (see Section 3.2). Hence, computing the productW−1
λ = M2M10 · · ·M1(mλ−1) can be

done as if those matrices had coefficients in K(ζλ ) rather than K(ζλ )[Ŷ ].

3.2 Complexity analysis

Let f := F (0) (X, Ŷ )/(X − ζλŶ )mλ , where ζλ is a root of F (0) (X, 1), and let d f be the degree
of f w.r.t. X . So d f = d − mλ . We use the notations of Proposition 5. After evaluation at
X = ζλŶ , in all entries of M1 below the main diagonal, the degree of the denominator of the
( j, k)−entry is ( j− k+1)d f , the degree of the numerator is ( j− k)(d f −1) for j, k = 1, . . . ,mλ ,
with j ≥ k. Thus, in the ( j, k)−entry, the degree of Ŷ is −(d − mλ + j − k). In M2, the degree
of Ŷ on the ( j, k)−entry is k − j for j, k = 1, . . . ,mλ with k ≥ j. Hence, the Ŷ -degree in the
( j, k)−entry ofW−1

λ is 2mλ − d + k − j.
Recall that n 7−→ M(n) denotes a (polynomial) multiplication time [GG03]. In particular,

M(n) is an upper bound for the number of operations in K(ζλ ) required for multiplying two
univariate polynomials in K(ζλ ) with degree less than n. Let A(n) be an upper bound for the
number of operations in K required by one addition or multiplication in a simple algebraic
extension of K of degree n. We have: A(n) ∈ O(M(n)). Observe that the cost of evaluating f
and its derivatives up to f (mλ−1) is negligible. Let C1 be the cost of constructing the matrices
M10, M11, . . . , M1(mλ−1) and M2. Assuming that 1/ζλ and all involved binomial coefficients
are precomputed, we have: C1 =

(
(mλ−1)mλ

2 +
∑mλ−1

j=0 mλ − j
)

A(d). The cost C2 of multiplying
M10, M11, . . . , M1(mλ−1) and M2 is:

C2 =
*.
,

mλ−1∑
j=1

(mλ − j)(2 j − 1) + mλ

mλ∑
j=1

2( j − 1) − 2
mλ∑
k=1

k∑
j=1

j+/
-

A(d).

To understand where the factor A(d) comes from, one should note that, if F (0) (X, 1) does
not split into linear factors over K, it is sufficient to work with its irreducible factors over K,
see Remark 3. Therefore, the cost CYM of computing the Yun-Moses polynomials W (`)

λ , for
` ∈ {0, . . . , d − 1}, is given by CYM = C1 + C2 = O(m3

λM(d)). This leads us to:

Theorem 2. One can compute all the Yun-Moses polynomials W (`)
i (0 ≤ ` ≤ d − 1, 1 ≤ i ≤ r),

within O(d3 M(d)) operations in K.

Proof. For constructing the matrices M10, M11, . . . , M1(mλ−1), we need, respectively, mλ,mλ −

1, . . . , 1 arithmetic calculations and therefore,
(

(mλ−1)mλ

2

)
A(d) as the total cost. Also for M2,

since it is an upper triangular matrix, it needs
∑mλ−1

j=0 mλ − j arithmetic computations. Thus the
total cost for constructing the matrices M10, M11, . . . , M1(mλ−1), and M2 is

C1 =
*.
,

(mλ − 1)mλ

2
+

mλ−1∑
j=0

mλ − j+/
-

A(d).
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M1 , row j

M2 , col k
1 2 · · · k · · · mλ

1 2mλ 2 (mλ − 1) · · · 2 (mλ − k − 1) · · · 2
2 2 (mλ − 1) 2 (mλ − 1) · · · 2 (mλ − k − 2) · · · 2
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

j 2 (mλ − j + 1) 2 (mλ − j + 1) · · · 2 (mλ − k − j) · · · 2
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

mλ 2 2 · · · 2 · · · 2

Table 3.1: Calculation of the total number of multiplications and additions for multiplying each row of M1 by each column of M2.

Due to the sparsity of the matrices M10, M11, . . . , M1(mλ−1), computing M1 = M10M11 . . . M1(mλ−1)

requires
∑mλ−1

j=1 (mλ − j)(2 j − 1) multiplications and additions in K.
Next, we multiply M2 and M1. As we know, the matrices M2 and M1 are, respectively, upper

and lower triangular matrices. The number of multiplications and additions for multiplying
each row of M2 by each column of M1 is listed in Table 3.1. Thus the total number of the
arithmetic computations for computing M2M1 is

*.
,
mλ

mλ∑
j=1

2( j − 1) − 2
mλ∑
k=1

k∑
j=1

j+/
-

A(d).

Thus the total cost of arithmetic computations for building

M1 = M10M11 · · ·M1(mλ−1)

and multiplying M2 and M1 is

C2 =
*.
,

mλ−1∑
j=1

(mλ − j)(2 j − 1) + mλ

mλ∑
j=1

2( j − 1) − 2
mλ∑
k=1

k∑
j=1

j+/
-

A(d).

Thus the cost of computing Yun-Moses polynomials W (`)
λ , for ` = 0, . . . , d−1, is O(m3

λM (d)).
Thus the total cost for computing all the Yun-Moses polynomials W (

i `), for ` = 0, . . . , d − 1,
and for i = 1, . . . , r , is O(d3 M(d)). �



Chapter 4

Lifting the factors

We turn our attention to the lifting of the factors during the EHC, Lines 8-12 in Algorithm 1.
A naive implementation of that step would make the running-time of the i-iteration growing
quadratically with i. Adapting and enhancing an idea of L. Bernardin in [Ber98], we make this
running-time in O(i) instead of O(i2).

Let
∼
Y = Y 1/d̂ . Let ∆k

i be such that ∆G(k)
i = ∆k

i

∼
Y

k
and define ∆0

i = G(0)
i . Therefore,

∆k
i , for k > 0, is homogeneous with respect to (X, Ŷ ) of degree mi and we can write G(k)

i =

∆0
i + ∆

1
i

∼
Y + ∆2

i

∼
Y

2
+ · · · + ∆k

i

∼
Y

k
. While Bernardin in [Ber98] discusses his “recycling” strategy

for univariate polynomials with constant coefficients, we enhance his idea for the bivariate
polynomials G(k)

i .

For j = 2, . . . , r and k ≥ 1, we let Pk
j be a degree k univariate polynomial in

∼
Y satisfying

Pk
j ≡ G(k−1)

1 · · ·G(k−1)
j mod Sk+1. So, initially, we have P1

j ≡ G(0)
1 · · ·G

(0)
j mod S2, for

j = 2, . . . , r . For j = 2 and k > 1 we have

Pk
2 ≡ G(k−1)

1 G(k−1)
2 mod Sk+1, so

Pk
2 = ∆0

1∆
0
2 +

(
∆0

1∆
1
2 + ∆

0
2∆

1
1

) ∼
Y + · · ·

+
(
∆0

1∆
k−1
2 + · · · + ∆0

2∆
k−1
1

) ∼
Y

k−1

+
(
∆1

1∆
k−1
2 + · · · + ∆1

2∆
k−1
1

) ∼
Y

k
.

For the next iteration, that is from k to k + 1, we have:

Pk+1
2 ≡ G(k)

1 G(k)
2 mod Sk+2, so

Pk+1
2 = ∆0

1∆
0
2 +

(
∆0

1∆
1
2 + ∆

0
2∆

1
1

) ∼
Y + · · ·

+
(
∆0

1∆
k−1
2 + · · · + ∆0

2∆
k−1
1

) ∼
Y

k−1

+
(
∆0

1∆
k
2 + · · · + ∆

0
2∆

k
1

) ∼
Y

k

+
(
∆1

1∆
k
2 + · · · + ∆

1
2∆

k
1

) ∼
Y

k+1
.

If we assume that Pk
2 has been computed and stored at the previous iteration, then it is enough

to compute ∆0
1∆

k
2 , ∆0

2∆
k
1 and ∆1

1∆
k
2 + · · ·+∆

1
2∆

k
1 in the current iteration in order to deduce Pk+1

2 ,

18



19

with the following recursive formula:

Pk+1
2 = Pk

2 + (∆0
1∆

k
2 + ∆

k
1∆

0
2)
∼
Y

k
+ (∆1

1∆
k
2 + · · · + ∆

k
1∆

1
2)
∼
Y

k+1
.

Now for j = 3, . . . , r , define

Pk
j ≡ Pk

j−1G(k−1)
j mod Sk+1, so

Pk
j = pk,0

j−1∆
0
j +

(
pk,1

j−1∆
0
j + pk,0

j−1∆
1
j

) ∼
Y + · · ·

+
(
pk,0

j−1∆
k−1
j + · · · + pk,k−1

j−1 ∆
0
j

) ∼
Y

k−1

+
(
pk,1

j−1∆
k−1
j + · · · + pk,k

j−1∆
0
j

) ∼
Y

k
,

where Pk
j−1 = pk,0

j−1 + pk,1
j−1

∼
Y + · · · + pk,k

j−1

∼
Y

k
. Hence, we deduce:

Pk+1
j = Pk+1

j−1 G(k)
j mod Sk+2, so

Pk+1
j = pk+1,0

j−1 ∆
0
j +

(
pk+1,1

j−1 ∆
0
j + pk+1,0

j−1 ∆
1
j

) ∼
Y + · · ·

+
(
pk+1,0

j−1 ∆
k−1
j + · · · + pk+1,k−1

j−1 ∆0
j

) ∼
Y

k−1

+
(
pk+1,0

j−1 ∆
k
j + · · · + pk+1,k

j−1 ∆
0
j

) ∼
Y

k

+
(
pk+1,1

j−1 ∆
k
j + · · · + pk+1,k+1

j−1 ∆0
j

) ∼
Y

k+1
.

If we assume that Pk
j and Pk

j−1 have been computed and stored at the previous iteration, then
we can recycle some of the terms of Pk

j and Pk
j−1 in support of the calculation of Pk+1

j . However,
there are definitely new terms in Pk+1

j that we need to compute in the current iteration, namely

pk+1,0
j−1 ∆

k
j and pk+1,1

j−1 ∆
k
j + · · · + pk+1,k+1

j−1 ∆0
j .

Observe that pk+1,i
j−1 = pk,i

j−1 holds for i = 0, 1, . . . , k − 1, while pk+1,k
j−1 = pk,k

j−1 + qk+1
j holds,

where qk+1
j is recursively given by

qk+1
j = pk+1,0

j−1 ∆
k
j + qk+1

j−1∆
0
j with qk+1

2 = ∆k
2∆

0
1 + ∆

0
2∆

k
1 . (4.1)

Now observe that we have

pk+1,k
j = pk+1,0

j−1 ∆
k
j + · · · + pk+1,k

j−1 ∆
0
j

= pk+1,0
j−1 ∆

k
j + pk,1

j−1∆
k−1
j + · · · + pk,k−1

j−1 ∆
1
j

+(pk,k
j−1 + qk+1

j )∆0
j

= pk+1,0
j−1 ∆

k
j + pk,k

j + qk+1
j−1∆

0
j = pk,k

j + qk+1
j .

Therefore, we can write

Pk+1
j = Pk

j + qk+1
j

∼
Y

k
+

(
pk+1,1

j−1 ∆
k
j + · · · + pk+1,k+1

j−1 ∆
0
j

) ∼
Y

k+1
. (4.2)

Note: the term qk+1
j is missing in the formula at the top of the left column on p. 3 of [Ber98].
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4.1 Complexity analysis
It follows from Equation (4.2) that each P`

j , for 0 ≤ ` ≤ k + 1, is derived from P`−1
j and

P`
j−1 in a Pascal Triangle fashion. More precisely, letting ` = k + 1, if Pk

j and Pk+1
j−1 are

known, computing Pk+1
j requires 2 multiplications for computing qk+1

j (see Equations (4.1)
and (4.2)) and k multiplications for the new terms (see Equation( 4.2)). Every product involves
a polynomial of degree m j and a polynomial of degree m1 + · · · + m j−1. Also, all P`

j for
j = 1, . . . , r and ` = 1, . . . , k need to be computed before computing Pk+1

r . Let Clift be the
cost of computing Pk+1

r . We have: Clift =
∑r

l=2(k + 2)M(max(m1 + · · · + ml−1,ml ))A(d). This
leads us to the following result.

Theorem 3. The k-th iteration of Step 9 in the Algorithm 1 runs in O(k dM(d)2) operations
in K.



Chapter 5

Real limit points

Let T ⊂ Q[X1, . . . , Xn] be a one-dimensional regular chain; we denote by U its free variable.
In [ACM13], an algorithm is proposed for computing the non-trivial limit points of the quasi-
component W (T ), that is, the set W (T ) \W (T ) (where W (T ) is the Zariski closure of W (T )).
In Algorithm 4 of [AKM16], a similar, but different, computation is needed. In this case, we
need the non-trivial limit points of WR(T ) := ZR(T ) \ ZR(hT ), that is, the set WR(T ) \WR(T ),
where WR(T ) is the closure of WR(T ) in Rn endowed with the Euclidean topology. Unfortu-
nately, it is not true that the non-trivial limit points of WR(T ) are the non-trivial limit points
of W (T ) with real coordinates, as shown by the example of Figure 0.2 However, the algorithm
of [ACM13], which is based on Puiseux series, can be adapted in order to compute the non-
trivial limit points of WR(T ). This adaptation is explained hereafter. The LimitPoints command
of the RegularChains library in MAPLE handles both cases, W (T ) and WR(T ). The Puiseux
parametrizations of the regular chain T in Definition 2 (see also [ACM13], Definition 2) en-
code all the branches of V (sat(T )) when the free variable U approaches zero. It is proved
in [ACM13] that the non-trivial limit points of W (T ) around U = 0 are obtained by letting U
to be zero in all the Puiseux parametrizations of T .

Definition 2. Let T := {t1, . . . , tn−1} ⊂ Q[X1 < · · · < Xn] be a one-dimensional regular chain
whose free variable is X1 and such that X1 = 0 is a root of the product hT of the initials of
T . Let χ = ( χ2(U), . . . , χn(U)) be a vector of C((U∗))n−1 and let ς1 = 1. We assume that,
for all 2 ≤ j ≤ n, there exists a non-negative integer ς j such that (Uς j, χ j (U)) is a Puiseux
parametrization of the univariate polynomial t j−1(Uς j−1, χ2(U), . . . , χ j−1(U), X j ) around U =
0, where the minimum exponent of U in χ j (U) is non-negative. Let ς := lcm(ς2, . . . , ςn) and

φ j = χ j (U
ς
ςj ). Then (Uς, φ2, . . . , φn) is called a Puiseux parametrization of T around U = 0.

Example 1. Let T := {t1, t2} ⊆ Q[X1 < X2 < X3] be a regular chain where t1 := X4
2 −

2 X3
2 + X2

2 + X5
1 and t2 := X4

1 X3 + X3
2 − X2

2 . We note that the product of the initials of T
is hT := X4

1 . We would like to compute the Puiseux parametrizations of the regular chain T
around X1 = 0. Using the ExtendedHenselConstruction command of our library PowerSeries

21
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1, one can compute the Puiseux parametrizations of t1 around X1 = 0 and obtain:

Φ1 :=
(
X1 = U2, X2 = 1 +

√
−1 U5 +U10 +O(U15)

)
,

Φ2 :=
(
X1 = U2, X2 = 1 −

√
−1 U5 +U10 +O(U15)

)
,

Φ3 :=
(
X1 = U2, X2 =

√
−1 U5 −U10 +O(U15)

)
,

Φ4 :=
(
X1 = U2, X2 = −

√
−1 U5 −U10 +O(U15)

)
.

(5.1)

The big-oh notation is used above to indicate at which degree the displayed power series are
truncated.

Now by substituting Φ1 into t2, we obtain t21 := U8 X3 + (1 +
√
−1 U5 + U10)3 − (1 +√

−1 U5 +U10)2. Next, we compute Puiseux parametrizations of t21 around U = 0 and obtain:

*
,
U = U, X3 = −

√
−1

U4 +U2 − 3
√
−1 U7 +O(U8)+

-
.

Since there is a negative exponent of U appearing in the above Puiseux parametrization of t21,
this parametrization would not result in a Puiseux parametrization for the regular chain T . By
repeating the same process with Φ2, one obtains a Puiseux parametrization in which negative
exponents of U appear as well. However, the scenario is different when substituting Φ3 into t2.
Indeed, this substitution yields t23 := U8 X3 + (

√
−1 U5 − U10)3 − (

√
−1 U5 − U10)2, whose

Puiseux parametrization around U = 0 is

X3 = −U2
(
−U20 + 3

√
−1 U15 + 2 U10 +

√
−1 U5 + 1 +O(U25)

)
.

Since there is no negative exponents of U in the latter Puiseux parametrization, we deduce the
following Puiseux parametrization of the regular chain T:

Φ2,3 := (X1 = U2, X2 =
√
−1 U5 −U10 +O(U15),

X3 = U22 − 3
√
−1 U17 − 2 U12 −

√
−1 U7 −U2 +O(U27))

Proceeding similarly with Φ4, one obtains the second Puiseux parametrization of T:

Φ2,4 := (X1 = U2, X2 = −
√
−1 U5 −U10 +O(U15),

X3 = U22 + 3
√
−1 U17 − 2 U12 +

√
−1 U7 −U2 +O(U27))

In both Puiseux parametrizations of regular chain T , the ramification index is ς = lcm(2, 1) =
2.

Remark 6. Definition 2 implies each Puiseux parametrization (Uς, φ2, . . . , φn) of T belongs to
C〈U〉n. Hence, those Puiseux parametrizations of T that escape to infinity when U approaches
zero do not result in any limit points of W (T ).

Definition 3. Using the notations of Definition 2, the Puiseux parametrization (Uς, φ2, . . . , φn)
is called a real Puiseux parametrization of T if φi ∈ R〈U〉, for i = 2, . . . , n.

1This library is freely available from www.regularchains.org

www.regularchains.org
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Example 2. Let T be again the regular chain in Example 1 with Puiseux parametrizations
Φ2,3,Φ2,4 at U = 0. Then by substituting U = 0 in Φ2,3,Φ2,4, we obtain one non-trivial limit
point for W (T ), namely {(X1 = 0, X2 = 0, X3 = 0)}, for which its coordinates are real. How-
ever, none of the branches of the space curve defined by W (T ) is real. Hence, WR(T ) has no
non-trivial limit points!

Thus, for computing the non-trivial limit points of ZR(T ), one needs to compute the real
Puiseux parametrizations of ZR(T ) when its free variable approaches zero. To do so, it is
enough to have a method for detecting the real Puiseux expansions of a single polynomial.
As it is explained in [CMV13], when T only contains one (bivariate) polynomial, one way of
separating the real Puiseux expansions from the complex ones is to detect for which initial
factors of the method of computing the Puiseux expansions, complex coefficients will appear
in the computations. However, no method is proposed for general cases when T has more
than one polynomial. In Section 5.1, we propose Algorithm 2 for computing real Puiseux
parametrizations of regular chains of dimension one.

5.1 Real branches of bivariate polynomials

Proposition 6. Let K be an algebraic number field and f (U,Y ) ∈ K〈U〉[Y ] be square-free,
monic w.r.t Y , and of degree s > 0 in Y . Then, for each ` = 1, . . . , s, one can compute a
positive integer σ` as well as algebraic numbers Θ1

`
, . . . ,Θσ`

`
over K such that

1. for i = 1, . . . , σ`, the algebraic number Θi
`

has a minimal polynomial of the form hi
`
(Y ) ∈

K(Θ1
`
, . . . ,Θi−1

`
)[Y ],

2. f (U,Y ) factorizes as (Y−χ1(U)) · · · (Y−χs (U)) where χ` (U) ∈K(Θ1
`
, . . . ,Θσ`

`
)((U∗)).

Proof. Based on Theorem 1, the existence of expansions χ1(U), . . . , χs (U) is guaranteed.
To prove this proposition, we should show that there exist algebraic numbers Θ1

`
, . . . ,Θσ`

`

over K such that χ` (U) ∈ K(Θ1
`
, . . . ,Θσ`

`
)((U∗)), for ` = 1, . . . , s.

Let f0 := F (U,Y ). Then based on Theorem 1, there are f1, . . . , fσ` ∈ C((U∗))[Y ] such
that fi ∈ EHC( fi−1), for i = 1, . . . , σ`, and fσ` = Y − χ` (U).

Based on Lemma 2 and Corollary 1, there is at most one algebraic numberΘ1
`

with minimal
polynomial h1

`
(Y ) ∈ K[Y ] (which is, indeed, computed by substituting U = 1 in Newton

polynomial of f0) such that K1 := K(Θ1
`
) and f1 ∈ K1((U∗))[Y ]. Since EHC is applied

recursively on polynomials fi, thus there are algebraic numbers Θi
`

with minimal polynomials
hi
`
(Y ) ∈ Ki−1[Y ], where Ki := Ki−1(Θi

`
) and fi ∈ Ki ((U∗))[Y ], for i = 2, . . . , σ`. Therefore,

fσ` ∈ Kσ` ((U∗))[Y ] and consequently, χ` (Y ) ∈ Kσ` ((U∗)) = K(Θ1
`
, . . . ,Θσ`

`
)((U∗)).

Note that EHC sometimes does a change of coordinates on the input polynomial, but this
change of coordinates is within the coefficient ring of its input polynomial. Thus it does not
introduce any new algebraic number. �

Proposition 6 follows from the extended Hensel construction. In fact, Proposition 6 gives
a characterization of all the Puiseux expansions of polynomial f . This proposition shows that
there is a finite extension ofK for which f (U,Y ) can be written as (Y−χ1(U)) · · · (Y−χs (U)),
and therefore all the coefficients of the Puiseux expansions of f are determined. Especially,
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when K = Q, then determining whether or not χ` (U) is a real Puiseux expansion is equivalent
to the fact that each Θi−1

`
is a real algebraic number over Q(Θ1

`
, . . . ,Θi−1

`
), for i = 1, . . . , σ`.

Furthermore, based on the construction of hi
`
(Y ), all of the solutions of polynomials hi

`
(Y )

will appear in some of Puiseux expansions of f (U,Y ), while not all such solutions are real
algebraic numbers. Therefore, it is required to encode each solution of hi

`
(Y ), including Θi−1

`
,

"uniquely", to distinguish all solutions from each other.
Let h(Y ) ∈ K[Y ] be an irreducible and monic polynomial with degree s. Let also K[X1,...,Xn]

〈F〉
be the residue class ring of K[X1, . . . , Xn] with respect to F, where F ⊂ K[X1, . . . , Xn].

Remark 7. To construct the splitting field L of h(Y ) and compute the factorization of h(Y ) into
linear factors over L, one can proceeds as follows.

1. Initialize i := 1, Xi := Y , L := K, R0 := {}, P := {} and F := {h(Y )}; the set F
is assumed to maintain a list of univariate polynomials in Yi irreducible over L and of
degree at least two,

2. While F is not empty do
(a) pick a polynomial f (Xi) ∈ F over L,
(b) let αi be a root of f (Xi) (in the algebraic closure of K),
(c) replace L by L(αi), that is, by adjoining αi to L,
(d) replace T by Ri := Ri−1 ∪ {ri (X1, . . . , Xi)}, where the multivariate ri (X1, . . . , Xi)

is obtained from f (Xi) after replacing the algebraic numbers α1, . . . , αi−1 with the
variables X1, . . . , Xi−1,

(e) factor f (Xi) into irreducible factors over L, then add the obtained factors of degree
1 (resp. greater than 1) to P (resp. F ); when adding a factor to P replace Xi
with Y ;when adding a factor to F , replace Xi with Xi+1 and α1, . . . , αi−1, αi with
X1, . . . , Xi−1, Xi,

(f) if F is not empty then i := i + 1.
3. Let s′ := i.
At the end of this procedure, the set Rs′ is a regular chain in the polynomial ringK[X1, . . . , Xs′]

generating a maximal ideal such that K[X1, . . . , Xs′]/〈Rs′〉 is isomorphic to the splitting field
K(p) of h(Y ). Furthermore,

K[Y ] ⊂
K[X1]
〈R1〉

[Y ] ⊂ · · · ⊂
K[X1, . . . , Xs′]

〈Rs′〉
[Y ].

Remark 8. Let R1 := {h(X1)}. Then, there exists a positive integer s′ ≤ s and zero-dimensional
regular chains Ri ⊂ K[X1, . . . , Xi−1], for i = 2, . . . , s′ such that K[Y ] ⊂ K[X1]

〈R1〉
[Y ] ⊂ · · · ⊂

K[X1,...,Xs′]
〈Rs′〉

[Y ], where h(Y ) admits at least one linear factor over K[X1,...,Xi]
〈Ri〉

[Y ], for each i; fur-

thermore, K[X1,...,Xs′]
〈Rs′〉

[Y ] is the splitting field of h(Y ). This remark is derived from [LM83]
and [Tra76].

Using regular chains R1, . . . , Rs′ in Remark 8, one can encode all the solutions of polyno-
mial h(Y ), "uniquely". It is worth mentioning that the Split command of the PolynomialTools
package in MAPLE computes the regular chains R1, . . . , Rs′, implicitly.

Example 3. Suppose h(Y ) := Y 3 + Y 2 + 3. Using the Split command in MAPLE, one obtains
R1 := {X3

1 + X2
1 + 3} and R2 := R1 ∪ {X2

2 + (1+ X1) X2 + X2
1 + X1}, for which Q[X1,X2]

〈R2〉
[Y ] is the
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Algorithm 2 Real Puiseux expansions of f when U → 0
1: procedure REALPUISEUXEXPANSIONS( f (U,Y ),U = 0)
2: B := Puiseux expansions of f (U,Y ) at U = 0;
3: R := {};
4: for χ(U) ∈ B do
5: let χ(U) ∈ K((U∗))(Θ1, . . . ,Θσ);
6: let Ri

ji
⊂ K[Xi,1, . . . , Xi, ji ] be the zero-dimensional regular chain encoding the al-

gebraic number Θi

7: let C be a regular chain encoding the field K
8: F := C ∪ R1

j1
∪ · · · ∪ Rσ

jσ
;

9: if RealTriangularize(F ) , ∅ then
10: R := R ∪ { χ(U)};
11: end if
12: end for
13: return R;
14: end procedure

splitting field of h(Y ). Using the command RealTriangularize of the RegularChains library, we
can check that ZR(R1) contains one real solution, while the set ZR(R2) does not have any real
solutions.

Definition 4. Let Θ be a root of h(Y ). Let also j be the smallest integer for which Θ ∈
K[X1,...,X j ]
〈Rj〉

, then R j is called the encoding regular chain corresponding to Θ.

In fact, the initial problem of determining whether Θ is a real algebraic number over K is
equivalent to check whether or not ZR(R j ) has a real solution or not over K. Furthermore, K
must be a real extension of Q. To make sure that a polynomial system has real solutions, one
can use RealTriangularize command of the RegularChains Library in Maple. In fact, the
command RealTriangularize computes the real solutions of the polynomial system defined
by F, where F ⊂ Q[X1, . . . , Xn]. Thus, for checking whether or not Θ is a real algebraic num-
ber over K, using RealTriangularize, more considerations are required due to the constraint
imposed by the coefficient ring. To remove this constraint, since K is an algebraic extension
of Q, thus one can compute a zero-dimensional regular chain C ⊂ Q[Y1, . . . ,Ym] (for some m)
such that Q[Y1,...,Ym]

〈C〉 is isomorphic to K. This means that one can apply RealTriangularize on
the system defined by C ∪ R j ⊂ Q[Y1, . . . ,Ym, X1, . . . , X j]; if this system has any real solutions,
then we deduce that Θ is a real algebraic number over K.

Algorithm 2 implements the above idea to distinguish real Puiseux expansions of bivariate
polynomial f at U = 0. This algorithm, first, computes all of the Puiseux expansions of the
polynomial f at U = 0 and then determines which one is a real expansion for f . Based on
Proposition 6, each Puiseux expansion χ(U) of f belongs to K((U∗))(Θ1, . . . ,Θσ) for some
Θ1, . . . ,Θσ. Let C be the regular chain encoding the number fieldK and Ri

ji
⊂ K[Xi,1, . . . , Xi, ji ]

the zero-dimensional regular chain encoding the algebraic number Θi. Then if the polynomial
system defined by C ∪ R1

j1
∪ · · · ∪ Rσ

jσ
has any real solutions, then we deduce that χ(U) is

a real Puiseux expansion of f .
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5.2 Real branches of space curves
Proposition 7. With the notations of Definition 2, let (Uς, φ2, . . . , φn) be a Puiseux parametriza-
tion of the regular chain T around U = 0. Then, for each j = 2, . . . , n, one can compute
algebraic numbers Θ1

j, . . . ,Θ
σ j

j over K j−1 such that φ j (U) ∈ K j[U], where K1 := Q and
K j := K j−1(Θ1

j, . . . ,Θ
σ j

j ) for some non-negative integer σ j .

Proof. To prove this proposition, it is enough to prove that χ j (U) ∈ K j[U], for j = 2, . . . , n.
We prove this by induction on j. For j = 2, (Uς, χ2(U)) is a Puiseux parametrization of
the bivariate polynomial t1(U, X2) around U = 0. Since t1(U, X2) ∈ Q[U, X2], thus accord-
ing to Proposition 6, there exist algebraic numbers Θ1

2, . . . ,Θ
σ2
2 over Q such that χ2(U) ∈

Q(Θ1
2, . . . ,Θ

σ2
2 ). Suppose χ j−1(U) ∈ K j−1[U]. Thus, χ j (U) is a Puiseux expansion of bivari-

ate polynomial
t j−1(Uς j−1, χ2(U), . . . , χ j−1(U), X j )

which, in turn, belongs to K j−1[U, X j] by induction hypothesis step. Based on Proposition 6,
there exists algebraic numbersΘ1

j, . . . ,Θ
σ j

j overK j−1 such that χi (U) ∈ K j−1(Θ1
j, . . . ,Θ

σ j

j )[U].
Now if we let K j := K j−1(Θ1

j, . . . ,Θ
σ j

j ), this completes the proof. �

Proposition 8. Following up on Proposition 7, the Puiseux parametrization (Uς, φ2(U), . . . , φn(U))
is a real Puiseux parametrization of T if and only if Kn is a real extension of Q.

Proof. The correctness of the relation K1 := Q ⊆ K2 ⊆ · · · ⊆ Kn is trivial based on
the constructive proof of Proposition 7. Thus for determining whether or not the Puiseux
parametrization (Uς, φ2, . . . , φn) is real, it is enough to check if Kn is a real extension over
Q. �

Algorithm 3 Real Puiseux parametrizations of T when U → 0
1: procedure REALREGULARCHAINBRANCHES(T,U = 0)
2: R := {};
3: ς1 = 1
4: for j from 2 to n do
5: R j := {};
6: for ( χ2(U), . . . , χ j−1(U)) ∈ R do
7: B := RealPuiseuxExpansions(t j−1(Uς j−1, χ2(U), . . . , χ j−1(U), X j ), 0)
8: ς j = Rami f icationIndex(t j−1(Uς j−1, χ2(U), . . . , χ j−1(U), X j ), 0)
9: if B , ∅ then

10: let B := { χ1
j (U), . . . , χ` jj (U)}

11: R j := R j ∪
{(
χ2(U), . . . , χ j−1(U), χ1

j (U)
)
, . . . ,(

χ2(U), . . . , χ j−1(U), χ` jj (U)
)}

12: end if
13: end for
14: R := R j
15: end for
16: return R;
17: end procedure
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Algorithm 3 computes the real Puiseux parametrizations corresponding to regular chain T .
Based on Definition 2, for computing the Puiseux parametrizations of T , one needs to compute
the Puiseux parametrizations (Uς j, χ j (U)) of the bivariate polynomial

t j−1(Uς j−1, χ2(U), . . . , χ j−1(U), X j ),

for j = 2, . . . , n. If any of such parametrization has complex coefficients, then it would not
result in a real Puiseux parametrization for regular chain T . Thus, we should only consider the
real Puiseux parametrizations of bivariate polynomials t j−1(Uς j−1, χ2(U), . . . , χ j−1(U), X j ).
To do so, in Algorithm 3 at line 7, we call Algorithm 2 for computing the real Puiseux expan-
sions of bivariate polynomials to filter out the expansions that would not contribute in building
a real Puiseux parametrization for regular chain T .

Based on Definition 2, for computing the Puiseux parametrizations of T , one needs to
compute the Puiseux parametrizations (Uς j, χ j (U)) of the bivariate polynomial

t j−1(Uς j−1, χ2(U), . . . , χ j−1(U), X j ),

for j = 2, . . . , n. If any of such parametrization has complex coefficients, then it would not
result in a real Puiseux parametrization for regular chain T . Thus, we should only consider the
real Puiseux parametrizations of bivariate polynomials t j−1(Uς j−1, χ2(U), . . . , χ j−1(U), X j ).
To do so, one needs to use Algorithm 2, successively.



Chapter 6

Regular semi-algebraic systems and limits
of real rational functions

Fix a real number ρ > 0 and let D∗ρ be the punctured ball

D∗ρ = {(x1, . . . , xn) ∈ Rn | 0 <
√

x2
1 + · · · + x2

n < ρ}.

Let q : Rn −→ R be a rational function defined on D∗ρ.

Notation 2. Let χ(q) be the subset of Rn (regarded as affine space) where the gradient
∇x1,...,xnq of q at (x1, . . . , xn) and the vector (x1, . . . , xn) of Rn (regarded as vector space)
are co-linear. For n = 2, writing (x, y) for (x1, x2), we have

χ(q) = {(x, y) ∈ R2 | y
∂q
∂x − x ∂q

∂y = 0}.

In higher dimension, using McCoy theorem, the real algebraic set χ(q) is the vanishing locus
of all 2-by-2 minors of the 2-by-n matrix where rows are ∇x1,...,xnq and (x1, . . . , xn).

Definition 5. Let S be a semi-algebraic set of dimension at least 1 and such that the origin
of Rn belongs to the closure ZR(S) of ZR(S) in the Euclidean topology. Let L ∈ R. We say
that, when (x1, . . . , xn) ∈ Rn approaches the origin along S, the limit of the rational function
q(x1, . . . , xn) exists and equals L, whenever for all ε > 0, there exists 0 < δ such that for all
(x1, . . . , xn) ∈ S ∩ D∗δ the inequality |q(x1, . . . , xn) − L | < ε holds. When this holds, we write

lim
(x1, . . . , xn ) → (0, . . . , 0)
(x1, . . . , xn ) ∈ S

q(x1, . . . , xn) = L

Lemma 3 is a direct generalization of Proposition 1 in [CMV13] (bivariate case) and
Lemma 7 is a less direct generalization of one of the properties established in Proposition 5
of [VHC17] (trivariate case).

Lemma 8 and Lemma 9 are the core results supporting Algorithm 7 (see Section 7) when
dealing with rational functions with an arbitrary number of variables. These results are new
and, thus, have no counterparts either in [CMV13,VHC17] or in our ISSAC 2016 paper [AKM16].

We provide proofs for those results since they are essential for understanding the algorithms
presented in Section 7. Meanwhile, Lemma 4 follows from Lemma 3 and elementary reasoning
about limits; hence we omit its proof.

28
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Lemma 3. For all L ∈ R the following two assertions are equivalent:
(i) lim(x1,...,xn)→(0,...,0) q(x1, . . . , xn) exists and equals L,

(ii) lim (x1, . . . , xn ) → (0, . . . , 0)
(x1, . . . , xn ) ∈ χ(q)

q(x1, . . . , xn) exists and equals L.

Proof. Clearly the first assertion implies the second one. Next, we assume that the second one
holds and we prove that the first one holds as well. Hence, we assume that for all ε > 0, there
exists 0 < δ < ρ such that for all (x1, . . . , xn) ∈ χ(q) ∩ D∗δ the inequality |q(x1, . . . , xn)−L | <

ε holds. We fix ε > 0. For every r > 0, we define Cr = {(x1, . . . , xn) ∈ Rn |

√
x2

1 + · · · + x2
n =

r }. For all 0 < r < ρ, we choose t1(r) (resp. t2(r)) minimizing (resp. maximizing) q on Cr .
Applying the method of Lagrange multipliers, we have t1(r), t2(r) ∈ χ(q), for all 0 < r < ρ.

Observe that for all (x1, . . . , xn) ∈ Rn, with r :=
√

x2
1 + · · · + x2

n < ρ, we have q(t1(r)) − L ≤
q(x1, . . . , xn) − L ≤ q(t2(r)) − L. From the assumption and the definitions of t1(r), t2(r),
there exists 0 < δ < ρ such that, for all r < δ, we have −ε < q(t1(r)) − L and q(t2(r)) −
L < ε. Therefore, there exists 0 < δ < ρ such that for all (x1, . . . , xn) ∈ D∗δ the inequality
|q(x1, . . . , xn) − L | < ε holds. �

Lemma 4. Let R1, . . . , Re be regular semi-algebraic systems forming a triangular decomposi-
tion of χ(q) in the sense of Proposition 4. Then, for all L ∈ R the following two assertions are
equivalent:

(i) lim (x1, . . . , xn ) → (0, . . . , 0)
(x1, . . . , xn ) ∈ χ(q)

q(x1, . . . , xn) exists and equals L.

(ii) for all i ∈ {1, . . . , e} such that ZR(Ri) has dimension at least 1 and the origin belongs to
ZR(Ri), we have lim (x1, . . . , xn ) → (0, . . . , 0)

(x1, . . . , xn ) ∈ ZR (Ri )
q(x1, . . . , xn) exists and equals L.

Lemma 5. Assume n ≥ 3. Let S = [Q,T, P>] be a regular semi-algebraic system ofQ[X1, . . . , Xn]
such that ZR(S) has dimension d with n > d ≥ 1. Then the number of d-dimensional semi-
algebraic sets which are the intersection of ZR(S) and a sphere (or an ellipsoid) centred at the
origin is finite.

Proof. Assume by contradiction there are infinitely many of such d-dimensional semi-
algebraic sets W1,W2, . . . ,Wi, . . . which are intersection of ZR(S) and a sphere (or an ellip-
soid) centred at the origin. Consider the sequence V1 := W1, V2 := W2 \ W1, . . . , Vi :=
Wi \ (V1 ∪ · · · ∪Vi−1), . . . . Observe that the semi-algebraic sets Vi are disjoint (by construction)
and d-dimensional (by the nature of spheres and ellipsoids). It follows from Theorem 5.21
in [BPR06] that if a semi-algebraic set X contains all Vi’s, the set X must have dimension at
least d+1. However, all Vi’s are contained in ZR(S) which has dimension d. A contradiction. �

Lemma 6. Let h ∈ R[X1, . . . , Xn] be of positive degree in Xn. Assume that there exists a
real number λ such that ∇h(p) = λp holds for all p in a neighbourhood V0 of the origin in
Rn. Let also U0 ⊂ R

n−1 be a neighbourhood of the origin in Rn−1 such that the standard
projection of V0 onto (X1, . . . , Xn−1) contains U0. Assume the leading coefficient c of h in Xn
and the discriminant ∆ of h in Xn vanish nowhere on U0. Then, there exists a smooth function
u : U0 −→ R for which

h(x1, . . . , xn−1, u(x1, . . . , xn−1)) = 0 (6.1)

holds, for all (x1, . . . , xn−1) ∈ U0. Moreover, the graph of every smooth function u : U0 −→ R
satisfying Relation (6.1) is contained in a sphere centred at the origin.
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Proof. We view h as a parametric polynomial in Xn with X1, . . . , Xn−1 as parameters. Since
the leading coefficient c of h in Xn and the discriminant ∆ of h in Xn vanish nowhere on U0, it
follows from Section 1.4 that the intersection of U0 and the discriminant variety of h is empty.
Therefore, there exists a smooth analytic function u : U0 −→ R such that Equation (6.1) holds
for all (x1, . . . , xn−1) ∈ U0. Let u be such a function and define

W = {(x1, . . . , xn−1, xn) | x1, . . . , xn−1 ∈ U0 and xn = u(x1, . . . , xn−1)}.

Thus, the set W is the graph of u. For any t ∈ W , the normal vector of W at t is given by

n(t) =
(−∂u/∂X1, . . . ,−∂u/∂Xn−1, 1)√

(∂u/∂X1)2 + · · · + (∂u/∂Xn−1)2 + 1
.

Using Equation (6.1) and the hypothesis on ∇h, elementary calculations yield

n(t) =
(x1, . . . , xn−1, u(x1, . . . , xn−1))√

x2
1 + · · · + x2

n−1 + u2(x1, . . . , xn−1)

which results in the following equalities:




Xi√
X2

1+···+X2
n−1+u2(X1,...,Xn−1)

= −
∂u/∂Xi√

(∂u/∂X1)2+···+(∂u/∂Xn−1)2+1
, i = 1, . . . , n − 1

u(X1,...,Xn−1)√
X2

1+···+X2
n−1+u2(X1,...,Xn−1)

= 1√
(∂u/∂X1)2+···+(∂u/∂Xn−1)2+1

(6.2)

The last equality in Relation (6.2) implies that we have:

u(X1, . . . , Xn−1) =

√
X2

1 + · · · + X2
n−1 + u2(X1, . . . , Xn−1)√

(∂u/∂X1)2 + · · · + (∂u/∂Xn−1)2 + 1
.

Consequently, we obtain the following system of PDEs:
{

u(X1, . . . , Xn−1) ∂u/∂Xi = −Xi , for i = 1, . . . , n − 1. (6.3)

Now for i = 1, we integrate both sides of Equation (6.3) with respect to X1. There exists a
differentiable function F2(X2, . . . , Xn−1) such that we have:

u2(X1, . . . , Xn−1)
2

=
−X2

1

2
+ F2(X2, . . . , Xn−1). (6.4)

Now by taking the derivative of both sides of Equation (6.4) with respect to X2, we have

u ∂u/∂X2 = ∂F2/∂X2.

After substitution of the latter equality in the equation u ∂u/∂X2 = −X2, there exists a differ-
entiable function F3(X3, . . . , Xn−1) such that we have:

−X2
2

2
= F2(X2, . . . , Xn−1) + F3(X3, . . . , Xn−1).
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By continuing in the same manner, we have

−X2
i−1

2
= Fi−1(Xi−1, . . . , Xn−1) + Fi (Xi, . . . , Xn−1),

for i = 2, 3, . . . , n−2. But for i = n−1, we have u ∂u/∂Xn−1 = ∂Fn−1/∂Xn−1. After substitution
of the latter equality in u ∂u/∂Xn−1 = −Xn−1, there exists a constant C such that we have:

−X2
n−1

2
= Fn−1(Xn−1) + C.

Therefore. we have
u2(X1, . . . , Xn−1)

2
= −

X2
1

2
− · · · −

X2
n−1

2
+ C.

Let α = (α1, . . . , αn−1, αn) be a point of W . Since u(α1, . . . , αn−1) = αn holds, we have
C = 1/2(α2

1 + · · · + α
2
n). We deduce:

u(X1, . . . , Xn−1) =
√

r2 − X2
1 − · · · − X2

n−1,

where we define r2 := α2
1+ · · ·+α

2
n. Finally, we conclude that W is a neighbourhood of p ∈ D∗ρ

contained in a sphere centred at the origin. �

Lemma 7. Assume n ≥ 3. Let S = [Q, {tn}, P>] be a regular semi-algebraic system of
Q[X1, . . . , Xn] such that ZR(S) has dimension d := n − 1, and the closure ZR(S) contains
the origin. W.l.o.g. we assume that mvar(tn) = Xn holds. LetM be the 2 × n matrix with the
vector (X1, . . . , Xn) as first row and the gradient vector ∇tn =

(
∂tn
∂X1
· · ·

∂tn
∂Xn

)
as second row.

Then, there exists a non-empty set O ⊂ D∗ρ ∩ ZR(S), which is open relatively to ZR(S), such
thatM is full rank at any point of O, and the origin is in the closure of O.

Proof. We shall first prove the following claim.
Claim: Assume that there exists r such that 0 < r < ρ holds andM is not full rank at any

point of D∗r ∩ ZR(S). Then, there exists r′ such that 0 < r′ < r holds and Sr ′, the r′-radius
sphere centred at the origin, intercepts ZR(S) on a semi-algebraic set of dimension n − 1.

Proof of the Claim: Since the origin is in the closure of ZR(S), we know that D∗r ∩ ZR(S)
is not empty. W.l.o.g. we can assume that ZR(S) ⊆ D∗r holds. Indeed, if this was not the
case, we could decompose D∗r ∩ ZR(S) into finitely many regular semi-algebraic systems and
reason with each of those which has the origin of Rn in the topological closure (w.r.t. Euclidean
topology) of its zero set. The standard projection of ZR(S) onto (X1, . . . , Xn−1) is an open set
U0 of Rn−1. We apply Lemma 6 with h := tn and V0 := ZR(S). The conclusion of the claim
follows.

Lemma 5 conclude: W.l.o.g. we can assume that ZR(S) does not intercept sphere centred
at the origin on semi-algebraic sets Wi of dimension n − 1 for i = 1, 2, . . . ,m for some m ≥ 0.
Indeed, if this was the case, we can remove all such Wi from ZR(S) (since such Wi doesn’t
have the origin of Rn in its topological closure) and keep reasoning with each component of
ZR(S) \ ∪· mi=1Wi which contains the origin of Rn in its topological closure.

As a consequence of the above claims, for every r such that 0 < r < ρ holds, there exists
a point p of D∗r ∩ ZR(S) at whichM is full rank. Therefore, for all r > 0 small enough, the
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set D∗r ∩ ZR(S) contains a point pr , as well as a neighbourhood Nr of pr (due to the full rank
characterization in terms of minors) such that Nr is open relatively to ZR(S) andM is full rank
at any point of Nr . Taking the union of those neighbourhoods Nr finally yields the conclusion
of the lemma. �

Lemma 9 extends Lemma 7 from a regular semi-algebraic system of dimension n − 1
to a regular semi-algebraic system of arbitrary dimension. But, before stating and proving
Lemma 9, let us look, with Lemma 8, to the case of a regular semi-algebraic system of dimen-
sion n − 2.

Lemma 8. Assume that n ≥ 3 holds. Let S = [Q, {tn, tn−1}, P>] be a regular semi-algebraic
system of Q[X1, . . . , Xn] such that ZR(S) has dimension n − 2, and the closure ZR(S) contains
the origin. Note that {tn, tn−1} is a regular chain and without loss of generality, we can assume
that mvar(tn) = Xn and mvar(tn−1) = Xn−1 holds. Consider the matrix

M =



X1 X2 X3 . . . Xn
∂tn
∂X1

∂tn
∂X2

∂tn
∂X3

. . . ∂tn
∂Xn

∂tn−1
∂X1

∂tn−1
∂X2

∂tn−1
∂X3

. . . ∂tn−1
∂Xn


.

Then, there exists a non-empty set O ⊂ D∗ρ ∩ ZR(S), which is open relatively to ZR(S) and
which satisfies o ∈ O (that is, the origin is in the closure of O) such thatM is full rank at any
point of O.

Proof. The proof consists of two main steps. The first one uses a PDE argument and borrows
ideas from the proof of Lemma 6 The second step uses a topological argument and follows the
proof of Lemma 7.

Let O be an open set in ZR(S) with o ∈ O. We view tn (resp. tn−1) as a parametric
polynomial in Xn (resp. Xn−1) with X1, . . . , Xn−1 (resp. X1, . . . , Xn−2) as parameters. Let also
U0 ⊂ R

n−1 be a neighbourhood of the origin in Rn−1 and V0 ⊂ R
n−2 be a neighbourhood of the

origin in Rn−2 such that the standard projection of O onto (X1, . . . , Xn−1) contains U0 and the
standard projection of O onto (X1, . . . , Xn−2) contains V0.

Since the leading coefficient and discriminant of tn (resp. tn−1) vanish nowhere on U0 (resp.
V0), it follows from Section 1.4 that the intersection of U0 (resp. V0) and the discriminant variety
of tn (resp. tn−1) is empty. Therefore, there exist smooth analytic functions u(X1, . . . , Xn−1) :
U0 → R and v(X1, . . . , Xn−2) : V0 → R such that we have:

tn(X1, . . . , Xn−2, v, u) = 0 and tn−1(X1, . . . , Xn−2, v) = 0.

Now assume that the above matrix M is not full rank at any point of O. Therefore all
minors of M are zero in O. Let us look at the n − 2 minors mi, where mi is the determinant
of sub-matrix of M obtained with the i-th column and last two columns for i = 1, . . . , (n − 2).
From mi = 0, we derive the following:

XnuvvXi + Xn−1vXi + XnuXi + Xi = 0 (6.5)

for i = 1, . . . , (n− 2). Observe that we have
∫

(uvvXi + uXi )dXi = u+ c0 and
∫
vXidXi = v + c1.

Now for i = 1, we integrate of the first equation (that is, for i = 1) from 6.5 with respect to X1.
It follows that there exists a differentiable function F1(X2, . . . , Xn−2) such that we have

Xnu + Xn−1v +
X2

1

2
+ F1(X2, . . . , Xn−2) = 0.
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Now by taking derivative with respect to X2 and substituting in the second equation (that is, for
i = 2) in 6.5, we have ∂

∂X2
F1(X2, . . . , Xn−2) = X2. Then, there exists a differentiable function

F2(X3, . . . , Xn−2) such that F1(X2, . . . , Xn−2) =
X2

2
2 + F2(X3, . . . , Xn−2). Hence, we have:

Xnu + Xn−1v +
X2

1

2
+

X2
2

2
+ F2(X3, . . . , Xn−2) = 0

Continuing in this manner, we have, for some differentiable function Fn−3(Xn−2),

Xnu + Xn−1v +
X2

1

2
+ . . . +

X2
n−3

2
+ Fn−3(Xn−2) = 0.

By taking derivative with respect to Xn−2 and substituting in the last equation (that is, for

i = n− 2) in 6.5, we have ∂
∂Xn−2

Fn−3(Xn−2) = Xn−2. Therefore, Fn−3(Xn−2) =
X2
n−2
2 + c for some

constant number c. Hence, we have:

Xnu + Xn−1v +
X2

1

2
+

X2
2

2
+ . . . +

X2
n−2

2
+ c = 0. (6.6)

Using definition of u and v, we have Xn = u(X1, . . . , Xn−2, Xn−1) and Xn−1 = v(X1, . . . , Xn−2),
therefore the graph of equation 6.6 is an ellipsoid centred at the origin.

Now, we proceed with the second step of the proof and follow the proof of Lemma 7. We
start with a claim.

Claim: Assume that there exists r such that 0 < r < ρ holds andM is not full rank at any
point of D∗r ∩ ZR(S). Then, there exists r′ such that 0 < r′ < r holds and Er ′, the ellipsoid as
in equation 6.6 for c = −r′2 (centred at the origin), intercepts ZR(S) on a semi-algebraic set of
dimension n − 2.

Proof of the Claim: Since the origin is in the closure of ZR(S), we know that D∗r ∩ ZR(S)
is not empty. W.l.o.g. we can assume that ZR(S) ⊆ D∗r holds. Indeed, if this was not the
case, we could decompose D∗r ∩ ZR(S) into finitely many regular semi-algebraic systems and
reason with each of those which has the origin of Rn in the topological closure (w.r.t. Euclidean
topology) of its zero set. The standard projection of ZR(S) onto (X1, . . . , Xn−1) is an open set
U0 of Rn−1 and the standard projection of ZR(S) onto (X1, . . . , Xn−2) is an open set V0 of Rn−1.
We apply argument before this claim on tn and tn−1 for O := ZR(S). The conclusion of the
claim follows.

Now we use Lemma 5. W.l.o.g. we can assume that ZR(S) does not intercept an ellipsoid
centred at the origin on semi-algebraic sets Wk’s of dimension d−1 where k = 1, . . . ,m. Indeed,
if this was the case, then we could remove all such Wk from ZR(S) (since such Wk doesn’t
have the origin of Rn in its topological closure) and keep reasoning with each component of
ZR(S) \ ∪· mk=1Wi which contains the origin of Rn in its topological closure.

As a consequence of the above claims, for every r such that 0 < r < ρ holds, there exists
a point p of D∗r ∩ ZR(S) at whichM is full rank. Therefore, for all r > 0 small enough, the
set D∗r ∩ ZR(S) contains a point pr , as well as a neighbourhood Nr of pr (due to the full rank
characterization in terms of minors) such that Nr is open relatively to ZR(S) andM is full rank
at any point of Nr . Taking the union of those neighbourhoods Nr finally yields the conclusion
of the lemma. �

Lemma 9 extends Lemma 8 from a regular semi-algebraic system of dimension n − 2 to a
regular semi-algebraic system of arbitrary dimension. The proof techniques are similar.
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Lemma 9. Assume that n ≥ 3 holds. Let S = [Q,T, P>] be a regular semi-algebraic system
of Q[X1, . . . , Xn] such that ZR(S) has dimension d, with n > d ≥ 2, and the closure ZR(S)
contains the origin. W.l.o.g. we can assume that the polynomials td+1, . . . , tn forming the
regular chain T have main variables Xd+1, . . . , Xn. LetM be the (n − d + 1) × n matrix whose
first row is the vector (X1, . . . , Xn) and, for j = d + 1, . . . , n, whose ( j − d + 1)-th row is the
gradient vector

∇t j =

(
∂t j

∂X1
· · ·

∂t j

∂Xn

)
where t j is the polynomial of T with mvar(t j ) = X j . Then, there exists a non-empty set O ⊂
D∗ρ ∩ ZR(S), which is open relatively to ZR(S) and which satisfies o ∈ O (that is, the origin is
in the closure of O) such thatM is full rank at any point of O.

Proof. Let O an open set in ZR(S) with o ∈ O. We view t ι for ι = n − d + 1, . . . , n
as a parametric polynomial in Xι with X1, . . . , Xι−1 as parameters. Let also Vι ⊂ Rι−1 be a
neighbourhood of the origin in Rι−1 such that the standard projection of O onto (X1, . . . , Xι−1)
contains Vι.

Since the leading coefficient and discriminant of ti vanish nowhere on Vi, it follows from
Section 1.4 that the intersection of Vi and the discriminant variety of ti is empty. Therefore,
there exist smooth analytic functions

un−d+1(X1, . . . , Xn−d+1) : O → R, . . . , un(X1, . . . , Xn−1) : O → R

such that

tn(X1, . . . , Xn−d, un−d+1, . . . , un) = 0, · · · , tn−d+1(X1, . . . , Xn−d, un−d+1) = 0.

Let mi for i = 1, . . . , n− d be the minor of M obtained with columns i, n− d+1, n− d+2, . . . , n
and let mi j be the minor of the sub-matrix corresponding to minor mi obtained by removing
j-th column for j = 1, . . . , d + 1 and the last row. So

mi = det



Xi Xn−d+1 Xn−d+2 . . . Xn
(un)Xi (un)Xn−d+1 (un)Xn−d+2 . . . −1
...

...
...

...
...

(un−d+1)Xi −1 0 . . . 0



mi1 = det



Xn−d+1 Xn−d+2 Xn−d+3 . . . Xn
(un)Xn−d+1 (un)Xn−d+2 (un)Xn−d+3 . . . −1

...
...

...
...

...
(un−d+1)Xn−d+1 −1 0 . . . 0



mi2 = det



Xi Xn−d+2 Xn−d+3 . . . Xn
(un)Xi (un)Xn−d+2 (un)Xn−d+3 . . . −1
...

...
...

...
...

(un−d+1)Xi −1 0 . . . 0


Note: in the expansion of mi, all mi j , for j = 3, . . . , d + 1, will appear with coefficient zero. So
among all mi j’s, we are just interested in mi1 and mi2.
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Assume the matrix M is not full rank at any point of O. Then, all minors of M (given by
the Mc Coy theorem [McC42]) are zero, especially mi’s for i = 1, 2, . . . , n− d. This implies we
have the following system of partial differential equations:




m11
∂
∂X1

un−d+1 + m12 = 0
m21

∂
∂X2

un−d+1 + m22 = 0
...

m(n−d)1
∂

∂Xn−d
un−d+1 + m(n−d)2 = 0

(6.7)

Claim: Xnun+ Xn−1un−1+ . . .+ Xn−d+1un−d+1+
X2
n−d

2 +
X2
n−d−1

2 + . . .++
X2

1
2 + c = 0 is implied

by System 6.7.
Proof of the claim: We can expand the i-th differential equation, for i = 1, . . . , n − d, in

System 6.7 as:

(mi11
∂un−d+2

∂Xn−d+1
+ mi12)

∂un−d+1

∂Xi
+ mi21

∂un−d+2

∂Xi
+ mi22 = 0 (6.8)

where

mi11 = det



Xn−d+2 Xn−d+3 Xn−d+4 . . . Xn
(un)Xn−d+2 (un)Xn−d+3 (un)Xn−d+4 . . . −1

...
...

...
...

...
(un−d+3)Xn−d+2 −1 0 . . . 0



mi12 = det



Xn−d+1 Xn−d+3 Xn−d+4 . . . Xn
(un)Xn−d+1 (un)Xn−d+3 (un)Xn−d+4 . . . −1

...
...

...
...

...
(un−d+3)Xn−d+1 −1 0 . . . 0



mi21 = det



Xn−d+2 Xn−d+3 Xn−d+4 . . . Xn
(un)Xn−d+2 (un)Xn−d+3 (un)Xn−d+4 . . . −1

...
...

...
...

...
(un−d+3)Xn−d+2 −1 0 . . . 0



mi22 = det



Xi Xn−d+3 Xn−d+4 . . . Xn
(un)Xi (un)Xn−d+3 (un)Xn−d+4 . . . −1
...

...
...

...
...

(un−d+3)Xi −1 0 . . . 0



.

Observe mi11 = mi21. So we can rewrite Equation 6.8 as

mi11
∂un−d+2

∂Xn−d+1

∂un−d+1

∂Xi
+ mi12

∂un−d+1

∂Xi
+ mi11

∂un−d+2

∂Xi
+ mi22 = 0 (6.9)

Continuing the same approach on Equation 6.9, one can observe that the coefficient of Xk , for
k = n − d + 1, . . . , n, is Uik a function of partial derivatives of u j , for j = n − d + 1, . . . , n, such
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that an anti-derivative of Uik with respect to Xi is the function uk . Therefore, Equation 6.9 can
be rewritten as

XnUin + Xn−1Ui(n−1) + . . . + Xn−d+1Ui(n−d+1) + Xi = 0. (6.10)

Now for i = 1, take integral of Equation 6.10 with respect to X1. Then there exists a differen-
tiable function F1(X2, . . . , Xn−d) such that we have:

Xnun + Xn−1un−1 + . . . + Xn−d+1un−d+1 +
X2

1

2
+ F1(X2, . . . , Xn−d) = 0. (6.11)

By taking derivative of Equation 6.11 with respect to X2 and substituting into Equation 6.10 for
i = 2, we have F1(X2, . . . , Xn−d) = X2. Then there exists a differentiable function F2(X3, . . . , Xn−d)
such that F1 =

X2
2

2 + F2. Therefore

Xnun + Xn−1un−1 + . . . + Xn−d+1un−d+1 +
X2

1

2
+

X2
2

2
+ F2(X3, . . . , Xn−d) = 0. (6.12)

Continuing the same approach, there exists a constant c such that

Xnun + Xn−1un−1 + . . . + Xn−d+1un−d+1 +
X2

1

2
+

X2
2

2
+ . . . +

X2
n−d

2
+ c = 0. (6.13)

This proves the claim.
Using the definitions of the analytic functions un, . . . , un−d+1, the claim implies that the

semi-algebraic set ZR(S) contains parts of disjoint ellipsoids centred at the origin.
Now, we proceed as in the second step of the proof of Lemma 8. We start with a claim.
Claim: Assume that there exists r such that 0 < r < ρ holds andM is not full rank at any

point of D∗r ∩ ZR(S). Then, there exists r′ such that 0 < r′ < r holds and Er ′, the ellipsoid as
in Equation 6.13 for c = −r′2 (centred at the origin), intercepts ZR(S) on a semi-algebraic set
of dimension d.

Proof of the Claim: Since the origin is in the closure of ZR(S), we know that D∗r ∩ ZR(S) is
not empty. W.l.o.g. we can assume that ZR(S) ⊆ D∗r holds. Indeed, if this was not the case, we
could decompose D∗r∩ZR(S) into finitely many regular semi-algebraic systems and reason with
each of those which has the origin of Rn in the topological closure (w.r.t. Euclidean topology)
of its zero set. The standard projection of ZR(S) onto (X1, . . . , Xι−1), for ι = n − d + 1, . . . n,
is an open set Vι of Rι−1. We apply argument before this claim on t ι for O := ZR(S). The
conclusion of the claim follows.

Now we use Lemma 5. W.l.o.g. we can assume that ZR(S) does not intercept an ellipsoid
centred at the origin on semi-algebraic sets Wk’s of dimension d−1 where k = 1, . . . ,m. Indeed,
if this was the case, then we could remove all such Wk from ZR(S) (since such Wk doesn’t
have the origin of Rn in its topological closure) and keep reasoning with each component of
ZR(S) \ ∪· mk=1Wi which contains the origin of Rn in its topological closure.

As a consequence of the above claims, for every r such that 0 < r < ρ holds, there exists
a point p of D∗r ∩ ZR(S) at whichM is full rank. Therefore, for all r > 0 small enough, the
set D∗r ∩ ZR(S) contains a point pr , as well as a neighbourhood Nr of pr (due to the full rank
characterization in terms of minors) such that Nr is open relatively to ZR(S) andM is full rank
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at any point of Nr . Taking the union of those neighbourhoods Nr finally yields the conclusion
of the lemma. �

We conclude this section by presenting an optimization trick for computing the limit of the
fraction of polynomials f and g at the origin. This optimization is stated in Lemma 10 below
and is taken from Proposition 2.2 of [XZ14]. For this reason, we refer to it as the Chinese limit
trick.

Lemma 10 (Chinese limit trick). Let f and g be two non-zero polynomials in R[X1, . . . , Xn].
Assume that limx→o

f (x)
g(x) exists. Then, using the lexicographic monomial order induced by

X1 < · · · < Xn, the trailing monomial of f is not lower than the trailing monomial of g.

Lemma 10 implies that if the trailing monomial of f is lower than the trailing monomial of
g with respect to any lexicographic variable ordering over X1, . . . , Xn, then it is guaranteed that
limx→o

f (x)
g(x) does not exist. Note that Lemma 10 is true, whether the origin is an isolated zero

of the denominator or not.



Chapter 7

Computing limits of multivariate rational
functions

We describe in this chapter our procedure for determining the existence and the possible value
of limits of the form lim(x1,...,xn)→(0,...,0) q(x1, . . . , xn). Following the notations of Section 6,
recall that q is a rational function in the n ordered variables X1 < · · · < Xn and with rational
number coefficients.

Our procedure extends to an arbitrary n the algorithm proposed in [CMV13] for n = 2.
Hence, as in that paper, we assume that the origin is an isolated zero of the denominator of q.
The pseudo-code for our procedure is stated in Algorithms 4, 7, 5 and 6.

Algorithm 4 Limit of rational function q ∈ Q(X1, . . . , Xn) at origin
1: procedure LIMIT(q)

2: A := Minors(
[

X1 · · · Xn
∂q
∂X1

· · ·
∂q
∂Xn

]
);

3: D := RealTriangularize(A);
4: L := ∅;
5: for S ∈ D do
6: if o ∈ ZR(S) and dim(ZR(S)) > 0 then
7: L := L ∪ {Limit Inner (q, S)};
8: end if
9: end for

10: return L;
11: end procedure

Proposition 9. Algorithm 4 terminates and returns finitely many pairs (L1, S1), . . . , (Le, Se)
where each of L1, . . . , Le is either a real number, or the flag no_limit, and S1, . . . , Se are all
regular semi-algebraic systems such that each of the sets ZR(S1), . . . , ZR(Se) has dimension
one and contains the origin in its closure. Moreover, if Li ∈ R, then Li is the limit of q at the
origin along the ZR(Si) for all i = 1, . . . , e. In addition, the rational function q admits a finite
limit at the origin if and only if L1, . . . , Le are all real numbers and equal; if this holds, then
this common value is the limit of q at the origin.

38
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Proof. Algorithm 4 applies Lemma 3 as follows. At Line (2), it computes the real algebraic
set χ(q) defined in Notation 2 and at Line (3) it computes a triangular decomposition D of
χ(q) as defined in Proposition 4. Following Lemma 4, each regular semi-algebraic system
S ∈ D which is zero-dimensional, or such that the origin is not contained in the closure of
ZR(S), is discarded at Line (6). For every other regular semi-algebraic system (RSAS) S, one
runs Limitinner (q, S) at Line (7), that is, one makes a call to Algorithm 7.

Algorithm 7 is the core routine. It first checks whether ZR(S) has dimension one or not.
If dim(ZR(S)) = 1 holds, one runs LimitAlongCurve(q, S), that is, Algorithm 6. Applying
Algorithm 7 with RSASs of dimension one can be seen as the base case of that recursive
routine while the rest of that routine reduces computation with RSASs of dimension higher
than one to this base case.

This reduction is performed by repeated applications of the Lagrange multipliers trick, as
in the proof of Lemma 3. It follows from Lemma 8 that there exists a minor m ∈ Minors(M)
(whereM is defined at Line (6) of Algorithm 7) such that we have ZR(S) * ZR(m). Note that
we know that the Jacobian of T (that is, the matrix formed with the ∇t, for t ∈ T) is full rank.
This follows from Proposition 3 and explains why we do not need to compute any singular loci.

Once such a minor m ∈ Minors(M) is found, we compute ZR(S) ∩ ZR({m , 0}) using
the Intersect command defined in Remark 2; this is done at Line (12). The resulting triangular
decomposition consists of RSASs with the same dimension as S. The goal of Line (13) is to
remove any RSAS S′ such that ZR(S′) does not contain the origin; see also Remark 2 for that
test.

At Lines (16) to (19), we prepare for applying the Lagrange multipliers trick: since∇(X1,...,Xn)q
is proportional to (X1, . . . , Xn) along χ(q) we cannot re-use the family of circles Cr as in the
proof of Lemma 3; instead, we use a family of ellipsoids, given by Er ; this idea was introduced
in [VHC15]. In particular, at Line (16), we determine values for the coefficients A1, . . . , An
of the polynomial Er such that at least one minor ofM′ is not zero. This task is delegated to
Algorithm 5: in practice, choosing A1, . . . , An all positive at random works; if this would not
work, we would determine A1, . . . , An by solving a polynomial system.

The for-loop located between Lines (21) and (43) runs until we find a minor m′ of the
matrix M′ (where M′ is defined at Line (18) of Algorithm 7) such that the dimension of
ZR(S) ∩ ZR({m′ = 0}) is less than that of ZR(S). This search is expected to be successful
because the non-linear programs consisting of minimizing/maximizing q(x1, . . . , xn) under the
constraints (x1, . . . , xn) ∈ ZR(S) ∩ {Er = 0} have solutions, necessarily. However, this search
depends on the minor m, as well. In fact, what the previous non-linear optimization argument
guarantees is the existence of a pair of minors (m,m′) such that M is full rank for m , 0
whileM′ is not full rank for m′ = 0. For this reason, for certain m, the search for m′, or the
recursive call at Line (30), may fail. Such a situation leads the algorithm to try the next m from
Minors(M). It follows that Algorithm 7 must implement a backtracking mechanism.

This backtracking feature is achieved by endowing the algorithm with a state machine. Note
that at Lines (7), (20), (32), (40), (45), and (50) a variable called state is assigned in order to
record the new state of the algorithm. Observe that, if the variable state never receives the value
backtrack during the execution of Algorithm 7, then only the first minor m ∈ Minors(M) and
the first minor m′ ∈ Minors(M′) are considered by the algorithm.

Observe that, during one iteration of the for-loop located between Lines (21) and (43), if
the variable L receives the value backtrack , or the variable I remains empty, then this iteration
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failed to find a minor m′; as a consequence either this for-loop goes for another iteration, or, if
all iterations have been executed, the variable state will receive the value backtrack implying
that the current value of the minor m cannot lead to find a minor m′ with the desired properties.

Finally, observe that the execution of the for-loop located between Lines (8) and (54) termi-
nates either with state reaching the value found_second_minor (implying that a pair of minors
(m,m′) with the desired properties has been found) or with state having the value backtrack
(implying that no such pair was found).

It follows from the above discussion that Algorithm 7 always terminates and so does Al-
gorithm 4. Moreover, as mentioned above, since the non-linear programs consisting of mini-
mizing/maximizing q under the constraints (x1, . . . , xn) ∈ ZR(S) ∩ {Er = 0} necessarily have
solutions (where q and S are the input of Algorithm 7), the calls that Algorithm 4 makes to
Algorithm 7 ultimately produces an answer of the form (L1, S1), . . . , (Le, Se) with the desired
properties. �

Algorithm 5 Ellipsoid in Rn randomly generated
1: procedure RANDOMELLIPSOID(n)
2: repeat
3: choose A1, . . . , An, r randomly with r > 0;
4: let Er :=

∑n
i=1 Ai X2

i − r2;

5: S :=
[ ∂Er

∂X1
· · ·

∂Er

∂Xn

X1 · · · Xn

]
;

6: until S has at least one non-zero minor
7: return (A1, . . . , An, r);
8: end procedure

Algorithm 6 Limit of the rational function q ∈ Q(X1, . . . , Xn) at the origin along the real curve
C given by the RSAS [Q,T, P>]

1: procedure LIMITALONGCURVE(q,C)
2: Let f , g be the numerator and denominator of q;
3: Let R := {gXn+1 − f } ∪ T with Xn+1 a new variable; . R is a regular chain for

X1 < · · · < Xn+1;
4: Compute the limit points of ZR(R) \ ZR(hR) in Rn for the Euclidean topology; see

Section 5;
5: If xn+1 escapes to infinity when (x1, . . . , xn) approaches the origin along one branch

of ZR(R), then return no_limit;
6: If there is only one such limit point (x1, . . . , xn, xn+1) with x1 = · · · = xn = 0, then

xn+1 is the desired limit of q;
7: Otherwise return no_limit since q has no limit along C at the origin;
8: end procedure
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Algorithm 7 Limit of the rational function q ∈ Q(X1, . . . , Xn) at the origin along the zero set
of the regular semi-algebraic system S (Part 1)

1: procedure LIMITINNER(q, S)
2: if dim(ZR(S)) = 1 then
3: return (LimitAlongCurve(q, S), S);
4: end if
5: let [Q,T, P>] := S;

6: M :=
[

X1 · · · Xn
∇t, t ∈ T

]
;

7: state := search_first_minor;
8: for m ∈ Minors(M) do
9: if ZR(S) ⊆ ZR(m) then next;

10: end if
11: J := ∅;
12: for S′ ∈ Intersect(S, {m , 0}) do
13: if o < ZR(S′) or dim(ZR(S′)) = 0 then
14: next;
15: end if
16: (A1, . . . , An, r) := RandomEllipsoid(n);
17: let Er :=

∑n
i=1 Ai X2

i − r2;

18: M′ :=



∂Er

∂X1
· · ·

∂Er

∂Xn

X1 · · · Xn
∇t, t ∈ T


;

19: let [Q′,T ′, P>′] := S′;
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Algorithm 4 Limit of the rational function q ∈ Q(X1, . . . , Xn) at the origin along the zero set
of the regular semi-algebraic system S (Part 2)
20: state := search_second_minor;
21: for m′ ∈ Minors(M′) do
22: if res(m′,T ′) = 0 then
23: next;
24: end if
25: I := ∅;
26: for C ∈ Intersect(S′,m′ = 0) do
27: if o < ZR(C) or dim(ZR(C)) = 0 then
28: next;
29: end if
30: L := Limit Inner (q,C);
31: if L = backtrack then
32: state := backtrack;
33: break;
34: else
35: I := I ∪ {L};
36: end if
37: end for
38: if I , ∅ and state , backtrack then
39: J := J ∪ I;
40: state := found_second_minor;
41: break;
42: end if
43: end for
44: if state , found_second_minor then
45: state := backtrack;
46: break;
47: end if
48: end for
49: if state , backtrack then
50: state := found_first_minor;
51: break;
52: end if
53: end for
54: if state = found_ f ir st_minor then
55: return J ;
56: else
57: return backtrack;
58: end if
59: end procedure

We conclude this section with two examples illustrating Algorithm 4.
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Example 4. Let q ∈ Q(x, y, z,w) be the rational function defined by q(x, y, z,w) = z w+x2+y2

x2+y2+z2+w2 .
We aim at computing lim(x,y,z,w)→(0,0,0,0) q. A first step of the procedure consists in calculating
the real algebraic set χ(q) such that our limit problem reduces to compute

lim
(x,y,z,w)→(0,0,0,0),(x,y,z,w)∈ χ(q)

q.

The set χ(q), defined in Notation 2, is obtained by the method of Lagrange multipliers, see
Section 1.1 and the proof of Lemma 3. The RealTriangularize algorithm yields the following
decomposition: χ(q) = ZR(R1) ∪ ZR(R2) ∪ ZR(R3) ∪ ZR(R4), where R1, R2, R3, R4 are
respectively given by the regular semi-algebraic systems (see Section 1.5 for this term):




x = 0
y = 0
z = 0
w = 0

,

{
z = 0
w = 0 ,




x = 0
y = 0
z + w = 0

and



x = 0
y = 0
z − w = 0

.

For our purpose of limit computation, only R2, R3, R4 are interesting, since they define
either a curve or a surface passing through the origin, whereas R1 is simply the origin.

Computing the limit of q along each of the curves ZR(R3) and ZR(R4) is achieved by a
specific procedure presented in Section 5, based on Puiseux series. This procedure extends
to the real case a technique presented in [ACM13] for the complex case. On this particular
example, evaluating q(x, y, z,w) at ZR(R3) and ZR(R4), immediately yields the value of the
limit in each case, which are −1

2 and 1
2 , respectively.

Now we focus on R2 which consists simply of a regular chain, namely T := {t1, t2} with
t1 = z and t2 = w. In order to compute the limit of q(x, y, z,w) along ZR(R2), we apply
again the method of Lagrange multipliers. More precisely, we wish to optimize q(x, y, z,w)
along t1(x, y, z,w) = t2(x, y, z,w) = 0 intercepted with a family of ellipsoids Er (x, y, z,w) = 0
with Er := A1 x2 + A2 y

2 + A3z2 + A4 w
2 − r2, where A1, A2, A3, A4 are positive values to be

determined.
By definition of χ(q), the gradient ∇x,y,z,wq is proportional to (x, y, z,w) along χ(q).

Hence, in order to apply the Lagrange multipliers method, we need to check that the vectors
∇x,y,z,wt1, ∇x,y,z,wt2 and (x, y, z,w) are linearly independent almost everywhere on ZR(R2). By
considering the following Jacobian matrix



x y z w
∂t1
∂x

∂t1
∂y

∂t1
∂z

∂t1
∂w

∂t2
∂x

∂t2
∂y

∂t2
∂z

∂t2
∂w


=



x y z w

0 0 1 0
0 0 0 1



we see that the vectors ∇x,y,z,wt1, ∇x,y,z,wt2 and (x, y, z,w) are linearly independent as long as
x , 0 or y , 0 holds. We choose to impose the constraint y , 0; using the incremental version
of RealTriangularize, we compute the intersection ZR(R2) ∩ {y , 0} and obtain ZR(R5) where
R5 := {z = 0,w = 0, y , 0}. Now we choose (A1, A2, A3, A4) = (3, 1, 2, 3) such that

[
A1x A2y A3z A4w

x y z w

]
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is full rank. We are ready to apply the method of Lagrange multipliers, considering the follow-
ing matrix



A1x A2y A3z A4w

x y z w
∂t1
∂x

∂t1
∂y

∂t1
∂z

∂t1
∂w

∂t2
∂x

∂t2
∂y

∂t2
∂z

∂t2
∂w



=



3x 1y 2z 3w
x y z w

0 0 1 0
0 0 0 1


which has a single non-zero minor, namely m = 4xy. Using again the incremental version of
RealTriangularize, we compute ZR(R5) ∩ ZR(m = 0) and obtain ZR(R6), where R6 := {x =
0, z = 0,w = 0, y , 0}. We are now in dimension one. Using the procedure of Section 5 (or, on
this particular example, using substitution and elementary calculations) yields 1 as the limit
along ZR(R6).

Putting everything together, we have three different values for the limit of q(x, y, z,w) along
the three curves ZR(R3), ZR(R4) and ZR(R6). The corresponding values are −1

2,
1
2, 1, which

shows that the limit of q at the origin does not exist.

Example 5. Let q ∈ Q(x, y, z) be the rational function defined by q(x, y, z) = x2yz2

x4+z4+y4 . Here
again, we aim at computing lim(x,y,z)→(0,0,0) q. RealTriangularize produces the following de-
composition of the real algebraic set χ(q): χ(q) = ZR(R1) ∪ ZR(R2) ∪ ZR(R3) ∪ ZR(R4),
where R1, R2, R3, R4 are respectively given by the regular semi-algebraic systems:

{
x = 0 ,

{
z = 0 ,




x2 − z2 = 0
y6 + 3 y4 z2 − 2 z6 = 0
z , 0

and



x = 0
y = 0
z = 0

.

The system R4 can be discarded and the system R3 has dimension one, hence the limit of q
along ZR(R3) is handled by the procedure of Section 5, which yields 0.

We focus on R1 and R2. Similarly to the previous example, we consider the non-linear
program consisting of optimizing q(x, y, z) subject to (x, y, z) ∈ ZR(R1) (resp. (x, y, z) ∈
ZR(R2)) and Er (x, y, z) = 0 with Er := A1 x2+ A2 y

2+ A3z2− r2, where A1, A2, A3 are positive
values to be determined.

Let T := {t1} = {x} be the regular chain part of R1. Recall that ∇x,y,zq is proportional to
(x, y, z) along χ(q). Hence, we first determine when the following matrix

[
x y z
∂t1
∂x

∂t1
∂y

∂t1
∂z

]
=

[
x y z
1 0 0

]

is full rank. The set of its 2-by-2 minors is {y, z, 0}; hence this matrix is full rank whenever y , 0
or z , 0 holds. Since ZR(R1) * ZR(y) holds, we impose the constraint y , 0 and compute
ZR(R1) ∩ {y , 0} yielding ZR(R5) with R5 := {x = 0, y , 0}. Next, we let (A1, A2, A3) =
(9, 10, 2) such that [

A1x A2y A3z
x y z

]

has at least one non-zero minor. Putting the three gradient vectors together, we form the fol-
lowing matrix



A1x A2y A3z
x y z
∂t1
∂x

∂t1
∂y

∂t1
∂z


=



9x 10y 2z
x y z
1 0 0


.
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Its determinant is 8 y z and we compute ZR(R5) ∩ {y z = 0} yielding ZR(R6) with R6 :=
{x = 0, z = 0, y , 0}. The regular semi-algebraic system R6 represents a space curve and
the procedure of Section 5 computes the limit of q at the origin along ZR(R6), yielding 0. We
proceed similarly with R2. In this case, the non-linear programming trick yields the following
space curve {y = 0, z = 0, x , 0} along which the limit of q at the origin is also 0. Finally, the
limit of q at origin exists and is equal to 0.



Chapter 8

Experimentation

In this chapter, we present experimental results for the algorithms proposed in this paper and
provide empirical comparison with related works. In Section 8.1, we compare different im-
plementations of the EHC with the method of Kung and Traub, using both their linear and
quadratic lifting schemes. Section 8.2 is devoted to an experimental comparison of various
MAPLE implementations for computing limits of multivariate rational functions. All these
experimental results were obtained on an Ubuntu desktop (1.6GHz Intel(R) Xeon(R) CPU,
48GB.).

8.1 Comparing the method of Kung and Traub with the EHC

Table 8.1 gathers running times for comparing the EHC and Kung-Traub’s method for k = 10
and k = 20, where k is as in introduction. The columns KT Lin and KT Quad correspond to
linear and quadratic lifting methods of Kung and Traub, respectively. Thus, for the EHC, which
is based on a linear lifting, as well as for KT Lin, k = 10 and k = 20 means 10 and 20 iterations
of the “main loop”. For KT Quad, k = 10 and k = 20 means 4 and 5 iterations of the “main
loop”.

Each test-example has a number and can be found in the archive posted at the web page
wwww.regularchains.org/papers/Benchmark-ISSAC-2017.zip. The column MD gives the degree of the main
variable in the input polynomial. The columns KT10 and KT20 correspond to k = 10 and k =
20. The sub-columns EHC10 and EHC20 under EHCWM, give the timings for our enhanced
EHC, described in this paper, that is, based on Sections 3 and 4. The sub-column EHC10, under
EHCEEA, gives the timings for an implementation of the original EHC method as described
in [SK99]. The sub-columns YM1 and YM2 show the timings for computing the Yun-Moses
polynomials corresponding to EHC10, respectively for EHCWM and EHCEEA.

In Table 8.1, the three most significant digits of the timings are recorded and ∞ means the
computations exceeded either the time limit of 3600sec, or the memory limit of 48Gb.
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Figure 8.1: For each k on the x-axis, these plots show the time spent for lifting the factors of EHC, from step k − 1 to step k see Lines 8-12
in Algorithm 1: (1) the black curve corresponds to the original EHC [SK99]; (2) The red curve corresponds to the implementation of EHC
with the optimization tricks presented in this paper, when the simplifications of algebraic numbers are done with the Normal command of
MAPLE, and (3) the blue curve is the timing of EHC with the optimization tricks when the simplifications of algebraic numbers are done with
the RegularChains library.

Ex MD
KT Lin KT Quad EHCWM EHCEEA

KT10 KT20 KT10 KT20 EHC10 YM1 EHC20 EHC10 YM2
1 5 2.22 18.6 4.93 4.91 0.48 0.22 0.73 0.90 0.21
7 4 5.60 65.8 0.56 0.58 0.22 0.14 0.23 0.34 0.13
8 4 14.9 230 1.25 1.25 0.23 0.13 0.28 0.36 0.12
9 3 5.53 114 1.51 1.56 0.30 0.11 0.39 0.88 0.10

10 3 2.71 42.0 0.28 0.63 0.16 0.08 0.20 0.32 0.12
11 3 0.46 2.34 0.21 0.21 0.16 0.08 0.17 0.26 0.12
12 3 0.50 6.86 0.28 0.32 0.16 0.08 0.18 0.30 0.12
13 4 0.86 10.9 0.50 0.48 0.26 0.15 0.28 0.46 0.24
14 4 3.21 34.8 0.69 0.71 0.26 0.15 0.34 0.52 0.24
15 6 27.6 535 4.85 4.85 0.64 0.42 0.82 2.05 1.08
16 7 45.6 836 8.45 9.91 0.64 0.43 0.92 2.33 1.74
17 7 145 ∞ 23.4 23.2 0.78 0.43 3.37 4.12 1.77
19 4 0.14 0.16 0.16 0.14 0.39 0.26 0.45 0.51 0.15
20 4 2.79 7.98 0.77 0.82 0.26 0.15 0.29 0.50 0.24
21 4 8.58 143 1.96 1.93 0.23 0.12 0.31 0.47 0.16
24 5 2.90 24.8 1.11 1.11 0.26 0.15 0.35 0.49 0.17
25 7 1.83 9.45 0.90 1.00 0.46 0.31 0.50 0.73 0.42
26 8 2.35 12.3 3.09 3.29 0.66 0.53 0.74 2.18 1.80
27 8 60.8 2876 23.1 27.1 0.77 0.53 1.20 2.31 1.28
28 9 215 ∞ 73.8 123 1.88 1.03 2.11 7.03 4.92
30 17 ∞ ∞ ∞ ∞ 39.8 6.70 41.3 53.8 16.5
31 32 ∞ ∞ ∞ ∞ 599 24.9 ∞ ∞ ∞

32 33 ∞ ∞ ∞ ∞ 224 25.0 ∞ ∞ ∞

Table 8.1: Comparing EHC versus Kung-Traub’s method for k = 10 and k = 20. The columns KT Lin and KT Quad correspond to linear
and quadratic lifting methods of Kung and Traub, respectively. The sub-columns EHC10 and EHC20 under EHCWM, give the timings for
our enhanced EHC and the sub-column EHC10, under EHCEEA, gives the timings for an implementation of the original EHC method as
described in [SK99]. (timings are in seconds)
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Figure 8.1 focuses on the performance of the optimization tricks applied on the lifting
process of EHC as explained in Section 4, for two different bivariate polynomials. Note that
square-root scaling has been used for the y-axis. The EHC algorithm, as well as Kung-Traub’s
method, are implemented in Maple and they are integrated into PowerSeries library. The li-
braries RegularChains and PowerSeries are available at www.regularchains.org.

8.2 Computing limits of multivariate rational functions
This section is devoted to an experimental comparison of various MAPLE implementation
for computing limits of multivariate rational functions: MAPLE’s built-in command limit,
the TestLimit command presented in [XZ14] and our implementation of the algorithm of
Section 7 within the RationalFunctionLimit command of the RegularChains library. In
Tables 8.2 and 8.3, the abbreviations LM, TL, and RFL stand for limit, TestLimit, and
RationalFunctionLimit commands. Further, NV, TD and LV represent the number of vari-
ables, the maximum total degree between numerator and denominator, and the value of the
limit, respectively. The timings in columns LM, TL, RFL are in seconds.

We used more than 50 test-examples1 where the denominators of rational functions are
defined by sum of squares of variables. A representative subset of these examples is provided
in Table 8.2.

For bivariate rational functions (examples 1-5), both LM and TL run faster than RFL, except
on Example 2. Recall that LM applies to bivariate rational functions only.

Out of the 25 examples in 3 variables or more, TL and RFL solve respectively 9 and 23
examples within the prescribed resource limits of 48 GB of memory and 1800 sec of CPU
time. Moreover, out of those 25 examples, TL fails on 8 of them due to a division-by-zero
error. For the 17 examples in 3 variables or more, for which TL does not hit such an error, RFL
runs faster than TL on 8 examples.

Taking into account the 30 examples: (1) TL and RFL solve respectively 13 and 28 exam-
ples, (2) for the 21 examples for which TL does not hit an error, RFL runs faster than TL 8
times, and (3) for the 13 examples for which TL computes the answer, TL is faster than RFL
on 11 times. Note that when the limit exists RFL outperforms TL. Meanwhile, when the limit
value is undefined and TL does not hit an error most of the time, and TL is faster than RFL.

The comparison of RFL against TL and LM reported in Table 8.3 is based on test-examples
where the denominator is not a sum of squares (including Motzkin, Choi and Lam polynomi-
als). In such cases, TL is the fastest command.

Table 8.4 demonstrates the time consumptions for computing real and complex limit points
corresponding to the regular chains of dimension one in the triangular decomposition of the
polynomial systems in the first column. The second and third columns are respectively, the
time spent for computing the number of real limit points. The fourth and fifth columns are
respectively, the time spent for computing and the number of complex limit points. The com-
mand for computing real and complex limit points of regular chains is called LimitPoints and
it is part of RegularChains library of Maple.

1The list of the examples and the timings corresponding to Table 8.2 can be found at www.regularchains.
org/RationalLimit/RationalFunctionLimit.zip and www.regularchains.org/RationalLimit/
Report, respectively.

www.regularchains.org
www.regularchains.org/RationalLimit/RationalFunctionLimit.zip
www.regularchains.org/RationalLimit/RationalFunctionLimit.zip
www.regularchains.org/RationalLimit/Report
www.regularchains.org/RationalLimit/Report
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Ex NV TD LM TL RFL LV Chinese limit trick
1 2 4 0.076 0.112 0.769 -1 X
2 2 4 0.081 wrong answer 0.771 -1 X
3 2 2 0.022 0.002 0.584 undefined X
4 2 4 0.116 0.002 1.113 undefined X
5 2 4 0.063 0.113 0.782 -1 X
6 3 5 NA 0.611 2.559 0 X
7 3 8 NA ∞ ∞ NA X
8 3 18 NA 8.904 0.618 0 X
9 3 18 NA 0.601 0.617 0 X

10 4 4 NA 0.002 3.381 undefined X
11 4 2 NA 0.002 0.580 undefined X
12 4 4 NA 0.002 3.336 undefined X
13 4 5 NA ∞ 14.233 0 X
14 4 21 NA ∞ 2.531 0 X
15 4 6 NA ∞ 3.432 0 X
16 5 19 NA ∞ 1.482 0 X
17 5 4 NA 3.343 4.675 0 X
18 6 6 NA Error 3.372 0 X
19 6 6 NA Error 3.908 undefined X
20 6 18 NA Error 2.014 undefined X
21 6 10 NA ∞ 150.706 0 X
22 6 10 NA ∞ 165.471 0 X
23 6 6 NA Error 44.038 0 X
24 7 6 NA 0.019 0.019 undefined X
25 8 5 NA ∞ 30.378 0 X
26 8 9 NA Error 173.229 0 X
27 9 4 NA 0.005 8.931 undefined X
28 9 10 NA Error ∞ NA X
29 9 5 NA Error 12.293 0 X
30 10 10 NA Error 84.954 0 X

Table 8.2: Comparisons between three different commands for computing the limit of real multivairate rational functions: limit, TestLimit,
and RationalFunctionLimit. Here, the denominator is a sum of squares of variables.

In Tables 8.2 and 8.3, ∞ means the computations exceeded either the time limit of 1800
sec, or the memory limit of 48Gb.
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Ex NV TD LM TL RFL LV Chinese limit trick
32 2 10 1.157 0.002 ∞ undefined X
33 2 16 5.530 0.002 ∞ undefined X
66 3 6 NA 0.002 0.030 undefined X
67 3 8 NA 0.002 ∞ undefined X
68 3 6 0.055 0.002 0.033 undefined X
69 3 8 0.050 0.002 0.033 undefined X
70 4 4 NA 0.003 ∞ undefined X
71 4 6 NA 0.003 ∞ undefined X

Table 8.3: Comparisons between three different commands for computing the limit of real multivairate rational functions: limit, TestLimit,
and RationalFunctionLimit. Here, non-negative polynomials proposed by Motzkin, Choi and Lam have been used in the denominators.

Sys RealLimit #LM ComplexLimit #LM
Liu-Lorenz 777.300 4 1708.829 9
MontesS3 0.015 0 0.015 0

Neural 1.538 3 2.368 3
cox-issac07 0.438 0 0.575 1

Table 8.4: Complex limit points vs real limit points
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As in [CMV13] and [VHC15], we assume that the origin is an isolated zero of the denom-
inator. However, relaxing this assumption is work in progress thanks to RealTriangularize and
the ideas proposed in [LR07].

In Chapter 5, we have presented an algorithm for determining the real branches of a space
curve about one of its points. This is a core routine for computing limits of real multivariate
rational functions as well as for addressing topological questions like whether a point belongs
to the closure of a CAD cell. To this end, we revisited the extended Hensel construction and
established properties of the Yun-Moses polynomials.
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