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Abstract 

The flow of a two-dimensional steady wall jet observed in the slot and blade coating processes 

has been examined theoretically near the channel exit. The Newtonian free surface jet emerges 

from a channel and deposits onto an infinite moving wall with an adverse or favorable pressure 

gradient applied inside the channel. The Reynolds number considered is within the moderate 

range, and fully developed Couette-Poisueille flow conditions are assumed to prevail far 

upstream inside the channel. The effects of inertia and pressure gradient on the velocity, the 

shape of the free surface, and the stress are emphasized. It is found that the jet always contracts 

near the channel exit regardless of the level of inertia and direction of the applied pressure 

gradient. An adverse pressure gradient provides thinner film thickness than a favorable one. 
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Chapter 1  

1 Introduction  

A liquid jet is formed when a stream of liquid exits from a channel, nozzle, tube or orifice 

where it acquires more or less a columnar shape. This phenomenon can be seen in 

something as simple as in the showers and kitchens to rather complex fields including but 

not limited to automobile, pharmaceutical, agriculture, irrigation, ink-jet printing and 

cosmetics (Eggers and Villermaux 2008). Typically, this type of flow is named based on 

the formation mechanism such as free surface jet, wall jet, impinging jet and so on. A free 

surface jet forms when the fluid emanates from a slot/nozzle into the surrounding air 

without being bounded by any wall (see figure 1.1 a).  
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However, as the name suggests, a wall jet is created when the flow of liquid is discharged 

through a narrow slot/gap and deposited onto a moving/stationary wall (see figure 1.1 b) 

(Pantokratoras 2011). When the jet strikes a wall (stationary/moving) at an angle, 

impinging jet forms (see figure 1.1 c). Based on the flow condition, the jet flow is either 

laminar or turbulent. All the aforementioned jet flows exhibit a stress singularity at the 

channel exit as a result of the change in the value of the shear stress from a non-zero value 

close to the Poiseuille level at the wall to a zero value at the free surface. This sudden jump 

in the shear stress causes a boundary layer to form in a region near the free surface (see 

sections 2.2 and 2.4 for details). In addition, both the free surface and impinging jets are 

symmetric about horizontal and vertical axes, respectively. However, in the case of the 

wall jet, the symmetry is lost due to the formation of an additional boundary layer close to 

the wall because of the failure of the wall adherence condition of the core flow given the 

inviscid character of that flow.  

Given the importance of the free surface wall jet flow in the film cooling of gas turbine 

blades, combustion chambers and the defrosters for automobiles and most importantly in 

the coating (Levin et al. 2005), it has been examined extensively in the past. Glauert (1956) 

studied the flow of a jet on a stationary flat wall and provided a similarity solution for that 

wall jet flow. Later, Riley (1958) examined the compressibility effect on the wall jet. Maki 

(1983) and Mahmood (2005) studied the moving wall jet under the influence of heat 

Figure 1.1: Schematic representations of the (a) free surface jet, (b) wall jet and (c) 

impinging jet. 
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transfer experimentally and numerically, respectively. Merkin and Deenham (1986) 

investigated the effect of suction and blowing on a moving wall jet. Levin et al. (2005) 

explored the wall jet of Blasius type (extended to infinity in thickness). Elliotis et al. (2005) 

examined the wall jet in the creeping flow regime. More recently, Pantokratoras (2011) 

studied the laminar wall jet flow for a combination of moving plate and free stream. Other 

jet flows that have also been analyzed in the previous literature see, for example, the works 

of Tillett (1968), Philippe, and Dumargur (1991) on the free jet, Watson (1964), Bowels 

and Smith (1992), Bush, and Aristoff (2003) on the impinging jet and for the gravity jet, 

Ruschak and Scriven (1977), and Wilson (1986).  

1.1 Problem description and practical relevance of the current 

study  

This thesis focuses on the free surface flow of a planar moving-wall jet at moderate 

Reynolds number near the channel exit with direct relevance to the coating flow. In the 

current study, inertia is assumed to be important but is typically neglected in the traditional 

modelling of the coating process. However, inertia may not be negligible for high-speed 

processes. Currently, various coating processes are used such as blade, slot, curtain and dip 

coating (Weinstein & Ruschak, 2004). 

(a) 
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(b) 

(a) 

(b) 

Figure 1.3: (a) Schematic illustrations of a typical blade coating process and (b) 

schematic illustrations of the analyzed domain of the blade coating process  

Figure 1.2: (a) Schematic illustrations of a typical slot coating and (b) schematic 

illustrations of the analyzed domain of the slot coating process.  
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The current work focuses mainly on the slot coating and the blade coating processes which 

involve adverse and favorable pressure gradients, respectively, in addition to the substrate 

movement. In the slot coating process, the coating liquid is pumped into the slot die, and it 

distributes through the narrow slot then it exits from the slot onto a moving substrate (figure 

1.2 a). Part of the flow is being driven downstream by the moving substrate and part of it 

circulates upstream as a result of an imposed low-pressure area or vacuum that is often 

needed to facilitate faster and stable coating. This vacuum causes an adverse streamwise 

pressure gradient to act inside the channel formed between the downstream die and the 

moving substrate. Therefore, in that case, the flow inside the channel is a superposition of 

Couette (velocity driven), and Poiseuille (pressure driven) flows. On the other hand, in the 

blade coating, the flow is between a fixed blade of prescribed shape and a substrate moving 

parallel to itself (see figure 1.3 a). The coating liquid is dragged inside the channel by the 

moving substrate, which causes a hydrodynamic pressure rise at the nip of the blade. Due 

to the pressure rise, the blade rejects most of the liquid, and only a fraction passes into the 

narrow channel. Since the drag flow can only carry half of the coating liquid, a streamwise 

favorable pressure gradient is needed to carry the rest (Aidun et al. 1997). Thus, in this 

case, the pressure gradient pumps the coating liquid in the same direction as of the 

movement of the substrate inside the channel. Then, in both processes, the moving 

substrate drags the flow out of the channel in the form of a free surface wall jet, and thin 

layers of liquid films are obtained. 

In the present study, the two coating processes are studied in a manner as illustrated 

schematically in the figures 1.2 b and 1.3 b, respectively. A channel is formed between the 

moving substrate and the slot die or blade, which is evident from these figures. Also, in 

both cases, the fluid encounters a free surface whenever it leaves the channel. Thus, a free 

surface moving wall jet is produced. Although the problem exhibits the challenges common 

to flow near a singularity, it becomes particularly simple far downstream of the channel 

exit as it becomes fully of the boundary-layer type.  For this reason, it is helpful to first 

review the boundary layer flow for a moving wall jet (Schlichtling 2000) in an infinite 

medium (without a free surface). 
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1.2  Boundary layer theory  

A boundary layer is a thin region where the viscous effects are important. Whenever fluid 

flows over a body, a thin boundary layer is formed close to the body surface due to no-slip 

condition.  Ludwig Prandtl proposed this idea first in 1904.  

In the boundary layer theory, the flow of a fluid at high Reynolds number (ratio of inertia 

to viscous forces) is divided into two different regions: a boundary layer where the flow 

shows significant viscous characteristics and an outer layer where the flow corresponds to 

inviscid flow. This division of the flow facilitates a considerable simplification in the 

theoretical analysis of the flows with high Reynolds number.  

Now, consider the flow over a flat plate at a zero incidence, which is moving at a velocity, 

C  (figure 1.3). The lengths are made dimensionless with length l (characteristic length in 

the streamwise direction), the velocities with C, and the pressure with 2C . Thus, the mass 

conservation and momentum equations for a steady two-dimensional incompressible flow 

in the non-dimension forms read, 

u v
0,

x y

 
 

 
           (1.2.1) 

2 2

2 2

u u p 1 u u
u v ,

x y x Re x y

     
     

      

       (1.2.2) 

2 2

2 2

v v p 1 v v
u v .

x y y Re x y

     
     

      

       (1.2.3) 

where u  and v  are the streamwise and transverse velocity components, respectively, Re  

is the Reynolds number and p is the pressure. If the limit Re   is taken, the equations 

(1.2.2) and (1.2.3) will reduce to those for inviscid flow, and no-slip condition at the plate 

will not be satisfied. Therefore, to satisfy the no-slip at the plate, the viscous effect in the 

thin boundary layer close to the plate has to be considered. The order of magnitude of the 

above equations reveals that both the coordinate, y and velocity, v  are of the order of 
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 O  where   is thickness of the thin boundary layer. Consequently, these variables have 

small values in the boundary layer for 0  or Re   and are not suitable to describe 

the boundary layer flow. Thus, they are scaled as follows: 

y
y y Re ~ , v v Re. 


        (1.2.4)  

This scaling makes the new variables the same order as x  and u  i.e.  O 1 . Now, 

introducing the above-transformed variables into the expressions (1.2.1)-(1.2.3) and 

applying the limit Re   the following equations are obtained: 

u v
0,

x y

 
 

 
           (1.2.5)  

2

2

u u p u
u v ,

x y x y

   
   

   
         (1.2.6) 

p
0.

y





           (1.2.7) 

The above equations are known as boundary layer or Prandtl boundary layer equations. 

Expression (1.2.7) implies that pressure is constant across the boundary layer. 

Consequently, it can be taken from the pressure at the outer layer, i.e. the pressure of the 

Figure 1.4: Schematic representation of the moving wall jet (Schlichting 2000). 



8 

 

inviscid flow is imposed in the boundary layer by the outer flow. Since the velocity 

gradients must vanish at the edge of the boundary layer, equation (1.2.6) becomes, 

U p
U

x x

 
 

 
           (1.2.8) 

where U is the free stream/inviscid flow velocity in the outer layer. In this case, U  is 

constant (U=0) which indicates that 
dp

0
dx

 . Therefore, the boundary layer equations (in 

dimensional form) simplify to the following equations: 

u v
0

x y

 
 

 
           (1.2.9) 

2

2

u u u
u v

x y y

  
  

  
                   (1.2.10) 

Here   is the kinematic viscosity of the fluid. For a moving flat plate, the boundary 

conditions are the following: 

y 0: u C, v 0                    (1.2.11a)  

y : u U 0                   (1.2.11b)  

The problems (1.2.9)-(1.2.11) admit a similarity solution, which means that the velocity 

profiles of the flow at different points are similar i.e. they can be plotted onto each other 

by using a suitable scaling factor. For a flat plate, using the Blasius (1908) scaling factor, 

 
y

~
x




 which is set as,   

1/2
C

y
2 x

 
   

 
                  (1.2.12)  

Correspondingly, the stream functions is set as, 
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   
1/2

2 xC f                      (1.2.13) 

Finally, substituting the variables   and   into the expression (1.2.9)-(1.2.11) leads to, 

f ff 0                      (1.2.14)    

Subject to the following boundary conditions:  

0: f 0, f 1                     (1.2.15a)  

: f 0                   (1.2.15b) 

The development of the wall shear stress along the moving plate with distance is plotted in 

the figure 1.4. As the figure suggests, the shear stress decreases monotonically with 

distance. In particular, the stress exhibits a dramatic drop near the leading edge. A similar 

behavior is expected in the slot and blade coating processes near the channel exit where a 

singularity occurs as a result of a sudden drop in the shear stress at the exit; the shear stress 

suddenly vanishes at the free surface (see figures 1.1b and 1.2b). 

 

Figure 1.5: Shear stress distribution along the moving plate 
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1.3  A brief discussion on the solution strategy  

The current work is based on the methodology developed by Tillett (1968) for the free 

surface symmetric jet flow at high Re. The flow configuration of Tillett’s problem is 

depicted in the figure 1.5. From the figure it is evident that when the free surface jet 

emerges from the channel at the channel exit ( x 0 ), the wall shear stress undergoes a 

drastic change from a non-zero value at the lower wall ( z 0 ), to a value of zero at the 

free surface   z x  . This removal of the wall shear stress causes a boundary layer to 

form in a region close to the free surface. In this region, the base velocity profile adjusts 

itself to satisfy the condition of zero traction at the free surface. Outside the boundary layer, 

the flow is assumed to have the base Poiseuille character to the lowest order, which begins 

to change when the fluid exits the channel in the form of a free jet. The solution of the 

problem is then constructed in powers of  both in the ‘inner’ layer (boundary-layer) and 

in the ‘core’ layer, where  is a small parameter in the problem defend as, 1/3Re  .  

Figure 1.6: Schematic representation of (a) Tillett’s (1968) free surface jet and (b) his 

region of study. 
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To investigate the problem, the X axis is considered along the lower edge of the channel 

and the Z  axis in the transverse direction at the channel exit with the origin fixed at the 

exit. The stream function of the base Poiseuille flow inside the channel is, 

2 3
0

2
Z Z .

3
            (1.3.1) 

The flow variables are non-dimensionalized by measuring the lengths with respect to 

channel width a , velocities with Aa , stream function with 2Aa and pressure with 2 2A a .

Here, 
3u

A
a

 and u  is the mean velocity. The conservation of momentum equations in the 

non-dimensional forms read to, 

 z xz x zz x xxz zzz
1

p ,
Re

                         (1.3.2a) 

 x xz z xx z xxx xzz
1

p .
Re

                         (1.3.2b) 

The symmetry and wall conditions as well as the kinematic and dynamic boundary 

conditions at the free surface are to be satisfied (refer to the next section and Tillett (1968) 

for details). In order to solve the boundary layer flow close to the free surface, which is 

also called as inner layer, the following scaling variables are introduced, 

 x , z y x ,              (1.3.3) 

where, y    and h   . For matching with the core Poiseuille flow it is necessary that 

2~ y  as  , which leads to the following inner expansion for the stream function 

and pressure, 

2 3
2 3 ,               (1.3.4) 

4 5
3 4p P P .               (1.3.5)  
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The following similarity solutions are found for 2  and 3 : 

   2/3
2 2 3 3f , f ,               (1.3.6) 

where, 1/3     is the similarity variable. The equations and the boundary conditions for 

2f  and 3f  are,  

 2
2 2 2 2

2 1
f f f f 0,

3 3
             (1.3.7)  

subject to 2 2f (0) f (0) 0   and 
2

2f ( ) ~  as .      

3 2 3 2 3 2 3
2

f f f f f f f 0,
3

                (1.3.8)  

subject to 3 3f (0) f (0) 0   and 
3

2
2

f ( ) ~  as .
3

     

The third boundary conditions for both problems are obtained by matching the inner flow 

with the core flow at the edge of the boundary layer. The streamwise velocity at the free 

surface to the order  3O  becomes, 

  1/3 2 2/3u x, z 2.5572 x 3.5878 x .            (1.3.9) 

 To examine the core flow the stream function and pressure are expressed as, 

0 1 ...,                       (1.3.10) 

0 1p p p .                      (1.3.11) 

Here, 0  is just the stream function of the base Poiseuille flow and higher order terms are 

the deviation from the basic flow. After substituting the above expansions into (1.3.2), to 

each order of  different equations for stream function are obtained and by matching the 
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boundary layer flow onto the core at the edge of the boundary layer trivial solutions are 

found for both 1  and 2  .i.e.    1 2x,z x, z 0    . However, the 3 equation 

provides a non-trivial problem due to the non-homogenous boundary condition

 3 x,0 2x   . Using 3 nxw   , the following equation and boundary conditions are 

obtained in the core layer, 

 
2

3 3
2

w w 0,
z 1 z

  


                (1.3.12a) 

   

3

3 3

1
w x, 0,

2

w x 0,0 0, w x 0,z 0 2,

 
 

 

     

              (1.3.12b) 

where .
x z

 
  

 
 Then, carrying out the variable separation method, the solution of the 

above equations both inside and outside the channel become, 

   xn
3 3x n n

n 1

w x 0,z A e V z ,






                     (1.3.13) 

     xn
3 3x 0 n n

n 1

w x 0,z 2V z A e V z .






                    (1.3.14) 

The coefficients nA are obtained from matching the upstream and downstream core flows 

at the exit. The shape functions nw are governed by the following eigen value ( n ) 

problem: 

 2
n n n n n2

2 1
V V 0, V 0 V 0.

2z z

   
        

   
                         (1.3.15) 

The expressions of pressure inside and outside the channel are determined by using 

(1.3.13)-(1.3.15) which leads to, namely, 
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      x 2n n
3 n n

nn 1

A
p x 0,z 4x 2 e z z V 1 2z V ,






      


             (1.3.16) 

       x 2n n
3 n n

nn 1

A
p x 0,z 2 e z z V 1 2z V .






     


             (1.3.17) 

The flow has been matched in different layer by adopting the matching rule of Van Dyke 

(1964) which is expressed as, n m m nE H H E   . Here, nE  and mH  are corresponding 

inner and core expansion operators, respectively. Not only the additional boundary 

conditions needed to solve problems in different layers but also the shape of the free surface 

is attained from the matching. The surface height up to  3O   is given by, 

  1/3 2 2/3x 0.70798 x 1.04457 x .                   (1.3.18) 

Finally, by applying Van Dyke’s composite expansion  n n n n nC E H E H   , the 

following composite streamwise velocity is obtained: 

     1/3 2 2/3 3
2 2 3C u x f x f O .                        (1.3.19) 

Figure 1.7: Pressure development along the centerline with distance x (Tillett 1968). 
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The pressure profile along the centerline is plotted against the distance x in figure 1.6. From 

the figure, it is clear that the pressure retains its Poiseuille level inside the channel except 

very close to the channel exit. This behavior will be contrasted with the pressure 

distribution for the coating process.  

From the figures 1.2 b, 1.3 b and 1.5, it is visible that as the fluid emerges from the channel 

in the form of a jet, it experiences a drastic change in the shear stress level at the channel 

exit, i.e. the value of shear stress suddenly becomes zero on the free surface from a finite 

value at the wall which causes a stress singularity to form. This type of singularity produces 

a major hindrance in the theoretical methodology. On the other hand, the inclusion of the 

singularity and its immediate surroundings is inevitable if a computational scheme is 

implemented because of the need for whole domain discretization (Saffari and Khayat 

2008). The singularity region affects the rest of the flow in the domain significantly and is 

difficult to handle numerically if a satisfactory level of accuracy is required. On the 

contrary, due to the similarity nature of the flow near the free surface, asymptotic analysis 

can become a viable alternative since the singularity is circumvented completely in the 

formulation (Khayat 2014; Khayat 2017). 

Interfacial and free surface flows are intrinsically complex because of the unknown 

location/shape of the free surface. Incidentally, the presence of stress singularity with the 

free surface makes both the problem and solution substantially more complicated. A 

combination of numerical and analytical schemes has also been proposed for tackling this 

type of problem (Shi et al. 2004). Although mesh refinement provides higher accuracy by 

capturing the singularity more effectively, at the same time, it leads to the presence of 

stronger flow gradients that are difficult to handle numerically (Pasquali & Scriven 2002). 

By writing the flow equations in the curvilinear coordinate system, Tsukiji and Takahashi 

(1987) avoided the difficulty associated with the unknown free surface. However, their 

approach complicates the flow equations. On the other hand, perhaps, the asymptotic 

analysis provides a deeper understanding of the flow structure near the singularity by 

identifying two distinct regions: a boundary layer close to the free surface, which extends 

without including the singularity point, and a core region where the flow remains almost 

fully developed. In this case, the insertion of the singularity is not essential given the 
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similarity characteristics of the flow in the boundary layer close to the free surface. 

Asymptotic analysis has been implemented successfully for flows in the visco-capillary 

limit (Goren and Wronski 1966; Ruschak and Scriven 1977; Higgins 1982; Benilov et al. 

2008) and in the visco-inertia limit close to the present study (Tillett 1968; Philippe and 

Dumargue 1991; Khayat 2017). Miyake et al. (1979) carried out a similar approach for a 

vertical jet falling under the influence of gravity. Wilson (1986) applied a local similarity 

transformation for the axisymmetric viscous-gravity jet of the boundary layer type flow 

near the free surface. For the non-Newtonian flow, for instance, see the works of Zhao and 

Khayat (2008), Saffari and Khayat (2008) and Khayat (2014). More recently, using the 

asymptotic approach, Khayat (2016 a, b) investigated the jet flow coming out from a 

hydrophobic channel. 

1.4  Historical overview on coating flows  

The coating is a process where a thin layer of liquid is applied to a solid/flexible moving 

substrate (Weinstein & Ruschak, 2004). In other words, a thin layer of liquid displaces the 

gas at a solid substrate (rigid/flexible), often moving (Iliopoulos & Scriven, 2005). This 

process is present in numerous industries (Fig 1.7).  

Figure 1.8: Different applications of coating processes (a) adhesive tapes, (b) paper, (c) 

thin displays and (d) transparent printed electronics (Araujo and Carvalho 2014). 
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For instance, food, textile, paper, adhesive tapes, magnetic disks and even in flexible and 

transparent electronics and thin displays (Araujo and Carvalho 2014; Lee et al. 2016; 

Maillard et al. 2016). Although various coating processes are currently available, they can 

be broadly categorized as the pre-metered or self-metered coating. Blade, dip and roll 

coating fall into the category of self-metered coating whereas slot, curtain and slide coating 

into the pre-metered one. As in the case of self-meter process, the thickness of the coating 

film depends as a whole on the geometry, liquid properties, and web speed. However, in a 

pre-metered process, the flow rate setting directly determines the coating thickness without 

the influence of the earlier mentioned parameters (Weinstein & Ruschak, 2004; Ruschak 

1985). 

Due to its importance in various industrial production processes, coating flow has been 

studied extensively in the past several decades. Ruschak (1976) performed a theoretical 

analysis based on film theory of Landau and Levich (1962) to determine the flow limit 

(effects of different parameters) of extrusion slot coating for the Newtonian fluid. In his 

work, he considered very small Capillary number by setting the coating speed close to zero. 

The Capillary number (Ca) is the ratio between the viscous to surface tension forces 

defined as, 
V

Ca





where,   is the viscosity, V is the coating speed and   is the surface 

tension. To find out the film thickness in the slow flow (negligible inertia) limit he carried 

out a singular perturbation method and observed that film thickness became thinner with 

the smaller value of the Capillary number. He also noticed that gravity did not affect the 

flow much in the limit considered in the study. Higgins and Scriven (1980) extended 

Ruschak’s analysis by incorporating the viscous effect in the coating bead (inside the 

channel) with variable meniscus location. They concluded that as the coating speed became 

higher, the dynamic contact angle increases which altered the coating behavior. Saito and 

Scriven (1981) carried out a finite element analysis on slot coating flow to examine the 

Capillary number effect on the curved meniscus close to static contact line and, showed 

that the downstream meniscus no longer remains attached with the slot at the higher 

Capillary number and lower flow rate. Through experiment, Lee et al. (1992) determined 

the minimum wet thickness for extrusion slot coating. In their experiment, the range of 

Reynolds number (Re) was low, i.e. from 0.2 to 24. The Reynolds number is the ratio of 
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inertia versus viscous forces expressed as
Vh

Re





 where  is the fluid density, V is 

coating speed and h  is the minimum coating thickness. The experiment was conducted 

using two different fluids: Glycerin-water solution and standard silicon oil. The minimum 

coating thickness was calculated using the formula, 
Q

h
VB

  where Q is the volumetric 

flow rate in the slot die and B is the coating width. They noticed that there exists a critical 

Ca corresponding to each of the examined coating gaps. Beyond the critical Ca, the 

minimum wet thickness became constant regardless of the value of Ca. However, below 

the critical Ca, strong dependency on Ca was found. In addition, in the limit of their coating 

conditions, gravity influence on the minimum wet thickness was insignificant. Following 

the work of Lee et al. (1992), using the highly viscous fluid in the slot coater, Yu et al. 

(1995) investigated the possibility to reduce the minimum wet thickness. Interestingly, they 

found out that it is achievable if a low viscous fluid is used as a bottom carrier layer. Chang 

et al. (2007) investigated the slot coating process experimentally for low viscous fluid. In 

their experiment, a flow visualization technique was used to determine both the 

downstream and upstream meniscus and their effects on coating thickness. Three separate 

coating regions were viewed based on the fluid, die geometry and flow conditions. Beyond 

a critical Reynolds number (Re=20), both viscous and surface tension effects became 

negligible, and inertia dominated the flow. Ashmore et al. (2007) predicted the final film 

thickness of slot coating flow for different substrate geometry and non-Newtonian fluids 

at low Reynolds number (approximately from 0.6 to 12). They used a combination of the 

lubrication theory and the asymptotic approach for the study. It was observed that the 

elastic stress became significant in the strongly elastic limit. In turn, this dominated the 

film thickness behavior   over the surface tension and viscous effects. However, the 

opposite trend was seen for the weakly elastic limit case. 

The low-flow limit is an important aspect for slot coating, which is defined as the maximum 

substrate speed possible without any coating defects at a fixed minimum thickness or vice 

versa (Carvalho and Kheshgi, 2000). By modifying the viscocapillary model, Carvalho and 

Kheshgi (2000) developed a 2D numerical tool to study the effect of higher Capillary 

numbers in the low-flow limit of slot coating flow. At higher Capillary number ( Ca 0.3
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), inertia started to dominate the flow. In fact, it delayed the onset of low-flow limit. By 

considering low Capillary and vanishing Reynolds numbers, Romero et al. (2004) 

conducted a study on the slot coating flow for a polymer solution to predict the low-flow 

limit. The minimum coating thickness increased as the fluid became more shear thickening. 

Again, Romero et al. (2006) investigated the onset of the low-flow limit of slot coating 

flow but this time using mildly viscoelastic fluid. Their results confirmed that for low 

Weissenberg number (ratio of elastic force to viscous force) and less flexible polymer 

molecules, the coating window (minimum thickness and maximum speed possible)  was 

wider compared to the Newtonian fluid. Using a flow visualization technique, Lin et al. 

(2010) investigated the validity of a commercial 2D numerical simulation package on 

predicting the coating window for slot coating and, showed that the theoretical maximum 

coating speed without any defects was higher than the experimental one. More recently, 

Jang et al. (2013) proposed a model for slot coating by modifying the viscocapillary model 

to accommodate the high Capillary and to some extent inertia effects. Unlike the 

viscocapillary model, they had taken account of the pressure variation under the slot die, 

which enabled them to predict coating thickness at high Capillary and Reynolds numbers. 

They observed that when Re 10  due to significant inertia effect the film thickness 

decreased with increasing inertia and viscocapillary model did not show good agreement 

with the simulation at the higher Capillary number ( Ca 0.2 ).  

The experimental study conducted by Chu et al. (2006) analyzed the effect of inorganic 

particles and polymer additives in the slot coating flow. It was concluded that strong 

interactions of the polymer and additive particles extended the coating window by 

stabilizing the coating bead significantly. Moreover, the dimensionless coating thickness 

became constant for Ca 0.1 . For the simulation, the coating speed was 0.55 m/s, which 

corresponds to Re around 12.16. In terms of Elastocapillary number, Bajaj et al. (2008) 

examined the influence of viscoelasticity of dilute polymer solutions on the slot coating 

flow (negligible inertia) and, concluded that increase in the fluid elasticity narrowed down 

the window for uniform coating. Chang et al. (2009) examined the start-up of slot coating 

flow. In particular, the effects of prewetting, viscosity, slot gap, coating gap and die lip 

length on start-up were investigated. Here, the Reynolds number was expressed as, 
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 where sV  is the average speed in the slot, wV  is the speed of the substrate 

and H  is coating gap. The ranges were from 1 to 47 for Reynolds number and from 0.02 

to 0.11 for the Capillary number. They found out that coating surface prewetting plays an 

important role in reducing the start-up time requirement to reach steady state. In addition, 

at low Reynolds number, the formation of a steady upstream meniscus was quicker than 

the downstream one whereas at high Reynolds number the steady downstream meniscus 

formed first.  

Earlier studies of Sullivan and Middleman (1986, 1987) on the blade coating were 

conducted to understand the fluid rheology and blade geometry effects on the coating 

performance. Both of the studies problem formulations were based on the classical 

lubrication theory of Cameron (1966). In the first, by neglecting gravity and inertia effects, 

it was found that the relative magnitude of shear thinning and elastic behaviors determined 

the limit of coating thickness. Extension of the computational domain, different pressure 

boundary condition, inertia and surface tension were incorporated in the second study. It 

was noticed that coating thickness became independent of the geometric parameters for 

highly elastic Boger fluid while a strong dependency was found for the Newtonian 

counterpart. In this investigation, they considered Re 0.9  and Ca 4 , respectively. 

Pranckh and Scriven (1990) investigated the interactions of the blade, liquid and loading 

inside a blade coater from the elastrohydrodynamic point of view using lubrication and 

shell theory. Their theory provided a better approach than Saito and Scriven (1985) to 

predict the key principles that govern the deformation of the blade. Ro and Homsy (1995) 

carried out a double perturbation expansion for the small capillary number and 

Weissenberg number for Hele-Shaw flow by neglecting both gravity and inertia effects. 

They concluded that manifestation of the normal stress near the exit increased the film 

thickness. Ross et al. (1999) examined the blade coating flow between the blade and 

moving substrate for both Newtonian and non-Newtonian fluids using the lubrication 

theory (negligible inertia). They found that the blade geometry controlled the impact of 

weakly non-Newtonian and its Newtonian counterpart on the flow. Lee et al. (2002) 

examined the viscoelasticity effect on the free surface profile near the exit in the slot 
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coating flow for low to moderate Weissenberg number. In the low flow limit (Re 0) , 

they observed that viscoelasticity was triggered by the onset of stress boundary layer at the 

interface. Consequently, a thicker film was obtained.  Lliopoulos and Scriven (2005) 

studied the blade coating process numerically by focusing the influence of particle 

suspensions on the blade and substrate. Two types of blade geometry: trailing stiff and 

plowing were considered in the study. In addition, the applicability of the 

elastohydrodynamic theory of blade coating was broadened by including wear of the 

blades. They found out that the coating thickness increased with the Reynolds number. The 

same scenario was observed for the higher Capillary number. In fact, the coating thickness 

tapered off at the higher Capillary number. In their study, the approximate ranges of the 

two numbers were, respectively, 0 Re 55   and 10 Ca 30  . Mitsoulis and 

Athanasopoulos (2010) examined the blade coating process for different blade geometry 

and fluid property. They found that low shear thinning ( n 0.3 ) increased the film 

thickness while high shear thinning ( n 0.3 ) decreased the film thickness. 

1.5  Motivation  

The use of printed electronics and thin photographic films are increasing day by day due 

to their involvement in the production of thin displays, solar cells, and electrodes for 

lithium-ion batteries. Typically, the production of these products involves high-speed 

coating processes such as the slot coating and the blade coating. The range of the coating 

speed can vary approximately from 5 m/min to 100 m/min in those processes. At this 

coating speed, inertia effect becomes significant (high Reynolds number) due to the lower 

viscosity of the coating fluid ( 20mPas ) (Chang et al. 2007; Hong et al. 2013; Jang and 

Song 2013). The increase in Reynolds number can be illustrated by the following two 

examples. First, taking the values of the coating speed ( C ), fluid viscosity ( ),  density (

 ) and coating gap (D) from Chang et al. (2007)  as 10 m/s, 10 mPa s, 1151 kg/m3 and 

0.0002 m, respectively. In this case, the calculated Reynolds number (
CD

Re





) becomes 

230. Now, from Chu et al. (2006), the corresponding values are 2 m/s, 11.7 mPa s (obtained 

at a nominal shear rate of 1000 s-1), 1030 kg/m3 and 0.0003 m. Consequently, the value of 

Reynolds number reads 53. The magnitudes of the pressure gradients in the above cases in 
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terms of non-dimensional pressure gradient G are 0.1 and 0.3, respectively. It is clear from 

the above examples that inertia must be considered in the high-speed coating processes to 

get a better understanding of the flow behaviors. In the current analysis, a mathematical 

model has been developed for the slot, and the blade coating flows by considering moderate 

inertia effect, i.e. moderate Reynolds number (Reynolds number approximately from 10 to 

a few hundred), which has been neglected in the previous studies.  

Another important aspect in the theoretical analysis of the coating flows is the presence of 

the singularity at the channel exit. As discussed before, capturing this singularity is 

numerically difficult, yet necessary for more accurate prediction and a better understanding 

of the flow behavior outside the channel. However, most of the numerical studies on the 

coating flow overlooked this singularity effect in their formulation. For example, Mitsoulis 

(2010) conducted a numerical simulation of the blade coating process using the finite 

element analysis. From the figures 6 to 8 of Mitsoulis (2010), it is evident that not only the 

shear stress but also the pressure and the normal stress exhibit a singularity at the channel 

exit. This cannot be ignored since the singularity dominates the flow close to the exit, which 

eventually determines the accuracy of the prediction of the coating thickness and flow. In 

addition, numerical schemes tend to smooth out the singularity whereas the asymptotic 

approach used in the present study provides a better understanding of the flow in the 

vicinity of the singularity. 

1.6 Summary 

In conclusion, the current chapter introduces the problem in a general manner by focusing 

on the slot and the blade coating processes. The flow characteristic near the channel exit 

governs the flow nature further downstream where the free surface jet acquires a uniform 

thickness. Moreover, the presence of stress singularity and unknown shape of the free 

surface complicates the problem. In the next chapter, a mathematical model will be 

developed to capture the singularity along with the shape of the free surface under the 

action of moderate inertia. It is expected that the present study will help the coating 

industries by enhancing the understanding of the singularity and responses of the velocity 

fields, free surface shape and the stress fields to the singularity. 
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Chapter 2  

2 Free surface moving wall jet flow near the channel exit  

2.1  Problem formulation  

Consider the flow of an incompressible fluid emerging out from a two-dimensional channel 

of width D with fluid density and fluid viscosity . The fluid properties correspond to the 

Newtonian fluid. In the figure 2.1, the flow configuration is schematically depicted in the 

(X, Z) plane . The X-axis is considered along with the lower stationary wall, and the Z-axis 

is taken across the channel in the transverse direction. The channel exit coincides at X=0 

which is the origin for both axes. Note that the upper case letters represent the dimensional 

form whereas lower case letters denote the non-dimensional form. The fluid is depositing 

on the forward moving wall, which is moving at a velocity C in the positive X direction. 

The flow is driven by the simultaneous action of the translation of the upper wall and an 

applied adverse or favorable pressure gradient (dP/dX) inside the channel and, i.e. Couette-

Poiseuille flow. The stream function of the base Couette-Poiseuille flow becomes,   

3 2 21 dP Z Z CZ
D .

2 dX 3 2 2D

 
    

   

        (2.1.1) 

Non-dimensional variables are introduced by measuring the lengths with respect to channel 

width, D, stream function with respect to CD and pressure with respect to 2C .  
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In the current problem, two major dimensionless parameters appear, namely, Reynolds 

number, Re and the non-dimensional pressure gradient, G and are expressed as, 

2CD D dP
Re , G .

2 C dx


 

 
       (2.1.2) 

Thus, the equation (2.1.1) will turn out to be the leading order solution in the core region 

and is conveniently introduced here as, 

    
2 3

0
z z

z 1 G G .
2 3

            (2.1.3) 

In the current study, the Reynolds number, Re is assumed to be moderately large and 

 G O 1 . If G 0 , the flow is only driven by the forward wall translation and if G   

or G  , is solely induced by the pressure gradient. Typically, the value of G varies from 

-0.05 to -0.20 in the blade coating process and from 0.05 to 0.20 in the slot coating process 

(Llipoulos and Scriven 2005; Mitsoulis 2010; Chin et al. 2010, Lin et al. 2010). For a steady 

laminar two-dimensional flow, the non-dimensional conservation of momentum equations 

take the following forms:  

Figure 2.1: Schematic illustration of the free surface wall jet of (a) the slot coating and 

(b) the blade coating (dimensionless notions are used). 
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 z xz x zz x xxz zzz
1

p ,
Re

                         (2.1.4a)  

 x xz z xx z xxx xzz
1

p .
Re

                         (2.1.4b) 

2.2 The Kinematic and dynamic boundary conditions on the free 

surface  

The kinematic boundary condition implies that the normal velocity of the particle on the 

free surface follows the normal velocity of the surface itself. In other words, the fluid does 

not cross the free surface (Middleman 1995).  

The dynamic boundary condition (see figure 2.2) on the free surface means that there is no 

traction on the free surface i.e. F n 0   .  

Therefore, we can write, 

  xx x xz zx
F n n n 0,       (2.2.1) 

  zx x zz zz
F n n n 0.       (2.2.2) 

 

Figure 2.2: Schematic representation of the dynamic boundary condition on the free 

surface. 
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For the Newtonian viscous fluid,  

xx xz
u

Re p 2 Re p 2 ,
x


       


       (2.2.3)

xz zx zz xx
u w

,
z x

 
       

 
       (2.2.4)

 
zz zx

w
Re p 2 p 2 .

z


       


       (2.2.5)

 The components of normal n  are given by, 

x z
2 2

1
n  and n .

1 1


  

    

                 (2.2.6) 

From now on, the subscript denotes the partial differentiation. Substituting the expressions 

(2.2.3)-(2.2.5) into the equations (2.2.1) and (2.2.2), and after rearranging the terms the 

following equations are obtained: 

 1
xz zz xxRe

p 2 0,                         (2.2.7) 

 1
zz xx zxRe

p 2 0.                          (2.2.8)  

Finally, for x 0, the kinematic and dynamic boundary conditions at the free surface, 

 z x ,  are, 

0,                                 (2.2.9a) 

 1
xz zz xxRe

p 2 0,                        (2.2.9b) 

 1
zz xx zxRe

p 2 0.                         (2.2.9c) 

Here, a prime denotes total differentiation. Inside the channel  x 0 , the following 

conditions must be satisfied: 
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z
G

1, 1 , at z 1,
6

 
      

 
             (2.2.10a) 

z 0,        0,        at z=0,                 (2.2.10b) 

   
2 3z z

x ,z 1 G G as x .
2 3

                 (2.2.10c)            

To the lowest order, it is assumed that the flow retains its base Couette-Poisueille profile 

(2.1.3). Due to the presence of a stress singularity at the exit, the flow behavior changes as 

it comes out from the channel in the form of a free surface wall jet. This condition would 

not be imposed in the proper inviscid limit since there is no mechanism (viscous) exists 

that diffuses the stress singularity. Then all the conditions of the problem would be satisfied 

by simply postulating that the base profile stays unchanged in the whole jet region (similar 

to a Newtonian free jet (Tillett 1968)). However, no uniqueness theorem exists for this 

inviscid problem. It is plausible that other solutions might exist. Nevertheless, in the 

present study, it is assumed that the fully developed Couette-Poiseuille flow is everywhere 

in the proper inviscid limit (see also Saffari & Khayat (2008) for the viscoelastic case). By 

implementing this assumption, to the lowest order, it can be concluded that the flow in the 

core of the jet is not affected by the flow in the boundary layer region close to the free 

surface. However, it is expected that the boundary layer induce perturbations to the base 

Couette-Poiseuille flow, when the higher order terms are included, both for the flow 

upstream and downstream of the channel exit. This postulation is analogous to the one 

made by Smith (1979) for the tube flow with severe constriction. In Smith’s case, the core 

flow also satisfies the inviscid flow equations to the leading order. Further discussion on 

the current and Smith’s formulation is provided in section 2.5. Other asymptotic studies on 

the interactive boundary layers are discussed in the book by Sobey (2005). When the fluid 

detaches itself from the wall of the channel, a boundary layer is formed very close to the 

free surface due to the vanishing of the wall shear stress at the exit, which is denoted here 

as a free surface or inner layer. This thin layer and the jet contraction (or expansion) affect 

the core of the jet, with the core layer remaining predominantly of the inviscid rotational 

character.  
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This inviscid layer cannot extend to the moving upper wall, where significant viscous 

shearing occurs, forcing the formation of an upper-wall layer near the moving upper wall. 

Similarly, the core flow must also adjust to the viscous shearing flow in the lower-wall 

layer upstream of the stress singularity at the exit. In other words, given the predominantly 

inviscid character of the core flow, the core solution cannot satisfy the no-slip condition at 

both walls (Khayat 2017). Different flow regions for the moving wall jet are shown 

schematically in the figure 2.3. In each of the region, different physical mechanisms 

dominate the flow with corresponding characteristic length scales. In particular, the flow 

in the region close to the free surface downstream of the channel exit, i.e. the inner region, 

is shear dominated by boundary layer characteristics.  

In between the inner region and the moving wall, the core region, both shear (
u

z




) and 

elongation (
u

x




) prevail because of the high proportion of the Couette-Poiseuille character 

of the flow and contraction of the jet. The core region also extends to upstream from the 

channel exit. The effect of the drop in shear stress diffuses upstream inside the channel (x 

< 0) over a distance 0x where fully developed Couette-Poiseuille flow is recovered, and 

downstream  x 0  towards the moving wall over a distance x ,  at which point the flow 

Figure 2.3: Schematic depiction of the computational domain (all notations are 

dimensionless). The boundary layers are depicted along the free surface (dotted lines), 

upper wall and lower wall. Five segments of the control volume analysis are also shown. 
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is entirely of the boundary layer type. Near the free surface and lower wall, boundary layer 

type solutions are determined. Outside the channel, a similarity solution is sought in the 

inner layer, which is then matched onto the core solution outside of the exit. After that, the 

outside core flow is matched onto the solution in the core region inside the channel.  An 

important observation is that between the inner and lower-wall layers no matching is 

required for the similarity flow at x 0 . The inclusion of the singularity is not essential 

here because of the similarity nature of the flow. This constitutes a major advantage of the 

current formulation. As discussed before, part of the formulation in each layer is similar to 

the symmetric free jet formulation carried out by Tillett (1968). 

2.3  Flow in the free-surface or inner layer  

A change in coordinate is introduced by letting  y z x    to examine the boundary layer 

structure close to the free surface. In addition, the scaling in the transverse direction is 

changed by writing y ,   where Re   is the small parameter in the present problem 

and the value of   is to be determined. One can write    x h x   by assuming that the 

height   of the free surface is of the same order of magnitude as the boundary layer 

thickness h and hereafter work with h. It is not necessary to assume that    h x O 1  as 

0 ; examination of the equation (2.3.2a) shows that the inner expansion developed in 

the current section holds only when  1h o ,   i.e.   tends to 0  with  . In the matching 

section it will be shown that indeed  h O 1 . Now, following Tillett (1968) and Philippe 

& Dumargue (1991), the following change in coordinates is introduced, namely, 

 x , z h .             (2.3.1) 

Substituting the transformed variables into equations (2.1.4a) and (2.1.4b) and after making 

the necessary rearrangement, it is concluded that, 
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 

     

2

1 11 1
2

p h p

2h h h ,

     

 
 

    

      

             

              (2.3.2a) 

 

 
   

2

1
11 31

h h

p h h .

        

 
  

   
    

           

          

           (2.3.2b) 

From equations (2.2.9) the boundary conditions on the free surface i.e. at 0  become,   

0,               (2.3.3a) 

   
1 21

h p 2h h h 0,

 
 

 
  

   
               

    

              (2.3.3b) 

 
1 1 21 1

p 2 h h h 0.

   
    

    
 

  
            

  
           (2.3.3c) 

The aim is to find a solution of the equations of (2.1.4) in the form of an boundary layer 

expansion in  . In order to match this to the core Couette- Poisueille flow, it is necessary 

to have 
2 2 2~ ~ y   as   in the inner region, to lowest order in  . Therefore,   

must be of order 
2 . In order to determine the value of  , the convective and viscous 

terms must balance. This is achieved upon taking the value of 1/ 3  similar to the case 

of Newtonian jet (Tillett 1968; Miyake 1979; Philippe & Dumargue 1991) as well to the 

non- Newtonian jet (Khayat 2014). The streamwise and transverse velocity components 

are now expressed in terms of the stream function as z
1

u    


 and 

xw h       , respectively. Considering the fact that the streamwise velocity u  

in the inner region must match the velocity   2u 1 G z Gz    in the core region, it is 
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concluded that u  is of order  . The order of the transverse velocity can be found by writing 

the continuity equation in terms of the inner variables, 

u h u w 0.                (2.3.4) 

Clearly, w  is of order 2 . Consequently, the momentum conservations equations (2.3.2) 

reduce to, 

 

 

2

2 4 2

p h p

2h h h ,

     

    

      

            
             (2.3.5a) 

 

   

2

3
2 4

h h

p h h .

        

 
    

           

          
           (2.3.5b)  

Similarly, the boundary conditions on the free surface i.e. at 0  can be rewritten as, 

0,             (2.3.6a) 

   
2

3h p 2h h h 0,  

   
              

    

             (2.3.6b) 

 
2

2 4p 2 h h h 0. 
  

           
  

           (2.3.6c) 

The inner expansion for   begins with a term in 
2 . This assumption holds until contrary 

evidence is found. Therefore, the expansion precedes in powers of   so that, 

     2 3
2 3, , , .                      (2.3.7)  

Similarly, h is expanded as, 
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       1
0 1h h h .                   (2.3.8)  

From (2.3.5)-(2.3.7), it is concluded that pressure p in the inner layer is of order 
4 . Hence, 

     4 5
4 5p , P , P , .                   (2.3.9)  

Recalling that 
1

u  


and w h     , then the velocity components take the 

following form, 

     2
1 2u , U , U , ,                             (2.3.10) 

     2 3
2 3w , W , W ,                             (2.3.11) 

In this case, 1 2 2 3U , U      and 2 2 0 2W h 
    , and so on. 

2.3.1  Flow in the inner layer to  2O    

To leading order in , equation (2.3.5a), reduce to, 

2 2 2 2 2 .                          (2.3.1.1)  

The above problem is similar to the case of symmetric free jet (Tillett 1968) with different 

boundary conditions. The corresponding boundary conditions are obtained from (2.3.6), 

namely 

2 2( ,0) ( ,0) 0.                      (2.3.1.2a) 

To complete the problem for 2 , another boundary condition is required. This is the 

matching condition, which will be obtained later, namely, 

 
2

( , ) ~ 1 G  as .2
2


                    (2.3.1.2b) 
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Following Tillett (1968) a similarity solution can be carried out for 2 , which is written 

here as,   

   2/3
2 2, f ,                        (2.3.1.3) 

where 1/3    is the similarity variable. The equation for  2f  is given by,  

2
2 2 2 23f 2f f f 0.                        (2.3.1.4) 

Subject to the following boundary conditions: 

2 2f (0) f (0) 0,                   (2.3.1.5a) 

 
2

2f ( ) ~ 1 G  as .
2


                   (2.3.1.5b) 

Condition (2.3.1.5b) is achieved from matching, which will be discussed in section 2.8. 

For large θ, it is possible to obtain an asymptotic solution, subject to condition (2.3.1.5b), 

to read, 

 
2

1
2

( c )
f ( ) ~ 1 G ,

2


                   (2.3.1.6) 

where 1c  is a G  dependent constant determined from the numerical integration. 

A common form of the problems (2.3.1.4)-(2.3.15) can easily be derived for all the values 

of G and is given by, 

2
2 2 2 23g 2g g g 0.                       (2.3.1.7) 

Subject to the following boundary conditions: 

2 2g (0) g (0) 0,                   (2.3.1.8a) 
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2

2
t

g ( ) ~  as t ,
2

                  (2.3.1.8b) 

where 2 2 2f b g and t
a


 . Both a  and 2b  are constants. Similarly, for large θ, the 

asymptotic solution becomes, 

2
1

2
(t d )

g (t ) ~ .
2


                   (2.3.1.9) 

The problem (2.3.1.7)-(2.3.1.8) is solved as an initial-value problem, where equation 

(2.3.1.7) is integrated subject to the conditions (2.3.1.8a) and a guessed value of the slope 

at the origin. The slope 2g  is adjusted until a reasonable matching is achieved between the 

solution and its asymptotic form (2.3.1.8b) at large t , or, more precisely, between 2g and 

1. The integration is carried out over the domain  0, t , where t  corresponds to a 

relatively large value of t . A value of t 6   is turned out to be sufficiently large to secure 

the matching within an imposed tolerance. Matching the numerical solution with its 

asymptotic counterpart (2.3.1.9) gives the value of  1d . From the figure 2.4, it is convenient 

to observe that the initial slope is approximately  2g 0 1.61090   and the value of 1d  is 

approximately equal to 0.8920. The value of the similarity function 2f , its derivative and 

the constant 1c  for each G are determined from the following relations: 

           
1/3 2/3

2 2 2 2f 1 G g t , f 1 G g t .                 (2.3.1.10) 

So, the slope at the origin becomes, 

     
2/3

2 2f 0 1 G g 0 .                  (2.3.1.11) 

And the constant,  

 
1/3

1 1c 1 G d .


                  (2.3.1.12) 
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Figure 2.5: Variation of similarity function 2f with   for all the G values.    

Figure 2.4: Variation of the function 2g , 2g and 2g with t  for all the G values. 
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Figure 2.4 displays the dependence of 2g on t  for all the G values. The figure does not 

reflect clearly the flow behavior with respect to the parameter G. All it says that the 

function 2g  and its slope increase monotonically with t for the every G value. The effect 

of G on the similarity function 2f  can easily be seen in the figure 2.5. From the figure, it 

is obvious that 2f increases essentially linearly with G, pointing to a strengthening of the 

flow with the pressure gradient, which is also reflected by the increase in the slope 2f  . 

However, different scenarios are observed for the positive and negative G values. In 

particular, as the value of G increases positively, the flow is actually weakening which is 

understandable since G positive means that the pressure gradient is acting adversely. 

Therefore, increasing the magnitude of the adverse pressure gradient will reduce the effect 

of the wall velocity, which will eventually lead to a weaker flow. This behavior is more 

evident in the figure 2.6 where the initial slope  2f 0  and the constant 1c  are plotted 

against the parameter G. Of particular interest, the value of the initial slope  2f 0 ,  which 

is directly related to the streamwise velocity component u  on the free surface.  

Figure 2.6: Dependence of the initial slope  2f 0  and 1c  on the parameter G. 
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The figure suggests that the velocity is decreasing with the positive increasing values of G, 

which confirms the weakening of the flow with the adverse pressure gradient indeed (see 

figure 2.10a). For the negative G values, initial slope  2f 0 shows an opposite trend, which 

indicates the increase in the velocity u (see figure 2.10b). This, in turn, reflects the 

strengthening of the flow with the favorable pressure gradient. Interestingly, for the 

positive G values, 1c  shows a contrasting behavior of the initial slope. This has a significant 

consequence on the influence of adverse pressure gradient on the film height. The film 

height increases with the increasing values of positive G as opposed to the velocity at the 

free surface, which is shown in the figure 2.12a. However, this is not the case for the 

negative G cases where the reduction of the film height with G is observed (see figure 

2.12b).  

2.3.2  Flow in the inner layer to  3O    

To next order in  (2.3.5a) becomes, 

2 3 3 2 2 3 3 2 3 .                               (2.3.2.1)  

The boundary conditions are,  

3 3( ,0) ( ,0) 0.                      (2.3.2.2a) 

Matching provides the third boundary condition, which is, 

3( , ) ~ 2  as .3                     (2.3.2.2b) 

Similar to before, 3  also admits a similarity solution of the form (Tillett 1968),   

   3 3, f ,                         (2.3.2.3) 

where 1/3    is the similarity variable. The equation for  3f  is given by,  

2 3 2 3 2 3 33f f 2f f 3f f 3f .                          (2.3.2.4) 
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Subject to the following boundary conditions: 

3 3f (0) f (0) 0,                   (2.3.2.5a) 

3

3f ( ) ~ G  as .
3


                  (2.3.2.5b) 

For large θ, an asymptotic solution similar to the free surface jet (Tillett 1968; Saffari & 

Khayat 2008; Khayat 2014) is possible to obtain, namely, 

     
3

3 1 2 1
G 6

f ~ c c c .
3 1 G

 
      

              (2.3.2.6) 

Similarly, the common form of problem (2.3.2.4)-(2.3.2.5) for all the values of G is given 

by, 

3 2 3 2 3 2 33g 2g g 3g g 3g g 0.                       (2.3.2.7) 

Subject to the following boundary conditions: 

3 3g (0) g (0) 0,                   (2.3.2.8a) 

3

3
t

g ( ) ~  as t .
3

                   (2.3.2.8b) 

where 3 3 3f b g and t
a


 . Both a  and 3b  are constants. Condition (2.3.2.8b) is obtained 

from matching, which will be discussed in section 2.8. The asymptotic solution reads, 

     
3

3 1 2 1
1

g t ~ t d 6 d t d .
3
     
  

                (2.3.2.9) 
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Figure 2.7: Variation of the function 3g , 3g and 3g with t  for all the G values. 

Figure 2.8: Variation of similarity function 2f with   for all the G values. 
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The value of constant 2d (1.65404) is determined from the numerical integration of 

equation (2.3.2.7). Although the solution procedure is similar to before, the problems 

(2.3.1.7)-(2.3.1.8) and (2.3.2.7)-(2.3.2.8) are solved as a coupled system. Figure 2.7 

depicts the profiles of function 3g with t . Here also, the effect of G on the flow is not 

evident and the true picture is displayed in the figure 2.8. For the positive values of G, both 

3f and 3f   are always turn out to be positive, indicating to a higher order strengthening 

effect of pressure gradient on the flow close to the free surface whereas a higher order 

weakening effect is visible for the negative G values due to the negative values of both 3f

and 3f  . This can also be seen upon taking the velocity u  to the third order by using the 

expressions (2.3.10), (2.3.1.3) and (2.3.2.3) respectively, 

     1/3 2 2/3
2 3u x, x f x f .                      (2.3.2.10) 

At the free surface  z   , the velocity becomes, 

     1/3 2 2/3
2 3u x, z x f 0 x f 0 .                    (2.3.2.11) 

It is to be noted that for pure Couette flow ( G 0 ) case, to capture the higher order effect, 

one needs to proceed to the next order i.e. to order 4 . The following expressions are used 

to determine the value of the similarity function 3f , its derivative and the constant 2c : 

           
1 2/3

3 3 3 3f G 1 G g t , f G 1 G g t .
                  (2.3.2.12)  

Now, the slope at the origin becomes, namely, 

     
2/3

3 3f 0 G 1 G g 0 .


                  (2.3.2.13) 

And the constant, 

 
2/3

2 2c G 1 G d


                  (2.3.2.14)  
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Figure 2.9 illustrates the dependence of the initial slope  3f 0  and 2c on G. Surprisingly, 

both the initial slope  3f 0  and 2c  follow an increasing trend with the positive G values, 

indicating higher order strengthening effect of the adverse pressure gradient on the flow 

near the free surface. In contrast, a decreasing trend is observed for the negative values of 

G, pointing to a higher order weakening effect of the favorable pressure on the flow close 

to the free surface. Now, along with the slopes in figures 2.6 and 2.9, the expression 

(2.3.2.11) provides the dependence of the free surface velocity u on the pressure gradient, 

which is depicted in the figure 2.10 for all the G values. From the figure, it is clear that the 

free surface velocity u  diminishes in the case of favorable pressure gradient and grows for 

the adverse pressure gradient upon adding the higher order term. Figure 2.11 displays the 

effect of inertia on the free surface velocity u . Expression (2.3.2.11) and the figure both 

suggest that  u x, z   increases monotonically with x. In the figure 2.11a, apparent 

decrease in the surface velocity is observed due to the scaling used in the current 

formulation. The true picture is reflected in the figure 2.11b where the Reynolds number 

multiplies the streamwise velocity. The depthwise velocity w and the free surface height 

Figure 2.9: Dependence of the initial slope  3f 0  and 2c  on the parameter G. 
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will become available once the free surface height is determined from matching in the 

section 2.8. However, at this stage, it is helpful to discuss the influence of pressure gradient 

and inertia on both of them. The free surface height is given by (refer to section 2.8 for 

details),  

 
 

1/3 2 2/32
1

c
x c x x .

1 G
    


              (2.3.2.15)  

By recalling the equations (2.3.11), (2.31.3) and (2.3.2.3), to third order, the transvers 

velocity component is obtained, to read, 

   
1/3

2 1/3
2 2 0 2

3 2/3 1/3
3 3 3 0 1 2

x
w x, 2f f x h f

3

f f x f h x h f .
3

 
       

  

 
         

 

            (2.3.2.16) 

At the free surface, (2.3.2.16) reduces to, 

       
2 3

1/3 2
1 2 1 3 2

2c
w x,z c f 0 c f 0 f 0 .

3 3 1 G

   
         

           (2.3.2.17) 

The jet surface profiles for different levels of pressure gradient are shown in the figure 

2.12, reflecting a monotonic increase with distance x. The film gets thicker with the 

increment in the level of favorable pressure gradient whereas it becomes thinner with the 

adverse pressure gradient. The figure also suggests that the jet always contracts near the 

exit regardless of the direction of the pressure gradient. Figure 2.13 displays the inertia 

influence on the jet surface. The effect of inertia is similar to the favorable pressure 

gradient, which tends to increase the jet thickness as its value becomes higher. The 

transverse velocity w  profiles are plotted against the distance for the different G values in 

the figure 2.14. It is clear from the figure that the depth wise velocity gradually diminishes 

with x after the jump at the channel exit for any G values. This means that elongation is 

only dominant in a region very close to the channel exit. The figure also indicates that there 

is a significant departure in the transverse velocity for the positive G values. 
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Figure 2.10: Influence of pressure gradient (a) adverse   G 0,0.8  and (b) favorable 

  G 0, 0.8  on the streamwise velocity u at the free surface  z x   for 0.1  . 
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Figure 2.11: Influence of inertia on the streamwise velocity  u x 1, z   at the free 

surface  z x   (a) for different   and (b) Re  u x 1, z   . 
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Figure 2.12: Influence of pressure gradient (a) adverse   G 0,0.8 and (b) favorable 

  G 0, 0.8  on free surface  z x   for 0.1  . 
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Figure 2.13: Influence of inertia on the jet surface  x 1  . 
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Figure 2.15 displays the surface curvature variation with the inclination angle for 0.2   

and  G 0,0.8 . From the figure, it is visible that the curvature decreases with the 

increasing adverse pressure gradient. This agrees with the fact that the more positive the 

value of G becomes the more contraction of the free surface occurs. The results in the figure 

2.15 are overall qualitatively similar to the numerical results of Saito & Scriven (1981) and 

Lee et al. (2002) (refer to figure 23a of Lee et al. 2002) for the slot coating flow. However, 

in the present case, the surface curvature shows a change in the concavity at low inclination 

angle as opposed to the linear growth predicted for the slot coating flow in the previous 

studies. This might happen due to the high inertia effect considered in the current analysis. 

The effect of inertia on the surface curvature are shown in the figure 2.16 for G=0.4. Inertia 

affects the surface curvature in a contrasting manner to the pressure gradient by increasing 

the value of curvature.  

Figure 2.14: Influence of pressure gradient (a) adverse   G 0,0.8  and (b) favorable 

  G 0, 0.8  on the transverse velocity,  w x, z   at the free surface,  z x   for 

0.1  . 
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Figure 2.15: Effect of inertia on the free surface curvature with the inclination angle for 

G=0.4 

Figure 2.16: Free surface curvature variation with the inclination angle for  G 0,0.8 and 

0.2   



49 

 

 

Figure 2.18: Effect of inertia on the pressure along the free surface for G=-0.4. 

Figure 2.17: Development of the pressure along the free surface with distance x for 

0.2   and for  G 0, 0.8   . 
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Figures 2.17 and 2.18 display the effects of pressure gradient and inertia on the pressure 

along the free surface, respectively. A sharp variation of the pressure occurs very close to 

the exit in both cases due to the singularity effect (figure 2.17). In addition, the pressure 

reaches to zero level rapidly for higher inertia than the lower inertia (see figure 18).  

The effect of inertia on the film thickness at a specific x location (x=1) for different levels 

of the pressure gradient is depicted in the figure 2.19. The figure shows that the film 

thickness increases with the Reynolds number, and an asymptotic behavior of the film 

thickness at higher Reynolds number is also reflected in the figure 2.19. Surprisingly, this 

behavior is independent of the direction and magnitude of the pressure gradient. Usually, 

the high Reynolds number flows exhibit this behavior since the viscous effect becomes 

negligible when Re  . Eventually, the flow will act as an inviscid flow with the film 

thickness becomes equal to the channel gap. Moreover, as the magnitude of adverse 

pressure gradient increases, the film thickness gets thinner, and an opposite trend is 

observed for the favorable case. 

Figure 2.19: Development of the film thickness with Re for different level of pressure 

gradient (  G 0.4,0.4  ). 
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2.4  Flow in the lower wall layer  

The flow structure in the boundary layer near the lower wall is examined separately in this 

section. In this layer, similar to the free-surface layer, the transverse coordinate near the 

boundary will be denoted by y   , where   is the same small parameter used before. To 

examine the lower-wall layer i.e. the structure of the boundary layer close to the lower wall 

upstream of the channel exit, the near-wall coordinates are changed as x    and y z  

. Similar to the inner layer, matching with the core flow upstream of the channel exit shows 

that    
2 2 2y

~ 1 G 1 G
2 2

 
     as  . Therefore,   must have the order of 2

close to the lower wall. In this case, the non-dimensional momentum conservation 

equations (2.1.4), along with the no-slip, no penetration (2.210a and 2.2.10b) and upstream 

(2.2.10c) conditions are, 

2 2 4p ,                               (2.4.1a) 

2 4p ,                               (2.4.1b) 

   , 0 , 0 0,                        (2.4.1c)  

   
2 2 3 3

, ~ 1 G G .
2 3

   
                     (2.4.1d) 

The streamwise and transverse velocity components become, 

 
1

u , 


          (2.4.2)  

w .            (2.4.3)   

Noting from the expressions (2.4.1) that p is of order ε2, the flow field expansion reads, 

     2 3
2 3, , ,                ,      (2.4.4) 
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     2 3
2 3p , P , P ,            .      (2.4.5) 

A hierarchy of problems is obtained to different orders by inserting (2.4.4) and (2.4.5) in 

(2.4.1). Only one boundary condition in the x  direction is required for each problem. 

Accordingly, the condition in the equation (2.4.1d) which is the far-upstream condition is 

adequate for the problems to be well posed. This, in turn, eliminates the necessity of 

matching with the inner layer flow at the channel exit (x = 0). In addition, it is not required 

to introduce rescaling in the streamwise (x) direction unless one wants to capture the flow 

structure very close to the origin. Consequently, the order of x is assumed to remain at least 

of O(1); an upstream distance very close to the origin, i.e. from the channel exit is precluded 

in the current formulation. This is not the case of the flow in a constricted (dilated) channel, 

where the streamwise direction x  is rescaled in terms of the inverse power of the 

indentation slope (and the Reynolds number), which makes it possible to capture the flow 

close to the inception of the constriction (dilation). In order to determine the flow through 

and past the constriction (dilation) (Smith 1976) rescaling of x  is essential. However, in 

the present case, the flow is discontinuous through the singularity.  

To determine the additional boundary conditions needed to solve the problem (2.4.1) 

matching between the lower-wall and the core layers is considered next. From the core 

layer first recall that, the perturbations    1 2x,z x, z 0    . Thus, equation (2.5.2) is 

conveniently written here as, 

     
2 3

3
3

y y
x,z 1 G G x,z y

2 3
         .     (2.4.6) 

Applying 0E (refer to equation 2.8.1 in the section 2.8) in (2.4.6), it is clear that, 

 
2 3

0
y y

E 1 G G .
2 3

            (2.4.7) 

When the inner variable expansion 3H  is applied, it is clear that,  
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   
2 2 3 3 2 3

3 0
y y

H E 1 G G 1 G G .
2 3 2 3

   
           (2.4.8)  

Also, from (2.4.4), 2 3
3 2 3H        . Setting 3 0 0 3H E E H   , it is deduced that 

 
2 3

2 3~ 1 G and ~ G
2 3

 
   for large  .  

To the leading order, equations (2.4.1) reduce to, 

2 2 2 2 2 2P ,              2P 0.     (2.4.9) 

The boundary conditions for the above problems are, 

   2 2, 0 , 0 0,                      (2.4.10a) 

   
2 2

2 , ~ 1 G .
2

 
                    (2.4.10b) 

To the next order, the expressions (2.4.1) lead to the following problems,  

2 3 3 2 3 3P ,              3P 0.              (2.4.11) 

 Subject to the following boundary conditions, 

    3 3, 0 , 0 0,                      (2.4.12a) 

 
3 3

3 , ~ G .
3

 
                    (2.4.12b) 

Matching the pressure leads to, 

 2P , 0,            3P , 2G.               (2.4.13)  

Incidentally, it is not difficult to show that the solutions to  2O   and  3O   are, 
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   
2

2 , 1 G ,
2


         2P , 0,                 (2.4.14) 

 
3

3 , G ,
3


         3P , 2G .                 (2.4.15) 

Thus, up to  3O  , the flow does not deviate and preserves its Couette-Poiseuille character 

near the lower wall. 

Before proceeding to the next order, it is necessary to determine the inner value 

 3 x 0, z 0    for the core flow problem at this stage. First noting from (2.4.6) that 

       
2 3

3 2
3 3 3y 3yy

y y 1
E 1 G G x,0 y x,0 y x,0 ... .

2 3 2

 
           

 
          (2.4.16) 

Hence, 

   
2 3

3
3 3 3

y y
H E 1 G G x,0 .

2 3
                       (2.4.17) 

Also, from (2.4.4), (2.4.14) and (2.4.15),  

 
2 3

3
y y

H 1 G G
2 3

    .                  (2.4.18) 

This leads to,  

 
2 3

3 3
y y

E H 1 G G .
2 3

                      (2.4.19) 

Matching (2.4.17) and (2.4.19) yields, 

 3 x 0,z 0 0.                       (2.4.20) 
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This is the required to determine the core flow upstream of the channel exit (refer to the 

problem (2.5.5) in the next section).  

Now, from (2.4.1) the equations for 4  and 4P  are, 

2 4 4 2 4 4P            ,    4P 0  .          (2.4.21) 

Clearly,    4 4P , P    . Indeed, the above expression confirms that the problem is of 

the boundary-layer type, which requires only one boundary condition in the streamwise 

direction. Next, the matching condition is sought, which is needed in addition to the wall 

conditions to determine the disturbances 4  and 4P . 

Taking m = 4 and n = 3 in (2.4.6) (refer to section 2.8),  

 2 3 3
4 3 3yH E 3y 2y y x,z 0         

2 3
4

3z
y y

1 G G x,z 0 .
2 3

          (2.4.22) 

And comparing with  

 
2 3

4
3 4 4

y y
E H 1 G G ,

2 3
                        (2.4.23)  

yields the desired matching condition for large η, namely,  

   4 3z, ~ x, z 0 ,                      (2.4.24) 

where    n n
3z n

nn 1

A
,z 0 e V z 0


 



    


  is deduced from (2.5.10). It is to be noted 

that  nV z 0   is obtained from the solution of the eigenvalue problem (2.5.8), with n  

being the eigenvalues. In addition, the coefficients nA  are obtained from matching the 

upstream and downstream core flow at x = 0 as per (2.5.15). In the table 1 and table 2, the 

values nA for the first six modes are stated.  
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By using (2.4.14) and eliminating the pressure gradient from the expression (2.4.21), 

finally, the problem for  4 ,    becomes, 

  4 41 G ,                    (2.4.25a) 

     4 4 4, 0 , 0 0, , ~ 0          ,            (2.4.25b) 

  n n
4

nn 1

A
, ~ e .


 



   


                (2.4.25c) 

Following Khayat (2017), the problem (2.4.25) is solved by seeking a similarity solution 

of the form    n n
4 n

nn 1

A
, e F


 



    


 , where the functions  nF   are governed by 

 n n nF 1 G F ,                     (2.4.26a)  

       n n n nF 0 F 0 0, F ~ 1, F ~ 0.                   (2.4.26b) 

Problem (2.4.26) is a two-point boundary-value, which is solved numerically for each 

mode separately. Figure 2.20 illustrates the profiles of  nF   for the first six modes for 

the values of G=0.4, reflecting a monotonic growth of  nF   and its derivatives. 

Predominantly, significant departure is observed for the first mode ( 1 3.5161  ) from the 

rest modes. This, in turn, reflects the dominance of the first mode on the velocity. Since 

 nF 0    and  nF 0   are directly related to the shear stress at the wall and pressure, 

respectively, their values are listed in the table 1 and table 2. In particular, for all modes, 

 nF 0 0     and  nF 0 0    . To the current order, using equations (2.4.2), (2.4.3) 

and (2.4.4) the velocity components are given by 

   2 2 3 n n
n

nn 1

A
u , (1 G) G e F ,


 



         


                (2.4.27) 
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   4 n n
n

nn 1

A
w , e F .


 



    


                  (2.4.28) 

In this case, the pressure and wall shear stress at the lower wall turn out to be,  

   3 4 n n
n

nn 1

A
p , 2G e F 0 ,


 



       


                 (2.4.29)

   2 n n
n

nn 1

A
, 0 1 G e F 0 .


 



         


                (2.4.30) 

So, the asymptotes for the velocity components become, 

    2 2 3 n n

nn 1

A
u , ~ 1 G G e ,


 



      


                (2.4.31) 

Figure 2.20: the profiles of  nF   for the first six eigen modes (G=0.4). Also the values 

of  nF 0    and   nF 0   are shown in the insets. 
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  4 n n

nn 1

A
w , ~ e .


 



  


                  (2.4.32) 

The flow development near the lower wall is depicted in the figures 2.21 and 2.22 for 

G=0.4 and G=-0.4, respectively. In the figures, the disturbances profiles of the streamwise 

(2.21) and depthwise (2.22) velocities are shown at equal intervals for 0.25 x 0   . As 

expected, in the limit x   both disturbances vanish exponentially. Likewise, the 

asymptote reflecting the extent of the (inviscid) character of the core flow does not satisfy 

adherence at the lower wall. When the fluid approaches the exit, a significant elongation is 

noticed, which is reflected from the drastic departure of the value of  4W x 0,z  from 

zero. The shear stress at the wall always turns out to be positive. Thus, it is confirmed that 

there is no possibility of separation upstream of the channel exit along the lower wall. In 

the figures 2.23 and 2.24, the influence of inertia on the development of the pressure and 

the shear stress along the lower wall upstream of the channel exit are illustrated, 

respectively. Interestingly, the pressure remains close to the Poiseuille level. Depending on 

the sign of G, it increases/decreases essentially linearly all the way to the exit, but reaches 

a positive/negative level at the exit. Surprisingly, the level of shearing decreases with 

increasing inertia for any G value, which indicates flattening of the velocity profile near 

the channel exit. Both the shear stress and the pressure exhibit singularity at x = 0. This is 

because when the fluid moves along the lower wall and emerges along the jet free surface, 

it experiences vanishing shear stress and pressure at the free surface. However, the pressure 

and the wall shear stress are remained to Couette-Posieuille level upstream of the channel 

exit. 
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Figure 2.21: Streamwise velocity disturbance profiles near the lower wall for (a) G=0.4 

and (b) G=-0.4. 
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Figure 2.22: Transverse velocity disturbance profiles near the lower wall for (a) G=0.4 

and (b) G=-0.4. 
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Figure 2.23: Influence of inertia on pressure along the lower wall for (a) G=0.4 and (b) 

G=-0.4. 



62 

 

  

Figure 2.24: Influence of inertia on the wall shear stress along the lower wall for (a) 

G=0.4 and (b) G=-0.4. 
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Figure 2.26: Pressure profile for trailing stiff blade geometry for Re=12 (figure 9 of 

Lliopoulos and Scriven 2005). Inset shows the blade configuration (figure 4 of 

Lliopoulos and Scriven 2005). 

Figure 2.25: Pressure profile along the lower wall and free surface for 0.44   and G=-

0.4. Inset shows the magnification of the area very close to the exit inside the channel. 
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In the figure 2.25, the pressure profile along the lower wall and on the free surface is plotted 

for G=-4 and 0.44  . The pressure decreases essentially linearly with the distance and 

drops lower than the ambient value at the region close to the exit both upstream and 

downstream. This is due to the acceleration of the flow as it moves along the curved free 

surface. Gradually, it rises back to the ambient level, i.e. to zero. This behavior agrees 

qualitatively well with the numerical results of the blade coating flow of Lliopoulos and 

Scriven (2005) and Mitsoulis and Athanasopoulos (2010). For the convenience, the 

pressure profiles along the blade and on the free surface of the above-mentioned 

investigations are illustrated in the figures 2.26 and 2.27, respectively. From the figure 

2.26, it can be seen that as the Reynolds number increases less dip in the pressure occurs 

along the blade close to the exit, and the pressure on the frees surface also diminishes 

quickly to zero with the increasing level of inertia. Similar trends are found from the current 

analysis, which are depicted in the figures 2.23 b and 2.18, respectively. However, a 

Figure 2.27: Pressure distribution in the blade coating of a shear-thinning fluid obeying 

the Carreau model for S010 geometry (figure 11b of Mitsoulis and Athanasopoulos 

2010). Inset shows the S010 geometry (figure 11a of Mitsoulis and Athanasopoulos 

2010). 
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singularity in the pressure is present in the current results that cannot be seen in both of the 

numerical analyses. 

 

 

 

 

 

 

 

 

 

Figure 2.24b illustrates the shear stress development at the lower wall for the different level 

of inertia and G=-0.4. From the figure, it is evident that the shear stress retains its Couette-

Poiseuille level inside the channel expect very close to the exit. A jump in the shear stress 

value is observed very close to the channel exit since the fluid starts to feel the presence of 

singularity upon approaching the exit. This characteristic is reminiscent of the numerical 

result obtained by Mitsoulis and Athanasopoulos (2010) for the shear stress along the 

blade, which is presented in the figure 2.28 for convenience purpose. However, the 

discrepancy in the direction of the jump is due to the different geometric orientation 

considered in the present study.   

Figure 2.28: Axial shear stress profile along the blade wall and roll for a Newtonian fluid 

in the S010 geometry (figure 8a of Mitsoulis and Athanasopoulos 2010). Inset shows the 

S010 geometry (figure 7a of Mitsoulis and Athanasopoulos 2010). 
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2.5  Flow in the core layer  

For convenience, the core region is divided into two different regions: outside the channel 

( x 0 ) and inside the channel ( x 0 ) from the exit ( x 0 ). In this layer, the solution of 

the problems (2.1.4) is sought in each of the regions separately. For this purpose, equations 

(2.1.4) are conveniently rewritten here as 

 3
z xz x zz x xxz zzzp                        (2.5.1a)  

 3
x xz z xx z xxx xzzp                        (2.5.1b) 

The stream function and pressure are represented here by the following outer expansions: 

0 1 ...,                      (2.5.2a) 

0 1p p p .                     (2.5.2b) 

Here,   2
0 1 G z Gz     is just the basic Couette- Poiseuille flow stream function 

provided in (2.1.3). For m 0 , m  corresponds to the higher order terms that denote the 

deviation from the base flow due to its interaction with the boundary layers. This behavior 

of the base flow is similar to the laminar free jet flow (Tillett 1968; Saffari & Khayat 2008; 

Khayat2014; Khayat 2017) and tube or channel flow with a constriction (Smith 1979). To 

leading order, the fully developed profile is applied in such cases also.  At high Reynolds 

number, Smith studied the flow for three different levels of constriction: fine, moderate 

(1976) and sever (1979).  The constriction severity is reflected in the obstacle characteristic 

slope, which is of  1/3O Re  and  1/6O Re  for fine and moderate constrictions, 

respectively. Smith defined the Reynolds number Re  based on the tube diameter and 

maximum velocity. In this case, the non-linear influence of the obstacle in the upstream is 

absent, and the core flow is just an inviscid rotational perturbation of the base flow. The 

current problem also encounters the similar situation, where the jet contraction resembles 
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to a fine to moderate constriction, and outside the inner and wall layers, the core flow is of 

the inviscid elliptic, but linear in nature. 

In contrast, for severe constriction, the obstacle slope is of O(1). Therefore, this creates a 

significant upstream influence on the core flow. The current problem does not correspond 

to this level of constriction severity as mentioned before. Note that regardless of the 

constriction level of severity, the flow field expansion takes the same form. Hence, the 

above expansion (2.5.2a) is the same as expansion (2.1) for the flow with a severe 

constriction (Smith 1979). Although the leading order terms in (2.1) do not exactly 

correspond to fully developed flow, they still satisfy the inviscid equations of motion.  

Due to the elliptic nature of the governing equations, the deviation from base flow will also 

extend to the region x 0  upstream of the channel exit x 0 . Following these 

assumptions, a hierarchy of equations is obtained to each order upon inserting expressions 

(2.5.2) into equations (2.1.4). To leading order  0p x,z 0 . For m 1  and n 2 , the 

matching conditions obtained in section 2.4 and 2.8, and the condition 

 m 0 x ,z 0   , lead to the vanishing of the stream function and pressure 

everywhere. More explicitly,  

       1 2 1 2x,z x, z p x,z p x,z 0.            (2.5.3) 

 To next order, m 3 , equations (2.1.4) lead to  

0z 3xz 3x 0zz 3xp 2G,                        (2.5.4a) 

0z 3xx 3zp .                       (2.5.4b) 

Upon eliminating 3p from the above equations, the following equation is obtained for 3 :  

2 0zzz
3x 3x

0z

0,


    


          (2.5.5) 
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where 
2 2

2

2 2x z

 
  

 
. Noting that 3 3xw   , the following boundary-value problem is 

obtained for the ranges - x     and 0 z 1  : 

 
2

3 32

2G
w w 0,

1 G z Gz
  

 
                  (2.5.6a)  

 

 

 

3

3

3

3

w x,1 0,

w x,0 0 for x 0,

2G
w x,z 0 for x 0,

1 G

w bounded as x .



 

  




                (2.5.6b)

  

Matching between the inner and core flow provides the condition 

 3
2G

w x 0,z 0
1 G

  


 (see section 2.8 for details). The non-homogeneity of the 

boundary condition prohibits the vanishing of the solution. Even though the formulation is 

common to both core flow regions, they will be examined separately for convenience 

purpose.  

2.5.1  Flow in the core layer upstream of the channel exit  x 0   

Now, consider the core flow in the region inside the channel ( x 0 ). Equation (2.5.6a) is 

a second order linear equation with non-constant coefficient in z. In this case, the following 

form of the solution is achieved using the separation of variable argument (Tillett 1968): 

   xn
3 3x n n

n 1

w x 0,z A e V z .






                     (2.5.1.1) 

Here, nV are the shape functions and governed by the following eigenvalue problem: 

   2
n n n n2

2k
V V 0, V 0 Vn 1 0,

z kz

        
  

              (2.5.1.2) 
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 where, 
G

k
1 G




and n is real and positive.  

Table 1: Values for the first six modes for  G 0.2,0.8  

 

G 

0.2 

n n   nA   nF 0   nF 0  

1 3.3111 -0.3824 1.4768 -1.4896 

2 6.3965 -0.4362 1.8357 -2.3061 

3 9.5102 -0.4559 2.0948 -3.0036 

4 12.6362 -0.4655 2.3030 -3.6301 

5 15.7661 -0.4704 2.4792 -4.2072 

6 18.9010 -0.4731 2.6337 -4.7478 

0.4 

1 3.5161 -0.6998 1.3716 -1.2825 

2 6.5498 -0.9442 1.6817 -1.9347 

3 9.6320 -1.0565 1.9115 -2.5008 

4 12.7380 -1.1182 2.0980 -3.0127 

5 15.8540 -1.1553 2.2567 -3.4858 

6 18.9780 -1.1788 2.3962 -3.9299 

0.6 

1 3.7694 -0.8580 1.2333 -1.0313 

2 6.7715 -1.4400 1.4876 -1.5117 

3 9.8205 -1.7996 1.6815 -1.9341 

4 12.9010 -2.0293 1.8409 -2.3191 

5 15.9972 -2.1829 1.9775 -2.6764 

6 19.1061 -2.2900 2.0980 -3.0126 

0.8 

1 4.0890 -0.6949 1.0314 -0.7053 

2 7.1231 -1.5502 1.2119 -0.9945 

3 10.1600 -2.3609 1.3552 -1.2514 

4 13.2170 -3.0486 1.4758 -1.4876 

5 16.2901 -3.6094 1.5806 -1.7083 

6 19.3780 -4.0628 1.6740 -1.9169 
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Table 2: Values for the first six modes for  G 0.2, 0.8   

Since the above problem is an eigenvalue problem, it is solved numerically subject to the 

additional boundary condition  nV 0 1  .The first six eigenvalues are tabulated in the 

table 1 and table 2 for the values of G from 0.2 to 0.8 and from -0.2 to -0.8, respectively. 

G 

-0.2 

n n   nA   nF 0   nF 0  

1 2.9983 0.4175 1.6333 -1.8245 

2 6.1950 0.3737 2.0788 -2.9577 

3 9.3580 0.3607 2.3851 -3.8937 

4 12.5123 0.3541 2.6276 -4.7257 

5 15.6610 0.3497 2.8317 -5.4885 

6 18.8090 0.3463 3.0100 -6.2013 

-0.4 

1 2.8452 0.8381 1.6951 -1.9658 

2 6.1234 0.6838 2.1799 -3.2524 

3 9.3060 0.6434 2.5062 -4.2991 

4 12.4710 0.6242 2.7631 -5.2256 

5 15.6262 0.6121 2.9788 -6.0735 

6 18.779 0.6035 3.1670 -6.8652 

-0.6 

1 2.7680 1.2564 1.7497 -2.0947 

2 6.0642 0.9460 2.2717 -3.5322 

3 9.2630 0.8723 2.6162 -4.6849 

4 12.4370 0.8385 2.8862 -5.7017 

5 15.5980 0.8180 3.1125 -6.6310 

6 18.755 0.8036 3.3097 -7.4979 

-0.8 

1 2.6733 1.6088 1.7986 -2.2136 

2 6.0140 1.1374 2.3561 -3.7996 

3 9.2271 1.0337 2.7175 -5.0545 

4 12.4090 0.9873 2.9995 -6.1582 

5 15.5750 0.9597 3.2356 -7.1656 

6 18.7350 0.9405 3.4411 -8.1047 
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Figure 2.29 depicts the dependence of the shape functions on the corresponding 

eigenvalues. Interestingly, nV decreases with n whereas n  increases. This facilitates 

reasonable convergence after only a few modes. 

 

 

 

 

 

 

 

 

 

By integrating expression (2.5.1.1) subject to  3 x ,z 0    , leads to 

   xn n
3 n

nn 1

A
x 0,z e V z .






  


                   (2.5.1.3) 

So, the total stream function inside the channel becomes, 

     
2 3

x3 n n
n

nn 1

Az z
x 0,z 1 G G e V z .

2 3






      


               (2.5.1.4) 

The core streamwise velocity inside the channel to the order  3O   is given by, 

Figure 2.29: Shape function nV  vs z for the first six Eigen modes for G 0.4   . 
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     x2 3 n n
n

nn 1

A
u x 0,z 1 G z Gz e V z .






     


               (2.5.1.5)  

Finally, the coefficients nA are obtained by matching the flow with the outside one at the 

channel exit, and will therefore be determined once the outside flow is considered. 

2.5.2  Flow in the core layer downstream of the channel exit  x 0   

Downstream from the channel exit x 0 , the solution of problem (2.5.5) takes the 

following form: 

     xn
3 3x 0 n n

n 1

2G
w x 0,z V z A e V z .

1 G






    


               (2.5.2.1) 

Since, outside the channel the flow has to match with the inner layer flow, this matching 

forces the outside flow to have an additional term in the solution in the form of  0V z .  

Here  0V z satisfies the following equation and boundary conditions: 

   0 0 0 02

2k
V V 0, V 0 1, V 1 0.

z kz

    


               (2.5.2.2) 

Problem (2.5.2.2) admits an analytical solution in the form as, 

     0
z 1 2k

V 2kz 1 kz ln 1 2kz z 1 kz 2k ln 1 k .
1 kz 1 k

   
              

            (2.5.2.3) 

The development of the function  0V z with different G values is shown in the figure 2.30. 

As mentioned before, the coefficients nA are found by matching both inside and outside

3w at x 0 . For this purpose, equating the expressions (2.5.1.1) and (2.5.2.1) at x 0 , 

yields  

   0 n n
n 1

1 G
V z A V z .

G






                    (2.5.2.4) 
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which is a spectral representation of  0V z  in terms of the orthogonal shape functions

 nV z . Note that, by multiplying the equations in (2.5.1.2) and (2.5.2.2) by 0V  and nV , 

respectively, then integrating, and using the conditions therein, it is not difficult to show 

that  

n 0 2
n

1
V U ,


                  (2.5.2.5)  

where the brackets denote integration over the interval 0 z 1  . Consequently, using the 

orthogonality of the shape function, (2.5.2.4) yields 

 
   

n 0
n 2 2 2

n n n

G V U G
A .

1 G V 1 G V
   

  
                (2.5.2.6) 

Figure 2.30: the profiles of function  0V z  for different G values 



74 

 

Finally, the stream function is obtained by integration equation (2.5.2.1) and applying 

 3 x ,z 1 0    , leads to 

     xn n
3 0 n

nn 1

A2G
x 0,z xV z e V z .

1 G






    
 

              (2.5.2.9) 

Therefore, the total stream function and streamwise velocity outside the channel take the 

following forms: 

       
3

x2 3 n n
0 n

nn 1

Az 2G
x 0,z 1 G z G xV z e V z ,

3 1 G






 
         

   
          (2.5.2.10) 

       x2 3 n n
0 n

nn 1

A2G
u x 0,z 1 G z Gz xV z e V z .

1 G






 
         

   
          (2.5.2.11)   

2.5.3  Pressure in the core layer and elsewhere  

In this section the pressure distribution inside the core layer, inside and outside of the 

channel is considered. The pressure inside the channel is obtained by integrating equation 

(2.5.4b) subject to appropriate boundary conditions, which are determined as follows. First 

of all, recall from section 2.2 that the pressure in the inner layer was shown to be the order 

of 4 . Therefore, for x 0 , by matching the pressure in the core and inner layers it can be 

easily deduce that the pressure in the core region outside the channel vanishes at the 

interface between the two layers, or 

 3p x 0,z 0 0.                     (2.5.3.1) 

Hence, at the channel exit, this gives to  3p x 0,z 0 0   . Now, upon evaluating (2.1.3) 

and (2.5.1.1) at z 0 , equation (2.5.4a) reduces to  

 3xp x 0,z 0 2G.                    (2.5.3.2) 
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Noting that the pressure must match a zero third order pressure from the inner solution at 

the channel exit, equation (2.5.3.2) is integrated subject to  3p x 0,z 0 0   , which 

gives pressure near the wall inside the channel, namely, 

 3p x 0,z 0 2Gx.                    (2.5.3.3) 

Now, upon inserting equation (2.1.3) and (2.5.1.1) into equation (2.5.4b), the expression 

for the transverse pressure gradient at any point inside the channel becomes 

    x2 n
3z n n n

n 1

p x 0,z 1 G z Gz A e V .






     
                (2.5.3.4)  

Which, upon using (2.5.1.2), is conveniently recast as, 

       x 2n n
3z n n

nn 1

A
p x 0,z e 1 G z Gz V 1 G 2Gz V .






                  
   (2.5.3.5) 

Finally, (2.5.3.5) is integrated subject to (2.5.3.3), leading to 

      x 2n n
3 n n

nn 1

A
p x 0,z 2Gx e 1 G z Gz V 1 G 2Gz V .






            
      (2.5.3.6) 

Although Couette-Poiseuille conditions are theoretically recovered in the limit x  , 

calculations based on expression (2.5.36) indicate that these conditions prevail essentially 

for x < - 1, corresponding to a distance approximately equal to one channel width. Now, 

consider the pressure outside the channel. Inserting expressions (2.1.3) and (2.5.2.1) into 

(2.5.4b) yields 

 
  
  

2
nxn n

3z
nn 1

n

1 G z Gz VA
p x 0, z e .

1 G 2Gz V






           
        

              (2.5.3.7) 

Which, upon using (2.5.1.2), and integrating and matching with (2.5.3.6) at x 0 gives 
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      x 2n n
3 n n

nn 1

A
p x 0,z e 1 G z Gz V 1 G 2Gz V .






            
             (2.5.3.8)  

Thus, the pressure is available at any point in the core region inside and outside the channel. 

Incidentally, these expressions are valid both in the inner and core layers as  3
3p x, z

turns out to be equal to the composite pressure. In other words, the pressure everywhere is 

readily available and is given by      3 4
3p x,z p x, z O    . Figure 2.31 displays the 

influence of pressure gradient on the pressure distribution at the upper wall for different 

values of G. The pressure decreases monotonically with x and essentially becomes zero 

after some distance downstream of the channel exit. The figure also suggests that the core 

pressure is not affected by the G expect that when the magnitude increases it takes a bit 

longer distance to go to zero. The development of pressure in the core layer with different 

heights is presented in the figure 2.32. Surprisingly, regardless of the applied pressure 

gradient direction, the pressure decreases essentially linearly with distance x both upstream 

and downstream of the channel exit. Upon approaching to the channel exit, there is a 

sudden change in the slope from a constant value to a zero value. This is possibly the 

indication of the singularity, and close to the upper wall, the pressure changes smoothly.  

This behavior is reminiscent of a symmetric free jet where it tends to vanish essentially for 

any height downstream of the channel exit (refer to figure 3 in Tillett 1968). In fact, the 

figure also reflects that the jet contraction does not have any significant effect on the flow 

close to the upper wall, i.e. the effect is limited to the lower half of the core layer only. 
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Figure 2.31: Influence of pressure gradient on the pressure distribution at the upper wall 

for (a)  G 0.2,0.8  and (b)  G 0.2, 0.8    
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Figure 2.32: Pressure distribution at different heights for (a) G=0.4 and (b) G=-0.4. 
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2.6 Composite flow  

The composite flow over the entire jet region is obtained by determining the composite 

velocity and pressure profile outside the channel. Following Van Dyke (1964), the 

composite expansion operator is defined by 

n n n n nC E H E H .            (2.6.1) 

This expression provides a uniform approximation to order n over the entire width of the 

jet. Given the availability of the treatment in the previous section, it is convenient to first 

generate 3C  , and then deduce 2C u and 2C w . For n=m=3, the composite expansion for 

the stream function from (2.)-(2.113), namely, 

 
 

     

2 2/3 2
3 2 2

3 2
3 3 2

G
C x f z c

1 G

2G
xf x,z 1 G z Gz h .

1 G

 
     

 

           

    (2.6.2)  

Even though the value of 2h is required if the stream function is to be evaluated to  3O ,

this accuracy is not essential when the flow variables are determined. Differentiating the 

resulting stream function yields the desired composite velocity components,   

   
 

 1/3 2 2/3 3
2 2 3 2

2G
C u u x f x f zc O ,

1 G

 
           

 

    (2.6.3)

   
   

2 1/3
2 1 3

2 2 2

f cx
C w C w x,z 2f O .

3 3

   
       
  

    (2.6.4) 

The above expressions dictate how the velocity profile changes over the entire jet width up 

to second order in  . In the case of pressure, the non-zero contribution enters only to the 

third order, namely, 

 3 4
3 3C p p O ,              (2.6.5) 
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where 3p  is given by the expression (2.5.3.8). The effect of G on the flow field, i.e. 

streamwise and transverse velocities and pressure at the different x position between the 

free surface and upper moving wall are depicted in the figures 2.33, 2.34 and 2.35, 

respectively for 0.2  . The profiles of velocity u in the figure 2.33 reflect that despite the 

presence of significant depthwise velocity component (figure 2.34), the flow retains 

essentially its Couette-Poiseuille character at the channel exit. Downstream of the channel 

exit, there is growing slip on the free surface, which flattens the velocity profile. 

Eventually, the flow behavior changes from the fully developed Couette-Poiseuille to a 

uniform flow further downstream of the exit, i.e. at large x. The velocity profiles flatten 

more in the case of adverse pressure gradient (figure 2.33a) than the favorable case (figure 

2.33c). However, the w profiles do not show any significant qualitative dependency on the 

G. It diminishes gradually with the distance x after the jump at the channel exit. Figure 

2.34 confirms that the vertical flow component is essentially absent except near the free 

surface. Note that the flow exhibits the strong presence of both shear and elongation in the 

region close to the free surface. The transverse pressure gradient is particularly strong near 

the free surface due to sudden jump in the velocity w and shows an intricate variation across 

the jet. Given the vanishing of the normal force at the free surface and dominance of shear 

over the elongation, pressure tends to decay to zero over a relatively short distance from 

the channel exit (see figure 2.35). Note that for G=0 case, i.e. for pure Couette flow the 

pressure stays constant (figure 2.35b). In this case, to capture the pressure variation, one 

needs to calculate the order  4O   disturbances of the core flow.   
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Figure 2.33: Composite Streamwise velocity profile over the entire jet region at different 

locations for (a) G=0.4, (b) G=0 and (c) G=-0.4 and for 0.2  . Vertical lines represent 

the corresponding x location. 
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Figure 2.34: Composite transverse velocity profiles over the entire jet region at different 

locations for (a) G=0.4, (b) G=0 and (c) G=-0.4 and for 0.2  . Vertical lines represent 

the corresponding x locations and insets show the magnification of the velocity 

component. 
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Figure 2.35: Composite pressure profiles across the jet width for (a) G=0.4, (b) G=0 and 

(c) G=-0.4 and for 0.2  . Vertical lines represent the corresponding x locations. 
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2.7 Flow far from the channel exit  

In this current section, upon adopting the control volume approach the flow in the far 

downstream of the channel exit is examined. In this case, the non-dimensional momentum 

conservation equation is expressed in the integral form as, 

 
C

dl 0,σ uu n  
 

   (2.7.1) 

where, u is the velocity vector and σ is the total stress tensor, which is scaled similarly to 

the pressure (see section 2.1). Therefore, 

 3 tp .σ I u u     
 

 (2.7.2) 

More explicitly, 

 3 3 3
xx xz xz zx zz xx zz xzp 2 , , p 2 .                    (2.7.3) 

Here dl denotes a line element of the closed curve C. The five segments or arcs considered 

for the closed curve C are illustrated in figure 2.3: (i) a line 0x x 0,  0 z 1   upstream, 

(ii) a segment 0x x 0,   z 0  of the lower wall, (iii) a segment 0 x x ,     z x   

of the lower free streamline or free surface, (iv) a line x x ,   x z 1     downstream, 

and (v) the segment 0x x x ,   z 1  of the upper wall (see figure 2.3). Here x  is the 

(dimensionless) relaxation length in the streamwise direction. Here, only the x component 

of equation (2.7.2) is considered. Since there is no traction on the free surface, number (iii) 

will not contribute in the analysis. Thus, the equation (2.7.1) reduces to, 

 

 
 

1 03 2 3
xz z zz0 xx x 00

1 x3 2 3
xz z zzx x0x x

p 2 dz x,0 dx

p 2 dz x,1 dx 0.





   

       
 

         
 

 

 
 (2.7.4) 
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Obviously, the contribution to order  3O   will be consider only. Now, first consider the 

first integral. The flow is fully developed with no inner layer in the far upstream of the 

channel exit. In this case, based on (2.5.1.4) and (2.5.3.6), for large 0x , the first integral 

reads 

   

0

2 2
1 3 2 3

xz z 00 x x

1 G 1 G G G
p 2 dz 2 Gx 0 .

3 2 5

 
          
     (2.7.5)  

In addition, the second and fourth integrals are approximated up to  3O  and this yields  

   
0 3 3

zz 0x0
x,0 dx 1 G x ,        (2.7.6) 

    
x 3 3

zz 0x0
x,1 dx 1 G x x .


         (2.7.7) 

Thus, upon substituting (2.7.5)-(2.7.7) into the equation (2.7.4) yields, 

   
 

2 2
1 3 2 3

xz z
x x

1 G 1 G G G
p 2 1 G x .

3 2 5
  

 
          
   (2.7.8) 

At large x = x∞, the jet reaches uniform speed W  and width  and the equation (2.7.8) 

reduces to, 

   
 

2 2
2 31 G 1 G G G

W 1 G x .
3 2 5



 
       (2.7.9) 

For an incompressible fluid conservation of mass provides that, 

 1

0

0

1 G G
W u dz .

2 3


      (2.7.10) 
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Far downstream from the exit, if the jet velocity approaches the upper wall velocity 1, then 

the above equations reduce to, 

 

2x 5 G
,

Re 30 1 G

 



  (2.7.11)  

3 G
.

6


    (2.7.12) 

Equation (2.7.12) suggest that for a free surface moving wall jet flow the final film 

thickness is only a function of G, i.e. the applied pressure gradient. Moreover, in the 

absence of imposed pressure gradient inside the channel, i.e. for pure Couette flow a film 

thickness equal to the half width of the channel gap can be obtained. The thinner film 

thickness is possible by adding an adverse pressure gradient, i.e. for positive G cases. 

Increasing the magnitude of the favorable pressure gradient, i.e. negative G values will 

increase the film thickness. On the other hand, the length at which the jet attains a uniform 

width depends on both Reynolds number and G. 

2.8 Matching between the inner and core layer  

Matching between the inner and core layer at the interface provides the additional boundary 

conditions needed for solving different problems in each of the regions. Here, the matching 

rule developed by Van Dyke (1694) is adopted, namely, 

n m m nE H H E ,             (2.8.1)  

where m and n are integers. When the expansion is expressed in terms of the core variables, 

the core-expansion operator mE truncates immediately after the term of order n . The 

corresponding inner expansion operator is denoted by mH . For successful application of 

the above matching rule, it is required that the stretching transformation between the inner 

and core variables must be expressed in the canonical form y = εη. The core expansion in 

this case, must be written in terms of y , not z ; otherwise, (2.8.1) can be satisfied only 

approximately. The two expressions in (2.8.1) must be exactly same, for all the values of
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m  and n . Depending on the values of m  and n , different levels of matching are needed 

to obtain the boundary conditions for the inner and core solutions and also to determine the 

free surface height/displacement to each order in  . 

First, consider the matching to  O  .  Recall that, to leading order, the stream function in 

the core region is,  
2 3z z

1 G G
2 3

    , which is expressed in terms of y and h as 

 
   

2 3
y h y h

1 G G .
2 3

   
            (2.8.2) 

For m=2 and n=0, applying 0E on (2.8.2) gives 

 
2 3

0
y y

E 1 G G .
2 3

             (2.8.3) 

As this expression must be in inner variables when the operator 2H is applied, it is rewritten 

in the following form:  

 
2 2 3 3

0E 1 G G .
2 3

   
            (2.8.4) 

Hence,  

   
2 2 2

2 0
y

H E 1 G 1 G .
2 2

 
             (2.8.5)   

To leading order, the inner expansion for the stream function is obtained from (2.3.1.3) as 
2

2    . Consequently, from (2.3.7), (2.3.1.3) and (2.3.1.6), at large  , 2H  is obtained 

in terms of outer variable as  
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 
 

 
 

2
12 2 2 2/3 2 2/3

2 2

2
1/3

12 2/3

c
H f 1 G

2

c
1 G .

2



  
           

  

 
  

    
 
 

     (2.8.6)  

Thus,  
2

2
0 2 2

y
E H 1 G

2
      , which when matched with (2.8.5), leads to 

 
2

2 ~ 1 G
2


   for large  . This is the condition (2.3.1.2b) or, equivalently (2.3.1.5b). 

Similarly, taking m=3 and n=0, leads to 

 
2 3

3 0
y y

H E 1 G G ,
2 3

             (2.8.7) 

 2 3
0 3 0 2 3E H E .               (2.8.8) 

Which upon matching leads to, 3
3 ~ 2   for large  . This is the condition (2.3.2.2b) or, 

equivalently (2.3.2.5b). Next, to determine 0h  and boundary condition for  1 x, z , 

consider the application of (2.8.1) for m=2 and n=1. Applying 1E on (2.8.1), 

     
2 3

2
1 0 0 1 0

y y
E 1 G G 1 G y h Gy h x, y h

2 3
                 (2.8.9) 

Expanding about y, 

 
2

0
1 0 1 0 1y 1yy

h
(x, y h ) (x, y) h (x, y) (x, y) .

2


                         (2.8.10) 

Expanding the term on the right hand side about y=0, 

     

 

2

1 0 1 1y 1yy

2
0

0 1y 1yy

y
(x, y h ) x,0 y x,0 x,0

2

h
h (x,0) (x,0) .

2

         


    

              (2.8.11) 

In this case, (2.8.9) leads to 
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   

   
 

2 3
2

1 0 0

2
02

1 1y 0 1y 1yy

y y
E 1 G G 1 G y h Gy h

2 3

h
x,0 y x,0 h (x,0) (x,0).

2

        


        

            (2.8.12) 

The terms surviving to  2O   are identified by expressing 1E   in terms of inner variable,

y
 


 to yield, 

       
2

2
2 1 0 1 1y 0 1y

y
H E 1 G 1 G y h x,0 y x,0 h (x,0).

2
                       (2.8.13) 

On the other hand, applying 1E in (2.8.6), leads to 

   
2

1/3
1 2 1

y
E H 1 G 1 G yx c .

2
                      (2.8.14) 

Matching (2.8.13) and (2.8.14) leads to  1 x,0 0  .This homogeneous boundary 

condition results in  1 x, y 0  . The remaining terms yields the result 1/3
0 1h c x . The 

vanishing of  1 x, z  means that, to the order  , there is no interaction between the 

boundary layer and the core flow. 

In this case, the free surface height is given by, 

     1/3 2
1x c c x O .                       (2.8.15)    

Applying m=2 and n=2 in (2.8.1), leads to 

       
2 22

20
2 2 0 2

hy
H E 1 G 1 G y h 1 G x,0 ,

2 2


                        (2.8.16) 

     
2 2/3 22

1/3 1
2 2 1

x cy
E H 1 G 1 G yx c 1 G .

2 2


                      (2.8.17) 
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Again, matching (2.8.16) and (2.8.17) yields to  2 x,0 0  , concluding that 

 2 x, z 0  everywhere which reflects the absence of interaction between the boundary 

layer and the core flow up to order 2 .  

Finally, to obtain 1h and  3 x,0  equation (2.8.1) is applied for m=n=3. Noting that 

 
 

   

2
1/3

12 3 2 2/3
3 2 3

3
3 1/3 1/3

1 2 1

c
H 1 G

2

G 6
c c c .

3 1 G



 

 
  

           
 
 

  
         

  

            (2.8.18) 

Thus, 

   

 

2
3 1/3

3 3 1

2
12 2/3 2 3 3

1 2 2 1 1

y G
E H 1 G y x yc 1 G Gy

2 3

1 G c 1 6G
x Gyc c y x c c Gc .

2 3 1 G

         

    
          

     

            (2.8.19) 

By applying (2.8.1), it is not difficult to show that 

     

    

3 2 2 2
3 0 1 2

2 2 3 3
0 0 1 3 0

E 2y 3 c y h h h 2 3 c 6y

3 c 6y h 2 h h x,0 2h .

            
 

           
    

              (2.8.20) 

Which leads to 

   

     

2 3

3 3 0

3
2 2 3 0

0 1 0 1 3

y y
H E 1 G G y 1 G Gy h

2 3

h1 G
Gy h 1 G yh 1 G h h x,0 G .

2 3

       

    
           

     

              (2.8.21) 
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Matching (2.8.20) and (2.8.21), and recalling 1/3
0 1h x c , the correction of the free surface 

height to the next order is obtained, namely, 

 
2/32

1
c

h x .
1 G




                   (2.8.22) 

In addition, one has, 

 3
2G

x,0 x.
1 G

  


                   (2.8.23)    

Condition (2.8.23) yields the third boundary condition in (2.5.5b). Consequently, for the 

first time, a non-trivial core problem is attained.       

The height of the free surface to next order is given by, 

 
 

1/3 2 2/32
1

c
x c x x ,

1 G
    


                 (2.8.24) 

where 1c  and 2c  are the functions of G and are readily available from the figures 2.6 and 

2.9, respectively.  
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Chapter 3  

3  Summary and concluding remarks  

The laminar two-dimensional jet flow of a Newtonian fluid exiting into the stagnant 

atmosphere is investigated in the current thesis. Especially, the flow near the channel exit 

is examined at moderate Reynolds number with the pressure gradient (adverse/favorable) 

applied far upstream of the channel exit. The problem is of direct relevance to two high-

speed coating processes, namely, the slot coating and the blade coating. The method of 

matched asymptotic expansion is adopted to treat the problem. The interplay between the 

inertia and the pressure gradient on the free surface shape and the profiles of velocity and 

stress are emphasized. Sufficiently large inertia is assumed for allowing the asymptotic 

development of the flow in terms of the inverse Reynolds number. In this case, by 

expanding the flow field about the base Couette-Poiseuille flow, the equations of motion 

are simplified. At the channel exit, a stress singularity occurs where the boundary condition 

changes from no-slip at the lower wall to slip at the free surface. As a result, the entire flow 

domain comprises of four different regions: inner, core, lower wall, and upper wall layers. 

A classical boundary layer analysis is applied to determine the flow behavior in the free 

surface or inner layer as well as in the lower wall layer. Note that the upper wall layer is 

not treated in the present study. The boundary or inner layer forms near the free surface 

due to the presence of the stress singularity at the channel exit whereas the failure of 

satisfying the wall adherence of the core flow causes the two wall layers to form. 

The boundary layer structure near the free surface and lower wall are investigated in details. 

Two similarity solutions are obtained in the two regions, which allow to avoid dealing with 

the singularity explicitly at the singular point, i.e. at x=0. In this case, matching between 

the inner layer and lower wall layer is not required due to the similarity nature of the 

solutions. This constitutes a major advantage of the current formulation over the numerical 

counterpart where the whole domain discretization is an essential requirement. The shape 

of the free surface is acquired by matching inner layer flow with the core flow outside the 

cannel exit. It is found that the free surface always contracts near the channel exit regardless 

of the level of inertia and direction of the applied pressure gradient. Depending on the 

direction of the pressure gradient, upon approaching the channel exit, the fluid exhibits an 
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increase (favorable case) or decrease (adverse case) in shearing at the lower wall with the 

inertia. In the case of pressure along the lower wall, it remains close to the Couette-

Poiseuille level inside the channel and takes a negative or positive dip at the channel exit. 

These behaviors are reminiscent of the results found by Mitsoulis (2010), and Iilipoulos 

and Scriven (2005) for the blade coating flow numerically. While the film thickness gets 

thinner with the increasing level of adverse pressure gradient, it becomes thicker with the 

increase of the favorable pressure gradient. However, the film thickness increases with the 

inertia and reaches to an asymptotic value at higher inertia, i.e. larger Reynolds number. 

This trend also aggresses qualitatively with the previous studies conducted on the slot and 

the blade coating flows (refer to figure 10 of Ilipoulos and Scriven 2005, figure 11 of Lin 

et al. 2010, and figure 5 of Chin et al. 2010).  

The present analysis provides an accurate estimate of the flow behaviors close to the 

channel exit, which are necessary to determine the flow far downstream of the channel exit. 

When the jet achieves a thin uniform profile further downstream, any thin layer 

approximation such as boundary layer or lubrication theory can be used to obtain the flow 

characteristics with currently predicted flow conditions.  Note that similar to the thin film 

analysis, current formulation is not valid very close to the exit, i.e. at the point of inception. 

The analytical form of the steady-state flow obtained from the current analysis can be 

utilized to carry out a linear stability analysis.   

3.1   Future work 

Although the current thesis focuses only on the steady state flow of a free surface moving 

wall jet encountered in the slot and the blade coating processes, the followings can be done 

as an expansion work: 

a) Calculation of the flow behavior in the boundary layer along the upper (moving) 

wall. 

b) Incorporation of the non-Newtonian effects using polymeric solution instead of 

Newtonian fluid. 

c) Consideration of the surface tension and gravity effects in the formulation, which 

have been neglected in the present study.  
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d) The heat transfer effect is not studied in the current thesis, which can be 

incorporated in the future. 

e) Currently, only single layer of flow is considered. This can be extended by taking 

two layers of flow into consideration. 
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