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ABSTRACT 

Maintaining the proper balance between carbon (C) and nitrogen (N) metabolism is critical 

to the sustained growth of organisms. In plant leaves, this balance is achieved by 

photoperiod dependent cross-talk between the processes of photosynthesis, respiration, and 

amino acid metabolism. A crucial mechanism in maintaining C/N balance is the glutamine 

synthetase/glutamine oxoglutarate aminotransferase (GS/GOGAT) cycle, which is well 

known to serve as a cross-road between C and N metabolism. Importantly, non-

photosynthetic tissues (e.g. roots, germinating seeds) lack a sufficient supply of carbon 

skeletons under high N conditions and hence may resort to other mechanisms, along with 

the GS/GOGAT cycle, to achieve proper C/N balance. Our understanding of the pathways 

involved in this aspect of plant regulation is limited. Considering the importance of 

asparagine as a major storage form of N, this study examines C and N partitioning within 

Arabidopsis roots upon asparagine treatment. Based on this work, I propose a role for the 

enzyme GAT1_2.1 in hydrolyzing excess glutamine to glutamic acid (Glu), which may 

serve as a carbon skeleton for channeling C to the TCA cycle under high N conditions. 

GAT1_2.1, a gene coding for a class I glutamine amidotransferase of unknown substrate 

specificity, was shown to be highly responsive to N status and has a root specific 

expression in Arabidopsis. The protein localizes to the mitochondria and the gene is found 

to be highly co-expressed with Glutamate Dehydrogenase 2 (GDH2). Metabolite profiling 

data using a gat1_2.1 mutant of Arabidopsis suggests that, in the absence of GAT1_2.1, the 

GABA shunt pathway is activated to replenish the depleted levels of Glu. This Glu may 

then be deaminated to 2-oxoglutarate by GDH2 and channeled into the TCA cycle, thus 

providing a cross-roads between C and N metabolism in root mitochondria.  In addition to 

this work, I also elucidate optimal methods for reliable metabolomics experiments and 

propose the use of isotopic labelling for the detection of unknown pathways. 
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1 GENERAL INTRODUCTION 

1.1 Nitrogen metabolism in plants 

Nitrogen (N) is one of the fundamental inputs for increased crop productivity. In general, 

plants obtain N from the soil in the form of nitrate (NO3) or ammonium (NH4
+).  

However, some N fixing plants that belong to a family referred to as legumes have the 

ability to use atmospheric N2 by symbiotic association with N fixing bacteria. 

Conventional farming involves supplying N to crop plants in the form of synthetic 

fertilizers that contain NO3 or NH4
+. The global annual amount of synthetic N fertilizer 

applied to crops has seen a dramatic increase during the last few decades (FAOSTAT). 

Although crop productivity has been shown to increase significantly with increased N 

fertilization, contributing to the decrease in world hunger (Good et al., 2004), only 30 - 

50% of supplied N fertilizer is utilized by the plants owing to inefficiency in N uptake 

and metabolism (McAllister et al., 2012). For example, maize yields have been shown to 

correlate with higher Nitrogen Use Efficiency (NUE) and Nitrogen Uptake Efficiency 

(NupE) as opposed to increased N fertilization itself (Haegele et al., 2013). To date, 

several studies have established that improving NUE in plants is of the utmost 

importance in achieving the combined goals of higher crop productivity and sustainable 

agricultural development; goals crucial for feeding the growing world population 

(Hawkesford, 2001; McAllister et al., 2012; Rothstein, 2007). A comprehensive 

understanding of the biochemical, physiological and molecular mechanisms involved in 

N uptake, assimilation, transport and storage is thus necessary to improve NUE in plants. 

The basic processes involved in N metabolism include 1) N uptake by plant roots in an 

inorganic form as NO3, 2) Conversion of NO3 to NH4
+

 by nitrate and nitrite reductases, 

and 3) NH4
+ assimilation to organic forms like Gln and Glu via the glutamine 

synthetase/glutamine:oxoglutarate aminotransferase (GS/GOGAT) cycle. These 

processes are very well elucidated at both the biochemical and molecular levels (Hodges, 

2002; Lea and Ireland, 1999; Wang et al., 2003). 
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Despite advances in this field, most of the downstream N regulatory processes remain 

largely unknown due to the complexity of C/N relations in flowering plants. The current 

chapter highlights the importance of source-sink relations in determining the fate of 

organic N and describes the pathways that operate as a function of both N form and level. 

In addition, aspects of N metabolic pathways relevant to this work are introduced.  

Finally, a detailed description of the research objectives is put forward. 

1.2 Nitrate reduction, signaling and amino acid biosynthesis 

As mentioned above, the first step of N metabolism involves the uptake of NO3 followed 

by its reduction into NO2 and NH4
+. This reduced N is used for the synthesis of a suite of 

nitrogenous compounds; the largest requirement being for the synthesis of the amino 

acids that form the building blocks of proteins and which act as precursors to a variety of 

compounds (e.g. nucleic acids, cofactors, phyto-hormones, and chlorophyll). Besides 

being a nutrient, NO3 also acts as a signal molecule and regulates its own uptake and 

assimilation. With the application of sophisticated microarray technologies, and using 

Arabidopsis thaliana as a model, a number of N responsive genes that are likely involved 

in the key processes of N uptake and utilization have been identified (Gutiérrez et al., 

2007; Wang et al., 2003; Wang et al., 2004). To coordinate the production of carbon (C) 

skeletons required for amino acid biosynthesis, NO3 also regulates the expression of 

genes involved in C metabolism. Upon higher NO3 availability, plants redirect C from 

starch biosynthesis to the production of amino and organic acids by modulating the 

expression of key enzymes involved in these processes (Wang et al., 2003).  

The initial assimilation products of reduced N are glutamate (Glu) and glutamine (Gln), 

which constitute the first amino acids produced by the GS/GOGAT cycle (Lea and 

Ireland, 1999) (Figure 1.1). Besides the synthesis of the nitrogenous compounds 

mentioned above, N assimilated into Glu and Gln is incorporated into aspartate (Asp) and 

asparagine (Asn), via the function of aspartate aminotransferase (AAT) and asparagine 

synthetase (AS), respectively (Lea et al., 2007) (Figure 1.1). Asp is a metabolically 

reactive amino acid and serves as an N donor in numerous aminotransferase reactions and 

is the precursor of a large family of amino acids. Asn, however, is relatively inert and 

serves primarily as an N storage and transport compound. While the GS/GOGAT cycle, 
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Figure 1.1: Asparagine biosynthesis and degradation pathway representing all known and unknown enzymes involved in its 

metabolism. 
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together with the metabolic pathways downstream of Glu and Gln have been clearly 

described in the literature (Coruzzi, 2003; Noctor et al., 2004), many aspects of Asn 

metabolism and signalling have yet to be elucidated. To that end, the next section of this 

chapter provides a detailed review of 1) the key metabolic pathways involved in Asn 

biosynthesis and catabolism, 2) the importance of Asn in C/N inter-relationships, and 3) 

the potential role of Asn as a signalling compound.   

1.3 Metabolism and regulation of asparagine, an amide amino 

acid, in plants 

1.3.1  Asparagine biosynthesis and degradation 

A major route for Asn biosynthesis is via the ATP-dependent transfer of the amide group 

of glutamine to the β-carboxyl group of aspartate by the action of AS (Figure 1.1). So far, 

two types of ASs, AsnA and AsnB, have been identified. While prokaryotes utilize AsnA 

type ASs, which require ammonia as an amide donor, as well as AsnB type ASs, which 

can catalyze the reaction using either ammonium or glutamine as an amide donor, most 

eukaryotes use only AsnB type ASs (Duff, 2015; Gaufichon et al., 2010).  

AsnB type ASs are members of the N-terminal nucleophile hydrolase (Ntn) group of 

glutamine amidotransferases (Larsen et al., 1999; Massiere and Badet-Denisot, 1998). 

They are characterized by an N-terminal cysteine nucleophilic residue producing a 

cysteinyl-glutamine tetrahedral intermediate from which ammonium is abstracted. 

Glutamate is released by hydrolysis of the resulting γ-glutamyl thioester intermediate. 

The ammonia is tunneled to a C-terminal transferase domain. This domain activates Asp 

through ATP hydrolysis as a β-aspartyl AMP intermediate. Nucleophilic attack by the 

ammonia results in cleavage and release of Asn. 

Two other pathways have been reported for Asn biosynthesis, one from 2-oxosuccinamic 

acid as a reverse reaction for Asn aminotransferase, and the other by the hydrolysis of β-

cyanoalanine using nitrilase/nitrile hydratase (Sieciechowicz et al., 1988).  The reverse 

reaction for Asn aminotransferase is not expected to occur at any great extent in planta as 

the reaction rates detected are very low (Ireland and Joy, 1983). The pathway involving 
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β-cyanoalanine requires the detoxication of cyanide by β-cyanoalanine synthase (Figure 

1.1), a member of the β-substituted alanine synthases (BSASs), sharing similarity with O-

acetylserine sulfhydrylase synthesizing cysteine. β-Cyanoalanine synthase, a 

mitochondrial localized enzyme, catalyzes the exchange of the thiol group of cysteine for 

cyanide, producing β-cyanoalanine. The formation of β-cyanoalanine is of particular 

significance in certain tissues, especially during root development and seed germination. 

The nitrilase NIT4 acts both as a hydratase and nitrilase for β-cyanoalanine catabolism 

producing Asn or Asp and ammonia, respectively (Piotrowski et al., 2001; Piotrowski 

and Volmer, 2006). 

Two major routes exist for Asn catabolism in plants. Deamidation and release of Asp, as 

well as ammonium, is a necessary step for transformation of Asn from its storage N form 

into other amides and amino acids. This reaction is catalyzed by an enzyme asparaginase 

(ASPG) and represents the first route of Asn catabolism (Figure 1.1). ASPG are 

commonly present in all organisms and are classified as bacterial (type I and II) and plant 

(type III) – type ASPGs. Plant type ASPGs are further subdivided in K+ dependent and 

K+ independent ASPGs, due to their dependency on K+ for activation (Bruneau et al., 

2006). While K+ dependent ASPGs have a preference of substrate toward Asn, K+ 

independent ASPGs are known to have catalytic activity towards both Asn and 

isoaspartyl dipeptides (Gabriel et al., 2012). The second route of Asn catabolism involves 

transamination of the α-amino group of Asn to a 2-oxo acid acceptor producing 2-

oxosuccinamate followed by its hydrolysis to form oxaloacetate and ammonia via ω-

amidase (Zhang and Marsolais, 2014) (Figure 1.1). 2-Oxosuccinamate can also be rapidly 

converted to 2-hydroxysuccinamate, however, the enzyme involved in this reaction is yet 

to be characterized. In Arabidopsis, the transamination reaction is shown to be catalysed 

by a serine:glyoxylate aminotransferase, AGT1, which has a higher catalytic activity 

towards Asn than its prototypical substrates serine or alanine (Zhang and Marsolais, 

2014). A comprehensive review of the enzymes involved in Asn biosynthesis and 

degradation and their gene family members in Arabidopsis was recently provided by 

Gaufichon et al. (2016b).   
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1.3.2 Asn as a transport and storage form of N 

The N requirements of actively growing roots and leaves are mostly met by 1) inorganic 

sources (NO3 and NH4
+) that are primarily transported via xylem, and 2) a restricted 

group of organic sources that is largely comprised of Asn (transported through both 

xylem and phloem) (Sieciechowicz et al., 1988). Asn is very well established as a 

primary nitrogen transport compound as suggested by its relative abundance in the xylem 

and phloem sap of lupins and its high N:C ratio (1:2) (Atkins et al., 1983).  In its soluble 

form, Asn is a substrate for only a few enzymatic reactions and has low net charge under 

physiological conditions making it an ideal storage compound (Lea et al., 2007). Early 

work by Pate et al. (1981) in lupin showed that Asn was the major amino acid in all plant 

parts, especially in nodulated roots, leaves and pods where it could account for 60-80% of 

total amino acid content.   

A thorough investigation of nitrogen sources in the xylem sap of different legume species 

revealed that although ureides form majority of nitrogen transport compounds in 

nodulated Glycine max, Vigna unguiculata and Phaseolus aureus, amino acids and nitrate 

predominate under non-nitrogen fixing conditions (Amarante et al., 2006).  Only amino 

acids and nitrate were found in the xylem sap of other legume species viz., Crotalaria 

juncea, Pisum sativum and Lupinus albus under both nodulated and non-nodulated 

conditions.  Further analysis of amino acid fractions of these six plants also revealed that 

Asn was the major form of N transport under most conditions (Amarante et al., 2006).  

The same study also highlighted the importance of Asn as an indicator of N status 

regardless of whether nitrogen fixation was the source of nitrogen.  Furthermore, a 

comprehensive review of Asn in plants highlighted the role of Asn as a storage and 

transport form of nitrogen in several perennials (Lea et al., 2007).  It is also noteworthy 

that glutamine and arginine may carry out the same role as Asn depending on species and 

type of tissue (Lea et al., 2007).  While most of the studies on Asn have been conducted 

in legumes, Arabidopsis thaliana, a well-established model organism, was also shown to 

utilize Asn as one of the primary N storage and transport forms in a photoperiod 

dependent manner (Lam et al., 1995). 
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1.3.3 Role of Asn in N metabolism and C/N relations 

Biosynthesis of Asn is primarily dependent on the N status and C to N ratio of the plant 

and is regulated through the expression of AS genes. In nodulated soybean roots, AS 

activity under N stress is decreased, resulting in reduced Asn concentration in the xylem 

sap (Lima and Sodek, 2003). The change in Asn concentration is reversible and the 

recovery closely parallels AS activity in nodules (Glycine max) (Lima and Sodek, 2003). 

All three soybean AS genes are repressed in root under N deficit (Antunes et al., 2008). 

Nitrate is involved as a signal in the up-regulation of AS genes in Arabidopsis (Scheible 

et al., 2004; Wang et al., 2003; Wang et al., 2004). Cytokinins, a group of plant 

hormones, act as a secondary signal of nitrate availability. The expression of cytokinin 

biosynthetic and signaling genes is up-regulated by nitrate (Krouk, 2016; Sakakibara et 

al., 2006). In turn, cytokinins up-regulate the expression of ASN1, GDH1, and GDH2 

(Brenner et al., 2005). Transcript levels of ASN1 in Arabidopsis are regulated by the C:N 

ratio. Sucrose suppresses the accumulation of ASN1 transcript in dark grown plants, 

however, Asn, glutamine or glutamate prevent this effect (Lam et al., 1994). Similar 

results were obtained in maize root tips (Chevalier et al., 1996). Arabidopsis ASN2 is 

regulated differently. It is induced by sucrose, and repressed by Asn, glutamine or 

glutamate (Lam et al., 1998). However, by profiling transcripts and performing network 

analysis under treatments with inorganic N as nitrate and ammonium, or organic N as 

glutamate or glutamine, in the presence or absence of the GS inhibitor methionine 

sulfoximine, Gutiérrez et al. (2008) showed that ASN1 responds to glutamate or a 

downstream metabolite, in concert with GDH1, whereas the K+-dependent ASPGB1 had 

an opposite regulation. ASN2 positively responds to inorganic N. The transcription factor 

BZIP1 regulates ASN1 (Hanson et al., 2008; Para et al., 2014). 

Photoperiod is an important regulator of Asn metabolism. Transcripts of pea AS1, 

encoding a class I AS, are induced in leaves in the dark (Tsai and Coruzzi, 1990). This 

response results in transient accumulation of Asn at night, under conditions of low C:N 

ratio (Harmer et al., 2005). The opposite happens with starch reserves, which are 

mobilized during the night. A similar situation is observed in Arabidopsis, where 

expression of the orthologous ASN1 is induced in leaves at night and correlates with Asn 
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concentration (reviewed in Coruzzi, 2003; Lam et al., 1995). Arabidopsis ASN2 is 

associated with ammonium assimilation under light conditions (Wong et al., 2004). An 

ASN2 mutant was impaired in salt stress induced, ammonium-dependent Asn 

accumulation (Maaroufi-Dguimi et al., 2011). Careful analysis of ASN2 loss-of-function 

mutants revealed that the gene is involved in N assimilation and Asn export to the 

phloem. The mutant plants were characterized by impaired growth, increased ammonium 

accumulation, reduced Asn, and increased γ-aminobutyric acid and alanine concentration 

in leaves (Gaufichon et al., 2013). This was interpreted as a consequence of increased 

flux through the γ-aminobutyric acid shunt, leading to alanine biosynthesis via the 

transamination of pyruvate. The authors indicated that decreased aspartate utilization for 

Asn biosynthesis was likely to reduce the flux from phosphoenolpyruvate to oxaloacetate, 

resulting in higher availability of pyruvate and fumarate. ASN2 expression is localized in 

leaf phloem companion cells, and the ASN2 mutants displayed reduced Asn concentration 

in phloem exudates, and delayed senescence. Loss of function of the closely related ASN3 

led to a relatively milder phenotype (Gaufichon et al., 2016a). The general picture 

emerging from these data is that class I AS is involved in the regulation of Asn levels in 

response to the C:N ratio, likely in concert with a glutamate dehydrogenase breaking 

down the glutamate generated by the AS reaction, generating α-ketoglutarate to balance 

carbon metabolism. 

1.3.4 Asn as an N signal in plants 

Whether Asn acts as a metabolite signal, and if so how it is perceived, is an open area of 

investigation. Beside glutamate and glutamine discussed above, histidine has been 

recently implicated in the regulation of abscisic acid biosynthesis and fatty acid oxidation 

(Ma and Wang, 2016). An understanding of amino acid signaling in plants lags behind 

that of other organisms. Proteins involved in amino acid signaling in plants include 1) the 

chloroplastic PII, involved in the regulation of Arg biosynthesis and lipid accumulation, 

and a glutamine sensor, except in the Brassicaceae (Chellamuthu et al., 2014; Feria 

Bourrellier et al., 2010), 2) the GCN2 protein kinase involved in the perception of amino 

acid deficiency through binding of uncharged tRNAs, which phosphorylates eIF2α (α-

subunit of eukaryotic translation initiation factor (Li et al., 2013; Wang et al., 2017), 3)  
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the protein kinase target of rapamycin (TOR), a positive regulator of translation and 

growth processes in response to carbon and N nutrients (Dobrenel et al., 2016), 4) an 

aspartyl-tRNA synthetase involved in the perception of the immunomodulatory β-

aminobutyric acid (Luna et al., 2014), and 5) glutamate receptor homologs, one of which 

was recently implicated in the control of stomatal opening by acting as a calcium channel 

in response to methionine binding (Kong et al., 2016).  

The activation of mammalian TOR Complex 1 (mTORC1) requires amino acid sensors 

such as CASTOR1 for arginine and Sestrin2 for leucine (Saxton et al., 2016; Wolfson et 

al., 2015). Asn was recently identified in a group of amino acids involved in priming 

mTORC1 for activation by other amino acids including leucine (Dyachok et al., 2016). In 

mammalian cancer cells, Asn was recently shown to act as a regulator of amino acid 

uptake, particularly serine, arginine, and histidine, to coordinate nucleotide and protein 

synthesis and to be an essential metabolite for cell proliferation (Krall et al., 2016). 

Clearly, more work is required to understand the role and perception of Asn as a potential 

metabolite signal of N status in higher plants. To that end, Chapter 2 of the current thesis 

explores the responses of Arabidopsis roots to Asn treatment at both the transcript and 

metabolite levels and provides a comprehensive set of changes that occur in roots upon 

increased Asn accumulation. 

1.4 Glutamine amidotransferases in plants 

As pointed out in section 1.2, the N from Gln is used in the production of a number of 

nitrogenous compounds including nucleobases, vitamins, and amino sugars. Glutamine 

amidotransferases (GATs) belong to a family of enzymes that typically consist of two 

domains or subunits and catalyze a two-step reaction. The first is a glutaminase that 

hydrolyses glutamine to release ammonia and the second is a synthase that catalyzes the 

transfer of ammonia to an acceptor substrate to form product (Zalkin and Smith, 2006). 

The catalytic mechanism of GAT consists of the nucleophilic attack of the thiol group of 

a catalytic cysteine residue on the δ-carbonyl group of glutamine releasing ammonia that 

is channeled to act as a nucleophile on ammonia accepting substrate (Zalkin and Smith, 

2006) (Figure 1.2). Asparagine synthetase, described in section 1.3.1, is an example of a 

GAT superfamily protein. GATs are categorized into two major classes (Table 1.1) 
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Figure 1.2: Glutamine amidotransferase transfers an amide group from glutamine 

to a substrate forming aminated product and releasing glutamate.
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Table 1.1: Glutamine amidotransferases (GATs) for which crystal structures have been determined. 

Enzyme Abbreviation Acceptor substrate cofactor Product Reference 

Triad GATs         

Anthranilate synthase AS Chorismate Mg2+ Anthranilate 
Morollo and Eck 

(2001) 

Carbamoyl phosphate 

synthetase 
CPS Bicarbonate ATP/Mg2+ 

Carbamoyl 

phosphate 

Thoden et al. 

(1997) 

Cytidine triphosphate 

synthetase 
CTPS Uridine triphosphate ATP 

Cytidine 

triphosphate 

Endrizzi et al. 

(2004) 

Phosphoribosylformyl 

glycinamide synthetase 
FGAR-AT 

Formyl phosphoribosyl 

glycinamide 
ATP 

Formamido 

phosphoribosyl 

acetamidine 

Anand et al. (2004) 

Guanosine monophosphate 

synthetase 
GMPS 

Xanthosine 

monophosphate 
ATP/Mg2+ 

Guanosine 

monophosphate 

Tesmer et al. 

(1996) 

Imidazole glycerol phosphate 

synthase 
IGPS 

Phosphoribulosyl 

formimino 

aminoimidazole 

carboxamide 

ribonucleotide 

- 

Imidazole 

glycerol 

phosphate 

Knöchel et al. 

(2002) 

Pyridoxal 5'-phosphate synthase PLPS 

Ribose 5'-phosphate + 

Glyceraldehyde 3'-

phosphate 

- 
Pyridoxal 5'-

phosphate 
Zein et al. (2006) 

N terminal nuclophile GATs  
   

 

Asparagine synthetase AsnB Aspartate ATP Asparagine 
Nakatsu et al. 

(1998) 

Glucosamine 6'-phosphate 

synthase 
GlmS Fructose 6'-phosphate - 

Glucosamine 6'-

phosphate 
Oliva et al. (1995) 

Glutamate synthase GltS 2-Oxoglutarate 

FMN/FAD 

and 

ferridoxin 

(or) NAD 

Glutamate 
van den Heuvel et 

al. (2002) 

Amidophosphoribosyl 

transferase 
GPAT 

Phosphoribosyl 

pyrophosphate 
- 

Phosphoribosyl 

amine 

Muchmore et al. 

(1998) 
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depending on the active site residue. While the class I GATs, also called triad GATs, 

utilize histidine and glutamate residues that activate the cysteine thiol group, class II 

GATs use an N-terminal catalytic cysteine giving them their characteristic name, N-

terminal nucleophile (Ntn) GATs (Mouilleron and Golinelli-Pimpaneau, 2007). The 

nomenclature of enzymes that contain glutamine amidotransferase emphasizes the 

acceptor substrate (Table 1.1) (Massiere and Badet-Denisot, 1998). Both class I and class 

II glutamine amidotransferases are widely dispersed across all organisms and the 

structures and functions of most of these enzymes are well characterized. A 

comprehensive review of these enzymes, along with their mode of action and structural 

properties, can be found in Mouilleron and Golinelli-Pimpaneau (2007). 

In Arabidopsis thaliana, an uncharacterized class I glutamine amidotransferase domain 

containing protein, GAT1_2.1, was recently identified and found to be highly responsive 

to nitrogen status in roots (Zhu and Kranz, 2012).  A null mutant of A. thaliana lacking 

GAT1_2.1 showed an extensive shoot branching phenotype indicating that this nitrogen 

regulated gene might represent a link between nitrogen stress responses and shoot 

branching. Unlike most other GATs, GAT1_2.1 consists only of a glutamine 

amidotransferase domain and an unannotated C-terminal extension. A BLASTP search of 

the C-terminal extension of GAT1_2.1 showed that the domain is highly orthologous to 

sequences found only in the plant kingdom, indicating that this protein has a plant 

specific function (Zhu and Kranz, 2012). Due to its nitrogen responsiveness and the lack 

of an identifiable synthase domain, we hypothesized that GAT1_2.1 might be involved in 

primary metabolism as a glutaminase, hydrolyzing glutamine, and releasing ammonia. 

The glutamate produced may then be channeled into the TCA cycle via a highly co-

expressed glutamate dehydrogenase (GDH2) and hence regulate C/N partitioning in 

roots. Chapter 3 of this thesis describes the functional characterization of GAT1_2.1 and 

provides evidence for the lack of an acceptor substrate for ammonia.  Its possible role in 

C/N partitioning is also highlighted. 
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1.5 Metabolomics: A tool for advancing our understanding of 

‘the central dogma’ of biology 

To identify the metabolic responses of GAT1_2.1 to N status and its role in C/N 

partitioning, we decided to pursue a metabolomics approach. The metabolome, which 

consists of all the small molecules in a given cell/tissue, provides a functional readout of 

cellular state and represents the outcome of perturbations that occur at the genetic, 

transcriptomic and proteomic levels (Goodacre et al., 2004). Since metabolites provide a 

direct signature of biochemical activity – unlike genes that are subject to epigenetic 

regulation or proteins that are subject to post-translational modifications – they can be 

correlated with phenotypes and hence can be used to infer mechanistic relationships 

between genes and phenotypes (Patti et al., 2012). The application of metabolomics 

strategies, together with the other well studied “omics” technologies, have been shown to 

deliver a systems level understanding of complex phenotypes (Bino et al., 2004; Fiehn et 

al., 2000; Saito and Matsuda, 2010; Chen et al., 2017; Hirai et al., 2004; Savoi et al., 

2017).  

The plant metabolome consists of a wide range of chemical species with diverse physical 

properties ranging from hydrophilic carbohydrates and amino acids, to hydrophobic 

lipids, to ionic inorganic compounds (Jorge et al., 2016).  An estimated 200,000 distinct 

metabolites – with a large dynamic range of concentrations from femtomolar to 

millimolar – exist in the plant kingdom (Fiehn, 2002; Fernie, 2003). This enormous 

complexity presents huge challenges for the analytical technologies used in plant 

metabolomics.  Hence, well thought out strategic tools are needed to separate and 

characterize these diverse compounds. No single analytical technique can cover the 

whole metabolome due to the diversity and broad concentration range of metabolites. To 

that end, Chapter 4 provides an evaluation of existing extraction methods to identify one 

suitable for optimal metabolite coverage and provides strategies for data analysis that can 

improve the reliability and application of this very important ‘omics technology in the 

field of plant science. 
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1.6 Objectives 

Asn is a major storage and transport form of N.  However, its signaling roles and mode of 

action are not fully understood.  The long term goal of this research is thus to fully 

elucidate Asn metabolism, as well as its function as a metabolite signal in plants.  This 

could uncover its potential role in source-sink relationships as well as major interlinks 

between C and N metabolic pathways.  Considering the central role of asparagine in N 

metabolism, knowledge obtained from this work might also be used to help improve 

NUE of other agronomically important crops, and hence yield.  

The objectives of the current study are as follows: 

1. To identify the transcriptional and metabolic responses to Asn in roots using 

the model plant, Arabidopsis thaliana.  Through the use of RNA-seq and 

metabolomics we aim to detect the responses to asparagine and identify genetic 

and metabolic players that contribute to C/N balance upon excess organic N 

supply.    

2. To characterize a N responsive class I glutamine amidotransferase, 

GAT1_2.1. A major N responsive gene identified through my first objective was 

found to encode a plant specific GAT1_2.1. In this study, we aim to perform a 

biochemical characterization of this protein and identify its role in C/N 

partitioning.   

3. Establish an optimized metabolomics platform for detecting primary 

metabolites. In order to determine changes in primary metabolism, an optimized 

method of extraction, chromatographic separation and data analysis are necessary.  

Hence, the third objective of this study is to establish a standardized pipeline from 

lab bench to results that can be used for metabolomics studies. 
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2 COMBINED TRANSCRIPTOMIC AND METABOLITE 

DATA FROM ASN TREATED ARABIDOPSIS ROOTS 

PROVIDES NEW INSIGHTS INTO N METABOLISM 

2.1 Introduction  

In the past decade, there has been a tremendous progress in the field of nitrogen (N) 

metabolism, sensing and signaling in plants. The basic processes of N metabolism, 

including N uptake by plant roots in an inorganic form as NO3
- or NO2

-, their conversion 

to NH4
+ by nitrate and nitrite reductase (NR, NiR), and NH4

+ assimilation to organic 

forms like glutamine and glutamate via the GS/GOGAT cycle are well elucidated at both 

the biochemical and molecular levels (Hodges, 2002; Lea and Ireland, 1999; Wang et al., 

2003). With the development of sophisticated microarray technologies, a number of N 

responsive genes that are likely involved in the key processes of N uptake and utilization 

have been identified (Gutiérrez et al., 2007; Wang et al., 2004). Upon nitrate treatment, 

these genes include, but are not limited to, nitrate transporters, ammonium transporters, 

nitrate reductase, glutamine and asparagine synthetases and a few genes involved in 

glycolysis, trehalose-6-phosphate metabolism, iron transport and sulphate uptake (Wang 

et al., 2003). This indicates that there is an interaction between carbon (C) and nitrogen 

(N) utilization pathways to achieve a desired C/N balance based upon the availability of 

high nitrate. Wang et al. (2003) also reported that the responses in roots were much more 

extensive compared to shoots based on the number of differentially expressed genes 

within these tissues. A study with a NR null mutant to differentiate responses to nitrate 

and ammonium revealed that starch mobilization occurs in response to downstream 

reduced N, as opposed to nitrate, highlighting that the coordination between C and N 

metabolism occurs beyond the level of N uptake (Wang et al., 2004).  

Furthermore, the use of methionine sulphoximine, an inhibitor of glutamine synthetase 

(GS), to identify responses to reduced organic N as glutamine (Gln) as well as treatment 

with glutamate (Glu), revealed that a balance between organic and inorganic N controls 

the expression of genes involved in N-reduction, assimilation and amino acid 

biosynthesis (Gutiérrez et al., 2008). This study also highlighted a number of 
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transcription factors that respond to N status along with the involvement of the circadian 

clock in controlling nitrogen assimilation. Nitrogen-limiting conditions, however, were 

identified to show a substantially different transcriptome response compared to nitrate 

induction (Peng et al., 2007). These responses include, but are not limited to, activation 

of genes involved in protein degradation via the ubiquitin-proteosome pathway, signal 

transduction pathways, and phenylpropanoid biosynthesis (Peng et al., 2007). 

Transcriptomic data combined with metabolic profiles were also demonstrated to provide 

a link between gene expression and metabolism (Hirai et al., 2004). This allowed 

interaction maps between genes and metabolites in response to C and N treatments to be 

generated (Gutiérrez et al., 2007; Hirai et al., 2004; Scheible et al., 2004). Despite these 

advances, the identity of amino acid signals and the mechanisms involved in the 

perception of the internal organic N status remain to be elucidated. 

Asparagine (Asn) is another source of amino and amide nitrogen that is used for amino 

acid interconversion, intra and intercellular transport and is an efficient source of nitrogen 

storage and partitioning compounds (Gaufichon et al., 2016; Lea et al., 2007).   Asn also 

elicits several growth responses in Arabidopsis when supplied at high concentrations 

such as delayed seed germination and inhibition of root elongation and root hair 

formation (Ivanov et al., 2012).  Considering the importance of Asn as a major storage 

and transport form of N to the sink tissues, the current study aims to elucidate the 

responses of Arabidopsis roots upon Asn treatment using a combination of transcriptomic 

and metabolomics approaches. 
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2.2 Results and discussion 

In order to identify the transcriptional responses upon Asn treatment, we used 10 day old 

Arabidopsis seedlings transferred to plates with 20 mM Asn or no nitrogen (control) for 2 

hours (described in Materials and Methods). A total of 177 genes were found to be 

differentially expressed with an FDR < 0.001, while a total of 317 genes were 

differentially expressed with an FDR < 0.01 (Appendix A, B). A diagnostic fit of 

variance showing a tight spread of per gene variance and a comparison of gene fold 

change in relation to the average number of reads mapped is provided in the appendix 

(Appendix C & D).  Out of the 177 genes differentially expressed with FDR < 0.001, 12 

were found to be repressed and 96 up-regulated with a threshold value of two fold. We 

used this list of genes for further analysis at the single gene level and for GO 

categorization. 

2.2.1 Differentially expressed list includes carbon/nitrogen transport and 

storage related genes 

Among the top up-regulated genes were the mitochondrial 5S and cytosolic 18S rRNAs 

and genes related to N storage, including cruciferins, CRU1 and CRU3 although these 

were expressed at relatively low levels. A number of genes involved in cytokinin 

biosynthesis, iron transport and sulphate uptake which are typical of nitrate induction 

response were also found to be upregulated (Table 2.1). Among the genes most repressed 

by Asn were an aluminum-activated malate transporter (ALMT2), and three nitrate 

transporters, NRT1.8 and NRT1.5, associated with nitrate export from the xylem and 

cadmium tolerance (Chen et al., 2012; Li et al., 2010) and NRT2.6 associated with the 

generation of reactive oxygen species and pathogen resistance (Dechorgnat et al., 2012). 

ALMT2 (At1g08440) is a gene found in tandem with ALMT1 (At1g08430) which was 

previously shown to be involved in malate efflux from the roots under aluminum and low 

pH toxicity (Hoekenga et al., 2006). Expression of ALMT1 is regulated by a Cys2-His2 

zinc-finger domain containing transcription factor, STOP1 (Iuchi et al., 2007).  STOP2 

(At5g22890) is a physiologically minor isoform of STOP1 that was shown to regulate the 

expression of most genes in the ALMT1 network that play a key role in tolerance to 

aluminum and low pH toxicity in Arabidopsis, including CIPK23, involved in the a
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Table 2.1: Selected list of genes differentially expressed upon Asn treatment based on DAVID functional categorization. 

 
TAIR ID Gene name 

Log2 Fold 

change 
p-value 

Nitrate transport 

AT4G21680 NRT 1.8 -1.783 3.25E-15 

AT3G45060 NRT 2.6 -1.581 1.17E-13 

AT1G32450 NRT 1.5 -0.950 2.99E-07 

Organic acid transport AT1G08440 aluminium acitivated malate transporter (AlMT) -2.918 4.44E-31 

Ion transport 
AT1G60960 IRT3 (Fe2+) transporting protein 0.748 1.53E-06 

AT5G24660 LSU2 response to low sulphur 2 -1.184 1.71E-06 

Lignin degradation 

AT3G09220 LAC7 1.008 4.81E-07 

AT5G01040 LAC8 0.791 2.45E-06 

AT5G01050 LAC9 1.224 3.01E-10 

Oxidoreductase 

AT2G48080 2OG-Fe(II) oxygenase family protein 1.235 8.10E-07 

AT3G13610 2OG-Fe(II) oxygenase family protein 1.299 3.25E-13 

AT4G10500 2OG-Fe(II) oxygenase family protein 1.561 1.32E-08 

AT2G19800 MIOX2 inositol oxygenase 1.795 1.85E-17 
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AT1G48130 AtPER1 1-Cys peroxiredoxin PER1 0.000 2.76E-07 

Glycosidase 

AT4G25810 XTR6 xyloglucan:xyloglucosyl transferase 1.121 1.35E-09 

AT4G30270 MERI5B xyloglucan:xyloglucosyl transferase  1.239 1.80E-06 

AT5G57560 

TCH4 xyloglucan endotransglucosylase/hydrolase 

protein 22 1.133 4.38E-10 

AT2G43890 putative polygalacturonase /pectinase -1.186 3.52E-06 

Other related genes 

AT1G67110 CYP735A2 cytokinin trans-hydrolase 1.221 6.48E-14 

AT3G63110 IPT3 0.638 4.31E-07 

AT5G44120 CRU1 3.380 7.64E-30 

AT4G28520 CRU3        Inf 1.02E-07 

AT3G30775 proline dehydrogenase 1 1.562 6.23E-06 

AT5G38710 proline dehydrogenase 2 1.575 2.62E-09 

AT5G18840 sugar transporter ERD6-like 1.299 3.25E-13 

AT1G71880 SUC1 1.006 3.20E-06 

AT1G15040 class I glutamine amidotransferase  2.108 2.65E-19 
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regulation of K+ transport, SULTR3;5, a sulphate transporter involved in ion-homeostasis, 

PGIP1, cell-wall stabilizing polygalacturonase inhibiting protein-1, GDH1, involved in 

glutamate metabolism and At5g38200, a class-I glutamine amidotransferase containing 

protein of unknown function (Kobayashi et al., 2014). Our data shows an increase in 

expression of STOP2 along with CIPK15, a homolog of CIPK23 and GAT1_2.1, another 

class-I glutmine amidotransferase, a homolog of At5g38200. Here we suggest a potential 

role of ALMT2, regulated by STOP2, as a signal for malate levels in cells and a 

downregulation of this gene could result in decreased transport of malate outside of roots 

ensuring a sufficient supply of TCA intermediates. A recent review by Gilliham and 

Tyerman (2016) highlighted a potential membrane signaling role of ALMT family 

proteins in response to malate and γ-aminobutyric acid (GABA) levels and trigger 

changes in TCA cycle activity. This led to the characterization of metabolic changes via 

the metabolite profiling approach discussed in the later sections. 

2.2.2 Over-represented GO categories indicate C and N reprogramming 

Another level of analysis was performed using Gene Ontology categorization based on 

biological process with the 177 differentially expressed genes with an FDR < 0.001 using 

PANTHER database version 10.0 (Mi et al., 2016).  Nitrate transport, organic acid 

transport and anion transport were found to be among the over represented GO categories 

with over 5-fold enrichment (Table 2.2) suggesting a relocation of C and N resources.  

Table 2.2 represents GO categories with over 4-fold enrichment. To further inspect the 

list of genes at a functional level, we used the DAVID bioinformatics resource. DAVID 

uses over 40 annotation categories such as GO terms, protein-protein interactions, protein 

functional domains, bio-pathways, and sequence features to perform functional 

categorizations (Huang et al., 2008) (Figure 2.1). This revealed an upregulation of many 

oxidoreductases including three 2-OG (FeII) oxygenase family proteins which have been 

previously implicated in using α-ketoglutarate as a co-factor in synthesis of gibberellic 

acids as well as some amino acids (Araujo et al., 2014). A few other categories include, 

but are not limited to, lignin degradation, glycosidase, and signaling (Figure 2.1).  We 

speculate that lignin degradation may be another source for carbon supply to achieve the 

aforementioned C/N balance.  Overall, the data suggests a major reprogramming of C and 
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Table 2.2: Over-represented GO categories based on biological process with > 4 fold enrichment. 

GO biological process complete 

Arabidopsis 

thaliana - 

REFLIST (26684) 

No. of 

Genes 
Expected 

Fold 

Enrichment 
p-value 

respiratory burst (GO:0045730) 86 8 0.52 > 5 1.38E-04 

respiratory burst involved in defense response 

(GO:0002679) 
86 8 0.52 > 5 1.38E-04 

peptide transport (GO:0015833) 104 8 0.63 > 5 5.75E-04 

oligopeptide transport (GO:0006857) 104 8 0.63 > 5 5.75E-04 

amide transport (GO:0042886) 111 8 0.67 > 5 9.35E-04 

response to nitrate (GO:0010167) 159 9 0.97 > 5 1.31E-03 

amino acid transport (GO:0006865) 222 12 1.35 > 5 2.91E-05 

carboxylic acid transport (GO:0046942) 255 13 1.55 > 5 1.43E-05 

organic anion transport (GO:0015711) 275 14 1.67 > 5 3.77E-06 

organic acid transport (GO:0015849) 258 13 1.57 > 5 1.64E-05 

nitrate transport (GO:0015706) 162 8 0.98 > 5 1.48E-02 

response to chitin (GO:0010200) 306 15 1.86 > 5 1.63E-06 
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response to organonitrogen compound 

(GO:0010243) 
321 15 1.95 > 5 3.08E-06 

anion transport (GO:0006820) 518 21 3.14 > 5 1.91E-08 

response to nitrogen compound 

(GO:1901698) 
593 23 3.6 > 5 4.42E-09 

nitrogen compound transport (GO:0071705) 670 22 4.07 > 5 3.19E-07 

ion transport (GO:0006811) 1031 30 6.26 4.79 2.09E-09 

cellular response to acid chemical 

(GO:0071229) 
517 14 3.14 4.46 7.39E-03 

cellular response to oxygen-containing 

compound (GO:1901701) 
642 16 3.9 4.11 4.24E-03 

 



29 

 

 

Figure 2.1: DAVID functional categorization. 

Pie chart showing the functional categories assigned by DAVID bioinformatics resource. Numbers on the chart represent the 

percentage of genes that fall under each category among the differentially expressed genes with FDR < 0.001.  Bar graph represents 

the number of genes within each GO category with red bars indicating the upregulated genes and green bars indicating the down-

regulated genes.
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N metabolites to restore the altered C/N balance. A selected list of genes that are 

discussed in this manuscript, within these categories, is provided in Table 2.1. A 

comparison of genes differentially regulated upon Asn treatment with the genes 

previously indicated to be responsive to inorganic and organic N by Gutiérrez et al. 

(2008) did not reveal any common responses between the Asn and other sources of N, 

indicating that the changes shown here are unique to Asn. 

2.2.3 A significant accumulation of N-rich amino acids indicates N 

storage 

We further tested the metabolic responses of Arabidopsis roots upon Asn treatment to 

complement the transcriptome data.  Metabolite profiling upon Asn treatment focusing on 

a set of 35 metabolites, primarily, amino acids, organic acids and intermediates of TCA 

cycle (Table 2.3), provided further evidence in support of the transcriptome data. A 

significant accumulation of N-rich amino acids including histidine, ornithine, citrulline 

and arginine were identified upon Asn treatment (Table 2.3, Figure 2.2).  Among the 

proteinogenic amino acids, arginine, which is primarily synthesized from ornithine and 

citrulline, has the highest N to C ratio and plays an important role in nitrogen distribution 

and recycling in plants (Winter et al., 2015).  These results suggest a flux through 

arginine biosynthetic pathway via ornithine and citrulline, leading to increased arginine 

synthesis and nitrogen storage.  Furthermore, the fact that the arginine biosynthetic 

pathway utilizes aspartate produced from Asn catabolysis and releases 2-oxoglutarate 

(2OG) to channel back to the TCA cycle (Bender, 2012) supports our argument that 

under high N availability, potentially, a major redistribution of C and N resources occurs 

to maintain C/N balance. 

2.2.4 Lysine and proline catabolism along with the GABA shunt 

recuperate C/N balance 

No significant difference was identified in the accumulation of organic acids with the 

exception of isocitrate.  This may be because of the continued replenishment of the C 

pools via lysine anaplerotic pathway, which was previously suggested to be a respiratory 
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Table 2.3: Amino acids and TCA cycle intermediates identified using LC-MS. 

Metabolite Log 2 fold change 

ILE 0.47 

LEU 0.32 

LYS -0.59** 

TRP 0.66** 

THR 0.02 

MET 0.42 

ASN 5.78*** 

TYR 0.44* 

SER -0.36* 

PRO -0.44* 

HIS 0.75** 

VAL 0.20 

PHE 1.01** 

GLN 0.32 

ARG 0.54* 

Guanine -0.27 

Adenine -0.65 

CYS 0.00 

GABA -0.97** 

ORN 3.95** 

CIT 1.20* 

Glucose 6-Phosphate -0.66* 

α-ketoisovaliric acid 1.50** 

β-D-Glucosamine -0.45** 

Aminoadipate 0.67* 

ASP 0.71* 

GLU 0.29 

Citric Acid 0.53 

Isocitric Acid 0.87* 

Succinic Acid 0.34 

Malic Acid 0.66 

2-OG 0.63 

OAA 0.49 

Fumaric Acid 0.57 

Hydroxypyruvic acid 0.64 

 

*** p < 0.001, ** p < 0.01, * p < 0.05 
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Figure 2.2: Schematic representation of the metabolite changes upon Asn treatment in the context of a pathway. 

Red – increased accumulation; green – reduced accumulation; black – no significant difference; grey – not identified. 
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bypass sustaining 2OG production (Boex-Fontvieille et al., 2013).  A 1.5-fold decrease in 

the accumulation of lysine and a corresponding increase in the level of aminoadipate (1.6 

fold), an intermediate in this pathway, also suggest a possible flux of C in the direction of 

2OG.  Although less efficient, in terms of energy requirement, the lysine pathway was 

considered to be a preferential, alternative respiratory pathway and its activation may 

lead to a decreased flux of 2OG synthesis from isocitrate (via I(C)DH, isocitrate 

dehydrogenase) and hence the increased accumulation of isocitrate (Figure 2.2).  Another 

possible source for maintaining steady state levels of TCA cycle metabolites and ensuring 

a continuous supply of Glu is proline catabolism via proline dehydrogenase 1 and 2 (3- 

and 2-fold up-regulation respectively (Figure 2.2, Table 2.1).  Consistent with this 

prediction, a significant decrease (~1.4-fold) in the accumulation of proline was 

identified upon Asn treatment.  A significant decrease in the accumulation of γ-amino 

butyric acid (GABA) was also noted which may yet be another source of carbon supply 

via the activation of the GABA shunt pathway.  In plants, the GABA shunt pathway 

starts with the production of GABA via Ca2+/Calmodulin dependent decarboxylation of 

Glu via glutamate decarboxylase, followed by its conversion to succinic semialdehyde 

(SSA) by the action of GABA transaminase.  This SSA is then oxidized to succinic acid 

by succinic semialdehyde dehydrogenase and is fed into the TCA cycle. The GABA 

shunt pathway was suggested to represent a key regulatory factor for C and N partitioning 

and a link between amino acid metabolism and TCA cycle (Fait et al., 2008).   

2.2.5 Flux towards aromatic amino acid biosynthesis 

Aromatic amino acids, phenylalanine in particular, also showed a significant 

accumulation, consistent with the transcriptome data considering phenylalanine is the 

precursor for phenylpropanoid biosynthesis.  In plants, phenylalanine, tyrosine and 

tryptophan are primarily produced via the shikimate pathway which begins by the 

conversion of phosphoenolpyruvate (PEP) and erythrose 4-phosphate (E4-P) into 

chorismate (Tzin and Galili, 2010).  A 2-fold induction of phosphoenolpyruvate 

carboxykinase 2 (At5g65690) suggests a flux from aspartate towards PEP via 

oxaloacetate followed by activation of the shikimate pathway leading to increased 

accumulation of aromatic amino acids.  A significant decrease in glucose-6-phosphate 
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(~1.6-fold), which is the precursor for E4-P via pentose phosphate pathway, was also 

identified, further supporting our hypothesis. 

2.2.6 A class I glutamine amidotransferase (GAT1_2.1) may act as a 

potential source for C/N partitioning 

One gene of particular interest in the transcriptome data is a class I glutamine 

amidotransferase, GAT1_2.1, of unknown substrate specificity which was up-regulated 

4.3-fold.  The protein has a class I Gln amidotranferase domain (with a conserved Cys, 

His, Glu catalytic triad necessary for enzyme function) and a C-terminal extension.  

Arabidopsis has three homologues that belong to the GAT1_2 subfamily, however, it was 

previously indicated that GAT1_2.1 (At1g15040) may not have a redundant biological 

function compared to the other two members (At5g38200 and At1g66860) since a null 

mutant of At1g15040 is the only one that carries a shoot branching phenotype (Zhu and 

Kranz, 2012).  Furthermore, GAT1_2.1 has a root specific expression in Arabidopsis 

while At5g38200 has a ubiquitous expression pattern with expression levels being very 

low and the tissue expression of At1g66860 was unknown due to its absence on the 

ATH1 microarray (Arabidopsis eFP browser available in BAR database) (Winter et al., 

2007).   

GAT1_2.1 is highly responsive (50-fold repressed) to N limiting conditions and is known 

to be involved in shoot branching control in Arabidopsis (Zhu and Kranz, 2012).  An in 

silico analysis of its protein sequence, based on domain structure and gene co-localization 

in bacteria (Hanson et al., 2010), using the SEED database (Overbeek et al., 2013) 

revealed the potential function of GAT1_2.1 as a glutaminase involved in the hydrolysis 

of glutamine, catalysing the formation of Glu and NH3.  The glutamate may then be 

deaminated to 2-oxoglutarate by Glu dehydrogenase (GDH) and channeled into the TCA 

cycle, thus providing another cross-roads between amino acid and organic acid 

metabolism.  An NAD(H)-dependent GDH, GDH2, localized in mitochondria was shown 

to perform this function, using a gdh2-1 mutant of Arabidopsis (Miyashita and Good, 

2008). Interestingly, a co-expression search using atted-II (Version 7.1) (Obayashi et al., 

2014), revealed that GDH2 is the gene most highly co-expressed with GAT1_2.1 in 

relation with tissue specificity and dependence on photoperiod. Although GAT1_2.1 
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showed an increase in transcript levels upon Asn treatment, no significant difference was 

identified in the accumulation of Glu at the metabolite level. Since Glu is a central 

metabolite involved in C/N interactions, its biological levels are generally known to be 

steady (Bender, 2012). To that end, the function GAT1_2.1 requires further investigation 

and hence Chapter 3 of this thesis aims to characterize its function at both the 

biochemical and metabolic levels. 

2.3 Concluding remarks and future prospects: 

In the present study we used a combination of transcriptomics and metabolomics data to 

identify the responses of Arabidopsis root to Asn treatment.  The data does not provide 

sufficient evidence for a broad signaling role of Asn in plants.  However, it does highlight 

the reallocations that are necessary in order to maintain C and N balance upon increase in 

N metabolites.  It is important, however, to keep in mind that the data represents changes 

in both transcripts and metabolites upon a 2 hour Asn treatment. Along with the 

GS/GOGAT cycle, which plays a predominant role in glutamine metabolism and a link 

between C/N partitioning in shoots, we predict the existence of a potential new pathway, 

under N nutrient perturbations, for glutamine metabolism and C/N partitioning in roots 

via GAT1_2.1. 
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2.4 Materials and Methods: 

2.4.1 Plant material and growth conditions: 

Arabidopsis thaliana ecotype Columbia was used for both transcript and 

metabolite profiling experiments.  Plants were grown on vertical plates at 22°C under 

continuous light (ca. 70 μmol m-2 s-2), as previously described by Ivanov et al. (2012) on 

a defined nutrient medium containing a final concentration of 10 mM potassium 

phosphate (pH 6.5), 5 mM KNO3, 2 mM MgSO4, 1 mM CaCl2, 125 μg FeNaEDTA, 

micronutrients (50 mM H3BO3, 12 mM MnSO4, 1 mM ZnCl2, 1 mM CuSO4 and 0.2 mM 

Na2MoO4), 1% sucrose and 1% agar (Wang et al., 2003).  Ten-day old seedlings were 

transferred to plates containing the same medium without nitrogen as control or 10 mM 

Asn as sole N source.  After 2 h, root tissue was harvested, frozen in liquid N2 and stored 

at -80°C until RNA or total metabolite extractions was carried out.   

2.4.2 RNA extraction and transcript profiling: 

Total RNA was extracted from root tissue (100 mg) of wild-type, Asn treated and 

untreated seelings, using the RNeasy Plant Mini Kit (Qiagen) following the 

manufacturers protocol.  RNA was quantified with a NanoDrop 1000 spectrophotometer 

(Thermo Fisher Scientific, Burlington, ON). RNA (5 μg) was treated with amplification 

grade DNase I (Life Technologies) to minimize DNA contamination that may have 

occurred during the RNA extraction process. A final concentration of 100 ng/μl was used 

for transcript profiling.  Transcripts were profiled by Illumina Gaiix/HiSeq2000 

sequencing using single reads of 36 bp and a single channel per replicate (n = 4).  Read 

sets for each condition were mapped to the Arabidopsis TAIR10 cDNA gene model using 

BWA and the resulting BAM files filtered for reads possessing a mapping quality ≥ 20 

and a single best hit against a gene model using Samtools (Li and Durbin, 2010; Li et al., 

2009).  Read counts from each condition were normalized by their effective library sizes 

and differential expression evaluated for each gene.  The p-values were adjusted for false 

discovery using the method of Benjamini and Hochberg (1995).  Diagnostic plots for the 

variance fitting was performed by the DESeq package in R (Anders and Huber, 2010).  

GO categorization was performed using PANTHER database v. 10.0 (Mi et al., 2016) 
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applying Bonferroni correction for multiple hypothesis testing and functional 

categorization was performed using DAVID bioinformatics resource v. 6.7 (Huang et al., 

2008). 

2.4.3 Total metabolite extraction: 

 One hundred mg of frozen root tissue was homogenized in 2 ml Eppendorf tubes 

twice for 25 seconds at maximum speed using a tissue lyser.  The metabolites were 

isolated in 2 ml of homogeneous mixture of -20°C methanol:methyl-tert-butyl-

ether:water (1:3:1), with shaking for 30 min at 4°C, followed by another 10 min of 

incubation in an ice-cooled ultra-sonication bath. A volume of 650 μl of methanol:water 

(1:3) was then added and the homogenate was vortexed and spun for 5 min at 4°C in a 

table top centrifuge.  This allowed phase separation, providing the upper organic phase, 

containing the lipids, a lower aqueous phase containing the polar and semi polar 

metabolites, and a pellet of starch and proteins at the bottom of tube.  The aqueous phase 

was then collected and dried down in a speed-vac centrifuge and stored at -80°C until 

further use.  During the day of use, the dried down sample was re-suspended in 500 μl of 

HPLC grade water and used for data acquisition. This method was adapted from 

Giavalisco et al. (2011).  

2.4.4 Data acquisition and analysis: 

All MS data were acquired on a Q-Exactive Quadrupole Orbitrap mass 

spectrometer (Thermo Fisher Scientific) coupled to an Agilent 1290 high performance 

liquid chromatography (HPLC) system.  A Zorbax Eclipse Plus RRHD C18 column (2.1 

X 50 mm, 1.8 μm) was maintained at 35°C.  Mobile phases were comprised of water with 

0.1% formic acid (A), and acetonitrile with 0.1% formic acid (B).  Mobile phase A was 

maintained at 100% for 1.25 min and mobile phase B was increased to 50% over 2.25 

min, and 100% over 0.5 min.  The following heated electrospray ionization (HESI) 

conditions were optimized for the analysis of amino and organic acids: spray voltage, 3.9 

kV (ESI+), 3.5 kV (ESI-); capillary temperature, 250 °C; probe heater temperature, 100 

°C; sheath gas, 30 arbitrary units; auxiliary gas, 8 arbitrary units; and  S-Lens RF level, 

60%. Injections of 5 μl were used with a flow rate of 0.3 mL min-1.  Compounds were 
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detected and monitored using a targeted MS/MS and non-targeted, data-dependent MS2. 

Top 5 ddMS2 experiments were performed in both positive and negative ionization 

modes by first acquiring a full MS spectrum between m/z 70-650 at 70,000 resolution, 

automatic gain control (AGC) target of 3e6, maximum injection time (IT) of 250 ms and 

intensity threshold of 3.8e4. MS/MS spectra were collected at 17,500 resolution, AGC 

target 5e5, maximum IT 65 ms and isolation window of 1 m/z. Normalized collision 

energy of 27 was used for both MS/MS and ddMS2 methods.   

Data were analyzed and all theoretical masses were calculated with Xcalibur™ software.  

Full MS peak areas were normalized with a 13C6 phenylalanine internal standard for 

positive ionization and 13C3 pyruvic acid for negative ionization and compared across 

treatments. Compounds were identified using commercial standards when 

possible. When standards were unavailable, compounds were putatively identified by 

comparing the product ion spectra observed with those published in the literature and 

spectral databases (Smith et al., 2005). 
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3 THE ROLE OF A CLASS I GLUTAMINE 

AMIDOTRANSFERASE IN C/N PARTITIONING IN 

ROOTS OF ARABIDOPSIS THALIANA 

3.1 Introduction 

The maintenance of a proper balance between carbon and nitrogen metabolism is a 

requirement for the sustained growth of organisms. From a physiological perspective, C-

metabolites derived from photosynthesis and respiration accumulate during the light 

period and serve as skeletons for the assimilation of N metabolites (amino acids) via the 

action of the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle in leaf tissue 

(Stitt et al., 2002). A major interaction point between C and N metabolism is the 

synthesis of Glu from Gln and 2-oxoglutarate (2-OG), utilizing ammonium, via the 

GS/GOGAT cycle in chloroplasts (Stitt, 1999). Glutamate serves as a precursor for the 

synthesis of most amino acids downstream (Forde and Lea, 2007). Furthermore, the 

NADH and ATP produced via respiration are utilized by NR and GS reactions, 

respectively, where NH4
+

 and Gln are synthesized (Stitt et al., 2002). Hence, N 

assimilation depends on mitochondrial respiration and the production of 2-OG which 

provides carbon skeleton for Glu synthesis. These and several other lines of evidence 

(Coruzzi, 2003; Noctor et al., 2004) emphasize the tight interlinks between C produced 

via photosynthesis and glycolysis, and the regulation of N status and amino acid pools in 

relation to light and dark cycles.  

The GS/GOGAT cycle, however, is more pronounced in leaves where there is a 

continuous supply of C skeletons via the action of photosynthesis and glycolysis. The 

absence of photosynthesis in roots calls for a different mechanism to achieve C/N 

balance. A transcriptome analysis of the roots of Arabidopsis seedlings treated with or 

without asparagine (Asn), another organic source of N, revealed a 4-fold up-regulation of 

a gene coding for a class I glutamine amidotransferase, GAT1_2.1 (At1G15040) (Section 

2.4.4). GAT1_2.1 was also previously suggested to be highly responsive to N status in 

Arabidopsis with a 50-fold repression under long term and 4- to 6-fold repression under 

short term N limitation (Zhu and Kranz, 2012). We propose a potential role of GAT1_2.1 
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in achieving the aforementioned C/N balance in roots of Arabidopsis in addition to the 

GS/GOGAT cycle. Here, we hypothesize that GAT1_2.1 functions as a glutaminase and 

catalyses the hydrolysis of Gln to Glu releasing NH3.  

Hydrolysis of Gln in non-photosynthetic organisms, especially in mammalian liver and 

kidney, is mostly reported to be catalysed by glutaminases for the production of NH3 

(Bender, 2012). Glutaminase was also reported to play a major role in regulation of 

cancer cell metabolism to compensate for changes in glycolytic cycle (Warburg effect) by 

elevated glutamine metabolism (Erickson and Cerione, 2010). No known glutaminases 

are reported in plants to date. However, several proteins belong to the Gln 

amidotransferase superfamily, for example, a pyridoxal 5`-phosphate (PLP) synthase in 

Arabidopsis is reported to have a Gln amidotransferase domain (PDX2) and a synthase 

domain (PDX1) and is involved in biosynthesis of vitamin B6 in plants (Tambasco-

Studart et al., 2007). The NH3 produced by hydrolysis of Gln via the PDX2 domain is 

tunnelled to the PDX1 domain which catalyses the formation of PLP (vitamin B6) using 

ribulose 5-phosphate (Rub-5-P) or a combination of Rub-5-P and glyceraldehyde 3-

phosphate (Tambasco-Studart et al., 2007). Here, we provide evidence for the absence of 

an acceptor substrate for NH3 and highlight a possible role of GAT1_2.1 in primary 

metabolism.   
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3.2 Results 

3.2.1 Clustering of class I glutamine amidotransferase domain 

containing proteins 

The GATase1 super family in Arabidopsis consists of 30 genes that were identified 

through BLAST searches. The genes in this superfamily have a highly conserved Cys-

His-Glu triad that is characteristic of the GATase1 domain (approximately 250 residues) 

and is involved in removal of the amide group from glutamine. The ammonia released is 

known to act as a nucleophile on several acceptors (Mouilleron and Golinelli-Pimpaneau, 

2007). The GATase1 superfamily is further clustered into six subfamilies and six 

individual genes based on phylogenetic analysis (Figure 3.1). Supporting information 

obtained from bioinformatics programs, as described in Section 3.2.1, was also used for 

functional categorization of GATase1 gene family members. The intron/exon structures 

of the genes, size of proteins, and predicted localization is highly conserved among 

subfamilies. The genes that clustered in anthranilate synthase and GATase1-1 subfamilies 

are the smallest with highly conserved exon/intron structures and protein sizes between 

24-29 kDa and only contained the GATase1 domain.  The subfamilies with GATase DJ-1 

and GATase Pfp-1 consisted of proteins that are 41-51 kDa in size and contain an N-

terminal GATase1 domain for glutamine hydrolysis and a C-terminal domain for a 

potential unknown acceptor of the amide group (Mouilleron and Golinelli-Pimpaneau, 

2007). The CTP synthase subgroup consisted of proteins that are 60-67 kDa in size with 

an N-terminal synthase domain and a C-terminal GATase1 domain and are predicted to 

function in the addition of an amino group to UTP to synthesize CTP (Endrizzi et al., 

2004). 

The subgroup GATase1-2 consists of three members and is unique to the plant kingdom. 

However, At1g15040 is the only member that, when mutated, resulted in a shoot 

branching phenotype (discussed in section 3.4) indicating that the function of this protein 

is not redundant to the other two (At5g38200 and At1g66860) (Zhu and Kranz, 2012). A 

BLASTp search of the C-terminal extension of this protein only resulted in orthologous 

sequences in the plant kingdom with > 60% identity and a few algal species, from which 

land plants evolved (Lewis and McCourt, 2004), with <60% identity further indicating 
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Figure 3.1: GATase1 gene family in Arabidopsis. 

GATase1 superfamily in Arabidopsis. Figure depicts a neighbor joining tree with 1000 bootstrap replicates, exon/intron structures, 

predicted molecular mass, pI of the protein and their predicted localizations. 
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that this protein is a plant specific glutamine amidotransferase. 

3.2.2 Glutaminase activity of the GAT1_2.1 domain 

The full length version of the recombinant protein, GAT1_2.1, was found to be insoluble, 

as determined by SDS-PAGE, and hence the functional characterization was carried out 

using the GATase domain coding region (282 amino acids) of the protein (Figure 3.2A). 

To determine whether GAT1_2.1 has glutaminase catalytic activity, an N-terminal 

histidine tagged recombinant protein was expressed in Escherichia coli and purified 

using affinity chromatography using a Ni-sepharose column followed by size exclusion 

chromatography (SEC) to remove further impurities. The molecular mass of the protein 

was determined to be 46 kDa based on comparison with size standards that were 

separated using SEC (Figure 3.2B). SDS-PAGE was performed to determine the purity of 

the recombinant protein (Figure 3.2C). Enzymatic assays were performed with glutamine 

as substrate, using the auxiliary enzyme, glutamate dehydrogenase (Figure 3.2D) at pH 

7.5. The activity was linear with increasing concentrations of enzyme (0-10 µg) (Figure 

3.3A) and varying incubation times of primary reaction (1-60 min) (Figure 3.3B). A 

mutation of the active residue cysteine (C134S) resulted in the complete loss of function 

of the glutaminase function of the recombinant protein (Figure 3.3C). The apparent Km of 

the GATase1 domain of GAT1_2.1 was determined to be 3.22 ± 0.47 mM (n=3) and the 

Vmax was 0.27 ± 0.007 nmol sec-1 mg-1 (n=3). The kcat was calculated to be 9.5 x 103 sec-1.  

3.2.3 Rescue of the growth phenotype of E.Coli glutaminase mutant with 

GAT1_2.1 domain 

The E. coli glutaminase deletion mutant ∆YneH showed a reduced growth rate in M9 

medium with glutamine as the sole source of carbon and nitrogen, when compared with 

the wild-type strain, BW25113 (Figure 3.4A) (Brown et al., 2008). This growth 

phenotype was rescued when transformed with an expression plasmid containing the 

GATase1 domain of GAT1_2.1 protein, further confirming that GATase1 has a 

glutaminase function (Figure 3.4B). 
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Figure 3.2: Recombinant protein purification and enzyme assay. 

A. Schematic representation of GAT1_2.1 protein depicting the GATase1 domain 

(orange) and the truncated version used for recombinant protein purification. B. Size 

exclusion chromatography of GAT1_2.1 and the standard curve used for molecular 

weight determination. C. SDS-PAGE showing the quality of pure protein. D. 

Representation of the primary and auxiliary reactions used for glutaminase assay. 
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Figure 3.3: Enzyme kinetics. 

A. Linear fit showing average of 3 replicates used for increasing concentrations of 

enzyme from 0-5 µg. 3 µg enzyme was used for kinetic measurements, B. Linear fit 

average of three replicates used for increasing incubation times of primary reaction from 

0-60 mins. 30 mins of incubation time was used for the primary reaction. C. 

accumulation of product over time as monitored by measuring NADH, in the secondary 

reaction, at 340 nm. Active site mutant version (C134S) of the enzyme shows complete 

lack of function.  
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Figure 3.4: Rescue of E. coli glutaminase mutant. 

E. coli growth curve using A. WT (BW25113) and ∆YneH mutant strains showing a 

reduced rate of growth in the mutant when grown in M9 medium with 20 mM Gln as a 

sole source of carbon and nitrogen. B. Growth curve with WT (BW25113) transformed 

with empty pET23a vector as control and the mutant ∆YneH transformed with GAT1_2.1 

domain expressed in pET23a, showing a phenotypic rescue when grown in M9 medium 

with 20 mM Gln as carbon and nitrogen source with 1 mM IPTG to induce the expression 

and 50 µg/mL ampicillin for antibiotic selection.  
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3.2.4 Sub-cellular localization of GAT1_2.1 

A translational fusion of full length GAT1_2.1 and a YFP reporter gene expressed 

transiently in epidermal cells of Nicotiana Benthamiana leaf was used to determine the 

sub-cellular localization of the protein. Co-localization of GAT1_2.1 with a known CFP 

tagged mitochondrial marker protein (COX1) confirmed that GAT1_2.1 was localized in 

mitochondria (Figure 3.5). 

3.2.5 Metabolic profiling of the gat1_2.1 mutant 

To identify the metabolic responses of GAT1_2.1 to glutamine in roots, a targeted LC-

MS/MS method on a Q-Exactive Orbitrap mass spectrometer, was performed and the 

changes in amino acids and organic acids were quantified. Wild-type Arabidopsis and 

gat1_2.1 plants were grown on 5 mM KNO3 and were used as an upstream pathway 

control, while the ones transferred to 10 mM Gln for 2 hours were used to identify 

responses to short term Gln treatment. Both genotypes grown in 2 mM Gln represented 

GAT1_2.1 responses to long term Gln while the ones grown in 2 mM Glu represented a 

downstream pathway control. No significant difference in the accumulation of Gln was 

identified among the two genotypes, potentially owing to the continuous supply of Gln 

from the media (Figure 3.6). As expected, a significant decrease in the accumulation of 

Glu was observed in the mutant upon both short and long term Gln treatments (Figure 

3.6), while no difference was observed in Glu treatment. Furthermore, the NH3 content, 

as measured with HPLC showed a significant over-accumulation in both KNO3 and short 

term Gln but not Glu treatment, in WT compared to gat1_2.1 (Figure 3.6) suggesting that 

GAT1_2.1 may indeed act as a glutaminase, hydrolyzing Gln to Glu and releasing NH3. 

However, no significant difference was observed in long term Gln treatment and this was 

predicted to be due to the fact that high levels of NH3 are toxic and hence alternate 

measures of reducing excess NH3 in WT were being employed. 2-Oxoglutarate (2-OG) 

was found to be significantly lower in gat1_2.1, in both short and long term Gln 

treatments, indicating that the supply of carbon skeletons from Glu to 2-OG was affected 

in the mutant. γ-Aminobutyric acid (GABA) and succinic acid were two other 
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compounds that showed significantly lower and higher accumulation in the mutant, 

respectively, upon Gln treatment, suggesting the activation of GABA shunt pathway. 

 

 

Figure 3.5: Subcellular localization of GAT1_2.1. 

Full length GAT1_2.1 was translationally fused upstream of the reporter gene YFP, 

transformed into N. benthamiana by A. tumefaciens mediated transformation and 

visualized in the leaf epidermal cells by confocal laser-scanning microscopy. A CFP-

tagged mitochondrial marker was co-expressed with GAT1_2.1. Left pane shows CFP 

tagged mitochondrial marker (COX1) middle pane shows YFP tagged GAT1_2.1, and 

right pane shows co-localization of GAT1_2.1 with COX-CFP. Scale bar indicates 20 μm. 

YFP: Yellow fluorescent protein; CFP, cyan fluorescent protein. 
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Figure 3.6: Metabolite analysis using wild-type Arabidopsis and gat1_2.1. 

Metabolite quantities shown in µmoles/g fresh wt of tissue used. X-axis represents the 

treatment. KNO3 : grown in 5 mM KNO3 for 10 days, GLN (2) : grown in 5 mM KNO3 

followed by treatment with 10 mM Gln for 2 hours, GLN (10) : grown in 2 mM Gln for 

10 days and GLU : grown in 2 mM Glu for 10 days. * represents significant difference (p 

< 0.05) between the two genotypes as assessed using students t-test. Error bars indicate 

standard error (n = 3, biological replicates).  
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3.2.6 GAT1_2.1 may not have an acceptor for NH3
 upon glutamine 

hydrolysis 

In order to identify the presence of a possible acceptor substrate for the amide group of 

Gln upon Gln hydrolysis, a C-terminal c-myc tagged, full length GAT1_2.1 recombinant 

protein was expressed and purified from N. benthamiana using anti c-myc antibody 

(Figure 3.7A). No kinetic measurements were obtained using this protein since the yield 

of pure protein was limited to 5 µg per 10 grams of leaf tissue. Total Arabidopsis root 

extracts were spiked with the full length version of GAT1_2.1 as well as the GATase1 

domain version of protein described in section 3.3.2. A 15N labelled Gln, with the label 

on the amide N, was also used to spike the plant extracts.  After two hours of incubation 

with the recombinant protein and labelled substrate, the protein was filtered out, using a 

3K micro centrifuge filter (Millipore, Billerica, MA), and an untargeted LC-ddMS2 

method was performed on a Q-Exactive Orbitrap mass spectrometer, to identify the 

product that accepted the labelled amide group of Gln. No acceptor was identified, but 

rather the amide nitrogen was just removed from Gln by both full length and GATase1 

domain versions of the protein, as indicated by NH3 quantified from the samples using 

HPLC. Furthermore, the amount of Gln (spiked + internal) decreased in protein spiked 

extract, was equivalent to the amount of NH3 accumulated indicating a mass balance 

(Figure 3.7B). This suggests that the C-terminal extension of GAT1_2.1 may not function 

as an acceptor domain for substrate binding, and that GAT1_2.1 may just be a 

glutaminase that hydrolyses Gln releasing NH3. 
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Figure 3.7: Recombinant protein production in N. benthamiana and enzyme spike 

assay. 

A. Top pane shows the western blot using anti-c-myc antibody. The first five lanes 

represent serial dilution of CBD protein at known concentrations used for quantification 

of GAT1_2.1 purified from N. benthamiana. Subsequent lanes represent the pure protein, 

flow-through and total soluble protein used for purification followed by the TSP from 

negative control which was infiltrated with p19 alone. The bottom pane shows SDS-

PAGE with indicated loadings used to assess the quality of purification. B. Top pane 

shows Gln+15NGln quantity in µmoles indicating a ~30% decrease in accumulation in 

extracts spiked with both full length and domain versions of recombinant protein. Bottom 

pane represents NH3 quantity in nmoles showing a ~30% increase. * represents a 

significant difference (p < 0.05, n = 3 biological replicates) in comparison with extract 

spiked with 15N Gln alone, as assessed using students t-test. 



55 

 

3.3 Discussion 

3.3.1 GAT1_2.1 is unique to plants and has a root specific expression 

As the name suggests, glutamine amidotransferases are enzymes that catalyze the 

removal of an amide group from Gln and transfer it to an acceptor substrate. Two classes 

of enzymes were identified, one that uses a Cys-His-Glu catalytic triad (Class I) for 

release of NH3, and the other that uses an N-terminal cysteine residue (Class II). 

Collectively, GATases play a central role in metabolism as they are involved in 

incorporating nitrogen into amino acids, nucleotides, amino sugars, coenzymes, and 

antibiotics (Mouilleron and Golinelli-Pimpaneau, 2007). GAT1_2.1 belongs to class I 

GATases and unlike other members of this superfamily, GAT1_2.1 and the other two 

members that clustered together (Figure 3.1) have a C-terminal extension that appears to 

only occur in the plant kingdom, although no functional role for this domain was 

recognized. Here, we propose a potential role of GAT1_2.1 in glutamine hydrolysis itself, 

as a glutaminase release NH3 instead of transferring it to an acceptor. No known 

glutaminases have been reported in plants to date, yet their importance in mammals is 

very well characterized (Erickson and Cerione, 2010). 

The function of GAT1_2.1 has not been identified so far; however, it was implicated as a 

gene highly responsive to N status in plants and has a root specific expression 

(Arabidopsis eFP browser available in BAR database) (Winter et al., 2007). Zhu and 

Kranz (2012) reported that under N limiting conditions, the expression of GAT1_2.1 is 

repressed 50-fold under long term stress (15 days) while microarray dataset from Hruz et 

al. (2008) with short term (2 hours) N limitation showed 4- to 6-fold downregulation. Our 

Asn transcriptomic data set revealed a 4-fold upregulation (section 2.2.6) of this 

transcript, under short term treatment (2 hours) suggesting that GAT1_2.1 responds to 

both inorganic and organic N. 

3.3.2 The N-terminal GATase1 domain functions as a glutaminase 

Although producing a full length version of recombinant GAT1_2.1 protein in E. coli 

was unsuccessful, a truncated version comprised of the GATase1 domain was purified 

and tested for glutaminase activity. The Km (3.22 mM) and kcat (9.5 x 103 s-1) were found 
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to be within the range of biochemically characterized glutaminases from various 

organisms (Brown et al., 2008) (Brenda database; http://www.brenda-enzymes.org/). 

Glutaminases in general are known to have low affinity to Gln, however, they have a 

very high selectivity exhibiting no activity towards D-glutamine or L-asparagine which is 

also a characteristic of glutamine synthetase enzymes (EC 6.3.1.2, Km for Glu up to 50 

mM, Brenda database). Furthermore, the slow growth phenotype of E. coli glutaminase 

deletion strain, ∆YneH, was rescued using the same recombinant protein, suggesting that 

GAT1_2.1 indeed acts as a glutaminase (Figure 3.4).  

GATases, however, are known to adopt mechanisms to avoid glutaminase activity in the 

absence of the acceptor substrate for NH3 upon glutamine hydrolysis. For example, a 

tyrosine residue in the synthase domain of CTPS participates in the active site formation 

upon UTP binding to initiate GATase activity (Goto et al., 2004) and parts of the 

glutaminase site are disordered in anthranilate synthase of Salmonella typhimurium 

resorting to conformational changes and active site formation only upon substrate binding 

(Morollo and Eck, 2001). Since the C-terminus of GAT1_2.1 was removed in our 

experiment, we are unable to determine its function, or identify the presence of a different 

acceptor using the recombinant protein produced in E. coli. Hence, we expressed and 

purified a full length c-myc tagged recombinant GAT1_2.1 in N. benthamiana. The yield 

of recombinant protein in plant systems is limited and is not suitable for obtaining kinetic 

measurements; hence we resorted to a labelled Gln spiking approach to identify the 

presence of an alternate substrate. Plant extracts were spiked with Gln with 15N labelled 

amide group along with the full length and truncated versions of recombinant protein 

followed by metabolomics analysis, and no acceptor for 15NH3 was detected. 

Furthermore, upon measuring the NH3 content in the spiked samples compared to control, 

we detected an equivalent amount of increase in NH3 when compared to the amount of 

Gln decreased (Figure 3.7). This suggests that GATase may in fact be the plant 

glutaminase with no acceptor for NH3. It is however, worth noting that the C-terminal 

extension contains two phosphorylation sites (S298 and S300), as determined using 

PhosPhAt 4.0 (Roitinger et al., 2015) that may regulate the activity or stability of 

GAT1_2.1. 

http://www.brenda-enzymes.org/
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3.3.3 gat1_2.1 is non-responsive to Gln and has a shoot branching 

phenotype 

To identify the physiological role of GAT1_2.1 we first tested the Gln responsiveness of 

the T-DNA insertion mutant (SALK_031983) in comparison with wild-type Arabidopsis. 

10 day old mutant plants grown with 2 mM Gln as sole N source did not show an 

enhanced growth compared to the ones grown with KNO3 as N source, while the wild-

type plants showed a robust growth in Gln medium (Figure 3.8A, B). This suggests that 

the Gln metabolism is impaired to a certain degree in the mutant indicating a predominant 

role of GAT1_2.1 in primary N metabolism in plants. The mutant also has an enhanced 

branching phenotype compared to the wild-type (Figure 3.8C). Zhu and Kranz (2012) 

showed that the phenotype was rescued upon stably transforming the mutant lines with 

GAT1_2.1 cDNA driven by a constitutive promoter, indicating that the gene is 

responsible for this phenotype. A potential role of GAT1_2.1 in strigolactone 

biosynthesis or presence of an unknown substrate involved in shoot branching was 

suggested by Zhu and Kranz (2012), however based on our biochemical characterization 

(Section 3.3.2), no such acceptor was identified. To that end, we resorted to a metabolite 

analysis approach to identify changes in primary metabolism in gat1_2.1 upon Gln 

treatment that may be responsible for this branching phenotype. Since the gene is 

primarily expressed in the roots, we restricted this analysis to roots and hypothesized that 

the shoot branching phenotype is an indirect consequence of changes in metabolism in 

roots. 
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Figure 3.8: WT and gat1_2.1 phenotypic analysis. 

WT (left) and gat1_2.1 seedlings (right) grown in A. 5 mM KNO3 or B. 2 mM Gln for 

10 days C. WT and gat1_2.1 after 7 weeks of growth.  
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3.3.4 gat1_2.1 uses the GABA shunt pathway to provide carbon 

skeletons to the TCA cycle 

To identify the Gln specific responses of GAT1_2.1, primary metabolites including 

amino acids and organic acids were quantified in roots of gat1_2.1 and compared to the 

wild-type upon short term (2 hour) and long term (10 days) Gln treatments. Since, 

GAT1_2.1 has a glutamine hydrolysis function, we did not expect to see changes with 

Glu and hence both the genotypes treated with Glu (10 days) were used as control. Our 

results indicate a reduced accumulation of Glu in the mutants due to the absence of 

GAT1_2.1. Subsequently, lower 2-OG content was also detected in the mutant suggesting 

that the supply of carbon skeletons from Glu to the TCA cycle was impaired. An 

NAD(H)-dependent GDH, GDH2, localized in mitochondria was shown to be involved in 

this function using a gdh2-1 mutant of Arabidopsis (Miyashita and Good, 2008). 

Interestingly, a co-expression search using atted-II (Version 7.1) (Obayashi et al., 2014), 

revealed that GDH2 is the gene most highly co-expressed with GAT1_2.1 in relation with 

tissue specificity and dependence on photoperiod. A GAT1_2.1 fused to YFP and 

transiently expressed in Nicotiana benthamiana leaves revealed a mitochondrial 

localization (Figure 3.5) suggesting a potential co-localization with GDH2 and a possible 

interlink between GAT1_2.1 and GDH2 function.  

Furthermore, a decrease in accumulation of GABA and an increase in succinic acid levels 

were identified in the mutant compared to the wild-type upon Gln treatment. This 

suggests that in the absence of GAT1_2.1, when the supply of carbon from Glu to 2-OG 

was impaired, an alternate mode of C supply is activated via the GABA shunt pathway 

(Fait et al., 2008) when C from GABA is channeled through succinic acid into the TCA 

cycle (Figure 3.9). As such, no metabolites that are previously linked to a branching 

phenotype have been identified in our data and hence, this is yet to be determined. A 

thorough analysis of the changes using metabolomics is necessary to link GAT1_2.1 to 

the phenotype. Alternatively, efforts are underway to supply 13C5, 
15N2 labelled Gln to 

track the distribution of C and N in the mutant in comparison with the wild-type with a 

goal of identifying the cause of the phenotype.  
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Figure 3.9: Schematic representation of the proposed model for C/N partitioning. 
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3.4 Concluding remarks 

In this study, we characterized a plant specific class I glutamine amidotransferase, 

GAT1_2.1. GAT1_2.1 has a glutaminase activity and unlike other proteins in the GAT1 

superfamily, no acceptor substrate was identified. Glutaminases in bacteria and mammals 

are well characterized and are known to play a major role in N assimilation. Since plants 

lack a functional glutaminase ortholog, it is possible that GAT1_2.1 performs this key 

function under organic N excess to distribute the carbon skeletons from Gln to TCA cycle 

intermediates. Despite the evidence provided for GAT1_2.1 to function as a glutaminase, 

the cause for a shoot branching phenotype in the null mutant is not fully understood. 

Future prospects include determining the importance of GAT1_2.1 in N assimilation, the 

N responsiveness of its promoter as well as the role of phosphorylation in N sensing. 

GAT1_2.1 holds potential for applications in enhancing Nitrogen Use Efficiency (NUE).  
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3.5 Materials and Methods 

3.5.1 Phylogenetic analysis of class I glutamine amidotransferases 

The full length protein sequence of GAT1_2.1 (At1g15040) was used as query for a 

BLASTp search against Arabidopsis TAIR 10 database (Altschul et al., 2005). The 

retrieved protein sequences were aligned using the ClustalW interface in MEGA program 

with a gap open penalty of 10 and gap extension penalty of 0.2 (Kumar et al., 2016; 

Thompson et al., 1994). Neighbor-joining was used to construct the phylogenetic tree. 

Pair-wise deletion was used to circumvent the gaps and Poisson correction distance was 

used to estimate the evolutionary distance. Bootstrap tests with 1000 bootstrap replicates 

were conducted to check the reliability of the clusters. The exon/intron structures of the 

genes were obtained using the Gene Structure Display Server (GSDS 2.0) (Hu et al., 

2015). Molecular weight and pI of the proteins were collected from ExPASy -compute 

Mw/pI tool (http://web.expasy.org/compute_pi/).  

3.5.2 Cloning of GAT1_2.1 for sub-cellular localization study 

Full length cDNA of GAT1_2.1 was amplified from plasmid stock, C00162M obtained 

from ABRC, by PCR using attB1 and attB2 site-containing Gateway primers, cDNA-

GATaatB1-F, 5’- 

GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGTTGTCGCCAATGATCT-

3’ and cDNA-GATattB2-R, 5’- 

GGGGACCACTTTGTACAAGAAAGCTGGGTTCATAGTTGAGAAAAAAGGAGG

ACTC-3’, following the cycling conditions described above. GAT1_2.1 amplicon was 

verified by electrophoretic separation and PCR purified using Gel/PCR DNA Fragments 

Extraction Kit (Geneaid Biotech Ltd, Taiwan) following manufacturers protocol. The 

purified fragment containing attB sites was recombined with the entry vector pDONR-

Zeo (Invitrogen, USA) containing attP sites using BP clonase reaction mix (Invitrogen, 

USA) following GatewayTM cloning method. The BP reaction product was transformed 

into E. coli XL10 Gold cells (Agilent Technologies, Mississauga, ON) and grown on 

zeocin (25 µg/ml) supplemented LB plates. Colonies were screened by restriction digest 

plasmid isolation using High-Speed Plasmid Mini Kit (Geneaid Biotech Ltd, Taiwan) and 

http://web.expasy.org/compute_pi/
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sequenced using M13 forward and reverse primers. After confirmation, an LR 

recombination reaction was performed using entry clone pDONR-Zeo-GAT1_2.1 

containing attL sites and destination vector pEarleyGate101 (Earley et al., 2006) 

containing attR sites (Invitrogen, USA). E. coli strain XL10-Gold cells were transformed 

with destination clone. Cells were grown on kanamycin (50 μg/mL) supplemented LB 

medium and screened for positive clones by restriction digest. The plasmid DNA 

carrying the ‘destination clone’, pEG101-GAT1_2.1 was transformed into Agrobacterium 

tumefaciens strain GV3101 for infiltration. 

3.5.3 Transient expression confocal microscopy 

To monitor the transient expression of GAT1_2.1 fused to YFP, the plasmid (pEG101-

GAT1_2.1) in A. tumefaciens strain GV3101 was transiently expressed into N. 

benthamiana leaf epidermal cells by infiltration (Sparkes et al., 2006). Briefly, a single 

colony was used to inoculate a medium (LB broth containing 10 mM 2-(N-morpholino) 

ethanesulfonic acid [MES] pH 5.6, and 100 μM acetosyringone) supplemented with 

kanamycin (50 μg/mL), rifampicin (25 μg/mL), and gentamycin (50 μg/mL) and grown at 

28 ºC with shaking (250 rpm) until the OD600 reached 0.5-0.6. The culture was 

centrifuged at 3,000 g for 30 minutes at room temperature. The pellet was re-suspended 

in Gamborg’s solution (3.2 g/L Gamborg’s B5 medium with vitamins, 20 g/L sucrose, 10 

mM MES pH 5.6, and 200 μM acetosyringone) to a final OD600 of 1 and incubated at 

room temperature for 1 h with gentle agitation to activate the virulence gene required for 

transformation. To verify subcellular localization of GAT1_2.1 a translationally fused 

mitochondrial protein (cytochrome oxidase with CFP) was mixed with pEG101-

GAT1_2.1 in a 1:1 ratio and coexpressed in N.benthamiana leaves (Nelson et al., 2007). 

The leaves of 4-5-week-old N. benthamiana plants were transformed using a 1 mL 

syringe. Bacteria were slowly injected into the abaxial side of the leaf. The infiltrated 

leaves were labelled and plant growth was continued for 48 h. 

Epidermal cell layers of the transfected region of N. benthamiana leaves were visualized 

using an OLYMPUS confocal microscope. A 60 X water immersion objective was used 

at excitation wavelengths of 514 and 458 nm, and emission spectra of 530-560 nm and 

470-500 nm, for YFP and CFP respectively. The ‘Sequential Scan Tool’, which records 
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fluorescence in a sequential fashion, was used for studying co-localization of GAT1_2.1 

with marker protein. 

3.5.4 Cloning, expression and purification of recombinant GAT1_2.1 

domain in E. coli 

Coding sequence for the GATase domain (846 nt) was amplified from the cDNA 

obtained by the method described in section 3.5.2 using Pfx DNA polymerase (Life 

technologies, Burlington, ON). The primers used in the amplification were designed to 

introduce vector specific restriction sites, KpnI and SalI on the N- and C- terminal ends 

respectively (Fw: 5`-CTCGGTACCGTTGTCGCCAATGATCTCTCGTCC-C` and Rw: 

5`- CAGGTCGACGTTTACTTGTTTCTTCTGAAATGCG-3`). The PCR product was 

cloned into the pSC-B-amp/kan vector as per the manufacturer’s protocol (StrataClone 

Blunt PCR Cloning Kit, Agilent Technologies) and transformed in E. coli. Positive 

recombinant clones selected on ampicillin plates were confirmed by restriction digests 

and DNA sequencing using the M13 sequencing primers and verified against the TAIR 

10 genome database. Confirmed plasmid DNA was digested with KpnI and SalI and 

subcloned in the bacterial expression vector pQE30 (Qiagen, Toronto, ON) by restriction 

enzyme-mediated cloning using KpnI and SalI restriction endonucleases and T4 DNA 

ligase following manufacturers’ guidelines. The expression constructs were transformed 

in E. coli XL10-Gold (Agilent Technologies, Mississauga, ON). Alternatively, the same 

coding sequence was also cloned into pET23a (Novagen, USA) following the procedure 

described above with the exception of restriction sites introduced, EcoRI and XhoI on the 

N- and C- terminals respectively, using the primers, Fw: 5`- 

GCTTGAATTCCTATGGTTGTCGCCAATGATCTCTCG-3` and Rw: 5`-

GTAGCTCGAGGTTTACTTGTTTCTTCTGAAATGCG-3`. 

XL10-Gold cells with pQE30 vectors containing GAT1_2.1 domain coding sequence 

were grown in NZY media with ampicillin (100 µg/mL) as antibiotic at 37oC. The cells 

were induced for expression by 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) 

after reaching an OD600 of 0.6 and continued to grow at room temperature for 16 h. 

Cells were harvested by centrifugation (6,000 g, 30 min at 4oC), suspended in lysis buffer 

(50 mM sodium phosphate, pH 8.0, 500 mM NaCl and 20 mM imidazole, 2 mM DTT, 
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pH 7.5) and treated with 1 mg/mL lysozyme for 30 min. Cells were lysed using French 

press, centrifuged at 18,000 g for 45 minutes at 4oC and the supernatant was collected. 

This supernatant was purified using immobilized metal affinity chromatography on a 5 

mL HisTrap Ni2+-Sepharose column on an ÄKTApurifier system (GE Healthcare). 

Column was washed with five column volumes of wash buffer (50 mM sodium 

phosphate, 500 mM NaCl, 40 mM imidazole, 2 mM DTT, pH 7.5) and eluted with a 

linear gradient varying from 0 to 100% of elution buffer (50 mM sodium phosphate, 500 

mM NaCl, 500 mM imidazole, 2 mM DTT, pH 7.5). Purified protein was concentrated 

using Amicon Ultra-15 Ultracel 30 K filter unit (Millipore, Billerica, MA) and buffer 

exchanged with 100 mM Tris-Cl pH 7.5, 50 mM NaCl and 2 mM DTT using a PD10 

column (GE Healthcare) following manufacturer’s protocol. 

The purified protein was further separated using size exclusion chromatography on 

ÄKTApurifier system (GE Healthcare) using HiLoad Superdex 200 prep grade column 

with FPLC buffer (100 mM Tris-Cl pH 7.5, 50 mM NaCl and 2 mM DTT). Molecular 

weight of eluted protein was calculated based on a standard curve generated with Gel 

Filtration Standard (Bio-Rad). The protein quantification was performed using the Bio-

Rad Protein Assay solution (Mississauga, ON), and bovine serum albumin (BSA) as 

standard. The yield of protein was determined to be 15 mg L-1 of culture volume. Purified 

protein was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS 

PAGE) using a 12% polyacrylamide gel, and the protein bands were visualized with 

Coomassie staining as described (Laemmli, 1970). The final protein product was 

aliquoted and stored at -80oC in 20% glycerol (v/v) after flash freezing in liquid N2. 

3.5.5 Enzymatic assay 

Glutaminase activity of GAT1_2.1 domain was assayed following the method described 

by Curthoys and Weiss (1974) with a few modifications. In brief, the primary reaction 

was performed in 50 µL of 50 mM HEPES pH 7.5 with 5 mM MgCl2, 2 mM DTT and 5 

mM Gln as substrate. Reactions were started with 3 µg of pure protein and incubated for 

30 mins at 30oC followed by termination with 3 N HCL. A volume of 150 µL of auxillary 

reaction mixture (100 mM Tris-Cl pH 9.6, 2 mM NAD, 0.4 mM ADP, 0.03% v/v H2O2 

and 1 unit GDH) was then added and the production of NADH was monitored by 
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spectrophotometry at 340 nm with a Power Wave XS 96-well plate reader (Bio-Tek 

instruments, Winooski, VT). The path length was measured to correct the calculated 

enzyme activities using the path length correction feature in Gen5 software.    

3.5.6 Rescue of E. coli glutaminase mutant YneH 

The E. coli glutaminase deletion mutant ∆YneH with the kanamycin resistance cassette 

excised, and the corresponding wild-type (BW25113) strains were kindly provided by Dr. 

Alexander Yakunin at University of Toronto (Brown et al., 2008). The genotype of the 

strain was confirmed using the primers described by Brown et al. (2008). The mutant 

strain was transformed with GAT1_2.1 domain coding sequence in pET23a with 

ampicillin resistance cassette and the wild-type was transformed with an empty pET23a 

vector as control.  Growth experiments with these strains were carried out as described in 

Brown et al. (2008). In detail, the bacterial strains, wild-type and ∆YneH were grown in 

LB media in 5 mL cultures to an OD600 of 0.6 and then expanded into M9 minimal 

medium (pH 7.0) with glutamine as the sole source of carbon and nitrogen at 1:1000 

dilution and the OD600 was monitored. Alternatively, the strains transformed with 

plasmids were grown in the same manner with the exception of M9 medium being 

supplemented with 1 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG) for induction of 

gene expression and 100 µg/mL ampicillin for antibiotic selection. 

3.5.7 Plant growth conditions 

Wildtype Arabidopsis ecotype Columbia and T-DNA insertion lines were used for Gln 

and Glu treatments.  Plants were grown on vertical plates at 22oC under continuous light 

(ca. 70 μmol m-2 s-2), as previously described by Ivanov et al. (2012) on a defined nutrient 

medium containing a final concentration of 10 mM potassium phosphate (pH 6.5), 5 mM 

KNO3, 2 mM MgSO4, 1 mM CaCl2, 125 μg FeNaEDTA, micronutrients (50 mM H3BO3, 

12 mM MnSO4, 1 mM ZnCl2, 1 mM CuSO4 and 0.2 mM Na2MoO4), 1% sucrose and 1% 

agar (Wang et al., 2003).  Ten-day old seedlings were transferred to plates containing the 

same medium without nitrogen as control or 10 mM Gln as sole N source.  After 2 h, root 

tissue was harvested, frozen in liquid N2 and stored at -80oC until total metabolite 

extractions was carried out. For growth in Gln and Glu, the same media and growth 
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conditions were used with the exception of 5 mM KNO3 being substituted with either 2 

mM Gln or 2 mM Glu and tissue was collected after 10 days. 

3.5.8 Plant material, genotyping and RT-PCR 

Seeds of homozygous GAT1_2.1 mutants (SALK_031983) were obtained from the 

Arabidopsis Biological Resource Center, Ohio State University 

(http://www.arabidopsis.org/abrc/) (Sessions et al., 2002). To confirm homozygosity, 

gene specific and T-DNA specific primers were used for PCR amplification. One 

hundred mg of leaf tissue was used for extraction of genomic DNA using 

GenElute™ Plant Genomic DNA Miniprep Kit (Sigma-Aldrich) following 

manufacturer’s protocol. Primers used for genotyping were as follows; G-At1g15040-F, 

5'- CCAAGATTCTCCCCAGAGTTC-3', G-At1g15040-R, 5'-

ACACATGAGTTCCTCACCGTC-3' and LBb1, 5'- 

GCGTGGACCGCTTGCTGCAACT-3'. The PCR reaction was performed using Taq 

DNA polymerase (Life Technologies) with the following conditions; denaturing at 95oC 

for 2 min, 35 cycles at 95oC for 2 min, 60oC for 30 s and 68oC for 60 s, and a final 

extension at 68oC for 10 min. Transcript abundance in homozygous GAT1_2.1 mutants 

in reference to the WT was analyzed using RT-PCR. 100 mg of leaf tissue from WT and 

GAT1_2.1 mutants was used for RNA extraction using RNeasy Plant Mini Kit (Qiagen) 

following manufacturers protocol, quantified using NanoDrop 1000 spectrophotometer 

(Thermo Fisher Scientific, Burlington, ON) and treated with amplification grade DNAse 

I (Life Technologies) to minimize DNA contamination. RNA quality was verified by 

electrophoretic separation on a 1% (w/v) agarose gel prior to cDNA synthesis which was 

performed using a Thermoscript RT-PCR system (Life Technologies) with 5 ug of total 

RNA in a 20 µl reaction. Following this, a PCR was carried out using 1 µl of cDNA as 

template in 25 µl of final volume using the cycling conditions described above and 

electrophoretically separated on a 1.5% (w/v) agarose gel (Figure 3.10). 

  

http://www.arabidopsis.org/abrc/
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Figure 3.10: gat1_2.1 T-DNA insertion line, RT-PCR and genotyping 

A. Schematic representation of GAT1_2.1 showing the position of T-DNA insertion. 

Bars represent the exons and triangle indicated the site of T-DNA insertion. B. RT-PCR 

analysis of the T-DNA insertion line. Top panel shows the RT-PCR with primers 

spanning the exon region (FP and RP) indicating the absence of transcript. Bottom panel 

represents the control gene act2. C. Genotyping T-DNA insertion line. Top panel shows 

the PCR amplified product for exon and the bottom panel represents PCR amplified 

product for T-DNA (see section 3.5.8 for details). 
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3.5.9 Total metabolite extraction 

Fifty mg of root tissue was excised from 10 day old seedlings of WT or gat1_2.1 grown 

under conditions described above, collected in 2 ml Eppendorf tubes and flash frozen in 

liquid N2. Frozen tissue was homogenized using a tissue lyser and metabolites were 

isolated using 1 ml of methanol: water (4:1) with incubation in an ultra-sonication bath 

for 20 min followed by shaking for 30 min at 4oC. The mixture was centrifuged at 11,000 

g for 10 min at 4oC and 700 µl of the supernatant was transferred into fresh tubes and 

evaporated to dryness using a Vacufuge at ambient temperature. The residue was re-

dissolved in 500 µl of 1:1 methanol: water and the samples were filtered using a 0.2 µm 

PTFE microfuge filter (Whatman). Five µl of 1 µg/ml 13C6 Phe was added to the samples 

for monitoring the quality of LC-MS runs. 

3.5.10 GAT1_2.1 assay with plant extracts 

For assays with plant extracts, total metabolite extract from root tissue of wild-type 

Arabidopsis obtained from the method described in section 3.5.9 was re-suspended in 

HEPES buffer pH 7.5 instead of 1:1 methanol: water. Samples were spiked with a final 

concentration of 1 µM 15N Gln and 5 µg of the full length (Section 3.5.14) or domain 

versions of GAT1_2.1 protein along with 2 mM DTT and 5 mM MgCl2. Following this, 

samples were incubated at 37oC for 2 hours and then filtered through a 3K micro 

centrifuge filter (Millipore, Billerica, MA) to remove the protein. Samples were then 

evaporated to dryness using a vacufuge at ambient temperature and the residue was re-

dissolved in 1:1 methanol: water, filtered with a 0.2 µm PTFE microfuge filters 

(Whatman) and subjected to LC-MS analysis and ammonium quantification.    

3.5.11 Data acquisition and metabolite analysis 

MS data was obtained from four replicates of WT or gat1_2.1 on a Q-Exactive 

Quadrupole Orbitrap mass spectrometer (Thermo Fisher Scientific) coupled to an Agilent 

1290 high performance liquid chromatography (HPLC) system. Compounds were 

resolved using a SeQuant® ZIC®-HILIC column; 3.5µm, 100 Å, 100 × 2.1 mm (EMD 

Millipore) with mobile phase 5 mM ammonium acetate, pH = 4.00 (A); 90% acetonitrile, 

0.1% formic acid (B) and the following gradient: 87% B for 5 min, decreased to 55% 
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over 8 min and held for 4 minutes before returning to 87% over 3 min. The following 

heated electrospray ionization (HESI) conditions were optimized for the analysis of 

amino and organic acids: spray voltage, 3.9 kV (ESI+), 3.5 kV (ESI-); capillary 

temperature, 250 °C; probe heater temperature, 450 °C; sheath gas, 30 arbitrary units; 

auxiliary gas, 8 arbitrary units; and  S-Lens RF level, 60%. Injections of 5 μl were used 

with a flow rate of 0.3 mL min-1. Compounds were detected and monitored using targeted 

MS/MS, spectra were collected at 17,500 resolution, AGC target 1e6, maximum IT 65 

ms, isolation window of 1 m/z, normalized collision energy of 30, intensity threshold of 

1.6e5 and 10s dynamic exclusion. Data analysis and calculation of all theoretical masses 

was carried out using Xcalibur™ software. Compounds were identified and quantified 

using commercial standards.  

3.5.12 Metabolomic data analysis 

For metabolomics analysis, LC-MS data was obtained with the above mentioned 

chromatographic and HESI conditions but full MS measurements were collected from 

mass ranges of 75-1100 m/z and 65-900 m/z in positive and negative ionization modes 

respectively at 140,000 resolutions. The AGC target and maximum IT was set to 3 e6 and 

524 ms respectively. Following data acquisition, Thermo .RAW files were converted to 

.mzml format using ProteoWizard (Kessner et al., 2008) with peak picking filter applied. 

Files were imported into R using the XCMS package (Smith et al., 2006) and features 

were detected using the centWave (Tautenhahn et al., 2008) method and a ppm tolerance 

of 1.0. Pre-filter was set to 6 scans with minimum 5000 intensity, signal to noise 

threshold was 5 and noise was set to 3×106 and 1×106 for positive and negative mode 

respectively. Retention time correction was conducted using the obiwarp (Prince and 

Marcotte, 2006) method, grouping included features present in at least 25% of all 

samples, allowable retention time deviation was 10 seconds, and m/z width set to 0.015. 

The “fillPeaks” function with default settings and remaining zeros imputed with two-

thirds the minimum value on a per mass basis. Salt clusters and other ionization artefacts 

were removed from the feature list using the McMillan correction without retention time 

filter applied (McMillan et al., 2016).  
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3.5.13 Ammonium quantification 

Fifty mg of root tissue was homogenized using a tissue lyser followed by the addition of 

1 mL of ice cold extraction medium (10 mM HCOOH in 60% methanol). The 

homogenate was centrifuged at 16,000 rpm at 4oC and the supernatant was transferred to 

a 0.45 µM polysulphone centrifuge tube. This was followed by centrifugation at 5000 g 

at 2oC. OPA reagent diluted in borate buffer (1:5 v/v) containing 2-mercaptoethanol as 

reducing agent (Agilent Technologies), was added to the clarified supernatant at 1:1 ratio 

and placed at 63oC for 15 min (Husted et al., 2000). NH3 was detected using a 

fluorescence detector equipped on an Agilent 1260 high proficiency liquid 

chromatography (HPLC) system with step excitation wavelengths (10 nm increments) 

scanning from 220 – 300 nm and collecting the emission at a wavelength of 450 nm. A 

Zorbax Eclipse Plus RRHD C18 column (4.6 X 100 mm, 3.5 μm) was maintained at 

40°C.  Mobile phases were comprised of 40 mM NaH2PO4 pH 7.8 (A), ACN: MeOH: 

Water (45:45:10 v/v/v) (B) and MeOH: Water (90:10, v/v) (C).  Mobile phase A was 

maintained at 100% for 1 min and mobile phase B was increased to 50% over next 4 min. 

Following this, mobile phase B was increased to 80% and C to 20% and maintained for 

50 sec. The residual from the column was removed with 100% A over the next 2 min 10 

sec. A flow rate of 2 mL min-1 was used. 

3.5.14 Cloning, expression and purification of full length recombinant 

GAT1_2.1 in plant system 

Full length cDNA of GAT1_2.1 was amplified by PCR (described above) primers 

designed to introduce Golden Gate cloning sequences at both 5` and 3` ends (Fw: 5`- 

CATATGGGTCTCCCAAGATGGTTGTCGCCAATGATCTC-3`, Rw: 5`-

AAGCTTCGGTCTCTGCTCATAGTTGAGAAAAAAGGAGGAC-3`).  The amplicon 

was cloned into pCamGate-Cyt expression vector (Conley et al., in prep) under the 

control of double-enhanced cauliflower mosaic virus (CaMV) 35S promoter and a c-myc 

tag sequence at the 3` end, modified for compatibility with Golden Gate system. Final 

expression vectors that were confirmed with restriction digest and sequencing were 

transformed into A. tumefaciens strain GV 3101. Transformed bacteria were grown to an 

OD600 of 0.6, and collected by centrifugation at 1,000 g for 30 min. The pellets were 
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resuspended in Agro-infiltration solution (3.2 g/L Gamborg’s B5 medium and vitamins, 

20 g/L sucrose, 10 mM MES pH 5.6, 200 µM 4’-Hydroxy-3’-dimethoxyacetophenone) to 

a final OD600 of 0.3, followed by incubation at room temperature with gentle agitation 

for 1 hour. The suspension was then used for infiltration of the abaxial leaf epidermis 

through the stomata of N. benthamiana plants with a 1 ml syringe (Kapila et al., 1997). 

Infiltrated plants were continued to grow and leaf tissue was collected after 4 days. 

Total soluble protein was obtained from 5 mg of leaf tissue after homogenization with the 

extraction buffer (1X PBS/Tween-20, 2% PVPP, 1 mM EDTA pH 8.0, 1 mM PMSF, 1 

µg/mL leupeptin and 100 mM sodium L-ascorbate) followed by centrifugation at 17,500 

g at 4oC. The recombinant GAT1_2.1 was purified using a c-myc tagged protein mild 

purification kit ver. 2 (MBL International) following manufacturers protocol. Quality of 

the pure protein was verified with SDS-PAGE and quantified with western blotting using 

anti-cmyc antibody and a serial dilution of CBD protein (Figure 3.7). 
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4 EVALUATION OF EXTRACTION AND 

CHROMATOGRAPHIC METHODS SUITABLE FOR 

METABOLOMICS IN ARABIDOPSIS THALIANA 

4.1 Introduction 

The four central “omics” platforms (genomics, transcriptomics, proteomics and 

metabolomics) are clearly invaluable to systems biology, not only for hypothesis 

generation, but also for elucidating complex phenotypes at the systems level (Bino et al., 

2004; Fiehn et al., 2000; Saito and Matsuda, 2010). Metabolites are small molecules that 

undergo chemical transformations during metabolism and provide the final readout of 

cellular state (Patti et al., 2012). The metabolome consists of the total complement of low 

molecular weight molecules, referred to as metabolites, in a cell, tissue, or entire 

organism at a specific physiological state (Goodacre et al., 2004). Metabolomics, being a 

relatively new “omics” platform, has not seen widespread use in the field of plant 

primary metabolism due to major challenges in reliable compound identification and data 

processing techniques (Fiehn et al., 2008). Since metabolic perturbations represent the 

final outcome of changes at different levels of “the central dogma” of biology, the 

development of tools and techniques for identification and quantification of 

metabolomics data is of utmost importance. 

Methods in metabolomics studies generally fall into two categories: targeted 

metabolomics for the measurement and quantification of groups of chemically 

characterized and annotated metabolites, and untargeted metabolomics, which focuses on 

the comprehensive analysis of all measurable analytes, including ones that are chemically 

unknown (Patti et al., 2012). Untargeted approaches provide the potential of identifying 

novel targets, however, the coverage of the metabolome is often limited by the 

methodologies used for sample preparation, sensitivity and selectivity of analytical 

techniques (Roberts et al., 2012). In the past decade, studies in plant primary metabolism 

using the model plant, Arabidopsis, have employed several extraction procedures suitable 

for the identification and quantification of highly polar and semi-polar analytes using 

targeted approaches employing liquid or gas chromatographic separations (Giavalisco et 
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al., 2011; Lisec et al., 2006). Gas chromatography has been a preferred choice for the 

analysis of primary metabolites due to the low reproducibility of retention times in liquid 

chromatography (despite its advantages in minimal sample preparation and broader 

coverage of metabolites). However, extensive sample preparation for derivatization, 

longer runs, and the minimal range of metabolites detectable through gas chromatography 

makes it an inefficient technique for untargeted metabolomics. In this chapter, we provide 

a comprehensive evaluation of five previously described extraction procedures with 

respect to their suitability of use with untargeted metabolomics approaches.  In addition, 

a liquid chromatography based method for the reliable and reproducible separation of 

primary metabolites is presented. 

Processed metabolomics data typically consist of a list of features that are defined by an 

accurate mass, retention time and peak areas that are representative of their relative 

quantities. The tremendous chemical diversity of metabolites, experimental artifacts and 

the complexity of sample matrices often result in metabolomics data that are not a true 

representation of metabolites in biological samples (Bowen and Northen, 2010). A 

typical feature list often contains compounds that represent isotopes, adducts, in-source 

fragments, artifacts and contaminants, therefore, noise reduction and prioritization of data 

is essential to reduce the cost and effort of data processing in metabolomics experiments 

(Mahieu and Patti, 2017). To address the challenge of data processing in untargeted 

metabolomics, we propose an optimized workflow and demonstrate its application to 

isotopically enriched plant samples treated with 13C5, 
15N2 Gln. Here, we take advantage 

of the resolving power of Q-Exactive Orbitrap mass-spectrometer for detection and 

identification of primary metabolites and their labelled counterparts. 
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4.2 Results 

4.2.1 Comparison of metabolite profiles obtained from different 

extraction methods 

To test the recovery of primary metabolites from plant roots, total metabolite extracts 

(obtained from the five methods described below) were used. A total of 1449 features in 

the positive mode and 792 features in the negative mode were obtained following the 

XCMS based feature detection in R (Section 4.2.7).   Figure 4.1 represents strip charts 

showing normalized peak intensities (y-axis) of features from both positive (A) and 

negative (B) mode. Although not all features detected are metabolites of biological 

origin, the strip charts allow a comparison of the metabolite signal recovery of. Acidified 

methanol, chloroform:methanol and acidified methanol:water extractions were found to 

result in larger number of features with low normalized intensities (< 6) in both ionization 

modes. High intensities of maximum number of features were detected in the 

methanol:water extracts and both aqueous and organic phases of methanol:MTBE:water 

extracts. Since most of the primary metabolites have a mass to charge ratio (m/z) between 

100-500 amu, a comparison of the recovery based on m/z of features detected in both 

positive (Figure 4.2) and negative (Figure 4.3) mode was performed (Figure 4.2 and 4.3). 

Once again, maximum recovery of features between desired m/z range was observed in 

the methanol:water extracts as well as both phases of methanol:MTBE water extraction. 

We then used a targeted approach to detect a few amino acids and organic acids (Figure 

4.4). Acidified methanol extracts resulted in the lowest signals with high variability 

between replicates. Variation between replicates is also high for most metabolites 

identified in chloroform:methanol extracts as well as methanol:MTBE:water extracts. 

The signal intensities of target metabolites, which include Glu, GABA and malic acid, 

showed a lower recovery in acidified methanol:water extracts. High quantities with 

consistent signals from all the metabolites were resulted from the methanol:water extracts 

(Figure 4.4). Considering all the presented evidence, the methanol:water extraction 

technique was determined to be the best for extraction and detection of primary 

metabolites. 
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Figure 4.1: Strip charts representing total metabolomic data from different 

extraction methods. 

A. Metabolite features obtained from positive ionization mode and B. Features obtained 

from negative ionization mode. Y-axis represents normalized intensities that were log 

transformed peak areas. 
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Figure 4.2: Scatter plots with m/z of features and intensities from positive mode. 

The individual panels represent comparisons of total metabolomic feature lists between two extraction methods. Labels are formatted 

as A vs B where A is presented in the positive Y-axis and B is presented in the negative Y-axis. A higher value in positive Y and 

lower value in negative Y-axes represents higher recovery of that particular feature. The mass range is presented on the X-axis.
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Figure 4.3: Scatter plots with m/z of features and intensities from negative mode. 

The individual panels represent comparisons of total metabolomic feature lists between two extraction methods. Labels are formatted 

as A vs B where A is presented in the positive Y-axis and B is presented in the negative Y-axis. A higher value in positive Y and 

lower value in negative Y-axes represents higher recovery of that particular feature. The mass range is presented on the X-axis.
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Figure 4.4: Targeted metabolite analysis showing a few amino acids and organic acids. 

Y-axis represents normalized intensities that were log transformed peak areas.
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4.2.2 Chromatographic resolution of amino acids is achieved with 

HILIC based chromatography 

Quantification of metabolites detected by mass spectrometry is performed by the use of 

peak areas obtained upon separation of compounds by chromatography using a 

partitioning column. A common partitioning column using for liquid chromatography is a 

reverse phase C18 column. However, highly polar compounds such as amino acids and 

organic acids do not retain well on conventional C18 columns. Hence, we used a 

hydrophilic interaction column (HILIC). A good separation of all the proteinogenic and 

non-proteinogenic amino acids including isobaric compounds (Leu/Ile, Thr/Homoser) 

was achieved by taking advantage of the HILIC water partitioning mode by first 

separating compounds isocratically with 13% A (5 mM ammonium acetate pH 4.0) and 

87% B (acetonitrile with 0.1% formic acid) for 5 mins followed by gradient elution by 

decreasing % B to 55% over the next 8 minutes (Figure 4.5). Most of the amino acids 

were eluted during this time and the highly polar ones (Lys, His, Arg) eluted over the 

next 4 minutes by holding at 55% B (Figure 4.5).   

4.2.3 Integration of steps to obtain optimized metabolomics data 

A combination of packages in R (described in section 4.2.7) were used to obtain an 

optimum feature list that has reduced noise with salt clusters filtered and a higher number 

of true biological compounds retained. The isotopologue parameter optimization (IPO) 

package in R was first used to obtain a set of XCMS peak picking parameters to excise 

features that mostly represent biological metabolites based on their associated natural 

isotopic signatures (Libiseller et al., 2015). Parameters for retention time correction and 

grouping were also optimized by IPO by minimizing relative retention times within peak 

groups and maximizing the number of peak groups that show one peak per injection, 

respectively. Optimized parameters for peak picking, retention time correction, and 

grouping delivered by IPO were then used for building feature listing with the XCMS 

package in R (Smith et al., 2006a). A total of 1835 and 916 features were detected in the 

positive and negative modes respectively following this procedure using the data from 

different extraction methods described in section 4.3.1. From these feature lists, 21% and 
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13% of the features that represent salt clusters and other ionization artifacts were filtered 

out by applying McMillan correction in R (McMillan et al., 2016) from positive and 

negative ionization modes respectively, resulting in final feature lists that contained 1449 

and 792 features (Section 4.3.1).  

The workflow described above, however, cannot be used for obtaining optimum feature 

lists from total metabolite extracts derived from plants treated with stable labelled 

isotopes since all of the isotopically labelled metabolites are not recognized by IPO due 

to the peak picking algorithm used by the package (Libiseller et al., 2015). To avoid this 

problem, a two-step feature detection was used, in which, optimized feature lists were 

first built from unlabeled controls following the procedure described above followed by 

the identification of a set of target metabolites for which label enrichment needs to be 

determined. Feature lists from label enriched samples were then obtained by using 

relaxed parameters in XCMS (default) following which a custom in-house python script 

was used to extract labelled compounds based on mass difference compared to their 

unlabeled counterparts. The python script also includes flexibility for inputting user 

determined retention time and mass accuracy errors. This workflow was successfully 

demonstrated in extracting isotopic label enriched features from wild-type Arabidopsis 

seedlings treated with dual labelled (13C5, 
15N2) glutamine for two hours (Figure 4.6). 
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Figure 4.5: Gradient and chromatography using HILIC. 

Red line across the figure indicates the gradient used for chromatographic separation. 

Blue line indicates the 20% A where hydrophilic interactions are at the highest. Y-axis 

shows the mobile phase. X-axis labels indicate the column volumes on top and retention 

time at the bottom. 
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Figure 4.6: Summed intensity plot highlighting isotopically labelled compounds 

from 13C5, 15N2 Gln treated Arabidopsis roots. 

Total metabolomics feature list obtained from non-labeled and labeled Gln treated 

samples were used to plot the graph. X-axis represents fold change and Y-axis represents 

normalized intensities obtained by log transformation of peak areas. Compounds labelled 

within the feature were identified using the in-house python script.   
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4.2.4 HRMS is essential for detection of dual labels for LC-MS based 

metabolomics 

Use of the above described optimized parameters for detection of dual labelled isotopic 

features is dependent on the quality of the data obtained. With the availability of high 

resolution instruments, it is now possible to achieve mass accuracies within < 1 ppm error 

of exact mass. However, the ability to image a detected ion in a mass spectrometer and 

differentiate it from any other depends on the resolving power of the instrument.  Figure 

4.7 demonstrates the resolving power of a Q-Exactive Orbitrap mass spectrometer at a 

resolution of 140,000 FWHM (full width at half maximum) in comparison with a Q-TOF 

at a resolution of 20,000 FWHM and a triple-quadrupole at a resolution of 500 FWHM 

that are two other leaders in the market for mass spectrometry instrumentation. 

Resolutions for Q-TOF and triple-quadrupole were simulated using the Xcalibur™ 

software (Thermo Scientific). The figure uses Gln [M]+ ion with accurate mass, 

147.07642 m/z, and its associated natural 13C isotopic peak [M+1C]+ with accurate mass, 

148.07912 m/z (Figure 4.7A). A closer look at the isotopic peak (Figure 4.7B), however, 

at higher resolution with a Q-Exactive, reveals a second 15N natural isotopic peak 

[M+1N]+ with accurate mass, 149.07341 m/z. This peak is masked by the [M+1C]+ peak 

at lower resolutions. The resolving power of Q-Exactive can be used to our advantage 

when extracting isotopic label information from total metabolomic feature lists obtained 

from plant tissues enriched with a dual labelled compound, e.g. 13C, 15N Gln.  
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Figure 4.7: Comparison of resolving power between different instruments. 

A. presents the peak detected at m/z 147.07642 that corresponds to Gln along with its 

natural isotopic counterpart at m/z 148.07912. B. is a zoomed in version of the isotopic 

peak shown in A and depicts the two resolved m/z 148.07341 and 148.07912 that 

correspond to 15N and 13C natural isotopes respectively in the top panel and the 

unresolved versions in the bottom two panels.  
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4.3 Discussion 

The terminal downstream product of changes at any level of “the central dogma” of 

biology is the metabolome (Goodacre et al., 2004). The primary goal of any 

metabolomics experiment is to determine the total complement of metabolites (Nicholson 

et al., 1999), however, several challenges exist in this relatively new field that complicate 

metabolite detection as well as identification (Fiehn et al., 2008). With a focus on 

primary metabolites, we aimed to evaluate and develop a few methods for optimal 

extraction of the metabolite pool from plant tissues, chromatographic separation as well 

as data processing. A total of five extraction procedures, previously described (Giavalisco 

et al., 2011; Lisec et al., 2006), were evaluated and a simple methanol:water extraction 

was determined to be best suited for the extraction of maximum metabolite pool with 

high recovery from plant tissue samples.  

Although use of HILIC in liquid chromatography for amino acids and organic acids was 

demonstrated previously, methods longer than 50 minutes were used to achieve these 

separations (Schiesel et al., 2010; Zangrando et al., 2010).  The HILIC method employs a 

zwitterionic bonded silica column and enables separation of hydrophilic compounds 

without prior derivatization and is compatible with mass spectrometric detection 

(Langrock et al., 2006). Here, we achieved better separation and shorter run time as 

demonstrated with amino acids (Figure 4.5) by taking advantage of the HILIC water 

partitioning mode between 10-30% A in the mobile phase. An initial 5-minute isocratic 

hold at 13% A before initiating the gradient elution resulting in complete separation of all 

the amino acids. Following successful separation, we demonstrated the use of an 

optimized workflow for untargeted metabolomics experiments upon isotopic label 

enrichment by taking advantage of high mass accuracy and resolving power of Q-

Exactive Orbitrap mass spectrometer. 

Advances in instrumentation have resulted in achieving high mass accuracy that can be 

used for compound identification (Kind and Fiehn, 2006). However, mass accuracy alone 

is insufficient if isotopic fine structures of compounds need to be evaluated, as is the case 

for our example where plant tissues are enriched with 13C5, 
15N2 Gln. Hence, we 

demonstrated the use of optimized chromatographic conditions together with high 
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resolution mass spectrometry (HRMS) (Marshall and Hendrickson, 2008) for separation 

and detection of labelled compounds. Our pipeline for extraction of feature lists from 

metabolomics experiments integrates IPO, XCMS and McMillan correction packages in 

R for noise reduction and filtering of contaminants among metabolite features. Further 

statistical analyses can be applied in R or Excel for prioritization of compound 

identification based on experimental design. For isotopic feature detection, an in-house 

python script, with flexibility for errors in mass accuracy and deviations in retention 

times, was developed and successfully utilized. This can be applied for elucidation of 

novel pathways by isotope tracking experiments using both targeted and untargeted 

metabolomics approaches.  
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4.4 Materials and Methods 

4.4.1 Plant growth conditions 

Arabidopsis thaliana ecotype Columbia was used for both transcript and metabolite 

profiling experiments.  Plants were grown on vertical plates at 22°C under continuous 

light (ca. 70 μmol m-2 s-2), as previously described by Ivanov et al. (2012) on a defined 

nutrient medium containing a final concentration of 10 mM potassium phosphate (pH 

6.5), 5 mM KNO3, 2 mM MgSO4, 1 mM CaCl2, 125 μg FeNaEDTA, micronutrients (50 

mM H3BO3, 12 mM MnSO4, 1 mM ZnCl2, 1 mM CuSO4 and 0.2 mM Na2MoO4), 1% 

sucrose and 1% agar (Wang et al., 2003).  Roots were excised from ten-day old seedlings, 

flash frozen in liquid N2 and stored at -80°C until total metabolite extractions was carried 

out. Three replicates were used for extraction using all five methods (described below). 

The methods were optimized under these plant growth conditions so they were suitable 

for the experiments described in Chapters 2 and 3. For label enrichment comparison, ten-

day old seedling were transferred into plates containing the above described media 

supplemented with 10 mM Gln or 10 mM 13C5, 
15N2 Gln as sole source of N for 

unlabeled and labelled treatments respectively and roots were excited after 2 hours of 

incubation. 

4.4.2 Extraction using acidified methanol 

Fifty mg of frozen root tissue was homogenized using a ball-mill.  Ice-cold sample 

extraction solution (99.875% methanol acidified with 0.125% FA) in a volume/fresh 

weight ratio of 3 was added to the homogenized root tissue followed by immediate 

vortexing for 10 s. Assuming a tissue water content of about 95%, this resulted in a final 

concentration of 75% methanol and 0.1% FA. Extracts were stored on ice until all 

samples were ready.  Samples were sonicated for 15 min at maximum frequency (40 

kHz) continuously, in a water bath at room temperature (22°C) followed by 

centrifugation for 10 min at maximum speed at room temperature.  The supernatants from 

each sample were transferred to a fresh tube and filtered through a 0.2-µm PTFE 

centrifugation filter.  
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4.4.3 Extraction by phase separation 

Fifty mg of the frozen root tissue was homogenized using a ball-mill.  The metabolites 

were isolated in 1 ml of homogeneous mixture of -20°C methanol:methyl-tert-butyl-

ether:water (1:3:1), with shaking for 30 min at 4°C, followed by another 10 min of 

incubation in an ice-cooled ultra-sonication bath.  650 µl of methanol:water (1:3) is then 

added and the homogenate was vortexed and spun for 5 min at 4°C in a table top 

centrifuge.  This allowed phase separation, providing the upper organic phase, containing 

the lipids, a lower aqueous phase, containing the polar and semi polar metabolites, and a 

pellet of starch and proteins at the bottom of tube. The aqueous phase and organic phase 

were then collected separately and dried down in a speed vac and then stored at -80°C 

until required.  The dried down sample was re-suspended in 800 µl of 50% methanol and 

used for further analysis. 

4.4.4 Extraction with chloroform and methanol 

Fifty mg of frozen root tissue was ground to a fine powder using ball mill and quenched 

by adding 250 μl of ice-cold CHCl3/CH3OH (3:7, v/v). The frozen mixture was 

incubated at -20°C for 2 h with occasional mixing. Water soluble components were 

extracted from the CHCl3 phase by adding 200 μl of water at 4°C with repeated shaking. 

After centrifugation at 420 g for 4 min, the upper, aqueous-CH3OH phase was transferred 

to a new tube, and kept at 4°C. The lower, CHCl3 phase was used for re-extraction with 

200 μl of cold water, centrifuged as described above, and the second aqueous-CH3OH 

extract was combined with the first. The combined aqueous-CH3OH extract was 

evaporated to dryness using a centrifugal vacuum dryer at 20°C and re-dissolved in 

800 μl of 50% methanol. Viscous, high molecular-mass components were removed from 

the samples by filtering the extracts by centrifugation at 2300 g using a 0.2 µm PTFE 

filter. 

4.4.5 A simple methanol:water extraction 

Fifty mg root tissue was homogenized in 1,000 μL of methanol:water (4:1, v/v) using a 

ball-mill. Samples were sonicated for 30 min at room temperature followed by 

centrifugation at 11,000 x g for 10 min, and 700 μL of the supernatant was transferred to 
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a fresh tube and evaporated to dryness in a vacuum centrifuge at ambient temperature. 

The remaining residue was re-dissolved in 400 μL of methanol by vigorous vortexing and 

diluted with 400 μL of water. Prior to LC/MS analysis, the extracts were filtered through 

a 0.2 μm PTFE centrifugation filter. 

4.4.6 Acidified methanol: water extraction 

Total metabolite extraction was carried out following the same method described in 

section 4.2.5 with the exception of methanol: water (4:1, v/v) extraction buffer being 

substituted with 79:20:1 (methanol: water: formic acid, v/v/v). 

4.4.7 Data acquisition by targeted and untargeted metabolite analysis 

All MS data were acquired on a Q-Exactive Quadrupole Orbitrap mass spectrometer 

(Thermo Fisher Scientific) coupled to an Agilent 1290 high performance liquid 

chromatography (HPLC) system.  A Zorbax Eclipse Plus RRHD C18 column (2.1 x 50 

mm, 1.8 μm) was maintained at 35°C.  Mobile phases were comprised of 5 mM 

ammonium acetate, pH 4 (A), and acetonitrile with 0.1% formic acid (B).  Mobile phase 

A was maintained at 100% for 1.25 min and mobile phase B was increased to 50% over 

2.25 min, and 100% over 0.5 min.  The following heated electrospray ionization (HESI) 

conditions were optimized for the analysis of amino and organic acids: spray voltage, 3.9 

kV (ESI+), 3.5 kV (ESI-); capillary temperature, 250°C; probe heater temperature, 

100°C; sheath gas, 30 arbitrary units; auxiliary gas, 8 arbitrary units; and S-Lens RF 

level, 60%. Injections of 5 μl were used with a flow rate of 0.3 mL min-1.  Compounds 

were detected and monitored using a targeted MS/MS approach with spectra collected at 

17,500 resolution, AGC target 5e5, maximum IT 65 ms and isolation window of 1 m/z. 

Normalized collision energy of 27 was used for the targeted method. Data were analyzed 

and all theoretical masses were calculated with Xcalibur™ software.  Full MS peak areas 

were normalized with a 13C6 phenylalanine internal standard for positive ionization and 

13C3 pyruvic acid for negative ionization and compared across treatments. 

Compounds were identified using commercial standards.  

For metabolomics analysis, LC-MS data was obtained with the above mentioned 

chromatographic and HESI conditions but full MS measurements were collected from 
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mass ranges of 75-1100 m/z and 65-900 m/z in positive and negative ionization modes 

respectively at 140,000 resolutions. The AGC target and maximum IT was set to 3 e6 and 

524 ms respectively. Following data acquisition, Thermo .RAW files were converted to 

.mzml format using ProteoWizard (Kessner et al., 2008) with peak picking filter applied. 

Files were imported into R using the XCMS package (Smith et al., 2006b) and features 

were detected using the centWave (Tautenhahn et al., 2008) method and a ppm tolerance 

of 1.0. Pre-filter was set to 6 scans with minimum 5000 intensity, signal to noise 

threshold was 5 and noise was set to 3×106 and 1×106 for positive and negative mode 

respectively. Retention time correction was conducted using the obiwarp (Prince and 

Marcotte, 2006) method, grouping included features present in at least 25% of all 

samples, allowable retention time deviation was 10 seconds, and m/z width set to 0.015. 

The “fillPeaks” function was used with default settings and remaining zeros were 

imputed with two-thirds the minimum value on a per mass basis. Salt clusters and other 

ionization artefacts were removed from the feature list using the McMillan correction 

without retention time filter applied (McMillan et al., 2016). All features were exported 

to excel to test for statistical significance between treatments using a student’s t-test and 

to generate volcano plots. An in-house python script was used for extraction of isotopic 

features from the total feature list obtained. 

4.4.8 Optimized chromatography using HILIC 

For chromatography using the Hydrophilic interaction column (HILIC), compounds were 

resolved using a SeQuant® ZIC®-HILIC column; 3.5µm, 100 Å, 100×2.1 mm (EMD 

Millipore) with mobile phase 5 mM ammonium acetate, pH = 4.00 (A); B = 90% 

acetonitrile, 0.1% formic acid) and the following gradient: 87% B for 5 minutes, 

decreased to 55% over 8 minutes and held for 4 minutes before returning to 87% over 3 

minutes. The following heated electrospray ionization (HESI) conditions were optimized 

for the analysis of amino and organic acids: spray voltage, 3.9 kV (ESI+), 3.5 kV (ESI-); 

capillary temperature, 250 °C; probe heater temperature, 450 °C; sheath gas, 30 arbitrary 

units; auxiliary gas, 8 arbitrary units; and S-Lens RF level, 60%.. Injections of 5 μl were 

used with a flow rate of 0.3 mL min-1. Following chromatography full MS data was 

obtained from the above described method.  
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5 GENERAL DISCUSSION 

5.1 Excess Asn accumulation results in C/N reprogramming 

Asparagine is clearly an ideal storage and transport form of N (described in section 1.2) 

due to its high N:C ratio and low net charge under physiological conditions (Lea et al., 

2007). The N status of a plant, the overall C:N ratio, as well as photoperiod are major 

determining factors for Asn biosynthesis via the modulation of AS trasncripts (Gutiérrez 

et al., 2008; Lima and Sodek, 2003; Tsai and Coruzzi, 1990). Asn biosynthesis is 

upregulated upon high N availability and in the dark period as a means for N storage. 

Excess Asn can be catabolized and used as an N source for recuperation of C/N balance 

upon perturbations due to environmental and genetic factors, however, the mechanism 

and pathways involved in this process were unknown. To address this issue, we 

conducted transcriptome and metabolome profiling upon Asn treatment to get a 

comprehensive picture of the mechanism of C/N reprogramming in the roots of the model 

plant, Arabidopsis (Chapter 2). 

A number of genes involved in nitrate transport (NRT1.8, NRT1.5, NRT2.6) were 

repressed, indicating a sufficiency of N compounds within the cell and suppression of 

further N uptake/influx into the cells (Li et al., 2010). Carbon efflux was lowered by 

repressing AlMT2, a malate transporter, and the supply of C skeletons was achieved by 

increased expression of genes involved in lignin degradation, polysaccharide degradation 

and carbohydrate metabolism as identified by GO categorization (Section 2.2.2). Since 

the transcriptomic data highlighted a major redistribution of C and N resources, we then 

investigated the metabolic responses upon Asn over accumulation to identify specific 

pathways through which C/N balance is achieved. To that end, we identified lysine and 

proline catabolic pathways as well as the GABA shunt to be the primary pathways 

linking amino acid and carboxy acid metabolism (Section 2.2.4) to achieve the 

aforementioned C/N balance. Lysine catabolism and the GABA shunt pathway have been 

previously reported to play a role in C/N partitioning (Boex-Fontvieille et al., 2013; Fait 

et al., 2008), however, Asn dependent activation of these pathways is being reported here 

for the first time. Although, no clear mechanism for Asn signal perception was revealed 
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in this study, a few phytohormone biosynthetic and signaling genes (IPT3, SAUR55, 

AIR12, ERF1, ERF4) were found to be upregulated (Appendix A). Here, we suggest that 

a hormone mediated signaling mechanism of Asn, similar to that of cytokinin dependent 

nitrate signaling previously described (Gaufichon et al., 2013; Sakakibara et al., 2006), is 

possible by regulating the genes involved in the above described primary metabolic 

pathways. Further characterization of Asn signaling machinery is necessary to fully 

elucidate its mode of function. Although, the data presented in this work does not provide 

sufficient evidence for a broad signaling role of Asn in plants, it highlight the 

reallocations that are necessary in order to maintain C and N balance upon increase in N 

metabolites.  It is important, however, to keep in mind that the data represents changes in 

both transcripts and metabolites upon a 2 hour Asn treatment. 

One gene of particular interest among the transcriptomic data is a class I glutamine 

amidotransferase (GAT1_2.1) of unknown substrate specificity (4.3-fold upregulation). 

The gene was previously found to be highly responsive to N status in plants (Zhu and 

Kranz, 2012). The protein, GAT1_2.1 has a glutaminase domain responsible for 

glutamine hydrolysis and a C-terminal extension of unknown homology and the 

transcript was found to be highly co-expressed with a mitochondrial glutamate 

dehydrogenase (GDH2) that deaminates glutamate to produce 2-oxoglutarate (Section 

2.2.6). We suggest a potential new route of C/N interrelationships via glutamine 

hydrolysis by GAT1_2.1 and the subsequent channeling of C skeletons from glutamate 

produced into the TCA cycle through the action of GDH2. To test this hypothesis, we 

proceeded to characterize the function of GAT1_2.1 at both the biochemical and 

metabolic levels (Chapter 3). 

5.2 GAT1_2.1 is a novel plant glutaminase that may regulate C/N 

partitioning 

Cancer-cells are excellent examples of C/N reprogramming in mammals, where the 

metabolic machinery is altered to achieve the bioenergetics and biosynthetic demands of 

the cell. In order to meet the carbon requirement, cancer cells adapt to an elevated 

functioning of glycolytic pathways and hence citric acid cycle activity is lowered (Vander 

Heiden et al., 2009). To compensate for this, and to help maintain citric acid cycle 
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functioning, cancer cells resort to increased glutaminase activity in mitochondria thus 

hydrolyzing glutamine to glutamate followed by the supply of C skeletons from 

glutamate to 2-oxoglutarate, via GDH (Erickson and Cerione, 2010). Two isoforms of 

mammalian glutaminases have been reported, a liver type and a kidney type, both of 

which have a high degree of regulation and play an important role in C/N partitioning 

during starvation, diabetes, high protein diet and metabolic acidosis (Curthoys and 

Watford, 1995). 

Plants, on the other hand, have no known glutaminases reported to date. GS/GOGAT 

cycle (described in Sections 1.1 and 3.1) is thought to be the major interaction point 

between C and N metabolism (Stitt et al., 2002). Although this is true, the GS/GOGAT 

cycle is more pronounced in leaves where there is a continuous supply of C skeletons via 

photosynthesis. The absence of photosynthesis and the lower activity of GS/GOGAT 

isoforms in roots (Coschigano et al., 1998; Oliveira and Coruzzi, 1999) suggest a possible 

alternate mechanism to achieve C/N balance upon perturbation. In Chapter 3, we showed 

evidence that the nitrogen regulated GAT1_2.1, is localized in mitochondria, acts as a 

glutaminase and may potentially function in conjunction with a mitochondrial GDH to 

supply C skeletons to TCA cycle. The glutaminase function of GAT1_2.1 may also be 

regulated post-translationally, similar to the kidney type glutaminase in mammals 

(Curthoys and Watford, 1995), as noted by the presence of phosphorylation sites (S298, 

S300) on the C-terminal extension of the protein sequence, that are identified using 

PhosPhAt 4.0 (Roitinger et al., 2015). Further investigation is necessary to identify the 

mechanism by which GAT1_2.1 is post-translationally regulated. 

The loss of function mutant, gat1_2.1, of Arabidopsis displays an excessive shoot 

branching phenotype. Understanding the exact mechanism through which GAT1_2.1 

regulates shoots branching, requires further experimentation. However, due to its root 

specific expression (discussed in Chapter 3), we hypothesized that the phenotype in 

shoots is an indirect consequence of metabolic perturbations leading to C/N imbalance in 

the roots. To that end, we decided to take a metabolomics approach with stable isotope 

labelling to track the mechanism of C/N partitioning in roots of gat1_2.1 compared to 

wild-type Arabidopsis. The lack of standardized and reliable methods for metabolomics, 
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however, led us to pursue and establish optimum protocols for stable isotope labelling 

followed by metabolomics measurements and data analysis suitable for detection and 

quantification of at least the primary metabolites in Arabidopsis (Chapter 4). We 

demonstrated the use of an optimized workflow for untargeted metabolomics experiments 

upon isotopic label enrichment by taking advantage of high mass accuracy and resolving 

power of Q-Exactive Orbitrap mass spectrometer. 

5.3 A new and improved pipeline for LC-MS based 

metabolomics with a focus on primary metabolism 

Any untargeted metabolomics experiment consists of three major steps: 1) extraction of 

metabolites, 2) chromatographic separation and mass spectrometric measurement, and 3) 

data analysis. The complexity of the metabolome in plant tissue, the availability of a wide 

array of equipment and unreliable data analysis platforms (Jorge et al., 2016) calls for the 

optimization of protocols specific to the experimental design at hand. Given that the 

primary metabolites are our main focus, we evaluated a few extraction procedures to 

determine the best condition suitable for mass spectrometric measurements and showed 

that methanol:water (4:1, v/v) extraction yields best results. 

To address the second issue of chromatographic separation, we demonstrated an optimal 

gradient for HILIC partitioning with reliable separation of amino acids and with shorter 

run times compared to GC or other LC based methods. The HILIC method employs a 

zwitterionic bonded silica column and enables separation of hydrophilic compounds 

without prior derivatization and is compatible with mass spectrometric detection 

(Langrock et al., 2006). Here, we achieved better separation and shorter run time as 

demonstrated with amino acids (Figure 4.5) by taking advantage of the HILIC water 

partitioning mode between 10-30% A in the mobile phase. A combination of packages in 

R, that include IPO (Libiseller et al., 2015), XCMS (Smith et al., 2006) and McMillan 

correction (McMillan et al., 2016) were used for data analysis and optimal feature list 

detection. It is however important to remember that compound identification is still a 

major bottleneck in metabolomics studies, and hence a simultaneous data dependent or 

targeted acquisition of MS/MS fragmentation is necessary for success in metabolomics 

experiments. The user also requires a thorough understanding of the “seven golden rules 
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of heuristic filtering of molecular formulas obtained by accurate mass spectrometry,” that 

were reported by Kind and Fiehn (2007) for efficient compound identification. Successful 

adoption of this pipeline has been demonstrated in at least one published study, which is 

focused on identifying changes in primary metabolism using untargeted metabolomics 

(Chen et al., 2017). 

5.4 Use of isotopic label incorporation followed by HRMS for 

novel pathway identification 

The use of isotopic label incorporation by treatment with 13C or 15N containing 

compounds followed by tracking the isotopic signature has been previously demonstrated 

to be extremely useful in the discovery of novel pathways and the quantification of 

metabolic flux. However, several limitations exist in the methods previously adopted, 

including the use of targeted metabolite analysis (which requires knowledge of the 

metabolites involved) via GC or LC followed by mass spectrometry, use of only a single 

labelled compound or resorting to laborious techniques, such as NMR (Allen et al., 2009; 

Giavalisco et al., 2011; Kikuchi and Hirayama, 2007). To address this issue, at least to a 

certain extent, we resorted to HILIC chromatography (described above) followed by high 

resolution mass spectrometry (HRMS), taking advantage of the mass accuracy along with 

the resolving power of Q-Exactive Orbitrap mass spectrometer, and demonstrated a 

successful incorporation of dual labels (13C5, 
15N2) supplied to wild-type Arabidopsis, in 

the form of glutamine followed by identification of compounds in the primary metabolic 

pathways described in Chapters 2 and 3 (section 4.2.4). Using this method, isotopic 

signatures can be extracted from an untargeted metabolomics experiment with an in-

house python script and hence unknown pathways can be successfully identified. 

5.5 Future prospects in understanding N metabolism and 

improving NUE in plants  

One of the goals of near future is to use the metabolomics and labelling strategies 

developed for deciphering the role of GAT1_2.1 in C/N partitioning as well as its 

physiological consequence (i.e. the shoot branching phenotype). In the post-genomic era, 

metabolomics has emerged into a powerful tool for elucidating complex phenotypes. 
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Establishing pathways and validation of genes involved in these pathways holds great 

potential for improving our understanding of nitrogen metabolism and signaling in 

general. Considering the continuously inclining statistics for nitrogen fertilizer 

use/misuse and the requirement for increased Nitrogen Use Efficiency (NUE) to achieve 

sustainable yields and reduce fertilizer consumption, a thorough understanding of N 

metabolism is of utmost importance. The future holds the possibility of using modern 

technologies such as gene editing to target genes involved in N metabolism for achieving 

said NUE and hence sustainable crop production. 
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APPENDICES 

Appendix A: Differentially expressed gene list FDR < 0.001 

 

TAIR ID Gene Symbol Gene description 

Down-

regulated 

AT1G08440 AT1G08440 aluminum activated malate transporter family protein 

AT1G24880 LpxC2 

UDP-3-O-acyl N-acetylglycosamine deacetylase 

family protein 

AT2G26150 HSFA2 heat shock transcription factor A2 

AT4G21680 NRT1.8 NITRATE TRANSPORTER 1.8 

AT4G22485 AT4G22485 

Bifunctional inhibitor/lipid-transfer protein/seed 

storage 2S albumin superfamily protein 

AT3G10040 AT3G10040 sequence-specific DNA binding transcription factor 

AT3G45060 NRT2.6 high affinity nitrate transporter 2.6 

AT3G46130 MYB48 myb domain protein 48 

AT3G28945 AT3G28945 transposable_element_gene 

AT2G43890 AT2G43890 Pectin lyase-like superfamily protein 

AT5G24660 LSU2 response to low sulfur 2 

AT5G65207 AT5G65207 hypothetical protein 

AT1G32450 NRT1.5 nitrate transporter 1.5 

Up-

regulated 

AT3G44260 CAF1a Polynucleotidyl transferase 

AT3G59930 AT3G59930 defensin-like protein 

AT4G17500 ERF-1 ethylene responsive element binding factor 1 

AT2G24580 AT2G24580 FAD-dependent oxidoreductase family protein 

AT5G66985 AT5G66985 hypothetical protein 

AT1G05700 AT1G05700 

Leucine-rich repeat transmembrane protein kinase 

protein 

AT3G63110 IPT3 isopentenyltransferase 3 

AT1G23760 JP630 BURP domain-containing protein 
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AT3G54040 AT3G54040 PAR1 protein 

AT1G27730 STZ salt tolerance zinc finger 

AT2G30040 MAPKKK14 mitogen-activated protein kinase kinase kinase 14 

AT4G24570 DIC2 dicarboxylate carrier 2 

AT2G02680 AT2G02680 Cysteine/Histidine-rich C1 domain family protein 

AT2G24762 GDU4 glutamine dumper 4 

AT1G60960 IRT3 iron regulated transporter 3 

AT3G53730 AT3G53730 Histone superfamily protein 

AT3G16330 AT3G16330 Avr9/Cf-9 rapidly elicited protein 

AT5G01810 CIPK15 CBL-interacting protein kinase 15 

AT4G29780 AT4G29780 nuclease 

AT5G01830 SAUR21 ARM repeat superfamily protein 

AT5G40730 AGP24 arabinogalactan protein 24 

AT5G25940 AT5G25940 early nodulin-like protein 

AT5G01040 LAC8 laccase 8 

AT4G22470 AT4G22470 

protease inhibitor/seed storage/lipid transfer protein 

(LTP) family protein 

AT2G44370 AT2G44370 Cysteine/Histidine-rich C1 domain family protein 

AT4G32480 AT4G32480 sugar phosphate exchanger 

AT3G12700 NANA Eukaryotic aspartyl protease family protein 

AT5G14330 AT5G14330 transmembrane protein 

AT2G07709 AT2G07709 pseudogene 

AT1G80840 WRKY40 WRKY DNA-binding protein 40 

AT2G39530 AT2G39530 Uncharacterized protein family (UPF0497) 

AT1G19380 AT1G19380 sugar 

AT2G24570 WRKY17 WRKY DNA-binding protein 17 

AT1G79850 RPS17 ribosomal protein S17 
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AT1G30760 AT1G30760 FAD-binding Berberine family protein 

AT3G07390 AIR12 auxin-induced in root cultures-like protein 

AT2G28720 AT2G28720 Histone superfamily protein 

AT5G04310 AT5G04310 Pectin lyase-like superfamily protein 

AT1G25560 TEM1 AP2/B3 transcription factor family protein 

AT1G49500 AT1G49500 

transcription initiation factor TFIID subunit 1b-like 

protein 

AT1G10970 ZIP4 zinc transporter 

AT1G12090 ELP extensin-like protein 

AT1G22550 AT1G22550 Major facilitator superfamily protein 

AT4G35480 RHA3B RING-H2 finger A3B 

AT1G10960 FD1 ferredoxin 1 

AT5G09440 EXL4 EXORDIUM like 4 

AT5G48430 AT5G48430 Eukaryotic aspartyl protease family protein 

AT2G40330 PYL6 PYR1-like 6 

AT3G26470 AT3G26470 Powdery mildew resistance protein 

AT3G16570 RALF23 rapid alkalinization factor 23 

AT1G02360 AT1G02360 Chitinase family protein 

AT2G19060 AT2G19060 SGNH hydrolase-type esterase superfamily protein 

AT1G25400 AT1G25400 transmembrane protein 

AT3G13610 AT3G13610 

2-oxoglutarate (2OG) and Fe(II)-dependent 

oxygenase superfamily protein 

AT4G11210 AT4G11210 

Disease resistance-responsive (dirigent-like protein) 

family protein 

AT3G04880 DRT102 DNA-damage-repair/toleration protein (DRT102) 

AT4G39940 AKN2 APS-kinase 2 

AT4G22070 WRKY31 WRKY DNA-binding protein 31 

AT1G80180 AT1G80180 hypothetical protein 
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AT1G68880 bZIP basic leucine-zipper 8 

AT2G38530 LTP2 lipid transfer protein 2 

AT3G15210 ERF4 ethylene responsive element binding factor 4 

AT3G54420 EP3 homolog of carrot EP3-3 chitinase 

AT5G62865 AT5G62865 hypothetical protein 

AT4G15800 RALFL33 ralf-like 33 

AT1G80450 AT1G80450 VQ motif-containing protein 

AT5G66200 ARO2 armadillo repeat only 2 

AT2G37750 AT2G37750 hypothetical protein 

AT1G71880 SUC1 sucrose-proton symporter 1 

AT3G09220 LAC7 laccase 7 

AT5G07110 PRA1.B6 prenylated RAB acceptor 1.B6 

AT4G12480 EARLI1 

Bifunctional inhibitor/lipid-transfer protein/seed 

storage 2S albumin superfamily protein 

AT3G01290 HIR2 

SPFH/Band 7/PHB domain-containing membrane-

associated protein family 

AT2G26370 AT2G26370 

MD-2-related lipid recognition domain-containing 

protein 

AT2G42360 AT2G42360 RING/U-box superfamily protein 

AT5G65690 PCK2 phosphoenolpyruvate carboxykinase 2 

AT1G15670 AT1G15670 Galactose oxidase/kelch repeat superfamily protein 

AT2G23620 MES1 methyl esterase 1 

AT4G12470 AZI1 azelaic acid induced 1 

AT5G07030 AT5G07030 Eukaryotic aspartyl protease family protein 

AT5G05440 PYL5 

Polyketide cyclase/dehydrase and lipid transport 

superfamily protein 

AT2G30620 AT2G30620 

winged-helix DNA-binding transcription factor 

family protein 

AT3G16240 DELTA-TIP delta tonoplast integral protein 
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AT2G48080 AT2G48080 oxidoreductase 

AT5G22920 AT5G22920 

CHY-type/CTCHY-type/RING-type Zinc finger 

protein 

AT1G14900 HMGA high mobility group A 

AT5G43520 AT5G43520 Cysteine/Histidine-rich C1 domain family protein 

AT4G31550 WRKY11 WRKY DNA-binding protein 11 

AT5G41080 GDPD2 PLC-like phosphodiesterases superfamily protein 

AT1G78830 AT1G78830 

Curculin-like (mannose-binding) lectin family 

protein 

AT2G38310 PYL4 PYR1-like 4 

AT3G45960 EXLA3 expansin-like A3 

AT4G25810 XTR6 xyloglucan endotransglycosylase 6 

AT4G28940 AT4G28940 Phosphorylase superfamily protein 

AT5G55050 AT5G55050 GDSL-like Lipase/Acylhydrolase superfamily protein 

AT5G57560 TCH4 

Xyloglucan endotransglucosylase/hydrolase family 

protein 

AT3G63380 AT3G63380 

ATPase E1-E2 type family protein / haloacid 

dehalogenase-like hydrolase family protein 

AT1G14960 AT1G14960 

Polyketide cyclase/dehydrase and lipid transport 

superfamily protein 

AT4G38470 STY46 ACT-like protein tyrosine kinase family protein 

AT2G48130 AT2G48130 

Bifunctional inhibitor/lipid-transfer protein/seed 

storage 2S albumin superfamily protein 

AT1G80240 DGR1 choice-of-anchor C domain protein 

AT4G17340 TIP2;2 tonoplast intrinsic protein 2;2 

AT4G01250 WRKY22 WRKY family transcription factor 

AT3G45840 AT3G45840 Cysteine/Histidine-rich C1 domain family protein 

AT3G46280 AT3G46280 kinase-like protein 

AT4G08950 EXO Phosphate-responsive 1 family protein 

AT2G30930 AT2G30930 hypothetical protein 
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AT1G67110 CYP735A2 cytochrome P450 

AT5G01050 AT5G01050 Laccase/Diphenol oxidase family protein 

AT5G42510 AT5G42510 

Disease resistance-responsive (dirigent-like protein) 

family protein 

AT3G52420 OEP7 outer envelope membrane protein 7 

AT5G38710 AT5G38710 Methylenetetrahydrofolate reductase family protein 

AT3G50350 AT3G50350 membrane insertase 

AT1G62510 AT1G62510 

Bifunctional inhibitor/lipid-transfer protein/seed 

storage 2S albumin superfamily protein 

AT4G30270 XTH24 xyloglucan endotransglucosylase/hydrolase 24 

AT1G73260 KTI1 kunitz trypsin inhibitor 1 

AT5G12340 AT5G12340 DUF4228 domain protein 

AT5G19120 AT5G19120 Eukaryotic aspartyl protease family protein 

AT4G38340 AT4G38340 Plant regulator RWP-RK family protein 

AT3G12500 HCHIB basic chitinase 

AT1G62980 EXPA18 expansin A18 

AT5G18840 AT5G18840 Major facilitator superfamily protein 

AT1G06760 AT1G06760 

winged-helix DNA-binding transcription factor 

family protein 

AT4G35770 SEN1 

Rhodanese/Cell cycle control phosphatase 

superfamily protein 

AT2G28860 CYP710A4 cytochrome P450 

ATMG00020 RRN26 rRNA 

AT2G44380 AT2G44380 Cysteine/Histidine-rich C1 domain family protein 

AT5G58650 PSY1 plant peptide containing sulfated tyrosine 1 

AT3G27270 AT3G27270 TRAM 

AT1G53540 AT1G53540 HSP20-like chaperones superfamily protein 

ATMG00660 ORF149 hypothetical protein 

AT5G20250 DIN10 Raffinose synthase family protein 
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AT5G44130 FLA13 

FASCICLIN-like arabinogalactan protein 13 

precursor 

ATMG00030 ORF107A hypothetical protein 

AT4G06477 AT4G06477 transposable_element_gene 

AT5G64110 AT5G64110 Peroxidase superfamily protein 

AT4G10500 AT4G10500 

2-oxoglutarate (2OG) and Fe(II)-dependent 

oxygenase superfamily protein 

AT3G30775 ERD5 Methylenetetrahydrofolate reductase family protein 

AT4G26320 AGP13 arabinogalactan protein 13 

AT2G20670 AT2G20670 sugar phosphate exchanger 

AT5G64120 AT5G64120 Peroxidase superfamily protein 

AT5G57625 AT5G57625 CAP (Cysteine-rich secretory proteins 

AT1G35140 PHI-1 Phosphate-responsive 1 family protein 

AT5G50760 AT5G50760 SAUR-like auxin-responsive protein family 

AT2G19800 MIOX2 myo-inositol oxygenase 2 

ATCG00020 PSBA photosystem II reaction center protein A 

AT3G21351 AT3G21351 transmembrane protein 

AT2G39510 UMAMIT14 

nodulin MtN21 /EamA-like transporter family 

protein 

AT3G41768 AT3G41768 rRNA 

AT5G22890 AT5G22890 C2H2 and C2HC zinc fingers superfamily protein 

AT4G25470 CBF2 C-repeat/DRE binding factor 2 

AT1G75030 TLP-3 thaumatin-like protein 3 

AT1G15040 GAT1_2.1 

Class I glutamine amidotransferase-like superfamily 

protein 

AT3G27690 LHCB2.3 photosystem II light harvesting complex protein 2.3 

AT2G21040 AT2G21040 

Calcium-dependent lipid-binding (CaLB domain) 

family protein 

AT2G01021 AT2G01021 hypothetical protein 
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AT2G31141 AT2G31141 hypothetical protein 

AT1G18280 AT1G18280 

Bifunctional inhibitor/lipid-transfer protein/seed 

storage 2S albumin superfamily protein 

AT1G08115 U1-5 U1 

ATMG01380 RRN5 rRNA 

AT1G15405 NA NA 

AT5G44120 CRA1 RmlC-like cupins superfamily protein 

AT1G48130 PER1 1-cysteine peroxiredoxin 1 

AT4G28520 CRU3 cruciferin 3 
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Appendix B: Differentially expressed gene list FDR < 0.01 

 

TAIR ID Gene Symbol Gene description 

Down-

regulated 

AT1G08440 AT1G08440 aluminum activated malate transporter family protein 

AT1G24880 LpxC2 

UDP-3-O-acyl N-acetylglycosamine deacetylase 

family protein 

AT2G26150 HSFA2 heat shock transcription factor A2 

AT4G21680 NRT1.8 NITRATE TRANSPORTER 1.8 

AT4G22485 AT4G22485 

Bifunctional inhibitor/lipid-transfer protein/seed 

storage 2S albumin superfamily protein 

AT3G10040 AT3G10040 sequence-specific DNA binding transcription factor 

AT3G45060 NRT2.6 high affinity nitrate transporter 2.6 

AT4G22505 AT4G22505 

Bifunctional inhibitor/lipid-transfer protein/seed 

storage 2S albumin superfamily protein 

AT4G00910 AT4G00910 aluminum activated malate transporter family protein 

AT3G46130 MYB48 myb domain protein 48 

AT3G28945 AT3G28945 transposable_element_gene 

AT2G43890 AT2G43890 Pectin lyase-like superfamily protein 

AT5G24660 LSU2 response to low sulfur 2 

AT5G65207 AT5G65207 hypothetical protein 

AT2G45860 AT2G45860 hypothetical protein 

AT4G17670 AT4G17670 senescence-associated family protein (DUF581) 

AT5G58770 cPT4 

Undecaprenyl pyrophosphate synthetase family 

protein 

AT2G33480 NAC041 NAC domain containing protein 41 

 

AT1G32450 NRT1.5 nitrate transporter 1.5 

AT5G60520 AT5G60520 

Late embryogenesis abundant (LEA) protein-like 

protein 

AT3G25930 AT3G25930 

Adenine nucleotide alpha hydrolases-like 

superfamily protein 

AT4G39190 AT4G39190 nucleolar-like protein 
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AT2G16660 AT2G16660 Major facilitator superfamily protein 

AT1G77580 AT1G77580 filament-like protein (DUF869) 

AT1G17180 GSTU25 glutathione S-transferase TAU 25 

AT5G27950 AT5G27950 

P-loop containing nucleoside triphosphate hydrolases 

superfamily protein 

AT1G78340 GSTU22 glutathione S-transferase TAU 22 

AT4G10450 AT4G10450 Ribosomal protein L6 family 

AT1G60470 GolS4 galactinol synthase 4 

AT2G30750 CYP71A12 cytochrome P450 family 71 polypeptide 

Up-

regulated 

AT3G44260 CAF1a Polynucleotidyl transferase 

AT3G19030 AT3G19030 

transcription initiation factor TFIID subunit 1b-like 

protein 

AT3G49940 LBD38 LOB domain-containing protein 38 

AT3G59930 AT3G59930 defensin-like protein 

AT2G35270 GIK Putative AT-hook DNA-binding family protein 

AT1G27020 AT1G27020 plant/protein 

AT2G21020 AT2G21020 pseudogene 

AT1G18140 LAC1 laccase 1 

AT4G17500 ERF-1 ethylene responsive element binding factor 1 

AT3G20110 CYP705A20 cytochrome P450 

AT2G24580 AT2G24580 FAD-dependent oxidoreductase family protein 

AT5G66985 AT5G66985 hypothetical protein 

AT1G05700 AT1G05700 

Leucine-rich repeat transmembrane protein kinase 

protein 

AT5G10430 AGP4 arabinogalactan protein 4 

AT4G31730 GDU1 glutamine dumper 1 

AT4G16370 OPT3 oligopeptide transporter 

AT3G13310 AT3G13310 Chaperone DnaJ-domain superfamily protein 
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AT3G63110 IPT3 isopentenyltransferase 3 

AT5G49700 AT5G49700 Putative AT-hook DNA-binding family protein 

AT4G14040 SBP2 selenium-binding protein 2 

AT1G20390 AT1G20390 transposable_element_gene 

AT2G48140 EDA4 

Bifunctional inhibitor/lipid-transfer protein/seed 

storage 2S albumin superfamily protein 

AT1G74010 AT1G74010 

Calcium-dependent phosphotriesterase superfamily 

protein 

AT1G23760 JP630 BURP domain-containing protein 

AT2G01190 PDE331 Octicosapeptide/Phox/Bem1p family protein 

AT3G12750 ZIP1 zinc transporter 1 precursor 

AT2G47840 Tic20-II Uncharacterized conserved protein ycf60 

AT1G79870 AT1G79870 

D-isomer specific 2-hydroxyacid dehydrogenase 

family protein 

AT1G13260 RAV1 related to ABI3/VP1 1 

AT5G16370 AAE5 acyl activating enzyme 5 

AT1G80820 CCR2 cinnamoyl coa reductase 

AT5G42100 BG_PPAP beta-1 

AT4G25760 GDU2 glutamine dumper 2 

AT3G54040 AT3G54040 PAR1 protein 

AT1G27730 STZ salt tolerance zinc finger 

AT2G30040 MAPKKK14 mitogen-activated protein kinase kinase kinase 14 

AT2G34080 AT2G34080 Cysteine proteinases superfamily protein 

AT4G24570 DIC2 dicarboxylate carrier 2 

AT5G64310 AGP1 arabinogalactan protein 1 

AT1G10480 ZFP5 zinc finger protein 5 

AT2G38110 GPAT6 glycerol-3-phosphate acyltransferase 6 

AT5G47450 TIP2;3 tonoplast intrinsic protein 2;3 
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AT4G18340 AT4G18340 Glycosyl hydrolase superfamily protein 

AT5G15960 KIN1 

stress-responsive protein (KIN1) / stress-induced 

protein (KIN1) 

AT2G02680 AT2G02680 Cysteine/Histidine-rich C1 domain family protein 

AT3G51340 AT3G51340 Eukaryotic aspartyl protease family protein 

AT2G24762 GDU4 glutamine dumper 4 

AT5G63160 BT1 BTB and TAZ domain protein 1 

AT3G04720 PR4 pathogenesis-related 4 

AT1G60960 IRT3 iron regulated transporter 3 

AT3G53730 AT3G53730 Histone superfamily protein 

AT5G20650 COPT5 copper transporter 5 

AT2G37180 RD28 Aquaporin-like superfamily protein 

AT3G16330 AT3G16330 Avr9/Cf-9 rapidly elicited protein 

AT2G47130 SDR3 NAD(P)-binding Rossmann-fold superfamily protein 

AT1G14890 AT1G14890 

Plant invertase/pectin methylesterase inhibitor 

superfamily protein 

AT1G20225 AT1G20225 Thioredoxin superfamily protein 

AT2G38940 PHT1;4 phosphate transporter 1;4 

AT2G48030 AT2G48030 DNAse I-like superfamily protein 

AT4G28990 AT4G28990 RNA-binding protein-like protein 

AT5G01810 CIPK15 CBL-interacting protein kinase 15 

AT2G37980 AT2G37980 O-fucosyltransferase family protein 

AT1G10550 XTH33 xyloglucan:xyloglucosyl transferase 33 

AT4G29780 AT4G29780 nuclease 

AT5G01830 SAUR21 ARM repeat superfamily protein 

AT5G40730 AGP24 arabinogalactan protein 24 

AT4G20390 AT4G20390 Uncharacterized protein family (UPF0497) 

AT5G25940 AT5G25940 early nodulin-like protein 
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AT5G01040 LAC8 laccase 8 

AT4G08685 SAH7 Pollen Ole e 1 allergen and extensin family protein 

AT4G22470 AT4G22470 

protease inhibitor/seed storage/lipid transfer protein 

(LTP) family protein 

AT2G34490 CYP710A2 cytochrome P450 

AT2G44370 AT2G44370 Cysteine/Histidine-rich C1 domain family protein 

AT5G24230 AT5G24230 Lipase class 3-related protein 

AT2G07717 AT2G07717 pseudogene 

AT1G80380 AT1G80380 

P-loop containing nucleoside triphosphate hydrolases 

superfamily protein 

AT5G63510 

GAMMA 

CAL1 gamma carbonic anhydrase like 1 

AT5G60660 PIP2;4 plasma membrane intrinsic protein 2;4 

AT2G35710 PGSIP7 

Nucleotide-diphospho-sugar transferases superfamily 

protein 

AT2G38860 YLS5 

Class I glutamine amidotransferase-like superfamily 

protein 

AT4G32480 AT4G32480 sugar phosphate exchanger 

AT3G12700 NANA Eukaryotic aspartyl protease family protein 

AT4G25110 MC2 metacaspase 2 

AT1G08880 H2AXA Histone superfamily protein 

AT4G30660 AT4G30660 Low temperature and salt responsive protein family 

AT5G14330 AT5G14330 transmembrane protein 

AT2G39710 AT2G39710 Eukaryotic aspartyl protease family protein 

AT4G35490 MRPL11 mitochondrial ribosomal protein L11 

AT2G07709 AT2G07709 pseudogene 

AT3G25717 RTFL16 ROTUNDIFOLIA like 16 

AT3G44380 AT3G44380 

Late embryogenesis abundant (LEA) hydroxyproline-

rich glycoprotein family 

AT4G32950 AT4G32950 Protein phosphatase 2C family protein 



118 

 

AT1G64660 MGL methionine gamma-lyase 

AT3G03150 AT3G03150 hypothetical protein 

AT3G26760 AT3G26760 NAD(P)-binding Rossmann-fold superfamily protein 

AT2G44790 UCC2 uclacyanin 2 

AT1G13245 RTFL17 ROTUNDIFOLIA like 17 

AT2G40590 AT2G40590 Ribosomal protein S26e family protein 

AT1G80840 WRKY40 WRKY DNA-binding protein 40 

AT2G39530 AT2G39530 Uncharacterized protein family (UPF0497) 

AT5G59680 AT5G59680 Leucine-rich repeat protein kinase family protein 

AT1G19380 AT1G19380 sugar 

AT2G24570 WRKY17 WRKY DNA-binding protein 17 

AT1G79850 RPS17 ribosomal protein S17 

AT1G30760 AT1G30760 FAD-binding Berberine family protein 

AT3G07390 AIR12 auxin-induced in root cultures-like protein 

AT2G28720 AT2G28720 Histone superfamily protein 

AT1G72230 AT1G72230 Cupredoxin superfamily protein 

AT2G01410 AT2G01410 NHL domain-containing protein 

AT5G04310 AT5G04310 Pectin lyase-like superfamily protein 

AT4G21120 AAT1 amino acid transporter 1 

AT1G25560 TEM1 AP2/B3 transcription factor family protein 

AT4G08300 UMAMIT17 

nodulin MtN21 /EamA-like transporter family 

protein 

AT2G21100 AT2G21100 

Disease resistance-responsive (dirigent-like protein) 

family protein 

AT1G49500 AT1G49500 

transcription initiation factor TFIID subunit 1b-like 

protein 

AT5G54640 RAT5 Histone superfamily protein 

AT1G10970 ZIP4 zinc transporter 
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AT1G12090 ELP extensin-like protein 

AT1G22550 AT1G22550 Major facilitator superfamily protein 

AT4G35480 RHA3B RING-H2 finger A3B 

AT2G20820 AT2G20820 hypothetical protein 

AT3G11370 AT3G11370 Cysteine/Histidine-rich C1 domain family protein 

AT1G22500 ATL15 RING/U-box superfamily protein 

AT5G23220 NIC3 nicotinamidase 3 

AT2G30210 LAC3 laccase 3 

AT1G10960 FD1 ferredoxin 1 

AT5G09440 EXL4 EXORDIUM like 4 

AT2G01080 AT2G01080 

Late embryogenesis abundant (LEA) hydroxyproline-

rich glycoprotein family 

AT5G48430 AT5G48430 Eukaryotic aspartyl protease family protein 

AT2G40330 PYL6 PYR1-like 6 

AT3G26470 AT3G26470 Powdery mildew resistance protein 

AT5G10980 AT5G10980 Histone superfamily protein 

AT5G04770 CAT6 cationic amino acid transporter 6 

AT2G40230 AT2G40230 HXXXD-type acyl-transferase family protein 

AT3G16570 RALF23 rapid alkalinization factor 23 

AT5G42500 AT5G42500 

Disease resistance-responsive (dirigent-like protein) 

family protein 

AT1G02360 AT1G02360 Chitinase family protein 

AT3G22160 AT3G22160 VQ motif-containing protein 

AT2G19060 AT2G19060 SGNH hydrolase-type esterase superfamily protein 

AT1G25400 AT1G25400 transmembrane protein 

AT3G13610 AT3G13610 

2-oxoglutarate (2OG) and Fe(II)-dependent 

oxygenase superfamily protein 

AT4G11210 AT4G11210 

Disease resistance-responsive (dirigent-like protein) 

family protein 
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AT3G04880 DRT102 DNA-damage-repair/toleration protein (DRT102) 

AT4G39940 AKN2 APS-kinase 2 

AT1G68620 AT1G68620 alpha/beta-Hydrolases superfamily protein 

AT4G22070 WRKY31 WRKY DNA-binding protein 31 

AT1G80180 AT1G80180 hypothetical protein 

AT4G18510 CLE2 CLAVATA3/ESR-related 2 

AT1G68880 bZIP basic leucine-zipper 8 

AT2G38530 LTP2 lipid transfer protein 2 

AT3G15210 ERF4 ethylene responsive element binding factor 4 

AT3G54420 EP3 homolog of carrot EP3-3 chitinase 

AT2G35750 AT2G35750 transmembrane protein 

AT5G62865 AT5G62865 hypothetical protein 

AT5G17820 AT5G17820 Peroxidase superfamily protein 

AT4G15800 RALFL33 ralf-like 33 

AT2G41380 AT2G41380 

S-adenosyl-L-methionine-dependent 

methyltransferases superfamily protein 

AT4G15150 AT4G15150 glycine-rich protein 

AT1G80450 AT1G80450 VQ motif-containing protein 

AT2G34500 CYP710A1 cytochrome P450 

AT5G22355 AT5G22355 Cysteine/Histidine-rich C1 domain family protein 

AT5G66200 ARO2 armadillo repeat only 2 

AT2G37750 AT2G37750 hypothetical protein 

AT1G71880 SUC1 sucrose-proton symporter 1 

AT4G28840 AT4G28840 mediator of RNA polymerase II transcription subunit 

AT3G09220 LAC7 laccase 7 

AT1G23205 AT1G23205 

Plant invertase/pectin methylesterase inhibitor 

superfamily protein 

AT5G07110 PRA1.B6 prenylated RAB acceptor 1.B6 
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AT4G12480 EARLI1 

Bifunctional inhibitor/lipid-transfer protein/seed 

storage 2S albumin superfamily protein 

AT4G29740 CKX4 cytokinin oxidase 4 

AT3G01290 HIR2 

SPFH/Band 7/PHB domain-containing membrane-

associated protein family 

AT2G26370 AT2G26370 

MD-2-related lipid recognition domain-containing 

protein 

AT3G04530 PPCK2 phosphoenolpyruvate carboxylase kinase 2 

AT2G42360 AT2G42360 RING/U-box superfamily protein 

AT5G65690 PCK2 phosphoenolpyruvate carboxykinase 2 

AT1G15670 AT1G15670 Galactose oxidase/kelch repeat superfamily protein 

AT2G23620 MES1 methyl esterase 1 

AT4G12470 AZI1 azelaic acid induced 1 

AT5G07030 AT5G07030 Eukaryotic aspartyl protease family protein 

AT5G05440 PYL5 

Polyketide cyclase/dehydrase and lipid transport 

superfamily protein 

AT1G54740 AT1G54740 FANTASTIC four-like protein (DUF3049) 

AT5G64100 AT5G64100 Peroxidase superfamily protein 

AT2G30620 AT2G30620 

winged-helix DNA-binding transcription factor 

family protein 

AT1G63530 AT1G63530 hypothetical protein 

AT3G16240 DELTA-TIP delta tonoplast integral protein 

AT2G48080 AT2G48080 oxidoreductase 

AT5G22920 AT5G22920 

CHY-type/CTCHY-type/RING-type Zinc finger 

protein 

AT1G14900 HMGA high mobility group A 

AT5G43520 AT5G43520 Cysteine/Histidine-rich C1 domain family protein 

AT1G20030 AT1G20030 Pathogenesis-related thaumatin superfamily protein 

AT4G31550 WRKY11 WRKY DNA-binding protein 11 

AT5G41080 GDPD2 PLC-like phosphodiesterases superfamily protein 
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AT5G18850 AT5G18850 Low-density receptor-like protein 

AT1G78830 AT1G78830 

Curculin-like (mannose-binding) lectin family 

protein 

AT2G38310 PYL4 PYR1-like 4 

AT3G45960 EXLA3 expansin-like A3 

AT2G35980 YLS9 

Late embryogenesis abundant (LEA) hydroxyproline-

rich glycoprotein family 

AT4G25810 XTR6 xyloglucan endotransglycosylase 6 

AT4G28940 AT4G28940 Phosphorylase superfamily protein 

ATCG00480 PB ATP synthase subunit beta 

AT5G55050 AT5G55050 GDSL-like Lipase/Acylhydrolase superfamily protein 

AT5G57560 TCH4 

Xyloglucan endotransglucosylase/hydrolase family 

protein 

AT3G63380 AT3G63380 

ATPase E1-E2 type family protein / haloacid 

dehalogenase-like hydrolase family protein 

AT1G14960 AT1G14960 

Polyketide cyclase/dehydrase and lipid transport 

superfamily protein 

AT2G32660 RLP22 receptor like protein 22 

AT4G38470 STY46 ACT-like protein tyrosine kinase family protein 

AT4G24180 TLP1 THAUMATIN-LIKE PROTEIN 1 

AT2G48130 AT2G48130 

Bifunctional inhibitor/lipid-transfer protein/seed 

storage 2S albumin superfamily protein 

AT1G80240 DGR1 choice-of-anchor C domain protein 

AT4G17340 TIP2;2 tonoplast intrinsic protein 2;2 

AT4G01250 WRKY22 WRKY family transcription factor 

AT3G45840 AT3G45840 Cysteine/Histidine-rich C1 domain family protein 

AT3G46280 AT3G46280 kinase-like protein 

AT3G46230 HSP17.4 heat shock protein 17.4 

AT4G08950 EXO Phosphate-responsive 1 family protein 

AT4G28040 UMAMIT33 nodulin MtN21 /EamA-like transporter family 
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protein 

AT2G30930 AT2G30930 hypothetical protein 

AT1G67110 CYP735A2 cytochrome P450 

AT3G57520 SIP2 seed imbibition 2 

AT5G01050 AT5G01050 Laccase/Diphenol oxidase family protein 

AT1G08630 THA1 threonine aldolase 1 

AT5G42510 AT5G42510 

Disease resistance-responsive (dirigent-like protein) 

family protein 

AT3G52420 OEP7 outer envelope membrane protein 7 

AT5G38710 AT5G38710 Methylenetetrahydrofolate reductase family protein 

AT3G50350 AT3G50350 membrane insertase 

AT1G62510 AT1G62510 

Bifunctional inhibitor/lipid-transfer protein/seed 

storage 2S albumin superfamily protein 

AT4G30270 XTH24 xyloglucan endotransglucosylase/hydrolase 24 

AT1G73260 KTI1 kunitz trypsin inhibitor 1 

AT5G12340 AT5G12340 DUF4228 domain protein 

AT5G19120 AT5G19120 Eukaryotic aspartyl protease family protein 

AT1G16390 42646 organic cation/carnitine transporter 3 

AT4G38340 AT4G38340 Plant regulator RWP-RK family protein 

AT3G12500 HCHIB basic chitinase 

AT1G62980 EXPA18 expansin A18 

AT5G18840 AT5G18840 Major facilitator superfamily protein 

AT5G47560 TDT tonoplast dicarboxylate transporter 

AT1G06760 AT1G06760 

winged-helix DNA-binding transcription factor 

family protein 

AT4G35770 SEN1 

Rhodanese/Cell cycle control phosphatase 

superfamily protein 

AT5G23950 AT5G23950 

Calcium-dependent lipid-binding (CaLB domain) 

family protein 

AT2G28860 CYP710A4 cytochrome P450 
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ATMG00020 RRN26 rRNA 

AT2G44380 AT2G44380 Cysteine/Histidine-rich C1 domain family protein 

AT5G58650 PSY1 plant peptide containing sulfated tyrosine 1 

AT3G27270 AT3G27270 TRAM 

AT4G33020 ZIP9 ZIP metal ion transporter family 

AT1G53540 AT1G53540 HSP20-like chaperones superfamily protein 

AT1G17345 AT1G17345 SAUR-like auxin-responsive protein family 

ATMG00660 ORF149 hypothetical protein 

AT5G20250 DIN10 Raffinose synthase family protein 

AT5G44130 FLA13 

FASCICLIN-like arabinogalactan protein 13 

precursor 

ATMG00030 ORF107A hypothetical protein 

AT4G06477 AT4G06477 transposable_element_gene 

AT3G21370 BGLU19 beta glucosidase 19 

AT5G64110 AT5G64110 Peroxidase superfamily protein 

AT4G10500 AT4G10500 

2-oxoglutarate (2OG) and Fe(II)-dependent 

oxygenase superfamily protein 

AT3G30775 ERD5 Methylenetetrahydrofolate reductase family protein 

AT4G26320 AGP13 arabinogalactan protein 13 

AT2G20670 AT2G20670 sugar phosphate exchanger 

ATCG00470 ATPE ATP synthase epsilon chain 

AT5G64120 AT5G64120 Peroxidase superfamily protein 

AT5G57625 AT5G57625 CAP (Cysteine-rich secretory proteins 

AT1G35140 PHI-1 Phosphate-responsive 1 family protein 

AT4G25790 AT4G25790 CAP (Cysteine-rich secretory proteins 

AT4G33730 AT4G33730 CAP (Cysteine-rich secretory proteins 

AT5G50760 AT5G50760 SAUR-like auxin-responsive protein family 

AT2G19800 MIOX2 myo-inositol oxygenase 2 
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ATCG00020 PSBA photosystem II reaction center protein A 

AT3G21351 AT3G21351 transmembrane protein 

AT2G39510 UMAMIT14 

nodulin MtN21 /EamA-like transporter family 

protein 

AT3G41768 AT3G41768 rRNA 

AT5G22890 AT5G22890 C2H2 and C2HC zinc fingers superfamily protein 

AT4G25470 CBF2 C-repeat/DRE binding factor 2 

AT1G75030 TLP-3 thaumatin-like protein 3 

AT1G15040 GAT1_2.1 

Class I glutamine amidotransferase-like superfamily 

protein 

AT3G27690 LHCB2.3 photosystem II light harvesting complex protein 2.3 

AT5G54075 U3D U3D 

AT2G21040 AT2G21040 

Calcium-dependent lipid-binding (CaLB domain) 

family protein 

AT5G53740 AT5G53740 hypothetical protein 

AT2G01021 AT2G01021 hypothetical protein 

AT2G31141 AT2G31141 hypothetical protein 

AT1G18280 AT1G18280 

Bifunctional inhibitor/lipid-transfer protein/seed 

storage 2S albumin superfamily protein 

AT1G08115 U1-5 U1 

ATMG01380 RRN5 rRNA 

AT1G15405 NA NA 

AT5G44120 CRA1 RmlC-like cupins superfamily protein 

AT1G48130 PER1 1-cysteine peroxiredoxin 1 

AT4G28520 CRU3 cruciferin 3 
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Appendix C: Diagnostic fit of variance function 

The fitted variance (red line) follows the gene variance estimates closely. Due to the use 

of four replicates the per gene variance levels show a fairly tight spread. 
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Appendix D: M-A plot of fold change vs base means for each gene 

Significantly differentially expressed genes (FDR < 0.01) are highlighted in red. 

Considerably more genes are upregulated than downregulated. Considerable noise can be 

seen with genes possessing a mean of less than 10 reads mapped. 
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Appendix E: Copyright permission to include figure previously published 
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Appendix F: Copyright permission to include text excerpts previously published 
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