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Abstract 

 Long-term memory (LTM) requires gene transcription. However, there is still much to 

learn about which genes are transcriptionally regulated during LTM and the biological roles they 

play. Here, gene expression changes were characterized in Drosophila melanogaster over a time 

course of LTM formation and maintenance in neurons of the mushroom body (MB), a structure 

required for normal learning and memory. I identified 120 genes differentially expressed (q < 0.2, 

fold change > 1.3) 24h after LTM induction. Among these were 13 potential downstream targets 

for RNA localization by the known memory genes pumilo, staufen and oskar, several genes 

encoding chromatin regulators and seven genes with cAMP response elements (CRE) that may be 

regulated by cAMP response element binding (CREB)-mediated transcription.  Taken together, 

the results of this study provide a rich data-set of transcriptionally-regulated LTM candidate genes 

for further study.  

Keywords: 

Long Term Memory Formation, Long Term Memory Maintenance, RNA-sequencing, 

Transcriptome Analysis, CREB, Mushroom Body, Drosophila melanogaster, INTACT 
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Chapter 1: Introduction 

Learning and memory can be defined as the creation, storage and recall of an altered 

behavioural response produced by an environmental input (Sweatt, 2010). Generally speaking, the 

processes behind learning and memory can be subdivided into three distinct phases (Tully, 2003; 

Hawkins et al., 2006). Acquisition, the process of learning, is the perception of a new experience. 

From this, a short-term memory (STM) is formed, which is malleable and transient. In the 

appropriate conditions, often due to repetition of the input, this experience may be consolidated 

and a long-term memory (LTM) formed. While organisms may have subtle differences in how 

they process learning and memory, often these phases are conserved. Study of these different 

phases can give insight into the cellular and molecular mechanisms of learning and memory.  

1.1 The molecular pathways of memory 

             Simple forms of learning can be divided into two broad categories, associative and non-

associative, which, while utilizing different procedures, induce learning and memory by similar 

biological processes (Lau et al., 2013). Non-associative forms of learning, like habituation, utilize 

repeated exposure to a single stimulus to produce a decrease in behavioural response (Groves & 

Thompson, 1970). Contrarily, associative learning requires input from two environmental signals 

to modify behaviour. Classical Pavlovian conditioning is a form of associative learning that pairs 

a biologically neutral stimulus, termed the conditioned stimulus (CS), with a stimulus which elicits 

an involuntary biological response, known as the unconditioned stimulus (US) (Domjan, 2005). 

Often the CS is a sensory input, usually a smell or visual cue, whereas the US involves reward or 

punishment, commonly through the provision of food or an aversive shock. Through the CS/US 

pairing and with sufficient training, the CS becomes associated with the innate response of the US, 

being able to produce the same biological response when presented alone. This CS/US pairing 

forms basis of many associative learning and memory paradigms. 

          At a molecular level, the CS/US pairing of associative learning converge to activate the 3’, 

5’ cyclic adenosine monophosphate (cAMP) pathway (Figure 1.1). The cAMP signalling cascade 

has been consistently shown to be implicated in the different phases of learning and memory (Rall 

et al., 1956). The importance cAMP has in memory processes was initially realized through studies 

on the sea slug Aplysia (Brunelli, 1976). Through manipulation of a natural gill withdrawal reflex 
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in response to an electric shock, it was determined that cAMP was the key secondary molecule 

involved in the formation of the observed adapted behaviour. In parallel, single-gene mutants in 

Drosophila melanogaster further emphasized the importance of cAMP. In flies, mutants of the 

cAMP-generating rutabaga and the cAMP-inhibiting dunce have been shown to be required for 

both STM and LTM formation (Dudai et al., 1976; Livingstone et al.,1984; Blum et al., 2009). 

Initial activation of the cAMP pathway occurs when g-protein coupled receptors (gPCR), 

stimulated by US, activate a family of enzymes called adenylyl cyclases (AC) which function to 

catalyse the conversion of adenosine triphosphate (ATP) to cAMP (Figure 1.1). AC has not only 

been shown to be responsive to both gPCR activation but also to the influx of Ca2+ or its 

downstream affecters like calmodulin (Levin et al.,1992). The initial influx of calcium is attributed 

to the modulation of NMDA, cholinergic or GABAergic receptors and is a result of CS stimulation. 

This cross-talk between two distinct molecular pathways indicates that AC is the point of 

biological convergence between the CS/US pairing and acts a molecular coincidence detector 

during associative learning, acting synergistically to increase cAMP levels (Tomchik & Davis, 

2009).  

          Downstream of cAMP, the molecular pathways differ between types of memory (Figure 

1.2). Protein kinase A (PKA) is a tetrameric enzyme consisting of two regulatory and two catalytic 

subunits. PKA is regulated by cAMP. In the absence of cAMP, PKA is incapable of kinase activity 

as the regulatory and catalytic subunits are bound together. However, when cAMP levels increase, 

these subunits do not bind and catalytic PKA is capable of phosphorylating downstream elements 

of cAMP pathway required for both STM and LTM formation (Drain et al., 1991). Relevant to 

STM formation is the inhibition of S-type K+ channels, which increases cellular excitability 

(Kandel, 2001). For LTM formation, PKA phosphorylates the transcription factor cAMP-response 

element binding protein (CREB). To mediate transcription during memory formation and 

maintenance, CREB complexes with various coactivators including cAMP binding protein (CBP) 

and CREB-regulated transcription coactivator (CRTC). Upon complex formation, CREB binds to 

cAMP response elements (CRE) within the genome (Hirano, 2016; Montminy et al., 1986, Smolik 

et al., 1992). CREs are usually located within enhancer or promoter regions of genes and often act 

to increase transcription. Only LTM has been shown to require CREB-dependent transcription and 

the targets of CREB remain of great importance to understanding the processes behind LTM 

(Frank and Greenberg, 1994).  
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Figure 1.1: The Canonical Molecular Pathway for Memory Formation. Diagram 

illustrating the canonical molecular pathway for associative memory formation. 

Associative memory can be formed by repeated exposure to two environmental signals: 

the biologically neutral, conditioned stimulus (CS), and the unconditioned stimulus (US), 

which elicits an involuntary biological response. At a molecular level, US act upon g-

protein coupled receptors (gPCR), whereas CS act on calcium-effecting receptors, like N-

methyl-D-aspartate (NMDA). These two signals converge to activate adenylyl cyclase 

(AC), which is known to be required for both short term memory (STM), as well as long 

term memory (LTM) and acts to convert adenosine triphosphate (ATP) to cyclic 

adenosine monophosphate (cAMP). Inhibition of cAMP through phosphodiesterase’s 

(PDE) have also shown to be required for STM. Downstream of cAMP, the tetrameric 

enzyme protein kinase A (PKA) disassociates and acts to phosphorylate cAMP-response 

element binding protein (CREB), a transcription factor known to be required for LTM.  

Adapted from Bolduc & Tully, 2014.  
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1.2 The cellular correlates of memory 

          At the cellular level, learning and memory can be correlated to both structural alterations 

within neuronal networks and changes in synaptic strength, also known as synaptic plasticity 

(Lisman, 1994). Synapses are junctions between neurons which act to pass electrical or chemical 

signals between one another. The neuronal networks created by synaptic connections show 

remodeling in response to environmental inputs that induce the experience-dependent learning 

circuit (Holtmaat and Svoboda, 2009). Remodeling of neural circuits is often represented by an 

increase in dendritic branching and length, dendritic spine growth and stabilization, and the 

formation of new synaptic contacts (Bourne and Harris, 2011; De Roo, Klauser & Muller., 2008; 

Trachtenberg et al., 2002). The structural changes that occur during neuronal remodeling are 

initially transient, with most existing only for a short period; however, some will be stabilized to 

become functional synapses within existing networks (Hill and Zito, 2013). Taken together, the 

evidence that neural networks undergo structural changes in response to environmental input 

highlights the dynamic nature of these networks.  

             Critical to associative learning and memory is the presence of two environmental signals 

that converge to alter synaptic strength (Lee, 2015). Long-term potentiation (LTP) is a form of 

synaptic plasticity that involves the persistent strengthening of synapses in response to two distinct 

environmental inputs (Shors and Matzel, 1997). LTP is the best candidate for being the cellular 

correlate of associative LTM as it has features advantageous to memory storage (Sigurdsson et al., 

2007). First, and most obvious to LTM, is that LTP can enact a lasting increase in synaptic strength. 

Second, LTP is input-specific, with only stimulated synapses being activated, not spreading to 

other synapses connected to the same neuron (Andersen et al., 1980). This is an important feature 

as synapses individually strengthened in response to environmental inputs would display a larger 

storage capacity than if general changes occurred over the dendritic tree.  Finally, LTP is both 

cooperative and associative, requiring multiple inputs, to become potentiated (Barrionuevo and 

Brown, 1983). Taken together with evidence showing that the cAMP pathway is a modulator of 

synaptic strength, it is clear that LTP offers the best candidate for being the cellular correlate of 

associative LTM (Frey et al., 1993). 

            LTP can be divided into two separate phases, distinct both temporally and mechanistically. 

Early phase LTP can be induced with a single stimulation and in rat hippocampal slices can last 
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between one and two hours (Huang & Kandel, 1994). Early phase LTP is independent of protein 

synthesis, instead depending on modifying existing proteins (Andersen et al., 1980). These 

modifications include the phosphorylation of postsynaptic AMPA receptors (AMPAR) to increase 

their activity or by trafficking existing non-synaptic AMPARs into the postsynaptic membrane 

(Malinow & Malenka, 2002). The increased activity and number of AMPARs in the postsynaptic 

membrane is crucial as it allows future excitatory stimuli to evoke a greater response. This can be 

contrasted with late-phase LTP. Late phase LTP is induced by repeated stimulation and has the 

potential to last for days.  Perhaps the most important differentiating factor between the two phases 

of LTP is that late-phase LTP is dependent on gene transcription (Barrionuevo and Brown, 1983; 

Huang & Kandel, 1994).  This reliance on the expression of genes in response to environmental 

input is key as it indicates that to generate lasting changes to synaptic strength, ultimately, the 

synthesis of new proteins is required.  Of the different forms of associative memory only LTM has 

been shown to require gene transcription. Thus, revealing the genes differentially expressed during 

LTM and the proteins they encode may offer new insight into the molecular mechanisms of 

learning and memory (Baranodes and Jarvik, 1964; Montarolo et al., 1986).  

 

1.3 Drosophila melanogaster as a model organism for learning and memory processes 

Drosophila melanogaster, commonly referred to as the fruit fly and hereafter referred to as 

Drosophila, is an organism that is commonly used to provide insight into the genes underlying 

biological processes. Drosophila offers a flexible model for study as it is both easy to culture and 

quick to breed, with each successive generation taking about ten days to develop from egg to 

adulthood (Roote and Prokop, 2017).  However, perhaps most important to Drosophila’s use in 

genetic study is that, while structurally different from humans, there is considerable genetic 

homology.  It has been estimated that 75% of human disease genes have a recognisable match 

within the fruit fly genome (Reiter et al., 2001).  Available for use in Drosophila are many genetic 

tools which can be used to study these disease genes and further our understanding of the normal 

molecular pathways disrupted in disease.  

One genetic tool available for Drosophila is the UAS/GAL4 system which acts to direct 

the expression of genes within specific cell populations (Brand and Perrimon, 1993). The 

UAS/GAL4 system utilizes the yeast transcriptional activator GAL4 to activate the expression of 
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transgenes under the control of the GAL4-specific enhancer, UAS. Tissue-specific expression of 

the UAS controlled transgenes is achieved by expressing GAL4 under the control of one or more 

transcriptional enhancers (Jennett et al., 2012). By utilizing specific enhancers to drive GAL4, its 

expression pattern is both predictable and reproducible, and allows for UAS-target gene expression 

in specific cell populations (Pfeiffer et al., 2008). In Drosophila, the UAS/GAL4 system has been 

combined with several other genetic tools to further study the role of specific genes in specific cell 

populations. One example of a genetic tool used in combination with the UAS/GAL4 is the 

targeted expression of a fluorescent reporter protein, like that used in this study, green fluorescent 

protein (GFP). As GAL4 alone is not visible, the use of a fluorescent cellular tag is necessary for 

observation of UAS/GAL4 expression by microscopy and can also be used to isolate specific 

fluorescently-tagged cell populations for molecular profiling (Pfeiffer et al., 2008; Henry et al., 

2012).  While capable of morphological and molecular profiling of normal flies, the UAS/GAL4 

system can also be combined with gene knockdown tools, like RNA interference (RNAi), to study 

the effects that specific-gene loss has biologically. Thus, taken together, the UAS/GAL4 system 

offers a valuable tool for studying the role specific genes play in specific cell populations.   

  Drosophila is commonly used as a model organism to study learning and memory. Using 

olfactory shock-avoidance conditioning for training, many of the first learning and memory genes 

were identified in flies including dunce, rutabaga, radish, cabbage and turnip (Quinn et al., 1974; 

Dudai et al., 1976; Livingstone et al., 1984; Folkers et al., 1993; Aceves-Piña and Quinn, 1979; 

Choi et al., 1991). These fly mutants helped to establish the role of the cAMP pathway in memory. 

Further studies on Drosophila have shown that it also has the other required molecular components 

for memory that are also important in mammals, including NMDA, calmodulin and CAMKII (Lee, 

2015; Malik & Hodge 2014).  Like other species used to study memory, Drosophila shows distinct 

phases of memory differentiated by distinct cellular and molecular properties. Of these phases only 

LTM requires gene transcription (Tully, 2003; McBride et al., 1999). Thus, Drosophila offers an 

excellent model for studying learning and memory, and by using the available genetic tools, the 

molecular components of memory can be further dissected.  
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1.4 The mushroom body 

The mushroom body (MB) is a region of the fly brain crucial to normal learning and 

memory. Chemical ablation of this structure impairs both STM and LTM in various learning 

paradigms including olfactory and courtship conditioning (deBelle and Heisenberg, 1994; 

McBride et al., 1999). Physically, this structure appears as a pair of neuropils, synaptically dense 

and containing multiple distinct anatomical domains (Figure 1.2). Overall, there are 

approximately 2200 neurons which have synaptic connections into the MB (Aso et al., 2014). 

These neurons can be broadly divided into two categories: intrinsic and extrinsic.  Intrinsic neurons 

of the MB are located within the dorsal protocerebrum and consist of 2000 Kenyon cells (KC) 

(Heisenberg, 1998).  KC dendrites, which cluster to form the calyx, receive olfactory input from 

projection neurons and send their outputs through axons that form the peduncle. The peduncle 

extends anterior within the brain and segregates into five terminal lobes: α, α’, β, β’ and γ 

(Crittenden et al., 1998). It is thought that KC’s which innervate each lobe play a distinct role in 

learning and memory processes. Specifically, γ KC’s being required for STM, α/β KCs playing a 

role in LTM and α’/ β’ for memory consolidation (Krashes et al., 2007; Trannoy et al., 2011; 

Montague and Baker, 2016).  

Extrinsic neurons of the MB include MB output neurons (MBON), dopaminergic neurons 

(DAN) and dorsal-anterior-lateral neurons (DAL). MBON, which number no greater than 34, have 

dendrites which connect to the MB lobes, forming 15 discrete compartments which receive input 

from KC’s. Conversely, there are approximately 100 DANs, which have axons innervating MB 

lobes and converge upon KC-MBON compartments. This convergence on KC-MBON synapses 

from DAN’s may be the basic computational unit of learning, acting to transform unstructured KC 

olfactory signal input to an ordered MBON output, encoding the basis of behavioral modification 

(Aso et al., 2014). Finally, DAL neurons establish synaptic contacts with α/β neurons in the frontal 

domain of the mushroom body calyx and are thought to act as an extra-MB memory circuit 

involved in LTM retrieval (Chen et al., 2012).  

On a molecular level, elements of the cAMP signaling pathway are highly expressed in the 

MB (Blum et al., 2009). Among these are the previously mentioned proteins rutabaga, an AC, and 

the PDE, dunce, as well as a fly CREB homologue, CREB2-b (Dudai et al., 1976; Livingstone et 

al., 1984; Zhang, 2015). Taken together, it is clear the MB is a complex structure, composed of 
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varying cell-types which play significant roles in various aspects of memory functioning using 

components of the cAMP pathway. As such, the MB offers the best area of focus to study LTM 

processes in Drosophila.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Structure of the mushroom body (MB) and transmission of an environmental input 

through intrinsic MB neurons. The MB is a region of the Drosophila brain required for 

learning and memory.  Structurally, the MB is a symmetrical pair of neuropils (only one shown 

above), densely populated by axons and dendrites, but with relatively few cell bodies. The MB 

contains three main elements: Kenyon cells (KC), calyces and lobes.  KC’s are the cell bodies 

of the MB and are located within the dorsal protocerebrum. Dendrite-like arborizations from 

KC’s extend inwards to form the calyx. Axons from KC’s extend anteriorly in parallel, 

forming the peduncle. Axons forming the peduncle bifurcate and segregate into five different 

lobes: α, α’, β, β’ and γ. The KC’s innervating each of these lobes are thought to play differing 

roles in memory processes. Environmental input to the MB is initially received in the calyx 

from projection neurons (red). KC dendrites receive this information which is then ultimately 

relayed to the individual MB lobes (yellow). Adapted from Davis, 2011.  
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1.5 Courtship conditioning as a learning paradigm for D. melanogaster 

Courtship conditioning is a commonly used learning paradigm for both STM and LTM. 

Normal courtship behaviour refers to a set of stereotypical actions that male flies exhibit upon 

being exposed to a potential mate (Spieth, 1974). Some of these behaviours include orienting 

towards and pursuing the female, singing a song through wing vibrations and emitting sex-specific 

pheromones (Burnet et al., 1971; Grillet et al., 2006). These behaviours ultimately lead to an 

attempt at copulation which the female will respond to either positively, spreading both wings 

outward to indicate willingness, or negatively, kicking to repel the male (Spieth, 1974). Concurrent 

to female mate determination, the male makes a similar determination of female suitability and 

receptiveness through an assessment of various auditory, visual, chemosensory and 

mechanosensory cues. As males often initiate courtship behaviour with inappropriate targets, 

including other males, these cues are crucial in determining if the male should continue or 

terminate courting behaviour (Manning, 1959).  

Courtship conditioning relies on male sexual behaviour being modifiable in response to 

prior experience (Siegal and Hall, 1979). In the courtship conditioning assay, a newly-eclosed male 

is isolated for five days, remaining socially naïve to the mating behaviour of female flies. After 

this isolation period, the naïve male is placed with a single pre-mated female, which will not re-

mate after prior copulation. During this training period, the male attempts to court the female, 

however, the female is unreceptive to the male fly’s advances.  As a response to the failed mating 

attempts, the male fly will suppress future courting attempts towards the female. Critical to this 

training period is that the male learns to associate the failed copulation attempts with an olfactory 

cue, the pheromone profile of the pre-mated female, and will continue to supress courting 

behaviours upon re-exposure to the same olfactory stimuli. Thus, in this learning paradigm, 

courtship suppression acts as a measure of learning and the retention of this behaviour is a 

representation of memory. By extending the training period between naïve male and pre-mated 

female, both STM and LTM can be formed (McBride et al., 1999; Griffith and Ejima, 2009). For 

STM to be formed, a one-hour training is required, whereas in LTM, a five to seven-hour training 

is required. To observe memory formation, males are re-isolated after training and paired with a 

new pre-mated female after either one hour for STM or 24 hours for LTM.  The time spent courting 
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by the trained male towards the new pre-mated female can be measured and compared to that of a 

naïve male, to confirm induction of memory formation.  

As a form of associative learning, courtship conditioning is similar to other olfactory 

conditioning paradigms. In classic olfactory conditioning, flies are trained to modify their 

behaviours in response to the pairing of either a shock (aversive conditioning) or sucrose 

(appetitive conditioning), representing the US, with a specific odor, the CS. In courtship 

conditioning, it is thought that during training the male pheromone cis-vaccenyl acetate (cVA), 

acts as the CS (Ejima et al., 2007). During mating, the male deposits cVA on the female and this 

acts to distinguish virgin from mated females to other males. Similar to appetitive conditioning, 

cVA acts to provide input to the γ lobe of the mushroom body through dopamine receptors 

(Keleman et al., 2012; Montague and Baker, 2016). Additionally, while cVA naturally suppresses 

courting behaviour, this effect is amplified upon the pairing of cVA with unsuccessful copulation. 

Therefore, in courtship conditioning, this rejection acts as the US (Ejima et al., 2007).  

While similar to other olfactory conditioning paradigms, courtship conditioning contains 

two main distinctions. Practically, courtship conditioning benefits from being capable of inducing 

LTM using a single mass training period of five to seven-hours (McBride et al.,1999). This is 

unlike other olfactory conditioning assays which require repetitive, spaced CS/US pairing to 

induce LTM (Tully et al.,1994). Continual, mass training in courtship conditioning is possible 

because males naturally space their mating attempts, eliminating the requirement for manual 

separation during the training period (McBride et al.,1999).  However, perhaps the most important 

distinction from other olfactory conditioning assays, is that courtship conditioning manipulates a 

naturally occurring behaviour, courtship suppression, requiring minimal external input for the 

formation of memory. As such, courtship conditioning may reflect a more biologically-relevant 

form of LTM for the study of learning and memory processes.  
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1.6 Transcriptome analyses of LTM in D. melanogaster 

              Forward genetic screens, which aim to identify the genetic basis of behavioral 

phenotypes, have been an approach used by many studies to identify the molecular components of 

memory.  Early studies using this approach, using chemical mutagenesis to induce single-gene 

mutants, identified much of what we know about LTM, including the importance of the cAMP 

pathway (Quinn et al., 1974; Dudai et al., 1976; Livingstone et al., 1984; Folkers et al., 1993; 

Aceves-Piña and Quinn, 1979; Choi et al., 1991). With advances in the genetic tools available for 

Drosophila, including the UAS/GAL4 system, the number of genes that can be screened 

simultaneously have been greatly expanded upon. One recent example of this is a study by 

Walkinshaw et al. (2015). Using a central-nervous system specific GAL4 driver, nsyb-gal4, 

Walkinshaw et al. screened 3655 single gene UAS-RNAi lines to identify 3h post-training memory 

defects in olfactory aversion conditioned flies. Overall, >500 genes with reduced memory function 

and >40 genes that enhance memory were identified. While a large-scale RNAi screen benefits 

from directly observing memory perturbations in vivo, one drawback to the approach used by 

Walkinshaw et al. is that it potentially limits its search for candidate genes by only including RNAi 

lines for genes specific to neuronal processes.  

Transcriptome-wide profiling of gene expression, using technologies like RNA-

sequencing and microarray, is an approach for identifying candidate genes without the potential 

selection bias introduced by large scale RNAi screens.  Transcriptome profiling is a particularly 

effective approach for the study of LTM, as it is the only phase of memory which requires gene 

transcription.  With CREB acting as the primary transcription factor required for LTM formation, 

identifying the genes differentially expressed during LTM may also help elucidate the downstream 

targets of CREB, which have not been fully established. Currently, few studies have profiled 

transcriptome changes during LTM in flies and include those by Dubnau et al. (2003) and Winbush 

et al (2012). Using microarray, Dubnau et al. (2003) profiled whole fly-heads 0, 6 and 24h post 

olfactory avoidance training to identify 42 transcriptionally regulated candidate genes. Mutants of 

some of these candidate genes were found to yield defective memory including staufen, pumilo 

and oskar, which have mRNA localization and translational regulation roles. Conversely, Winbush 

et al. (2013) used RNA-sequencing to profile whole fly-heads 24h post-training in courtship 

conditioned flies. This approach identified 91 differentially expressed genes including fruitless, 
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which is involved with the sexual differentiation of male neural circuits, and orb2, which functions 

to maintain activity-dependent synaptic changes.  One drawback to these studies by Dubnau et al. 

and Winbush et al. is that by using whole-fly heads for analysis, a significant fraction of neurons 

non-specific to memory are profiled. This increases unwanted biological variance and could 

prevent the identification of LTM candidate genes. Thus, one area of focus for future 

transcriptome-wide studies is to only profile neurons altered by memory formation.  

Current literature has begun to shift to reflect this need for increased biological resolution. 

In a recent study by Crocket et al. (2016), patch-clamp pipets were used to harvest RNA 30 minutes 

post olfactory avoidance training from specific MB cells types. Using this approach Crocker et al. 

revealed that MB cell type could be determined by the expression of certain cell surface receptors, 

as well as also identifying several differentially expressed genes in 3 types of MB extrinsic 

neurons, including the light-sensing genes NinaC, pinta, Rh3 and Rh4. Interestingly, Crocker et al. 

did not identify differential expression in α/β or γ KC’s, which they attributed to their approach 

for sample pooling.   

While Crocker et al. offer the next step for observing cell-specific gene expression during 

LTM, the limitations of their methodology highlight the challenges presented in isolating pure 

samples of individual cell types. Techniques like patch-clamp pipetting and fluorescence-activated 

cell sorting (FACS), are limiting in that they require extensive tissue manipulation and handling, 

which often introduces artifacts, and yield minimal biological material. One method which looks 

to improve upon the challenges of these methods is the isolation of nuclei tagged in a specific cell-

type (INTACT). Originally described in A. thaliana and later extended to C. elegans and D. 

melanogaster, the INTACT method isolates nuclei marked with a genetically encoded tag (Deal 

and Henikoff, 2010; Steiner et al., 2012).  Specifically, using the UAS/GAL4 system, desired 

nuclei are tagged with unc84-GFP, a nuclear membrane protein fused to the fluorescent tag GFP 

(Henry et al., 2012). These tagged nuclei are then purified from non-tagged nuclei using anti-GFP 

bound beads (Figure 1.3). With a wide selection of GAL4 lines to drive expression of unc84-GFP 

in desired cell-types and using a procedure which requires minimal handling, INTACT offers a 

powerful tool for eavesdropping on the molecular processes of LTM in the nucleus. 
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Figure 1.3: Isolation of Nuclei in a Specific Cell Type (INTACT). Schematic illustrating the 

isolation of MB nuclei using the INTACT method.  
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1.7 Study objective 

LTM requires CREB-mediated gene transcription and the synthesis of new proteins to 

establish a persistent cellular and molecular footprint. However, very little is known about which 

genes are transcriptionally regulated during LTM. One approach used to identify candidate genes 

is through transcriptome-wide genetic screens profiling gene expression changes induced by LTM.  

Previous studies of LTM-induced gene expression have predominantly profiled whole fly-heads, 

which contain a significant fraction of non-neuronal tissue and can increase biological variance. 

Current literature has shifted to focus on cell-type specific profiling; however, these studies have 

only profiled one time-point and have had technical limitations. Thus, we hypothesize that 

currently identified memory-regulated genes only reflect a subset of those involved in LTM.  

This study, using advances in isolating specific cell types, looks to expand upon the 

literature by characterizing gene expression changes in a memory-specific neuronal subset over a 

time course of LTM formation and maintenance induced through manipulation of a biologically 

relevant behaviour. Thus, using Drosophila melangaster as a model organism, the objective of my 

study is to identify differentially expressed genes in the mushroom body during a time course of 

LTM formation and maintenance.  It is expected that our results will provide a list of candidate 

genes which will generate novel hypotheses and studies which will help further our understanding 

of the molecular mechanisms underlying memory.  
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Chapter 2: Methods 

2.1 Fly stocks 

  All Drosophila strains were cultured at 25° C and 70% humidity on a 12:12 light:dark 

cycle. Cultures were raised on a standard medium (cornmeal-sucrose-yeast-agar) supplemented by 

the mold inhibitors methyl paraben and propanoic acid (Koemans et al., 2017).  To utilize the 

UAS/GAL4 expression system flies containing the MB-specific GAL4 line R14H06-Gal4 

(Bloomington Stock #48667) (R14H06Gal4) were crossed to flies with UAS_unc84-2XGFP 

(unc84-GFP), which encodes a C. elegans-derived nuclear tag combined with green fluorescent 

protein (GFP). R14H06Gal4 flies were generated by Janelia Farm Research Campus and obtained 

from Bloomington stock center and unc84-GFP flies were donated by Gilbert L. Henry, Janelia 

Farm Research Campus (Jennett et al., 2012; Henry et al. 2012). Flies used for transcript analysis 

were heterozygotes generated by crossing unc84-GFP;R14H06Gal4 flies to P{CaryP}attP2 flies 

also obtained from the Bloomington. This cross generated flies for downstream analysis with the 

genotype unc84-GFP/+;R14H06Gal4/+ (MB-UNC84).  Courtship conditioning was performed 

using pre-mated, wild-type females with a Canton-S:Oregon-R genetic background (generated by 

J. Kramer).  

2.2 LTM induction using courtship conditioning 

 Long-term memory was induced using a modified version of the courtship conditioning 

assay (Siegal and Hall, 1979; McBride et al., 1999; Koemans et al., 2017). Newly eclosed MB-

UNC84 males were collected and individually held in an isolation chamber for approximately five 

days. Males were then trained by introducing a single pre-mated female into the isolation chamber 

for a period of six to seven hours. After training, males were separated from females and isolated. 

Flies being used for RNA-seq analysis were collected one-hour post-training (trained), to represent 

LTM formation, and 24-hours post-training (trained and naïve), to represent LTM maintenance 

(Figure 2.1).  For each day of training, a subset of naïve and trained males was tested for LTM 

induction by being transferred to a 1 cm diameter chamber, re-introduced to a new pre-mated 

female and filmed for 10 minutes. For each male, a courtship index (CI) was calculated by manual 

visual analysis. CI is the percentage of time spent by a male fly engaging in courtship behaviour 

during the 10-minute period. The CI of trained flies was then compared to the CI of naïve flies to 
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calculate a learning index (LI), which is the percent reduction in courtship behaviour due to 

training. 

LI = (
CI Naive − CI Trained

CI Naive
) x 100 

Statistical significance of courtship suppression was evaluated using a Mann-Whitney U-test with 

critical P-values set to 0.05 or less. 
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Figure 2.1: Schematic showing approach used for sample collection and LTM validation.  

Newly eclosed MB-UNC84 males were isolated for five days and then trained by being 

paired with an unreceptive, pre-mated female. After training, males were re-isolated and 

collected either 1h post-training or 24h post-training. These time points were used to 

represent LTM formation and LTM maintenance, respectively. In parallel, for each day of 

training a subset of naïve and trained flies were tested for LTM induction 24h post-

training. LTM induction was tested by pairing with a different pre-mated female for 10 

minutes and courting behaviour measured. Boxes represent groups that were collected for 

INTACT and RNA-seq analysis. 
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2.3 Isolation of nuclei tagged in a specific cell-type (INTACT) 

 To isolate the mushroom body for downstream transcriptome analysis, a modified version 

of the INTACT method was utilized (Henry et al., 2012) (Figure 1.2). Antibody-bound magnetic 

beads were freshly prepared for each immunopurification by absorbing 5µg of anti-GFP antibody 

(Invitrogen: G10362) to 300 µl of Protein G Dynabeads (Invitrogen: 10004D) in 200 µl PBS/0.1% 

Tween 20 for 10 minutes at room temperature. Beads were then isolated and re-suspended in 300 

µl of PBS/0.1% Tween 20. Non-specific binding beads were prepared simultaneously using the 

same procedure without the addition of anti-GFP. 

 Samples of approximately 50-60 adult male flies (Figure 2.1) were anesthetized with CO2 

and flash frozen in liquid N2. Fly heads were isolated from the abdomen, wings and legs by 

vortexing followed quickly by separation through a series of sieves. Heads were then suspended 

in 30 ml of a homogenization buffer (25 mM KCl, 5 mM MgCl2, 20 mM tricine, 0.15 mM 

spermine, 0.5 mM spermidine, 10 mM β-glycerophosphate, 0.25 mM sucrose,1X protease 

inhibitors (Invitrogen: A32965), pH 7.8) and blended for approximately one minute. To disrupt 

the cell membrane and release nuclei into solution, first, NP40 was added to the homogenate to an 

end concentration of 0.3%. This homogenate was then transferred to a 40 mL Dounce homogenizer 

and cells physically disrupted by plunging six times (tight-pestle B). The homogenate was then 

filtered using a 40 µm cell strainer into a new 50 ml falcon tube, at which point a 1 ml input fraction 

was taken. This input fraction is representative of the whole head, containing both MB-specific 

GFP nuclei untagged non-MB nuclei. Input fractions were then centrifuged at 4000 xg for 10 

minutes (4 °C) and the supernatant discarded, to generate a nuclear pellet and stored on ice. To 

reduce non-specific binding of GFP-negative nuclei and proteins, the homogenate was pre-cleared 

by adding 300 µl of beads with no anti-GFP and incubated for 10 minutes at 4°C with rotation. 

Beads were then collected on a magnet, the supernatant extracted and recovered into a new 50 ml 

falcon tube. Next, 300 µl of anti-GFP bound beads were added to the supernatant and incubated 

for 30 minutes at 4°C with rotation. Beads were then collected using a magnet, the supernatant 

removed and washed in 10 ml of homogenization buffer for 10 minutes at 4°C with rotation. After 

washing, the beads were collected using a magnet, the supernatant extracted, the beads re-

suspended in 1 ml of homogenization buffer and then transferred to a new 1.5 ml Eppendorf tube. 

The beads were then once again collected on a magnet and the supernatant carefully removed using 
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multiple pipetting steps. This remaining bead-bound nuclear isolate represented the enriched 

fraction, containing MB-specific GFP nuclei, which was used for downstream transcript profiling.  

2.4 RNA isolation and RNA-sequencing sample preparation 

  RNA was isolated using a PicoPure RNA Isolation Kit (Invitrogen: KIT0204) for both the 

input and enriched fractions according to the manufacturers instructions complemented with on-

the-column DNAase treatment (Qiagen: 79254). Nuclear RNA was then converted to 

complementary DNA (cDNA) using a Nugen Ovation Drosophila RNA-Seq System 1-16 (Nugen: 

NU035032). cDNA was then sheared to a target size between 200-300 bp using a Covaris S2 

sonicator according to the manufacturers protocol. Library synthesis steps were performed 

according to the manufacturers protocol for the Nugen Ovation Drosophila RNA-Seq System 1-

16, and included a Drosophila-specific rRNA depletion step, as well as library amplification step, 

guided by real-time quantitative polymerase chain reaction (qPCR). Completed libraries were then 

sequenced on an Illumina NextSeq500 to 75 bp read length with single-end reads at London 

Regional Genomics Centre.  

2.5 INTACT validation by qPCR 

 To determine specificity of the INTACT protocol, real time quantitative polymerase chain 

reaction (qPCR) was performed on RNA samples obtained in parallel with the samples used for 

RNA-seq analysis.  Primers were designed using FlyPrimerBank to detect MB-enriched transcripts 

(dac, oamb, and unc84), MB-depleted transcripts (repo), and reference transcripts (betacop, eif2b, 

polII, Rac1, act5c) (Hu et al, 2013) (Table 2.1). Primer amplification efficiency was validated 

through serial dilutions and were included if they had an efficiency of 100% +/- 10. RNA isolated 

from INTACT was converted to cDNA using the recommended protocol from the SensiFAST 

cDNA Synthesis Kit (Bioline: BIO-65053). qPCR was performed using a SensiFAST SYBR No-

ROX kit (Bioline: BIO-98020) with a final reaction volume of 10 µl on a Bio-Rad CFX-384 Touch 

Real-Time PCR Detection System. Quantification cycle and melt curve analysis was determined 

using Bio-Rad CFX Manager. Log2 fold change values were then calculated between enriched and 

input samples for reference normalized MB-specific and MB-depleted genes. 
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Primer Name Forward Sequence (5’ to 3’) Reverse Sequence (3’ to 5’) 

dac CCAAGGTCGTACAACTCACCG AGAGCATCGTTTCGTTGCTAA 

Oamb TGGCAACTGCCTCGTTGCTAA GGCCACAGCTAGGTTGACAATA 

repo TCGCCCAACTATGTGACCAAG CGGCGCACTAATGTACTCG 

unc-84 AACTTCCACGCCTTTGTTCC TGGTCAGCTTCATGTAGGCA 

Act5C AAGCTGTGCTATGTTGCCCT ATTCCCAAGAACGAGGGCTG 

βCOP AGCGGGTAATCAAGTTGCTG GGCAGGACGAAGCGTATGA 

Pol2 CTGCGAAATCTAACTTACTCCGC GAAAGTCTTTTGATGCTGCGTT 

eIF2Bβ CAGACCCTTAACTTTAGCTCCG GATGGTCAAATCTGAGACCTGG 

Rac1 GGAAATCGAACCATGCAGGC GTCGAACACGGTGGGTATGT 

Table 2.1: Primers used to validate MB-Specificity of INTACT. Forward and reverse 

sequences for primers obtained using FlyPrimerBank to determine MB-enriched profiles 

on samples obtained simultaneously to those used for downstream transcriptome analysis. 
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2.6 RNA-seq data analysis 

 Raw sequence reads were trimmed using Prinseq quality trimming to a minimum base 

quality score of 30 (error probability of 1 in 1,000 base calls) (Schmieder and Edwards; 2011). 

Read quality was then visualised using FastQC (Andrews, 2010). Trimmed reads were then aligned 

to an annotated D. melanogaster reference genome (Ensembl release 88) using STAR aligner 

(Dobin et al., 2013; Aken et al., 2016).  To look at MB-enrichment the C. elegans-derived nuclear 

tag unc-84 (accession: NC_003284.9:13584780-13589496) was added to the reference genome for 

alignment. Mapped reads that uniquely aligned to one locus with a maximum of four mismatches 

were then used by HTSeq-count using the default union setting to generate counts of reads 

mapping to genic regions (Anders et al., 2015). All gene features (including introns and exons) 

were selected to generate gene count tables because nuclear RNA was sequenced, which includes 

pre-spliced features.  Reads mapping to Drosophila ribosomal genes were quantified and then 

removed from count tables prior to differential expression (DE) analysis. Drosophila rRNA 

assessment was performed to ensure the effectiveness of the rRNA depletion step of library 

preparation. Samples that had >5 million genic non-rRNA reads, a cut-off selected to optimize 

coverage depth and number of replicates, were then used in R for DE analysis using DESeq2 (R 

Core Team., 2015; Love, Huber & Anders, 2014).  

 To determine the MB-specificity of sequenced samples, count tables were normalized for 

size factors for genes which on average had a coverage of ≥ 1 count between samples (11714 

genes, 67% of annotated genes). Normalized counts for each enriched sample were then compared 

to the geometric mean of four sequenced input samples for a selection of genes known to be MB-

enriched MB-enriched (dac, oamb, sNPF, ey, toy) or depleted (glia-specific repo), as well as unc-

84. To determine the consistency of MB-enrichment between samples and experimental conditions 

the percent relative deviation was determined for each gene. To further visualize MB-enrichment 

of sequenced samples principal components analysis (PCA) was performed on log transformed 

values of the normalized counts using the plotPCA function in DESeq2 with blind set to “false”.  

 To determine genes differentially expressed during LTM, count tables for enriched samples 

were normalized for size factors after eliminating genes that on average had less than 100 counts 

across samples. Highly represented genes were utilized for analysis as low-count genes can 
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decrease the power of detection by affecting the multiple testing correction used to calculate the 

false discovery rate (Conesa et al., 2016). This left 6986 genes, representing 40% of all annotated 

genes, with sufficient coverage for subsequent analysis. DE analysis was then performed for each 

potential comparison between experimental conditions and genes deemed significant if they had a 

q value of <0.2 and a fold difference of 1.3 up or down.  

2.7 GO and motif enrichment analysis 

 Gene ontology (GO) analysis was performed using the DAVID Bioinformatics Resources 

6.8 (Huang, Sherman & Lempicki., 2009). Gene lists were uploaded to DAVID and compared to 

a manual input background list which included all genes found to be represented by at least 2 

counts across samples (11714 genes). GO terms were identified for biological processes, molecular 

functions, as well as cellular components and declared significant if they had an uncorrected p-

value of < 0.05. Further functional analysis of the individual genes associated with each enriched 

term was provided by FlyBase (Gramates et al., 2017) 

  Identification of the CRE motif and de novo motifs within the DE gene lists was performed 

using Hypergeometric Optimization of Motif EnRichment (HOMER) (Heinz et al., 2010). For 

both the identification of CRE motifs and de novo motifs, HOMER was set to search 2 kb upstream 

and downstream of the TSS within promoter regions of the DE gene lists. Statistical significance 

of de novo motifs was calculated in HOMER by comparing enrichment of identified motifs with a 

length of either 8, 10 or 12 bp to their presence in the promoter region of all fly genes.  Once an 

enriched de novo motif is found it is then compared to known motifs to associate the found motif 

to a potentially biologically relevant transcription factor.  
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Chapter 3: Results 

 This study aims to profile transcriptome changes during LTM formation and maintenance 

induced by courtship conditioning.  To collect pooled samples of approximately 50-60 flies for 

analysis, courtship conditioning was performed multiple times over a period of months, with 

individual samples sometimes consisting of flies trained from different days.  For each day flies 

were trained, a subset of naïve and trained male flies were tested for LTM induction 24 hours post-

training.  Observing LTM in these proxy flies for each day of training was necessary, not only to 

provide evidence that MB-UNC84 flies could form LTM, but as flies were collected from multiple 

crosses cultured over time, the consistency of this assays ability to induce LTM was essential.  

While flies used for transcriptome profiling themselves were not tested for LTM due to practical 

and logistical reasons, testing proxy flies for courtship suppression acts to support that the flies 

they were trained along with would display similar behavioural alterations.  Additionally, by 

confirming LTM for each day of training it allowed for the removal of flies from transcriptome 

analysis if courtship suppression was not seen in their concurrently trained siblings.  

3.1 MB-UNC84 males show normal LTM 

 Overall, tested proxy trained males showed reduced courting behaviour in comparison to 

naïve males (Figure 3.1 A; P < 0.0001 Mann-Whitney U-test), indicating the successful induction 

of LTM.  While some variation was seen between training days in both the base courting of naïve 

flies and relative courtship suppression seen in trained flies, this is to be expected due to the normal 

variability in courtship behaviour and the relatively lower numbers of flies tested on each 

individual day (Figure 3.1 B). Regardless, courtship suppression in trained flies was significant 

on each individual day where proxy flies were tested, indicating consistency in the courtship 

conditioning paradigm and giving strong evidence for LTM induction in flies utilized for 

transcriptome analysis. 
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Figure 3.1: Long term courtship memory is intact in MB-UNC84 flies.  Naïve male 

flies when paired with pre-mated female trainer flies for 7 hours show reduced courting 

behaviour 24 hours post-training A) Boxplot showing courtship indices for MB-UNC84 

flies tested, n = 109 and 115, for naïve and trained males, respectively; **** P ≤ 0.0001 in 

Mann-Whitney U-test. B)  Boxplot indicating courtship indices for proxy flies from 

individual days where flies were utilized in downstream analyses. n = 22 /25, 20 /18, 22 

/22, 8/11, 11/7, 10/16 and 16/16, respectively, for each naïve/trained pair; * ≤ 0.05, ** P ≤ 

0.01, *** P ≤ 0.001 and **** P ≤ 0.0001 in Mann-Whitney U-test. 
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3.2 Validation of MB-enrichment with INTACT 

 To validate that the INTACT method was capable of enriching for MB nuclei, RNA was 

isolated from MB-UNC84 flies for both the input (whole head) and enriched (mushroom body 

nuclei) fractions and converted to cDNA.  qPCR was then performed using a selection of primers 

for genes known to be MB-enriched (dac, oamb) or depleted (repo), as well as unc84, which is 

expressed exclusively in the GAL4 targeted MB neurons.  Across samples, modest enrichment of 

dac and oamb was seen in MB-enriched fractions, with fold enrichments of 2.25 and 1.7, 

respectively. While dramatically less than the enrichment of unc84, which had a fold enrichment 

of 25.6, this level of enrichment for dac and oamb was expected as they are not solely expressed 

in the MB. In addition to the consistent depletion of the glial-cell specific repo, with a fold of 0.2, 

taken together, this observed expression pattern gave a strong indication that INTACT is capable 

of enriching for MB nuclei (Figure 3.2).   

 

 

 

Figure 3.2: qPCR Validates MB-Specificity of INTACT. To confirm MB-enrichment of 

nuclei obtained from INTACT, RNA was isolated from whole head, input, and enriched 

fractions. MB-specificity was confirmed by observing enrichment of the genes dac (n=3), 

Oamb (n=3) or unc-84 (n=2) and depletion of the glial-specific maker repo (n=5). Log2 

fold changes represent the enriched fraction relative to the input fraction. 
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3.3 Analysis and quality control of MB-UNC84 RNA-seq data 

 After LTM induction had been confirmed within proxy flies, INTACT was used to extract 

MB-nuclei from samples, followed by RNA isolation and library preparation for RNA-seq. RNA-

seq libraries were obtained for four biological replicates of the whole head input fraction (I) and 

three biological replicates of each mushroom body enriched experimental condition: naïve (EN), 

one-hour post-training (E1), and 24-hour post-training (E24). To assess both the quantity and the 

presence of consistent fragment sizes within the 200-300 base pair range, each RNA-seq library 

was then run an Agilent Bioanalyzer using a high sensitivity DNA assay kit.  Libraries were then 

sequenced and reads processed using a bioinformatics pipeline that included the removal of low 

quality reads, reads with >4 mismatches, and reads which mapped to Drosophila rRNA genes 

(Table 3.1 and Table 3.2).  The average alignment efficiency across all samples was 48.5% for 

high quality reads (Figure 3.3 A). Among the aligned reads, an average of 87.7% mapped to genic 

features (Figure 3.3 B). One EN sample was then removed for not meeting the minimum inclusion 

criteria of >5 million non-rRNA genic reads. This left four I, two EN, three E1 and three E24 

samples for differential expression analysis.   

 Critical to downstream differential expression analysis is relatively consistent MB-

enrichment between samples. Comparisons between samples with varying levels of MB-

enrichment could potentially lead to DE of genes required for MB function and not specific to 

learning and memory function. As such eliminating samples with inconsistent MB-enrichment 

from analysis is crucial. To investigate MB enrichment, relative expression levels, compared to 

the input, were calculated for a selection of genes known to be MB-enriched (dac, oamb, sNPF, 

ey, toy) or depleted (glia-specific repo), as well as unc-84.  Overall, 7 samples displayed MB-

enriched profiles, with enrichment of unc84, dac, oamb, sNPF, ey and toy, as well as depletion of 

repo (Figure 3.4 A). One sample was removed from subsequent DE analysis after it was 

determined repo was not depleted (fold change 0.99) and there was low unc-84 enrichment (fold 

change 8.9, compared to the average fold change of 39.2). To determine the consistency of MB-

enrichment for the remaining 7 samples, percent relative deviation was calculated for each gene 

(Table 3.3). Percent relative deviation is a measure of the variation found between samples relative 

to the mean.  Overall, relative deviation between samples was lowest for unc-84 at 5.2%. As unc-

84 is the transcript encoding the nuclear tag used for INTACT, this suggested consistent MB-
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enrichment. This was further supported by consistency for the MB-enriched genes, with relative 

deviations between 8 and 13%. The glial-specific repo had the greatest relative deviation at 59.6%, 

however, this was primarily driven by variation in the EN samples. While this variation of repo 

could indicate some variability in MB-enrichment between samples, overall, the reduced relative 

deviation of unc-84 and MB-enriched genes strongly suggested that our samples are consistently 

MB-enriched.  

 To further support MB-enrichment of our samples, principal component analysis (PCA) 

was performed, revealing distinct separation of input and enriched samples (Figure 3.4 B). 

Clustering was not observed between experimental conditions, with greater variance between EN 

samples than that seen in E1 and E24 samples.  To explore the main sources of variance 

contributing to sample separation, component scores were obtained for the top 10 variable genes 

(Table 3.4). Principal component 1 (PC1) accounted for 66% of the variance and contributed to 

the separation of input and enriched samples. This variance was correlated to gene expression of 

a subset of expected MB-enriched genes including the nuclear tag unc-84 and prt. This gave strong 

evidence that all samples were MB-enriched. Principal component 2 (PC2), which accounted for 

12% of the variance, contributed to the separation of samples by experimental condition and was 

correlated to the expression of mitochondrial genes. This suggested that non-specific binding of 

biological material may be binding to the beads during INTACT immunopurification. It should be 

noted that the variance in PC2 is primarily limited to one EN sample, which could indicate it had 

more non-specific binding than other samples. However, as PC2 accounted for less variance than 

PC1, non-specific binding was not expected to contribute greatly to our analysis. It should also be 

noted that known learning and memory genes did not prominently contribute to the separation of 

samples by experimental condition suggesting that LTM induced gene expression is subtle. Taken 

together, this evidence suggested that while our samples are consistently MB-enriched, additional 

biological replicates may be required to reduce intra-condition variability and improve 

downstream analysis.  
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Sample 

Name 

Sequenced 

Reads 

Trimmed rRNA 

Reads 

Non-rRNA Unmapped Multi-

Mapped 

Uniquely 

Mapped 

>4 Mismatch Good Reads 

EN-1 83,977,393 83,248,350 8,052 83,240,298 47,349,315 4,042,461 31,848,522 1,387,767 30,460,755 

EN-2 86,016,347 85,732,655 13,865 85,718,790 16,673,566 4,871,895 64,173,329 1,353,809 62,819,520 

E1-1 122,847,123 122,301,140 63,699 122,237,441 56,163,357 8,088,944 57,985,140 2,425,119 55,560,021 

E1-2 129,223,570 129,107,989 8,093 129,099,896 34,905,600 7,864,813 86,329,483 2,405,528 83,923,955 

E24-1 41,294,960 41,092,458 13,307 41,079,151 27,869,785 4,088,758 9,120,608 870,039 8,250,569 

E24-2 19,079,368 19,038,708 38,840 18,999,868 10,019,227 836,721 8,143,920 11,068 8,132,852 

E24-3 48,625,213 48,592,466 80,256 48,512,210 18,764,087 2,024,875 27,723,248 302,603 27,420,645 

I-1 19,975,383 19,937,286 40,395 19,896,891 6,918,458 1,206,946 11,771,487 12,849 11,758,638 

I-2  19,835,062 19,785,715 73,175 19,712,540 6,835,367 1,142,375 11,734,798 11,528 11,723,270 

I-3 19,943,350 19,920,404 49,635 19,870,769 13,138,108 695,575 6,037,086 8,709 6,028,377 

I-4 65,219,971 65,092,537 17,403 65,075,134 29,316,589 4,189,123 31,569,422 1,139,597 30,429,825 

Table 3.1:  Raw read distribution of RNA-sequencing data.  Distribution of reads after processing by the bioinformatics pipeline 

for whole he input (I), naïve (EN), 1h post-training (E1) and 24h post-training (E24) samples used in the downstream DE analysis. 

Sequenced reads represent raw total reads generated for each sequenced sample. Trimmed represents the amount of reads which had a 

quality score greater than 30. Reads mapping to fly ribosomal genes are indicated as rRNA reads. Unmapped represents reads which 

did not align to the Drosophila genome. Multi-mapped represents reads which aligned to multiple loci within the Drosophila genome. 

Uniquely mapped represents reads which aligned to one loci. Reads which aligned to one loci within the Drosophila genome with 

greater than four mismatches are indicated by >4 mismatches. Good reads indicate aligned non-rRNA reads which were used to 

generate count tables for genic features.   
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Sample Name Genic No Feature Ambiguous 

EN-1 26,986,636 1,717,518 1,756,601 

EN-2 57,375,106 1,271,704 4,172,710 

E1-1 48,055,978 4,279,110 3,224,933 

E1-2 76,181,873 2,345,826 5,396,256 

E24-1 6,029,168 1,942,996 278,405 

E24-2 7,359,203 215,066 558,583 

E24-3 25,025,546 572,531 1,822,568 

I-1 10,331,447 556,794 870,397 

I-2  10,466,265 362,148 894,857 

I-3 5,308,654 240,615 479,108 

I-4 26,597,216 1,596,212 2,236,397 

Table 3.2:  Raw count data for RNA-sequencing results.  Distribution of count data for aligned, non-rRNA good reads for whole 

head input (I), naïve (EN), 1h post-training (E1) and 24h post-training (E24) samples used in the downstream DE analysis as 

processed by HTSeq. Reads mapping to no feature are those that could not be assigned to any feature. Ambiguous counts indicate 

where multiple features could be assigned for a single read and thus were excluded from DE analysis. Genic counts indicate reads 

mapped to introns and exons.  
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Figure 3.3: Alignment efficiency and association of reads with genomic features for 

INTACT-obtained RNA-sequencing results. Processing, alignment and count results 

for INTACT-derived sequencing data for whole head input (I), naïve (EN), 1h post-

training (E1) and 24h post-training (E24) samples used in downstream DE analysis. A) 

Distribution of reads after processing by the bioinformatics pipeline represented as the 

percentage of total sequenced reads for each sample. Trimmed represents reads with a 

quality score less than 30. Reads mapping to fly ribosomal genes are indicated as rRNA. 

Unmapped indicates reads that did not align to the Drosophila genome. Reads which 

mapped to multiple loci or had greater than four mismatches are indicated by multi-

mapped and >4 mismatches, respectively. Good reads indicate reads which were used to 

generate gene count tables.  B) Distribution of counts for genic features (introns and 

exons) as processed by HTSeq, represented as a percentage of the total good reads for 

each sample. Reads mapping to no feature are those that could not be assigned to any 

feature. Ambiguous reads indicate where multiple features could be assigned for a single 

read and thus were excluded from DE analysis.    
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Figure 3.4: Sequencing data for RNA isolated from INTACT-obtained nuclei shows 

MB-enrichment. Sequencing data for naïve (EN), 1h post-training (E1) and 24h post-

training (24) samples. A) Normalized counts were compared between enriched and input 

samples showing that the relative expression of the nuclear tag unc84, as well as a 

selection of MB-specific and depleted genes, indicates a MB-enriched profile. B) 

Principal component analysis was performed on transformed count data using the 

plotPCA function within DESeq2. The resulting clusters show distinction between 

enriched and input samples.   
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Gene  Mean Standard Deviation Relative Deviation 

(%) 

dac 3.07 0.27 8.76 

oamb 1.54 0.19 12.07 

sNPF 3.12 0.25 8.03 

ey 3.18 0.35 11.07 

toy 2.22 0.29 13.10 

repo -2.01 1.15 59.59 

Unc-84 5.29 0.27 5.16 

Flybase ID Gene 

Name 

PC1 Flybase ID Gene 

Name 

PC2 

FBgn0013278 Hsp70Bb -0.13037 FBgn0013686 mt:lrRNA -0.31501 

N/A Unc-84 -0.11797 FBgn0013688 mt:srRNA -0.23588 

FBgn0000053 Ade3 0.096551 FBgn0005391 yp2 0.185416 

FBgn0002563 Lsp1beta 0.089866 FBgn0004047 Yp3 0.148978 

FBgn0001258 ImpL3 -0.08788 FBgn0030334 Karl 0.147092 

FBgn0030334 Karl 0.08773 FBgn0046323 ORY -0.14501 

FBgn0004102 Oc 0.082712 FBgn0002563 Lsp1beta 0.133368 

FBgn0043005 Prt -0.08253 FBgn0028982 Spt6 0.110728 

FBgn0000052 Ade2 0.081802 FBgn0037107 CG7166 0.109477 

FBgn0001263 inaD 0.081098 FBgn0013672 mt:ATPase6 0.109043 

Table 3.3: Consistency of MB-enrichment between samples. Standard deviation and mean 

were calculated using log2 fold change data between enriched and input fractions for each 

gene used to determine MB-enrichment. Relative deviation was calculated by dividing the 

standard deviation by the absolute value of the mean. Consistency was greatest for the 

nuclear tag used for INTACT, unc-84, followed by MB-enriched genes (dac, oamb, sNPF, 

ey, toy). Depletion of glial-specific repo had the greatest variability.  

Table 3.4: Genes contributing the greatest source of variance for the first two 

principal component. To explore the main sources of variance contributing to the 

separation of samples in the principal cluster analysis (PCA) (Figure 3.4) component 

scores were obtained for the top 10 variable genes.  Principal component 1, which 

accounted for 66% of the variance, was correlated to gene expression of a subset of 

expected MB-enriched genes including the nuclear tag unc-84 and prt. Principal 

component 2, which accounted for 12 % of the variance, contributed to the separation of 

samples by experimental condition and was correlated primarily to mitochondrial genes.   
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3.4 DE analysis reveals a list of candidate genes differentially expressed 24h post-training 

 To identify a list of candidate genes involved in LTM formation and maintenance, DE 

analysis was performed for each potential comparison between experimental conditions- E1 v N, 

E24 v N and E24 v E1 - and genes deemed differentially expressed if they had an q value of <0.2 

and a fold difference of 1.3 up or down. Between comparisons, this analysis identified 85 

upregulated and 28 downregulated genes between E24 v E1, 21 upregulated and 11 downregulated 

genes between E24 v EN and no DE genes between E1 v EN (Figure 3.5 A-C; for full list see 

Appendix A, Supplementary Tables 1-4). These gene expression changes observed between 

comparison were subtle, as predicted from PCA (Figure 3.4), with a median fold change of 1.45. 

After removing duplicates, a total of 90 unique upregulated and 30 unique downregulated genes 

between the different comparisons were identified to be differentially expressed 24h post-training 

(for full list see Appendix A, Supplementary Tables 5-6). As no differentially expressed genes 

were identified 1h post-training, potentially due to one less biological replicate and greater intra-

variation between naïve fly samples, the identified genes in this study only reflect a subset of genes 

transcriptionally regulated during early LTM maintenance.  
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Figure 3.5:  Volcano plots displaying genes identified as differentially expressed 

between experimental conditions. Volcano plots for each experimental comparison 

showing the results of the DE analysis by plotting genes using corresponding log2 fold 

change and -log10 FDR values. DE genes indicate q<0.2, fold change >1.3.  A) 1h post 

training (E1) compared to naïve (EN) B) 24h post-training (E24) compared to 1h post-

training C) 24h post-training compared to naïve. 

Upregulated = 85 Downregulated = 28 

Upregulated = 21 Downregulated = 11 

Non-DE genes 
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3.5 GO analysis of DE genes reveals terms enriched for learning and memory processes 

 To identify potentially important biological pathways and processes within the upregulated 

and downregulated DE gene lists, GO analysis was performed for biological processes, cellular 

components and molecular functions and terms declared significant if they had an unadjusted p-

value < 0.05. Several enriched biological processes were related to learning and memory such as 

“long-term memory”, “olfactory learning” and “learning or memory” (Figure 3.6 A; for full list 

see Appendix A, Supplementary Tables 7-9). In total, 15 of 90 upregulated genes were identified 

to have been previously associated with biological processes relevant to courtship behaviour, 

courtship conditioning or memory (Table 3.5). Other GO terms that were enriched among the 

upregulated genes included: “asymmetric neuroblast division resulting in ganglion mother cell 

formation” (most enriched biological process), “oocyte microtubule cytoskeleton polarization”, 

“oocyte anterior/posterior axis specification” and “mRNA 3’-UTR binding”.  

 GO analysis of the highly expressed downregulated DE candidate genes revealed a limited 

number of enriched terms, likely due to the small number of genes (30) (Figure 3.6 B; for full list 

see Appendix A, Supplementary Tables 10-11).  These terms primarily were linked to two genes 

encoding voltage-gated potassium channels (elk, shawl) and two genes with serine-peptidase 

activity (CG11319, CG17684). 
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Figure 3.6:  GO results for upregulated and downregulated DE genes. Significant 

GO terms (unadjusted p-value <0.05) for DE analysis results with enrichment shown as 

log2 fold change. A) GO analysis for upregulated DE genes B) GO results for 

downregulated DE genes shown  
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Flybase ID Gene  Associated Category Source 

FBgn0004907  14-3-3 ζ L, O Philip, Acevedo & Skoulakis, 2001 

FBgn0000253 Cam L Pang et al., 2010 

FBgn0261934 dikar L, LTM, O  Dubnau et al., 2003; Alkalal et al., 2011 

FBgn0086675 fne C Zanini et al., 2012 

FBgn0011661 

 

Moe OB, LTM Dubnau et al., 2003; Sambandan et al., 2006; 

Freymuth & Fitzsimons, 2017 

 FBgn0037705 Mura L, LTM, O Dubnau et al., 2003; Alkalal et al., 2011 

FBgn0261710 nocte L Winbush et al., 2012 

FBgn0000273 Pka-C1 L, O Sokolowski, 2001 

FBgn0022382 Pka-R2 L Muller, 1997 

FBgn0003093 pkc98E LTM Zhang et al., 2013 

FBgn0004103 Pp1-87B L, O Sokolowski, 2001 

FBgn0004595 Pros C Grosjean et al., 2007  

FBgn0003371 Sgg O Wolf et al., 2007 

FBgn0045823 Vsg L, LTM, O Dubnau et al., 2003; Alkalal et al., 2011 

FBgn0261113 xrp1 OB Sambandan et al., 2006 

Table 3.5:  DE gene results reveal a list of genes previously associated with learning and 

memory. DE genes previously identified to be involved with: learning and memory processes 

or within the canonical learning pathway (L), long-term memory (LTM), olfactory learning 

(O), olfactory behaviour (OB), courtship behaviour (C).      
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 3.6 Identification of known and de novo motifs within the promoters of DE genes 

 To determine if CREB may be involved in the regulation of identified DE genes, HOMER 

was used to locate putative CRE (5’-TGACGTCA-3’) 2 kb upstream and downstream of the 

transcriptional start site (TSS) (Zhang et al., 2005).  CREs were identified in six upregulated genes 

(CG13055, CG43347, csw, ctp, Hk, Lk6) and one downregulated gene (cv-c) (Table 3.6).  

 To identify potential novel transcription factors involved in LTM, HOMER was utilized to 

identify de novo motifs within the DE gene list. Several enriched de novo motifs were found, 

however, the motif 5’-TCTCTCTCTCTC-3’, which was found in 58.26% of DE genes is of 

interest as it displayed the highest correlation to a known transcription factor binding site, with a 

93% match to the binding site for trl (Table 3.7).   

 

 

 

 

 

 

 

 

 

 

Gene name Distance from TSS  

CG43347 -1612 

Hk 912 

Ctp 666 

Csw 1412 

Cv-c -1596/-1482 

Lk6 1727 

CG13055 -1470 

Table 3.6:  Homer identifies CRE motifs within promoter regions of DE genes: Genes found 

with CRE from the upregulated (italic) and downregulated (bold italic) DE gene list and their 

respective position to the transcriptional start site (TSS).  
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De novo Motif/ 

Best Match Motif (5’- 3’) 

P-

value 

% of 

targets 

% of 

background 

Average 

distance in 

base pairs 

from TSS in 

targets 

(background)  

Transcription 

factor best 

match 

(similarity) 

 

1 e-12 23.48% 4.4 % 927.3 (1143.3) Byn (0.496) 

 

1 e-12 23.48% 4.41% 1015.8 

(1273.4)  

Gcm2 (0.574) 

 

1 e-11 38.26% 12.17% 732.9(1262.7) Cf1-II (0.668) 

 

1 e-11 32.17% 8.98% 938.1 (1183.1) E-box (0.615) 

 

1 e-10 58.26% 28.12% 1055.9(1195.5) Trl (0.929) 

Table 3.7:  Homer identifies de novo motifs within promoter regions of DE genes.  

Top 5 enriched de novo motifs identified among unique DE genes and their similarity to 

known transcription factor binding site motifs.   
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 Chapter 4: Discussion 

 In this study, I have profiled the Drosophila transcriptome in a specific subset of MB 

neurons over a time course of LTM formation and maintenance. Specifically, this study offers a 

novel use of the INTACT method during LTM to isolate MB-nuclei, which form the learning 

center of the fly brain, within a hypothesis-generating RNA-sequencing experiment. By using a 

cell-specific approach to profile tissue specific to LTM changes, this study improves upon previous 

fly LTM transcriptome-wide studies where whole fly heads were profiled, which can introduce 

biological variability. As very few studies have profiled LTM-induced transcriptome changes, the 

results of this study provide a rich list of candidate genes, which through biological validation and 

further study, can expand our understanding of learning and memory processes.  

4.1 Genes with greater transcript abundance 24h post-training 

 This study identified 90 genes differentially upregulated (q < 0.2; fold change > 1.3) 24h 

after LTM induction by courtship conditioning. Using GO analysis to guide the functional 

profiling of our upregulated DE gene list, we identified 15 genes that have been previously 

associated with learning and memory (Table 3.5). These genes encode proteins with a wide array 

of functions required during LTM including the cAMP-dependent protein kinase subunits Pka-C1 

and Pka-R2, as well as 14-3-3 ζ and jeb, which have roles in the Ras/MAPK cascade, a pathway 

that ultimately converges to activate CREB (Michael et al., 1998). Only two genes identified by 

this study coincide with DE genes found by previous LTM transcriptome-wide studies, specifically 

those conducted by Dubnau et al. (2003) and Winbush et al. (2012). These studies both profiled 

whole fly heads, with Winbush et al. investigating courtship conditioned flies 24h post-training 

and Dubnau et al. using olfactory shock avoidance to observe gene expression changes 0, 6 and 

24h post-training.  Overlapping DE genes we identified include the cytoskeletal functioning 

moesin (Dubnau et al. 2003) and the circadian entrainment gene nocte (Winbush et al. 2012). This 

minimal overlap is to be expected as we profiled a different set of tissue than the whole-heads 

profiled by Dubnau et al. and Winbush et al., and used a different memory assay than Dubnau et 

al.  No genes were found to overlap with a MB cell-type specific study conducted by Crocker et 

al. (2016), where patch clamp pipets were used to harvest MB neurons 30 minutes after olfactory 

shock avoidance training. This was also expected as we investigated a different time-point and 
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their differentially expressed genes were identified solely from extrinsic MB neurons, whereas our 

study predominantly profiled Kenyon cells. In summary, while this study does not share many 

genes with previous LTM transcriptome-wide studies, there was significant overlap of our 

upregulated DE genes with those previously associated with learning and memory. This provides 

evidence strongly supporting that our cell-type specific study profiled LTM induced gene 

expression changes. Thus, we believe that the DE genes identified by this study, but not yet 

associated with LTM, represent a list of novel candidate genes for further study and biological 

validation in learning and memory processes.  

 Multiple GO terms associated with our upregulated DE genes were found to be enriched 

with no direct link to learning and memory. These terms included “asymmetric neuroblast division 

resulting in ganglion mother cell formation”, “oocyte microtubule cytoskeleton polarization”, 

“oocyte anterior/posterior axis specification” and “mRNA 3’-UTR binding”. Interestingly, 13 of 

the upregulated genes associated with these terms are known to interact with the proteins pumilio, 

staufen and oskar, primarily through protein-protein or RNA-protein interactions (Table 4.1). 

Pumilo, staufen and oskar, which have functions related to mRNA localization and translational 

regulation, were previously shown to be required for LTM by Dubnau et al. (2003). Specifically, 

differential upregulation of staufen and pumilo was observed 6h post-training, and individual fly 

mutants for the three genes were shown to yield defective LTM. Dubnau et al. suggested that 

pumilo, stuafen and oskar provide a molecular mechanism for the synapse-specific delivery of 

gene products during LTM, a hypothesis which has been supported by further study (Heraud-

Farlow & Kiebler, 2014). As the genes identified by our study are differentially expressed 

predominantly 24h post-training, I hypothesize that we have identified downstream targets of 

oskar, staufen and pumilo for RNA localization which could have significant roles in LTM. As 3 

of these proposed downstream targets, Act5C, 14-3-3 ζ, and pros are known learning and memory 

genes, this strongly suggests that the other proposed targets we have identified will be as well. 

This could be further explored using adult-specific RNAi knockdown at specific timepoints to 

fully determine the role of these proposed downstream targets of oskar, staufen and pumilo in the 

persistence of LTM.  

 Also among the upregulated DE candidate genes were several with known functions related 

to the epigenetic regulation of chromatin. Chromatin regulation directly impacts gene expression 
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by altering the accessibility of DNA to transcription by changing between the relaxed form, 

euchromatin, to the more tightly packed, heterochromatin state. Chromatin structure can be 

regulated by: ATP-remodeling complexes to manipulate nucleosome positioning, post-

translational modification of histones and replacing canonical histones with variants (Taniguchi & 

Moore, 2014). Within our upregulated DE gene list, we identified the increased expression of 

CtBP, a subunit of the ATP-dependent chromatin complex ToRC (Emelyanov et al.,2012). Genes 

with post-translational histone modifying functions such as acetylation (E(Pc)), and methylation 

(Hmt4-20, Ncoa6) were also seen to be upregulated. E(Pc) is of particular interest as mutants have 

dendrite mistargeting and expression of the histone acetyltransferase complex it composes part of, 

Tip60, has shown to be required for LTM maintenance past 24-hours post training (Taniguchi & 

Moore, 2014; Hirano et al., 2016).  Two genes implicated to the replacement of canonical histone 

variants were also identified: CG8677 and his3.3b. CG8677 is known to form part of the chromatin 

remodeling factor RSF which contributes to histone H2Av replacement to aid in heterochromatin 

formation, potentially with aid from the Tip60 complex (Hanai et al., 2008).   Histone H2av 

replacement has significance to learning and memory as it has been suggested that it has the 

capacity to mediate molecular stability required for memory retention in mice (Zovkic et al., 2014).   

His3.3b is thought to function similarly to histone H2av, and potentially plays a role in both active 

and bivalent promoters (Santoro and Dulac, 2015). As the epigenetic regulation of chromatin has 

the potential to induce sustained differences in neural networks which may be critical during later 

phases of LTM processes, we believe these identified upregulated DE genes are of significant 

interest (Zovkic, Guzman-Karlsson & Sweatt, 2013). With our results profiling gene expression 

changes 24h after LTM induction, I hypothesize that the upregulated DE genes we identified with 

known chromatin regulation functions may alter the expression of genes that are involved 

downstream in later LTM maintenance. This could be further studied using chromatin 

immunoprecipitation sequencing (ChIP-seq) to identify regions of the genome epigenetically 

regulated during LTM.  
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Flybase ID Gene Name Interaction (Type) Known Function 

FBgn0000042 Act5C Oskar (protein-

protein) 

Cytoskeletal/chromatin 

remodeling 

FBgn0004907 14-3-3 ζ Oskar (protein-

protein) 

Ras/MAPK cascade 

FBgn0010300 Brat Pumilo (protein-

protein), staufen 

(RNA-protein, 

protein-protein) 

Protein translation 

FBgn0052767 CG32767 Staufen (RNA-protein) Nucleic acid binding 

FBgn0041605 Cpx Staufen (RNA-protein) Synaptic transmission 

FBgn0004838 Hrb27C Oskar (RNA-protein) Protein translation 

FBgn0285926 Imp Oskar (RNA-protein) Protein translation 

FBgn0261618 Larp Oskar (protein-

protein) 

Male meiosis 

FBgn0026206 Mei-P26 Pumilo (RNA-protein) Protein ubiquination 

FBgn0265297 pAbp Oskar (RNA-protein), 

Pumilo (protein-

protein) 

Protein translation 

FBgn0004595 Pros Staufen (RNA-protein) Neural differentiation 

FBgn0004636 Rap1 Staufen (RNA-protein) Small GTPase 

FBgn0038826 Syp Oskar (RNA-protein) mRNA binding 

Table 4.1: Genes with known physical interactions to pumilo, oskar and staufen within the 

upregulated DE gene list. FlyBase was used to identify genes within our upregulated DE gene list 

that have known protein-protein or RNA-protein interactions with the known memory genes pumilo, 

oskar and staufen. For each identified DE gene, an example of a known associated function is 

provided.   
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4.2 Genes with lower transcript abundance 24h post-training 

 This studied identified 30 genes differentially downregulated (q < 0.2, fold change > 1.3) 

24h after LTM induction. GO analysis of the downregulated DE candidate gene list revealed 

enrichment of terms associated with voltage-gated potassium channels, which fits with what we 

currently know about LTM.  In excitatory neurons, potassium ion channels are often expressed 

concurrently with sodium and calcium channels to repolarize cells after action potential firing 

(Shah, Hammond & Hoffman, 2010). By allowing potassium to efflux into the post-synaptic 

terminal after activation, these channels have the potential to inhibit LTP.  Indeed, it has been 

shown that during normal LTP induction both slow-conductance calcium-activated potassium 

channels and voltage-gated potassium channels are internalized to prevent repolarization (Shah, 

Hammond & Hoffman, 2010).  Thus, while elk and shawl have not previously been associated 

with LTM, I hypothesize that their downregulation in the context of LTP is a requirement for 

proper LTM maintenance. This could be tested using a similar adult-specific gene knockdown 

approach like that suggested for our proposed oskar, staufen and pumilo downstream targets.  

4.3 Enriched known and de novo motifs within the promoter regions of DE genes 

 Among the promoter regions of the 120 genes found to be differentially expressed (q <0.2, 

fold change > 1.3) in this study, seven DE genes were identified to have the putative CRE binding 

site for the transcription factor CREB (Table 3.7). While there was no obvious functional 

connection between these genes, some have previously defined roles which make them of further 

interest to learning and memory processes, specifically, ctp, lk6 and hk. Ctp, the Drosophila 

homologue of the dynein light chain has been shown to aid in the facilitation of sensory dendrite 

pruning through interaction with Ik2 and Spn-F (Lin et al., 2015).  Lk6 is a protein kinase 

dependent upon the presence of calmodulin, a protein necessary for proper LTM formation, 

indicating downstream targets of Lk6 phosphorylation may also play a role in learning and memory 

(Kidd and Raff, 1997).  Finally, Hk encodes a beta subunit of voltage-gated potassium channels 

and interacts with eag, an alpha subunit which has known learning and memory implications 

(Sokolowski, 2001).  Voltage-gated potassium channel beta subunits, cannot conduct current on 

their own but can influence neuronal physiology by modulating the activity of alpha channels. 

Specifically, when alpha and beta subunits associate with one another channel inactivation has 
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been shown to occur (Rettig et al., 1994).  As previously stated, LTP relies upon the reduction of 

potassium channel activity to reduce repolarization of neuronal cells, thus, upregulation of Hk fits 

within this context of LTM induction.  

 While CREB is not the only transcription factor involved in LTM, it is the best 

characterized across multiple species, however, the genes transcriptionally regulated by CREB 

have not been fully characterized (Zhang et al., 2005; Alberini 2009). As the presence of CRE can 

predict CREB-binding, I hypothesize that the DE genes identified with the putative CRE elements 

represent downstream targets of CREB-mediated transcription. Further study could use adult 

specific knockdown of CREB during LTM, followed by transcriptome-profiling using INTACT 

to identify genes with affected expression. This could be cross-referenced with our list of DE genes 

with CRE to give evidence of CREB-mediated transcription.  

 Using HOMER, we were also able to identify several de novo motifs within the promoter 

regions of our DE gene list. One motif, 5’-TCTCTCTCTCTC-3’, which was found in 58.26% of 

DE genes is of significant interest as it displays high correlation (93%) with the transcription factor 

binding site for trl. Trl, trithorax-like, is a DNA binding protein that binds specifically to GAGAG 

motifs within promoter regions of genes and has also been shown to interact with a variety of ATP-

dependent chromatin remodelers, including the fly SWI/SNF complex (SWItch, Sucrose Non-

Fermentable) (Lomaev et al., 2017). Interaction with the SWI/SNF complex is relevant to learning 

and memory as SWI/SNF components have been shown to be mutated in patients with intellectual 

disability (Santen, Kriek & Attikum, 2012). In flies, the adult-specific knockdown of SWI/SNF 

components in the MB has been shown to produce LTM defects, indicating a role for the SWI/SNF 

complex in memory processes (Stone, 2017). Functionally, trl has been shown to recruit chromatin 

remodeling complexes to promoter regions of genes to generate a nucleosome free region which 

can then increase subsequent transcription of nearby genes (Okada & Hirose, 1998). While trl has 

not been previously implicated in LTM functioning, with its role in downstream transcriptional 

regulation through chromatin remodeling and enrichment of its binding site seen within the DE 

gene list, it is a promising candidate for further study.   
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4.4 Limitations 

 While this study improves upon the approaches of prior LTM transcriptome studies, 

including those by Dubnau et al. (2003) and Winbush et al. (2012), it does have multiple 

limitations. Inherent to RNA-sequencing experiments is the chance that reported DE genes are 

false positives. As learning and memory induces subtle changes in gene expression, there is a need 

for even greater biological resolution to be able to discern true positives. Consequently, mitigating 

false positives was an area of focus during both our sample collection and data analysis approaches. 

During sample collection, we pooled samples of ~50 flies for each biological replicate. This was 

a necessity not only to collect enough material for INTACT but was also a means to reduce inter-

individual variation, which could impact the DE analysis. To reduce false positives during the DE 

analysis, our approach included removing low-count genes, as well as using a very stringent 

statistical methodology employed by DESeq2 (Love et al., 2014). Ultimately, however, the number 

of biological replicates and sequencing depth are the critical components for determining the true 

effect of our treatment on gene expression (Conesa et al., 2016; Ching, Huang & Garmire, 2014).  

Currently, our study has at least two biological replicates for each condition, with lower replicated 

conditions having a greater sequencing depth (Table 3.2). While an increase in sequencing depth 

does improve power, added depth beyond 10 million aligned reads has diminishing returns and 

increasing the number of biological replicates is a more effective strategy for reducing false 

positives (Liu, Zhou & White, 2014). As such, to increase the confidence of our candidate gene 

lists, the number of biological replicates for each condition should be increased (Conesa et al., 

2016). These additional replicates, together with our current-read depth of at least 5 million counts, 

would improve the power of our study and help reduce intra-condition variability. This intra-

condition variability is notable between our naïve fly samples and may have limited this studies 

ability to adequately assess gene expression changes 1h post-training (Figure 3.4). As such, it is 

believed that with the addition of more biological replicates the scope of this study can be widened 

to include gene expression changes 1h post-training. However, even with greater biological 

replicates, biological validation and further study is required to better understand the role identified 

DE genes play in learning and memory processes.  

 This study presents a data-set which captures nuclei specific to the MB, the required 

structure for fly memory, and improves upon the biological resolution seen in prior studies 
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profiling whole fly heads. However, while our study utilizes a GAL4 line targeted to allow 

profiling the MB, it is important to note that this driver line is predominantly expressed in KC’s 

of the α, β, and γ lobes, lacking expression in the α’, β’ lobes, and has limited expression in 

extrinsic MB neurons (Jenett et al., 2012). Using our sequencing results, we determined that 

INTACT could isolate MB nuclei (Figure 3.3), however, with each lobe of the MB known to play 

different roles during learning and memory processes, this study does not fully capture the spatial 

requirement of the identified DE genes. Regardless, it may be difficult to accurately identify genes 

required for LTM both temporally and spatially in single cell-types as the engram of memory is 

dynamic. Thus, by profiling multiple cell-types initially, this allows for the identification of 

candidate genes at a single time-point that can then be further studied using lobe-specific GAL4 

lines to spatially profile our DE genes.  As we have already shown that INTACT is capable of 

profiling LTM changes in specific subsets of tissue, this methodology could be easily applied to 

future studies profiling LTM in single MB cell-types.  

4.5 Genetic tools for further study   

 This study has been designed as a hypothesis-generating RNA-sequencing experiment, 

with genes shown to be differentially expressed acting as candidates for further study. As such, I 

have suggested several hypotheses and approaches to further analyze the biological roles of our 

identified DE genes. Available for use in Drosophila are several genetic tools that could be used 

in the proposed future studies. These include adult-specific gene knockdown and ChIP-

sequencing. 

  Gene knockdown mediated by RNAi is an approach used to observe biological disruptions 

caused in vivo. Pertinent to this study, candidate gene knockdown could be used to determine if 

gene loss impairs the courtship suppression seen from courtship conditioning. However, as 

proteins often have multiple functions, defining the role candidate genes play solely in LTM 

formation and maintenance is critical.  Thus, RNAi knockdown regulated both temporally and 

spatially is needed to minimize potential unintended effects on developmental processes, which 

could produce memory perturbations solely due to developmental defects. One such method 

capable of enacting adult-specific knockdown of genes is the P{Switch} system which carries a 

RU486-inducible form of the GAL4 transcription factor to manipulate transgene expression in 
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both time and space (Roman et al., 2001). Recently, this system has been integrated with a MB-

specific line to enact knockdown of critical components of LTM during both formation and 

maintenance (Mao, Roman & Davis, 2004; Hirano et al., 2016). Another genetic tool which can 

drive adult-specific gene knockdown is GAL80. In yeast, where both GAL4 and GAL80 derive 

from, GAL80 acts as a transcriptional repressor of GAL4 by binding to GAL4’s activating domain 

(del Valle Rodriguez, Didiano & Desplan, 2013). When spliced together with a temperature-

sensitive variant of a yeast-specific vacuolar ATPase subunit, the GAL80 transcriptional repressor 

can act to temporally restrict the expression of GAL4. Use of the GAL80 or P{Switch} systems 

could achieve the adult-specific knockdowns we have suggested for several of our candidate DE 

genes, including the proposed downstream targets of oskar, staufen and pumilo. Specifically, these 

genetic tools could be used to temporally block the expression of our candidate genes from 1h to 

24h post-training, as well as, 24h to 48h post-training. This approach would provide direct 

biological evidence that our candidate genes play a role in either LTM formation or maintenance 

in vivo.  

   Among our DE genes we have identified several encoding chromatin regulators, which 

can affect downstream gene transcription. ChIP-sequencing is a tool that can be used to identify 

these epigenetically regulated genes during LTM. One specific use of ChIP-sequencing relevant 

to our results would be to profile the post-translational histone modifications lysine 27 of histone 

3 acetylation (H3-K27ac) and lysine 4 of histone 3 mono-methylation (H3-K4me). H3-K4me, a 

histone modification generated in part by our DE gene Ncoa6, and H3-K27ac have been previously 

associated with active enhancer sites, acting to alter gene regulation of nearby genes (Malik et al. 

2014). Additionally, both H3-K27ac and H3-K4me are enriched in enhancer regions in response 

to neuronal membrane depolarization and regulate activity-dependent transcription of genes 

critical to memory functioning (Malik et al. 2014, Zhou 2016).  It has been shown that ChIP 

sequencing can be performed on nuclei obtained from INTACT for both H3-K27ac, as well as, 

H3-K4me histone marks (Henry et al., 2012). By combining ChIP-sequencing results for enhancer 

marks with our RNA-sequencing data, this could provide evidence for the epigenetic-regulation 

of some of our DE candidate genes, as well as reveal other genes with functions required for 

downstream LTM maintenance.  Thus, ChIP-sequencing in combination with INTACT offers a 

compelling avenue to further understand the dynamic epigenetic regulation of chromatin seen 

during LTM.  
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4.6 Summary and Conclusions 

 To summarize, this study presents the first known use of the INTACT method to isolate 

MB-nuclei for profiling over a time course of LTM formation and maintenance. Through post-

sequencing analysis of RNA extracted from whole fly heads with tissue obtained using INTACT, 

it was determined that INTACT can achieve MB-enriched samples. Overall, DE analysis revealed 

120 genes differentially expressed (q < 0.2, fold change >1.3) 24h post-training. Of these, 15 DE 

genes were identified as having previously been associated with learning and memory functions. 

This study also identifies multiple DE genes which are potentially novel LTM genes and presents 

several hypotheses for further validation. These include: 

• 13 DE genes with known physical interactions with the previously identified LTM genes 

oskar, staufen and pumilo. I hypothesize that these DE genes act as downstream targets 

for RNA localization by oskar, staufen and pumilo, with further study required using adult-

specific gene knockdown.  

• Several DE genes with known functions for epigenetically regulating chromatin. I 

hypothesize that these may epigenetically mediate the transcription of genes required for 

later LTM maintenance. Further study is suggested to include ChIP-sequencing of the 

enhancer-specific histone modifications H3-K4me and H3-K27ac to discover the identity 

of these genes.  

• Seven DE genes with CRE elements located within 2kb of the TSS. I hypothesize that 

these genes may be downstream effectors of CREB-mediated transcription. This could be 

validated by comparing these seven DE genes with the results of transcriptome profiling 

of adult-specific CREB knockdown during LTM.  

In conclusion, this study improves upon previous transcriptome-wide studies by profiling LTM-

specific tissue, to provide a rich data-set of transcriptionally-regulated LTM candidate genes for 

further study.  
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Flybase ID 

Gene 

Name 

Normalized Counts 

q 

value 

 

Fold 

difference E1-1 E1-2 E24-1 E24-2 E24-3 

FBgn0011760 ctp 11805 14058 23244 23961 22675 0.000 1.747 

FBgn0013342 nSyb 30098 36927 71205 48174 60298 0.002 1.719 

FBgn0027339 jim 34272 40602 57507 53275 58744 0.002 1.488 

FBgn0000042 Act5C 15990 16367 36852 23497 25999 0.005 1.695 

FBgn0000253 Cam 34399 52546 125212 70205 72814 0.005 1.894 

FBgn0004838 Hrb27C 15029 19933 33125 29329 25943 0.005 1.628 

FBgn0020238 14-3-

3epsilon 

11424 15689 30794 20469 24437 0.005 1.759 

FBgn0026206 mei-P26 26641 40468 62288 51438 57839 0.005 1.644 

FBgn0030758 CanA-14F 11827 16628 25676 23691 23065 0.005 1.637 

FBgn0261710 nocte 11973 12430 22830 17747 18626 0.008 1.569 

FBgn0021872 Xbp1 4552 4917 8617 7399 8725 0.009 1.661 

FBgn0052767 CG32767 7112 9485 15196 12663 14558 0.016 1.630 

FBgn0001122 Galphao 12894 16891 30140 20309 25753 0.021 1.626 

FBgn0032817 CG10631 2915 3696 6597 6601 6396 0.022 1.793 

FBgn0004595 pros 92476 110821 127537 149486 162619 0.023 1.419 

FBgn0050361 mtt 9830 8739 5411 5803 6065 0.024 0.643 

FBgn0261618 larp 12782 14382 19055 20236 24973 0.032 1.527 

FBgn0266100 CG44837 8182 7114 4302 4781 4923 0.039 0.638 

FBgn0031835 CG11319 41624 46552 28385 28157 35957 0.045 0.712 

FBgn0045823 vsg 4170 3709 10414 5893 7909 0.045 1.821 

FBgn0267668 CR46006 11226 11522 7718 6747 7818 0.045 0.673 

FBgn0026575 hang 5041 4935 11397 7503 7912 0.053 1.661 

FBgn0036583 CG13055 5145 5089 9270 6795 10738 0.053 1.634 

FBgn0039808 CG12071 3517 4913 8838 5958 8491 0.053 1.689 

FBgn0086675 fne 17459 21598 28678 27438 31908 0.053 1.463 

FBgn0262730 dtn 12538 18382 33784 18966 28341 0.053 1.634 

FBgn0034570 CG10543 3710 4554 7460 5947 7496 0.054 1.592 

FBgn0030328 Amun 4349 3625 11493 5334 7433 0.060 1.778 

FBgn0033872 CG6329 6445 8612 11769 12056 10916 0.065 1.486 

FBgn0019661 roX1 103861 108937 88294 69416 68689 0.065 0.721 

FBgn0035481 CG12605 12163 14493 22794 16138 23159 0.067 1.496 

Appendix A: Supplementary Tables  
 

Supplementary Table 1: Differentially expressed genes (q < 0.2, fold change > 1.3, < 0.77) between 24h post-

training and 1h post-training, sorted by q value. Rounded normalized counts are provided for individual samples.  
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FBgn0262735 Imp 10435 16579 29667 16854 24237 0.067 1.622 

FBgn0041094 scyl 7436 10159 16442 15845 13653 0.073 1.622 

FBgn0031698 Ncoa6 6073 7291 9623 9522 10634 0.073 1.442 

FBgn0037705 mura 12661 19848 33107 20435 29118 0.073 1.588 

FBgn0261262 CG42613 7520 9174 15106 11107 12861 0.073 1.503 

FBgn0261548 prage 21639 26168 13075 12079 19665 0.073 0.655 

FBgn0051140 CG31140 23173 24649 43779 27879 35366 0.075 1.446 

FBgn0034789 PIP5K59B 5590 6053 8677 8275 8450 0.078 1.416 

FBgn0010247 Parp 23704 24666 19361 12497 15730 0.082 0.679 

FBgn0013686 mt:lrRNA 23855 2268 0 0 0 0.086 0.593 

FBgn0017581 Lk6 31244 35573 68880 48989 39316 0.086 1.501 

FBgn0266019 rudhira 8332 9122 29050 13860 10154 0.086 1.745 

FBgn0000581 E(Pc) 5906 7545 9114 10497 10412 0.093 1.439 

FBgn0022382 Pka-R2 44429 58809 71744 64146 72286 0.093 1.326 

FBgn0264443 CG43861 9171 8957 5806 5166 6887 0.093 0.681 

FBgn0000273 Pka-C1 57905 69190 88540 72719 96357 0.096 1.331 

FBgn0000557 eEF1alpha2 17666 23710 28601 26514 32773 0.096 1.384 

FBgn0003371 sgg 18769 22770 35677 24531 29870 0.096 1.408 

FBgn0004401 Pep 7092 6857 14627 9947 9371 0.096 1.529 

FBgn0011481 Ssdp 4196 4649 6921 6197 7142 0.096 1.470 

FBgn0023388 Dap160 4650 4991 11313 7126 6976 0.096 1.607 

FBgn0050158 CG30158 31055 34398 19337 22048 27689 0.096 0.720 

FBgn0000382 csw 14878 18181 26575 22753 20914 0.099 1.384 

FBgn0058178 CG40178 72459 82812 64853 43500 57726 0.104 0.728 

FBgn0004828 His3.3B 6512 9740 19924 10225 12506 0.111 1.601 

FBgn0031627 CG15630 11622 9863 7736 6916 7874 0.111 0.719 

FBgn0033958 jef 7310 7380 13518 8848 11399 0.111 1.468 

FBgn0034802 CNBP 4059 5067 8952 7455 6642 0.111 1.563 

FBgn0260995 dpr21 48866 56553 42994 30017 40853 0.111 0.734 

FBgn0263198 Acn 3474 4519 8605 9006 4610 0.111 1.646 

FBgn0001085 fz 18837 23073 16520 13348 14855 0.120 0.727 

FBgn0026577 CG8677 3314 5298 11295 6879 6210 0.120 1.657 

FBgn0259994 CG42492 14443 23290 33226 24286 27863 0.120 1.445 

FBgn0261113 Xrp1 19049 19628 21829 28722 29220 0.120 1.349 

FBgn0004636 Rap1 4451 3029 8838 5489 6062 0.121 1.629 

FBgn0004656 fs(1)h 15370 20078 31657 21177 24398 0.121 1.407 

FBgn0011589 Elk 21399 28405 18851 14365 18867 0.121 0.717 

FBgn0086901 cv-c 14228 13420 10259 10879 9917 0.121 0.760 

FBgn0265297 pAbp 12935 14549 19852 30508 15455 0.121 1.510 

FBgn0036451 CG9425 8727 9024 15334 10095 14635 0.126 1.444 

FBgn0262124 uex 13873 14715 11852 7522 9533 0.126 0.699 
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FBgn0035253 CG7971 18971 18994 29050 24008 22590 0.126 1.307 

FBgn0003093 Pkc98E 11411 13787 23088 14486 19080 0.128 1.439 

FBgn0261934 dikar 11421 12749 18725 14390 16637 0.129 1.345 

FBgn0264490 Eip93F 28817 37020 43137 44098 48253 0.130 1.344 

FBgn0000308 chic 5409 7521 12745 8177 9746 0.142 1.490 

FBgn0001218 Hsc70-3 18991 14387 36678 21348 20847 0.142 1.485 

FBgn0011828 Pxn 14126 13989 9084 8331 12106 0.142 0.721 

FBgn0023179 amon 15608 17427 10318 13208 12772 0.142 0.747 

FBgn0035625 Blimp-1 8405 7632 11193 10475 10676 0.142 1.321 

FBgn0085395 Shawl 13219 15850 10990 8382 10283 0.142 0.705 

FBgn0263396 sqd 11178 17929 25305 19497 20250 0.148 1.431 

FBgn0020309 crol 10446 11971 17551 12528 16965 0.170 1.362 

FBgn0000008 a 15448 17673 13255 10073 13123 0.175 0.750 

FBgn0028704 Nckx30C 32623 46496 56746 47508 53628 0.175 1.308 

FBgn0259241 CG42339 20444 25036 18420 14890 16088 0.175 0.743 

FBgn0266101 CG44838 4378 6109 8521 6876 8049 0.175 1.424 

FBgn0004432 Cyp1 3091 4134 6256 6941 4859 0.175 1.520 

FBgn0030243 CG2186 4972 5718 7406 7767 8015 0.175 1.393 

FBgn0267431 Myo81F 43373 44279 40489 23317 29791 0.175 0.733 

FBgn0000259 CkIIbeta 2777 5508 8755 6258 6607 0.180 1.552 

FBgn0025639 Hmt4-20 5873 4901 6885 8087 7940 0.180 1.373 

FBgn0036663 CG9674 11972 11972 7988 9438 9089 0.180 0.754 

FBgn0041605 cpx 75060 116108 136393 114972 131353 0.183 1.310 

FBgn0004103 Pp1-87B 3216 4274 11223 4334 5537 0.185 1.603 

FBgn0004907 14-3-3zeta 35321 43693 55931 54208 48027 0.185 1.308 

FBgn0011206 bol 19890 25796 35917 27494 29014 0.185 1.321 

FBgn0264006 dysc 38380 55226 63439 53694 71069 0.185 1.315 

FBgn0265296 Dscam2 13868 20690 27863 19663 26121 0.185 1.371 

FBgn0027567 CG8108 6469 9192 19049 12034 8119 0.188 1.515 

FBgn0038826 Syp 13756 20359 22249 28281 23064 0.188 1.388 

FBgn0085478 CG34449 5962 8178 15112 8129 10075 0.188 1.470 

FBgn0263220 Hk 7379 8716 13123 10919 9586 0.190 1.353 

FBgn0052000 CG32000 13590 17512 12799 10385 10241 0.191 0.738 

FBgn0263072 CG43347 7239 8144 11565 9868 12120 0.191 1.394 

FBgn0264693 ens 7183 8018 9743 10949 9930 0.195 1.315 

FBgn0010300 brat 13053 16094 20949 16621 21598 0.196 1.322 

FBgn0261261 plx 11259 11257 7502 8845 9114 0.196 0.769 

FBgn0261403 sxc 5777 7573 3937 4475 4642 0.196 0.691 

FBgn0263780 CG17684 110741 127423 109225 54477 83710 0.196 0.720 

FBgn0015558 tty 9331 12499 19702 11593 16639 0.200 1.399 

FBgn0021800 Reph 6185 6631 13219 7447 8545 0.200 1.433 
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Flybase ID 

Gene 

Name 

Normalized Counts 

q 

value 

 

Fold 

difference E1-1 E1-2 E24-1 E24-2 E24-3 

FBgn0011760 ctp 15093 12854 23244 23961 22675 0.004 1.625 

FBgn0261262 CG42613 6482 7626 15106 11107 12861 0.016 1.745 

FBgn0000253 Cam 48284 44482 125212 70205 72814 0.018 1.792 

FBgn0019661 roX1 132454 102337 88294 69416 68689 0.018 0.658 

FBgn0086677 jeb 16943 19870 29379 26775 25872 0.018 1.458 

FBgn0030758 

CanA-

14F 14317 15906 25676 23691 23065 0.032 1.549 

FBgn0266410 CG45050 10226 10825 16197 14522 15786 0.034 1.444 

FBgn0026206 mei-P26 35834 38145 62288 51438 57839 0.058 1.503 

FBgn0020238 

14-3-

3epsilon 16112 15029 30794 20469 24437 0.084 1.555 

FBgn0260995 dpr21 59073 53383 42994 30017 40853 0.084 0.691 

FBgn0011828 Pxn 16093 14849 9084 8331 12106 0.092 0.661 

FBgn0027339 jim 43432 41602 57507 53275 58744 0.092 1.317 

FBgn0020496 CtBP 6086 9265 16838 10132 13960 0.098 1.643 

FBgn0265297 pAbp 12282 12890 19852 30508 15455 0.098 1.627 

FBgn0013342 nSyb 39051 43188 71205 48174 60298 0.111 1.424 

FBgn0041094 scyl 6437 11280 16442 15845 13653 0.111 1.613 

FBgn0011661 Moe 6169 3915 23531 14379 3935 0.128 1.924 

FBgn0052183 Ccn 13189 9775 6987 7537 8201 0.145 0.684 

FBgn0085414 dpr12 47189 38333 28768 27073 35667 0.145 0.728 

FBgn0004595 pros 102551 117190 127537 149486 162619 0.148 1.318 

FBgn0001085 fz 23824 18954 16520 13348 14855 0.156 0.714 

FBgn0263396 sqd 12364 15373 25305 19497 20250 0.165 1.493 

FBgn0264443 CG43861 9442 8426 5806 5166 6887 0.165 0.690 

FBgn0086675 fne 17770 23754 28678 27438 31908 0.166 1.383 

FBgn0010247 Parp 26102 20802 19361 12497 15730 0.168 0.698 

FBgn0004838 Hrb27C 21595 20901 33125 29329 25943 0.177 1.361 

FBgn0031453 Bacc 13573 15881 20619 18146 20339 0.177 1.318 

FBgn0031835 CG11319 42202 39637 28385 28157 35957 0.177 0.764 

FBgn0050158 CG30158 30235 33838 19337 22048 27689 0.177 0.734 

FBgn0050361 mtt 8554 7835 5411 5803 6065 0.177 0.721 

FBgn0052767 CG32767 10478 9046 15196 12663 14558 0.177 1.409 

FBgn0004828 His3.3B 9177 7529 19924 10225 12506 0.193 1.566 

Supplementary Table 2: Differentially expressed genes (q < 0.2, fold change > 1.3, < 0.77) between 24h post-

training and naive, sorted by q value. Rounded normalized counts are provided for individual samples.  
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Term Associated Genes Fold 

Enrichment 

GO:0055060~asymmetric neuroblast division resulting in ganglion 

mother cell formation 

PROS, BRAT 
106.066 

GO:0048680~positive regulation of axon regeneration CHIC, IMP 53.033 

GO:0007622~rhythmic behavior SGG, CKIIBETA, PKA-R2, PKA-C1 32.636 

GO:0008103~oocyte microtubule cytoskeleton polarization 14-3-3ZETA, PKA-C1, 14-3-3EPSILON 17.678 

GO:0007611~learning or memory DIKAR, PP1-87B, 14-3-3ZETA, VSG, PKA-C1, MURA 15.152 

GO:0007140~male meiosis HIS3.3B, BOL, PABP, LARP 14.142 

GO:0051124~synaptic growth at neuromuscular junction IMP, SGG, DAP160, CPX, JEB 13.956 

GO:0048149~behavioral response to ethanol VSG, BACC, HANG, PKA-R2, PKA-C1, MURA 13.540 

GO:0008355~olfactory learning DIKAR, SGG, PP1-87B, 14-3-3ZETA, VSG, PKA-C1, MURA 13.258 

GO:0007314~oocyte anterior/posterior axis specification SQD, MOE, PKA-C1 13.258 

GO:0072499~photoreceptor cell axon guidance CAM, MOE, DYSC 12.728 

GO:0008356~asymmetric cell division GALPHAO, PROS, BRAT 12.728 

GO:0045451~pole plasm oskar mRNA localization CHIC, SQD, HRB27C 10.972 

GO:0008285~negative regulation of cell proliferation PKC98E, PROS, BRAT, XRP1 10.348 

GO:0070374~positive regulation of ERK1 and ERK2 cascade PP1-87B, 14-3-3ZETA, 14-3-3EPSILON 9.642 

GO:0007420~brain development CHIC, PROS, BRAT 9.359 

GO:0042052~rhabdomere development CAM, MOE, DYSC 9.359 

GO:0045475~locomotor rhythm SGG, CKIIBETA, PKA-R2, PKA-C1, DYSC 9.144 

GO:0008582~regulation of synaptic growth at neuromuscular junction PIP5K59B, BRAT, DYSC 8.839 

GO:0046579~positive regulation of Ras protein signal transduction PP1-87B, 14-3-3ZETA, 14-3-3EPSILON 8.600 

GO:0035071~salivary gland cell autophagic cell death CYP1, CAM, EIP93F, CTP, LARP 7.915 

GO:0022416~chaeta development AMUN, XBP1, CTP, CTBP 7.071 

GO:0035220~wing disc development AMUN, XBP1, SSDP, CTP, CTBP 6.629 

GO:0016055~Wnt signaling pathway SGG, GALPHAO, CKIIBETA, CTBP 6.527 

GO:0007616~long-term memory DIKAR, PKC98E, VSG, MURA 6.428 

GO:0007411~axon guidance CHIC, PP1-87B, PKA-R2, PROS, BRAT, JEB, HRB27C, 14-

3-3EPSILON 
4.849 

GO:0007283~spermatogenesis CHIC, IMP, BOL, PABP, CTP 4.383 

GO:0000398~mRNA splicing, via spliceosome SYP, IMP, PABP, SQD, CG7971, ACN, PEP 3.908 

GO:0007476~imaginal disc-derived wing morphogenesis BOL, VSG, FS(1)H, CROL, CTP, PKA-C1, XRP1 3.827 

GO:0046331~lateral inhibition CAM, BOL, XBP1, CG31140, CROL, HRB27C 3.459 

GO:0048477~oogenesis SGG, PP1-87B, PABP, CTP, SQD, BRAT, PKA-C1 3.406 

GO:0006468~protein phosphorylation LK6, SGG, PKC98E, CAM, CKIIBETA, PKA-R2, PKA-C1 3.242 

Supplementary Table 3: Enriched GO terms (unadjusted p < 0.05) for unique upregulated DE 

genes for biological processes. 
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Term Associated Genes Fold 

Enrichment 

GO:0043195~terminal bouton NSYB, CPX, JEB 9.749 

GO:0045179~apical cortex DAP160, PROS, BRAT 9.478 

GO:0005700~polytene chromosome CG8677, HIS3.3B, PP1-87B, E(PC), EIP93F, CTBP, HMT4-20 6.369 

GO:0071011~precatalytic spliceosome SYP, IMP, PABP, SQD, CG7971, ACN, PEP 
5.647 

GO:0071013~catalytic step 2 

spliceosome 

IMP, PABP, SQD, CG7971, ACN, PEP 

5.594 

GO:0005654~nucleoplasm SGG, CAM, BACC, HRB27C, MURA, 14-3-3EPSILON 5.290 

GO:0005813~centrosome LK6, SGG, CAM, 14-3-3EPSILON 5.290 

GO:0005938~cell cortex CHIC, SGG, MOE, PROS 4.892 

GO:0005875~microtubule associated 

complex 

ACT5C, CYP1, CAM, PABP, 14-3-3ZETA, PROS, HSC70-3, PEP, 14-3-3EPSILON 

3.604 

GO:0005737~cytoplasm HK, CHIC, CAM, 14-3-3ZETA, CG31140, RUDHIRA, FNE, MOE, PKA-C1, ACT5C, BOL, 

DAP160, PKA-R2, BRAT, LARP, ACN, HRB27C, 14-3-3EPSILON, LK6, CG34449, SGG, 

CYP1, CSW, PABP, SQD, IMP, MEI-P26, CKIIBETA, CTP, SCYL, MURA 
2.598 

GO:0005829~cytosol LK6, SGG, CYP1, CAM, PABP, CKIIBETA, CPX, RUDHIRA, MOE, LARP 2.430 

GO:0005634~nucleus CG8677, 14-3-3ZETA, CG31140, CG10631, MOE, HMT4-20, SYP, BLIMP-1, HIS3.3B, 

BOL, XBP1, EIP93F, BACC, PROS, ACN, HRB27C, 14-3-3EPSILON, AMUN, SGG, CYP1, 

PABP, CROL, FS(1)H, CG43347, SQD, CTBP, E(PC), CKIIBETA, SSDP, HANG, MURA 2.216 

GO:0005886~plasma membrane CAM, PKC98E, 14-3-3ZETA, MOE, PKA-C1, NSYB, GALPHAO, DAP160, RAP1, TTY, 

PKA-R2, PROS, 14-3-3EPSILON 
2.197 

Supplementary Table 4: Enriched GO terms (unadjusted p < 0.05) for unique upregulated DE genes for 

cellular components.  
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Term Associated Genes Fold Enrichment 

GO:0003730~mRNA 3'-UTR binding IMP, BOL, PABP, SQD, HRB27C 19.408 

GO:0003697~single-stranded DNA binding SSDP, HRB27C, PEP 12.061 

GO:0016301~kinase activity LK6, SGG, CKIIBETA 8.237 

GO:0000166~nucleotide binding SYP, IMP, BOL, PABP, DAP160, CG31140, FNE, SQD, ACN, 

HRB27C 5.925 

GO:0003729~mRNA binding SYP, BOL, PABP, FNE, SQD, HRB27C 4.386 

GO:0004674~protein serine/threonine kinase 

activity 

LK6, SGG, PKC98E, CKIIBETA, PKA-C1 

4.108 

GO:0003676~nucleic acid binding BLIMP-1, BOL, CG32767, CG12071, CG12605, CROL, 

CG10543, CG10631, HANG, CG43347, SQD, JIM, HRB27C 
3.686 

GO:0005515~protein binding SGG, CHIC, CSW, CAM, PABP, 14-3-3ZETA, MOE, PKA-C1, 

CTBP, GALPHAO, DAP160, RAP1, CTP, PKA-R2, BRAT, ACN, 

HRB27C, 14-3-3EPSILON 
3.423 

GO:0046872~metal ion binding PP1-87B, PKC98E, CROL, CG31140, CG10543, CG10631, 

CG43347, JIM, PEP, BLIMP-1, CG32767, GALPHAO, 

CG12071, CG12605, CG9425 2.921 

Term Associated Genes Fold Enrichment 

GO:0008076~voltage-gated potassium channel 

complex 

ELK, SHAWL 57.495 

Term Associated Genes Fold Enrichment 

GO:0008236~serine-type peptidase activity CG11319, CG17684 40.537 

GO:0005249~voltage-gated potassium 

channel activity 

ELK, SHAWL 42.789 

GO:0022843~voltage-gated cation channel 

activity 

ELK, SHAWL 96.276 

GO:0005178~integrin binding CCN, PLX 128.368 

Supplementary Table 5: Enriched GO terms (unadjusted p < 0.05) for unique upregulated DE genes for 

molecular functions.  

Supplementary Table 6: Enriched GO terms (unadjusted p < 0.05) for unique downregulated DE genes 

for cellular components  

Supplementary Table 7: Enriched GO terms (unadjusted p < 0.05) for unique downregulated DE genes for 

molecular functions.  
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