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Abstract(

Although Staphylococcus aureus is exposed to antimicrobial fatty acids on the skin, in 

nasal secretions and in abscesses, specific mechanisms for regulating gene expression and 

intrinsic resistance in response to these fatty acids have not been reported. Through in 

vitro selection for increased resistance of S. aureus to linoleic acid, I identified fatty acid 

resistant clone FAR7, where a single nucleotide polymorphism caused a His121Tyr 

substitution in an uncharacterized member of the TetR family of transcriptional 

regulators, which is divergently transcribed from a gene encoding a member of the 

resistance-nodulation-division superfamily of multi-drug efflux pumps. I named these 

genes farE and farR, for regulator and effector of fatty acid resistance, respectively. S. 

aureusΔfarER exhibited loss of inducible resistance to linoleic acid, and although FarR is 

a TetR family regulator which typically repress expression of a divergent gene, I found 

that FarR is needed to induce farE. Compared to wild type S. aureus, FAR7 exhibited 

increased expression of farR and farE under non-inducing conditions, and a significantly 

higher induced level of farE. Electrophoretic mobility shift assays revealed a FarR 

binding site in the farER intergenic segment, that overlaps with the +1 transcription start 

site of farR as determined by 5"-RACE. The variant FarR7 produced by S. aureus FAR7 

failed to bind to this operator site, and nucleotide substitutions within the operator 

abolished binding of native FarR. Conversely, FarR and FarR7 bound equally well to a 

second operator site upstream of the predicted farE promoter. Therefore, like other TetR 

regulators, FarR represses its own expression, and a His121Tyr substitution in FarR causes 

a loss of auto-repression and increases expression of both farR and farE. My data reports 

the first description of a specific mechanism of inducible resistance to antimicrobial fatty 

acids in a Gram-positive pathogen and defines a new paradigm for regulation of a 

divergently transcribed gene by a TetR family regulator.  

 Keywords 

Antimicrobial fatty acids, efflux pumps, TetR family regulator, inducible resistance, 

Staphylococcus aureus. 
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1.1( Staphylococcus,aureus,Overview(
Staphyloccous aureus is a Gram-positive bacterium from the Firmicutes phylum that is 

considered as a pathobiont. It colonizes ~30% of the human population 

asymptomatically, and thus is a part of the resident microbiota, but also a pathogen 

proficient in causing diverse cutaneous and systemic infections of ranging severity (1). In 

his attempt to examine the underlying cause of blood-poisoning in 1881, Alexander 

Ogston observed micrococci with a spherical outline that stained a uniformly deep violet 

and grouped into clusters. He examined a series of chronic and acute abscesses and found 

them to contain micrococci mingled with pus. When these micrococci were injected into 

subcutaneous tissue of test animals, they were capable of proliferating, forming 

inflammatory knots, invading the tissue, and disseminating into the blood stream. In 

1882, these micrococci were named Staphylococcus (2–4). Since this first description as a 

causative agent of human infection, S. aureus has been and continues to be a leading 

cause of human infectious morbidity and mortality. Over the past few decades, 

community-acquired methicillin-resistant S. aureus (CA-MRSA) strains have become a 

significant disease burden on healthcare systems worldwide (5). These strains display 

hyper-virulence and effective host-to-host transmission at a relatively minor fitness cost, 

posing a serious threat to public health systems (6). In fact, MRSA accounts for 78% of 

the skin and soft tissue infections presented to emergency departments in eleven cities in 

the United States; 98% of these infections being caused by the community-acquired 

MRSA (CA-MRSA) clone USA300, which is the strain of choice in our studies (7).  

1.2( Emergence(of(Methicillin0Resistant(Community0
acquired(Staphylococcus,aureus,,

Prior to the debut of penicillin, the mortality rate of S. aureus bacteremia patients was as 

high as 80% (8), and as early as two short years after the introduction of the antibiotics, 

resistant strains of S. aureus resistant began to emerge (9).  Penicillin-resistant S. aureus 

isolates, owing to the production of β-lactamases, were reported in the healthcare and 

community settings in the 1950s (10). Subsequently, methicillin use was introduced into 

clinical practice, but the resilient S. aureus developed methicillin resistance rapidly (11, 

12). MRSA infections represent a significant burden on the healthcare system, and are 
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found to be associated with increased length of hospitalization (13, 14). In a survey of 

staphylococcal infections across the United States, Canada, Latin America, Europe, and 

the Western Pacific region, MRSA was found to be the most prevalent cause of 

bacteremia, pneumonia, and skin and soft tissue infections (15). For decades, MRSA 

infections were mostly limited to healthcare settings such as hospitals and nursing homes; 

however, in the late 1990s community-acquired isolates were first reported. The 

prevalent clinical presentations were mainly fatal necrotizing pneumonia, septicemia, and 

pulmonary abscesses (16, 17). There were five CA-MRSA strains responsible for the 

majority of staphylococcal disease worldwide; the Midwest Clone, the Southwest Pacific 

Oceania Clone, the European Clone, the Pacific Clone, and the USA300 clone (18). 

USA300 was named after the unique profile of its pulse-field gel electrophoresis (19). 

This clone which has been responsible for severe disease outbreaks in the past (17, 20), is 

currently the predominant strain of S. aureus in North America, and accounts for 98% of 

infections presented to emergency departments (7, 21).  

1.3( Staphylococcus,aureus,colonization(
S. aureus colonizes the skin and mucosal surfaces such as the nose and throat, as well as 

the axillae, vagina, and perineum; however, the preferred site of colonization seems to be 

the anterior nares (22–25). S. aureus binding to mucin is an important factor in the 

organism’s ability to colonize the nasopharyngeal mucosal surfaces (26).  Approximately 

30% of the population are transient carriers, and 20% are persistent carriers of S. aureus 

in the anterior nares (27). Moreover, there is a greater possibility of recovering S. aureus 

from other body sites among these carriers compared to non-carriers (1). In fact, self-

infection in carriers of S. aureus has been reported as early as in the late 1950s. Williams 

et al. in 1959 noticed that infectious staphylococcal strains were normally the same 

strains that colonized the nares in the same individual (28). Additionally, Von Eiff et al. 

in 2001 reported that 82% of their sampled bacteremia patients displayed diseases caused 

by staphylococcal strains of endogenous origin (29). Strains obtained from the nares of 

these patients were identical to those in the blood up to 14 months later (28, 29).  

Another target of S. aureus colonization, and subsequent infection, is the skin that 

represents the residence of multiple microorganisms including bacteria, viruses, fungi and 
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even mites (30–32). The microbiome that makes up the skin is more variable over time 

when compared to that of the gut and mouth (33). The skin microbiome can vary with 

topography, thickness, and frequency of cutaneous appendages such as sweat, sebaceous 

glands, and hair follicles (34). Sebum, for instance, is a lipid-rich antibacterial coating 

that lubricates and protects the skin. It is secreted from the sebaceous glands and 

differentiated keratinocytes in the stratum corneum of the skin. These sebaceous glands 

are associated with the hair follicles, and support anoxic conditions allowing for selection 

of facultative anaerobic microorganisms. Studies have shown that Propionibacterium 

acnes, for instance, can grow in sebaceous glands and secrete lipases that break down 

sebum lipids (35). Sebum triglycerides undergo enzymatic hydrolysis by P. acnes 

resulting in the release of free fatty acids on the skin (36, 37). Additionally, hormone 

production, life style choices such as occupation and antibiotic use, and the genetic 

profile of the host also contribute to the variability of the skin microbiome (38–40). 

Staphylococcal species are considered one of the most stable inhabitants of the skin (41). 

They have developed mechanisms that enable them to inhabit moist skin 

microenvironments, most likely by utilizing the urea component of sweat as a nitrogen 

source (42). Breaching cutaneous immunity on the skin provides an opportunity for 

pathobionts, like S. aureus, to establish infections. The introduction of foreign objects, 

such as indwelling medical devices, also provide a niche for staphylococcal colonization. 

Moreover, members of the resident skin microbiota might contribute to cutaneous 

immunity, as was reported by Iwase et al. in which a subset of Staphylococcus 

epidermidis strains evolved to produce an endopeptidase protein that cooperatively works 

with the host's β-defensin 2 to impede S. aureus colonization and biofilm formation (43). 

1.4( Staphylococcus,aureus(pathogenesis(and,clinical(
manifestation(

Although S. aureus is considered a normal constituent of the human microbiota, it is also 

a highly successful opportunistic pathogen (1). Upon breach of cutaneous immunity, S. 

aureus excels at epithelial adhesion, invasion, and subsequently immune evasion to 

establish a successful infection. To accomplish pathogenesis, S. aureus employs a 

collection of virulence determinants that can be divided into three categories: secreted 
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enzymes; adhesion and immune evasion factors; and toxins. Secreted enzymes that are 

associated with S. aureus adhesion and invasion include: glycerol ester hydrolases that 

are involved in degradation of triacylglycerols; phosphphatidylinositol-specific lipase 

(PtdIns-phospholipase C); and enolases that mediate binding to laminin (44–49). 

Adhesion factors include a plethora of microbial surface proteins known collectively as 

microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) 

(50). The acronym was first used in 1994 to describe microbial adhesins, such as 

fibronectin-binding proteins A and B, collagen-binding adhesin, and S. aureus surface 

protein G/S, that span the staphylococcal wall, and have exposed domains which 

recognize host proteins such as fibronectin, fibrinogen, laminin, collagen, and heparin 

associated polysaccharides with a high degree of specificity (50–59). Subsequently, S. 

aureus is able to evade host immune defenses with factors such as staphylococcal protein 

A which binds immunoglobulins to block phagocytosis, and toxins such as δ toxin which 

is involved in neutrophil lysis and the lethal α toxin (60–70). A brief summary of S. 

aureus virulence determinants and their functions is listed in Table 1.1 
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Table 1.1 Summary of S. aureus virulence determinants. 

Category Determinant Function Reference 

Secreted 
enzymes 

SspA (serine protease) 

Cleaves fibronectin-
binding protein as well 

as cleaves the heavy 
chains of all human 

immunoglobulin 
classes.  

(71–74) 

PtdIns-phospholipase 
C 

Phosphatidylinositol-
specific lipase activity 
that releases glycan- 
PtdIns-anchored cell 

surface proteins. (45, 48) 

Enolase 
Mediates the binding 

to laminin. (45, 49) 

 
glycerol ester 

hydrolase 

Involved in 
degradation of 

triacylglycerols, and 
impede human 

granulocyte function. (44, 45) 

 

 

 

 

 

 

 

 

Adhesion factors  

Fibronectin-binding 
proteins A and B 

Bind fibronectin, 
fibrinogen and elastin. (51–54) 

S. aureus surface 
protein G and S 

Binds to the 
extracellular matrix.  (58, 59) 

Collagen-binding 
adhesin 

Binds collagen I and 
IV. (55–57) 

Elastin-binding protein Binds to elastin. (75, 76) 

von Willebrand factor 
binding protein 

Binds von Willebrand 
factor and fibrinogen. 

Also binds and (47) 
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Adhesion and 
immune 
evasion 
factors 

activates prothrombin. 

Extracellular 
adherence protein 

Binds to extracellular 
matrix. Also displays 
immunomodulatory 

properties.  (77–81) 

Extracellular matrix 
protein-binding 

protein 
Binds to the 

extracellular matrix. (82) 

Bone sialoprotein-
binding protein 

Binds bone 
sialoprotein as well as 

fibrinogen.  (83–85) 

Iron-regulated surface 
determinants A, B, C, 

and H 

IsdA binds to 
fibrinogen, fibronectin 
and transferrin. IsdB 

binds hemoglobin and 
hemin. IsdC binds 
hemin. IsdH binds 

haptoglobin-
hemoglobin complex. (86–92) 

Immune evasion factors  

Staphylokinase 

Involved in 
plasminogen 

activation and defensin 
inactivation. Displays 

anti-opsonic and 
fibrinolytic properties. (93–96) 

Protein A 

Binds 
immunoglobulins, 

tumor-necrosis factor-
alpha receptor 1 and 

von Willebrand factor. (61–63) 

Staphylococcal 
complement inhibitor  

Acts on C3 
convertases to inhibit 

complement   (97) 
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Chemotaxis inhibitory 
protein  

Binds to C5a and 
blocks chemotaxis (98, 99)  

Extracellular 
fibrinogen-binding 

protein  

Binds fibrinogen as 
well as complement 
C3. Recruits plasmin 

to degrade C3 and 
C3b. Inactivates 

complement. (100–103) 

Capsular 
polysaccharides  Impede phagocytosis (104–106) 

Multiple peptide 
resistance factor F 

Modifies membrane 
phosphatidylglycerol 

with L-lysine. 
Mediates resistance to 
cationic antimicrobial 
peptides and defensins 
as well as evasion of 

neutrophil killing. (107, 108) 

Antimicrobial peptide 
sensing system  

Two component 
histidine kinase and 
response regulator 

system that is involved 
in antimicrobial 

peptides resistance. 

 

(109, 110) 

Toxins 

α toxin 

Pore-forming 
cytotoxin. Stimulates 

inflammatory 
cytokines. (66–70) 

β hemolysin Cytotoxic action. (111, 112) 

δ toxin  

Cytotoxicty and 
membrane-damaging 
properties as well as 
induction of tumor 

necrosis factor alpha (64, 65) 
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production.  

γ toxin Hemolytic activity. (113, 114) 

 

Enterotoxins 

Superantigen with 
immunomodulatory 

properties via potent T 
cell activation.  (115, 116) 

Toxic shock syndrome 
toxin 1  

Superantigen with 
immunomodulatory 

properties via potent T 
cell activation. (115, 117–119) 

Leukocidins A, B, D, 
E and M. 

LukA/B have cytolytic 
activity towards 

macrophages and 
neutrophils. Luk 

D/E/M have 
leukocidal activity.    (120–123) 

Panton-Valentine 
leukocidin  

Pore-forming toxin 
with cytolytic activity 
towards macrophages 

and neutrophils. (124–127) 
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S. aureus can cause mild skin and soft tissue infections as well as life-threatening 

infections such as infective endocarditis, osteomyelitis, and sepsis. In the early 1990s, 

these infections were primarily nosocomial, and spread rapidly in healthcare settings. In 

one report, a single MRSA strain spread in two hospitals in British Colombia and 

Manitoba within 6 weeks from the strain’s introduction from the Punjab (128). First 

reports of CA-MRSA infections were documented in the United States in 1997, and since 

then CA-MRSA strains have proven to be hyper-virulent especially those belonging to 

the USA300 lineage (129). USA300 is particularly hyper-virulent for multiple reasons: 

first, it carries a smaller staphylococcal cassette chromosome (SCCmec) than that 

possessed by hospital-acquired strains, and thus has a relatively lower fitness cost (130); 

second, it is notorious for causing destructive infections such as necrotizing pneumonia 

due, in part, to the production of Panton-Valentine leucocidin (PVL) that causes 

leukocyte destruction and tissue necrosis (16, 131); third, it has acquired the arginine 

catabolic mobile element (ACME) from the skin commensal S. epidermidis which 

encodes determinants of resistance and virulence that enhance pathogenesis (132).  

1.5( Genetic(regulation(of(Staphylococcus,aureus,virulence(
In addition to the cell wall associated factors, enzymes, and toxins mentioned above, S. 

aureus virulence is regulated extensively at the transcriptional level. This regulation is 

rather complex and involves a combination of multiple sensory and regulatory systems.  

The principal regulatory system in S. aureus is the accessory gene regulator, agr. The agr 

locus contains four genes, agrBDCA, and RNAIII which is the effector molecule of this 

global regulatory locus. The gene agrB encodes a membrane-associated protease that 

alters the agrD-encoded prepropeptide. This alteration results in the production of the 

small peptide molecule, which is the signal for membrane associated sensor kinase 

encoded by agrC. The recognition of this signal then results in AgrC activating the 

response regulator that is encoded by agrA, and this in turn upregulates RNAIII 

expression. (133–135). RNAIII governs the regulation of an array of virulence 

determinants, both at the transcriptional and translational levels. Additionally, there are 

other two-component regulatory systems and global transcriptional regulators that work 

with, and independent of, the agr system to govern the pleiotropic regulation of 
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staphylococcal virulence. A brief summary of those regulatory systems and the effect 

they exert on major virulence determinants can be found in Table 1.2  
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Table 1.2 Major regulators of virulence determinants in S. aureus. 

The regulatory 
system Genes regulated 

The type of 
regulation Reference 

 

Protein A - (136) 

Accessory gene 
regulator (agr) 

Fibronectin-binding 
protein - (137) 

 PVL + (138) 

 
SspA (V8 serine 

protease) + (139) 

 Leukotoxin LukE/D + (138) 

 α-hemolysin + (140) 

 β-hemolysin + (141) 

 δ-hemolysin + (141) 

 agr + (142) 

 Protein A - (143) 

Staphylococcal 
accessory regulator 

(sarA) 
Fibronectin-binding 

protein + (137) 

 PVL + (138) 

 SspA  - (139) 

 Leukotoxin LukE/D + (138) 

 α-hemolysin + (144) 
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δ-hemolysin + (143) 

Toxic shock 
syndrome toxin 1 - (145) 

 agr - (146) 

 sarA - (146) 

 Protein A + (147) 

S. aureus exoprotein 
(sae) 

Fibronectin-binding 
protein + (147) 

 SspA  + (148) 

 α-hemolysin + (149) 

 β-hemolysin + (149) 

 

Coagulase + (149) 

Toxic shock 
syndrome toxin 1 + (145) 

Repressor of toxin 
(rot) 

Protein A + (150) 

α-hemolysin - (151) 

 

 

 

 

 



 

 14 

 

1.6( Antimicrobial(Resistance(mechanisms(of(
Staphylococcus,aureus,,

There are two mechanisms by which S. aureus acquires resistance to antimicrobials: 

horizontal transfer of an existing resistance gene, and through intrinsic mutations. The 

first evidence of resistance in S. aureus was to penicillin, which was mediated by β-

lactamase encoded by the gene blaZ. Upon antibiotic exposure, a transmembrane signal 

transducer, BlaR1, undergoes proteolytic cleavage to inactivate a transcriptional repressor 

BlaI, and this de-repression permits expression of blaZ, encoding a β-lactamase. This 

enzyme hydrolyzes the β-lactam ring of the antibiotics rendering them ineffective (152, 

153). The horizontal transfer of the mec gene accounted for the emergence of methicillin 

resistance among S. aureus strains. The mecA encodes the membrane-bound enzyme, 

penicillin-binding protein 2a (PBP2a). Typical PBPs catalyze the transpeptidation 

reaction required for peptidoglycan cross-linkage, and PBP2a exhibits low affinity to all 

agents of the β-lactam class of antibiotics. The expression of mecA is regulated in a 

similar fashion to that of blaZ, via the combined action of a sensor-transducer protein and 

a transcriptional repressor (MecR1 and MecI, respectively) (154–157). Resistance to 

quinolones, on the other hand, is an example of a resistance mechanism mediated by 

intrinsic mutation. Fluoroquinolones inhibit DNA gyrase and topoisomerase IV, which 

together mitigate DNA supercoiling. Mutations in the conserved quinolone resistance-

determining regions reduce quinolone affinity and are associated with resistance in 

clinical isolates (158–160). Two resistance mechanisms to the glycopeptide antibiotic, 

vancomycin, have been proposed. The first mechanism is chromosomally mediated, 

attributed to mutations that increase synthesis of peptidoglycan and cell wall precursor, 

thus preventing the antibiotic from binding to its target (161–164). The second 

mechanism is mediated by acquisition of an enterococcal operon that is responsible for 

changing the terminal peptide of the cell wall precursor, thus reducing affinity for 

vancomycin (161–164).  
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1.7( Staphylococcus,aureus,envelope(architecture((

1.7.1( Cell(envelope(composition(

Gram-positive bacteria are surrounded by a cell wall, composed of layers of 

peptidoglycan with attached accessory proteins and teichoic acids, as well as a 

cytoplasmic membrane.  Teichoic acids can be either in the form of wall teichoic acids or 

lipoteichoic acids. Wall teichoic acids are anionic polymers of teichoic acids that are 

covalently anchored to the peptidoglycan layer of the cell envelope, whereas the 

lipoteichoic acids are those embedded into the cytoplasmic membrane via a lipid moiety.  

Wall teichoic acids are comprised of repetitive units of ribitol phosphate or glycerol 

phosphate, and are linked to the N-acetylmuramic acid (MurNAc) of the peptidoglycan 

through a disaccharide of N-acetylglucosamine (GlcNAc)-1-P and N-acetylmannosamine 

(ManNAc) which is followed by glycerol phosphate units (165, 166). In contrast, 

lipoteichoic acids are comprised of repetitive units of glycerol phosphate with a D-alanyl 

ester or an α- GlcNAc on the second hydroxyl group of the glycerol, and are linked by a 

diglucosyl diacylglycerol anchor to the outer leaflet of cytoplasmic membrane (167). S. 

aureus utilizes the presence of wall polymers to defend itself from environmental 

stressors. Studies have shown that lipoteichoic acids surface-anchoring properties play an 

integral role in invading the microvascular endothelial cells of the brain. S. aureus 

mutants deficient in lipoteichoic acid membrane anchoring were found to be impaired in 

their capability to penetrate the blood-brain barrier thus reducing the chance of 

staphylococcal central nervous system disease (168). These wall polymers have also been 

linked to resistance to cationic antimicrobial peptides and cationic antibiotics (169, 170). 

Gram-positive bacteria are also surrounded by a single cytoplasmic membrane. The 

barrier function of the membrane is mediated by its phospholipid bilayer that surrounds 

and protects the cytoplasm. There are three major polar phospholipids in S. aureus 

membranes: phosphatidylglycerol; lysyl- phosphatidylglycerol; and cardiolipin, which is 

the major phospholipid during stationary phase (171). Phospholipid modifications play a 

vital role in resistance to host defenses and antimicrobial substances. Failure to modify 

phosphatyidylglycerol with L-lysine, to form lysyl-phosphatidylglycerol, reduces the 

positive charge of the cell envelope, rendering S. aureus more susceptible to cationic 
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antimicrobial peptides (107). Furthermore, membrane phospholipids composition must be 

altered to accommodate environmental stressors such as fluctuations in temperature and 

pH, and exogenous antimicrobials.   

1.7.2( Membrane(homeostasis(

Fatty acids play important roles in microorganisms, both as an integral component of 

cellular membranes, as well as a source of energy. While the biosynthetic pathways for 

these fatty acids are rather complex and energetically expensive, a stable membrane 

composition must be maintained. The Gram-negative Escherichia coli utilizes the 

combination of  transcriptional activators and repressors, belonging to the TetR and GntR 

families of transcriptional regulators, to control genes involved in fatty acid metabolism 

in order to maintain membrane homeostasis (172, 173). This homeostasis especially must 

be maintained upon exposure to exogenous fatty acids that could interfere with 

membrane fluidity. Host-derived fatty acids are either utilized as a precursor in the 

membrane phospholipid biosynthetic pathway or degraded via the β-oxidation pathway to 

be utilized as an energy source for the bacteria. Fatty acid biosynthesis is regulated via 

the TetR family regulator, FabR, and fatty acid degradation is regulated via the GntR 

family regulator, FadR (172, 174). FadR is a repressor of the β-oxidation pathway (fad 

regulon) and an activator for the fabA and fabB genes, which in turn are under the 

regulation of the repressor FabR, and acyl-CoA thioesters are the ligand that modulates 

binding of FadR and FabR to their operator DNA (173–175). Therefore, membrane lipid 

homeostasis in E. coli is a product of a transcriptional regulator with dual functionality 

that contributes to both fatty acid synthesis and degradation.  An overview of the 

regulation of lipid homeostasis in E. coli can be seen in Figure 1.1 
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Figure 1.1 Regulation of lipid homeostasis in E. coli.  Exogenous fatty acids are 

converted to acyl-CoAs after entry into the cell. In the absence of acyl-CoA, the 

transcriptional regulator FadR acts as a repressor of the fad regulon to repress fatty acid 

degradation, and as an activator of fabA and fabB to activate fatty acids biosynthesis. The 

genes fabA and fabB are also under the control of the transcriptional repressor FabR. In 

the presence of acyl-CoA, FadR dissociates from its operator DNA, resulting in the 

expression of fad genes to activate fatty acid degradation, as well as repression of the fab 

genes to repress fatty acid synthesis (176, 177).  
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Moreover, optimal membrane fluidity is governed by the fatty acid composition of 

phospholipids; both saturated and unsaturated. Saturated fatty acids are produced to 

increase membrane rigidity, whereas unsaturated fatty acids are produced to increase 

membrane fluidity, as is the case when the bacteria are exposed to higher and lower 

growth temperatures, respectively (178). For instance, Pseudomonas aeruginosa employs 

two desaturase systems, in addition to the Fab pathway, to regulate fatty acid biosynthesis 

to maintain membrane homeostasis. The first system is DesA which modifies existing 

membrane phospholipids to accommodate fluctuations in fluidity. The second desaturase 

system is DesB which alters saturated fatty acids of exogenous source, such as those 

lipids in the pulmonary surfactant encountered by P. aeruginosa, to produce unsaturated 

fatty acids to maintain optimal membrane fluidity. DesB is regulated at the transcriptional 

level by DesT which is a regulator that senses environmental fatty acids, and 

differentiates between saturated and unsaturated acyl-CoA substrates. In the presence of 

unsaturated acyl-CoA, DesT binds to an operator DNA located in the promoter region of 

desCB, to repress transcription of these genes which are necessary for production of 

unsaturated fatty acids. Conversely, the presence of saturated acyl-CoA causes the release 

of DesT from the operator DNA and the subsequent expression of desB, which in turn 

introduces double bonds into the acyl-CoA products of exogenous fatty acids and restores 

optimal membrane fluidity (179–181).  

Comparatively, transcriptional regulation of membrane lipid homeostasis in Gram-

positive bacteria is less well understood. The most detailed studies have been conducted 

in Bacillus subtilis, where a two-component desaturase system encoded by desK and 

desR regulates the membrane-bound acyl desaturase, DesA. This desaturase system 

senses temperature fluctuations and since B. subtilis is incapable of de novo synthesis of 

unsaturated fatty acids, the bacterium employs DesA to desaturate existing phospholipids 

in order to maintain membrane fluidity (182, 183). Additionally, B. subtilis also employs 

a transcriptional regulator, FadR, which controls genes involved in fatty acid degradation. 

Unlike FadR of E. coli, which is a GntR regulator, FadR of B. subtilis is a TetR family 

regulator. Similar to E. coli, B. subtilis FadR is a repressor of genes involved in fatty acid 

degradation, and acyl-CoA is the ligand that modulates binding of FadR to its operator 
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DNA. In the presence of exogenous fatty acids, the promoters repressed by FadR are de-

repressed and fatty acids are degraded to be utilized as a carbon source (184) 

Furthermore, B. subtilis employs transcriptional regulation to sense the status of the 

intracellular pool of fatty acids to maintain lipid homeostasis and optimal membrane 

fluidity. The repressor FapR regulates the expression of genes involved in fatty acid and 

phospholipid synthesis in response to the cellular levels of malonyl-CoA. Elevated levels 

of malonyl-CoA are indicative of diminished fatty acid and phospholipid synthesis which 

in turn results in the de-repression of FapR-mediated genes that are involved in lipid 

biosynthetic machinery (185, 186). FapR is the first global transcriptional regulator that is 

highly conserved among Gram-positive bacteria (185, 187). FapR was first characterized 

and purified from B. subtilis, and was subsequently found to be conserved in other 

organisms such as S. aureus and Listeria monocytogenes. Similar to FapR in B. subtilis, 

staphylococcal FapR senses malonyl-CoA to monitor lipid synthesis in a feed-forward 

mechanism to maintain membrane homeostasis (185, 188). This feed-forward mechanism 

involves recognition of an upstream biosynthetic product to regulate the transcription of 

the genes involved in the lipid biosynthetic machinery.  
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Figure 1.2 Regulation of lipid homeostasis in B. subtilis. A. Exogenous fatty acids are 

converted to acyl-CoAs after entry into the cell. In the absence of acyl-CoA, the 

transcriptional regulator FadR acts as a repressor of the fad regulon to repress fatty acid 

degradation. In the presence of acyl-CoA, FadR dissociates from its operator DNA, 

resulting in the activation of fatty acid degradation pathway to utilize the exogenous fatty 

acids as a carbon source. B. FapR is responsive to the cellular status of fatty acid 

biosynthesis. Malonyl-CoA is the ligand modulating FapR binding to its operator DNA. 

In low levels of malonyl-CoA, fatty acid biosynthesis genes are repressed. In the 

presence of malonyl-CoA, FapR dissociates from its operator DNA, resulting in the 

expression of fap genes to activate fatty acid and phospholipid synthesis. 
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1.8( Fatty(acid(machinery(of(Staphylococcus,aureus,,

1.8.1( Phospholipid(composition((

There are three major phospholipids in S. aureus membranes: phosphatidylglycerol; 

lysyl- phosphatidylglycerol; and cardiolipin (171). These phospholipids play a crucial 

role in preserving membrane biophysical properties, and particularly, the fatty acid 

composition of phospholipids is the key determinant of membrane fluidity (189) . Unlike 

B. subtilis that possesses a gene encoding a membrane phospholipid desaturase for the 

synthesis of unsaturated fatty acids, S. aureus does not possess such desaturase and thus 

is incapable of producing these fatty acids (182). Instead, a combination of branched- and 

straight-chain fatty acids are present in staphylococcal membranes. Branched-chain fatty 

acids are the predominant fatty acids in S. aureus phospholipids, comprising 55-65% of 

the total fatty acids  (189, 190). Branched-chain fatty acids are synthesized from 

branched-chain amino acids; these include leucine- and valine-derived (iso) fatty acids, 

and isoleucine-derived (anteiso) fatty acids, with the latter in particular promoting 

increased membrane fluidity (189, 191).  

1.8.2( Phospholipid(synthesis((

The biosynthetic pathway of staphylococcal branched-chain fatty acids starts when the 

amino acids leucine, isoleucine and valine undergo a transamination reaction mediated by 

the branched-chain amino acid transaminase BAT. The resulting branched-chain α-keto 

acid then undergoes a decarboxylation reaction mediated by α-keto acid dehydrogenase 

(BKD), resulting in the formation of branched-chain acyl coenzyme A derivatives which 

are the precursor for fatty acids biosynthesis. The branched-chain acyl coenzyme A 

derivatives, in combination with malonyl-ACP, are then utilized by the β-ketoacyl-ACP 

synthase III (FabH) to generate β-ketoacyl-ACP. This in turn undergoes a reduction 

reaction mediated by FabG reductase, a dehydration reaction mediated by FabZ and a 

reduction reaction mediated by FabI, resulting in the formation of saturated acyl-ACP. 

The enzyme FabF catalyzes the condensation reaction permitting further product 

elongation. The resulting long chain acyl-ACP is then used in the generation of the 

phospholipid precursor, phosphatidic acid (189, 192–196).  
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The peripheral membrane protein PlsX is responsible for transferring the acyl group from 

Acyl-ACP to an inorganic phosphate, forming an acylphosphate product, which can then 

be used by an integral plasma membrane protein, PlsY. This interaction between PlsY 

and the acylphosphate product, in the presence of glycerol-3-phosphate, results in the 

formation of Acyl-G3P, which is then acylated by the integral membrane protein PlsC, 

forming phosphatidic acid that represents the key intermediate in membrane phospholipid 

formation. Phosphatidic acid is subsequently used, in the presence of cytidine 

triphosphate, to synthesize cytidine diphosphate diacylglycerol through the action of 

phosphatidate cytidylyltransferase. Phosphatidylglycerol-phosphate is then generated 

upon the replacement of cytidine monophosphate with glycerol phosphate. The 

dephosphorylation of phosphatidylglycerol-phosphate results in the formation of 

phosphatidylglycerol which is the core phospholipid in S. aureus (196–201). An 

overview of fatty acid and phospholipid biosynthesis in S. aureus can be seen in Figure 

1.3 

In addition to the fatty acids produced by the fatty acid synthase machinery mentioned 

above, S. aureus is also capable of utilizing fatty acids of exogenous source. Upon entry 

into the cell by flipping across the membrane leaflet, exogenous fatty acids are processed 

by the fatty acid kinase machinery. This machinery includes a kinase domain protein, 

FakA, and a fatty acid binding protein FakB1 and FakB2 for binding saturated and 

unsaturated fatty acids, respectively. Exogenous fatty acids bind FakB, and after 

phosphorylation by FakA, are incorporated into the phospholipid directly, or indirectly 

after passing through an extension cycle by the FASII machinery (202). During the 

extension cycle, acyl chains are extended by two carbons via four enzymatic reactions. 

Extension is initiated by an elongation condensing enzyme, FabF, and the resulting  β-

ketoacyl-ACP is then reduced by the reductase, FabG.  Subsequently,  β-hydroxyacyl-

ACP undergoes a dehydration reaction through the action of FabZ. The resulting trans-2-

enoyl-ACP undergoes a reduction reaction that is catalyzed by the reductase FabI to 

complete the extension cycle (203–206). The peripheral membrane protein PlsX is 

responsible for transferring the acyl group from the extended fatty acid product to an 

inorganic phosphate, forming an acylphosphate product, which can then be used by an 
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integral plasma membrane protein, PlsY. This interaction between PlsY and the 

acylphosphate product results in the acylation of glycerol-3-phosphate forming the first 

intermediate in membrane phospholipid formation, known as lysophosphatidic acid. 

Lysophosphatidic acid is then acylated by the integral membrane protein PlsC, forming 

phosphatidic acid that represents the core intermediate in membrane phospholipid 

formation (197–200).  An overview of exogenous fatty acid utilization in S. aureus can 

be seen in Figure 1.4  
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Figure 1.3 Overview of fatty acid and phospholipid biosynthesis in S. aureus. 

Synthesis of staphylococcal branched-chain fatty acids starts when the amino acids 

leucine, isoleucine and valine undergo a transamination followed by a carboxylation 

reactions reaction, resulting in the formation of branched-chain acyl coenzyme A 

derivatives which are the precursor for fatty acids biosynthesis. The branched-chain acyl 

coenzyme A derivatives, in combination with malonyl-ACP, are then utilized by FabH to 

generate β-ketoacyl-ACP. This in turn undergoes a reduction reaction by FabG, a 

dehydration reaction by FabZ and a reduction reaction by FabI, resulting in the formation 

of saturated acyl-ACP. The enzyme FabF catalyzes the condensation reaction permitting 

further product elongation where the resulting acyl-ACP can undergo additional rounds 

of elongation by FabG, FabZ and FabI. For simplicity, the steps shown here are 

unidirectional. Subsequently, the resulting long chain acyl-ACP is then used in the 

generation of the phospholipid precursor, phosphatidic acid. The protein PlsX is 

responsible for transferring the acyl group from Acyl-ACP to an inorganic phosphate, 

forming an acylphosphate product, which can then be used by PlsY to form acyl-G3P. 

The latter in turn is acylated by PlsC, forming phosphatidic acid which is subsequently 

used, in the presence of cytidine triphosphate, to synthesize cytidine diphosphate 

diacylglycerol through the action of phosphatidate cytidylyltransferase. 

Phosphatidylglycerol-phosphate is then generated upon the replacement of cytidine 

monophosphate with glycerol phosphate, and subsequently dephosphorylated to form 

phosphatidylglycerol which is the core phospholipid in S. aureus membranes. Figure is 

adapted from Schiebel et al. and Kuhn et al. (193, 196).  
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Figure 1.4 Overview of exogenous fatty acid utilization by S. aureus. Upon entry into 

the cell, exogenous fatty acids (FA) are processed by the fatty acid kinase machinery; FA 

are bound by FakB and phosphorylated by FakA.  Subsequently, phosphorylated fatty 

acids are either are incorporated into the phospholipid directly (A), or indirectly after 

passing through an extension cycle by the FASII machinery (B). Figure is adapted from 

Parsons et al., and Yao and Rock (202, 207). 
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1.8.3( Lipids(as(antimicrobials((

The skin is the first line of defense against microbial infection. One of the host innate 

defense elements on the skin is antimicrobial long-chain unsaturated fatty acids. The 

main source of these fatty acids is the sebum secreted by the sebaceous glands and 

differentiating keratinocytes present in the stratum corneum of the epidermis (208). The 

sebum consists of squalene, wax monoesters, triglycerides, and small amounts of 

cholesterol and cholesterol esters (209). As the sebum’s constituents stream outwards 

through the hair follicle associated with the sebaceous glands, the triglycerides undergo 

enzymatic hydrolysis to produce unsaturated free fatty acids (uFFA) on the skin surface. 

The principal uFFA derived from sebaceous triglycerides is sapienic acid, which is a 16-

carbon fatty acid with one degree of unsaturation that has potent bactericidal property 

against MRSA (208). Linoleic acid was identified as the major uFFA in human nasal 

secretion and is also present in S. aureus abscesses, a hallmark of S. aureus skin and soft 

tissue infections (210–212). Humans deficient in the production of uFFAs are more 

susceptible to S. aureus skin infections (213).   

Although S. aureus possess the genes coding for enzymes involved in fatty acid 

degradation, studies have ruled out their involvement in exogenous fatty acid utilization 

(214). Alternatively, the only metabolic fate of exogenous uFFAs is through 

incorporation into the membrane phospholipid (194, 215). This incorporation is the rate 

limiting step such that when the levels of exogenous uFFAs exceeds that of the 

phospholipid biosynthetic machinery, uFFAs accumulate in the membrane and become 

detrimental (216). Although it has been long recognized that uFFAs have membrane 

damaging properties (217, 218), the exact mechanism by which these uFFAs exert their 

toxicity remained debatable. Several mechanisms have been proposed; these include 

uFFAs increasing the permeability of bacterial membranes due to their surfactant action, 

and disrupting the anisotropic nature of membranes by interfering with protons 

movement across the membrane and subsequently ATP synthesis (219, 220). Other 

reports have proposed that the toxic effects of uFFAs are mediated through a peroxidative 

process and through inhibiting fatty acid synthesis by acting as selective inhibitors of the 

enoyl –acyl carrier protein reductase (FabI) (221, 222). However, recent reports confirm 
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that exogenous uFFAs disrupt the cytoplasmic membrane integrity, resulting in 

dissolution of the proton gradient across the membrane. This in turn leads to leakage of 

cellular metabolites and low-molecular weight proteins, and the eventual cessation of 

macromolecular biosynthetic pathways and loss of cellular viability (216).   
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Table 1.3 Summary of proposed mechanisms of uFFA toxicity. 

Target Mechanism Reference 

Cytoplasmic 
membrane Uncouple the electron transport chain (223, 224) 

Cytoplasmic 
membrane Impede oxidative phosphorylation (220) 

Cytoplasmic 
membrane 

Surfactant action that increases membrane 
permeability (219)  

Cytoplasmic 
membrane 

Increase membrane fluidity leading to cell 
lysis (218, 225) 

Cytoplasmic 
membrane 

Dissolution of the proton gradient across 
the membrane and subsequent release of 

low molecular-weight proteins (216) 

Fatty acid synthetic 
machinery Enzymatic inhibition (222) 

Cellular viability    Oxidative stress   (221, 226) 
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Although exogenous uFFAs display antimicrobial properties, bacterial species are 

equipped with intrinsic mechanisms of resistance to these uFFAs. External structures 

such as the outer membrane and cell wall of Gram-negative and positive bacteria, 

respectively, mediate protection against uFFAs through several mechanisms that are 

briefly reviewed here. First, transcriptomics and proteomics studies show that upon 

exposure to exogenous uFFAs, S. aureus upregulates genes involved in carotenoid 

biosynthesis, as well as those in cellular energy metabolism, peptidoglycan, and call wall 

biosynthetic pathways (227). Cell wall components play an integral role in S. aureus 

susceptibility to antimicrobial uFFAs, as wall structure, thickness and properties can 

impede the entry of these uFFAs. It has been proposed that the iron-regulated surface 

determinant, IsdA, is involved in resistance to uFFAs where this cell wall anchored 

protein modifies cellular hydrophobicity. The C domain of IsdA extends into the 

staphylococcal cell wall, altering its charge and hydrophobicity thus rendering the cells 

less susceptible to host antimicrobial peptides and fatty acids that rely on hydrophobic 

interactions to penetrate the cellular membrane and manifest their effects (227, 228).  

Other reports suggest that S. aureus counteracts the uFFA-mediated increase in 

membrane fluidity by upregulating the production of staphyloxanthin, leading to a direct 

correlation between membrane stability, cellular pigmentation, and uFFAs-induced 

cellular killing (218, 227, 229). The production of staphyloxanthin is regulated by the 

sigma B  (σB) regulon as a general stress response to the presence of uFFAs (227). 

Additionally, it has been proposed that wall teichoic acids confer resistance to uFFAs, by 

acting as a filter to restrict their passage across the cell wall, in a structure-specific 

manner, and cells lacking teichoic acids exhibit enhanced leakage of intracellular content 

(216, 230). Moreover, the fatty acid modifying enzyme (FAME), responsible for fatty 

acid esterification, has also been linked to uFFA tolerance. FAME can esterify 

bactericidal fatty acids that are present in staphylococcal abscesses to various alcohols, 

thus enabling bacterial survival within tissues (227, 231). As is the case with the majority 

of antimicrobial resistance, it can be anticipated that resistance to uFFAs should also be 

mediated through efflux pumps. Neisseria gonorrhoea, for instance, exhibits an efflux 

system dedicated to extrusion of hydrophobic antimicrobials such as free fatty acids and 

bile salts (232, 233). Similarly, there are some reports of efflux pumps contributing to S. 
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aureus resistance to skin antimicrobials such as fatty acids and polyamines. Tet38 is a 

multidrug efflux transporter that confers resistance to tetracycline as well as palmitoleic 

acid, one of the main uFFA in human nasal secretion (221, 234). Tet38 is implicated in S. 

aureus survival and colonization on the skin due to its ability to transport antimicrobial 

free fatty acids thus conferring resistance to them (234). However, this efflux pump is not 

specific just for uFFAs, as it contributes to tetracycline resistance as well, and therefore a 

specific fatty acid efflux pump is yet to be identified in S. aureus.  
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Table 1.4 Summary of uFFA resistance mechanisms proposed to date. 

Target Mechanism Reference 

Cell wall physiology 
Decrease cellular hydrophobicity and thus 

prevent uFFA penetration (228) 

Membrane stability 

Increase staphyloxanthin production to 
counteract the uFFA-mediated increase in 

membrane fluidity (218, 227, 229) 

Wall teichoic acids Prevent binding of uFFAs (216, 230) 

uFFA transport 
Tet38-mediated efflux of uFFAs outside 

the cell (234) 

uFFA processing 
FAME- medicated esterification of uFFAs 

to various alcohols (227, 231) 

 

 

 

 

 

 

 

 

 

 

 



 

 34 

1.9( Bacterial(efflux(pumps(
One of the greatest innovations in modern medicine is the introduction of antibiotics in 

clinical practices to treat the otherwise life-threatening infectious diseases. However, 

bacterial pathogens were able to circumvent this progress by developing resistance 

mechanisms leading to infectious diseases that are once again, a major problem in the 

hospital and community settings. The World Health Organization continuously urges for 

the development of new bacterial therapeutic targets to combat the life-threatening 

multidrug resistance (235, 236).  

The efficacy of antimicrobial compounds can be abrogated by a number of mechanisms 

including: reduced uptake; enzymatic inactivation; target site modification; and efflux 

from the cell (237, 238). There are five primary families of multidrug efflux pumps: 

resistance nodulation cell division (RND); major facilitator superfamily (MFS); ATP 

binding cassette (ABC) family; multidrug and toxic compound extrusion (MATE) family; 

and small multidrug resistance (SMR) family. In addition to their notable functions in 

multidrug resistance, the RND efflux pumps have been extensively studied for their roles 

in fatty acid efflux (239, 240). The most well characterized member of the RND family 

of multidrug efflux pumps is the AcrB pump of E. coli. AcrB uses proton motive force to 

extrude hydrophobic substances such as antibiotics, bile salts, and a range of cellular 

metabolites. This tripartite efflux system in E. coli is composed of the trimeric AcrB that 

spans the inner membrane, TolC which is an outer membrane channel, and the 

periplasmic adaptor protein AcrA (241–243). Another RND family membrane protein 

that has a role in lipid efflux is the mycobacterium membrane protein large (MMPL) 

group of proteins in Mycobacterium tuberculosis. MMPLs are co-localized with lipid-

metabolizing enzymes, and are involved in the transport of methyl-branched lipids (244). 

MMPL-mediated lipid pathways have been implicated in bacterial intracellular 

persistence, and four of the MMPL proteins appear to be indispensable for M. 

tuberculosis in fully maintaining virulence in mice (244). 
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1.10(TetR(family(of(transcriptional(regulators(and(their(
biological(functions((

Transcriptional regulators are the key to most microbial adaptation strategies. These 

regulators normally contain a DNA- and ligand- binding domain that can be used to sense 

environmental signals and elicit a downstream response at the transcriptional level. There 

are many families of transcriptional regulators that have been grouped based on structural 

and functional similarities, such as the helix-turn-helix motif, which is the most common 

DNA-binding motif among prokaryotes (245–247). Members of these families have 

either an activation or a repression function, with a few families that display 

unconventional dual roles in activation and repression.  Members of the LysR, IcIR, 

MarR, and Crp families of transcriptional regulators have displayed dual roles (248–251). 

Recently, there have been few reports of members of the TetR family of transcriptional 

regulators that display dual functionality (252, 253).  

TetR family regulators (TFRs) have been well documented for their roles in 

environmental adaptation and antibiotic resistance (254). There are more than 2500 TFRs 

with functions ranging from multidrug resistance, biosynthesis of antibiotics, and 

pathogenicity in both Gram-positive and Gram-negative bacteria (255). TFRs are named 

after the well-characterized TetR, a repressor that controls expression of a membrane-

associated protein, TetA, that exports tetracycline out of the bacterial cell. tetR and tetA 

are divergently transcribed, and the tetR gene product controls expression of both tetA 

and tetR. When tetracycline is present and associated with Mg2+, it binds to the TetR 

protein leading to a conformational change that renders TetR unable to bind to the DNA. 

As a result, tetR and tetA, both of which are repressed by TetR, are expressed (256–260).  

A well-documented staphylococcal TFR is QacR, which is a repressor regulating the 

expression of QacA, a multidrug efflux pump. Lyon et al. in 1984 showed that the S. 

aureus plasmid pSK1 encodes resistance to quaternary ammonium antiseptic compounds. 

This resistance is mediated by energy-dependent efflux encoded by the qacA gene that 

belongs to a regulatory circuit similar to that of the efflux-mediated resistance to 

tetracycline. This plasmid-encoded system also contained a transcriptional regulator with 

sequence similarity to the helix-turn-helix motif of the transcriptional repressor that 
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governs tetracycline-resistance in Gram-negative bacteria (261–264). By 1998, it was 

confirmed that QacA contains 14 transmembrane domains and that it belongs to the 

major facilitator superfamily of transporters, and that QacR is the repressor regulating the 

expression of this transporter (265, 266).  QacR functions as a homodimer with an N-

terminal DNA-binding domain recognizing an operator sequence located downstream 

from the divergent qacA promoter (266–268). This binding is considered unorthodox for 

a repressor as it may not physically block the binding RNA polymerase directly, but 

rather it hinders the transition of the transcription machinery. The regulator of 

intercellular adhesion (ica) operon of S. epidermidis is a TFR that is responsible for 

regulating the synthesis of polysaccharide intercellular adhesin (PIA) and, subsequently, 

biofilm formation (269).  Two IcaR homodimers bind cooperatively to an operator site 

located upstream of the start codon of icaA to repress its transcription (270, 271). Upon 

ligand binding of streptomycin and gentamicin, IcaR dimers undergo a conformational 

change in the DNA binding domain, and the subsequent transcription of the divergent 

icaADBC operon (272). Cramton et al in 1999 showed that the ica locus is not only 

present in S. aureus, but is also implicated for biofilm formation (273); however, in S. 

aureus, the teicoplanin-associated locus regulator (TcaR), a member of the MarR family 

of transcriptional regulators, is also a repressor of the ica operon (272).  

Other examples of TFRs include: the AmeR of Agrobacterium tumefaciens which is a 

regulator of an RND- efflux system; AmrR of Pseudomonas aeruginosa which is a 

regulator of an efflux pump involved in aminoglycoside resistance; and BpeR of 

Burkholderia pseudomallei which is a repressor of an RND pump involved in 

gentamyicin, streptomycin, and erythromycin resistance (274–276). Similarly, resistance 

to the anti-tuberculosis drug ethionamide in M. tuberculosis is mediated by the TetR 

regulator EthR, and resistance to hydrophobic antimicrobial agents that target N. 

gonorrhoea is mediated by MtrR (233, 277–279). TFRs are also involved in regulation of 

virulence genes, such as HapR, which is a density-dependent regulator of virulence in 

Vibrio cholera (280, 281).  

Additionally, several TFRs have a role in regulation of fatty acid efflux. AcrR is a 

repressor of the multidrug efflux pump AcrAB in E. coli; a prototypic member of the 
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RND family of efflux pumps. AcrR interacts with the acr promoter located in the 

intergenic segment between acrR and acrAB. This interaction between AcrR and the 

promoter region is responsive to accumulation of cellular metabolites and bile salts as 

well as global stress signals. In the presence of inducing ligand, AcrR is de-repressed and 

functions in combination with global transcriptional activators to enable efflux pump 

expression (282–285). Other TFRs that have roles in lipid efflux include: CmeR from 

Campylobacter jejuni and MtrR from N. gonorrhea. CmeR is a repressor of an RND-

efflux pump, CmeABC, that is responsive to accumulation of amphipathic bile salts 

(286–289). Similarly, MtrR is a repressor of an RND pump, MtrCDE, the efflux of which 

enables gonococcal growth on mucosal surfaces that are enriched in fatty acids and bile 

salts.  Additionally, MtrR is a repressor of a MarR family transcriptional regulator, FarR, 

which in turn is a repressor of the MFS efflux pump FarAB. Therefore, MtrR also 

functions as a positive regulator of the FarAB efflux pump which mediates resistance to 

antimicrobial fatty acids (233, 279, 290–292).  

1.11(Rationale(and(hypothesis((
CA-MRSA strains are particularly efficient in colonization, transmission, and causing 

invasive skin and soft tissue infections (6). Our laboratory strain of choice is USA300, 

the dominant CA-MRSA strain in the United States, accounting for 98% of MRSA 

infections presenting to emergency departments (293). USA300, which was isolated in 

September 2000, has been linked to infection outbreaks in at least 21 American states, 

Canada, and Europe (132). Further, this isolate is more resistant to killing by 

polymorphonuclear leukocytes (132). To persist on human skin, S. aureus must cope with 

uFFAs; a component of human innate defense mechanisms. Although genome 

sequencing and molecular typing have provided a better understanding of the pathogenic 

success of USA300, detailed knowledge of the specific molecular determinants, 

especially in regards to uFFA resistance, is still lacking (294, 295). Although S. aureus 

possess the genes coding for enzymes involved in fatty acid degradation, studies have 

ruled out their involvement in exogenous fatty acid utilization (214). Therefore, the only 

metabolic fate for exogenous uFFAs is through their incorporation into the membrane 

phospholipid. This incorporation step is the rate-limiting step, such that when the rate of 
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fatty acid import exceeds that of incorporation, excess free fatty acids accumulate in the 

membrane, ultimately resulting in cell death (202, 214, 216). 

To better understand the factors that contribute to S. aureus adaptation to uFFA, our 

laboratory evaluated the growth of S. aureus USA300 in the presence of physiological 

concentrations of uFFA that would normally be encountered on the skin and in the 

anterior nares. Arsic et al. showed that uFFA can induce the staphylococcal proteolytic 

cascade (296). Additionally, Arsic et al. showed that unsaturated linoleic and sapienic 

acids are sub-inhibitory at 25 µM and bactericidal at 100 µM, whereas a 50 µM 

concentration caused a 10-12 hour lag phase after which bacteria resumed growth (296). 

It was established that the profile of secreted proteins and virulence factors is influenced 

by exogenous uFFAs, suggesting a possible regulatory mechanism of virulence in 

response to uFFAs.  

To identify genes that may confer intrinsic resistance to uFFA, S. aureus USA300 was 

selected for growth at elevated concentrations of linoleic acid after which single colonies 

were selected for DNA isolation and genome sequencing on the Ion Torrent Platform to 

identify single nucleotide polymorphisms (SNP) in 7 fatty acid resistant (FAR) clones. 

Two of these clones contained SNP causing a His121>Tyr substitution in 

SAUSA300_2490 gene. Using domain enhanced lookup time accelerated BLAST, the 

amino acid sequence of SAUSA300_2490 had 99% homology to TFRs and structure 

prediction using homology modeling server, Phyre2, predicted that SAUSA300_2490 

shares 99.8% amino acid sequence similarity with TFRs such as FadR, a regulator of 

fatty acid degradation in Thermus thermophilus.  

TFRs typically exert their effect on divergent genes. Bioinformatics analyses revealed 

that SAUSA300_2489, which is divergently transcribed from SAUSA300_2490, encodes a 

gene product that belongs to the Resistance-Nodulation-Cell Division (RND) superfamily 

of proteins, which promote proton-antiport dependent efflux mechanisms. To date, there 

is no evidence of a specific uFFA efflux mechanism in S. aureus, and since 

SAUSA300_2490 was found through the in vitro selection of variants with increased 

resistance to linoleic acid, I speculated that this gene may contribute to uFFA resistance.  
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I hereafter refer to SAUSA300_2490 as farR for regulator of fatty acid resistance, and to 

SAUSA300_2489 as farE, for an effector of fatty acid resistance. Therefore, I hypothesize 

that farR functions to regulate expression of a fatty acid efflux pump encoded by farE 

and that a SNP in farR is sufficient to confer resistance to fatty acids. The specific aims 

of this thesis were to first confirm that the resistance to uFFAs in S. aureus is inducible, 

and examine the role of farR and farE in this induction.  Second, I wanted to examine the 

nature of regulation that FarR exerts on farE, and define the exact operator sites that 

support FarR binding. Third, I aimed to examine how this novel regulatory system is 

linked to fatty acid detoxification mechanism both in vitro and in vivo.   
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1 This chapter has been previously published. Alnaseri H, Arsic B, Schneider JE, Kaiser 

JC, Scinocca ZC, Heinrichs DE, McGavin MJ. 2015. Inducible expression of a 

resistance-nodulation-division-type efflux pump in Staphylococcus aureus provides 

resistance to linoleic and arachidonic acids. J Bacteriol 197:JB.02607-14. 
Copyright © 2015, American Society of Microbiology. All Rights Reserved. 
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2.1( Introduction(
Staphylococcus aureus has a dichotomous relation with human hosts, being able to 

establish an asymptomatic commensal relationship, but also historically known as a 

leading cause of human infectious morbidity and mortality. Significantly, death attributed 

to S. aureus in the United States is now comparable to mortality rates for AIDS, 

tuberculosis, and viral hepatitis (1-3). Not surprisingly, therefore, S. aureus has been the 

subject of intensive research on mechanisms of pathogenesis, acquisition and transfer of 

antibiotic resistance, and efforts to identify potential vaccine antigens (4-6). Until the late 

1990’s, much of this was directed towards hospital-associated strains of methicillin 

resistant S. aureus (HA-MRSA), to address the anticipated emergence of superbugs that 

would be resistant to all clinically useful antibiotics (7, 8). However, a new threat 

emerged in the late 1990’s with community acquired MRSA (CA-MRSA). Although 

these strains evolved in the community setting, one notorious strain known as USA300 

has achieved pandemic status across North America, and is now the leading cause of S. 

aureus infections, irrespective of community or hospital origins (9, 10). This has 

engendered greater attention towards identifying mechanisms of S. aureus persistence on 

human hosts, and host-to-host transmission.  

Approximately 25% of humans are persistently colonized by S. aureus, where the 

preferred site of colonization is the anterior nares and, among colonized individuals, the 

bacterium is also frequently recovered from other body sites, including the axillae, 

perineum, hands, chest and limbs (11). Accordingly, its ability to persist on skin is an 

important mediator of transmission, as underscored by the recent discovery that the 

hyper-transmissible USA300 strain has overcome one of the innate defense barriers of the 

skin through horizontal gene transfer with S. epidermidis, to acquire resistance to toxic 

polyamines that restrict the growth of other S. aureus strains (12, 13). Other innate 

defence barriers of the skin include its acidic pH, and antimicrobial fatty acids, foremost 

of which is sapienic acid that is released from triglycerides secreted by the sebaceous 

glands (14, 15). Nasal secretions also contain antimicrobial fatty acids; primarily linoleic-

, arachidonic- and palmitoleic acid, or their corresponding cholesterol esters (16), and 

infected abscess tissue also contains abundant antimicrobial fatty acids (17, 18). 
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Consequently, S. aureus is exposed to antimicrobial fatty acids, not only during 

colonization, but also during infection and, as such, it is reasonable to hypothesize that it 

has evolved mechanisms of intrinsic resistance.  

Among mechanisms that have been described, cell surface teichoic acids can selectively 

restrict the access of palmitoleic acid to the cytoplasmic membrane (19), and a cell 

surface protein IsdA that is expressed in response to iron-limiting conditions also restricts 

the access of palmitoleic acid, or its isomer sapienic acid to the cytoplasmic membrane 

(20). Others have reported that tet38, encoding a Major Facilitator Superfamily (MFS) 

efflux pump, promotes resistance to palmitoleic acid (21). Expression of tet38 was 

induced by palmitoleic acid, but not by linoleic acid, which suggested that there could be 

distinct mechanisms for coping with different antimicrobial fatty acids. Importantly, 

linoleic acid is an essential fatty acid for humans, which must be obtained from dietary 

sources, and is an essential precursor for synthesis of arachidonic acid. These two 

unsaturated fatty acids comprise a major proportion of unsaturated fatty acids in 

membrane phospholipid (22, 23). Therefore, the ability to sense and respond to linoleic 

acid could represent a specific sensory mechanism to signal colonization or infection of a 

human host, and yet specific mechanisms for regulating gene expression and intrinsic 

resistance in response to linoleic acid have not been reported.  

To address this, we drew from our previous observation that exposure of S. aureus 

USA300 to a sub-inhibitory (25 µM) concentration of linoleic acid, caused a robust 

induction of secreted protease expression, which led to proteolytic processing of a 

secreted glycerol ester hydrolase, Geh (24). We subsequently noted that when S. aureus 

cultures were supplemented with a trilinolein triglyceride substrate, Geh activity quickly 

liberated growth inhibitory concentrations of linoleic acid (25). Moreover, 50 µM free 

linoleic acid imposed a 10-12h growth delay in cultures of S. aureus USA300, which was 

then followed by unimpeded exponential growth, and similar results were obtained with 

50 µM trilinolein in wild type geh proficient S. aureus USA300, whereas growth of a geh 

deficient mutant was unaffected by 50 µM trilinolein (24, 25). From these observations, 

we hypothesized that, in addition to the induction of expression of secreted proteases, 

there should also be an inducible mechanism for resistance of S. aureus to linoleic acid. 
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In related studies, selection of S. aureus strains that were able to grow at elevated 

concentrations of glycopeptides led to the identification of point mutations in the vraS 

sensor of antimicrobial glycopeptides (26, 27). Therefore, we adopted a similar strategy, 

by conducting comparative genome sequencing of USA300 clones that were selected for 

their ability to initiate growth without a lag phase, when inoculated into media containing 

50 µM linoleic acid. We now provide the first description of a novel gene pair farR-farE 

(fatty acid resistance) constituting divergently transcribed genes that, respectively, 

encode a regulator and effector of S. aureus resistance to linoleic and arachidonic acid.  

2.2( Materials(and(methods((

2.2.1( Bacterial(strains(and(growth(conditions((

A list of bacterial strains and plasmids that were used or constructed for this study is 

provided in Table 2.1. S. aureus cultures were maintained as frozen stocks (-80ºC) in 

20% glycerol, and streaked on TSB agar when required. TSB was supplemented, when 

required, with 10 µg/mL of erythromycin or chloramphenicol for propagation of strains 

bearing resistance markers. E. coli strains were grown on LB agar, or LB broth 

containing 100 µg/mL ampicillin when required. Unless otherwise stated, all cultures 

were grown at 37°C, and liquid cultures were incubated on an orbital shaking platform at 

180 rpm.  

For experimental purposes, inoculum cultures of S. aureus were prepared by transferring 

cells, from a single colony, into 13 mL polypropylene tubes containing 3 mL of TSB 

supplemented with antibiotic, as required, followed by overnight incubation. After 

determination of optical density at 600 nm (OD600), aliquots of the overnight cultures 

were diluted into 25 mL of medium in 125 mL flasks, to achieve an initial OD600 

equivalent to 0.01. To supplement media with different fatty acids, a 5 mM stock 

concentration was initially prepared in sterile TSB containing 1% DMSO, and then 

diluted into sterile TSB supplemented with 0.1% DMSO, to achieve the desired 

concentration of fatty acids, ranging from 5 µM to 100 µM.  
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Table 2.1 Strains and plasmids used in Chapter 2. 

 
Strain or plasmid 
 

 
Description 

 
Source or 
reference 

 
Strains: 
 

  

S. aureus: 
 

  

USA300 LAC Community associated MRSA; wild type 
strain cured of resistance plasmids 
 

(24) 

RN4220 rK
− mK

+; capable of accepting foreign DNA 
 

(32) 

NE1393 
 
 

Transposon insertion in SAUSA300_2490; 
Ermr 

(34) 

NE2336 
 
 

Transposon insertion in SAUSA300_2489; 
Ermr 

(34) 

USA300farR::ΦNΕ 
 
 

USA300 LAC recipient of transposon from 
NE1393  

This study 

USA300farR::ΦNΕ + 
pLIfarR 
 
 

farR::ΦNΕ complemented with native farR, 
cloned in pLI50; Ermr, Cmr 

This study 

USA300farR::ΦNΕ + 
pCNfarR 
 

farR::ΦNΕ complemented with pCNfarR for 
cadmium inducible expression; Ermr, Cmr 

This study 

USA300farE::ΦNΕ 
 
 

USA300 LAC recipient of transposon from 
NE2336 

This study 

USA300farE::ΦNΕ + 
pLIfarE 
 
 

farE::ΦNΕ complemented with native farE, 
cloned in pLI50 

This study 

USA300farE::ΦNΕ + 
pLI50 
 

USA300farE::ΦNΕ with empty pLI50 vector; 
Cmr 

 

This study 

USA300Δtet38 
 
 

USA300 LAC with internal deletion of tet38 
(SAUSA300_0139) 

This study 

USA300Δtet38-
farE::ΦNΕ 
 

USA300Δtet38 recipient of farE::ΦNΕ 
transposon insertion; Ermr 

This study 
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E. coli  DH5α 
λ- φ80dlacZΔM15Δ(lacZYA-argF)U169 

recA1 endA1 hsdr17(rK
- mK

-) supE44 thi-1 

gyrA relA1!

Invitrogen 

Plasmids:  
 

 

pLI50 
 

E. coli-S. aureus shuttle vector (35) 

pLIfarR! pLI50 with native farR gene! This study 

pLIfarE pLI50 with native farE gene This study 
pGYlux E. coli-S. aureus shuttle vector harboring 

promoterless luxABCDE operon 
(37) 

pCN51 
E. coli-S. aureus shuttle vector with Pcad 
promoter for cadmium inducible gene 
expression  

(36) 

pCN51c pCN51, with ermC cassette replaced by 
cat194 cassette from pRN7146 

This study 

pCN51farR pCN51c with promoterless farR, for 
cadmium inducible expression of farR 

This study 

pKOR-1 
E. coli-S. aureus shuttle vector; contains 
Pxyl/tetO; antisense secY RNA expression 

(38) 

pKORΔtet38 pKOR-1 containing upstream and 
downstream flanking sequences for deletion 
of tet38 

This study 
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2.2.2( Selection(and(comparative(genome(sequencing(of(fatty(acid(
resistant((FAR)(clones((

As reported previously, when an overnight culture of S. aureus USA300 was inoculated 

into fresh TSB containing 50 µM linoleic acid, there was a 10-12h lag phase, followed by 

unimpeded exponential growth (24). Therefore, to promote the selection of fatty acid 

resistant clones, seven separate flasks of S. aureus USA300 were subjected to two 

consecutive cycles of growth to stationary phase in TSB + 50 µM linoleic acid, after 

which, samples of each culture were plated for isolation of single colonies. Colonies from 

each plate were screened to identify fatty acid resistant (FAR) clones that could initiate 

growth without a lag phase, when inoculated into TSB + 50 µM linoleic acid. A single 

FAR clone was then selected from each of the seven separate biologic replicates, for 

comparative genome sequencing. For controls, two single colonies of USA300 were 

selected after two consecutive cycles of growth in TSB alone.  

For comparative genome sequencing, genomic DNA was extracted from S. aureus using 

previously described protocols (28, 29). All samples for comparative genome sequencing 

were processed at the London Regional Genomics Centre (Robarts Research Institute, 

London, Ontario, Canada; http://www.lrgc.ca) using the Ion Torrent Personal Genome 

Machine (PGM) (Life Technologies, Carlsbad, CA) and 316 chips. Briefly, genomic 

DNA was quantified using the Qubit and the Qubit dsDNA HS Assay (Life 

Technologies, Carlsbad, CA). Samples then underwent fragmentation, adapter and 

barcode ligation as per the Ion Xpress Fragment Library Kit (4469142 Rev. B), and size 

selection using the Pippin Prep (Sage Science, Beverly, MA). The size of the final 

libraries was verified using the Agilent 2100 Bioanalyzer and the High Sensitivity DNA 

kit (Agilent Technologies Inc., Palo Alto, CA). Barcoded libraries were pooled at 

equimolar concentrations, based on Qubit values, and the Template Dilution Factor 

(TDF) for the final pooled library was calculated using molarity determined via qPCR, 

with the Ion Library Quantification kit (4468802). Diluted libraries were processed as per 

the Ion OneTouch Template Kit (4468007, Rev. B) for automated clonal amplification, 

and sequenced using the Ion Express Template 200 kit (4474280), Enrichment Station 

and the Ion Sequencing 200 Kit (4471999, Rev. B). Sequence reads were mapped to the 
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genome of S. aureus USA300 FPR3757 (30) using CLC Genomics Workbench 7.0 

(Boston, MA), and automated detection of single nucleotide polymorphisms (SNPs) was 

conducted using the Neighborhood Quality Standard algorithm (31).  

2.2.3( Strain(and(plasmid(construction(

Techniques for genetic manipulation of S. aureus were conducted according to 

established guidelines (32), and as described in our previous work (24, 25, 33). The 

University of Nebraska transposon mutant library (34) was used as a source of transposon 

insertions that inactivated SAUSA300_2490 (NE1393) and SAUS300_2489 (NE2336). 

These were transferred into plasmid cured USA300 strain LAC, creating 

USA300farR::ΦNΕ and USA300farE::ΦNΕ respectively (Table 2.1). All recombinant 

plasmids were first constructed as shuttle vectors in E. coli DH5α. The integrity of 

plasmids isolated from E. coli were confirmed by restriction enzyme digestion, and 

nucleotide sequencing of the cloned DNA fragments prior to electroporation into S. 

aureus RN4220 as an intermediate host. From S. aureus RN4220, the individual plasmids 

were then introduced, via electroporation into S. aureus USA300 or isogenic derivatives 

as required. Primers used for PCR amplification of gene segments that were required for 

plasmid construction are listed in Table 2.2.  

Plasmid pLI50 (35) was used to complement mutations in SAUSA300_2490 (farR), and 

SAUSA300_2489 (farE). To complement farE, a 2.8-kb fragment was amplified by PCR 

of genomic DNA from S. aureus USA300 with forward and reverse primers farE_F1 and 

farE_R1. Similarly, a 1.2-kb product containing the native farR gene was amplified with 

primers farR_F1 and farR-R1. The PCR products were digested with KpnI and SacI, and 

ligated into pLI50, which had been digested with the same enzymes. To construct 

pCN51farR in which expression of farR is dependent on the cadmium inducible Pcad 

promoter, we first excised the ermC cassette from pCN51 by digestion with AvrII and 

XhoI, and replaced it with a 1.0 kb AvrII-XhoI fragment containing the cat194 cassette 

from pRN7146 (36). The resulting pCN51c plasmid was then digested with BamHI and 

AscI, and ligated to a 605 nt BamHI-AscI fragment containing the promoterless farR 

gene, which was generated by PCR with primers CNfarR_F and CNfarR_R. To construct 

pGYfarE::lux, in which expression of the luciferase operon is driven from the farE 
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promoter, a 396 bp fragment containing the intergenic segment between 

SAUSA300_2490 and SAUSA300_2489 (farE) was amplified with primers GYfarE_F 

and GYfarE_R, and cloned into the BamHI and SalI sites of pGYlux (37). 

A markerless in-frame deletion of tet38 (SAUSA300_0139), encoding a major facilitator 

efflux pump, was constructed using pKOR-1, following established protocols (25, 38). 

Briefly, sequences flanking the tet38 locus were amplified by PCR using 

primers tet38 5′F and tet38 5′R to generate the upstream arm, and primers tet38 3′F 

and tet38 3′R to generate the downstream arm. The upstream and downstream flanking 

arms were digested with SacII, ligated to one another, and then recombined into the 

temperature-sensitive pKOR-1 vector, using attB1 and attB2 sites incorporated into the 

flanking sequences by the respective tet38 5′F and tet38 3′R primers. The resulting 

pKOR-1Δtet38 vector was first passaged through S. aureus RN4220 before being 

introduced into USA300 by electroporation. The correct deletion of codons 42 through 

439 of the tet38 gene was confirmed by PCR and DNA sequence analysis. The resulting 

USA300Δtet38 strain was then used as a recipient for phage transduction, using 

USA300farE::ΦNΕ as a donor (Table 2.1), to create USA300Δtet38- farE::ΦNΕ. 
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Table 2.2 Primers used for construction of plasmids in Chapter 2. 

Oligonucleotide aDescription 
 
farE_F1b 

 
cccggtaccCACTTCCATGCAAAAAACCTCC 

farE_R1c cccgagctcTGTACGGTGTACGAGTGCGTTG 
farR_F1b cccggtaccTGCAGCTACAATCACTATCCATGC 
farR_R1c cccgagctcACGGACGCTAAAACAGGTAGTCC 
CNfarR_Fd cccggatccgttaactaattaaCTACACACAAAGGAGAAATGTAG ATG 
CNfarR_Re cccggcgcgccTGAATGTTGGTAACGCTCATGAG 
GYfarE_Ff cccggatccTTGTACGGTGTACGAGTGCG 
GYfarE_Rg cccgtcgacCGGTGCATTTGTAGCAAGTG 
tet38 5′Fh attB1-GAAACGGTTCTATTGCCAG 
tet38 5′Ri ggacctccgcggGTTTAAGTCATCAGCAATGGCTACAG 
tet38 3′Fi ggacctccgcggGTCAGCTTAAATCGTTGGACAC 
tet38 3′Rj attB2-CGCCACCTGATGCTTTTACTTCTAC 

 

aLower case nucleotides indicate 5′-additions, to incorporate restriction endonuclease 

sites for bKpnI, cSacI, dBamHI and stop codons (bold) in all three reading frames, eAscI, 
fBamHI, gSalI, hattB1 site GGGGACAAGTTTGTACAAAAAAGCAGGCT for cloning 

in pKOR-1; iSacII site; jattB2 site GGGGACCACTTTGTACAAGAAAGCTGGGT for 

cloning in pKOR-1. 
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2.2.4( Assay(of(growth(and(bactericidal(activity(

For growth and bactericidal assays, inoculum cultures were supplemented with antibiotic 

where required, and these cultures were then inoculated into media that lacked antibiotics 

to assess growth or bactericidal activity, in the presence of antimicrobial fatty acids. For 

growth assays, flasks containing a 1:5 ratio of flask size to medium volume, and 

supplemented with the indicated concentrations of fatty acid, were inoculated to an initial 

OD600 of 0.01, and samples were withdrawn at hourly intervals for determination of 

OD600. All cultures were grown in triplicate, or quadruplicate, as specified in individual 

Figure Legends. For bactericidal assays, the overnight inoculum cultures were first sub-

cultured into 25 mL of fresh TSB alone, to prepare non-induced cells, or TSB containing 

20 µM sub-inhibitory fatty acid, to allow for induction of intrinsic resistance 

mechanisms. After growth to mid-exponential phase (OD600 = 0.5), these inoculum 

cultures were then inoculated into triplicate or quadruplicate flasks of fresh TSB (OD600 = 

0.01; approximately 2x106 cfu/mL) containing a 100 µM bactericidal concentration of 

fatty acid. The cultures were then incubated with shaking at 37°C, and aliquots were 

withdrawn at hourly intervals for preparation of serial dilutions in sterile TSB. 

Subsequently, 10 µl aliquots from each dilution were spotted in quadruplicate, on to TSB 

agar plates, and colonies were counted after 24h of incubation. The mean of each 

quadruplicate technical replicate was entered as a single data point for each flask, from 

which the mean and standard deviation of the biologic replicate flasks was determined. 

2.2.5( Assay(for(uptake(of(14C0linoleic(acid(

Assays for growth and uptake of 14C-linoleic acid were conducted according to 

established protocol (39), with modifications, to evaluate the influence of farE on 

accumulation of 14C-linoleic acid in S. aureus cells. Briefly, quadruplicate cultures of S. 

aureus USA300 or isogenic USA300farE::ΦNΕ complemented with empty pLI50 vector, 

or pLIfarE, were grown in TSB + 20 µM linoleic acid to an OD600 of approximately 0.3, 

to allow for induction of farE. The cultures were then supplemented with an additional 50 

µM dose of linoleic acid and returned to the shaker. After 30 minutes of exposure to 50 

µM linoleic acid, aliquots were withdrawn, and supplemented with 0.2 µCi/mL of 14C-

linoleic acid. Aliquots of 200 µL were then removed at intervals of 1, 2, 5, and 10 
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minutes, and samples from each replicate were simultaneously filtered onto 0.45 µM 

membrane filter discs using a vacuum manifold. The filters were then washed twice with 

4 mL of 0.1 M phosphate buffer, pH 7.0 containing 1% Triton X-100, and after drying, 

were placed in scintillation vials containing 4 mL of Cytoscint scintillation cocktail 

(Fisher Scientific). Accumulated 14C-linoleic acid was then quantified using a Beckman 

LS 6500 scintillation system. Data are expressed as pMol of 14C-linoleic acid 

accumulated, per µg of total cell lysate protein in each sample. 

2.2.6( farE::lux,reporter(gene(assays(

Inoculum cultures harboring of pGYfarE::lux or pGYlux control plasmid were 

subcultured into triplicate or quadruplicate flasks of TSB, or TSB supplemented with 

different fatty acids, to achieve an initial OD600 = 0.01. The cultures were incubated at 

37°C with orbital shaking, and samples were withdrawn at hourly intervals for OD600 

determinations. For quantification of luminescence, 4 x 200-µL aliquots of each sample 

were added to 96 well white opaque flat bottom plates (Greiner bio-one). After 

supplementing each well with 20 µL of 0.1% vol/vol decanal in 40% ethanol, 

luminescence measurements were immediately taken on a BioTek Synergy H4 Hybrid 

Reader (BioTek; Winooski, VT) with 1 second of integration and a gain of 200. Data 

values were recorded as relative light units (RLU), corrected for background by 

subtraction of values recorded from cultures harbouring the empty pGYlux vector. The 

data points were standardized for differences in growth by dividing RLU values with the 

recorded OD600 of the cultures, when samples were withdrawn.  

2.2.7( Data(analyses(

Data points for growth, viability, and luciferase reporter gene assays were plotted and 

analyzed using Graph Pad Prism v6.0f. Significant differences at specific time points 

were determined by unpaired one-tailed Student’s t-tests.  
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2.3( Results((

2.3.1( Identification(of(single(nucleotide(polymorphism(in(linoleic(
acid(resistant(variants(of(S.,aureus,,

The preferred site of S. aureus colonization of humans is the anterior nares, where 

concentrations of linoleic acid in nasal secretions can reach 40- to 50 µM (16). These 

values correlate with our previous work, where 50 µM linoleic acid caused a 10-12h lag 

phase in growth of USA300, followed by unimpeded exponential growth (24). Following 

up on this, we observed that when stationary phase cells from a primary culture grown in 

TSB + 50 µM linoleic acid were re-inoculated into the same medium, growth resumed 

without a lag phase (Appendix 2). To determine if this was due to the selection of genetic 

variants with increased resistance to linoleic acid, stationary phase cells from this second 

culture were plated on TSB agar for selection of single colonies. From these, we 

identified several that could initiate growth without a lag phase, when inoculated into 

TSB + 50 µM linoleic acid. Seven such fatty acid resistant (FAR) clones were subjected 

to comparative genome sequencing, and two of these, designated FAR6 and FAR7, had 

an identical single nucleotide polymorphism (SNP); a C>T transition that alters the H121 

codon (CAT) to Y (TAT) in a putative transcriptional regulator encoded by 

SAUSA300_2490 (30). FAR6 had a second SNP in a pyruvate oxidase encoded by cidC. 

Therefore, we focused on FAR7, which had just one SNP in SAUSA300_2490, and re-

sequencing of this gene in USA300 and FAR7 confirmed the unique SNP in FAR7. 

2.3.2( Description(of(the(farE4farR(locus(,

We hypothesize that SAUSA300_2490, and a divergently transcribed gene 

SAUSA300_2489, respectively comprise a regulator and effector gene pair that we have 

designated as farR and farE, to denote predicted functions as a regulator and effector of 

fatty acid resistance. These assignments are supported by bioinformatics analyses. farR 

encodes a 182 amino acid protein, with an N-terminal TetR family DNA binding domain 

(2.33e-04), and overall similarity to the AcrR cluster of orthologous groups of proteins 

(6.52e-09). In Gram-negative bacteria, AcrR regulators control expression of efflux pumps 

belonging to the AcrB family, which are often encoded by divergently transcribed genes, 

as with acrR-acrABC in E. coli (40) and orthologous mtrR-mtrCDE arrangement in N. 
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gonorrhoeae (41). Similarly, farE is divergently transcribed from farR and encodes an 

822 amino acid protein that is annotated as a drug exporter of the resistance-nodulation-

division (RND) superfamily (30), to which AcrB and orthologous efflux pumps are also 

assigned (42). Genome annotation also assigns FarE to the MMPL family of proteins, on 

the basis of homology to large membrane proteins of Mycobacterium tuberculosis, that 

transport mycolic acids to the cell surface (43). Using protein structural modeling 

programs HHPRED and PHYRE2 (44, 45), FarR was predicted with greater than 99% 

confidence, to resemble known AcrR family regulators, including PfmR and FadR of 

Thermus thermophilus, which control expression of genes involved in fatty acid synthesis 

and metabolism (46, 47), and MtrR; an efflux pump regulator of Neisseria gonorrhoeae 

(41, 48). Likewise, 80% of the FarE amino acid sequence was modeled with 100% 

confidence, on the structure of AcrB from E. coli (49).  

2.3.3( farR(is(required(for(inducible(resistance(to(linoleic(acid(

We hypothesized that farR should regulate expression of farE in response to 

antimicrobial fatty acids, which was addressed by constructing a farE::lux reporter, 

where expression of the lux operon is under transcriptional control of the farE promoter. 

When USA300-pGYfarE::lux was cultured in TSB, there was a modest peak of 

luciferase activity in early exponential growth, which quickly dissipated (Fig. 2.1). 

However, in TSB + 20 µM linoleic acid, luciferase activity was strongly induced in early 

exponential phase cells, and again dissipated as the cells progressed towards stationary 

phase. Importantly, no induction was observed in USA300farR::ΦNΕ cells. Although 

USA300farR appeared to exhibit superior growth to wild type USA300 in TSB + 20 µM 

linoleic acid (Fig. 2.1), our further analysis on this phenomenon uncovered that it reflects 

a growth penalty that is imposed on USA300 by forced expression of the luxABCDE 

genes. This was evident from a growth comparison of USA300 harboring either 

pGYfarE::lux or empty pGYlux, in TSB + 20 µM linoleic acid, where cells carrying 

pGYfarE::lux exhibited significantly slower growth compared to USA300 with empty 

vector (Appendix 3).  

These assays suggested that USA300 should exhibit inducible resistance to the 

antimicrobial activity of linoleic acid. It was previously reported that exponential phase 
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cells of S. aureus were significantly more sensitive to the bactericidal activity of 

antimicrobial fatty acids, relative to stationary phase cells (17), which we confirmed in a 

preliminary experiment (Appendix 4). Therefore, to assess inducible resistance, USA300 

and USA300farR::ΦNΕ were grown to mid-exponential phase in TSB (non-induced), or 

TSB + 20 µM linoleic acid (induced), and then diluted to 106 cfu/mL in fresh TSB 

containing 100 µM linoleic acid. Non-induced USA300 suffered a > 3-log loss of 

viability after 1h of exposure to 100 µM linoleic acid (Fig. 2.2A), while the induced cells 

retained significantly greater viability at all time points, such that there was only an 

approximate 40-fold loss of viability after 5h. Furthermore, the induced 

USA300farR::ΦNΕ cells exhibited a significantly greater loss of viability compared to 

induced USA300, after 2h and onwards. Although the induced USA300farR::ΦNΕ cells 

initially retained significantly greater viability compared to non-induced USA300, they 

exhibited a progressive loss of viability, such that after 4h of exposure, the remaining 

viable cells did not significantly differ from non-induced USA300 cells.  
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Figure 2.1 Linoleic acid induces expression of farE. Growth (OD600; open symbols) 

and relative luminescence units (RLU/OD; closed symbols) of USA300 and 

USA300farR::ΦNΕ, harboring the pGYfarE::lux reporter vector, are charted. USA300 

was grown in TSB or TSB + 20 µM linoleic acid (LA); USA300farR::ΦNΕ was grown in 

TSB or TSB + 20 µM linoleic acid. Each value represents the mean and standard 

deviation of three separate cultures, and each culture was subjected to quadruplicate 

luminescence readings at each time point.  
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Figure 2.2 Sensitivity of USA300 and USA300farR::ΦNΕ to the bactericidal activity 

of 100 µM linoleic acid. A. USA300 or USA300farR::ΦNΕ challenge cells were grown 

to mid-exponential phase in TSB or TSB + 20 µM linoleic acid and then diluted to 106 

cfu/mL in TSB containing 100 µM linoleic acid, followed by monitoring of viability at 

hourly intervals. B. USA300farR::ΦNΕ  was complemented with empty pLI50 vector or 

pLIfarR and assayed for viability in 100 µM linoleic acid, after initial growth in TSB + 

20 µM linoleic aicd. All data points represent the mean ± standard deviation, of viability 

determinations from quadruplicate cultures. Significant differences in viability at each 

time point were determined by unpaired one-tailed Student’s t-test; ***, P < 0.001; **, P 

< 0.01; *, P < 0.05; ns, nonsignificant. 
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To validate a role for farR, USA300farR::ΦNΕ was complemented with empty pLI50, or 

pLIfarR harboring farR and its native promoter, to determine whether pLIfarR could 

restore inducible resistance. Accordingly, when pre-induced by growth in 20 µM linoleic 

acid, USA300farR::ΦΝΕ + pLIfarR retained significantly greater viability after 2h of 

exposure to 100 µM linoleic acid, compared to USA300farR::ΦΝΕ + pLI50 (Fig. 2.2B). 

Nevertheless, pLIfarR did not appear to restore the level of inducible resistance to that of 

wild type USA300, which retained approximately 105 cfu/mL viable cells after 5h of 

exposure (Fig. 2.2A). We reasoned that this could be due to two variables; first, that farR 

might be expressed at a high level from its native promoter on a multi-copy plasmid, and 

second, that the FarR protein could engage nucleotide sequences on pLIfarR, which 

contained the entire farE-farR intergenic segment, and these in trans interactions could 

limit the ability of FarR to regulate farE on the chromosome. To overcome these 

limitations, we expressed farR using the cadmium inducible Pcad promoter, and observed 

an approximate 100-fold difference in viability when USA300farR::ΦΝΕ + pCNfarR 

cells were exposed to 100 µM linoleic acid, in the presence or absence of 10 µM 

cadmium (Appendix 5). Cumulatively, these data support the contention that farR is 

required to manifest an inducible resistance phenotype in S. aureus USA300.  

2.3.4( farE,contributes(to(persistence(and(growth(of(S.,aureus,in(
the(presence(of(linoleic(acid(

We previously established that USA300 could grow in TSB containing 25 µM linoleic 

acid, whereas 50 µM linoleic acid imposed a 10-12h lag phase. Our current reporter gene 

assays also established that farE was induced by growth in TSB containing 20 µM 

linoleic acid. Therefore, we expected that farE would be required to support growth of S. 

aureus USA300 at a 25 µM upper threshold of linoleic acid, and that induction of farE 

would confer protection against challenge of S. aureus with a 100 µM bactericidal 

concentration. To address the growth requirement, USA300 or USA300farE::ΦNΕ were 

cultured in TSB containing 5, 10, 20, or 25 µM linoleic acid. USA300 was not adversely 

affected by 5- or 10 µM linoleic acid, but exhibited slower growth in 20- or 25 µM 

linoleic acid (Fig. 2.3A). Comparatively, USA300farE::ΦNΕ exhibited similar behavior 

at 5, 10 and 20 µM linoleic acid, but was unable to initiate growth over an 8h incubation 
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in 25 µM linoleic acid (Fig. 2.3B). Furthermore, when USA300farE::ΦNΕ was 

complemented with pLIfarE, we observed growth restoration not only in 25 µM linoleic 

acid (Fig. 2.3B), but also in up to 100 µM linoleic acid (Fig. 2.3C); compare this to wild 

type USA300, which was unable to grow in 50 µM linoleic acid (Fig. 2.3C).  

To ensure that the role of farE was not dependent on factors that are uniquely associated 

with the CA-MRSA strain USA300 genetic background, we transduced farE::ΦNΕ into 

S. aureus SH1000, which is a methicillin susceptible laboratory strain that has the same 

multi-locus sequence type (MLST) as USA300 (50). Although SH1000 exhibited 

somewhat greater intrinsic resistance to linoleic acid, as evident from its ability to grow 

in TSB + 50 µM linoleic acid, SH1000farE::ΦNΕ exhibited an extended lag phase, with 

no obvious growth over 6h (Fig. 2.3D). Therefore, farE promotes growth of both MRSA 

and MSSA strains at elevated concentrations of linoleic acid.   

To evaluate the role of farE in promoting inducible resistance, USA300 and 

USA300farE::ΦNΕ were grown in TSB alone, or TSB containing 20 µM linoleic acid, 

prior to subculture into 100 µM linoleic acid (Fig. 2.4). Consistent with farE not being 

appreciably expressed in non-induced cells, the non-induced USA300 and 

USA300farE::ΦNΕ cultures both suffered a rapid loss of viability on exposure to 100 µM 

linoleic acid. However, when the cells were grown under inducing conditions prior to 

challenge with 100 µM linoleic acid, USA300 exhibited only a 10- to 40-fold loss of 

viability over 5h, and retained significantly greater viability at all time points, compared 

to USA300farE::ΦNΕ. Interestingly, the induced USA300farE::ΦNΕ challenge cells still 

retained significantly greater viability compared to non-induced USA300, which suggests 

that factors in addition to farE may also promote inducible resistance. Cumulatively, 

these data confirm that farE contributes to the inducible resistance of S. aureus to the 

bactericidal activity of 100 µM linoleic acid, and is also required to support growth in as 

low as 25 µM linoleic acid. It further appears that resistance is proportional to farE 

expression, as suggested by the ability of pLIfarE to support growth of 

USA300farE::ΦNΕ at concentrations of linoleic acid that could not be tolerated by 

USA300 (Fig. 2.3C).  
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Figure 2.3 Mutation of farE::ΦNΕ enhances sensitivity of S. aureus to toxicity of 

linoleic acid. Growth of USA300 (A) or USA300farE::ΦNΕ (B) in TSB supplemented 

with 5 µM, 10 µM, 20 µM or 25 µM linoleic acid, and that of USA300farE::ΦNΕ + 

pLIfarE in TSB + 25 µM linoleic acid. C. Growth of USA300 or USA300farE::ΦNΕ in 

TSB + 50 µM linoleic acid and growth of USA300farE::ΦNΕ + pLIfarE in 50 µM or 100 

µM linoleic acid. D. Growth of S. aureus SH1000 or SH1000 farE::ΦNΕ in TSB + 50 

µM linoleic acid. Each data point represents the mean of triplicate (A, C and D) or 

quadruplicate (B) cultures.  
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Figure 2.4 Sensitivity of USA300 and USA300farE::ΦNΕ cells to the bactericidal 

activity of 100 µM linoleic acid. Cells of USA300 or USA300farE::ΦNΕ were exposed 

to 100 µM linoleic acid after growth to mid-exponential phase in TSB or TSB + 20 µM 

linoleic acid. Each data point represents the mean of quadruplicate cultures. P values are 

indicated by asterisks where **, P < 0.01; ***, P < 0.001; ns, non-significant. 
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2.3.5% The%FAR7%clone%exhibits%increased%expression%of%farE%%

FAR7 is distinguished from USA300 by a SNP in farR that changes H121 to Y in the gene 

product. This clone was selected for its ability to grow without a lag phase in TSB + 50 

µM linoleic acid, and our data suggest that this should be due to increased expression of 

farE, as a consequence of the SNP in farR. This was confirmed by conducting farE::lux 

reporter gene assays, in both USA300 and FAR7 (Fig. 2.5). When grown in TSB, FAR7 

exhibited significantly greater luciferase activity compared to USA300, and during 

growth in TSB + 20 µM linoleic acid, the luciferase activity in FAR7 significantly 

exceeded that of USA300. Therefore, the SNP that causes a H121Y substitution in FarR 

results in a constitutive level of farE expression during growth in TSB, and permits a 

significantly greater induced level of expression, than could otherwise be achieved in 

USA300. 

2.3.6% An%H121Y%substitution%in%FarR%is%sufficient%for%increased%
resistance%to%linoleic%acid%

Since USA300 and FAR7 are differentiated on the basis of a SNP that causes a H121Y 

substitution in FarR, we expected that this alone would be sufficient to promote increased 

resistance to linoleic acid. Accordingly, although FAR7 and USA300 exhibited no 

difference in growth when cultured in TSB, FAR7 was uniquely able to grow in TSB + 

100 µM linoleic acid (Fig. 2.6A). In bactericidal assays, non-induced USA300 and FAR7 

both suffered a similar rapid loss of viability when exposed to 100 µM linoleic acid (Fig. 

2.6B). Therefore, although there is some constitutive expression of farE during growth of 

FAR7 in TSB, this is not sufficient to promote resistance to 100 µM linoleic acid. 

However, when the assay was conducted with cells grown under inducing conditions, 

FAR7 did not exhibit any significant loss of viability over 5h of exposure to 100 µM 

linoleic acid, and exhibited significantly greater retention of viability from 3- to 5h, 

compared to USA300 (Fig. 2.6B). These observations are consistent with our farE::lux 

assays, where FAR7 exhibited a significantly higher induced level of farE expression 

compared to USA300, and support the contention that increased expression of farE 

correlates with increased resistance. 
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Figure 2.5 The FAR7 SNP causes enhanced induction of farE expression. The 

cultures were grown in TSB or TSB + 20 µM linoleic acid as indicated. Data are 

expressed as relative luminosity units (RLU), standardized to one OD600 unit. Values 

represent the mean of four replicates from each of four independent cultures. 

Measurements were taken from triplicate cultures when OD600 values reached 

approximately 0.5, and P values are indicated by asterisks where *, P < 0.05; **, P < 

0.01; ***, P < 0.001. 
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Figure 2.6 FAR7 is more resistant than USA300 to linoleic acid. A. Growth analysis 

of USA300 and FAR7 cultured in TSB or TSB + 100 µM linoleic acid. B. Bactericidal 

activity of 100 µM linoleic acid measured with USA300 or FAR7 challenge cells, 

prepared by growth to mid-exponential phase in TSB or TSB + 100 µM linoleic acid. 

Each data point represents the mean of triplicate cultures. P values for comparison of 

induced USA300 and induced FAR7 cells are indicated by asterisks where ***, P < 

0.001. 
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To further define the impact of the H121Y substitution, USA300farR::ΦNΕ was 

transformed with pLI50 harboring wild type farR, or the variant farR7 allele derived from 

FAR7. With no complementation, USA300farR::ΦNΕ exhibited no growth over an 8h 

incubation in TSB + 50 µM linoleic acid, and cells complemented with wild type pLIfarR 

were also unable to grow (Fig. 2.7). However, cells complemented with the variant farR7 

allele acquired the ability to grow in 50 µM linoleic acid, and also at a reduced rate in 

100 µM linoleic acid. Therefore, a SNP that introduces a H121Y substitution in FarR is 

alone sufficient to confer increased resistance of S. aureus towards linoleic acid, 

presumably due to increased expression of farE.  

2.3.7% Role%of%farE%in%resistance%to%other%uFFA%

Although farE is induced by and promotes resistance to linoleic acid, S. aureus would be 

exposed to a varying diversity and abundance of free fatty acids, dependent on the 

context within the human body. In a tissue abscess, pus contains high concentrations of 

unsaturated free fatty acids, which could be derived from triglyceride (18, 51), or human 

cell membrane phospholipid, where the major unsaturated fatty acids, oleic (C18:1), 

linoleic (C18:2), and arachidonic acid (C20:4), each comprise approximately 13- to 15% 

of the total fatty acid content (22, 23). Conversely, although sapienic acid or its isomer 

palmitoleic acid (C16:1) do not comprise a major proportion of the fatty acid profile of 

phospholipid, sapienic acid is the major unsaturated fatty acid in human sebum, both as 

free fatty acid, and in sebum triglyceride (14, 52). Therefore, to better understand the 

biological role of farE, we evaluated the specificity of farE induction by these different 

fatty acids, and the extent to which farE confers resistance to other fatty acids. 

To evaluate the specificity of induction, USA300-pGYfarE::lux was grown to an OD600 

of ~ 0.5 in TSB, or TSB supplemented with 20 µM fatty acid, followed by assay of 

luciferase activity (Fig. 2.8A). There were significant differences in the ability of 

different 18-carbon chain length fatty acids to induce farE::lux, such that no induction 

was observed with saturated stearic acid (C18:0), or oleic acid (C18:1), while linoleic 

acid (C18:2) was a strong inducer. Strikingly, arachidonic acid (C20:4) promoted a 

significantly higher level of expression compared to linoleic acid, while linolenic acid 

(C18:3), together with palmitoleic acid (C16:1) and its isomer sapienic acid, each 
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facilitated an intermediate level of expression, which was significantly greater than that 

of TSB alone, but significantly less than that of linoleic and arachidonic acid.  

Consistent with the modest induction by 20 µM palmitoleic acid, when a bactericidal 

assay was conducted with USA300 and USA300farE::ΦNΕ cells that were pre-induced 

by growth in 20 µM palmitoleic acid, there were no significant differences in retention of 

viability after exposure to 100 µM palmitoleic acid (Fig. 2.8B). However, when this 

assay was performed with arachidonic acid, USA300 retained significantly greater 

viability after 2h of exposure, compared to USA300farE::ΦNΕ (Fig. 2.8B). Therefore, 

farE appears to have a primary role in mediating resistance to linoleic- and arachidonic 

acid, which are the most effective inducers of farE expression. 

Although farE did not promote resistance to palmitoleic acid, we nevertheless observed a 

significant induction of expression by 20 µM palmitoleic acid (Fig. 2.8A), in addition to 

which, FAR7 was able to grow in TSB containing 50 µM palmitoleic acid, whereas 

USA300 could not (Appendix 6). This suggested that farE could still promote resistance 

to palmitoleic acid, if expressed at a sufficiently high level. Furthermore, it was recently 

reported that tet38, which encodes a major facilitator superfamily efflux pump, was 

induced by palmitoleic acid and contributed to resistance (21). Therefore, we considered 

that one efflux pump might compensate for loss of another, which could obfuscate the 

phenotype of USA300farE::ΦNΕ when tested with palmitoleic acid. To address this, we 

constructed a markerless Δtet38 mutation in USA300, which was assayed for growth in 

TSB + 25 µM or 40 µM palmitoleic acid. The higher concentration imposed a slower 

growth rate, as evident from a time of 5h being required for USA300 to achieve an OD600 

= 0.5, compared to approximately 3h in 25 µM palmitoleic acid (Fig. 2.9). Nevertheless, 

there were no discernible differences in growth between USA300, and the individual 

USA300Δtet38 or USA300 farE::ΦNΕ mutants, or combined USA300Δtet38-farE::ΦNΕ 

double mutant. Therefore, neither farE nor tet38 exerted a significant impact on 

resistance to palmitoleic acid under the conditions that we have tested. 
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Figure 2.7 The variant farR7 allele, but not wild type farR, enables the ability of 

USA300farR::ΦNΕ to grow at inhibitory concentrations of linoleic acid. USA300 

was grown in TSB + 25 µM linoleic acid, USA300farR::ΦNΕ was grown in 25 µM or 50 

µM linoleic acid,  USA300farR::ΦNΕ + pLIfarR was grown in 50 µM linoleic acid, and 

USA300farR::ΦNΕ + pLIfarR7 was grown in 50 µM or 100 µM linoleic acid. All data 

points represent the mean of triplicate cultures.   



 

 93 

TSB

Stea
ric

 (1
8:0

)

Olei
c (

18
:1)

Lino
lei

c (
18

:2)

Lino
len

ic 
(18

:3)

Sap
ien

ic 
(16

:1)

Arac
hid

on
ic 

(20
:4)

Palm
ito

lei
c (

16
:1)

0

2000

4000

6000

R
LU

/O
D

***

** ** *

***

farE::lux Activity
***

C18:2 C20:4 C16:1
102

103

104

105

106

V
ia

bi
lit

y 
(c

fu
/m

L)

USA300
USA300farE::ΦΝΕ

Viability after 3h exposure to 
100 µM fatty acid

*** * ns

A. B.

 

 

 

 

 

  

 

 

 

 

 

 

 



 

 94 

Figure 2.8 Influence of different antimicrobial fatty acids on induction of farE, or 

viability of S. aureus USA300 and USA300farE::ΦNΕ. A. Quantification of 

pGYlux::farE dependent luciferase activity in S. aureus USA300 grown to OD600 = 0.5 in 

TSB alone, or TSB supplemented with 20 µM of fatty acid, as indicated. Each value 

represents the mean of quadruplicate measurements, from each of four replicate cultures. 

P values indicate significant differences compared to growth in TSB alone, or significant 

difference between linoleic and arachidonic acid. B.  Bactericidal activity of 100 µM 

linoleic acid (C18:2), arachidonic acid (C20:4), or palmitoleic acid (C16:1) towards 

USA300 or USA300farE::ΦNΕ cells. The inoculum cultures were grown to OD600 = 0.5 

in TSB supplemented with 20 µM of the respective fatty acids, prior to challenge with a 

100 µM bactericidal concentration. Asterisks indicate P-values of significant differences 

between USA300 and USA300farE::ΦNΕ. Each value represents the mean of viability 

determination from quadruplicate cultures. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ns, 

nonsignificant. 
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Figure 2.9 Effect of farE::ΦNΕ and Δtet38 mutations on growth of S. aureus in the 

presence of 25 µM or 40 µM palmitoleic acid (PA). USA300, USA300farE::ΦNΕ, 

USA300Δtet38, and USA300Δtet38-farE::ΦNΕ were grown in TSB supplemented with 

25 µM or 40 µM palmitoleic acid (PA), as indicated. The dotted line with arrow depicts 

the time of growth at which OD600 = 0.5. 
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2.3.8% Inactivation%of%farE%promotes%increased%uptake%of%14CGlinoleic%
acid%

Although many bacteria can derive energy from exogenous fatty acids through an 

inducible β-oxidation pathway (53), S. aureus lacks this ability, and its primary means of 

coping with exogenous fatty acids is through incorporation into phospholipid (19, 39, 54, 

55). Since our data suggest that FarE promotes efflux of fatty acids, we expected that 

inactivation of farE would promote increased uptake of exogenous fatty acid. Prior to 

quantifying uptake of 14C-linoleic acid, we first conducted a mock assay, to evaluate the 

ability USA300 and USA300farE::ΦNΕ to recover from exposure to an abrupt increase 

in the concentration of linoleic acid. Cultures were grown to OD600 = 0.3 in TSB 

supplemented with sub-inhibitory 20 µM linoleic acid, to allow for induction of farE in 

USA300, and the cells were then challenged with a 50 µM dose of linoleic acid, followed 

by monitoring of OD600. After 30 minutes, each of USA300, USA300farE::ΦNΕ + 

pLI50, and USA300farE::ΦNΕ+ pLIfarE exhibited evidence of continued growth (Fig. 

2.10A). However, beyond 30 minutes, growth of USA300farE::ΦNΕ+ pLI50 was 

severely impaired, whereas USA300 continued to grow, and USA300farE::ΦNΕ+ 

pLIfarE exhibited superior recovery. These data confirm that farE contributes to the 

ability of S. aureus USA300 to recover from an abrupt increase in the concentration of 

exogenous linoleic acid, and that conditions of the assay were not bactericidal. 

We next wished to address the question of whether FarE was responsible for actively 

extruding linoleic acid from the S. aureus cell. To do this, we performed uptake assays 

using 14C-linoleic acid. We performed these assays on cells that were treated the same as 

for the growth experiments described in Figure 2.10A, and cultures were supplemented 

with 14C-linoleic acid, 30 minutes after challenge with 50 µM linoleic acid. Strikingly, 

USA300farE::ΦNΕ complemented with pLIfarE exhibited the least accumulation of 14C-

linoleic acid, while USA300farE::ΦNΕ harboring the empty pLI50 vector exhibited the 

greatest accumulation, and wild type USA300 exhibited intermediate accumulation (Fig. 

2.10B). Importantly, this reflected an inverse correlation between recovery of growth 

after exposure to 50 µM linoleic acid, and accumulation of 14C-linoleic acid. Specifically, 

USA300farE::ΦNΕ + pLIfarE exhibited the least accumulation of 14C-linoleic acid, and 
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its growth was not adversely affected, whereas USA300farE::ΦNΕ + pLI50 exhibited the 

greatest accumulation and its growth was severely impaired, while wild type USA300 

exhibited intermediate growth and accumulation kinetics. These data support the 

contention that FarE mediated efflux of unsaturated free fatty acids is required to support 

growth of S. aureus at elevated concentrations of antimicrobial fatty acid. 
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Figure 2.10 Growth (A) and uptake of 14C-linoleic acid (B) following exposure of S. 

aureus USA300 and USA300farE::ΦΝΕ to an increase in concentration of linoleic 

acid. A. quadruplicate cultures of USA300, USA300farE::ΦΝΕ + pLI50, or 

USA300farE::ΦΝΕ + pLIfarE were grown in TSB + 20 µM linoleic acid to an OD600 of 

approximately 0.2 to 0.3. The cultures were then supplemented with an additional 50 µM 

dose of linoleic acid, and growth (OD600) was measured after 30 minutes, and then at 

hourly intervals. When this experiment was conducted for the purpose of quantifying 

uptake of 14C-linoleic acid (B), the cultures were supplemented with 0.20 µCi/mL of 14C-

linoleic acid at t = 30 minutes, and aliquots of culture were processed for quantification 

of 14C-linoleic acid uptake at intervals of 1, 2, 5, and 10 minutes. Each data point 

represents the mean and standard deviation of quadruplicate samples.  
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2.4% Discussion%%
Through comparative genome sequencing of S. aureus USA300 variants that were 

selected for enhanced resistance to linoleic acid, we identified a regulator of fatty acid 

resistance, farR, and an effector of fatty acid resistance farE, which to our knowledge, is 

the first description of a dedicated and inducible mechanism of S. aureus resistance to 

antimicrobial fatty acids. These genes bear a similarity to the acrR and acrB paradigm in 

E. coli, where acrR and acrB were discovered through in vitro selection of acriflavine-

resistant mutants, which mapped to the acr locus (40, 56, 57). The emergence of 

antibiotic resistance in Gram-negative bacteria has also been attributed to the in vivo 

selection of mutations in the transcriptional repressor acrR, which promote increased 

expression of the efflux pump encoded by acrB (58-60). Similarly, we discovered farR 

through in vitro selection of USA300 variants with increased resistance to linoleic acid. 

As with many proteins that possess an N-terminal TetR DNA binding domain, protein 

structural modeling and homology searches indicate that FarR belongs to the TetR/AcrR 

family of regulators, while FarE belongs to the RND-family of multi-drug efflux pumps, 

which include AcrB. 

In addition to our own work which support a role for FarE as an efflux pump, other 

researchers using a different approach with S. aureus COL, demonstrated that an amino 

acid substitution in FarE (SACOL2566) promotes resistance to a newly described 

oxadiazole family of antibiotics (61). In E. coli, polymorphisms that cause amino acid 

substitutions in AcrB can also accrue during in vitro selection of strains that are resistant 

to fluoroquinolone antibiotics (62), and in these examples, it is likely that resistance is 

due to amino acid substitutions that expand the substrate specificity of the efflux pump 

(61, 62). However, although AcrB family efflux pumps have been most extensively 

characterized as mediators of multiple drug resistance, we contend that the primary 

function of FarE is to promote efflux of antimicrobial fatty acids that would be 

encountered during colonization, or within a tissue abscess. This is consistent with the 

belief that members of the AcrB family, which are encoded by the core genome, evolved 

to promote efflux of host-derived toxic compounds, including bile salts and fatty acids 

(63-68). 
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It is especially significant that expression of farE was most strongly induced by linoleic 

and arachidonic acid. Since S. aureus cannot synthesize unsaturated fatty acids (69), our 

data suggest that farE is induced as part of a signaling pathway that is activated by host-

specific unsaturated free fatty acids. In other work, bactericidal assays conducted with 

human nasal secretions established that cholesterol esters of linoleic- and arachidonic 

acid were the principal bactericidal components towards Pseudomonas aeruginosa, 

which does not colonize the nose, but did not affect viability of S. aureus (16), and 

linoleic acid is also the principal antimicrobial fatty acid in homogenates of murine tissue 

abscesses (18, 51). Although arachidonic acid was not identified as a major fatty acid in 

abscess homogenates, it is a major unsaturated fatty acid in erythrocyte and leukocyte 

membrane phospholipid (23, 70), from which it is released by phospholipases at sites of 

infection, and rapidly converted to inflammatory mediators (71). Therefore, the induction 

of farE in response to linoleic- and arachidonic acid may represent an evolutionary 

feature that contributes to the success of S. aureus as a human pathogen.  

Our observations are consistent with a requirement for FarE in maintaining membrane 

homeostasis when S. aureus is exposed to host-derived antimicrobial unsaturated free 

fatty acids. Since S. aureus cannot degrade exogenous fatty acids through β-oxidation, its 

primary means of coping with exogenous fatty acids is through incorporation into 

membrane phospholipid, which involves a novel fatty acid kinase pathway, whereby 

phosphorylated fatty acid is directly incorporated into glycerol-3-phosphate (54, 55). This 

in itself may represent a primary means of detoxifying long chain unsaturated free fatty 

acids, which promote loss of membrane integrity and cell death if allowed to accumulate 

in the cytoplasmic membrane (19). Importantly, S. aureus cannot synthesize unsaturated 

fatty acids, and maintains membrane fluidity through synthesis of branched chain fatty 

acids; primarily anteiso-C15 (69). From these considerations, we can envision two 

scenarios whereby FarE would be required under such conditions.  

First, although some bacteria cease the de novo synthesis of fatty acids when provided 

with an exogenous supply of unsaturated fatty acids, this does not occur in S. aureus, 

which continues to synthesize fatty acids (72). However, under such conditions, there is 

reduced incorporation of endogenously synthesized anteiso-C15 into phospholipid, likely 
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due to displacement or competition from the exogenous unsaturated fatty acid (72, 73). 

Consequently, it is likely that unutilized metabolites will accumulate, which could be 

dealt with through an efflux mechanism, and at least one study has proposed that the 

primary function of an RND family efflux pump is to promote efflux of fatty acids that 

are replaced as a result of membrane damage or phospholipid turnover (74). Second, 

although incorporation of unsaturated fatty acids into phospholipid may comprise an 

effective means of detoxification, it would also promote an increase in membrane fluidity 

which if too severe, would compromise membrane function. In this context, we note from 

our analysis of uptake of 14C-linoleic acid, that USA300farE::ΦNΕ cells exhibited 

significantly greater uptake of 14C-linoleic acid compared to wild type USA300 (Fig. 

2.10B). Therefore, although growth of USA300farE::ΦNΕ cells was impaired under 

these conditions (Fig. 2.10A), it continued to accumulate 14C-linoleic acid, which 

suggests that there is sufficient metabolic capacity to incorporate unsaturated fatty acid 

into phospholipid, at a level that is beyond the tolerance for proper membrane function. 

Consequently, FarE function could also be required under such conditions, to ensure that 

incorporation of unsaturated fatty acid into phospholipid does not exceed a level of 

tolerance for membrane fluidity. 

Although our data supported a role for farE in mediating resistance to linoleic and 

arachidonic acid, it did not confer resistance to palmitoleic acid, which is consistent with 

their being distinct mechanisms for resistance to unsaturated fatty acids of 16- and 18- 

carbon chain length. First, S. aureus exhibits a differential capacity to incorporate 

exogenous unsaturated 16- or 18-carbon fatty acids into membrane phospholipid. Oleic 

acid (C18:1) is directly incorporated into phospholipid (72), but palmitoleic acid must 

first be extended by the S. aureus fatty acid biosynthesis machinery, in a rate limiting 

step, to produce C18:1, which is then incorporated into phospholipid (19). Perhaps due to 

the less efficient incorporation of C16:1 fatty acids into phospholipid, S. aureus has 

evolved some capacity to exclude entry of palmitoleic and sapienic acid into the 

cytoplasm, due to cell surface teichoic acids and the low iron-induced cell surface protein 

IsdA, which function as a filtering mechanism to restrict penetration through the cell wall 

(19, 20). Others also reported that a major facilitator superfamily efflux pump encoded by 

tet38 promoted resistance to palmitoleic acid (21), and although we were not able to 
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confirm this through construction of a USA300Δtet38 deletion mutant, it may be that 

tet38 functions in a strain specific context. 

Further relevant to these considerations, expression of tet38 was induced primarily by 

palmitoleic acid, and much less effectively by linoleic acid, whereas we observed the 

opposite response for induction of farE. Importantly, with our identification of a SNP in 

farR that promotes increased expression of farE, we have provided the first mechanistic 

description of an efflux pump that is specifically induced in response to antimicrobial 

fatty acids in S. aureus, and at a broader level, in Gram-positive bacteria. FarR belongs to 

the TetR/AcrR family of transcriptional regulators, which usually repress transcription of 

divergent genes, by virtue of an N-terminal DNA binding domain that recognizes a 

specific operator site in the promoter segment of a target gene, and the affinity of this 

interaction is modulated by a C-terminal domain that binds a small inducing ligand (75, 

76). In a relevant example, FadR of Thermus thermophilus represses expression of genes 

required to degrade fatty acids, which are de-repressed upon binding of an acyl-CoA 

ligand to FadR (46). However, although farE is induced by antimicrobial fatty acids, we 

cannot yet conclude that farR is alone sufficient to regulate farE. If FarR functioned 

strictly as a repressor, then inactivation of farR should have caused de-repression of farE. 

However, this was not observed, and farR was in fact needed for induction of farE (Fig. 

2.1). Conversely, FAR7 exhibited a constitutive measure of farE expression, attributed to 

the H121Y substitution in FarR, which also conferred a significantly higher induced level 

of farE expression than could be achieved in wild type USA300 (Fig. 2.8B).  

As this substitution is not within the N-terminal DNA binding domain, which spans 

amino acids 28-61 of FarR, it should not directly affect the DNA binding function. 

However, in a potentially related example, FadR represses expression of genes required 

for β-oxidation of fatty acids, and the conformation of amino acids 106-119 in the C-

terminal domain underwent a significant shift on binding of fatty acid, including R109, 

which had an important role in maintaining the DNA-binding affinity, even though it is 

not within the N-terminal DNA binding domain (77). Therefore, the H121Y substitution in 

FarR could still affect the function of the N-terminal DNA binding domain, or alternately 
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it may affect the ability of FarR to form functional oligomers; typically dimers or 

tetramers, which is another characteristic trait of the TetR family of regulators (75, 78).  

Although most TetR regulators repress expression of divergently transcribed genes (75, 

78), our observation that FarR is required for induction of farE is not unprecedented, and 

FarR may resemble a limited number of TetR regulators that trigger a broader cellular 

response to environmental insults (78-83). In one such example, the SczA metal ion-

dependent transcriptional regulator of Streptococcus pneumoniae (82) binds to a specific 

operator site to repress transcription of a target gene in the absence of zinc, but when zinc 

is present, it binds to a different DNA segment upstream of the regulated gene to activate 

transcription. Alternatively, FarR may still function as repressor of farE in the absence of 

inducer, and then in the presence of exogenous fatty acid may serve to promote 

expression of a positive acting transcription factor that is needed to activate farE. This 

would partially conform to the AcrR-AcrB paradigm, where AcrR ensures that acrB is 

not expressed in the absence of an inducing stimulus, but other positive acting factors are 

required to activate acrB (84-86). With these considerations in mind, work is in progress 

to determine the mechanism of FarR-dependent regulation of gene expression, through 

analysis of its interaction with different fatty acids and target promoters, and the scope of 

genes that are affected by this interaction. 
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3.1% Introduction%
Methicillin-resistant Staphylococcus aureus has rapidly achieved pandemic status in 

community and hospital settings. To persist on human hosts, S. aureus must have 

intrinsic defense mechanisms to cope with antimicrobial unsaturated free fatty acids 

(uFFA), an important component of human innate defense mechanisms. In previous 

work, we identified a regulator of fatty acid resistance, FarR, which belongs to the TetR 

family of transcriptional regulators (TFR) (1). TFRs represent the third most ubiquitous 

transcriptional regulators in prokaryotes (2). This family is named after the prototypic 

TetR that has a role in mediating tetracycline resistance (3). Members of this family 

typically exert their effect on divergent genes in response to small hydrophobic ligands 

and are involved in the transcriptional regulation of a wide range of biological functions 

such as multidrug resistance, antibiotics biosynthesis, quorum sensing, and pathogenicity 

(4). Studies show that overexpression of multidrug efflux pumps, and the resulting 

antibiotic resistance, is often attributed to mutations in transcriptional regulators such as 

those belonging to the TetR family. In Gram-negative bacteria, AcrAB is an RND-efflux 

pump regulated by the TFR, AcrR, and other global transcriptional regulators such as 

MarA, SdiA, RobA and SoxS (5, 6). In this paradigm, the de-repression of AcrR in the 

presence of an inducing ligand is not enough to ensure that the pump is only expressed 

when needed, and additional positive-acting factors are needed to fully activate the efflux 

pump (7). As a result the TFR AcrR fine-tunes the expression of the efflux pump, as 

opposed to straightforward repression and de-repression (8). Nevertheless, mutations in 

acrR alone can cause overexpression of the AcrAB efflux pump and are linked to 

antibiotic resistance in clinical isolates (9). Similar to the acrR and acrB paradigm in E. 

coli, where acrR and acrB were discovered by in vitro selection of acriflavine-resistant 

mutants, we discovered farR through in vitro selection of USA300 variants with 

increased resistance to linoleic acid (1).  

Analysis of the region upstream of farR revealed an RND efflux pump, farE, the 

expression of which is induced by antimicrobial uFFA, including linoleic and arachidonic 

acid. Importantly, a single nucleotide polymorphism causing a His121Tyr substitution in 

FarR caused increased expression of farE, in the absence of an inducing stimulus, and a 
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significantly higher induced level of expression when cells are exposed to linoleic acid. 

Moreover, we showed that farE is required to support the growth of S. aureus in the 

presence of sub-inhibitory concentrations of linoleic acid, and that resistance to linoleic 

acid is proportional to farE expression (1). 

The regulation of lipid homeostasis is essential to maintaining bacterial physiology and 

here we report the first steps towards understanding how FarR regulates the expression of 

farE. We previously established that farE is induced by antimicrobial fatty acids in a 

farR-dependent manner, providing evidence that farR does not function strictly as a 

repressor. TFRs are mainly repressors in nature, with limited reports of unconventional 

TFRs that have dual roles (10–12). SczA of Streptococcus pneumoniae, for instance, is an 

unconventional TFR that binds an operator site in the absence of its ligand, zinc, and 

binds another distinct operator site further upstream to act as an activator and help recruit 

the transcription machinery (13). We here examine FarR-DNA interaction and establish 

that FarR binds to distinct operator sites in the intergenic segment between the divergent 

farE and farR, and nucleotide mutation in these operator sites abrogated protein binding 

of FarR to these sites. Using a gene-reporter system, we determine that FarR, similar to 

the majority of TFRs, is auto-regulatory in nature and that the operator site responsible 

for auto-repression spans the -10 element of PfarR as well as +1 transcriptional start site of 

farR.  Finally, we establish that FarR binds to a DNA operator site upstream of the 

putative farE promoter that may have a role in farE activation.  

3.2% Materials%and%methods%%

3.2.1% Bacterial%strains%and%growth%conditions%%

A list of bacterial strains used in this study is provided in Table 3.1. Bacterial cultures 

were maintained as frozen stocks at -80°C in 20% glycerol and streaked on tryptic soy 

agar (TSA) plates (S. aureus) or Luria Bertani (LB) agar plates (E. coli), when needed.  

Antibiotics were added when needed at the following concentrations: chloramphenicol, 5 

µg/ml; erythromycin, 5µg/mL; anhydrotetracycline, 250 ng/ml; ampicillin, 100 µg/mL 

and kanamycin, 50 µg/mL. For growth analyses, single colonies were inoculated into 3 

mL TSB or LB broth supplemented with antibiotics, when required, and incubated 
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overnight at 37°C on an orbital shaker (VWR). Cultures were then diluted into 25 mL 

TSB to a starting OD600 of 0.01 and incubated at 37°C on an orbital shaker at 180 rpm. 

For fatty acids supplementation, 25 mL TSB supplemented with 0.1% DMSO was used. 

3.2.2% Construction%of%S./aureus/USA300ΔfarER/and%
USA300ΔfakA/

In-frame, markerless deletion of both farE and farR as well as fakA was achieved using 

pKOR1 as previously described (14).  Briefly, 1000 bp segments located upstream and 

downstream of the farE-farR locus were amplified using PCR primers that incorporate 

attB1 and attB2 sequences as well as a SacII cut site to allow for ligation of the resulting 

amplicons. The segment upstream of farE was amplified using farE-UP-attB1 that 

incorporates attB1 sequence on the 5#-end of the segment, and farE-UP-SacII that 

incorporates a SacII cut site on the 3#-end of the segment. The segment downstream of 

farR was amplified using farR-DW-SacII that incorporates a SacII site at the 5#-end of the 

segment, and farR-DW-attB2, which incorporates an attB2 sequence on the 3#-end of the 

segment. Similarly, the fakA mutant was constructed by amplifying 1000 bp segments 

located upstream and downstream of fakA using PCR primers that incorporate attB1 and 

attB2 sequences as well as a SacII cut site to allow for ligation of the resulting amplicons. 

The amplicons were subsequently purified, digested with SacII and ligated together using 

T4 DNA ligase (NEB). The resulting fragment was then introduced into the pKOR1 

vector using site-specific recombination. This was achieved using BP Clonase II 

(Invitrogen) to facilitate recombination between the attB1 and attB2 sequences on the 

ligated PCR product and the attP1 and attP2 sites on the vector, generating pKORΔfarER 

or pKORΔfakA. The vectors were constructed in E. coli DH5α background first and 

subsequently passaged through S. aureus RN4220 at 30°C before electroporation into S. 

aureus USA300. In-frame allelic replacement of farER or fakA was then achieved by a 

two-step temperature shift and anti-sense counter-selection as previously described (14). 

The USA300ΔfakA-ΔfarER double mutant was constructed by electroporating 

pKORΔfarER into S. aureus USA300ΔfakA, followed by in-frame allelic replacement as 

described above. 



 

 116 

3.2.3% Construction%of%complementation%and%reporter%gene%
constructs%

Oligonucleotides used to generate reporter gene constructs, or to complement mutants 

can be found in Table 3.2. For complementation, we utilized the pLIfarR and pLIfarE 

complementation vectors that we previously made (1). farE was cut out of pLIfarE using 

the restriction enzymes KpnI and SacII, and subsequently gel purified for ligation with 

pLIfarR in E. coli DH5α background. The presence of ligated genes (farER) was 

confirmed by PCR and DNA sequence analysis. The pLIfarER construct was then 

passaged through S. aureus RN4220 and electroporated into USA300ΔfarER. The 

complementation construct pLIfarR was modified using the mutagenic primers PfarR-

10G>A-F and PfarR-10G>A-R, using protocols and reagents following the QuikChange 

Site-Directed Mutagenesis Kit (Stratagene), to construct pLIfarRTAG>A, harboring a single 

nucleotide substitution within the -10 motif of the PfarR promoter.  To construct reporter 

gene constructs we utilized the pGYlux vector where the luciferase operon can be driven 

from our promoter of interest (15). We previously constructed farE::lux by cloning a 397 

bp fragment, which included the entire intergenic segment between farE and farR and 

additional sequence from the 5#-end of farE and 5#-end of farR, in front of the lux operon 

(1). To localize the farR promoter, we cloned two farR segments into the pGYlux vector; 

the larger segment (246 bp) that made up pGYfarR::lux1 was amplified using primers 

pGYfarR1-F and pGYfarR-R, and the smaller segment (164 bp) that made up 

pGYfarR::lux2 was amplified using primers pGYfarR2-F and pGYfarR-R. Both 

segments were cloned into the BamHI and SalI sites of pGYlux (15). pLIfarRTAG>A was 

used as a template in PCR with primers pGYfarR1-F and pGYfarR-R, and the amplicon 

was then cloned in pGYlux to generate pGYfarRTAG>A::lux.  
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Table 3.1 Strains and plasmids used in Chapter 3. 

Strain or plasmid Description Source  
Strains: 
 

  

S. aureus:   
USA300LAC Community-acquired methicillin-resistant S. aureus, 

wild-type strain cured of antibiotic resistance plasmids 
 

(16) 

RN4220 Restriction endonuclease deficient lab strain of S. aureus 
capable of accepting foreign DNA 
 

(17) 

USA300ΔfakA USA300LAC with markerless deletion of fakA 
(SAUSA300_1119) 
 

This study 

USA300ΔfarER USA300LAC with markerless deletion of farE 
(SAUSA300_2489) and farR (SAUSA300_2490) 
 

This study 

USA300ΔfakA-
ΔfarER   

USA300LAC with markerless deletion of fakA, farE, and 
farR 
 

This study 

USA300ΔfarER
(pLI50) 

USA300ΔfarER with empty pLI50 vector, Cmr This study 

USA300ΔfarER
(pLIfarE) 

USA300ΔfarER complemented with native farE, cloned 
in pLI50, Cmr 

 

This study 

USA300ΔfarER
(pLIfarR) 

USA300ΔfarER complemented with native farR, cloned 
in pLI50, Cmr 

 

This study 

USA300ΔfarER
(pLIfarR7) 

USA300ΔfarER complemented with farR from SNP-
containing clone FAR7, cloned in pLI50, Cmr 
 

This study 

USA300ΔfarER
(pLIfarER) 

USA300ΔfarER complemented with native farER, cloned 
in pLI50, Cmr 

This study 

 
E. coli: 

  

      DH5α λ- φ80dlacZΔM15Δ(lacZYA-argF)U169 recA1 endA1 
hsdr17(rK

- mK
-) supE44 thi-1 gyrA relA1 

Invitrogen 

M15[pREP] F-, Φ80ΔlacM15, thi, lac-, mtl-, recA+, KmR Qiagen 
Plasmids:   

pLI50 E. coli-S. aureus shuttle vector (18) 
pLIfarE pLI50 with native farE gene (1) 
pLIfarR pLI50 with native farR gene (1) 
pLIfarR7 pLI50 with farR gene from the variant FAR7 clone (1) 

pLIfarRTAG>A pLI50 with farR gene harboring a TAG>A mutation in 
the -10 element of PfarR 

This study 
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pKOR1 E. coli-S. aureus shuttle vector containing Pxyl-tetO  and 
expressing antisense secY RNA 

(14) 

pKORΔfarER pKOR-1 containing upstream and downstream flanking 
sequences for deletion of farER 

This study 

pKORΔfakA pKOR-1 containing upstream and downstream flanking 
sequences for deletion of fakA 

This study 

pGYlux E. coli-S. aureus shuttle vector harboring promoterless 
luxABCDE operon 

(15) 

pGYfarE::lux E. coli-S. aureus shuttle vector containing PfarE for 
luxABCDE operon 

(1) 

pGYfarR::lux1 E. coli-S. aureus shuttle vector containing P1 of farR for 
luxABCDE operon 

This study 

pGYfarR::lux2 E. coli-S. aureus shuttle vector containing P2 of farR for 
luxABCDE operon 

This study 

pGYfarRTAG>A::lux E. coli-S. aureus shuttle vector containing mutated P1 of 
farR for luxABCDE operon 

This study 

pQE30 E. coli vector for IPTG-inducible expression and 
incorporation of an N-terminal 6×His tag 

Qiagen 

pQE6His-farR pQE30 containing 6×His tagged farR This study 
pQE6His-farR7 pQE30 containing 6×His tagged farR from the variant 

FAR7 clone 
This study 

pUC18 E. coli cloning vector (19) 
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Table 3.2 Oligonucleotides used in Chapter 3. 

Oligonucleotide Sequence 5# to 3# 
farR-DW-SacIIa ggacctccgcggGGCGAAGATATTGATAACATTTTCC 
farR-DW-attB2 ggggaccactttgtacaagaaagctgggtGGTAAATTAGAACAAGGTGGCG 
farE-UP-attB1 ggggacaagtttgtacaaaaaagcaggctTTCCTTTGCCTGTACGTGC 
farE-UP-SacIIa ggacctccgcggAACGATGGCATTGTACCAAG 

fakA-UP-attB1 
ggggacaagtttgtacaaaaaagcaggctGCGTGTGAACGTCTGTTACCAGTC
GAAGC  

fakA-UP-SacIIa ggacctccgcggCATTTCAAGTTGTCCTCCTAAGCTTTCTTGC  
fakA-DW-SacIIa ggacctccgcggGTTCATGAAGGTGGACAACCAATTTATC  

fakA-DW-attB2 
ggggaccactttgtacaagaaagctgggtGATGACTTTTCTAATCTATTTAGCC
ATTGC  

pGYfarE-Fb cccggatccTTGTACGGTGTACGAGTGCG  
pGYfarE-Rc cccgtcgacCGGTGCATTTGTAGCAAGTG  
pGYfarR1-Fb cccggatccTGCAGCTACAATCACTATCCATGC 
pGYfarR2-Fb cccggatccGCCAAAGTATATTGCCTCC 
pGYfarR-Rc cccgtcgacTAAATCAGTCTCTTTCATCTACATTTCTCC 
farR-GSP1 TTATCTGGGATGTCGCTG 
farR-GSP2 CCCGTCGACTCAGCGTCTTCTTCTTGG 
farR-GSP3 ATTGTCGACACTCATCGTTTGGAATGG 

AAP 
GGCCACGCGTCGACTAGTACGGG/ideoxyI/ideoxyI/GGG/ideoxyI/i
deoxyI/GGG/ideoxyI/ideoxyI/G 

AUAP GGCCACGCGTCGACTAGTAC 
M13-F CGCCAGGGTTTTCCCAGTCACGAC 
M13-R AGCGGATAACAATTTCACACAGG 

farR-6H-Fd 
CTACACACAAAGGAGAAATGTAgagctcATGAAAGAGACTGAT
TTACGAG 

farR-6H-Re 
GGTAACGCTCATGAGTTTCTaagcttCTATTTAATCTTAATATTG
ATTAATCTATGG 

OPE-F GTTTTTCAATCTTTTTATTCGTATCTAACG 
OPE-R GATGGGGACATTCATCGC 
OPIN-F CCCCATCTTATATAAAAATTTTGCC 
OPIN-R CTACATTTCTCCTTTGTGTGTAG 
OPR-F GATGAAAGAGACTGATTTACGAG 
OPR-R CATATTTATCATAAAAATGTTTATAAAATGTTGTACGG 
OP1 GTTATAGTTTAAATATACAGTGTAGATTATTGTTCGATTATAG 
OP2 GTATATTGCCTCCTTTTAAAATCAACGTTATAGTTTAAATATA 
OP3 TTATTGTTCGATTATAGTATCTATCCCCGACCTCTTAAAGAAT 

OP4 
GAATCAATTGGAAAATTTTGTATATTAAACTACACACAAAGG
AGAAATGTAG 

OP5 AGTTTAAATATACAGTGTAGATTATTGTT 
OP5A AGTTTAAATATACAACACCAATTATTGTTCG 
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OP5TAG>A AGTTTAAATATACAGTGTAAATTATTGTT 
OP5ΔTAG AGTTTAAATATACAGTGATTATTGTT 

OP6 AAATCAACGTTATAGTTTAAATATACAG 
OP7 TGTAGATTATTGTTCGATTATAGTATCT 
OP11 GTATATTGCCTCCTTTTAAAATCAACGTTA 
OP12 GCCTCCTTTTAAAATCAACGTTATAGTTTA 
OP13 TTTTAAAATCAACGTTATAGTTTAAATATA 

OP13A TAAAATCCATTGTATAGTTTAAAT 
OP13TAG>A TTTTAAAATCAACGTTATAATTTAAATATA 
PfarR-10G>A-F CCTTTTAAAATCAACGTTATAATTTAAATATACAGTGTAG 
PfarR-10G>A-R CTACACTGTATATTTAAATTATAACGTTGATTTTAAAAGG 

Lower case nucleotides are attB2 and attB1 site for cloning into pKOR1 vector. Lower 
case and bold nucleotides indicate the addition of 5’ sequences to incorporate restriction 
endonuclease cut sites as follows aSacII, bBamHI, cSalI, dSacI, and eHindIII. Nucleotides 
in bold show the locations of site-directed mutations.  
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3.2.4% RNA%isolation%and%5#Grapid%amplification%of%complementary%
DNA%ends%

RNA was isolated from S. aureus cells (USA300 and FAR7) grown to mid-exponential 

phase (OD600 of 0.5) in TSB supplemented with 20 µM linoleic acid, using Aurum™ 

total RNA kit (Bio-Rad) as per manufacturer’s instructions.  Synthesis of first-strand 

cDNA was prepared using 1 µM farR-gene specific primer farR-GSP1, 1.5  µg of RNA, 

50 µM dNTPs, and 20 units of SuperScript™ II reverse transcriptase (Invitrogen), 

followed by incubation at 42°C for 50 minutes. The original mRNA template was 

subsequently removed by treatment with a mixture of RNaseH (0.5 units) and RNase T1 

(50 units) at 37°C for 30 minutes. The cDNA was then purified using BioArray® cDNA 

purification kit (Enzo Life Sciences) as per manufacturer’s instructions to eliminate 

unincorporated farR-GSP1 and dNTPs. A dC-tail was added to the 3#-end of the purified 

cDNA using 20 units of terminal transferase (Roche) and 0.5 mM CTP, and the resulting 

C-tailed cDNA was utilized in a PCR reaction using abridged anchor primer (AAP) and 

nested farR gene specific primer farR-GSP2. A second PCR was then conducted, using 

the first PCR product as a template, with abridged universal amplification primer 

(AUAP) and a nested farR-GSP3 containing a SalI restriction cut site to allow for cloning 

into pUC18. Cloned products were sequenced using M13-F and M13-R primers that 

flank the multiple cloning site of pUC18. The +1 transcription start site was identified as 

the first nucleotide following the poly C- or G-tail, depending on the orientation of the 

cloned insert.  

3.2.5% Construction%and%purification%of%recombinant%FarR%

farR genes from both USA300 and FAR7 were cloned in pQE30 to allow for expression 

with an N-terminal 6×His-tag using primers farR-6H-F and farR-6H-R. Recombinant 

proteins were expressed and purified from E. coli M15[pREP]. Bacterial cultures were 

grown at 37°C in LB (Sigma Aldrich) supplemented with 100 µg/mL ampicillin and 50 

µg/mL kanamycin, to an OD600 of 0.8 before the addition of 0.1 mM of isopropyl 1-thio-

β-D-galactopyranoside (IPTG) and incubation at room temperature with shaking for 

additional 18 hours. Cells were harvested by centrifugation and resuspended in binding 
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buffer (20 mM sodium phosphate, 0.5 M NaCl, 40 mM imidazole, pH 7.4), lysed in a cell 

disruptor (Constans System Ltd.) at 25000 psi, and subsequently pelleted at 3000 rpm for 

15 minutes. Supernatant was then ultracentrifuged for 50 minutes at 50,000 xg in a 

Beckman Coulter Optima L-900K ultracentrifuge, after which the soluble fraction was 

filtered through a 0.45µm Acrodisk® syringe filter (Pall Laboratory). The lysate was 

applied onto a 1 mL His-Trap nickel affinity column (GE Healthcare) that was 

equilibrated with binding buffer. After washing extensively with binding buffer, bound 

His-tagged protein was eluted over a linear imidazole gradient up to 0.5 M imidazole in 

20 mM sodium phosphate. Column fractions were assessed by SDS-polyacrylamide gel 

electrophoresis to check for purity, and fractions were then pooled and dialyzed in 20 

mM sodium phosphate, 0.5 M NaCl, pH 7.4 at 4°C overnight (Appendix 8). Protein 

concentration was determined by Bradford assay using Bio-Rad protein assay reagent.  

3.2.6% FarRGDNA%interaction%studies%%

Electrophoretic mobility shift assays (EMSA) were performed using recombinant 6×His-

tagged FarR and fluorescently-labeled duplex oligonucleotides probes. A list of 

oligonucleotides used in this study is provided in Table 3.2. IRDye-labeled single-

stranded oligonucleotides were purchased from Integrated DNA technologies (IDT®) 

and complementary oligonucleotides were annealed at 100 µM each in 10 mM Tris, pH 

8.0, 0.1 mM EDTA, by incubation at 95°C for 5 minutes followed by cooling down 

slowly to room temperature for 45 minutes. Each 25 µL EMSA reaction contained 5 

pmol of fluorescently-labeled probe, up to 2 µM purified FarR, 240 µg/mL bovine serum 

albumin (BSA) and 15.2 µg/mL poly[d(I-C)] in 10% glycerol, 15 mM Tris-HCl pH 8.0, 

0.5 mM MnCl2, 60 mM KCl, 0.5 mM MgCl2, and 8 mM dithiothreitol (DTT). Reaction 

mixtures were incubated at room temperature for 60 minutes, after which they were run 

on a 6% TBE-acrylamide gel for 45 minutes at 120V, and imaged using an Odyssey 

imager (LI-COR Biosciences). FarR-DNA interaction was determined as the conversion 

of unbound DNA probe to slow-moving protein-DNA complex.  In competition assays, 

unlabelled competitor probes harboring specific nucleotide substitutions were added in 

50-fold excess compared to that of the labelled probes.  
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3.2.7% Antibody%production%and%western%blotting%

Rabbit polyclonal antisera recognizing FarR were generated by ProSci Incorporated 

(Poway, CA, USA). Two hundred µg of recombinant 6×His-FarR emulsified in complete 

Freund’s Adjuvant was used for the initial injection of rabbits, and 100 µg of the 

recombinant protein emulsified in incomplete Freund’s Adjuvant was subsequently used 

for each booster immunization. Rabbits were immunized every other week for a total of 

six weeks. For western blotting, cell lysates of E. coli complemented with pLI50 

harboring native farR and farR bearing mutated PfarR were prepared by incubating washed 

cells with lysis buffer (150 mM NaCl, 5 mM EDTA pH 8.0, 50 mM Tris-HCl pH 8.0, 1% 

(v/v) Triton X-100, 0.5% (v/v) SDS), supplemented with EDTA-free protease inhibitor 

cocktail (Roche), at room temperature for two hours with agitation, followed by 

centrifugation at 4,200 x g for 20 minutes. After determining protein content of the 

clarified cell lysate, samples containing 25 µg of total cell lysate protein were subjected 

to SDS-PAGE using a 12% polyacrylamide resolving gel. Proteins were then transferred 

to PVDF membrane following standard protocols. Primary anti-FarR antiserum was used 

at a dilution of 1:5000 followed by secondary IRDye800-conjugated goat anti-rabbit IgG 

(Jackson Immunoresearch Laboratories Inc.). Membranes were imaged using Odyssey 

imager (LI-COR Biosciences). 

3.2.8% Murine%infection%model%

We utilized a skin abscess infection model as described by Malachowa et al. with 

adaptation (20). Briefly, female BALB/c mice were anesthetized by an isoflurane 

vaporizer, and flanks were treated with Nair hair removal lotion first, then shaved by a 

battery-operated trimmer one day prior to the inoculation to allow for proper visualization 

and measurement of abscesses. On infection day, bacterial cultures were inoculated at an 

OD600 of 0.01 from an overnight stationary phase culture, and grown at 37°C with 

shaking to an OD of 2.0. Bacteria were harvested by centrifugation, washed twice with 

sterile PBS, and resuspended in sterile PBS to obtain a final concentration of 2x108 

cfu/mL.  Bacterial suspensions were kept on ice until injection. Colony forming units in 
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each suspension were confirmed by plating on TSA and enumerating the next day. Mice 

were anesthetized by an isoflurane vaporizer, weighed, then challenged by subcutaneous 

injection of 50 µl of bacterial suspension (1x107 cfu), or PBS only. Abscess progression 

was pictured daily to quantify abscess area by Image J. Animal weight was also 

monitored daily for three days, after which the animals were sacrificed, and the lesions 

were imaged. The infected lesions were then excised, homogenized in PBS-0.01% Triton 

X-100, and plated on Mannitol Salt Agar (MSA) for enumeration. 

3.2.9% Computer%analyses%

Protein structural modeling was done using PHYRE2 (21). Analysis of DNA sequences 

and primer design were done using MacVector (Version 14.0.4 MacVector Inc.). 

Promoter predictions were performed using the Berkeley Drosophila Genome Project 

(http://www.fruitfly.org/seq_tools/promoter.html), with adjustments for detection of 

prokaryotic promoters. Multiple sequence alignment was done using ClustalW 1.4 (22). 

Data points for growth, viability, and luciferase reporter gene assays were plotted and 

analyzed using GraphPad Prism, version 7.0.  Statistical significance was determined 

using unpaired one-tailed Student’s t-test and two-way ANOVA using the statistical 

feature of GraphPad Prism, version 7.0. 

3.3% Results%%

3.3.1% Deletion%of%farER%results%in%loss%of%inducible%resistance%to%
linoleic%acid%

In our previous work, transposon insertions in farE and farR were used to demonstrate 

that the farE efflux pump, and the divergent transcriptional regulator farR were both 

required for inducible resistance of USA300 to the bactericidal activity of 100 µM 

linoleic acid (1) . To confirm these observations, and to enable more detailed studies on 

gene expression and structure-function relationships USA300ΔfarER, where both genes 

are deleted, was constructed using pKOR1 markerless mutagenesis. In agreement with 

our previous observations, USA300ΔfarER suffered a loss of resistance to the 

bactericidal activity of 100 µM linoleic acid (Fig. 3.1A).  
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3.3.2% farR%is%required%for%farE%induction%%%%

The conventional mechanism of action of TFRs is to repress the expression of divergent 

genes. In previous work, we have shown that when assaying farE::lux reporter gene 

construct in USA300, the reporter activity was negligible in TSB only, but induced in 

TSB supplemented with 20 µM linoleic acid. We also observed that the reporter activity 

was negligible in USA300farR::ΦNE background suggesting that farR is required for 

induction of farE expression. Additionally, USA300ΔfarER was unable to grow in TSB 

supplemented with 50 µM linoleic acid, and complementing with farE alone did not 

rescue growth, whereas complementing with pLIfarER restored growth over 8 hours of 

incubation (Fig. 3.1B). As expected, when assaying farE::lux activity in USA300ΔfarER, 

there was negligible induction of farE in the absence of farR function (Fig. 3.2). These 

data confirm that functional farR is indeed required for expression of farE.  
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Figure 3.1 farER contributes to resistance of S. aureus USA300 to linoleic acid. A. 

Bactericidal assay: USA300, USA300ΔfarER, or USA300ΔfarER + pLIfarER were 

grown to mid-exponential phase in TSB + 20 µM linoleic acid, and then diluted to 106 

cfu/mL in fresh TSB containing 100 µM linoleic acid. Viable cell counts were taken at 

hourly intervals. B. Growth assay: USA300ΔfarER complemented with pLIfarE, 

pLIfarER, or pLI50 vehicle was inoculated into TSB + 50 µM linoleic acid, and growth 

(OD600) was monitored at hourly intervals. Each data point represents mean value of 

quadruplicate cultures. Error bars represent Standard Error of the Mean.     
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Figure 3.2 farR is required for farE induction. Growth (OD600; open symbols) and 

relative luminescence units (RLU/OD; closed symbols) of USA300 and USA300ΔfarER 

harboring the pGYfarE::lux reporter construct are shown. Strains were grown in TSB or 

TSB supplemented with 20 µM linoleic acid (LA). Each value represents the mean and 

standard deviation of three separate cultures, and each culture was subjected to 

quadruplicate luminescence readings at each time point. Error bars represent Standard 

Error of the Mean. 
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3.3.3% Identification%of%farR%promoter%and%transcription%start%site%%

The neighboring genes farE and farR are divergently transcribed. The intergenic segment 

between farE and farR translational start sites is 145 nucleotides, and bioinformatics 

analyses identified two potential farR promoters, P1 and P2, in this intergenic segment. 

P1 overlaps with the farE translational initiation codon on the minus strand, and is 

located 145 bp upstream of the translational initiation codon of farR, whereas P2 is 

located 132 bp upstream of the translational initiation of farR (Fig. 3.3A).  To confirm 

PfarR in the context of transcriptional initiation of farR, we used 5#-RACE to determine 

the +1 site of farR. The transcription start site of farR was located at 104 bp from the 

translation start site in two out of three independent experiments, and one experiment 

showed that the transcription start site was 105 bp from the gene’s start codon. These 

results correspond to P2 being the primary PfarR (Fig. 3.3A).  To confirm this, we 

designed two overlapping PfarR segments to clone reporter gene fusions in pGYlux. The 

larger construct, farR::lux1, harbors structural elements of both promoters P1 and P2 

whereas the shorter truncated construct, farR::lux2, lacks the -35 element of P1. When 

these reporter constructs were assayed in E. coli, both displayed luminescence activity 

but the truncated farR::lux2 exhibited 8-fold less activity compared to that of the larger 

farR::lux1 construct (Fig. 3.3B).  These data suggest that P2 is sufficient to promote 

transcription of the gene, although contribution of the overlapping P1 cannot be excluded. 

In a similar fashion, bioinformatics analyses identified a putative farE promoter in the 

farER intergenic segment that is located 102 bp upstream of the translational initiation 

codon of farE; however, 5#-RACE experiments failed to determine the +1 transcription 

start site of farE. 

3.3.4% Expression%of%farR%is%subject%to%autoGregulation%

Members of the TetR family of transcriptional regulators are typically subject to auto-

regulation, including CamR in Pseudomonas putida, TcmR in Streptomyces glaucescens 

and the well-characterized TetR. Conversely, QacR of S. aureus was not subject to auto-

regulation (23).  To determine whether farR is auto-regulated, we assayed farR::lux1 

activity in both USA300 and USA300ΔfarER backgrounds, and observed that the 

reporter activity was negligible in USA300, but was strongly de-repressed in 
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USA300ΔfarER. These data support farR auto-regulation such that farR::lux reporter 

activity is higher in the USA300ΔfarER background, due to the absence of functional 

FarR, concomitant with de-repression of PfarR. (Fig. 3.3C).      
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Figure 3.3 Nucleotide sequence of farER intergenic segment showing PfarR and PfarE 

promoter features (A), and farR::lux reporter gene assays conducted in E. coli (B) 

and S. aureus (C).  The farER intergenic segment contains two potential PfarR promoters, 

P1 and P2, and a predicted PfarE promoter. The experimentally determined +1 

transcription start site (TSS) of P2farR was confirmed using three independent 5!- RACE 

experiments. Translation initiation sites of farE (TTG) and farR (ATG) are in gray boxes. 

RBS (ribosomal binding site) of farE and farR are shown.  B. Assay of farR::lux 

promoter constructs in E. coli. The larger farR::lux1 construct contains both P1 and P2 

promoters, while in farR::lux2, the P1 promoter is truncated within the predicted -35 

promoter element. C. Assay of farR::lux1 in S. aureus USA300 and USA300ΔfarER. 

Each value represents the mean and standard deviation of three cultures, and each culture 

underwent quadruplicate luminescence readings at OD600 of approximately 0.1 (B), and 

0.5 (C). Results are shown normalized to the optical density. Statistical significance is 

determined using unpaired one-tailed Student’s t-test, where *P <0.05 and ****P < 

0.0001. Error bars represent Standard Error of the Mean.!
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3.3.5$ Identification$of$FarR$operator$sites$

Although the divergent arrangement of the farE-farR genes matches the classical 

paradigm of TFR function, in which the TFR serves to repress the divergently transcribed 

gene, our data indicate that FarR is needed to express FarE, rather than functioning as a 

repressor. However, as with a number of other TFR’s, our data indicate that FarR 

represses its own expression. Therefore, we hypothesized that the farER intergenic 

segment should have two distinct operator sites to support binding of FarR; one to 

facilitate auto-repression of PfarR, and the other to function as an activator of PfarE. To 

identify potential operator sites, recombinant N-terminal 6×His-tagged FarR was 

expressed in E. coli and purified by metal affinity chromatography, for use in 

electrophoretic mobility shift assay (EMSA) experiments. 

To determine if binding determinants are localized within the 145 bp farER intergenic 

segment, PCR with IRDye800 labelled primers was first employed to generate three ~ 

160 bp probes that collectively encompass the entire intergenic segment, the 5´-end of 

farR, and the 5´-end of farE (OPIN, OPR, and OPE, respectively). Using EMSAs, 6×His-

FarR bound only to probe OPIN spanning the intergenic segment between the two genes, 

causing a mobility shift. This binding exhibited two protein-DNA complexes indicating 

that there are multiple binding sites of FarR within the intergenic segment (Fig. 3.4B). 

Since this confirmed that the primary FarR binding sites are contained entirely within the 

intergenic segment OPIN, we proceeded to identify potential operator sites within this 

segment. TFRs bind palindromic, and often repeated, DNA operator sequences. Based on 

Pustell DNA matrix analysis of the 145 nucleotide intergenic segment that separates the 

translational starts of farE and farR, we identified a 17 nucleotide pseudo-palindrome 

containing three mismatches (PAL1), flanked by imperfect 16 nucleotide direct repeats 

(IR1 and IR2). These features span the transcriptional start site of the putative farE 

promoter region on the minus strand, and that of farR on the plus strand, thus comprising 

a likely site for binding of the FarR regulatory protein (Fig. 3.4A).  
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To evaluate the ability of these features to support FarR binding, we conducted EMSAs 

with 43mer probes centered on the intergenic segment; FarR bound to probe OP1 that 

encompasses the pseudo-palindrome as well as IR1 and IR2. FarR also bound OP2, 

which encompasses 6 nucleotides of 5!-end of the pseudo-palindrome, IR1 and structural 

elements of PfarR as well as the +1 transcription start site of farR, but failed to bind to OP3 

that contains 2 nucleotides of the 3!-end of the pseudo-palindrome, IR2 and structural 

elements of the putative PfarE as well as the +1 transcription start site of farE. 

Additionally, the 52mer probe OP4, that spans the -35 element and additional sequence 

upstream of the putative PfarE, also supported FarR binding (Fig. 3.4C). Interestingly, we 

identified a second pseudo-palindrome (PAL2) that bears similarity to PAL1 and is 

located in OP4 (Fig. 3.4A).  PAL2 is a 16 nucleotide palindrome with four mismatches 

located 12 bp upstream of the -35 element of PfarE. Therefore, there appears to be a FarR 

binding site centered on the structural elements of PfarR, as well as another binding site 

upstream of the putative PfarE. 

To further refine these binding sites, we designed 28mer probes centered on OP1and OP2 

(Fig. 3.4A). The probe OP5 is centered over the pseudo-palindrome, as well as 11 

nucleotides of the 3!-end of IR1 and 8 nucleotides of the 5!-end of IR2. OP6 contains 9 

nucleotides of the 5!-end of the pseudo-palindrome and IR1, whereas OP7 contains 8 

nucleotides of the 3!-end of the pseudo-palindrome and IR2. FarR bound to OP5 and 

OP6, both of which span the +1 transcriptional start of farR, but did not exhibit any 

binding to OP7 (Fig. 3.4D).   

The OP5 probe contains the entire PAL1, and to confirm specificity of protein-DNA 

interaction at this location, we employed competition EMSAs. In these assays, 50-fold 

excess of unlabeled competitor DNA is added to the reaction mix prior to incubation with 

the labeled probe. Specificity is confirmed by loss of binding to the labelled probe and 

thus lack of mobility shift. To this end, we designed a probe, OP5A, where the central 

GTGTAG sequence of the pseudo-palindrome was mutated to ACACCA and used it in a 

competition EMSA with the labelled OP5. Altering this central sequence of OP5 

abolished the competition for FarR binding completely, confirming specificity of FarR 

binding to this operator site (Fig. 3.4E).    
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Figure 3.4 FarR operator sites are located in the farER intergenic segment. A. 145-

nucleotide intergenic segment separates the translational initiation of farE and farR. 

Pseudo-palindromes PAL1 and PAL2 are in gray boxes. Inverted repeats IR1 and IR2 are 

underlined. Core promoter elements are indicated. Transcription start sites are in bold. 

For initial EMSA experiments with 6×His-FarR, PCR was employed to generate 167 bp 

IRDye-labelled probes OPIN, OPR, and OPE that span the entire intergenic segment, the 

5"-end of farR, and 5"-end of farE, respectively. The overlapping 43mers OP1, OP2, and 

OP3, and the 52mer OP4 collectively span the entire intergenic segment. The 28mers 

OP5, OP6 and OP7 and the 30mers OP11, OP12 and OP13 were designed to further 

narrow down the operator site that supports FarR binding. B. FarR binds operator OPIN 

spanning the farER intergenic segment. In each reaction, 5 pmol of operator DNA is 

incubated with 0, 0.5 and 2 µM protein. C. and D. FarR binds to OP1, OP2, OP4, OP5 

and OP6 and failed to bind OP3 and OP7. Each reaction contained 5 pmol of DNA with 

or without 2 µM protein. E. FarR binds to OP5 which spans the +1 transcription start site 

of farR, and nucleotide substitutions in PAL1 of this probe abrogates FarR binding. 

Competition EMSA experiments were done by incubating FarR with excess (50X) of 

unlabelled competitor probe for 30 minutes prior to incubating with 5 pmol of labelled 

probe.!
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3.3.6$ FarR$binds$OPAct$and$OPRep$

We have strong evidence that farR is required for farE induction (Fig. 3.2). 

Consequently, it appears that FarR does not function strictly as a transcriptional 

repressor, as is the case with most TFRs. There have been reports of two TFRs, LuxR in 

Vibrio harveyi and SczA in Streptococcus pneumoniae, that deviate from the norm of this 

family, where the protein functions as both repressor and activator depending on the 

presence or absence of a modulating ligand (13, 24, 25). This lead us to reason that FarR 

functions in a similar fashion where it binds a certain operator to function as a repressor 

and binds another operator site where it functions as an activator. Since we have evidence 

that FarR bound the operator OP4 located upstream of the putative PfarE, and that no other 

sequences upstream of  PfarE  even within the 5"-end of farR supported protein binding, 

we speculated that binding to this operator would be most likely to activate farE. 

Additionally, FarR is subject to auto-regulation, and since operator probes OP2, OP5 and 

OP6 all support FarR binding, span PfarR and immediately downstream of PfarE, we 

reasoned that binding to one of these operators would be to repress farR, and perhaps 

farE. To elucidate the minimal operator site that supports FarR binding for repression, we 

designed 30mer probes that span the structural features of PfarR, which is contained within 

the larger OP2 probe. OP11 spans 30 bp from the 5"-end of OP2, including the -35 

element of PfarR. OP12 spans the center of OP2 and PfarR including 4 bp of the -35 

element and the entire -10 sequence of the promoter. OP13 contains 30 bp from the 3"-

end of OP2, the -10 sequence of PfarR as well as the transcriptional start site of farR (Fig. 

3.4A). We performed competition EMSAs where 50-fold excess of these unlabelled 

competitor DNA probes are added prior to incubation with the labelled probe OP2. Both 

OP11 and OP12 were unable to compete with OP2, whereas OP13 competed effectively, 

and prevented protein binding to the labelled OP2, such that no mobility shift was 

observed (Fig. 3.5).  
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Figure 3.5 Competition EMSA with OP2 reveals that an operator site for binding of 

FarR is located within OP13. EMSA reactions contained 0, 0.5, or 2 µM 6×His-FarR, 

250 pmol of unlabelled competitor, and 5 pmol of labelled OP2 probe. OP13 competes 

successfully with OP2 for binding of FarR, whereas OP11 and OP12 do not. 
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From these experiments, there appears to be two distinct operator sites for FarR binding 

in the intergenic segment between farE and farR. One operator is OP4, which contains 

sequences located immediately upstream of the putative PfarE. Since we established that 

farR does not function strictly as a repressor, we reasoned that this operator, hereafter 

termed OPAct, is the site of FarR binding to enable activation of farE. Another distinct 

operator site spans the overlapping OP5 and OP13 probes. OP5 is centered over the 

PAL1 feature, which contains the +1 TSS of PfarR at its 5'-end, while its 3'-end is adjacent 

to the +1 TSS of PfarE on the minus strand. OP13 is centered on PfarR, and contains both 

the -10 promoter element and +1 TSS of PfarR.  Since these two overlapping operator 

sequences span PfarR and transcriptional start site of farR, and immediately adjacent to 

that of farE, we reasoned that they represent repression operator site, OPRep (Fig. 3.6A).   

3.3.7$ OPRep$contains$the$site$of$farR$auto:repression$and$a$
His121Tyr$substitution$in$FarR$causes$relief$of$auto:
repression$$

Since farR is auto-regulatory, we reasoned that one of overlapping operators making up 

OPRep is the site of FarR binding to enable auto-repression. In previous work, we 

described a fatty acid resistant clone FAR7, which harbored a single nucleotide 

polymorphism causing a His121Tyr substitution in FarR. This clone exhibited increased 

constitutive levels of farE, even in the absence of fatty acid inducer, and displayed 

increased resistance to bactericidal concentrations of linoleic acid (1). When the reporter 

gene construct, farR::lux, was assayed in a FAR7 background we noticed a relief of the 

auto-repression when compared to wildtype USA300 (Fig. 3.6B). Therefore, it seems that 

the His121Tyr substitution, although not located within the N-terminal DNA binding 

domain of FarR, still results in less effective auto-repression. As such, we examined the 

ability of recombinant 6×His-tagged FarR protein of the variant FAR7 clone, hereafter 

termed FarR7, in mobility shift assays parallel to those done with the wildtype FarR 

protein.  Interestingly, FarR7 was unable to bind to OP2, to which native FarR was able 

to bind efficiently (Fig. 3.6C).   OP2 spans PfarR and the +1 transcriptional start site of 

farR. To further define the operator sequence that supports differential binding of FarR 

and FarR7, we examined FarR7 binding to OP11, OP12 and OP13 that span the entire 

length of OP2. Strikingly, FarR7 did not exhibit any binding to OP13, and since FAR7 
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displayed a relief of auto-repression, these data suggest that OP13, which spans the -10 

promoter element and +1 transcription start site of farR, also represents a site where FarR 

binds to mediate auto-repression (Fig. 3.6C).    
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Figure 3.6 FarR and the variant FarR7 differ in binding to OP2 and OP13, both of 

which span core promoter elements of PfarR. A. Mapping the oligonucleotide probes 

relative to core promoter elements of PfarR and PfarE. Overlapping OP5 and OP13 that 

support FarR binding are grouped as OPRep. FarR also binds OP4 located upstream of 

PfarE, representing a potential activation site, OPAct.  B. farR::lux is de-repressed in the S. 

aureus FAR7 background. USA300 and FAR7 harboring the farR::lux1 reporter 

construct were grown in TSB, and samples were withdrawn at OD600 of approximately 

0.5 for the determination of luciferase activity. Each data point represents the mean and 

standard deviation of three cultures, and each culture sample was subjected to 

quadruplicate luminescence readings at OD600. Statistical significance is determined 

using unpaired one-tailed Student’s t-test, where **P <0.01. Error bars represent 

Standard Error of the Mean. C. Mobility shift assay showing that FarR7 does not exhibit 

any binding to OP2 or OP13.  In each reaction, 5 pmol of operator DNA is incubated 

with up to 2 µM protein. 

 

 

 

 

 

 

 

 

 

 



 

 144 

3.3.8$ $Specificity$determinants$of$FarR$binding$

Aside from the sequence similarities between PAL1 and PAL2, the OP4, OP5 and OP13 

probes that comprise OPRep and OPAct appear to share no obvious sequence similarities. 

However, EMSA experiments confirmed that OP4, OP5 and OP13 can cross-compete for 

FarR binding and that nucleotide substitutions in any of them abrogated this competition 

completely. Interestingly, all three operators contained a TAG sequence central to each 

operator (Fig. 3.7A).   To determine if this represents a specificity determinant for protein 

binding, we performed a competition EMSA with probes containing nucleotide 

substitutions (OP5TAG>A, OP13TAG>A) or deletion (OP5ΔTAG) in this sequence and 

found that these mutations eliminated FarR binding (Fig. 3.7B). Furthermore, analysis of 

multiple sequence alignment of 13 staphylococcal species that contain divergent farER 

revealed that FarR specificity determinants are conserved among these staphylococci. 

Importantly, the TAG nucleotides located in OP4, OP5, and OP13 are highly conversed 

among these species (Fig. 3.8).  

Interestingly, in OP13, the TAG nucleotides are overlapping with the -10 element of PfarR 

and this operator is the only operator that exhibited differential binding of FarR and 

FarR7. Additionally, our reporter gene assays revealed that farR::lux is de-repressed in 

the FAR7 background, thus providing further evidence that OP13 is the site of FarR auto-

regulation. To correlate these data with in vitro analyses, we introduced the same 

substitution in OP13 (OP13TAG>A where the -10 element of PfarR is mutated) into the 

existing reporter gene construct, farR::lux by site-directed mutagenesis. When we 

assayed the mutated farRTAG>A::lux luciferase activity in USA300, there was a relief of 

auto-repression similar to that seen in the USA300ΔfarER and FAR7 backgrounds, 

confirming that OP13 is indeed the site of auto-repression of farR (Fig. 3.9A and B). We 

also prepared cell lysate fractions from E. coli complemented with pLI50 harboring 

native farR and farR bearing mutated PfarR grown in LB and showed by western blotting 

that mutating PfarR indeed relieves auto-repression, and promotes FarR expression (Fig. 

3.9C).   
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Figure 3.7 OP4, OP5 and OP13 cross-compete with each other and nucleotide 

substitutions obliterate this competition. A. Sequence similarities shared between OP4, 

OP5 and OP13. Arrows indicate the orientation of the similar sequence. The +1 TSS of 

farR is labelled +1 in OP5 and OP13, and nucleotides comprising the -10 promoter 

element of PfarR are italicized in OP13. B. OP4, OP5 and OP13 cross-compete with each 

other. Nucleotide substitutions in OP5 and OP13 (TAG>A) prevented this competition 

with OP4, confirming that this site is a specificity determinant for FarR binding. Each 

reaction contained 0, 0.5, and 2 µM FarR mixed with 250 pmol of unlabelled competitor 

and 5 pmol of labelled probe. 
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USA300           1 CAAAGTATATT-GCCTCCTTTTAAAATCAACGTTATAGTTTAAATATACAGTGTAGATTATTG----------------TTCGA-TTATAGTA----TCTATCCCCGACCTCTTAAAGAATCAATTGGAAAATTTTGTATATT-AAACTACACACAAAGG 137
S. equorum 1   CAAACTATT-GCCTCCTAATTTAATCAACGTTATAGTTTATACATATAGTGTAGATTATTT---------------ATATTA-ACATTTTACAA-GCTAAGTCGTATTATAAAAAGAACTAATTATGCCAATATGTCTATTTAAACTACAAAAA-GGG 139
S. xylosus 1   CAAACTATT-GCCTCCTAAATTAATCAACGTTATAGTTTAAATATATACTGTAGATTATTT---------------CTATCC-ACATATTA-AATGCTTTACCCTTTTATTAAAAGAATTAATTATTACAATTTGTATATTTAAACTACAAATA-AGG 139
S. argenteus        1   CAAAGTATT-GCCTCCTTTTAAAATCAACGTTATAGTTTAACTATACAGTGTAGATTATTG----------------TTAGA-TTATATTA----TCTATACCCTACCTCTTAAAGAATTAAATTTTAAAATTTGTATACT-AAACTACACATTAAGG 135
S. saprophyticus 1   CAATCTATT-GCCTCCTCAGATAATCAACGTTATAGTTTAATTGTATAGTGTAGATTATTT---------------ATATTA-ACACAATA-AACGCTGTGTACAATTAATAAAAGAATTAAAAACTGTAATATGCCTATTTAAACTACAGATT-AGG 139
S. carnosus 1   CAAAGTATT-GCCTCCTCCTAAAATATACAGTATAGTTTA-TTCTACATAGTAGATTAATTAC-------------GTATCACATATGCTA-CATGGTTAATTATTACCTGTACAGATATATTTCAAGCCTAATATAAGGCTAAACTACACTAA-GGA 141
S. cohnii 1   CAAACTATT-GCCTCCTTAATTAATCAACGTTATAGTTTATACATATACTGTAGATTATTT---------------CTATTG-ACATCTTATAATGATTTACCCTATTTAAAAAAGAACTAAATATCCAATTCCGTATATTTAAACTACAGATT-AGG 140
S. succinus 1   CAAACTATT-GCCTCCTTATTTAATCAACGTTATAGTTTAAATGTAATGTGTAGATTATCT---------------ATAATA-TCATAATAACCATGCTCCCCCTAATATATAAAGAATTAAATATACTAAAATGTATATTTAAACTACAAATA-AGG 140
S. schweizeri 1  CAAATATATT-GCCTCCCTTTAAAATCAACGTTATAGTTTAACTATACAGTGTAGATTATTG----------------TTCGA-TTATAGTA----TCTATACCCTACCTCTTAAAGAATTAAATTTTAAAATTTGTATACT-AAACTACACATTAAGG 136
S. simiae 1   CAAAGTATT-GCCTCCTCTTGATTTCAACGCTATAGTTTAACTGTATAGTGTAGATTATTG----------------TGTGA-TTATAATA----TCTCTACCCTCTTTTTAAAAGAAATAAATAATCGATTGTGTATTTT-AAACTACATATTA-GG 134
S. gallinarum 1   CAAACTATTTGCCTCCCTATTTAATCAACGTTATATTTTAAATATATTATGTAGATTATCTGTATCTTACATATTCATAGTA-ACATACTAATCAT-TTTTGATTCTTTTATAAAGAATTAATAATATAGAACTGTATATTTAAACTACACATA-AGG 155
S. arlettae 1   CAAGCTATT-GCCTCCTTATTTAATCAACGTTATAGTCTAAATATATAGTGTAGATTATTT---------------ACAGTA-CTATACTACTAGTAATTCCCCCAATTT-TAAAGAAATAATAATTATTATATGTATATTTAAACTACAAAAACAGG 140
S. lugdunensis 1   CAAAGTATT-GCCCCCTTCTAAAATCAACGTTATAGTTTAACTATACATTGTAGATTATTTAA------------CATGCCA-ATATGTTA-CATTCTTTTGCTCTGTATTTAAAGTCATAATTAATGATATATGTATAGATAAACTACGGTTTGGAG 143

*   **** *** **        *  **  **** * **    **    ********                           *   **                     * **    *                     *******         *   **** *** **        *  **  **** * **

 

 

 

 

 

Figure 3.8 Multiple sequence alignment of the intergenic segment between farE and farR among S. aureus USA300 and 12 

other staphylococcal species that contain divergent farER. The alignment was generated using ClustalW 1.4. Underlined sequences 

represent FarR binding motifs in OP13; OP5; and OP4, respectively. Bold and highlighted nucleotides indicate FarR favored 

nucleotides at positions 4,5 and 6 of each binding motif.   
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Figure 3.9 Nucleotide substitution in the -10 element of PfarR causes a relief of auto-

repression. A. Growth (OD600; open symbols) and relative luminescence units 

(RLU/OD; closed symbols) of USA300 harbouring the pGYfarR::lux and 

pGYfarRTAG>A::lux reporter construct are shown. B. Assay of farR:lux and 

farRTAG>A::lux in different genetic backgrounds. S. aureus USA300 harboring either 

pGYfarR::lux, or pGYfarRTAG>A::lux were grown in TSB to an OD600 of approximately 

0.5, and cultures were processed for determination of luciferase activity. For comparative 

purposes, assays were also conducted on cultures of S. aureus FAR7, and 

USA300ΔfarER harboring native pGYfarR::lux. Each value represents the mean and 

standard deviation of three cultures and each culture underwent quadruplicate 

luminescence readings at each time point (A) or at OD600 of approximately 0.5 (B). Error 

bars represent Standard Error of the Mean. C. Western blot for detection of FarR protein 

in cell lysates of E. coli complemented with pLI50, pLIfarR or pLIfarRTAG>A. Each lane 

contains 25 µg of total cell lysate protein, and the control lane contains 5 ng of 

recombinant 6×His-FarR. 
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3.3.9$ farER$and$fatty$acid$detoxification$

Since S. aureus is incapable of β-oxidation of fatty acids, the metabolic fate of exogenous 

unsaturated fatty acids is incorporation into the phospholipid component of the 

membrane (26). Parson et al. identified the fatty acid kinase system that is responsible for 

processing the exogenous fatty acids that enter the cell. FakB1 and FakB2 bind saturated 

and unsaturated fatty acids, respectively. FakA then phosphorylates the fatty acids and 

the resulting acyl-PO4 is either extended by FASII machinery or directly incorporated 

into phospholipid (27). Importantly, TFRs are typically responsive to small hydrophobic 

ligands and crystallography studies of these regulators, including the fatty acid 

degradation regulator FadR of Bacillus subtilis, have revealed that endogenous fatty acid 

derivatives such as acyl-coAs are often co-crystallized with the protein from the E. coli 

host (28). We reasoned that phosphorylated fatty acids could represent the physiologic 

ligand that modulates FarR function and interaction with its operator sites. Therefore, we 

assayed the reporter gene construct, farE::lux in USA300ΔfakA, to examine farE 

expression when the ability to phosphorylate fatty acids is abrogated. Interestingly, 

USA300ΔfakA exhibited increased constitutive levels of farE, but expression could not 

be further induced by exogenous linoleic acid (Fig. 3.10). Further, this mutant was also 

significantly more resistant to killing by bactericidal concentrations of linoleic acid 

compared to wildtype USA300, and this phenotype is farE-dependent (Fig. 3.11).  
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Figure 3.10 farE::lux exhibits elevated constitutive levels of expression in the 

absence of fatty acid kinase, fakA. Growth (OD600; open symbols) and relative 

luminescence units (RLU/OD; closed symbols) of USA300 and USA300ΔfakA 

harbouring the pGYfarE::lux reporter construct are shown. Strains were grown in TSB or 

TSB supplemented with 20 µM linoleic acid (LA). Each value represents the mean and 

standard deviation of three separate cultures, and each culture was subjected to 

quadruplicate luminescence readings at each time point. Error bars represent Standard 

Error of the Mean. 
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Figure 3.11 USA300ΔfakA exhibits enhanced resistance to linoleic acid, in a farE-

dependent manner. A. Strains were grown in 50 µM linoleic acid. B. Strains were 

grown to mid-exponential phase in 20 µM linoleic acid, and then diluted to 106 cfu/mL in 

fresh TSB containing 100 µM linoleic acid. Viable cell counts were taken at hourly 

intervals. Each data point represents mean value of triplicate (A) or quadruplicate (B) 

cultures. Error bars represent Standard Error of the Mean.   
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3.3.10$ farER$influence$virulence$in$a$subcutaneous$abscess$
infection$model&

Studies on staphylococcal murine abscesses reveal that antibacterial activity dwells in the 

free fatty acid fraction of the abscesses (29). NorD, a S. aureus multidrug efflux pump 

from the major facilitator superfamily, was upregulated during infection and played a part 

in the bacterial fitness in an infection abscess model (30). Similarly, NorB in the S. 

aureus MW2 strain bestows fitness advantages in the murine subcutaneous abscess 

model. The pattern of expression of nor and tet38 pumps in murine abscess models was 

found to be distinct from that observed during in vitro cell culture, and this was reasoned 

to be due to environmental triggers that dictate the cellular response (31). The fatty acid 

kinase, fakA, has also been linked to virulence in a murine model of S. aureus 

dermonecrosis; fakA-deficient mutants were more pathogenic than wildtype and formed 

larger abscesses (32). To assess the contribution of farER-mediated fatty acid resistance 

to virulence in vivo, and link it to the hyper-virulent phenotype observed in a fakA-

deficient mutant, we constructed a USA300ΔfakA-ΔfarER double mutant and utilized it 

in a murine abscess infection model.  In agreement with a previous report, USA300ΔfakA 

exhibited a trend towards increased surface abscess area compared to wild type USA300, 

but this enhanced virulence phenotype was abrogated in USA300ΔfakA-ΔfarER (Fig. 

3.12). In contrast, the single mutant, USA300ΔfarER, showed no difference in virulence 

compared to that of wildtype USA300 (Appendix 7). Therefore, the increased basal level 

of farE expression in USA300ΔfakA appears to promote increased resistance to 

antimicrobial fatty acids in vitro, and enhanced virulence in a subcutaneous abscess 

infection model.  
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Figure 3.12 USA300ΔfakA-farER exhibits reduced virulence in a murine skin 

abscess model of infection. 6-week female BALB/c mice were infected with 2x107 CFU 

of USA300, USA300ΔfarER, USA300ΔfakA and USA300ΔfakA-farER. Assesses were 

imaged daily and surface area was quantified using ImageJ. A. Abscess surface area at 2 

days post-infection. B. The virulence exhibited by USA300ΔfakA was in a farER-

dependent manner consistently throughout the course of infection. The reduction in 

virulence exhibited by USA300ΔfakA-farER is significant relative to that of 

USA300ΔfakA as determined by a two-way ANOVA where *P < 0.05. Error bars 

represent Standard Error of the Mean. n=8 abscesses per strain. 

 



 

 155 

3.4$ Discussion$$
This work provides the first mechanistic insight into the regulation of the RND family 

efflux pump FarE, by the TFR FarR, which together function to confer resistance of S. 

aureus to antimicrobial unsaturated free fatty acids. FarR, as with other TFRs, is auto-

regulatory in nature. The transcription of farE increases in response to linoleic and 

arachidonic acids and gene fusions demonstrated that expression of farE is induced only 

in the presence of functional FarR. This represents one of the very few TFRs with dual 

functionality. 6×His-tagged FarR binds an operator overlapping the -10 element of PfarR, 

upstream of the transcriptional start site of the gene, as well as another operator 

downstream of the transcriptional start site. 6×His-tagged FarR also binds a third operator 

upstream of PfarE. Taken together, our mobility shift and reporter-gene assays establish a 

working model for us to further refine the mechanism by which farE is regulated by farR. 

First, FarR binds to an operator site within OP13, which includes the -10 motif of PfarR, 

leading to strong repression of FarR expression. An overlapping but independent operator 

site within OP5 could potentially function to repress both farR and farE, while binding to 

a third site in OP4 which is upstream of the predicted PfarE, is most likely to promote 

activation of farE expression. For simplicity, we refer to OP13 and OP5 as OPRep and 

OP4 as OPAct.  

Reporter-gene assays show that FarR has a repressive effect on its own gene, independent 

of the addition of fatty acid ligand, as evident from the low activity of farR::lux during 

growth of USA300 in TSB. Consequently, during growth in TSB, our data indicate that 

farR is strongly auto-repressed. Accordingly, the introduction of a single base pair 

substitution in the -10 element of PfarR led to abolishment of FarR binding in mobility 

shift experiments, and relief of auto-repression in reporter-gene assays. Similarly, a single 

nucleotide polymorphism that resulted in a His121Tyr substitution in FarR displayed a 

constitutive level of farE expression in the absence of a fatty acid inducer, concomitant 

with increased resistance to linoleic acid, and less effective repression of farR. Therefore, 

to identify the operator site responsible for auto-regulation, we looked for differential 

binding between FarR and the FarR7 protein. Although OP5 partially overlaps with 

OP13, it supported FarR7 binding, whereas OP13 did not, suggesting that the latter is the 
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dedicated site for auto-repression. Although the location of this His121Tyr substitution 

was not within the N-terminal DNA binding domain of FarR, our data suggest that it does 

have a role in maintaining DNA-binding affinity. In a similar example, certain residues of 

the C-terminal ligand domain of B. subtilis FadR undergo structural changes upon acyl-

CoA binding, to affect the conformation of the DNA-binding domain. Mutations in these 

residues resulted in lower DNA binding affinity (28).  

Since 6×His-tagged FarR also binds OP5, it is feasible that OP5 is also a site for farE 

repression. Typical repressors such as the prototypic TetR bind inverted repeats located 

downstream or spanning the -10 element of their respective promoters (28), and OP5 is 

located immediately downstream from the putative +1 transcription start site of farE. 

Although binding to OP5 may not prevent RNA polymerase binding as anticipated of 

typical transcriptional repressors, it would still obstruct transition of the transcription 

complex, causing repression. Similarly, the staphylococcal QacR, a repressor of 

multidrug efflux pump QacA, binds an inverted repeat located immediately downstream 

of the qacA promoter. This operator also overlaps the transcription start site of qacA to 

block the transition of the RNA polymerase-promoter complex that otherwise allows for 

gene transcription (34, 35). Additionally, RutR, a TFR in E. coli, represses its own 

expression by binding to an operator site located downstream of its transcription start site. 

This binding mode seems to be indicative of negative regulation by either interfering with 

open complex formation, elongation complex initiation, or RNA polymerase transition 

(36, 37). Conversely, both FarR and FarR7 bind OP4, located upstream of PfarE, equally 

well, and do not bind any other operators upstream of PfarE or within the 5#-end of the 

divergent farR, suggesting that binding to OP4 would be most likely to activate farE.  

Studies show that the activation of the acrAB promoter in E. coli is in response to 

accumulation of cellular metabolites, and that global transcriptional activators (MarA and 

SoxS) and a local TetR-transcriptional repressor (AcrR) regulate the RND-efflux pump 

AcrB, to ensure that this pump is only expressed when needed. Binding of a wide range 

of toxic compounds to the C-terminal ligand binding domain of AcrR results in a 

conformational change in its N-terminal DNA binding domain, and this in turn releases 

the protein from operator DNA and permits transcription. However, the inactivation of 
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AcrR must also be accompanied by the induction of global regulators in order to achieve 

acrAB expression (8, 7, 38). Consequently, relief of de-repression alone is insufficient to 

promote constitutive expression of the AcrB efflux pump. In the context of FarE and 

FarR, binding of FarR to both OPRep and OPAct may be a regulatory mechanism by which 

FarR controls the expression of the farE efflux pump to ensure it is only expressed when 

needed. We also examined all three operators that supported FarR binding and attempted 

to identify any common sequence that may be a specificity determinant for protein 

binding. There seems to be a clear preference for a common TAG(T/A)TTA binding 

motif in all three operators; 5#GTGTAGTTTAAT3# in OP4, 5#GTGTAGATTATT3# in 

OP5, and 5#TTATAGTTTAAA3# in OP13. We performed competition EMSAs with a 

combination of mutations and deletions of these motifs and found that FarR discriminates 

in favor of TAG nucleotides at positions 4, 5 and 6 of each binding motif. Interestingly, 

analysis of multiple sequence alignment of 13 staphylococcal species that contain 

divergent farER revealed that FarR binding motifs are conserved among these 

staphylococci. Importantly, the TAG nucleotides located in the binding motifs of OP4, 

OP5, and OP13 are highly conversed among these species (Fig. 3.8).  

Structural studies will be needed to further shed light on the exact regulatory mechanism 

of FarR and its mechanism of de-repression and farE activation. There have been reports 

of TFRs with unconventional regulatory functions, such as RutR, that can both activate 

and repress gene expression in its apo-form.  RutR is auto-regulatory, represses a 

divergently transcribed gene, and activates yet a third promoter. The mechanism by 

which RutR activates gene expression is yet to be determined, but the location of its 

operator sites suggests a mechanism of de-repression rather than actual recruitment of 

transcription machinery (36, 39). Another unconventional TFR is AmtR of 

Mycobacterium smegmatis which is involved in a post transcriptional regulation of urea 

metabolism without binding to any effector molecule. This regulation utilizes a sensory 

system that involves a trans-acting sRNA in response to nitrogen availability. When 

nitrogen is overabundant, the sRNA targets amtR mRNA and blocks its translation. 

Under nitrogen starvation, the sRNA is down-regulated and amtR is successfully 

translated. The AmtR repressor then works in combination with the global nitrogen 



 

 158 

activator, GlnR, to fine-tune the expression of urea-degrading metabolic pathway (40).  

Another possibility is that FarR exhibits a regulatory network similar to that of DhaS, an 

unconventional TFR from Lactococcus lactis that functions as an activator. Similar to 

FarR, DhaS binds an operator site upstream of the Dha promoter, spanning the -35 

element of the promoter. The mode of action of DhaS is not a direct de-repression, but 

rather involves a transcription co-activator, DhaQ, that forms a complex with DhaS upon 

ligand, dihydroxyacetone, binding and subsequently activates transcription of the 

dihydroxyacetone operon (12).  

Upon entry into the cell, exogenous fatty acids bind FakB, and after phosphorylation by 

FakA, the resulting acyl-PO4 is incorporated into phospholipid directly, or alternately, the 

PO4 is exchanged for a CoA moiety, and the fatty acid passes through an extension cycle 

by the FASII machinery. A recent report by Lopez et al. has demonstrated that a Type 

VII secretion system (T7SS), which is crucial for prolonged bacterial survival and 

persistence of S. aureus in abscesses, is activated by uFFAs such as linoleic and 

arachidonic acids. Additionally, this activation is contingent on the incorporation of 

uFFAs into phospholipids and lipoprotein by the Fak machinery (41, 42). Therefore, the 

similar virulence we observe in wildtype USA300 and USA300ΔfarER is perhaps due to 

functional Fak machinery. Despite the evidence of a connection between farER and the 

fatty acid kinase fakA in vitro and in vivo, a direct interaction between FarE, FarR and 

FakA has yet to be demonstrated.!Here we show that USA300ΔfakA exhibits increased 

constitutive levels of farE, but expression cannot be further induced by exogenous 

linoleic acid. This mutant was also significantly more resistant to killing by bactericidal 

concentrations of linoleic acid compared to wildtype USA300, and this phenotype was 

farE-dependent. A recent report indicates that USA300ΔfakA exhibited an elevated pool 

of intracellular fatty acids (43). Consequently, as reported in other RND efflux systems, 

an increased pool of intracellular metabolites in USA300ΔfakA may be responsible for 

increased basal expression of farE. Interestingly, FarR binding to OPRep was partially 

reduced in the presence of linoleoyl-CoA and arachidonoyl-CoA (Fig. 3.13).  Therefore, 

perhaps the accumulation of intracellular fatty acids results in the fakA mutant 

background leads to partial de-repression of farE, which cannot be fully induced due to 
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the fatty acids being unable to be phosphorylated in the absence of fakA. As such, it 

appears likely that phosphorylated fatty acids are the signal for regulation of farE via 

farR. Experiments to test this would contribute to our understanding of the complex farR-

dependent activation of farE. Antimicrobial unsaturated fatty acids represent a vital 

component of innate immunity, and S. aureus is constantly exposed to them, not only 

during colonization but also in the context of an infection. It is evident that one of the 

strategies S. aureus employs to cope with these fatty acids is via a complex regulatory 

mechanism where a TFR with dual functionality controls the expression of a fatty acid 

specific efflux pump.  !
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Figure 3.13 FarR binding to OPRep is partially affected by linoleoyl-CoA and 

arachidonoyl-CoA.  In each EMSA reaction, 5 pmol of DNA is incubated with 0, 0.5 or 

2 µM FarR in the presence or absence of 50 µM ligand, as indicated.        
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4.1$ Summary$$
S. aureus USA300 is the current epidemic strain of CA-MRSA in North America. It 

accounts for 98% of MRSA infections presented to emergency departments in the United 

States. This strain is notorious for its ability to overproduce toxins and virulence factors, 

as well as its remarkable ability to persist on skin surfaces. In order to persist on skin 

surfaces, the bacterium must have intrinsic mechanisms to cope with the antimicrobial 

uFFAs that constitutes an important component of the immune defense mechanisms on 

the skin. These uFFAs are membrane-disruptive, and humans deficient in the production 

of these fatty acids are more susceptible to S. aureus infections. The purpose of this thesis 

was to better understand the genetic basis for S. aureus USA300 adaptation to uFFAs 

which allows this strain to establish a successful infection. When USA300 variants were 

selected for their ability to grow in elevated levels of uFFAs, two out of the seven clones 

that were sent for whole genome sequencing contained a SNP in an uncharacterized gene, 

SAUSA300_2490. Using domain enhanced lookup time accelerated BLAST, the amino 

acid sequence of SAUSA300_2490 has 99% homology to TFRs. Furthermore, structure 

prediction using homology modeling server, Phyre2, predicts that SAUSA300_2490 

shares 99.8% amino acid sequence similarity with FadR, a TFR of fatty acid degradation 

in T. thermophilus. Typically, TFRs exert their effects on divergent genes. Bioinformatics 

revealed that the SAUSA300_2489 gene, which is divergently transcribed from 

SAUSA300_2490, encodes a gene product that belongs to the Resistance-Nodulation-Cell 

Division (RND) superfamily of proteins, which promote proton-antiport dependent efflux 

mechanisms. The SAUSA300_2489 gene has an MMPL domain that codes for members 

of putative integral transmembrane proteins that are linked with lipid-metabolizing 

enzymes, suggesting a possible role in the efflux of fatty acids. As such, in chapter 2 my 

aim was to characterize SAUSA300_2490 and its divergent gene, their role in fatty acid 

resistance, and also characterize the effect of the SNP that lead to the identification of 

these two genes. First, I show that resistance to antimicrobial uFFAs is inducible in S. 

aureus. Second, SAUSA300_2490 which I named farR, for a regulator of fatty acid 

resistance, is required for the inducible resistance to uFFAs. Third, SAUSA300_2489 

which I named farE, for an effector of fatty acid resistance, is a contributor to S. aureus 

persistence in the presence of antimicrobial uFFAs. Importantly, this farE-dependent 
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persistence is not only in the hyper-virulent MRSA, but also in methicillin-susceptible 

(MSSA) background. Furthermore, I show that FarE is an efflux pump in which its 

inactivation results in elevated uptake of [12C]linoleic acid into bacterial cells. Fourth, I 

show that a SNP that resulted in His121Tyr substitution in the regulator FarR is alone 

sufficient to promote increased resistance to bactericidal levels of uFFAs. Unexpectedly, 

the growth analyses and reporter-gene assays of this chapter show that FarR is required 

for farE expression; a phenotype unusual for a typical TFRs. To follow up on this 

phenotype, I constructed an in-frame, markerless deletion of both farR and farE to 

conduct further studies on gene expression and structure-function relationships as I 

utilized transposon insertions mutants in all analyses of chapter 2.  

In chapter 3, my aim was to characterize FarR, its regulatory function and its operator 

sites.  First, using USA300ΔfarER I show that farE cannot be induced in the absence of 

FarR, thus confirming that FarR is a TetR family activator. Second, I show that, unlike 

the staphylococcal QacR, FarR is auto-regulatory by binding to an operator site spanning 

its transcription start site. Third, I utilize electrophoretic mobility shift assays to examine 

the binding of His-tagged recombinant FarR to DNA operators with varying lengths and 

locations. I show that FarR utilizes three operator sites located in the farER intergenic 

segment to exert its regulatory functions. One operator spans the -10 core promoter 

element of PfarR as well as its transcription start site, and represents the site of auto-

repression of farR. Another operator that is located immediately downstream of the 

predicted transcription start site of farE, and represents a potential site of repression of 

both farR and farE. A third operator is located upstream of PfarE, and represents the 

potential site of activation of farE. Interestingly, I also show that although the His121Tyr 

substitution in FarR is not physically located within its N-terminal DNA binding domain, 

it still affects DNA binding affinity and causes a relief to the auto-regulation. I also 

examine whether the FarR-dependent regulation of the fatty acid efflux pump FarE is 

linked to the mechanisms of fatty acid detoxification in S. aureus. It is established in the 

literature that fatty acid kinase deficiency in S. aureus promotes hyper-virulence in 

murine models of skin infection. I also show that this virulence is farE-dependent in vitro 

and in vivo, and that fatty acid kinase deficient mutants exhibit elevated constitutive 
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levels of farE that cannot be induced by exogenous fatty acids; an intriguing phenotype 

that contributes to what is established in the literature regarding S. aureus pathogenesis.  

4.2$ Limitations$and$future$studies$$
FarR is a novel TFR that functions as a repressor in the absence of a fatty acid inducer, 

while acting as an activator in its presence. The transcription of farE increases in 

response to linoleic and arachidonic acids, and gene fusions demonstrated that expression 

of farE is induced only in the presence of functional FarR. Yet mobility shift assays show 

that FarR binds with similar affinities to OPRep and OPAct. These findings raise two 

questions that my studies could not address; first, what is the mechanism by which FarR 

activates farE? And second, what is the ligand mediating this activation? 

There are very limited reports of TFRs that exert positive-regulatory roles. DhaS, for 

example, is an unconventional TFR that functions as an activator (1). It binds an operator 

site upstream of the dha promoter, not to directly de-repress its target gene, but rather to 

bind a transcriptional co-activator, DhaQ. DhaQ then forms a complex with DhaS and 

subsequently activates transcription. In this situation, it is the transcriptional co-activator 

DhaQ which binds the physiologic ligand, dihyroxyacetone. Consequently, the TFR 

DhaS will only form a complex with the ligand-bound form of the transcriptional co-

activator DhaQ (1). In consideration of this example, it is possible that FarR requires a 

co-activator that is yet to be determined; potentially either FakA and/or FakB2.  

Perhaps identification of the endogenous ligand of FarR can aid in determining the exact 

mode of its regulation. TFRs typically bind hydrophobic ligands. Crystallography studies 

of FadR of B. subtilis, for example, show that acyl-CoAs are often co-crystallized with 

the protein from the E. coli host (2). Furthermore, FarR binding to OPRep is partially 

reduced in the presence of linoleoyl-CoA and arachidonoyl-CoA; however, it cannot be 

concluded that acyl-CoAs are the endogenous ligand for FarR. It is most likely that 

phosphorylated fatty acids are the ligand modulating the binding of FarR to its operator 

sites. A fakA-deficient mutant exhibit elevated constitutive levels of farE that cannot be 

further induced, due to the fact that fatty acids cannot be phosphorylated in the absence of 

this kinase. Purification of the fatty acid kinase proteins and the subsequent manual 
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phosphorylation of fatty acids for the use in mobility shift assays can help in confirming 

that phosphorylated fatty acids are the signal for regulation of farE via farR. 

Additionally, work is in progress to express FarR with a C-terminal 6×His tag in S. 

aureus. With this reagent in place, we could purify 6His-FarR from lysates of S. aureus 

grown in presence or absence of linoleic acid, and then conduct mass spectrometry to 

identify any protein or small molecule ligands that are captured in complex with FarR.  

S. aureus can only synthesize branched- and straight-chain fatty acids as its genome does 

not code for any membrane phospholipid desaturase for synthesis of unsaturated fatty 

acids (3). Instead, the bacterium employs the fatty acid kinase (Fak) machinery to utilize 

host-derived uFFA for incorporation into the otherwise energetically expensive 

membrane lipid components (phospholipids, lipoproteins and cardiolipin) as well as 

lipoteichoic acids  (4–6). A recent report by Lopez et al. has demonstrated that a Type 

VII secretion system (T7SS), which is crucial for prolonged bacterial survival and 

persistence in abscesses, is activated by uFFAs such as linoleic and arachidonic acids (7). 

Additionally, this activation is contingent on the incorporation of uFFAs into 

phospholipids and lipoprotein by the Fak machinery. This incorporation and subsequent 

stimulation of T7SS are required for virulence of S. aureus in a murine bacteremia model 

(7). Our data also provide evidence of a connection between the efflux pump FarE and 

fatty acid kinase FakA in vitro and in vivo. Since exogenous uFFA utilization by Fak 

machinery is central for S. aureus virulence, tight transcriptional regulation is then 

required to permit incorporation of uFFA into phospholipids, and induction of farE only 

when the metabolic capacity for incorporation into phospholipid is exceeded. Therefore, 

it is beneficial for the bacterium to fine tune the expression of farE such that it is induced 

rapidly when the cellular threshold for uFFA incorporation into phospholipid is exceeded, 

and subsequently represses the pump’s expression once the fatty acid concentration falls 

below that threshold. This may explain the complex FarR-mediated regulatory 

mechanism of FarE, to ensure that the efflux pump is only expressed when needed. This 

also may explain the observation that FarR binds with similar affinities to OPRep and 

OPAct as well as both FarR and the variant FarR7 bind equally well to OPAct. Perhaps 

FarR binds constitutively to OPAct but the binding to OPRep is what modulates the tight 
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regulation of farE expression. Therefore, in the absence of inducing ligand, binding to 

OPRep can repress farE and in the presence of inducing ligand, binding to OPRep is 

reduced, and binding to OPAct can then contribute to activation of farE (Fig. 4.1). Further, 

analysis of the putative farE promoter reveals a GC-rich spacer between the predicted -10 

and -35 promoter elements. This spacer, as opposed to a more typical AT-rich spacer in 

strong promoters, is indicative of reduced promoter activity that requires a transcriptional 

activator to help recruit RNA polymerase and the transcription machinery (8), further 

supporting the requirement for FarR as an activator of farE. 

Reporter-gene assays show that FarR auto-represses its own expression, independent of 

the addition of fatty acid ligand. This raises the question as to why farR expression 

cannot be de-repressed in the presence of fatty acid inducer, while farE expression is de-

repressed. Perhaps FarR does not directly require ligand binding, but rather employs a 

more complex regulatory mechanism that senses the fatty acid pool in the cell. The TFR 

AmtR, for instance, is involved in a post-transcriptional regulation of urea metabolism 

without binding to any effector molecule (9). This regulation utilizes a sensory system 

that involves a trans-acting sRNA in response to nitrogen availability. When nitrogen is 

overabundant, the sRNA targets amtR mRNA and blocks its translation. Under nitrogen 

starvation the sRNA is down-regulated and amtR is successfully translated. The AmtR 

repressor then works in combination with the global nitrogen activator, GlnR, to fine-tune 

the expression of urea-degrading metabolic pathway (9). Additionally, LuxR of V. 

harveyi that deviates from the norm of TFRs and functions as both repressor and activator 

depending on the presence or absence of a modulating ligand, is also subject to sRNA-

mediated regulation to ensure tight post-transcriptional control of quorum sensing genes 

(10). Small RNAs can be encoded on the opposite strand of target mRNA, and despite the 

complementarity, they block translation. These antisense RNA molecules often target 5# 

untranslated regions (UTR) that are close to or overlapping the ribosomal binding site of 

target genes (11–13). Therefore, it is possible that FarR employs tight post-transcriptional 

regulatory mechanism to ensure that the efflux pump is only expressed when needed. Not 

only the spatial arrangement of PfarR and PfarE on the plus and the minus strands conform 

to the typical antisense and target mRNA paradigm, but also analysis of putative PfarE did 
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reveal a 5#-UTR, upstream of the ribosomal binding site of farE, that is indicative of post-

transcriptional regulation (Fig. 4.2).  Further, analysis of PfarR revealed an even longer  5#-

UTR, compared to that of farE, that also suggests a possible post-transcriptional 

regulation of farR (Fig. 4.2).  Structural and functional studies will be needed to further 

shed light on the exact regulatory mechanism of FarR and its mechanism of de-repression 

and farE activation.  

In conclusion, this thesis reports the first description of a specific mechanism of inducible 

resistance to antimicrobial fatty acids in a Gram-positive pathogen, and the first 

staphylococcal TFR that functions as an activator and a repressor.  It is evident that one 

of the strategies S. aureus employs to cope with antimicrobial fatty acids and persist 

successfully on a human host is via a complex regulatory mechanism where a TFR with 

dual functionality controls the expression of a fatty acid specific- efflux pump. 
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Figure 4.1 Schematic model of the potential mechanism of PfarE regulation by FarR, 

depending on exogenous fatty acid ligand. FarR binds constitutively to OPAct but the 

binding to OPRep is what modulates the regulation of farE expression. A. In the absence 

of inducing ligand, FarR binds to OPRep, thereby blocking transcription from PfarE. B. In 

the presence of inducing ligand, binding to OPRep is reduced, and binding to OPAct can 

then lead to activation of farE. 
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Figure 4.2 Secondary structure prediction of farE and farR RNA using RNAfold 

Webserver. The nucleotides are colored according to the type of structure that they are 

in. A. farE. B. farR. 
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Appendix 2. Adaptation of S. aureus USA300 during growth in TSB + 50 µM 

linoleic acid. A.  Cells from overnight culture grown in TSB were inoculated into TSB + 

50 µM linoleic acid, to achieve OD600 = 0.01. B. Cells from stationary phase of the 

primary culture were inoculated into fresh TSB + 50 µM linoleic acid 

 

 

 

 

 



 

 180 

0 1 2 3 4 5 6 7 8
10-2

10-1

100

101

Time (hrs)

O
D

60
0

USA300 + pGYfarE::lux 
USA300 + pGYlux

 

 

 

 

 

  

   

 

 

 

 

 

 

 

 

Appendix 3. Differential effect of pGYlux and pGYfarE::lux on growth of S. aureus 

USA300 in TSB + 20 µM linoleic acid.  Triplicate flasks of USA300 harboring 

pGYfarE:lux, or empty pGYlux vector were inoculated into TSB + 20 µM linoleic acid, 

and growth (OD600) was monitored on an hourly basis. 
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Appendix 4. Exponential phase cells are highly susceptible to the bactericidal 

activity of 100 µM linoleic acid (LA). USA300 cells from an overnight culture 

(stationary phase) or mid-exponential phase culture (OD600 = 0.5) were inoculated to 

achieve OD600 = 0.01, in TSB containing 100 µM LA, and viability was monitored at 

hourly intervals. Each data point represents the mean and standard deviation of triplicate 

cultures. 
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Appendix 5. Cadmium inducible expression of farR protects USA300farR::ΦΝΕ 

from the bactericidal activity of 100 µM linoleic acid. For challenge without Cd, 

USA300farR::ΦΝΕ + pCNfarR was grown to mid-exponential phase in TSB + 20 µM 

linoleic acid, and then sub-cultured to OD600 = 0.01 in TSB + 100 µM linoleic acid, 

followed by monitoring of viability at hourly intervals. To induce farR expression, 

USA300farR::ΦΝΕ + pCNfarR was grown to mid-exponential phase in TSB + 20 µM 

linoleic acid and 10 µM Cd, followed by subculture into TSB + 100 µM linoleic acid and 

10 µM Cd. Each data point represents the mean and standard deviation of quadruplicate 

flasks. Significant differences in viability at each time point were determined by unpaired 

one-tailed Student’s t-test; ***, P < .001; **, P < 0.01; *, P < 0.05 
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Appendix 6. FAR7, but not USA300, is able to grow in TSB containing 50 µM 

palmitoleic acid (PA). Stationary phase cells of USA300 or FAR7 were inoculated into 

TSB containing 50 or 100 µM palmitoleic acid, and growth (OD600) was monitored at 

hourly intervals. Each data point represents the mean and standard deviation of triplicate 

cultures. 
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Appendix 7. fakA-farER influence virulence in a murine skin abscess model of 

infection. 6-week female BALB/c mice were infected with 2x107 CFU of USA300, 

USA300ΔfarER, USA300ΔfakA and USA300ΔfakA-farER. Assesses were imaged daily 

and surface area was quantified using ImageJ. The reduction in virulence exhibited by 

USA300ΔfakA-farER is significant relative to that of USA300ΔfakA as determined by a 

two-way ANOVA where *P < 0.05. Error bars represent Standard Error of the Mean. n=8 

abscesses per strain. 
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Appendix 8. Purification of 6×His-tagged FarR from wildtype USA300 and the 

variant FAR7 using nickel affinity chromatography. Cell lysate was applied onto a 1 

mL His-Trap nickel affinity column that was equilibrated with binding buffer (20 mM 

sodium phosphate, 0.5 M NaCl, 40 mM imidazole, pH 7.4). After washing with binding 

buffer, bound His-tagged protein was eluted over a linear imidazole gradient (0.1-0.5 M) 

in 20 mM sodium phosphate. Column fractions were assessed by SDS-polyacrylamide 

gel electrophoresis to check for purity.  L is the unbound fraction from the column, and 

W is the washed flow through fraction. Purified FarR protein band is at ~ 23 kDa. A. 

Native FarR and B. Variant FarR7.  
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