
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

12-12-2017 12:00 PM 

Hepcidin-mediated Iron Regulation in P19 Cells is Detectable by Hepcidin-mediated Iron Regulation in P19 Cells is Detectable by 

MRI MRI 

Kobra Alizadeh Pourbouyeh, The University of Western Ontario 

Supervisor: Goldhawk, Donna E., The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in 

Medical Biophysics 

© Kobra Alizadeh Pourbouyeh 2017 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Diagnosis Commons, and the Medical Biophysics Commons 

Recommended Citation Recommended Citation 
Alizadeh Pourbouyeh, Kobra, "Hepcidin-mediated Iron Regulation in P19 Cells is Detectable by MRI" 
(2017). Electronic Thesis and Dissertation Repository. 5141. 
https://ir.lib.uwo.ca/etd/5141 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F5141&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/945?utm_source=ir.lib.uwo.ca%2Fetd%2F5141&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/668?utm_source=ir.lib.uwo.ca%2Fetd%2F5141&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/5141?utm_source=ir.lib.uwo.ca%2Fetd%2F5141&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


i 

 

Abstract 

Magnetic resonance imaging (MRI) can be used to track cellular activities in the body using 

iron-based contrast agents. However, intrinsic cellular iron handling mechanisms may also 

influence the detection of magnetic resonance (MR) contrast. For instance, inflammation 

involves downregulation of iron export in macrophages by the hormone hepcidin, due to 

degradation of the iron export protein, ferroportin (Fpn). We examined the effect of hepcidin 

on iron regulation and MR transverse relaxation rates in multi-potent P19 cells, which 

display high iron export activity, similar to macrophages. In response to varying conditions 

of iron supplementation, our results showed similar Fpn expression in P19 cells as reported 

for M2 macrophages. Also, hepcidin treatment resulted in Fpn degradation in P19 cells, 

similar to the reported response of M1 macrophages. The correlation between total cellular 

iron content and MR transverse relaxation rates was significantly different between hepcidin 

and non-hepcidin treated P19 cells, providing a tool to non-invasively distinguish different 

macrophage phenotypes and potentially improve the monitoring of inflammatory cell 

activities. 
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Chapter 1  

 Introduction  

1.1 Importance of Inflammation 

Inflammation is the immune system response to noxious stimuli such as pathogen or cell 

damage. The inflammatory response is activated in a variety of diseases, including cancer 

and myocardial infarction, to resolve the detrimental stimuli and repair the tissue. This 

response involves the activation and function of immune system cells such as 

lymphocytes, for antibody production and cytotoxic enzyme secretion, as well as 

monocytes and neutrophils, for phagocytosis (1, 2). More specifically, when 

inflammation is induced, monocytes which are derived from bone marrow stem cells, are 

recruited to the endangered tissue from the circulation and differentiate into macrophages 

(3, 4) to help remove detrimental stimuli and facilitate the tissue repair process. The 

function of these ‘activated’ macrophages ranges from pro-inflammatory activities, like 

secretion of pro-inflammatory cytokines to kill microorganisms and damaged cells, to 

anti-inflammatory activities that facilitate cell debris phagocytosis, inflammation 

resolution, tissue remodeling and tissue repair (2-4). However, inflammation is not 

always resolved successfully, resulting in several inflammation associated diseases in 

humans (1). For instance, chronic inflammation is a condition of sustained pro-

inflammatory response which may lead to hypoferremia or tissue damage (1, 2). On the 

other hand, a prolonged anti-inflammatory phase may lead to unwanted tissue remodeling 

which impairs tissue function, as seen after myocardial infarction (5-8). In addition, 

tumor associated macrophages may favor tumor growth by inducing cytokines involved 

in repair, remodeling and neo-angiogenesis (1, 2, 9). Thus, inflammation is an important 

process to monitor, whether to achieve an early stage diagnosis of the disease or to assess 

the tissue response to therapy. Being able to monitor inflammation over time can also 

improve the outcome of therapy. If the anti-inflammatory therapy is given too early, 

pathogens may not have been completely cleared. In contrast, if the therapy is given late, 

unwanted tissue remodeling may result in organ failure. Therefore, developing a tool to 
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track immune cell activities can improve our understanding of the biology underlying 

diseases as well as the effectiveness of therapies.  

Molecular imaging has emerged as a technique to track cellular and molecular processes 

involved in various diseases. The ultimate goal in this field is to establish disease-specific 

imaging biomarkers to enable in vivo monitoring of disease progression as well as its 

response to therapy. The current status of molecular imaging of inflammation is 

examined in greater detail. 

1.2 Molecular Imaging of Inflammation  

Various molecular imaging modalities have been examined in pre-clinical and clinical 

trials to monitor inflammation. Macrophages are attractive tracking targets since they 

accumulate in large numbers in the inflamed tissue (refer also to section 1.3). In addition, 

their endocytotic activity is ideal for the uptake of nanoparticles that provide contrast 

agents for imaging. 

Positron emission tomography (PET) is a highly sensitive technique for obtaining 

functional cellular and molecular information in a variety of diseases (10-12). In this 

technique, a positron-emitting radioisotope is tagged to a molecule that accumulates in 

the targeted cell and generates a signal by annihilation with nearby electrons and 

emission of two photons in opposite directions. Combining PET with magnetic resonance 

imaging (MRI) or computed tomography (CT), adds anatomical details to the functional 

information, providing a promising tool for disease monitoring (13-19). Several PET 

tracers have been developed using 89Zr (20), 64Cu (21), 124I (22) or 18F (23) for 

inflammation imaging. The most commonly used PET tracer in the clinic is 18F-2’-deoxy-

2-fluoro-d-glucose (18F-FDG), an analog of glucose. 18F-FDG is taken up by 

macrophages present in the inflammatory site and provides functional information of the 

abnormality. However, it also accumulates in the brain and heart. As a result, detecting 

inflammation foci in those organs will not be specific using this radiotracer (24, 25). In 

addition, 18F-FDG is phagocytosed in both pro-inflammatory and anti-inflammatory 

macrophages (26), making it difficult to distinguish different stages of inflammation. 
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MRI is a non-invasive imaging modality that utilizes static and varying magnetic fields as 

well as radiofrequency (RF) waves to obtain superb anatomical detail at any tissue depth 

(27). The mechanism of signal generation and signal detection in MRI will be discussed 

in detail in section 1.4. MRI contrast agents were initially developed to improve the 

detection of anatomical features. Today, however, several MRI contrast agents have been 

developed to improve the tracking of cellular and molecular activities (25). These 

contrast agents are divided into two main groups: exogenous agents and endogenous 

agents. Exogenous agents are chemically synthesized compounds such as 

superparamagnetic iron oxide nanoparticles (SPIONs) or gadolinium based chelates, 

which accumulate in the cells of interest (28-30). On the other hand, endogenous agents 

are reporter genes, overexpressed in the cells of interest to generate MR contrast in a 

protein-directed process (31-34). In particular, iron biominerals synthesized by 

magnetotactic bacteria in a membrane-enclosed compartment, termed the magnetosome, 

are an interesting alternative to chemically synthesized contrast agents. This structure is 

assembled in a protein-directed process that may be genetically manipulated (35, 36) and 

provides a model upon which to fashion MRI contrast (33, 34). 

Regarding iron-based contrast agents, whether exogenous or endogenous, it is expected 

that cellular iron-handling activities might affect the accumulation of these agents in the 

target cells and hence influence MR signal detection (37). As will be described in detail, 

inflammation-associated cells, i.e. macrophages, have distinct iron-handling activity. This 

may influence the MR detection of inflammatory processes using iron-based agents. It is 

therefore worth considering the effect of iron handling activity in macrophages, in the 

context of monitoring inflammation by MRI. What follows is first a description of iron 

regulation in inflammation compared to the healthy state (1.3) and then a discussion of 

the mechanism of signal detection in MRI, including the influence of contrast agents 

(section 1.4). Finally, the potential effect of inflammation-related iron regulation on MRI 

signal detection will be investigated using a cell model relevant to macrophage activity.  
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1.3 Systemic and Cellular Iron Regulation in Health 
and Inflammation  

Cellular iron regulation: 

All living organisms require iron for various types of cellular activities such as DNA 

synthesis and energy metabolism (38). At the cellular level, iron uptake, storage and 

export is mediated through specific proteins. In vertebrates, non-heme iron in serum is 

mainly bound to the protein transferrin (Tf) in the form of ferric ion, Fe (III). Tf-bound 

iron enters the cells through a receptor mediated process involving the transferrin 

receptor (TfRc). This is followed by reduction of Fe (III) to ferrous iron, Fe (II). The 

latter species is transported across the endosomal membrane by divalent metal ion 

transporter 1 (DMT1) and enters the labile iron pool (LIP), a transitory and redox-active 

source of iron. The majority of imported iron is stored in ferritin, an iron storage protein 

that oxidizes Fe (II) to Fe (III) as it forms the ferrihydrite (iron oxide) biomineral. While 

some imported iron is consumed by intracellular activities, the rest is exported from cells 

by the only known iron export protein in vertebrates, ferroportin (Fpn). Fpn-dependent 

iron export is also an oxidative process in which Fe (II) in the LIP is released to the 

extracellular matrix as Fe (III). These key steps complete the loop of cellular iron 

recycling machinery (Figure 1.1) (reviewed in (39)).   

Expression of cellular iron regulatory proteins is controlled post-transcriptionally by iron 

response protein (IRP) and iron response elements (IRE). IRE are hairpin structures 

found on the 3ʹ end of TfRc mRNA and 5ʹ end of ferritin subunits and Fpn mRNA. 

Therefore, regulation of Fpn and ferritin in response to iron level are linked. In the case 

of cellular iron overload, iron binds to IRP, preventing its binding to IRE. This in turn 

results in downregulation of the transferrin receptor to prevent further iron uptake; 

upregulation of ferritin to increase iron storage; and in some cells, upregulation of Fpn to 

export iron. In contrast, low cellular iron leads to upregulation of transferrin receptor and 

downregulation of ferritin and Fpn (37, 39). The expression of these proteins depends on 

the cell type and microenvironmental stimuli which will be discussed more in the next 

section.   
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Figure 1.1. Cellular iron homeostasis.  

Cells take up Tf-bound Fe (III) from plasma through a receptor-mediated interaction (Tf-

TfRc). Iron is then reduced and shuttled to a transient, redox-active labile iron pool by 

DMT1, for use by cellular activities or for storage in ferritin. Fpn returns iron back to the 

plasma and hepcidin negatively regulates iron export. Tf, transferrin; TfRc, transferrin 

receptor; Fpn, ferroportin; DMT1, divalent metal ion transporter 1; Fe (II), ferrous iron; 

Fe (III), ferric iron. The image is modified from Goldhawk et al, 2015 (37).  

Systemic iron balance: 

Besides various cellular activities, iron is predominantly utilized in erythropoiesis in 

vertebrates. For instance, erythropoiesis requires about 2-3×1015 iron atoms per second in 

humans (40). Dietary iron is one source of this element and is mainly absorbed by 

duodenal enterocytes (41) and stored in liver hepatocytes. However, iron uptake from diet 

is limited. Thus, vertebrates have evolved to maintain their iron resource through 

recycling. Macrophages, which are phagocytic cells of the immune system, are 

responsible for iron recycling in the body. Since red blood cells (RBCs) are the main 

utilizers of iron, recycling iron from engulfed senescent RBCs by spleen macrophages 

satisfies the majority of the daily iron requirement (40). In summary, iron is released to 

plasma from iron recycling macrophages, iron absorbing enterocytes and hepatic storage 

via the iron export protein, Fpn, which is also known as MTP1, Slc11a3, Slc40a1 and 

IREG1 (42-44) (Figure 1.2). 
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Despite the physiological benefits of iron, it also catalyzes the formation of reactive 

oxygen species (ROS) which may cause tissue damage. Since excess iron is not excreted, 

systemic iron is tightly regulated at the level of absorption, to provide cells with 

sufficient iron but prevent iron toxicity. The systemic iron balance is controlled by the 

regulation of Fpn expression on macrophages, enterocytes and hepatocytes (45). As will 

be described, Fpn expression is regulated transcriptionally, post-transcriptionally and 

post-translationally. 

Figure 1.2. Systemic iron 

metabolism.  

Dietary iron is absorbed in the 

duodenum by enterocytes and 

mainly stored in liver hepatocytes. 

Ferroportin (Fpn), the only known 

iron export protein, mediates iron 

release from these cells into plasma. 

Transferrin bound iron (Tf-Fe) in 

serum is then used for red blood cell 

production and other cellular activities. Iron from senescent red blood cells and other 

dead cells is recycled by macrophages (iMФ) through their Fpn activity. (Image retrieved 

from (40))  

Regulation of iron export protein, ferroportin (Fpn): 

At a transcriptional level, hypoxia and anemia upregulate Fpn mRNA (40, 46, 47), 

leading to increased iron release into plasma for erythropoiesis. Fpn transcription is also 

induced by iron accumulation in macrophages after erythrophagocytosis (48-50). On the 

other hand, Fpn transcription is supressed in splenic macrophages and the intestine 

during inflammation (51, 52). 

Fpn expression is also regulated post-transcriptionally in response to cellular iron level. 

As described earlier, Fpn mRNA contains (IRE) at its 5ʹ end which binds cytoplasmic 

IRP during cellular iron deficiency. This represses Fpn translation by sterically 
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interfering with ribosomal machinery (53). In contrast, increased cellular iron, for 

instance after erythrophagocytosis in macrophages, results in iron binding to IRP and 

thus prevents its binding to IRE. This removes the repression of Fpn translation (54, 55). 

Finally, Fpn is also regulated post-translationally by the polypeptide hormone hepcidin, 

which is predominantly produced by hepatocytes (56). Hepcidin, is the master regulator 

of iron homeostasis and triggers internalization and degradation of Fpn (57, 58). This 

prevents iron export and lowers the level of serum iron. Production of hepcidin itself 

depends on various factors as discussed in the following section. 

Regulation of hepcidin: 

Hepcidin is a hepatic peptide found only in vertebrates in three different forms: hepcidin 

20-amino acids (aa), hepcidin 22-aa and hepcidin 25-aa (59). Mature hepcidin is the 

polypeptide with 25 aa and is exclusively involved in iron regulation. Hepcidin 

expression is upregulated in response to increased iron concentration in serum via the 

bone morphogenetic protein-mothers against decapentaplegic homolog (BMP-SMAD) 

pathway. This prevents further increases in serum iron by blocking iron export from its 

principle sources: macrophages, hepatocytes and enterocytes (60). In contrast, when 

erythropoiesis increases, for example due to hypoxia, expression of hepcidin is 

downregulated so that more serum iron will be available for red blood cell production 

(61). 

Inflammation is another important regulator of hepcidin. Upregulation of hepcidin in 

response to inflammation is due to host defense mechanisms directed against microbial 

infections. Since iron is a vital element for cellular activities, it is not surprising that iron 

availability may also favor bacterial growth in the host. Most bacteria have developed 

complex mechanisms for iron uptake, such as secreting siderophores as high affinity iron 

binding molecules (62) or lysis of red blood cells to extract iron from heme (63). On the 

other hand, the host has also developed mechanisms to ensure bacterial iron deprivation. 

For instance, serum iron is mainly bound to Tf, which reduces the availability of free iron 

in the body (39, 64). Another tool involves upregulation of hepcidin expression during 

inflammation through IL-6 signaling (60). This results in Fpn degradation and prevents 
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iron export from key cells, including macrophages, thus limiting the availability of serum 

iron for bacterial purposes (51, 65). Since macrophages are key components of both iron 

recycling and the inflammatory response, the following section examines different 

macrophage phenotypes and their iron handling roles in the presence and absence of 

inflammation. 

Macrophages and iron handling: 

Macrophages are cells of the immune system, originating from blood monocytes which 

themselves arise from bone marrow stem cells. Macrophages, either circulating in the 

blood or resident in tissues, have phagocytic functionality to remove cell debris after 

apoptosis or invasion of bacteria and parasites. Depending on microenvironmental cues, 

macrophages may polarize into a wide range of phenotypes (3, 66) which dictate their 

iron handling (67). As described previously, under healthy conditions, iron recycling 

macrophages show high expression of Fpn which allows them to effectively recycle iron 

back to the circulation. On the other hand, when pathogen-associated or danger-

associated molecular patterns are recognized by host cells, a pro-inflammatory response 

is induced through release of cytokines and chemokines (2). This invokes monocyte 

recruitment to the inflamed tissue in a chemokine dependent manner. When these 

monocytes differentiate to macrophages, they then polarize in a cytokine-dependent 

manner into pro-inflammatory (classically activated) M1 macrophages (3). M1 

macrophages themselves increase production of pro-inflammatory cytokines and have 

antimicrobial activity. In the context of iron homeostasis, M1 macrophages express Fpn 

at a minimal level and hence display low iron export activity, but relatively high ferritin 

expression to retain iron (67). In addition, Fpn protein in M1 macrophages is degraded in 

response to the increased level of circulating hepcidin, as part of pro-inflammatory 

signaling. As a result, inflammation is an anti-bacterial response, producing M1 

macrophages with an iron retention phenotype to reduce bacterial access to iron. On the 

other hand, anti-inflammatory (alternatively activated) M2 macrophages are involved in 

resolution of the inflammation phase, with important roles in tissue repair and wound 

healing. These M2 cells express higher levels of Fpn and lower levels of ferritin, giving 

them an iron exporting phenotype (67). The key differences in iron handling activity 
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between M1 and M2 macrophages are summarized in 

 

Figure 1.3. M2 macrophages engulf cell debris after resolution of inflammation and 

export cellular iron to replenish the supply in serum. In addition, M2 macrophages 

activate anti-inflammatory cytokines to stop inflammatory signaling and secrete growth 

factors to promote tissue repair. It is noteworthy that tumor associated macrophages have 

similar iron handling properties as M2 macrophages and hence may promote tumor 
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progression (9, 68). Therefore, macrophages are important components of microbial 

infection, inflammation and tumorigenesis.  

 

Figure 1.3. Iron handling in M1 and M2 macrophages.  

M1 macrophages represent an iron-storage phenotype with low Fpn and high FtH 

expression, while M2 macrophages have iron-recycling properties with high Fpn and low 

FtH expression. Fpn, ferroportin; FtH, ferritin (heavy chain); LIP, labile iron pool; TfRc, 

transferrin receptor. The image was retrieved and modified from Corna et al (67).  

As discussed so far, macrophages have key roles in diseases with inflammatory 

components and accumulate in high numbers at sites of inflammation. Therefore, 

macrophages are interesting targets for inflammation monitoring and therapy. In addition, 

hepcidin dependent downregulation of Fpn in M1 macrophages, in response to 

inflammation, and their associated iron retention may provide a mechanism to distinguish 

them from M2 macrophages using molecular imaging. This may give us a better 

understanding of inflammation progression as well as its response to therapy. 

Magnetic resonance imaging (MRI) is a non-invasive imaging modality which has been 

widely used to monitor macrophages. Various studies have been performed to label and 

track macrophages using exogenous iron-based MRI contrast agents (69-72). However, 

the influence of altered macrophage iron homeostasis on the MRI signal, in response to 
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inflammation, has not been established. In the next section, the basics of MRI signal 

generation and the influence of iron particles will be described. In chapter 2, we will 

examine an iron exporting cell type, called P19, to model M2 macrophage activity and 

investigate if P19 cells may show the phenotypic M1 iron handling in response to 

hepcidin.  

1.4 MRI Relaxometry 

To understand how iron particles might affect MRI signals, the physics of MRI will be 

briefly described.  

As a general overview of MRI, the subject (patient, animal model or phantom) is 

surrounded by a magnet and, after excitation by a radiofrequency (RF) pulse, emits 

signals that will be collected by detectors. This signal is then used in image 

reconstruction to visualize different organs and tissues (73).  

Each atom’s nucleus consists of neutral particles called neutrons and positively charged 

particles called protons. Each proton spins around its axis with a small magnetic moment 

(μ). Normally, magnetic moment vectors align in random directions, resulting in zero net 

magnetization (M=0). When the object is placed in an external magnetic field such as the 

MRI magnet (magnetic field: B0), due to the interaction between the external magnetic 

field and spins, spins start to precess with Larmor frequency (ω0) which is given by the 

equation below: 

 ω0 = γB0          [1.1] 

In equation 1.1, B0 is the magnitude of the external magnetic field in Tesla (T), ω0 is the 

precession Larmor frequency in radians/sec, and γ is the gyromagnetic ratio. Based on 

this equation, precession frequency increases proportionally with the strength of the 

external magnetic field and the exact relationship is determined by γ which has a unique 

value for each nuclear species. For instance, γ is 42.58 MHz/T for protons (H+), which 

are the predominant type of atom in the body (73). 



12 

 

Within an external magnetic field, a small fraction of spins aligns parallel to the magnetic 

field (low energy state), resulting in a non-zero net magnetization. Since this 

magnetization is parallel to the external magnetic field (and assumed to be in the z 

direction in a coordinate system), it is called longitudinal magnetization (Mz). To obtain a 

signal, this magnetization needs to be rotated. For this purpose, an oscillating magnetic 

field (B1), which comes from a RF pulse at the Larmor frequency that is oriented 

perpendicular to B0 (i.e., in the x-y plane), is applied to the subject. Because the applied 

RF pulse has the same frequency as precessing spins, these acquire energy from the pulse 

which alters their energy state. This phenomenon is called resonance. As a result, some 

spins will align anti-parallel to the external magnetic field (higher energy states) which 

results in shortening of the longitudinal magnetization. In addition, magnetic moments 

will then spin in-phase about the z axis, which results in a newly established transverse 

magnetization vector in the x-y plane (Mxy). Due to the 90˚ change in the direction of 

magnetization, this RF pulse is also called the 90˚ pulse.   

When the 90˚ pulse is switched off, the transverse magnetization gradually disappears 

due to de-phasing of spins after removing the RF pulse. The dephasing process occurs 

because of the interaction between each spin and its neighbor, resulting in a difference in 

their precessing frequency that forces them out of phase. This process is called transverse 

relaxation or spin-spin relaxation and is described by a transverse relaxation time 

constant, T2, which is the time it takes for transverse magnetization to decay to 37% of its 

original magnitude. In reality, however, inhomogeneities in the local magnetic field may 

increase the dephasing effect, resulting in a faster dephasing process and shortening the 

observed transverse relaxation time, denoted as T2* (73). These inhomogeneities are 

caused by intrinsic defects in the external magnetic field and/or susceptibility-induced 

field distortions within the tissue. 

On the other hand, spins tend to return to their original energy state (also called the 

equilibrium or relaxation state). Therefore, acquired energy by protons is given to the 

lattice surrounding them in the form of thermal energy. So, the anti-parallel spins become 

parallel again, restoring longitudinal magnetization. This process is called longitudinal 

relaxation or spin-lattice relaxation and is described by a longitudinal relaxation time 
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constant, T1, which is the time it takes for longitudinal magnetization to return to 63% of 

its original magnitude.   

These three relaxation time constants (T1, T2 and T2*) can be converted to relaxation rates 

as follows: R1=1/T1, R2=1/T2 and R2*=1/T2*. In addition, the difference between R2* (the 

transverse relaxation rate due to spin-spin interactions and inhomogeneities in an external 

magnetic field) and R2 (the irreversible component of transverse relaxation due only to 

spin-spin interactions) is defined as R2ʹ, the reversible component of transverse relaxation 

due to inhomogeneities in the local magnetic field; R2ʹ = R2* - R2. 

It is important to mention that transverse magnetization (Mxy) is constantly precessing 

with the Larmor frequency as well and therefore, similar to any other oscillating magnetic 

field, it induces an electrical current in the RF coil elements, which ultimately comprises 

the MR signal. The magnitude of this signal is proportional to the magnitude of the 

transverse magnetization (Mxy) with the same oscillating frequency as Mxy. Since the 

magnitude of transverse magnetization decreases with time, the signal intensity decreases 

as well. This signal is called free induction decay (FID).  

To be able to measure each relaxation rate, a specific pulse sequence is applied. Each 

pulse sequence is comprised of RF pulses as well as three gradient magnetic fields which 

identify the three-dimensional location of the obtained signals. Here we focus on two 

different types of sequences which will be used in this study; spin echo (SE) and gradient 

echo (GRE) sequences.  

Spin echo (SE) Sequence: 
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In this sequence, a 90˚ pulse is applied first to tilt the longitudinal magnetization into the 

x-y plane, which creates the first FID, followed by one (or multiple) 180˚ pulses. The 

purpose of this 180˚ pulse is to eliminate the de-phasing effect due to inhomogeneities in 

the local magnetic field by re-phasing the ‘fanning out’ spins and hence increase the 

magnitude of signal intensity. Time to echo (TE) is the time between the first 90˚ pulse 

and when the signal (echo) is refocused. The repetition time (TR) is the time between the 

two subsequent 90˚ pulses, where the whole sequence is repeated. The amplitude of the 

SE signal is described by a decay of the form 𝑒
−𝑡

𝑇2, with a time constant given by T2 

(Figure 1.4).  

Figure 1.4. Spin echo pulse sequence and corresponding FID. 

By applying 180˚ pulses, the effect of inhomogeneities in the local magnetic field is 

diminished and hence spins that fan out are re-phased. So, the signal decays by T2. TE, 

time to echo; TR, repetition time; FID, free induction decay. 

Gradient echo (GRE) sequence:  

In a GRE sequence, signal refocusing is accomplished by a gradient magnetic field which 

is applied in two opposite directions one after the other, instead of 180 pulses. As a result, 
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the inhomogeneities of the local magnetic field will influence the dephasing of spins and 

therefore, the decaying curve will be described by T2* instead of T2; 𝑒
−𝑡

𝑇2
∗
 ( 

Figure 1.5).  

 

Figure 1.5. Gradient echo sequence and corresponding FID. 

Since there are no 180˚ pulses, the signal intensity decays by T2*. TE, time to echo; TR, 

repetition time; FID, free induction decay. 

 

Tissue contrast and contrast agents in MRI: 

Depending on TR and TE, the difference in signal intensity (defined as contrast) between 

two materials can be explained by their proton density, T1 and T2. With a relatively short 

TR, for example, the difference in signal intensity between two materials can be 

distinguished based on their T1. This type of image is called T1-weighted. By using very 

long TR, however, the difference explained by T1 will be diminished. In this case, the 

difference in signal intensity between two materials can be distinguished based on T2 if a 
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long enough TE is chosen. This type of image is called T2-weighted. The more T1 or T2 

relaxation is different between two materials, the more different their signal intensities 

and therefore the greater the image contrast. This constitutes the basis for using MRI 

contrast agents. MR contrast agents that result in the shortening of T1 brighten the MR 

image in a T1-weighted procedure. For this reason, they are called positive contrast 

agents. Other MR contrast agents result in the shortening of T2; however, this effect 

results in decreased signal intensity and consequently darkening of the MR image in a T2-

weighted procedure. As a paramagnetic material, iron shortens the T2 of atomic nuclei 

present in the cells in which it has accumulated. Thus, different iron handling activities in 

different cell types may affect the MR signal. When using iron-based MR contrast agents, 

it is important to take the iron handling activities of the cell into account. For example, as 

described earlier, macrophages are immune cells that accumulate at sites of inflammation 

and display select iron handling activity due to the regulation of Fpn expression by 

hepcidin. This lead us to investigate the influence of inflammation-related cellular iron 

regulation on the MRI signal.  

1.5 Overview of the Thesis: 

Inflammation is the immune system’s response to cell damage and/or pathogenic 

threat(s). Macrophages, the main phagocytotic cells of the body, accumulate at the site(s) 

of injury in response to inflammatory signaling. Macrophages have a distinct role in 

pathogen removal and tissue repair when polarized to M1 (pro-inflammatory) and M2 

(anti-inflammatory) macrophages, respectively, with distinguishable iron handling 

activity as a result of hepcidin upregulation (66). Hepcidin expression increases in 

response to inflammation (60) and triggers degradation of the iron export protein, Fpn, 

present on macrophages. This results in polarization to an M1 phenotype and is part of 

the host defense mechanism in vertebrates to limit iron availability for bacterial growth. 

On the other hand, M2 macrophages will actively export iron to facilitate resolution of 

the inflammatory phase and provide a co-factor required for cell synthesis and tissue 

repair (3). These features of iron regulation might influence the MRI signal when 

tracking macrophages and monitoring inflammation. Thus, we investigated the influence 

of hepcidin-dependent changes in cellular iron regulation on MRI signal detection using 
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P19 mouse embryonic teratocarcinoma cells as a model of iron export. This multi-potent 

cell line has shown high iron import and export activity (74), similar to M2 macrophages 

and can be differentiated into the three germ cell layers: endoderm, mesoderm, and 

ectoderm. In addition, P19 is a fast-growing cell type, unlike most monocyte or 

macrophage cell lines, and therefore easy to handle in cell culture.  

1.5.1 Hypothesis 

Downregulation of iron export protein, ferroportin, by hepcidin alters cellular iron 

content and increases transverse relaxation rates in P19 cells, providing a tractable model 

of macrophage behavior for molecular imaging of inflammation. 

1.5.2 Thesis Objectives 

The first objective was to examine the expression of Fpn in P19 cells under various 

conditions of iron supplementation, with or without hepcidin. The regulation of Fpn 

expression was assessed by Western blot using total protein from P19 cells. We expected 

that P19 cells would show high Fpn expression when supplemented with extracellular 

iron, consistent with high iron export activity (74). In addition, we expected Fpn to be 

degraded in response to hepcidin treatment, consistent with previous reports (57, 58, 75, 

76).  

The second objective was to investigate the effect of extracellular iron supplementation 

and hepcidin treatment on cellular iron content in P19 cells. Inductively-coupled plasma 

mass spectrometry (ICP-MS) analysis was used to determine total cellular iron content in 

P19 cells. We expected to detect higher cellular iron content in P19 cells supplemented 

with extracellular iron versus non-supplemented cells. More importantly, for cells treated 

with hepcidin, higher cellular iron content was expected due to the degradation of iron 

export protein, Fpn, compared to non-hepcidin treated cells.  

The third objective was to determine the influence of different conditions of iron 

supplementation on the MR transverse relaxation rates in P19 cells. In addition, the 

influence of hepcidin treatment on MR transverse relaxation rates was examined. When 

cellular iron increases for cells supplemented with extracellular iron, we expected higher 
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MR transverse relaxation rates. Also, we expected higher transverse relaxation rates for 

hepcidin treated cells compared to non-hepcidin treated cells, due to the expected 

increase in their cellular iron content.   
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Chapter 2  

 Hepcidin-mediated Iron Regulation in P19 Cells is 
Detectable by MRI 

2.1 Introduction 

Inflammation is the immune system response to harmful stimuli. This process involves the 

activation of immune system cells that remove the noxious stimuli and initiate tissue repair 

(1). In particular, monocytes and macrophages are recruited to the endangered site from 

the circulation and differentiate into pro-inflammatory (M1) macrophages and anti-

inflammatory (M2) macrophages (2). M1 (also called classically activated) macrophages 

have a distinct role in secreting pro-inflammatory cytokines which facilitate pathogen or 

damaged cell removal. M2 (also called alternatively activated) macrophages are 

responsible for inflammation resolution and tissue repair (3).  

Interestingly, iron handling mechanisms in these two phenotypes are different. M1 

macrophages show low iron export and high iron storage activities by expressing a low 

level of Fpn, the only recognized iron export protein in vertebrates (4), and a high level of 

ferritin, respectively (5). In the pathogen removal phase, this represents a host defense 

mechanism to limit free iron availability for bacterial growth. This occurs in response to 

upregulation of the endocrine hormone hepcidin during inflammation (6). Hepcidin 

activity downregulates Fpn, resulting in iron retention in M1 macrophages (7, 8). On the 

other hand, M2 macrophages show high iron export and low iron storage activities by 

expressing a high level of Fpn and low level of ferritin, respectively (5). This feature 

facilitates the tissue repair process by providing iron to adjacent cells as a growth co-factor 

in the inflammation resolution phase. Being able to distinguish between M1 and M2 

macrophages may lead to a better understanding of the different phases of inflammation 

and improve diagnosis and treatment outcomes. 

MRI is a non-invasive imaging method that can be used to track cellular activities involved 

in different diseases. Toward achieving molecular imaging capability, various iron-based 

exogenous and endogenous contrast agents have been developed to enhance image contrast 

(9, 10). Hence, it might be expected that cellular iron handling activities may influence the 
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accumulation of contrast agents and their detection by MRI (11). In the case of iron 

exporting cells, particularly pro- and anti-inflammatory macrophages, their distinct iron 

regulation might even be distinguishable by MRI. To investigate this hypothesis, we used 

the multi-potent P19 stem cell model, which exhibits high iron import and export activities 

(12), the latter of which corresponds with high expression of Fpn (11). In this regard, P19 

cells resemble macrophages (5) and may provide a convenient model of iron regulation 

during inflammation. In this study, we examined the effect of varying extracellular iron 

supplementation and hepcidin signaling on MR contrast in undifferentiated P19 cells, to 

model the non-invasive detection of molecular activity present during inflammation. 

Changes in total cellular iron content as well as Fpn expression confirm the influence of 

iron handling activities on MRI and establish the potential of P19 cells to model 

inflammatory responses.  

2.2 Method 

2.2.1 P19 Cell Culture and Treatment 

2.2.1.1 Cell Model 

Mouse multipotent teratocarcinoma cells (P19, ATCC® CRL-1825™) were cultured in 

alpha-minimum essential medium (α-MEM). Medium was supplemented with 10% fetal 

bovine serum (FBS), 4 U/mL penicillin and 4 μg/mL streptomycin. Cells were incubated 

in a humid chamber at 37˚C with a 5% CO2/air mixture and passaged 1:10 or 1:20 when 

they reached 70% confluency. Cells were harvested by trituration alone for protein 

expression analysis or after 30 sec incubation with 0.05% Trypsin/EDTA for trace 

element analysis and MR relaxation rate measurements. All cell culture reagents were 

purchased from Life Technologies, Burlington, Canada. 

2.2.1.2 Iron Supplementation 

A flow chart depicting sample preparation is shown in Figure 2.1. To study the P19 cell 

response to extracellular iron, cells cultured in standard (non-supplemented) medium (-

Fe), were placed in iron-supplemented medium containing 25 µM of ferric nitrate 

(Sigma-Aldrich, Oakville, Canada) for 5-7 days (+Fe). After iron supplementation, 
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extracellular iron was removed and replaced with non-supplemented medium for an 

additional 1 (1h-Fe), 2, (2h-Fe), 4 (4h-Fe) and 24 (24h-Fe) hours, to examine iron export 

activity in P19 cells over time (Figure 2.1, first row). Changes in total cellular iron 

content, Fpn expression and MR signal were then explored over the treatment timeframe, 

as will be described.   

2.2.1.3 Hepcidin Treatment 

To investigate the effect of hepcidin, cells were cultured in medium containing 200 

ng/mL hepcidin (Sigma-Aldrich, Oakville, Canada) using two different treatments: 

hepcidin was added either one hour after the removal of extracellular iron supplement (at 

1h-Fe; Figure 2.1, second row) or immediately after iron supplement removal (Figure 2.1, 

third row). These time points for the addition of hepcidin are related to the rate of iron 

export rate in P19 cells. Based on a previous study, P19 cellular iron content decreased 

substantially within the first hour following withdrawal of iron supplementation (12). By 

adding hepcidin at time points in which active iron export was expected, we aimed to 

block iron export in P19 cells. 

In addition, cell samples +/-Fe were incubated with hepcidin for the last 24 hours of 

culture. This was performed to separate potential changes in the P19 cell response to 

inflammation (i.e. hepcidin) from those changes arising from the combination of hepcidin 

and increased extracellular iron. 

2.2.2 Protein Expression  

2.2.2.1 Protein Assay  

Cells were cultured under different conditions of iron supplementation and hepcidin 

treatment as described above (Figure 2.1). Then, they were washed twice using 10 mL 

phosphate buffered saline (PBS, 137mM NaCl/2.7 mM KCl/10mM HPO4
2-), collected in 

1 mL radioimmunoprecipitation assay buffer (RIPA; 10 mM Tris-HCl pH 7.5/140 mM 

NaCa/1% NP-40/1% sodium deoxycholate/0.1% sodium dodecyl sulfate [SDS]) 

containing 150 μL Complete Mini protease inhibitor cocktail (Roche Diagnostic Systems, 
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Laval, Canada) and lysed by sonication. Total amount of protein was quantified using the 

BCA protein assay  (13).   

 

Figure 2.1. Flow chart of P9 cell sample preparation.  

Cells were cultured in non-supplemented (-Fe) or iron-supplemented (+Fe) medium 

containing 25 µM ferric nitrate for 5-7 days prior to withdrawal of iron supplementation 

and further culture in non-supplemented medium for an additional 1 (1h-Fe), 2 (2h-Fe), 4 

(4h-Fe) or 24 (24h-Fe) hours (first row). To examine the cells’ response to hepcidin, 200 

ng/ml hepcidin/medium was added to the culture at either 1h-Fe (second row) or 

immediately after removal of iron supplementation (third row). In addition, -Fe and +Fe 

samples were incubated with hepcidin for the last 24 hours of culture in non-

supplemented (-Fe +H) or iron-supplemented (+Fe +H) medium, respectively. At each 

time point, live cells were harvested and either prepared for MRI or lysed and analyzed 

by Western blot (for protein) and inductively-coupled plasma mass spectrometry (ICP-

MS, for elemental iron).   

2.2.2.2 Western Blot 

Each Western blot sample was prepared in 30 µL total volume containing 20 µg of total 

cellular protein (14). Molecular weight standards were purchased from Thermo Fisher 

Scientific, Mississauga, Canada. To reduce protein disulfide bonds, 1 mM dithiothreitol 

(DTT, Thermo Fisher Scientific, Mississauga, Canada) was added to the sample 
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preparation buffer and samples were heated at 80 ˚C for 5 minutes prior to 

electrophoresis. Proteins were separated by sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) using a 10 % acrylamide running gel and a 5 % acrylamide 

stacking gel. Proteins were transferred onto nitrocellulose blots (Thermo Fisher 

Scientific, Mississauga, Canada) using the Original iBlot® Gel Transfer Device (Life 

Technologies, Burlington, Canada). Nonspecific protein binding was blocked by 

incubating blots in 5% bovine serum albumin (BSA)/Tris-buffered saline (TBS)/0.02 % 

sodium azide (TBSA) for a minimum of 2 hours at room temperature. For Fpn detection, 

blots were incubated with a 1:1000 dilution of rabbit anti-ferroportin 1 antibody (Thermo 

Fisher Scientific, Mississauga, Canada)/5% BSA/TBSA at 4˚C overnight. Then blots 

were washed using Tris-buffered saline/ 0.1% Tween 20 (TBST), Sigma-Aldrich, 

Oakville, Canada) for 30 minutes with 4 changes of buffer and incubated for another 1 

hour with a 1: 20,000 dilution of horseradish peroxidase (HRP)-conjugated goat anti-

rabbit IgG secondary antibody (Sigma-Aldrich, Oakville, Canada)/5% BSA/TBS at room 

temperature. Finally, blots were washed with 0.1% TBST for another 30 minutes with 2 

changes of buffer and were then imaged using the Chemigenius Gel Doc (Syngene). A 

chemiluminescent signal was detected using SuperSignal West Pico Chemiluminescent 

Substrate (Thermo Fisher Scientific, Mississauga, Canada) according to the 

manufacturer’s instructions. The reported molecular weight (M.W.) for Fpn is 

approximately 63 kDa (15, 16). 

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as a control to confirm 

uniform protein loading in all lanes. For GAPDH detection, blots were reprobed as 

detailed above, with the following changes. Blots were incubated overnight in a 1:2000 

dilution of rabbit anti-GAPDH antibody (Thermo Fisher Scientific, Mississauga, Canada) 

and for 1 hour in a 1: 20,000 dilution of HRP-conjugated goat anti-rabbit IgG secondary 

antibody, all at room temperature. The reported molecular weight for GAPDH is 

approximately 37 kDa (17). 

To assess changes in Fpn expression, the signal intensity of each 63kDa Fpn band was 

normalized to the corresponding GAPDH band for that sample, using Image Lab 



31 

 

software version 5.2. The results were then normalized to the +Fe (no hepcidin) 

condition. 

2.2.3 Trace Element Analysis  

At harvest, P19 cells were lysed and protein concentration was determined as described 

in 2.2.2.1 section. Samples with concentrations of 0.5- 2 mg protein/mL were prepared 

for trace element analysis. The concentration of elemental iron (Fe) was measured by 

ICP-MS (Biotron Analytical Services, Western University) and normalized to protein 

concentration.  

2.2.4 MRI of P19 Cells 

2.2.4.1 Cell Harvest and Phantom Preparation 

P19 cells were cultured in four or five 150 mm cell culture dishes to have a sufficient 

number of cells for this experiment (approximately 40-50 million cells). After harvesting, 

cells were centrifuged at 400×g and 15˚C for 5 minutes, repeating as needed to obtain the 

desired compact cell pellet in custom made Ultem wells (Inner diameter: 4 mm and 

height: 10 mm, Lawson Imaging Prototype Lab). Afterwards, wells were placed in a 9 

cm, spherical 4% gelatin (porcine type 1, Sigma-Aldrich, Oakville, Canada)/PBS 

phantom (18) and overlaid with sterile filtered 4% gelatin/PBS (Figure 2.2a). 

2.2.4.2 Data Acquisition and Relaxation Rate Calculation 

Using a knee RF coil, the gelatin phantom was scanned on a 3T mMR Biograph (Siemens 

AG, Erlangen, Germany), using previously described sequences (18), to obtain transverse 

relaxation rates. Single echo spin echo and multi-echo gradient echo sequences were 

applied to obtain R2 and R2*, respectively. The reversible component, R2ʹ was calculated 

by subtraction (R2* ‒ R2). 
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 The following imaging parameters were employed. For the single echo spin echo 

sequence: TE= 13, 30, 40, 60, 80, 100, 150, 200, 300 ms; TR= 2010 ms; flip angle= 90˚; 

total scanning time= approximately 61 minutes. For the multi echo gradient echo 

sequence: TE= 6.12, 14.64, 23.16, 31.68, 40.2, 50, 60, 70, 79.9 ms; TR= 200 ms; flip 

angle= 60˚; total scanning time= approximately 25 minutes. In both sequences, the field 

of view was 120×120 mm, the voxel size was 1.5×0.6×0.6 mm3 and the matrix size was 

192×192. The slice thickness was 3 mm, perpendicular to the wells as shown in Figure 

2.2b.  

Figure 2.2. MRI cell phantom and slice localization.  

Two hemispheres of a plastic mold were filled with 4% gelatin/PBS. Cells were placed in 

Ultem wells in one hemisphere, overlaid with 4% gelatin/PBS and covered by the other 

hemisphere. Sample orientation was indicated by a plastic peg. b) Using a knee RF coil, 

images were acquired at 3T. In the cross-sectional view (left panel), the arrangement of 

sample wells is shown.  A 3-mm thick slice was defined for image acquisition by the 

yellow box in the sagittal view (right panel), perpendicular to the wells. 

2.2.4.3 Region of Interest and Relaxation Rate Measurements 

Analysis software developed in Matlab 7.9.0 (R2010b) was used to determine region of 

interest (ROI) and to measure R2* and R2. ROI was outlined to include as many voxels as 

possible within the sample wells while avoiding the wall of the wells. Approximately 21 

voxels were included in the circular ROI. Relaxation rates were determined using the 

average signal intensity for each time point and least-squares curve fitting. 

a) b) 
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2.2.5 Statistics  

Mean and standard error of the mean (SEM) were calculated. Two-way analysis of 

variance (ANOVA) was performed to examine any significant differences among 

treatment groups (p<0.05). Pearson’s correlation was applied to examine potential 

correlation between cellular iron and relaxation rates and the regression model identifies 

the best linear equation between each relaxation rate as dependent variable and cellular 

iron content as independent variable. To compare the slopes of linear correlations, 

student’s t-test was conducted and finally the strength of the correlations was compared 

using Fisher Z transformation. All statistical analyses were performed using IBM SPSS 

Statistics, version 25. All graphs were created using the GraphPad Prism package, 

version 7.03. 

 

2.3 Results  

2.3.1 P19 Response to Extracellular Iron Supplementation 

2.3.1.1 Analysis of Intracellular Iron Content  

Iron import and export activities in P19 cells were investigated using various conditions 

of iron supplementation. To examine iron import activity, the cells were cultured in the 

absence (-Fe) or presence (+Fe) of extracellular iron supplementation (25 µM ferric 

nitrate) for 5-7 days. Regarding iron export activity in P19 cells, initial results from Liu 

(12) suggested that total cellular iron content decreases within one hour after iron 

supplementation withdrawal and is reduced to baseline levels after 24 hours. To study 

iron handling in P19 cells more thoroughly, iron-supplemented cells were harvested 

either immediately or after additional culture in non-supplemented medium for 1, 2, 4 or 

24 hours (Figure 2.1, first row).  

Each sample was analyzed by ICP-MS to determine total intracellular iron content. 

Figure 2.3a) shows the mean values of total cellular iron, normalized to amount of 

protein. Based on trace element analysis, cellular iron content significantly increased 

after iron supplementation (+Fe) compared to samples cultured in non-supplemented 

medium (-Fe) (p<0.05), confirming high iron import activity in P19 cells. However, upon 
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removal of iron supplementation and continued culture in non-supplemented medium, 

cellular iron content decreased, reaching baseline values after 4 hours (+Fe versus 4h-Fe, 

p< 0.01), suggesting high iron export activity. Interestingly, cellular iron level increased 

again, 24 hours after removal of iron supplement (24-Fe versus 4h-Fe, p<0.05), raising 

the possibility that P19 cells regulate iron in a biphasic manner. While a typical rise in 

total cellular iron content was observed one hour after removal of extracellular iron 

supplement, the difference between +Fe and 1h-Fe was not statistically significant 

2.3.1.2 Expression of Ferroportin  

Possible changes in Fpn protein expression in response to extracellular iron 

supplementation were examined by Western blot (Figure 2.3b). Prior to electrophoresis, 

cells were cultured in the presence or absence of extracellular iron supplementation as 

shown in Figure 2.1, first row. The reported molecular weight (M.W.) for Fpn is 

approximately 63 kDa (15, 16). The relatively constant expression of GAPDH (M.W. 37 

kDa, (17)) gave a uniform band in each lane, as determined by densitometry (data not 

shown). The ratio of Fpn/GAPDH is shown in Figure 2.3c). 

As shown in Figure 2.3b) and c), minimal Fpn expression was detected for cells cultured 

in non-supplemented medium (-Fe). Fpn was highly expressed by cells supplemented 

with iron for 5-7 days (+Fe). At 2h-Fe and 4h-Fe, the expression of Fpn increased but 

subsequently decreased by 24h-Fe.  

A comparison of Fpn expression with total cellular iron content indicates that P19 cells 

upregulate iron export in response to extracellular iron. When this iron supplement is 

withdrawn, Fpn expression remains elevated until intracellular iron stores return to 

baseline values, after approximately 4 hours. Interestingly, when Fpn expression returns 

to baseline at 24h-Fe, cellular iron content rises sharply despite the absence of an 

extracellular iron supplement. The +Fe samples indicate active iron import, presumably 

through TfRc (Figure 1.1); although, the status of TfRc was not examined in the context 

of this study. In summary, expression of Fpn in P19 cells is influenced by the presence of 

extracellular iron.    
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Figure 2.3. Iron handling in P19 cells under various conditions of extracellular iron 

supplementation.  

Cells were cultured either in non-supplemented medium (-Fe) or iron-supplemented 

medium (+Fe) for 5-7 days before iron supplementation withdrawal and an additional 1 

(1h-Fe), 2 (2h-Fe), 4 (4h-Fe) or 24 (24h-Fe) hours of culture in non-supplemented 

medium. a) Total cellular iron content was measured by ICP-MS and normalized to total 

amount of protein. A biphasic pattern was observed in total cellular iron content. -Fe: 

N=4; +Fe: N=9; 1h-Fe: N=3; 2h-Fe: N=3; 4h-Fe: N=3; 24h-Fe: N=20. Data are the mean 

± SEM (*, p<0.05; **, p<0.01; ***, p<0.001). b) Protein lysates from P19 cells were 

examined by Western blot, probed with anti-ferroportin 1 (top panel) and anti-GAPDH 

(bottom panel). Approximate M.W. is indicated in the left margin. c) The signal intensity 

* 

* 

** 

a) 

b) 

-Fe       +Fe    2h-Fe   4h-Fe   24h-Fe  

P19 cells  

Fpn, 63 kDa 

GAPDH, 37 kDa 

c) 
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of each Fpn band was normalized to the corresponding GAPDH band. All bars are 

normalized to the +Fe condition (N=1). Fpn expression increases in response to 

extracellular iron and decreases within 24 hours of the removal of extracellular iron 

supplementation.  
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2.3.1.3 MRI Relaxation Rates 

To examine possible changes in MR relaxation rates under various conditions of iron 

supplementation, cells were cultured as described in Figure 2.1, first row, then harvested 

and scanned at 3T using a spherical gelatin phantom. Figure 2.4a shows the signal 

intensity map of a representative phantom set up for three different TE values in the T2* 

weighted image. The corresponding signal decay curve for +Fe and -Fe samples in the 

phantom (denoted by number 1 and 2, respectively) as well as the R2* map for the 

phantom are shown in Figure 2.4b and c, respectively. Mean values of transverse 

relaxation rates are shown in Figure 2.5a-c. Relaxation rate measurements showed the 

same biphasic pattern as observed with total cellular iron content (Figure 2.3a) over the 

treatment timeframe. As shown in Figure 2.5a, R2* showed a significant increase after 

iron supplementation compared to untreated cultures (-Fe vs. +Fe, p<0.001), consistent 

with the avid iron import activity in P19 cells reported in a previous study (12). Upon 

removal of extracellular iron supplementation, R2* decreased to baseline levels within 4 

hours (+Fe vs. 4h -Fe, p<0.001), consistent with reported iron export activity in P19 cells 

(12) and clarifying the time course of iron export. Similar to the biphasic pattern 

observed in cellular iron content (Figure 2.3a), an increase in R2* was also observed at 

24h-Fe (4h-Fe vs. 24h-Fe, p=0.070, N=9) and approached statistical significance. 

As previously described, the total transverse relaxation rate, R2* consists of two 

components: R2 and R2ʹ. The same comparisons were investigated for each component as 

well (Figure 2.5 b and c). A biphasic pattern was also observed in R2 and R2ʹ over the 

treatment timeframe, consistent with iron handling behavior in P19 cells. Statistical 

differences were examined as follow. For R2: -Fe vs. +Fe, p<0.001; +Fe vs. 4h-Fe, 

p<0.01; and 4h-Fe vs. 24h-Fe, p=0.080. For R2ʹ, -Fe vs. +Fe, p<0.05; +Fe vs. 4h-Fe, 

p<0.05; and 4h-Fe vs. 24h-Fe, p=0.058.  

For all relaxation rates, there was no significant difference between +Fe versus 1h-Fe, but 

the observed rise one hour after withdrawal of iron supplement is consistent with a high 

level of cellular iron content as shown in Figure 2.3a.  
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Figure 2.4. Transverse relaxation rate measurement and mapping in the spherical 

phantom. 

a) Signal intensity decreases over time in a T2* weighted image for a representative 

phantom set up. +Fe and -Fe samples are denoted by numbers 1 and 2, respectively. 

Number 3 shows the plastic peg for reference. b) Signal decay curves are shown for +Fe 

and -Fe conditions. Each point shows the mean signal intensity measured within the 

defined ROI. The best fit for an exponential decay is shown by each curve. Iron 

supplementation resulted in an increase in R2*. c) The R2* map illustrates a representative 

phantom. The map was obtained using voxel by voxel curve fitting with an exponential 

decay function. Higher R2* is observed for the +Fe condition (1) compared to -Fe (2). 
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Figure 2.5. Transverse relaxation rates of P19 cells under various conditions of 

extracellular iron supplementation. 

Cells were cultured either in non-supplemented medium (-Fe) or iron-supplemented 

medium (+Fe) for 5-7 days before iron supplementation withdrawal and an additional 1 

(1h-Fe), 2 (2h-Fe), 4 (4h-Fe) or 24 (24h-Fe) hours of culture in non-supplemented 

medium. a, b) R2* and R2 were determined at 3T and c) R2ʹ was calculated for each 

sample: R2ʹ = R2* - R2. A significant increase in each transverse relaxation rate was 

observed after iron supplementation, consistent with active iron import in P19 cells. 

Within 4 hours of the withdrawal of extracellular iron supplement, the signal returned to 

baseline, consistent with an increase in iron export protein. This finding substantiates 

dynamic iron regulation in P19 cells. -Fe: N=4; +Fe: N=9; 1h-Fe: N=3; 2h-Fe: N=3; 4h-

Fe: N=3; 24h-Fe: N=9. Data are the mean ± SEM (*, p<0.05; **, p<0.01; ***, p<0.001).  

a) 

*** 

*** 

c) 
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*** 

** 
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2.3.2 P19 Response to Hepcidin Treatment 

2.3.2.1 Analysis of Intracellular Iron Content 

To investigate the effect of hepcidin on the total cellular iron content, two conditions 

were examined. Cells were cultured in the presence of 25 µM ferric nitrate/medium for 5-

7 days (+Fe). Then they were incubated with or without 200 ng/ml hepcidin for the last 

24 hours of the culture in iron supplemented (+Fe +H) or non-supplemented (24h-Fe +H) 

medium. The aim was to explore if any further increase in cellular iron content was 

achievable, beyond the +Fe or 24h-Fe condition, by blocking iron export activity in these 

cells. As shown in Figure 2.6a, no significant difference was observed in total cellular 

iron content between hepcidin and non-hepcidin treated cells. 

2.3.2.2 Expression of Ferroportin  

To examine the possibility of hormonal regulation of iron export in P19 cells, cultures 

were supplemented with iron for 5-7 days (+Fe). Cells were harvested after withdrawal of 

iron supplement and culture in non-supplemented medium for an additional 2 (2h-Fe), 4 

(4h-Fe) and 24 (24h-Fe) in the presence of 200 ng/ml hepcidin. In addition, cells 

incubated in non-supplemented medium (-Fe) and iron supplemented medium (+Fe) were 

treated with hepcidin for the last 24 hours of their culture. Western blots were used to 

detect potential changes in Fpn expression in response to hepcidin treatment and 

compared to non-hepcidin treated cells. As shown in Figure 2.6b and c versus Figure 2.3b 

and c, Fpn immunostaining decreased in the presence of hepcidin (2h-Fe and 4h-Fe). 

Also, densitometric analysis showed that Fpn immunostaining decreased in a 

continuously iron-supplemented sample (+Fe +H) by approximately %50 after hepcidin 

treatment. This finding suggests that iron-stimulated expression of Fpn is distinct from 

hepcidin-meditated degradation of Fpn. As expected, the low level of Fpn expression in -

Fe and 24h-Fe samples did not change in the presence of hepcidin. 
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Figure 2.6. Cellular iron handling in P19 cells in response to hepcidin treatment. 

Cells were cultured either in non-supplemented medium (-Fe) or iron-supplemented 

medium (+Fe) for 5-7 days before iron supplementation withdrawal and an additional 2 

(2h-Fe), 4 (4h-Fe) or 24 (24h-Fe) hours of culture in non-supplemented medium, with or 

without hepcidin. In the case of hepcidin treatment +/-Fe, cells were incubated with 

hepcidin for the last 24 hours of culture. a) Total cellular iron content for +Fe and 24h-Fe 

was measured by ICP-MS and normalized to total amount of protein for samples treated 

with (gray bars) or without (white bars) hepcidin. No significant difference was observed 

between treatment groups. +Fe (no hepcidin), N=9; +Fe (hepcidin treatment), N=6; 24h-

Fe (no hepcidin), N=20; 24h-Fe (hepcidin treatment), N=3. b) Proteins lysates of 
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hepcidin treated cells were examined by Western blot, probing with anti-ferroportin 1 

(top panel) and anti-GAPDH (bottom panel). Approximate M.W. is shown in the left 

margin. c) The signal intensity of each Fpn band was normalized to the corresponding 

GAPDH band. The signal intensity of Fpn at 4h-Fe with hepcidin was below the 

detection limit. All ratios were subsequently normalized to the +Fe condition. Fpn 

expression was downregulated in response to hepcidin (N=1). 
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2.3.2.3  MRI Relaxation Rates 

As described in section 2.3.2.1, +Fe and 24h-Fe conditions were first chosen to explore 

the effect of hepcidin on cellular iron content and MR transverse relaxation rates. Cells 

were incubated in the presence or absence of hepcidin for the last 24 hours of the culture 

and then scanned at 3T to measure transverse relaxation rates. In Figure 2.7, mean values 

of a) R2*, b) R2 and c) R2ʹ are shown. No significant difference in transverse relaxation 

rates were observed between hepcidin and non-hepcidin treated P19 cells.  

In addition to the conditions examined above, we investigated the effect of hepcidin on 

P19 cells using a different treatment timeline (Figure 2.1, second row). Cells were 

cultured in iron-supplemented medium for 5-7 days before an additional 2 (2h-Fe) or 4 

(4h-Fe) hours culture in non-supplemented medium. Instead of immediate addition, 

hepcidin was added to the medium one hour after iron supplementation withdrawal. As 

mentioned earlier, P19 cells efficiently export iron within the first hour of iron 

supplementation withdrawal. By adding hepcidin at 1h-Fe, we aimed to interrupt iron 

export at a time in which it was actively occurring. Cellular iron content and relaxation 

rates were compared to those of cells without hepcidin treatment. Comparing mean 

values showed no statistical significant difference between hepcidin and non-hepcidin 

treated cells (Figure A, Appendix A).  

While Fpn expression was altered, the non-significant difference observed in total 

cellular iron content and transverse relaxation rates, before and after hepcidin treatment, 

lead us to examine if the correlation between MR signal and cellular iron content had 

been influenced by hepcidin treatment. The results of this investigation are reported in the 

next section. 
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Figure 2.7. Transverse relaxation rates of P19 cells in response to hepcidin 

treatment. 

Cells were cultured in iron-supplemented medium (+Fe) for 5-7 days before 

supplementation withdrawal and an additional 24 (24h-Fe) hours of culture in non-

supplemented medium with or without hepcidin. These samples were then compared to 

cells at +Fe, incubated in the presence and absence of hepcidin for the last 24 hours of 

their culture. Transverse relaxation rates for a) R2* and b) R2 were determined at 3T 

while R2ʹ (c) was calculated from the difference: R2ʹ = R2* - R2. No significant difference 

was observed between hepcidin and non-hepcidin treatment groups. +Fe (no hepcidin), 

N=9; +Fe (hepcidin treatment), N=3; 24h-Fe (no hepcidin), N=9; 24h-Fe (hepcidin 

treatment), N=8. Data are the mean ± SEM. 

 

c) b) 

a) 

a) 
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2.3.3 Correlation Between MR Signal and Cellular Iron Content 

To understand the correlation between cellular iron and MR signal, samples were 

separated into their respective treatment groups: hepcidin versus no hepcidin. Pearson’s 

correlation test was applied to investigate any correlation between cellular iron content as 

the independent variable and transverse relaxation rate as the dependent variable.  

In the absence of hepcidin (Figure 2.8 a-c, open circles), there is moderate correlation 

between R2* and cellular iron content (r= 0.629, p<0.001). A weak correlation between 

R2 and cellular iron content (r= 0.473, p<0.01) and a moderate correlation between R2ʹ 

and cellular iron content (r= 0.749, p< 0.001) was observed. On the other hand, in the 

presence of hepcidin (Figure 2.8 a-c, filled circles), a strong correlation was observed 

between R2* and cellular iron content (r= 0.851, p< 0.001) and R2 and cellular iron 

content (r= 0.866, p<0.001). However, the correlation between R2ʹ and cellular iron 

content, was weak (r= 0.532, p< 0.05; Table 1)  

The line of best fit for hepcidin (solid lines) and non-hepcidin (dashed lines) treated cells 

was determined using a linear regression model (Figure 2.8a-c). The difference between 

slopes was determined using independent samples t-test. Comparing slopes of the lines 

for R2* vs. cellular iron (Figure 2.7a) revealed a significant increase from 10.09 for non- 

hepcidin treated cells to 35.56 for hepcidin treated cells (p<0.05). The same analysis for 

R2 vs. cellular iron (Figure 2.7b) showed a significant increase in the slope from 5.25 for 

non-hepcidin treated cells to 27.77 for hepcidin treatment (p<0.05). However, for R2ʹ vs. 

cellular iron (Figure 2.7c), no line of best fit was drawn for the hepcidin treatment group 

due to a non-significant linear correlation (p = n.s), while the linear correlation for non-

hepcidin treated cells was significant. 

Finally, for each treatment group, the strength of these linear correlations was compared 

using Fisher Z transformation. The analysis showed no significant difference between the 

relation of elemental iron and R2*, elemental iron and R2, and elemental iron and R2ʹ. In 

summary, no single linear correlation was significantly more outstanding compared to the 

others, in each treatment group. 
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Figure 2.8 Comparison of MR relaxation rates and total cellular iron content in P19 
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cells. 

Cells were cultured in the absence (empty circles, N=25) or presence (filled circles, 

N=11) of hepcidin under various conditions of extracellular iron supplementation. Total 

cellular iron content was determined by ICP-MS and normalized to total cellular protein. 

Transverse relaxation rates were obtained at 3T. Pearson’s correlation and regression 

analysis were applied to investigate the relationship between relaxation rates and cellular 

iron content. Hepcidin treatment significantly increases slopes of the line relating R2* vs. 

cellular iron and R2 vs. cellular iron. However, no significant linear relationship was 

found between R2ʹ vs. cellular iron after hepcidin treatment.  

Table 1. Correlation between MR relaxation rates and total cellular iron content in 

P19 cells. 

 aWhole 

data 

(N=36) 

No hepcidin treatment  

(N=25) 

Hepcidin treatment 

(N=11) 
Difference 

between 

slopes 

 br r bβ r2 r β r2  

R2* 0.607 

p<0.001 

0.629 

p<0.001 

10.09 0.369 

p<0.001 

0.851 

p<0.001 

35.36 0.724 

p<0.001 

p<0.05 

R2 0.468 

p<0.01 

0.473 

p<0.01 

5.25 

 

0.224 

p<0.05 

0.866 

p<0.001 

27.77 0.751 

p<0.001 

p<0.01 

R2ʹ 0.679 

p<0.001 

0.719 

p<0.001 

4.84 0.517 

p<0.001 

0.532 

p<0.05 

cn.s n.s 

p=0.92 

cn/a 

 

a Statistical analysis of the whole data set combines samples treated with (N=11) and 

without (N=25) hepcidin. N: sample size. 

b r: Pearson correlation coefficient; p: level of significance; β: linear regression slope.  

c n.s: not significant; n/a: not applicable. 
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2.4 Discussion 

In this study, we examined the influence of extracellular iron and the endocrine hormone 

hepcidin on MRI using multi-potent mouse P19 embryonic teratocarcinoma cells to 

model the regulation of iron export activity. Hepcidin is a hepatic hormone which is 

upregulated in response to inflammation. Alterations in MR transverse relaxation rates 

and cellular iron content as well as expression of the iron export protein, Fpn, were 

investigated in response to hepcidin, using P19 cells cultured under various conditions of 

extracellular iron supplementation (Figure 2.1). The results revealed that hepcidin-

dependent alterations in iron homeostasis are detectable by MRI. In addition, intracellular 

iron content and ferroportin were regulated in a biphasic manner in response to changes 

in extracellular iron.  

Intracellular iron analysis  

Iron uptake by mammalian cells is mainly through Tf-TfRc interactions in which Tf-

bound iron is internalized by receptor-mediated endocytosis. While iron is a vital element 

for cellular homeostasis, excess iron can cause oxidative damage by creating reactive 

oxygen species. As a result, the level of iron uptake is balanced by regulation of TfRc 

protein in most cells. When internalized iron is not immediately used, it is mainly 

sequestered in the storage protein ferritin, as a biomineral. Finally, in select cells, iron is 

exported by Fpn, the sole iron export protein in vertebrates (19, 20). In our P19 cell 

model, total cellular iron content significantly increased in iron-supplemented culture 

compared to non-supplemented culture (Figure 2.3a), indicating effective iron 

internalization. This observation in P19 cells is similar to that reported in mouse bone 

marrow-derived macrophages (5). After removal of iron supplementation from P19 cell 

culture, total cellular iron content decreased within 4 hours, suggesting high iron export 

activity. However, a second rise in total cellular iron content in P19 cells occurred 24 

hours after withdrawal of iron supplementation (24h-Fe; Figure 2.3a). Fpn expression 

was minimal at this time point (Figure 2.3b and c), confirming that iron export has been 

downregulated. While the rise in the total cellular iron content at 24h-Fe should be 

influenced by iron import activity, our results nevertheless point to the sensitive 

regulation of iron export protein in response to changes in extracellular iron.  
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Hepcidin has been reported to trigger internalization and downregulation of Fpn in the 

reticuloendothelial system (21-24). As a result, iron accumulation has been observed as 

an increase in ferritin level. In our study, we compared total cellular iron content in P19 

cells treated with and without hepcidin, and found no significant change in total cellular 

iron. This may be explained by the fact that elemental analysis of total cellular iron 

includes all forms of iron and does not distinguish fluctuations in ferritin or the labile iron 

pool (LIP). Internalized iron first enters the LIP before being stored in ferritin as Fe (III) 

or exported by Fpn. Although LIP represents a small fraction of the total cellular iron 

content under quiescent conditions, this may be dramatically altered in response to 

biochemical stimuli (25-27). Hepcidin-associated decrease in ion export in P19 cells may 

influence LIP integrity. One hypothesis is that an increase in ferritin level might be 

balanced by a decrease in LIP, which ultimately results in a constant level of total cellular 

iron content. In addition, TfRc expression may be altered in response to an increase in the 

level of intracellular iron, to maintain cellular iron homeostasis. As mentioned earlier, 

increases in the level of cellular iron alters IRP/IRE binding, resulting in a decrease in 

TfRc expression. These hypotheses still need to be investigated in the P19 cell model.  

Protein Analysis 

Fpn is known to be expressed by a few cell types including macrophages, enterocytes, 

hepatocytes and breast epithelia (28-30). Macrophages have a principal role in 

phagocytosis of damaged or senescent red blood cells, exporting microgram quantities of 

iron back into plasma for the synthesis of new red blood cells. This iron recycling 

proceeds through a Fpn-mediated pathway. Fpn upregulation in macrophages after iron 

supplementation and erythrophagocytosis has been shown in several studies (5, 24, 31, 

32). A similar pattern was observed in the P19 cell study herein after supplementation 

with extracellular iron. On the other hand, Fpn downregulation has been reported when 

macrophages were exposed to desferrioxamine mesylate (DFO) (5, 31). DFO binds iron 

particles, depriving the cell of iron. Hence, it provides a similar culture condition to what 

was examined in this study by withdrawal of iron supplementation. We observed a 
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decrease in Fpn expression within 4 hours and the absence of Fpn by 24 hours. The 

similar pattern of Fpn expression in P19 cells and macrophages in response to 

extracellular iron supplementation is an interesting finding and suggests that 

characteristics of iron homeostasis in P19 cells may be relevant to macrophage function.    

In our study, downregulation of Fpn was observed 24 hours after removal of iron 

supplementation, when no hepcidin treatment was administered. The expression of Fpn 

stimulated by extracellular iron (+Fe) and its turnover after removal of iron 

supplementation (at 24h-Fe) suggests that post-translational regulation of Fpn may be 

active. There are two known mechanisms for post-translational regulation of Fpn. Its 

downregulation in the absence of multicopper oxidases has been reported (33). This does 

not likely explain our results since no treatment related to multicopper oxidases was 

performed. The second known mechanism is hepcidin-dependent downregulation of Fpn, 

which raises the possibility of hepcidin production by P19 cells to self-regulate Fpn 

expression post-translationally. Further investigation is warranted.   

In inflammation, Fpn is post-translationally downregulated in macrophages by the 

hormone hepcidin (19, 34), which itself is upregulated by inflammation and serum iron 

level (6, 35, 36). Hepcidin-dependent internalization and downregulation of Fpn have 

been shown in HEK293 cells expressing mouse Fpn (22, 23, 37), mouse primary bone 

marrow-derived macrophages (22, 32) and the mouse macrophage cell line J774 (24). 

Our results confirmed downregulation of Fpn in P19 cells in response to hepcidin (Figure 

2.6b and c) suggesting that this cell line may be a suitable model for further investigation 

of hepcidin-dependent Fpn regulation.  

As discussed earlier, anti-inflammatory (M2) macrophages exhibit high expression of 

Fpn, resulting in an iron recycling phenotype. This pattern of iron export is also displayed 

by tumor-associated macrophages (TAM) (38) and provides a ready supply of iron for 

uncontrolled tumour growth. On the other hand, pro-inflammatory (M1) macrophages 

express Fpn at a minimal level and represent an iron storage phenotype (5, 29). In this 

context, the parental P19 cell line shows similar iron handling activities and Fpn 

expression as M2 macrophages and TAM. Interestingly, P19 are also a rapidly growing 
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cell type, doubling in less than 24 hours. This characteristic may be facilitated by their 

iron recycling ability. In addition, hepcidin-mediated degradation of Fpn indicates that 

P19 cells are capable of responding to pro-inflammatory signalling and converting to 

select features of M1 macrophages. This may provide an opportunity to study 

macrophage-related iron handling behaviour using an easy to culture cell line: P19.  

MRI analysis  

MRI is a promising tool for molecular imaging. Paramagnetic compounds, such as iron-

based contrast agents, shorten longitudinal and transverse relaxation times (and hence 

increase relaxation rates) in the tissues where they accumulate. This results in a 

brightening of T1-weighted images and a darkening of T2-weighted images (39). In any 

case, the way cells handle iron in these tissues is expected to affect the MR signal. In 

particular, since macrophages have distinct iron handling mechanisms, it may be possible 

to distinguish the M1 pro-infammatory phenotype from the M2 anti-inflammatory 

phenotype using MRI. M1 macrophages express low Fpn and high ferritin and hence 

show iron storage properties, while M2 macrophages express high Fpn and low ferritin, 

representing an iron recycling phenotype. Low Fpn expression in M1 macrophages is 

partially associated with systemic hepcidin upregulation, as a result of iron overloading 

or inflammation. Once we established that P19 cells are a good model to study 

macrophage-like iron homeostasis, we investigated the effect of iron supplementation and 

hepcidin on MR transverse relaxation rates. 

In response to changes in extracellular iron, transverse relaxation rate measurements in 

P19 cells showed the same biphasic pattern as observed in total cellular iron content over 

the treatment timeframe (Figure 2.5). In all three transverse relaxation rates, a significant 

increase was observed after culture in iron supplementation. This was followed by a 

significant decrease in relaxation rates within 4 hours of iron withdrawal. Similar to 

cellular iron measurements, a second increase was observed in transverse relaxation rates 

by 24 hours post-iron withdrawal (p=0.070). This result suggests that MRI faithfully 

tracks changes in cellular iron content, particularly when regulation of iron export is 

involved. 
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To compare the results of the current and a previous study in our lab (12), it is 

worthwhile to first mention the similarities and differences in the experimental 

conditions. Although the same cell line was used in both studies and they were 

supplemented with extracellular iron for the same duration (5-7 days), the concentration 

of ferric nitrate in the iron supplemented medium was different. In the present study, 25 

μM ferric nitrate was used, whereas in Liu’s study, medium was supplemented with 250 

μM ferric nitrate. The increase observed in transverse relaxation rates in P19 cells after 

iron supplementation was similar to Liu’s study. However, in the present report, all three 

transverse relaxation rates showed a significant increase in magnitude at 24h-Fe 

(compared to the baseline) while in Liu’s work these parameters returned to baseline 

values at 24h-Fe. This might be explained by the different conditions of iron 

supplementation. 

Influence of hepcidin on MR transverse relaxation rates was examined in P19 cells. This 

was done to mimic the hepcidin-dependent alteration in macrophage iron homeostasis 

using our cell model and to investigate its effect on MR detection. No significant changes 

in any of the transverse relaxation rates were observed (Figure 2.7) by virtue of hepcidin-

mediated Fpn degradation. While this finding was consistent with total cellular iron 

content measured in P19 samples, we examined if downregulation of Fpn might alter 

other aspects of intracellular iron handling not reflected by the magnitude of the MR 

signal. 

The correlation between total cellular iron content and each transverse relaxation rate was 

examined for hepcidin treated and non-hepcidin treated groups (Figure 2.8). In the 

absence of hepcidin, a significant moderate correlation was observed between iron and 

R2* as well as R2ʹ (r = 0.629 and 0.719, respectively); however, a weak correlation was 

observed between iron and R2 (r = 0.473). For hepcidin treated samples, however, the 

correlation between total cellular iron content and transverse relaxation rates was 

surprising. Although no significant difference was observed in the magnitude of 

transverse relaxation rates between hepcidin and non-hepcidin treated groups, the 

correlation between each relaxation rate and total cellular iron content was significantly 

different between the two groups. A strong correlation was observed between total 
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cellular iron content and R2* as well as R2 in the hepcidin treated group (r = 0.851 and 

0.866, respectively). However, no significant correlation was observed between total 

cellular iron content and R2ʹ, suggesting that hepcidin treatment decreases the influence 

of this reversible component on the total transverse relaxation rate, R2*. In addition, when 

the slopes of the best fit lines were compared between the two groups, these were 

significantly higher in hepcidin treated groups compared to non-hepcidin groups (Table 

1).  

Since total cellular iron content did not significantly change upon hepcidin treatment, 

other factor(s) may underlie these changes in the correlation between iron and relaxation 

rate. One hypothesis is that Fpn degradation by hepcidin results in a re-arrangement of 

total cellular iron. For example, cellular iron is mainly available in two forms: as an iron 

oxide bound to ferritin, consisting of ferric ion (Fe III), and as unbound iron in the labile 

iron pool, in the ferrous form (Fe II). The chemical state of iron (ferrous versus ferric) 

and its compartmentalization (free versus protein bound) are two main factors that change 

when intracellular iron is redistributed. As a result, spin-spin interactions between iron 

particles and adjacent atoms may be affected and alter the contribution of reversible and 

irreversible components to the total transverse relaxation rate. Follow-up experiments 

should investigate possible changes in LIP and ferritin level resulting from hepcidin-

dependent degradation of Fpn in P19 cells.  

Iron particles shorten T1 and T2, resulting in a signal increase in T1 weighted images 

(positive contrast) while producing a signal loss in T2 weighted images (negative 

contrast). We only examined T2 weighted images and compared transverse relaxation 

rates since prior results in P19 cells showed that longitudinal relaxation rate did not 

reflect cellular iron content when supplementing cultures with extracellular iron (12). 

However, if hepcidin activity alters the LIP as proposed above, that might also influence 

T1 since it depends on the energy transfer between spins and the lattice. Thus, if the 

chemical form of surrounding atoms or their compartmentalization is altered under 

different conditions of iron supplementation and hepcidin-mediated regulation of iron 

export, this might influence the efficiency of energy transfer and therefore, T1.  
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Conclusion:  

Iron handling mechanisms in different cell types may influence cell tracking with MRI. 

This may apply particularly to the tracking of macrophages, as important components of 

inflammation signaling show distinct iron handling activities. Using P19 cells, a potential 

model for M2 anti-inflammatory macrophages, we examined the effect of different 

conditions of iron supplementation on Fpn expression, total cellular iron content and the 

MR signal. In addition, the possible effect of hepcidin on Fpn expression, cellular iron 

content and the MR signal was investigated in P19 cells, to examine the potential for 

modeling M1 pro-inflammatory macrophage iron handling behavior. 

A significant increase in total cellular iron content after supplementation with 

extracellular iron, followed by a significant decrease after removal of iron 

supplementation, confirmed the iron import and export abilities of P19 cells. This 

observation was matched to fluctuations in the pattern of Fpn iron export protein 

expression. Hepcidin treatment resulted in Fpn degradation in P19 cells, consistent with 

the reported activity of hepcidin (23). Altogether, P19 cells showed the potential to model 

macrophage iron-handling activity. Importantly, this phenomenon was associated with a 

significant change in the way P19 MR signals correlated with total cellular iron content. 

In hepcidin-treated cells, a strong correlation between each transverse relaxation rate and 

total cellular iron content was observed with a significantly higher slope of the best fit 

line, compared to non-treated cells. This demonstrates how cellular iron and, more 

importantly, hepcidin-dependent alteration of iron export might influence the MR signal. 

Finally, this study indicates the potential for (1) non-invasively distinguishing different 

macrophage phenotypes based on the control of iron export and (2) monitoring such 

inflammation-related changes using MRI.    
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3.1 Summary 

In this study, iron regulation in P19 cells and its influence on MR contrast were 

examined. We found similar iron export activity and regulation in P19 cells as seen in 

macrophages. The profile of Fpn expression under different conditions of iron 

supplementation suggested that P19 cells may serve as a potential model of M2 

macrophage iron recycling. Moreover, the downregulation of Fpn and iron export in 

response to hepcidin suggested that P19 cells may mimic M1 macrophage pro-

inflammatory signaling. Finally, we showed that MR transverse relaxation rates correlate 

with total cellular iron content and that hepcidin, a hormone which is secreted in response 

to inflammation, alters this correlation. These findings may provide a pathway to further 

developments in monitoring inflammation by MRI.  

3.2 Future Work 

P19 cells showed considerable iron import and export abilities based on measurement of 

total cellular iron content and transverse relaxation, consistent with a previous study (1). 

However, a biphasic pattern was observed in these iron measures and in the expression of 

iron export protein, over the course of extracellular iron supplementation and its 

subsequent withdrawal from P19 cell culture. This interesting new finding in P19 iron 

handling should be further characterized by examining how expression of iron import 

protein, TfRc, contributes to the biphasic pattern.  

Little is known about the possibility of hepcidin-independent degradation of Fpn. The 

only known mechanism proposed for hepcidin-independent degradation of Fpn is related 

to changes in cellular multicopper oxidase status. Currently, hepcidin-dependent 

degradation of Fpn is recognized as the main form of post-translational regulation (2,3). 
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Hence, one hypothesis regarding Fpn degradation after removal of iron supplementation 

entails the expression of hepcidin by P19 cells. This type of activity has been reported in 

monocytes (4) and would be consistent with other macrophage-related activity reported 

in this thesis. 

Although hepcidin caused degradation of Fpn in P19 cells, total cellular iron content did 

not change significantly. This result cannot be compared with previous studies in 

macrophages (3,5,6) in which changes in ferritin have been mainly monitored. By 

considering that some portion of cellular iron is available in the transient labile iron pool, 

one hypothesis is that the expected increase in ferritin is diminished by a decrease in LIP, 

resulting in an unchanged level of total cellular iron content. Quantification of the P19 

LIP in the presence and absence of hepcidin may provide additional insight. Since the 

chemical state as well as iron compartmentalization differs between ferritin and the LIP, 

understanding how iron is shuttled between them in response to hepcidin might help us to 

explain the observed change in the correlation between cellular iron content and MR 

transverse relaxation rates.  

Monocytes, as the precursors of macrophages, have also been investigated in terms of 

iron handling activities (4). Findings from the current study, about the influence of 

hepcidin-dependent iron regulation on the MR signal, suggest that a similar effect may 

potentially be observed when monitoring monocytes. Therefore, it may be worthwhile 

examining how hepcidin-mediated iron export in monocytes influences MR imaging. The 

human leukemia THP-1 cell line, which has the capability of differentiating to 

macrophages, may be used to model monocyte behavior (7). 

Magnetosome nanoparticles are iron biominerals found in a membrane-enclosed 

compartment produced by magnetotactic bacteria in a protein-directed process (8, 9). 

Single gene expression systems from magnetotactic bacteria, like magA, have been used 

to demonstrate that rudimentary magnetosome-like nanoparticles may be produced in 

mammalian cells to enhance MR contrast (10, 11). Since iron handling mechanisms vary 

among different cell types and these may influence the MRI signal, as observed in P19 
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cells, it will be interesting to investigate how hepcidin and iron export influence iron 

accumulation and/or compartmentalization in magA-expressing cells. 
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Appendices  

Appendix A: P19 response to hepcidin treatment (hepcidin added at 1h-Fe). 

Figure A. P19 response to hepcidin treatment. Cells were cultured in iron-

supplemented medium (+Fe) for 5-7 days before supplementation withdrawal and an 

additional 2 (2h-Fe) or 4 (4h-Fe) hours of culture in non-supplemented medium with or 

without hepcidin addition at 1h-Fe. a) Total cellular iron content was measured by ICP-

MS and normalized to total amount of protein. 2h-Fe (no hepcidin): N=3; 2h-Fe 

d) c) 

a) b) 
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(hepcidin treatment): N=3; 4h-Fe (no hepcidin): N=3; 4h-Fe (hepcidin treatment): N=3. 

b, c) R2* and R2 were determined at 3T and d) R2ʹ was calculated for each sample: R2ʹ = 

R2* - R2. No significant difference was observed between hepcidin and non-hepcidin 

treated groups. 2h-Fe (no hepcidin): N=3; 2h-Fe (hepcidin treatment): N=3; 4h-Fe (no 

hepcidin): N=3; 4h-Fe (hepcidin treatment): N=3. Data are the mean ± SEM. 
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