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Abstract 

Risk prediction models are tools that predict an individual’s risk of developing a health 

outcome.  They were developed to influence patient management by guiding preventive 

interventions, with the goal of reducing the incidence of new diseases.  Studies 

examining their impacts are uncommon, and no consensus regarding their effects has 

been reached.  This systematic review sought to determine the impact of risk prediction 

models for chronic diseases on physician behaviour, patient behaviour, and patient health 

outcomes.  Twenty-two studies were found to be eligible for review.  The results 

demonstrated that: 1) physician behaviour may be positively influenced, though a 

statistically significant result was not found; 2) alterations in patient behaviour were 

inconclusive; and 3) some aspects of patient health outcomes were significantly 

improved, such as changes in blood pressure, but these results may be clinically 

insignificant.  The evidence indicates some effects may exist, though future studies are 

required to confirm this effect. 
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Risk prediction model, chronic disease, primary care setting, systematic review, meta-
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Chapter 1 

1.0 Introduction 

The focus of this thesis is on risk prediction models, which are clinical tools that take 

formal, evidence-based combinations of predictors and risk factors and generate an 

estimated risk for specific, often health-related, endpoints.1  The ability to use patient 

characteristics for estimating the risk of an outcome, or ‘event’, can be applied within 

many healthcare settings and to many clinical outcomes.2  This thesis will concentrate on 

models which are predictive of chronic health outcomes, and that are used mainly in 

primary care settings.   

Though several definitions of chronic diseases exist, the term is generally applied to 

diseases that are of long duration, generally slow progression, and are of noncontagious 

origin.3  The prevalence rate of chronic diseases, such as diabetes or heart disease, has 

been estimated to be as high as one in three persons in Canada.4,5  This represents a 40 

billion CAD economic burden in direct costs for disease management.5,6   Globally, 

chronic diseases were responsible for 38 million (68%) deaths in 2012, with the number 

projected to rise to over 50 million by 2030, representing the leading cause of death 

worldwide.4   

Primary care settings are the main arena within which chronic diseases are managed and 

their onset prevented.7  Chronic disease prevention and management in the given climate 

is gaining increasing importance in primary care settings.6  Given the increasing burden 

of chronic diseases, many chronic diseases and conditions are primarily managed in 

outpatient settings under the supervision of a primary care physician.5,8  This creates a 

collaborative relationship between patient and physician, emphasizing the role of patient 

self-management within the context of primary care settings.9,10  Though numerous health 

care professionals are involved in chronic disease management, the physician is often 

recognized as the locus of care.8  Primary care was selected as the setting of interest with 

a particular emphasis on primary care physicians given the intrinsic relationship between 

chronic disease prevention and management and primary care settings. 
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Risk prediction models may supplement the management of chronic diseases in primary 

care.  They function well as an educational tool by providing both physicians and patients 

with an objective measure of a patient’s risk of disease or outcome.11  They are intended 

to help guide, not replace, the clinical decision-making process involved in disease 

prevention and management.12  To provide context regarding the development of risk 

prediction models, a brief explanation of their history will be provided in the following 

section. 

1.1 The Framingham Heart Study and the birth of prediction models 

The first well-accepted health-related risk prediction model was published in 1976 by 

researchers of the first iteration of the Framingham Study, a prospective cohort study 

seeking to identify the risk factors for cardiovascular disease (CVD).13,14,15  Prior to the 

Framingham Study, the etiology of CVD was unknown.  Indeed, the term “risk factor” 

wasn’t popularized until 1961 with a publication from the Framingham researchers 

identifying the factors of risk of developing coronary heart disease (CHD).16,17   

By the 1940s, CVD was responsible for 1 in 2 deaths amongst Americans, and was the 

foremost cause of mortality in the United States.17  Former US President Franklin Delano 

Roosevelt’s death due to cerebral hemorrhage in 1945 drew greater attention to the 

necessity of identifying the cause or causes of CVD.18,19 

In recognition of the paucity of funds for research to understand and combat CVD, the 

National Heart Act was enacted in 1948, which authorized the funding of the 

Framingham Heart Study.20,19  As a result of the study, researchers identified numerous 

risk factors for CVD, including age, sex, high blood pressure, smoking status, 

dyslipidemia, and diabetes.21,22  The previous medical treatment paradigm began to shift 

towards prevention.23  With the findings of the Framingham Study, the groundwork for 

preventing not just CVD but many other chronic diseases was established. 

1.2 From treatment to prevention 

The identification of the predictive risk factors for CVD as well as risk factors for many 

other chronic diseases helped promote the concept of disease prevention.19   Through 



3 

 

epidemiologic investigation, the prevention of CVD became a possibility by providing a 

range of modifiable, targetable risk factors for intervention.  The identification of risk 

factors allowed physicians to not only to continue to treat those afflicted, but also to 

target individuals at risk of disease.19,24   

The field of risk prediction models is largely focused on CVD, which is understandable 

given its origins, but the principle of identifying risk factors and quantifying their 

independent and cumulative impact on disease risk have been applied to numerous health 

outcomes.  For example, the Gail model was developed to predict breast cancer risk, 

allowing for the appropriate prescription with tamoxifen, a chemopreventive 

medication.25,26  One recent systematic literature search identified 25 models predictive of 

the risk of type 2 diabetes mellitus.27  More recently, the first multivariable risk 

prediction model for chronic obstructive pulmonary disease (COPD) was created in 2015 

incorporating different genotypes in tandem with other clinical variables, such as age or 

smoking status, to generate a person’s long-term risk of developing COPD.28 

Risk prediction models have become a common method of identifying individuals at risk 

for experiencing a targeted health outcome such as cancer or diabetes; they are capable of 

generating an individual’s absolute probability or risk of experiencing an event well 

before the individual experiences disease onset.29,30  The process of estimating the 

absolute risk of particular diseases for individual patients is often recommended as it may 

help guide the preventive care activities by health care practitioners.31   

The interactive, multifactorial nature of the causes of chronic disease indicate that 

preventive measures should target multiple risk factors as opposed to focusing on single 

factors31,32.  For example, the risk factors of blood pressure or cholesterol levels are 

predictive of CVD.  However, interventions focused strictly on reducing blood pressure 

or cholesterol levels only have a limited effect on absolute cardiovascular risk, indicating 

that reductions in multiple risk factors are more effective at preventing cardiovascular 

events.32  Risk prediction models are often multivariable models themselves, accounting 

for several risk factors in one cohesive equation to generate an absolute risk of disease.33  

Reducing a patient’s absolute risk of disease necessitates a multifactorial approach, 
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targeting multiple risk factors rather than single ones, a process that may be guided by 

use of a risk prediction model. 

Clinical guidelines often incorporate and recommend the use of risk prediction models.11  

Indeed, one systematic review published in 2010 identified 27 guidelines that 

recommended cardiovascular risk assessment in asymptomatic adults, indicating a 

movement towards formal risk assessments for patients.34  This shift represents a belief 

that model usage to estimate patient risk of disease will correspondingly affect physician 

behaviour, such as prescription with preventive medications, thereby affecting patient 

behaviours, such as lifestyle modifications, which may result in improved patient health 

outcomes.33,35,36  However, though risk prediction models have become quite 

commonplace and increasingly recommended for use in clinical practice, consensus 

regarding their intended impact has yet to be achieved.37 

1.3 Impact analysis 

There have been several studies conducted regarding the development and, to a lesser 

extent, the validation of risk prediction models.33  Nevertheless, their utility in clinical 

practice is unknown due to a dearth of information regarding their impact.  Though 

systematic reviews have been conducted regarding the impact of risk prediction model 

use for single health outcomes or to assess the health economic impact of model use, no 

systematic review have examined impact analysis studies of risk prediction models 

comprehensively.35,38  There are calls from researchers to assess the impact of risk 

prediction model use in clinical practice.33,38  Given the widespread recommendations to 

use prediction models, there exists a lack of cohesive evidence to support their 

implementation for regular use in the prevention of chronic diseases.   

For this reason, this thesis sought to search, collect, and collate the relevant literature 

pertaining to the impact of chronic disease risk prediction models on the domains of 

practitioner behaviour, patient behaviour, and patient health outcomes to ascertain their 

clinical utility in primary care settings.  In doing so, a unifying perspective is provided 

regarding the potential impact of risk prediction models in primary care settings, thereby 



5 

 

establishing a foundation from which prediction models may be implemented and most 

effectively influence the health of the population. 

1.4 Overview of thesis 

This thesis was written in accordance with the requirements set forth by Western 

University’s School of Graduate and Postdoctoral Studies.  The study presented is a 

systematic review and meta-analysis of all studies that have conducted an impact analysis 

of chronic disease risk prediction models in primary care settings.   

The second chapter will explore the often inconsistently used terminology pertaining to 

risk prediction models and present methods for their classification.  Chapter 3 presents 

the literature relevant for the research question, outlines the rationale and need for this 

study, and defines the objectives used to guide the study.  The methodology employed for 

the systematic review and meta-analysis is presented in chapter 4.  The results obtained 

from the systematic review and meta-analysis are detailed in chapters 5 and 6, 

respectively.  A discussion and interpretation of the results follows in chapter 7, outlining 

the strengths and limitations of the reported study, as well as future directions for 

research in this field. 
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Chapter 2 

2.1 Introduction 

The study of risk prediction models is a growing field, with an increasing number of 

models being developed every year for a wide array of outcomes.  However, the field 

itself lacks a consistent method of classification for these models, with several terms (e.g. 

‘risk calculator’, ‘clinical prediction model’, etc.) being used to describe similar tools.  

This chapter seeks to provide an understanding of risk prediction models, provide an 

overview of related terminology, and further classifies risk prediction models according 

to a few of their inherent criteria. 

2.2 Understanding risk prediction models 

The concept of prognosis is central to the practice of medicine, with most diagnostic and 

therapeutic actions aimed at improving a patient’s prognosis, a term used to describe a 

person’s future health based on a series of characteristics.30,39  One example of a tool used 

to improve a patient’s prognosis is a screening test, which allows for the identification 

persons with unrecognized disease—the early identification can afford the person and 

health care provider greater opportunities for treatment than if the disease had been 

identified later.30,40  Similarly, risk prediction models are clinical tools that can improve a 

patient’s prognosis.  They may promote the initiation of risk reduction strategies by 

providing physicians and patients with an absolute risk of developing a specific health 

outcome, motivating those at increased risk to take preventive action.41   

Risk prediction models generate an estimated probability that a disease is present 

(diagnostic models) or will occur in the future (prognostic models) by using an array of 

clinical and non-clinical patient characteristics.42,30,39,37  These tools seek to determine the 

patient’s global risk, a term used to describe the absolute risk of experiencing an event 

over a specific time period, often measured in the magnitude of years for chronic 

outcomes and months for acute outcomes.43,22  Global risk is calculated using the 

algorithms or multivariable equations underlying the prediction models.44  These global 

risk assessment tools often take into account the additive and synergistic effects between 
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individual risk factors, placing increases in individual risk factors, or predictors, into 

context relative to the overall disease, allowing for a continuum of disease risk to be 

expressed and identifying patients most likely to derive benefit from an intervention.45 

With the uncovering of the quantitative relationship between these risk factors for 

disease, physicians and patients are able to more efficiently manage disease risk by 

targeting the global risk.43  The estimates derived from risk prediction models may guide 

the management of therapeutic or ameliorative options through informing and fostering 

the process of shared decision making.37,46,29  Numerous guidelines, such as those 

published by the National Cholesterol Education Program in the United States, the Joint 

National Committee, and the American Diabetes Association recommend modifying the 

intensity of strategies for risk reduction based on the patient’s global risk.47  Indeed, an 

accurate risk prediction model is of no clinical utility if it does not change behaviour and 

ultimately health outcomes.48 

The estimated global risk is often stratified according to risk thresholds, such as an 

individual being at either low, moderate, or high risk of developing the outcome.  

Guidelines often recommend that treatment decisions be influenced by these thresholds; 

the New Zealand guidelines to manage elevated blood pressure recommend initiating 

treatment conversations with patients with a five-year 10% risk of CVD if their blood 

pressure is raised (between 150/90 and 169/99 mm Hg).49  Though these thresholds for 

intervention are not necessarily based on their evidence-based impact on outcomes, but 

rather often representing a vestige from historically-derived levels, they do provide a 

simplified cut-off value from which interventions such as pharmacotherapy may be 

applied.50 

2.3 How have risk prediction models been studied? 

Though research in prediction models is varied, it can be categorized generally in three 

sequential stages: 1) model development, 2) model validation, and 3) impact 

studies.37,51,52  Though the purpose of this thesis is to assess evidence from the third stage, 

a brief overview of the first two stages will be given. 
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2.3.1 Model development 

The purpose of model development involves the steps necessary to create a model that 

can calculate the likelihood of risk with a high level of accuracy for any permutation of 

predictor variables in a specific population.  Steyerberg (2009) outlined seven key steps 

to developing a model (Table 1).30   

Table 1.  Seven steps to developing a prediction model.30,53 

Step Purpose Description 

1 Problem definition and 

data inspection. 

Understanding the research question, what outcome it 

seeks to predict, defining the predictors, with 

consideration of the data under study. 

2 Coding of predictors. The predictors are derived from the dataset, and it 

must be determined how to code the categorical or 

continuous variables. 

3 Model specification. Model specification pertains to predictor selection, 

what methods to use to select predictors, and the 

management of assumptions used in models. 

4 Model estimation. Once the model is specified, parameters such as the 

regression coefficient values must be estimated for 

predictors or combination of predictors. 

5 Model performance. The performance of the model, such as how closely 

predictions are to the actual outcome, as well as 

specific questions regarding the calibration and 

discrimination properties of the model. 

6 Model validation. To reduce the likelihood of overfitting, internal 

validation of the model would ensure the 

reproducibility of the model in the target population. 

7 Model presentation. The model can be presented as its base algorithm, or 

in a different format for use in practice, such as a 

chart, table, or computerized program. 

 

The information necessary to construct a model is derived from a source or development 

population.  The source of data for model development is ideally from a prospective 
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study of sufficient duration to allow for the natural history of disease to progress, which 

allows for optimal documentation of predictors and outcomes, and to obtain a more 

accurate measure of the baseline risk.51  Case-control studies are less ideal as they don’t 

allow for the absolute risk of the outcome to be calculated given that cases and controls 

are sampled from the source population at a ratio not representative of baseline risk. 51,54  

Regardless of the study design from which the data are used to construct a model, it 

generally applies to a specified target population, a group of persons who share similar 

clinical characteristics to the development population.55,56 

Predictors are identified from the data source.  Predictors are factors that may be 

demographic in nature, include clinical history, physical examination results, disease 

characteristics, test results, or previous treatments.51  Predictors are not necessarily 

causally related to the outcome of interest, but indicate that a patient may be at risk of the 

outcome, or in other words, are associated with the outcome.51  Though a greater number 

of predictors that are theoretically associated with the outcome may be identified, not all 

can or will be included in the final model. 

Model performance is measured according to two primary metrics: calibration and 

discrimination.30  Calibration is a measure of agreement, or fit, between the expected and 

observed endpoints.57  For example, if a model predicts that a person will experience the 

outcome with a 5% likelihood, for every 100 people with the same 5% likelihood, 

approximately 5 should experience the event of interest.  Calibration can be assessed 

using the Hosmer-Lemeshow goodness-of-fit test or a calibration plot where predicted 

and observed outcomes are plotted on opposing axes, with perfectly calibrated models 

generating data points along the 45o line.57,58 

Discrimination assesses how well the model can differentiate between those who will 

develop the outcome of interest from those who will not.53  With regards to prediction 

models, a model with high discriminatory ability can well distinguish risk groups from 

one another.59  It is commonly assessed using a performance measure, specifically the 

concordance (c) statistic and the area under the Receiver Operating Characteristic (ROC) 

curve (AUC), which is identical to the c statistic for binary outcomes.57  The prognostic 
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groups may be identified after the creation of a model, such as segmenting the groups 

according to quartiles, where the lower quartiles should have worse outcomes than the 

upper quartiles.30  Defining the prognostic groups inappropriately, however, may result in 

a failure to discriminate between risk levels, with increases in rates of false positives or 

negatives.59 

Model validation ensures that the purpose of predictive models (providing accurate 

predictions of risk for new patients) is met.30  Model development generally concerns 

itself with internal validation more so than external validation, assessing whether the 

estimates derived from the model apply well to the source population.53  Internal 

validation can help identify and in turn, reduce the potential for bias in model 

performance, such as overfitting  which can lead to unfounded optimism on the part of 

the developer.60  Overfitting, or when predictions derived from models are highly 

accurate when evaluated on the source data but have a low accuracy in alternate sets of 

data, can lead to an overly optimistic perception that the model will perform with the 

same high level of accuracy in new subjects from the underlying population.30,61  

Overfitted models tend to overestimate the risk of outcome in high risk patients, and 

underestimate risk in low risk patients, reducing their applicability to novel populations.2  

Identifying and reducing such biases can ensure that the model is applicable and accurate 

within its target population. 

Validation can be conducted by using a split sample approach.  In this case, the dataset is 

divided into the development sample and the validation sample; the model is then 

developed from one segment of data and validated in the next.I  This method can be 

considered inefficient as not all available data are used to develop the model.53,60  

Alternate methods include cross-validation and bootstrap resampling, which are 

validation methods where data are resampled from the development sample.62  In doing 

so, all the data are used for development, and validated within the same pool of data, 

                                                 

I
 In the field of Machine Learning, the “validation sample” is typically referred to as a test set. 
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ensuring the applicability of the model to the source population, as well as reducing the 

potential for overfitting. 

With the model completed, attention is turned to the presentation of the model, or how it 

is presented for clinical use.  Model presentation should be appropriate for its intended 

setting, and ease its implementation and usage.  Risk prediction models generally present 

the absolute risk, or the risk of an event in a single group, as opposed to using a relative 

measure, such as the relative risk, or the ratio of risk of an event in one group to another 

group.63,64  Absolute measures of risk are preferable to inform clinical decision making, 

whilst conversely, relative measures of risk are preferable in etiologic research.64,65  This 

preference is primarily due to the occlusive nature of relative measures of risk; if one 

treatment option reduces risk of adverse outcomes from 5% to 2.5%, in relative terms 

there is a 50% reduction in risk, though in absolute terms the risk is only reduced by 

2.5%.64,66  Presenting absolute measures of risk reduces the possibility of 

misinterpretation compared to presenting relative measures of risk. 

At their core, prediction models should allow physicians to input data and calculate or 

generate a measure of absolute risk.67  Some risk prediction models present solely their 

predictive algorithm, requiring physicians to manually calculate the absolute risk.  For 

example, the GUSTO-I model, which predicts the 30-day risk of mortality in patients 

with acute myocardial infarction, presents to the user simply its regression formula (see 

Appendix A for the complete formula).68 

Similarly, researchers of the Framingham Heart Study published a cardiovascular 

prediction model, predicting for general CVD risk as well as individual CVD events, 

including coronary heart disease, cerebrovascular disease, peripheral arterial disease, and 

heart failure.22  In this model, physicians would input the patient’s values for several 

predictors, and manually calculate the long-term risk.  For example, using a Cox model, a 

61 year old woman who smokes, is not diabetic, total cholesterol of 180 mg/dL, high-

density lipoprotein (HDL) of 47 mg/dL, and systolic blood pressure of 124 mm Hg, 

would have a 10-year estimate of risk of 10.5%.22   
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Though these formulas are potentially accurate, their complexity limits applicability in 

clinical settings.  Simplifications in delivery may increase the accessibility of the model.  

Researchers for the Framingham Heart Study aimed to make their complex statistical 

models more useful by developing and using a “points system” wherein points associated 

with predictors are summed, and the total score corresponds to a calculated 10-year 

coronary risk.67  Technological advancements have further reduced the burden of this 

barrier to use of models in clinical practice, with computer systems reducing the labour 

and likelihood of error associated with manual imputation.69  A transition to simpler 

systems can increase the routine use of prediction models in clinical practice.69,70,71 

The generated output is not the only aspect of model presentation involved in model 

development.  It also includes the medium of delivery. Paper-based options, including 

score charts or nomograms, can be an effective option for easy application in clinical 

settings.53,62,71  The Sheffield Risk Table identifies the absolute risk of coronary death, 

and provides the risk through a table format allowing for printed copies to be easily 

accessible when calculating risk.72  Reflecting technologic advancements, there has been 

a recent trend to program risk prediction models as either mobile phone or tablet apps, or 

providing web-based models that could easily calculate a person’s risk of health 

outcome.53  One model predicting risk of death at 14 days, and for risk of death or severe 

disability at 6 months after traumatic brain injury was developed; the authors chose to 

present the model as a web-based tool with predictors that are easily identifiable.73  

Another model predicting an infant’s risk of childhood obesity is available as a mobile 

phone application.74  Offering multiple formats provides options for physicians in terms 

of their own personal preferences, potentially easing their implementation, allowing these 

tools to help inform decision making and ultimately affect patient outcomes.48,75 

2.3.2 Validation studies 

The literature pertaining to prediction model research heavily favours model development 

studies, with a comparatively small number of studies assessing validation despite the 

importance of assessing model generalizability.37  Further, though numerous guidelines 

detailing model development have been published, guidelines pertaining to the 
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appropriate methodology for validation or impact analysis are scant.76  Most risk 

prediction models are found to be less accurate when used in new populations, possibly 

due to inadequate model development, or differences between the development and 

validation populations.37,77  Despite the models potentially being internally valid, they 

should still be tested or validated in new individuals before implementation in guidelines 

or application in practice to ensure their predictive accuracy.48 

Validation studies pertain primarily to the external validation of the model.  Though 

internal validation, or assessing the accuracy of the model within the development 

dataset, is equally important to the development of the model, external validation takes 

the developed model with the same predictors and assigned weights and is applied to 

external datasets, which provide the heterogeneity necessary to mimic real life 

applications to determine the model’s predictive performance.37,33 

There are generally three forms of external validation: 1) temporal, 2) geographical, and 

3) domain validation (Table 2).33  Geographical and domain validation tend to be more 

robust forms, taking drastically different populations within which to examine the 

performance of the model, compared to temporal validation, which remains within the 

same institution from which the model was developed. 
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Table 2.  Forms of external validation conducted in prediction model studies.  Adapted 

from Moons et al.33 

Type of Validation Description 

Temporal External validation conducted on individuals from the 

same institution in a different time period.  There generally 

is not any crossover of data from the development dataset 

and the validation dataset.  It can be conducted through 

non-random splitting of the existing dataset based on the 

moment of inclusion, but reduces the amount of data used 

for development, with greater similarities between the 

development and validation populations.  It can be 

conducted by collecting data prospectively for the purpose 

of validation after model development as well. 

Geographical Geographical validation examines the transportability of 

the model to different institutions or countries, often 

applying different inclusion or exclusion criteria as well as 

different methods of measuring predictors in those 

populations compared to the development population.   

Domain Domain validation is an extension of temporal or 

geographical validation, where the validation population 

differs greatly from the development population.  An 

example of this would be assessing the predictive 

performance of a model for CVD that was developed in a 

healthy population amongst individuals with type 2 

diabetes mellitus. 

 

2.3.3 Impact analysis 

Impact analysis or model impact studies determine whether or not the model: 1) is 

actually used by physicians; 2) guides clinical decision making; 3) modifies behaviour; 

4), improves clinically relevant processes; or 5) reduces costs.37,33  Indeed, physicians 

will be unlikely to use risk prediction models to inform their decision making without the 

evidence to support the effectiveness of models, which would be analogous to prescribing 

drugs on the basis of in vitro testing alone.75  Validation and impact analysis have 

different goals, and therefore different study designs. Validation studies are preferably 

conducted on a cohort of individuals with a specific set of inclusion and exclusion criteria 
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applied, whereas impact studies require a comparator population.48,78  In other words, the 

two groups assessed in impact studies are generally those who receive an estimated risk 

score (intervention) and those who do not (control).33  At present, there are no formal 

guidelines for the conduct of impact analysis studies; however, there are suggestions for 

how to assess the impact of the use of models on clinical practice. 

The provision of information is the source of the first categorization of model impact 

studies; is any information in addition to the estimated risk provided?  Two approaches 

exist: directive and assistive.33,37,78  In the assistive approach, the probability of outcome 

is the only generated information, while the directive approach is more suggestive, 

providing treatment recommendations in addition to the absolute risk.48,79  The assistive 

approach is considered more respectful of physician judgment and autonomy allowing for 

greater interpretation of the patient’s risk and subsequent treatment decisions, although 

the evidence suggests a greater effect is found through the directive approach.78,80 

Comparisons between groups, namely the intervention and control groups, are 

scientifically strongest when the study design is a randomized trial.48  A variant, the 

cluster randomized trial where the unit of randomization is the clinic or hospital, may be 

preferable to avoid contamination, or a learning effect where the physician alternately 

applies and does not apply the model in alternating patients, as well as the possibility for 

exchange of information between physicians at a single centre.37,81 

Non-randomized studies, such as pre-post studies, can be conducted as an alternative to 

randomized studies, which can be time-consuming and costly.33  For example, the impact 

of the Ottawa ankle rule, a diagnostic risk prediction model assessing for risk of fracture 

amongst patients experiencing ankle and foot injuries, was assessed using a pre-post 

study.82,83  Where the outcome of interest does not require long-term follow-up, such as 

the decision making of physicians, a cross-sectional study can suffice to capture decisions 

immediately upon provision of the patient’s absolute risk.33 

Appropriate conduct of model impact studies can prove to be vital to the uptake of risk 

prediction models in clinical practice, ensuring that (validated) models help guide 
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treatment decisions, affect the behaviour of both physician and patient, and improve the 

long-term health of patients assessed for absolute risk. 

2.4 Terminology 

The terminology used in the study of risk prediction models is varied with many names 

used to describe the same basic tool.84  Risk prediction models are often operationalized 

dependent on their function, presentation, or setting, which is where much of the 

ambiguity resides.  This section presents a list of terms commonly used for risk 

prediction models as well as poses reasons for their distinction. 

Regression models that apply to health outcomes are denoted as prediction models, the 

root term used for these tools.77  Prediction models generate an individual’s risk, creating 

the amalgam of risk prediction model.84  The addition of the term ‘risk’ can be considered 

unnecessary, as models usually only provide a probability as their output, hence they are 

often simply referred to as prediction models in the literature.  The term clinical 

prediction model can also be used, and is contingent upon the setting, specifically a 

clinical setting.52  Clinical prediction models are thus tools or rules derived from 

systematic clinical observations, with the intention of assisting physicians in identifying 

patients who require diagnostic tests, treatment, or hospitalization.46 

One commonly used set of adjectives is dependent on the function of the output.  In this 

instance, whether the model predicts the risk that a person has the health outcome or will 

develop the health outcome over a prespecified period of time warrants the addition of an 

adjective to the root term: diagnostic or prognostic prediction model.30,33,56  The inclusion 

of either adjective can specify the temporal function of the model. 

There exist a few terms that focus on the multivariable model created to derive the 

projected risk.  These terms include risk algorithm, risk function, and risk equation, 

among others.85–88 More attention is directed to the statistical relationship between the 

predictors and the outcome and how they can, in turn, generate a predicted risk. 52,89  

These terms do not address the presentation of the model, such as whether the risk is 

presented in nomogram format or icon arrays, for example. 
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Conversely, terms pertaining to the presentation of the model exist as well.  These terms 

include risk chart, risk score, risk calculator, risk engine, and score cards.86,87,90,91,92  

Risk charts and risk scores are both tools that simplify the derivation of absolute risk.  

Risk scores, as previously mentioned, are simplifications to the calculation of the 

patient’s absolute risk, attributing points for each predictor, with the summed total points 

corresponding to the absolute risk of outcome.67,71  Risk charts, conversely, simplify the 

process by providing a visual aid where absolute risk is presented based on the values of 

predictors.86  Though they may both simplify the process, risk charts are absolute global 

risks derived from combinations of classes of risk factors, whilst risk scores are more 

precise evaluations derived from absolute global risks calculated by continuous levels of 

risk factors.93  Risk scores can be depicted in a visual fashion through the use of score 

cards, which  provide the score associated with absolute risk on individual cards with 

each card pertaining to a combination of classes of predictors.94 

Risk calculators are tools that make risk prediction models accessible to broader 

audiences.89  Risk prediction models at their core can be difficult to understand; the 

simplification of the model to a more user-friendly format can ease their implementation 

in practice.  Risk calculators allow for healthcare providers to easily input the predictor 

values, automatically generating the estimated risk of outcome.  In essence, they are 

standalone tools that can be electronic or paper-based.95 

Risk engines are similar to risk calculators in terms of simplifying the calculation of risk.  

They are often used to describe a relationship through the use of technology, such as the 

development of mobile phone applications or web-based tools that calculate risk upon 

input of predictors.96  One of the more prominent examples is the UKPDS Risk Engine, a 

model that predicts coronary heart disease amongst patients with type 2 diabetes, using a 

web-based automated calculation format.97,98 

This series of terms is by no means exhaustive, but does provide an overview of the most 

commonly used terms.  Despite the wide range of terms used in the field of prediction 

model research, they exist to describe the same basic tool with the same goal: to provide 

an accurate measure of risk of health outcome in patients based on the use of predictor 
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variables.52  As such, a potentially more useful method of understanding prediction 

models is to provide an overarching classification under which models can be 

categorized. 

2.5 Classifying risk prediction models according to their dominant characteristics 

As previously seen, there exists numerous disparities in how researchers refer to risk 

prediction models.  As such, it may be more useful to focus on a few key characteristics 

that define these tools rather than focusing on the terminology. 

There are four primary ways that risk prediction models in present use can be classified 

(Figure 1).  The classifications were selected because they encompass all existing 

prediction models in use.  Note that the four peripheral nodes in the figure are not 

mutually exclusive of one another; rather, each risk prediction model can be classified 

according to one or more categories. 

2.5.1 Temporality 

All risk prediction models can be viewed through the lens of temporality.  As previously 

described, they can be dichotomized as being prognostic or diagnostic, depending on 

whether the prediction is for a health outcome that is present or will occur in the future.  

Given that all risk prediction models calculate the risk for an outcome occurring, 

applying the concept of temporality on this outcome-dependent categorization provides 

an irrevocable measure of classification. 

2.5.2 Type of outcome 

Risk prediction models can also be classified according to the outcome for which they 

predict risk.  Prediction models apply to several fields apart from medicine, including 

physics, meteorology, and astronomy.30  When applied to medicine, they can be 

developed for several different health outcomes, including both acute and chronic 

conditions.  One systematic review sought to synthesize all studies assessing the accuracy 

of tools predicting fracture risk, an acute outcome, such as the FRAX score, identifying 

13 unique tools in 45 different studies that met their inclusion criteria.99,100  Chronic 
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health outcomes, such as breast cancer, have been predicted quite extensively; one 

systematic review and meta-analysis identified 17 unique breast cancer models.101  

Indeed, given that all risk prediction models predict for at least one outcome, we can 

group models according to the nature of the outcome they seek to predict. 

2.5.3 Setting of use 

Risk prediction models can also, albeit to a lesser extent, depend on the setting of most 

appropriate implementation.  Though many models apply to a primary care setting, such 

as most cardiovascular prediction models, a number apply to secondary and tertiary care 

settings.24  For example, the miniPIERS risk prediction model is used in tertiary care 

settings to identify pregnant women at increased risk of death or complications due to 

hypertension.102  Some overlap exists; the CHAD2 score, a prediction model assessing 

for risk of stroke, can be used in primary or tertiary care settings.103  These tools may also 

be used in non-clinical settings.  There is a growing trend towards publishing prediction 

models online, allowing members of the general public to calculate their risks of health 

outcome in the comfort of their own homes.104  However, the models published online are 

typically less invasive and rely on more easily discernable risk factors, such as age or sex. 

2.5.4 Format of presentation 

Lastly, there are only a limited number of ways that clinicians can use a prediction model 

to ascertain the absolute risks of their patients.  As such, the format of the risk prediction 

models can be used as another method of categorization.  The two primary subgroups 

here would be whether the tool is used as either a paper- or electronic-based one.  Within 

each group would fall the various specific risk prediction models, such as risk tables or 

charts, or risk engines, depending on the medium through which they are used.  As such, 

one could see the most popular methods of delivery, allowing for the potential to 

determine if one is more effective than others. 
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Figure 1.  The four proposed methods of classifying risk prediction models. 

2.6 Conclusion 

Prediction models are becoming a common mainstay in clinical settings, being 

recommended by health policy makers and clinical guidelines globally.  They provide an 

objective, evidence-based measure of patient risk of health outcome, and are capable of 

informing physicians and patients in making impartial judgements regarding patient 

management, potentially reducing the burden of disease faced by populations globally.  

Though the literature may be inconsistent in its terminology, agreement regarding the 

intended purpose of risk prediction models is consistent across studies, providing a strong 

basis for the independent examination of the impact of prediction models. 
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Chapter 3 

3.0  Introduction 

This chapter presents background information regarding chronic disease and the primary 

health care setting, particularly as they relate to the focus of this thesis. The literature 

regarding the role of risk prediction models in primary prevention, and more broadly in 

clinical practice, is explored. This is followed by a description of the rationale for the 

study as well as the study objectives. 

This chapter explores the literature surrounding features associated with risk prediction 

models. It begins with an assessment of the term chronic disease as it has been used in 

the literature and for the purposes of the systematic review and meta-analysis.  Next will 

be a description of primary care settings, the setting within which most preventative 

measures against chronic diseases are applied.  Following is an exploration of the role of 

risk prediction models in terms of primary prevention, as well as reasons for their 

possible underuse in clinical practice.  To close, the rationale for the study as well as the 

study objectives will be outlined. 

3.1 Chronic disease 

The burden of chronic diseases is vast and increasing rapidly globally.  Though reporting 

differs dependent upon the source, it has been estimated that in 2001, of the 56.5 million 

total reported deaths, approximately 60% were attributed to chronic diseases, increasing 

to 68% in 2012.4,105  By 2020, projections indicate that approximately 75% of deaths will 

be attributed to chronic diseases.106  The reported prevalence amongst Canadians range 

from one in five to one in three living with a chronic disease, with up to four in five 

Canadians having at least one modifiable risk factor, such as tobacco smoking, poor diet, 

sedentary lifestyle, and harmful alcohol consumption.4,5,107  Though a century ago, 

infectious diseases were the eminent causes of mortality, an epidemiologic transition has 

occurred in recent years, with chronic diseases dominating the landscape of illness 

worldwide.108,109,110  Chronic diseases represent the largest cause of mortality nationally 

and internationally, a trend that will continue for the foreseeable future. 



22 

 

3.1.1 Chronic disease definitions 

The term “chronic disease” is etymologically simple, with implications of temporality 

and of illness.  However, there is lack of a consistent definition for chronic disease.  

Indeed, the lack of consistency in key definitions poses a barrier to the prevention and 

mitigation of any chronic condition, as it reduces the ability to measure them 

effectively.111,112 

Researchers often create their own unique definitions to examine chronic diseases or 

chronic conditions.  One study examining out-of-pocket expenditures for chronic disease 

management chose to define chronic conditions as, “…a person…having a chronic 

condition if that person’s condition had lasted or was expected to last twelve or more 

months and resulted in functional limitations and/or the need for ongoing medical 

care.”113  To compile a list of specific chronic conditions, the researchers established a 

panel of ten physicians to judge whether the International Classification of Diseases, 

Ninth Revision (ICD-9) codes met their definition, resulting in 177 codes being classified 

as chronic conditions in adults.113 

One systematic review sought to provide an overview of all definitions used for chronic 

conditions in children in an effort to establish the prevalence of chronic health conditions 

in that population.114  The most frequently used terms were chronic conditions, chronic 

health conditions, chronic illness, and special health care needs.  Four core definitions 

were identified, though not all included articles (64) adhered strictly to these (Table 3).   
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Table 3.  Four most frequently used definitions of chronic conditions (for children).  

Adapted from van der Lee et al 2007.114 

Source Year Term Definition 

Pless & 

Douglas115 

1971 Chronic 

illness 

“A physical, usually nonfatal condition that 

has lasted longer than 3 mo in a given year or 

necessitated a period of continuous 

hospitalization of more than 1 mo; of 

sufficient severity to interfere with the child’s 

ordinary activities to some degree.” 

Perrin et al.116 1993 Chronic 

health 

conditions 

“A condition is considered chronic if (1) it has 

lasted or is expected to last more than 3 mo 

and (2) the definition takes into account the 

impact of the condition on the child, e.g., level 

of functional impairment or medical need 

greater than expected for a child of that age.” 

Stein et al.117 1993 Chronic 

health 

conditions 

“Conditions must have a biological, 

psychological, or cognitive basis; have lasted 

or are virtually certain to last for 1 y; and 

produce ≥ 1 of the following sequelae: (1) 

limitations of function, activities, or social role 

in comparison with healthy age peers in the 

general areas of physical, cognitive, 

emotional, and social growth and 

development; (2) dependency on 1 of the 

following to compensate for or minimize 

limitations of function, activities or social role: 

medications, special diet, medical technology, 

assistive device, or personal assistance; and 

(3) need for medical care or related services, 

psychological services, or educational services 

above the usual for the child’s age or for 

special ongoing treatments, interventions, or 

accommodations at home or in school.” 

McPherson et 

al.118 

1998 Children 

with 

special 

health 

care 

needs 

“Children who have or are at increased risk of 

a chronic physical, developmental, behavioral, 

or emotional condition and who also require 

health care and related services of a type or 

amount beyond that required by children 

generally.” 

 



24 

 

Of particular interest is the change in definitions presented over time, demonstrating the 

plasticity of the definition and its non-uniform use over time and amongst researchers.  

The earliest definition devised in 1971 addressed longevity and its impact on daily 

activities, with later definitions addressing the child’s health care needs and functioning, 

as well as eventually addressing children at risk for conditions.115,116,117,118 

Medicare, the largest health insurance program in the United States, has established their 

own categorizations of diseases.  Medicare provides health insurance to approximately 40 

million beneficiaries amounting to an annual spending exceeding 200 billion USD, 

placing an enormous financial responsibility on Medicare managed care and other 

capitated programs.119  To ensure the appropriate allocation of benefits, a health-based 

Medicare capitation system was adopted creating a diagnostic classification system.119  

This system aggregated over 15,000 ICD-CM codes (International Classification of 

Diseases, Ninth Revision, Clinical Modification) into 70 Hierarchical Condition 

Categories (HCC).  For example, the HCC “Acute Liver Failure/Disease” includes the 

ICD codes for “Viral Hepatitis, Acute or Unspecified” and “Hepatic Coma”.119 

The Centers for Disease Control and Prevention also compiled a list of select definitions 

of chronic diseases representing the definitions used in settings including academia and 

the government (Table 4).111 
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Table 4.  List of commonly used definitions for chronic diseases.  Adapted from 

Goodman et al 2013.111 

Source Year Definition 

Hwang et al.113 2001 “We defined a person as having a chronic condition if that 

person’s condition had lasted or was expected to last 12 or 

more months and resulted in functional limitations and/or the 

need for ongoing medical care.” 

Bernstein et al.120 2003 “A chronic disease or condition has 1 or more of the following 

characteristics: is permanent; leaves residual disability; is 

caused by nonreversible pathological alteration; requires 

special training of the patient for rehabilitation; or may be 

expected to require a long period of supervision, observation, 

or care.” 

Friedman et al.121 2008 “Chronic condition is defined as a condition that lasts 12 

months or longer and meets 1 or both of the following tests: 1) 

it places limitations on self-care, independent living, and 

social interactions; and 2) it results in the need for ongoing 

intervention with medical products, services, and special 

equipment.” 

National Center for 

Health Statistics122 

2011 “A health condition is a departure from a state of physical or 

mental well-being. In the National Health Interview Survey, 

each condition reported as a cause of an individual’s activity 

limitation has been classified as chronic, not chronic, or 

unknown if chronic, based on the nature and duration of the 

condition. Conditions that are not cured once acquired (such 

as heart disease, diabetes, and birth defects in the original 

response categories, and amputee and old age in the ad hoc 

categories) are considered chronic, whereas conditions related 

to pregnancy are not considered chronic. Other conditions 

must have been present for 3 months or longer to be 

considered chronic.” 

McKenna and 

Collins123 

2010 “They are generally characterized by uncertain etiology, 

multiple risk factors, a long latency period, a prolonged course 

of illness, noncontagious origin, functional impairment or 

disability, and incurability.” 

World Health 

Organization3 

2017 “Noncommunicable diseases, also known as chronic diseases, 

are not passed from person to person.  They are of long 

duration and generally slow progression.” 
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Universal within these definitions are the concept of longevity, ranging from greater than 

three months to greater than twelve months to a permanent affliction.  Some incorporate 

aspects of impairment, others mention the need for ongoing medical care, whilst others 

still place emphasis on communicability, or rather, lack thereof.  Some of these concepts 

are in contradiction with one another.  For example, human immunodeficiency virus 

(HIV) infection has in recent years, due to the advent and introduction of combination 

antiretroviral (ART) therapy, prolonged life in HIV-infected patients by a measure of 

decades.124  As such, due to its lengthy duration and the need for medical products (ART 

therapy), it would meet the Friedman definition of chronic diseases.121  However, due to 

its certain etiology and its contagious origin, it would fail to meet the McKenna and 

Collins definition.123  In other words, there exists no consistent universal definition of 

what comprises a chronic disease. 

3.1.2  Chronic disease definition used in thesis 

In recognition of this lack of consistency, a different approach was chosen for this 

systematic review.  Rather than taking an approach similar to Hwang et al.113, for 

example, where potential chronic diseases were vetted by physicians, this systematic 

review chose to focus on overarching categorizations of chronic diseases.  The method 

used by Hwang et al. takes a top-down approach where characteristics of what constitute 

a chronic disease are applied to specific diseases in order to decide amongst a panel of 

individuals whether they are classified as chronic.  This process is prone to bias and is 

time-consuming given the enormity of conditions or diseases that may be considered 

chronic.  Instead, the World Health Organization (WHO) categories of chronic disease 

were used herein. 

The WHO recognizes four main types of chronic diseases (referred to as 

noncommunicable diseases, or NCDs, by the WHO), which are: 1) cardiovascular 

diseases, 2) cancers, 3) chronic respiratory diseases, and 4) diabetes.125  In 2012, 56 

million deaths occurred globally, with 38 million of those as a result of NCDs; 82% of 

these were attributed to the four aforementioned NCDs.126  The broadness of these 

categories, their large rates of morbidity and mortality, and the fact that they make up a 
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sizable majority of diseases, make this system of classification more feasible and 

practical for the conduct of this systematic review. 

3.1.3 How does risk prediction modelling apply to chronic diseases? 

Previously when the types of diseases that affected populations were of a primarily 

infectious nature, such as diarrheal diseases, applicable risk factors, commonly referred to 

as “traditional risks”, were undernutrition, unsafe sex, unsafe water, poor sanitation and 

hygiene, and indoor smoke, and were often associated with low-income populations.109  

However, with the epidemiologic shift towards chronic diseases and away from 

communicable diseases, there has been a corresponding shift in the prevalence of 

different risk factors.127  The leading global risks for chronic diseases are high blood 

pressure, tobacco use, alcohol use, high blood glucose, physical inactivity, high 

cholesterol, and overweight/obesity.109,127,128   

As a relatively small number of risk factors can cause or are predictive of several chronic 

diseases, and may interact in their impact on the risk of disease, the attributable risk of 

individual risk factors add up to more than 100%.109  Otherwise, the assumption would be 

that each case of disease has but a single cause, and that multiple risk factors cannot 

cause the same case of disease.109,129  This makes it difficult to quantify the impact of 

single risk factors on an individual’s absolute risk of disease.  This lends credence to the 

concept of targeting the absolute risk of chronic disease for intervention as opposed to 

individual risk factor levels.22,130,131  Risk prediction models account for the additive and 

interactive effects of predictors, where they exist, on the absolute risk of disease, 

providing an objective measure for physicians and patients to target for intervention.45,132 

For example, the Harvard Cancer Risk Index assesses for a person’s risk of 12 forms of 

cancer, including lung, breast, and colon cancer.133  Epidemiologic investigation revealed 

a set of risk factors, including: sex, age, height, weight, medication use, medical history, 

diet, physical activity, family history, and prior screening.  Using this knowledge of the 

effects of risk factors and their synergistic effect, an objective measure of cancer risk can 

be determined, allowing for multitargeted interventions to reduce the absolute risk.133  
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These known relationships between both modifiable and non-modifiable risk factors 

allow for the prediction of the development of chronic diseases in individuals. 

3.2 Primary care settings 

The Declaration of Alma-Ata of 1978, adopted at the International Conference on 

Primary Health Care, stated the goal of the WHO and United Nations was to achieve, 

“Health for All by 2000,” positioning primary health care as the strategy to achieve their 

goal.134,135  The role of primary health care was to ensure equitable provisions of quality 

health services to all persons in an efficient, sustainable, and universal manner.135  It was 

considered the most effective strategy to ensure health for all was obtainable, and was 

grounded upon a set of principles including universal access, addresses the movement 

toward health equity, and the intersectoral approach to health.134,136  However, despite 

primary care taking the foremost role in achieving equitable global health, dependent 

upon the setting, it can stand to mean something quite different.  For instance, in areas 

with higher levels of healthcare accessibility (i.e. high- and middle-income countries), 

primary health care can be viewed as the first level of care; conversely, where challenges 

in accessibility are highly prevalent (i.e. low-income countries), it can be viewed as a 

system-wide approach.136 

It can thus be useful to view primary care as a set of activities as well as a set of 

principles.  In terms of the activities engaged within primary care are the delivery of first-

contact medicine, the assumption of longitudinal responsibility by practitioners for the 

patient, as well as responsibility of health (defined as the complete physical, mental and 

social wellbeing and not merely the absence of disease or infirmity) within the limits of 

health personnel.136,137  Primary care can be condensed to its four essential components: 

first contact, longitudinality, comprehensiveness, and coordination.137 

3.2.1 Primary care as an avenue for prevention 

The functions of primary care are enormous, providing a wide spectrum of services 

ranging from acute and chronic health care to preventive care and health promotion.138  

As the point of first contact for patients with the health care system, primary care seeks to 
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coordinate use of other levels of care (secondary and tertiary, respectively), making 

arrangements with specialists where necessary.137,138  The varying levels of care represent 

different functions; where primary care physicians, for example, are considered 

generalists, resource and knowledge constraints may necessitate a referral to a specialist 

with a higher degree of skill in a particular area of medicine.137   

On the other hand, specialized care often receives “sicker” patients, and thus the 

emphasis of care is to sustain life in the ill individual.137  As such, little emphasis is 

placed on the prevention of disease onset in specialist settings, while comparatively, a 

greater amount of energy is dedicated to the prevention of illness in primary care.137,139  

As such, the primary care physician plays an integral role in the prevention of disease.34 

Continuity of care, or longitudinality, is more likely to occur in primary care settings, 

which has been associated with a greater use of preventive services, compared to 

different subspecialty practices, which see more first-time patients.137,140,141,142  Indeed, in 

one study examining factors associated with preventive services, having a regular place 

of care was most associated with receipt of preventive care when adjusted for 

demographic and financial characteristics as well as health status.140  A larger percentage 

of visits to primary care practices are related to prevention when compared to more 

specialized care.137  As a result of its very nature, primary care settings are well 

established to help prevent the onset of chronic disease. 

3.3  Risk prediction models as a tool for prevention 

Risk prediction models have the potential to play an integral role in prevention.  Within 

the constructs of public health and healthcare in general, prevention is often segmented as 

either primary, secondary, or tertiary prevention, categorizations that pertain to the state 

of disease or injury.  Secondary and tertiary prevention aim to reduce the impact of 

disease or injury either early in its course (secondary) or when it is already established 

(tertiary).143  Conversely, primary prevention aims to prevent disease or injury in healthy 

individuals.143,144 
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Two options exist when addressing primary prevention: 1) the “population-based” 

approach, where preventive actions are generally applied to groups of people, and 2) the 

“high risk” approach, where interventions are targeted to those at highest risk of 

developing the outcome.145,146  Primary prevention in a healthcare setting seeks to 

identify high risk individuals, thereby allowing the targeting of interventions to those 

who would benefit greatest.93,147  Given the limited preventive resources available, taking 

a high risk approach and allocating those resources to high risk individuals can 

potentially enable the greatest reduction in adverse events for patients treated in primary 

care.148  This can provide a complement to a public health approach where interventions 

are generally ‘targeted’ to the population.149 

Due to the enormous burden of disease-related morbidity and mortality associated with 

chronic diseases, their primary prevention is of high importance.150,151  As the patient’s 

medical “home”, primary care is well-positioned to prevent the onset of these diseases 

through the provision of evidence-based preventive care.147,152  Though time constraints 

reduce the ability of primary care physicians to recommended preventive services to their 

patients, within the present construct of medical care, primary care settings still play an 

important role in primary prevention.153  Indeed, numerous national guidelines suggest 

implementation of preventive services in primary care.  The National Health Service in 

the United Kingdom, for example, recommends that primary prevention for CVD occur 

in primary care.154 

The interventions employed in primary care settings for the primary prevention of 

chronic diseases should be cost-effective, practical, possible, and positively affect risk 

status and outcomes.155  For example, tobacco cessation can be promoted through brief 

counselling and cessation advice, which may result in a lifestyle modification, ultimately 

reducing the patient’s risk of several chronic diseases.155,156  Pharmacotherapy may 

indicated for the prevention of cardiovascular disease and type 2 diabetes.155,157  Any 

number of interventions may be used in primary care settings dependent upon the 

resources available and the disease outcome of interest. 
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Numerous guidelines have been published with the goal of preventing the onset of 

chronic diseases.  Several of these recommend the usage of risk prediction models to 

predict patients’ absolute risk of developing chronic diseases.  Guidelines published by 

the National Institute for Health and Clinical Excellence (NICE) in the United Kingdom, 

the American Heart Association (AHA) in the United States, the New Zealand Guidelines 

Group (NZGG) in New Zealand, and the Canadian Cardiovascular Society (CCS) in 

Canada, amongst several others, each recommend the assessment of absolute 

cardiovascular risk using a risk prediction model.158,159,160,161  Given that these tools can 

stratify patients, determining who is at greatest risk for chronic disease, they can provide 

appropriate and objective guidance to assist in the prevention of disease. 

3.4 Intended effects and explanations 

Despite the numerous recommendations to incorporate risk prediction models in clinical 

practice, few studies have assessed whether they have an effect.78,162  Risk prediction 

models are intended to guide clinical decision-making and patient management, such as 

conducting additional testing, issuing prescriptions, as well as informing patients of their 

risk of outcome.48  They are not intended to replace physicians, but to complement and 

assist their clinical judgment.48,163  When appropriately applied and interpreted, physician 

judgement of clinical information can be made more accurate and efficient.164  The 

Evidence-Based Medicine Working Group stated that risk prediction models can, 

“…change clinical behavior and reduce unnecessary costs while maintaining quality of 

care and patient satisfaction.”162 

Risk prediction models provide an absolute measure of risk for outcomes.  In doing so, 

they reduce the amount of uncertainty faced in medical practice by making apparent and 

evident the impact of clinical findings on long-term risk.164  This is in contrast to the use 

of clinical experience, whereby intuition, a more subjective method of evaluation, is the 

final arbiter of medical decision-making.162  Though clinical judgment through use of 

heuristics may sometimes provide an accurate measure of absolute risk, statistical models 

are capable of integrating data quickly and accurately, providing an objective measure.165 
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The implementation of risk prediction models can assist in shared decision-making.  

Shared decision-making is defined as: “…an approach where clinicians and patients share 

the best available evidence when faced with the task of making decisions, and where 

patients are supported to consider options, to achieve informed preferences.”166  Risk 

prediction models can be used as shared decision-making tools.  Shared decision making 

tools are intended to foster a consideration of the risk, benefits, and trade-offs associated 

with a decision, and the way in which a patient’s preferences are incorporated into the 

discussion and decision process.167,168  In this fashion, there can be improvements in risk 

communication and objective discussions between physician and patient, allowing 

patients to participate informedly in shared decision-making.169 

The information provided to patients by physician and model can improve risk 

perception, and with increased risk perception, there is the possibility of associated 

behaviour change.  The ‘teachable moment’, an event or circumstances leading persons to 

alter their behaviour, can promote health behaviour change in numerous settings.170  

Medical procedures, such as cancer screening, have been posited to constitute a teachable 

moment.171  Teachable moments may also be created by physicians rather than waiting 

for an unpredictable opportunity, leading to patient activation, or instilling in patients the 

knowledge, skills, and confidence to effectively manage their health.172,173  Though 

analogous, the provision of personalized risk estimates may constitute a teachable 

moment, providing patients with the knowledge associated with their health thereby 

improving their risk perception.  In this fashion, patients may thus feel more confident in 

their ability to improve their long-term risk of disease. 

3.5 Barriers to model usage in clinical practice 

Though model usage in clinical practice is often recommended in clinical guidelines, 

evidence suggests that practitioners often do not adhere to guideline recommendations.  

One study of Belgian general practitioners found that 53% of participants reported having 

never used a tool for global cardiovascular risk assessment, with 80% of participants 

erroneously believing total cholesterol is an accurate proxy for cardiovascular risk.174  

Further, it has been noted that physicians often take poor account of increasing age and 
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other risk factors, indicating there is a need for models to help in the assessment of 

risk.175 

Numerous reasons have been given for why models are not used in clinical practice.  

Some physicians experience a lack of belief in the risk estimates, fearing that they do not 

account for other factors that are crucial, while others believe they are more capable of 

estimating the global risk without the model.176  Some physicians believe models 

overpredict CVD risk because of these models were developed using older data.177,178  

One study examined automated prompts to conduct risk assessments, which led to what 

they referred to as “prompt fatigue”, or a form of clinical inertia where physicians failed 

or refused to answer computerized prompts despite recommendations to do so.179   

Others still cite a lack of time or lack of physician knowledge and training as key reasons 

for their lack of use.180  It is possible that the use of educational interventions targeted at 

physicians could increase the uptake of risk prediction models in clinical settings.  One 

study examining the impact of a continual medical education session training general 

practitioners on the use of global cardiovascular risk found that trained physicians used a 

tool to assess risk more often than untrained physicians (76% vs. 52%).181 

Even with the use of risk prediction models, adherence to treatment guidelines based on 

risk stratification remains poor.  One examination of the CHA2DS2VASc tool, a model 

predicting the risk of stroke in patients with atrial fibrillation, found that low-risk patients 

were being treated with warfarin, an anticoagulant, despite a lack of evidence regarding 

its clinical benefit.182  The misinterpretation of generated outputs from risk prediction 

models may be to blame, with some studies demonstrating that physicians experience 

some difficulties with statistical concepts.183 

The presentation of risk may or may not have an impact on outcomes.  For example, one 

study conducted in the United Kingdom assessed for changes in prescribing patterns and 

changes in risk factor levels following the presentation of risk as either an absolute risk 

level or a number needed to treat, and found no differences between the two groups.184  

Some clinicians have called for the number needed to treat (NNT) to be presented as well 
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to improve the dialogue between physician and patient, though they recognized that 

individual patients may not understand the concept.177 

Several barriers exist preventing the uptake of risk prediction models in clinical practice.  

Though these factors are not necessarily insurmountable, they provide a greater 

understanding of the issues faced by physicians when presented with novel tools for use, 

as well as areas for interventions to increase their uptake. 

3.6 Study rationale and objectives 

There is a growing body of literature surrounding risk prediction models.  Though a 

negligible number of studies with the terms ‘prognostic model’ or ‘prediction model’ 

were found dating from the 1970s and 1980s, an exponential increase has occurred in 

recent years, with well over half a million studies identified in the year 2005.30  This 

increase in literature parallels the growing movement towards evidence-based medicine 

and the corresponding incorporation of risk prediction models in clinical 

guidelines.34,96,185  Further, the Cochrane Collaboration has recently developed reporting 

guidelines for prediction modelling studies, which could help shape the conduct of future 

research and reporting.60   

However, a lack of evidence and poor reporting remain prevalent in the realm of 

prediction model research.12,186  Despite numerous tools being available, few are used in 

clinical practice, indicating physicians may lack confidence regarding model usage for 

preventive patient management.186  Though risk prediction models have been 

recommended for use in clinical practice by several guidelines to calculate the absolute 

risk of several chronic health outcomes, it has been suggested that physicians fail to use 

them consistently when indicated.  Their implementation and use should help guide 

physician’s behaviour, thus affecting patient behaviour, and ultimately showing an 

improvement in patient health outcomes.187   

The recent paradigm shift towards evidence-based medicine provides one potential 

reason for their underuse.  Clinicians are recommended to evaluate the weight of the 

evidence from which the guidelines are derived in keeping with the tenets of evidence-
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based medicine, and to examine whether the incorporation of models can affect a positive 

change.  At present, few impact analysis studies have been conducted, with no consensus 

amongst clinicians and researchers regarding the impact of model use.188   

Therefore, the objective of this study was to: conduct a systematic review and meta-

analysis to assess whether or not risk prediction model use in primary care settings can 

positively influence the prevention of chronic diseases.  The study research question was: 

What is the impact of chronic disease risk prediction model use in primary care settings 

on: 1) physician behaviour, 2) patient behaviour, and 3) patient health outcomes?   

In conducting this systematic review and answering the research question, uncertainties 

regarding the third domain of risk prediction model research, or assessing the impact of 

model use, would be addressed.  Though a tremendous number of models for several 

outcomes have been developed, the literature remains unclear regarding the impact of 

model use on clinical practice.  Answering this knowledge gap will help to inform the 

future use and implementation of models, and may ultimately help to reduce the global 

burden of chronic disease. 
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Chapter 4 

4.0 Methods 

This chapter provides a detailed account of the steps undertaken in the conduct of the 

systematic review and meta-analysis.  The presented research study was conducted in 

accordance with the Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) guidelines, the Meta-analysis Of Observational Studies in 

Epidemiology (MOOSE) Guidelines, and the CHecklist for critical Appraisal and data 

extraction for systematic Reviews of prediction Modelling Studies (CHARMS Checklist), 

developed by the Cochrane Collaboration Prognosis Reviews Methods Group.60,189 

A systematic review aims to provide an unbiased answer to a specific research question 

by collecting and synthesizing all evidence presently available in the literature that meet 

an a priori specified eligibility criteria.190  This review seeks to answer: what is the 

impact of chronic disease risk prediction models on physician behaviour, patient 

behaviour, and patient health outcomes?  Addressing the components of checklists such 

as PRISMA allows for the reproducibility of the review by providing an explicit, 

transparent methodology, including but not limited to the systematic search of the 

literature, or assessments of the validity of findings through means such as a risk of bias 

tool.190  Where possible, a meta-analysis may be conducted, which is a statistical 

summary of the results of independent studies, therefore producing a more precise 

summary estimate of the impact of healthcare interventions.190  The generation of figures 

such as forest plots may allow readers to examine the consistency of the evidence and 

provide insight into the differences between studies. 

4.1 Search strategy 

A search strategy was iteratively created in consultation with a research librarian.  Search 

terms were developed for the following databases: MEDLINE, Embase, the Cochrane 

Library, CINAHL, and Web of Science.  Additional e-sources were searched for grey 

literature, specifically The Canadian Agency for Drugs and Technologies in Health 

(CADTH), OpenGrey.eu, and ClinicalTrials.gov.  Medical subject headings (MeSH), 
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where applicable, and keywords were tailored to each database to ensure the 

comprehensiveness of the search.  The search was restricted to publications from 1976 to 

2017, those in the English language, and those assessing human subjects.  Four primary 

concepts pertaining to the PICOS, or the types of Participants, the Intervention and 

Comparison, the Outcomes, and Study design, of the research question to inform the 

search strategy, specifically: 1) risk, 2) prediction model, 3) chronic disease, and 4) 

primary care setting. The search terms used for the three databases using MeSH terms or 

subject headings are included below in Table 5. 

Table 5.  MeSH terms and keywords used for Medline, Embase, and CINAHL. 

Concept Medline Embase CINAHL Keywords 

Risk  Risk/ OR Risk 

Factors/ OR Risk 

Adjustment/ 

Risk/ OR Patient 

Risk/ OR 

Expectancy/ OR 

Risk Factor/ 

(MH “Risk 

Factors+”) OR 

(MH “Health 

Screening+”) OR 

(MH “Patient 

Assessment+”) 

Risk adj3 

(adjust* OR 

factor*) OR 

Probabilit* OR 

Likelihood 

 

 

Prediction 

models 

Technology 

Assessment, 

Biomedical/ OR 

Algorithms/ OR 

Probability/ OR 

Bayes Theorem/ 

OR Likelihood 

Functions/ OR 

Proportional 

Hazards Models/ 

OR “Sensitivity 

and Specificity”/ 

OR ROC Curve/ 

OR exp Decision 

Support 

Techniques/ OR 

Area Under 

Curve/ OR 

Clinical 

Decision-

Making/ OR exp 

Risk Assessment/ 

Cardiometabolic 

Risk/ OR 

Cardiovascular 

Risk/ OR 

Coronary Risk/ 

OR Probability/ 

OR Reynolds risk 

score/ OR 

Framingham risk 

score/ OR 

CHADS2 Score/  

OR 

Cardiovascular 

Disease 

Assessment/ OR 

PROCAM Score/ 

OR QRISK 

Score/ OR 

Multiple 

Regression/ OR 

Receiver 

Operating 

Characteristic/  

OR exp Area 

Under the Curve/ 

OR exp 

“prediction and 

(MH "Predictive 

Value of Tests") 

OR (MH 

“Predictive 

Research”) OR 

(MH “Models, 

Statistical”) OR 

(MH “Decision 

Support 

Techniques+”) 

OR (MH 

“Decision 

Making, 

Clinical”) OR 

(MH “Clinical 

Assessment 

Tools”) OR (MH 

“Risk 

Assessment”) OR 

(MH “ROC 

Curve”) OR (MH 

“Regression+”) 

OR (MH 

“Survival 

Analysis+”) 

“Risk scor*” 

OR  

risk tool* OR 

risk estimat* 

OR risk assess* 

OR risk 

function* OR 

risk equation* 

OR risk calc* 

OR risk scor* 

OR risk 

predict* OR 

risk factor calc* 

OR risk chart* 

OR risk engine* 

OR risk 

appraisal* OR 

prediction 

model* OR risk 

algorithm* OR 

scoring* 

method* OR 

scoring 

scheme* OR 

roc curve OR 

area under 

curve OR AUC 
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forecasting”/ OR 

survival 

prediction/ OR 

survival rate/ OR 

exp decision 

support system/ 

OR clinical 

decision making/ 

OR medical 

decision making/ 

OR medical 

assessment/ 

OR c-statistic* 

OR C index* 

OR C indices* 

OR hazard ratio 

Chronic 

disease 

Chronic Disease/ 

OR 

Cardiovascular 

Diseases/ OR exp 

Heart Diseases/ 

OR exp Vascular 

Diseases/ OR exp 

Lung Diseases, 

Obstructive/ OR 

Diabetes 

Mellitus/ OR 

Diabetes 

Mellitus, Type 1/ 

OR exp Diabetes 

Mellitus, Type 2/ 

Chronic Disease/ 

OR 

Cardiovascular 

Disease/ OR 

Heart Disease/ 

OR Vascular 

Disease/ OR 

Lung Disease/ 

OR Chronic Lung 

Disease/ OR 

Chronic 

Obstructive Lung 

Disease/ OR 

Asthma/ OR 

Diabetes 

Mellitus/ OR 

Insulin 

Dependent 

Diabetes 

Mellitus/ OR Non 

Insulin 

Dependent 

Diabetes 

Mellitus/ 

(MH “Chronic 

Disease”) OR 

(MH 

“Cardiovascular 

Diseases”) OR 

(MH “Heart 

Diseases”) OR 

(MH “Vascular 

Diseases”) OR 

(MH “Lung 

Diseases”) OR 

(MH “Lung 

Diseases, 

Obstructive+”) 

OR (MH 

“Diabetes 

Mellitus”) OR 

(MH “Diabetes 

Mellitus, Type 

1”) OR (MH 

“Diabetes 

Mellitus, Type 

2”) 

Chronic 

disease* OR 

Chronic illness* 

OR chronically 

ill OR non-

communicable 

disease* OR 

cardiovascular 

disease* OR 

vascular 

disease* OR 

heart disease* 

OR stroke OR 

respiratory 

disease* OR 

asthma OR 

COPD OR 

chronic 

obstructive 

pulmonary 

disease* OR 

diabetes OR 

diabetes 

mellitus OR 

diabetic    

Primary care Primary Health 

Care/ OR 

Comprehensive 

Health Care/ OR 

Continuity of 

Patient Care/ OR 

Patient-Centered 

Care/ OR exp 

General Practice/  

 

 

Exp Primary 

Health Care/ OR 

General Practice/   

(MH “Primary 

Health Care”) OR 

(MH “Family 

Centered Care+”) 

Primary health 

care OR 

primary care 

OR primary 

healthcare OR 

primary medical 

care OR family 

practice OR 

family medicine 

OR general 

practi*  
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To ensure the completeness of the search, backward and forward searching was 

conducted, whereby backward searching was conducted through examination of included 

articles’ bibliographies, and forward searching was conducted through use of Google 

Scholar to determine where the article had been cited in the literature.  Forward and 

backward searching provides an additional opportunity to identify studies that fulfill the 

eligibility criteria of the review that may not have been captured in the initial search.  

4.2 Eligibility criteria 

The eligibility criteria through which articles were screening (section 5.3) were selected 

to align with the objectives of the study by identifying the key components associated 

with the research question through adaptation of the PICOS framework.   

4.2.1 Participants 

There are two main groups of participants associated with the research question: 

physicians and patients.  The physician population applicable to the research question 

were those practicing in primary care settings, which generally refers to family 

physicians or general physicians.  A preliminary search found that the type of physician 

was not consistently specified in studies, so the criterion was expanded to include the 

primary care setting.  Specifically, a primary care setting was defined as the first point of 

contact for patients into the health care system, and includes rural and urban general 

practice clinics, either group or solo physician practices, as well as community-based 

programs. 

The second group of participants are the patients.  Patients were not restricted by any 

demographic characteristic, such as age or sex.  Patients were required to be 

asymptomatic for the disease outcome of interest at study intake, however, because to 

assess a patient presenting with symptoms of the disease outcome for the risk of 

developing the disease is unlikely when compared to alternative measures, such as the 

conduct of diagnostic testing.  Of most importance is that patients assessed were 

appropriate for the prediction model assessed in each study. 
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4.2.2 Intervention 

The present study aims to assess the impact of risk prediction models, specifically the 

provision of long-term risk of health outcomes as a result of risk prediction model use.  

The intervention was restricted to prognostic—not diagnostic—models that predict for 

the long-term risk of a chronic disease.  The chronic diseases of interest were those that 

fall under the four main categories of NCDs as per the WHO: CVD, cancers, diabetes, 

and chronic lung diseases.  Though there are several models that are diagnostic or assess 

for non-chronic health outcomes, they were excluded in this systematic review.  

Therefore, models assessing for the risk of behavioural, mental, or acute health outcome, 

such as risk of sexually transmitted infections, risk of schizophrenia, or risk of fracture, 

were excluded.  The comparison group were patients who were treated without risk 

prediction models. 

4.2.3 Outcome 

Three outcomes were assessed: 1) physician behaviour, 2) patient behaviour, and 3) 

patient health outcomes.   

1) Physician behaviour: any study that evaluated the impact of physician use of a 

risk prediction model on either behavioural outcomes or health outcomes was 

considered.  The specific types of outcomes of interest were those with the 

potential to impact the patient’s risk of developing a chronic disease.  Therefore, 

physician behaviours of interest include prescribing behaviours, provision of 

lifestyle or dietary counselling, and referrals to specialists or other healthcare 

providers.   

2) Patient behaviour: behaviours of interest include fulfilment or dispensing of 

prescriptions, medication adherence, lifestyle changes such as smoking cessation, 

and dietary changes.   

3) 3) Patient health outcomes: these outcomes were defined as risk factor levels, 

absolute risk of disease, and event rates.   
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Though examples of each outcome are provided, the examples only provided a measure 

of guidance.  Given the sparsity of studies assessing model impact and the differences in 

methodology, specific outcomes not previously stated were independently assessed to 

determine their eligibility to be classified as one of the three outcomes.    

4.2.4 Study design 

All study designs were considered including experimental, observational, and qualitative 

designs.  For experimental and observational studies, the design was considered 

appropriate only if it contained a comparison group to provide a measure of risk 

difference attributable to the intervention.  Therefore, case studies and narrative reviews 

were excluded.  Pre-post studies were included for data synthesis as per the systematic 

review, but were not considered appropriate for meta-analysis due to the lack of a control 

group.  Pre-post studies are used to demonstrate causality between an intervention and an 

outcome; however, they are prone to errors such as regression to the mean or 

confounding.191  Further, as per the statistical analysis plan (Section 4.5), the effect sizes 

are generated by comparing the absolute change from baseline to follow-up between the 

intervention and control group, allowing the final effect size to represent both the 

direction and magnitude of effect.  Studies were restricted to those published on or after 

1976, the year the first prediction model was published.13  No geographic restrictions 

were placed on the location of studies to ensure comprehensiveness of the search.   

4.3 Screening 

Citations identified from the search were imported into Covidence, a systematic review 

software, which automatically eliminated duplicated articles, followed by a manual 

search for duplicates.192  Two levels of screening were employed to identify studies that 

met the prespecified eligibility criteria.  The first level of screening was conducted by 

two reviewers (PK, JB) independently through an assessment of the titles and abstracts of 

the citations.  Once the title/abstract screening was completed by both reviewers, 

disagreements were reconciled through discussion of each conflict, with any unresolved 

articles being reviewed by a third party (DL) to reach consensus.  Studies that proceeded 

to the second level screening were reviewed by two reviewers (PK, KN), who first 
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conducted a pilot of 15 articles to ensure reliability, then completed the screening of full-

text articles with conflict resolution occurring upon completion.  Any irreconcilable 

conflicts were resolved by a third party (DL).  The specific criteria by which articles were 

screened derived from the eligibility criteria are listed in Appendix C. 

4.4 Data extraction 

Data were extracted from the complete list of included articles using a form based on the 

Cochrane Consumers and Communication template.193  The Cochrane template 

recommends that data be extracted according to seven categories: 1) general review 

information, 2) methods of the study, 3) risk of bias assessment, 4) study characteristics – 

participants, 5) study characteristics – interventions and comparisons, 6) study 

characteristics – outcomes, and 7) data and results.193  The risk of bias assessment step 

was conducted using an independent tool as the Cochrane template outlines bias 

assessment items that are not applicable to observational studies.  The data extraction 

form was tested using three of the included studies.  A panel of researchers reviewed the 

results to ensure the comprehensiveness and appropriateness of the form.  The form was 

amended based on this feedback.  Subsequently, data were extracted by one reviewer 

(PK) from all the included studies using this form. 

4.4.1 Items extracted 

Items were extracted based on the seven categories outlined in the Cochrane template.   

1) General review information: To identify the article and associated study.  Items 

extracted were DOI, author(s), year of publication, country, and name of study 

where applicable. 

2) Methods of study: To determine what methodology was employed per each study.  

Items extracted for the methods of the study category included study objective(s), 

study setting, and study design.   

3) Risk of bias assessment: Data were not extracted specifically for risk of bias 

assessment as a separate risk of bias assessment tool was used.  
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4) Study characteristics were divided into three categories: participants, 

interventions and comparisons, and outcomes.   

a. Participants: Items extracted pertaining to the participants and 

interventions were participant demographics including age and sex, as 

well as all numbers pertaining to participants (e.g. number of participants 

recruited, number of participants lost to follow-up). 

b. Interventions and comparisons: Items extracted included the name of 

prediction model used, health outcome of model, a brief description of the 

intervention as well as any procedures in addition of the provision of 

projected risk (e.g. dietary counseling, lifestyle recommendations).   

c. Outcomes: The outcomes extracted were categorized into physician 

behaviour, patient behaviour, and patient health outcomes.  Both 

qualitative and quantitative data were extracted.  Information pertaining to 

methods of outcome assessment (e.g. survey, face-to-face), methods of 

follow-up, and frequency and length of follow-up were also recorded.   

5) Data and results: Items extracted were dependent upon study design, though 

generally provided the absolute numbers as opposed to relative measures where 

possible to allow for accurate comparisons between studies in addition to mean 

differences and standard deviations, where reported.  For example, where an 

outcome assessed for changes in systolic blood pressure, dependent on study 

design, baseline and follow-up blood pressure in the intervention and control 

group were recorded, in addition to standard deviations.  Where available, 

absolute changes in blood pressure with the corresponding standard deviation 

were recorded.  In the case of dichotomous outcomes, number of baseline and 

follow-up events in both the intervention and control group were recorded in 

place of risk or odds ratios.  Further, where applicable, qualitative themes were 

recorded in the data extraction form with notations denoting their location in the 

original article. 
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4.5 Statistical analysis plan 

A meta-analysis was conducted to allow for the statistical synthesis of outcome data 

presented in the identified studies.  At its core, a meta-analysis is a statistical process 

whereby the effect sizes of two or more studies may be combined, creating a summary 

effect measure.194  This process is supported by weighting studies by placing greater 

importance or impact on the summary effect on studies with relatively good precision.194  

The analysis was completed using Stata v. 14.195 

Firstly, the number of studies reporting on the same outcome measure was tallied; where 

two or more studies reported on the same outcome, they were explored for numeric 

similarities, which would allow for the calculation of a summary effect measure.  When 

conducting a meta-analysis for dichotomous data, the number of events and non-events 

are required in order to calculate a measure of effect, such as an odds ratio or relative 

risk.  For continuous data, for each group, the sample size, mean value, and standard 

deviation are required to calculate the standardized mean difference.   

Where only proportions of binary data were reported, the number of new events was 

calculated by subtracting the follow-up number of events from the baseline, while the 

number of non-events was calculated by subtracting the total number of participants by 

the number of new events.  For continuous outcomes, where only baseline and follow-up 

mean values were provided, with no measure of absolute change reported, it was 

calculated by subtracting the follow-up value from the baseline value.  The standard 

deviation of the absolute change was calculated by imputing a correlation coefficient 

value derived from studies reporting absolute changes in the continuous outcome into 

equations provided by the Cochrane Handbook for Systematic Reviews of Interventions 

and Borenstein et al.190,194 

The calculated data were then inputted in Stata.  For binary data, the two-by-two 

contingency tables of each study were generated, whereas for continuous data, the 

calculated sample sizes, means, and standard deviations of the absolute change were 

imported.  Using the metan function, forest plots, a visual representation of the magnitude 
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and direction of effect, were generated, as well as measures of uncertainty (i.e. 95% 

confidence intervals).   

For the binary data, the odds ratio was selected as the measure of effect.  The designs of 

studies included for meta-analysis were varied, and included case-control studies, where 

the prevalence of the outcome of interest was artefactually created.  Relative risks are 

only appropriate where the true prevalence can be calculated, while odds ratios are robust 

to fabricated prevalence rates, hence their selection to calculate a summary effect 

measure.190   

The calculation of a summary effect measure requires a distinction between fixed- and 

random-effect models.  Fixed-effect models assume that there is one true effect size 

across all studies in the analysis, and that any differences between studies in terms of 

observed effect is attributable to sampling error.194  The random-effect model, 

conversely, assumes that the observed effect differs across included studies, and aims to 

estimate the mean of this distribution.194  Fixed-effect models are generally considered 

appropriate if all studies are essentially identical; however, the studies included for 

analysis, though similar in terms of outcome, were performed in independence of one 

another on varying populations, and thus an assumption of a true or common effect size 

would be inappropriate.194  Therefore, a random-effect model was used to conduct the 

meta-analysis to account for the heterogeneity between studies. 

4.6 Risk of bias assessment 

A risk of bias assessment was conducted using the Downs and Black tool, and checklist 

assessing the methodological quality of randomized and non-randomized studies.196  The 

Downs and Black tool consists of 27 items assessing the quality of five domains: 1) 

reporting, 2) external validity, 3) bias, 4) confounding, and 5) power.196  The completion 

of the checklist allows for the calculation of an overall, composite score for study quality, 

but also scores for each of the five aforementioned domains.   

The Downs and Black tool is one of the most commonly used numerical rating scales 

with frequent application in systematic reviews, and is well-validated with a high degree 
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of interrater reliability.197,198  Further, it is one of the few tools capable of assessing the 

risk of bias of both randomized and non-randomized studies.197  Therefore, the Downs 

and Black tool was selected to assess the risk of bias for studies included in this 

systematic review. 

The checklist was used for each of the 22 included studies.  A cumulative summary score 

was calculated by averaging the total scores derived from the checklist for each study.  

However, a summary score is discouraged by the Cochrane Handbook, as it differentially 

assigns a weight to different aspects of the checklist.190  Hence, a bar graph was 

constructed to demonstrate the risk of bias in each domain. 

Chapter 5 

5.0 Results 

Presented in this chapter are the results of the systematic review and meta-analysis.  It 

begins by describing the results of the study selection process, and the characteristics of 

the included studies.  The results of the individual studies are then assessed as per their 

outcomes in alignment with the study objectives in the form of a qualitative synthesis and 

the meta-analysis.  Lastly, the risk of bias assessment is also presented. 

5.1 Study selection 

The database search was conducted on March 3rd, 2017, identifying 10,403 citations. 

Among these citations 1,971 duplicates were removed, leaving 8,432 citations.  After the 

first level of screening, 124 citations proceeded to the full-text level of screening. A total 

of 22 remained after this level of screening. The following reasons for exclusion were as 

follows: the risk prediction model was not the primary intervention (n=43); the study was 

not conducted in primary care (n=11); the study assessed for outcomes not applicable to 

this study (n=13); the article only described the methods (n=6); the method of risk 

assessment did not incorporate a prediction model (n=16); the study only assessed for 

behavioural intentions, perceived risks, or knowledge (n=9); the model used measured a 

non-chronic outcome (n=1).  The PRISMA flow chart depicting the screening process as 

per the PRISMA template is presented in Figure 2.189 
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Figure 2.  PRISMA flow chart. 

5.2 Risk of bias assessment 

The Downs and Black tool was used to assess the risk of bias for the included studies.  

Figure 11 displays the information using a bar graph.  The risk of bias is presented as per 

the five domains assessed by the Downs and Black tool: 1) reporting, 2) external validity, 

3) bias, 4) confounding, and 5) power.  Cumulative scores are presented for each domain 
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pertaining to the level of bias present in the included studies.  Overall, the score for risk 

of bias is 67.7%, indicating a moderate risk of bias. 

 

Figure 3.  The risk of bias of the systematic review measured by compounding the risk of 

bias of individual studies. 

5.3 Study characteristics 

The study characteristics are presented according to demographic characteristics (Table 

6) and intervention characteristics (Table 7). 

5.3.1 Demographic characteristics 

The studies were geographically diverse across developed nations, with representation 

from the United Kingdom (n=5), the United States (n=4), Canada (n=4), Denmark (n=3), 

the Netherlands (n=2), Australia (n=2), Hong Kong (n=2), Italy (n=2), and New Zealand 

(n=1).  All the studies took place in a primary care setting under the supervision of one or 

more physicians, and reported on 400,758 patients.  After accounting for loss to follow-

up, a total of 383,005 patients remained.  There was inconsistent reporting of number of 

physicians, with nine studies not providing a number of physicians, and five only 

providing the number of practices included.  Six studies reported that there were 555 
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general practices.  Of the 11 studies that reported a number of physicians, there were 

3801 primary care physicians.   

Most studies included patients who had a mean age over 50 years, with only 1 study 

including patients under the age of 18 years (Burgess et al., 2011).  Distribution of patient 

sex varied greatly between studies.  The full table of demographic characteristics is 

provided in Table 6. 

Table 6.  Demographic characteristics of studies included in the systematic review. 

Author, 

country, 

year 

Name of 

study 

Patient inclusion Number of 

participants 

(lost to follow-

up) 

% of male 

patients 

Age of 

patientsa 

Bach-

Nielsen et 

al., 

Denmark, 

2005199 

The Ebeltoft 

Project 

- Receipt of elevated 

cardiovascular risk score 

Patients: 

14 

64.3% 33-50 years 

Bellows et 

al., USA, 

2014200 

IndiGO - IndiGO total benefit 

score in top third 
Patients: 489 

 

Physicians: 10 

66% 59 

van den 

Brekel-

Dijkstra et 

al., 

Netherlands, 

2016201 

Personalized 

Prevention in 

the Local 

Community 

(PPLC) 

Programme 

- 45-70 years 

- No CVD or diabetes 
Patients: 230 

(101) 
47.80% 52.2 (6.3) 

Burgess et 

al., 

Australia, 

2011202 

AHC Study - Residence in 

community for 3 years 

prior and post AHC 

participation 

- Elevated CVD risk 

- Participation in AHC 

program 

Patients: 64 (6) 

 

Physicians: 15 

67% 15-54 

Chang et al., 

UK, 2016 

UK203 

NHS Health 

Check 

- 40-74 years 

- Registered with 

practice participating in 

the Clinical Practice 

Research Datalink from 

April 1, 2009 to March 

31, 2013 

- No CVD or diabetes 

Patients: 

138,788 

 

General 

practices: 462 

Before 

matching: 

Attendees: 

47.4% 

Nonattendees: 

50% 

 

After 

matching:  

Attendees: 

47.4% 

Nonattendees: 

47.4% 

Before 

matching: 

Attendees: 53.5 

Non-attendees: 

50.1 

 

After matching: 

Attendees: 53.5 

Non-attendees: 

53.4 

Cochrane et 

al., UK, 

2012204 

NHS Health 

Check 

- Elevated CVD risk 

(≥20%) 

Patients: 

Intervention: 

365 (11) 

Intervention: 

90.1% 

Intervention: 

63.9 (6.5) 
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Author, 

country, 

year 

Name of 

study 

Patient inclusion Number of 

participants 

(lost to follow-

up) 

% of male 

patients 

Age of 

patientsa 

Intervention 

plus: 236 (9) 

 

General 

practices: 38 

Intervention 

plus: 86.4% 

Intervention 

plus: 63.3 (6.4) 

Courtney et 

al., US, 

2015205 

NA - ≥30 years 

- No diabetes 

- Received PreDx test 

from June 2010 to 

December 2010 

Patients: 

Intervention: 

696 (139) 

Control: 2002 

(1147) 

Intervention: 

60.1% 

Control: 

60.0% 

Intervention: 53 

Control: 53 

Engberg et 

al., 

Denmark, 

2002206 

NA - 30-49 years by January 

1, 1991 

Patients: 

Intervention: 

1006 (282) 

Control: 501 

(132) 

 

Physicians: 9 

Intervention: 

48.8% 

Control: 

48.3% 

Intervention: 

40.5 years (5.6) 

Control: 40.4 

(5.8) 

Ford et al., 

UK, 2001207 

NA - Patients who had a 

CHD risk request in 1998 

at the Birmingham 

Heartlands Hospital 

Patients: 906 

 

General 

practices: 14 

55.2% NA 

Grover et 

al., Canada, 

2007208 

 

The CHECK-

UP Study 

- 30-70 years Patients: 

Intervention: 

1510 (166) 

Control: 1543 

(200) 

 

Physicians: 230 

Intervention: 

66.9% 

Control: 

70.0% 

Intervention: 

56.4 (8.3) 

Control: 56.3 

(7.9) 

 

Grover et 

al., Canada, 

2008209 

The CHECK-

UP Study 
- 30-70 years Patients: 2631 

 

Physicians: 230 

NA Treatment 

initiation: 

Intervention: 56 

(7.6) 

Control: 55.8 

(7.9) 

 

Treatment 

modification: 

Intervention: 

58.2 (7.6) 

Control: 58.3 

(7.4) 
Jiao et al., 

Hong Kong, 

2014210 

 

The RAMP-

DM 

- All persons with 

diabetes covered under 

general out-patient 

clinics in Hong Kong 

Patients:  

Intervention: 

1248 (176) 

Control: 1248 

(176) 

Intervention: 

49.8% 

Control: 

49.8% 

Intervention: 

64.3 (10.9) 

Control: 65.3 

(11.7) 

Jiao et al., 

Hong Kong, 

2015211 

 

The RAMP-

DM 
- ≥18 years 

- International 

Classification of Primary 

Care codes T89/T90 

before participation 

Patients: 

Intervention: 

9094 

Control: 9094 

Intervention: 

48.2% 

Control: 

47.5% 

Intervention: 

64.23 (11.05) 

Control: 64.29 

(11.96) 
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Author, 

country, 

year 

Name of 

study 

Patient inclusion Number of 

participants 

(lost to follow-

up) 

% of male 

patients 

Age of 

patientsa 

- ≥ one public primary 

clinic visit before 

participation 

- No diabetes, cancer, 

chronic lung disease, and 

psychological conditions 
Law et al., 

Canada, 

2014212 

The 

PARADIGM 

Study 

- Ambulatory men (≥40 

years) and women (≥ 50 

years) 

- No CVD or diabetes 

- No lipid-lowering 

medications at baseline 

Patients: 3015 

 

Physicians: 105 

59% 56 

Lowensteyn 

et al., 

Canada, 

1998213 

CHAS Study - 30-74 years 

- No CVD 

Patients: 

Intervention: 

782 (580) 

Control: 176 

(87) 

 

Physician: 

Intervention: 

170 (73) 

Control: 83 

(51) 

Intervention: 

64.8% 

Control: 

64.8% 

Intervention: 

50.5 (10.8) 

Control: 50.7 

(11.3) 

Mehta et al., 

New 

Zealand, 

2014214 

PREDICT 

CVD-16 

- 30-80 years 

- First risk assessment 

using PREDICT 

conducted between 

January 1, 2006, and 

October 15, 2009 

- No CVD-related 

hospitalization 

- No anti-anginal 

medication dispensement 

Patients: 

90,631 

56% 30-80 

Palmieri et 

al., Italy, 

2011215 

CUORE 

Project 

- 35-69 years 

- No CVD or prior 

cardiovascular event 

Patients: 

117,345 

(12427) 

 

Physicians: 

1032 

44.7% NA 

Powers et 

al., USA, 

2011216 

NA - ≥55 years 

- Enrolled in primary 

care for at least one year 

- ICD hypertension 

diagnosis with 

hypertensive medication 

prescription 

- Systolic blood pressure 

at least 140 mmHg or 

diastolic blood pressure 

at least 90 mmHg 

- Electrocardiogram 

within past five years 

Patients: 

Intervention: 44 

Control: 45 

 

General 

practice: 1 

98% Intervention: 68 

(9) 

Control: 65 (8) 
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Author, 

country, 

year 

Name of 

study 

Patient inclusion Number of 

participants 

(lost to follow-

up) 

% of male 

patients 

Age of 

patientsa 

- No CVD, stroke, 

myocardial infarction, 

psychosis or dementia 

Price et al., 

UK, 2011217 

Understanding 

Risk Study 

- Increased CVD risk 

(≥20%) 

- Fluent in English 

(reading/writing) 

- No CVD or physical 

disability 

Patients: 

Intervention: 99 

Control: 95 

9 patients lost 

to follow-up 

 

General 

practices: 4 

67% 62.3 

Romero et 

al., USA, 

2008218 

NA - CHD risk more than 

10% or diabetes with one 

other cardiac risk factor 

- Indication of prior 

CHD, bleeding risk, 

aspirin allergy, 

inadequate data, or low 

CHD risk 

Patients: 

Pre-

intervention: 

294 

Post-

intervention: 

202 

Pre-

intervention: 

62% 

Post-

intervention: 

54.5% 

Pre-

intervention: 71 

Post-

intervention: 71 

Usher-Smith 

et al., UK, 

2015219 

NHS Health 

Check 
- Attend NHS Health 

Check between April 1, 

2011 to December 1, 

2014 

- Risk between 10% to 

20% 

Patients: 410 

(310) 
56% 64.7 (6.11) 

Sorensen et 

al., 

Denmark, 

2011220 

DanRisk 

Study (Danish 

Risk Score 

Study) 

- Born in 1949 or 1959 

- Live in Southern 

Denmark 

- No CVD or diabetes 

Patients: 1156 

(81) 
Baseline: 

47.1% 

Follow-up: 

46.3% 

Baseline: 50-

year: 49.8% 

60-year: 54.0% 

Follow-up: 

50-year: 48.6% 

60-year: 51.4% 
Vagholkar 

et al., 

Australia, 

2014221 

NA - 45-69 years 

- No CVD 

- Fluent in English 

- No cognitive 

impairments 

Patients: 

Intervention: 

567 (92) 

Control: 507 

(76) 

 

General 

practices: 

Intervention: 20 

(2) 

Control: 16 

Intervention: 

45% 

Control: 

38.5% 

Intervention: 

56.2 (6.6) 

Control: 56.6 

(6.9) 

Volpe et al., 

Italy, 2007222 

ForLife Study - Diagnosed hypertension 

(both treated and 

untreated) 

Patients: 12792 

(1326) 

Treated: 7512 

Untreated: 

5280 

 

Physicians: 

1800 

Treated: 51% 

Untreated: 

49.6% 

Treated: 68 

Untreated: 64 
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Author, 

country, 

year 

Name of 

study 

Patient inclusion Number of 

participants 

(lost to follow-

up) 

% of male 

patients 

Age of 

patientsa 

Wind et al., 

Netherlands, 

2015223 

NA - Type 2 diabetes 

mellitus treated with 

lifestyle advice and/or no 

more than two oral blood 

glucose lowering drugs 

Patients: 933 

(220) 

 

Physicians: 117 

53.2% 64.4 (10.5) 

a Age presented in years as: mean (standard deviation), and range, where applicable. 

5.3.2 Intervention characteristics 

Overwhelmingly, the risk prediction models used as the intervention or as a component 

of the intervention in each study predicted the risk of cardiovascular diseases.  Twenty-

one of the twenty-two studies included predicted for the long-term risk of either 

cardiovascular disease, coronary heart disease, myocardial infarction, or stroke.  Of the 

21 studies, 4 were predictive of cardiovascular disease amongst patients with diabetes.  

Only one of the twenty-two studies included predicted for type 2 diabetes.  No studies 

examined risk prediction models that were predictive of either cancer or chronic 

respiratory diseases, two of the four WHO categorizations of chronic disease used in this 

systematic review. 

The actual prediction models used varied; the majority (n=12) used a Framingham 

equation or derivative thereof.  The next most common tool used was the UKPDS risk 

engine (n=3).  Other tools used were SCORE (n=1), QRisk (n=2), the European 

HeartScore (n=1), PreDx (n=1), the JADE Classification System (n=2), the 10-CR Score 

(n=1), the Anggard Modified Risk Score (n=1) and the IndiGO Prediction Tool (n=1).  

One study did not specify which tool was used, and one other study used an unnamed 

multilevel linear regression equation as a component of the NHS UK Health Check. 

Individual study designs were not always ascertainable because in some studies they were 

mixed.  However, the general study methods employed by researchers were: randomized 

controlled trial (n=8), pre-post study (n=5), prospective cohort (n=5), retrospective cohort 

(n=4), case-control study (n=2), and qualitative interviews (n=1). 
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Fifteen of the twenty-five studies reported on physician behaviour.  Patient behaviour 

was reported by 11 studies, and the patient health outcomes were reported by 17 studies.  

There is some overlap, with most studies reporting on multiple objectives.  Complete 

intervention characteristics are presented in below (Table 7). 

Table 7.  Characteristics of the interventions presented in the included studies. 

Author, 

year 

Study design Model Outcome of 

model 

Recruitment 

period 

Follow-up Study 

outcome(s)b 

Bach-

Nielsen et 

al., 2005199 

Qualitative 

(interview) 
Unknown CVD risk 1991 4 years - 2 

Bellows et 

al., 2014200 

Case-control 

(propensity 

score 

matched) 

IndiGO 

Prediction Tool 

5-year heart 

attack and 

stroke risk 

November 

2008-April 

2009 

3-6 months - 1 

- 3 

van den 

Brekel-

Dijkstra et 

al., 2016201 

Pre-post SCORE 10-year CVD 

risk 
2012-2013 6 months - 2 

Burgess et 

al., 2011202 

Pre-post  New Zealand 

Guidelines 

Group handheld 

chart (based on 

Framingham 

equations) 

5- and 10-

year CHD 

risk 

March 2005-

September 

2005 

3 years - 1 

- 2 

- 3 

Chang et 

al., 2016203 

Retrospective 

cohort 

QRISK2 10-year CVD 

risk 

April 1, 

2009-March 

31, 2013 

2 years 

(median) 

- 1 

- 2 

- 3 

Cochrane 

et al., 

2012204 

Randomized 

controlled 

trial 

Multilevel 

linear 

regression 

equation 

10-year CVD 

risk 

September 

2009-

February 

2010 

12 months - 3 

Courtney et 

al., 2015205 

Case-control 

study 

PreDx 5-year risk of 

type 2 

diabetes 

June 2010-

December 

2010 

Intervention: 

17 weeks 

(mean) 

Control: 15 

weeks 

(mean) 

- 1 

- 2 

- 3 

Engberg et 

al., 2002206 

Randomized 

controlled 

trial 

(population-

based) 

Modified 

Anggard Risk 

Score 

CVD December 

1991-June 

1992 

1 and 5 

years 

- 3 

Ford et al., 

2001207 

Retrospective 

cohort (pre-

post) 

Framingham 

equations 

10-year CHD 

risk 

1998 NA - 1 

Grover et 

al., 2007208 

 

Randomized 

controlled 

trial 

Based on 

Framingham 

equations 

10-year CVD 

risk 

May 10, 

2001-August 

25, 2003 

1 year (3 

month 

intervals) 

- 3 
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Author, 

year 

Study design Model Outcome of 

model 

Recruitment 

period 

Follow-up Study 

outcome(s)b 

Grover et 

al., 2008209 
Randomized 

controlled 

trial 

Based on 

Framingham 

equations 

10-year CVD 

risk 
After August 

2003 
Baseline: 2-

4 weeks 

following 

screening 

Follow-up 

visits: 3, 6, 

9, and 12 

months 

- 1 

Jiao et al., 

2014210 

 

Prospective 

cohort with 

matched 

exposure-non-

exposure 

groups 

JADE 

Classification 

System (Joint 

Asia Diabetes 

Evaluation 

Program) and 

10-year 

Framingham 

Risk Function 

for CVD, and 

UKPDS for 

CHD and stroke 

10-year 

CVD, CHD, 

and stroke 

risk 

August 

2009-June 

2010 

12 months - 1 

- 3 

Jiao et al., 

2015211 

 

Prospective 

cohort 

JADE 

Classification 

System (Joint 

Asia Diabetes 

Evaluation 

Program) 

Diabetes 

microvascular 

complications 

(CHD, heart 

failure, 

stroke) and 

mortality 

August 1, 

2009-July 

31, 2010 

3 years 

(median) 

- 1 

- 2 

- 3 

Law et al., 

2014212 

Prospective 

cohort 

Framingham 

risk score 

CVD March 2009-

March 2010 

NA - 1 

Lowensteyn 

et al., 

1998213 

Randomized 

controlled 

trial 

8-year CHD 

prevention 

model (based on 

Framingham 

equations) 

8-year CHD 

risk 

NA 3-6 months - 2 

- 3 

Mehta et 

al., 2014214 

Prospective 

cohort 

New Zealand 

adjusted risk 

score (based on 

Framingham 

risk score) 

5-year CVD 

risk 

January 1, 

2006-

October 15, 

2009 

Up to 3 

years (6 

month 

intervals) 

- 1 

Palmieri et 

al., 2011215 

Pre-post 

(retrospective) 

10-CR Score 

(from Progetto 

CUORE 

longitudinal 

studies) 

10-year risk 

of fatal and 

non-fatal 

CVD events 

January 

2007-May 

2010 

Within 1 

year of 

baseline 

- 3 

Powers et 

al., 2011216 

Randomized 

controlled 

trial 

Framingham 

Risk Score 

10-year CHD 

and stroke 

risk 

NA 3 months - 2 

- 3 

Price et al., 

2011217 

Randomized 

controlled 

trial 

UKPDS risk 

engine 

10-year CVD 

risk 

NA 1 month - 1 

- 2 

- 3 

Romero et 

al., 2008218 

Retrospective 

cohort 

Framingham 

risk score 

10-year CHD 

risk 

April 1, 

2003-June 

30, 2003 

October 1, 

2004-

- 1 
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Author, 

year 

Study design Model Outcome of 

model 

Recruitment 

period 

Follow-up Study 

outcome(s)b 

December 

31, 2004 

(18-21 

months after 

baseline; 11-

14 months 

after 

intervention) 

Usher-

Smith et al., 

2015219 

Retrospective 

cohort 
QRISK 10-year CVD 

risk 
After 

December 1, 

2014 

28.0 (SD 

10.3) 

months 

- 2 

- 3 

Sorensen et 

al., 2011220 
Pre-post Europe 

HeartScore 
10-year CVD 

mortality risk 
2009 6 months - 1 

- 2 
Vagholkar 

et al., 

2014221 

Cluster 

randomized 

controlled 

trial 

New Zealand 

CV risk 

calculator 

(based on 

Framingham 

risk score) 

CVD 2008-2010 12 months - 1 

- 3 

Volpe et al., 

2007222 

Prospective 

cohort 

Modified 

Framingham 

equations 

(modification to 

account for 

antihypertensive 

treatment) 

10-year 

stroke risk 

February 

2003-July 

2003 

4±1.5 

months 

- 3 

Wind et al., 

2015223 

Pre-post UKPDS 10-year non-

fatal and fatal 

CHD risk 

NA 1.0±0.2 

years 

- 1 

- 3 

b 1=physician behaviour; 2=patient behaviour; 3=patient health outcomes. 

5.3.3 Intervention descriptions 

The studies each incorporated the use of a risk prediction model as a main component of 

their intervention.  However, components in addition to the provision of absolute risk as 

derived by the risk prediction models were present in most of the studies such as 

providing measures of relative risk or threshold-dependent lifestyle advice.  These 

characteristics could have their own impact on the study outcomes, providing a degree of 

heterogeneity between included studies.  This section describes each study’s application 

of risk prediction models and how the impact of the models was determined.  A complete 

overview of each intervention is provided in Appendix D. 

The presentation of risk to either the physicians or patients varied between studies. 

Modes of presenting risk also varied. Paper-based presentation of risk was the most 
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common, with 13 studies providing a printed risk profile.  Second most common was a 

computer- or web-based presentation (n=8). In four of the studies, risk was 

communicated verbally between the physician and the patient.  Some studies used 

multiple formats.  For example, the risk may have been calculated using a computer-

based software, and was subsequently printed for patients to take home (n=6).  Lastly, in 

three studies it was not possible to determine how risk was presented. 

In addition to the absolute measure of risk, some studies chose to provide a relative or 

additional representations of risk (n=9).  Usher-Smith et al. provided patients with both 

the baseline QRisk score, as well as a projected score, demonstrating the effect of 

lifestyle changes.  Bellows et al. provided the absolute risk of heart attack or stroke as 

well as projected absolute risks if interventions were implemented.  Similarly, Price et al. 

provided the absolute risk as well as an achievable risk, an estimation of absolute risk if 

risk factor targets were met.  Grover et al. 2007 and 2008 provided the absolute risk as 

well as a relative risk, comparing the patient to other Canadians matched for age and sex.  

Courtney et al. provided patients with their absolute likelihood of developing type 2 

diabetes as well as compared to the general population.  Lowensteyn et al. presented the 

8-year coronary risk as well as how much the risk would be reduced if one or more risk 

factors were modified.  Palmieri et al. provided two additional measures of risk: first, a 

hypothetical risk for a person of the same age and sex as the patient with favourable 

modifiable risk factor levels, and secondly, the risk of a smoker one year after smoking 

cessation and with a decrease of 10% in modifiable risk factors.  Alongside their personal 

risk, Powers et al. also presented the average and optimal risk for the patient’s 5-year age 

group in graphical format. 

Eleven studies chose to incorporate lifestyle advice in addition to the provision of the 

patient’s absolute risk.  Cochrane et al. included consultation with lifestyle coaches who 

assisted in developing health improvement plans, in addition to setting priorities for 

lifestyle goals.  Usher-Smith et al. provided all participants with an information leaflet 

including recommendations for individuals to improve their lifestyle through smoking 

cessation, healthy diet, reduction in alcohol consumption, and physical activity.  Bach 

Nielsen et al. provided feedback, including lifestyle modification advice, to their patients 
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when their calculated risk and risk factor values fell outside of normal range.  van den 

Brekel-Dijkstra et al. personalized the lifestyle advice to each patient based on their risk 

profile, the associated risks and benefits of preventive action, and individual 

opportunities for lifestyle change depending on motivation, self-efficacy, and 

preferences.  Chang et al. 2016 evaluated the NHS Health Check, which provides a risk 

assessment allowing for a tailored strategy for patient management, including lifestyle 

advice.  Engberg et al. provided 45-minute consultations with a general practitioner 

where lifestyle-related goals were established for the following year as well as providing 

all patients with a pamphlet on leading health lifestyles as per the Danish Heart 

Foundation.  Palmieri et al. provided patients with lifestyle recommendations pertaining 

to nutrition, physical activity, and smoking cessation.  Strategies to improve risk through 

risk factor modification (e.g. medication, patient lifestyle factors) were presented to 

intervention patients by Powers et al.  Price et al. chose a more interactive format for 

patients to receive lifestyle advice, with a self-conducted slide show aimed at first setting 

goals to reduce risk, and the direction of behaviours towards achievement of goals.  The 

intervention used by Bellows et al. included a face-to-face discussion of options for risk 

reduction providing a more tailored approach.  Upon inclusion in the study, Burgess et al. 

provided a patient-centered consultation to discuss chronic disease care planning, which 

includes patient education and goal setting, in addition to consultations at each point of 

follow-up with either a remote access nurse or an Aboriginal health worker. 

Decision support was a component of three studies, providing physicians with 

recommendations regarding patient management given a specific threshold of risk (i.e. 

targeting high risk patients).  The JADE classification system stratifies patients as low, 

medium, or high risk; decision support was provided in terms of recommending 

appropriate interventions and education based on the risk threshold.  Romero et al. 

provided decision support in the form of a poster providing a visual representation of the 

guideline recommended thresholds for aspirin initiation to prevent CHD. 

Four studies incorporated referrals to other health care professionals as a component of 

the intervention.  van den Brekel-Dijkstra et al. provided links to local providers of 

lifestyle interventions with suggestions for individual activities, group activities, or online 
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services, allowing for a variety of evidence-based lifestyle programs to be pursued by 

participants.  The RAMP-DM intervention provided referrals to a team of healthcare 

professionals, including registered nurses, advanced practice nurses, optometrists, 

dietitians, podiatrists, physiotherapists amongst others dependent upon the patient’s 

stratified risk level.  Cochrane et al. provided referrals to free support sessions regarding 

weight management, physical activity, dietary counselling, and positive thinking upon 

request by participants. 

Lastly, only three studies specifically reported that training was provided to physicians 

regarding the implementation of the intervention.  Physicians in the Vagholkar et al. 

study were provided a 3-hour workshop regarding the use of the risk calculator, as well as 

the corresponding guideline-based recommendations for the risk strata.  Physicians in the 

Palmieri et al. study incorporated training as per a national program regarding the 

assessment of cardiovascular risk using the 10-CR score, methods for identifying patients 

eligible for counseling or treatment, promoting shared decision-making, and evaluating 

and discussing collected data.  Study sponsors in the Wind et al. study instructed 

physicians on how to use the UKPDS risk engine, interpretation of CHD risk, and 

appropriate prescription of medication. 

5.4 Outcome descriptions 

Presented in this section is an overview of the outcomes of each included study as they 

correspond to the three objectives of this systematic review.  First is a summary of studies 

that assessed for changes in physician behaviour (n=15), then an overview of study 

outcomes pertaining to patient behaviour (n=11), and lastly a summary of changes in 

patient health outcomes (n=17). 

5.4.1 Physician behaviour 

Eleven studies assessed for the impact of risk prediction model use on physician 

behaviour.  Each of these studies chose to measure the impact of prediction model use 

specifically on prescribing patterns.  Differences or changes in prescription pattern were 

measured for several types of drugs, but primarily in five categories: lipid-lowering 
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medications (n=10), antihypertensives (n=9), antidiabetics including insulin and glucose-

lowering medications (n=5), aspirin (n=3), and antiplatelets (n=2).  Of these 11 studies, 9 

found a statistically significant improvement in prescription with at least one of the risk 

reducing medications.  One study also measured the monitoring of risk factors between 

the intervention and control group. 

Sorensen et al. examined the change in prescription of antiplatelets, antihypertensives, 

and lipid-lowering medications from baseline to the six month follow-up.220  Amongst 

patients with low risk (n=842), defined as <5% 10-year cardiovascular mortality risk, 

prescription with antiplatelets increased from 18 patients at baseline to 19 at follow-up 

(p=0.71), prescription with lipid-lowering medication increased from 84 to 94 patients 

(p=0.07), and prescription with antihypertensives increased from 151 to 163 patients 

(p=0.04).  Amongst patients with high risk (n=233), defined as ≥5% 10-year 

cardiovascular mortality risk, prescription with antiplatelets increased from 14 to 17 

patients (p=0.32), prescription with lipid-lowering medication increased from 25 to 44 

patients (p<0.0001), and prescription with antihypertensives increased from 55 to 74 

patients (p=0.0009).  Overall (n=1075), prescription with antiplatelets increased from 32 

to 36 patients (p=0.32), lipid-lowering medication from 109 to 138 (p<0.0001), and 

antihypertensives from 206 to 237 (p=0.0002). 

Chang et al. compared the prescription for statins or antihypertensive medication between 

the intervention group (n=29,672) and the control group (n=109,116).  The crude 

numbers of prescription with antihypertensives and statins is presented in Appendix E.  

After propensity score matching, the intervention was associated with significantly 

greater increases in percentage of participants being given a statin (3.83%, 95% CI 3.52, 

4.14) and antihypertensive prescription (1.37%, 95% CI 1.08, 1.66).   

Vagholkar et al. assessed for changes in antihypertensive and lipid-lowering medications 

at baseline and a 12-month follow-up in both the intervention and control group, as well 

as treatment intensification or reduction.  Amongst intervention patients (n=475), 

antihypertensive prescription increased from 136 (28.6%) to 148 patients (31.2%), with 

56 patients (11.8%) having their prescription intensified and 32 (6.7%) having reductions.  



61 

 

Lipid lowering increased from 101 (21.3%) to 108 (22.7%), with 37 (7.8%) intensified 

and 24 (5.1) reduced.  59 patients (12.4%) were prescribed both at baseline and 63 

(13.3%) at follow-up.  Amongst control patients (n=431), antihypertensives increased 

from 133 (30.9%) to 148 (34.3%) at follow-up, with 46 (10.7%) having their prescription 

intensified and 25 (5.8%) having it reduced.  For lipid-lowering medications, 120 

(27.8%) were prescribed at baseline and 130 (30.2%) at follow-up, with 41 experience 

intensifications (9.5%) and 26 experiencing reductions (6.0%).  60 control patients 

(13.9%) were prescribed both at baseline, and 69 (16.0%) at follow-up.  Changes in 

pharmacologic management were not statistically significant except for the increase in 

patients on antihypertensives within the control group (30.9% to 34.3%, p=0.03). 

Grover et al. (2008) assessed for the initiation and intensification of antihypertensive 

medication between the risk profile group (n=629) and the control group (n=668).  34.9% 

of risk profile patients increased treatment compared to 27.7% of control patients, with a 

difference of 7.2% (95% CI 1.1, 13.3; p<0.05).  For treatment initiation, 31.4% of risk 

profile patients started antihypertensives compared to 24.1% of control patients, with a 

difference of 7.3% (95% CI -1.4, 15.9).  Overall, 33.8% of risk profile patients initiated 

or increased treatment compared to 26.7% of control patients with a difference of 7.1% 

(95% CI 2.1, 12.1; p<0.01).   

Courtney et al. found that there were higher rates of prescription amongst risk-tested 

patients for all medications examined (antihypertensives, lipid-lowering, antidiabetics, 

and aspirin) during the follow-up period compared to the control group; no numeric 

figures were provided.  They also found that patients who received the risk test were 

more likely to receive follow-up measurements of risk factors compared to control 

patients, including blood pressure (91.5% versus 42.7%), weight (91.1% versus 42.8%), 

LDL-cholesterol (71.8% versus 24%), HDL-cholesterol (72.7% versus 24.3%), HbA1c 

(58.6% versus 11.5%), triglycerides (96.8% versus 82.8%) and fasting glucose (98.4% 

versus 72.4%).  All differences reached statistical significance (p<0.001), and indicate 

more careful and targeted monitoring for risk-tested patients compared to control 

patients. 
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In a pre-post study design, Ford et al. found that at baseline, 10.7% of patients (97/906) 

were prescribed with statins, and 11% (100/906) after coronary heart disease risk 

assessment.  Amongst those with a 10-year CHD risk of <30% (n=825), 62 patients were 

already taking a statin, 4 patients discontinued statin use, and 4 patients began statin use.  

Amongst patients with a 10-year CHD risk of 30% or greater (n=81), 35 patients were 

already taking a statin, and 3 patients began a statin.  

Jiao et al. (2015) assessed the prescription of 4 medications (glucose-lowering, 

antihypertensive, and lipid-lowering drugs, and insulin) at baseline and following the 

implementation of the RAMP-DM intervention for both the risk profile group (n=9094 

baseline; n=8892 follow-up) and the control group (n=9094 baseline; n=8542 follow-up).  

At baseline, 87.3% of intervention patients were prescribed glucose-lowering drugs at 

baseline compared to 87.2% of control patients (p=0.755); at follow-up, 90.0% of 

intervention patients were compared to 83.6% of control patients (p<0.001).  For 

antihypertensive drugs, 73.0% of intervention patients were prescribed compared to 

73.4% of control patients at baseline (p=0.547), while at follow-up, 80.0% of intervention 

patients were prescribed compared to 76.0% of control patients (p<0.001).  13.1% of 

intervention patients were prescribed lipid-lowering drugs at baseline compared to 13.5% 

of control patients (p=0.431), while at follow-up 51.2% of intervention patients were 

prescribed compared to 45.7% of control patients (p<0.001).  Lastly, 1.2% of intervention 

patients were prescribed insulin at baseline compared to 1.4% of control patients 

(p=0.101) and at follow-up, 6.0% of intervention patients were prescribed insulin 

compared to 4.5% of control patients (p<0.001).   

Jiao et al. (2014) assessed the RAMP-DM intervention and its impact of prescription with 

glucose-lowering drugs, insulin, antihypertensive drugs, and lipid-lowering drugs as well 

from baseline to a 12-month follow-up within the intervention and control arm.  Only 

differences in insulin prescription were significant at both baseline and follow-up 

(baseline: p<0.001; follow-up: p<0.001).  Differences in prescription at baseline and 

follow-up for glucose-lowering medications (baseline: p=0.593; follow-up: p=0.207), 

antihypertensive drugs (baseline: p=0.382; follow-up: 0.302), and lipid-lowering drugs 

(baseline: p=0.437; follow-up: p=0.354) were not statistically significant. 
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Price et al. made note of risk-reduction prescriptions from baseline to follow-up amongst 

intervention and control groups, and found a greater number of prescriptions were given 

to those for whom risk was calculated.  Amongst the intervention patients, there were 17 

new prescriptions in 12 individuals compared to 5 new prescriptions in 5 individuals in 

the control group (p=0.01).  Specifically, in the intervention group, there were new 

prescriptions for aspirin (n=2), antihypertensives (n=8), glucose-lowering medications 

(n=3), and lipid-lowering medications (n=4). 

Romero et al. assessed for changes in aspirin prescription in a retrospective analysis.  

They found that at baseline, 63.5% (127/202) patients used aspirin for the primary 

prevention of CHD, while the post-intervention rate of aspirin use was 72.8% (147/202), 

representing a 9.3% (p=0.054) absolute increase in rate of aspirin use, indicating a 

marginally insignificant result. 

Bellows et al. reported on the impact of the IndiGO individualized clinical guidelines on 

new prescription of statins and antihypertensives.  Though no difference was found 

between intervention (n=489) and control (n=489) groups with regards to 

antihypertensive medication (17% versus 15%, p=0.39), patients in the intervention 

group were significantly more likely to be prescribed statins compared to control patients 

(39% versus 8%; p<0.01). 

Burgess et al. examined the impact of the Aboriginal and Torres Strait Islander Adult 

Health Check on prescription of medications related to CVD risk reduction in a pre-post 

study design.  At baseline (n=64), 18 patients (28%) were prescribed, and at follow-up 

(n=63), 56 patients (89%) were prescribed.  Significant increases in prescription from 

baseline to follow-up were found for antiplatelets (4.7% to 68.3%, p<0.001), lipid 

lowering medication (6.3% to 65.1%, p<0.001), angiotensin converting enzyme 

inhibitors/angiotensin receptor blockers (25% to 63.5%, p<0.001), and oral hypoglycemic 

medications (17.2% to 33.3%, p=0.04) were found.  No significant increase in 

prescription with beta blockers (4.7% to 12.7%, p=0.09), nitrates (3.1% to 4.8%, p=0.49), 

thiazide diuretics (0% to 3.2%, p=0.24), or calcium channel blockers (1.6% to 1.6%, 

p=0.75) were found. 
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5.4.2 Patient behaviour 

Risk reducing patient behaviours as a result risk prediction models use were examined in 

11 studies.  A greater number of measures were studied when compared to practitioner 

behaviours.  Most common was cigarette smoking, with eight studies evaluating the 

impact of risk prediction models use on smoking cessation.  Other measures evaluated 

included changes in physical activity (n=4), diet (n=2), medication use (n=2), continuity 

of care or return for follow-up visit (n=2), and alcohol consumption (n=1).  Of the eight 

studies examining smoking cessation, two studies found a significant result, while six 

were non-significant.  Of the six studies, three studies demonstrated a non-significant 

absolute reduction of smoking prevalence, while one study reported a significant 

reduction in number of cigarettes smoked per day.  Though all the studies reporting 

changes in physical activity noted increases in exercise levels, none reported a significant 

change; two stated there was a non-significant effect, one was conducted qualitatively, 

and one only reported the change in proportions. 

van den Brekel-Dijkstra et al. examined patient behaviour through use of a pre-post study 

design.  Of the patients that responded to the follow-up questionnaire (56%), 40 of 129 

(31%) patients reported initiations of health behaviour change, 41 (32%) reported 

improvements in physical activity, and 36 (28%) improved their diet.  23 of 96 (24%) 

current drinks reduced their alcohol intake.  Forty four percent (6/16) current smokers 

reduced or quit smoking. 

Usher-Smith et al. conducted a study examining the change of statin prescription 

threshold from 20% absolute cardiovascular risk to 10%, the corresponding provision of 

a cardiovascular risk score to the patient, and subsequently the patients’ decision 

regarding statin prescription.  In this fashion, the onus of statin prescription fell unto the 

patients.  Among 410 statin-naïve patients, 45 (11%) chose to start a statin.  An 

association was found between increasing QRisk score and statin initiation (OR 1.34 

(1.13, 1.60)). 

Sorensen et al. examined smoking cessation amongst participants.  At baseline, 253 of 

1075 (24%) participants were current smokers.  At follow-up, 39 participants had quit 
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smoking, while 10 subjects started smoking again.  The number of active smokers 

decreased to 224 (p<0.0001).  Similarly, Wind et al. found that among their participants 

in a pre-post study design (n=713), the percentage of smokers decreased from 18.3% at 

baseline to 15.0% at follow-up (p<0.05). 

Chang et al. also examined smoking cessation between the intervention and the control 

group.  Complete smoking prevalence is presented in Appendix E.  Smoking prevalence 

decreased more in the intervention group than in the control group; after propensity score 

matching, the difference in prevalence was -0.11% (95% CI -0.35, 0.13), though not 

statistically significant. 

Jiao et al. (2015) assessed patients for smoking status at both baseline and follow-up in 

the intervention and control groups, and found no significant change in smoking status at 

the end of follow-up between groups (smoking prevalence of 10.2% and 10.0% at 

baseline for the intervention and control groups, respectively, p=0.605; smoking 

prevalence of 9.0% and 8.6% at follow-up for intervention and control groups, 

respectively, p=0.651), though both groups did experience a reduction in smoking 

prevalence. 

Lowensteyn et al. noted the absolute change in number of smokers among those who 

were reassessed between intervention (n=202) and control groups (n=89).  20.8% of 

intervention groups were smokers at baseline; at follow-up, 3 had quit smoking for an 

absolute change of -1.5%.  Comparatively, in the control group, at baseline there were 21 

smokers (23.6%); at follow-up, 2 people had quit smoking (absolute change: -2.3%).  The 

difference in absolute change between intervention and control groups was 0.8% 

(p=0.64).  Though a greater absolute change was noted in the control group, it was 

statistically non-significant. 

Though the Australian Health Check found a decrease in percentage of smokers from 

83% at baseline to 78% at follow-up, the decrease was not significant (p=0.51).  

However, the number of cigarettes smoked per day did decrease significantly (p<0.001), 

from 3.5 (SD 0.1) to 2.6 (SD 0.2) according to smoking categories. 
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Bach Nielsen et al. conducted a qualitative study examining the effect of cardiovascular 

risk scores on lifestyle changes.  Several participants made radical changes, contacting 

dietitians and reorganizing their diets, involving their families and cooking different types 

of food for different family members, and began exercising.  These changes were only to 

the extent that their perceived quality of life wouldn’t suffer, what the authors referred to 

as the “pain limit”.  Others took an active interest in their progress over time, asking their 

general physician for examinations to determine whether their efforts had any effect. 

Courtney et al. reported that patients assessed for risk of diabetes (n=696) as determined 

by the PreDx risk score were more likely to return for a follow-up visit than the control 

group (n=2002).  80% of the risk group (557/696 patients) returned for a visit compared 

to the control group, where 42.7% (800/2002) returned, indicating the intervention 

positively influenced the likelihood of continuity of care. 

Powers et al. reported on three aspects of patient behaviour: self-reported medication 

adherence, current exercise level, and smoking.  They then compared the intervention and 

control arms for between-group differences.  For self-reported medication adherence, at 

baseline, 50% of the intervention arm reported medication adherence compared to 51% 

of the control patients; at 3 months, 46% in the intervention arm compared to 49% in the 

control arm reported medication adherence (p=0.55).  Patients in both arms improved the 

amount of exercise they engaged in (48% to 57% from baseline to follow-up in 

intervention arm, 42% to 53% from baseline to follow-up in the control arm, p=0.77).  

Smoking cessation occurred in the intervention group, decreasing from 18% to 14%, 

while it remained at 18% at both baseline and follow-up in the control arm (p=1.00).  

Overall, no significant differences were noted when comparing self-reported medication 

adherence, current exercise levels, and smoking status between intervention and control 

arms. 

Price et al. monitored physical activities in all participants using a hip-worn 

accelerometer measuring the amount and intensity of human activity.  Though 53% of 

participants increased their physical activity, there was a non-significant net 0.5% (95% 

CI -0.6, 1.8) increase in accelerometer counts in the intervention group (p=0.56). 
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5.4.3  Patient health outcomes 

Fourteen studies explored the impact of prediction models on patient health outcomes.  

Commonly assessed were the impact on biometric, or risk factor, values (n=13) as well as 

on estimated absolute risk of health outcome (n=13).  Specific risk factor values 

evaluated were: systolic blood pressure (n=10), diastolic blood pressure (n=8), HDL 

cholesterol (n=8), total cholesterol (n=7), BMI (n=7), LDL cholesterol (n=6), total 

cholesterol to HDL cholesterol ratio (n=4), HbA1c levels (n=4), weight (n=2), and two 

studies examined blood pressure without specification of diastolic or systolic.  Only three 

studies examined event rates, specifically cardiovascular disease (n=2), coronary heart 

disease (n=2), stroke (n=1), heart failure (n=1), all-cause mortality (n=1), and type 2 

diabetes mellitus (n=1). 

Chang et al. compared to the absolute reduction in cardiovascular risk between the 

intervention group and control group, finding the intervention group (n=29,672) reduced 

their 10-year cardiovascular risk from 6.7% (SD 5.9) to 6.2% (SD 5.3) with a difference 

of -0.48% (95% CI -0.5, -0.46), while the control group (n=109,116) reduced their risk 

from 5.1% (SD 5.3) to 4.9% (SD 5.0), with a difference of -0.19% (95% CI -0.19, -0.18).  

The crude differences-in-differences between the intervention and control group was -

0.29% (95% CI -0.31, -0.27), and after propensity-score matching, was -0.21 (95% CI -

0.24, -0.19). 

Chang et al. also reported on changes in risk factors, namely systolic blood pressure, 

diastolic blood pressure, body mass index, and total cholesterol.  The crude levels of risk 

factors are provided in Appendix E.  After propensity score matching, the following 

reductions in risk factor values comparing the intervention group to the control group 

were found to be significant: systolic blood pressure (-2.51 mm Hg, 95% CI -2.77, -2.25), 

diastolic blood pressure (-1.46, 95% CI -1.62, -1.29), BMI (-0.27, 95% CI -0.34, -0.20), 

and total cholesterol (-0.15 mmol/L, 95% CI -0.18, -0.13). 

Cochrane et al. had two groups: the NHS Health Check group and the NHS Health Check 

plus additional support group.  Baseline and 1-year follow-up measures were collected 

for both trial arms.  Both groups showed similar beneficial reductions in risk factors: 
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about 7 mmHg in systolic blood pressure, 4 mmHg in diastolic blood pressure, 0.65 

mmol/L in total cholesterol, 0.5 in total cholesterol/HDL ratio, and 2 cm in waist 

circumference.  Changes in HDL cholesterol, weight, and BMI were negligible, though a 

small significant reduction in overall BMI was noted (0.3 kg/m2).  Complete figures are 

available in Appendix F. 

Cochrane et al. also noted changes in absolute CVD risk from baseline to 1-year follow-

up (Appendix F).  In the Health Check group, absolute risk was reduced from a mean of 

32.9% (SD 9.7) at baseline (n=365) to 29.4% (SD 9.7) at follow-up (n=295).  In the 

Health Check plus group, absolute risk was reduced from 31.9% on average amongst 236 

participants to 29.2% (SD 10.1) at follow-up (n=191).  This difference corresponds to a 

relative risk of 0.89 (95% CI 0.87, 0.92) amongst the Health Check group, and a relative 

risk of 0.91 (95% CI 0.88, 0.94) amongst the Health Check plus group. 

Courtney et al. found that significantly more risk-tested patients experienced 

improvements in risk factor levels, including weight, blood pressure, LDL-cholesterol, 

HDL-cholesterol, triglycerides, glucose, and HbA1c levels (all differences were 

statistically significant at p<0.001).  The total percentages of patients with improved risk 

factors was not provided. 

Grover et al. (2007) conducted a randomized controlled trial comparing patients receiving 

a risk profile (n=1510 baseline; n= 1344 follow-up) to usual care patients (n=1543 

baseline; n=1343 follow-up).  Changes in risk factor levels from baseline to the 12-month 

follow-up were reported, as well as the difference in changes between intervention and 

control patients.  Intervention patients showed absolute changes of -58.4 mg/dL (SD 

34.1) for total cholesterol, -51.2 mg/dL (SD 29.5) LDL cholesterol, 1.0 mg/dL (SD 6.0) 

HDL cholesterol, -1.5 TC:HDL cholesterol ratio (SD 1.1), -6.3 mmHg (SD 13.5) systolic 

blood pressure, and -3.8 mmHg (SD 7.9) diastolic blood pressure.  Control patients 

showed absolute changes of: -54.5 mg/dL (SD 35.4) total cholesterol, -48.0 mg/dL (SD 

29.7) LDL cholesterol, 0.8 mg/dL (SD 5.7) HDL cholesterol, -1.3 (SD 1.0) TC:HDL 

cholesterol ratio, -5.3 mmHg (SD 13.2) systolic blood pressure, and -3.6 mmHg (SD 7.7) 

diastolic blood pressure.  Difference between the intervention and usual care group were: 
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-3.9 (p=0.02) total cholesterol, -3.3 (p=0.02) LDL cholesterol, 0.2 (p=0.37) HDL 

cholesterol, -0.1 (p=0.002) TC:HDL ratio, -0.9 (p=0.005) systolic blood pressure, and -

0.2 (p=0.01) diastolic blood pressure. 

Grover et al. (2007) also assessed the likelihood of high risk patients in either the 

intervention or control group reaching lipid target levels.  Intervention patients were more 

likely to reach their lipid targets (OR 1.26; 95% CI 1.04, 1.53).  They found that 70% of 

intervention patients were identified as high risk, and 57% reached their lipid targets, 

while 68% of control patients were identified as high risk, and 54% reached their lipid 

targets.  When patients of all risk levels were considered, the intervention group was no 

more likely to reach their target lipid levels than the control group (55.2% versus 52.2%; 

OR 1.13, 95% CI 0.98, 1.30).  For changes in 10-year cardiovascular disease risk, 

intervention patients experienced an absolute change of -5.9% (SD 4.5) while control 

patients experienced an absolute change of -5.3% (SD 4.3), with a difference between the 

two groups of -0.6% (p<0.001), indicating that intervention patients obtained a 

statistically significant reduction in absolute risk when compared to control patients. 

Jiao et al. (2015) assessed for changes in risk factor levels from baseline to the 3-year 

follow-up point between intervention and control groups, including BMI, systolic blood 

pressure, diastolic blood pressure, HbA1c, total cholesterol, both HDL and LDL 

cholesterol, triglyceride levels, and estimated glomerular filtration rates.  Though 

baseline characteristics with comparable between both arms, the intervention group 

experienced significant changes (p<0.001) for both systolic and diastolic pressure, 

HbA1c levels, total cholesterol, and both HDL and LDL cholesterol levels.  Further, a 

greater percentage of intervention patients achieved treatment targets for blood pressure 

and HbA1c levels compared to control patients (p<0.001).  Complete figures are 

available in Appendix G. 

Jiao et al. (2015) also reported the rates of cardiovascular disease, coronary heart disease, 

stroke, heart failure, and all-cause mortality at 36 months in both study arms.  4.39% of 

intervention patients developed CVD compared to 6.69% of control patients; 1.87% 

experienced CHD compared to 3.08% of control patients; 2.25% of intervention patients 
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experienced a stroke compared to 3.40% of control patients; 0.79% of intervention 

patients experienced heart failure compared to 1.37% of control patients; and lastly, all-

cause mortality incidence was 2.22% in the intervention group compared to 6.07% in the 

control group.  Jiao et al. (2015) also constructed a multivariable Cox proportion hazard 

regression model comparing the intervention to the control group, adjusting for 

sociodemographic and clinical characteristics.  The following hazard ratios were 

calculated: CVD (0.629, 95% CI 0.554, 0.715, p<0.001), CHD (0.570, 95% CI 0.470, 

0.691, P<0.001), stroke (0.652, 95% CI 0.546, 0.780, p<0.001), heart failure (0.598, 95% 

CI 0.446, 0.802, p=0.001), and all-cause mortality (0.363, 95% CI 0.308, 0.428, 

p<0.001).  

Jiao et al. (2014) examined the effect of the RAMP-DM from baseline to follow-up in the 

intervention arm of their study compared to the control arm for changes in biomedical 

outcomes, predicted cardiovascular risk, and percent of participants reaching treatment 

targets.  In a fully adjusted model, differences between groups for changes in HbA1c 

levels (p<0.05), diastolic blood pressure (p<0.05), reaching treatment targets for diastolic 

blood pressure (p<0.05), the UKPDS 10-year CHD risk (p<0.05), the UKPDS 10-year 

stroke risk (p<0.01) were found to be significant, with intervention patients experiencing 

greater improvements.  Cardiovascular events found to be significant were observed 

CHD (p<0.001) and total CVD (p=0.003), with RAMP-DM patients experiencing 

significantly fewer events. 

Lowensteyn et al. reported the absolute changes in risk factors and 8-year coronary risk 

from baseline to follow-up in both the intervention arm (n=202) and the control group 

(n=89) amongst patients who were reassessed.  Statistical significance was found for 8-

year coronary risk (difference in absolute change between intervention and control group: 

-1.426%, p<0.01).  Intervention patients compared to control patients also experienced a 

greater absolute change for total cholesterol (-0.49 mmol/L (SD 0.99) versus -0.09 (SD 

0.87); estimated group difference -0.238, p<0.05), LDL-cholesterol (-0.40 (SD 0.87) 

versus -0.01 (SD 0.80); estimated group difference -0.226, p<0.05), and the total-

cholesterol/HDL-cholesterol ratio (-0.6 (SD 1.3) versus -0.2 (SD 1.2); estimated group 
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difference -0.287, p<0.05).  Non-significant changes were found for HDL-cholesterol, 

systolic and diastolic blood pressure, and BMI. 

Palmieri et al. obtained complete data on 5,948 patients (3185 men, 2763 women).  

Amongst the men, 305 (10%) improved their risk factors, shifting from the high- or 

moderate-risk category to the low-risk category.  162 women (6%) shifted from high or 

moderate risk to low risk.  Overall numbers for all participants was not reported. 

Powers et al. reported on changes in systolic and diastolic blood pressure, and changes in 

10-year CHD and stroke risk from baseline to follow-up amongst intervention and control 

groups.  The between-group differences were not significant for any of the changes, 

indicating that the intervention did not have an effect in this study.  The risk estimate for 

CHD was found to have increased at follow-up for both the intervention (25.0% (SD 1.6) 

to 26.9% (SD 1.8)) and control (24.1% (SD 1.5) to 24.6% (SD 1.8)) as well as the risk 

estimate for stroke (intervention: 21.0% (SD 2.3) to 23.3% (SD 2.7); control: 17.9% (SD 

2.3) to 18.0% (SD 2.6)).  Further, diastolic blood pressure was found to have increased at 

follow-up for both groups (intervention: 73.5 mmHg (SD 1.9) to 74.9 mmHg (SD 2.0); 

control: 76.6 mmHg (SD 1.8) to 76.7 mmHg (SD 1.9)).  Only systolic blood pressure 

decreased in both arms (intervention: 128.4 mmHg (SD 2.7) to 128.2 mmHg (SD 2.9); 

control: 126.0 mmHg (SD 2.7) to 125.0 mmHg (SD 2.8)). 

Price et al. also reported on changes in risk factor levels from baseline to follow-up in the 

intervention and control arms.  Non-significant within or between group differences were 

found for weight, blood pressure, HDL cholesterol, triglyceride levels, or estimated 10-

year CVD risk (no values were provided).  However, a net 7% (95% CI -11.7, -3.2, 

p=0.004) decrease in mean LDL-cholesterol was found in the intervention arm. 

Volpe et al. sought to determine the impact of a systematic stroke risk assessment on 

patients with hypertension that are treated (n=6971) and untreated (n=4718).  They 

reported a significant decrease is both systolic and diastolic blood pressure from baseline 

to follow-up in both the treated and untreated patients.  The treated group presented with 

baseline blood pressure (systolic/diastolic) of 150.1/87.4 mmHg and a follow-up of 

136.7/81.0 mmHg, while untreated groups presented with a baseline blood pressure of 
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158.9/93.2 mmHg and a follow-up of 135.6/81.5 mmHg, with both differences highly 

significant (p<0.0001).  Amongst all patients, there was a significant reduction of 13.3% 

in absolute stroke risk score, which the researchers attributed to the reduction in blood 

pressure.  

Wind et al. examined the effect of the UKPDS risk engine on clinical management of 

coronary heart disease in a pre-post study design.  At baseline, patients (n=713) had a 10-

year CHD risk of 18.7% (SD 11.7); at follow-up, the absolute risk increased to 20.1% 

(SD 13.7).  The increase in absolute risk was significant (p<0.05).  Significant decreases 

(p<0.05) were also noted from baseline to follow-up for systolic blood pressure (139.8 

mmHg (SD 17.7) to 138.3 mmHg (SD 16.4)), total cholesterol (4.5 mmol/L (SD 1.0) to 

4.4 mmol/L (SD 1.0)), and BMI (31.1 (SD 5.2) to 30.8 (SD 5.3)).  Nonsignificant 

changes in HbA1C (6.7% (SD 0.8) to 6.6% (SD 0.9)) and HDL cholesterol (1.2 mmol/L 

(SD 0.3) to 1.2 mmol/L (SD 0.3)) were reported as well. 

The IndiGO clinical guidelines as assessed by Bellows et al. was assessed for its impact 

on predicted 5-year risk of heart attack or stroke.  The intervention group experienced a 

reduction in risk from 6.7% at baseline to 5.1% at follow-up, a significant reduction 

compared to the control group, which experienced a reduction from 7.5% to 6.5% 

(p=0.015).  Non-significant reductions in LDL cholesterol and systolic blood pressure 

were also noted, with LDL reductions of 114 to 106 in the intervention group and 114 to 

109 in the control group (p=0.37), and systolic blood pressure reductions from 134 to 125 

in the intervention group and 137 to 131 in the control group (p=0.07).  No units were 

provided for blood pressure or LDL cholesterol levels.  Though numeric values were not 

provided, there were no significant between-group differences in BMI change. 

Burgess et al. examined the impact of prediction models on risk factors for CVD, 

specifically BMI, waist circumference, systolic blood pressure, total and HDL 

cholesterol, ratio of total to HDL cholesterol, and type 2 diabetes.  Reductions from 

baseline to follow-up were significant for waist circumference (n=56; 98.3 cm (SD 1.8) 

to 96.4 cm (SD 1.8), p=0.04), HDL cholesterol (1.01 mmol/L (SD 0.03) to 1.11 mmol/L 

(SD 0.04), p=0.001), and ratio of total to HDL cholesterol (5.7 (SD 0.2) to 5.0 (SD 0.2), 



73 

 

p<0.001).  Non-significant changes were reported for BMI (n=56; 27.3 (SD 0.9) to 27.3 

(SD 0.8), p=0.81), systolic blood pressure (128 mmHg (SD 2.6) to 124 mmHg (SD 3.0), 

p=0.2), and total cholesterol (5.5 mmol/L (SD 0.2) to 5.3 mmol/L (SD 0.2), p=0.07).  

Type 2 diabetes status remained constant from baseline to follow-up. 

Further, Burgess et al. assessed difference in absolute 5- and 10-year CVD risk.  They 

first calculated the expected risk at follow-up calculated by modifying only age, and 

compared it to the observed risk.  Expected 5-year risk was 4.6% (0.4), and the observed 

risk was 3.6% (0.4), and the 1.0% (SD 0.4) difference was significant (p<0.001).  

Similarly, the expected 10-year risk was 10.2% (SD 0.8), and the observed risk was 8.2% 

(SD 0.7), with a difference of 2.0% (SD 0.7) was significant (p=0.004). 

5.5 Subgroup 

The subgroup of interest for this systematic review are those determined to be at high risk 

for the predicted health outcome.  Four studies demonstrated the difference in effect 

between low and high risk groups. 

Sorensen et al. compared to the prescription of antiplatelets, lipid-lowering and 

antihypertensive medications between patients at low-risk (<5% 10-year cardiovascular 

mortality risk) with patients at high-risk (≥5% 10-year cardiovascular mortality risk).  

They found that a high risk scores were associated with a 3-fold greater likelihood of 

being prescribed lipid lowering agents (OR 2.9; 95% CI 1.6, 5.5; p<0.0008), an almost 

3.5-fold greater likelihood of being prescribed antihypertensive treatment (OR 3.4; 95% 

CI 1.9, 6.0; p<0.0001), and a 2-fold greater likelihood of being prescribed antiplatelet 

medication (OR 2.3; 95% CI 0.8, 6.6; p=0.14). 

Chang et al. found that absolute risk reduction (-0.54%, 95% CI -0.93, -0.15) for 

participants with high risk (20% or greater) was not significantly greater than those with 

moderate risk (10% to 20%: -0.34%, 95% CI -0.44, -0.24) or low risk (<10%: -0.14%, 

95% CI -0.16, -0.12).   

Vagholkar et al. examined prescription of medications (antihypertensives, lipid-lowering, 

or both), treatment intensification, and treatment reduction between low, moderate, or 
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high risk groups and between intervention and control patients.  Both between- and 

within-group analyses showed no significant differences in the 12-month medication 

proportions and changes in therapy. 

Mehta et al. examined the prescription of both antihypertensive and lipid-lowering 

medications amongst patients at baseline and six month follow-up periods for up to three 

years within the low (<10%), moderate (10-14%) and high risk (≥15%) strata.  

Dispensing rose most sharply in the six month period following baseline and 

implementation of the intervention, and differed between risk strata. 

5.6 Conclusion 

In conclusion, many studies examining the impact of risk prediction model use on 

physician behaviour, patient behaviour, and patient health outcomes found that there 

were some improvements.  The majority of studies identified a significant increase in 

prescription of preventive medications; changes not found to be statistically significant 

may still be clinically relevant.  Several unique outcomes were categorized as patient 

behaviour.  Though some studies identified an effect of prediction model use on patient 

behaviour, overall the outcome was too heterogenous to determine whether or not an 

impact exists.  Lastly, though few studies examined event rates, several identified 

improvements in soft outcomes such as blood pressure or total cholesterol, indicating that 

risk prediction model use may ultimately result in some improvements in patient health 

outcomes.  The following chapter will present the results of the quantitative assessment, 

or the meta-analysis, of the data. 
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Chapter 6 

6.0 Meta-analysis 

In this chapter, the results of the meta-analyses are presented.  Though as a whole, 

numerous forms of model impact were described in the systematic review, only five 

outcomes were found to be meta-analyzable: 1) new prescription with antihypertensive 

medications, 2) new prescription with lipid-lowering medication, 3) smoking cessation, 

4) absolute changes in systolic blood pressure, and 5) absolute changes in diastolic blood 

pressure.  Two main types of data were concluded to be appropriate for meta-analysis: 

dichotomous data, or the number of events and non-events, and continuous data, or 

changes in mean values.  As such, the two summary effect measures calculated for this 

study were summary odds ratios and standardized mean differences.  Studies reporting on 

similar outcomes were combined in a summary effect measure and visually depicted 

using a forest plot.  Lastly, the results of the risk of bias assessment using the Downs and 

Black tool are presented. 

6.1 Results of individual studies 

This systematic review and meta-analysis sought to address what the impact of risk 

prediction models was on: 1) practitioner behaviour, 2) patient behaviour, and 3) patient 

health outcomes.  Upon completion of the systematic review, five outcomes were 

identified as being appropriate for the conduct of a meta-analysis as per the three main 

study objectives.  Changes in practitioner behaviour (defined as prescription of 

antihypertensive or lipid-lowering medications) were found in four studies, patient 

behaviour change (expressed as smoking cessation) was found in four studies, and patient 

health outcomes (defined as changes in blood pressure (both systolic and diastolic)) were 

found in five studies.   

6.2 Physician prescribing patterns 

The meta-analyses for the outcomes of new prescriptions with antihypertensive and lipid-

lowering medications from baseline to follow-up are presented below. 



76 

 

6.2.1 New prescriptions with antihypertensives  

Four studies reported the changes in prescription with antihypertensives in patients 

following the use of a prediction model; the information presented in each study is 

displayed in Table 8. 

Table 8.  Reported changes in proportions of patients prescribed with antihypertensive 

medications from baseline to follow-up in both the intervention and control group. 

 Intervention Control 

Author (year) Baseline Follow-up Baseline Follow-up 

Chang (2016) 1424/29672 2938/29672 1964/109116 4801/109116 

Jiao (2015) 6637/9094 7112/8892 6673/9094 6493/8542 

Jiao (2014) 833/1072 871/1072 818/1072 852/1072 

Vagholkar 

(2014) 

136/475 148/475 133/431 148/431 

 

For the purposes of the meta-analysis, the number of events and non-events in both arms 

of the studies were required.  To derive the number of events, the difference between the 

number of patients at follow-up prescribed antihypertensives was subtracted by the 

number of patients prescribed antihypertensives at baseline (Table 9). 
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Table 9.  The calculated number of events (new prescription with an antihypertensive 

medication) from baseline to follow-up in both the intervention and control group. 

 Intervention Control 

Author (year) Follow-up — 

baseline  

Number of 

events 

Follow-up — 

baseline  

Number of 

events 

Chang (2016) 2938 - 1424 1514 4801 – 1964 2837 

Jiao (2015) 7112 - 6637 475 6493 – 6673 -180 

Jiao (2014) 871 - 833 38 852 – 818 34 

Vagholkar 

(2014) 

148 - 136 12 148 – 133 15 

 

The number of non-events was calculated by subtracting the number of total participants 

per treatment arm by the number of events (Table 10).  Of particular note is Jiao et al. 

(2015) where both the intervention and control arms experienced some attrition.  When 

calculating the number of events, the method of calculating the number of events in 

tandem with the loss to follow-up results in a number of -180.  This poses a significant 

problem for the interpretation and analysis of the data; this value would be interpreted as 

180 negative events and not fall within the confines of event or non-event.   

The conduct of a complete case analysis was used to account for attrition as 

recommended by the Cochrane Handbook, ultimately ameliorating the issue of negative 

events.190  The complete case analysis was conducted using the methods proposed by Akl 

et al.224  A complete case analysis seeks to exclude patients for whom data are missing at 

follow-up, therefore only analyzing data from patients with available data, followed by a 

sensitivity analysis using both the best and worst case scenarios where all patients with 

missing data are classified as either events or non-events.  This creates a range of possible 

effect sizes, accounting for the range of uncertainty.  First, the complete case analysis 

will be presented, followed by the worst- and best-case analysis. 

To conduct a complete case analysis, Akl et al. recommends using the following 

equation: 
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𝐸𝑣𝑒𝑛𝑡𝑠

[𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑠] 𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑑 − [𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠] 𝑤𝑖𝑡ℎ 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑑𝑎𝑡𝑎
 

The formula applies to both the intervention and control arm.  To provide a measure of 

events and non-events, attrition was first accounted for.  Firstly, in the intervention arm at 

baseline, approximately 72.98% of patients were prescribed antihypertensive medications 

(6637/9094).  Two hundred and two patients were lost to follow-up.  Assuming non-

differential attrition, this indicates that of the 202 patients lost, 72.98% (~147 patients) 

were those who were prescribed antihypertensive medications, and thus 55 patients were 

not.  Subtracting 147 from the previously stated baseline number (6637) and subtracting 

the full 202 from the denominator (9094), a new prevalence, accounting for attrition, of 

baseline antihypertensive medication prescription is established (6490/8892).  The same 

method of accounting for attrition was used for the control arm, resulting in a new 

prevalence of baseline antihypertensive medication prescription (6268/8542). 

The calculation of events was completed by subtracting the original follow-up count of 

patients prescribed with antihypertensives by the new baseline count of patients 

prescribed.  The number of non-events were calculated by using the denominator of the 

equation as per Akl et al.: 

𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 𝑎𝑟𝑚: 
6637 −  6490

9094 − 202
=

147

8892
 

𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑎𝑟𝑚: 
6493 − 6268

9094 − 552
=  

225

8542
 

The values for the denominator represent the total number of participants for whom data 

is complete.  When calculating the number of non-events, this was the value used as the 

number of total participants as per a complete case analysis.  The number of non-events 

for each study is presented below (Table 10). 
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Table 10.  The calculated number of non-events (no new prescription with 

antihypertensive medication) using a complete case analysis for both the intervention and 

control group. 

 Intervention Control 

Author (year) Total number – 

number of 

events 

Number of 

non-events 

Total number – 

number of 

events 

Number of 

non-events 

Chang (2016) 29672 - 1514 28158 109116 – 2837 106279 

Jiao (2015) 8892 – 147 8745 8542 – 225 8317 

Jiao (2014) 1072 – 38 1034 1072 – 34 1038 

Vagholkar 

(2014) 

475 – 12 463 431 – 15 416 

The calculated numbers allow us to establish the number of events and non-events, 

allowing for the conduct of a meta-analysis (Table 11). 

Table 11.  The number of events and non-events for the intervention and control groups 

of the studies eligible for meta-analysis. 

 Intervention Control 

Author (year) Events Non-events Events Non-events 

Chang (2016) 1514 28158 2837 106279 

Jiao (2015) 147 8745 225 8317 

Jiao (2014) 38 1034 34 1038 

Vagholkar 

(2014) 

12 463 15 416 

 

The meta-analysis was conducted using a random-effects model as opposed to a fixed-

effects model to account for the variations in effect size between studies, allowing us to 

account for the heterogeneity when comparing the studies.  A correction factor of 0.5 was 

used to account for any zero values.  Given the discordant odds ratio in Jiao et al. (2015), 

a concurrent sensitivity analysis was also employed allowing us to derive the overall 
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summary effect measure in addition to the summary effect measure excluding Jiao et al. 

(2015).  The results of the meta-analysis are presented below (Figure 3). 

 

Figure 4.  Forest plot depicting the impact of risk prediction models on new prescription 

with antihypertensive medications. 

The overall summary effect indicates that the odds of prescribing are 1.02 times greater 

(95% CI 0.47, 2.22) in the prediction model group.  The confidence interval spans the 

null value (1.0), and thus the effect is considered statistically non-significant. 

6.2.1.1 Sensitivity analysis 

The effect size for Jiao et al. (2015) essentially assumes that all the attrition (in both the 

treatment and control groups) constituted participants who represented non-events.  The 

result of this is striking particularly in the control group, where the assumption of zero 

events leads to an infinite estimated effect size (made finite through smoothing).  As 

recommended by the Cochrane Handbook, a sensitivity analysis was conducted to 

provide a range of values to account for the missing data in using a method referred to as 

the ‘best-case” and “worst-case” scenarios.  The best-case scenario is where all 

intervention patients with missing data are inferred to have experienced the event, and 
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those in the control group with missing data are inferred to not have experienced the 

event.  The inverse would then be labelled the worst-case scenario.  Only one study (Jiao 

et al., 2015) reported attrition.  The calculated events and non-events for both the best- 

and worst-case scenarios are presented below (Table 12).  

Table 12.  The absolute frequencies as per the best- and worst-case scenarios to account 

for attrition and allow for the conduct of sensitivity analyses for Jiao et al. 2015. 

Scenario Group Type of event Absolute frequency 

Best-case 

Intervention 
Events 675 

Non-events 8419 

Control 
Events 0 

Non-events 9094 

Worst-case 

Intervention 
Events 475 

Non-events 8619 

Control 
Events 372 

Non-events 8722 

 

Using the number of events and non-events as per the best- and worst-case scenarios for 

the Jiao et al. (2015) study, we find that the study presents with an odds ratio range from 

1.29 (95% CI 1.12, 1.48) to 1459.31 (95% CI 91.17, 23358.39), and an overall summary 

effect range from 1.34 (95% CI 0.92, 1.94, I2 = 93.0%, p<0.001) to 3.29 (95% CI 0.77, 

14.16, I2 = 96.7%, p<0.001).  Full forest plots are provided in Appendix H. 

6.2.1.2 Subgroup analysis: Antihypertensive medication naïve patients 

The previous analysis assessing the impact of prediction models on new prescription with 

antihypertensive medications was conducted on the entire sample.  It included patients 

for whom the event had already occurred.  A subgroup analysis was conducted to address 

the impact of prediction models amongst antihypertensive medication naïve patients (i.e. 

patients who were not prescribed antihypertensive medications at baseline). 
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The number of events, or new prescription with antihypertensives, remained constant as 

previously derived.  The number of non-events is given by the number of patients 

randomized to the intervention group who are not taking antihypertensives at baseline 

and who do not receive a new prescription.  The number of non-events was calculated by 

first subtracting the total number of participants by those who were taking 

antihypertensive medications at baseline, and then subtracting that figure by the number 

of events.  For example, in Chang et al. (2016), the intervention arm had 29,672 patients, 

1424 patients taking antihypertensives at baseline, and a total number of events of 1514.  

Through simple subtraction, the number of non-events was calculated to be 26734, as 

demonstrated here: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛 − 𝑒𝑣𝑒𝑛𝑡𝑠: 29672 − 1424 − 1514 = 26734 

To conduct a complete case analysis and account for the loss to follow-up in the Jiao et 

al. (2015) study, the number of non-events was calculated using the modified baseline 

numbers that account for attrition.  The number of non-events was then calculated using 

the same methods used for the other studies, as follows: 

𝑁𝑜𝑛 − 𝑒𝑣𝑒𝑛𝑡𝑠𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛: 8892 − 6490 − 147 = 2255 

𝑁𝑜𝑛 − 𝑒𝑣𝑒𝑛𝑡𝑠𝑐𝑜𝑛𝑡𝑟𝑜𝑙: 8542 − 6268 − 225 =  2049 

Inputting all the values into a table allows us to conduct a subgroup analysis in STATA 

(Table 13).  The results of the meta-analysis are presented in Figure 4. 
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Table 13.  The number of events and non-events from baseline to follow-up in both the 

intervention and control groups amongst patients who were antihypertensive medication 

naïve at baseline. 

 Intervention Control 

Author (year) Events Non-events Events Non-events 

Chang (2016) 1514 26734 2837 104315 

Jiao (2015) 147 2255 225 2049 

Jiao (2014) 38 201 34 220 

Vagholkar 

(2014) 

12 327 15 283 

 

 

Figure 5.  Forest plot depicting the impact of risk prediction models on new prescriptions 

with antihypertensive medications amongst antihypertensive medication naive patients. 

Therefore, amongst patients who were antihypertensive medication naïve, the odds of 

prescription with an antihypertensive medication was 1.03 times greater (95% CI 

0.45,2.35) amongst those who received the intervention than those who did not. 
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6.2.2 New prescriptions with lipid-lowering medications 

The same methods employed in section 6.2.1 were used to derive the number of events 

and non-events for new prescription with lipid-lowering medication.  Four studies were 

determined to be eligible for the conduct of a meta-analysis.  The information presented 

in each article is displayed in Table 14. 

Table 14.  Reported changes in proportion of patients prescribed with lipid-lowering 

medications at baseline and follow-up in both the intervention and control group. 

 Intervention Control 

Author (year) Baseline Follow-up Baseline Follow-up 

Chang (2016) 2878/29672 4540/29672 3383/109116 4691/109116 

Jiao (2015) 1189/9094 4551/8892 1225/9094 3903/8542 

Jiao (2014) 866/1072 935/1072 880/1072 949/1072 

Vagholkar 

(2014) 

101/475 108/475 120/431 130/431 

 

The derived number of events and non-events was calculated in the same manner as in 

section 6.2.1 (“New prescription with antihypertensives”), and the values are presented in 

Table 15, which were subsequently used to conduct the meta-analysis (Figure 5). 

Table 15.  The number of events and non-events for the intervention and control groups 

of the studies eligible for meta-analysis. 

 Intervention Control 

Author (year) Events Non-events Events Non-events 

Chang (2016) 1662 28010 1308 107808 

Jiao (2015) 3388 5504 2752 5790 

Jiao (2014) 69 1003 69 1003 

Vagholkar 

(2014) 

7 468 10 421 
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Figure 6.  Forest plot depicting the impact of risk prediction models on new prescription 

with lipid-lowering medications. 

Therefore, the overall summary effect measure indicates that the odds of new prescription 

with lipid-lowering medications is 1.49 times greater (95% CI 0.58, 3.81) amongst 

patients who received the intervention compared to those that did not. 

6.2.2.1 Sensitivity analysis 

A sensitivity analysis as per the best- and worst-case scenario method was conducted as 

per the figures presented in Table 16. 
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Table 16.  The absolute frequencies as per the best- and worst-case scenarios to account 

for attrition and allow for the conduct of sensitivity analyses for Jiao et al. 2015. 

Scenario Group Type of event Absolute frequency 

Best-case 

Intervention 
Events 3564 

Non-events 5530 

Control 
Events 2678 

Non-events 6416 

Worst-case 

Intervention 
Events 3362 

Non-events 5732 

Control 
Events 3230 

Non-events 5864 

 

Using the number of events and non-events as per the best- and worst-case scenarios for 

the Jiao et al. (2015) study, we find that the study presents with an odds ratio range from 

1.06 (95% CI 1.00, 1.13) to 1.54 (95% CI   1.45, 1.64).  The summary effect range is 

from 1.40 (95% CI 0.48, 4.05, I2 = 99.7%, p<0.001) to 1.58 (95% CI 0.69, 3.63, I2 = 

99.5%, p<0.001).  Full forest plots are provided in Appendix I. 

6.2.2.2 Subgroup analysis 

The subgroup assessed for with regards to lipid-lowering medications was new 

prescriptions with lipid-lowering medications amongst those that are medication naïve.  

The number of events and non-events was calculated similarly to section 6.2.2.  The 

calculated figures are presented below (Table 17).  The results of the corresponding meta-

analysis are presented below (Figure 6). 
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Table 17.  The number of events and non-events from baseline to follow-up in both the 

intervention and control groups amongst patients who were lipid-lowering medication 

naïve at baseline. 

 Intervention Control 

Author (year) Events Non-events Events Non-events 

Chang (2016) 1662 25132 1308 104425 

Jiao (2015) 3388 4341 2752 4639 

Jiao (2014) 69 137 69 123 

Vagholkar 

(2014) 

7 367 10 301 

 

 

Figure 7.  Forest plot depicting the impact of risk prediction models on new prescription 

with lipid-lowering medications amongst medication naive patients. 

Overall, it was found that the odds of new prescription with lipid-lowering medication 

amongst medication naïve patients favoured the intervention (OR 1.45, 95% CI 0.54, 

3.91), though the result was statistically non-significant. 
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6.3 Patient behavioral outcomes 

Though several articles assessed for patient behavioural outcomes as a result of 

prediction model use, including changes in physical activity and diet, or continuity of 

care, there were only a sufficient number of studies to conduct a meta-analysis for 

smoking cessation. 

6.3.1 Smoking cessation 

Four studies reported baseline and follow-up proportions of smokers in both the 

intervention and control groups.  The information presented in the articles is displayed 

below (Table 18). 

Table 18.  Reported changes in proportions of smokers from baseline to follow-up in both 

the intervention and control groups. 

 Intervention Control 

Author (year) Baseline Follow-up Baseline Follow-up 

Chang (2016) 5311/29672 4837/29672 24224/109116 22692/109116 

Jiao (2015) 927/9094 346/8892 906/9094 235/8542 

Lowensteyn 

(1998) 

42/202 39/202 21/89 19/89 

Powers (2011) 8/44 6/44 8/45 8/45 

 

Similar to the previous two outcomes (prescription with antihypertensive and lipid-

lowering medications), the number of events and non-events was calculated.  Events were 

defined as patients who had quit smoking from baseline to follow-up.  The method of 

calculating the number of events differed from the previous two dichotomous outcomes 

in that the event of smoking cessation decreases the number from baseline to follow-up, 

while prescription with antihypertensive or lipid-lowering medications increases the 

number from baseline to follow-up.  Hence, as opposed to the calculation of events used 

previously (follow-up – baseline), the difference from baseline to follow-up was used to 

calculate the number of events (Table 19).  Note that again for Jiao et al. (2015), the 
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baseline numbers were modified to account for attrition, resulting in baseline proportions 

of smokers of 906/8892 in the intervention arm and 851/8542 in the control arm. 

Table 19.  The calculated number of events (i.e. number of patients who quit smoking) 

from baseline to follow-up in both the intervention and control groups. 

 Intervention Control 

Author (year) Baseline – 

follow-up 

Number of 

events 

Baseline – 

follow-up 

Number of 

events 

Chang (2016) 5311 – 4837 474 24224 – 22692 1532 

Jiao (2015) 906 – 346 560 851 – 235 616 

Lowensteyn 

(1998) 

42 – 39 3 21 – 19 2 

Powers (2011) 8 – 6 2 8 – 8 0 

 

Calculating the number of non-events was conducted in the same fashion as in previous 

examples, where the total number of participants was subtracted by the number of events 

(Table 20). 

Table 20.  The calculated number of non-events from baseline to follow-up in both the 

intervention and control groups. 

 Intervention Control 

Author (year) Total number – 

number of 

events 

Number of 

non-events 

Total number – 

number of 

events 

Number of 

non-events 

Chang (2016) 29672 - 474 29198 109116 – 1532 107584 

Jiao (2015) 8892 – 560 8332 8542 – 616  7926 

Lowensteyn 

(1998) 

202 – 3 199 89 – 2  87 

Powers (2011) 44 – 2  42 45 – 0  45 
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Compiling the list of events and non-events for smoking behaviour allows us to conduct a 

meta-analysis (Table 21; Figure 7). 

Table 21.  The number of events and non-events for the intervention and control groups 

of the studies eligible for meta-analysis. 

 Intervention Control 

Author (year) Events Non-events Events Non-events 

Chang (2016) 474 29198 1532 107584 

Jiao (2015) 560 8332 616 7926 

Lowensteyn 

(1998) 

3 199 2 87 

Powers (2011) 2 42 0 45 

 

 

Figure 8.  Forest plot depicting the impact of risk prediction models on smoking 

cessation. 
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Overall, there appeared to be no impact of risk prediction model use on the patient 

behaviour of smoking cessation when examining all participants (OR 1.00, 95% CI 0.77, 

1.29). 

6.3.1.1 Sensitivity analysis 

A sensitivity analysis to provide a range of potential effect values accounting for the 

attrition in Jiao et al. (2015) was conducted using the best- and worst-case scenarios, as 

previously described in section 6.2.1.1.  The values used are presented below (Table 22).   

Table 22.  The absolute frequencies as per the best- and worst-case scenarios to account 

for attrition and allow for the conduct of sensitivity analyses for Jiao et al. 2015. 

Scenario Group Type of event Absolute frequency 

Best-case 

Intervention 
Events 581 

Non-events 8513 

Control 
Events 119 

Non-events 8980 

Worst-case 

Intervention 
Events 379 

Non-events 8715 

Control 
Events 671 

Non-events 8423 

 

Using the numbers of events and non-events as per the best- and worst-case scenarios for 

the Jiao et al. (2015) study, we find that the study presents with an odds ratio range from 

0.55 (95% CI 0.48, 0.62) to 5.15 (95% CI 4.22, 6.29), and an overall summary effect 

range from 0.84 (95% CI 0.43, 1.63, I2 = 96.1%, p<0.001) to 2.04 (95% CI 0.59, 6.97, I2 

= 98.3%, p<0.001).  Full forest plots are provided in Appendix J. 
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6.3.1.2 Subgroup analysis: Smoking cessation amongst smokers 

The number of non-events in the previous section includes non-smoking patients, 

allowing us to estimate the impact of prediction models on smoking behaviour in the 

population.  To garner a sense of the impact of prediction models on smoking cessation 

amongst smokers, a subgroup analysis was conducted.  Similar to the previous subgroup 

analyses, the number of events remained constant, while the number of non-events 

excluded non-smokers.  The completed number of events and non-events is presented 

below (Table 23).  The results of the meta-analysis are presented in Figure 8. 

Table 23.  The number of events and non-events from baseline to follow-up in both the 

intervention and control groups amongst patients who were smokers at baseline. 

 Intervention Control 

Author (year) Events Non-events Events Non-events 

Chang (2016) 474 4837 1532 22692 

Jiao (2015) 560 346 616 235 

Lowensteyn 

(1998) 

3 39 2 19 

Powers (2011) 2 6 0 8 
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Figure 9.  Forest plot depicting the impact of risk prediction models on smoking cessation 

amongst smokers. 

 

When examining smokers, there appears to be no impact of risk prediction model use on 

smoking cessation (OR 1.01, 95% CI 0.46, 2.18). 

6.4 Changes in systolic blood pressure 

Four studies identified through the systematic review process assessing the impact of 

prediction models on changes in systolic blood pressure were identified as being 

appropriate for a meta-analysis.  Table 24 displays the information presented in each 

article. 
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Table 24.  The reported changes in systolic blood pressure from baseline to follow-up in 

both the intervention and control groups.  Mean and absolute change values are presented 

in mmHg; parenthesized values are the reported standard deviations. 

 Intervention Control 

Author 

(Year) 

Sample 

size 

Baseline 

mean 

Follow-

up 

mean 

Absolute 

change 

Sample 

size 

Baseline 

mean 

Follow-

up 

mean 

Absolute 

change 

Chang 

(2016) 

29672 131.9 

(17.4) 

130.0 

(12.7) 

NA 109116 128.5 

(13.6) 

129.3 

(11.3) 

NA 

Jiao (2015) 9094 135.41 

(17.05) 

130.12 

(14.68) 

NA 9094 135.45 

(16.56) 

132.35 

(15.51) 

NA 

Lowensteyn 

(1998) 

202 133.0 

(15.8) 

NA -2.0 

(14.2) 

89 129.2 

(15.5) 

NA -1.2 

(14.1) 

Powers 

(2011) 

44 128.4 

(2.7) 

128.2 

(2.9) 

NA 45 126.0 

(2.7) 

125.0 

(2.8) 

NA 

 

Three of the four studies did not report the absolute change in SBP from baseline to 

follow-up.  The sample mean difference (D), otherwise referred to as the absolute change, 

was calculated by subtracting the baseline mean (�̅�1) by the follow-up mean (�̅�2) in 

studies where only the baseline and follow-up means were provided.  Using the equation:  

𝐷 =  �̅�1 −  �̅�2, 

the absolute change in SBP was calculated for both the intervention and control groups 

(Table 25). 
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Table 25.  The calculation of absolute change in systolic blood pressure from baseline to 

follow-up in both the intervention and control groups. 

 Intervention Control 

Author (year) �̅�1 −  �̅�2 Absolute 

change 
�̅�1 −  �̅�2 Absolute 

change 

Chang (2016) 131.9 – 130.0 1.9 128.5 – 129.3 -0.8 

Jiao (2015) 135.41 – 

130.12 

5.29 135.45 – 

132.35 

3.1 

Powers (2011) 128.4 – 128.2 0.2 126.0 – 125.0 1.0 

 

In order to calculate the standard deviation of the difference, the following equation as 

per Borenstein et al. was applied: 

𝑆𝑑𝑖𝑓𝑓 =  √𝑆1
2 + 𝑆2

2 − 2 × 𝑟 × 𝑆1 × 𝑆2   .194 

The correlation coefficient, r, was not provided.  Using the Cochrane Handbook for 

Systematic Reviews of Interventions, r was imputed based on the absolute change for 

SBP and DBP as calculated by Lowensteyn et al. based on the equation: 

𝑟 =  
𝑆𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

2 + 𝑆𝑓𝑖𝑛𝑎𝑙
2 − 𝑆𝑐ℎ𝑎𝑛𝑔𝑒

2

2 × 𝑆𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒  × 𝑆𝑓𝑖𝑛𝑎𝑙
 . 190,213 

The article by Lowensteyn et al. only provided the standard deviation S for the baseline 

SBP and the absolute change.  However, as per the Cochrane Handbook, “Where either 

the baseline or final standard deviation is unavailable, then it may be substituted by the 

other, provided it is reasonable to assume that the intervention does not alter the 

variability of the outcome measure”  (p. 487).190  Therefore, the final SBP standard 

deviation was substituted by the baseline standard deviation.  Thus, the correlation 

coefficient values for the intervention and control groups were calculated as follows: 

𝑟𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 =  
15.82 +  15.82 −   14.22

2 ×15.8 ×15.8
 ~ 0.60  
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𝑟𝑐𝑜𝑛𝑡𝑟𝑜𝑙 =  
15.52 +  15.52 − 14.12

2 ×15.5 ×15.5
 ~ 0.59 

Because the correlation coefficient values are greater than 0.5, it is indicated that 

assessing the change score from baseline to follow-up provides greater value and 

precision than analyzing the final values of blood pressure.  The calculated r was imputed 

to calculate the standard deviation of the absolute change in SBP for the additional three 

studies (Table 26). 

Table 26.  The calculated standard deviation of the absolute change in systolic blood 

pressure from baseline to follow-up in both the intervention and control groups using the 

imputed correlation coefficient values derived from Lowensteyn et al. 

 Intervention Control 

Autho

r 

(year) 

√𝑆1
2 +  𝑆2

2 − 2 × 𝑟 × 𝑆1 × 𝑆2   
𝑆𝑑𝑖𝑓𝑓 

√𝑆1
2 +  𝑆2

2 − 2 × 𝑟 × 𝑆1 × 𝑆2   
𝑆𝑑𝑖𝑓𝑓 

Chang 

(2016) 
√17.42 +  12.72 − 2 × 0.6 ×17.4 ×12.7 14.1

0 
√13.62 + 11.32 − 2 ×0.59 ×13.6 ×11.4 11.3

9 

Jiao 

(2015) 
√17.052 +  14.682 − 2 ×0.6 ×17.05 ×12.7 15.7

0 
√16.562 +  15.512 − 2 ×0.59 ×16.56 ×15.51 14.5

5 

Power

s 

(2011) 

√2.72 +  2.92 − 2 ×0.6 ×2.7 ×2.9 2.51 √2.72 + 2.82 − 2 ×0.59 ×2.7 ×2.8 2.49 

 

Completing the initial table (Table 27) provides the data necessary required to conduct a 

meta-analysis comparing the mean difference in systolic blood pressure from baseline to 

follow-up between the intervention and control groups (Figure 9). 
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Table 27.  The absolute change values in standard deviation (mmHg) and associated 

standard deviations for both the intervention and control groups. 

 Intervention Control 

Author 

(Year) 

Sample 

size 

Absolute 

change 

Standard 

deviation 

Sample 

size 

Absolute 

change 

Standard 

deviation 

Chang 

(2016) 

29672 -1.9 14.10 109116 0.8 11.39 

Jiao (2015) 9094 -5.29 15.70 9094 -3.1 14.55 

Lowensteyn 

(1998) 

202 -2.0  14.20 89 -1.2  14.10 

Powers 

(2011) 

44 -0.2 2.51 45 -1.0 2.49 

 

 

Figure 10.  Forest plot depicting the impact of risk prediction models on absolute changes 

in systolic blood pressure. 
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The forest plot indicates that overall, the absolute change of systolic blood pressure is 

0.16 mmHg (95% CI -0.24, -0.08) lower in patients who receive the intervention 

compared to those who do not. 

6.5 Changes in diastolic blood pressure 

Similarly, four studies were identified that were considered to be appropriate for meta-

analysis for changes in diastolic blood pressure (DBP).  Table 28 presents the information 

provided in each of these four studies. 

Table 28.  The reported changes in diastolic blood pressure from baseline to follow-up in 

both the intervention and control groups.  Mean and absolute change values are presented 

in mmHg; parenthesized values are the reported standard deviations. 

 Intervention Control 

Author 

(Year) 

Sample 

size 

Baseline 

mean 

Follow-

up 

mean 

Absolute 

change 

Sample 

size 

Baseline 

mean 

Follow-

up 

mean 

Absolute 

change 

Chang 

(2016) 

29672 80.2 

(10.5) 

78.5 

(7.7) 

NA 109116 78.7 

(8.2) 

78.7 

(6.7) 

NA 

Jiao (2015) 9094 75.11 

(10.34) 

71.6 

(10.26) 

NA 9094 75.08 

(9.77) 

73.23 

(9.72) 

NA 

Lowensteyn 

(1998) 

202 82.3 

(10.2) 

NA 0.9 (8.1) 89 79.8 

(11.2) 

NA -0.1 

(9.8) 

Powers 

(2011) 

44 73.5 

(1.9) 

74.9 

(2.0) 

NA 45 76.6 

(1.8) 

76.7 

(1.9) 

NA 

 

The absolute change in DBP was calculated for the three articles that did not present 

them using the formula as presented in section 6.4 (Table 29). 

 

 



99 

 

Table 29.  The calculation of absolute change in diastolic blood pressure from baseline to 

follow-up in both the intervention and control groups. 

 Intervention Control 

Author (year) �̅�1 −  �̅�2 Absolute 

change 
�̅�1 −  �̅�2 Absolute 

change 

Chang (2016) 80.2 – 78.5 1.7 78.7 – 78.7 0 

Jiao (2015) 75.11 – 71.6 3.51 75.08 – 73.23 1.85 

Powers (2011) 73.5 – 74.9 -1.4 76.6 – 76.7 -0.1 

 

The correlation coefficient (r) was calculated for both the intervention and control group 

using the data presented by Lowensteyn et al., and imputed to calculate the standard 

deviation of the mean difference (Table 30). 

𝑟𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 =  
10.22 +  10.22 −  8.12

2 ×10.2 ×10.2
 ~ 0.68 

𝑟𝑐𝑜𝑛𝑡𝑟𝑜𝑙 =  
11.22 +  11.22 −  9.82

2 ×11.2 ×11.2
 ~ 0.62 

Table 30.  Calculation of the standard deviation of the change in diastolic blood pressure. 

 Intervention Control 

Author 

(year) √𝑆1
2 + 𝑆2

2 − 2 × 𝑟 × 𝑆1 × 𝑆2   
𝑆𝑑𝑖𝑓𝑓  

√𝑆1
2 + 𝑆2

2 − 2 × 𝑟 × 𝑆1 × 𝑆2   
𝑆𝑑𝑖𝑓𝑓  

Chang 

(2016) 
√10.52 +  7.72 − 2 × 0.68 ×10.5 ×7.7 7.72 √8.22 +  6.72 − 2 ×0.62 ×8.2 ×6.7 6.12 

Jiao 

(2015) 
√10.342 +  10.262 − 2 ×0.68 ×10.34 ×10.26 8.24 √9.772 +  9.722 − 2 ×0.62 ×9.77 ×9.72 7.80 

Powers 

(2011) 
√1.92 +  2.02 − 2 ×0.68 ×1.9 ×2.0 1.56 √1.82 +  1.92 − 2 ×0.62 ×1.8 ×1.9 1.48 

Again, given that r exceeds 0.5, we proceeded to conduct the meta-analysis (Figure 10) 

based on the absolute change in diastolic blood pressure using the figures provided in 

Table 31. 
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Table 31.  The calculated absolute changes in diastolic blood pressure and associated 

standard deviations and sample sizes for both the intervention and control groups. 

 Intervention Control 

Author 

(Year) 

Sample 

size 

Absolute 

change 

Standard 

deviation 

Sample 

size 

Absolute 

change 

Standard 

deviation 

Chang 

(2016) 

29672 1.7 7.72 109116 0.0 6.12 

Jiao (2015) 9094 3.51 8.24 9094 1.85 7.80 

Lowensteyn 

(1998) 

202  0.9 8.1 89 -0.1 9.8 

Powers 

(2011) 

44 -1.4 1.56 45 -0.1 1.48 

 

 

Figure 11.  Forest plot depicting the impact of risk prediction models on absolute changes 

in diastolic blood pressure. 
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The summary effect measure indicates that patients who receive the intervention 

experience a 0.18 mmHg (95% CI 0.10, 0.27) greater increase in diastolic blood pressure 

compared to those who did not. 

6.6 Conclusion 

The results of the meta-analysis found that risk prediction model use favourably impacts 

practitioner behaviour, specifically prescription of antihypertensive and lipid-lowering 

medications, though neither effect was statistically significant.  There appeared to be no 

impact of prediction model use on the patient behaviour of smoking cessation.  Lastly, 

though intervention patients did experience a slight increase in diastolic blood pressure 

when compared to control patients, there was a small improvement in the patient health 

outcome of systolic blood pressure, with intervention patients experiencing a statistically 

significant greater reduction in systolic blood pressure. 
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Chapter 7 

7.0 Discussion 

The use of risk prediction models in primary care settings provides an objective, 

evidence-based estimate of a patient’s absolute risk of having (diagnostic) or developing 

(prognostic) an outcome.  Though not intended to replace a physician’s clinical judgment, 

they have the potential to complement the clinical decision-making process.  Their 

incorporation in numerous guidelines indicates a growing movement towards using risk 

prediction models in routine clinical practice.  However, the evidence regarding their 

impact is sparse and dispersed. 

This study sought to collect, collate, and present evidence regarding the impact of chronic 

disease risk prediction model use in primary care settings on both patient and physician 

behaviour, and patient health outcomes.  Few studies have attempted to define the impact 

of risk prediction models and the literature remains sparse regarding their effects, 

necessitating a need for an objective, comprehensive systematic review and meta-analysis 

to compile the presently available evidence.  Through a systematic search of the 

literature, a narrative summary of the results, and where possible, a meta-analysis of 

changes in behavioral and health outcomes, the present evidence regarding the impact of 

risk prediction models is presented, forming a foundation from which future studies 

examining the impact of prediction models may be conducted. 

As far as it is known, this is one of the first systematic reviews and the first meta-analysis 

addressing the impact of risk prediction model use in primary care settings.  Previous 

systematic reviews have focused primarily on the development and validation of existing 

models for single health outcomes.  For example, Damen et al. sought to provide an 

overview of existing risk prediction models for CVD.24  Another systematic review 

examined the existing models for melanoma incidence, reporting what the possible risk 

factors were as well as measures of model performance, such as sensitivity and 

specificity.225  Of the limited number of studies that have addressed the potential impact 

of model use, assessments of impact were often conducted secondary to assessments of 

development or validation.226,227  Further, no studies were identified that have attempted 
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to conduct a meta-analysis for clinically relevant outcomes associated with model use in 

primary care settings.33  By providing an overview of all identified studies examining the 

impact of risk prediction models, this systematic review has helped to address this gap in 

the literature. 

This chapter summarizes the results obtained from the systematic review and meta-

analysis, discussing possible reasons for any existent or non-existent effects.  The 

strengths and limitations will also be discussed, and where possible, methods for 

overcoming any limitations will be explored.  Lastly, suggestions and guidance for future 

exploration in this area will be explored. 

7.1 Overview of study results 

There have been few studies that have examined the impact of risk prediction models in 

primary care settings for chronic diseases.  Though the initial systematic search identified 

well over 8,000 articles, only 22 studies met the eligibility criteria for this review.  Not all 

the included studies reported on each of the three primary outcomes; most frequently, the 

impact was assessed for patient health outcomes (77%), followed by physician behaviour 

(68%) and lastly patient behaviour (50%). 

Generally, the evidence does not strongly support the use of risk prediction models for 

the primary prevention of chronic disease.  Physician behaviour appeared to be most 

strongly affected, with the majority of included studies experiencing some increases in 

prescription of preventive medications, though the effect becomes non-significant when 

meta-analyzed.  Risk-reducing patient behaviours were the least affected by prediction 

model use, with few studies indicating a significant effect on changes in physical activity 

or smoking cessation, and the effect tending towards the null when combined.  Lastly, 

overall event rates for cardiovascular- or diabetes-related health outcomes were only 

reported in a limited number of study.  Though generally it appeared that recipients of the 

prediction model experienced fewer events, the study samples were highly homogenous, 

reducing the generalizability of the finding.  When examining proxy measures for health 

outcomes, such as levels of risk factors, though a statistically significant effect was noted 

for changes in blood pressure (both systolic and diastolic), these results may not have 
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clinical significance given their small magnitude.  The meta-analyses did demonstrate I2 

values ranging from 77.2% to 99.6%, indicating a higher degree of inconsistency of study 

findings across studies, suggesting heterogeneity between studies.  Section 5.3.3 lists the 

variations in intervention used; though each study used the risk prediction model as a 

main component of their intervention, some provided relative measures of risk in addition 

to the absolute measure, the format of risk presentation varied, while others still in a more 

directive approach provided lifestyle consultations with other healthcare providers.  

Given the possibility of bias and the heterogeneity present in the meta-analysis, these 

findings should be interpreted with caution. 

7.2 Physician behaviour  

Risk prediction models are intended to ultimately improve the health of patients, a goal 

that is achieved, at least in part, through modification of the providers’ behaviour.  The 

prescription of preventive medications, a form of physician behaviour, is indicated for 

patients at high risk of disease as they may reduce the patients’ absolute risks.  The 

results of this study indicate there may be some changes in physician prescribing patterns.  

Eleven studies reported the impact of prediction model use on an aspect of physician 

behaviour, largely changes in prescription patterns.  A meta-analysis was only considered 

appropriate for changes in two medications, namely antihypertensives and lipid-lowering 

medications.  It was found through the meta-analysis that physicians who used a risk 

assessment tool were more likely to prescribe these medications, though these changes 

were not statistically significant (Figure 3 and Figure 5).  However, the impact of model 

use on prescribing patterns may still be clinically relevant. 

The meta-analysis may have been prone to issues of representativeness; though changes 

in prescription were identified in nine and ten studies for antihypertensives and lipid-

lowering medications respectively, less than half reported data appropriate for a meta-

analysis.  Indeed, through simple vote counting, increases in antihypertensive 

prescription were found to be statistically significant in five studies (55.6%), while 

increases in lipid-lowering medication prescription were found to be significant in six 

studies (60%).  Further, an effect in favour of prediction model use, though not 

significant, was noted in three additional studies for antihypertensive prescriptions and 



105 

 

four additional studies for lipid-lowering medications.  If all the identified studies had 

data reported allowing for their incorporation in the meta-analysis, it is possible that that 

a significant change may have been obtained.  As it stands, this indicates that the meta-

analysis may have been underpowered to detect a significant change in favour of new 

prescription with preventive medications, and the inclusion of additional studies may lend 

credence to the belief that risk prediction models positively influence physician 

behaviour. 

The event rates to calculate measures of effect were in many cases extrapolated and may 

not have been entirely accurate.  For example, several participants were already 

prescribed antihypertensive medications at baseline.  The number of events was 

calculated by subtracting the counts of persons prescribed medication at follow-up by 

those prescribed at baseline, which may be problematic.  For example, if one patient were 

de-prescribed and two new patients were prescribed during the follow-up period, the 

arithmetic would conclude that only one new prescription was given, when in reality, two 

were.  Though an unlikely scenario, given the nature of a secondary analysis, it is 

difficult without the original data to ensure that all prescriptions were amongst new 

participants.  Further, though an available case analysis was used to account for attrition 

in the meta-analysis, again, without the original data, assumptions were made to estimate 

the number of events and non-events, namely that the participants that were lost to 

follow-up did not differ from those that remained in the study.  Despite this potential 

limitation, without the original data, this remains the most appropriate method to account 

for attrition and calculate the number of events. 

This thesis defined physician behaviour primarily as changes in preventive medications, 

such as antihypertensive or lipid-lowering medications.  This was inherently flawed an 

increase in prescription in and of itself does not necessarily indicate an improvement in 

clinical patterns.  Indeed, a more useful measure of improvements in physician behaviour 

may have been quantified as the appropriate prescription with preventive medications, 

where medications are given in accordance to clinical guidelines or thresholds of risk.  

However, there is evidence to suggest preventive medications for chronic diseases are 

underutilized where recommended.228,229,230  Given that preventive medications are 
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under-prescribed, any increases in their prescription may be viewed as beneficial.  For 

greater accuracy in terms of benefits of model use, future studies should draw attention to 

the appropriateness of prescription with preventive medications rather than adopting an 

all-encompassing approach. 

7.3 Patient behaviour 

Patient behaviour outcomes were found to be the most variably examined in model 

impact analysis studies, with measures used inconsistently across studies.  The most 

common aspect of patient behaviour assessed in this review was smoking cessation, 

examined in eight studies and most consistently defined, especially when compared to the 

next most common measure, physical activity, which was assessed in four studies and 

measured in four different ways.  The impact of risk prediction models on these two areas 

of patient behaviour remains inconclusive.  Though some changes in physical activity 

were noted at the individual study level, it was difficult if not impossible to determine if 

an effect existed at the review level.  Interestingly, though there exists no impact of risk 

prediction models on smoking cessation in the meta-analysis, at the individual study 

level, several studies found decreases in smoking prevalence, indicating that there may be 

an effect but the meta-analysis was underpowered to detect a change.  Overall, the 

evidence does not support that model use has an impact on patient behaviour, but given 

some effects noted at the study level, this relationship warrants further investigation to 

more quantitatively and accurately to be determined.   

Though there are several health-related behaviours that patients may initiate to reduce 

their risk of chronic disease, no evidence of impact for risk prediction model use was 

found on patient behaviour.  This relationship, or rather lack thereof, may be 

understandable.  One study examined the clustering of five health-related behaviours (not 

smoking, engaging in physical activity, consuming no to moderate amounts of alcohol, 

maintaining normal body weight, and obtaining daily sufficient sleep), finding that 

amongst US adults, only 6.3% of participants engaged in all of the behaviours, with 

variations of prevalence for each behaviour.231  The researchers proposed that the five 

behaviours were not equal in health consequence or in terms of amenability to 

intervention, indicating a multifaceted approach through several avenues is necessary to 
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positively affect changes in individual behaviour.231  Though several studies included in 

this review incorporated aspects of lifestyle advice in the intervention (section 5.2.3), the 

scope of the advice was limited in terms of content and modes of delivery; some only 

provided a leaflet of information, while only three included verbal consultations with 

health care professionals.  The limited nature of lifestyle intervention may explain, at 

least in part, why health-related patient behaviours were not found to be affected by 

prediction model use. 

Further, the present body of research assumes equivalence regarding patient perception of 

risk, though this is not necessarily the case.  For example, the acceptable risk of nuclear 

meltdown through the lens of the public, or the risk at which no further safety 

improvements are deemed necessary, is often considered to be approximately one in a 

million.232  However, this level of acceptable risk is derived from risk perceptions, which 

encompass not just the probability of the outcome but also the magnitude of harms, the 

latter which may differ greatly from person to person, affecting individual levels of 

acceptable risk.233  Depending on the patient and the physician’s level of numeracy, the 

interpretation of risk may also vary and affect behavioural outcomes.234  Applied to risk 

prediction models and measures of absolute risk, the acceptable, or tolerable, risk may 

differ from person to person, with a spectrum of associated behavioural responses 

ranging from apathy to anxiety with regards to preventive measures, providing a possible 

explanation for the consequent patient behaviours found in this study.  

7.4 Patient health outcomes 

One of the primary outcomes of interest of this systematic review and meta-analysis was 

to assess the impact of risk prediction models on patient health outcomes.  The definition 

of patient health outcomes was intentionally left broad to provide a full spectrum of 

possible outcomes, from hard outcomes, such as incidence of stroke, to proxies for health 

outcomes or soft outcomes, such as changes in systolic blood pressure.  The studies 

included in this review focused primarily on changes in absolute risk and changes in risk 

factor levels.  At the individual study level, there was a lack of consistency in terms of 

the findings.  For example, though risk prediction model use is expected to improve a 

patient’s absolute risk of experiencing a chronic disease, decreases in absolute risk were 
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found in fewer than half the included studies.  This trend of uncertainty was consistent 

across most reported health outcomes, including changes in blood pressure or cholesterol 

levels. 

Several of the studies identified in the systematic review were not considered meta-

analyzable given the inconsistency in data reporting.  Only two soft outcomes were meta-

analyzable: changes in systolic and diastolic blood pressure.  The results of the meta-

analysis indicate that there is a small but significant decrease in systolic blood pressure.  

Our results suggest that risk prediction models may have an impact on reducing systolic 

blood pressure amongst patients, though caution must be used when generalizing the 

results due to concerns of representativeness, heterogeneity, and the small magnitude of 

effect; the small decrease in systolic blood pressure may not have any effect on the 

patient’s absolute risk of disease.  Interestingly, in terms of diastolic blood pressure, a 

significant increase was found.  Though this may appear to be contradictory given that 

model use should, theoretically speaking, result in a decrease in diastolic blood pressure, 

again, this effect should be interpreted cautiously as once again, there exists the potential 

for unrepresentativeness and the small magnitude of effect may have no impact on 

absolute risk.  In other words, though the changes in blood pressure were statistically 

significant, given their small magnitude, they may not be clinically significant. 

The inconsistency of evidence may be attributed to a few key factors.  The pathway from 

risk prediction model use to changes in patient health outcomes requires changes in 

behaviour, both physician and patient.  Preventive interventions may be enacted by the 

physician, such as the prescription with preventive medications, with patients making the 

necessary corresponding changes in health-related behaviours, such as adhering to the 

medication schedule, but without the health-related behavioural modifications, the impact 

of model use on health outcomes may be muted.  Further, the studies included varied in 

terms of follow-up periods, possibly not allowing enough time for changes to be noted or 

at least providing some explanation for heterogeneity in terms of the magnitude of 

change.  Given the novelty of impact analysis studies, future research in the area would 

benefit from quantifying the impact of model use on behavioural modifications and 

adopting a consistent length of follow-up period of sufficient time. 
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Most studies reporting on changes in risk factor values reported baseline and follow-up 

values without a measure of change.  In many circumstances, analyses conducted on the 

follow-up values can provide a measure of effect assuming that at baseline, both the 

intervention and control group are equivalent, and therefore, any differences at follow-up 

are a measure of treatment effect.  However, this does not allow us to examine the 

magnitude of impact.  In other words, by providing the baseline and follow-up values, the 

researchers seek to resolve whether there is any effect of intervention use; by calculating 

the absolute change from baseline to follow-up, the researchers would be resolving a 

different question, namely how large is the impact of risk prediction models?  Though the 

two purposes may differ, by only assessing for significant changes in follow-up values, 

the assumption is that values are the same at baseline, an assumption which may be void 

in some cases.  A measure of statistical “sameness” does not indicate that the values at 

baseline are identical, but rather that they are similar.  A more accurate measure of effect 

would be to determine whether the absolute change in the intervention and control arm 

differs, allowing readers to more meaningfully determine if an impact exists, and if so, 

whether the magnitude is of clinical significance. 

7.5 Strengths 

There exists a growing movement towards using risk prediction models in clinical 

settings as indicated by the incorporation of prediction models in several guidelines 

internationally.  However, there exists a lack of evidence regarding the potential 

impact(s) of the models on clinical practice and on patient health outcomes.  This 

strongly indicates that research is required in this field, a need that has been expressed by 

several researchers.  This study is among the first systematic reviews to extensively 

examine the literature for studies investigating the impact of chronic disease risk 

prediction models.  This is also the first meta-analysis to quantify the impact of model 

use on physician behaviour, patient behaviour, and patient health outcomes.  As such, this 

study sought to provide the strongest level of evidence examining the impact of model 

use. 

Though previously conducted systematic reviews have focused specifically on 

cardiovascular diseases, our eligibility criteria allowed us to expand our scope to include 
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other chronic diseases, providing a more holistic perspective of the impact of prediction 

models.  Though this study may have identified studies assessing primarily the impact of 

cardiovascular risk prediction models, this review has identified the need for impact 

analysis studies of models predictive of other chronic diseases.  The Gail model, for 

example, was developed in 1989, and yet no studies assessing for its impact on breast 

cancer risk were identified, despite almost 30 years since its inception.26  In identifying 

this gap in the literature, future studies may be conducted to further expand the scope of 

the literature and provide insights regarding model impact for chronic diseases presently 

unexamined. 

7.6 Limitations 

There exists the possibility that not all the literature pertaining to model impact was 

identified.  This may be attributable to the lack of database specific terms for concepts 

such as ‘risk prediction models’.  Further, though the WHO categorizations of chronic 

diseases encompass approximately 80% of presently prevalent chronic diseases, not all 

diseases are captured within the categories of cardiovascular diseases, diabetes, cancers, 

and chronic respiratory diseases.  To ameliorate this potential limitation, the search 

strategy was completed in consultation with a research librarian to help ensure its 

comprehensiveness.  The existence of a MeSH term for the concept of risk prediction 

models would enable a more directed, comprehensive search within this field, allowing 

for the identification of a greater number of studies.    

The outcomes examined in this systematic review may also present some concerns, 

specifically the outcome of patient behaviour.  Though it has been characterized in 

existing studies through behaviours or actions such as smoking cessation or changes in 

physical activity, one possible area that should be emphasized that exists on the pathway 

from medication prescription to health outcome is medication accessibility and 

subsequent medication adherence.  For example, antihypertensive medications may 

reduce a patient’s risk of stroke by almost 40% through reductions in in systolic and 

diastolic blood pressure (by 10-12 mmHg and 5-6 mmHg, respectively).235  These 

decreases are possible only if patients are taking the medications as prescribed.  Measures 

of medication accessibility and adherence would provide a strong measure of patient 
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behaviour, but also provide some explanation for any changes or lack thereof for patient 

health outcomes. 

This review may also have been prone to some biases.  The risk of bias summary (Figure 

11) indicates that this study may have been prone to biases in terms of confounding and 

external validity, and was potentially statistically underpowered.  This study may also 

have been susceptible to publication bias.  Publication bias occurs in a systematic review 

when studies that fulfill the eligibility criteria are not identified because they have not 

been published, resulting in a biased perspective of the literature.190,236  Further, an 

assessment of publication bias was not possible as there were an insufficient number of 

studies to conduct a formal assessments as per the Cochrane Handbook.190  Other biases 

may have been introduced during the conduct of the meta-analyses as well.  For example, 

though 10 studies reported the impact of model use on systolic blood pressure, only 4 

were included in the meta-analysis, which could introduce bias if these 4 studies are not 

representative of the entire evidence base.236  Though measures to reduce the risk of 

biases were enacted, such as grey literature searches and having multiple reviewers, the 

potential for bias still exists.  

Variations in terms of study conduct may pose as issues of heterogeneity.  For example, 

nearly half of all studies in this review provided lifestyle advice in addition to the 

patient’s absolute risk of developing disease.  Additional studies also provided referrals 

to other healthcare providers, and in some cases, provided multiple training opportunities 

to physicians regarding model use and intent.  Because of these additional intervention 

components, it becomes difficult to discern with certainty to what extent the effect is a 

result of model use.  Risk presentation also varied between studies, with some studies 

providing absolute risk in paper format, with others communicating risk verbally or 

through use of a computer- or tablet-based platform.  Further, in some studies, relative 

measures of risk were provided in addition to the absolute measures, potentially 

influencing both the physician and patient response to risk.  Differences in length of 

follow-up may also account for variations in changes in risk factor levels.  Indeed, Price 

et al. followed their patients for one month, while the period of follow-up for Jiao et al. 

(2015) was three years.  The combination of these two studies, hypothetically, indicates 
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that the magnitude of effect remains constant across the period of follow-up, a potentially 

unfair assumption.  Given the sparsity of model impact studies, all identified studies that 

met the eligibility criteria were included.  As the field develops, however, additional 

criteria may be applied to future systematic reviews to reduce the risks associated with 

study heterogeneity. 

7.7 Implications for future research and practice 

This systematic review and meta-analysis was most limited by the heterogeneity of 

studies.  Inspection of the I2 values for the meta-analyses indicates the analyses and thus 

the variation across studies was due to heterogeneity, not chance.  To strengthen the body 

of literature, there is a strong need for consistent, overarching guidance of the appropriate 

conduct for impact analysis studies.  The Cochrane Collaboration Prognosis Reviews 

Methods Group was formed to evaluate the growing body of literature pertaining to 

prediction models, and the group developed the CHARMS checklist, a critical appraisal 

and data extraction checklist for systematic reviews of prediction models.60  However, the 

checklist only accounts for development and validation studies, with little to no 

applicability to impact analysis studies given the difference in aims, study designs, and 

reporting.60   

A tool guiding the conduct of impact analysis studies would ensure the methodological 

rigour of studies and strengthen the body of evidence exploring the impact of risk 

prediction models.  The present body of literature indicates several inconsistencies that 

should be addressed.  Firstly, a significant amount of heterogeneity in study design exists, 

with existing studies ranging from pre-post observational studies to cluster randomized 

trials, which, while not necessarily precluding the possibility of, reduces the 

comparability between studies.  Interventions are also uniquely presented across studies, 

such as providing lifestyle advice additional to the model-derived risk.  Pertaining to 

study conduct, periods of follow-up are non-uniform, ranging from a period of weeks to 

years, both reducing the comparability of studies as well as possibly not allowing for 

changes in behaviour or health outcomes.  The reporting of impact studies is also 

inconsistent, with diversity in measurement and presentation of study outcomes.  The 

development of such a tool could help inform the conceptualization, conduct, analyses, 
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and reporting associated with impact analysis studies, creating greater consistency in the 

literature, and allowing for the meaningful interpretation of study findings. 

Future studies should also examine the implementation of risk prediction models in 

primary care settings.  The use of risk prediction models in clinical practice faces several 

barriers, including those of time and uncertainty.  The physician-patient interaction is 

already temporally restricted, reducing the amount of time available for preventive 

services.153  Further, models exist for several health outcomes, and each model is 

designed for a specific target population.  As such, there exists uncertainty about which 

models are appropriate for a physician’s patients.70  This problem may be compounded 

by the rising prevalence in multimorbidity, which would necessitate multiple models 

being used for a single patient, significantly increasing the time spent in preventive 

services.  In recognition of these time constraints, uncertainty, and the rise in 

multimorbidity globally, there exists the need to streamline the process.  This may be 

accomplished through the incorporation of models in routine electronic medical records 

allowing for automated calculation of absolute risk, or the creation of models capable of 

predicting for multiple health outcomes (multimorbidity risk prediction models).  By 

streamlining this process, the process of implementing risk prediction models in clinical 

practice may be eased. 

7.8 Conclusion 

This systematic review and meta-analysis brought to light the inconsistencies in the 

conduct of impact analysis studies, and inconsistencies in general within the growing 

field of prediction modelling.  This study identified a small group of studies that 

examined the impact of prediction models on clinical and behavioural outcomes.  Though 

these studies may have been affected by methodological discrepancies and the review 

would be strengthened by a unified method for conducting model impact studies, they do 

provide some measure of support for the use of prediction models in primary care 

settings, and indicate that future research must be undertaken to ascertain the most 

effective methods of implementing these tools in clinical practice.   
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Appendix A: The Gusto-I Model predicting risk of mortality at 30 days for patients who 

experience myocardial infarction. 

Probability of death within 30 days = 1 / [1 + exp(-L)], where L is given by: 

L= 3.812 + 0.07624*age - 0.03976*minimum(SBP, 120) + 2.0796[Killip class II] + 

3.6232[Killip class III] + 4.0392[Killip class IV] - 0.02113*heart rate + 0.03936(heart 

rate-50) - 0.5355[inferior MI] - 0.2598[other MI location] + 0.4115[previous MI] - 

0.03972*height + 0.0001835(height-154.9)  + 3 - 0.0008975(height-165.1) + 3 + 

0.001587(height - 172.0) + 3-0.001068(height-177.3) + 3 + 0.0001943 (height-185.4) + 3 

+ 0.09299 (time to treatment)-0.2190[current smoker]-0.2129[former smoker] + 

0.2497[diabetes] - 0.007379*weight + 0.3524[previous CABG] + 0.2142[SK and 

intravenous heparin] + 0.1968[treatment with SK and subcutaneous heparin] + 

0.1399[combination TPA and SK plus IV heparin] + 0.1645[hx of hypertension] + 

0.3412 [hx of cerebrovascular disease] - 0.02124 age*[Killip class II] - 0.03494 

age*[Killip class III] - 0.03216 age · [Killip class IV] 
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Appendix B: Search strategies and citations retrieved 

Embase 

 

Step Search Terms Results 

1 Risk/ or Patient Risk/ or Expectancy/ or Risk Factor/  1792018 

2 limit 1 to (human and english language and yr="1976 -Current")  1455591 

3 ((Risk adj3 (adjust* or factor*)) or Probabilit* or Likelihood).mp. 

[mp=title, abstract, heading word, drug trade name, original title, 

device manufacturer, drug manufacturer, device trade name, 

keyword, floating subheading]  

1416454 

4 limit 3 to (human and english language and yr="1976 -Current")  1091256 

5 1 or 3 2225620 

6 2 or 4 1740409 

7 Cardiometabolic Risk/ or Cardiovascular Risk/ or Coronary Risk/ or 

Reynolds risk score/ or Framingham risk score/ or CHADS2 Score/ 

or PROCAM Score/ or QRISK Score/ or Receiver Operating 

Characteristic/ or exp Area Under the Curve/ or exp "prediction and 

forecasting"/ or survival prediction/ or survival rate/ or exp decision 

support system/ or clinical decision making/ or medical decision 

making/  

1720383 

8 limit 7 to (human and english language and yr="1976 -Current")  1289143 

9 ("Risk scor*" or risk tool* or risk estimat* or risk assess* or risk 

function* or risk equation* or risk calc* or risk scor* or risk predict* 

or risk factor calc* or risk chart* or risk engine* or risk appraisal* or 

prediction model* or risk algorithm* or scoring* method* or scoring 

scheme* or roc curve or area under curve or AUC or c-statistic* or C 

index* or C indices*).mp. [mp=title, abstract, heading word, drug 

trade name, original title, device manufacturer, drug manufacturer, 

device trade name, keyword, floating subheading]  

586636 

10 limit 9 to (human and english language and yr="1976 -Current")  477129 

11 7 or 9 2100566 

12 8 or 10 1590351 

13 Chronic Disease/ or Cardiovascular Disease/ or Heart Disease/ or 

Vascular Disease/ or Lung Disease/ or Chronic Lung Disease/ or 

Chronic Obstructive Lung Disease/ or Asthma/ or Diabetes Mellitus/ 

or Insulin Dependent Diabetes Mellitus/ or Non Insulin Dependent 

Diabetes Mellitus/ or exp Neoplasm/  

5711682 

14 limit 13 to (human and english language and yr="1976 -Current")  3678673 

15 (Chronic disease* or Chronic illness* or chronically ill or non-

communicable disease* or cardiovascular disease* or vascular 

disease* or heart disease* or stroke or respiratory disease* or asthma 

or COPD or chronic obstructive pulmonary disease* or diabetes or 

diabetes mellitus or diabetic or cancer* or neoplasm* or metastatic* 

or metastisi* or metastases or carcinoma* or tumo?r*).mp. [mp=title, 

6617097 
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abstract, heading word, drug trade name, original title, device 

manufacturer, drug manufacturer, device trade name, keyword, 

floating subheading]  

16 limit 15 to (human and english language and yr="1976 -Current")  4218997 

17 13 or 15 7255289 

18 14 or 16 4569682 

19 exp Primary Health Care/ or General Practice/  221104 

20 limit 19 to (human and english language and yr="1976 -Current")  159278 

21 (Primary health care or primary care or primary healthcare or primary 

medical care or family practice or family medicine or general 

practi*).mp. [mp=title, abstract, heading word, drug trade name, 

original title, device manufacturer, drug manufacturer, device trade 

name, keyword, floating subheading]  

330910 

22 limit 21 to (human and english language and yr="1976 -Current")  232874 

23 19 or 21 330910 

24 20 or 22 232874 

25 5 and 11 and 17 and 23 8318 

26 6 and 12 and 18 and 24 7311 

 

Medline 

Steps Search terms Results 

1 Risk/ or Risk Factors/ or Risk Adjustment/  782446 

2 limit 1 to (english language and humans and yr="1976 -Current")  669642 

3 ((Risk adj3 (adjust* or factor*)) or Probabilit* or Likelihood).mp. 

[mp=title, abstract, original title, name of substance word, subject 

heading word, keyword heading word, protocol supplementary 

concept word, rare disease supplementary concept word, unique 

identifier, synonyms]  

1202769 

4 limit 3 to (english language and humans and yr="1976 -Current")  903884 

5 1 or 3 1290060 

6 2 or 4 973836 

7 Algorithms/ or Probability/ or Bayes Theorem/ or Likelihood 

Functions/ or Proportional Hazards Models/ or "Sensitivity and 

Specificity"/ or ROC Curve/ or exp Decision Support Techniques/ 

or Area Under Curve/ or Clinical Decision-Making/ or exp Risk 

Assessment/  

900317 

8 limit 7 to (english language and humans and yr="1976 -Current")  661515 

9 ("Risk scor*" or risk tool* or risk estimat* or risk assess* or risk 

function* or risk equation* or risk calc* or risk scor* or risk 

predict* or risk factor calc* or risk chart* or risk engine* or risk 

appraisal* or prediction model* or risk algorithm* or scoring* 

method* or scoring scheme* or roc curve or area under curve or 

AUC or c-statistic* or C index* or C indices*).mp. [mp=title, 

abstract, original title, name of substance word, subject heading 

375007 
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word, keyword heading word, protocol supplementary concept 

word, rare disease supplementary concept word, unique identifier, 

synonyms]  

10 limit 9 to (english language and humans and yr="1976 -Current")  300610 

11 7 or 9  989961 

12 8 or 10 712702 

13 Chronic Disease/ or Cardiovascular Diseases/ or exp Heart Diseases/ 

or exp Vascular Diseases/ or exp Lung Diseases, Obstructive/ or 

Diabetes Mellitus/ or Diabetes Mellitus, Type 1/ or exp Diabetes 

Mellitus, Type 2/ or Neoplasms/ or exp Neoplasms by Histologic 

Type/ or exp Neoplasms by Site/  

5281905 

14 limit 13 to (english language and humans and yr="1976 -Current")  3414820 

15 (Chronic disease* or Chronic illness* or chronically ill or non-

communicable disease* or cardiovascular disease* or vascular 

disease* or heart disease* or stroke or respiratory disease* or 

asthma or COPD or chronic obstructive pulmonary disease* or 

diabetes or diabetes mellitus or diabetic or cancer* or neoplasm* or 

metastatic* or metastisi* or metastases or carcinoma* or 

tumo?r*).mp. [mp=title, abstract, original title, name of substance 

word, subject heading word, keyword heading word, protocol 

supplementary concept word, rare disease supplementary concept 

word, unique identifier, synonyms]  

4887214 

16 limit 15 to (english language and humans and yr="1976 -Current")  3031693 

17 13 or 15 6516965 

18 14 or 16 3962675 

19 Primary Health Care/ or Comprehensive Health Care/ or exp 

General Practice/  

133832 

20 limit 19 to (english language and humans and yr="1976 -Current")  92993 

21 (Primary health care or primary care or primary healthcare or 

primary medical care or family practice or family medicine or 

general practi*).mp. [mp=title, abstract, original title, name of 

substance word, subject heading word, keyword heading word, 

protocol supplementary concept word, rare disease supplementary 

concept word, unique identifier, synonyms]  

231332 

22 limit 21 to (english language and humans and yr="1976 -Current")  1588565 

23 19 or 21 236748 

24 20 or 22 160459 

25 5 and 11 and 17 and 23 2696 

26 6 and 12 and 18 and 24 2396 

 

CINAHL 

 

Step Search Terms and options Results 
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1 (MH “Risk Factors+”) OR (MH “Health Screening+”) OR (MH 

“Patient Assessment+”)  

Search modes - Boolean/Phrase  

176674 

2 (MH “Risk Factors+”) OR (MH “Health Screening+”) OR (MH 

“Patient Assessment+”)  

 

Limiters - Published Date: 19760101-20170331; English Language; 

Human  

Search modes - Boolean/Phrase  

85634 

3 Risk adj3 (adjust* OR factor*) OR Probabilit* OR Likelihood  

 

Search modes - Boolean/Phrase  

36531 

4 Risk adj3 (adjust* OR factor*) OR Probabilit* OR Likelihood  

 

Limiters - Published Date: 19760101-20170331; English Language; 

Human  

Search modes - Boolean/Phrase  

27669 

5 1 or 3 109548 

6 2 or 4 208539 

7 (MH "Predictive Value of Tests") OR (MH “Predictive Research”) 

OR (MH “Models, Statistical”) OR (MH “Decision Support 

Techniques+”) OR (MH “Decision Making, Clinical”) OR (MH 

“Clinical Assessment Tools”) OR (MH “Risk Assessment”) OR 

(MH “ROC Curve”) OR (MH “Survival Analysis+”)  

 

Search modes - Boolean/Phrase  

201806 

8 (MH "Predictive Value of Tests") OR (MH “Predictive Research”) 

OR (MH “Models, Statistical”) OR (MH “Decision Support 

Techniques+”) OR (MH “Decision Making, Clinical”) OR (MH 

“Clinical Assessment Tools”) OR (MH “Risk Assessment”) OR 

(MH “ROC Curve”) OR (MH “Survival Analysis+”)  

Limiters - Published Date: 19760101-20170331; English Language; 

Human  

Search modes - Boolean/Phrase  

146268 

9 “Risk scor*” OR risk tool* OR risk estimat* OR risk assess* OR 

risk function* OR risk equation* OR risk calc* OR risk scor* OR 

risk predict* OR risk factor calc* OR risk chart* OR risk engine* 

OR risk appraisal* OR prediction model* OR risk algorithm* OR 

scoring* method* OR scoring scheme* OR roc curve OR area 

under curve OR AUC OR c-statistic* OR C index* OR C indices*  

Search modes - Boolean/Phrase  

90777 

10 “Risk scor*” OR risk tool* OR risk estimat* OR risk assess* OR 

risk function* OR risk equation* OR risk calc* OR risk scor* OR 

risk predict* OR risk factor calc* OR risk chart* OR risk engine* 

OR risk appraisal* OR prediction model* OR risk algorithm* OR 

56570 
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scoring* method* OR scoring scheme* OR roc curve OR area 

under curve OR AUC OR c-statistic* OR C index* OR C indices*  

Limiters - Published Date: 19760101-20170331; English Language; 

Human  

Search modes - Boolean/Phrase  

11 7 or 9 235929 

12 8 or 10 167860 

13 (MH “Chronic Disease”) OR (MH “Cardiovascular Diseases”) OR 

(MH “Heart Diseases”) OR (MH “Vascular Diseases”) OR (MH 

“Lung Diseases”) OR (MH “Lung Diseases, Obstructive+”) OR 

(MH “Diabetes Mellitus”) OR (MH “Diabetes Mellitus, Type 1”) 

OR (MH “Diabetes Mellitus, Type 2”) OR (MH “Neoplasms”) OR 

(MH “Neoplasms by Site+”) OR (MH “Neoplasms by Histologic 

Type+”)  

Search modes - Boolean/Phrase  

359492 

14 (MH “Chronic Disease”) OR (MH “Cardiovascular Diseases”) OR 

(MH “Heart Diseases”) OR (MH “Vascular Diseases”) OR (MH 

“Lung Diseases”) OR (MH “Lung Diseases, Obstructive+”) OR 

(MH “Diabetes Mellitus”) OR (MH “Diabetes Mellitus, Type 1”) 

OR (MH “Diabetes Mellitus, Type 2”) OR (MH “Neoplasms”) OR 

(MH “Neoplasms by Site+”) OR (MH “Neoplasms by Histologic 

Type+”)  

Limiters - Published Date: 19760101-20170331; English Language; 

Human  

Search modes - Boolean/Phrase  

129339 

15 Chronic disease* OR Chronic illness* OR chronically ill OR non-

communicable disease* OR cardiovascular disease* OR vascular 

disease* OR heart disease* OR stroke OR respiratory disease* OR 

asthma OR COPD OR chronic obstructive pulmonary disease* OR 

diabetes OR diabetes mellitus OR diabetic OR cancer* OR 

neoplasm* OR metastatic* OR metastisi* OR metastases OR 

carcinoma* OR tumo?r*  

Search modes - Boolean/Phrase  

521893 

16 Chronic disease* OR Chronic illness* OR chronically ill OR non-

communicable disease* OR cardiovascular disease* OR vascular 

disease* OR heart disease* OR stroke OR respiratory disease* OR 

asthma OR COPD OR chronic obstructive pulmonary disease* OR 

diabetes OR diabetes mellitus OR diabetic OR cancer* OR 

neoplasm* OR metastatic* OR metastisi* OR metastases OR 

carcinoma* OR tumo?r*  

Limiters - Published Date: 19760101-20170331; English Language; 

Human  

Search modes - Boolean/Phrase  

194062 

17 13 or 15 200021 

18 14 or 16 39265 

19 (MH “Primary Health Care”) OR (MH “Family Centered Care+”) 39265 
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Search modes - Boolean/Phrase  

20 (MH “Primary Health Care”) OR (MH “Family Centered Care+”) 

Limiters - Published Date: 19760101-20170331; English Language; 

Human  

Search modes - Boolean/Phrase   

13019 

21 Primary health care OR primary care OR primary healthcare OR 

primary medical care OR family practice OR family medicine OR 

general practi*  

Search modes - Boolean/Phrase  

78566 

22 Primary health care OR primary care OR primary healthcare OR 

primary medical care OR family practice OR family medicine OR 

general practi*  

Limiters - Published Date: 19760101-20170331; English Language; 

Human  

Search modes - Boolean/Phrase  

32297 

23 19 or 21 83275 

24 20 or 22 33712 

25 5 and 11 and 17 and 23 857 

26 6 and 12 and 18 and 24 555 
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Appendix C: Study eligibility criteria 

 

Title/abstract level 

 

Inclusion criteria: 

- Intervention is or includes a risk prediction model 

- The model is prognostic 

- The model generates a predicted risk for a chronic disease 

- The study must test the effect of the intervention (i.e. model impact) 

- Include articles with no age, geographic, or sex restrictions 

 

Exclusion criteria: 

- Model is diagnostic 

- Model assesses for behavioural, mental, or acute health outcomes (i.e. risk of STI 

infection, risk of schizophrenia, risk of fracture) 

- Patients are generally symptomatic for the outcome of the model (>20%) 

- The study does not occur in a primary care setting 

- The healthcare professional is not a physician 

- The citation is for an editorial or opinion piece 

- The study describes only the development or validation of risk prediction models 

 

Full-text level 

 

- Confirmation of criteria from title/abstract level of screening 

 

Inclusion criteria: 

- The study assesses the effect of the intervention on physicians and/or patients 

- Include studies with a control group 

 

Exclusion criteria: 

- The study does not include some form of a control group (i.e. no pre- data in a pre-post 

study) 

- Exclude studies that only evaluate economic impact of model use 
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Appendix D: Brief description of interventions administered 

Author, 

year 

Description of intervention 

van den 

Brekel-

Dijkstra et 

al., 2016201 

Patients completed web-based questionnaire. Those identified at increased risk 

based on personal information (e.g. sociodemographic, personal health) 

completed biometric and laboratory testing, generating 10-year CVD risk. 

Patients receive health plan containing: 1) outcome of risk assessment (normal, 

moderately elevated risk, seriously elevated risk), 2) explanation of health risk 

and benefits of preventive action, 3) individual opportunities for lifestyle 

change, and 4) links to local providers of lifestyle interventions. Follow-up 

electronic questionnaire sent six months after receiving tailored advice. 

 

Usher-

Smith et al., 

2015219 

Patients informed of change in NICE guidelines (change in statin prescription 

threshold from 20% absolute risk to 10%), provided information leaflet 

regarding recommendations, risk calculation, statins, and lifestyle advice. 

Leaflet encourages lifestyle modifications and invited to visit clinics to discuss 

statins. At clinic appointment, patients told QRISK score, discuss statins, and 

offered opportunity for further review in the future if hesitant. Data were 

retrieved from practice electronic records. 

 

Sorensen et 

al., 2011220 

Patients underwent medical history interview regarding previous disease, and 

tobacco and medication use.  Risk factors were measured and CVD risk was 

calculated. Participants and their general physicians received written reports.  If 

at elevated risk, participants were notified to contact their physician.  Follow-up 

questionnaires were mailed to patients six months following screening 

examination. 

 

Bach-

Nielsen et 

al., 2005199 

A previous study recruited participants, who were randomly allocated to either a 

control group, where lifestyle questions were asked, or an intervention group, 

where a health screening, including calculation and written provision of 

cardiovascular risk, was conducted.  The subject of the present article was a 

qualitative study, where patients were interviewed regarding their participation 

in screening, their experiences and findings, assessments of their own health, 

views regarding health promotion and screening, and opinions on consultations 

with their physician. 

 

Chang et 

al., 2016203 

Data were extracted for patients registered at a practice participating in the 

Clinical Practice Research Datalink.  Patients were categorized as either Health 

Check attendees and nonattendees.  Patients during the Health Check received 

their cardiovascular risk as well as tailored management strategies including 

lifestyle advice. 

 

Cochrane et 

al., 2012204 

Patients from 38 general practices were recruited, and practices were 

randomized to the NHS Health Check group or the NHS Health Check plus 

additional lifestyle support group.  The NHS Health Check included usual 

general care, such as smoking cessation or medication services and provision of 
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risk score.  Lifestyle support included consultation with lifestyle coaches, the 

development of health improvement plans, and lifestyle priorities with referrals 

to free support sessions for weight management, physical activity, dietary 

support, and positive thinking.  One year follow-up measures were obtained. 

 

Vagholkar 

et al., 

2014221 

Randomization occurred at the level of the practice.  Physicians were trained (3-

hour workshop) in the use of the New Zealand CV risk calculator and 

recommendations for cardiovascular risk based on Australian and New Zealand 

guidelines. Intervention patients received 20-30 minute consultations where risk 

was calculated, and were provided appropriate management based on risk levels 

and current guidelines.  Control patients received a general health check.  

Physicians reassessed cardiovascular risk at the 12-month health check. 

 

Grover et 

al., 2008209 

Patients were stratified by risk level (very high, high, or moderate) and 

randomized to receive either printed, individualized risk profiles or usual care.  

Risk profiles display probability of coronary disease risk over an 8-year period 

as well as cardiovascular age, a life expectancy adjusted for risk of coronary 

disease and stroke based on average life expectancy of Canadians of the same 

age and sex.  Risk profiles were mailed to physicians prior to the next patient 

visit, and shown to intervention patients at their visit as well as provided to 

patients to take home.  Biometric measures (blood pressure, lipids) were taken 

2-4 weeks prior to and at each follow-up visit.  Updated risk profiles were 

discussed with intervention patients at each visit. 

 

Courtney et 

al., 2015205 

Patients who received PreDx results were identified from a comprehensive 

electronic medical database in the Dallas-Fort Worth area.  A comparison group 

matched for age, sex, selected diagnoses (similar to intervention group), and 

metabolic risk factors was also selected from the same database.  A report was 

provided to patients including the PreDx results, a numerical score 

distinguishing risk of type 2 diabetes, as well as the individual patient’s risk 

compared to the general population, and the levels of the patient’s individual 

biomarkers with their normal ranges.  Data were also collected regarding 

intensity of care, risk factor monitoring, and prescription medication. 

  

Engberg et 

al., 2002206 

Patients randomly selected from one district in Denmark, and received a 

questionnaire about general demographic information and lifestyle, as well as 

questions about psychosocial status and psychosocial life events.  Patients 

randomly allocated to 1 of 3 groups: 1) questionnaire (includes healthy lifestyle 

pamphlet) only, 2) questionnaire and health screening, and 3) questionnaire, 

health screening, and follow-up health discussions.  Health screenings provided 

each patient with an estimate of cardiovascular risk.  If at elevated risk, patients 

received feedback relating to lifestyle changes, and were encouraged to see their 

general practitioner.  Health discussions were 45 minute consultations with 

general physicians, where patient concerns were addressed and lifestyle goals 

were established.  Health discussion groups were offered annual consultations; 

all other groups had follow-ups at 1 and 5 years post-baseline. 
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Ford et al., 

2001207 

The Clinical Biochemistry laboratory database at Birmingham Heartlands 

Hospital was searched for all CHD risk requests made in 1998.  Physicians 

made requests by providing a laboratory request form with a blood sample, the 

cardiovascular risk is calculated.  Researchers visited practices to review patient 

case notes for those a risk request was made for.  Risk results were confirmed, 

as well as reasons why tests were ordered, prescribed drugs both before and 

after the risk request, and any other management changes. 

 

Grover et 

al., 2007208 

 

Physicians attended a regional investigator meeting, which included training on 

interpreting risk profiles, national lipid guidelines, and the study protocol.  

Patients were screened with a complete medical evaluation.  Patients were 

randomized to usual care or ongoing feedback regarding calculated coronary 

risk.  Risk profiles including 10-year coronary risk were discussed with patients 

by study physicians in the intervention arm, while usual care patients did not 

receive risk profiles.  Risk profiles were computer printouts with disease risk as 

well as cardiovascular age, and contained relative risks as well as absolute risk.  

Patients were followed for one year with biometric measures taken before and 

during each follow-up visit (3 month intervals).   

 

Jiao et al., 

2015211 

 

Patients (in the RAMP-DM group) of public general outpatient clinics 

underwent risk factor screening for diabetes-related complications and were 

stratified according to JADE classification (high, medium, low risk).  RAMP-

DM subjects received appropriate interventions and education according to risk.  

Usual care patients were managed by physicians without risk assessment and 

stratification. 

 

Jiao et al., 

2014210 

 

Patients (in the RAMP-DM group) entering the program underwent risk factor 

assessment and potential existing diabetic complications upon enrolment, and 

were stratified as low, medium, or high risk.  Different management strategies 

were provided to them, such as consultation with allied health professionals.  

Patients under usual care were managed solely by physicians without risk 

assessment and stratification. 

 

Law et al., 

2014212 

Physicians prospectively collected data amongst ambulatory patients.  

Physicians determined patient cardiovascular risk, and reported subsequent 

treatment decisions. 

 

Lowensteyn 

et al., 

1998213 

Community-based family physicians were invited for participation, and 

assigned a study site.  Study sites were allocated to the profile group or the 

control group.  Physicians then invited patients.  Physicians inputted risk factor 

data, then patient completed a questionnaire outlining attitudes and knowledge 

of CVD as well as current lifestyle and medical problems.  Profile patients 

received a printed copy of their risk profile.  Patients were scheduled for a 

follow-up visit 3 to 6 months later.  New risk factor data were collected at 
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follow-up.  Profiles provide 8-year coronary risk, and risk reductions for 

modifications of risk factors. 

 

Mehta et 

al., 2014214 

Patients recruited upon their physician’s use of PREDICT, a web-based clinical 

decision program that generates an absolute risk for patients.  Patients were 

stratified according to cardiovascular risk (high, moderate, or low risk).  

PREDICT database was linked to the Pharmaceutical Collections to collect data 

on dispensing of medications. 

 

Palmieri et 

al., 2011215 

Physicians were trained in the USE of the 10-CR score, and downloaded the 

CUORE.EXE software, which allows users to calculate CVD risk based on 

patient characteristics.  It also provides a hypothetical risk based on 

modifications of risk factors to favourable levels, and present risk reductions for 

behaviour changes.  Information is printed along with lifestyle 

recommendations, and presented to patients, and sent to a central database.  

Updated information on risk factor levels, absolute risk, prescribed therapies 

and lifestyle recommendations were sent to the same database.  Cardiovascular 

events were recorded during follow-up. 

  

Powers et 

al., 2011216 

Patients who agreed to participate received a baseline survey, and patients were 

randomized to either a standard risk factor education group or a personalized 

risk communication group.  Standard education included written patient 

education materials covering established risk factors and how factors can be 

improved.  Personalized risk communication patients received the standard 

education as well as information based on their personal CHD and stroke risk 

scores, both verbally and graphically.  The average and optimal scores were 

published alongside their personal risk.  Patients were provided with strategies 

to improve their risk (risk factor modification and lifestyle factors).  Data were 

collected from medical records and interviews. 

 

Price et al., 

2011217 

Participants were recruited from four general practices in Oxfordshire, and were 

randomized to either the risk factor group or personalized risk group.  Risk 

factor group patients received their blood pressure, total cholesterol and fasting 

glucose values and were told if they were elevated.  Personalized risk group 

patients received their cardiovascular disease risk estimate.  In a 2 x 2 factorial 

design, patients were also randomized to receive or not receive lifestyle advice.  

The personalized risk information displayed current risk and achievable risk, a 

hypothetical risk if all targets for risk factors are obtained. 

 

Romero et 

al., 2008218 

Medical records of patients from the Internal Medicine Clinic at the Naval 

Medical Center San Diego were reviewed to identify eligible patients.  Baseline 

data were recorded.  A poster including the Framingham Risk Score was placed 

in examination rooms of the clinic, and physicians were encouraged through 

semi-regular announcements to improve guideline adherence.  Outpatient 

medical records of another patient sample were reviewed and data were 

recorded. 
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Volpe et al., 

2007222 

General physicians recruited patients with a diagnosis of hypertension.  Patient 

blood pressure levels and estimated stroke risk was measured at both the initial 

visit and during the follow-up visit.  Risk factor data were recorded directly in a 

computerized scoring algorithm.  No recommendations were made to physicians 

regarding therapeutic interventions. 

 

Wind et al., 

2015223 

Study sponsors recruited general physicians, who then recruited 10 consecutive 

patients.  Data were collected from the patients’ medical records.  At baseline, 

physicians estimated patient 10-year CHD risk based on their own subjective 

judgement, and then using the UKPDS risk engine.  Study sponsors trained 

physicians on how to use the risk engine, interpret CHD risk, and determine 

whether differences between subjectively calculated risk and UKPDS derived 

risk warranted medication adjustment.  Data on risk estimates, risk factor levels, 

and medication adjustments were recorded. 

 

Bellows et 

al., 2014200 

Physicians at two clinics in Hawaii were selected.  IndiGO guidelines were 

implemented using automatic data extraction for all adult patients, which 

automatically calculated risk scores.  Physicians selected patients, who were 

shown videos explaining the guidelines.  Physicians and patients then used 

IndiGO in a shared decision-making session with a printed summary displaying 

all chosen interventions, and predicted risks of heart attack and stroke if 

interventions are implemented.  Propensity score matching was used to identify 

a control group of patients receiving usual care. 

 

Burgess et 

al., 2011202 

The Aboriginal and Torres Strait Islander Adult Health Check (AHC) was 

implemented in remote communities.  During the AHC, cardiovascular risk was 

assessed identifying patients with elevated CVD risk, and other behavioural risk 

factor values were collected via questionnaire.  The AHC also consisted of 

chronic disease care planning, with patient education and intervention delivery, 

treatment goals are negotiated with patients, and follow-up monitoring and care 

planning.  Patients were followed for three years at six month intervals. 
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Appendix E: Comparison of baseline and follow-up measures as per Chang et al. 

(2015).203 

 

Risk factor Group 
Before 

intervention 

After 

intervention 

QRISK2, % 10-year 

risk 

Intervention 6.7±5.9 6.2±5.3 

Control 5.1±5.3 4.9±5.0 

Systolic blood pressure, 

mmHg 

Intervention _ 131.9±17.4 130.0±12.7 

Control 128.5±13.6 129.3±11.3 

Diastolic blood 

pressure, mmHg 

Intervention 80.2±10.5 78.5±7.7 

Control 78.7±8.2 78.7±6.7 

Body mass index 

(kg/m2) 

Intervention 27.7±5.1 27.7±5.0 

Control 26.9±4.1 27.2±4.0 

Total cholesterol, 

mmol/L 

Intervention 5.5±1.0 5.3±0.8 

Control 5.3±0.6 5.3±0.6 

Smoking prevalence, % 

of group 

Intervention 17.9 16.3 

Control 22.2 20.8 

Statin prescribed, % of 

group 

Intervention 9.7 15.3 

Control 3.1 4.3 

Antihypertensive 

prescribed, % of group 

Intervention 4.8 9.9 

Control 1.8 4.4 

Values are presented as mean ± standard deviation, where available. 
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Appendix F: Comparison of baseline and follow-up measures as per Cochrane et al. 

(2012)204 

 

Risk factor Group Baseline Follow-up 

CVD risk (%) 
Health Check 32.9±9.7 29.4±9.7 

Health Check Plus 31.9±10.0 29.2±10.1 

Systolic blood pressure, 

mmHg 

Health Check 146.0±17.0 138.3±14.7 

Health Check Plus 144.4±16.2 138.7±14.6 

Diastolic blood 

pressure, mmHg 

Health Check 84.9±9.5 80.5±8.8 

Health Check Plus 85.3±9.6 81.5±8.9 

Total cholesterol 

(mmol/L) 

Health Check 5.7±0.9 5.0±1.0 

Health Check Plus 5.7±0.9 5.1±1.0 

Total cholesterol/HDL 

cholesterol, mmol/L 

Health Check 4.8±1.0 4.2±1.1 

Health Check Plus 4.9±1.1 4.4±1.1 

Weight (kg) 
Health Check 82.6±13.8 82.8±13.5 

Health Check Plus 85.0±14.5 84.3±14.5 

Body mass index 

(kg/m2) 

Health Check 27.5±4.1 27.6±4.1 

Health Check Plus 28.7±5.0 28.4±4.9 

Waist circumference 

(cm) 

Health Check 99.5±11.8 97.9±10.7 

Health Check Plus 101.3±11.2 99.1±11.4 

Values are presented as mean ± standard deviation. 
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Appendix G: Comparison of baseline and follow-up measures for Jiao et al. (2015)211 

Risk factor Group 
Before 

intervention 

After 

intervention 

BMI (kg/m2) 
Intervention 25.33±3.74 25.07±3.79 

Control 25.33±3.90 25.11±3.92 

Systolic blood pressure, 

mmHg 

Intervention 135.41±17.05 130.12±14.68 

Control 135.45±16.56 132.35±15.51 

Diastolic blood 

pressure, mmHg 

Intervention 75.11±10.34 71.60±10.26 

Control 75.08±9.77 73.23±9.72 

HbA1c (%) 
Intervention 7.24±1.23 7.13±1.09 

Control 7.24±1.24 7.25±1.26 

Total cholesterol, 

mmol/L 

Intervention 5.08±0.94 4.43±0.82 

Control 5.08±0.95 4.49±0.86 

HDL-C (mmol/L) 
Intervention 1.22±0.32 1.28±0.34 

Control 1.22±0.32 1.31±0.35 

LDL-C (mmol/L) 
Intervention 3.13±0.82 2.51±0.69 

Control 3.14±0.83 2.55±0.72 

Triglyceride (mmol/L) 
Intervention 1.64±1.10 1.43±0.87 

Control 1.64±1.05 1.43±0.97 

Current smoker 
Intervention 927 (10.2) 346 (9.0) 

Control 906 (10.0) 235 (8.6) 

On glucose-lowering 

drugs 

Intervention 7943 (87.3) 7999 (90.0) 

Control 7929 (87.2) 7143 (83.6) 

On antihypertensive 

drugs 

Intervention 6637 (73.0) 7112 (80.0) 

Control  6673 (73.4) 6493 (76.0) 

On lipid-lowering drugs 
Intervention 1189 (13.1) 4551 (51.2) 

Control 1225 (13.5) 3903 (45.7) 

On insulin 
Intervention 105 (1.2) 534 (6.0) 

Control 130 (1.4) 386 (4.5) 

Values are presented as mean ± standard deviation or n (%). 
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Appendix H: Forest plots for best- and worst-case scenarios (antihypertensive medication 

prescription) 
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Appendix I: Forest plots for best- and worst-case scenarios (lipid-lowering medication 

prescription) 
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Appendix J: Forest plots for best- and worst-case scenarios (smoking cessation) 
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