

C hapter 4. C ase Studies and Experimental Results 61

(A) (B)

Figure 4.9: (A) Actual and (B) simulated models of a CRS-F3 articulated manipulator.

Table 4.4: Comparison of the global SVM-based (SVMP) and the classical PRM planner in the
environment shown in Fig. 4.10. CD and LP refer to the number of referrals to the collision
detection and local planner modules, respectively.

CD LP Milestones Time(ms)
SVMP 50309±2808 1557±246 221±11 137618±6926
PRM 61759±2389 2752±425 360±9 5743±280

Moving between Obstacles

In our first experiment, the CRS-F3 manipulator was moved between two T-shaped obstacles
(Fig. 4.10). The manipulator was limited by its joint motions while moving between two obsta­
cles that simulated a narrow passage situation. Fig. 4.11 shows four snapshots of the resulting
path. The results of the SVM-based method and the classical PRM planner are compared in
Table 4.4.

Similar to the previous case studies, the global SVM-based planner was able to solve the prob­
lem with a fewer number of milestones, and fewer referrals to the collision detection and local
planner modules. However, the execution time is less in the classical PRM method.

Chapter 4. Case Studies and Experimental Results 62

Figure 4.10: Initial (blue) and goal (gray) configurations of a six degrees of freedom CRS-F3
manipulator within two T-shaped obstacles.

Table 4.5: Comparison of the global SVM-based planner (SVMP) and classical PRM in the
environment shown in Fig. 4.12. CD and LP refer to the number of referrals to the collision
detection and local planner modules, respectively.

CD LP Milestones Time(ms)
SVMP 502013±37309 76148±8183 3591±458 544392±22219
PRM 1142015±79993 112183±4411 14313±37 234572±5465

Cubic Frame and Bar

In our last experiment, a cubic frame was attached to the end-effector. In this case, the manip­
ulator required to move the frame along a bar without making a collision (Fig. 4.12). Solving
this problem was difficult since the manipulator had many restrictions on each joint. Since
the SVM classification required two classes of obstacles, another auxiliary bar was arbitrarily
placed in the environment. The classical PRM planner frequently failed to solve this problem.
However, as Table 4.5 shows the same pattern regarding the number of milestones, the number
of referrals to the collision detection and local planner modules, and the execution time were
repeated here. Fig. 4.13 illustrates an actual CRS-F3 manipulator while tracking the resulting
path of the global SVM-based planner.

z(
m

)
z
(m

)

C hapter 4. Case Studies and Experimental Results 63

(A) (B)

0.5

Figure 4.11: Snapshots of the resulting path using the global SVM-based planner.

Chapter 4. C ase Studies and Experimental Results 64

2 -

1. 8 -

1.6 -

1.4-

1 . 2 -

I 1 -N

X(m)

Figure 4.12: Initial (blue) and goal (gray) configurations of a six degrees of freedom CRS-F3
manipulator with a cubic frame end-effector. The frame is 9 cm long and 1.2 cm wide. The bar
is 0.4 cm x 0.4 cm in cross section and 104 cm long.

4.3 Implementation and Application Notes

This section describes some of the ideas applied in practice to improve the performance of the
method. A brief description of the developed application is given in order to facilitate later
referrals to the implemented code.

43.1 Implementation Notes

Several heuristics and improvements were employed in implementing the current method. The
first modification was to consider the fact that in a configuration space different dimensions
did not have the same importance. More specifically, the motion of the lower joints of a ma­
nipulator is of higher importance as such motions propagate through the upper joints of the
manipulator. As a result, the motion of the lower joints must be sampled with a higher resolu­
tion. Due to this reason, the distances in a configuration space were calculated as follows.

disti qo.qi)
A ,/-l

H’dfqo, - qi„)2 (4.3)

Chapter 4. Case Studies and Experimental Results 65

Figure 4.13: Snapshots of the solution generated using the global SVM-based planner in the
environment shown in Fig. 4.12.

where n was the number of joints and w, was the weight assigned to the i'h dimension. This
approach biases the obstacle sampling procedure to have a higher resolution in the lower di­
mensions.

The second modification was made in acquiring the value of a risk function where the value of
exp(-5) = iT3 was considered as zero. The global SVM-based planner spends a great portion
of its time in finding milestones. This process is time consuming because of the risk function
calculations. This modification could improve the execution time up to 60% in some cases.

43.2 Application Notes

The current method was implemented in the C++ language. The implementation consisted of
four main classes which are explained in following sections. Understanding these classes are

C hapter 4. C ase Studies and Experimental Results 66

necessary in order to apply the method to new environments.

WsObstacle Class

This class is the base of all obstacles that exist in an environment. This class stores an actual
obstacle in the form of a RAPID ..model and its transformation related to the world coordinates.
This way of representation is aimed to facilitate the use of the RAPID library 111. Therefore,
each obstacle must represent itself in this form in its constructor, which is a collection of
triangles.

Environment Class

This class contains a set of Obstacle instances and represents an environment.

Manipulator Class

This class is the base class for all types of manipulators. Any new manipulator must extend
this class and implement the following methods,

• CalcDhParam which returns the requested link parameters based on the current values
of the joints.

• IsCollidingWith which takes an instance of Environment class as input and returns the
identification number of the obstacle which is in collision with the manipulator. If the
manipulator is not in collision the method must return zero.

• IsMeetingConstraints which tests a given configuration against joint limits and self
collision. In order to fully capture the configuration space obstacle regions, this method
should be called in the IsCollidingWith method.

Planner Class

This is the core class of the method in which all different steps are implemented explicitly.
This class works on a given instance of Manipulator and Environment classes. Each step is
executed by calling a method and has a state variable that must be set at least once prior to its
call. All steps of the planner are implemented in the following methods,

• SampIeObstacle which takes an initial obstacle sample point as the root of the tree and
expands it over the enclosing obstacle region. The corresponding options can be set
using the set sampling-params method.

