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Abstract 

AC-DC converters with input power factor correction (PFC) that consist of two or more 

interleaved boost converter modules are popular in industry. PFC is a must in today’s AC-DC 

converters as their input current must meet harmonic standards set by regulatory agencies. 

With interleaving, the input current of each module can make to be discontinuous and the size 

of their input inductors since interleaving can reduce the high ripple in each module and 

produce a net input current with a ripple that is comparable to that achieved with a single boost 

converter module with a large input inductor.  

In high- frequency converters, so as to achieve low harmonic, fast dynamic response, low size, 

and high-power density the frequency should be increased. The drawback of increasing the 

switching frequency is increasing the switching losses. This is reason that why soft-switching 

methods should be used. The focus of the thesis is on zero current switching (ZCS) methods 

for insulated gate bipolar transistor (IGBT) converters. The auxiliary switch in the proposed 

converter is activated whenever a main converter switch is about to be turned off, gradually 

diverting current away from the switch so that it can turn off with ZCS and eliminate the 

switching losses. In addition, the auxiliary circuit is designed in a way that it can be activated 

only when the converter is operating with heavier loads and not used when the converter is 

operating with light load to maximize the overall efficiency. 

The operation of the novel converter will then be explained and the mathematical analysis in 

steady-state will be derived. Based on the results of the analysis, general design guidelines will 

be provided. Finally, the design procedure will be confirmed by experimental results obtained 

from the proof of concept prototype. 
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Chapter 1  

 

1 Introduction 

 

 General Introduction  

Power electronics is a field of power engineering that converts and controls input power to 

the desired output power by using semiconductor devices. The power source can be DC 

sources such as solar cells, batteries, and fuel cells, or AC sources like different kinds of 

electric generators. The power source can be single-phase or three-phase based on the 

application and its frequency is 50 or 60 Hz according to the region in which it operates. 

For instance, in North America, the frequency should be 60 Hz while in Europe it is 50 Hz.  

The load can be AC or DC, with or without isolation, single-phase or three-phase. Thus, 

power electronics converters are classified into: 

• DC to DC  

• DC to AC  

• AC to DC   

• AC to AC  

A new interleaved boost AC-DC converter is proposed in this thesis. Its modes of operation 

will be analyzed and relevant mathematical equations for each mode of operation will be 

derived. The results of the mathematical equations derived for the proposed interleaved 

converter in the steady-state condition will be used to design the converter. The 

characteristic curves for the key components of the proposed converter will be presented 

by using MATLAB simulations based on the derived equations. Then, the value of each 

component can be determined by using the circuit simulator PSIM in order to satisfy the 
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key design objectives. Finally, the feasibility of the converter will be confirmed with results 

obtained from an experimental prototype.  

 Semiconductor Devices 

In many cases, power converters, which are used to convert the available input power 

source to the desired output load, consist of passive elements such as inductors and 

capacitors, controllers to regulate the output voltage and semiconductor devices such as 

transistors and diodes. The semiconductors are one of the most important parts of any 

converter and can be classified into uncontrollable and controllable devices. 

The diode is an uncontrollable semiconductor device, which should be forward biased to 

be turned on and conduct the current and reverse biased to be turned off. BJTs (Bipolar 

Junctions Transistors), MOSFETs (Metal Oxide Semiconductor Field Effect Transistors) 

and IGBTs (Insulated Gate Bipolar Transistors) are the most common controllable 

semiconductors. However, at high frequencies, IGBTs and MOSFETs are dominant. 

Diodes, MOSFETs, and IGBTs are explained in more detail in the following subsections. 

 Diodes  

The following figure shows a diode and its current and voltage characteristics. A diode 

consists of anode and cathode sides when the current, id, is positive (Fig. 1.1.a) the diode 

is forward biased and conducts the current but when the voltage, Vd, is negative, it works 

as an open circuit and does not conduct the current, and this is called reverse biased. 

Therefore, the current can be flowed in only one direction from the anode to cathode. Fig. 

1.1.b and Fig. 1.1c show actual and ideal characteristics of a diode respectively. 

As can be seen from Fig. 1.1.c, an ideal diode does not conduct any negative current. 

However, as is shown in Fig. 1.2, in reality when the current through the diode decreases 

to zero, for a moment the current goes to negative and then reaches zero. This negative 

current, called reverse recovery current, and its duration are defined as trr, which is equal 

to the time that the current takes to reach negative and return to zero. 
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Fig. 1.1. (a) Symbol of a diode; (b) actual i-v characteristic; (c) idealized i-v 

characteristic 

Vcaid

on state

off state

trr

t

 

Fig. 1.2. Reverse recovery current of a diode 

It can be seen from Fig. 1.2 that, during trr, voltage and current overlap and therefore reverse 

recovery current causes power losses in the diode. The other drawback of reverse recovery 

in a power electronic circuit is EMI (electromagnetic interference), which leads to 

malfunctions in the system. By increasing the frequency, reverse recovery losses will be 

increased; thus, power electronic engineers use fast recovery diodes that have a short trr. It 

should be noted that there is no overlap between current and voltage in the discontinuous 

mode because the current reaches and stays zero for a predetermined amount of time and 

reverse recovery loss is eliminated. 
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 MOSFETs 

The MOSFET (metal oxide field effect transistor) is one of the most common types of 

power semiconductor switches and consists of three terminals: gate (G), source (S) and 

drain (D). In Fig. 1.3, a circuit symbol of a power MOSFET is shown.  MOSFETs are the 

best choice for lower power, higher switching frequency applications (> 100 kHz) for 

several reasons. The first reason is that their switching speed is fast, the second is that their 

on-state losses are low when operating with low drain-source voltage, and a third reason is 

that a small voltage needs to initiate the on/off transition of the forward current (iDS) in 

MOSFETs because of the high impedance gate. Although MOSFETs are controllable 

semiconductor devices and can block positive drain-source voltage VDS, they cannot block 

negative VDS because they have an intrinsic anti-parallel diode. Voltage between the gate 

and source (VGS) should be higher than about 4 V to conduct current. This voltage is called 

the threshold voltage, and MOSFETs can be considered to be open circuits for voltages 

less than this value. Therefore, by maintaining the gate voltage at a higher value (close to 

10 V), MOSFETs can conduct drain current iD and are considered to be on. During an on-

state, a real MOSFET has a small resistor between the drain and source RDS(on) that leads 

to conduction losses in the device. This conduction loss is one of the main reasons why 

MOSFETs are not the best choice for high power applications. 

Source

Gate

Drain

 

Fig. 1.3. Circuit symbol of an N-Channel power MOSFET 

  IGBTs 

The IGBT (insulated gate bipolar transistor) is a combination of a MOSFET and a BJT 

(bipolar junction transistor). Its on-state is like that of BJT, while its gate is like that of 

MOSFET. This device consists of three terminals: a gate (G), an emitter (E) and a collector 
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(C). In Fig. 1.4, a circuit symbol of an IGBT is shown. Unlike MOSFET, IGBT may or 

may not have anti-paralleled body diodes.  

Conduction losses in MOSFETs increase as the amount of current iD increases, while those 

in BJTs are fixed; thus, for higher power applications, BJTs have lower conduction losses 

than MOSFETs. BJTs, however, are slower devices than MOSFETs because they require 

continuous base current to operate, and since IGBTs share some of the characteristics of 

BJTs, IGBTs are slower than MOSFETs. IGBTs turn off more slowly than MOSFETs 

because they have a current tail due to the fact that they are minority carrier devices. This 

means that electrons must be removed from these devices before they are turned off so that 

a significant overlap of voltage and current appears during this switching transition. 

Switching losses of IGBTs are higher than those of MOSFETs, but IGBTs are preferred 

over MOSFETs for higher power, lower switching frequency applications (< 100 kHz).  

Emitter

Gate

Collector

 

Fig. 1.4. Circuit symbol of an IGBT with an anti- parallel diode 

 High Switching Frequency Operation 

Main energy storage in converters includes capacitors, inductors, and transformers. 

Usually, the size and weight of a converter depend on its energy storage components, which 

are necessary for storing and transferring energy. The size of the energy storage can be 

decreased by increasing the switching frequency of the converter, for instance, capacitors 

and inductors can store enough voltage and current respectively for a shorter amount of 

time, which leads to a lighter and smaller converter. Therefore, one of the advantages of 

increasing the switching frequency is reducing the overall size and weight of the converter. 



6 

 

In ideal switches, during turning on and turning off, there is no overlap between current 

and voltage and, as a result, there is no power loss.  

On the other hand, in actual switches, current and voltage overlap, as shown in the next 

figure, which leads to power losses. This is one of the restrictions and disadvantages of 

increasing the switching frequency. In Fig. 1.5, Is and Vs are defined as current through 

and voltage across the switch respectively. 

Vsw

i sw

Poff Pon

Turn-off losses Turn-on losses

isw

t
 

Fig. 1.5. Typical actual switch voltage and current waveforms 

It can be seen from Fig. 1.5 that, in an actual switch, current and voltage overlap during 

the switching transition from on to off and vice versa. As power losses in switching are 

related to the multiplication of current and voltage, by increasing the switching frequency, 

the switching losses increase as well.  

The dominant switching losses for a MOSFET happen while turning the switch on because 

the capacitor, which is placed between the drain and source of the MOSFET, stores the 

energy, and when the MOSFET is turned on, this capacitor discharges the voltage. 

Therefore, there is an overlap between current and voltage until the capacitor is discharged 

completely. However, the main switching losses for an IGBT, as shown in Fig. 1.6, occur 

while turning the switch off because it has the current tail. Thus, when it is turned off, the 

current tail and voltage overlap until the current tail goes to zero. These kinds of switching 

methods are called hard switching in the literature. 
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VCEid

on state

off state

`

Gate Pulse Current tail

t
 

Fig. 1.6. Current tail in an IGBT 

 Soft Switching 

Based on the abovementioned discussions, so as to operate a converter in high switching 

frequency, the problem of hard switching, which leads to power losses, should be solved. 

This problem can be tackled by soft-switching techniques. The techniques that should be 

implemented in converters in order to make the switching transition to something more 

gradual, are called soft-switching in the power electronics literature. Based on these 

techniques, one of the voltages or currents should be zero during the switching transition 

time. Therefore, because there is not any overlap between voltage across and current 

through the switch, switching losses can be almost eliminated. Since the transition is not 

sudden and is gradual, EMI will be reduced significantly as well.  

Soft switching techniques can be categorized into two main types: ZVS (zero current 

switching) and ZCS (zero current switching) methods. Here some general information 

about these two main approaches is presented. The ZVS principle of operation is based on 

forcing the voltage to zero just before turning the switch on or off and keeping it zero 

during the switching transition time. In industry, all the MOSFETs and many kinds of 

IGBTs have the anti-parallel diode in their body, which allows them to conduct the current 

in the reverse direction. In other words, by having anti parallel diodes, MOSFETs can 

conduct current from the source to drain and for IGBTs from the emitter to collector. For 

IGBTs that have anti-parallel diodes and all MOSFETs, turning on under ZVS can be 

achieved by conducting the current through the body diode just before the switch is turned 
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on. As a result, during the switching transition, the voltage of the switch can be assumed 

to be zero. In addition, when the turning the switch off with ZVS, the rate of voltage rising 

across the switch should be decreased so as to restrict the overlap between voltage and 

current during the switching transition time. This can be done by adding a capacitor in 

parallel with the switch. 

On the other hand, the ZCS technique can be achieved by forcing the current through the 

switch to zero just before the switch is turned on or off and maintain it at zero during the 

switching transition time. When turning the switch off with ZCS, the current should be 

diverted from the switch just before the switching. The most common way to do this is to 

impose a negative voltage across the switch or in a current path of the switch. Also, when 

turning the switch on with ZCS, the rate of current rising through the switch should be 

reduced in order to limit the overlap between voltage and the current of the switch during 

the switching transition time. 

As discussed before, MOSFETs have RDS,on and should be used in high switching 

frequencies and low current applications. Most often, MOSFETs operate with ZVS as they 

have a fairly high drain-source capacitance. Therefore, as is shown in Fig. 1.7, MOSFETs 

are usually turned on and off with ZVS by adding a capacitor in parallel with them. 

CDS

 

Fig. 1.7. Applying ZVS for MOSFET 

On the other hand, because IGBTs have tail current, they are used in high current and lower 

switching frequency applications in comparison with MOSFETs. Usually, the soft-

switching technique that are used for IGBTs are ZCS as they are minority-carrier devices 

(as shown in Fig. 1.8).  It is worth noting that the most important switching losses for 
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MOSFETs and IGBTs, which should be eliminated, are turning-on and turning-off losses 

respectively. In this thesis, soft switching of IGBT under ZCS will be presented. 

 

Fig. 1.8. Applying ZCS for IGBT 

 Single-Phase AC-DC Converters (Rectifiers) 

AC-DC converters are essential in both of low and high-frequency applications. For 

instance, HVDC (high voltage direct current) is one of the areas in which inverters in the 

low -frequencies, where the switching frequency is almost the same as the line frequency, 

should be implemented. However, in this thesis, the focus is on high-frequencies where 

AC-DC converters can be used at battery chargers, telecommunication power supplies, 

uninterrupted power sources (UPS), medical devices, personal computers, information 

technology applications, and so on. One of the most important features that AC-DC 

converters should possess is that, their power factor should be close to one. In other words, 

input voltages and currents of these converters should be purely sinusoidal and in phase 

with each other to meet harmonic standards such as IEC 1000-3- 2 2, IEC-61 000-3-2, IEC 

1000-3-4 and IEEE-519-1992. By increasing the power factor, the efficiency of the 

inverter, in terms of real power, can be increased. Power factor can be written as follows: 

𝑃𝐹 =     
𝑃𝑎𝑣𝑒
𝑃𝑎𝑝𝑝

        
(1-1) 

Where, Pave and Papp are average power and apparent power respectively. It should be noted 

that, the input power factor of a current-fed converters is higher than a voltage-fed 

converter. Thus, power factor can be increased by using a current-fed converter. 
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 The Boost Converter Topology 

Boost AC-DC converters are used, when an AC input voltage should be stepped-up to meet 

a DC load voltage, which is higher than the AC source voltage. The topology of a boost 

AC-DC inverter is shown in Fig. 1.9, where a diode bridge rectifier is used to convert the 

input AC to DC. Then, four main components are used to boost the DC voltage, including: 

a semiconductor switch (S) such as MOSFETs and IGBTs in high –frequencies which 

should be turned on and off periodically, a diode (D), an inductor (L), and an output filter 

capacitor (C). The output voltage is dependent on the time in which the switch conducts, 

over the time of the switching cycle, which is the inverse of the switching frequency TS = 

1

𝑓𝑠
. This ratio called duty cycle (D) and can be obtained as follows:    

𝐷 =     
𝑇𝑜𝑛
𝑇𝑆
        

(1-2) 

When switch is turned on, the current flows through the inductor and can be stored there. 

At this mode of operation, the output capacitor supplied the load. The voltage across the 

inductor at this time is equal to the input voltage. When the switch is turned off, the diode 

is forward-biased, thus the input current flows to the output. Now, voltage across the 

inductor is equal to Vin-Vo. Since, the output voltage is higher than the input voltage, this 

value is negative.  

Vin

L D
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+

_
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Fig. 1.9. Topology of a basic AC-DC boost converter 
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It should be noted that, ZVS and ZCS for a boost converter can be achieved by using 

resonant converters or resonant-transition converters frequently. In resonant converters, 

which use a resonant inductor (Lr) and a resonant capacitor (Cr ), like Fig. 1.10 (ZVS) and 

Fig. 1.11 (ZCS), there are high peak switch voltage or current stress which leads to high 

conduction losses. 

Vin

L D
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+

_
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S
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Fig. 1.10. Topology of a resonant boost converter operating with ZVS 
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Fig. 1.11. Topology of a resonant boost converter operating with ZCS 

On the other hand, since in resonant-transition converter an additional circuitry that is not 

a part of the main power circuit is used to perform ZCS or ZVS, it does not suffer from 

high peak switch voltage or current stress, so conduction loss is less than a resonant 

converter.  In this thesis, the main idea is turning the auxiliary switch on only before turning 

the main switches off and then turning the auxiliary switch off right after it. Therefore, the 
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auxiliary switch operates for only a small portion of the switching cycle. In other words, 

the resonant-transition converter operates almost like a conventional converter. 

 The Interleaved Boost Converter Topology 

A two-phase boost interleaved technique, applies two boost converters in parallel so as to 

conduct the current evenly through the two inductors and reduce the size of filter 

components. As is shown in Fig. 1.12, a boost interleaved converter is consisted of two 

switches S1 and S2, which are IGBTs in this thesis and need a periodic pulse that should be 

applied between gate and emitter terminals to turn them on and off periodically, two 

inductors (L1, L2), and two diodes (D1, D2) which are connected to a common filter 

capacitor (CO) and load. Therefore, each inductor encounters with half current in 

comparison with conventional boost converters. Since, switches operate 180° out of phase, 

the inductors ripple currents are decreased by each other. The effective switching frequency 

is doubled while the input current is reduced. Thus, peak-to-peak variation in capacitor 

current is reduced as well which leads to use a smaller filter capacitor in comparison with 

a single boost converter with the same output voltage ripple. Smaller inductors and 

capacitor are needed; therefore, price and size of the inductors and capacitor are decreased 

significantly.  

It can be seen from Fig. 1.12 that, voltage across each inductor when its switch is turned 

on and off is equal to Vin and Vin-Vout respectively. These values are exactly the same as 

the boost converter which was discussed previously. The duty cycle of the switch, D, which 

relates the width of this periodic pulse to the length of the switching period, determines the 

ratio of the output to the input voltage. Converters that have this property are called pulse-

width modulated (PWM) converters. If the current through the inductor never drops to zero 

it would be operated in CCM (continuous current mode). The voltage gain of the boost 

converter in this condition is calculated as follows: 

𝑉𝑜𝑢𝑡
𝑉𝑖𝑛

    =     
1

1 − 𝐷
        

(1-3) 
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Fig. 1.12. Topology of a basic AC-DC interleaved boost converter 

By using interleaving method, the input current of each module can be designed to be 

discontinuous (drops to zero) which leads to reduction of the size of the input inductors. 

This can be done, as interleaving can reduce the high ripple in each module and produce a 

net input current with a ripple that is comparable to that achieved with a single boost 

converter module with a large input inductor. In addition, there is less current stress on the 

converter components since they handle a fraction of the overall current, and the control is 

easier as more sophisticated control methods, which are needed for continuous current 

mode (CCM), are avoided.  

Besides, by operating interleaved boost converter in DCM, switches can be turned on with 

ZCS, reverse recovery losses of diodes are eliminated, and the small size inductances can 

also be used. However, the turn- off losses of the switches still exist and should be tackled 

by soft switching method, which is ZCS in this thesis and will be explained in the next 

chapter in more details. The inductor current waveforms are shown in Fig. 1.13, according 

to the switching pattern in the DCM for D ≥ 0.5 and D < 0.5. 
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(b) 

Fig. 1.13. Inductor current waveforms according to the switching pattern in the DCM. 

(a) D ≥ 0.5. (b) D < 0.5 
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As can be seen from Fig. 1.13, inductor current ripple is reduced by using interleaved 

technique. Since an AC input source can be considered to be a DC input source during a 

very short switching cycle, different equations such as voltage gain can be derived by 

assuming input source as DC. In the following equations, DT and D1T are defined as the 

switching on-time and the time period in which the phase current becomes zero after DT 

respectively: 

𝑑𝑖𝐿1,2
𝑑𝑡

=     
𝑉𝑖𝑛
𝐿1,2

       (rising slope) 
(1-4) 

 

𝑑𝑖𝐿1,2
𝑑𝑡

=     
𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡
𝐿1,2

=  
−𝐷 𝑉𝑖𝑛
𝐿1,2 𝐷1

    (falling slope) 
(1-5) 

Voltage gain of the interleaved boost converter is obtained as follows: 

𝑉𝑜𝑢𝑡
𝑉𝑖𝑛

  =   
𝐷 + 𝐷1
 𝐷1

     
(1-6) 

As discussed before, half of the input current flows from each boost converter. Thus, the 

average diode current is obtained: 

𝐼𝐷1,2 =
1

2
(
𝑉𝑖𝑛𝐷𝑇

𝐿1,2
)𝐷1  =

1

2
  
𝑉𝑜𝑢𝑡
 𝑅
     

(1-7) 

By rearranging: 

𝐷1 = (
𝑉𝑜𝑢𝑡
𝑉𝑖𝑛
)
𝐿

𝑅𝐷𝑇
     

(1-8) 

Substituting equ. (1-8) into equ. (1-6) results in: 

 

(
𝑉𝑜𝑢𝑡
𝑉𝑖𝑛
)2 − (

𝑉𝑜𝑢𝑡
𝑉𝑖𝑛
) −

𝐷2𝑅𝑇

𝐿1,2
= 0     

(1-9) 
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In this thesis, by using an additional circuitry that is not a part of the main power circuit, 

ZCT is performed in an interleaved converter. As discussed previously, in the resonant-

transition converter, the auxiliary switch operates only for a small portion of the switching 

cycle. Before turning each main switch off, the auxiliary switch is turned-on which makes 

a capacitor in the auxiliary circuit undergoes resonance with the auxiliary inductors. By 

resonating this capacitor, a negative voltage is imposed across the auxiliary inductor-

switch, so the currents of the main switches force to be reduced to zero before the pulses 

at the gate of main switches are removed. Therefore, main switches can be turned -off with 

ZCS method. In the next section, some of the soft switching methods which have been 

proposed in the referred papers for interleaved converter will be presented. 

 Literature Review 

AC-DC converters with input power factor correction (PFC) that consist of two or more 

interleaved boost converter (IBC) modules are used widely in industry [1-18]. As it was 

discussed previously, soft-switching approaches for these converters can either be zero-

voltage switching (ZVS) if they are implemented with MOSFETs or zero-current switching 

(ZCS) if implemented with IGBTs. The main idea of this thesis is performing ZCS 

condition for turning IGBTs on and off. Most of these use an auxiliary circuit that is 

activated whenever a main converter switch is about to be turned off, gradually diverting 

current away from the switch so that it can turn off with ZCS.  

ZCS methods in boost converters have at least one of the following drawbacks [13-27]:  

• The auxiliary circuit causes the main converter switch to operate with a higher peak 

current stress that creates a need for a higher rated device for the main switch.  

• The auxiliary switch should be turned on for a long time which reduces the efficiency.  

• The main switches or auxiliary switch need a floating driver which makes driving more 

complicated and increase the noise.  
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• Auxiliary circuit components must be placed in the main part of the converter so that the 

auxiliary circuit is not completely separated from the main converter. This means 

conduction losses can be increased and higher current rated components need to be used.  

• Each module of an interleaved AC-DC boost converter must have its own ZCS auxiliary 

circuit to help its main switch to be turned-off with ZCS. This adds cost to the overall 

interleaved converter.  

Now the above-mentioned drawbacks of the previous papers are explained by some sample 

papers. 

ZCS-PWM converters that use an auxiliary circuit to help the main converter switch turn-

on with ZCS are generally less efficient than hard-switching converters at light loads. The 

main reason for this is that the auxiliary circuit losses dominate when the converter is 

operating under these conditions. Auxiliary circuit losses include the turning on and off of 

the auxiliary switch and additional conduction losses as there can be an increased amount 

of circulating current flowing in the converter. ZCS-PWM converters achieve their 

improved efficiency over hard-switching converters at heavier loads when the main switch 

switching losses that are eliminated - especially the IGBT current tail losses - are greater 

than the auxiliary circuit losses.  

Ideally, the auxiliary circuit used to achieve ZCS operation in a ZCS-PWM converter 

should be activated only when the converter is operating with heavier loads and not used 

when the converter is operating with light load. Operating the converter in such a manner 

would ensure the optimal efficiency profile over the entire load range. This, however, 

generally cannot be done with ZCS-PWM converters because of the presence of an 

inductor placed in series with the main switch. As can be seen in the example converters 

shown in Figs. 1.14 and 1.15, an inductor is typically placed in series with the main switch 

so that it can turn on with ZCS. The series inductor slows down the rate of rise in current 

after the switch has been turned on so that the overlap between voltage and current in this 

switch can be reduced. 
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Although the presence of this series inductor in a ZCS-PWM converter is beneficial, it 

prevents the auxiliary circuit from being disengaged from the main converter when the 

converter is operating under light load conditions. As long as this series inductor is in the 

converter, the auxiliary circuit must be used at all times, across the full load range – even 

when it is not necessary under light load conditions – because failure to do so would result 

in the damage of the main switch. Given the size of the series inductance, which may be 

relatively small compared to that of the input boost inductor but is not insignificant, the 

energy in this inductance would result in the appearance of high voltage spikes across the 

switch when it is turned off as there would be no path for current to flow through.  

There are several possible solutions to the problem of having an inductor placed in series 

with the main switch, but none of them are truly satisfactory. It may be possible to place a 

bypass switch of some sort across the series inductor so that when the auxiliary circuit is 

not needed, the bypass switch would be turned on and current would bypass the inductor, 

but this would add cost and make the converter more complex.  

Another possible solution is to implement the converter with an active auxiliary circuit and 

a passive snubber. With such a scheme, the active auxiliary circuit would be activated only 

when the converter is operating with heavier loads and the passive snubber would be used 

to deal with the series inductor energy when the main converter switch is turned off with 

the auxiliary circuit is disengaged from the main circuit. This approach would again 

increase the cost and the complexity of the converter. 

If the main switch could somehow be made to turn on with ZCS without having an inductor 

in series with the main switch, then it would be possible to avoid using the auxiliary circuit 

when the converter is operating under light load conditions. This is, in fact, possible when 

the converter is operating with a discontinuous input inductor current. In such a case, the 

main converter switch would turn on with ZCS as initially there would be no current 

flowing through the switch. Current through the switch would rise gradually, given the size 

of the input boost inductor. 

Discontinuous current mode operation is advantageous when a boost converter is 

implemented with two converter modules in parallel and the modules are interleaved with 
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respect to each other with a phase difference of 180o. Interleaving is commonly used as a 

means of reducing current ripple in power converters. In the scheme being described, if the 

individual converter modules are ZCS-PWM converters, then it would be possible to 

disengage the auxiliary circuit from the main circuit as there would be no need of a series 

inductance to help the main switch turn on with ZCS. 
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Fig. 1.14. ZCS boost converter proposed in [19] 

 

 

Fig. 1.15. ZCS boost converter proposed in [20] 
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One of the basic topologies, which is shown in Fig. 1.16, has been presented in [14]. The 

main drawback is that, each module of the proposed interleaved AC-DC boost converter 

must have its own ZCS auxiliary circuit to help its main switch turn off with ZCS. Since 

two switches should be used, the price and complexity of the converter are increased. 

Another disadvantage of this topology is that, the converter in the absence of high-voltage 

conversion ratio does not have an appropriate ZCS. The next problem is that, each auxiliary 

switch should not be turned -off exactly after turning its main switch off. It means that, 

both of auxiliary switches need some time after turning their main switches off to be turned 

off with ZCS, which increases the conduction losses. 
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Fig. 1.16. Interleaved ZCT boost converter proposed in [14] 

In the auxiliary circuit proposed in [16], main switches are turned on and off with ZVS and 

ZCS respectively. But one of the drawbacks of this topology is that, the resonant switch 

operates with hard switching. Besides, as it needs soft switching for turning the main 

switches on as well, the auxiliary switch should be operated four times in each switching 

cycle for turning on and off main switches which leads to higher switching losses. 

Although the problem of hard switching of the auxiliary switch is solved in [11], yet it 

works like that of [16], which means that the auxiliary switch should be operated four times 

in each switching cycle to turn main switches on and off with ZVS and ZCS respectively. 
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Fig. 1.17. Interleaved ZVS/ZCS boost converter proposed in [16] 

 

Another disadvantage of this topology is that, it needs a bulky clamping capacitor C1 which 

is placed in the path of the main power circuit, so the auxiliary circuit is not completely 

separated from the main converter. Therefore, the auxiliary circuit cannot be disengaged 

from the main power circuit in the light loads.  

 

Fig. 1.18. Interleaved ZVS/ZCS boost converter proposed in [11] 
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In some papers such as [17], the auxiliary diodes are in series with the main power circuit. 

Since, these diodes should tolerate higher average current rating, their price and conduction 

losses are increased. In addition, maximum voltage across Do in [17] is twice the output 

voltage. Also, as auxiliary inductor is in series with the main circuit path, maximum voltage 

across the main switches, auxiliary switch and the main diodes are higher than the output 

voltage. 
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Fig. 1.19. Interleaved ZCS boost converter proposed in [17] 

The auxiliary circuit proposed in Paper [21] can be seen in Fig. 1.20, where voltages across 

Da1 and Da2 are twice the output voltage. The auxiliary inductor is in the path of the main 

power circuit therefor voltage across the main switches, auxiliary switch and main diodes 

are higher than the output voltage. 

Since in the auxiliary circuit in [22], two switches do not share the common ground, 

auxiliary switch needs a floating gate driver, which increases the noise and complexity of 

the proposed circuit 

The authors in [18] have used two inductors in series with the input inductors. Because 

auxiliary inductors are in the path of the main power circuit, voltage across the main 

switches and diodes are higher than the output voltage.  Voltage across the auxiliary switch 

is almost two times of the output voltage 
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Fig. 1.20. Interleaved ZCS boost converter proposed in [21] 
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Fig. 1.21. ZCS boost converter proposed in [22] 
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Fig. 1.22. Interleaved ZCS boost converter proposed in [18] 

 Thesis Objectives 

The main objectives of this thesis are as follows: 

• To propose a novel AC-DC interleaved ZCS-PWM boost converter that does not 

have any drawbacks that mentioned for the converters reviewed in this chapter, 

without adding any new component in the main power path. 

• To analyze the steady-state characteristic of the proposed converter by 

mathematical analysis so that it can be properly designed. 

• To derive design procedure for the new interleaved converter which can be used 

for selecting the proper components  

• To confirm the feasibility of the proposed converter proposed in this thesis by 

computer simulation and experimental results obtained from a proof-of-concept 

prototype. 
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 Thesis Outline 

The thesis is organized as follows: 

• In Chapter 2, the new interleaved boost converter which has a single auxiliary 

switch to perform ZCS for all switches will be introduced, its modes of operation 

will be explained and its features will be described. 

• In Chapter 3, circuit analysis of the proposed converter will be analysed 

mathematically based on the different modes of operation discussed in Chapter 2. 

Then equations which describe the voltage and current of the different components 

of the converter in steady-state will be derived.  

• In Chapter 4, the results of the mathematical equations derived from the proposed 

interleaved converter in the steady-state condition in Chapter 3, will be used to 

determine the condition of operating main switches and auxiliary switch with ZCS. 

The characteristic curves for the key parameters of the proposed converter will be 

presented by applying the MATLAB simulations according to the steady-state 

equations. Effects of each key component on the operation of the converter will be 

discussed. Then, the design procedure will be explained by an example. By using 

characteristic curves generated by MATLAB program and the circuit simulator 

PSIM, the value of each component will be determined in order to satisfy the key 

design objectives. Selected values will be used in the next chapter to build a 

laboratory prototype. 

• In Chapter 5, the design procedure discussed in Chapter 4 will be validated by the 

laboratory proof-of-concept prototype.  The results of the voltages and currents 

obtained from Oscilloscope will be plotted. The efficiency of the proposed AC-DC 

interleaved ZCS-PWM boost converter will be compared with the conventional 

one. 

• In Chapter 6, the content of this thesis will be summarized, and the conclusion will 

be presented. Then the main contributions of this thesis will be stated and 

suggestions for future works will be presented. 
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Chapter 2  

 

2 Modes of Operation of the Novel AC-DC Interleaved 
Boost Converter 

 

 Introduction  

As was explained in Chapter 1, interleaving multiple AC-DC converter modules is 

advantageous as input current ripple can be reduced and smaller input inductors can be 

used. If soft-switching is desired, then either ZVS or ZCS can be used, depending on what 

is used for the switching devices. If IGBTs are used, then ZCS is preferred as it eliminates 

the turn-off current tail that these devices have, which contributes to turn-off switching 

losses. 

Previously proposed interleaved ZCS-PWM AC-DC converters have several drawbacks, 

including higher cost due to the need for multiple auxiliary circuits to help the main witches 

turn off with ZCS. A new interleaved ZCS-PWM AC-DC converter that does not have 

many of the drawbacks of previously proposed converters of the same type is proposed in 

this chapter.  In this chapter, the general operation of the proposed converter is explained, 

its modes of operation are discussed in detail, and its features are stated. 
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 Modes of Operation  

The proposed converter, shown in Fig. 2.1, consists of two boost converter modules, one 

with L1, S1, and D1, the other with L2, S2 and D2. The gating signals of the two main 

switches, S1 and S2 are identical but shifted 180o with respect to each other. The currents 

in L1 and L2 are designed to be discontinuous and identical, with 180o phase shift with 

respect to each other. The two boost modules are connected to the same auxiliary circuit, 

which consists of interfacing diodes Da1 and Da2, reverse blocking diode Da3, switch voltage 

clamping diode Da4, resonant inductors Lr1 and Lr2 and resonant capacitor Cr1. The auxiliary 

switch needs to be activated whenever one of the two main switches is about to be turned 

off and is active for only a fraction of the switching cycle. 

The various modes of operation that the proposed converter goes through during a 

switching cycle are explained in this section. The modes of operation are studied for the 

case when the converter is operating in steady-state, which can be defined as the converter 

components having the same voltage and current at the end of a switching cycle (and the 

start of a new one) as thy have at the start of the cycle. In other words, the voltage and 
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Fig. 2.1. Proposed interleaved AC-DC ZCS-PWM boost converter 
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current waveforms of all components of the proposed interleaved converter should be 

identical for every switching cycle when the converter is operating in steady-state. 

Typical voltage and current waveforms of the proposed converter are shown in Fig. 2.2 

and equivalent circuit diagrams of each mode are shown in Figs. 2.3 to 2.9 for a half 

switching cycle, for the case when duty cycle D ≥ 0.5 and S2 is turned on and S1 is turned 

off. The modes of operation for the other half-cycle when S1 is turned on and S2 is turned 

off are identical.  The following assumptions have been made in Figs. 2.3-2.9: 

• The proposed circuit has two boost modules that are designed to be operated in DCM 

so that the input inductor current of each module is discontinuous, but the input current, 

which is the sum of the inductor currents, is continuous. 

• Since the AC input source voltage is equivalent to a DC voltage during a very short 

amount of time such as a switching cycle, it is considered as a DC input voltage. 

• The output filter capacitor, Co, is large enough to be considered as a voltage source, Vo. 

• All semiconductor switches are ideal with no parallel output switch capacitor across 

them.  

• All inductors and capacitors are ideal and have negligible resistances. 

• All diodes are ideal and have no reverse recovery current.  

• The duty cycle D is greater or equal to 0.5.  

Mode 1 (T0 < t < T1): This mode begins when switch S2 is turned on. The rectified 

voltage is applied to L2 and the current through the L2 linearly increases as does the input 

current in the input inductor Iin. The slope of the current is 
𝑉𝑖𝑛

𝐿2
 .  Since Iin is the summation 

of the IL1 and IL2, it will increase with greater slope. 

Mode 2 (T1 < t < T2): This mode begins when the auxiliary switch (Sa) is turned on in 

preparation to turn off main switch S1 with ZCS. Sa turns on with ZCS because Lr2 limits 

the rise of the switch current. After Sa is turned on, Cr starts to resonate with Lr2 so that the 

current in Lr2 rises while the voltage across Cr decreases.  

Mode 3 (T2 < t < T3): This mode begins when the voltage across Cr, VCr, is zero. During 

this mode, Vcr is charged to a negative voltage and Da1 and Da2 start to conduct. The voltage 
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across D1 and D2 is limited to the output voltage. The current through Lr1 increases, thus 

IL1 and IL2 flow through the Lr1. The current in L2 is less than L1, thus the current through 

S1 becomes zero and S1 can be turned off with ZCS. The current through S2 becomes 

negative and flows through its body diode. 

Mode 4 (T3 < t < T4): This mode begins when the current in Lr2 reaches zero because 

of its resonance with Cr; Sa can then be turned off with ZCS condition. During this mode, 

energy in Lr1 is transferred to Cr, thus increasing its voltage so that VCr becomes less 

negative and is in the process of eventually becoming positive.  

Mode 5 (T4 < t < T5): This mode begins when the net voltage across the Cr and Lr1 

becomes positive, thus auxiliary diode Da2 stops conducting and IL2 flows through S2. Da1 

continues to conduct during this mode.  

Mode 6 (T5 < t < T6): This mode begins when VCr reaches the output voltage Vo. D4 

clamps the voltage across the auxiliary switch to Vo as well and the stored energy in Lr1 is 

transferred to the output so that the current in the Lr1 decreases. When the current through 

Lr1 becomes less than IL1, diode D1 starts to carry the current difference. The voltage across 

L1 becomes (Vo-Vrec) and the current through L1 starts to decrease linearly.  

Mode 7 (T6 < t < T7): This mode begins when the current in L1 reaches zero. This is 

the last mode of the half-cycle. The next half-cycle begins when S1 is turned on under ZCS.  

When D is less than 0.5, the modes of operation of the converter are identical to those 

shown in Figs. 2.3-2.9 except for Mode 1 when only switch S1 is on. 

The proposed converter has the following features:  

(i)  All the converter switches turn on and off with ZCS.  

(ii) There is only one active auxiliary circuit for both main switches instead of each 

main switch needing its own active auxiliary circuit to help it turn off with ZCS.  

(iii) The main switch does not have increased peak and RMS current stresses as it the 

case with resonant type ZCS auxiliary circuits because no current from the auxiliary 

circuit flows into the main circuit.  
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(iv) None of the auxiliary circuit components are in the main power path so that they 

only handle a fraction of the current that the main circuit components handle.  

(v) The voltage stress of the auxiliary switch is clamped to the output voltage and does 

not exceed this voltage. 

(vi) The main boost diodes do not have reverse recovery current as the input inductor 

currents are discontinuous. 

(vii)  The auxiliary circuit does not interfere with the interleaving operation of the 

converter thus all the advantages of interleaving are maintained.  

(viii)  The auxiliary circuit can be deactivated when the converter is operating under 

light-load conditions, unlike most ZCS methods, where the auxiliary circuit must 

always be in operation, regardless of the load; thus light-load efficiency is improved 

because there is no auxiliary circuit component in the main power circuit.  
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Fig. 2.2. Voltage and current waveforms of different circuit components of the 

proposed interleaved boost converter in steady state. 
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Fig. 2.3. Current flow in Mode 1 

 

Fig. 2.4. Current flow in Mode 2 



33 

 

 

Fig. 2.5. Current flow in Mode 3 

 

Fig. 2.6. Current flow in Mode 4 
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Fig. 2.7. Current flow in Mode 5 

 

 

Fig. 2.8. Current flow in Mode 6 



35 

 

 

Fig. 2.9. Current flow in Mode 7 
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 Conclusion 

In this chapter, the modes of operation of the proposed PWM interleaved AC-DC boost 

converter which uses only a single active auxiliary circuit to assist all the main converter 

switches operate with ZCS and operates with ZCS itself was proposed. It was shown that 

the proposed circuit has fourteen intervals in each switching cycle which can be divided 

into two identical half cycles. Then seven different modes of operation which are distinct 

from each other in terms of the voltage across and current through the different components 

were illustrated. As it was shown, the auxiliary switch works in a very small instant of time 

in comparison with the switching cycle. Thus, except during a small fraction of the 

switching cycle, the proposed converter operates as a conventional PWM interleaved boost 

converter. The modes of operation, which were stated in this chapter, will be used for 

deriving mathematical equations in the next chapter. 
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Chapter 3  

3 Circuit Analysis of the Novel AC-DC Interleaved Boost 
Converter 

 

 Introduction  

The modes of operations that the proposed AC-DC interleaved ZCS boost converter goes 

through during a switching cycle were discussed in the previous chapter. In this chapter, 

mathematical equations of each mode in steady- state are derived to demonstrate the effects 

of the proposed auxiliary circuit on each component. These equations can be used to 

determine the parameters that should be met to satisfy the ZCS conditions. Thus, 

characteristic behaviors of different components are specified so as to use in design 

analysis. It should be noted that, since during the most intervals, the proposed interleaved 

converter operates like that of a conventional one, only the equations for the time in which 

the auxiliary circuit operates will be derived. 

 Circuit Analysis 

The equations are derived based on the following assumptions: 

• The input inductor current of each module is discontinuous, while the input current of 

the converter is continuous. 

• The input voltage of the proposed converter can be assumed to be DC. This assumption 

is valid as the AC source can be considered to be DC during a switching cycle as the 

duration is of this cycle is much shorter than that of the line cycle.  

• The output filter capacitor, Co, is large enough to be considered as a voltage source Vo. 

• All semiconductor switches are ideal, which means that they have no conduction losses 

and no parallel capacitor across them.  

• All inductors and capacitors are ideal and have negligible resistance. 

• All diodes are ideal with negligible reverse recovery time and forward voltage drop. 
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The analysis in this chapter is done with D ≥ 0.5, S2 turned on, and S1 turned off; the 

analysis and formulas for the other half-cycle when S1 is turned on and S2 is turned off is 

identical.  

The following figure shows the equivalent circuit for Mode 1: 

L1 L2

S1 S2 Sa

D1

D2

Da1

Da3

Da4

Cr

Lr2

Lr1

Da2

Iin

Is2Is1Vin

Vo

 

Fig. 3.1. Currents flow in Mode 1 

When switch S2 is turned on, the rectified voltage is applied to L2 and this leads to a gradual 

increase of the current through L2 and the input current in the input inductor, Iin. The slope 

of L2, which is equal to the slope of S2, rises according to: 

 𝑉𝑖𝑛 =    𝐿2  
𝑑𝐼𝐿2(𝑡)

𝑑𝑡
        

(3-1) 

By integrating from time T0 to T1, the main switch current can be expressed as 

 𝐼𝑆2(𝑡) =     
𝑉𝑖𝑛
𝐿2
   (𝑇1 − 𝑇0) 

(3-2) 
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L1 L2

S1 S2

Iin

Is2Is1Vin

 

Fig. 3.2. Reduced equivalent circuit of Mode 1 

All the input current goes through S1 and S2 so that 

 𝐼𝑖𝑛 =   𝐼𝑆1 +  𝐼𝑆2  (3-3) 

The next mode begins when the auxiliary switch (Sa) is turned on in preparation for the 

ZCS turn-off of main switch S1. The equivalent circuit diagram at time T2 is shown in Fig. 

3.3. This diagram can be further simplified in order to demonstrate the auxiliary circuit 

current during this mode of operation as shown in Fig. 3.4. 

 

 

Fig. 3.3. Current flow in Mode 2 

By applying KVL in Fig. 3.4, the following equation can be obtained: 

L1 L2

S1 S2 Sa

D1

D2

Da1

Da3

Da4

Cr

Lr2

Lr1

Da2

Iin

Is2

+
_

Is1Vin

Vo
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 𝑉𝐶𝑟(𝑡) =    𝐿𝑟2  
𝑑

𝑑𝑡
  𝑖2(𝑡) 

(3-4) 

Sa

Da3
Cr

Lr2

+
_

 

Fig. 3.4. Reduced equivalent circuit of the auxiliary circuit of Mode 2 

By applying KCL in Fig. 3.4, the following equation can be obtained: 

          𝑖𝐿𝑟2(𝑡) = 𝑖𝐶𝑟(𝑡) =  − 
𝑑

𝑑𝑡
  𝑞𝐶𝑟(𝑡) =  −𝐶𝑟  

𝑑

𝑑𝑡
  𝑉𝐶𝑟(𝑡) 

(3-5) 

By substituting equ. (3-5) into equ. (3-4), the following result can be obtained: 

𝑉𝐶𝑟(𝑡) =  −𝐿𝑟2 𝐶𝑟  
𝑑2

𝑑𝑡2
  𝑉𝐶𝑟(𝑡) 

(3-6) 

In order to solve the above- mentioned equations, the initial capacitor voltage Vcr(0) and 

the initial auxiliary inductor iLr2(0) should be defined. Vcr(0) is assumed to be equal to Vo 

and iLr2(0) is equal to zero in this mode. As a result, the derivative of  the capacitor voltage 

dVcr (0)/dt can be determined to be: 

[
𝑑

𝑑𝑡
𝑉𝐶𝑟(𝑡)]𝑡=0  =  − (

1

𝐶𝑟
) [
𝑑

𝑑𝑡
𝑞𝐶𝑟(𝑡)]𝑡=0 = (

1

𝐶𝑟
) [𝑖𝐿𝑟2(𝑡)]𝑡=0  

=  0 

(3-7) 

By using equ. (3-7) into equ. (3-6), the following can be obtained: 

         𝑉𝐶𝑟(𝑡) = 𝑉𝑜 cos𝜔2𝑡    for   𝑇1 < 𝑡 <  𝑇2 (3-8) 

Based on the initial conditions of this mode, the following equation can be written: 
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   𝑖𝐿𝑟2(𝑡) = 𝑖𝐶𝑟(𝑡) = −𝐶𝑟  
𝑑

𝑑𝑡
  𝑉𝐶𝑟(𝑡) = 𝐶𝑟𝑉𝑜𝜔2sin𝜔2𝑡        

(3-9) 

                                                                   =
𝑉𝑜

𝑍2
sin𝜔2𝑡      for   𝑇1 < 𝑡 <  𝑇2 

In the above equation,  𝜔2 = 
1

√𝐿𝑟2𝐶𝑟
 and the characteristic impedance of the auxiliary 

circuit is defined as 𝑍2 = √
𝐿𝑟2

𝐶𝑟
 . Mode 2 is finished when the voltage of the auxiliary 

capacitor Vcr reaches zero; therefore, the duration of this mode can be calculated by making 

equ. (3-8), equal to zero as follows: 

                                    𝑉𝐶𝑟(𝑡) = 𝑉𝑜 cos𝜔2𝑡 = 0   for   𝑡 =  𝑇2 (3-10a) 

 where 

                                            𝜔2𝑡 =
𝜋

2
   

 

𝑇2 − 𝑇1=   
𝜋

2
 √𝐿𝑟2𝐶𝑟 (3-10b) 

Thus the current at t=T2, which is the time in which the maximum current flows through 

the auxiliary circuit, can be determined to be 

            𝑖𝐿𝑟2(𝑡) = 𝑖𝐿𝑟2(𝑇2) =
𝑉𝑜
𝑍2
sin𝜔2𝑡      

(3-11) 

                                                         𝑖𝐿𝑟2(𝑇2) =
𝑉𝑜

𝑍2
 for   𝑡 =  𝑇2 

The next mode begins when the voltage across the resonant capacitor is zero. During this 

mode, Vcr is charged to a negative voltage and Da1 and Da2 begin to conduct. In Mode 3, 

current through the main switch S1 and auxiliary Sa switch should go to zero or negative 

before turning them off so that this is done with ZCS.   
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The equivalent circuit diagram at time T2 is shown in Fig. 3.5; it can be be further simplified 

as shown in Fig. 3.6: 

L1 L2

S1 S2 Sa

D1

D2

Da1

Da3

Da4

Cr

Lr2

Lr1

Da2

Iin

Is2

+

_

ILr1

Vin

Vo

 

Fig. 3.5. Current flow in Mode 3 

It can be seen from the Fig. 3.6 that 

 𝑖𝐿𝑟1(𝑡) =   𝑖𝐿𝑟2(𝑡) + 𝑖𝐶𝑟(𝑡)  (3-12) 

 

 

Fig. 3.6. Reduced equivalent circuit of Mode 3 
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Initial conditions for Mode 3, which should be derived from the previous mode, show that 

the initial value of voltage across the auxiliary capacitor VCr (t2) and current through the 

auxiliary inductor iLr1 (t2) are zero, while the initial current through the second auxiliary 

inductor iLr2 (t2) in this mode is equal to 

𝑖𝐿𝑟2(𝑇2) =
𝑉𝑜
𝑍2

 
(3-13) 

Since Da3 is conducting, the voltage across auxiliary circuit inductor Lr2 is 

 𝑉𝐿𝑟2 =  𝑉𝐶𝑟 (3-14) 

Since Da2 is conducting the voltage across auxiliary circuit inductor Lr1 is 

 𝑉𝐿𝑟1 = − 𝑉𝐿𝑟2 = − 𝑉𝐶𝑟  (3-15) 

By differentiating equ. (3-12) with respect to time, the following equation is obtained: 

 
𝑑

𝑑𝑡
𝑖𝐿𝑟1(𝑡) =  

𝑑

𝑑𝑡
 𝑖𝐿𝑟2(𝑡) +

𝑑

𝑑𝑡
𝑖𝐶𝑟(𝑡)  

(3-16a) 

which can be rewritten as 

 
𝑉𝐿𝑟1
𝐿𝑟1

(𝑡) =  
𝑉𝐿𝑟2
𝐿𝑟2

(𝑡) + 𝐶𝑟
𝑑2

𝑑𝑡2
𝑉𝐶𝑟(𝑡)  

(3-16b) 

By substituting equ. (3-15) into equ. (3-16b), the following result is obtained: 

 
𝑉𝐶𝑟
𝐿𝑟1
(𝑡) + 

𝑉𝐶𝑟
𝐿𝑟2
(𝑡) + 𝐶𝑟

𝑑2

𝑑𝑡2
𝑉𝐶𝑟(𝑡) = 0  

(3-16c) 

which can be rewritten as 

 
𝑉𝐶𝑟
𝐿𝑟1
(𝑡)
𝐿𝑟2
𝐿𝑟2

+ 
𝑉𝐶𝑟
𝐿𝑟2
(𝑡)
𝐿𝑟1
𝐿𝑟1

+ 𝐶𝑟
𝑑2

𝑑𝑡2
𝑉𝐶𝑟(𝑡) = 0 

(3-16d) 
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𝑉𝐶𝑟(𝐿𝑟1 + 𝐿𝑟2) 

𝐿𝑟1𝐿𝑟2
(𝑡) + 𝐶𝑟

𝑑2

𝑑𝑡2
𝑉𝐶𝑟(𝑡) = 0  

(3-16e) 

By defining 𝐿𝑒𝑞 =  
𝐿𝑟1𝐿𝑟2

𝐿𝑟1+𝐿𝑟2
 , equ. (3-16e) can be simplified to 

 
𝑉𝐶𝑟
𝐿𝑒𝑞

(𝑡) + 𝐶𝑟
𝑑2

𝑑𝑡2
𝑉𝐶𝑟(𝑡) = 0  

(3-16f) 

which is equal to 

 
𝑉𝐶𝑟
𝐿𝑒𝑞

(𝑡)  = −𝐶𝑟
𝑑2

𝑑𝑡2
𝑉𝐶𝑟(𝑡)  

(3-16g) 

and be rearranged to be 

 
𝑉𝐶𝑟
𝐿𝑒𝑞𝐶𝑟

(𝑡)  = −
𝑑2

𝑑𝑡2
𝑉𝐶𝑟(𝑡)  

(3-16h) 

By defining 𝜔𝑒 = 
1

√𝐿𝑒𝑞𝐶𝑟
 and substituting it into equ. (3-16h), the following equation can 

be obtained: 

𝑉𝐶𝑟(𝑡)𝜔𝑒
2   = −

𝑑2

𝑑𝑡2
𝑉𝐶𝑟(𝑡)  

(3-16i) 

As mentioned previously, the initial voltage of the auxiliary capacitor is zero. The 

derivative of the initial magnitude of the auxiliary capacitor can be determined to be: 

[
𝑑

𝑑𝑡
𝑉𝐶𝑟(𝑡)]𝑡=0  =  − (

1

𝐶𝑟
) [
𝑑

𝑑𝑡
𝑞𝐶𝑟(𝑡)]𝑡=0 = − (

1

𝐶𝑟
) [𝑖𝐿𝑟2(𝑡)]𝑡=0 

(3-17) 

Substituting equ. (3-13) into equ. (3-17) results in 

[
𝑑

𝑑𝑡
𝑉𝐶𝑟(𝑡)]𝑡=0  =  − (

𝑉𝑜
𝑍2𝐶𝑟

) 
(3-18) 

and by using equ. (3-16i), the voltage across capacitor Cr can be determined to be: 
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𝑉𝑐𝑟(t) = −

(

 
𝑉𝑜

√(1 +
𝐿𝑟2
𝐿𝑟1
)
)

 sin𝜔𝑒 𝑡 

(3-19) 

Applying KVL to Fig. 3.6 results in: 

 𝑉𝐿𝑟1(𝑡) = −  𝑉𝐶𝑟(𝑡) = −𝑉𝐿𝑟2(𝑡)  (3-20a) 

Since the voltage across an inductor is generally related to the derivative of the current 

through it, this can be rewritten as 

 𝐿𝑟1
𝑑

𝑑𝑡
𝑖𝐿𝑟1(𝑡) = −𝐿𝑟2  

𝑑

𝑑𝑡
 𝑖𝐿𝑟2(𝑡)  

(3-20b) 

Substituting equ. (3-20a) into equ. (3-20b) results in 

 
𝑑

𝑑𝑡
𝑖𝐿𝑟1(𝑡) = −

𝑉𝐶𝑟
𝐿𝑟1
(𝑡)  

(3-20c) 

which can be rewritten as: 

𝑑𝑖𝐿𝑟1(𝑡) = −(
𝑉𝐶𝑟
𝐿𝑟1
(𝑡)) 𝑑𝑡  

(3-20d) 

The above equation can be solved by integrating it during the interval of this mode of 

operation. The initial magnitude of the auxiliary inductor ILr1, which is equal to zero, can 

be derived from the previous mode as shown in Fig. 3.3 and is 

 

𝑖𝐿𝑟1(𝑡) =  (
𝑉𝑜𝐿𝑒𝑞

𝑍2𝐿𝑟1
) (1 − cos𝜔𝑒𝑡) 

(3-20e) 

During this mode of operation, IS1 should go to zero or negative in order to meet the ZCS 

condition; thus the direction of current through S1 is changed and flows through its body 
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diode. Based on Fig. 3.6, the following condition should be satisfied to ensure the soft 

switching of S1: 

prerequisite of ZCS of  IS1 ∶         𝑖𝑖𝑛(𝑡) − 𝑖𝐿𝑟1(𝑡) ≤ 0 (3-21a) 

This means that current through 𝑖𝐿𝑟1 should be more than 𝑖𝑖𝑛(𝑡). Substituting equ. (3-20e) 

into equ. (3-21a) results in 

     𝑖𝑖𝑛(𝑡) − [(
𝑉𝑜𝐿𝑒𝑞

𝑍2𝐿𝑟1
) (1 − cos𝜔𝑒𝑡) ] ≤ 0 

(3-21b) 

By applying KVL to Fig. 3.6, the following expression can be written: 

𝑉𝐶𝑟(𝑡)  =  𝐿𝑟2
𝑑

𝑑𝑡
𝑖𝐿𝑟2(𝑡) 

(3-22a) 

which can be rewritten as 

𝑑𝑖𝐿𝑟2(𝑡) = (
𝑉𝐶𝑟
𝐿𝑟2
(𝑡)) 𝑑𝑡  

(3-22b) 

Based on equ. (3-13), the initial current through the second auxiliary inductor iLr2 (t2) in 

this mode is equal to  𝑖𝐿𝑟2(𝑇2) =
𝑉𝑜

𝑍2
 . By substituting equ. (3-19) into equ. (3-22b), the 

current through the 𝐿𝑟2 can be determined to be: 

𝑖𝐿𝑟2(𝑡) =  
𝑉𝑜
𝑍2
− [(

𝑉𝑜𝐿𝑒𝑞

𝑍2𝐿𝑟2
) (1 − cos𝜔𝑒𝑡)]  

(3-22c) 

As explained in Chapter 2, auxiliary switch Sa is turned on to help the main switches turn 

off with ZCS and it should be turned off soon afterwards. At the end of this mode of 

operation, ISa should go to zero or become negative so that it turns off with ZCS as well. It 

can be seen from Fig. 3.6 that 

 𝐼𝑆𝑎(𝑡) =  𝑖𝐿𝑟2(𝑡)  (3-23) 

In order to turn off the auxiliary switch, Sa, with ZCS, 𝑖𝐿𝑟2(𝑡) should be zero or negative; 

this can be expressed as: 
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prerequisit of ZCS of  ISa ∶     𝐼𝑆𝑎(𝑡) =  𝑖𝐿𝑟2(𝑡) ≤ 0  (3-24a) 

Substituting equ. (3-22c) into equ. (3-24a) results in 

𝑉𝑜
𝑍2
− [(

𝑉𝑜𝐿𝑒𝑞

𝑍2𝐿𝑟2
) (1 − cos𝜔𝑒𝑡)] ≤ 0 

(3-24b) 

The voltage across the main diodes, VD1 and VD2, can be derived based on the KVL in Fig. 

3.5 to be 

𝑉𝐷2 + 𝑉𝑜 = 0  (3-25) 

 

𝑉𝐷1 − 𝑉𝐶𝑟 − 𝑉𝐿𝑟1 + 𝑉𝑜 = 0 (3-26a) 

Based on equ. (3-15) during this mode, 𝑉𝐿𝑟1 = − 𝑉𝐶𝑟 , so that equ (3-26a) can be rewritten 

as 

𝑉𝐷1 + 𝑉𝑜 = 0 (3-26b) 

The above-mentioned equations show that, in this mode of operation, the voltage across 

each main boost diodes are equal to the output voltage. This is one of the advantages of 

this topology that the maximum voltage across the main diodes is equal to the output 

voltage. 

Based on equ. (3-24a), at the end of this mode, iLr2 should be zero or negative in order to 

turn off the auxiliary switch with ZCS; however, by using blocking diode, Da3, the negative 

current cannot flow through Lr2. The equations for the rest of the modes are not required to 

characterize the converter and are thus not presented. 

It is worth noting that the maximum voltage across the auxiliary capacitor, which is 

achieved in Mode 6, due to the resonance among Cr, Lr1 and Lr2 when the capacitor voltage 

reaches to the output voltage should be determined. 
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The equivalent circuit diagram in the sixth interval is shown in Fig. 3.7, which can be 

further simplified as shown in Fig. 3.8: 

L1 L2

S1 S2 Sa

D1

D2

Da1

Da3

Da4

Cr

Lr2

Lr1

Da2

Iin

Is2

+
_

ILr1
ILr2

Vo

Vin

 

Fig. 3.7. Current flow in Mode 6 
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Fig. 3.8. Reduced equivalent circuit of Mode 6 

From the above figure, the following equations can be written: 

𝑖𝐿𝑟1(𝑡) = 𝑖𝐿𝑟2(𝑡) + 𝑖𝐶(𝑡) (3-27) 
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𝑉𝐶𝑟(𝑡) =  𝑉𝑜 + 𝐿𝑟2 
𝑑

𝑑𝑡
𝑖𝐿𝑟2 (𝑡) 

(3-28) 

 

𝑉𝐶𝑟(𝑡) =  𝑉𝑜 − 𝐿𝑟1 
𝑑

𝑑𝑡
𝑖𝐿𝑟1 (𝑡) 

(3-29) 

Differentiating equ. (3-27) with respect to time results in: 

 
𝑑

𝑑𝑡
𝑖𝐿𝑟1(𝑡) =  

𝑑

𝑑𝑡
 𝑖𝐿𝑟2(𝑡) +

𝑑

𝑑𝑡
𝑖𝐶𝑟(𝑡)  

(3-30a) 

Which can be rewritten as: 

 
𝑉𝐿𝑟1
𝐿𝑟1

(𝑡) =  
𝑉𝐿𝑟2
𝐿𝑟2

(𝑡) + 𝐶𝑟
𝑑2

𝑑𝑡2
𝑉𝐶𝑟(𝑡)  

(3-30b) 

By substituting equ. (3-28) and equ. (3-29) into equ. (3-30b) results in: 

 
 𝑉𝐶𝑟 − 𝑉𝑜
𝐿𝑟1

(𝑡) + 
 𝑉𝐶𝑟 − 𝑉𝑜
𝐿𝑟2

(𝑡) + 𝐶𝑟
𝑑2

𝑑𝑡2
𝑉𝐶𝑟(𝑡) = 0  

(3-30c) 

Which can be rewritten as: 

 
𝑉𝐶𝑟 − 𝑉𝑜
𝐿𝑟1

(𝑡)
𝐿𝑟2
𝐿𝑟2

+ 
𝑉𝐶𝑟 − 𝑉𝑜
𝐿𝑟2

(𝑡)
𝐿𝑟1
𝐿𝑟1

+ 𝐶𝑟
𝑑2

𝑑𝑡2
𝑉𝐶𝑟(𝑡) = 0 

(3-30d) 

 

 
(𝑉𝐶𝑟 − 𝑉𝑜)(𝐿𝑟1 + 𝐿𝑟2) 

𝐿𝑟1𝐿𝑟2
(𝑡) + 𝐶𝑟

𝑑2

𝑑𝑡2
𝑉𝐶𝑟(𝑡) = 0  

(3-30e) 
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By defining 𝐿𝑒𝑞 =  
𝐿𝑟1𝐿𝑟2

𝐿𝑟1+𝐿𝑟2
 , it is simplified to: 

 
𝑉𝐶𝑟 − 𝑉𝑜
𝐿𝑒𝑞

(𝑡) + 𝐶𝑟
𝑑2

𝑑𝑡2
𝑉𝐶𝑟(𝑡) = 0  

(3-30f) 

Which is equal to: 

 
𝑉𝐶𝑟 − 𝑉𝑜
𝐿𝑒𝑞

(𝑡)  = −𝐶𝑟
𝑑2

𝑑𝑡2
𝑉𝐶𝑟(𝑡)  

(3-30g) 

 

It can be rearranged as: 

 
𝑉𝐶𝑟 − 𝑉𝑜
𝐿𝑒𝑞𝐶𝑟

(𝑡)  = −
𝑑2

𝑑𝑡2
𝑉𝐶𝑟(𝑡)  

(3-30h) 

By defining 𝜔𝑒 = 
1

√𝐿𝑒𝑞𝐶𝑟
 and substituting it into equ. (3-30h), the following equation can 

be derived: 

(𝑉𝐶𝑟 − 𝑉𝑜)(𝑡)𝜔𝑒
2   = −

𝑑2

𝑑𝑡2
𝑉𝐶𝑟(𝑡)  

(3-30i) 

Mode 6 begins when the voltage across the auxiliary reaches to the output voltage, 

therefore the initial voltage of the auxiliary capacitor is equal Vo. The derivative of initial 

magnitude of the auxiliary capacitor is calculated as: 

[
𝑑

𝑑𝑡
𝑉𝐶𝑟(𝑡)]𝑡=0  = (

1

𝐶𝑟
) [𝑖𝐿𝑟1(𝑡)]𝑡=0 = (

1

𝐶𝑟
) [𝑖𝐿1(𝑡)]𝑡=0 

(3-31) 

Therefore, the equ. (3-33g) is solved as: 

𝑉𝑐𝑟(t) = 𝑖𝐿1 𝑍𝑒 sin𝜔𝑒 𝑡 +  𝑉𝑜  (3-32) 
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Where characteristic impedance is defined as: 𝑍𝑒 = √
𝐿𝑒𝑞

𝐶𝑟
 . The following equation shows 

the time in which the voltage of the resonant capacitor reaches its maximum value at the 

start of this mode of operation: 

𝜔𝑒 𝑡 =
𝜋

2
 (3-33) 

                           𝑡 =
𝜋

2
√𝐿𝑒𝑞𝐶𝑟  

 

 

Thus, at the above time in Mode 6, VCr reaches its maximum value which is equal to: 

𝑉𝑐𝑟 (
𝜋

2
√𝐿𝑒𝑞𝐶𝑟) = 𝑖𝐿1𝑍𝑒 + 𝑉𝑜  

(3-34) 

During this mode of operation, current through the input inductor Lr1 decreases based on 

the following equation: 

𝑑

𝑑𝑡
𝑖𝐿1 = 

𝑉𝑖𝑛 − 𝑉𝑜
𝐿1

 
(3-37) 

Because the input inductor current of each converter is discontinuous, this mode ends when 

iL1 at T5 reaches zero: 

𝑉𝑐𝑟(T5) = 𝑉𝑜  (3-38) 

The last mode of the half cycle likes that of the conventional boost converter so equations 

for this mode are not required to characterize the converter and are thus not presented. It 

should be noted that the equations for the other half-cycle, when S1 is turned on and S2 is 

turned off, are identical.  
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 Conclusion 

The circuit analysis of the proposed converter was stated in this chapter. Since, the modes 

of operations can be divided into two identical half cycles, one half cycle with all intervals 

were analyzed and relevant mathematical equations for each mode of operation were 

derived.  These formulas and analysis can be used in designing procedure of the proposed 

converter, which will be presented in the next chapter. 
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Chapter 4    

 

4 Design Procedure and Example of the Proposed AC-
DC Interleaved ZCS-PWM Boost Converter 

 

 Introduction  

In this chapter, the results of the mathematical equations derived from the proposed 

interleaved converter in the steady-state condition in the previous chapter, will be 

presented. All the analysis and equations that have been presented in previous chapters, 

have been derived from a DC input voltage, because AC input voltage of the proposed AC-

DC interleaved ZCS boost converter can be considered to be a DC source during a very 

short switching cycle. Therefore, the characteristic curves for the key components of the 

proposed converter will be presented by using MATLAB simulations, based on the 

equations derived in Chapter 3. Then, the value of each component can be determined so 

as to satisfy the key design objectives. Finally, an example will be given to illustrate the 

design procedure that will be used in the next chapter.  

 

 Conditions for ZCS Turn off of all Switches of the 
Proposed AC-DC Interleaved ZCS-PWM Converter 

There are some parameters that should be satisfied so that all the switches of the proposed 

PWM AC-DC interleaved converter, shown in Fig. 4.1, can be turned off with ZCS.  
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Based on the modes of operation presented in Chapter 2, the ZCS condition for the main 

switches should be met when the proposed converter operates in Mode 3. Moreover, as 

was shown in the previous chapter, since the auxiliary switch should be turned off right 

after turning off a main switch, the auxiliary switch should also turn off with ZCS as well. 

The equation that determines the ZCS condition for the main switches was derived as 

follows: 

𝑖𝐿𝑟1(𝑡) =  (
𝑉𝑜𝐿𝑒𝑞

𝑍2𝐿𝑟1
) (1 − cos𝜔𝑒𝑡) 

(4-1a) 

It was shown that IS1 should go to zero or negative in order to meet ZCS condition; thus 

the current through S1 should change direction and flow through the switch’s body diode. 

According to the Fig. 3.6 and equ. (3-21a), current through 𝑖𝐿𝑟1 should be more than 

𝑖𝑖𝑛(𝑡) in order for S1 to turn off with ZCS according to  

         𝑖𝑖𝑛(𝑡) − [(
𝑉𝑜𝐿𝑒𝑞

𝑍2𝐿𝑟1
) (1 − cos𝜔𝑒𝑡) ] ≤ 0 

(4-1b) 

As explained in Chapter 3, ISa should be zero or negative at the end of Mode 3 of operation 

in order for Sa to turn off with ZCS condition. This can be confirmed if the following 

condition is met:  

Vin

L1 L2

S1 S2 Sa

D1

D2

Da1

Da3

Da4

Co Ro

Cr

Vo

+

_
Lr2

Lr1

Da2

 

Fig. 4.1. Proposed interleaved AC-DC ZCS-PWM boost converter 
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   𝐼𝑆𝑎(𝑡) =  
𝑉𝑜
𝑍2
− [(

𝑉𝑜𝐿𝑒𝑞

𝑍2𝐿𝑟2
) (1 − cos𝜔𝑒𝑡)] ≤ 0 

(4-2) 

It should be noted that negative values of IS1 and ISa in equ.( 4-1b) and equ. (4-2) represent 

a flow of current through the body diodes of the main and auxiliary switches respectively. 

As can be seen from the above-mentioned equations, the prerequisite for meeting the ZCS 

condition for auxiliary switch depends mainly on the output voltage, and current through 

the main switch depends on both output voltage and input current (in), which can be 

determined as follows: 

𝑖𝑖𝑛 = 
√2𝑃𝑜
𝜂 𝑉𝑖𝑛

 
(4-3) 

where the parameters of the above equation are defined as: 

Iin= Rectified input current, 

Vo= Output power, 

Vin= Rectified input voltage, 

𝜂 = Efficiency of the proposed interleaved converter. 

When designing the converter components, it should be noted that, the maximum 

magnitude of Iin should be considered as the worst-case scenario. It can be seen from the 

equ. (4-1b) that, if the ZCS condition can be met when the input current is at its maximum 

value Iin= Iin,max, then soft-switching can be ensured for lower rectified input current as well. 

Based on the equ. (4-3), the maximum input current is obtained by considering the 

minimum input voltage. 

Another design objective that should be considered for the turn-off of the main switch with 

ZCS is that the current through Lr2 should be more than the current through Lr1 in order to 

divert current from the main switch to the auxiliary switch; thus Lr1 should be greater than 

Lr2 to ensure ZCS under all operating loads. During this time ISa = ILr2 based on the circuit 
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analysis in Chapter 3; therefore, the maximum value of the auxiliary switch current can be 

determined to be  

𝐼𝑆𝑎,𝑚𝑎𝑥 = 
𝑉𝑜
𝑍2

 
(4-4) 

as it was derived in equ. (3-11). 

As explained in Chapter 3, 𝑍2 = √
𝐿𝑟2

𝐶𝑟
  is defined as the characteristic impedance of the 

auxiliary circuit and Vo is defined as the output voltage. Minimizing the peak current 

through the auxiliary switch at the end of the Mode 2 can be considered as another design 

objective. 

Because the peak voltage across all the diodes from the main boost diodes D1 and D2 to the 

auxiliary clamp diode D4 is equal to the output voltage, there is no need to consider them 

as design objectives. On the other hand, based on the following equation, which was 

derived in Chapter 3, the maximum voltage across the auxiliary capacitor can be 

determined to be  

𝑉𝑐𝑟,𝑚𝑎𝑥 = 𝑖𝐿1𝑍𝑒 + 𝑉𝑜  (4-5) 

where Leq and Ze are defined as 
𝐿𝑟1𝐿𝑟2

𝐿𝑟1+𝐿𝑟2
   and √

𝐿𝑒𝑞 

𝐶𝑟
 respectively. Minimizing the maximum 

voltage across the auxiliary capacitor during Mode 6 can thus be considered as another 

design objective.  

By and large, the main objectives that should be considered when designing the converter 

are as follows: 

• The prerequisites in equ. (4-1b) and equ. (4-2b) should be satisfied for the ZCS turn-

off of all main and auxiliary switches respectively. Since the proposed interleaved 

converter operates with its input inductors in discontinuous current mode, all switches 

inherently turned on with ZCS.  

• The peak current through the auxiliary switch, presented in equ. (4-4), should be 

minimized. 
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• The peak voltage across the auxiliary capacitor, presented in equ. (4-5), should be 

minimized. 

 Characteristic of the Proposed AC-DC Interleaved ZCS-
PWM Converter 

As explained in Chapter 3, although the equations have been derived by considering a DC 

input voltage, they can also be used for analyzing the characteristics of the proposed AC-

DC interleaved ZCS-PWM boost converter when it operates with an AC input source as 

AC input source can be considered to be a DC input source during a very short switching 

cycle. For example, the DC source voltage can be set as the peak AC voltage so that 

analysis for certain peak parameter values or worst-case operating conditions can be 

considered.  The equations can be used to draw various different graphs of steady-state 

characteristic curves that illustrate the behavior of the proposed converter.  

In this thesis, the graphs are generated by a MATLAB computer program. The related 

codes of MATLAB are presented in Appendixes A-F. Since curves of steady-state 

characteristics should be drawn, the most important feature of the graphs generated by 

MATLAB is that the current through and voltage across any component of the proposed 

converter at the start of a switching cycle must be the same as that at the end of the 

switching cycle. After applying the above derived equations in MATLAB to simulate the 

converter’s modes of operations, the current and voltages of key components should be 

checked to determine whether they are at the same state with respect to their voltage and 

current at the end of the previous switching cycle. When this prerequisite is satisfied, the 

voltage across and current through each component can be determined. If this procedure is 

done for an interval of values for each component, then their characteristic curves and 

graphs can be obtained by MATLAB. These graphs indicate how changing a particular 

component value such as an inductor or a capacitor affects the current and voltage of 

converter components.  

The next step after generating characteristic curves and graphs is to select an appropriate 

value for each component according to certain desired performance criteria. Typically, 

some sort of trade-off or compromise must be made when selecting the values. 
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Based on the above-mentioned explanations, graphs of steady-state characteristic curves 

shown in Figs. 4.2-4.5 are drawn to demonstrate the relation between the value of each 

component and the design objectives that were defined at the end of the previous section. 

The curves are generated for the following operating condition: 

Output Voltage V0= 400 Volts DC 

Output Power P0= 1 Kw 

Input Voltage Vin= 85- 265 Volts RMS 

Expected Efficiency 𝜂 = 95 % 

Switching Frequency  = 𝑓𝑆 =
1

𝑇𝑆
=  50 KHz. 

It should be noted that the maximum value of iin in Fig. 4.1, should be considered in 

designing the converter as the worst-case scenario. As discussed in the previous section, 

according to the equ. (4-1b), if the ZCS condition can be met by the maximum value of the 

iin, then soft switching can be ensured by lower values of rectified input current as well. 

Although the input voltage varies from 85 to 265 volts RMS, based on equ. (4-3), the design 

should be done when the input voltage is at its minimum value which is 85 Volts RMS. 

By substituting Vin= 85 V in equ. (4-3), the following can be written: 

 

𝑖𝑖𝑛,𝑚𝑎𝑥 = 
√2 𝑃𝑜
𝜂 𝑉𝑖𝑛

yields
→   

√2 ∗ 1000

0.95 ∗  85
= 17.5 𝐴  

 

Based on the equ. (4-1b) and equ.(4-2b) the auxiliary capacitor Cr has an vital role in 

achieving the ZCS turn-off of all main switches and auxiliary switch. As discussed in 

Chapter 2, in the second mode of operation, by turning-on the auxiliary switch, Cr starts to  
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resonate with Lr2 so that the current in Lr2 rises while the voltage across Cr decreases. 

During the third mode of operation Vcr  

The graph in Fig. 4.2 is generated by MATLAB program (Appendix A) and illustrates the 

variation of the maximum voltage across the auxiliary capacitor VCr,max with different 

values of Cr, when other parameters are constant. The maximum voltage across the 

auxiliary capacitor can be calculated by equ. (4-5). 

During Mode 3, Cr is charged to a negative voltage and Da1 and Da2 start to conduct. The 

current through Lr1 is increased by the flow of IL1 and IL2 through Lr1. In the first half cycle, 

the current in L2 is less than that in L1, thus the current through S1 becomes zero. In other 

words, current through both the main and auxiliary switches is diverted as the voltage 

across the resonant capacitor is negative. As a result, all auxiliary and main switches can 

be turned off with ZCS. 

 

 

Fig. 4.2. Characteristic graph of variation of maximum voltage across auxiliary 

capacitor with the variation of Cr when other parameters are constant 
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Fig. 4.3. Characteristic graph of variation of peak current through auxiliary switch 

with the variation of characteristic impedance of the auxiliary circuit 

 

 

Fig. 4.4. Characteristic graph of variation of peak current through 

auxiliary switch with the variation of resonant capacitor when other 

parameters are constant 
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The resonant capacitor is decreased, but increasing the increasing the value of the auxiliary 

capacitor means that the peak current through the auxiliary switch is increased as well. Fig. 

4.3 is generated by MATLAB program (Appendix B) and illustrates the characteristic 

graph of variation of peak current through auxiliary switch with respect to the variation of 

characteristic impedance of the auxiliary circuit Z2, which is defined as 𝑍2 = √
𝐿𝑟2

𝐶𝑟
 ; it is 

inversely proportional to the resonant capacitor. The peak current through the auxiliary 

circuit is one of the key design objectives. As can be seen from the graph shown in Fig. 

4.3, the peak current through the auxiliary circuit decreases as the value of the characteristic 

impedance of the auxiliary circuit increases; the value of Cr cannot be chosen to be very 

high.  

It was shown in Fig. 4.2 that the peak voltage across the resonant capacitor can be reduced 

by increasing Cr. On the other hand, based on Fig.4.3, increasing the value of resonant 

capacitor increases the peak current through the auxiliary circuit. As a compromise, Lr2 is 

assumed to be 4 𝜇𝐻 in Fig. 4.4. It can be concluded that, the value of the resonant capacitor 

should not be very low because Vcr,max would increase considerably, while a high value of 

resonant capacitor creates additional stress in Sa by increasing ISa,max. 

The most significant design objective of the proposed interleaved converter is achieving a  

ZCS turn-off for all the main and auxiliary switches.  The equations that determine the ZCS 

condition for the main and auxiliary switches can be derived from equ. (4-1b) and equ. (4-

2b) respectively. The result of these equations should be negative in order to divert the 

current from the main and auxiliary switches. A negative result in equ. (4-2b) proves that 

the auxiliary switch is turned off with ZCS. In order to ensure that ZCS is achieved, the 

current through the main and auxiliary switches should be zero or negative for an 

appropriate amount of time. The characteristic graphs illustrated in Figs. 4.5-4.8, are used 

to indicate the amount of time during which the current through the main and auxiliary 

switches are negative. 

It should be noted that the value of the characteristic impedance Z2 of the auxiliary circuit 

should be such that 𝐼𝑆2,𝑚𝑎𝑥 =
𝑉𝑜

𝑍2
>  Iin,max.  
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𝑖𝑖𝑛,𝑚𝑎𝑥 = 
√2 𝑃𝑜
𝜂 𝑉𝑖𝑛

yields
→   

√2 ∗ 1000

0.95 ∗  85
= 17.5 𝐴  

 so that 

𝑉𝑜
𝑍2
=
400

𝑍2
> 𝑖𝑖𝑛,𝑚𝑎𝑥 = 17.5  𝐴    

yields
→       𝑍2 < 22.8 Ω 

Z2 should thus be less than 22.8 Ω. In order to be have some margin, Z2=18 Ω will be 

assumed for all of the following figures.  

An initial time t=0 in Figs. 4.5-4.8 indicates the beginning of Mode 3, where Vcr is charged 

to a negative voltage and diverts the current from S1, S2, and Sa; therefore, current through 

all the switches is reduced to zero and reaches negative value during this mode of operation. 

It should be taken into account that the time in which current through main and auxiliary 

switch falls to zero should be minimized to shrink the time that auxiliary switch operates 

so that conduction losses can be reduced by shrinking the duty cycle of auxiliary circuit.  

The characteristic graphs in Fig. 4.5 and Fig. 4.6, which are generated by the MATLAB 

program given in Appendix C and Appendix D, show the current through the main and 

auxiliary switches vs time respectively for various values of Lr2 when other parameters in 

equ. (4-1b) and equ. (4-2b) such as Cr and Lr1 are constant. According to equ. (4-4), by 

increasing Lr2 when Cr is constant, the peak current through the auxiliary circuit decreases. 

It should be noted that iSa,max should be greater than iin,max. 

It can be seen from Fig. 4.5 and fig. 4.6 that by increasing Lr2 when other parameters are 

constant, the time in which current through the main and auxiliary switches reduce to zero 

increase as well. As a result, the conduction losses are increased. On the other hand, from 

Fig. 4.5 can be concluded that by increasing the Lr2, the time window for ZCS increases as 

the current through the main switch can be in negative side for a longer time; therefore, a 

trade off  should be made  between the length of time that current through the main switch 
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Fig. 4.5. Characteristic graph of time in which main switch current get reduced to 

zero with the variation of Lr2 while other parameters are constant 

 

 

Fig. 4.6. Characteristic graph of time in which auxiliary switch current get reduced 

to zero with the variation of Lr2 while other parameters are constant 
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goes to zero and the length of time during which the current stays negative. 

As discussed previously, one of the prerequisites for diverting current from the auxiliary 

circuit to provide ZCS is that the current through Lr1 should be less than current through 

Lr2 in Mode 3 of operation; thus, the value of Lr1 should be more than the value of Lr2. As 

can be seen from Fig. 4.6 when the value of Lr1 is equal or less than Lr2, the current through 

the auxiliary switch does not go to zero so Sa cannot be turned off with ZCS. 

The graphs in Fig. 4.7 and Fig. 4.8, which are generated by the MATLAB program in 

Appendix E and Appendix F, show the current through the main and auxiliary switches vs 

time respectively for various values of Lr1 when other parameters in equ. (4-1b) and equ. 

(4-2b) such as Cr and Lr2 are constant. The characteristic impedance of the auxiliary circuit 

Z2 is constant for these graphs. 

It can be seen from Fig. 4.7 that by increasing Lr1 when other parameters are constant, the 

time in which current through the main switch falls to zero increases as well and thus 

conduction losses are also increased. Whereas as it is shown in Fig. 4.8, by increasing Lr1 

when other parameters are constant, the time in which the current through the auxiliary 

switch is reduced to zero decreases. In addition, it can be concluded from Fig. 4.7 that, by 

increasing the Lr1 the window for ZCS decreases as the current through the main switch is 

negative for a shorter amount of time. 

The same results can be observed from Fig. 4.6 as that of Fig. 4.8. It means that, the value 

of Lr1 should be higher than the value of Lr2 in order to turn the auxiliary switch off with 

ZCS. As can be seen from Fig. 4.8, when the value of Lr1 is equal or less than Lr2, the 

current through the auxiliary switch does not reduce to zero so Sa cannot be turned off with 

ZCS. Thus, as the value of Lr1 becomes more than Lr2, the possibility of reducing the 

current through the auxiliary switch to zero increases considerably. However, this action 

reduces the chance of ZCS for the main switches. Therefore, 
𝐿𝑟2

𝐿𝑟1
 should be designed in a 

way that all the switches can be turned off with ZCS. 

 



65 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Fig. 4.7. Characteristic graph of time in which main switch current get reduced to 

zero with the variation of Lr1 while other parameters are constant 

 

 

Fig. 4.8. Characteristic graph of time in which auxiliary switch current get reduced 

to zero with the variation of Lr1 while other parameters are constant 
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 Design Example of the Proposed Converter 

In this section, a design example of the proposed AC-DC interleaved ZCS-PWM boost 

converter will be presented in detail. The converter will be designed according to the 

following specifications: 

Output Voltage Vo = 400 Volts DC 

Output Power Po = 1 kW 

Input Voltage Vin= 85- 265 Volts RMS 

 

Switching Frequency  = 𝑓𝑆 =
1

𝑇𝑆
=  50 KHz. 

It is worth noting that, the design procedure is an iterative one. Several iterations should be 

done to find the most appropriate values. In this thesis, only the last iteration will be 

illustrated for designing the example. 

 Design Procedure for the Main Power Circuit 

In this thesis, the design procedure is divided into two parts including a main power circuit 

design which is the same as that for the conventional boost interleaved converter in 

discontinuous mode and an auxiliary circuit design.  The main power circuit components, 

which should be designed, are comprised of two input inductors L1 and L2, two main boost 

diodes D1 and D2, two main switches S1 and S2, and an output capacitor Co. 

4.4.1.1 Design Procedure for Input Inductors L1 and L2 

While designing the input inductors in this thesis, it should be taken into account that with 

interleaving, the input current of each module can made to be discontinuous and the size 

of their input inductors since interleaving can reduce the high ripple in each module and 

produce a net input current with a ripple that is comparable to that achieved with a single 

boost converter module with a large input inductor. Moreover, there is less current stress 

on the converter components as they handle a fraction of the overall current and the control 
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is easier as more sophisticated control methods needed for continuous current mode (CCM) 

operation are avoided. 

The maximum value for the input inductors to work in discontinuous mode is calculated 

as follows: 

                                     𝐿𝑖𝑛,𝑚𝑎𝑥 <
𝐷(1 − 𝐷)2 𝑅

2𝑓
 

(4-6) 

Where the parameters of the above equation are defined as: 

Lin,max= Maximum  value for input inductors in order to work in DCM, 

D= Duty cycle of the main switches, 

R= Load, 

𝑓 = main switch frequency. 

Therefore, to solve equ. (4-6), the above-mentioned parameters should be obtained. 𝑓 is 

the main switches frequency which is 50 KHz in this example. R is obtained as: 

      𝑃𝑜 =
𝑉𝑜
2

𝑅
 

(4-7) 

By substituting design specifications for this example into equ. (4-7): 

𝑅 = 
𝑉𝑜
2

𝑃𝑜

yields
→   

4002

1000
= 160 Ω  

                    
𝑉𝑜

𝑉𝑖𝑛,𝑝𝑒𝑎𝑘
>

1

1 − 𝐷𝑚𝑎𝑥
 

 

By rewriting, the maximum value of duty cycle in discontinuous mode can be calculated 

as follows: 

          𝐷𝑚𝑎𝑥 < 1 −
𝑉𝑖𝑛,𝑝𝑒𝑎𝑘

𝑉𝑜
 

(4-8) 
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 𝐷𝑚𝑎𝑥 < 1 −
𝑉𝑖𝑛,𝑝𝑒𝑎𝑘

𝑉𝑜
 

(4-8) 
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Fig. 4.9. Profile of the input inductor phase current according to the switching pattern 

in DCM 
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Fig. 4.10. Profile of the input inductor phase current of the proposed interleaved 

converter according to the switching pattern in DCM 
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Substituting design specifications into equ. (4-8) results in: 

                                 𝐷𝑚𝑎𝑥 < 1 −
√2 ∗ 85

400
 
yields
→    𝐷𝑚𝑎𝑥 < 0.7 

In order to choose the maximum value for duty cycle of the main switch to work in 

discontinuous mode, the lowest input voltage should be selected, which is 85 Volts in this 

example. 

The Fig. 4.9 shows discontinuous mode of the input current. Where DT is defined as time 

in which main switch is conducted. D1T indicates the time after DT when phase current of 

the input inductor becomes zero. It should be noted that, because of working in DCM, 

summation of D and D1 should be less than one. In using equ. (4-8) it should be considered 

that, it works for conventional AC-DC interleaved converters while in this thesis an 

auxiliary circuit is used, thus the profile of the input phase current is changed as shown in 

Fig 4.10. It means that, DT is changed to DaT which is equal to DT plus the time that after 

turning the main switch off, auxiliary switch conducts. D1aT shows the time after DaT when 

phase current of the input inductor becomes zero. Therefore, Dmax in equ. (4-8) is equal to 

Da. Thus, in order to be in the safe zone, D should be less than 0.65 to work in DCM. 

The equ. (4-6) can be solved: 

𝐿𝑖𝑛,𝑚𝑎𝑥 <
𝐷(1 − 𝐷)2 𝑅

2𝑓

yields
→    

0.65 ∗ (1 − 0.65)2 ∗ 160

2 ∗ 50000
< 127 µ𝐻  

For a more conservative design Lin is designed as 125 µ𝐻: 

L1=L2= 125 µ𝐻   

4.4.1.2 Design Procedure for Output Capacitor Co 

There are different factors that should be considered in selecting the output capacitor 

including: the second harmonic ripple current, the switching frequency ripple current, the 

ripple of output voltage, and holdup time. In design phase, the holdup time is usually used 

as the dominant factor. The capacitor should be selected appropriately to store enough 

energy to maintain the output voltage above a specified minimum voltage, Vmin, in the 
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worst case scenario when the input voltage is not available for a specified amount of 

time,Th. In this thesis, Vmin which is defined as the minimum output voltage that the load 

equipment can work appropriately is selected 350 volts and holdup time is chosen to be 20 

ms for the worst-case scenario. During this time, the following amount of energy is 

transferred to the output: 

E =  𝑃𝑜𝑇ℎ 

This energy which is the same as the discharged energy by the capacitor is calculated by: 

𝐸 =
𝐶𝑜(𝑉𝑜

2 − 𝑉𝑜,𝑚𝑖𝑛
2)

2
 

(4-9) 

Therefore, the output capacitor is obtained by: 

𝐶𝑜 ≥
2𝑃𝑜𝑇ℎ

(𝑉𝑜
2 − 𝑉𝑜,𝑚𝑖𝑛

2)

yields
→    

2 ∗ 1000 ∗ 0.02

(4002 − 3502)
= 1.06 𝑚𝐹 

4.4.1.3 Design Procedure for Main Boost Diodes D1 and D2 

While designing the main boost diodes, there are two main factors which should be taken 

into account. These factors are the maximum currents through them and the maximum 

voltages across them. According to the Mode 4, the maximum currents through the main 

boost diodes are just less than the maximum currents through the input inductors. The 

maximum currents through the input inductors of the proposed interleaved converter are 

the same as the maximum input current where D< 0.5 while for duty cycle more than half, 

as shown in the first mode of operation, 𝐼𝑖𝑛,𝑚𝑎𝑥  >  𝐼𝐿1,2,𝑚𝑎𝑥 . As discussed previously, the 

maximum input current can be derived from equ. (4-3) where Vin should be selected from 

85-265. For the worse case design, 85 volts is selected:  

𝑖𝐷1,𝑚𝑎𝑥 = 𝑖𝐷2,𝑚𝑎𝑥 < 𝑖𝐿1,𝑚𝑎𝑥 = 𝑖𝐿2,𝑚𝑎𝑥 < 𝑖𝑖𝑛,𝑚𝑎𝑥 = 
√2 𝑃𝑜
𝜂 𝑉𝑖𝑛

yields
→   

√2 ∗ 1000

0.95 ∗  85
= 17.5 A 

Therefore, 17.5 amperes through the main boost diodes can be assumed for the worst-case 

scenario. The second parameter that should be designed, is the maximum voltages across 
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the diodes. As can be concluded from Mode 3, the maximum voltage across main boost 

diodes are clamped to the output voltage: 

𝑉𝐷1,𝑚𝑎𝑥 = 𝑉𝐷2,𝑚𝑎𝑥 = 𝑉𝑜 =  400 V 

Two fast recovery diodes with voltage stress and current stress which are respectively more 

than 400 V and equal to 17.5 A should be chosen. Two BYC10DX with 400 voltage stress 

and 20 A current stress are chosen. 

4.4.1.4 Design Procedure for Main Switches S1 and S2 

As it has been shown in Chapter 1, in AC-DC interleaved boost converters, so as to achieve 

low harmonic, fast dynamic response and high-power density the frequency should be 

increased that will lead to higher losses. This is the reason that the soft switching 

techniques must be implemented. The soft-switching methods for these converters can 

either be zero-voltage switching (ZVS) if they are implemented with MOSFETs or zero-

current switching (ZCS) if implemented with IGBTs. The proposed interleaved converter 

operates with ZCS turn-off of all the switches so two IGBTs should be used as the main 

switches. ZCS is beneficial for IGBTs as it eliminates the current tail that would otherwise 

exist when turning off. This current tail overlaps with the switch voltage and causes 

significant turn-off losses. In designing the main boost switches, the maximum currents 

through them and the maximum voltages across them as two main factors should be 

considered. The maximum currents through them are less than maximum currents through 

the input inductors as follows: 

𝑖𝑆1,𝑚𝑎𝑥 = 𝑖𝑆2,𝑚𝑎𝑥 < 𝑖𝐿1,𝑚𝑎𝑥 = 𝑖𝐿2,𝑚𝑎𝑥 < 𝑖𝑖𝑛,𝑚𝑎𝑥 = 
√2 𝑃𝑜
𝜂 𝑉𝑖𝑛

yields
→   

√2 ∗ 1000

0.95 ∗  85
= 17.5 A 

Thus, 17.5 A through the main switches can be assumed for the worse case design. The 

second parameter that should be considered is the maximum voltages across the switches. 

As can be seen from Mode 6, maximum voltage across the main switches are clamped to 

the output voltage: 

𝑉𝑆1,𝑚𝑎𝑥 = 𝑉𝑆2,𝑚𝑎𝑥 = 𝑉𝑜 =  400 V 
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Two STGP 10NC60KD with 400 voltage stress and 20 A current stress are chosen. 

 Design Procedure for the Auxiliary Circuit 

Auxiliary circuit components that should be designed include: one auxiliary switch Sa, two 

auxiliary inductors Lr1 and Lr2, four auxiliary diodes Da1, Da2, Da3, and Da4, and a resonant 

capacitor Cr. The auxiliary diodes Da1 and Da2 connect L1 and L2 to the auxiliary circuit. 

The maximum currents through Da1 and Da2 are equal to the maximum currents through 

input inductors: 

𝑖𝐷𝑎1,𝑚𝑎𝑥 = 𝑖𝐷𝑎2,𝑚𝑎𝑥 = 𝑖𝐿1,𝑚𝑎𝑥 = 𝑖𝐿2,𝑚𝑎𝑥 < 𝑖𝑖𝑛,𝑚𝑎𝑥 = 
√2 𝑃𝑜
𝜂 𝑉𝑖𝑛

yields
→   

√2 ∗ 1000

0.95 ∗  85
= 17.5 A 

maximum voltage across Da1 and Da2 are clamped to the output voltage: 

𝑉𝐷𝑎1,𝑚𝑎𝑥 = 𝑉𝐷𝑎2,𝑚𝑎𝑥 = 𝑉𝑜 =  400 V 

These auxiliary diodes are attached in series with Lr1 in order to make a path between the 

input inductors and Lr1 that diverts the current from the main switches to provide ZCS for 

turning them off by resonating with Lr2 and Cr. Since, the proposed converter is operating 

in DCM, it does not have the reverse recovery problem of the main power boost diodes. 

Therefore, to design Lr1, Lr2 and Cr characteristic graphs presented in Fig 4.2-4.8 should be 

used. 

As discussed previously, the value of characteristic impedance of the auxiliary circuit Z2 

should be designed in a way that 𝐼𝑆2,𝑚𝑎𝑥 =
𝑉𝑜

𝑍2
>  Iin,max. According to the design 

specifications: 

𝑉𝑜
𝑍2
=
400

𝑍2
> 𝑖𝑖𝑛,𝑚𝑎𝑥 = 17.5  𝐴    

yields
→       𝑍2 < 22.8 Ω 

Thus, Z2 should be less than 22.8 ohm. In order to be more conservative, based on Fig. 4.3, 

Z2=18 is selected: 

𝐼𝑆2,𝑚𝑎𝑥 =
𝑉𝑜
𝑍2
=
400

18
= 22.22  𝐴     
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It should be taken into account that the time in which the current through the main and 

auxiliary switches is reduced to zero should be minimized to shrink the operation time of 

the auxiliary switch. Then, the conduction losses can be reduced by shrinking the duty 

cycle of the auxiliary circuit. At the end of Mode 2 was shown that when the voltage of the 

auxiliary capacitor Vcr reaches zero, the currents through the main and auxiliary switches 

start to be reduced to zero. Therefore, by shrinking the duration time of Mode 2, the 

auxiliary switch needs to be operated for a less amount of time that results in decrease in 

the conduction losses. This time can be calculated by equ. (3-10), and based on the trade 

off it can be assumed to be less than 0.5 µ𝑠 time to minimize the conduction losses. Thus, 

the two following equations should be satisfied: 

𝑍2 = √
𝐿𝑟2
𝐶𝑟
= 18 Ω 

𝑇2 − 𝑇1 =
𝜋

2
 √𝐿𝑟2𝐶𝑟  < 0.5 µ𝑠 

As it was shown in Fig. 4.2, the value of the resonant capacitor should not be selected very 

low, because in this situation Vcr,max increases significantly while high value of the resonant 

capacitor creates additional stress in Sa by increasing ISa,max and the operating time of the 

auxiliary switch. On the other hand, by increasing Lr2 when Cr is constant, peak current 

through the auxiliary circuit decreases while the time in which current through the main 

and auxiliary switches is reduces to zero, increases. Based on the above-mentioned reasons 

and formulas, an appropriate trade off should be made in designing them. Lr2= 4 µ𝐻  and 

Cr=12 nf are selected as the best trade off.  

𝑍2 = √
𝐿𝑟2
𝐶𝑟
= √

4 ∗ 10−6

12 ∗ 10−9
= 18.25 Ω 

 𝑇2 − 𝑇1 =
𝜋

2
 √𝐿𝑟2𝐶𝑟 =

𝜋

2
 √4 ∗ 10−6 ∗ 12 ∗ 10−9 = 0.34 µ𝑠 
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It was shown in Fig. 4.6 and Fig. 4.8 that the value of Lr1 should be more than the value of 

Lr2 in order to divert the current from auxiliary circuit to turn off the auxiliary switch with 

ZCS. However, based on Fig 4.7, by designing the 
𝐿𝑟2

𝐿𝑟1
 close to one, the chance of ZCS for 

main switches increases. Based on the above-mentioned reasons and characteristic graphs 

show in Figs 4.5-4.8,  
𝐿𝑟2

𝐿𝑟1
= 0.8 is selected as an appropriate trade off. It means that Lr1 = 

5 µ𝐻 should be selected. The maximum voltage across the resonant capacitor shown in 

Fig. 4.2 plotted according to the selected values of Lr1 and Lr2. As can be seen from the 

Fig. 4.2, by choosing Cr=12 nf, Vcr,max  is equal to 535 V. 

The maximum current through the blocking diode Da3 which is attached in series with the 

auxiliary switch is equal to the isa,max: 

𝐼𝐷𝑎3,𝑚𝑎𝑥 = 𝐼𝑆2,𝑚𝑎𝑥 =
𝑉𝑜
𝑍2
=
400

18
= 22.22  𝐴     

The maximum voltage across the blocking diode is obtained in Mode 4, when the current 

should be diverted from auxiliary switch to be turned it off with ZCS. VDa3, max = Vcr = - 

VLr1 at Mode 4 when Vcr is reduced to zero, therefore the maximum voltage across the 

clamping diode is low and well under 100 V.   

The maximum current through the clamping diode Da4, which clamps the voltage of 

auxiliary switch to the output voltage, is almost equal to the input current 𝐼𝑖𝑛,𝑚𝑎𝑥 in Mode 

6. 

𝐼𝐷𝑎4,𝑚𝑎𝑥 < 𝐼𝑖𝑛,𝑚𝑎𝑥 = 17.5  𝐴     

Since, the voltage across it is clamped to the output voltage, 𝑉𝐷𝑎4,𝑚𝑎𝑥= 𝑉𝑜= 400 V. 

The proposed interleaved converter can be simulated by applying selected values of all 

inductors, capacitors, and switches in the circuit simulator PSIM. The following 

simulations can verify the selections of all component in worse case design. It can be seen 
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form Figs. 4.11-4.13. that, ZCS condition for all switches are met and maximum voltage 

across the capacitor is the same as shown in Fig. 4.2. 

 

 

 

Fig. 4.11. PSIM simulation of current and gate signal of main switch 

 

0.14235 0.142352 0.142354 0.142356 0.142358 0.14236

Time (s)

0

-2

2

4

6

8

10

I(S1) Vg1

 

Fig. 4.12. PSIM simulation of current and gate signal of auxiliary switch 
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Fig. 4.13. PSIM simulation of resonant capacitor 
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Data used for choosing devices by PSIM 

 The following data is extracted from simulations from PSIM in a switching cycle.  

 

Average Current 

through S1  

3.1 Amps 

Maximum Voltage 

across S1  

400 Volts 

Average Current 

through Sa  

0.98 Amps 

Maximum Current 

through Sa  

21.68 Amps 

Maximum Voltage 

across Sa  

400 Volts 

Maximum Voltage 

across Cr  

535 Volts 

Minimum Voltage 

across Cr  

-280 Volts 

Average Current 

through D1  

0.45 Amps 

Maximum Current 

through D1  

8.12 Amps 

Maximum Voltage 

across D1  

400 Volts 

Average Current 

through Da1  

1.29 Amps 

Maximum Current 

through Da1  

11.2 Amps 

Minimum Voltage 

across Da1  

400 Volts 

Average Current 

through Da3  

2.59 Amps 

Maximum Current 

through Da3  

21.68 Amps 

Maximum Voltage 

across Da3  

75 Volts 

Average Current 

through Da4  

1.61 Amps 

Maximum Current 

through Da4  

11.7 Amps 

Maximum Voltage 

across Da4  

400 Volts 

 

Above data proves that all the method used for designing the circuit in this chapter are 

correct. For example, the maximum voltage across the resonant capacitor is 535 volts, and 

maximum current through auxiliary switch is 21.68 amps. Therefore, the following circuit 

components are chosen for the proposed interleaved converter: 

1) Auxiliary Switch Sa: FGP3440G2 

2) Auxiliary Diodes Da 1,2,4: STTH20RD4 

3) Auxiliary Diode Da 3: SF3003PT 

4) Resonant Capacitor Cr: 0.012 µ𝐹/ CDV30FF123JO3 
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 Conclusion 

In this chapter, the results of the mathematical equations derived from the proposed 

interleaved converter in the steady-state condition in the previous chapter were used. The 

characteristic curves for the key components of the proposed converter were presented by 

using MATLAB simulations according to the steady-state equations. Effects of each key 

component on the operation of the converter were shown. At the end of this chapter, an 

example was given to illustrate the design procedure. By applying characteristic curves 

generated by MATLAB program and circuit simulator PSIM, value of each component 

was determined in order to satisfy the key design objectives. The selected values can be 

used in the next chapter as an experimental result. 
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Chapter 5  

 

5 Experimental Results 

 

 Introduction  

In this chapter, the design procedure of the proposed AC-DC interleaved ZCS-PWM boost 

converter explained in Chapter 4 will be validated by the laboratory prototype. Voltages 

and currents waveforms of the key component will be plotted to approve that design 

objectives are satisfied. The efficiency of the proposed converter will be compared to that 

of a same converter with hard-switching to show the improvement of the efficiency with 

soft-switching. It will be shown that because the auxiliary circuit is not in the path of main 

power circuit, in order to increase the efficiency, the proposed converter can be operated 

with hard-switching in output power less than 600W and operating with soft-switching in 

output power more than 600 W. 

 Experimental Results  

In this section, the feasibility of the proposed AC-DC interleaved ZCS-PWM boost 

converter verified with PSIM in previous chapter will be validated with the experimental 

prototype designed in Chapter 4 with the following specifications: 

Output Voltage V0= 400 Volts DC 

Output Power P0= 1 Kw 

Input Voltage Vin= 85- 265 Volts RMS 

Switching Frequency  = 𝑓𝑆 =
1

𝑇𝑆
=  50 KHz. 
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The experimental prototype was implemented by using the appropriate values for each 

component of the proposed converter selected in Chapter 4. As discussed in the previous 

chapter, the following components should be used for the laboratory prototype: 

  

• Input Inductances L1,2: 125 µ𝐻 /25 Turns on 77194A7 core 

• Main Boost Diodes D1,2: BYC10DX 

• Main Switches S1,2: STGP 10NC60KD 

• Output Capacitor:  2X560µF 3316(M) 

• Auxiliary Switch Sa: FGP3440G2 

• Auxiliary Diodes Da 1,2,4: STTH20RD4 

• Auxiliary Diode Da 3: SF3003PT 

• Resonant Inductor Lr1: 5 µ𝐻 /8 Turns on CO55894A2 core 

• Resonant Inductor Lr2: 4 µ𝐻 /7 Turns on CO55894A2 core 

• Resonant Capacitor Cr: 0.012 µ𝐹/ CDV30FF123JO3 

 

 

Vin

L1 L2
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D2
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Co Ro
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+

_
Lr2
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Fig. 5.1. Proposed AC-DC interleaved ZCS-PWM boost converter 
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Fig. 5.2. Main switch S1 voltage and current waveforms VS1, IS1 

 

 

VS1: 200 V/div, IS1: 5 A/div, t= 2.5 µs/div 
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Fig. 5.3. Auxiliary switch Sa voltage and current waveforms VSa, ISa 
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Fig. 5.4. Main input inductors L1 and L2 current waveforms IL1, IL2 

 

 

 

IL: 5 A/div, t= 5 µs/div 

IL2  IL1  
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Fig. 5.5. Rectified input current waveform IL1+ IL2 

 

 

 

IL: 5 A/div, t= 5 ms/div 

IL1 + IL2 
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Fig. 5.6. Rectified input current ripple and IL1 waveforms 
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Fig. 5.7. Input voltage and current waveforms Vin, Iin 
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Fig. 5.8. Gating signals of main switches and auxiliary switch VGs1, VGs2, VGsa 
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 Conclusion from Experimental Results  

The gating signals of main switches and the auxiliary switch are shown in Fig. 5.8. The 

ZCS operation of one of the main switches and the auxiliary switch during turn-on and 

turn-off are shown in Fig. 5.2 and Fig. 5.3 respectively by illustrating their current and 

voltage waveforms. The input currents of the proposed converter and the input inductors 

are shown in Figs. 5.4 -5.6. The input voltage and current of the converter is shown in Fig. 

5. 7. The following conclusions can be made by observing the waveforms presented in Fig. 

5.2 – 5.8: 

• It can be seen from Fig. 5.8 that the auxiliary switch operates only in a fraction of 

the time which main switches conduct. The reason is that it should be turned on just 

for performing ZCS condition for main switches during turn-off.  Thus, the 

frequency of the auxiliary switch gating signal is twice that of the main switches 

gating signals. 

• It can be seen from Fig. 5.4 and Fig. 5.5 that the input current of each module is 

designed to be discontinuous while the input current which is the summation of 

them is continuous.  As a result, the size and price of the input inductors are reduced 

considerably in comparison CCM method. 

• It can be seen from Fig. 5.6 that the input current ripple is reduced significantly by 

interleaving method. Because switches operate 180° out of phase so the inductors 

ripple currents are decreased by each other. Smaller inductors are needed which 

leads to use cheaper and lighter inductors. 

• It can be seen from Fig. 5.7 that the input current is sinusoidal and in phase with 

input voltage. As a result, power factor correction is almost 1. 

• It can be seen from Fig. 5.2 that the current through one of the main switches (S1) 

goes to zero before turning it off. It happens because after Sa is turned on, Cr begins 

to resonate with Lr2 so that the current in Lr2 rises while the voltage across Cr 

decreases. When the Vcr is charged to a negative voltage, Da1 and Da2 start to 

conduct. The current through Lr1 increases, thus IL1 and IL2 flow through the Lr1. 

The current in L2 is less than L1, thus the current through S1 becomes zero and S1 

can be turned off with ZCS. The current through S2 becomes negative and flows 
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through its body diode. Besides, as the input current of each module is 

discontinuous, main switches are turned on with ZCS too. 

• It can be seen from Fig. 5.3 that the current through the auxiliary switches (Sa) goes 

to zero before turning it off. During turning main switches off, the current in Lr2 

reaches to zero because of its resonance with Cr hence Sa can then be turned off 

with ZCS condition. Another point that can be observed from this figure is that 

because of using Lr2 in series with Sa, the current through the auxiliary switch is 

risen gradually hence there is no overlap between voltage and current which leads 

to turn the auxiliary switch on with ZCS too. 

 

 Efficiency Results 

In this section, the efficiency of the novel AC-DC interleaved ZCS-PWM boost converter 

is compared with the conventional one, which operates with hard- switching. As can be 

seen from Fig. 5. 10, the efficiency of the conventional converter is decreased by increasing 

the load while the efficiency of the proposed converter is increased. As can be seen from 

Fig. 5.10., when the power is less than 600W (light load), hard-switching method is more 

efficient while for higher power (more than 600 W) the proposed soft-switching method is 

more efficient.   

The main reason for this, is that the auxiliary circuit losses dominate when the converter is 

operating under light loads. Auxiliary circuit losses include the turning on and off of the 

auxiliary switch and additional conduction losses as there can be an increased amount of 

circulating current flowing in the converter. ZCS-PWM converters achieve their improved 

efficiency over hard-switching converters at heavier loads when switching losses of the 

main switches that are eliminated - especially the IGBT current tail losses - are greater than 

the auxiliary circuit losses.  

Therefore, the optimum efficiency can be obtained when the auxiliary circuit is used to 

achieve ZCS operation in a ZCS-PWM converter only when the converter is operating with 

heavier loads and not used when the converter is operating with light load. Operating the 

converter in such a manner would ensure the optimal efficiency profile over the entire load 
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range. It can be achieved in this thesis as the auxiliary circuit of the proposed converter can 

be disengaged during light loads.  

 

 

 

Fig. 5.9. Comparative of efficiency graphs between soft-switching and hard-

switching for different output loads at input voltage of 110 V and output voltage 

400V. 
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 Conclusion 

In this chapter, the modes of operation of the proposed PWM interleaved AC-DC boost 

converter which uses just a single active auxiliary circuit to assist all the main converter 

switches operate with ZCS and operates with ZCS itself was proposed. It was shown that 

the proposed circuit has fourteen intervals in each cycle which is divided into two identical 

half cycles. Then seven different modes of operation which are distinct from each other in 

terms of voltage across and current through the different components were illustrated. As 

it was shown, auxiliary circuit works in a very small instant of time in comparison with the 

whole switching cycle. Thus, at most of time, the proposed converter works as a 

conventional PWM interleaved boost converter. These modes of operation will be used for 

deriving mathematical equation in the next chapter. 
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Chapter 6  

 

6 Summary and Conclusion 

 

 Introduction  

In this chapter, the contents of the thesis are summarized, the conclusions that have been 

reached as a result of the work done in the thesis are presented and the main contributions 

of the thesis to the field of power electronics are stated. Finally, the potential future 

researches that can be done based on this thesis will be suggested. 

 Summary  

AC–DC converters have a significant role in new technologies such as adjustable-speed 

drives, plugged- in hybrid electric vehicles, power supplies for telecommunication 

systems, and battery chargers. In AC-DC interleaved boost converters, so as to achieve low 

harmonic, fast dynamic response, high power density, and low size the frequency should 

be increased. However, this will result in higher switching losses. To address this issue, 

soft-switching methods should be implemented.  When the frequency range is 50 kHz, 

insulate gate bipolar transistor (IGBT) is the common switch.  Since IGBT has current tail 

because of the minority carrier characteristic, it is turned off slowly. Thus, there is an 

overlap between the voltage and current in this condition that leads to losses in the IGBTs. 

Zero voltage switching (ZVS) and zero current switching (ZCS), are two dominant 

methods for tackling this problem. Due to tailing current of IGBT, applying ZVS needs a 

large parallel capacitor. On the other hand, turn off losses of the IGBT can be eliminated 

by the ZCS method appropriately. Based on above-mentioned reasons, the proposed circuit 

uses IGBT switches that can be properly turned off by ZCS. 

The main objective of this thesis was to propose, analyze, design, implement, and confirm 

the feasibility of the novel AC-DC interleaved ZCS-PWM boost converter by an 

experimental proof-of-concept prototype. The new converter uses just a single active 
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auxiliary circuit to assist all the main converter switches to operate with ZCS and operates 

with ZCS itself. This circuit does not increase the peak voltage or current stresses of the 

main switches and does not have any components in the main power path of the current so 

the auxiliary switch only handles a fraction of power that main switches should handle. 

Besides, by operating interleaved boost converter in DCM, switches can be turned on with 

ZCS inherently, reverse recovery losses of diodes are eliminated, and small input inductors 

can be used that leads to decrease in the size, weight and price of the converter. 

 

In Chapter 1, main reasons for applying soft-switching methods such as ZVS and ZCS 

were discussed. Then each soft-switching method, particularly ZCS in IGBT, was 

explained in detail. Conventional AC-DC interleaved boost converter was introduced, 

some of the papers which have been used soft switching for interleaved boost converters 

were reviewed, and the thesis objectives were stated. 

In Chapter 2, the modes of operation of the new PWM interleaved AC-DC boost converter 

that uses only a single active auxiliary circuit to assist all the main converter switches 

operate with ZCS and operates with ZCS itself was proposed. Then its features were stated. 

In Chapter 3, the different modes of operation of the proposed converter which were 

discussed in Chapter 2 were analyzed mathematically. Then the voltage and current 

equations that described the operation of the auxiliary circuit and other related components 

of the novel converter in steady-state were derived.  

In Chapter 4, the results of the mathematical equations derived from the proposed 

interleaved converter in the steady-state condition in Chapter 3, were used to determine the 

condition of operating all switches with ZCS. The characteristic curves for the key 

parameters of the proposed converter were generated by MATLAB program based on the 

steady-state equations. The effects of each key component on the operation of the converter 

were discussed. The design procedure was explained by an example. Afterward, the value 

of each component was determined by using characteristic curves generated by MATLAB 

program and circuit simulator PSIM so as to satisfy the key design objectives and confirm 

the feasibility.  
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In Chapter 5, the design procedure discussed in Chapter 4 were tested and validated by a 

1000 W laboratory proof-of-concept prototype. The efficiency of the proposed AC-DC 

interleaved ZCS-PWM boost converter was compared with the conventional one that 

operates with hard-switching to confirm the increase of efficiency by the proposed 

converter. 

 Conclusion  

The following significant conclusions can be made based on the work done in this thesis: 

• A novel auxiliary circuit with only one auxiliary switch for both main switches can 

be used in an AC-DC interleaved boost converter to perform ZCS in the main 

switches of the converter and also to increase the overall efficiency. 

• The auxiliary switch operates with ZCS as well. 

•  The main switches do not have increased peak and RMS current stresses because   

no current from the auxiliary circuit flows into the main circuit. 

• The auxiliary circuit does not interfere with the interleaving operation of the 

converter thus all the advantages of interleaving are maintained.  

•  Since, the input current of each module is designed to be discontinuous the size 

and price of the input inductors are reduced considerably in comparison with CCM 

method. In addition, reverse recovery losses of the main diodes are eliminated. 

• The input current is sinusoidal and in phase with the input voltage. As a result, 

power factor correction is almost 1. 

 Contributions  

The most significant contributions of this thesis are as follows: 

• A new AC-DC interleaved ZCS-PWM boost converter was proposed and its feasibility was 

confirmed by an experimental prototype. 

• The steady-state analysis of the proposed converter was done, its mathematical 

equations were derived, and its characteristics were determined.   
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• The operation of the auxiliary circuit was described and shown how it can perform ZCS 

for all the main switches and increase the overall efficiency. Besides, it was shown how 

this new converter has the priority to other contemporary interleaved converters. 

• Guidelines for satisfying objectives of the design were given and design procedures 

were explained by an example. 

 Future Work  

In this section, future works based on the work done in this thesis are suggested as follows: 

• The proposed converter is non-isolated interleaved converter. Thus, research can be done 

to implement this new converter with transformer to increase the efficiency. 

• This topology can be used for DC_DC applications, which have high current and low 

voltage characteristics, such as fuel cells and solar cells. 
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Appendix A  

MATLAB program which used to generate Fig. 4.2 

IL1=9.6; 

vo=400;  

cr=4:24; 

le= 2220; 

ze=sqrt(le./cr);  

vcrmax=(IL1*ze)+vo; 

plot(cr,vcrmax) 

grid on 

xlabel( 'Value of the auxiliary capacitor (nanofarad)') 

ylabel('Maximum voltage across the auxiliary capacitor (V)') 
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Appendix B 

MATLAB program which used to generate Fig. 4.3 

z=10:24; 

ip=400./z; 

plot(z,ip) 

grid on 

xlabel( 'Characteristic Impedance (Ohm)') 

ylabel('Peak current through auxiliary switch (A)') 
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Appendix C 

MATLAB program which used to generate Fig. 4.5 

lr11=0.000005;  lr21=0.000004;  lr22=0.00000425;  lr23=0.0000045;  lr24=0.00000475; 

lr25=0.000005;   lr26=0.00000525; 

cr=0.000000012; 

 z1=sqrt(lr21/cr); 

le1=lr11*lr21/(lr11+lr21); 

we1=sqrt(1/(le1*cr)); 

z2=sqrt(lr22/cr); 

le2=lr11*lr22/(lr11+lr22); 

we2=sqrt(1/(le2*cr)); 

 z3=sqrt(lr23/cr); 

le3=lr11*lr23/(lr11+lr23); 

we3=sqrt(1/(le3*cr)); 

 z4=sqrt(lr24/cr); 

le4=lr11*lr24/(lr11+lr24); 

we4=sqrt(1/(le4*cr)); 

 z5=sqrt(lr25/cr); 

le5=lr11*lr25/(lr11+lr25); 

we5=sqrt(1/(le5*cr)); 

z6=sqrt(lr26/cr); 

le6=lr11*lr26/(lr11+lr26); 

we6=sqrt(1/(le6*cr)); 

 t=0:0.000000001:0.0000007; 

 I11=18-(400/z1)*(le1/lr11)*(1-cos(we1*t)); 
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I12=18-(400/z2)*(le2/lr11)*(1-cos(we2*t)); 

I13=18-(400/z3)*(le3/lr11)*(1-cos(we3*t)); 

I14=18-(400/z4)*(le4/lr11)*(1-cos(we4*t)); 

I15=18-(400/z5)*(le5/lr11)*(1-cos(we5*t)); 

I16=18-(400/z6)*(le6/lr11)*(1-cos(we6*t)); 

plot(t,I11,'r')  hold on; 

plot(t,I12,'k')  hold on; 

plot(t,I13,'g')  hold on; 

plot(t,I14,'m')  hold on; 

plot(t,I15,'b')  hold on; 

plot(t,I16,'c') 

grid on; 

xlabel('time (S)') 

ylabel('Current in main switch (A)') 
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Appendix D 

MATLAB program which used to generate Fig. 4.6 

lr11=0.000005;  lr21=0.000004;  lr22=0.00000425;  lr23=0.0000045;  lr24=0.00000475; 

lr25=0.000005;   lr26=0.00000525; 

cr=0.000000012; 

z1=sqrt(lr21/cr); 

le1=lr11*lr21/(lr11+lr21); 

we1=sqrt(1/(le1*cr)); 

z2=sqrt(lr22/cr); 

le2=lr11*lr22/(lr11+lr22); 

we2=sqrt(1/(le2*cr)); 

z3=sqrt(lr23/cr); 

le3=lr11*lr23/(lr11+lr23); 

we3=sqrt(1/(le3*cr)); 

z4=sqrt(lr24/cr); 

le4=lr11*lr24/(lr11+lr24); 

we4=sqrt(1/(le4*cr)); 

z5=sqrt(lr25/cr); 

le5=lr11*lr25/(lr11+lr25); 

we5=sqrt(1/(le5*cr)); 

z6=sqrt(lr26/cr); 

le6=lr11*lr26/(lr11+lr26); 

we6=sqrt(1/(le6*cr)); 

t=0:0.000000001:0.0000007; 

I21=(400/z1)-(400/z1)*(le1/lr21)*(1-cos(we1*t)); 
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I22=(400/z2)-(400/z2)*(le2/lr22)*(1-cos(we2*t)); 

I23=(400/z3)-(400/z3)*(le3/lr23)*(1-cos(we3*t)); 

I24=(400/z4)-(400/z4)*(le4/lr24)*(1-cos(we4*t)); 

I25=(400/z5)-(400/z5)*(le5/lr25)*(1-cos(we5*t)); 

I26=(400/z6)-(400/z6)*(le6/lr26)*(1-cos(we6*t)); 

plot(t,I21,'r')  hold on; 

plot(t,I22,'k')  hold on; 

plot(t,I23,'g')  hold on; 

plot(t,I24,'m')  hold on; 

plot(t,I25,'b')  hold on; 

plot(t,I26,'c') 

grid on; 

xlabel('time (S)') 

ylabel('Current in auxiliary switch (A)') 
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Appendix E 

MATLAB program which used to generate Fig. 4.7 

lr11=0.0000038;  lr12=0.0000040;  lr13=0.0000042;  lr14=0.0000044;  lr15=0.0000047; 

lr16=0.000005;  lr21=0.000004; 

cr=0.000000012; 

z1=sqrt(lr21/cr); 

le1=lr11*lr21/(lr11+lr21); 

we1=sqrt(1/(le1*cr)); 

z2=sqrt(lr21/cr); 

le2=lr12*lr21/(lr12+lr21); 

we2=sqrt(1/(le2*cr));  

z3=sqrt(lr21/cr); 

le3=lr13*lr21/(lr13+lr21); 

we3=sqrt(1/(le3*cr));  

z4=sqrt(lr21/cr); 

le4=lr14*lr21/(lr14+lr21); 

we4=sqrt(1/(le4*cr));  

z5=sqrt(lr21/cr); 

le5=lr15*lr21/(lr15+lr21); 

we5=sqrt(1/(le5*cr)); 

z6=sqrt(lr21/cr); 

le6=lr16*lr21/(lr16+lr21); 

we6=sqrt(1/(le6*cr));  
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t=0:0.000000001:0.0000007;  

I11=18-(400/z1)*(le1/lr11)*(1-cos(we1*t)); 

I12=18-(400/z2)*(le2/lr12)*(1-cos(we2*t)); 

I13=18-(400/z3)*(le3/lr13)*(1-cos(we3*t)); 

I14=18-(400/z4)*(le4/lr14)*(1-cos(we4*t)); 

I15=18-(400/z5)*(le5/lr15)*(1-cos(we5*t)); 

I16=18-(400/z6)*(le6/lr16)*(1-cos(we6*t));  

plot(t,I11,'r')  hold on; 

plot(t,I12,'k')  hold on; 

plot(t,I13,'g')  hold on; 

plot(t,I14,'m')  hold on; 

plot(t,I15,'b')  hold on; 

plot(t,I16,'c') 

grid on; 

xlabel('time (S)') 

ylabel('Current in main switch (A)') 
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Appendix F 

MATLAB program which used to generate Fig. 4.7 

lr11=0.0000038;  lr12=0.0000040;  lr13=0.0000042;  lr14=0.0000044;  lr15=0.0000047; 

lr16=0.000005;  lr21=0.000004; 

cr=0.000000012; 

z1=sqrt(lr21/cr); 

le1=lr11*lr21/(lr11+lr21); 

we1=sqrt(1/(le1*cr));  

z2=sqrt(lr21/cr); 

le2=lr12*lr21/(lr12+lr21); 

we2=sqrt(1/(le2*cr));  

z3=sqrt(lr21/cr); 

le3=lr13*lr21/(lr13+lr21); 

we3=sqrt(1/(le3*cr));  

z4=sqrt(lr21/cr); 

le4=lr14*lr21/(lr14+lr21); 

we4=sqrt(1/(le4*cr));  

z5=sqrt(lr21/cr); 

le5=lr15*lr21/(lr15+lr21); 

we5=sqrt(1/(le5*cr)); 

z6=sqrt(lr21/cr); 

le6=lr16*lr21/(lr16+lr21); 

we6=sqrt(1/(le6*cr));  

t=0:0.000000001:0.0000007; 
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I21=(400/z1)-(400/z1)*(le1/lr21)*(1-cos(we1*t)); 

I22=(400/z2)-(400/z2)*(le2/lr21)*(1-cos(we2*t)); 

I23=(400/z3)-(400/z3)*(le3/lr21)*(1-cos(we3*t)); 

I24=(400/z4)-(400/z4)*(le4/lr21)*(1-cos(we4*t)); 

I25=(400/z5)-(400/z5)*(le5/lr21)*(1-cos(we5*t)); 

I26=(400/z6)-(400/z6)*(le6/lr21)*(1-cos(we6*t)); 

plot(t,I21,'r')  hold on; 

plot(t,I22,'k')  hold on; 

plot(t,I23,'g')  hold on; 

plot(t,I24,'m')  hold on; 

plot(t,I25,'b')  hold on; 

plot(t,I26,'c') 

grid on; 

xlabel('time (S)') 

ylabel('Current in auxiliary switch (A)')
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