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Abstract  
 Spatio-temporal patterns of benthic metabolism were measured to determine 

associations with substrate (cobble vs sand), channel location (main vs side channel), 

flow regulation (medium-head vs low-head) and temporal variability during the summer 

months. Benthic metabolism was estimated in two reaches of the Saint John River in New 

Brunswick, Canada using benthic chambers. General linear models indicated gross 

primary production (GPP) and community respiration (CR) was greater in cobble 

substrate in June, but only GPP was greater in July. CR differed between channel 

locations in July with greater rates in the side channel. Assessment of flow regulation 

showed greater GPP in the medium-head reach during July and August, but greater CR in 

July only. Regression analysis indicated temporal variation in GPP was associated with 

light, whereas CR was associated with GPP and water temperature. Results demonstrate 

that there are strong spatial and temporal trends for benthic metabolism in a large river.  
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1.0.  Introduction 
 

Large rivers are dominant landscape features and have been focal points of human 

civilization for millennia. Indeed, humans are reliant on the many naturally occurring 

ecosystem services provided by ecological processes in large rivers, such as fisheries, 

drinking and irrigation waters, as well as nutrient cycling and water purification (MEA, 

2005). Large rivers are also frequently dammed and managed to regulate flows for hydro-

electric generation, flood control and water storage, changing the flow regime of the river 

and associated ecological functions (Young et al., 2004; O’Connor et al., 2012). 

However, quantitative research and knowledge of the processes driving ecological 

functions within large river systems are limited (Li et al., 2015). In particular, key 

ecological processes, such as stream metabolism, have been understudied in large rivers 

(Cardinale et al., 2002; Tank et al., 2008). 

 

1.1. Stream metabolism 

Stream metabolism is the balance between the amount of carbon fixation and 

consumption derived from gross primary production (GPP) and community respiration 

(CR), respectively, with the difference between the two an indication of net daily 

metabolism (NDM) (Clapcott & Barmuta, 2010). Measurements of primary production 

and respiration provide insight into an ecosystem’s trophic structure and important 

ecological processes within a river, such as cycling of nutrients and organic matter 

(Mulholland et al., 2001; Bernot et al., 2010). Stream metabolism can be indicative of 

nutrient cycling because primary producers require inorganic nutrients (i.e., nitrogen and 

phosphorus) to grow, enabling nutrient uptake to be reflected in rates of GPP (Bernot et 

al., 2010). Likewise, CR indicates the amount of organic matter being broken down 

providing insight into organic matter processing within a system (Mulholland et al., 2001; 

Bernot et al., 2010). Thus, metabolism is indicative of whether the ecosystem food web is 

supported primarily by carbon fixation within the stream (autochthonous) or from 
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external carbon sources (allochthonous) (Rosenfeld & Roff, 1991; Muholland et al., 

2001). Because the majority of organisms in rivers reside in the benthic zone, benthic 

metabolism measurements provide crucial information for understanding stream 

metabolism in lotic systems (Bunn et al., 1999; Fellows et al., 2006).  

 

1.2. Drivers of Benthic metabolism 

Benthic metabolism is controlled, in part, by a river’s physico-chemical 

characteristics. For example, studies of small streams have found that GPP and CR are 

strongly linked to local environmental conditions, including photosynthetically active 

radiation (PAR) (Fellows et al., 2006), temperature (Clapcott & Barmuta, 2010; Velasco 

et al., 2003), organic matter (Bernot et al., 2010), nutrient availability (Kendrick & 

Huryn, 2015), flow regime (Chester & Norris, 2006; Cardinale et al., 2002; Acuna et al., 

2011) and substrate type (Clapcott & Barmuta, 2010).  GPP is primarily controlled by 

light and nutrients as these parameters limit the amount of algal biomass in a river 

(Mulholland et al., 2001; Bernot et al., 2010), whereas CR has been strongly correlated 

with increasing temperature, and organic matter (Bernot et al., 2010). In addition, benthic 

metabolism is influenced by physical habitat characteristics. For example, impacts of 

flow vary depending on substrate type, with more stable substrates, such as cobbles, 

having been shown to have greater rates of GPP than finer substrates, such as sand, that 

are more likely to be mobilized and scour primary producers, during high velocity flows 

(Young et al., 2004; Acuna et al., 2011; O’Connor et al., 2012). The understanding of 

spatial and temporal patterns of stream metabolism and associated drivers have primarily 

been derived from small, pristine streams and have not been well investigated in large 

rivers (Tank et al., 2008; Izagirre et al., 2008; Acuna et al., 2011). 

 

Studies applying knowledge of drivers of metabolism, such as PAR, temperature 

and discharge, derived from small streams in large rivers have had some contrasting 

results. For instance, a study by Naiman (1983) in the Moisie River found PAR was not 

significantly associated with metabolism, whereas in their study of the Mississippi River, 

Dodds et al. (2013) observed PAR to have a positive but indirect overall effect on GPP. 
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The relationship between PAR and GPP was likely caused by seasonality, but is an 

example of the complex relationships among environmental variables when trying to 

distinguish individual drivers of metabolism (Dodds et al., 2013). However, multiple 

studies have indicated a strong positive association between water temperature and 

metabolism rates in large rivers, where both primary production (Dodds et al., 2013) and 

respiration (Dodds et al., 2013; Aritsi et al., 2014) increased with rising temperature. 

Discharge was also found to be positively associated with GPP and CR in three tributaries 

of the Ebro River (Aritsi et al., 2014) as well as being associated with CR in the 

Mississippi River (Dodds et al., 2013). Disentangling potential drivers behind GPP and 

CR is important for understanding the abiotic controls behind the dominant energy source 

in a river (autotrophic or heterotrophic). In general, the trophic status of large rivers has 

varied between studies, as some systems have been reported as autotrophic (Naiman, 

1983), and others heterotrophic (Minshall et al., 1992; Dodds et al., 2013, Aritsi et al., 

2014). Although reported trophic status of rivers varies, the limited knowledge we have 

about metabolism patterns in large rivers has been constrained to a similar substrate type 

as a majority of studies (see Naiman & Sedall, 1980; Naiman, 1983; Minshall et al., 1992; 

Aristi et al., 2014) have all focused on cobble substrate. To enhance our understanding of 

metabolism in large rivers the breadth of substrate types studied needs to be expanded. 

 

River substrate is influenced by the geology of the surrounding catchment 

environment with a river containing a mosaic of substrate, ranging from areas containing 

a wide spectrum of sizes to defined patches of a single dominant particle size. A study by 

Cardinale et al. (2002) found homogenous substrate patches, such as, sand substrate, have 

lower GPP and CR than patches of higher heterogeneity, although the mechanisms behind 

these results have only been speculated. Another small stream study by Rier & King 

(1996) found net daily metabolism (NDM) within cobble sites was autotrophic, whereas 

sand sites produced heterotrophic conditions, suggesting patches consisting of 

homogeneous substrate have consistent rates of metabolism. However, studies of how 

physical habitat heterogeneity affects ecological processes in large rivers, like stream 

metabolism, are limited (Cardinale et al., 2002).  
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The majority of research on large rivers has viewed these habitats as stable, single 

channel systems (Ward et al., 2001). However, there has been an epistemological shift 

and large rivers are increasingly recognized as a mosaic of unique habitat types with 

biological processes that are not restricted to the main active channel. Additional habitats 

within large rivers can include areas with restricted flow connectivity creating 

floodplains, backwaters and side channel areas, each with their own physical and 

biological characteristics. For example, hydrological connectivity between main channel 

and off-channel habitat in a river can influence environmental conditions linked to GPP 

and CR, such as nutrient availability, organic matter, turbidity and flow disturbance 

(Ward, 1999; Sobotka & Phelps, 2016). In addition, Preiner et al., (2008) found 

connectivity between main and off-channel habitat in the River Danube, Austria, to be 

important for benthic metabolism as rates were greatest at low hydrological connectivity. 

Investigating potential differences of benthic metabolism between main and off-channel 

habitat is an important step to improving our understanding of large rivers given the 

ecological importance of these off channel areas. 

 

Large rivers are frequently subjected to flow regulation and can be managed for 

both power usage and reservoir capacity throughout the year (Brismar, 2002; Young et 

al., 2004; O’Connor et al., 2012). Indeed, 59% of the world’s large river systems are 

affected by dams leading to altered channel morphology, sediment transport, water 

chemistry, and flow regimes (Ward & Stanford, 1983; Ligon et al., 1995; Karr & Chu 

2000; Munn & Brusven, 2004; Nilsson et al, 2005; Graf, 2006; Aristi et al., 2014). 

Regulation has homogenized flow regimes in rivers by altering the degree and timing of 

high and low flow events within rivers (Poff et al., 2007), whereas unregulated river 

reaches have been shown to have greater discharge, more frequent flood events and 

greater maximum flows (Graf, 2006). Moreover, stream metabolism in unregulated river 

reaches responds to high flows causing GPP and CR to decrease (Young et al., 2004; 

O’Connor et al., 2012) and should therefore differ from a regulated reach, where a more 

stable environment results in an increase in the establishment of primary producers (Ward 

& Stanford, 1983; Ligon et al., 1995; Aritsi et al., 2014). With the majority of large rivers 
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being regulated, it is essential to increase our knowledge of the effects of flow regulation 

on river metabolism. 

 

Seasonality influences stream metabolism through variations in PAR, temperature 

and flow because these abiotic controls vary temporally (Roberts et al., 2007). For 

example, because of the open canopy in wider rivers, light regime can be quite variable 

on a daily basis due to cloud cover, whereas smaller streams experience seasonal light 

limitation due to leaf emergence in the tree canopy (Naiman & Sedall, 1980). In colder 

seasons, lower water temperatures lead to reduced heterotrophic activity resulting in 

lower CR compared to warmer seasons (Izagirre et al., 2008). However, in the study of a 

small, shaded stream, Izagirre et al. (2008) found that GPP hit a peak in cooler spring 

months whereas open reaches peaked during the warm summer months; likely a result of 

variations in PAR. During the summer months in temperate ecosystems, daylight hours 

are longest increasing light intensity, water temperature and biomass (Acuna et al., 2011). 

Quantifying patterns of temporal variability is important to understanding drivers of 

metabolism because most measurements are made during ideal conditions (e.g. sunny 

days) making general interpretation of results difficult. Seasonal effects may also be 

mitigated by river regulation, as summer temperatures could potentially be kept colder 

and spring temperatures made warmer depending on the type of dam (Preece & Jones, 

2002). Studies of seasonal effects on stream metabolism are few and have been of limited 

scope in large regulated river reaches (but see Dodds et al., 2013; Aritsi et al., 2014). 

 

Our current understanding of spatial and temporal drivers of variation in benthic 

metabolism has been largely derived from studies of small, headwater streams (Bunn et 

al., 1999; Fellows et al., 2006; Tank et al., 2008; Izagirre et al., 2008). In contrast, there 

have been comparably few studies of the controls of spatial and temporal patterns of 

benthic metabolism in large rivers (but see Munn and Brusven, 2003; Dodds et al., 2013; 

Aritsi et al., 2014). As a result, there is an immediate need to assess if our knowledge of 

spatio-temporal patterns of stream metabolism in small streams can be scaled to large 

rivers. The goal of this study was thus to describe patterns of spatial and temporal 

variation of benthic metabolism in a large, regulated river.  
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2.0. Research Goals and Hypothesis 
 

This thesis describes patterns of spatial and temporal variation of benthic 

metabolism in a large regulated river.  This goal was achieved by conducting four field 

assessments that measured mean rates of benthic metabolism and the associated effects of 

river substrate, channel location, flow regulation and temporal variation. 

2.1. Assessment 1: River Substrate 

Objective: Compare rates of benthic metabolism between patches of coarse and fine 

substrate located within a regulated river reach among the summer months (June, July and 

August). 

 

Hypothesis: During the June sampling period, metabolism rates will not be significantly 

different between coarse (cobble) and fine (sand) sediment types because of low algal and 

microbial biomass. However, there will be a significant difference in benthic metabolism 

between substrate types during July and August, because coarse substrates are more 

stable allowing algae and microbes to establish greater biomass than on fine substrates.  

2.2. Assessment 2: Channel Location 

Objective: Compare benthic metabolism between two channel locations (i.e., main and 

side channel) between summer months (i.e. July, August). 

 

Hypothesis: There will be a significant difference in rates of metabolism between habitat 

types during July and August because biomass accumulation will be increasing within 

each channel, but at different rates over the summer. In comparison to the side channel, 

the main channel will have lower rates of GPP and CR because of higher riverbed 

scouring during spring freshet and storm events will delay and reduces algal biomass 

accumulation over the summer period.  
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2.3. Assessment 3: Flow Regulation Effects 

Objective: Compare rates of benthic metabolism between two regulated (i.e., low-head 

and medium-head) river reaches among summer months (June, July and August).  

 

Hypothesis: There will be a significant difference in the rate of benthic metabolism 

between coarse substrates in the low-head and medium-head regulated reaches. Benthic 

metabolism will be significantly greater in the medium-head reach during July and 

August because of reduced riverbed disturbance resulting from greater flow regulation, 

reducing scouring and allowing algae to establish greater biomass on substrate.  However, 

benthic metabolism will not be significantly different between low and medium-head 

reaches at the beginning of summer (June) because of high flow disturbances and 

associated streambed scouring in both reaches from increased runoff after the winter 

season.  

2.4. Assessment 4: Temporal Variability 

Objective: Assess temporal variation in rates of benthic metabolism throughout the 

summer in a regulated river reach.  

 

Hypothesis: Rates of benthic metabolism will be greatest in mid-July because water 

temperature and bed PAR will peak during this time period allowing maximum algal 

biomass accrual. Rates of GPP and CR will increase from June until mid-July and then 

will continuously decrease as summer concludes.  

3.0. Methods 

3.1. Study Area 

This study was conducted in the Saint John River, near Fredericton, New 

Brunswick, Canada.  The Saint John River flows south through New Brunswick to the 

city of Saint John where it discharges into the Bay of Fundy (Figure 1A). The river basin 

has an area of about 55,000 km2, and the river is the largest river in New Brunswick in 

both discharge (1100 m3/s) and length (~700 km) (Cunjak & Newbury, 2005). The large 
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volume of water allows the generation of hydroelectric power at the 660 MW Mactaquac 

Generating Station upstream of Fredericton, which is classified as a medium-head dam as 

it is taller than 30 m (sensu Majumder & Gosh 2013). 

 

This study focused on two river reaches located up and downstream of the dam 

(Figure 3.1A). The downstream reach extended from medium-head Mactaquac 

Generating Station to Fredericton and was used for Assessments 1 (Figure 3.1B), 2 

(Figure 3.1C) and 4 (Figure 3.1B & C) of the research. This reach is characterized by a 

wide (750 m) channel with islands of alluvial deposits of gravel and sand bars dispersed 

along this stretch (Curry & Munkittrick, 2005).  Substrate in the downstream reach is a 

mosaic of either patches of cobble or sand. Land use in the downstream reach is a mixture 

of forest, urban development and agriculture. In contrast, the upstream reach near 

Hartland, New Brunswick is affected by the low-head (< 30 m tall) Beechwood Dam and 

contains a few islands with a riverbed that is dominated by cobble sized substrate (Figure 

3.1D). Land use along the upstream reach is primary agricultural (Kidd et al., 2011). 

Water chemistry conditions are circumneutral (pH 7.3 to 8.0) and specific conductivity 

ranged from 92.4 to 147.8 µS/cm within the study reaches. 
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Figure 3.1. Location of four sites in the Saint John River, New Brunswick for which 
benthic metabolism was estimated.  Panel A indicates the location of study sites within 
the Saint John River, with the inset identifying the location of the study region in Canada. 
Panels B, C and D indicate site locations corresponding to field assessments 1, 2 and 3, 
respectively. 
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3.2. Study Design and Site Selection 

3.2.1. Assessment 1: River Substrate 

The effect of substrate size on benthic metabolism in a large river was assessed by 

comparing two patches (hereafter sites) of substrate within the main channel portion of 

the downstream reach of the Saint John River. The selected sites differed in substrate size 

(i.e., cobble (Figure 3.2.1A) vs sand (Figure 3.2.1B) substrate) but were similar in patch 

size area, water velocity, light availability and depth (see Appendix 1 for site 

characteristics). Benthic metabolism was sampled at eight locations at each site to capture 

within site variability in substrate. To assess the possible effects of substrate type with 

seasonal variation on benthic metabolism, measurements were undertaken during three 

different periods between June 6 and August 12. Benthic metabolism was measured daily 

over a four-day period for two of three sampling events, but only for a three-day period 

from July 4-7 due to severe weather.  
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Figure 3.2.1A. Downstream view of the cobble substrate site in the Saint John River 
(left) with a close up of an individual chamber (right). 

Figure 3.2.1B. Downstream view from the sand substrate site in the Saint John River 
(left) and a close up of the benthic chambers pushed into the stream bed (right). 
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3.2.2. Assessment 2: Channel Location 

The effect of channel location on benthic metabolism was determined by 

comparing two sites within the downstream reach of the Saint John River. One site was 

the coarse substrate main channel site used in Assessment 1 (see Figure 3.1C & Figure 

3.2.1A) and the other site was located in a side channel area (Figure 3.1C). The side 

channel site (Figure 3.2.2) was selected to be comparable to the main channel site in 

substrate and patch size, water velocity, light availability and depth. Benthic metabolism 

was measured at eight locations within each site. Sampling locations were selected to 

encompass the variability in substrate characteristics within each site. Evaluation of 

seasonality effects on metabolism was assessed during two different periods between July 

11 and August 18. Metabolism measurements for the July sampling took place over a 

four-day period, and measurements in August took place over a three-day period.  

 

 

 

 

 

 

Figure 3.2.2. An upstream view from the side channel site in the Saint John River 
(left) and a benthic chamber set up with substrate enclosed (right). 
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3.2.3. Assessment 3: Flow Regulation 

Effects of river regulation on benthic metabolism was determined by comparing 

rates of metabolism measured at a site located at the low-head regulated, upstream reach 

(Figure 3.2.3) with measurements from the medium-head regulated downstream reach 

(Figure 3.2.1a) of the Saint John River. Sites consisted of a single coarse substrate patch 

in each reach (Figure 3.1D). Sites were representative of the overall physical conditions 

of the reach and comparable in terms of habitat patch size, water velocity, light 

availability and depth. Benthic metabolism was examined at eight locations within each 

patch. Sampling locations were arranged to account for the variability in substrate 

characteristics within each patch. To assess effects of seasonality, benthic metabolism 

was evaluated during three different periods between June 21 and August 26. June and 

July benthic metabolism samplings took place daily over a four-day period, whereas 

August sampling lasted 48-hours because of inclement weather. 

 

 

 

 

 

 

Figure 3.2.3. A downstream view towards Hartland in the upstream sampling site in 
the Saint John River (left) and a benthic chamber with large cobble substrate (right). 
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3.2.4. Assessment 4: Temporal Variability 

  Temporal variation in benthic metabolism was assessed by comparing rates of 

metabolism at the medium-head regulated main channel cobble site (Fig. 3.2.1a) used in 

assessments 1, 2 and 3 over eight weeks of the summer of 2016. Benthic metabolism was 

measured at eight locations within the patch each sampling period. Sampling locations 

were arranged to capture the variability in substrate characteristics within the patch. To 

assess seasonality, benthic metabolism was measured between June 6 and August 26.  

3.3. Field Sampling  

3.3.1. Benthic Metabolism 

Benthic metabolism parameters (i.e., GPP, CR and NDM) were estimated using 

benthic chambers and the dissolved oxygen method (Grace & Imberger, 2006). Sealed 

chambers were used to isolate a known area of riverbed to measure changes in dissolved 

oxygen concentrations. Each chamber consisted of a Whale inline centrifugal pump 

connected to an acrylic dome chamber and YSI Sonde (model 6600 or EXO) dissolved 

oxygen probe in series (Figure 3.3A). Chambers then had substrate placed inside that was 

representative of the site area and were arranged to cover within site variability (Figure 

3.3B). A 100 pebble count was used to characterize substrate size at each site following 

the Canadian Aquatic Biomonitoring Network (CABIN) field protocol (Reynoldson et al., 

2007). At coarse substrate sites, five cobbles (with an intermediate axis approximately 5-

10 cm in length) were selected, placed on a base and sealed inside each chamber. In 

contrast, at fine substrate sites chambers were pushed into the sediment to isolate an area 

of the streambed. Chambers were flushed daily for 10 minutes with fresh river water to 

limit nutrient depletion and oxygen supersaturation within the chambers during the 

sampling period (Grace & Imberger, 2006). Dissolved oxygen and temperature were 

measured at 10 minute intervals throughout the duration of a deployment using an optical 

sensor on a YSI Sonde (model 6600 or EXO).  
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A 

B 

Figure 3.3. (A) Typical organization of a closed-base benthic chamber system for cobble 
measurements. Once the cobble substrate is placed inside, the benthic chamber is sealed 
with a plastic base and duct tape. The outflow of the chamber is connected to a Whale 
inline centrifugal pump that pumps water through an YSI Sonde (model 6600 or EXO) 
and back into the chamber through the inflow, which is all connected in series. A dock 
float was used to hold batteries that powered the pump. 
(B) An overhead view of the distribution of benthic chambers at each sampling site.  Four 
chambers were placed around each dock and arranged to cover variability within each 
sampling patch. 
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Benthic metabolism was calculated using the following relationship between 

dissolved oxygen and metabolism (Grace & Imberger, 2006):    

 

ΔDO = GPP – CR        Equation 1 

Where: 

ΔDO is the change in dissolved oxygen during 10-minute intervals 

GPP is gross primary productivity 

CR is community respiration 

 

To convert dissolved oxygen measurements from volume units into areal units, 

photosynthetically active surface area and volume of water within the chambers were 

measured. Chamber volume was calculated differently for substrate types: coarse 

substrate was calculated by subtracting the cobble volume from the volume of an empty 

dome; fine substrate volume depended how deep the chamber was inserted into the 

sediment, volume of the chamber was subtracted from the volume of sediment in the 

chamber (Grace & Imberger, 2006). Cobble volume was determined by measuring an 

average volume from 80 cobble samples per site and averaging the amount of water 

displaced from a graduated container (Grace & Imberger, 2006). Photosynthetically 

active surface of the chamber was calculated for soft substrate sites using equation 2: 

 

Surface area = π r2        Equation 2 

Where: 

r is the radius of the chamber in meters  

 

Surface area of cobble substrates was determined by wrapping the cobbles in 

aluminum foil to cover the rock and using a weight-area relationship. Cobble surface area 

was then divided by two, as the photosynthetically active area of cobbles is assumed to be 

half of the total area (Grace & Imberger, 2006). Daily respiration rates were estimated 

from the mean respiration rate (R).  R was calculated as the mean of the change in night 

time DO rates, this was done by plotting a DO vs time graph and finding a six hour time 
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period when DO was in a constant decline. Daily respiration was then calculated using 

the equation: 

 

CR (g O2 m-2 d-1) =  

R x chamber volume x 24 / photosynthetically active surface area / 1000  Equation 3 

 

Where: 

R is the mean respiration rate in mg O2 L-1 hr -1 

Chamber volume is in L 

Photosynthetically active surface area is in m2 

 

GPP was calculated as the sum of DO production during daylight hours plus DO 

consumed by respiration during the night time. GPP was then calculated for an area using 

equation 4. 

 

GPP (g O2 m-2 d-1) =  

ΣGPPflux x chamber volume x 24 / photosynthetically active surface area / 1000 Equation 4 
 

Where: 

ΣGPPflux is in mg O2 L-1 hr-1 

Chamber volume is in L 

Photosynthetically active surface area is in m2 

 

Net daily metabolism was calculated as the difference between GPP and CR using 

equation 5. 

 

NDM = GPP-CR        Equation 5 

Where: 

NDM is Net daily metabolism in g O2 m-2 d-1 
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3.3.2. Physicochemical Characteristics 

 

 Physicochemical characteristics known to influence benthic metabolism were 

measured to describe sampling sites and help interpret findings. Flow velocity was 

measured daily in the centre of the sampling site using a Sontek Flow Tracker Handheld 

Acoustic Doppler Velocimeter. Photosynthetically active radiation (PAR) was measured 

at 10 minute intervals using two Odyssey PAR Light Loggers (model Z412) per site, one 

that was secured underwater at substrate depth and the other at the surface of the water 

with both located in the centre of each sampling site.  One grab water sample was 

collected during each sampling period for each of the experiments on the third day of 

deployment, by wading into the centre of the measurement locations of a site and 

immersing the bottle into the flow at 60% water depth. All water samples were collected 

in polyethylene bottles, stored at 4°C in a cooler and transported to the Biogeochemical 

Analytical Services Laboratory (University of Alberta) in Edmonton, Alberta for 

analyses. Water samples were analyzed for nitrate-nitrite, ammonia, total nitrogen, total 

Kjeldahl nitrogen, total phosphorus, soluble reactive phosphorus and dissolved organic 

carbon concentrations (Appendix 2).  

 

 Following each experiment, organic matter and algal biomass were collected from 

inside each chamber to aid in interpretation of differences in primary productivity 

between sampling locations. Periphyton biomass (ash-free dry mass and chlorophyll-a) 

was estimated by scraping biomass from the substrate surface to quantify variability 

within the chambers (Fellows et al., 2006). At soft sediment sites, small sediment cores 

were taken to collect algae (Fellows et al., 2006). Organic biomass was measured using 

the ash-free dry mass method where biomass samples were dried overnight in an 80°C 

drying oven, the samples weighed, placed in a 500°C oven and then reweighed. 

Chlorophyll-a was measured at fine sediment sites by extracting chlorophyll-a from 

sediment cores by adding 10 mL of 95% ethanol and then boiling for 7 minutes inside a 

hot water bath set at 80°C. After boiling, samples were left to cool in the dark for 30 

minutes and then centrifuged. Chlorophyll-a extract volume was then recorded and 1 mL 

was transferred into a Turner Designs Trilogy Lab Fluorometer (Model 7200-000) and 
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measured. For cobble substrate, scrapings were emptied into a blender and contents were 

blended for 1 minute to make a homogeneous solution. Afterwards, 1-10 mL of the 

solution was then filtered onto a Whatman Glass Fibre Filter and 10 mL of 90% ethanol 

was added. Chlorophyll-a was then extracted and measured following the same process as 

for the sediment cores. 

 

3.4. Data Analysis 

All benthic metabolism parameters were tested for normality using the Shapiro-

Wilk test. Parameters not normally distributed were log transformed to improve variable 

normality for analysis. GPP and CR were calculated for each chamber for each day and 

the daily mean of all chambers calculated. A one-way ANOVA was conducted to test for 

effects of chamber location on stream metabolism. As no significant effects (p > 0.05) of 

chamber location were detected metabolism measurements from all chambers for each 

sampling period were pooled for further analysis. A General Linear Model (GLM) was 

used to assess differences associated with site comparisons for assessments 1 through 4: 

1) to examine changes between coarse and fine substrate patches among months; 2) to 

investigate potential differences among channel location (main and side channel) among 

months; 3) to assess potential differences between low-head and medium-head regulated 

river substrate patches among months, and; 4) to evaluate potential temporal differences 

among sampling weeks. GLM results were considered significant if the interaction term 

of the model was (p ≤ 0.01). For assessments 1 through 3, in the cases where a significant 

interaction term was not identified a second GLM was carried out to determine 

differences in metrics of stream metabolism (i.e., GPP, CR and NDM) between sites for 

each individual month. For assessment 4, in the case where pairwise differences between 

individual weeks could not be identified, a polynomial regression with a quadratic 

function was used to determine if a significant temporal trend was present over the 

sampling periods. Systat 13 (Systat Software Inc. 2015) was used for all ANOVA and 

GLM analyses.  
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Multiple linear regressions were calculated using MuMIn package in R to evaluate a 

priori hypothesis about the relationships of GPP, CR and NDM to environmental 

variables known to influence stream metabolism (i.e., water temperature, bed PAR, water 

depth fluctuation) for assessment 4. Error residual sums of squares for each multiple 

linear regression were used to calculate a corrected Akaike Information Criteria (AICc) 

(Burnham & Anderson, 2002). For GPP, CR and NDM, 10 a priori models were deduced 

(see Appendices 3, 4 & 5). Candidate models, including null (intercept only) and global 

models were ranked using Akaike Information Criterion (AIC) (Akaike, 1973; Burnham 

& Anderson, 2002). The best model had the lowest AICc value as compared to the other 

candidate models. However, competing models with ΔAICc < 7 (ΔAICc being the 

difference between the best ranking and competing models) were considered to be valid 

and plausible models that can contain relevant information (Anderson, 2008). In this 

group of best models, more complex, lower-ranked models were removed if the model 

differed by approximately 2 AICc units per additional parameter (i.e., 2, 4 or 6 units for 

models with 1 to 3 added parameters) because additional parameters are considered 

inconclusive (Arnold, 2010). If more complex models were removed, weights of the 

remaining models were then recalculated. Akaike weights, evidence ratios, standard 

errors and 85% confidence intervals were used to make inferences about the relative 

support for competing models (Burnham & Anderson 2002; Anderson, 2008; Arnold, 

2010). Model averaging of parameter estimates was conducted for the GPP models within 

7 ΔAICc of the top model to determine which factors had the strongest effect on primary 

production (Grueber et al., 2011). Model averaging was not required to establish the best 

models for either CR or NDM. 
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4.0. Results 

4.1. Assessment 1: River Substrate 

Physical parameters increased as summer progressed at both sites, but was 

generally greater in sand substrate. Mean daily water temperatures were coldest in June 

(cobble = 14.7°C; sand = 15.1°C) and warmest in August (cobble = 22.4°C; sand = 

22.5°C) at both sites (Table 4.1). Mean PAR at the river bed was nearly six times greater 

at the cobble site than the sand in June, however, the sand site received more than double 

the amount of bed PAR in both July and August. Mean PAR at the river surface was 

greatest in August for both sites. Concentration of NH3 at the cobble site was over six 

times greater than in sand for the August sample, however; concentrations were within 15 

µg/L for the other two sample periods (Table 4.2). NO2+NO3 was greatest in June at both 

sites, but sites did not differ by more than 13 µg/L for any sampling event. TN differed 

the most between sites in June as the cobble sample had more than double the TN that 

was observed at the sand site. A large difference in TN was also measured in August 

when the cobble sample was 206 µg/L greater than the sand sample. Similarly, TKN was 

at least 60% greater at the cobble site for both June and August with the largest 

concentration occurring in June at 708 µg/L. SRP ranged from 2 to 3 µg/L and 2 to 4 

µg/L at cobble and sand sites, respectively. TP in sand was twice the concentration 

observed in cobble for the month of July, whereas sites differed by no more than 1 µg/L 

in June and August. DOC differed by no more than 0.5 mg/L between sites in for any of 

the three sampling events. Differences in chlorophyll-a concentrations between sites 

became more pronounced as the summer progressed, as sand concentrations were greater 

by 20% in June, 400% greater in July and over 3000% greater in August. AFDM in 

cobble was double and triple what was observed in the sand site in July and June, 

respectively. However, AFDM in sand substrate was over twice the amount found in 

cobble for the month of August.  

 

GPP increased from June to August in both substrates, ranging from 1.9 to 3.8 g 

O2 m-2 d-1 and 0.1 to 1.8 g O2 m-2 d-1 at the cobble and sand sites, respectively (Figure 

4.1A). CR ranged from 0.3 to 0.9 g O2 m-2 d-1 in cobble and 0.1 to 0.9 g O2 m-2 d-1 in sand 
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(Figure 4.1B). Mean NDM was negative in sand substrate for June (-0.05 g O2 m-2 d-1) 

and July (-0.4 g O2 m-2 d-1), but not August (0.9 g O2 m-2 d-1), whereas NDM was positive 

in all three months ranging from 1.6 to 2.9 g O2 m-2 d-1 at the cobble site (Figure 4.1C). 

GLMs revealed an interaction between substrate type and month for GPP (F = 7.4; p = 

0.003) and NDM (F = 4.09; p= 0.025), but not CR (F = 1.6; p = 0.212) (Figure 4.1). Post-

hoc analysis showed that GPP was greater at the cobble site than the sand site in June (p = 

0.038) and July (p <0.001), but not August (p = 0.26). However, NDM was greater at the 

cobble site in all three months (June, p = 0.001; July, p <0.001; August, p<0.001). 

Subsequent one-way GLMs assessing between site differences in CR indicated greater 

CR at the cobble site in June (F = 5.6; p = 0.034) but no difference in July (F = 2.1; p = 

0.18) or August (F = 0.01; p = 0.92). 
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Figure 4.1. Average gross primary productivity (GPP) (A), community 
respiration (CR) (B), and net daily metabolism (NDM) (C) (±standard 
deviation) measured as benthic metabolism rates between coarse and fine 
substrate patches during the summer of 2016. Letters denote post-hoc analysis 
similarity and differences in cases where an interaction was present. The * 
represent differences from GLM.  
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4.2. Assessment 2: Channel Location 

Water temperature was consistently within 1°C at the main and side channel sites 

(Table 4.1.), with the minimum mean temperatures in July at 19.3°C and 19.8°C and 

maximum mean in August at 21.3°C and 21.5°C, for the main and side channel sites, 

respectively. Mean bed PAR values indicated 62% and 84% more light penetration in the 

side channel in July and August, respectively. In contrast, mean surface PAR values were 

within 5 mol m-2 d-1 for both sampling weeks. Concentrations of NH3 for the samples 

taken at the side channel site were nearly 50% greater in July and 75% greater in August 

than at the main channel site. NO2+NO3 was within 1 µg/L for the two samples collected 

in the main channel, whereas side channel samples differed by 18 µg/L (Table 4.2). Both 

TN and TKN were larger in the side channel during the July sample and exhibited the 

largest concentrations in August for the main channel site. SRP concentrations were 

identical at main and side channel sites for both July (2 µg/L) and August (3 µg/L). TP 

values did not differ between sites by more than 1 µg/L in both July and August, with the 

lowest concentrations for both sites occurring in July. Similarly, DOC concentration was 

identical at both sites in July and only differed by 0.1 mg/L in August. Chlorophyll-a 

measurements were similar during the July sampling period as side channel biomass was 

only 7.5% greater than the main channel. The side channel site had approximately 140% 

more chlorophyll-a than the main channel in August. The side channel had nearly 25% 

more organic matter than the main channel in July, but site AFDM was identical in 

August.  

GPP at main channel ranged from 3.4 to 5.4 g O2 m-2 d-1, CR from 0.7 to 0.8 and 

NDM from 2.1 to 3.2 g O2 m-2 d-1. Side channel GPP ranged from 3.4 to 5.4 g O2 m-2 d-1, 

CR from 1.0 to 1.2 g O2 m-2 d-1, and NDM from 2.4 to 4.1 g O2 m-2 d-1 (Figure 4.2). The 

GLMs examining effects of channel location and month did not identify a significant 

interaction term for GPP (F = 0.5; p = 0.462), CR (F = 0.8; p = 0.364) or NDM (F = 2.0; p 

= 0.166) (Figure 4.2).  GLMs assessing between site differences also found no difference 

of GPP in July (F = 1.6, p = 0.218) or August (F = 0.04, p = 0.83) (Figure 4.2A). 

Similarly, NDM was not different in July (F = 1.4, p = 0.248) or August (F = 0.7, p = 

0.417) (Figure 4.2C). CR was 60% greater in the side channel during July (F = 6.6; p-
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value = 0.021), but no difference was detected in August (F = 2.3, p = 0.147) (Figure 

4.2B). 
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Figure 4.2. Average gross primary productivity (GPP) (A), community 
respiration (CR) (B), and net daily metabolism (NDM) (C) (±standard 
deviation) measured as benthic metabolism rates between main and side channel 
patches during the summer of 2016. Letters denote post-hoc analysis similarity 
and differences in cases where an interaction was present. The * represents a 
significant difference between sites.  
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4.3. Assessment 3: Flow Regulation 

Mean water temperature was approximately 2°C higher at the low-head site 

during both June and July, whereas in August the medium-head site was less than 1°C 

warmer (Table 4.1). The largest between site differences of mean bed PAR occurred in 

June, as substrate at the medium-head site received approximately 70% less PAR than the 

low-head site. In contrast, during August sampling the low-head site bed PAR values 

were 67% less. July had the smallest difference between sites with the medium-head site 

receiving 30% less bed PAR than the low-head site. Mean surface PAR was similar 

between sites in both June and July, never differing by more than 4.0 mol m-2 d-1. The 

greatest mean values for both sites occurred during the July sampling. During the August 

sampling surface PAR was 40% greater at the medium-head site. The greatest NH3 

concentrations were measured in August for both sites (Table 4.2). NH3 concentrations at 

the medium-head site were double those of the low-head site in June and August. 

NO2+NO3 concentrations were greater at the low-head site for each sample taken, 

however, the difference between sites decreased from 287 µg/L in June, and 64 µg/L in 

July to only 4 µg/L in August. Similar to NO2+NO3, TN concentrations were greatest at 

the low-head site for all three sampling events. However, the difference in TN 

concentration between the two sites did not exceed 43 µg/L for any sampling event. TKN 

differed the most between sites in June as the medium-head site had nearly double the 

concentration of the low-head site. TKN did not differ by more than 24 µg/L between 

sites in July and August. SRP was greatest in the low-head reach for all three sampling 

events and concentrations were at least double that measured at the medium-head site. TP 

measurement was larger at the medium-head site in June, but higher concentrations were 

measured at the low-head site in both July and August, with over twice the amount of TP 

observed at the low-head site in July. DOC was greatest at the low-head sites in all 

samples but the one collected in June when the medium-head site sample was 0.1 mg/L 

greater than the low-head sample.  The largest and smallest DOC concentrations were 

observed in the August and June samples at both sites. Chlorophyll-a at the medium-head 

site was approximately 280% larger in June, 660% larger in July but only 30% greater in 
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August. AFDM ranged from 0.07 to 1.72 mg/cm2 and 0.06 to 0.49 mg/cm2 at the 

medium-head and low-head sites, respectively.  

 

GPP at the medium-head site ranged from 3.2 to 4.6 g O2 m-2 d-1, CR from 0.6 to 

1.2 g O2 m-2 d-1 and NDM from 2.5 to 3.3 g O2 m-2 d-1 (Figure 4.3). The low-head site 

GPP ranged from 2.1 to 3.7 g O2 m-2 d-1, CR from 0.5 to 0.8 g O2 m-2 d-1, and NDM from 

1.6 to 2.9 g O2 m-2 d-1 (Figure 4.3). Comparison of benthic metabolism at the medium-

head and low-head sites revealed an interaction effect of site and month for CR (F = 4.8; 

p = 0.014), but not GPP (F = 2.2; p = 0.115) or NDM (F = 1.8, p = 0.164) (Figure 4.3). 

Post-hoc analysis revealed that CR differed between sites in the month of July (p = 0.025) 

with CR at the medium-head site being 62% larger than CR at the low-head site (Figure 

4.3B).  No differences were observed in CR in June (p = 0.849) or August (p = 0.622).  

Individual GLMs comparing GPP between medium-head and low-head sites for each 

month revealed that GPP was greater at the medium-head site in July (F = 14.2; p = 

0.002) and August (F = 37.1; p = <0.001) but not in June (F = 0.8; p = 0.77) (Figure 

4.3A). NDM followed the same trend as GPP as the medium-head site was greater in July 

(F = 5.9; p = 0.031) and August (F = 24.1; p <0.001) but not June (F = 0.007; p = 0.933) 

(Figure 4.3C). 
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Medium-head
Low-head

Figure 4.3. Average gross primary productivity (GPP) (A), community respiration 
(CR) (B), and net daily metabolism (NDM) (C) (±standard deviation) measured as 
benthic metabolism rates coarse substrate patches in a medium-head and low-head 
reach. Letters denote post-hoc analysis similarity and differences when an interaction 
was present. The * represents a difference between sites from the GLM. 
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4.4. Assessment 4: Temporal Variation 

From June through August, mean daily water temperature ranged from 14.7-

22.4°C (Figure 4.4). Week 1 had the lowest temperature, but temperature generally 

trended upwards until its peak in week 6, followed by a slight decrease through 

completion of sampling in week 8. The greatest change in temperature occurred between 

weeks 2 and 3 when mean temperature increased by 3°C. Mean bed PAR increased nearly 

ten-fold from week 1 to 2 (1.7 to 12.5 mol m-2d-1), and over three fold from week 3 to 4 

(10.7 to 34.7 mol m-2d-1). The three largest surface PAR measurements corresponded with 

the three largest bed PAR measurements in weeks 4, 5 and 8. The range of the 8 NH3 

samples taken over the summer was 19 to 184 µg/L, however the maximum value 

observed in week 6 was more than threefold larger than the next largest measurement (59 

µg/L in week 8) (Figure 4.5). The week 3 sample provided the minimum concentration of 

NO2+NO3 at 110 µg/L, with the greatest concentration measured in week 8 at 174 µg/L. 

TN and TKN ranged from 310-866 µg/L and 151-708 µg/L, respectively, over the 8 

sampling events with both parameters having maximum concentrations in week 1 and 

minimums in week 5. TN was at least 30% lower during the three sampling weeks in July 

(Weeks 4, 5 and 6), than for the samples in June and August. SRP was between 2 and 3 

µg/L for all weeks except week 2, which was determined to be below the minimum 

detection limit of the analytical method. The minimum TP concentration was observed in 

week 1, and the maximum in week 2. TP concentration in weeks 3 through 8 were all 

within 5 µg/L. DOC ranged from 5.4 mg/L in week 1 to 9.1 mg/L in week 7, but August 

samples (weeks 6, 7 and 8) had concentrations at least 16% greater than any measurement 

collected in weeks 1 through 5 (Figure 4.6). Chlorophyll-a concentrations decreased 

between weeks 1 and 2, and weeks 6 through 8 over the summer, with the greatest 

chlorophyll-a in week 1 (17.16 µg/cm2), and lowest week 8 (0.28 µg/cm2) (Figure 4.6). 

However, chlorophyll-a increased in consecutive sampling weeks from 3.1 µg/cm2 in 

week 3 to 5.3 µg/cm2 in week 5. AFDM followed a similar trend ranging from 0.06-1.72 

mg/cm2, with the exception of a decrease in organic mass between weeks 3 and 4. The 

lowest AFDM occurred in week 8 and the maximum occurred in week 2.  
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GPP and CR followed similar patterns, with minimum average daily rates 

observed in week 1 and maximum rates observed in week 5 (Figure 4.7 A, B).  Results 

from the GLM indicated that differences among weeks for GPP, CR and NDM were 

significant (F = 1.9; p = 0.085; F = 23.0; p = <0.001, F = 4.0; p = 0.002). Post-hoc tests 

revealed that CR in week 1 was less than all other weeks (p<0.001). CR in week 5 was 

found to be greater than CR in weeks 1 (p <0.001), 2 (p = 0.001), 3 (p = 0.002), 7 (p = 

0.042) and 8 (p = 0.002). No pairwise differences were detected between individual 

weeks for GPP (p>0.1) however, a polynomial regression revealed a significant quadratic 

trend (R2 = 0.75; F= 7.2; p = 0.017). NDM post-hoc results indicated NDM was less in 

week 1 than weeks 2 (p = 0.005), 4 (p = 0.007), 5 (p = 0.002), and 6 (p= 0.027) (Figure 

4.7C). 

 

 

 

 

Figure 4.4. Mean daily temperature (°C) and mean bed PAR (mol m-2d-1) from each 
sampling period throughout the summer of 2016. 
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Figure 4.5.Inorganic nitrogen (A) and inorganic phosphorus (B) concentrations 
from once a week sampling in the Saint John River in the 2016 study period.  
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Figure 4.6. Dissolved organic carbon (A), Chlorophyll-a and ash free dry mass 
(B) for each sampling week during the summer of 2016. 
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 Figure 4.7. Average gross primary productivity (GPP) (A), community 
respiration (CR) (B), and net daily metabolism (NDM) (C) (±standard 
deviation) measured as temporal change in benthic metabolism at a cobble 
substrate patch in the Saint John River during the summer of 2016. 
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4.4.1. Hypothesis Testing of Drivers of Benthic Metabolism 

GPP was best predicted by a priori GPP Model 15 (Table 4.3), which consisted of 

PAR, water temperature and the PAR x Temp interaction term.  Model 15 had an 

associated adjusted R2 of 0.44 indicating nearly half the variability in GPP over the 

sampling period could be explained by these three variables. However, GPP Models 2, 3, 

4, 7, 8 and 16 were within 7 AICc units of the top ranked model (Table 4.3). We were 

able to discard the more complex Model 16 as the model had a lower AICc value 

indicating the addition of Depth as a fourth parameter was uninformative. In contrast, 

Models 2, 3, 4, 7 and 8 could not be discounted, although the strength of evidence (i.e., 

weight) was more than 5 times greater for Model 15 than for Models 2, 7 and 8 but less 

than 3 times greater for Models 3 and 4. Model averaging of Models 2, 3, 4, 7, 8 and 15 

indicated that GPP was positively associated with PAR (model-averaged parameter 

estimates ± SE: 0.108 ± 0.037) but negatively correlated with Temp (-0.056±0.0527), 

PAR*Temp (-0.082 ± 0.080) and Depth (-0.021 ± 0.031). The negative associations 

between GPP and the Temp and PAR*Temp parameters were contrary to our a priori 

hypotheses. The negative association coupled with the model averaged standard errors of 

these terms being approximately 94% and 98% of the associated parameter estimates for 

Temp and PAR*Temp, respectively suggests minimal support for the role of these two 

parameters in driving the temporal pattern of GPP observed. The depth parameter 

exhibited a large standard error such that the parameter estimate 85% confidence interval 

overlapped zero indicating little support for depth as a driver of GPP.  

 

Evaluation of a priori CR models indicated that CR Model 8 (Table 4.4), which 

contained GPP, Temp and Depth as environmental drivers, explained 27% of CR 

variation and had an evidence weight of 0.53. As predicted, GPP, Temp and Depth were 

all positively associated with CR (parameter estimates ± SE: GPP = 1.209 ± 0.159, Temp 

= 1.803 ± 0.260, Depth = 0.203 ± 0.102).  Three other models, Models 7, 15 and 16, were 

within 7 AICc units of Model 8.  However, the global model, Model 16, was discarded 

because the addition of the GPP*Temp parameter resulted in a model that differed from 

Model 8 by greater than 4 AICc units suggesting this parameter is uninformative.  

Similarly, Model 15 was a more complex version of Model 7 where the addition of the 
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GPP*Temp parameter did not result in an enhanced model.  Model 7 was a simpler 

version of the best model, Model 8, and had a weight of 0.33 but was 1 AICc unit less 

than the best model indicating that the addition of the Depth parameter to Model 8 

improved our understanding of variation in CR. 

 

The NDM a priori global model, Model 16, had strong support with a weight of 

0.70 (Table 4.5), which was over four times greater than the next best model. PAR (3.24 

± 1.040), and Temp (1.612 ± 0.898) were positively correlated to NDM whereas Depth (-

0.248 ± 0.099) and PAR*Temp (-2.348 ± 0.796) were negatively associated. Model 16 

had an adjusted R2 of 0.53 indicating that the majority of variation in NDM over the 

sampling period could be explained by the four included parameters. 
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5.0. Discussion 
Our assessment of benthic metabolism in the Saint John River suggests that spatial 

and temporal heterogeneity in this key ecosystem process is controlled by interactions 

between physical habitat characteristics and seasonally driven climatic conditions. Spatio-

temporal patterns of metabolism are influenced by substrate type and flow regulation 

indicates that patterns of benthic metabolism in the Saint John River are consistent with 

observations from small streams. 

5.1. Comparison to Other Studies 

Rates of benthic metabolism measured during our study (median = 3.06 g O2 m-2 

d-1) ranged from 0.11 to 5.38 g O2 m-2 d-1for GPP, (median = 0.78 g O2 m-2 d-1) 0.16 to 

1.28 g O2 m-2 d-1 for CR, and (median = 2.29 g O2 m-2 d-1) -0.06 to 4.11 g O2 m-2 d-1 for 

NDM. Other benthic chamber studies in large, temperate rivers have reported greater 

rates of CR, but rates of GPP within a similar range (Table 5.1).  In particular, the mean 

GPP values we observed in the Saint John River were within 0.3 g O2 m-2 d-1 of rates 

reported by Naiman (1983) for the Moisie River in eastern Quebec, Canada (Table 5.1). 

However, our CR rates were less than half of what has been reported by comparable 

studies (e.g., Naiman, 1983; Naimo & Layzer, 1988; Rier & King, 1996). Differences in 

CR could be linked to variations in methods between our study and previous studies. For 

example, Naiman (1983) included macrophytes and mosses in the chambers, whereas we 

excluded macrophytes. Likewise, other studies have used incubated sampling trays 

composed of fine substrate (Naimo & Layzer, 1988), which could lead these other studies 

to capture additional respiration contributed by macrofauna and additional bacteria (Bunn 

et al., 1999; Clapcott & Barmuta, 2010). Furthermore, our results indicate that the Saint 

John River is strongly autotrophic with average NDM values above 2 (2.29 g O2 m-2 d-1), 

whereas other studies in temperate systems were only slightly autotrophic (Naiman, 1983; 

Rier & King, 1996) or heterotrophic (Naimo & Layzer, 1988) (Table 5.1). A 

methodological difference could also explain our larger NDM rates as Naiman (1983) 

assumed 1/4 of surface area on cobble substrate was photosynthetically available in their 

metabolism calculations, where we followed the guidance of Grace & Imberger (2006) 

and assumed 1/2 of cobble surface was photo-available. The discrepancy in 
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photosynthetically available surface area could explain why our GPP rates are 

comparable to Naiman (1983) even though they included macrophytes in their benthic 

chambers. Autotrophy of the Saint John River and other large temperate rivers (Table 5.1) 

can likely be attributed to increasing PAR availability as river widening leads to open 

canopies (Vannote et al., 1980; Naiman, 1983). Mulholland et al. (2001) proposed that 

when net ecosystem production is controlled by PAR, rather than nutrient availability 

primary production measurements should exhibit greater variation than respiration. Thus, 

our results indicate PAR limitation is the dominant control of NDM in the Saint John 

River as variation in GPP (Median = 0.82) was over four times larger than CR (Median = 

0.18).    

 

 

 

 

Author River GPP (g O2 m-2 d-1) CR (g O2 m-2 d-1) 

This study Saint John 2.93 (1.38) 0.76 (0.29) 

Naiman, 19831 Moisie ~ 3.16 ~1.82 

Naimo & Layzer, 1988 Tombigbee 1.93 (0.62) 4.32 (0.84) 

Rier & King, 1996 North Chippewa 3.38 1.461 

 

5.2. River Substrate 

Substrate variation contributed to spatial heterogeneity of GPP, but only during 

the earlier summer months (i.e., June and July) when sand substrates had lower rates of 

production than cobble. Differing rates of GPP between substrate types is consistent with 

a study of the Chippewa River by Rier & King (1996), who also observed greater rates of 

production on cobble substrate compared to sand during the summer months. However, in 

contrast to Rier & King (1996), our results also indicated temporal variation in the effect 

                                                
1 Values are approximated from figures in Naiman, 1983 study. No standard deviations 
were presented in the text. 

Table 5.1. Measured rates of benthic metabolism in temperate North 
American rivers. Average (±SD) are shown.  
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of substrate, as we observed no difference in GPP between substrate types in August. The 

increased production in sand substrate during August may be attributed to a differential 

increase in bed PAR between sites as summer progressed.  During the August sampling 

period, nearly three times as much PAR reached the bed at the sand site compared to the 

cobble site and likely prompted greater biomass growth and accumulation. This 

hypothesis is supported by our observation of between substrate differences in 

chlorophyll-a concentrations. The increase in chlorophyll-a provides an indication that 

PAR and biomass development led the sites to become more similar despite substrate 

differences. Differences in stability between substrates may also have contributed to 

between site similarities later in summer as the threshold of shear stress to move cobble 

substrate in the riverbed is over one magnitude larger than sand (Miller et al., 1977). 

Daily water fluctuations were approximately twice as large in June and July (0.4-0.5 m) 

compared to August (0.2 m) (Environment and Climate Change Canada, 2017), likely 

decreasing bed movement leading up to the August sampling period allowing for greater 

algal accumulation in sand substrate compared to earlier in the summer (sensu Tett et al., 

1978). Although our findings were consistent with previous large river studies, past 

studies on small streams by Clapcott & Barmuta (2010) and Fellows et al. (2006) found 

fine substrate had greater rates of GPP than cobble. However, results from both large 

rivers and small streams indicate that substrate type consistently influences rates of 

metabolism although the direction of the relationship may vary depending on the size of 

the river.  

 

Contrary to our hypothesis, sand substrate did not have significantly greater rates 

of CR throughout the summer. Cobble CR was greater than sand in June but no statistical 

difference was detected in July or August. Our results differ from a study by Fellows et 

al., (2006), who found sand substrate to have significantly greater rates of respiration, 

with additional respiration attributed to the benthic chambers enclosing the entire 

microbial community. Conversely, cobble respiration measurements would instead be 

limited to the microbial community growing on the surface of the cobble inserted into the 

chamber (Fellows et al., 2006). However, in the larger Chippewa River, Rier & King 

(1996) found higher respiration at cobble substrate sites in all summer months and 
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suggested that unstable conditions in sand may not be suitable for primary producers, or 

heterotrophs (i.e., bacteria) and therefore limited respiration rates in the fine substrate 

habitats. Low CR rates at our sand site suggest disturbance from high water levels and 

flow fluctuations following spring melt may have delayed establishment of autotrophs 

and heterotrophs resulting in the noted differences between substrate types in June. 

Seasonal instability of substrate is supported by findings of O’Connor et al. (2012), who 

observed that sand substrate was mobilized during small increases in discharge (from 3.1 

to 3.2 m3/s) in the South Fork Iowa River. Moreover, Gerull et al. (2012) found that 

metabolism rates can be reduced by increases in stream flow even when disturbance is 

limited to the top 1 cm of sand in a riverbed. As summer progressed, patches of 

macrophytes emerged in the Saint John River, adding hydraulic stability to the sand site 

and potentially allowing algae and microbial communities to accumulate and induce 

increased respiration. The only negative NDM results in our entire study were observed 

during June and July at our sand substrate sites suggesting slightly heterotrophic 

conditions in the early summer when there was a greater frequency of high discharge with 

associated bed disturbance (Environment and Climate Change Canada, 2017).  Production 

during these months was less than 0.2 g O2 m-2 d-1 and GPP was negligible, likely as a 

result of low PAR (0.29-27.3 mol m-2d-1) in these months. Conversely, cobble NDM 

increased in each consecutive month, indicating sites with stable substrate became more 

autotrophic as the summer progressed. Seasonal changes in NDM at the cobble site were 

likely associated with PAR as light also increased in consecutive months. 

 

5.3. Channel Location 

Our assessment comparing benthic metabolism in the main and side channel areas 

of the Saint John River revealed a significant difference of CR in July, with the side 

channel having approximately 50% greater CR than the main channel. However, our 

results indicated that GPP was not different between main and side channels sites in the 

Saint John River; therefore there is little evidence of production driving differences in 

respiration rates between our sites. Our environmental parameters (PAR, temperature, 

nutrients, etc.), albeit based on limited sampling, also did not appear to be different 
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enough to cause a measureable difference in CR. Although there was a statistical 

difference in CR between channel locations during July, rates of respiration were small 

and only differed by 0.44 g O2 m-2 d-1, an amount that may not be biologically relevant 

considering inherent variation between individual sampling locations within a site. 

Similarities between channel locations may have been caused by the high connectivity 

between the adjacent main and off-channel habitats in Saint John River throughout the 

summer. The high connectivity of flow could be preventing the substantive differences in 

key environmental drivers such as nutrient availability, light penetration and bed 

disturbance, required to generate a difference between channel locations. Contrary to our 

results, Houser et al. (2015) generally found greater rates of production and respiration at 

their backwater sites in their temporal evaluation of ecosystem metabolism in the main 

channel and backwaters of the Upper Mississippi River. For instance, in the second year 

of their study, both production and respiration were significantly greater at all backwater 

sites compared to main channel (Houser et al., 2015).  However, the main and side 

channel locations used in our study exhibited less variation in key habitat variables such 

as velocity, substrate and presence of macrophytes than did the sites in the Houser et al. 

(2015) study.  Sampling of sites with greater hydrogeomorphic range in the Saint John 

River may thus be needed to fully understand benthic metabolism in side channel areas. 

 

5.4. Flow Regulation 

Our results from the comparison of the regulated river reaches support our 

hypothesis of temporal differences in benthic metabolism; with flow regulation found to 

be most influential following spring rain events in June. As predicted, there were no 

significant differences between sites in June, likely attributed to capacity constraints of 

each reservoir, which are subject to seasonal flood flows from high spring precipitation. 

When reservoirs reach capacity, most dams function as run-of-the-river generating 

stations (Majumder & Ghosh, 2013), and we speculate this is what happened in the Saint 

John River under these higher flow conditions prior to water levels stabilizing in July. 

Previous studies of the effects of regulation on benthic metabolism indicate GPP 

increases downstream of a dam (Munn & Brusven, 2004; Chester & Norris, 2006). Our 
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findings are consistent with past studies as the more intensely regulated medium-head 

downstream reach produced greater GPP rates in both July and August. A combination of 

factors are likely responsible for GPP differences between sites. First, as the upstream 

low-head Beechwood dam has a very small storage capacity it acts as a run-of-the-river 

dam in all but the driest parts of the season. However, the medium-head Mactaquac 

Generating Station has an extensive reservoir and exhibits greater control over water 

flow, possibly generating a difference in the amount of downstream disturbance between 

the two study reaches. Although we did not directly measure disturbance events, changes 

in stage coupled with concurrent changes in biomass provide evidence of the impacts of 

disturbance. For example, during our July sampling period, maximum stage upstream was 

over twice as great as downstream, suggesting greater potential for disturbance. 

Furthermore downstream chlorophyll-a and AFDM were over eight times greater than the 

upstream and could have caused the observed differences in GPP. However, chlorophyll-

a concentrations were less than 0.07 µg/cm2 apart between sites in August, suggesting 

GPP differences between sites was not associated with biomass. Above average rainfall in 

August could explain why chlorophyll-a and AFDM measurements became more similar 

despite differences in flow regulation, as water stage in the medium-head reach increased 

nearly 1 m in the days leading up to our August sampling and may have caused bed 

scouring and removed accumulated algae from the substrate. Furthermore, differences in 

GPP during August can be attributed to over three times greater bed PAR in the medium-

head reach, potentially promoting production at this site, as light is a key driver of GPP 

(Mulholland et al., 2001; Izaguirre et al., 2008; Bernot et al., 2010). 

 

Previous research has suggested flow regulation can increase CR rates 

immediately downstream of a dam (Munn & Brusven, 2004). Our findings support this 

claim as July CR in the medium-head reach was greater than all other measurements. As 

previously described, both June and August had high precipitation rates seemingly 

changing flow regulation to run-of-the-river, whereas in July hydropeaking was more 

consistent. Comparable to our results, Munn & Brusven (2004) found seasonality to be 

important for CR rates; however, their study covered a greater period of time with lowest 

CR occurring in spring and greatest respiration rates occurring in the summer and fall.  
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5.5. Temporal Variation 

Studies examining metabolism in large rivers have found it to be temporally 

variable (Naiman 1983; Dodds et al., 2013). Temporal patterns of benthic metabolism in 

the Saint John River over the summer were similar to Naiman (1983) who used benthic 

chambers in the nearby Moise River in Quebec.  Specifically, we also found GPP to reach 

a maximum rate in July with rates exceeding 4 g O2 m-2 d-1. Although there were no 

significant differences among weeks, there was a quadratic temporal-trend to GPP, as it 

peaked in mid-summer, likely due to the 2 to 3 fold increase in PAR in weeks 4 and 5. 

Indeed, regression analyses findings suggest that variation in summer rates of GPP in the 

Saint John River are primarily driven by light availability. The importance of PAR to 

GPP is consistent with many studies of stream metabolism in small streams such as 

Sumner et al. (1979), who also found peak GPP coincided with peak PAR, although their 

study took place in a forested stream and production was greatest in spring before leaf 

emergence. Another temporal study, by Minshall et al. (1992), in the 8th order Salmon 

River Basin, Idaho, found benthic GPP peaked in summer, with lower rates in both spring 

and autumn. If our study had been extended from spring through fall then we would likely 

have seen similar results in the Saint John River. Conversely, production at another 8th 

order river, Slate Creek, increased progressively from spring through fall but less than 

21% of GPP could be attributed to the benthic community, which was attributed to 

reduced light availability to benthic areas at deeper water depths (Minshall et al., 1992). 

The lack of association between temporal variation in GPP and hydropeaking in the Saint 

John is not, however, consistent with previous literature, which has found reduction of 

disturbances from flow regulation to increase primary production (Aristi et al., 2014). 

This could be because the daily flow releases in the Saint John River were not large 

enough in most cases to scour periphyton from the substrate to facilitate new growth. 

However, we did not measure disturbance gradients and further investigation would be 

needed to support this hypothesis. 
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The finding that temporal variation in CR was associated with GPP, hydropeaking 

and temperature is consistent with previous studies (Bott et al., 1985; Fellows et al., 2006; 

Bernot et al., 2010). For example, CR rates are expected to be positively correlated to 

GPP (Fellows et al., 2006), with measured respiration contributed by periphyton on 

cobble substrate (Bunn et al., 1999). Our results provide evidence of this relationship as 

both GPP and CR measurements were lowest in week 1 and greatest in week 5. Due to 

the design of our study with substrate enclosed in chambers, impacts of hydropeaking 

were likely established on substrate in the days leading up to sampling. It is also likely 

these daily changes in water depth were indirectly linked to GPP through the effect water 

depth has on PAR. Our GPP model did not include hydropeaking, but PAR was the most 

important variable and we can speculate water depth change from river regulation altered 

turbidity and light penetration throughout the day. Although, our speculation of water 

depth influencing GPP could be coincidentally related to weather related factors, such as 

cloud cover, which can reduce light reaching the benthic community (Dodds et al., 2013). 

Indeed, there is evidence of PAR restriction from cloud cover in our results, as CR was 

less variable within individual weeks than GPP. Our finding of an association between 

temperature and CR is also consistent with other studies that found strong support of this 

relationship (Bott et al., 1985; Uehlinger et al, 2000). However, there are conflicting 

results from a study by Mulholland et al. (2001) where no statistical significance was 

found between respiration rates and temperature.  

 

NDM was associated with all environmental parameters used in our model, 

(positively related: PAR, water temperature; negatively related: hydropeaking, 

PAR*Temp) explaining over half of the variation, which is not surprising as all four 

parameters were included in the best models for either GPP or CR. However, the positive 

relationship with temperature was unanticipated based on the findings of Clapcott & 

Barmuta (2010) where temperature was negatively associated with cobble NDM, 

contradicting our results. Similarly, in our model results temperature was deemed 

uninformative for GPP but positively associated with CR. Our rates of NDM are driven 

by GPP, as production was about four times larger than CR in each week. 
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5.6. Implication and Applications 

Understanding river metabolism is important for informing management of these 

ecosystems, because many variables influence production and respiration, with 

metabolism providing an important functional indicator of stream health (Bunn et al., 

1999). It is also useful to know if prior metabolic patterns in small streams persist in 

larger rivers because it means we can apply our existing knowledge to understudied large 

rivers, which are logistically more difficult to study. Moreover, our study has contributed 

to the theoretical knowledge of large rivers as relationships between substrate types and 

temporal drivers of GPP were upheld, meaning we may be able to apply basic conceptual 

models of small streams to large rivers.  

 

Results of our study can also form the foundation for developing benthic 

metabolism as an indicator for ecosystem monitoring in the Saint John River. First, we 

have generated baseline data of benthic metabolism indicating the current state of the 

Saint John River ecosystem. Second, our study has provided key insights regarding 

developing benthic metabolism as a tool for monitoring in the Saint John River by 

establishing patterns of heterogeneity within the river. Indeed, because our study found 

that, rates of benthic metabolism varied both spatially and temporally we recommend 

identifying one area indicative of dominant river conditions (e.g., main channel cobble 

site used in all parts of our study) to monitor long-term changes in benthic metabolism 

and water quality. Once a trend site, or sites, is selected monitoring will have to be 

regulated by consistently sampling at the same sites at the same time of the year.  

 

The development of a long-term monitoring program will allow researchers to 

track changes of benthic metabolism rates in the Saint John River ecosystem, especially 

in regards to the impacts of increasing temperature regimes associated with climate 

change that could impact the Saint John River. Acuna et al. (2008) studied the 

relationship between respiration and water temperature, finding a 20% increase in 

respiration with a 2.5°C increase in water temperature. Our results also indicate 

temperature is a driver of CR and this evidence suggests a rise in water temperature could 

cause a shift in the river from autotrophy to heterotrophy as respiration increases. 
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Considering the findings of this study, CR could potentially be used as an indicator of 

environmental stress as water temperature warms. Our results also provide insight into the 

likely change in the river in the wake of rising temperatures; however, strategic 

management of the Mactaquac Generating Station could potentially be used to counteract 

water warming, and thus changes in benthic respiration rates. Multiple studies (see Preece 

& Jones, 2002; Null et al., 2013) have found water released from deep reservoirs is 

relatively cooler during the summer when compared to unregulated conditions; meaning 

climate change could be mitigated with released of cooler water.  

5.7. Study Limitations and Further Research 

This thesis has demonstrated spatio-temporal patterns of benthic metabolism 

within the Saint John River by identifying differences in rates of metabolism between 

substrate types, channel locations, and flow regulation management over the course of a 

summer season. However, this was a preliminary investigation and there were some 

unavoidable limitations. First, the research design relied on benthic chambers, which have 

common limitations outlined by Grace & Imberger (2006). Specifically, benthic chambers 

have been reported to underestimate rates of CR, which could have contributed to high 

NDM rates in our study. Second, benthic chambers provide scaling problems as they can 

only estimate rates of metabolism for the enclosed habitat. Thus, estimates of whole-

ecosystem metabolism from chambers exclude other habitat components such as 

macrophytes and inverebrates. Thus, although our hypotheses pertained to benthic 

metabolism of habitat patches within the river, it is difficult to scale these findings to the 

river reach or segment scales. Third, due to the physical constraints of our benthic 

chambers, we focused on primary producers directly attached to substrate to estimate 

metabolism. We understand producers such as phytoplankton and submerged 

macrophytes that may be important contributors to stream metabolism were 

excluded.  However, as our goal was to focus on benthic metabolism and a small suite of 

environmental drivers acting primarily at the patch or sub-habitat scale we elected to 

control as much variation as possible in our comparisons by omitting non-benthic 

ecological components.   
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In order to better evaluate the health of riverine systems, indicators such as 

benthic metabolism should be further investigated for an increased understanding of 

controls and inherent patterns of variability. Future research in the Saint John River may 

benefit from investigating annual patterns of benthic metabolism in the river associated 

with emergence, growth and die-off of primary producers by expanding sampling further 

into spring and autumn months. Naiman (1983) found seasonal variation of benthic 

metabolism in the Moisie River over an annual study, and extending the temporal scope 

of our study would provide more information about how metabolism changes seasonally. 

In addition, as our study focused on benthic metabolism and excluded other primary 

producers such as phytoplankton and submerged macrophytes, studies undertaking a 

more ecologically complete assessment of metabolism could provide important insight 

into rates of metabolism in the Saint John River. For instance, a study of the Murray 

River in Australia compared phytoplankton and whole system metabolism and found no 

significant difference between the two, suggesting plankton were an important contributor 

to metabolism within the river (Oliver & Merrick, 2006). Likewise, other studies have 

investigated macrophyte metabolism finding this ecological compartment can also make a 

significant contribution to stream metabolism (Uehlinger, 1993; Kaenel, Buehrer & 

Uehlinger, 2000). Investigating these additional primary producers could produce a 

whole-stream metabolism estimate for the Saint John River, to enhance comparison with 

studies from other temperate rivers, such as the Moise River (Naiman, 1983). Finally, as 

our study found minimal impact of the dam, a longitudinal study in closer proximity to 

Mactaquac Generating Station could provide knowledge about how the impact of flow 

regulation dissipates downstream. A study by Munn & Brusven (2004) investigated the 

change of benthic metabolism between sites at different locations downstream of the 

Dworshak Dam and found the impacts of flow regulation were only measurable 

immediately downstream of the dam. Setting up multiple sites increasingly downstream 

of the dam would allow us to measure longitudinal trends of metabolism downstream. 

Future research should focus on the relationships between metabolism and environmental 

variables and may need to be replicated in other large river systems in order to build our 

fundamental knowledge about ecosystem functioning in these complex systems. 
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6.0. Conclusions 
Spatial and temporal heterogeneity of benthic metabolism in the Saint John River 

is controlled by the interaction of habitat type and season. Stable cobble substrate had 

greater production than sand substrate early in the summer when river flows were high.  

More intense flow regulation provided greater rates of GPP, CR and NDM, although no 

differences were found when the reservoirs reached full capacity. Similar to small 

streams, our findings indicate PAR and water temperature are important environmental 

drivers of metabolism in a large regulated river. Results from this research indicate that 

benthic metabolism varies both spatially and temporally in large rivers and due to 

heterogeneity within large rivers, an area representing the dominant river conditions 

should be used for biomonitoring. As well, future research should investigate the 

contribution of other primary producers (i.e. macrophytes, phytoplankton) and determine 

their contribution to stream metabolism to gain a better understanding of whole 

ecosystem metabolism.  
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Appendix 1 
Site Location Substrate Average Flow 

Velocity (m/s) 

Average 

Chamber Depth 

Underwater 

(m) 

Main channel 

cobble, 

medium-head 

regulation 

N 45°58'18"   

W 66°44'1" 

 

Cobble 0.05 0.5 

Main channel 

sand 

N 45°58'14"  

W 66°41'13" 

 

Sand 0.06 0.6 

Side channel N 45°58'33"  

W 66°43'38" 

 

Cobble 0.07 0.3 

Low-head 

regulation 

N 46 20' 49''  

W 67 33' 27'" 

 

Cobble 0.15 0.4 

Location and characteristics of sites used in Assessments 1-4 in the Saint John River. All 

measurements were taken during the summer of 2016. 
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Appendix 2 
Parameter Abbreviation Detection 

Limit (ppb) 

Method Name Instrument 

Ammonia NH3 3 Determination of Ammonia in 

Surface and Wastewaters by 

Flow Injection Analysis 

 

Lachat QuickChem QC8500 

FIA Automated Ion Analyzer 

 

Nitrite + 

Nitrate 

NO2+NO3 2 Determination of Nitrate/Nitrite 

in Surface and Wastewaters by 

Flow Injection Analysis 

 

Lachat QuickChem QC8500 

FIA Automated Ion Analyzer 

 

Total Nitrogen TN 6 Automated Determination of 

Total Nitrogen and Total 

Dissolved Nitrogen by Flow 

Injection Analysis 

 

Lachat QuickChem QC8500 

FIA Automated Ion Analyzer 

 

Total Kjeldahl 

Nitrogen 

TKN 6 Automated Determination of 

Total Kjeldahl Nitrogen by 

Flow Injection Analysis 

 

Lachat QuickChem QC8500 

FIA Automated Ion Analyzer 

 

Soluble 

Reactive 

Phosphorus 

SRP 1 Automated Determination of 

Soluble Reactive Phosphorus 

(SRP) by Flow Injection 

Analysis 

 

Lachat QuickChem QC8500 

FIA Automated Ion Analyzer 

 

Total 

Phosphorus 

TP 1 Determination of Total 

Phosphorus and Total Dissolved 

Phosphorus in Waters by Flow 

Injection Analysis 

 

Lachat QuickChem QC8500 

FIA Automated Ion Analyzer 

 

Dissolved 

Organic 

Carbon 

DOC 0.1 ppm Determinations of Total 

Organic Carbon (TOC), Total 

Dissolved Organic Carbon 

(DOC) and Dissolved Inorganic 

Carbon (DIC) 

 

Shimadzu TOC-5000A Total 

Organic Carbon Analyzer 

 

Methods and detection limits of water quality parameters sampled in the Saint John River. 
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Appendix 3 

Hypothesis Model Structure 

Gross Primary Production (GPP) 

1 Positive influence of photosynthetically 

available radiation (PAR) 

= β1(PAR) + β2(I) 

2 Positive influence of water temperature 

(TEMP) 

= β1(TEMP) + β2(I) 

3 
Negative influence of water depth change 
(DEPTH) = -β1(DEPTH) + β2(I) 

4 Positive influence of PAR and TEMP = β1(PAR) + β2(TEMP) + β3(I) 

5 Positive influence of PAR and TEMP; 

negative influence of DEPTH 

= β1(PAR) + β2(TEMP) - β3(DEPTH + β4(I) 

6 Positive influence of PAR, TEMP and 

PAR*water temperature interaction 

(PAR*TEMP) 

= β1(PAR) + β2(TEMP) + β3(PAR*TEMP) + 

β4(I) 

7 Positive influence of PAR; negative 

influence of DEPTH 

= β1(PAR) - β2(DEPTH) + β3(I) 

8 Positive influence of TEMP; Negative 

influence of DEPTH 

= β1(TEMP) - β2(DEPTH) + β3(I) 

9 Positive influence of PAR, TEMP and 

PAR*TEMP; negative influence of DEPTH 

(global model) 

= β1(PAR) + β2(TEMP) + β3(PAR*TEMP) + 

β4(DEPTH) - β5(I) 

A priori gross primary productivity models for temporal trends in benthic metabolism in 
the Saint John River, New Brunswick, Canada. Abbreviations used to describe the model 
structure are listed under each hypothesis with the exception of the ordinate intercept (I). 
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Appendix 4 

Hypothesis Model Structure 

Community Respiration (CR) 

1 Positive influence of gross primary 

production (GPP) 

= β1(GPP) + β2(I) 

2 Positive influence of water temperature 

(TEMP) 

= β1(TEMP) + β2(I) 

3 Negative influence of water depth change 

(DEPTH) 

= -β1(DEPTH) + β2(I) 

4 Positive influence of GPP and TEMP = β1(GPP) + β2(TEMP) + β3(I) 

5 Positive influence of GPP and TEMP; 

negative influence of DEPTH 

= β1(GPP) + β2(TEMP) - β3(DEPTH + β4(I) 

6 Positive influence of GPP, TEMP and 

GPP*water temperature interaction 

(GPP*TEMP) 

= β1(GPP) + β2(TEMP) + β3(GPP*TEMP) + 

β4(I) 

7 Positive influence of GPP; negative 

influence of DEPTH 

= β1(GPP) - β2(DEPTH) + β3(I) 

8 Positive influence of TEMP; Negative 

influence of DEPTH 

= β1(TEMP) - β2(DEPTH) + β3(I) 

9 Positive influence of GPP, TEMP and 

GPP*TEMP; negative influence of DEPTH 

(global model) 

= β1(GPP) + β2(TEMP) + β3(GPP*TEMP) + 

β4(DEPTH) - β5(I) 

A priori community respiration models for temporal trends in benthic metabolism in the 

Saint John River, New Brunswick, Canada. Abbreviations used to describe the model 

structure are listed under each hypothesis with the exception of the ordinate intercept (I). 
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Appendix 5 

Hypothesis Model Structure 

Net Daily Metabolism (NDM) 

1 Positive influence of photosynthetically 

available radiation (PAR) 

= β1(PAR) + β2(I) 

2 Positive influence of water temperature 

(TEMP) 

= β1(TEMP) + β2(I) 

3 Negative influence of water depth change 

(DEPTH) 

= -β1(DEPTH) + β2(I) 

4 Positive influence of PAR and TEMP = β1(PAR) + β2(TEMP) + β3(I) 

5 Positive influence of PAR and TEMP; 

negative influence of DEPTH 

= β1(PAR) + β2(TEMP) - β3(DEPTH + β4(I) 

6 Positive influence of PAR, TEMP and 

PAR*water temperature interaction 

(PAR*TEMP) 

= β1(PAR) + β2(TEMP) + β3(PAR*TEMP) + 

β4(I) 

7 Positive influence of PAR; negative 

influence of DEPTH 

= β1(PAR) - β2(DEPTH) + β3(I) 

8 Positive influence of TEMP; Negative 

influence of DEPTH 

= β1(TEMP) - β2(DEPTH) + β3(I) 

9 Positive influence of PAR, TEMP and 

PAR*TEMP; negative influence of 

DEPTH (global model) 

= β1(PAR) + β2(TEMP) + β3(PAR*TEMP) + 

β4(DEPTH) - β5(I) 

A priori net daily metabolism models for temporal trends in benthic metabolism in the 
Saint John River, New Brunswick, Canada. Abbreviations used to describe the model 
structure are listed under each hypothesis with the exception of the ordinate intercept (I). 
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