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 Abstract  

The fast diminishing of fossil fuels in the near future, as well as the global warming caused by 

increasing greenhouse gases have motivated the urgent quest to develop advanced materials as 

cost-effective photoanodes for solar light harvesting and many other photocatalytic 

applications. Recently, titania nanotube arrays (TNTAs) fabricated by anodization process has 

attracted great interest due to their excellent properties such as: high surface area, vertically 

oriented, highly organized, one-dimensional, nanotubular structure, photoactivity, chemical 

stability and biocompatibility. This unique combination of excellent properties makes TNTAs 

an excellent photoanode for solar light harvesting. However, the relatively wide band gap 

energy of titania limits its photoactivity to the UV spectra which accounts only for 5 % of solar 

light spectra. The specific objectives of this thesis are to: First, fabricate reproducible well-

organized, vertically-oriented TNTAs in different viscous electrolytes and optimize the 

fabrication parameters.  Second, modify the TNTAs by doping nitrogen and carbon and study 

the effect of modification on optical properties and photoelectrochemical performance. And 

third, functionalizing the TNTAs surface by monodispersed magnetic ferrite nanoparticles for 

improved solar light harvesting and drug delivery application in cancer treatment. The effect 

of each fabrication parameter such as electric potential, pH, water content, anodization time 

and electrolyte composition was discussed. TNTAs were successfully fabricated in an 

inexpensive viscous electrolyte composed of 2 wt.% sodium carboxy methylcellulose (CMC).  

TNTAs were successfully fabricated on both sides of a Ti disc with total tube length of 9.5 µm 

with a unique structure composed of conducting Ti metal sandwiched between two 

semiconducting layers of TNTAs on each side with a new potential electronic and 

photocatalytic applications.  

A new, facile, low cost, environment-friendly and nanoarchitecture-safe method was 

introduced to fabricate N- and C-modified TiO2 nanotube arrays. Modified optical properties 

with narrow band gap energy, Eg, of 2.65 eV was obtained after annealing the modified TNTAs 

at 550°C. Modified TNTAs showed enhanced photoelectrochemical performance. 

Photoconversion efficiency (PCE) was increased from 4.35% for pristine (unmodified) TNTAs 

to 5.18% for modified TNTAs, an increase of 19%. Effect of nanotubes length of modified 
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TNTAs on photoelectrochemical performance was also studied. Photocurrent density and PCE 

were increased by increasing nanotube length with a maximum PCE of 6.38% for nanotube 

length of 55 µm. This implies an excellent light penetration up to 55 µm depth into photoanode 

which is about 3.6 times higher than the maximum penetration depth (15 µm) in the 

nanoparticulate photoanode. This increasing pattern of photoconversion efficiency with 

increasing nanotubes length also implied a high charge separation rate and lower charge 

recombination rate. This high PCE value was attributed to:  band gap reduction due to N- and 

C-modification of TNTAs surface, increased surface area of long TNTAs compared with short 

TNTAs, investigated in previous studies, and the excellent light penetration and harvesting 

properties.  

Ferrite NPs-encapsulated TNTAs were fabricated for the first time using a facile and efficient 

method. Ferrite nanoparticles of 13 ± 3 nm diameters were successfully distributed all over the 

top and inner surface of the nanotubes. UV-Vis reflectance spectra showed excellent visible 

light absorbance up to wave length of 660 nm (Eg = 1.88 eV). The prepared magnetic 

nanocomposite showed their potential capability to controlling the drug release of an anti-

cancer drug (5-fluorouracil). The drug release of 5-fluorouracil by diffusion was sustained with 

controlled initial burst effect. The suitability of magnetic nanocomposite for cancer drug 

delivery was confirmed by in vitro cytotoxicity study. 

Keywords 

Titania nanotube arrays, N- and C-modification, photocurrent, photoconversion efficiency, 

ferrite nanoparticles, ferrite-encapsulated titania nanotube arrays, magnetic titania nanotube 

arrays, drug delivery, 5-fluorouracil, anti-cancer.  
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1 Introduction 

1.1 Background 

Low-dimensional nano-architectural materials have attracted considerable attention 

recently due to their physical properties and their potential applications [1].  

Dimensionality is a crucial factor in determining the properties of nanomaterials. The ratio 

of surface atoms to interior atoms changes dramatically if one successfully divides a 

macroscopic object into smaller parts. For example, for a 1 cm3 iron cube, the percentage 

of surface atoms would be only 10-5%, when the cube is divided into smaller cubes with an 

edge of 10 nm, the percentage of surface atoms would increase to 10%. In a 1 nm3 iron 

cube, every atom would be a surface atom [2]. So, the control of size and shape is of great 

interest. In contrast to size control, shape control of particulates is a more difficult and 

challenging topic. The tubes, flakes or wires in the nanoscale region possess novel 

properties. The discovery of carbon nanotubes by Iijima [3] with their variety of interesting 

properties has stimulated the quest for the synthesis of nanotubular structures of other 

substances and chemical compounds such as V2O5, SiO2, TiO2, ZrO2 and MoO3. Among 

these materials, titanium dioxide (also called titania) has attracted great interest since the 

discovery of its photosensitization effect by Honda and Fujishima in 1972 and due to its 

strong photo-oxidizing potential, high chemical stability, non-toxicity and low cost [4]. 

Titania nanotubes have improved properties compared to any other form of titania for 

application in photocatalysis, sensing, photoelectrolysis, photovoltaics, 

photoelectrochemical solar cells, water-splitting for hydrogen generation [5-12], 

electronics and optics [13], CO2 conversion into methanol [14]. The widespread 

technological use of titania is impaired by its wide band gap (3.2 eV), which requires 
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ultraviolet (UV) irradiation for photocatalytic activation. Because UV light accounts for 

only a small fraction (5%) of the sun energy compared to visible light (45%), any shift in 

the optical response of titania from the UV towards full spectrum light will have a positive 

impact on the photocatalytic and photoelectrochemical utility of the material. Historically, 

doping of the titania has been the approach taken for band-gap engineering of the material 

[15-20]. When employing dopants to change the optical response of a material, it is 

desirable to maintain the integrity of the host material crystal structure while changing its 

electronic structure. The crystal structure of the material is directly related to the ratio of 

cation and anion size in the crystal lattice. It appears to be relatively easier to replace Ti4+ 

in titania with any cation than to substitute O –2 with any other anion due to the difference 

in the charge states and ionic radii [5]. Titania nanotubes are known to be synthesized in 

two forms: random nanotubes and self-organized titania nanotube arrays (TNTAs) which 

are arrays of nanotubes supported and organized on a surface forming an integrated unit. 

Titania nanotubes, and nanotube arrays, have been produced by a variety of methods 

including deposition into a nanoporous alumina template [21, 22], sol–gel [23, 24], and 

hydrothermal processes [25, 26]. However, among these nanotubes fabrication routes, the 

electrochemical anodization method has recently attracted the most interest due to its 

ability to produce highly ordered nanotube arrays with precisely controllable dimensions 

[5, 27-30].  

1.2 Motivation  

The world is rapidly running out of fossil fuels. As a matter of considerable urgency, 

technologies for the generation of new types of energy must be developed. There is a 



4 

 

growing consensus that hydrogen has the potential to supplement and ultimately replace 

fossil fuels to produce energy [31, 32]. At the same time, there is a growing consensus that 

the emission of greenhouse gases must be reduced to address global warming which has 

become increasingly obvious and problematic [32, 33]. Therefore, there is an urgent need 

to develop both renewable and clean sources of energy, such as solar energy [32-34]. 

Hydrogen produced from the splitting of water using solar energy, termed solar-hydrogen, 

represents a sustainable fuel that is environmentally safe [33]. Solar-hydrogen has the 

capacity to provide global energy security and to reduce global warming [32-35]. 

Furthermore, the development of titania nanotube arrays, TNTAs, is not limited to fuel 

generation as an end-point. This material has many alternative applications of more 

immediately commercializable nature, including water purification, self-cleaning, sensing 

medicinal implants and controllable and specific-targeted drug delivery. 

 

1.3 Why Titania Nanotube Arrays? 

It is becoming increasingly clear that TiO2 is one of the most promising candidates for a 

commercial photoelectrode for a photoelectrochemical cell (PEC) to produce solar-

hydrogen due to the following reasons: Unlike most other materials, TiO2 exhibits 

outstanding resistance to corrosion and photo-corrosion in aqueous environments [5, 32]. 

Consequently, the functional properties of TiO2 are known to remain unchanged with time. 

Moreover: 

• TiO2 is reactive with both light and water [33]. 
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• TiO2 is substantially less expensive than other photosensitive materials and so it 

may also be a candidate to replace silicon in photovoltaic (PV) cells if its 

photosensitivity can be increased sufficiently. 

• TiO2 with enhanced photosensitivity has many ancillary applications that are 

environmentally friendly [33]. 

• TiO2 reserves are abundant [32].  

• Nanotube arrays provide large electrode-electrolyte interface.  

• The arrangement of the highly ordered titania nanotube array perpendicular to the 

surface permits facile charge transfer along the length of the nanotubes from the 

solution to the conductive substrate, thereby reducing the losses incurred by charge 

hopping across the nanoparticle grain boundaries.  

1.4 Challenges 

Relatively wide band gap (Eg) of TiO2 limits the photoactivity to UV spectra. Surface 

electronic properties of TiO2 nanotube arrays need to be modified to narrow Eg to enhance 

the visible light absorption and consequently, increase photoconversion efficiency. When 

choosing any modification process, the following should be considered: 

• The process should not cause damage to the unique nanotubular morphology. 

• The process should not decrease the huge interfacial surface area. 

• The process should not block the photons penetration paths to the inner surface 

area of the nanotubes  
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1.5 Objectives 

The specific objectives of this research are: 

1. Synthesis of titania nanotube arrays using anodization method and study the effect of 

different parameters on dimensionality, nanostructure and photoelectrochemical 

response of nanotube arrays. 

2. Modification of the electronic properties to reduce band gap energy by introducing 

nitrogen and carbon to the surface of the nanotubes using a new, facile, low cost and 

environment-friendly method and characterization of photoelectrochemical 

performance of the modified nanotube arrays for solar applications. 

3. Functionalizing titania nanotube arrays with magnetic ferrite nanoparticle to help 

narrowing the band gap energy and enhance the photoelectrochemical performance for 

solar applications. 

4.  Application of magnetic ferrite-encapsulated titania nanotube arrays for controlled and 

magnetically-targeted drug delivery of 5-FU anticancer drug as well as evaluation of 

2their cytotoxicity.  

1.6 Approach and Methodology 

To achieve the above general and specific objectives, the following approaches were 

implemented in this thesis: 

• An electrochemical anodization system was set up which consists of two electrodes 

electrochemical cell equipped with DC power supply provided with a data 

acquisition system and a state-of-the-art algorithm and interface for real time 

monitoring of electrical current and voltage. 
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• Titania nanotube arrays were fabricated in different electrolytes where fabrication 

parameters were studied to reach the optimum conditions at which a vertically- 

oriented, well-organized reproducible nanotube arrays were obtained. 

• A new, facile, low-cost, environment-friendly method was proposed for the first 

time to synthesize N- and C-modified titania nanotube arrays with excellent visible 

light absorbance and enhanced photoelectrochemical performance. 

• Morphology and nanoarchitecture were characterized using X-Ray diffractometer 

and FESEM imaging. Optical properties were characterized using UV-vis. diffuse 

reflectance spectra. Electrochemical performance was characterized by 

determining photocurrent densities in a 3 electrode photoelectrochemical cell with 

Ag/AgCl electrode as a reference electrode. 

• Titania nanotube arrays were functionalized with magnetic ferrite nanoparticles 

which has an excellent band gap energy of 2.2 eV.  The photoelectrochemical 

performance was characterized the ferrite-encapsulated titania nanotube arrays. 

The magnetic ferrite-encapsulated TNTAs were also tested in drug delivery 

application as an anticancer drug carrier. 

 

 

1.7 Thesis Organization 

The thesis is written in an integrated-article format as specified by the School of 

Postgraduate Studies at Western University. The thesis consists of four main chapters plus 

introduction and conclusions chapters: 
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• Chapter 1: Introduction: In this chapter, the author discussed the background 

behind the research topic, research motivations and advantages of TNTAs. Then 

he described the research challenges as well as approaches and methodologies in 

this thesis followed by thesis organization. Finally, the author highlighted the 

research novelty and major contributions.  

• Chapter 2: In this chapter, a very comprehensive review on the latest developments 

in fabrication methods, modification and potential applications of TNTAs was 

conducted. 

• Chapter 3: This chapter discussed the fabrication of TNTAs in different viscous 

electrolytes, namely; glycerol/water, ethylene glycol and, for the first time, the very 

cheap sodium carboxy methylcellulose (CMC) aqueous electrolyte. Fabrication 

parameters were extensively studied.    

• Chapter 4: In this chapter, N- and C-modified TNTAs was fabricated using a new, 

facile, low-cost, environment-friendly and very safe-on-nanoarchitecture method. 

Modified TNTAs were characterized using FESEM, X-ray, UV-vis. diffuse 

reflectance spectra and photoelectrochemical performance. Effect of nanotube 

length on both photocurrent and photoconversion efficiency was studied for the 

first time for long nanotubes ranging from 18 to 55 µm. 

• Chapter 5: In this chapter, magnetic ferrite-encapsulated titania nanotube arrays 

was successfully synthesized using a new method. The ferrite nanoparticles were 

monodispersed on the inner and top surfaces of the TiO2 nanotube arrays. This 

magnetic nanocomposite showed excellent absorbance in the visible light spectra 
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as well as enhanced photoelectrochemical performance. Furthermore, the new 

magnetic nanocomposite was tested in drug delivery application using 5-FU anti-

cancer drug as a drug model for excellent controlled drug release and magnetic-

targeted local drug delivery.   

• Chapter 6: in this chapter, research findings conclusions and future 

recommendations were discussed.    

 

1.8 Novelty and major contributions 

Chapter 2: Very comprehensive critical review study has introduced a strong platform for 

a wide diverse academic and industrial audience to understand the latest achievements in 

this field.  

Chapter 3: The conducted study in this chapter provided a strong understanding of the 

effect of each synthesis parameter such as pH, water content, anodization time and 

electrolyte composition. TNTAs were successfully fabricated for the first time in a very 

cheap viscous electrolyte composed of 2 wt.% sodium carboxy methylcellulose (CMC).  

Double-sided TNTAs on both sides of Ti disc were successfully fabricated with total tube 

length of 9.5 µm with a unique structure composed of conducting Ti metal sandwiched 

between two semiconducting layers of TNTAs on each side with a new potential electronic 

and photocatalytic applications.   

Chapter 4: N- and C-modified TNTAs were successfully fabricated using a new, facile, 

low cost, environment-friendly method which was also very safe on the nanostructure. The 

modified TNTAs showed excellent absorbance in the visible light spectra as well as 
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enhanced photocurrent and photoconversion efficiency. Furthermore, photocurrent and 

photoconversion efficiency increased by increasing nanotube length in the range from 18 

to 55 µm. This implies an excellent light penetration up to 55 µm depth into photoanode 

which is about 3.6 times higher than the maximum penetration depth in the nanoparticulate 

photoanode. This increasing pattern of photoconversion efficiency with increasing 

nanotubes length also implied a high charge separation rate and lower charge 

recombination rate. 

Chapter 5: monodispersed ferrite NPs-encapsulated TNTAs were fabricated for the first 

time. The fabricated nanocomposite showed a high increase of photoconvrsion efficiency 

from 3% for pristine TNTAs to 5.18% for 20 mg ferrite loading ferrite-encapsulated 

TNTAs which represents a percentage increase of 72.6%.  Magnetic ferrite-encapsulated 

TNTAs were tested in drug delivery and showed excellent drug release profile and 

cytotoxicity capacity.   
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2.1 Abstract 

Since first introduced by Zwilling and co-workers in 1999, titania nanotube arrays 

(TNTAs) fabricated by simple electrochemical anodization method have attracted great 

interest due to their outstanding photoelectrochemical properties which render them the 

most promising candidate for many solar energy harvesting applications. In this 

contribution, the fabrication, properties, and applications of TiO2 nanotube arrays have 

been reviewed, with special focus on synthesis by anodization in fluoride-containing 

electrolytes. The effect of anodization process parameters such as electric potential, pH, 

anodization duration and electrolyte composition on the size, and morphology of TNTAs 

has been discussed in detail. Electronic property modification strategies of the wide band 

gap TNTAs to enhance the material responsiveness to visible light irradiation have also 

been reviewed. Modification strategies include nonmetal doping such as nitrogen, carbon, 

boron and sulfur; metal ion doping such as Fe, Zn, Zr and Cr; surface decoration with 

precious metal nanoparticles such as Pt, Ag, Au; and sensitization with CdS nanoparticles. 

Keywords: Titania nanotube arrays, fabrications, aqueous electrolyte, organic electrolyte, 

anodization, doping, non-metal doping, metal ions doping, precious metal, CdS 

sensitization, photocatalysis, dye-sensitized solar cell 

2.2 Introduction 

Nanostructural materials of highly ordered one dimensional (1-D) architecture such as 

nanowires and nanotubes have attracted much interest in the last decade due to their high 

surface-to-volume ratio and other unique properties compared to their bulk similitudes. 

New chemical and physical properties appear when the size of the material decreases down 
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to the nanometer scale. Properties depend not only on the size of the nanomaterials but also 

on the shapes of the shrinking nanomaterials. Many excellent reviews and reports on the 

preparation and properties of nanomaterials have been published recently [1-4]. One of the 

most important and unique properties of nanomaterials is that the transfer of electrons and 

holes in semiconducting nanomaterials is mainly governed by the quantum confinement 

phenomenon, and the transport characteristics related to phonons and photons are largely 

affected by the size and geometrical building of the materials [2, 5-6]. The specific surface 

area and surface-to-volume ratio increase dramatically as the size of a material decreases. 

For example, for a 1 cm3 iron cube, the percentage of surface atoms would be only 10-5%, 

when the cube is divided into small cubes with an edge of 10 nm, the percentage of surface 

atoms would increase to 10%. In a 1 nm3 iron cube, every atom would be a surface atom 

[7]. The high surface area brought about by size shrinking of nanomaterials is beneficial to 

many of applications such as heterogeneous catalysis, photocatalysis, sensing and 

electronic applications as it facilitates reaction/interaction between the devices and the 

interacting media, which primarily takes place on the surface or at the interface and 

strongly depends on the surface area of the material. Hence, the performance of 

nanomaterials-based devices is largely influenced by the sizes of the building units, 

obviously at the nanoscale [7].  

The discovery of carbon nanotubes by Iijima [8] with their interesting properties has 

stimulated the quest for the synthesis of nanotubular structure of other inorganic materials 

such as V2O3, SiO2, TiO2, ZrO2 and MoO3. Nanotubes present a unique combination of 

shape, nanosize and functionality so that the properties can be directly influenced by the 

1D-nanoscale feature of the geometrical morphology [9-12]. Among all nanotube 
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materials, titanium oxide nanotube arrays (we will refer to it as TNTAs hereinafter), is of 

particular interest because it is a highly functional material with many applications. These 

wide applications of TiO2 nanotubes are based on their semiconducting and 

biocompatibility properties coupled with high surface area and excellent electrons/holes 

separation properties. Furthermore, the great oxidizing ability of photo-generated holes in 

titania associated with the high physical and chemical stability and low cost make it the 

preferred semiconductor material for many applications that utilize solar energy [13]. 

These properties make titania suitable for photocatalysis [14-16], water-splitting [17-18], 

self-cleaning [19], sensing [20], and dye-sensitized solar cells (DSSCs) [21]. In biological 

and medicinal applications, the biocompatibility is extremely important where the TiO2 

nanostructured layers on Ti are directly in contact with biological tissue in dental or hip 

implants [22].  Titania nanotubes can be synthesized in two forms: powdery form and self-

organized nanotube arrays. The immobilized nanotubes are self-organized, vertically 

oriented and supported on a surface forming an integrated unit. Powdery titania nanotubes, 

and nanotube arrays, have been produced by a variety of methods including deposition into 

a nanoporous alumina template [23], sol–gel [24-25] and hydrothermal processes [26-27].  

However, among these nanotubes fabrication routes, the electrochemical anodization 

method has attracted the most interest since first reported by Zwilling and co-workers [28] 

due to its ability to produce integrative, vertically-oriented highly ordered nanotube arrays 

with controllable dimensions [29-31]. The progressive increase in research interest in the 

TiO2 nanotube arrays fabricated by anodization method is easily noticed from publication 

statistics (see Figure 2.1). Publication number increased several times from the first work 

by Zwilling and coworkers, 1999 [28] where only short nanotubes of a few hundred 
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nanometers in length and low degree of self-organization were obtained to the present state 

where highly-ordered, vertically-oriented, high-aspect ratio TiO2 nanotube arrays with 

lengths of hundreds of micrometers can be obtained [32]. In contrast to random 

nanoparticle systems where slow electron diffusion typically limits their performance, the 

precisely oriented nature of the crystalline nanotube arrays makes them excellent electron 

percolation pathways for the vertical transfer of electrical charges across the length of 

nanotubes [33-35]. In addition, the nanotube array architecture is able to influence the 

absorption and propagation of light through the architecture by precisely designing and 

controlling the nanotube internal diameter, wall thickness, and length [36-38]. In this 

review, we focus on recent progress in synthesis, characterization and modification 

methods of titania nanotube arrays (TNTAs) as a most promising photoanode in solar 

energy conversion devices.  
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Figure 2-1 The number of publications per year and accumulated publications on 

the topic of titania nanotube arrays in the last decade. (Statistics analysis was 

obtained from Scupus database on Janaury 21st, 2018). 

 

2.3 TNTAs versus TiO2 nanoparticles 

 

A significant progress in the field of low cost photoelectrochemical energy conversion has 

been achieved using porous nanostructured semiconductor films. Up to now, the most 

effective photoelectrochemical cells (PEC) made of several micron-thick porous films 

consisted of 15-20 nm sized crystalline TiO2 nanoparticles [39-40]. Nazeeruddin and co-

workers have demonstrated liquid junction dye-sensitized solar cells with photoconversion 

efficiency higher than 10% [41]. In Si-based conventional solar cells, the photogenerated 
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electrons and holes are to be separated using built-in potential of the p-n junction. In the 

absence of such mechanism to separate the opposite charges, the photogenerated electrons 

and holes are lost due to recombination with each other. In nanoparticles-based solar cells, 

the nanoparticle size is too small to maintain significant electric potential therefore, other 

ways must be used to attain the holes/electrons separation. The photogenerated 

electron/hole charges are separated kinetically and because of the small size of 

nanoparticles, the hole may diffuse to the particle-electrolyte interface to react with a 

solution ion and hence a successful charge separation occurs, but it may also happen that 

the small size of nanoparticle facilitates the recombination process between the electron-

hole pair before the hole successfully reacts with the solution ions. Furthermore, the 

movement of the electrons from the point where they were photogenerated to the electrons 

collector -- the conducting back contact of the photoanode -- is a limiting factor in the 

photoanode consisted of nanoparticles, obstructing the process to achieve a higher 

efficiency. The structure disorder at the boundary between two nanoparticles increases the 

scattering of the generated free electrons and, consequently, this reduces the electrons 

transport rate and collection property of the photoanode [42-43]. Although nanoparticles 

TiO2 films have a highly effective photooxidation of a very wide variety of organic 

substances, they demonstrate, in contrast, very low photoconversion efficiency (PE) for the 

water photolysis to H2 and O2 in both acidic and alkaline solutions. This may be ascribed 

to the above mentioned poor electrons mobility as the water splitting primarily depends on 

the photogenerated free electrons rather than photogenerated holes [44-45]. In 

nanoparticulate films, the photogenerated electrons may also react with the intermediates 

of the photooxidation reactions between the photogenerated holes and electrolyte solution. 
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The poor performance of the nanoparticulate TiO2 films may be ascribed to the possibility 

of back-charge reactions of intermediates of photooxidation of water [46].  The electrons’ 

slow percolation through a random nanoparticles network and the low absorption capability 

of the low energy photons are both major factors hindering further enhancement in the 

photoconversion efficiency, PE, in nanoparticulate TiO2-based dye-sensitized solar cells 

(DSSCs). The increase of nanoparticulate film thickness (above 10 μm) to enhance the 

photons absorption is undermined by the slow electron transport through the 

nanoparticulate network. The haphazardness of the particles arrangement in the film almost 

duplicates the pathway length of the electrons [34, 47]. Highly ordered, vertically oriented 

TNTAs perpendicular to the photoanode surface allow the vertical charge transport from 

the photoanode/electrolyte interface to the conductive substrate in the back of the 

photoanode, thereby, minimizing the charge losses occurred due to the hopping of electrons 

through the boundaries of the nanoparticles. Therefore, electron transfer through TNTAs 

is superior to electron percolation through the random particulate films. This enhancement 

in electron charge transport in TNTAs is expected to increase the overall photoconversion 

efficiency [48-50]. The highly ordered vertically oriented nanotubular structure of TNTAs 

provides a better opportunity to harvest sunlight more efficiently than the randomly 

oriented nanoparticulate films or even nanotubes prepared by the sol-gel or hydrothermal 

processes [51]. Additionally, the nanotubular structure can improve the lifetime of the 

photogenerated charges by more than an order of magnitude [35, 52-54]. TNTAs exhibited 

a photoanodic response 10 times higher than that of a TiO2 nanoparticulate film under the 

same irradiation condition [55]. It is expected that the performance of TNTAs could be 
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further significantly improved if their structure-property-relationship is established and the 

involved phenomena are fully understood. 

 

2.4 Fabrication of TNTAs 

Electrochemical anodization of metals and semiconductors is a relatively simple process 

for creating precisely engineered semiconductor nanostructures. Anodization is used to 

create highly ordered, self-oriented nanoporous materials such as alumina, silica, titania 

and zirconia.   Anodization of titanium foils and thin films are conducted using a two-

electrode electrochemical cell with a platinum foil as cathode at a constant potential -- a 

third electrode could be used as a standard reference electrode to eliminate noise effect 

when measuring the cell potential by potentiostat [56]. Figure 2.2 shows an illustrative 

drawing of a two-electrode electrochemical cell in which Ti foils are anodized when 

electrical potential is applied.  
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Figure 2-2 Illustrative drawing of a two-electrode electrochemical cell for anodization. 

2.4.1 Fabrication of TiO2 Nanotube Arrays (TNTAs) in Aqueous 
Electrolytes 

Titania nanotube arrays are grown on titanium surface by potentiostatic anodization of the 

parent Ti foil in aqueous electrolyte containing F⁻ ions. HF acid was used as a source of Fˉ 

and pH was adjusted by adding drops of diluted sulfuric acid or diluted sodium hydroxide 

[57-59]. Self-organized TNTAs were first fabricated by electrochemical anodization of Ti 

metal foils in aqueous hydrofluoric acid electrolyte by Gong and co-workers [57]. In this 

study, anodization voltage and HF concentration were investigated. Below 10 volts, no 

nanotubes were formed. Porous or particulate films were formed instead.  Nanotubular 

structure was successfully fabricated in a voltage window from 10 to 40 V. Above 40 V, 

TNTAs structure disappeared and randomly porous layers began to appear again. HF 

concentrations from 0.5 to 3.5 wt.% were used and results showed that the appropriate 

voltage range required for the formation of TNTAs decreased by increasing HF 

concentration. [57]. By using HF aqueous electrolyte, TNTAs could be grown up to only 
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500 nm in length. This limited length of TNTAs was due to high chemical dissolution at 

the top of nanotubes because of the strong acidity of the electrolyte (pH < 2). Later on, 

many studies focused on precise control and extension of the nanotubes architecture [58, 

60-61].  

 

Effect of anodization potential: Cai and co-workers studied the effect of potential in strong 

acidic (pH < 1) aqueous electrolytes consisting of 1 M H2SO4 and 0.1 M HF and found that 

nanotube arrays formed only in the range of 10 - 25 V. Also, they reported the inner 

diameter of nanotubes increased from 40 nm to 110 nm with potential increase from 10 to 

25 V. Figure 2.3 shows the effect of anodization potential on the formation and morphology 

of titania nanotube arrays in 1 M H2SO4 and 0.1 M HF aqueous electrolyte [62].  

For specific electrolyte composition, there is an anodization potential window within which 

TNTAs can be fabricated. This window depends on chemical and physical properties of 

the electrolyte as well as its pH. Gong and coworkers [57] fabricated TNTAs over potential 

range from 10 to 40 V, while Cai and co-workers [62] found that TNTAs fabrication was 

possible only over potential range from 10 to 25 V. Tian and co-workers [63] obtained 

TNTAs at potential of 20 V in NH4F/H2SO4 aqueous electrolyte. Anodization potential has 

a key role in the formation of TNTAs as the formation of TNTAs is basically the result of 

equilibrium between electrochemical oxidation of Ti to TiO2 and the chemical dissolution 

of TiO2 in fluoride- containing electrolyte [63]. Very interestingly and in contrast to any 

electrolyte system for TNTAs formation, titania nanotube arrays were formed at potential 

as low as 1 V in 1 M H3PO4 + 0.3 wt.% HF aqueous electrolyte in an electrochemical cell 

with three electrodes configuration employing Ag/AgCl as reference electrode [64].  The 



25 

 

nanotubes inner diameter and nanotube length were found to be dependent on anodization 

potential and when potential increased from 1 to 25 V, nanotubes diameter and length 

increased linearly from 15 nm and 20 nm to 120 nm and 1µm, respectively, as it can be 

seen from Figure 2.4. The high adjustability of the nanotubes geometry and long nanotubes, 

compared to the nanotubes fabricated in HF electrolyte, was ascribed on one hand to the 

fact that H3PO4 acts as a buffer which regulates local acidity during the nanotubes growth. 

And, on the other hand: the phosphate ions were strongly adsorbed on TiO2 surfaces, the 

fact that was verified by XPS characterization [64].  
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Figure 2-3 Effect of anodization potential on TNTAs formation and morphology in 1 M 

H2SO4 and 0.1 M HF aqueous electrolyte at 01) 5 V, 02) 10 V, 03) 15 V, 04) 20 V, 05) 

25 V and 06) 30 V (reprinted with permission from ref. [62] © 2005 Materials Research 

Society). 
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Although acidic electrolyte is essential for nanotube formation, lower pH electrolyte results 

in few hundred nanometers in nanotube length while higher pH buffered electrolytes give 

longer nanotubes up to 6 µm at pH: 5-6. This was explained by the fact that the chemical 

dissolution rate of TiO2 nanotubes is increased by lowering pH of the electrolyte [35]. Cai 

and co-workers [62] synthesized titania nanotube arrays in aqueous electrolytes with pH 

range from 1 to 6.4 and their results showed that in strong acidic electrolytes, with pH 

between 1 and 2, titania nanotubes with few hundred nanometers in length were formed 

and by increasing pH to 5.6, the length increased to 4.4 μm after anodization for 20 hrs. 

According to Cai and co-workers [62], there was no effect of pH on inner diameter. In 

contrast to the above study, Yin and co-workers found that the inner diameter of nanotubes 

decreased from 80 nm to 40 nm by decreasing pH from 5.6 to 4 [65]. Figure 2.5 indicates 

the effect of pH on nanotube length and nanostructure of the surface of nanotube samples. 
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Figure 2-4 Effect of anodization potential on titania nanotube morphology (SEM top 

view and cross-section images) formed in 1 M H3PO4 + 0.3 wt.% HF at: 1 V (a), 2.5 V 

(b), 5 V (c), 10 V (d), 15 V (e), 20 V (f) and 25 V (g) for 1 h. (Reprinted with permission 

from ref. [64] © 2006 Elsevier B.V.) 
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Figure 2-5 Lateral views of TNTAs formed in different pH solutions (preprinted with 

permission from ref. [62] © 2005 Materials Research Society) 
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Bai and co-workers [66] studied the morphology of anodized titanium foil after different 

anodization times, 10, 30, 60, 200, 800 and 1800 s in 0.5 wt.% HF in aqueous electrolyte. 

The FESEM images of the resulting anodized samples are shown in Figure 2.6. As can be 

seen from Figure 2.6, after 10 s, the surface was covered with titanium oxide film (Figure 

2.6 a).  At 30 s, the oxide layer was partially dissolved and randomly distributed grooves 

appeared in the oxide film (Figure 2.6 b). This was ascribed to localized dissolution of the 

oxide layer by HF [29].  After 60 s, (Figure 2.6 c), the original oxide layer was almost 

removed and replaced by another oxide layer consisted of small pores with 8 to 15 nm 

diameter.  The inset in Figure 2.6 c shows the formation of larger pores by the integration 

of several small pores. After 200 s, larger tubes were formed with the integration of small 

tubes (Figure 2.6 d).  At this time a tubular structure with uneven diameters ranging from 

20 to 100 nm was observed. This means that the large pores, which previously formed from 

the integration of the small pores, are transformed into nanotubular structure. After 800 s, 

(Figure 2.6 e), the nanotube arrays with a diameter of about 100 nm were formed. After 

1800 s, Figure 2.6 f, the development of highly ordered TNTAs was completed [66]. Based 

on this study and other similar work, a formation mechanism of TNTAs was proposed 

which will be discussed in a separate section in this review.  
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Figure 2-6 SEM top views of titania nanotube arrays anodized at 20 V in 0.5 wt.% HF  

aqueous electrolyte at different anodization times: (a) 10 s, (b) 30 s, (c) 60 s, (d) 200 s, (e) 

800 s, and (f) 1,800 s (Reprinted with permission from  ref. [66] © Springer Science + 

Business Media, LLC 2008). 
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2.4.2 Fabrication of TNTAs in organic electrolytes 

Many organic solvents are known to be used in anodic fabrication of microporous silica 

and aluminum oxide [67-69]. It has been demonstrated that organic solvents crucially 

inhibit the electrochemical oxidation of Si compared to an aqueous electrolyte and that 

organic solvents behave as a mild oxidizing reactant for Si. Furthermore, it has been shown 

that the nanotubes growth benefits from the mildly reducing conditions in organic 

electrolytes compared to water due to the more difficult oxygen donation process. An 

organic electrolyte is a more reducing medium in comparison to an aqueous electrolyte 

[67, 70-71]. The TNTAs formation is strongly dependent on the chemical solubility, and 

chemical and physical properties of the electrolytes. In high acidic aqueous solutions 

(pH<1), the nanotube growth rate and dissolution rate are both high resulting in short 

nanotubes even after long anodization times. In comparison to aqueous electrolytes, much 

longer TNTAs can be formed in polar organic electrolytes due to low chemical dissolution 

rate resulting from low water content [52, 56]. Illustrative organic solvents for TNTAs 

formation include: glycerol, dimethyl sulfoxide (DMSO), formamide (FA), N-methyl 

formamide (NMF), acetic acid and ethylene glycol (EG). 

           

2.4.2.1 Fabrication of TNTAs in glycerol-based electrolyte 

Macak and Schmuki investigated the formation of TNTAs in glycerol electrolyte 

containing 0.5 wt. % NH4F as well as in 1 M (NH4)2SO4 aqueous electrolyte containing 

0.5 wt. % NH4F at 20 V and 20 ˚C [72]. Although after 3 h anodization time, the tube 

length anodized in aqueous electrolyte was slightly more than 2 µm while it was only 1.3 

µm in glycerol electrolyte, extending anodization time to 18 h resulted in increasing tube 
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length up to 6.1 µm in case of glycerol electrolyte while there was no noticeable increase 

in tube length in case of aqueous electrolyte as shown in Figure 2.7 a. The reason for the 

continuing growth of the nanotubes length over 18 h anodization time in glycerol-based 

electrolyte is the difference in pH value promoted by the high viscosity of the glycerol 

which resulted in high growth rate of nanotubes at the bottom of the nanotubes (low pH 

region) and lower dissolution rate of nanotubes at the top of nanotubes (high pH region). 

On the other hand, due to low viscosity of aqueous electrolyte, there is no gradient in pH 

value between the bottom and top regions of the nanotubes. This resulted in high 

dissolution rate of the nanotubes at the top and consequently, the net growth rate becomes 

0 after 2.5 h. Figure 2.7 b shows the cross-section side view of TNTAs fabricated in 

glycerol electrolyte showing the extending tube length of 6.1 μm. The inset image is the 

cross section of the same sample at high magnification to show the smooth walls of 

nanotubes which is another interesting feature of anodization in glycerol electrolyte where 

ripples structure that usually appears in aqueous electrolyte anodization disappeared. It is 

noteworthy that the smoothness of the nanotube walls could improve various properties of 

the self-organized TNTAs. For instance, ripples absence may influence the light reflection 

behavior and that may facilitate applications of TNTAs as photonic crystals [73-74] or 

waveguides [75]. Figures 2.7 c and d show the top and bottom views, respectively, of the 

nanotubes anodized in glycerol electrolyte at 20 V for 18 h [72].  

 

Another interesting difference is that TNTAs anodized in glycerol electrolyte possessed a 

smaller pore diameter (approximately 50 nm) than TNTAs anodized in aqueous electrolyte 

(approximately 100 nm) [72, 76]. Changing anodization temperature influenced both the 
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length and diameter of nanotubes where both increased linearly with temperature in the 

range of 0 to 40˚C. This explains the vital role of viscosity of glycerol electrolyte on the 

TNTAs morphology [72].  

The low growth rate of nanotubes in glycerol electrolyte and the strong dependence of the 

results on the viscosity and temperature of the electrolyte show that the tubes growth rate 

is a diffusion-controlled process [77]. Viscous electrolytes such as glycerol are 

characterized by self-induced local acidification at the bottom of nanotube pores which is 

caused by electrochemical dissolution of Ti metal. This local acidification is mainly caused 

by Ti oxidation and hydrolysis as in the following reactions: 

 

Ti   +   2 H2O    →  TiO2  + 4 H+ + 4 e-                                (1) 

Ti   +   6 HF    →      [TiF6]
2-   + 6 H+  + 4 e-                       (2)  

 

By using a buffered neutral solution as an electrolyte, one can create a pH profile gradient 

that is increased from the bottom to the mouth of the tube pore and consequently, increasing 

the chemical etching at the bottom of the tubes while reducing the chemical dissolution at 

the mouth of the tubes resulting in increasing growth rate of the tubes [58]. Anodization in 

glycerol electrolytes/NH4F showed current efficiencies close to 100% compared to 30-40% 

current efficiency for anodization in 1 M (NH4)2SO4 +0.5 wt.%NH4F aqueous electrolyte, 

and only 5 – 15 % current efficiency for anodization in 1 M H2SO4 + 0.15 wt. % HF. The 

current efficiency was defined as the ratio of the tube length values measured directly from 

SEM cross-sections to the tube length values calculated from Faraday’s law assuming a 

four-electron process and an oxide density of 3.84 g cm-3 [72]. By returning to the above 
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three electrolytes, it will be easy to correlate the loss in current efficiency to the high 

chemical dissolution rate of each electrolyte.  

 

 

 

 

 

Figure 2-7 (a) The tube length as a function of anodization time of samples formed 

during different times in glycerol + 0.5 wt.% NH4F and 1 M (NH4)2SO4 + 0.5 wt. 

%NH4F at 20 V at 20 ˚C. SEM images of (b) cross-section, (c) top view and (d) bottom 

view of self-organized TiO2 nanotubes of length of 6.1 μm formed after 18 hrs  

anodization in glycerol electrolyte. (Reprinted with premission from ref. [72] ©2006 

Elsevier Ltd.) 
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A key parameter in TNTAs formation is fluoride ion concentration. With no F⁻ ions in the 

electrolyte, no nanotubes are formed, instead a compact layer of oxide is formed. By 

increasing fluoride concentration from 0.135 M to 0.54 M, the anodization current density 

and the nanotubes length were increased. The anodization potential window widened from 

10-25 V in aqueous electrolytes to 2-40 V in glycerol electrolyte.  Glycerol/water/NH4F 

mixture electrolyte provided a platform for fabrication TNTAs with a very high level of 

flexibility towards the tubes dimensions and morphology. TNTAs with diameters ranges 

from 20 to 300 nm were fabricated by tuning the potential from 2 to 40 V as shown in 

Figure 2-8 [78]. It can be seen in SEM images in this figure that mixing glycerol with water 

results in the appearance of ripples on the walls of nanotubes. Increasing water content in 

glycerol electrolyte results in increasing tube diameter and appearance of ripples on the 

tube walls and decreases the tube length [72, 78].  
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Figure 2-8 SEM top and cross sectional of the TNTAs grown in water/glycerol (1:1 

v/v)/0.27 M NH4F for 3 h anodization time at different potentials. (Reprinted with 

permission from ref. [78] ©2008 Elsevier B. V. All rights reserved) 
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2.4.2.2 Fabrication of TNTAs in DMSO electrolyte 

Dimethyl sulfoxide (DMSO) is the organosulfur compound with a chemical formula of 

(CH3)2SO. DMSO is a dipolar aprotic solvent. Unlike protic solvents, aprotic solvents do 

not have a hydrogen atom directly bonded to an electronegative atom such as oxygen or 

nitrogen. The hydrogen atoms in such solvents are only bonded to carbon atoms. DMSO 

has a very weak ability to donate protons (hydrogen bond donation) and is more basic than 

water, and therefore, it has a protophilic nature. DMSO has a dielectric constant of 47 

which is lower than the dielectric constant of water at 80˚C. The viscosity of DMSO (1.99 

cP) is very close to that of water (0.89 cP) and much lower than the viscosity of glycerol 

(945 cP at 25 ˚C) [79].  Ruan and co-workers [80] conducted the first study of TNTAs 

formation by anodization in DMSO electrolyte. They obtained 2.5 µm long TNTAs using 

an electrolyte composed of DMSO:ethanol (1:1 volume ratio) and 4% HF after anodization 

time of 72 h at 20 V. It is worth to mention that nanotubes were only observed after 48 h 

of anodization while in aqueous electrolytes nanotubes were observed in the first hour of 

anodization. The anodized samples showed an inhomogeneous cracked surface with TiO2 

nanotubes bundled together. To see the effect of anodization electrolyte on the 

photoelectrochemical properties of TNTAs, photocurrent and photoconversion efficiency 

of TNTAs sample anodized in DMSO: ethanol (1:1 volume ratio) and 4% HF at 20 V and 

TNTAs sample anodized in aqueous 1% HF electrolyte were measured. The photocurrent 

of DMSO sample was 6 times higher than that of aqueous HF electrolyte sample and the 

photoconversion efficiency of DMSO sample was 10.7%, 14 times greater than the 

photoconversion efficiency of aqueous HF electrolyte sample [80]. Paulose and co-workers 

[81] increased the length of DMSO anodized TNTAs up to 93 µm. The HF concentration 
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was varied from 1 to 6 wt.%, the anodization potential was studied in the range of 10 to 70 

V and anodization time was varied from 20 to 90 hrs. As DMSO is a protophilic solvent, 

it accepts the hydrogen proton from HF reducing its effect in chemical dissolution of 

nanotubes at the tube mouth leading to an increase in nanotube growth rate. Figure 2.9 is 

representative FESEM images of TNTAs grown at 40 V in DMSO containing 2% HF a) 

cross-section view, b) lateral view and c) view of top surface. The nanotubes have a length 

of 45 µm, an inner tube diameter of 120 nm and a wall thickness of 15 nm. The roughness 

factor, (total surface area of the nanotubes per the flat surface are of the sample), for this 

sample was 1800 [81]. Increasing anodization potential from 20 to 60 V resulted in an 

increase in TNTAs length from 10 to 93 µm. The inner diameters of nanotubes were 50, 

120 and 150 for 20, 40 and 60 V, respectively [81-82]. The increase in the diameter with 

increase in potential is in line with the trend that previously observed in aqueous HF 

electrolyte anodization [83-84]. When HF concentration increased from 1 to 4 wt. % at 

anodization potential 20 V, the nanotube length increased from 4.4 to 29 µm. Also, when 

Ti foil pre-anodized in 0.5 % HF aqueous electrolyte before anodization in 2 % HF DMSO 

electrolyte at 40 V, nanotube length of 82 µm was obtained, almost a 100% increase in 

nanotube length, from that obtained without pre-anodization of Ti foil in aqueous HF 

electrolyte [81]. Figure 2.10 shows the effect of anodization parameters on the length of 

nanotubes. Figure 2.10 a) shows that TNTAs length increased with increasing anodization 

potential as mentioned above but it reached its maximum at 60 V and then decreased 

rapidly at 70 V. The figure shows also how the pre-anodization of Ti foil in HF aqueous 

electrolyte enhanced the growth rate of the nanotubes where the pre-anodization worked 

as tinplating the surface for rapid nanotube growth rate.  
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Figure 2-9 SEM images of TNTAs fabricated in DMSO containing 2% HF at 40 V for 69 

h: a) cross sectional view, b) lateral view and c) top view (reprinted with permission from 

ref. [81], ©2006 American Chemical Society.) 
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Figure 2-10 TNTAs length as a function of (a) anodization potential for 70 h anodization 

in 2% HF-DMSO with and without a pre-anodization step, (b) HF concentration in 

DMSO for 40V and60 V for 70 h, (c) H2O concentration in 2% HF DMSO (at 40 V and 

40 h), and (d) anodization duration time for 40 V in 2% HF-DMSO electrolytes with 0%, 

3%, and 5% deionized water content (reprinted with permission from ref. [82], ©2006 

American Chemical Society). 

 

 

Figure 2.10 b) indicates that 2% HF concentration was the optimum concentration at which 

longest nanotubes were obtained at both 40 and 60 V. HF concentration higher than 2% 

increased the chemical dissolution rate of the tubes resulting in reducing the final nanotube 

length while low concentration of HF below 2% resulted in very slow growth rate of 
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nanotubes extending the anodization time required to obtain the same length of TNTAs. 

The addition of water to the 2% HF–DMSO electrolyte increased the chemical dissolution 

of TiO2 and decreased the nanotube length as shown in Figure 2.10 c and d. Figure 2.10 

d), also, shows that nanotube length increased with extended anodization time up two 70 h 

and decreased after 70 h. The reason behind the reduction in length by increasing the time 

after 70 h is that the nanotube growth rate at the bottom of the tubes becomes slower due 

to the increased diffusion resistance of both F⁻ ions and the reaction products at the tube 

bottom by increasing the tube length while the dissolution rate of the tubes at the tube 

mouth may be increased with increasing the conductivity of the electrolyte due to the 

dissolved Ti ions. This results in the dominance of the dissolution rate and decreasing the 

nanotube length with time [85]. Anodization in previously used DMSO electrolytes 

influences the pore size and length of the formed TNTAs and improved the adhesion 

between the nanotubes and the underlying oxide barrier. The important difference between 

fresh and used electrolytes is that the used electrolytes have very high conductivity 

compared to fresh electrolytes, for example, the conductivity of 2 % HF DMSO electrolyte 

used for anodization of Ti foil at 40 V for 70 h is 100.6 µS/cm compared with 8.76 µS/cm 

for the fresh electrolyte. Previously used DMSO electrolytes usually produce TNTAs of 

shorter length if compared with fresh electrolytes. For example, using a fresh 2% HF 

DMSO electrolyte, 53 µm length TNTAs were obtained after 24 h at 40 V and then, by 

using the same electrolyte again with other Ti foil for 70 h at 40 V, only 50 µm length 

TNTAs were obtained. It is worth mentioning that the higher conductivity of used 

electrolytes was found to be useful in increasing initial nanotube growth rate. In addition, 
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nanotubes fabricated in used electrolytes do not have debris and have unclogged tubes [82, 

85-86].  

2.4.2.3 Fabrication of TNTAs in Formamide (FA) and N-Methyl 
formamide (NMF). 

Formamide (FA) and N-methyl formamide (NMF) are both protophilic like DMSO, 

meaning their acidity nature is weaker than water. Therefore, they provide a more reducing 

environment than that of water. In addition, they have a high dissolving power for both H+ 

and F⁻ ions.  Furthermore, FA and NMF are highly polar and their dielectric constants are 

111 and 182.4, respectively which are much higher than dielectric constant of water, 80. 

Also, their viscosities are comparable to that of water (3.3 and 1.65 cP for FA and NMF, 

respectively). The higher polarity of the electrolyte facilitates the dissolving of HF and 

makes it chemically available in the reaction sites at TiO2-electrolyte interface [79]. Few 

reports were published on fabrication of TNTAs in FA and NMF electrolytes [86-88]). 

Paulose and co-workers [81] fabricated TNTAs of 70 µm long anodized in a FA based 

electrolyte for 48 h at constant voltage of 35 V. The nanotubes had an average outer 

diameter of 180 nm and an aspect ratio of 390. The average wall-thickness was about 24 

nm. Keeping water content in the anodization organic electrolyte below 5% is crucial to 

successfully grow long TNTAs [81]. By reducing water content in organic electrolytes, the 

availability of oxygen for oxide formation is reduced resulting in thinner oxide barrier 

beneath the nanotube arrays [68]. Furthermore, reducing water content inhibits chemical 

dissolution of TiO2 at the mouth of nanotubes in F⁻-containing electrolytes hence assisting 

 growth of longer TNTAs [85]. FA electrolytes used in Ti anodization usually included FA 

and/or NMF solutions containing 1–5 wt.% of deionized water and 0.3–0.6 wt.% NH4F 
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[81, 87, 89]. The potential window in which TNTAs can be grown in FA/NMF electrolytes 

is from 10 to 50 V which is wider than potential window for both aqueous (10-30 V) and 

glycerol electrolytes (5-40 V). Increasing anodization potential generally increases both 

diameter and length of nanotubes -- the same phenomenon which was found in aqueous, 

DMSO and glycerol electrolytes. The increase in nanotube length with anodization 

potential is ascribed to the increased driving force for ionic transport through the oxide 

layer barrier beneath the nanotubes, consequently, resulting in faster movement of the 

Ti/TiO2 interface towards the Ti metal. Nanotube length was found to increase with 

anodization time up to a maximum length. Increasing anodization time after reaching the 

maximum length decreases the length of nanotubes which may be attributed to the 

nanotubes cleavage due to chemical dissolution [85]. The effect of the presence of different 

cations in the water-FA mixture electrolyte was studied by Shankar and co-workers [87]. 

Five different fluoride compounds, namely; HF, NH4F, sodium fluoride (NaF), tetrabutyl 

ammonium fluoride (Bu4NF) and benzyltrimethyl ammonium fluoride (BnMe3NF) were 

the fluoride ion bearing species used to study the effect of the corresponding cations, H+, 

NH4
+, Na+, Bu4N

+ and BnMe3N
+, respectively. Under similar conditions, the nanotube 

length and aspect ratio increased with increasing the cation size. The longest nanotube 

arrays (94 μm) were obtained from the electrolyte containing Bu4N
+, while the shortest 

nanotubes were grown in the electrolyte containing only H+ cations. The significant 

difference in nanotubes length was ascribed to the repressive effect of the quaternary 

ammonium ions which confined the thickness of the barrier oxide layer beneath the 

nanotube arrays. The thinner the barrier oxide layer the faster the ionic transport through 

this barrier which increases the nanotube growth rate [87]. 
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2.4.2.4 Fabrication of TNTAs in ethylene glycol (EG) 

 

 As mentioned earlier, viscosity of the electrolyte has a direct impact on diffusion of 

reactants and products to and from the titania nanotubes surface. It is necessary to control 

diffusion for synthesis of well-organized titania nanotubes; however, there is a certain 

range out of which the viscosity has negative impact on synthesis and growth rate of titania 

nanotubes. The growth rate was low in glycerol-based (η = 945 cP at 25oC) electrolytes 

and addition of water improved the growth rate due to the reduction in the viscosity of 

electrolyte solution. Ethylene glycol (EG) is less viscous (η = 16 cP at 25 o C) compared to 

glycerol and results in lower diffusion resistance. Therefore, the growth rate would be 

higher in EG-based electrolytes. The anodization process of titanium to fabricate TNTAs 

in EG-based electrolytes has two distinctive characteristics [81, 86, 90-91]. First distinctive 

characteristic is the highly rapid TNTAs growth rate of up to 15 μm per hour which is five 

times the maximum growth rate of TNTAs formed in FA- or DMSO-based electrolytes and 

an order of magnitude greater than the growth rate of TNTAs formed in aqueous [78, 92-

93] or glycerol based electrolytes [94-95]. In EG-based electrolytes, TNTAs were 

fabricated within anodization window from 20 to 65 V with water content varying from 1 

to 4 vol. % and ammonium fluorides ranging from 0.1 to 0.5 wt.%. At constant voltage of 

60 V, 2 vol.% water content and anodization time of 17 h, it was found that the length of 

TNTAs increased by increasing NH4F concentration from 0.1 to 0.3 wt.% from 85 to 165 

μm. While, when keeping NH4F concentration at 0.3 wt.% and other parameters 

unchanged, TNTAs increased from 67 μm to 165 µm by increasing water content from 1 

vol.% to 2 vol.% but further increase of water content to 3 vol. % reduced the TNTAs to 

136 µm which implies that the optimum condition for production of longest TNTAs is 2 
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vol. % water content and 0.3 wt.% NH4F in ethylene glycol. Inner and outer diameters and 

TNTAs length were found to increase by increasing anodization potential from 20 to 60 V, 

where inner diameter increased from 45 to 105 nm, outer diameter increased from 65 to 

155 nm and tube length increased from 5 to 165 µm, respectively. Further increase of 

anodization potential to 65 V, resulted in a further increase in both inner and outer 

diameters to 135 and 185 nm, respectively, but it resulted in a decrease in tube length to 

105 μm. This implies that at these conditions, the optimum anodization potential at which 

longest TNTAs can be obtained is 60 V. The resulting TNTAs lengths showed a power low 

dependence on the applied potential in the potential range from 30 to 60 V. At 80 V and a 

variety of electrolyte compositions, Ti foil was merely corroded and no nanotubes were 

formed [90]. The effect of time on nanotube length was studied at 0.3 wt. % NH4F and 2 

vol. % water content at 60 V anodization potential. Samples were anodized for different 

intervals, namely, 4, 17, 21, 48 and 96 h. Figure 2.11 shows cross-sectional views of 

TNTAs obtained at these intervals. The TNTAs lengths were 58, 160, 188, 289 and 360 

μm for 4, 17, 21, 48 and 96 h, respectively. The TNTAs lengths fabricated at various 

anodization times up to 21 h were proportional to the charge passed during those 

anodization times indicating that the current efficiency was constant and very close to 

100%. This implies that there are almost no side reactions during the anodization and the 

bulk chemical dissolution of formed TNTAs is negligible. The proportionality between the 

total charge passed and the length of formed TNTAs was also held for anodization 

potentials lower than 60 V while above anodization potential of 60 V, the current efficiency 

decreased [90].  
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Figure 2-11 FESEM images of cross sectional views indicating the lengths of TNTAs as 

a function of time at 60 V in ethylene glycol, 0.3 wt. % NH4F and 2 vol. % H2O. 

(Reprinted with permission from ref. [90], © 2007 American Chemical Society) 
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2.5 TNTAs formation mechanism 

The fundamental processes responsible for anodic oxidative formation of nanoporous 

alumina and titania are the same, and are principal to the formation of straight titania 

nanotubes [96-97]. These processes are [56, 66, 85, 98]:  

(1) Formation of oxide layer at the surface of the Ti metal takes place due to interaction 

of the metal with O2- or OH- ions. After the development of an initial oxide layer, 

these anions move through the oxide layer towards the metal/oxide interface where 

they react with the Ti metal. 

(2)  Metal ion (Ti4+) transfer from the Ti metal at the metal/oxide interface by ejection 

under application of an electric field and migration towards the oxide/electrolyte 

interface.  

(3) Field-assisted dissolution of Titanium oxide at the oxide/electrolyte interface. 

Under applied electric potential, the Ti–O bond is polarized and tends to be weak 

facilitating dissolution of the metal cations. Ti4+ cations dissolve into the 

electrolyte, and the free O2- anions transfer towards the metal/oxide interface to 

interact with the Ti metal. 

(4) Chemical dissolution of the Ti metal, or oxide also occurs due to the acidic 

electrolyte. Chemical dissolution of titania plays a key role in the formation of 

TNTAs rather than a nanoporous structure.  As mentioned before, the chemical 

dissolution rate depends on the pH value, which then causes more etching at the 

pore-bottom than at the opening and at the walls (as illustrated in Figure 2.12). 
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Figure 2-12 The chemical dissolution rate in c), depends on the pH-value as in b), caused 

by the reaction illustrated in a). (Reprinted with permission from ref. [58], ©2005 Wiley-

VCH Verlag GmbH & Co. KGaA, Weinheim). 

 

The overall reactions for the anodization process of titanium can be represented as: 

2 H2O     O2 + 4 e- + 4 H+                                             (1) 

Ti + O2      TiO2                                            (2) 

In the early stages of the anodization process, field-assisted dissolution dominates 

chemical dissolution which can be attributed to the relatively large electric field across 

the thin oxide layer (the resistance to the current is minimum). Small pits form due to the 
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localized dissolution of the Ti oxide and act as nuclei for pore formation. The formation 

of these small pits is represented by the following reaction: 

TiO2 + 6 F- + 4 H+    [TiF6]
2-  + 2 H2O                       (3) 

Then, these pits convert into larger pores. Subsequently, the pores spread uniformly over 

the surface. The pore depth increases due to the inward movement of the pore bottom 

(barrier layer).  This occurs due to processes (1) to (3) mentioned above (see Figure 2.13). 

 

Figure 2-13 Illustrative diagram of the evolution of a nanotube array at constant 

anodization voltage: (a) oxide layer formation, (b) pit formation on the oxide layer, (c) 

growth of the pit into scallop shaped pores, (d) metallic part between the pores undergoes 

oxidation and field assisted dissolution, and (e) fully developed nanotube array with a 

corresponding top view. Redrawn with permission from ref. [56], © 2006 Elsevier B. V.  

All rights reserved. 
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Although the formation mechanism was originally proposed for the generation TNTAs 

fabricated in low pH HF aqueous electrolytes, it still holds for all organic electrolytes 

discussed above in Section 3.2 considering the following differences: 

1. Using organic electrolytes with low water content, the inhibiting organic medium 

and low oxygen availability hinder the growth of oxide layer barrier thickness 

beneath the nanotube arrays which help increase the transfer rate of different ionic 

species across this oxide layer barrier and consequently, increase the nanotube 

growth rate. 

2. The corrosion-inhibiting organic medium at low water content minimizes the 

chemical dissolution rate of TiO2 at the nanotubes mouths which increases the 

nanotube growth rate and enhances the electrical current efficiency.  

3. Replacing the strong acidic HF aqueous electrolytes with near-neutral fluoride salts 

electrolytes such as NH4F and KF, minimizes the chemical dissolution rate of TiO2 

nanotubes. 

4. Although high viscous glycerol electrolyte helps widen the pH gradient across the 

nanotube length (see Figure 2.12) which increases the nanotube growth at the 

bottom and decreases the chemical dissolution rate at the nanotubes mouths, the 

low transfer rate of different ionic species through the electrolyte due to high 

viscosity results in a relatively low growth rate of nanotubes if compared with other 

organic electrolytes such as DMSO and ethylene glycol [78]. 

5. The anodization potential window within which TNTAs can be fabricated is a 

characteristic of the electrolyte and depends on its chemical and physical properties. 

For aqueous electrolytes, the potential window for TNTAs fabrication was found 
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to be within 10-30 V with an optimum potential of 20-25 V [62], whereas for 

organic electrolytes, the potential window tends to be wider: for glycerol electrolyte 

(1-40 V) [78], for DMSO (10-70 V) [82] and for ethylene glycol from 20 to 65 V 

with a maximum growth rate at 60 V [90].      

2.6 Modification of TNTAs Electronic and 
Photoelectrochemical Properties 

2.6.1  Non-metal doping 

The electronic structure of a semiconductor (e.g. band gap value as well as the level of 

valence and conduction bands) plays a key factor in semiconductor photoactivity. A 

semiconductor comprises of energy valence band (VB) and energy conduction band (CB). 

The energy difference between these two bands is known as band gap energy or band gap 

(Eg). Electrons in VB are excited to CB when absorb photons with energy equal or higher 

than Eg. The valence band maximum edge of titania mainly comes from the oxygen 2p 

orbitals and the conduction band minimum edge comes from the 3d orbitals of titanium. 

The electrons transitions from the dopants 2p or 3p orbitals to the 3d orbitals of titanium 

generally results in optical properties modifications [99]. Highly-ordered, vertically-

oriented, high surface area titania nanotube arrays are ideal for water photolysis and 

photocatalytic degradation of wide range organic substances due to high 

catalyst/electrolyte interface area, electrolyte percolation and highly efficient charge 

transfer [56]. TiO2 nanotube arrays demonstrate quantum efficiency exceeding 80% under 

UV illumination for water photolysis [100]. However, the widespread application of TiO2 

is limited by its wide band gap (~ 3.2 eV) which is photoresponsive only under UV 

illumination. Because UV portion accounts for only about 5% of the solar spectra while 
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visible light accounts for about 45%, any shift in photoactivity of TiO2 from UV toward 

visible light region increases the photoconversion efficiency and therefore has a positive 

impact on photocatalytic and photoelectrochemical applications of the materials [56, 98]. 

In order to resolve the above problem and modify the electronic structure of TiO2 to narrow 

its band gap, non-metals such as carbon [101], nitrogen [102-103], phosphorous-fluorine 

[104] and nitrogen-fluorine-iodine [105] have recently been doped into TiO2 and proved 

significant enhancements in visible light photoactivity of the material.  

 

Asahi and co-workers [106] calculated densities of states (DOSs) of the substitutional 

doping of N, C, F, P and S for O in anatase TiO2 and found that when mixing p states of N 

with 2p of O in the substitutional doping of N, valence band (VB) edge shifted upwards 

leading to narrower band gap of TiO2. Although doping of S resulted in a similar band gap 

narrowing, the ionic radius of S was found to be too large to be introduced into TiO2 lattice 

as proved by larger formation energy needed for the substitution of S than that needed for 

the substitution of N. N-doped TiO2 films were prepared by sputtering TiO2 in N2 (40%)/Ar 

gas for 4 h and the films were a mixture of anatase and rutile crystal phases. It is worth 

mentioning that authors of this study [106] set the following requirements to introduce 

visible-light photoactivity by doping: 1) doping should introduce states in the band gap of 

TiO2 that absorb visible light photons; 2) The conduction band minimum (CBM), after 

doping, should be as high as that of TiO2  or higher than the potential level of H2/H2O to 

secure the photoreduction activity; and 3) the introduced states in the gap  should overlap 

adequately with the band states of TiO2 to carry over  the photoinduced  electrons to reactive 
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sites at the surface within their lifetime. Requirements 2 and 3 are most likely achieved 

when using non-metal doping rather than metal doping [106, 107]. 

The densities of states (DOS) calculations conducted by Asahi and co-workers [106] 

proved that the substitutional doping of N for O site was expected to be the most effective 

among other non-metal dopants considered because the nitrogen p states placed just above 

the valence bands maximum (VBM) of TiO2 may contribute to the band gap narrowing 

without noticeable increase of the carrier recombination. Experimental investigation of 

nitrogen doped TiO2 conducted by Chen and co-workers using X-ray photoelectron 

spectroscopy confirmed the findings of Asahi study [108].   

 

A huge number of publications have been reported on the photocatalytic properties of N-

doped TiO2 under visible-light [107, 1089-115]. N-modified TNTAs were synthesized by 

annealing the as-prepared amorphous TNTAs at 400 ˚C in the presence of urea pyrolysis 

gaseous products [116]. In contrast to the pure TNTAs, modified TNTAs demonstrated 

photocurrent under visible light illuminated. For the pure TNTAs, the photocurrent 

disappeared at wavelengths > 400 nm, which corresponds to anatase band gap, Eg, of 3.2 

eV. While N-modified TNTAs demonstrated photocurrent down to wave length of 750 nm 

showing strong response in visible light region. N1s  X-ray photoelectron spectroscopy 

(XPS) spectra of modified TNTAs  showed two sub-peaks at 400.1 eV and 398.2 eV which 

can ascribed to C-N=C and C-NH2 species  [116-117].   Vetiello and co-workers [102] 

synthesized TNTAs in HF/H2SO4 aqueous electrolyte under anodization potential of 20 V 

for 2 h. The produced TNTAs were of an average inner diameter of 100 nm, wall thickness 
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of 15 nm and tube length of 500 nm. To induce nitrogen doped TNTAs, some samples 

were annealed in pure ammonia atmosphere at temperature 600˚C, where other samples 

were annealed in air at 450˚C and 600˚C for comparison. The ammonia-treated TNTAs 

exhibited photocurrent in the visible light range up to 525 nm while the other two samples 

annealed in air at 450 and 600˚C did not demonstrate photocurrent in wave length range 

above 400 nm. The photocurrent of NH3-treated TNTAs is attributed to the introducing of 

nitrogen doping of TNTAs which was confirmed by XPS spectra peak at 395.8 eV which 

corresponds to atomic nitrogen in form of mixed titanium oxide-nitride [102, 118]. N-

doped TNTAs were also synthesized by annealing the as-anodized TNTAs in ammonia gas 

atmosphere at 500˚C [119].  In this study, the nanotubular structure was found to remain 

unchanged after annealing. X-ray diffraction and Raman spectra demonstrated the presence 

of both anatase and rutile phases in the N-doped TNTAs as well as the non-doped TNTAs 

but the XRD spectra of the nitrogen-doped TNTAs showed increased peak intensity in the 

rutile (110) peak and an emerging (210) rutile peak implying that nitrogen doping could 

have enhanced the phase transition from anatase to rutile at lower annealing temperature 

[119-120]. The photocatalytic degradation of methyl orange using nitrogen doped TNTAs 

was shown to be evidently higher than that of undoped TNTAs which may be ascribed to 

the role of nitrogen doping in band gap, Eg, narrowing [121]. During anodization process, 

Ti metal foil is positively biased against Pt cathode. Under the effect of this positive bias, 

negative ions will move toward the anode surface and get oxidized and some of these atoms 

may be incorporated into the growing TiO2 layer. Nitrogen atoms may be incorporated into 

growing TNTAs by adjusting the electrolyte composition so that only nitrogen and fluoride 

containing species are added into anodization electrolyte. Shankar and co-workers prepared 
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nitrogen-doped TNTAs in one anodization step in 0.07 M HF aqueous electrolyte 

containing varying concentrations of NH4NO3 from 0.2 to 2.5 M for various anodization 

times ranging from 17 s to 6 h. XPS spectra showed formation of TiO2-xNx with maximum 

value of x=0.23 in sample anodized for only 17 s with decreasing until reaching x=0.02 for 

sample anodized for 6 h. Unfortunately, at very short anodization times such as 17 s, there 

are no nanotubes formed. Only thin oxide layer with small pits and pores appearing on it 

was formed. With a complete formed TNTAs after 6 h and x=0.02, the absorption edge 

was slightly shifted from around 400 nm to 423 nm whereas for sample anodized for 17 s 

(no nanotubes were formed), and x=0.23, the absorbance shift was from 400 nm to 510 

nm. The nitrogen doping and TNTAs formation were found to be competing process [122]. 

In 2010, Xu and co-workers [123] reported a new approach for N-doped TNTAs. They 

immersed short amorphous TNTAs, previously prepared by anodization in 0.1 M HF and 

1 M H2SO4 aqueous electrolyte for 60 min. at 20 V, in hydrazine hydrate (80 %) for 6 h 

and then dried in air at 110˚C. The dried TNTAs were annealed at 450˚C for 3 h to 

crystallize amorphous TNTAs to anatase phase. Nitrogen content of hydrazine-treated 

crystalline TNTAs was determined using EDX characterization. The atomic ratio of N/Ti 

was 8/25.  Photocurrent of hydrazine-treated nitrogen-doped TNTAs was found to be 

double that of untreated TNTAs (samples annealed in air at 450˚C for 3h without 

immersing in hydrazine hydrate). The photocurrent of N-doped TNTAs was 182 μA while 

it was only 92 μA for undoped TNTAs. The UV-Vis diffuse reflectance spectra of nitrogen 

doped and un-doped TNTAs showed a clear red-shift in the absorption edge for doped 

TNTAs and a band gap value for nitrogen-doped TNTAs of  3.04 eV (corresponding to 

wavelength of 408 nm) compared to 3.26 eV (corresponding to wavelength of 380 nm) for 
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un-doped TNTAs. In addition, n-doped TNTAs exhibited a higher visible light absorbance 

(from 400-450 nm). The photocatalytic activity of N-doped and un-doped TNTAs was 

investigated by the degradation of reactive brilliant X-3B dye. The degradation percent of 

X-3B was 59 % using un-doped TNTAs in photocatalysis, while it was 99 % when N-

doped TNTAs was used. The apparent first order rate constant (kapp) of photodegradation 

of the X-3B dye was 0.04 min-1 for N-doped TNTAs whereas it was only 0.009 min-1 for 

un-doped TNTAs [123]. Although the EDX spectra did not show doped nitrogen atoms 

inside the TiO2 lattice, the UV-Vis diffuse reflectance spectra, photocurrent enhancement 

and the increase in photodegradation efficiency of hydrazine-treated TNTAs all proved the 

effectiveness of this approach to enhance the visible light activity of TNTAs.  

 

Aqueous electrolyte containing 1/12 M oxalic acid and 0.5 wt. % NH4F was employed to 

prepare N- and F- co-doped TNTAs by Su and co-workers [124]. The prepared TNTAs 

were annealed at 400 ˚C to induce anatase crystalline phase. The incorporation of N and F 

atoms into TNTAs crystal lattice was verified by XPS spectra peaks of 401.9 eV and 396.25 

eV for N1s and 686.4 eV and 688.5 eV for F1s, respectively. The large peak of 401.9 eV 

was ascribed to adventitious N2 and NH3 adsorbed on TiO2 surface whereas the peak of 

396.25 eV was attributed to the presence of Ti-N bonds formed by replacing O atoms in 

TiO2 lattice. The F1s peak at 686.4 eV was ascribed to TiOF2 while the peak at 688.5 eV 

may belong to Ti-F bonds [124-125].  Preparation of N- and F-co-doped TNTAs in one 

anodization step followed by annealing in either N2 or air atmosphere was also reported by 

[126]. They used electrolyte consisted of glycerin:water (9:1 volume ration) containing 

0.36 M NH4F and 0.25 M NH4Cl for TNTAs formation at anodization potential of 20 V 
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and then annealed as-prepared TNTAs at 500˚C in a flow of nitrogen. XPS spectra 

confirmed both nitrogen and fluorine doping by the presence of peaks at 397 and 687.7 eV 

which attributed to Ti-N and Ti-F bonds, respectively. N- and F- co-doped TNTAs both 

annealed in air and nitrogen flow showed an enhanced absorbance in the whole visible light 

region but the one that annealed in nitrogen flow showed higher absorbance than that 

annealed in air. This may be attributed to the resubstitution of dopants by oxygen when 

annealed in air resulting in lower dopants concentration. The N-, F-co-doped TNTAs 

exhibited a high degradation rate of methyl blue (MB) under visible light illumination 

leaving only 19% of the initial concentration of MB after 2 h irradiation, compared to 60% 

of the initial concentration left in case of un-doped TNTAs [126].  Ghicov and co-workers 

reported the preparation of N-doped TNTAs using ion implantation [127]. The approach 

was to first anneal as-prepared TNTAs at 450˚C for 3 h in air to induce the crystalline phase 

then implant nitrogen ions into the crystallized TNTAs using a multipurpose implanter at 

60 keV accelerating energy and a nominal dose of 1x1016 ions.cm-2. Finally, the N-

implanted TNTAs were reannealed again at 450˚C for 3 h in air to reform the structure 

damage that might have happened during ion implantation process. Photocurrent measured 

for samples after first annealing without ion implantation was only below 400 nm wave 

length. The photocurrent measured after ion implantation was also below 400 nm, but its 

value was very small compared to the photocurrent measured before N-implantation 

process. The loss in photocurrent after ion implantation process was ascribed to the huge 

damage to the crystal structure caused by ion implantation process. After reannealing at 

450˚C for 3 h in air, the damage was reformed and photocurrent spectra exhibited an 
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increase in the value in the range below 400 nm and an extension up to 550 nm which 

corresponds to a sub band gap of 2.2 eV [127].    

Since the very publicized report by Khan and co-workers in 2002, many attempts have 

been made to decrease the band gap energy of TiO2 by carbon doping [55, 101,128-131]. 

The most common approach for synthesis of a carbon-doped TiO2 film is by direct 

oxidation in a burning flame [101, 132]. Although flame annealing method exhibited 

enhanced absorbance in visible light region as well as enhanced photocurrents, a substantial 

damage occurred in the TNTAs resulting in a subsequent decrease in the overall 

performance. C-doped TNTAs were prepared by reannealing the crystalline anatase phase 

TNTAs in CO gas flow at temperatures ranging from 500 to 800 ˚C. Although the carbon 

content ranged between 8 and 42 atoms% according to XPS results, no appreciable peak 

was found at 281.5 eV meaning that there was no Ti-C bonding [55]. 

Very interestingly, fabrication of TNTAs in organic electrolyte such as ethylene glycol-

based electrolyte and then annealing in a reducing atmosphere (H2 gas flow) helped 

introducing carbon dopant from the reduced ethylene glycol to give a C-doped TNTAs 

with a modified band gap of 2.2 eV [51].  Carbon-modified TNTAs were also obtained by 

annealing as-anodized TNTAs at 550 ˚C under an argon and acetylene gas mixture (9:1) 

flow for 1 h. XPS spectra of carbon modified TNTAs exhibited a peak at 288.9 eV which 

can be ascribed to the carbon existing in the form of interstitial atoms which come from 

the diffusion of carbon atoms into the TNTAs lattice during carbon modification process 

[133]. Figure 2.14 shows that the absorbance edge of carbon-modified TNTAs was shifted 

towards the visible light region compared to the un-modified TNTAs. Photoactivity of 

carbon-modified TNTAs was evaluated by photodegradation of methyl blue under the sun 



60 

 

light irradiation. Figure 2.15 shows the change in MB concentration with irradiation time 

using un-modified TNTAs, carbon-modified TNTAs and without any TNTAs (just 

photofading under sun light irradiation). The large enhancement of photoactivity after 

carbon-modification is very clear from Figure 2.15. The MB is almost completely removed 

by photodegradation after 300 min. using carbon-modified TNTAs whereas only 18 % and 

9 % were removed after 300 min using un-modified TNTAs and without any catalyst, 

respectively [133]. 

 

Figure 2-14 UV-vis absorption spectra of TNTAs and carbon –modified TNTAs 

reprinted from [133] © 2008 Elsevier B. V. all rights reserved 
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Figure 2-15 Change of MB concentration with irradiation time under different 

photocatalysts (reprinted from [133] © 2008 Elsevier B. V. all rights reserved) 

Boron doping was found to enhance the performance of TNTAs. Lu and co-workers [134] 

prepared B-doped TNTAs by chemical vapor deposition. The as-anodized TNTAs was first 

annealed at 450˚C in oxygen for 3 h to be converted to anatase phase, then Boron doping 

process was carried out using chemical vapor deposition (CVD). The boron source was 

trimethyl borate and N2 was used as a carrier gas. Chemical vapor deposition (CVD) 

process was carried out at 600˚C for 40 min. The XPS spectra for B-doped TNTAs 

exhibited a binding energy peak at 192 eV which lies between the standard binding energy 

for Ti-B in TiB2 (187.5 eV) and the binding energy for B-O in B2O3 (193.1 eV); implying 

that the boron atoms could be probably incorporated into TNTAs crystal lattice and boron 

might exist as Ti-B-O [59, 134]. Although UV-vis spectra for B-doped TNTAs revealed 
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small absorption edge shift toward visible light region (from 385 nm to 405 nm), compared 

with the large shift occurred in N-doping and C-doping, there is enhancement in the light 

absorbance in UV region implying an enhancement in the photocurrent and 

photoconversion efficiency under UV irradiation. B-doped TNTAs exhibited photocurrent 

density 60% higher than un-doped TNTAs and maximum 31.5% photo-conversion 

efficiency compared to only 16% for un-doped TNTAs under UV irradiation [134-136]. 

Although introducing sulfur into TiO2 lattice as dopant narrows band gap similar to 

nitrogen doping, the large ionic radius of sulfur would make it more difficult to incorporate 

it into the TiO2 crystal which is proved by the much higher formation energy necessary for 

the sulfur substitution than that required for nitrogen substitution [106].  Tang and Li [137] 

prepared sulfur-doped TNTAs by annealing as-anodized TNTAs at 380˚C for 14 h under 

H2S flow at 10 mL/min. XPS studies of sulfur-doped TNTAs showed the presence of two 

distinctive peaks of S2p at 167.70 and 163.88 eV. The higher peak was ascribed to surface 

adsorbed SO2 according to Umebayashi and co-workers [138] and Sayago and co-workers 

[139], while the lower peak at 163.88 eV was attributed to mixed state such as S-Ti-O 

according to [135]. Figure 2.16 shows the UV-vis spectra of sulfur-doped TNTAs and 

undoped annealed TNTAs. As shown, sulfur-doped TNTAs demonstrate a strong 

responsiveness over the whole visible light region which is reflected on the large 

enhancement in photocurrent compared to the un-doped TNTAs [137]. 
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Figure 2-16 UV-vis DR spectra of sulfur-doped TNTAs and un-doped annealed TNTAs 

(reprinted from ref. [137], © 2008 American Chemical Society) 

Silicon-dopant was successfully incorporated to TNTAs using chemical vapor deposition 

method by Su and co-workers [140]. The as-anodized TNTAs were first annealed at 450˚C 

for 3 h to convert the amorphous phase to anatase crystalline phase. Then the crystalline 

TNTAs were subjected to CVD treatment. Tetraethylorthosilicate, (TEOS), carried by Ar 

gas was admitted to the tube furnace as a silicon source at 500˚C for 15 min. the silicon 

concentration in the carrier gas was about 156 mg L-1. After CVD process, the TNTAs 

were reannealed at 650˚C for 30 min. XRD patterns for Si-doped TNTAs and un-doped 

TNTAs which were treated at the same conditions except CVD process, indicated that Si-
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doping was inhibiting the crystallite growth and the anatase-to-rutile phase transformation 

at high annealing temperatures. The reason behind these phenomena is attributed to the 

presence of the amorphous silica phase. The UV-vis DRS showed a blue shift in band gap 

due to Si-doping where the band gap absorption edge for Si-doped TNTAs was 375 nm 

(corresponding to 3.62 eV) and for un-doped TNTAs was 388 nm (corresponding to 3.32 

eV).  The blue shift in band gap absorption edge of Si-doped TNTAs showed photocurrent 

spectra 1.5 times higher than the un-doped TNTAs under UV irradiation. The enhancement 

of photoresponse of Si-doped TNTAs was also confirmed by the increase in 

photoelectrochemical degradation of PCP under UV irradiation with a degradation kinetic 

constant of 1.22 h-1 which was 84.8 % higher than that of un-doped TNTAs [140].            

2.6.2   Metal Ions Doping 

Doping of TiO2 nanoparticles with transitional metal ions and rare earth metal ions to 

improve the TiO2 photocatalytic performance have been extensively investigated [115, 

141-143]. Metal ions doping can expand the photo-responsiveness of TiO2 into visible light 

spectrum. Due to metal ions incorporation into the TiO2 lattice, extrinsic energy levels in 

the band gap of TiO2 are formed, according to the following equations [115]: 

 

Mn+ +  hν                  M(n+1)+  +  e-
(CB)                                  (4) 

Mn+  + hν                  M(n-1)+ +  h+
(VB)                                  (5) 
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where M and Mn+ represent metal and metal ion dopant, respectively, hν is the energy of  

a single  photon where h is the Planck constant (= 6.626*10-34 kg.m2/s) and ν is the 

frequency in Hr or s-1, e-
(CB) electron charge at conducting band and h+

(VB) positive charge 

(hole) at valence band. It is very important to understand that the electron (hole) transfer 

between metal dopant and TiO2 may also increase the rate of electron/hole recombination. 

The energy level of metal ion reduction should be less negative than the conduction band 

edge of TiO2 while the energy level of metal oxidation should be less positive than the 

valence band edge of TiO2. Metal ions dopants should exist near titania surface to facilitate 

charge transferring. Deep metal ions dopants act as recombination centers. Additionally, 

there is an optimum concentration for each metal dopant above this concentration the 

photocatalytic performance decreases because of the increase in electron/hole 

recombination process [115, 141, 144-145]. It should be recognized that in contrast to 

metal doping of TiO2 nanoparticles, metal ions doping of TNTAs is more difficult as one 

should choose carefully the doping method that introduces the metal ions efficiently into 

TNTAs crystal lattice and at the same time not damage the highly organized nanotubular 

structure. Yang and co-workers [146] prepared Zn-doped TNTAs by immersing TNTAs in 

Zn-containing solution for hours then annealing samples at 400 ˚C for 3 h. The 

incorporation of Zn+ was concluded only from FESEM images and HRTEM observations 

of Zn-doped TNTAs. The powerful XPS investigation did not clarify the chemical state of 

zinc ions [146].  Liu and co-workers [147] employed an electrochemical strategy to 

fabricate Zr-doped TNTAs. After short TNTAs were formed by anodization in aqueous 

electrolyte containing 0.14 M NaF and 0.5 M H3PO4, the formed TNTAs and platinum 

electrode were used as a cathode and anode, respectively, in an electrolyte of 0.1 M Zr 
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(NO3)4 for preparation of Zr-doped TNTAs at varying electric potentials ranging from 3 to 

15 V and post annealing temperatures ranging from 400 to 700˚C. Zr and Ti have similar 

atomic radii (Ti, 2 Å, Zr, 2.16 Å) and they are both IV B elements and tetravalent (+4) 

elements. Thus, it is possible to introduce Zr atoms into TiO2 lattice. XPS spectra 

demonstrated a peak at 182 eV which is ascribed to the presence of Zr in the TiO2 lattice 

but the UV-vis DRS did not show any difference between Zr-doped TNTAs and pure 

TNTAs. Photocatalytic degradation of rhodamine B using Zr-doped and un-doped TNTAs 

exhibited an enhancement due to Zr-doping [147]. W-doped TNTAs was prepared by a 

one anodization step of 3% tungsten titanium alloy foil in 0.5 % HF containing ethylene 

glycol at 60V. The UV-Vis DRS of the produced W-doped TNTAs showed a red shift in 

the absorbance edge and a reduction in band gap about 0.14 eV which resulted in an 

increase of photocurrent density compared to the un-doped TNTAs [148]. Cr-doped 

TNTAs prepared by ion implantation method exhibited a significant enhancement in 

photocurrent response in both UV and visible light regions [149]. 

Many studies have focused on iron ion doping to TiO2 nanoparticles or nanoparticulate 

films including preparation methods, characterization, charge transport and recombination 

dynamics, and photocatalytic performance [150-156]. Adan and co-workers [153] reported 

that the presence of iron shifts the absorption edge of TiO2 towards the visible region and 

this red shift increases with increasing the iron content, consistent with the changes in the 

samples color from white to yellow or light brown. The enhanced absorbance of Fe-doped 

TiO2 in visible light region could be ascribed to the excitation of 3d electrons of Fe3+ to the 

conduction band of TiO2 resulting in a band centered at ca. 400 nm [151, 157]. The wide 

red shift of absorbance edge to ca. 500 nm which particularly appeared at high Fe content 
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(5.1 %)  was attributed to the d-d transitions  of Fe3+  or the charge transfer between the Fe 

ions due to the following reaction [151, 158]. 

 

Fe3+   +   Fe3+                           Fe4+    +    Fe2+             (6) 

 

To explain how the reaction in eq. (6) can occur in Fe-doped TNTAs electrode under UV-

visible light irradiation, the following reactions were proposed by Sun and co-workers 

[159]: 

 

TiO2   +   hν                          e- (CB)  +  h+ (VB)   (excited TiO2 (eˉ + h+))            (7) 

Fe3+   +    h+                          Fe4+        (hole trap)         (8) 

Fe3+   +    e-                           Fe2+       (electron trap)      (9) 

 

Where, hν is the energy of  a single  photon, h is the Blank constant (= 6.626*10-34) and ν 

(nu) is the frequency in Hr or s-1, e-
(CB) electron charge at conducting band and h+

(VB) 

positive charge (hole) at valence band.   Equations 8 and 9 explain that Fe3+ may behave 

either as an electron or a hole trap, depending on the favorable energy levels (see Figure 

2.17); consequently, photogenerated charges are separated more effectively. Furthermore, 
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the electrons trapped in Fe3+ sites may transfer to the molecular oxygen more rapidly   [160-

161]. 

 

Figure 2-17 Illustrative diagram for the charges transfer in Fe-doped TiO2 

There are very few reports about Fe-doped TNTAs. Sun and co-workers [159] prepared 

Fe3+ -doped TNTAs by anodization of Ti foil in HF-aqueous electrolyte containing ferric 

nitrate. The TNTAs were very short (only 220 nm length), with an average inner diameter 

of 50 nm and wall thickness of 10 nm. The concentration of ferric nitrate was found to 

affect the TNTAs formation which means that an appropriate concentration of ferric nitrate 

must be chosen to obtain regular uniform nanotubes. XPS spectra coupling with Raman 

spectra confirmed that the presence of Fe2O3 dispersed uniformly in the bulk of TNTAs. 

The Fe-doped TNTAs prepared in electrolyte containing 0.1 M ferric nitrate exhibited the 
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highest photocatalytic activity with apparent first order rate constant of 0.972 h-1 for MB 

photodegradation under a 365 nm UV light irradiation which was 80% higher than undoped 

TNTAs [159]. Li and co-workers [162] prepared Fe-doped TNTAs by anodization of Ti 

foil in F- containing aqueous electrolytes containing ferrous sulfate. The prepared Fe-doped 

TNTAs were about 500 nm in length, a tube diameter of 90 nm and a wall thickness of 13 

nm. The as-anodized TNTAs were annealed at 450 ˚C. The photocurrent spectra and UV-

vis DR spectra confirmed the extension of photoresponse of Fe-doped TNTAs to visible 

light region with a calculated band gap of 2.9 eV [162].  Although, there was an 

enhancement in photocurrent due to the introducing of Fe dopant into TNTAs by Sun and 

co-workers [159] and Li and co-workers [162], the photocurrent densities were very low 

about several μA which can be attributed to the low surface area of the short TNTAs 

produced in aqueous electrolyte compared to the high surface area of long TNTAs of the 

third and fourth generations which are prepared in organic electrolytes. Another synthesis 

route for preparing Fe2O3-modified TNTAs was reported by Kuang and co-workers [163]. 

First, TNTAs of a 340 nm length and inner diameter of 90 nm was fabricated by anodizing 

Ti foil in an aqueous electrolyte containing 0.1 M NaF and 0.5 M NaHSO4 for 3 h at a 

potential of 15 V. Then TNTAs electrode was immersed in turn in FeCl3, NaOH and H2O 

for 5 min each time and this immersion cycle was repeated four times. The as-anodized 

amorphous TNTAs have positive charges on their surface, so that OH⁻ groups can be easily 

absorbed on the surface by electrostatic forces during the immersion process in NaOH 

solution. Then the rich OH⁻ TNTAs were immersed in FeCl3 aqueous solution in which 

the OH⁻ groups on TNTAs surface can easily combine with Fe3+ to form Fe(OH)3. After 

the four immersion cycles completed, Fe(OH)3-TNTAs were annealed at 550˚C. The 
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amount of Fe2O3 loaded on TNTAs can be tuned by varying FeCl3 concentration in the 

immersion solution. The existence of Fe2O3 on TNTAs was verified by both SEM scan and 

EDX spectra. Fe2O3-modified TNTAs exhibited enhanced absorption in the visible light 

region which increased by increasing Fe content from 0.01 M to 0.2 M. The absorption 

edge shift of Fe2O3-modified TNTAs towards visible light region is attributed to the low 

band gap Fe2O3 (2.2 eV). The photocurrent response of Fe2O3-modified TNTAs was also 

enhanced significantly and increased with increasing Fe2O3 loading [163].   

2.6.3   CdS Nanoparticle Sensitization 

Another method to modify the wide band gap of TiO2 is to couple TiO2 with a small band 

gap semiconductor thin film or nanoparticles. Coupling a wide band gap semiconductor 

with a small band gap semiconductor with a more negative conduction band level will 

facilitate the injection of electrons from the conduction band of the small band gap 

semiconductor to the CB of the wide band gap semiconductor. CdS has a small band gap 

of 2.4 eV which allows the absorption of low energy photons from the visible light region 

up to 520 nm and its conduction band, CB, is 0.5 eV more negative than that of TiO2 which 

should be beneficial in enhancing the charge separation as illustrated in Figure 2.18. 

Therefore, sensitization of TiO2 with CdS nanoparticles or  thin film could make the 

performance more efficient in solar energy conversion applications by increasing the 

ability to harvest the visible light as well as improving charge separation process [164-

169]. Previous studies about combination of CdS and TiO2 showed outstanding 

photoelectrochemical properties under visible light spectrum [170-171]. Chen and co-

workers [165] first reported the preparation of CdS-sensitized TNTAs by electrodeposition 

method. CdS was deposited into TNTAs surface by cathodic reduction from benzene 
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saturated with elemental sulfur and 0.6 M CdCl2 mixed with DMSO. The counter electrode 

was a rod of Cd and the cathodic potential was -0.5 V. The existence of CdS was verified 

from XPS spectra peaks for sulfide at 161.9 eV and for Cd 3d3/2 at 411.9 eV and for Cd 

3d5/2 at 405.3 eV. The CdS sensitization has red-shifted the absorption edge of TNTAs 

towards the visible light spectra up to wave length of 500 nm. The CdS-modified TNTAs 

annealed at 400 ˚C exhibited a photocurrent of 2.51 mA.cm-2 under illumination intensity 

of 1 sun (AM 1.5, 100 mW/cm2). This high photocurrent value is about 16 times higher 

than that obtained from bare unmodified TNTAs [165].            

 

 

Figure 2-18 Illustrative diagram for the charge injection from excited CdS into TiO2. CB 

and VB refer to the energy levels of conductions and valence bands respectively. 

(Reprinted with permission from ref. [165] © 2005 Elsevier B. V. All rights reserved). 
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Furthermore, Yin and co-workers demonstrated that the cathodic deposition parameters 

such as cathodic potential and deposition time, would affect the photoelectrochemical 

performance of CdS-modified TNTAs. The maximum photocurrent of about 3.8 mA/cm2 

was obtained when the cathodic potential was 5 V and deposition time 30 min [65]. Bai 

and co-workers [168] prepared CdS-modified TNTAs on a conducting glass by depositing 

CdS nanoparticles into the crystallized TNTAs by S-CBD (sequential chemical bath 

deposition) method [168, 172-173].  The crystallized TNTAs were successively immersed 

in CdSO4 solution and Na2S solution as one cycle for several times. CdS-modified TNTAs 

fabricated by this method demonstrated very high photocurrent of 4.8 mA under AM 1.5 

illumination which was more than 6 times higher than photocurrent obtained from un-

modified TNTAs (0.75 mA/cm2) under the same conditions [168]. Despite the outstanding 

photoelectron-chemical properties of CdS-modified TNTAs, the instability of CdS 

nanoparticles in aqueous solutions [165, 168] may hinder industrial and commercial 

applications of CdS-modified TNTAs.  

2.6.4   Loading of Precious Metals Nanoparticles 

Attaching noble metal nanoparticles to TNTAs provides nanotubes/nanoparticles 

composite materials with enhanced photocatalytic and photoelectrochemical properties 

which increase the overall performance of TNTAs [174]. TiO2 has been loaded with 

various noble metal particles such as Pt [1745-178], Au [179-180], Pd [181], Ag [182-183] 

and Co-Ag-Pt [1]. Noble metal nanoparticles loading on TNTAs is beneficial to depress 

the recombination of photogenerated electron/hole charges and consequently, increase the 

overall photocatalytic process efficiency. For example, for Ag-loaded TNTAs, the flat CB 
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potential of TiO2 is lower (more negative) than that of metallic Ag and this allows the 

photogenerated electrons to follow towards Ag and accumulate there forming a Schottky 

barrier between the TNTAs and Ag nanoparticles [182, 185-187]. The photogenerated 

electrons accumulated on Ag nanoparticles surface have a good fluidity and could be easily 

transferred to the absorbed oxygen on Ag surface forming O2
⁻ active species. The O2

⁻ 

species favors the photocatalytic process. Furthermore, the accumulated hole charges at the 

VB of TNTAs react with water to produce hydroxyl radical OH• which is very active 

oxidant for many organic compounds in water [188].  

2.7 Advantages of TiO2 Nanotube Arrays (TNTAs) Over 
Nanowires and Nanorods 

Although nanowires and nanorods are one dimensional nanomaterials like nanotube arrays 

with unique properties which make them promising candidates for many diverse 

applications, the hollow structure gains the nanotube arrays further advantages as explained 

below: 

1- For the same outer diameter and length, nanotubes have larger surface area than 

nanowires and nanorods due to internal surface area of the hollow tubes which 

results in enhanced photoanode performance [189].  

2- Nanotubes can be easily functionalized by filling their hollows with either organic 

or inorganic nanomaterials to produce wide range of nanocomposites for vast 

number of applications; for instance, synthesis of CdS-sensitized TiO2 nanotube 

arrays as visible light responsive photoanode [165].  And, filling nanotubular 

hollows with iron oxide [190] or nickel oxide nanoparticles or nanorods [191] 
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produces nanocomposites with excellent semiconducting and magnetic properties 

for photocatalytic and electronic applications. 

3- The TiO2 nanotube arrays produced by anodization are vertically-oriented, well-

organized and top-opened nanotubes and attached to a conducting Ti-metal support 

which plays as an electron collector to facilitate rapid separation of photogenerated 

charges before recombination. 

4- The above feature in point number 3 also facilitates the propagation of the incident 

and scattered photons over the internal and external surfaces through the entire 

length of nanotubes which increases the light absorptivity [192].  

5- TiO2 nanotubes produced by anodization are integrated and immobilized arrays 

over large surfaces which help their incorporation in a photoreactor or a 

photoelectroreactor either continuously or in batch fashion without the need for an 

expensive solid liquid separation step that is necessary in case of nanoparticles, 

nanowires or nanorods. 

6- The unique hollow structure of nanotube arrays along with the excellent TiO2 

biocompatibility makes nanotube arrays a promising candidate for drug delivery 

applications by using nanotubes as a drug carrier to control the drug release in the 

body [52, 189].  

7- The anodization process is inexpensive (compared with other nanomaterials 

synthesis methods such as sol-gel) and already is a well-established industrial 

process and has been used in metal industries for about 100 years which means that 

large scale production and commercialization of TiO2 nanotube arrays is more 

reliable and cost-efficient. 
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2.8 Applications of TiO2 Nanotube Arrays (TNTAs) 
Photoanodes 

 

The positive environmental and economic impact of TNTAs photoanodes is extremely high 

due to the versatile applications of this new nanomaterial. One major application is in 

photoelectrochemical cells to produce ultimately clean and renewable H2 fuel from 

photolysis of water using the abundant and renewable solar energy. This technology will 

help reduce the world consumption of fossil fuels and consequently reduce the greenhouse 

gases (GHGs) emissions [193-195]. Secondly, using TNTAs as a photoanode in 

photochemical reactions for photodegradation of a wide range of organic contaminants in 

both water and air streams will result in a cleaner and healthier environment [188].  

Since the year 1972, when Fujishima and Honda reported photoelectrochemical generation 

of hydrogen by water splitting using TiO2 nanoparticles [17], significant research interest 

has been raised and many subsequent efforts have been devoted to improving the 

photoconversion efficiency using different semiconducting materials or different material 

structures. Generally, any applications where titania in a compact or powder form is 

presently used is a potential application for TNTAs, for example, photocatalytic 

degradation of organic contaminants in both aqueous and air streams,  low cost dye-

sensitized solar cells (DSSCs), water splitting by light for generation of clean H2 fuel, self-

cleaning, anti-fogging and many other applications. The highly ordered vertically oriented 
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well-defined structure of TNTAs strongly attached to Ti- metal support can bring specific 

advantages and help enhancing the performance in such applications [12, 196-198]. Dye-

sensitized solar cells, DSSCs, also known as Gratzel cells, schematically represented in 

Figure 2.19-(a), represent one of the widest and most important applications of TiO2. 

DSSCs efficiencies have reached over 11% using nanocrystalline TiO2 films [199].  As 

mentioned in Section 2, these nanocrystalline particulate-based DSSCs are characterized 

by slow percolation of electrons through the random polycrystalline net-work and the poor 

absorption of low energy photons by the available dyes which are both two of the major 

factors hindering further improvement in photoconversion efficiencies. Detailed kinetic 

and dynamic studies of DSSCs made of nanoparticulate TiO2 films revealed that the 

limiting factors are random path processes of charges and trapping /detrapping of electrons 

through the porous network.  When using crystallized highly ordered vertically oriented 

TiO2 nanotube arrays as photoanodes they offer large surface areas with vectorial charge 

transport along the length of the nanotubes as schematically represented in Figure 2.19 b 

[12, 34, 200]. TNTAs length and diameter are proved to be crucial parameters in 

photoconversion efficiency optimization as it can be seen from Figure 2.19 (c) [12].   A 

DSSC fabricated from 3.6 µm thick nanotube array as a photoanode sensitized with N719 

dye exhibited a short-circuit current density (JSC)  of 10.3 mA cm-2, an open-circuit 

potential (Voc) of 0.84 V and a fill factor (FF) of 0.54, for an overall conversion efficiency 

of 4.7% under AM1.5 solar simulator illumination [200-201].  A maximum 

photoconversion efficiency of 6.89% was obtained from 20 µm length TNTAs photoanode 

DSSC sensitized with N719 dye under AM 1.5 solar simulator illumination with an open 

circuit voltage of 0.817 V, short circuit current density of 12.72 mA.cm-2 and a fill factor 
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(FF) of 0.663 [86]). Although these results are very promising in terms of the overall 

photoconversion efficiency under whole solar spectrum illumination (AM 1.5 solar 

simulator), effects of parameters such as anodization conditions, nanotube length, 

diameter, wall thickness, and nanostructure disorder still need further investigations from 

researchers to optimize the TNTAs photoanode-based dye sensitized solar cells for further 

increase in photoconversion efficiency [54, 202]. 
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Figure 2-19 (a) Schematic representation of dye-sensitized solar cells based on TNTAs 

(a), electron path through a percolated nanoparticulate and oriented TNTAs structures (b) 

and I–V characteristic of DSSCs based on different diameter nanotubes (empty symbols 

correspond to 8 µm and filled symbols to 16 µm nanotubes length) (c). (Reprinted with 

permission from ref. [12] © The Royal Society of Chemistry 2009). 
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Photoelectrolysis of water to generate renewable and clean H2 fuel is another very 

promising application of TNTAs photoanode. Mor and coworkers [203] reported hydrogen 

generation by water splitting using first generation short TNTAs as photoanode at a power-

time normalized rate of 960 µmol/h.W (24 ml/h.W) at an overall conversion efficiency of 

6.8% under 320-400 nm light illumination of 100 mW.cm-2 intensity. Mohapatra and 

coworkers [51] designed a photoelectrochemical cell consisting of carbon-modified 

TNTAs arrays as a photoanode and Pt-nanoparticles decorated TNTAs as a cathode for H2 

generation from water splitting under both UV and visible light illumination. They 

achieved  photoconversion efficiencies of 13.3% and 8.5% for UV and visible illumination, 

respectively, which were very encouraging [51].  

Furthermore, TNTAs photoanode exhibited enhanced photocatalytic activity compared 

with traditional powder counterpart for degradation of wide range of organic pollutants in 

both water and air streams such as phenol [90], 2,3-dichlorophenol [204, 205], 

pentachlorophenol [134], tetracycline [130], methylene blue (MB) [159], methyl orange 

[206], p-nitrophenol and methyl red [207]. For instance, 80% degradation of bisphenol A 

(BPA) was achieved using 4 µm length TNTAs after 180 min photocatalysis which was 

much higher than 51% for micro-structured TiO2 photoanode under the same UV 

illumination [208].  
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2.9 Concluding Remarks 

Photocatalytic reactions of TiO2 have gained much interest during the past decades due to 

their vast applications based on solar energy conversion.  More recently, during the last 

decade, TiO2 nanotube arrays which were produced by electrochemical anodization of Ti 

metal in F⁻ ions containing electrolytes have attracted more research interest due to their 

outstanding properties rendering them the most promising photoanode in many solar 

energy conversion applications including both environmental and energy production 

applications. The big challenge is to increase the light energy to electrical or chemical 

energy efficiency. There are three key factors for increasing the efficiency of solar energy 

applications using TiO2 photoanodes. The first key factor is to increase the surface area. 

The second key factor is to minimize the recombination of photogenerated electron/hole 

charges by facilitating rapid charge separation. The third factor is to extend the photo-

responsiveness of TiO2 to the visible light region by modifying the band gap energy of the 

material. Although the high surface area could be achieved by reducing material size to 

nanoscale, minimizing the photogenerated electron/hole charges recombination could only 

be achieved through the unique architecture of highly ordered, vertically oriented titania 

nanotube arrays produced by electrochemical anodization of parent Ti metal foil in F⁻ ions 

containing electrolytes. The nano-architecture and high surface area can be easily tuned by 

controlling the anodization process parameters, especially, anodization potential, 

anodization duration, pH and chemistry of the anodization electrolyte. For example, titania 

nanotube length can be easily produced in the range from few hundred nanometers in HF 

aqueous electrolytes to up to several hundreds of microns in ethylene glycol-based 

electrolytes. Inner diameter and wall thickness can also be tuned by controlling anodization 
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potential and other anodization conditions. In this contribution, fabrication of titania 

nanotube arrays in different anodization electrolytes such as HF-aqueous electrolyte, 

glycerol-based electrolytes, DMSO electrolyte, formamide electrolyte and ethylene glycol 

electrolyte was extensively reviewed. Process parameters and results were discussed in 

detail. Ethylene glycol was proven to be the best anodization electrolyte in terms of rapid 

growth rate of nanotubes and the smoothness of produced nanotube arrays. The third key 

factor to enhance the performance of TiO2 is to modify electronic bands structure to be 

able to harvest low energy visible light photons. Many different strategies have been 

proposed to achieve this target, including non-metal doping such as nitrogen, carbon and 

boron, metal doping such iron, CdS sensitization and noble metal nanoparticles loading. In 

each strategy, basic principles and selected results have been discussed in this review. 
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3.1 Abstract 

This study probes the dependence of titania nanotube arrays nanoarchitecture on different 

synthesis parameters in viscous electrolytes. Titania nanotube arrays were synthesized in 

glycerol, ethylene glycol and carboxymethylcellulose as base materials. The effects of 

anodization voltage and time, as well as chemical composition and pH of the electrolyte 

bath were studied. Nanotube arrays with an inner diameter ranging from 16 to 91 nm, and 

wall thickness ranging from 7 to 29 nm were fabricated in a glycerol–water electrolyte. 

Water content of 5 wt.% or higher was found to be essential for nanotubes fabrication in 

glycerol electrolyte. Diameter and length were influenced by varying water content above 

5 wt.%. Nanotube length was found to be time dependent at high pH values. A pH value 

of 6 was favorable for fabrication of highly ordered and continuous nanotube arrays with 

length up to 900 nm. Using modified ethylene glycol (containing 2 wt.% and 0.5 wt.% 

NH4F) instead of glycerol, resulted in nanotube length up to 430 nm after 1.5 h anodization 

time. With a minor modification of electrochemical anodization cell, double-sided titania 

nanotube arrays layers with a total thickness of 9.5 µm were successfully fabricated for the 

first time. Nanotube arrays were successfully fabricated in 2 wt.% sodium carboxy 

methylcellulose aqueous electrolyte (CMC electrolyte). These nanotube arrays had an 

inner diameter of 42 nm similar to those fabricated in 2 wt.% urea–ethylene glycol 

electrolyte but their length was 450 nm. 

 

 Keywords: Titania Nanotube Arrays, Anodization, Anodization parameters, Viscous 

electrolytes, Nanotubular structure. 
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3.2 Introduction 

In the last decade, low-dimensional nanostructural materials have attracted increasing 

scientific and technological attention due to their physical properties and their potential 

applications [1]. Dimensionality has a crucial role in determining the properties and 

performance of nanomaterials [2, 3]. Therefore, the control of size and shape of 

nanomaterials is of immense importance. In contrast to size control, shape control of 

nanostructural materials is more difficult and challenging. The tubes, flakes or wires in the 

nanoscale region possess novel properties. The discovery of carbon nanotubes by Iijima 

[4] with their diverse interesting properties has motivated the quest for the synthesis of 

nanotubular structures of other substances and chemical compounds such as V2O5, SiO2, 

TiO2, Fe2O3, ZrO2 and MoO3. Among these materials, titanium dioxide (titania) has 

attracted great interest since the discovery of its photosensitivity by Honda and Fujishima 

[5] in 1972 and due to its strong photo-oxidizing potential, high chemical stability, non-

toxicity and low cost [6]. Titania nanotubes have improved properties compared to any 

other form of titania for applications in water and air purification photocatalysis, sensing, 

water photoelectrolysis for hydrogen generation, photovoltaics, photoelectrochemical solar 

cells [7-9], electronics, optics [10], tissue engineering and molecular filtration [11, 12]. The 

widespread technological use of titania is impaired by its wide band-gap (3 eV for anatase 

phase and 3.2 eV for rutile phase), which requires ultraviolet (UV) irradiation for 

photocatalytic activation. Because UV spectrum accounts for only a small fraction (8%) of 

the solar spectrum compared to visible light (45%), any shift in the light absorbance of 

titania from the UV towards visible spectrum region will improve the photocatalytic and 

photoelectrochemical utility of the material.  Titania band gap can be narrowed by doping 
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with different nonmetal ions such as N [13, 14], C and S [15-17] and different metal ions 

such as Fe, Mo, Ru, Os and V [18]. When employing dopants to change the photo-response 

of a material, it is desirable to maintain the integrity of the host material crystal structure 

while changing its electronic structure. The crystalline structure of the material is directly 

related to the ratio of cation and anion size in the crystal lattice. It appears to be relatively 

easier to replace Ti4+ in titania with any cation than to substitute O–2 with any other anion 

due to the difference in the charge states and ionic radii [7]. Titania nanotubes are known 

to be synthesized in two forms: powdery form and self-organized titania nanotube arrays 

form. Nanotubes in the latter form are self-organized, vertically oriented and supported on 

a surface forming an integrated unit. Powdery titania nanotubes, and nanotube arrays, have 

been produced by a variety of methods including deposition into a nanoporous alumina 

template [19], sol–gel [20], and hydrothermal processes [21]. However, among these 

nanotubes fabrication routes, the electrochemical anodization method has attracted the 

most interest due to its ability to produce integrative, vertically-oriented highly ordered 

nanotube arrays with controllable dimensions [7, 22-25].  

In contrast to random nanoparticle systems where slow electron diffusion typically limits 

their performance [11, 26], the precisely oriented nature of the crystalline nanotube arrays 

makes them excellent electron percolation pathways for the vertical transfer of electrical 

charges across the length of nanotubes [26, 27]. In addition, the nanotube-array architecture 

is able to influence the absorption and propagation of light through the architecture by 

precisely designing and controlling the nanotube internal diameter, wall thickness, and 

length [28]. These advantages have manifested themselves in an extraordinary 

enhancement of the extant TiO2 properties. For example, titania nanotube arrays of single-
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micron length exhibited a remarkably high sensitivity when used in H2 sensing with 

unprecedented 50 billion% change in electrical resistivity upon exposure to 1000 ppm of 

hydrogen gas at room temperature [28, 29].  In their use as hydrogen sensors, the TiO2 

nanotube arrays possess such excellent photocatalytic properties that they are able to self-

clean from environmental contamination with exposure to ambient light [7]. Among one-

dimensional architectures, nanotube arrays have a higher surface area than nanowires due 

to the additional surface area enclosed inside the hollow structure. For a given pore 

diameter and wall thickness, the internal surface area increases almost linearly with 

nanotube length [28]. 

 The world is rapidly running out of fossil fuels. As a matter of considerable urgency, 

technologies for the generation of new types of energy must be developed. There is a 

growing consensus that hydrogen has the potential to supplement and ultimately replace 

fossil fuels to produce energy [30, 31]. At the same time there is a growing consensus that 

the emission of greenhouse gases has to be reduced in order to address global warming 

which has become increasingly obvious and problematic [31, 32].  Therefore, there is an 

urgent need to develop renewable and clean sources of energy, such as solar energy [31-

33]. Hydrogen produced from the splitting of water using solar energy, termed solar-

hydrogen, represents a sustainable fuel that is environmentally safe. Solar-hydrogen has 

the capacity to assure global energy sustenance and to reduce global warming [34]. The 

bottle-neck in the development of solar-hydrogen is the development of new photosensitive 

materials for efficient and clean conversion of solar energy [35, 36]. The development of 

these materials, which must exhibit sophisticated functional properties, requires the 

application of the most recent progress of the science of material interfaces and the solid-
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state science as well as nanotechnology. There is a growing awareness that titania nanotube 

arrays developed by anodization method are the most promising candidates for the 

development of photoelectrodes for solar hydrogen production [25]. Furthermore, the 

development of titania nanotube arrays is not limited to fuel generation as an end-point. 

This material has many alternative applications including water purification, self-cleaning 

building and paving forms, sensing and electronic applications [37, 38]. Electrochemical 

anodization of metals and semiconductors is a relatively simple process for creating 

precisely engineered semiconductor nanostructures. Anodization is used to create highly 

ordered, self-oriented nanoporous materials such as alumina, silica, titania and zirconia.   

Anodization of titanium foils and thin films have been conducted using a two-electrode 

electrochemical cell with a platinum foil as cathode at a constant potential.  A third 

electrode could be used as a standard reference electrode to eliminate noise effect when 

measuring the cell potential by a potentiostat [39, 40].  

The key processes responsible for anodic formation of nanoporous alumina and titania 

nanotubes appear to be the same, and are fundamental to the formation of straight titania 

nanotubes [41]. The key processes are:  

1. Oxide growth at the surface of the Ti metal due to interaction of the metal 

with O2- or OH- ions.  

2. Metal ion (Ti4+) migration from the metal at the metal/oxide interface. Ti4+ 

cations will be ejected from the metal/oxide interface under application of 

an electric field and move towards the oxide/electrolyte interface.  
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3. Field-assisted dissolution of the oxide at the oxide/electrolyte interface. Due 

to the applied electric field the Ti–O bond undergoes polarization and tends 

to be weak promoting dissolution of the metal cations. Ti4+ cations dissolve 

into the electrolyte, and the free O2- anions migrate towards the metal/oxide 

interface to interact with the metal.  

4. Chemical dissolution of the metal or oxide, by the acidic electrolyte during 

anodization [7, 41, 42]. The chemical dissolution rate depends on the pH-

value, which then causes more etching at the pore-bottom than at the 

opening and at the walls of the nanotubes.  

In the initial stages of the anodization process, field-assisted dissolution dominates 

chemical dissolution due to the relatively large electric field across the thin oxide layer 

(the resistance to the current is minimum). Small pits form due to the localized 

dissolution of the oxide. The pits convert into bigger pores and the pore density increases. 

Subsequently, the pores spread uniformly over the surface. The pore growth occurs due 

to the inward movement of the oxide layer at the pore bottom (barrier layer).  This occurs 

due to the above-mentioned processes (1) to (3) [42]. Figure 3-1 shows a systematic 

illustration of the development of titania nanotube arrays by anodization [7]. 

The maximum length of titania nanotube arrays fabricated in low pH, HF-aqueous 

electrolytes was found to be limited to about 500 nm [43].  Some other works showed that 

longer nanotube arrays can be achieved by adjusting the pH-profile inside the tubes.  For 

example, to use near-neutral pH values at the nanotube top and more acidic local pH values 

at the bottom of the nanotubes, increases the nanotube length. This pH gradient across the 



108 

 

length of nanotubes can be achieved by using viscous electrolytes because the diffusion of  

H+ ions produced from the dissolution reactions at the nanotube bottom becomes much 

slower in viscous electrolytes than in aqueous electrolytes resulting in more acidity at the 

nanotubes bottom than at the nanotubes top [43, 44].  In addition to positively affecting the 

length of the nanotube arrays, viscous organic electrolytes have proved to be instrumental 

in doping of nanotubes with nonmetal ions such as C, N and S [45]. In contrast to 

anodization in aqueous based electrolytes, the investigation of effect of anodization 

parameters in viscous organic electrolytes has not been widely reported. This study aims 

at investigation of the effect of different anodization parameters on titania nanotubes 

morphology fabricated in aqueous glycerol and ethylene glycol based electrolytes. 
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Figure 3-1 Figure 3-1 Schematic diagram of the evolution of a nanotube array at constant 

anodization voltage: (a) oxide layer formation, (b) pit formation on the oxide layer, (c) 

growth of the pit into scallop shaped pores, (d) metallic part between the pores undergoes 

oxidation and field assisted dissolution, and (e) fully developed nanotube array with a 

corresponding top view.  (Redrawn with permission from Ref. [7]). 
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3.3 Experimental setup and methods 

The experiments were carried out in a two-electrode electrochemical cell where the two 

electrodes were placed 4 cm apart. Titanium foil, over which titania nanotubes were grown, 

was used as anode while platinum foil was the counter electrode. A direct current power 

supply (Bio-Rad Laboratories, model 400, Irvine, CA) was employed as a source of 

constant potential. The DC power supply was equipped with a data acquisition system and 

a state-of-the-art algorithm and interface for real time monitoring of electrical current and 

voltage during the experiments. An ultrasonic bath was used for degreasing of titanium foil 

and final cleaning of fabricated nanotubes. The ultrasonic waves were also used for 

agitation of the electrolyte during the anodization process to improve the quality of 

nanotubes by mixing at microscopic level which led to detachment of bubbles from the 

surface of the electrode. The pH of the electrolyte was measured using an Orion 5-star plus 

Benchtop multimeter (Thermoelectron Corp., Waltham, MA). All experiments were 

carried out at room temperature around 25˚C. The morphology of titania nanotube arrays 

was studied using Hitashi S 4500 field emission SEM. The cross-sectional images were 

taken on mechanically bent samples where titania nanotube layers were liberated from the 

supporting Ti foil. All experiments were carried out under a fume hood. Titanium foils 

(0.89 mm thick, 99.7% purity, Alfa Aesar, Ward Hill, MA) cut into 1.4 cm diameter discs. 

The Ti disc was mounted in a Teflon holder so that only one face of it was exposed to the 

electrolyte. Glycerol (A. R., 99.5%, Caledon Laboratory Ltd., Georgetown, ON), ethylene 

glycol 99.5 % with water residual ~ 0.4%. (Caledon Laboratory Ltd., Georgetown, ON), 

NH4F, NH4NO3, urea (All three chemicals were A. R.  98 %, J. T. Baker purchased from 

Mallinckrodt Baker Inc., Pillipsburg, NJ) and deionized water were used in the experiments 
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without any further treatment. Titanium foil discs were degreased by sonication in 

methanol followed by rinsing with deionized water. Then, they were chemically polished 

in nitric and hydrofluoric acids solution (5.6 M and 3.3 M, respectively) for 10 sec. The 

solution was agitated gently to avoid uneven corrosion resulting in non-homogeneous 

surface of the discs. The discs were then kept in deionized water in an ultrasonic bath for 

about 5 min and dried in clean oil free air. The pretreated discs were kept in a closed vessel 

to prevent the deposition of dust and any effect of surrounding air or other gases on the 

discs surface. Anodization of Ti foils was carried out at room temperature using a two-

electrode electrochemical cell (4 cm apart) with a direct current power supply as illustrated 

in Figure 3-2. Titania nanotube arrays were grown from Ti foils by potentiostatic 

anodization in glycerol/water electrolyte or ethylene glycol electrolyte, containing 0.5 

wt.% NH4F.  In glycerol/water electrolyte, the water content was changed from 0 to 99.5 

wt.% and the corresponding electrolyte composition are summarized in Table 3-1.  After 

anodization, the samples were sonicated in ultrasonic bath in methanol and then in 

deionized water for 5 min each. 
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Figure 3-2 Schematic drawing of an electrochemical cell in which the Ti electrode 

is anodized. Titania nanotube arrays are grown on the Ti metal 

electrode surface which is in contact with the electrolyte. 

 

Table 3- 1 Electrolyte compositions at different water content 

Electrolyte batch name 

(Water content, %) 

0 5 16 30 50 70 90 99.5 

Glycerol, wt.% 99.5 94.5 83.5 69.5 49.5 29.5 9.5 0 

Water, wt. % 0* 5 16 30 50 70 90 99.5 

NH4F, wt.% 0.5 0.5 0.5 0.5 0.5 0.5  0.5 

* (≈ 0.4 % residual water exists in glycerol). 
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3.4 Results and Discussion 

Titania nanotubes were fabricated at different conditions and the effects of voltage, pH, 

water content and anodization time were investigated. 

3.4.1 Effect of Anodization Voltage 

Formation and architecture of titania nanotubes depend on a number of parameters. Due to 

electrochemical nature of the process, applied voltage during the anodization is crucial in 

the quality of the nanotubes and their dimensions. It is essential to keep the voltage fixed 

where the current density will change due to the changes in resistance between the two 

electrodes. The majority of published results on the synthesis of titania nanotube by 

anodization have been carried out in the voltage range of 10- 20 volts.  Some researchers 

reported that no nanotubes were formed at voltages higher than 25 volts [39], while others 

were able to grow nanotubes at voltages above 30 volts [46]. Watcharenwong and co-

workers synthesized titania nanotubes at 40 volts and observed coalescence of nanotubes 

tip at this voltage. The synthesized nanotubes at 60 volts were much shorter due to collapse 

of nanotube tips [47]. Albu and coworkers synthesized long titania nanotubes at higher 

voltages (up to 250 volts) by decreasing fluoride ion concentration in the electrolyte. 

Therefore, depending on the chemical composition of electrolyte and operating conditions, 

titania nanotubes with different geometries can be synthesized. However, in any fixed 

electrolyte composition, there is a voltage above which the nanotubes become shorter and 

may not be even formed [48]. For example, in aqueous electrolytes containing a large 

concentration of ions, the TiO2 barrier layer (the bottom of nanotubes) exhibits dielectric 

breakdown at certain voltage value. Beyond dielectric breakdown, electronic conduction 

rather than the desirable ionic conduction contributes to all the anodization current. In other 
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words, as the dielectric constant of anodization electrolyte increases, the optimum voltage 

for nanotube formation increases. The higher breakdown potential of titanium oxide in 

organic electrolytes allows a larger potential window for nanotube formation [49]. For any 

specific electrolyte composition there is an optimum range of anodization voltage wherein 

specific nanotubular structures are obtained. It must be mentioned that fluoride 

concentration and anodization potential are the two main factors affecting the nanotubes 

formation and geometry [50]. Several anodization experiments were conducted to study 

the effect of voltage on synthesis and nanoarchitecture at the following conditions: pH: 6, 

water content: 16 wt.%, anodization time: 1.5 h. Results are shown in Figure 3-3. Titania 

nanotube diameter increased with increasing voltage. Similar trends have been reported by 

Mor and co-workers [7] (max 25 volts) and Petukhov and co-workers (max 30 volts) [46] 

as shown in Figure 3-4. In spite of similarities in the electrolyte composition, Petukhov 

obtained at 0oC, which was much lower than the temperature in this study, smaller diameter 

nanotubes. It is challenging to compare the results between different studies due to the 

sensitivity of the anodization process to minor changes in the experimental conditions. In 

this study, experiments at 40 volts revealed that the nanotubes were formed at the edge of 

the sample while at the center, only shallow pores appeared (see Figure 3-3: e and f). The 

discontinuity could be attributed to the field-assisted high dissolution rate at high voltages. 

Titania nanotubes wall thickness also increased with increasing anodization voltage as 

shown in Figure 3-5. The length of nanotubes also increased by increasing voltage up to a 

critical level above which, increasing rate of dissolution reduced the length of nanotubes. 
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Figure 3-3 FESEM images for samples anodized at different voltage: a) 5V, b) 10V, c) 

20V, d) 30V, e) 40V at sample edge, and f) 40V at sample center. 

1  

Figure 3-4 Effect of voltage on titania nanotubes diameter: a comparison between results 

in this study and previous studies. 
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Figure 3-5 Effect of voltage on wall thickness of nanotubes 

 

3.4.2 Effect of Electrolyte pH 

Acidity of electrolyte solution plays an important role in synthesis of titania nanotubes.  

Etching and corrosion processes are directly related to pH of the electrolytes containing 

fluoride ions. Interestingly, apart from the pH of electrolyte solution, the formation of 

anodization reaction products can induce local changes of pH in the vicinity of nanotubes 

which has more profound effect on anodization process compared to electrolyte acidity.  

The role of pH in the formation mechanism of titania nanotube arrays was explained in 

Section 2.5. in Chapter 2. In fact, the electrochemical reactions in an acidic electrolyte can 

be carried out at different voltages and the level of applied voltage affects the local pH, 

which in turn leads to the electrochemical dissolution of titanium foil. A series of 

experiments were conducted at different pH values. The electrolyte pH was controlled by 

adding drops of diluted sulfuric acid.   Figure 3-6 shows the effect of pH on the formation 

and quality of nanotube arrays. Well-organized, vertically oriented nanotube arrays were 
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formed at pH: 5-6.  A decrease of pH to 3.9 resulted in segregated bundles of nanotubes.  

As pH decreased to 3.5, nanotube arrays formed only in some parts of the sample surface. 

Further decrease of pH to 2, resulted in no nanotube arrays. According to the nanotube 

formation mechanism, as the pH decreased, the rate of chemical dissolution of TiO2 at 

electrode/electrolyte interface became larger than the rate of TiO2 formation at Ti -TiO2 

interface, resulting in no nanotube formation. Direct comparison with the published data 

cannot be made due to the large variations in the chemical composition of the electrolyte 

and other operating conditions.  

 

3-6 FESEM top view images taken for samples anodized at different pH values. 
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Figure 3-7: FESEM top view images taken for samples anodized at different pH values. 

3.4.3 Effect of Water Content 

In general, in the absence of water in electrolytes, the anodization process will suffer from 

lack of H+ ions and also high viscosity of the solution which leads to the formation of 

titanium dioxide layers only. 

The overall reaction for anodic oxidation of titanium can be represented as: 

2H2O     O2 + 4 e- +4 H+                                                (1) 

Ti + O2      TiO2                                                                       ( 2) 

In the initial stages of the anodization process, field-assisted dissolution dominates 

chemical dissolution due to the relatively large electric field across the thin oxide layer 

(the resistance to the current is minimum). Small pits formed due to the localized 

dissolution of the oxide, represented by the following reaction, act as pore forming 

centers: 

TiO2 + 6 F- +  4 H+     TiF2-
6

  + 2 H2O                                    (3) 

The pits convert into bigger pores and the pore density increases. Subsequently, the pores 

spread uniformly over the surface. The pore growth occurs due to the inward movement of 

the oxide layer at the pore bottom (barrier layer).   

Figure 3-7 shows SEM top view images of samples anodized at different water contents at 

20 volts, pH: 6 and anodization time 1.5 h. Table 3-2 shows the effect of water content at 

the same operating conditions. Raja and coworkers [49] observed that a minimum amount 
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of 0.18% of water in ethylene glycol was required to form a well ordered titania nanotube 

arrays. In this study, no nanotube arrays were formed at 0 or 2 wt.% water.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a b 

c d 

e f 

g h 

Figure 3-8 SEM topview images for samples anodized at 20 V, 

pH: 6 and anodization time 1.5 h and H2O wt.%:  a) 0, b) 5, c)16, 

d) 30, e) 50, f) 70, and g) 90, h) 99.5 
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Table 3-2 Effect of water content in glycerol electrolyte on nanotube arrays formation and 

their nanoarchitecture 

(20 volts, pH: 6, 0.5 wt.% NH4F and 1.5 h anodization time) 

3.4.3.1 --------------O wt. %         2H  
0 2 5 16 30 50 70 90 99.5 

Diameter, nm n/a* n/a* 38 64 76 72 48 43 40 

Wall Thickness, nm n/a* n/a* 18 20 20 18 13 12 14 

Length, nm n/a* n/a* - 250 512 900 533 460 424 

* (n/a): Not applicable because no nanotubes were formed at these conditions. 

Well-ordered nanotube arrays began to form at 5 wt.% H2O and increasing water content 

from 5 wt.% to 50 wt.% affected the nanoarchitecture of nanotube arrays by increasing the 

inner diameter from 38 to 76 nm and nanotube length from 250 to 900 nm. Further increase 

of water content to 99.5 wt.% (0 % glycerol) led to a decrease in nanotube diameter and 

length to 40 nm and 424 nm, respectively. The increase of diameter and length with water 

content in the range from 5 to 50 wt.% can be explained due to the electrolyte viscosity. 

There are two competing rate processes: the growth rate at the bottom of the tube and the 

rate of chemical dissolution of the tubes at the top of nanotubes. Both processes are affected 

by the viscosity of the electrolyte and the rate of diffusion of different ions through it. At 

low water contents, the viscosity is very high, and this results in high H+ ion concentration 

gradients between the bottom and top of the nanotubes.  At the same time, the overall low 
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diffusion rate of other ions in the electrolyte, constraints the reaction rate.  It was found 

that 50% water content was the optimum condition at which maximum nanotube growth 

rate was obtained as shown in Table 3-2.  Figure 3-8 shows the effect of water content on 

the inner diameter of the nanotubes. 

 

Figure 3-9 Effect of water content on inner diameter of nanotubes. 

 

3.4.4 Effect of Anodization Time 

A few minutes are needed in aqueous electrolytes [39] for the preliminary development 

of the nanotubular structures.  This is followed by an increase of the length of nanotubes.  

The growth of nanotube length is time dependent and the time dependence differs 

according to the composition of electrolyte bath. For the strong acidic HF – water based 

electrolytes, the nanotube length is time independent after the first hour because the rate 
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of chemical dissolution at the top of nanotubes equals the rate of nanotubes formation at 

the bottom of the tubes.  Under these conditions, the length is limited to about 500 nm and 

further increase in anodization time does not increase the nanotube length.  For aqueous 

electrolytes with near-neutral pH, the maximum nanotube length reported was 4.4 µm 

after 20 h [25]. Macak and Schmuki [43] studied the effect of time on nanotube length in 

two electrolyte baths: (1) glycerol + 0.5 wt.% NH4F and (2) 1 M (NH4)2SO4 + 0.5 wt.% 

NH4F in water.  For the first electrolyte they found that the length increased almost linearly 

with time until it reached 6 µm after 18 h (nanotube length was time-dependent), while in 

the second electrolyte, the length reached its maximum value of about 2.5 µm after 2 h 

and after that the nanotube length was time-independent for the rest of the 18 h. They also 

found that the rate of growth of nanotube length in water-based electrolyte was higher 

than in glycerol-based electrolyte in the first 2 h which could be attributed to the high 

viscosity of the glycerol electrolyte.  

In the present study, several anodization experiments were conducted at pH: 10 V and 16 

wt.% water content and different anodization times and the results are shown in Figures 

3-9 and 3-10.  SEM top view images in Figures 3-9 and the graph in Figure 3-10 indicate 

that increasing the anodization time affected neither nanotube diameter nor wall thickness 

and they remained approximately constant at 30 and 13 nm, respectively. But the 

nanotubes length increased from 200 nm to 470 nm when anodization time increased from 

0.5 h to 10 h. It is worth-mentioning that by increasing the voltage from 10 to 20 volts and 

water content from 16 to 50 wt. %, nanotube arrays with length of 900 nm were obtained 

after only 1.5 h. This implies that longer nanotubes can be formed by increasing 

anodization time. It is desirable to have longer continuous nanotubes as the photocurrent 
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intensity increases with increasing the tube length. The results of this study agree with 

other research works which showed that the diameter and wall thickness of nanotube 

arrays are independent of anodization time when other anodization conditions are kept 

constant [7]. The results show that the length of nanotubes is time-dependent at high pH 

values (pH around 6). This is because at high pH, the growth rate of nanotubular oxide 

layer at metal/oxide interface is much higher than the dissolution rate of TiO2 nanotubes 

at the oxide/electrolyte interface [25]. 
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Figure 3-10 SEM images of top view and lateral view of TNTAs, fabricated in glycerol-

based electrolyte at 10 V, pH: 6, H2O : 16 wt.% and various time intervals: a) 0.5 h, b) 

1.5 h, c) 4 h and d) 10 h. 
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Figure 3-11 Effect of anodization time on length, diameter and wall thickness of 

TNTAs fabricated in glycerol-based electrolyte at 10 V, 16 wt.% H2O, pH: 6 and 0.5 

wt.% NH4F 

 

3.4.5 Anodization in Ethylene Glycol Electrolyte 

As mentioned earlier, viscosity of the electrolyte has a direct impact on diffusion of 

reactants and products to and from the titania nanotubes surface. It is necessary to control 

diffusion for synthesis of well-organized titania nanotubes, however, there is a certain 

range out of which the viscosity has negative impact on synthesis and growth rate of titania 

nanotubes. The growth rate was low in glycerol-based (η = 945 cP at 25˚C) electrolytes 

and addition of water improved the growth rate due to the reduction in the viscosity of 

electrolyte solution. Ethylene glycol is less viscous (η = 16 cP at 25˚C) compared to 

glycerol and results in lower diffusion resistance.  Therefore, the growth rate would be 

higher in ethylene glycol electrolytes. Parameters that were previously studied in glycerol 

experiments were fixed at 20 V, 1.5 h, pH: 6 and water content was kept at only the residual 
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amount (~ 0.4 wt.%). Urea and NH4NO3 were added to study their effect on nanotubes 

morphology and as additional sources for nitrogen doping into the nanotubes. Results in 

Table 3-3 show that adding 1 wt.% urea increased nanotube length from 286 nm to 397 nm 

(more than 27%) and adding 2 wt.% urea increased the nanotube length to 430 nm (50 % 

increase). Adding 1-2 wt.% urea increased the nanotube diameter from 30 nm to around 40 

nm and thickness from 11 nm to 18 nm. Urea is likely to have an inhibitory effect on acid 

corrosion of metals in the presence of halide ions.  Adding 1 wt.% ammonium nitrate 

increased the nanotube length from 286 to 365 nm (21 % increase) while adding 2 wt.% 

ammonium nitrates to the electrolyte increased the length to 320 nm. This increase in 

nanotubes length in the presence of ammonium nitrate was attributed to the increase of 

electrolyte conductivity by addition of this ionic compound 

 

Table 3-3 Anodization in Ethylene Glycol: Fabrication conditions and nanotubes 

dimensions 

Experiment # Urea % NH4NO3 % 
TNTAs* 

Length, nm 

TNTAs* 

Diameter, nm 

Wall 

thickness, nm 

1 0 0 286 30 11 

2 0 1 365 28 11 

3 0 2 320 33 9 

4 1 0 397 40 18 

5 2 0 430 43 16 

*TNTAs: Titania nanotube arrays 
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3.4.6 Double-sided Nanotube Arrays Fabrication   

The electrochemical anodization setup used in the above experiments was designed to 

allow only one side of the titanium foil to be in contact with the electrolyte. With some 

modifications of the setup, both sides of a one cm2 disc were anodized by placing two 

platinum foils on both sides of the Ti foil at the same distance.  Both platinum foils were 

connected to the negative terminal of the power supply. Figure 3-11 shows the SEM images 

of double-sided nanotube arrays fabricated in 0.5 wt.% NH4F and 1 wt. % urea in ethylene 

glycol for 12 h at 20°C. It is clear from Figure 3-11-a that the nanotube arrays exhibit a 

hexagonal close-packing order with an average inner diameter of 50 nm and wall thickness 

of 11 nm. Figure 3-11.b shows cross sectional view of the nanotube arrays with a length of 

4.73 µm. Nanotube arrays were fabricated on both sides of Ti foil and with almost the same 

length and diameter. Hence, double-sided titania nanotube arrays layers of a total length of 

~ 9.5 µm were fabricated. These double-sided grown TNTAs have a very interesting layers 

arrangement where Ti conducting metal layer sandwiched between two semiconducting 

TNTAs could have a promising electronic and photocatalytic applications. Furthermore, 

this setup modification can be used for fabrication of larger areas of Ti foils for higher rates 

of hydrogen production and more effective photocatalytic systems.  

3.4.7 Anodization in CMC Aqueous Electrolyte 

 Due to the high cost of glycerol and ethylene glycerol as viscous electrolytes for Ti 

anodization, preliminary investigation of nanotube arrays fabrication in sodium carboxy 

methylcellulose (CMC) aqueous solutions was conducted.   
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The use of CMC-based electrolyte for the anodization of titania is not reported in the 

literature. We were able to fabricate nanotube arrays by Ti anodization in CMC aqueous 

electrolyte. Figure 3-12 shows the SEM images of titania nanotube arrays fabricated at 20 

volts, 2 wt.% CMC aqueous electrolyte, 0.5 wt.% NH4F, pH: 6 and anodization time 1.5 

hr.  As it is shown in Table 3-4, the nanotubes length was 450 nm and the average diameter 

was 42 nm at 20 volts and 28 nm at 10 volts, which assures the trend of diameter increase 

with increasing voltage.  Figure 3-13 shows a comparison between 7 different electrolyte 

compositions in terms of length and diameter of the nanotube arrays anodized at 20 V, pH: 

6, 0.5 wt.% NH4F and anodization time: 1.5 h. The electrolyte composition are as follows: 

a b 

Figure 3-12 FESEM top and cross-sectional views of double-sided titania nanotube 

arrays anodized in 0.5 wt.% NH4F + 1 wt. % urea in ethylene glycol 
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1: Water: 0.5 wt.% NH4F in water, 2: Gl (16% H2O): 16 wt.% water in Glycerol, 3: Gl 

(Glycerol) : H2O: 1:1 (wt./wt.), 4: Ethylene glycol (EG), 5: 2 wt.% Ammonium Nitrate in 

EG, 6: 2 wt.% urea in EG and 7: 2 wt.% CMC aqueous solution. As it can be easily seen 

from the histogram in Figure 3-13, maximum nanotube length and diameter were obtained 

from 50 wt.% water in glycerol. Nanotubes anodized in CMC electrolyte have almost the 

same diameter as those anodized in ethylene glycol (2 wt. % urea) electrolyte and those 

anodized in aqueous electrolyte (0 % glycerol) but the length of CMC –nanotubes was 

slightly higher than the nanotube length obtained from those both electrolytes. Also, CMC-

nanotubes length was 80 % longer than the nanotube length obtained from 16 wt. % water 

in glycerol.  

 

Table 3-4 Diameter, wall thickness and length of titania nanotube arrays 

synthesized in CMC aqueous electrolyte. 

 CMC, wt. 

% 

Voltage, 

V 

Length, 

nm 

Diameter, 

nm 

Wall thickness, 

nm 

Expr. 

#1 

2 20 450 42 13 

Expr. 

#2 

2 10 - 28 11 
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Figure 3-13 SEM image of titania nanotube arrays fabricated in 2 wt. % CMC aqueous 

 top view and b) laterala)  F, and 1.5 h:4% NH.solution at 20 V, pH: 6, 0.5 wt

view 
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Figure 3-14 Comparison among different electrolyte compositions in terms of diameter 

and length of nanotubes (see electrolyte composition details in text). 

 

3.5 Conclusions 

Highly ordered Titania nanotube arrays were successfully fabricated in glycerol, ethylene 

glycol and CMC-based electrolytes. Our results showed that synthesis parameters play a 
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crucial role in both nanotube arrays formation and tailoring of their nanoarchitecture. 

Nanotube arrays with an inner diameter ranging from 16 to 91 nm, and wall thickness 

ranging from 7 to 29 nm were fabricated in a glycerol-water electrolyte. Water content of 

at least 5 wt.%, was found to be essential for nanotubes fabrication in glycerol electrolyte. 

Diameter and length were influenced by varying water content above 5 wt.%. Maximum 

length of 900 nm was achieved at 50 wt.% H2O in glycerol. Nanotube length was found to 

be time dependent at high pH values and a pH value of 6 was favorable for fabrication of 

highly ordered, long and continuous nanotube arrays. Using modified ethylene glycol 

solution instead of glycerol resulted in nanotubes length up to 430 nm after 1.5 h 

anodization time in ethylene glycol containing 2 wt. % urea and 0.5 wt.% NH4F.  Double-

sided titania nanotube arrays layers with a total thickness of 9.5 µm were fabricated for the 

first time with a minor modification in the anodization cell. These double-sided grown 

TNTAs have a very interesting layers arrangement where Ti conducting metal layer 

sandwiched between two semiconducting TNTAs could have a promising electronic and 

photocatalytic applications. Nanotube arrays were successfully fabricated in 2 wt. % 

sodium carboxy methylcellulose aqueous electrolyte.  
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Chapter 4  

 

 

 

 

 

 

4 N and C Modified TiO2 Nanotube Arrays: Enhanced 

Photoelectrochemical Properties and Effect of Nanotubes 

length on Photoconversion Efficiency 

 

 

 

 

 

 

 

* A paper based on this chapter is under final revision as: Ahmed El Ruby Mohamed and 

Sohrab Rohani, “N and C Modified TiO2 Nanotube Arrays: Enhanced 

Photoelectrochemical Properties and Effect of Nanotubes length on Photoconversion 

Efficiency” to be submitted for possible publication. 
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4.1 Abstract 

In this investigation, a new, facile, low cost and environmental-friendly method was 

introduced to fabricate N- and C-modified TiO2 nanotube arrays by immersing the as-

anodized TiO2 nanotube arrays in a urea aqueous solution with mechanical agitation for a 

short time. and keeping the TNTAs immersed in the solution for 6 h at room temperature. 

Then, the TNTAs were annealed at different temperatures. The produced N-, C-modified 

TNTAs were characterized using FESEM, EDX, XRD, XPS, UV-Vis diffuse reflectance 

spectra. Modified optical properties with narrow band gap energy, Eg, of 2.65 eV  was 

obtained after annealing the modified TNTAs at 550ºC. Modified TNTAs showed 

enhanced photoelectochemical performance. Photoconversion efficiency (PCE) was 

increased from 4.35% for pristine (unmodified) TNTAs to 5.18% for modified TNTAs, an 

increase of 19%. Effect of nanotubes length of modified TNTAs on photoelectrochemical 

performance was also studied. Photocurrent density and PCE were increased by increasing 

nanotube length with a maximum PCE of 6.38% for nanotube length of 55 µm. This high 

PCE value was attributed to:  band gap reduction due to C- and N modification of TNTAs 

surface, increased surface area of long TNTAs compared with short TNTAs, investigated 

in previous studies.  

 

Keywords: TiO2 nanotube arrays, N- and C- modification, band gap, recombination rate, 

photocurrent, photoconversion efficiency. 
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4.2 Introduction 

Since first introduced by Zwilling and co-workers in 1999 [1], titania nanotube arrays 

(TNTAs) fabricated by electrochemical anodization method have attracted great interest 

due to their outstanding properties such as high specific surface area [2], high charge 

transport and separation rates [3], light absorption and propagation properties [4-6], 

biocompatibility  and chemical stability [7]. Furthermore, the integrated, vertically 

oriented, highly ordered nanotubular structure strongly adhered to Ti parent metal substrate 

imparts a very important practical advantage by eliminating the costly solid/liquid 

separation step which is necessary when using the nanoparticles counterpart. Due to these 

properties, TNTAs have proved to be a promising candidate  in many advanced 

applications including  dye-sensitized solar cells [8-12], sensors development [13-14], 

hydrogen generation from water by photoelectrolysis [15-19], photocatalysis [20-23], self-

cleaning [24], bone and medicinal implants [25], drug delivery and biomaterials 

applications [26], and molecular filtration [27]. On the other hand, in spite of the above 

mentioned outstanding properties of TNTAs, the widespread solar applications of TNTAs 

are hindered by  the relatively wide energy band gap (Eg) of TiO2 (3.2 eV for anatase and 

3.0 for rutile) which is photoresponsive only to UV illumination. Because UV portion of 

the solar radiation accounts for only about 5% compared to the visible light which accounts 

for about 45%, any shift in photoactivity of TNTAs from UV toward visible light region 

increases the photoconversion efficiency and therefore has a positive impact on 

photocatalytic and photoelectrochemical applications of TNTAs [28-31]. In order to 

resolve the above problem and modify the electronic structure of TiO2 to narrow its band 

gap and enhance the visible light responsiveness, metal ions such as Fe [32-33], Zr [34], 
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Cr [35], and Zn [36] have been doped to TiO2 nanotube arrays using different doping 

techniques. Recently, non-metals such as carbon [37], nitrogen [38-40], phosphorous-

fluorine [41] and nitrogen-fluorine-iodine [42, 43] have been doped into TiO2 nanotube 

arrays and proved significant enhancements in the visible light photoactivity. It is worth 

mentioning that in contrast to doping of TiO2 nanoparticles, doping of TNTAs is more 

difficult and presents a challenge as one should carefully choose the doping method that 

introduces the dopant ions efficiently into TNTAs crystal lattice and at the same time not 

damage the highly organized nanotubular structure. Particularly, carbon dopant has been 

introduced to TNTAs either by flame annealing [44], annealing under carbonaceous gas 

stream at elevated temperature [19] or hydrothermal treatment of TNTAs in an aqueous 

solution of glucose followed by annealing in Ar gas at 450 °C [45].  But these techniques 

either result in huge damage to the nanoarchitecture and crystal structure of the nanotube 

arrays [44] or involve complicated elevated temperature multistage processes [45-47]. 

Ordinary phases of the titania include amorphous, anatase and rutile. The crystal phase and 

nano-architecture of titania manipulate its properties and potential applications. For 

example, the anatase phase of titania is favored in catalysis and dye-sensitized solar cells 

applications, whereas rutile is preferred in the area of dielectrics and high-temperature 

oxygen gas sensors due to its excellent elevated temperature stability [24]. Moreover, the 

performance of TNTAs in different applications is highly dependent on the nanostructure 

parameters such as nanotube length, diameter and wall thickness. These parameters are 

mostly determined by adjusting the anodization conditions such as anodization potential, 

pH, anodization time and anodization electrolyte composition. Although a remarkable 

success has recently been achieved in fabrication of high-aspect-ratio TNTAs with 
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nanotube length up to hundreds of micrometers, very little attention has been paid to study 

the effect of nanotube length on TNTAs performance, in particular, in the third generation 

of TNTAs with nanotube length longer than 10 µm   [48].  

In this study, we investigated a new facile and low-cost method to fabricate N- and C-

modified   TNTAs of length up to 55 µm by treating the as-anodized TNTAs in urea 

aqueous solution at room temperature for several hours. This method is also safe on the 

morphology and nanoarchitecture of TNTAs. The modified TNTAs were characterized by 

FESEM, X-ray diffraction, XPS, EDX and UV-vis. diffuse reflectance spectra. 

Photoelectrochemical performance of modified and non-modified TNTAs was 

investigated. Moreover, we studied the effect of nanotube length on the photo-

electrochemical performance.  

4.3 Experimental setup and methods 

4.3.1 Preparation of Modified TiO2 Nanotube Arrays (TNTAs) 

The Ti foil (0.89 mm thickness, 99.6% purity) and all chemicals were purchased from Alfa-

Aesar (Ward Hill, MA, USA). Prior to anodization, the titanium foil was cleaned by using 

distilled water, acetone and distilled water, respectively, in ultrasonic bath for five minutes 

each. It was then dried off in air, etched in (3.3 M HF and 5.6 M HNO3) solution for 10 s 

and immediately rinsed with deionized water, dried with air and used immediately. To 

prepare TNTAs,  we used the same setup as in our previous work [49] and a modified 

procedure proposed by Prakasam and co-workers [3]. Ti foil was first anodized in ethylene 

glycol solution containing NH4F (0.4 wt. %) and H2O (1 wt. %) for 2 h at 60 V at room 

temperature using Keithley Source Meter Unit Model SMU 2602 (Keithley Instruments 
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Inc., Cleveland, Ohio, USA). The Ti foil was cut into 1.5 cm diameter discs and mounted 

into a Teflon electrode holder which allowed only 1 cm2 of one side of the disc to be 

exposed to the electrolyte while the whole backside area was isolated. Ti foil was used as 

anode and a platinum foil was used as a cathode. 

 The produced nanotubes were removed by sonication in ethanol for 30 min to obtain 

textured fresh Ti surface. Subsequently, the second anodization was performed in the same 

electrolyte. The second anodization time was changed to obtain different nanotube lengths. 

The anodization current was monitored with a computer. After the second anodization step, 

the samples were washed with distilled water and sonicated in water for 5 min to clean the 

surface and remove debris, then dried with air. The TNTAs samples were immersed in a 

10 wt.% urea solution and mechanically mixed for 30 min and kept immersed in urea 

solution for  6 h at room temperature to allow urea molecules to be adsorbed on TNTAs 

inner surface. Then annealed at temperature ranging from 350-650°C for 3h in air with a 

heating and cooling rate of 5 °C/min to promote crystallinity. 

4.3.2 Characterization of Modified TNTAs 

The morphology of TNTAs was examined with a field emission scanning electron 

microscope (FESEM, Hitachi S-5000, Tokyo, Japan) equipped with an energy dispersive 

X-ray analyzer unit (EDXA). The elemental compositions of the samples were determined 

by EDX analysis. The crystalline phases were recorded by X-ray diffraction using a powder 

X-ray diffractometer (Rigaku RINT 2500, Tokyo, Japan) with Cu Kα radiation (λ = 1.54 

A° ) at 40 kV and 50 mA with a scan rate of 0.02◦ per s over a 2θ range from 15° to 80°. 

The results of the elemental compositions were determined by X-ray photoelectron 

spectroscopy (XPS, Perkin Elmer, Waltham, MA, USA). The XPS analyses were carried 
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out with a Kratos Axis Ultra spectrometer using a monochromatic Al Kα source (15 mA, 

14 kV). The instrument work function was calibrated to give a binding energy (BE) of 

83.96 eV for the Au 4f7/2 line for metallic gold and the spectrometer dispersion was 

adjusted to give a BE of 932.62 eV for the Cu 2p3/2 line of metallic copper. The Kratos 

charge neutralizer system was used on all specimens. Survey scan analyses were carried 

out with an analysis area of 300 μm × 700 μm and a pass energy of 160 eV. High-resolution 

analyses were carried out with an analysis area of 300 μm × 700 μm and a pass energy of 

20 eV. Spectra charge was corrected to the main line of the carbon 1s spectrum 

(adventitious carbon) set to 284.8 eV. Spectra were analyzed using CasaXPS software 

(version 2.3.14). UV–Vis diffuse reflectance absorption spectra were measured using a 

Cary 100 UV–Vis–NIR spectrophotometer. 

4.3.3 Photoelectrochemical Properties  

The photocurrent spectra were recorded by a home-made photoelectrochemical 

measurement system using an LPX150 Xe lamp solar simulator with a light intensity of 

100 mW/cm2. The TNTAs sample served as the working electrode and a Pt sheet was used 

as the counter electrode. The testing electrolyte was 1 M KOH solution with 0.05 vol. % 

ethylene glycol. A computer-controlled power supply (Keithley SMU 2602, Keithley 

Instruments Inc., Cleveland, Ohio, USA) was employed to control the potential and record 

the photocurrent generated. The intensity of the light was measured by a radiation power 

and energy meter. The incident light intensity on the sample was measured as 100 mW 

cm−2. The external potential was applied to the anode at a scan rate of 20 mV s−1 under 

illumination and the photocurrent was recorded. The potential of the open circuit was 

measured by a digital multimeter during the illumination. 
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4.4 Results and Discussion 

4.4.1 FESEM and XRD Studies 

Figure 4-1 shows the FESEM images of TNTAs fabricated in ethylene glycol electrolyte 

containing 1 vol. % H2O and 0.4 wt. % NH4F at 60V. Figures 4-1-a and b show top view 

and cross-sectional view of TNTAs anodized at room temperature for 6 h at room 

temperature, while Figures 4-1-c and d represent top and lateral views of TNTAs anodized 

in the same conditions for 10 h. The as-anodized TNTAs were sonicated in water for 5 min 

to clean surface and remove debris Figure 4-1-e shows high magnification of top view and 

Figure 4-1-f represents high magnification of cross sectional view  near the TNTAs bottom 

showing the test-tube-like closed round bottom of the nanotubes. Clearly the smoothness 

of nanotube walls and the absence of ripples associated with the aqueous electrolytes 

anodization as in our previous work [49] are discernible. From the FESEM images, we 

conclude that TNTAs fabricated with this process are of high quality, well-organized, 

vertically oriented and homogeneous. The TNTAs are also reproducible as it can be seen 

by comparing the nano-architectures in the two samples shown in Figures 4-1-a and 4-1-c. 

The only difference is TNTAs length which increases by increasing the anodization time. 

The average inner diameter and wall thickness for TNTAs fabricated at 60 V in ethylene 

glycol are 173±16 nm and 13±1, respectively. The length of nanotube depends on the 

anodization time and is found to be 36 and 55 μm for 6 and 10 h anodization times, 

respectively (Figures 4-1-b and 4-1-d).  
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a b 

f e 

d c 

Figure 4-1 FESEM images for TNTAs synthesized in ethylene glycol 

electrolyte containing 1wt% H2O and 0.4 wt.% NH4F at constant potential of 

60V; a) and b) Tope view and cross sectional view of TNTAs anodized for 6 h 

and then sonicated in water for 5 min to clean surface and remove debris, c) 

and d) are top and cross sectional views of TNTAs anodized at the same 

conditions for 10 h, and e) and f) are high magnification of top and lateral 

views of TNTAs in (a), respectively. 
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Ethylene glycol electrolyte helps not only in getting longer nanotubes in relatively short 

anodization time, but also in yielding smooth nanotube walls. One more difference between 

glycerol-water electrolyte and ethylene glycol electrolyte is the optimum anodization 

potential at which maximum nanotube growth rate can be achieved. The optimum 

anodization voltage for glycerol - water electrolyte was found to be 20 V [49], while it was 

60 V for the ethylene glycol electrolyte [3]. Figure 4-2 shows the FESEM images of pristine 

TNTAs, Figures 4-2-a and c (without modification), and Figures 4-2-b and d the modified 

TNTAs. Both samples were annealed at 550ºC for 3 h. As we can see from the FESEM 

images of pristine and modified TNTAs, the modification process did not cause any 

damage to the well-organized vertically oriented nanotubular architecture of TNTAs which 

is an important  advantage of this modification method. In addition, the method is simple, 

low cost  and environment-friendly. 

As-anodized TNTAs were amorphous and annealing at elevated temperature was required 

to promote crystallinity which increased the stability of the material and enhanced the 

charge transport and photoelectrochemical properties. By varying the annealing 

temperature, the phase structure of TNTAs can be controlled as anatase or rutile or a 

combination of both phases. As mentioned above, each crystal phase has its preferred 

application. Figure 4-3 shows the XRD patterns of TNTAs annealed at different 

temperatures from 350 to 650°C for 3 h, as well as Ti-metal foil and as-anodized TNTAs 

for comparison.  As it can be seen from Figure 4-3, both Ti-metal foil and as-anodized 

TNTAs (curves a and b, respectively) show only Ti metal peaks which implies that the as-

anodized TNTAs layer was amorphous. Anatase phase began to appear at 350°C (curve c) 

and increased and became dominant at 450°C (curve d). At 450°C, one can see traces of 
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rutile phase. At 550°C (curve e), the crystal structure of TNTAs was a conjugate of both 

anatase and rutile phases while the rutile phase became prominent when annealing at 650°C 

(curve f). These X-ray results are consistent with other studies [16, 50-52].  
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a b 

d c 

TNT Urea-modified 

Figure 4-2 FESEM images of pristine (unmodified)and modified TNTAs: a) and c) 

top view and high magnified top view of pristine TNTAs, b) and d) top view and 

high magnified top view of modified TNTAs. 
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Figure 4-3 X-ray diffraction patterns for a) Ti-metal foil, b) as-anodized TNTAs, c) 

TNTAs annealed at: 350°C, d) 450°C, e) 550°C and f) 650°C, all for 3 h in air. 
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4.4.2 EDX and XPS Results 

Elemental composition of TNTAs and determining whether foreign elements are 

introduced into TiO2 lattice can be investigated using both EDX and XPS spectra 

techniques. Figure 4-4 shows the EDX spectra of TiO2 nanotube arrays fabricated in 

ethylene glycol electrolyte and annealed at 550°C for 3 h. The EDX spectra indicate the 

presence of Ti, O and C in the nanotubular sample and that the ratio of Ti:O is 

approximately 1:2 indicating that the structure of the nanotubes is TiO2 with the presence 

of carbon which comes from the organic electrolyte and urea after pyrolysis during 

annealing at elevated temperature. EDX analysis technique did not show nitrogen as it 

exists in low concentration that cannot be detected by EDX spectra.     

 

Figure 4-4 The EDX spectra of modified TNTAs indicating the elemental 

composition Ti and O with a ratio of Ti:O = 1:2 and  the presence of carbon in 

TNTAs. 
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Figure 4-5 shows the XPS spectra for the TNTAs sample annealed at 550°C for 3 h in air. 

As it can be seen from Figure 5-a, TNTAs contained Ti, O, C and N. The binding energies 

of Ti 2p, O 1s, C 1s and N 1s were 459.7, 531.1, 285.4 and 399.75 eV, respectively. The 

atomic ratio of Ti:O was very close to 1:2 implying that the chemical composition of 

nanotubes was TiO2. Figure 4-5-b   shows high resolution of N 1s peak at binding energy 

of 399.75 eV. This binding energy exists between two binding energies at 400.1 and 398.2 

eV which correspond to C-N=C and C-NH2, respectively [53]. This suggests that the 

existing nitrogen is mainly bonded to carbon atoms. The high resolution of C 1s peak 

region (Figure 4-5-c) exhibits the following peaks; the peak at 284.8 eV is assigned to 

adventitious carbon, and the peak at 286.3 eV is ascribed to C=O bonds due to pyrolysis 

of urea during annealing [54], and the peak at 288.28 eV is attributed to the carbon existing 

in the form of interstitial atoms which takes place due to the diffusion of carbon atoms 

during the annealing process at elevated temperature [19]. 
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Figure 4-5 The XPS spectra of TiO2 nanotube arrays: a) Wide range survey spectra, 

b) High resolution XPS spectra over N 1s peak at 399.75 eV, and c) High resolution 

XPS spectra over C 1s peak   
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4.4.3 Optical Properties 

The UV-Vis diffuse reflectance absorption spectra of modified TNTAs as a function of 

annealing temperature are shown in Figure 4-6. As it can be seen easily from Figure 4-6, 

annealing temperature has a large effect on the light absorbance of the nanotube arrays 

because annealing temperature not only affects on the crystallization process but also the 

incorporation of foreign elements such as carbon and nitrogen into TiO2 crystal lattice. 

Figure sh4-6 indicates that all samples have strong absorbance in the visible region with 

the best absorbance for the sample annealed at 650°C. In Figure 4-7, absorbance data from 

Figure 4-6 were manipulated using Kubelka-Munk equation to calculate the modified band 

gap energies for each sample [55].  

 

 

 

Figure 4-6 UV-Vis diffuse reflectance absorbance of TiO2 annealed at different 

temperatures. 
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From Figure 4-7 and Table 1, each sample has two band gap energies, a primary one and a 

secondary one due to the effect of the electronic levels of the foreign dopants. The primary 

one has the larger effect on photoelectrochemical properties of TNTAs. As seen in Figure 

4-7 and in Table 4-1, the sample annealed at 550°C has the smallest primary band gap 

energy, Eg, (2.65 eV) which corresponds to the absorbance edge wavelength of 468 nm 

while sample annealed at 450°C has the smallest secondary band gap energy, Eg,  (1.6 eV) 

which corresponds to absorbance edge wave length of 775 nm. 

 

 

 

 

Figure 4-7 Kubelka-Munk transferred diffuse reflectance spectra of samples 

annealed at 350, 450, 550 and 650°C. The intersections of red rows with X-axis 

represent the values of band gap energy. 
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Table 4-1 The band gap energies (Eg) and corresponding absorbance edges of TiO2 

nanotube arrays annealed at different temperatures 

Anneal. 

Temperature 

Main Eg, eV Secondary Eg, eV Main Abs. 

Edge, nm 

Secondary Abs. 

Edge, nm 

350 °C 3.1   2.1 400 590 

450 °C 3.2  1.6 387 775 

550 °C 2.65  2.2 468 564 

650 °C 3.38  2.2 367 564 

 

4.4.4 Photoelectrochemical Properties 

 

Figure 4-8 shows photocurrent density, Iph, of modified TNTAs compared with that of 

(unmodified) TNTAs. Both samples were anodized and treated at the same conditions to 

obtain identical nanoarchitectures. Unmodified (pristine) sample was annealed directly at 

550º C for 3h while the other sample was first treated with urea solution as described in 

experimental part, then annealed at 550º C for 3 h.  Both samples have nanotube length of 

25 µm, an inner diameter and a wall thickness of 173±16  and 13±1 nm, respectively. As 

we can see from Figure 4-8, the modified TNTAs shows a considerable increase in Iph 

compared with the pristine (unmodified) TNTAs. Iph increased from 7.1 mA/cm2 for 

pristine (unmodified) TNTAs to 9.9 mA/cm2  for modified TNTAs with a maximum % 

increase of   39 % at 1 V applied potential.  

Figure 4-9 shows the % photoconversion efficiency, PCE, for modified and unmodified 

TNTAs as a function of applied potential. The percent PCE was calculated using the 

following equation [18, 56]: 
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PCE (%) = [Iph × (1.23 − Eapp) × 100]/I0                                           (1) 

 

Eapp = Emeas − Eoc                                                                               (2)     

 

Where: Iph is the photocurrent density in mA/cm2, Eapp is the external applied potential in 

V given in eq. (2), Emeas is the measured bias potential in V (vs Ag/AgCl reference 

electrode), and Eoc is the electrode potential (vs Ag/AgCl) of the same working electrode 

at open circuit conditions under the same illumination and in the same electrolyte. As we 

can see from Figure 4-9, the photoconversion efficiency, was increased from 4.35% for 

pristine (pure) TNTAs to 5.18% for modified TNTAs with  an increase of 19 %.  The high 

value of photocurrent density and photoconversion efficiency of both pristine and modified 

TNTAs measured in this work was attributed to the high surface area of long nanotubes 

(25 µm) and the presence of 0.05 %  ethylene glycol as electron donor to decrease the 

charges recombination rate. 
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Figure 4-8 Photocurrent density of modified TNTAs compared with that of pristine 

(unmodified) TNTAs. Both samples were anodized in the same conditions with identical 

nanoarchitectures. 
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Figure 4-9 Photoconversion efficiency of modified  TNTAs and pristine 

(unmodified) TNTAs 

 

 

Although vast number of studies have been conducted in the last decade on fabrication of 

long TNTAs of up to hundreds of micrometers [57, 58], there is a shortage of studies of 

photoelectrochemical performance of long nanotubes. The increase in the surface area by 

increasing nanotubes length enhances the capacity to harvest light photons. But on the other 

hand, diffusion path of the electrons to reach the conducting layer in the back of the 
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photoanode increases with increasing the nanotubes length which results in increasing the 

charge recombination rate. A series of TNTAs samples were fabricated at the same 

anodization conditions mentioned above. Only anodization time was changed from 3 h to 

10 h to produce TNTAs with the same inner diameter and wall thickness but with different 

nanotube lengths as shown in table 4-2. All TNTAs samples were treated with urea solution 

as described in experimental part to produce C- and N-modified TNTAs then annealed for 

3 h at 550ºC. 

Table 4-2 Nanotubes lengths anodized for different anodization times 

Anodization Time, h 3 4 6 7 10 

Nanotubes Length, µm 18 23 30.5 36 55 

     

Figure 4-10 shows the photocurrent density of modified TNTAs with different lengths as 

a function of applied potential. As we can see, photocurrent increases with increasing 

nanotubes length. this implies that due to the one dimensional vertically oriented 

nanotubular architecture of the photoanode, the light photons successfully penetrated the 

entire length of the nanotube arrays up to 55 µm and the huge surface area increased the 

light harvesting capacity of TNTAs. Furthermore, the presence of ethylene glycol as 

electrons donor, although in very small concentration (0.05 vol.%), reduced the charge 

recombination rate in very long nanotubes photoanode. 
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Figure 4-10 Effect of nanotubes length on photocurrent as a function of applied potential. 

 

Effect of nanotube length on photoconversion efficiency, PCE, is shown in Figure 4-11. 

Photoconversion efficiency increases with increasing nanotube length, too, with a 

maximum PCE of 6.38 % at 55 µm nanotubes length. Figure 4-12 shows a linear relation 

between PCE and nanotube length in the range from 18 to 55 µm. The increase of  PCE 

with increasing nanotube length and the linear dependence of  PCE on nanotube length up 

to 55 µm imply that the light successfully penetrates the long TNTAs photoanode up to 55 

µm which is more than 3.6 times longer than the maximum layer of  nanoparticulate 

photoanode that light can penetrate. 
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Figure 4-11 Effect of nanotube length on photoconversion Efficiency, PCE, as a function 

of applied potential 
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Figure 4-12 Linear dependence of photoconversion efficiency on nanotube length of 

modified TNTAs in the range from 18 to 55 µm. 
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4.5 Conclusions 

In this investigation, a new, facile, low cost and environmental-friendly method for the 

fabrication of N- and C-modified TiO2 nanotube arrays was reported. The titania 

nanotube arrays were immersed in a 10 wt. % urea solution with mechanical agitation 

for 30 min. The TNTAs were immersed in the solution for 6 h at room temperature. 

Then, TNTAs were annealed at different temperatures. Modified TiO2 nanotube arrays 

with different lengths from 18 µm to 55 µm were synthesized in this study. The 

produced N- and C-modified TNTAs were characterized by FESEM, EDX, XRD, XPS, 

UV-Vis diffuse reflectance. Modified optical properties with narrow band gap energy, 

Eg, of 2.65 eV was obtained after annealing the modified TNTAs at 550ºC. Modified 

TNTAs showed enhanced photocurrent density and photoconversion efficiency. 

Photoconversion efficiency, PCE, was increased from 4.35% for pristine (unmodified) 

TNTAs to 5.18% for modified TNTAs, an increase of 19%. Effect of nanotubes length 

of modified TNTAs on photoelectrochemical performance was studied. 

Photoconversion efficiency PCE was increased by increasing nanotube length with 

maximum PCE of 6.38% at nanotube length of 55 µm. The PCE increase pattern was 

linear with nanotubes length. This implies excellent light penetration up to 55 µm depth 

into photoanode which is about 3.6 times higher than the maximum penetration depth 

(15 µm) in the nanoparticulate photoanode. This increasing pattern of photoconversion 

efficiency with increasing nanotubes length also implied a high charge separation rate 

and lower charge recombination rate. The high PCE was attributed to band gap 

reduction due to C- and N-modification of TNTAs and the increased surface area of 
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long TNTAs compared to short TNTAs resulted in excellent light penetration and 

harvesting properties.   

 

 

4.6 References 

 

1. Zwilling, V., Darque-Ceretti, E., Boutry-Forveille, A., David, D., Perrin, M. Y. 

and Aucouturier, M., Surf. Interface Anal. 27, (1999), pp. 629-637. 

2. Lu, N., Zhao, H., Li, J., Quan, X. and Chen, S., Separation and Purification 

Technol. 62, (2008), pp. 668-673.  

3. Prakasam, H. E., Shankar, K., Paulose, M., Varghese, O. K. and Grimes C. A., J. 

Phys. Chem. C 111, (2007), pp. 7235-7241. 

4. Ong, K. G., Varghese, O. K., Mor, G. K. and Grimes, C. A.,  J. Nanosci. 

Nanotechnol.  5, (2005), pp. 1801-1808. 

5. Ong, K. G., Varghese, O. K., Mor, G. K., Shankar, K. and Grimes, C. A., Solar 

Energy Materials and Solar Cells 91, (2007), pp. 250-257. 

6. Grimes, C. A. and Mor, G. K., “Titania Nanotube Arrays: Synthesis, Properties, 

and Applications”, Springer Science + Business Media, LLC (2009), New York, 

NY, USA. DOI 10.1007/978-1-4419-0068-5. 

7. Zhao, J., Wang, X., Chen, R. and Li, L., Solid State Communications 134, (2005), 

pp. 705-710. 



165 

 

8. Wang, H., Yip, C. T., Cheung, K. Y., Djurisic, A. B., Xie, M. H., Leung, Y. H. 

and Chen, W. K., Appl. Phys. Lett. 89, (2006), pp. 023508, 1-3. 

9. Paulose, M., Shankar, K., Varghese, O. K., Mor, G. K. and Grimes, C. A., J. Phys. 

D 39, (2006), pp. 2498-2503. 

10. Chen, P., Brillet, J., Bala, H., Wang, P., Zakeeruddin, S. M. and Gratzel, M., J. 

Mater. Chem. 19, (2009), pp.5325-5328.  

11. Jennings, J. R., Ghicov, A., Peter, L. M., Schmuki, P. and Walker, A. B., J. Am. 

Chem. Soc. 130, (2008), pp. 13364-13372.  

12. Wen, X., Tao, J., Sun, Y., Sun, Y. and Dai, N., Int. Symposium on 

Photoelectronic Detection and Imaging (2009): Proc. Of SPIE Vol. 7381, (2009), 

7381Z, pp. 1-9.  

13. Yoriya, S., Prakasam, H. E., Varghese, O. K., Shankar, K., Paulose, M., Mor, G. 

K., Latempa, T. J. and Grimes, C. A., Sensors Letters 4, (2006), pp. 334-339.  

14. Xiao, P., Garcia, B. B., Guo, Q., Liu, D. and Cao, G., Electrochemistry 

Communications 9, (2007), pp. 2441-2447. 

15. Fujishima, A. and Honda, K., Nature 238, (1972) pp. 37-38. 

16. Paulose, M., Mor, G. K., Varghese, O. K., Shankar, K. and Grimes, C. A., J. 

Photochem. Photobiol. A 178, (2006), pp. 8-15. 

17. Paulose, M., Shankar, K., Yoriya, S., Prakasam, H. E., Varghese, O. K., Mor, G. 

K., Latempa, T. A., Fitzgerald, A. and Grimes, C. A., J. Phys. Chem. B 110, 

(2006), pp. 16179-16184. 



166 

 

18. Mohapatra, S. K., Misra, M., Mahajan, V. K. and Raja, K. S., J. Phys. Chem. C  

111, (2007). Pp. 8677-8685. 

19. Hu, X., Zhang, T., Jin, Z., Zhang, J., Xu, W., Yan, J., Zhang, J., Zhang, L. Wu, 

Y., Mater. Lett. 62, (2008), pp. 4579-4581.  

20. Linsebigler, A. L., Lu, G. and Yates, J. T., Chem. Rev. 95, (1995), p. 735. 

21. Nakamura, R., Ohashi, N., Imanishi, A., Osawa, T., Matsumoto, Y., Koinuma, H. 

and Nakato, Y., I. Phys. Chem. B 109, (2005), pp. 1648-1651. 

22. Neumann, B., Bogdanoff, P., Tributsch, H., Sakthivel, S. and Kisch, H., J. Phys. 

Chem. B 109, (2005), pp. 16579-16586. 

23. Zhao, Q., Li, X., Wang, N., Hou, Y., Quan, X. and Chen, G., J. Nanopart. Res. 11, 

(2009), pp. 22153-2162. 

24. Tian, T., Xiao, X.-F., Liu, R.-F., She, H.-D. and Hu, X.-F., J. Mater. Sci. 42, 

(2007), pp. 5539-5543.  

25. Brunette, D. M., Tengvall, P., Textor, M. and Thomsen, P., “Titanium in 

Medicine”, springer, Berlin, (2001). 

26. Vasilev, K., Poh, Z., Kant, K., Chan, J., Michelmore, A. and Losic, D., 

Biomaterials 31, (2010), pp. 532-540.   

27. Grimes, C. A., J. Materials Chemistry 17, (2007), pp. 1451-14457. 

28. Mor, G. K., Varghese, O. K., Paulose, M., Shankar, K. and Grimes, C. A., Solar 

Energy Mater. Solar Cells 90, (2006), pp. 2011-2075. 



167 

 

29. Quiroz, M. A., Martinez-Huitle, C. A., Meas-Vong, Y., Bustos, E. and Cerro-

Lopez, M., Journal of Electrochemical Chemistry 807, (2017), pp. 261-267. 

30. Ratnawati, Gunlazuardi, J., Dewi, E. L. and Slamet, International Journal of 

Hydrogen Energy 39, (2014), pp. 16927-16935. 

31. Isimjan, T. T., Trifkovic, M., Abdullahi, I., Rohani, S. and Ray, A. K., Top catal. 

58, (2015), pp. 114-122. 

32. Sun, L., Li, J., Wang, C. L., Li, S. F., Chen, H. B. and Lin, C. J., Sol. Energy 

Mater. Sol. Cells 93, (2009), pp. 1875-1880. 

33. Tu, Y. –F., Huang, S. –Y., Sang, J. –P. and Zou, X. –W., Mater. Res. Bullet. 45, 

(2010), pp. 224-229. 

34. Liu, H., Liu, G. and Zhou, Q., J. Solid State Chem. 182, (2009), pp. 3238-3242. 

35. Ghicov, A., Schmidt, B., Kunze, J. and Schmuki, P., Chem. Phys. Lett. 433, 

(2007), pp. 323-326. 

36. Yang, L. X., Luo, S. L., Cai, Q. Y. and Yao, S. Z., Chinese Sci. Bull. 55, (2010), 

pp. 331-338. 

37. Xu, C., Shaban, Y. A., Ingler, W. B. and Khan, S. U. M., Solar Energy Mater. 

Solar Cells 91, (2007), pp. 938-943. 

38. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. and Taga, Y., Science 293, (2001), 

pp. 269-271. 

39. Vitiello, R. P., Macak, J. M., Ghicov, A., Tsuchiya, H., Dick, L. F. P. and 

Schmuki, P., Electrochemistry Communications 8, (2006), pp. 544-548. 



168 

 

40. Geng, J., Yang, D., Zhu, J., Chen, D. and Jiang Z., Mater. Res. Bulletin 44, 

(2009), pp.146-150. 

41. Chen, X., Zhang, X., Su, Y., and Lei, L., Applied Surface Science 254, (2008), 

pp. 6693-6696.  

42. Lei, L., Su, Y., Zhou, M., Zhang, X. and Chen, X., Mater. Res. Bulletin 42, 

(2007), pp. 2230-2236. 

43. Devi, L. G. and Kavitha, R., Applied Catalysis B: Environmental 140-141, 

(2013), pp. 559-587. 

44. Shankar, K., Paulose, M., Mor, G. K., Varghese, O. K. and Grimes, C. A.,  J. 

Phys. D: Appl. Phys. 38, (2005), pp. 3543–3549. 

45. Yang, H. and Pan, C., J. Alloys and Compounds 501, (2010), pp. L8-L11. 

46. Yoo, J., Zazpe, R., Cha, G., Prikryl, J., Hwang, I., Macak, J. M. and Schmuki, P., 

Electrochemistry Communications 86, (2018), pp. 6-11. 

47. Yang, M., Zhang, L., Jin, B., Huang, L. and Gan, Y., Applied Surface Science 

364, (2016), pp. 410-415. 

48. Loget, G. and Schumki, P., Langmuir 30, (2014), pp. 15365-15363. 

49. Mohamed, A. E., Kasemphaibulsuk, N., Rohani, S. and Barghi, S., J. Nanosci. 

Nanotechnol. 10, (2010), pp. 1998-2008. 

50. Zhang, Y., Fan, X. and Xiao, P., Materials Science Forum Vols. 610-613, (2009), 

pp. 1143-1149. 

51. Sennik, E., Colak, Z., Kilinc, N. and Öztürk, Z. Z., Int. J. Hydrogen Energy 35, 

(2010), pp. 4420-4427.  



169 

 

52. Yu, J. and Wang, B., Applied Catalysis B: Environmental 94, (2010), pp.295-302.  

53. Beranek, R., Macak, J. M., Gartner, M., Meyer, K. and Schmuki, P., 

Electrochemica Acta 54, (2009), pp. 2640-2646. 

54. Liu, S., Yang, L., Xu, S., Luo, S. and Cai, Q., Electrochemistry Communications 

11, (2009), pp. 1748-1751. 

55. Escobedo Morales, A., Sanchez Mora, E. and Pal, U., Revista Mexicana De Fisica 

S 53 (5), (2007), pp. 18-23. 

56. Zhang, Y., Nie, J., Wang, Q., Zhang, X., Wang, Q. and Cong, Y., Applied Surface 

Science 427, (2018), pp. 1009-1018.  

57. Mohamed, A. E. R. and Rohani, S., Energy Environ. Sci. 4, (2011), pp. 1065-

1086. 

58. Matsuda, A., Sreekantan, S. and Krengvirat, W, Journal of Asian Ceramic 

Societies 1, (2013), pp. 203-219. 



170 

 

Chapter 5  

 

 

 

 

 

 

 

5 Multifunctional Magnetic Ferrite-encapsulated Self-

organized TiO2 Nanotubes Nanocomposite: Fabrication, 

Properties and Drug Release Control 

 

 

 

 

 

 

 

* A paper based on this chapter is under final revision as: Ahmed El Ruby Mohamed and 

Sohrab Rohani, “Multifunctional Magnetic Ferrite-encapsulated Self-organized TiO2 

Nanotubes Nanocomposite: Fabrication, Properties and Drug Release Control” to be 

submitted for possible publication. 
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5.1 Abstract 

A new class of multifunctional nanocomposites has been fabricated by encapsulating ferrite 

nanoparticles into self-organized, vertically oriented TNTAs using a facile and efficient 

method. The fabricated nanocomposite was characterized using SEM, EDX, XRD, UV-

Vis diffuse reflectance, photocurrent and vibrating sample magnetometer (VSM). Ferrite 

nanoparticles of 13 ± 3 nm diameters were successfully distributed all over the top and 

inner surface of the nanotubes. UV-Vis reflectance spectra showed excellent visible light 

absorbance up to wave length of 660 nm (Eg = 1.88 eV). The prepared magnetic 

nanocomposite showed their potential capability to controlling the drug release of an anti-

cancer drug (5-fluorouracil).  The drug release of 5-fluorouracil by diffusion was sustained 

with controlled initial burst effect. The suitability of magnetic nanocomposite for cancer 

drug delivery was confirmed by in vitro cytotoxicity study. 

 

Keywords: Ferrite nanoparticles, titania nanotube arrays, photoconversion efficiency, 

magnetic nanocomposite, drug delivery, band gap energy. 
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5.2 Introduction 

Titanium dioxide (TiO2) nanotube arrays (TNTAs) fabricated by anodization have attracted 

an outstanding interest in the recent years because of their unique photo-inducted reactivity, 

well-organized vertically-oriented tubular nano-architecture, high surface area, and 

biocompatibility. This nanomaterial was extensively-explored for a wide range of 

applications such as environmental photocatalysis [1, 2], water-splitting [3,4, self-cleaning 

[5], sensing [6], dye-sensitized solar cells (DSSCs), photovoltaic hydrogen generation by 

water-splitting [7, 8], light-induced amphiphilicity involving the control of its surface 

wettability by UV radiation [9]. Due to relatively wide band gap, Eg, of TNTAs, they are 

photoactive only in the UV spectra.   Different routes have been applied to modify optical 

properties of TNTAs to increase the photoactivity in the visible light spectra. Among these 

routes, decorating TNTAs surface with metal oxide nanoparticles improved the 

photoelectrochemical performance by enhancing the photoactivity in the visible light 

spectra [10].  Introducing magnetic iron oxide nanoparticles such as ferrite nanoparticles, 

Fe3O4 NPs, not only enhances the visible light absorbance and photoelectrochemical 

performance of TNTAs, but also results in obtaining magnetic ferrite-TNTAs 

nanocomposite which has very important potential applications as medicinal implants and 

long-acting targeted drug delivery [11, 12]. In medicinal applications, it is very important 

to control the drug release rate inside the bod y. By slowing the drug release rate, drug 

quantities and doses can be minimized which results in avoiding the side effects and 

increasing the drug effectiveness. Drug loading into ferrite nanoparticles and encapsulating 

them into the pores of TNTAs would slow down and control the drug release rate. 

Furthermore, the magnetic properties of ferrite-encapsulated TNTAs provides an excellent 
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functionality for application in magnetic targeted drug delivery in which drugs can be 

magnetically-targeted only to the local affected organ or tissue rather than the whole body 

[13, 14]. The objectives of this research work are to fabricate magnetic Fe3O4-TNTAs 

nanocomposite and investigate its optical and enhanced photoelectrochemical performance 

and applications in drug delivery of 5 fluorouracil (5FU) for cancer treatment. 

5.3 Materials and Methods 

5.3.1 Fabrication of TiO2 nanotube arrays 

The Ti foil (0.89 mm thickness, 99.6% purity) and all chemicals were purchased from Alfa-

Aesar (Ward Hill, MA, USA). Prior to anodization, the titanium foil was cleaned by using 

distilled water, acetone and distilled water, in an ultrasonic bath for five min each step. It 

was then dried off in air, etched in (3.3 M HF and 5.6 M HNO3) solution for 10 s, rinsed 

with deionized water, dried with air and used immediately. To prepare TNTAs, the same 

setup used in our previous work [15] was used here with a modified procedure proposed 

by Prakasam and co-workers [16]. Ti foil was first anodized in ethylene glycol solution 

containing NH4F (0.3 wt. %) and H2O (2 wt. %) for 2h at 60 V at room temperature using 

Keithley Source Meter Unit Model SMU 2602 (Keithley Instruments Inc., Cleveland, 

Ohio, USA). The Ti foil was cut into 1.5 cm diameter discs and mounted on a Teflon 

electrode holder which allowed only 1 cm2 of one side of the disc to be exposed to the 

electrolyte while the whole backside area was isolated. Ti foil was used as anode and a 

platinum foil of 2 cm by 4 cm area was used as a cathode. 
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The samples were washed with distilled water and sonicated in water for 5 min to clean the 

surface and remove debris, and dried with air. Then annealed at 550°C for 3 h in air with a 

heating and cooling rate of 5°C/min to promote crystallinity.  

5.3.2 Synthesis of Ferrite nanoparticles 

Pluronic F-68 was dissolved in 50 mL of distilled water under mechanical stirring to 

prepare 0.6% block co-polymer solution. A specified amount of ferrous sulfate hepta-

hydrate (FeSO4·7H2O, 1.39 g) was added drop wise to the block copolymer solution with 

continuous stirring. The final concentration of block co-polymer in the medium was 0.3 % 

w/v. After stirring for 30 min, the above mixture was transferred into a preheated water 

bath (80 ̊ C) for 10 min. NaOH solution (3.0 M) was quickly added to the mixture to adjust 

the pH value to about 13 and the reaction mixture was subsequently stirred at 80 ̊ C for 90 

min. The obtained solid magnetite nanoparticles were washed with distilled water several 

times and then freeze dried for overnight [17]. The proposed ferrite synthesis reactions can 

be shown as the following reaction equations [18]: 

FeSO4.7H2O + 2 NH4OH    =====      Fe(OH)2 + (NH4)2SO4  +  7H2O        (1) 

4 Fe(OH)2 + O2  + 2 H2O     =====    4 Fe(OH)3                                           (2) 

Fe(OH)2                                =====    FeO  +  H2O                                        (3) 

2 Fe(OH)3                            =====    Fe2O3  + 3 H2O                                    (4) 

FeO   +   Fe2O3                    =====    Fe3O4                                                    (5)  

 



175 

 

5.3.3 Ferrite drug loading 

5-Fluorouracil (5-FU) was loaded into magnetic nanoparticles as a post-synthesis step. In 

this method, 10 mg of 5-FU was mixed was 20 mg of magnetite nanoparticles in distilled 

water. The mixture was then stirred mechanically overnight at room temperature. 

Thereafter, 5-FU loaded magnetite particles were collected with a permanent magnet and 

rinsed 3 times with ethanol and freeze dried overnight. The loaded magnetite nanoparticles 

were then encapsulated into titania nanotubes using different techniques.  

5.3.4 Encapsulation of Ferrite nanoparticles into titania 
nanotube arrays 

5.3.4.1 In-situ encapsulation  

The in-situ encapsulation technique was performed according to the method mentioned in 

section 5.2.2 with the immersion of titania nanotubes in the ferrite-synthesis reaction 

medium. Briefly, titania nanotubes were immersed in iron precursor/block co-polymer 

solution and continuously stirred for 30 min. Thereafter, the reaction temperature was 

raised to 80ºC with subsequent adjustment of the reaction medium pH to 13. After 90 min, 

titania nanotubes were washed for several times with PBS (phosphate buffer saline) to 

remove the un-encapsulated magnetite. The washing solution was kept for further analysis. 

For preparation of 5-FU loaded in-situ magnetite encapsulated titania nanotubes, 50 mg of 

5-FU was mixed with the iron precursor and the reaction was completed following the 

same sequence as mentioned previously. Then, the ferrite-encapsulated titania nanotube 

arrays and 5-FU pre-loaded ferrite-encapsulated titania nanotube arrays samples were 

freeze dried overnight  
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5.3.4.2 Post-synthesis encapsulation 

In this method, titania nanotubes were mixed with 5-FU pre-loaded magnetite 

nanoparticles dispersed in distilled water. The mixing process was performed mechanically 

for 3 h on the top of permanent  magnet to help pulling the magnetic nanoparticles 

downward inside the nanotubes holes and then the top surface of TNTAs samples was 

rinsed with phosphate buffered saline (PBS) to remove the excess un-encapsulated 

nanoparticles. The ferrite-titania nanotubes samples were then freeze dried overnight to 

obtain the ferrite-loaded titania nanotubes. The rinsed solutions were collected and stored 

for further analysis. 

 

5.3.5 Characterization 

The morphology of all the samples was examined with a field emission scanning electron 

microscope (FESEM, Hitachi S-5000, Tokyo, Japan) equipped with an energy dispersive 

X-ray analyzer unit (EDXA). X-ray diffractometer (Rigaku Miniflex XRD, USA) was 

utilized for examination of the crystal profile of loaded and unloaded samples. The samples 

were exposed to x-ray radiation (CuKα, 40 KV, 20 mA) at a wavelength of 1.54 Å. The 

samples were scanned over a 2-theta range between 15° to 80° and at a step size of 0.02 °. 

The magnetic properties were measured using vibrating sample magnetometer (VSM, 

Model 74035, LakeShore Cryotronics, Inc., USA) at 300ºK. The magnetic properties of 

ferrite-encapsulated TNTAs samples were studied at field range of ± 10,000 Gauss. UV–

Vis diffuse reflectance absorption spectra were measured using a Cary 100 UV–Vis–NIR 

spectrophotometer. 
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The photocurrent spectra were recorded by a home-made photoelectrochemical 

measurement system using an LPX150 Xe lamp solar simulator with a light intensity of 

100 mW/cm2. The TNTAs sample served as the working electrode and a Pt sheet was used 

as the counter electrode. The testing electrolyte was 1 M KOH solution with 0.05 vol. % 

ethylene glycol. A computer-controlled power supply (Keithley SMU 2602, Keithley 

Instruments Inc., Cleveland, Ohio, USA) was employed to control the potential and record 

the photocurrent generated. The intensity of the light was measured by a radiation power 

and energy meter. The incident light intensity on the sample was measured as 100 mW/cm2. 

The external potential was applied to the anode at a scan rate of 20 mV s−1 under 

illumination and the photocurrent was recorded. The potential of the open circuit was 

measured by a digital multimeter during the illumination. 

 

5.3.6 Drug release  

 

5.3.6.1 Drug loading efficiency 

Before investigation of the drug release profiles, it is important to estimate the drug loading 

efficiency of magnetite loaded nanotubes. The concentration of 5-FU in the original and 

the rinse solution were measured using UV-Vis spectrophotometer at 265 nm and the rinse 

solution from the drug free samples was used as a reference. It should be noted that the 

rinse solution (5-FU loaded magnetite) must be first rinsed with 1 M HCl before evaluation 

of drug content. The drug loading efficiency was expressed mathematically as follows: 
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𝜀 =
𝐶𝑖−𝐶

𝐶𝑖
              ………………………..  (6) 

 

where 𝜀 is loading efficiency, Ci drug concentration in the original solution and C drug 

concentration in the washing solution.  

 

5.3.6.2 In-vitro release study 

The in-vitro release of 5-FU magnetite loaded titania nanotubes was investigated by 

immersing them in 5 mL of phosphate buffered saline (PBS). The samples were withdrawn 

at predetermined time intervals and then analyzed spectrophotometrically for evaluation of 

the amount of drug released as a function of time.    

5.3.6.3  In-vitro cytotoxicity study 

The cell culture experiments were carried out on human breast adenocarcinoma MCF-7 

cell line purchased from American Type Culture Collection (ATCC, USA). Cells were 

maintained in Dulbecco’s modified eagle medium (DMEM) containing 10% fetal bovine 

serum  (FBS) in a CO2 incubator (5% CO2 at 37°C). Cells were seeded at a density of 5 × 

103/well in a 96-well plate containing 100 µl of DMEM medium and left overnight to reach 

80% confluence. The cytotoxicity of the free drug (5-FU), drug-loaded Ferrite 

nanoparticles and the drug-loaded ferrite-encapsulated TNTAs nanocomposites on MCF-

7 human breast cancer cell line was assessed by 3-(4,5-dimethylthiazolyl-2)-2,5-

diphenyltetrazolium bromide (MTT) assay. The medium was replaced by fresh medium 

containing different concentrations of the drug either as a free solution, loaded into ferrite 
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nanoparticles or loaded into the ferrite-encapsulated TNTAs nanocomposites and 

incubated for another 24 h. The culture medium was then replaced with 100 µl of MTT 

solution (0.5 mg/ml in DMEM) then incubated for 4 h at 37°C under light protection. After 

removal of MTT solution by centrifugation at 2000 rpm for 10 min, 100 μl of  dimethyl 

sulfoxide (DMSO) were added to the wells to dissolve MTT-formazan crystals formed 

after internalization of MTT by live cells and maintained in agitation for 15 min. 

Absorbance of the converted dye was measured at a wavelength of 570 nm with 

background subtraction at 690 nm using a microplate reader (Model 550, Bio-Rad, USA). 

The relative cell viability was expressed as a percentage of the untreated control wells[19].  

 

5.4 Results and Discussion 

5.4.1 Structure and Morphology 

 

Figure 5-1-a and b show FESEM images of top view and lateral view, respectively, of 

titania nanotube arrays TNTAs anodized in ethylene glycol electrolyte containing 0.3 wt. 

% NH4F and 2 wt. % H2O at 60 V anodization potential for 3 h.  Figure 5-1 -c shows 

FESEM image for top view of ferrite-encapsulated TNTAs. Figure 5-1-d shows a high 

magnification of Figure 5-1-c. TNTAs have an inner diameter of 100 ± 11 nm, wall 

thickness of 15 ± 3 nm and nanotubes length of 20 ± 2.5 µm, with a length to diameter 

aspect ratio of 200. The average particle size diameter of ferrite nanoparticles was 13 ± 3 

nm. As it can be clearly seen from Figure 5-1, the ferrite nanoparticles are monodispersed 

and there was no particles agglomeration inside the nanotube pores or on the top surface 

file:///C:/Users/Ahmed/AppData/Local/Temp/In%20vitro%20cytotoxicity%20study.docx%23_ENREF_13
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of TNTAs which was an advantage of using freeze-drying rather than conventional heat 

drying. Figure 5-2 shows the x-ray spectra of both ferrite NPs (above chart) and ferrite-

encapsulated TNTAs (below chart). All assigned ferrite x-ray peaks in ferrite NPs sample 

existed in ferrite-encapsulated TNTAs sample which implies that the crystal structure of 

ferrite remained unchanged after the encapsulation process.    

 

 

 

 

 



181 

 

  

 

Figure 5-1 FESEM images of pristine TNTAs and ferrite-encapsulated TNTAs fabricated 

using in-situ encapsulation method; a) and b) top view and lateral view, of pristine 

TNTAs, c) top view of in-situ ferrite-encapsulated TNTAs and d) high magnification of 

image c. 
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Figure 5-2 X-Ray spectra of:  ferrite nanoparticles (above chart) and ferrite-encapsulated 

TNTAs (below). All assigned peaks of ferrite nanoparticles in the above chart existed in 

ferrite-encapsulated TNTAs x-ray spectra (below chart). 
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5.4.2 Magnetic and Optical Properties 

Figure 5-3.  shows the hysteresis loop of ferrite-encapsulated TNTAs fabricated by in-situ 

encapsulation method and that of ferrite NPs. Results show slight decrease of magnetic 

moment of ferrite-encapsulated TNTAs compared to that of ferrite NPs.  

 

 

Figure 5-3 Hysteresis loops of ferrite-encapsulated TNTAs (solid green lines) 

compared to ferrite nanoparticles (dotted red line). 

 

Several samples of ferrite-encapsulated TNTAs were prepared with different ferrite 

loading to study the effect of ferrite loading on optical properties as well as 

photoelectrochemical performance. Figure 5-4 shows UV-Vis. diffuse reflectance spectra 

for ferrite-encapsulated TNTAs with different ferrite loading as well as for pristine (pure) 
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TNTAs. Results showed that loading of ferrite NPs resulted in excellent absorbance over 

the whole visible light spectra shifting the absorbance threshold from about 420 nm wave 

length (Eg = 2.95 eV) for pristine TNTAs to about 660 nm (Eg=1.88 eV). Furthermore, the 

absorbance increased with increasing ferrite loading up to 20 mg then decreased at ferrite 

loading of 30 and 50 mg. this may be explained that increasing the nanoparticles inside 

nanotube pores may block the light penetration pathway into the inner surface area.   

 

 

Figure 5-4 UV-vis. Diffuse reflectance spectra of ferrite encapsulated titania nanotube 

arrays nanocomposite. 
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5.4.3 Photoelectrochemical Performance of Ferrite-
encapsulated TNTAs 

Photocurrent densities were measured for ferrite-encapsulated TNTAs samples with 

different ferrite loading and results are shown in Figure 5-5. Photocurrent densities 

increased with increasing the ferrite NPs loading with the highest photocurrent density at 

20 mg loading, then began to decrease with further increase in ferrite NPs loading. The 

photocurrent behavior was consistent with the behavior of light absorbance and can be 

attributed to the same reason mentioned for the explanation of light absorbance in section 

5.3.2.  

Figure 5-6 shows the % photoconversion efficiency, PCE, for modified and unmodified 

TNTAs as a function of applied potential. The percent PCE was calculated using the 

following equation [20, 21]: 

PCE (%) = [Iph × (1.23 − Eapp) × 100]/I0                                (7) 

Eapp = Emeas − Eoc                                                          (8) 

 Where: Iph is the photocurrent density in mA/cm2, Eapp is the external applied potential in 

V given in eq. (8), Emeas is the measured bias potential in V (vs. Ag/AgCl reference 

electrode), and Eoc is the electrode potential (vs. Ag/AgCl) of the same working electrode 

at open circuit conditions under the same illumination and in the same electrolyte.  
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Figure 5-5 Photocurrent of ferrite-encapsulated TNTAs nanocomposite at different ferrite 

nanoparticles loading. 
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Figure 5-6 Effect of ferrite loading on photoconversion efficiency as a function of 

applied potential. 

 

As we can see from Figure 5-6, all ferrite-encapsulated TNTAs showed enhanced 

photoconversion efficiency compared to pristine TNTAs. Photoconversion efficiency 

increased with increasing ferrite loading to reach its maximum at 20 mg ferrite loading. 

Further increase in ferrite loading resulted in decreasing the photoconversion efficiency. 

Photoconversion efficiency increased from 3% for pristine TNTAs to a maximum of 5.18% 

for 20 mg ferrite loading sample, with an increase of 72.6 %.  
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5.4.4 Drug release study 

The drug release mechanism was investigated to explore the application of ferrite-

encapsulated TNTAs as an anti-cancer drug delivery carrier. In this study, 5-FU was 

selected as an anti-cancer drug model. The loading efficiency of 5-FU ranged between 

60.51 and 80.26%. The ferrite loading (mg) as well as the loading techniques was 

characterized as a determining parameter for both drug loading and release. The drug 

loading efficiency was superior for the sample loaded with 50 mg of ferrite by post-

synthesis freeze drying method.  

The plots of 5-FU release from titania nanotubes loaded with 10, 30 and 50 mg of ferrite 

were exemplarily shown in Figures 5-7 and 5-8.  It should be noted that the release rate of 

5-FU was higher for the samples loaded with 50 mg ferrite. Figure 5-9 shows the effect of 

ferrite NPs-encapsulation technique on drug release from ferrite-encapsulated TNTAs at 

constant ferrite loading (50 mg). One also can see that post-synthesis encapsulation 

technique seems to be superior to in-situ encapsulation technique regarding drug delivery 

control as post-synthesis encapsulated samples took 14 days to release the same percentage 

of drug that in-situ encapsulated samples released in only 6 days.  
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Figure 5-7 Effect of ferrite loading on 5-FU release profile of ferrite-encapsulated 

TNTAs fabricated by post-synthesis encapsulation technique. The release profile for 

the free drug is attached. 
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Figure 5-8 Effect of ferrite loading on 5-FU release profile of ferrite-encapsulated 

TNTAs fabricated by in-situ encapsulation technique. The release profile for the free 

drug is attached. 
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Figure 5-9 Effect of ferrite-encapsulation technique into TNTAs on 5-FU release profile 

at constant ferrite NPs loading (50 mg ferrite). 
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5.4.5 Cytotoxicity of ferrite encapsulated TNTAs 

A series of experiments were conducted in-vitro to compare the cytotoxicity of 5-FU 

loaded ferrite-encapsulated TNTAs, 5-FU loaded ferrite nanoparticles and a stand-alone 5-

FU drug. Figure 5-10 shows the %viability of the three drug delivery techniques as a 

function of 5-FU concentration. Figure 5-10 shows clearly that the cytotoxicity increases 

in the order of 5-FU loaded ferrite-encapsulated TNTAs > 5-FU loaded ferrite NPs > 5-

FU. The excellent cytotoxicity of 5-FU loaded ferrite-encapsulated TNTAs may be 

attributed to the high photo-reactivity of TNTAs as well as magnetic properties while the 

cytotoxicity is moderate for 5-FU loaded ferrite NPs because of the effect of magnetic 

properties only.  
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Figure 5-10 In-vitro cytotoxicity of 5-FU loaded ferrite-encapsulated TNTAs, 5-FU 

loaded ferrite NPs and stand-alone 5-FU as a function of 5-FU concentration 

 

 

5.5 Conclusions 

Magnetic ferrite NPs-encapsulated titania nanotube arrays (ferrite-encapsulated TNTAs) 

nanocomposite was synthesized using two different techniques, namely, in-situ 

encapsulation method and post-synthesis encapsulation method.  Crystal structure and 

nanoarchitecture were characterized using x-ray and FESEM. Magnetic, optical properties 

and photoelectrochemical performance were characterized. Ferrite-encapsulated TNTAs 

enhanced photocurrent and photoconversion efficiency. Photoconversion efficiency 
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increased from 3 % for pristine (TNTAs) to 5.18 % for 20 mg loaded ferrite-encapsulated 

TNTAs with an increase of 72.6%. Magnetic ferrite-encapsulated TNTAs were used as 

anti-cancer drug 5-FU carrier and drug release profile was studied. Ferrite-encapsulated 

TNTAs showed excellent drug release profile with high controllable release over 14 days 

for post-synthesized encapsulation method and over 6 days for in-situ encapsulation 

method compared to only 60 min release time for stand-alone 5-FU anti-cancer drug. In-

vitro cytotoxicity of 5-FU loaded ferrite-encapsulated TNTAs, 5-FU loaded ferrite NPs and 

stand-alone 5-FU was tested and compared. The cytotoxicity was increased in the order of 

stand-alone 5-FU < 5-FU loaded ferrite NPs < 5-FU loaded ferrite-encapsulated TNTAs.      
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6 Conclusions and Recommendations 
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6.1  

Photocatalytic reactions of TiO2 have gained much interest during the past decades due to 

their vast applications based on solar energy conversion.  More recently, during the last 

decade, TiO2 nanotube arrays which were produced by electrochemical anodization of Ti 

metal in F⁻ ions containing electrolytes have attracted more research interest due to their 

outstanding properties rendering them the most promising photoanode in many solar 

energy conversion applications including both environmental and energy production 

applications. The big challenge is to increase the light energy to electrical or chemical 

energy efficiency. There are three key factors for increasing the efficiency of solar energy 

applications using TiO2 photoanodes. The first key factor is to increase the surface area. 

The second key factor is to minimize the recombination of photogenerated electron/hole 

charges by facilitating rapid charge separation. The third factor is to extend the photo-

responsiveness of TiO2 to the visible light region by modifying the band gap energy of the 

material. Although the high surface area could be achieved by reducing material size to 

nanoscale, minimizing the photogenerated electron/hole charges recombination could only 

be achieved through the unique architecture of highly ordered, vertically oriented titania 

nanotube arrays produced by electrochemical anodization of parent Ti metal foil in F⁻ ions 

containing electrolytes. The nano-architecture and high surface area can be easily tuned by 

controlling the anodization process parameters. The present work has investigated the 

formation and growth of titania nanotube arrays by anodization process in viscous 

electrolytes. Results showed the high dependency of titania nanotubes growth and 

nanoarchitecture on different anodization parameters. This work has investigated the 

modification and functionalization of titania nanotube arrays, too. It is becoming 
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increasingly clear that TiO2 is one of the most promising candidates for a commercial 

photoelectrode for solar light harvesting in a wide range of applications such as water 

splitting for hydrogen generation, cheap dye-sensitized solar cells and photocatalysis.  

6.1. Challenges and limitations 

Relatively wide band gap (Eg) of TiO2 limits the photoactivity to UV spectra. Surface 

electronic properties of TiO2 nanotube arrays need to be modified to narrow Eg to enhance 

the visible light absorption and consequently, increase photoconversion efficiency. When 

choosing any modification process, the following should be considered: 

• The process should not cause damage to the unique nanotubular morphology. 

• The process should not decrease the huge interfacial surface area. 

• The process should not block the photons penetration paths to the inner surface 

area of the nanotubes. 

  

6.2. Objectives 

 

The specific objectives of this research are: 

1. Synthesis of titania nanotube arrays using anodization method and study the effect 

of different parameters on dimensionality, nanostructure and photoelectrochemical 

response of nanotube arrays. 

2. Modification of the electronic properties to reduce band gap energy by introducing 

nitrogen and carbon to the surface of the nanotubes using a new, facile, low cost 
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and environment-friendly method and characterization of photoelectrochemical 

performance of the modified nanotube arrays for solar applications. 

3. Functionalizing titania nanotube arrays with magnetic ferrite nanoparticle to help 

narrowing the band gap energy and enhance the photoelectrochemical performance 

for solar applications. 

4. Application of magnetic ferrite-encapsulated titania nanotube arrays for controlled 

and magnetically-targeted drug delivery of 5-FU anticancer drug as well as 

evaluation of their cytotoxicity.  

6.3. Methodology 

 

To achieve the above general and specific objectives, the following approaches were 

implemented in this thesis: 

• An electrochemical anodization system was set up which consists of two electrodes 

electrochemical cell equipped with DC power supply provided with a data 

acquisition system and a state-of-the-art algorithm and interface for real time 

monitoring of electrical current and voltage. 

• Titania nanotube arrays were fabricated in different electrolytes where fabrication 

parameters were studied to reach the optimum conditions at which a vertically- 

oriented, well-organized reproducible nanotube arrays were obtained. 

• A new, facile, low-cost, environment-friendly method was proposed for the first 

time to synthesize N- and C-modified titania nanotube arrays with excellent visible 

light absorbance and enhanced photoelectrochemical performance. 
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• Morphology and nanoarchitecture were characterized using X-Ray diffractometer 

and FESEM imaging. Optical properties were characterized using UV-vis. diffuse 

reflectance spectra. Electrochemical performance was characterized by 

determining photocurrent densities in a 3 electrode photoelectrochemical cell with 

Ag/AgCl electrode as a reference electrode. 

• Titania nanotube arrays were functionalized with magnetic ferrite nanoparticles 

which has an excellent band gap energy of 2.2 eV.  The photoelectrochemical 

performance was characterized the ferrite-encapsulated titania nanotube arrays. 

The magnetic ferrite-encapsulated TNTAs were also tested in drug delivery 

application as an anticancer drug carrier. 

6.4. Conclusions 

6.4.1. Fabrication of reproducible self-organized 
titania nanotube arrays 

Self-organized titania nanotube arrays were successfully fabricated in glycerol, ethylene 

glycol and CMC-based electrolytes. Results showed that synthesis parameters play a 

crucial role in both nanotube arrays formation and tailoring of their nanoarchitecture. 

Nanotube arrays with an inside diameter ranging from 16 to 91 nm, and wall thickness 

ranging from 7 to 29 nm were fabricated in a glycerol-water electrolyte. Water content of 

at least 5 wt.%, was found to be essential for nanotubes fabrication in glycerol electrolyte. 

Diameter and length were influenced by varying water content above 5 wt.%. Maximum 

length of 900 nm was achieved at 50 wt.% H2O in glycerol. Nanotube length was found to 

be time-dependent at high pH values and a pH value of 6 was favorable for fabrication of 

highly ordered, long and continuous nanotube arrays. Using modified ethylene glycol 
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solution instead of glycerol, resulted in nanotubes length up to 430 nm after 1.5 h 

anodization time in ethylene glycol containing 2 wt.% urea and 0.5 wt.% NH4F.  Double-

sided titania nanotube arrays layers with a total thickness of 9.5 μm were fabricated for the 

first time with a minor modification in the anodization cell. These double-sided grown 

TNTAs have a very interesting layers arrangement where Ti conducting metal layer 

sandwiched between two semiconducting TNTAs could have a promising electronic and 

photocatalytic applications.  Nanotube arrays were also successfully fabricated in 2 wt.% 

sodium carboxy methylcellulose (CMC) aqueous electrolyte which is an inexpensive 

viscous electrolyte compared with glycerol and ethylene glycol electrolytes.  

6.4.2. N- and C-modification of titania nanotube 
arrays 

In this investigation, we report a new, facile, low cost and environmental-friendly method 

for N- and C-modified TiO2 nanotube arrays fabricated by immersing the as-anodized TiO2 

nanotube arrays in a 10 wt.% urea solution with mechanical agitation for 30 min. The 

TNTAs were immersed in the solution for 6 h at room temperature. Then, TNTAs were 

annealed at different temperatures. TiO2 nanotube arrays with different lengths from 18 

µm to 55 µm were synthesized in this study. The produced N- and C-modified TNTAs 

were characterized by FESEM, EDX, XRD, XPS, UV-Vis diffuse reflectance. Modified 

optical properties with narrow band gap energy, Eg, of 2.65 eV was obtained after annealing 

the modified TNTAs at 550ºC. Modified TNTAs showed enhanced photocurrent density 

and photoconversion efficiency. Photoconversion efficiency, PCE, was increased from 

4.35% for pristine (unmodified) TNTAs to 5.18% for modified TNTAs, an increase of 

19%. The high PCE was attributed to band gap reduction due to C- and N-modification of 
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TNTAs and the increased surface area of long TNTAs compared to short TNTAs resulted 

in excellent light penetration and harvesting properties.  Effect of nanotubes length of 

modified TNTAs on photoelectrochemical performance was studied. Photocurrent density 

and PCE were increased by increasing nanotube length with maximum PCE of 6.38% at 

nanotube length of 55 µm. This implies excellent light penetration up to 55 µm depth into 

photoanode which is about 3.6 times higher than the maximum penetration depth (15 µm) 

in the nanoparticulate photoanode. This increasing pattern of photoconversion efficiency 

with increasing nanotubes length also implied a high charge separation rate and lower 

charge recombination rate.  

6.4.3. Multifunctional Magnetic Ferrite-encapsulated 
TiO2 Nanotubes Nanocomposite 

Magnetic ferrite NPs-encapsulated titania nanotube arrays (ferrite-encapsulated TNTAs) 

nanocomposite was synthesized using two different techniques, namely, in-situ 

encapsulation method and post-synthesis encapsulation method.  Crystal structure and 

nanoarchitecture were characterized using X-ray and FESEM. Magnetic, optical properties 

and photoelectrochemical performance were characterized. Ferrite-encapsulated TNTAs 

enhanced photocurrent and photoconversion efficiency. Photoconversion efficiency 

increased from 3 % for pristine (TNTAs) to 5.18 % for 20 mg loaded ferrite-encapsulated 

TNTAs with an increase of 72.6%. Magnetic ferrite-encapsulated TNTAs were used as 

anti-cancer drug 5-FU carrier and drug release profile was studied. Ferrite-encapsulated 

TNTAs showed excellent drug release profile with high controllable release over 14 days 

for post-synthesized encapsulation method and over 6 days for in-situ encapsulation 

method compared to only 60 min release time for stand-alone 5-FU anti-cancer drug. In-
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vitro cytotoxicity of 5-FU loaded ferrite-encapsulated TNTAs, 5-FU loaded ferrite NPs and 

stand-alone 5-FU was tested and compared. The cytotoxicity was increased in the order of 

stand-alone 5-FU < 5-FU loaded ferrite NPs < 5-FU loaded ferrite-encapsulated TNTAs.  

 

6.5. Novelty and major contributions  

Chapter 2: Very comprehensive critical review study has introduced a strong platform for 

a wide diverse academic and industrial audience to understand the latest achievements in 

this field.  

Chapter 3: The conducted study in this chapter provided a strong understanding of the 

effect of each synthesis parameter such as pH, water content, anodization time and 

electrolyte composition. TNTAs were successfully fabricated for the first time in a very 

cheap viscous electrolyte composed of 2 wt.% sodium carboxy methylcellulose (CMC).  

Double-sided TNTAs on both sides of Ti disc were successfully fabricated with total tube 

length of 9.5 µm with a unique structure composed of conducting Ti metal sandwiched 

between two semiconducting layers of TNTAs on each side with a new potential electronic 

and photocatalytic applications.   

Chapter 4: N- and C-modified TNTAs were successfully fabricated using a new, facile, 

low cost, environment-friendly method which was also very safe on the nanostructure. The 

modified TNTAs showed excellent absorbance in the visible light spectra as well as 

enhanced photocurrent and photoconversion efficiency. Furthermore, photocurrent and 

photoconversion efficiency increased by increasing nanotube length in the range from 18 

to 55 µm. This implies an excellent light penetration up to 55 µm depth into photoanode 
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which is about 3.6 times higher than the maximum penetration depth in the nanoparticulate 

photoanode. This increasing pattern of photoconversion efficiency with increasing 

nanotubes length also implied a high charge separation rate and lower charge 

recombination rate. 

Chapter 5: monodispersed ferrite NPs-encapsulated TNTAs were fabricated for the first 

time. The fabricated nanocomposite showed a high increase of photoconvrsion efficiency 

from 3% for pristine TNTAs to 5.18% for 20 mg ferrite loading ferrite-encapsulated 

TNTAs which represents a percentage increase of 72.6%.  Magnetic ferrite-encapsulated 

TNTAs were tested in drug delivery and showed excellent drug release profile and 

cytotoxicity capacity.   

 

 

 

 

 

 

 



206 

 

6.6.  Recommendations and future works 

 

• More studies are needed for fabrication of larger-area TNTAs sheets for scale up 

applications. 

• Fabrication of different metal-ions doped TNTAs by anodizing Ti-alloys 

containing different metals with different concentrations. 

• Fabrication of gold and silver nanoparticles-decorated titania nanotube arrays and 

investigation of their different modified properties for applications of CO2 

reduction and other photocatalytic processes. 

• Applications of N- and C-modified TNTAs and ferrite-encapsulated TNTAs 

nanocomposite in dye-sensitized solar cell. 

• Applications of N- and C-modified TNTAs and ferrite-encapsulated TNTAs 

nanocomposite in generating H2 by water-splitting.   

• Applications of ferrite-TNTAs nanocomposite in in-virtue drug delivery of 

selected widespread daily-used drug models.   
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