
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

5-22-2018 10:30 AM

Resource Brokering in Grid Computing Resource Brokering in Grid Computing

Adrian T. Bienkowski, The University of Western Ontario

Supervisor: PROF. HAMADA H. GHENNIWA, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Master of Engineering

Science degree in Electrical and Computer Engineering

© Adrian T. Bienkowski 2018

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Computational Engineering Commons, Computer and Systems Architecture Commons,

and the Other Computer Engineering Commons

Recommended Citation Recommended Citation
Bienkowski, Adrian T., "Resource Brokering in Grid Computing" (2018). Electronic Thesis and Dissertation
Repository. 5649.
https://ir.lib.uwo.ca/etd/5649

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F5649&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/311?utm_source=ir.lib.uwo.ca%2Fetd%2F5649&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=ir.lib.uwo.ca%2Fetd%2F5649&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=ir.lib.uwo.ca%2Fetd%2F5649&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/5649?utm_source=ir.lib.uwo.ca%2Fetd%2F5649&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

i

Abstract

Grid Computing has emerged in the academia and evolved towards the bases of what is

currently known as Cloud Computing and Internet of Things (IoT). The vast collection of

resources that provide the nature for Grid Computing environment is very complex; multiple

administrative domains control access and set policies to the shared computing resources. It

is a decentralized environment with geographically distributed computing and storage

resources, where each computing resource can be modeled as an autonomous computing

entity, yet collectively can work together. This is a class of Cooperative Distributed Systems

(CDS). We extend this by applying characteristic of open environments to create a

foundation for the next generation of computing platform where entities are free to join a

computing environment to provide capabilities and take part as a collective in solving

complex problems beyond the capability of a single entity.

This thesis is focused on modeling “Computing” as a collective performance of individual

autonomous fundamental computing elements interconnected in a “Grid” open environment

structure. Each computing element is a node in the Grid. All nodes are interconnected

through the “Grid” edges. Resource allocation is done at the edges of the “Grid” where the

connected nodes are simply used to perform computation.

The analysis put forward in this thesis identifies Grid Computing as a form of computing that

occurs at the resource level. The proposed solution, coupled with advancements in

technology and evolution of new computing paradigms, sets a new direction for grid

computing research. The approach here is a leap forward with the well-defined set of

requirements and specifications based on open issues with the focus on autonomy,

adaptability and interdependency. The proposed approach examines current model for Grid

Protocol Architecture and proposes an extension that addresses the open issues in the

diverged set of solutions that have been created.

ii

Keywords

autonomous computing, grid computing, computing platform, resource brokering, agent

oriented, grid protocol architecture, cir-agent, JADE

iii

Acknowledgments

Foremost, I would like to thank my supervisor Prof. Hamada H. Ghenniwa for his support at

many levels, his belief and perseverance for me to finish the work. It has been a great

pleasure working with him and the CDS group on what is to become the next evolution in

computing, with new software engineering paradigms and methodologies.

In the CDS group, it has been a pleasure working with Ra’afat, Wafa, Afshan and Ali, where

we applied our collaborative research and ideas to practical real-world implementation

scenarios.

And, last but not least, to my Wife for her daily support over the many years, and my kids for

putting up with my availability.

iv

Table of Contents

Abstract .. i	

Acknowledgments .. iii	

Table of Contents ... iv	

List of Tables ... viii	

List of Figures .. ix	

Chapter 1 ... 1	

1	 Introduction .. 1	

1.1	 Grid Computing .. 1	

1.2	 Scope of the Thesis ... 9	

1.3	 Organization of the Thesis .. 9	

Chapter 2 ... 11	

2	 Literature Review ... 11	

2.1	 Resource Allocation in Grid Computing .. 11	

2.2	 Resource Allocation Classification ... 13	

2.2.1	 Centralized Class .. 14	

2.2.2	 Distributed Class ... 14	

2.2.3	 Decentralized Class ... 15	

2.3	 Current Broker Projects .. 15	

2.3.1	 Condor-G .. 15	

2.3.2	 NorduGrid Broker ... 16	

2.3.3	 Nimrod/G .. 17	

2.3.4	 AppLeS ... 18	

2.3.5	 GridWay .. 19	

2.3.6	 GRUBER/DI-GRUBER ... 20	

v

2.3.7	 SPHINX .. 20	

Chapter 3 ... 23	

3	 Problem Analysis ... 23	

3.1	 Grid Protocol Architecture Analysis ... 24	

3.2	 Open Issues ... 26	

3.2.1	 Autonomy ... 26	

3.2.2	 Adaptability ... 28	

3.2.3	 Interdependency .. 28	

3.3	 Summary ... 30	

Chapter 4 ... 32	

4	 Proposed Solution .. 32	

4.1	 Model .. 32	

4.2	 Architecture ... 34	

4.2.1	 Proposed Grid Protocol Architecture .. 36	

4.3	 Grid Computing Entities ... 37	

4.4	 Computing Platform ... 37	

4.4.1	 Adaptability and Autonomy .. 38	

4.4.2	 Coordination and Cooperation .. 38	

Chapter 5 ... 40	

5	 Grid Computing: Framework & Implementation .. 40	

5.1	 Computational Model ... 40	

5.2	 Brokering Architecture ... 41	

5.2.1	 Agent Model ... 43	

5.2.2	 CIR-Agent Interface .. 43	

5.2.3	 Action Interface .. 43	

5.2.4	 Agent Interaction .. 44	

vi

5.3	 Resource-Broker ... 45	

5.3.1	 Job Handling ... 46	

5.3.2	 Resource Matching ... 47	

5.3.3	 Scheduler ... 47	

5.3.4	 Job Execution .. 48	

5.4	 Resource Provider ... 48	

5.5	 Resource-Consumer .. 50	

5.6	 Computing as a Platform: Prototype Implementation .. 51	

5.6.1	 Programming Languages Used ... 52	

5.6.2	 JADE Platform .. 52	

5.7	 Prototype Validation and Verification .. 53	

5.7.1	 Globus Toolkit .. 56	

5.7.2	 JADE ... 56	

5.7.3	 Entity Structure ... 57	

5.7.4	 Resource-Broker ... 57	

5.7.5	 Resource-Consumer Agent ... 58	

5.7.6	 Job-Handling Agent .. 59	

5.7.7	 Resource-Matching Agent .. 59	

5.7.8	 Scheduling Agent(s) .. 59	

5.7.9	 Job Execution Agent ... 60	

5.7.10	 Resource Provider Agent .. 60	

5.8	 Implementation Challenges .. 61	

5.8.1	 Architecture ... 61	

5.9	 Dynamic Selection of Scheduler ... 61	

5.10	Summary ... 63	

Chapter 6 ... 64	

vii

6	 Summary and Conclusions ... 64	

6.1	 Summary of Contributions .. 65	

6.2	 Future Work .. 67	

References ... 69	

Appendix A - yWorks ... 74	

Appendix B – Experiment Logs ... 75	

viii

List of Tables

Table 5-1: List of computing nodes .. 54	

ix

List of Figures

Figure 1-1: Grid Protocol Architecture ... 5	

Figure 2-1: The Sphinx Scheduling System [44] .. 21	

Figure 3-1: Simplified Grid Protocol Architecture ... 24	

Figure 4-1: Grid meta-model .. 33	

Figure 4-2: Traditional distributed system .. 34	

Figure 4-3: Proposed Architecture .. 35	

Figure 4-4: Proposed Architecture with Resource-Brokering .. 35	

Figure 4-5: Grid Protocol Architecture (current and proposed) .. 36	

Figure 5-1: Agent-oriented design .. 42	

Figure 5-2: Resource-Broker Architecture ... 43	

Figure 5-3: Resource-Broker with Privacy Management ... 45	

Figure 5-4: Job definition and PPL value ... 45	

Figure 5-5: Job-Handling class diagram ... 46	

Figure 5-6: Resource-Matching class diagram ... 47	

Figure 5-7: Simple-Scheduler class diagram .. 48	

Figure 5-8: Job-Execution class diagram .. 48	

Figure 5-9: Resource-Provider class diagram ... 49	

Figure 5-10. Resource-Consumer class diagram .. 51	

Figure 5-11. Deployment diagram .. 55	

1

Chapter 1

1 Introduction

This chapter introduces the field of Grid Computing and presents the fundamental

concepts that are applied to the remaining parts of the thesis. The focus of the

introduction is to bring an understanding of the field in general and to outline some

critical issues in the existing architecture of grid computing environments.

1.1 Grid Computing

The concept of Grid Computing emerged around the mid-70s. The advancement in

network technologies by the early 80s, coupled with the idea of implementing remote

computing and making that available to a more substantial number of users became a

novelty among educational institutions. Grid Computing as a computing paradigm was

born. The idea of computing as a grid was borrowed from the electrical power grid

model, where the ubiquitous access and use of the Power Grid, was and is part of

everyday life. It took the Power Grid model almost one century to become what it is

today, an essential and seamless part of our lives. Ubiquitous access is a natural extension

and a form of computing, where ubiquitous computing defines the state as expected by

the end user and grid provides the architecture as well as the means to deliver that state.

There are some fundamental requirements such as usability by the end user,

interoperability between devices connecting to the grid, continuous availability and

reliability of supply, that have made the power grid something we take for granted in

everyday use [58].

The Grid Computing research community has been working on moving the Grid

Computing field towards a similar goal, by borrowing and applying fundamentals from

the Power Grid model over the past three decades. Although the fundamental concepts

seem to be the same, such as a computation as a flow of information over an extensive,

Internet size collection of geographically distributed resources, the details of the

implementation are much more complex. It is necessary to understand the nature of the

problem, its roots and fundamental principles so that the analogy between the electrical

2

grid and computing grid can show how the evolution of the Grid Computing field is still

much ahead of its predecessor. Grid computing is also described as an extension of the

distributed computing field but at a much large scale [33][54]. Although this seems very

natural, the requirements of the distributed computing infrastructure are much different,

and such reference hinders its growth. Mark Weiser has coined the term “ubiquitous

computing” in the late 1980s, where he defined ubiquitous computing to be the invisible

computing that is all around us. A design that is invisible makes the adoption vast.

Furthermore, he identified the most significant challenges related to the integration of

human factors, computer science, engineering, and social sciences [64].

Some of the reviewed papers, point out the lack of an accepted definition

[33][42][54][58]. There is a standard part of the definition of Grid Computing that has

repeatedly been quoted. The description related explicitly to VO (Virtual Organizations)

is what in my view is pushing Grid Computing to focus on functionality not related to its

core. At the core of Grid Computing is simply the availability of computing, where an

application can utilize the computing capabilities available to the user. It is critical to

stick to the principles of what defines a “grid.” When we borrow the concept of the grid

from the Electrical Power Grid, the focus should be on the core fundamentals. However,

Grid Computing definition is about connecting heterogeneous, geographically distributed

computing resources under the control of different organizations. While a majority of

papers extends that definition with “Virtual Organizations,” where VO (Virtual

Organization) is defined as a collection of resources and resource very loosely defined to

be anything [33]. Grid computing can be focused merely is on large-scale resource

sharing, where the resources classification is at the fundamental level, CPU, Hard Disk,

and RAM. These three primary concepts make up the essential core of a computing

machine. Such fundamental concepts of computing, taken to a large scale of Internet size,

create a new set of problems that the field of Grid Computing is attempting to solve. At

such a scale the problem becomes around the interoperability, security and access control

of geographically distributed computing resources, where the means of communication is

unreliable, which is the nature of open networks[33].

3

In an attempt to define what grid computing is for the purpose of this research, let us

outline some key fundamental principles present in the existing grids.

A computing grid

• provides
o coordinated resource sharing and problem-solving capacity [33][58]

• coordinates
o resources that are not subject to centralized control [29][58]

• enables
o service or resource sharing between organizations [52][58].

• constitutes
o sharing of computer power and data storage capacity over the Internet [58]

The thesis focus is on extracting the fundamental concepts, which build the principle

foundation for the definition of grid computing; modeled initially from the Electric Power

Grid. Grid computing is a computing environment that is distributed and decentralized.

The grid is built from a heterogeneous collection of geographically dispersed computing

resources without centralized control. Organizations, which participate as part of the

"grid" and offer their resources, are a synonym to the power companies that are all

interconnected and supply the power to the grid for end users, being other companies or

individual homes. Grid computing in my view is the basis to enable ubiquitous

computing which is becoming available all around us [33][56].

Grid computing is also compared with the Internet as related to its size and complexity of

the existing infrastructure, the number of connected machines as well as the machines

heterogeneous nature. Such fundamentals are essential to note here; this stresses the

importance of the role Internet plays in grid computing. Besides the fact that the Internet

is the vehicle to enable grid computing across geographically distributed computing

resources, it also shares some of the characteristics of the grid". The Internet is an enabler

for users to share resources in the form of artifacts such as text and multimedia. The

ability to share the artifacts is made possible through the use of standard protocols and

interfaces. As well the resources being the shared artifacts on the Internet are dynamic

and not subject to a centralized control [33].

4

One of the essential differences between the Internet and grid computing is the starting

point. The Internet has been developed from scratch and overtime during the

development, innovation of new technologies and approaches kept replacing existing

technologies, which showed to be inadequate for the large scale. This approach, although

initially slow, helped to build what we know today as the Internet. Grid computing, on

the other hand, had a significant association with distributed computing and hardened

network infrastructure. Furthermore, Grid computing had a tremendous vision of what it

should be; yet it was built and constrained by the existing mindset of the contributors and

applications within academia. The form of implementation of Grid computing in

academia has created an environment, where the direction and the developed features

have pushed Grid computing away from the original idea, to make computing available to

business and people in the same way electricity is today. It seems that critical properties

and requirements are still not clear or agreed upon [58].

Scaling and sharing are also standard features of the Internet and the Grid. It is a well-

known fact that the Internet has well-established technologies that scale well with the

number of users and available bandwidth. However, such claims cannot be made for grid

computing. Scalability is a vital issue for widespread use of grid technologies [58]. The

key aspects that contributed to the success of the Internet are the reliable infrastructure

and relatively low cost for users [30]. The use of standards and the process of creating

standards during the Internet evolution profoundly contributed to the reliable and

inexpensive equipment that makes up the core foundation and enables the fast and

reliable communication between users and resources. It is undeniable to note here that the

Internet is an open environment, where numerous diverse systems exist and are

connected to serve a specific purpose or functionality.

Grid-computing environments are typically constructed by connecting, either physically

or through the Internet, geographically distributed pools of resources for the purpose of

sharing. The physical infrastructure that is built out to form a grid-computing

environment in itself creates characteristics that can be classified as quality factors, such

as, scalability, dynamicity, adaptability and autonomy, as well as the inherited

characteristics from the nature of the grid infrastructure and its participants. The inherited

5

characteristics can be broken down into resources and their geographical location as well

as policies that come with that ownership. With the ownership of different domains

comes administrative aspect, which requires a level of autonomy. The independence of

various resource owners needs to be preserved, as well as usage policies. As the grid is

built out and expands to millions of resources, the problem of scalability and performance

at that scale requires particular attention to performance degradation as the number of

resources in the Grid increases. Applications that are written to utilize these resources

also need to be designed with latency and bandwidth considerations. Considering that a

computing grid is a collection of geographically distributed computing resources, under

the control of different organizations; resource availability is not predictable, rather a

failure of a resource shall be part of the design of any application, yet the grid is required

to be adaptable to its dynamic pull of resources.

Figure 1-1: Grid Protocol Architecture

Examining the Grid protocol architecture, as shown in Figure 1-1, that has been

developed to address key challenges in the existing grid-computing infrastructure will

help to understand the current state of the research area.

The Fabric layer of the Grid Protocol Architecture defines the required protocols to

support functions related to the resource itself that is being shared [9]. This type of

technology supports the capabilities of the resource itself; for example, a distributed file

system capability can be supported by protocols such as NFS or HFS. Typically there are

no specific requirements for protocol implementation at this level since the

implementation is particular to the technology and related capabilities of the resources

6

itself. There is, however, best practices recommended for interfacing with that resource

when connected to the Grid. These interfaces are of two parts, one related to the ability

for querying information about the state of the resource and two about the ability to

manage the resource [9]. The latter part will be expanded later in Chapter 3, where we

look more closely at the autonomy of the resource.

The one level above the Fabric is the Connectivity layer. The Connectivity layer is

expected to work with any of the transport protocols to provide secure access to the

connected resources. This layer is also managing all access control and holds the

responsibility for establishing a secure connection for services built and accessed by the

upper layers of the architecture stack. The secure connection and access can be facilitated

through the use of single-sign-on or delegation type services, where user permissions or a

subset of the credentials are relayed to the connected resources. Other security methods,

more specific to a group of resources under the control of a particular organization, can

include Kerberos, Windows Security, or security of other operating systems. This

approach helps to keep the common functionality and the heterogeneous nature of the

resource connectivity into a single layer that deals with different implementations at the

resource. Security in the grid-computing infrastructure is one of the key foundational

constraints. Grid computing infrastructure is composed of computing resources under the

management of different organizations. Providing secure access to those resources is a

key requirement from both perspectives, ensuring the privacy and security for the user of

the resources, and protecting the organizations that make the resource available from

unauthorized access. Security service provided by the computing grid also includes data

encryption.

Above the Connectivity layer, the Grid protocol architecture defines the Resource Layer.

The responsibility of the Resource layer is captured in the classification of two sets of

protocols, information protocols and management protocols. The Resource layer uses

secure connectivity provided by the Connectivity layer to access and control individual

resources that are connected to the Grid. Information protocols are used to query the

resource capabilities, configuration and usage policies, as well to get the resource state

for monitoring activities. The management protocols allow for more fine-grained control

7

over the resource, yet it is recommended that these protocols should focus on

functionality provided by the resource.

The Collective layer gets into the management of resources as a group and takes into

account a global state of a pool of resources, unlike the Resource layer where the

resources were treated individually and in isolation. The protocols implemented at the

layer deal with sharing-type behaviours, such as discovery, scheduling, brokering,

monitoring, and diagnostics. The Collective layer allows for applications to utilize a pool

of resources, as well as make it possible to build middleware like functionality that

exposes all the features mentioned above. Globus ToolkitTM is such a middleware

project that will be discussed in Chapter 2. Grid middleware provides essential services

for remote process management, access to storage, registration, and user-level security.

Grid middleware offers foundation and supporting functionality for application

development, programming tools, resource management features and execution of tasks

on a global set of available resources. Grid applications and portals are the user-facing

part of the grid ecosystem and typically developed using a grid-enabled language. This is

a significant contributor to the slow adoption of grid computing as a generic computing

platform and is one of the challenges to be discussed in a later part of the thesis.

Typically the core grid computing middleware only provides local scheduler functionality

and the ability to submit jobs for execution at that level. In such a case, just jobs that have

no interdependencies can be sent for execution on the selected set of resources. However,

a typical use of grid computing resources requires a much more complex interdependency

and conflict resolution. Runtime requirements can change based on the context of the

application.

Scheduling is still a very complex problem and as such typically is not part of the core

grid middleware. On the other hand data management is part of the core services. A very

well-defined set of standards and security protocols are implemented in the Connectivity

layer and made available to the services built on top of it. Data management related

features provide the ability for the application to have the Grid manage its data and as the

application’s data is moved through the Grid system to be available to the application

during run-time, regardless of the size or geographical location. The grid system has the

8

capability to securely and effectively make the data available to the application, based on

the application needs and wants.

Resource management and job management are also fundamental features provided by

the core grid middleware to support the local scheduler and execution of the jobs on

selected grid resources. One of the very well established grid resource management

systems is GRAM(Globus Resource Allocation Manager). It provides the required

functionality to execute jobs at the local grid level and support the life cycle of the job

execution, starting with the resource allocation, reallocation on failure, check status and

deliver results upon completion [42]. Resource management plays a fundamental role in

Grid Computing. At the integration level, the ability to discover, allocate, monitor and

manage the utilization of grid resources and their capabilities to effectively and

efficiently meet global qualities of service. In addition to the integration, resource

management allows for a consistent way in which these resources are accessed and

managed by services built on top of this layer. The definition of resource management is

commonly focused on the process of matching various types of capabilities, arranging for

their use and monitoring the state and progress of job execution. The problem of resource

management is very well resourced in the context of traditional computing systems. In

such an environment the system is designed to operate under the assumption of complete

control when applied to grid computing [30].

Grid Computing adds another dimension to the resource management problem, which is

well studied in traditional computing systems. Solutions exist for many computing

environments. However, they are designed to operate in conventional computing

environments with the assumption that there is full control of the available resources.

This assumption is not correct when applied to Grid. Resource management at the Grid

level requires a different set of specifications that must include, resource heterogeneity,

different administrations for policy management and control and loss of that control. In

Grid computing environments resources are heterogeneous, and as such the work in the

resource management software focused on fundamental issues related to heterogeneity,

by defining standard protocols [21][22][30] and mechanisms for expressing resource and

task requirements [30][53]. The solution to resource management problems found in Grid

9

Computing is further complicated by the necessity of having the ability to allocate

multiple resources concurrently across administrative domains [20][30][32]. As such

current research in this area is focused on understanding different policies from different

administrative domains, as well resource provider and resource consumer [6][11]

[17][30][43].

The emergence of Grid computing and ability to virtualize all levels of infrastructure and

computing resources, virtualized service behaviour is becoming indistinguishable from

non-virtualized services and becoming the rule rather than the exception. It should also be

noted here that characteristics of grid-computing such as virtual organizations,

coordinated resource sharing in our view are the basis for the specification for the

application layer built on top of the grid infrastructure, to provide additional features for

end users. These would be specific to an industry, and such keeping the focus on the

fundamentals allows for a more generic solution.

1.2 Scope of the Thesis

The scope of the thesis is on the architecture of the Grid in the context of open

environment. The key contribution is proposing a novel way of addressing the resource

sharing by extending the computing to be at the network level. The extension of the

architecture allows for resources to connect to the grid, make their capabilities available

to other entities in the environment, and participate in the task assignment and execution

of requests. The implementation of the proposed solution is also provided with details of

the test environment and key scenarios for running the experiment.

1.3 Organization of the Thesis

The thesis is organized as follows. Chapter 1 introduces Grid computing as a computing

paradigm and provides a bit of history and analogy to other well-known concepts, such as

the power grid. Chapter 2 is focused on the review of existing literature related to the

topic of the thesis. Chapter 3 outlines the proposed solution as the main contribution of

the thesis. Chapter 4 presents the architecture for the proposed solution. Chapter 5

10

captures the implementation and results of running the experiments. Chapter 6 is the

summary and conclusions of the thesis.

11

Chapter 2

2 Literature Review

In open distributed computing environments such as Grid Computing, resources may not

be available or known when needed and therefore is not feasible to expect to determine or

to keep track of the resources and their capabilities. Although these resources are

independently created and administered, they are expected to work together to

accomplish individual or collective tasks.

Grid Computing traditionally is considered a closed system, in which only authorized and

registered resources can be part of the grid and make themselves available as part of the

computing pool of resources. Treating grid computing as open environment adds another

level of complexity in which, not only the participating resources can become unavailable

due to maintenance or failure, but also new resource can join the grid without the need

for manual configuration and provisioning.

The open environment approach creates a very hard problem of “managing” computation

in particular resource allocation. Such a problem can be solved in a different way. The

focus of this chapter is to look at one of the solutions to this problem, which is Brokering,

and how others have been trying to address the problem of resource allocation.

2.1 Resource Allocation in Grid Computing

Typical grid-computing installations typically depend on the business needs and

application types. The essential computational elements are distributed over a “grid” like

structure and interconnected through the edges of the “Grid”. The overall computation

“emerges” through the nodes and the edges of the Grid. Unlike traditional computation,

where the computing occurs within the nodes, the connectivity is treated as a

communication path only. Allocation of computing resources is focused on matching

capability, where scheduling takes into account the resource allocation and specific

availability of the resource as related to its capabilities.

12

Tremendous effort is devoted to proposing various algorithms to determine an optimal

computation schedule based on the assumption that sufficiently detailed and up to date

knowledge of the systems state is available to a single entity (usually called the

Metascheduler) [33][42][55][58]. Although such approaches provide efficient means of

optimal utilization of the existing resources, they are deemed to be not scalable when

dealing with large numbers of machines. Maintaining a global view of the system

becomes prohibitively expensive, and additionally, the unreliable networks might even

make the scheduling process unattainable.

A different set of solutions to resource allocation and scheduling has also been proposed

in the more recent literature. Conceptually, the economic-based approach is autonomous

and decentralized to address specifically the needs of a large grid and peer-to-peer

platforms [70]. One shortcoming of this approach in the implementation is the fact that it

requires a centralized entity to implement and perform economic based functions. Such

functions as a marketplace or auctioneer where seal-bid or second price actions can take

place.

In open environments, entities need to locate and interact with others who possess the

capabilities to achieve a particular goal. The explosion of the grid and cloud computing

paradigm, has created, theoretically, an infinite number of available computing resources,

for each with different requirements and objectives. However, fulfilling a resource

request may go beyond the capability of the individual entities, this is known as the

capability-interdependency problem [36]. To overcome this problem in the Grid, different

coordination structures and mechanisms that imply various requirements and protocols

for interoperability and interaction were proposed. Within this context, the structure

refers to the patterns of communication amongst involved participants (for example,

brokering, matchmaking or facilitation), whereas the mechanisms define the coordinated

control and the interaction protocols.

Traditional resource allocation based approaches in the Grid are to keep the scheduling

entities (brokers and/or schedulers) outside the boundaries of the core grid-computing

13

environment. In the following section, a few of the existing solutions are reviewed with

the focus on the problems each solution is trying to address.

2.2 Resource Allocation Classification

Resource allocation is a process through which available resources are assigned tasks for

execution. The method of resource allocation in grid computing is much more complex,

with a large set of data points and multiple levels of requirements this becomes an NP-

hard problem, where the exact solution can not be computed in polynomial time.

Solutions to this problem typically take a heuristic approach, however, the

implementation of the solution can be classified into three categories: centralized,

decentralized and distributed.

The existing typical approaches manage the resource allocation from the resource

consumer job to the resource providers participating in the grid-computing environment.

The traditional solutions focus on handling the fact that most user tasks deal with massive

data processing requirements. Applications written to perform a typical job expect that a

particular set of input data is available via a standard POSIX (Portable Operating System

Interface) call. Besides, these applications produce data as a result of the computation

performed and required storage facilities for the output of the execution. The input and

output data is expected to be transferred between the computing nodes to make it

available to the computing tasks and has a potential to reach several gigabytes in size.

Perhaps, the most challenging task of the Grid is thus not just to perform resource

matching for job execution, but to ensure that the necessary input is staged-in, and output

is appropriately staged-out[26].

A solution required for implementing a grid broker, as being the gatekeeper and

providing access to the grid resource, can be divided into three major classes. A

centralized approach, where the brokering service is responsible for processing and

managing all submitted job requests. In a centralized architecture, the broker can quickly

become a bottleneck with performance issues and a single point of failure. Although there

are different techniques to address the single point of failure issue, performance issues are

however much harder to solve due to a large number of consumers and providers sharing

14

network access to use scheduling functionality. In addition, the centralized approach has

the potential to produce optimal schedules, as it has full knowledge of the resources and

job requests on the grid.

In the distributed class of broker, the use of a distributed architecture is mainly to address

scalability and availability issues, and this makes the grid environment fault-tolerant.

However, this type of architecture creates a problem for the scheduling component where

only partial information is available to each instance of the distributed broker. A typical

approach that has been presented in papers dealing with this class of brokers is a hybrid

solution [27]. In the third class of brokers is the decentralized class, where the control of

making a scheduling decision is not up to the broker itself. The broker plays a more

orchestrating role. A decentralized broker can also be distributed. However, the

decentralized notion is referring to the decision-making process. In such a case, the

scheduling decision is up to all parties informed and a level of cooperation and

coordination is needed to arrive at the scheduling decision collectively.

2.2.1 Centralized Class

The centralized approach to resource brokering does provide the simplest solution to

address the distributed nature of grid resources. This type of design allows for a more

straightforward approach to solving the scheduling problem, where all information about

the system is available to a single entity that manages the resource allocation and

assignment. Although the solution becomes “simple” it is not adequate. Even though, the

issues that this approach exposes can be addressed through various performance and

scaling techniques, the raw size of grid computing environments makes this approach not

feasible.

2.2.2 Distributed Class

In the distributed class of solutions, the problem of resource allocation and assignment is

solved in two ways. One approach is to move part of the computation into the client side

processing, where part of the resource allocation and matching happens. In this approach,

the brokering layer of the solution is distributed between the client side tools and the

Grid. The second approach in this class is where the resource broker implementation is

15

itself distributed and therefore the distributed computing provides higher throughput for

improving performance. The distributed application introduces a new set of problems

related to the communication between the physically separated computing resources.

2.2.3 Decentralized Class

The decentralized set of solutions are much more complicated, yet best suited for the

Grid infrastructure. In this class of solutions, the typical approach is to apply the

economic model and free-market type solutions [28][70], where the participants in a grid-

computing environment have full control of the resource assignment and allocation.

Decentralization is related to the control, where there is no single entity or system that

controls the resource allocation in a dictating or commanding approach. Yet, the control

is distributed in a way the participants of the solution have full control over accepting or

rejecting the proposed solution through a form of negotiation or collaboration through

coordination.

2.3 Current Broker Projects

The flowing section describes existing implementations of grid solutions related to

resource matching and allocation. Where resource matching is focused on matching the

capabilities with job requirements and allocation is related to the ability to execute the job

within the requested time frame.

2.3.1 Condor-G

Condor G[69] implements the resource brokering part of the system and integrates with

Globus Toolkit, UNICORE, and NorduGrid. Condor-G does not have the functionality to

schedule jobs; it is used as the grid-middleware integration that provides the ability of job

execution on grid-computing environments. Another extension is the Condor-G

Matchmaker that implements the matchmaking of ClassAds. Multiple Condor-G

Matchmaker modules can be used at the same time to improve the scalability of the

system. However, the Matchmaker module does not understand parallel jobs and

customer scheduling algorithms are currently supported. ClassAds is a language for the

description of application requirements and specifications. The language structure allows

16

for a custom definition of attributes, yet it’s not clear how these custom attributes are

used to match with the published information on the resources to the Matchmaker.

Matchmaker uses the posted data by the resource and submitted by the users to schedule

job execution on the reduced set of matched resources. However, due to the nature of the

environment, typically there is no direct communication between the users and the

providers of the computing utility. The ability for the custom attributes to be used in this

process would require ontology-driven integration and semantic matching capabilities.

2.3.2 NorduGrid Broker

The NorduGrid middleware is built on standard protocols and interfaces with well-known

open source software packages such as OpenLDAP[50], OpenSSL[51] and Globus

Toolkit version 2 [31][37]. However, some of the features formerly part of the Globus

Toolkit have been replaced with custom components[25]. The custom component

approach creates a particular and proprietary solution. The proprietary solution causes a

diverging effect on the overall grid-computing space. NorduGrid does make use of the

Grid Security Infrastructure (GSI) in Globus Toolkit 2. GSI specifies a public-key

infrastructure and SSL (TLS) for authenticated and secure encrypted communication.

Also, NorduGrid uses Resource Specification Language (RSL[55], to specify resource

requirements and job execution information.

On the other hand, the NorduGrid client-side tools, which mainly consist of command

line tools for managing jobs, allowing users to submit, monitor, execution, and cancel

their jobs. The resource broker in the NorduGrid implementation is part of the job

submission tool, ngsub. Other client-side tools allow the user to perform other job-related

functions, such as job output and get a peek preview of job output and remove job output

files from a remote resource [27]. Putting the resource broker and scheduling related

functions into the client-side tools creates potential privacy issues. Also, such issues are

not raised in the reviewed papers, mainly, in my view due to the fact that this is a

proprietary solution and under the control of trusted organizations. Large amounts of data

need to be exposed to perform scheduling, in such an approach. The approach is not

adequate for large grid under the control of different organizations and raises privacy

issues by potentially presenting sensitive information to a 3rd party.

17

One of the principal concepts introduced, as part of the work delivered by the NorduGrid

team is the concept of Total Time to Delivery (TTD) for the application. This data is used

by the resource brokering algorithms in the client toolkit to identify the resources that

provide the shortest TTD for the application. TTD is the total time the job will take to

execute, starting from the user submitting the job to the time when the output files are

delivered to the requested destination. TTD includes the time required for transferring

input files and executables to the resource, the waiting time for execution of the job, the

actual execution time, and the time to transfer the output files to the requested location(s)

[27]. It can be easily noted here that there are a lot of moving parts that make up the TTD

value. Almost all of the variables require a level of estimation and it is not clear how this

estimation determines the accuracy of the estimates and how or if the estimates are

expected to be improved over time.

2.3.3 Nimrod/G

The Nimrod system is a tool that manages the execution of parametric studies [2]. It

allows the domain experts to create parametric experiments through the use of a simple

declarative parametric modelling language[4]. Nimrod/G is an extension that allows for

executing the created jobs from a permutation of the parameters on a global grid [3].

Nimrog/G implements various resource brokering features including resource discovery

and management, scheduling algorithms and dispatching of jobs on grid resources. It is

one of the first to introduce economic based scheduling algorithm to support user-defined

deadline and budget constraints[13]. The proposed economic model allows regulating the

supply and demand of grid resources based on Virtual Organizations (VO), also referred

to as virtual enterprises[12]. This approach, however, creates a centralized deployment

model, to implement economic based aspects of scheduling. The centralized model is

further confirmed in [2], where more detailed features are described, such as resource

discovery, resource acquisition, and resource monitoring.

Nimrod/G follows what is known as the hourglass design model. Hourglass architecture

is used in the design of the IP based protocols. Hourglass design pattern is very much

equivalent to a layered design, with the main difference being that the top and bottom

layers are extended with many additional interfaces and adapters that are built to interface

18

with the middle layer. Extensions at the top and bottom layer can happen while the core

of the solution remains mainly unchanged. As described in [19], the three core

components, the task farming engine, scheduler, and dispatcher, are loosely coupled and

provide the core functionality of the broker service. The core components are entirely

independent of the bottom layer that can be easily extended to support many different

low-level middleware features. Also, this type of design pattern allows keeping the core

of the solution independent of the external interfaces. Similarly, to how implementation

can be extended to support different grid middleware implementations, the top layer can

be extended to support different user interfaces with many additional features.

Nimrod/G has been deployed and integrated with the World Wide Grid (WWG) that

spans across five continents. However, it still remains a solution for creating parameter-

sweeping applications[19]. One could argue that this type of application is well suited to

utilize grid resources, due to its repetitive and task-oriented process.

2.3.4 AppLeS

AppLeS (Application Level Scheduling) takes a slightly different approach to the

resource brokering in the grid environment. The research put forward by the team which

has developed AppLeS, identified adaptability as the fundamental key feature needed for

achieving application performance in grid environments[10]. The key difference here is

that this project implements application-level scheduling, and therefore the brokering

process, which involved resource discovery, resource selection, schedule generation,

schedule selection, application execution, and schedule adaptation, is tightly coupled with

the application. AppLeS requires the specific application domain to integrate with the

provided libraries to perform the scheduling of the application tasks on the grid

resource[11]. Naturally, this approach has some limitations and a difficult entry point for

an application to adopt this approach. However, the scheduling algorithm can be very

well adapted for the specific needs of the application and its domain, as well the

scheduling decisions that take an iterative approach where each iteration through the

process uses previously scheduled data as input for following iteration[10]. To improve

the adoption of AppLeS methodology with application-level scheduling and the

integration of the AppLeS scheduling agent into the AppLeS-enabled application, the

19

team has made available AppLeS Templets available for different application types[10].

The AppLeS Template is a software framework that allows for the application to insert its

application-specific logic into the grid scheduler, and create a self-scheduling application

for grid-computing environments. The templates have been designed for different

application categories such as parameter sweep and master-worker type[10].

2.3.5 GridWay

GridWay is a meta-scheduler, with support for grid middlewares such as Globus Toolkit

and gLite. The support for different grid middlewares is done through adapters, with the

literature on GridWay broker referring to these adapters as MADs (Middleware Access

Drivers). Two additional parts are attached to the GridWay core; the pluggable UI and

the schedulers. The logical view of this architecture is similar to that of Nimrod/G, a

typical way to abstract the external layers that require change and adaptation, away from

the middle core layer, which contains the business specific functionality. Yet, the

internals of the core middle layer are much different and focus on the flow of the job

request. Different, manager like components provide the integration with external

middlewares for things like grid information, job execution, file transfers and job

migration [63].

GridWay puts the focus on application performance; this is the primary driver behind

their architecture and features related to the core functionality. It is also the main

contribution put forward by the team behind the GridWay project. The very valid

consideration that network performance has a significant impact application execution.

GridWay broker adds essential network characteristics to all states of the job request,

including scheduling, migration, and monitoring [63]. The process that includes the

network related information is called automatic network-aware meta-scheduling

architecture and is capable of adapting to the current status of the environment. One item

that is not clear in the current literature is the consideration of the job request itself and its

impact on the environment during the future execution of the submitted job. The

implemented algorithm uses exponential smoothing to predict the job execution.

Exponential smoothing, also called simple or single exponential smoothing (SES) is a

method for forecasting data with no trend or seasonal pattern [63].

20

2.3.6 GRUBER/DI-GRUBER

GRUBER (Grid Resource Usage BrokER) main contribution is managing USLA (Usage

Service Level Agreement) in the grid and grid-like environments, where consumers and

resource providers span multiple organizations. GRUBER understands the different

aspects of an SLA related to its representation, enforcement, and management of the

service agreements [24]. Service level agreement is a contract between the service or

resource provider and the consumer of that service or resource. The agreement defines

the expected level of service the provider is expected, or in most cases guaranteed, to

offer. Based on the USLA the customer of that service is able to assume the availability

and performance, and plan its operations accordingly. In addition, the consumer also shall

abide by the agreement and use the service or resource in an expected way, and within

the boundaries of the agreement. This concept in the context of distributed systems, and

more specifically grid-computing, creates a very hard problem to solve for the broker

where the resource providers to the Grid are subject to different policies under the control

of different virtual organizations [33].

DI-GRUBBER, which is a distributed version and an extension of the GRUBER, to

address scalability and performance issues in a large distributed systems, and more

specifically, grid environment. DI-GRUBBER adds multiple decision points to the

scheduling algorithm and provides the ability to efficiently store, retrieve, and publish

USLAs in a grid environment [23].

2.3.7 SPHINX

In the context of grid computing, it is the guardian that protects computing resources and

schedules jobs for execution. The project has been used in scheduling complex and data-

intensive applications in high energy physics and data mining projects, which required

grid computing size environments to execute.

21

Figure 2-1: The Sphinx Scheduling System [44]

The SPHINX project implements a much different architecture, as shown in Figure 2-1

above, then presented with other brokers in this chapter. For state persistence, it uses a

Data Warehouse where information gathered from Data Replication Service and Grid

Monitoring Interface is transformed into different informational tables for the control

process. The tables in the data warehouse are used for caching information related to

cataloguing, job tracking, and the list of resources. The control process, in turn, is used as

the central brain and orchestrates the changes in the state of the submitted job. Although

the related literature talks about the architecture as client-server, the diagram as shown in

Figure 1-1, reflects a server-agent architecture, where the agent is doing the work

assigned by the server, and various implementations of the agent take the form of an

adaptor to support different local resource management systems. The light-way

implementation of this part of the system validates this statement as it is the connection to

the external components.

The implementation of the SPHINX broker is based on two kinds of requirements,

informational requirements and system requirements. Informational requirements have

been captured as the core requirement for scheduling component. It identifies the

different sources of information that are needed to perform complex scheduling

operations on the grid resource. The system requirements are focused on the efficiency of

22

the scheduling that includes QoS (Quality of Service), extensibility, customizability, and

interoperability [44]. The type of requirements identified here is mainly quality factors

and not directly related to the required functionality of the system. These quality factors

are also very common to most non-trivial systems and not just limited to large and

complex systems such as distributed systems and grid computing environments.

23

Chapter 3

3 Problem Analysis

Grid computing has emerged in the academia and evolved towards the bases of what is

currently known as Cloud Computing and Internet of Things (IoT). The vast collection of

resources that provide the environment for Grid Computing is very complex; multiple

administrative domains, controlled access and set policies to the shared computing

resources. It is a decentralized environment with geographically distributed computing

and storage resources. In a grid-computing environment, the computing resources might

be heterogeneous [33] where no assumption can be made about the operating system,

CPU capabilities, and memory or storage capacity. The assumption is that mapping

computing resources, including resource allocation problem, is a collective responsibility

given that the computing entities participating in the environment can have full control

over accepting or rejecting the allocation. In the traditional approach, the resources are

controlled from the upper layers of the Grid Protocol implementation as described in the

next section of this chapter.

The research described in the thesis presents Grid Computing as an open environment.

Open environment approach introduces a new level of complexity as related to

interoperability, adaptability, autonomy, and interdependency. In addition, Grid

Computing is viewed in the context of CDS (Cooperative Distributed Systems). CDS is a

class of distributed systems where entities have full control over their actions, which

includes sharing and control over their capabilities. In such a classification no single

entity is capable of solving problems in isolation, and a level of cooperation is required

between the entities to accomplish their goals. CDS is a computing paradigm where

entities in that environment are expected to collaborate and work together. The size of the

environment, by nature being large, provides that entities with overlapping capabilities do

exist and are part of that environment. In such a case interdependency is a known

problem; more specifically capability-based interdependency creates the problem where a

solution to this problem is coordination [36].

24

3.1 Grid Protocol Architecture Analysis

The Grid Protocol Architecture as shown in Figure 3-1 illustrates a composition of

functional layers for implementing grid computing protocols and services. The

application layer of the stack has a direct interface to all lower layers. The flexibility of

the application layer of the protocol stack, having direct access to multiple lower layers

might lead to a complex architecture at the Application, through which it doesn’t provide

the separation between the application and the supplied capabilities of the environment.

This signifies that any service implemented at this layer has the freedom to use and

control protocols from the layers below. Therefore, there is no clear separation of

concerns when it comes to the use of the protocols and how they are utilized at the

application or service built on top of the Grid Protocol stack. Based on that it is open to

interpretation and up to the implementation of the Application layer and how these

protocols are consumed. In other words, in the Grid Protocol Architecture, both

Collective and Resource can be directly modelled as part of the application; shown in

Figure 3-1(b).

Figure 3-1: Simplified Grid Protocol Architecture

The Fabric layer provides access to the local control has a clear separation from the

Connectivity layer and can only be accessed through the supplied secure protocols

provided by the Connectivity[33]. Although the protocols are specific to a closed system

and can present difficulty in open environments, it is still a good foundation where

communication protocols can be extended to support collaboration between entities in the

25

environment. Once we go above the Connectivity layer, things start to break down. From

here, the Application has direct access and can become the facilitator that manages the

Collective and Resource through Connectivity and therefore provides an open landscape

for creating problem-specific solutions that cross the top three layers of the protocol

stack. Furthermore, the definition of each Connectivity and Resource layer emphasizes

the access control and management of the lower level resources [33]. In an open

environment, this becomes problematic since the resources are required to be

autonomous, with full control over their capabilities and adaptable to the changes in the

environment.

The other aspect of a grid-computing environment, which is only partially addressed in

the current Grid Protocol Architecture, is the fact that the environment is composed of a

large number of resource providers and resource consumers. In such an environment the

level of interaction required to collectively work together to solve problems, requires

coordination and cooperation of the participating entities. Yet, the current Grid Protocol

Architecture provides, among other things, Information Protocols to query the state,

Management Protocols for access and resource control and Directory Services for

querying resource name and attributes[33]. Such architecture promotes a top-down

management and control approach instead of supporting autonomy and collaboration.

The size of the computing grids is considered "large"; Internet-size large. Therefore, the

interaction between the consumer and the providers of the computing resources creates a

high level of complexity. Furthermore, due to a large number of resource providers, there

will be overlapping capabilities between the number of providers and that creates a

capability interdependency problem. The nature of such an environment and the fact that

the structure of the system is not known at design time, besides the roles of the entities

making up the environment, creates an architecture where communication between the

entities is a problem. A large number of entities requesting assistance to solve a problem

from other entities in the environment do not adhere to a specific architecture, and it

creates a many to many relationships, which only materializes at run-time. A solution to

this problem is called brokering architecture pattern[46].

26

Brokering is an architectural pattern based on consumer-provider model for the

interaction in a consumer-provider type environment. Consumer-provider is a general

problem where large numbers of consumers interact with a large number of providers in

order to achieve their goals. Goals can be further divided into objectives based on

environment and entity-specific parameters. The consumer-provider solution is an NP-

hard problem, and therefore to reduce the complexity, a resource brokering approach is

used. The difficulty remains in that we are still dealing with existing systems and an

architecture that is guided by the properties of the existing grid infrastructure.

3.2 Open Issues

This section of the thesis will examine and define each of the open issues that will be

addressed in the next chapter.

3.2.1 Autonomy

Autonomy is the ability to self-govern, from the Greek meaning independent. Autonomy

is a fundamental aspect of agent-oriented architecture, where the design of the system

accounts for individual entities to interact and coordinate to solve a common problem.

Autonomous entities exist in an environment and perform operations on the environment

based on their internal state, their knowledge, beliefs, and intentions. Autonomous

entities are designed to deal with the unexpected, where autonomous agents and multi-

agent systems can leverage the capabilities of other agents to accomplish a goal; an

unexpected state of the world causes a condition where a single agent cannot perform

such operations. A software agent is autonomous; it can use its knowledge and the

current state of the world to modify the environment and accomplish its goals.

In an open environment, where a large number of consumers and a large number of

providers exist, it creates a complex system where interaction between consumers and

providers becomes very complex. Entities that exist in such an environment can come

and go at will, and are not part of the original architecture. The architecture of such a

system changes at run-time. Designing a system using agent-oriented architecture creates

a system that is more adaptable to change and inherits the ability to adapt at run-time to

unexpected events; such properties make the entities autonomous.

27

At the time of writing this chapter, there is no literature related to resource brokering in

open environments. In order to design a solution for such an environment, one needs to

study the characteristics that define an open environment. By definition, open

environments are dynamic, where software systems are arranged at run-time to create a

solution[72]. This type of system requires interaction and autonomy at the individual

component or service level. Autonomy is a property of a software system that allows it to

function under dynamic and unknown conditions and therefore a key characteristic of

software entities designed for the open environment. The proposed solution will shown

the ability to dynamically select a scheduling algorithm, different scheduling algorithms

may not be available in the initial design and deployment of the system. However,

additional scheduling algorithms can be deployed into the environment as separate and

new entities with specific scheduling capabilities. Autonomy yields the required

capability for entities to cooperate in an open environment. A particular type of

interaction called coordination can provide solutions to problems that previously did not

exist. The solution is composed of a newly formed system that can solve the problem, all

done at run-time. For example, two autonomous robots exist in a building with different

rooms and doors between each room. Each of the robots has different capabilities and the

ability to communicate and cooperate, however, they are not designed as part of one

system. Now, if a request is made for one robot to be present in a different room and that

robot does not have the capability to open the door, in order to move between rooms, it

would fail to fulfill the request. However, since another robot in that space exists with the

capability to open the door, the goal can be attained by the first robot to have the door

opened and moved to the desired location.

The proposed solution applies the agent-oriented architecture approach to create an

adaptable architecture where entities can join and leave at will. New entities can join the

system with new capabilities to support new ways of assignment of computing resources

and schedule those resources to perform tasks. The communication protocol that enables

the coordination between the entities allows for entities to cooperate and coordinate their

actions. If one entity is not able to perform the required actions to complete its goal, it has

the ability to communicate other entities and request assistance.

28

3.2.2 Adaptability

In the context of a computer system, the ability for computer systems to adapt to a

changing environment is typically not a requirement during the design stage of the

system. As the computing paradigms have evolved over the past two decades, both

system architects and system developers see this as the next evolutionary and essential

step in the next phase of evolution [7]. In grid-computing adaptability shall be considered

as one of the key, non-functional requirements.

Adaptability is also a fundamental characteristic of an open environment, in which a

computer system has the capability to change and adjust its behaviour based on the

changes in the environment. Although, adaptability is not an obvious issue in the existing

Grid systems, mainly due to the fact that current view of the Grid is a closed system. Yet,

the issue has been explored in some recent papers [7][15][48][59][73]. The evolution of

the Grid to support an open environment makes adaptability, or the lack thereof a key

issue, and is proposed here as part of the solution in this thesis. In such context,

adaptability of the participants in the computing environment is a requirement, yet the

existing solutions do not take this into consideration.

Most all of the reviewed literature explores Grid Computing as a closed system, where a

specific process is required in order to add additional computing or data resources to the

existing grid infrastructures. The solution that is proposed to solve this problem is to look

at adaptability at two levels. First, it looks at the solution from an open system

perspective and requires the use of standard protocols to facilitate the communication

between entities participating in the system. Secondly, it defines the protocol at the

interaction level of the entities in order to enable efficient coordination. The efficiency of

the cooperation of the entities participating in the computing environment is

accomplished by introduction of the resource-broker service into the environment.

3.2.3 Interdependency

The word “interdependency” can be analyzed by breaking it down into two parts; "inter"

and "dependency". "Inter" meaning between or among, and “dependency” meaning that

something is dependent on something else. Therefore, “interdependence” is a situation in

29

which two or more entities depend upon each other. Such a situation can only happen if

more than one entity exists in an environment, and the entities have overlapping or

dependent capabilities. This is also known as capability-based interdependency problem

[36] and it is found in settings where multiple entities of similar and overlapping

capabilities exist; such is the grip-computing environment[36]. In such an environment

entities need to interact in order to solve their interdependencies and this requires a level

of cooperation as shown in the next section 3.6.

Interdependency is a problem due to the overlapping dependence between entities in an

environment. There are different interdependency types, and they are classified based on

the domain of interaction. In such classification, we find the following types [36].

• physical - physical aspects of the environment require the sharing of resources

between the entities [36].

• mental - can be classified as capabilities, knowledge and interest [36]; this is

where entities are dependent on other entities to accomplish their goals.

Further, there is a topology to the interdependency types, which deals with the type of

interactions of the entities [36]. For example, in a physical conflict where two entities

require the use of a single resource, they will need to interact and share the resource

based on the topology of their interdependency.

• pooled - which results in the least amount of conflict [67]; entities do not directly

depend on each other and instead use a common pool of physical resources.

• sequential - when the dependency of one entity is on the output of work done by

another entity.

• reciprocal - results in the highest potential for conflict [67]; the information flow

is required to go both ways.

• comprehensive - similar to the above with a greater complexity of interactions

[67], resulting in the potential for very high conflict.

30

The problem becomes more apparent in the context of an open environment, where

entities are capable of joining and leaving an environment at will. This creates a dynamic

architecture that changes at runtime. The nature of the system creates a problem where

entities with overlapping capabilities do exist in the same environment. This creates an

interdependency problem with one or more of the topologies stated above. A typical

approaches to solving the interdependency problem is through predefined architecture,

where specific requirements and specification for system design dictate the relationship

between components of the system architecture. In the case of open environments, the

system is dynamic, and the interdependency problem exists at runtime. Others try to

solve this through a centralized or federated approach and manage the resource capability

overlap through a database information system, where the information needs to be

updated and kept up to date very frequently, in order to be current and usable.

Interoperability is a problem identified in [33], the solution to interoperability is a

standard protocol implementation that allows for interaction between components.

Interoperability is a core requirement in open environments, as the protocols need to be

known to entities that are not part of the environment and would like to join. Our focus is

on open environment where we extend the Grid concept to Internet-size open

environment where entities can come and leave at will and system has the ability to

adapt. A standard communication protocol allows for interoperability between entities to

allow them to interact and coordinate. In the literature review, some of the requirements

for resource broker have been collected from different sources. The discussion below will

show how all of these requirements have been considered during problem analysis and

have been shown to address the issues outlined in the proposed solution.

The proposed solution looks at the interdependency problem from the perspective of

interaction, where coordination is the solution to this problem and will be discussed in the

next chapter.

3.3 Summary

The analysis in this chapter has shown how the current approach and interpretation of the

Grid Protocol Architecture has allowed for a dispersed set of solutions. There are almost

31

as many implementations that provide resource brokering as there are Grid deployments.

The complexity of the problem has been identified as an NP-hard type problem for which

there are various possible heuristic approaches to provide an optimal scheduling solution.

However, this is not the focus of the thesis. The thesis is focused on delivering an

architecture solution to the resource-brokering problem by extending the current Grid

Protocol Architecture and applying the concept of open environments to the problem.

Also in this chapter, we have identified some key open issues that will be addressed in

the chapter to follow.

32

Chapter 4

4 Proposed Solution

The proposed solution is addressing the currently known open issues as identified in

Chapter 3.2. The open issues have resulted from simplifying the model of grid-computing

and extending the model to include concepts of an open environment. In the mainstream

literature on Grid Computing, the traditional approach is a closed environment.

However, with the explosion of web-based services, the Internet has become a collection

of heterogeneous computing resources, each providing a different function, with partially

overlapping capabilities. Although this environment somewhat resembles grid-

computing, the fundamental difference is that the Internet is an open environment where

resources connect and disconnect, without centralized control. The analysis in the

previous chapter outlines the current state and the ability of grid-computing to evolve

beyond the traditional view. In today’s field of computing, the advancements have put

forward a new computing paradigm, and such is cloud computing. Cloud-computing has

been built on the longtime promise of "utility computing"[64]. "Utility computing" was

coined by Mark Weiser back in 1980, where Grid-computing has fallen short to deliver

on such vision; Cloud-computing has provided a computing paradigm as a utility, at

various levels, IaaS, PaaS, SaaS, and various other XaaS (anything as a service)

variances. Although such implementation does not realize the vision as presented by

Mark W., it is a step closer in that direction.

4.1 Model

The Current model of Grid Protocol Architecture as depicted in Figure 1-1(b), is

associated with strong assumptions that are not adequate for open environments.

The Grid architecture assumes the application has full exposure and control over the

Collective and the Resource layers. In addition, the application also has full access to the

Connectivity protocols to manage and control the Resource layer, directly or through the

Collective layer. Although it aims to support flexibility, it led to complexity and different

implementations of brokering functionalities. As such, the integration of the application

33

with a resource broker requires custom logic and communication protocol specific to that

implementation. This restricts the implementation to support open environment

applications. In the proposed solution the aim is to re-define the Grid computing

architecture supporting open environment principles, in which the entities making up the

environment are not known at design time. This requires entities that exist in such an

environment to be supported with the ability to adapt to the change of the environment

and interact accordingly. This requires a level of autonomy at the entity level. Each entity

needs to have the ability to perform an action on the environment based on its capabilities

and the ability to interact cooperatively with other entities in order to achieve the

individual or the collective goals.

Figure 4-1: Grid meta-model

Applying these concepts to the structure of grid-computing environment creates a meta-

model for the system, depicted in Figure 4-1. It classifies the application into resource-

consumer and resource-provider. The dashed line in the diagram represents the

interaction between the two classes of the entities roles. In the context of the open

environment, both resource-consumers and resource-providers are not known in advance.

To address this assumption a brokering-based model is proposed. Brokering provides a

dynamic interaction among resource consumers and providers that are not necessarily

defined in advance. It enables a resource consumer submitting a job request without the

need to know about all available resource-providers. Similarly, for the resource-

providers, which can participate indirectly for interaction with resource-consumers only

known at run-time. A resource-provider is modeled in terms of capabilities within the

grid computing. Then through the brokering resource allocation and assignment based on

34

the job requests from consumers and managed the interaction is carried out with the

resource providers for their commitment to the job execution.

The resource allocation is based on identifying the adequate providers for the submitted

jobs based on predefined criteria.

4.2 Architecture

The proposed brokering-based model captures Computing in the form of job’s

Capabilities and Resource Allocation, where the application is unaware of the individual

Resources that execute it’s jobs. The application has a view of the Grid as a virtual single

computing platform with the required capabilities to perform the requested job.

In a typical grid-computing environment the resources that provide computing

capabilities to the grid, connect through the network to a centralized service, which is

responsible for scheduling the job of a particular type to execute. Different resource

brokers capable of executing jobs of different types have been outlined in Chapter 2.

Such architecture uses the network to facilitate the communication between resource

providers and other systems making up the grid-computing environment.

Figure 4-2: Traditional distributed system

The proposed solution is extending the network to include the job-resource allocation and

scheduling. This model transforms the network from merely a communication-based

layer to a foundation of Grid-based Computing platform. In addition, it is naturally

adequate for open environment applications, where there is no centralized control over

resource-providers and resource-consumers with the ability to join and leave the

computing environment dynamically.

35

Figure 4-3: Proposed Architecture

The proposed architecture is based on the brokering model. We identified four distinct

functional areas of the resource broker, job handling, resource matching, scheduling and

job execution, as shown in Figure 4-4.

Figure 4-4: Proposed Architecture with Resource-Brokering

A resource-provider (R.P.) modeled as a node is an autonomous entity represented as a

computing node, possessing computing resources is modeled as autonomous entities,

which have control over their computing resources, which have control over their

computing resources and make their computing capabilities available to the grid

computing environment.

36

4.2.1 Proposed Grid Protocol Architecture

Existing Grid Protocol architecture as shown in Figure 4-5 Grid Protocol, allows

Application layer implementations to control all aspects of the Grid. This approach

allocates all the control at the top layer of the protocol architecture and therefore creating

a centralized control mechanism and structure in the Grid environment. Further, this type

of architecture reduces the ability for resources to be autonomous, where autonomy is one

of the key requirements for entities in an open environment.

Figure 4-5: Grid Protocol Architecture (current and proposed)

The proposed Grid Protocol Architecture, Figure 4-5, provides the Grid with a better

separation and controlled access to the Fabric of the Grid. The Application layer has

direct access the supplied capabilities of individual or group of resource that make up the

Fabric. Using a secure communication over the Connectivity layer, resource or groups of

resources have the ability to register their capabilities. The Resource Registration layer

provides the required protocols to carry on the brokering facilitation as an integral part of

the Grid. Unlike the traditional approaches where brokering can be implemented as a

separate application at the high level of the stack.

37

4.3 Grid Computing Entities

The autonomous entities in the Grid are modeled as software agents. Agents architecture

is a composition of knowledge and capability. Each component in the resource-broker

service, normally job submission, resource matching, scheduling and execution, can be

modeled as a software entity. The capabilities of the entity depend on its designated

function. The system in this context is known based on the roles and responsibilities

required to perform the brokering service. This approach allows for separation of

concerns and well defined coordination pattern among the participating entities. For

example, job-handling agent has responsibilities of accepting a job request, validating all

required parameters and passing the job to the resource-matching. The resource-matching

agent can be performed by multiple and different agents based on the parameters supplied

in the job definition. New agents can be added into the system without changing the

architecture, yet providing new capabilities that are not known at the initial design of the

system.

Additionally, a resource-matching agent interacts with scheduling agent to assign the

execution of a specific job to a specific resource at a specific time. Here the type of

scheduling agent is selected at run-time based on the scheduling capabilities required by

the submitted job. Furthermore, multiple agents representing the resource-providers can

manage the job execution with the selected resource-provider as computing entity. These

capabilities can interface with different grid middleware.

4.4 Computing Platform

The computing environment that defines the platform naturally comes with a level of

abstraction and constraints related to supporting a specific type of applications. In the

context of a “Grid”, the computing platform has to provide not only accessibility to the

computing infrastructure, but the computing infrastructure needs to expose capabilities

with four key requirements. The application should not directly manage computing

resources nor the assignment. The entity’s autonomy and self-management of the

exposed capabilities, coordination between the entities to perform the required task, and

adaptability of the platform to self-adjust when resources become unavailable to perform

38

the required computation are the fundamental guidelines that drive the platform’s

requirements.

The proposed solution creates an architecture where multiple agents exist and coordinate

their actions to accomplish a common goal. It views coordination as the solution to the

interdependency problem with the specific focus on capability-based interdependency.

The platform supports the following primary aspects of open environment applications.

4.4.1 Adaptability and Autonomy

The agent-based model provides the platform with a well-defined structure, as related to

software entities that make up the computing environment. The entity structure enforces

the required guidelines to support open environment applications. The open environment

requires that entities are autonomous and can interact with other entities in that

environment. Similarly, adaptability is required for the entities to interact and to solve

new problems, which did not exist at design time.

The proposed brokering-based Grid protocol architecture enables the application of a

resource-consumer to adapt to the changes of the environment in terms of resource-

providers.

4.4.2 Coordination and Cooperation

Coordination provides a structure and mechanism for agents to interact cooperatively.

Cooperation can take a number of different forms; on one end being totally of self-

interest and the other end being a total sacrifice. In this work, our focus is on cooperation

for a mutual benefit to accomplish a common goal, where the coordination is the solution

to the interdependency problem in a cooperative distributed system where agents exist in

an open environment. The coordination of different resource-providers in an open

environment is addressed at the application layer. Coordination is viewed here as the

solution to the interdependency problem [36].

The concept of coordination is not unique to computer systems. A significant amount of

research is done on the topic in biology to investigate how different living entities

coordinate. An interdisciplinary theory of coordination was developed by Malone[45].

39

The study was done across multiple disciplines, including among others, computer

science, organization theory, operations research, economics, linguistics, and psychology.

Malone defines coordination as managing dependencies between activities. The

dependencies in the context of the thesis are between overlapping capabilities. Similarly,

[33] also outlines the interdependence between resources at the lower level of the grid

infrastructure and the support for advanced reservations or advanced scheduling.

Coordination has been a well-researched topic in a number of different disciplines;

however, researchers often presented coordination as a problem. In the context of

distributed systems specifically, the type of distributed systems that are part of this thesis

cooperative distributed systems, coordination is a key component. In our research group,

the focus is on the special class of distributed systems, called CDS (Cooperative

Distributed Systems) where entities exist and cooperate. In such system, we view

coordination, as a key solution to enable the cooperation between entities to resolve

problems, where capability based interdependency is the problem.

40

Chapter 5

5 Grid Computing: Framework & Implementation

In the previous chapter, the architecture for the proposed solution shows how extending

the network with connected resources can bring computing to the network level and

create a grid-computing environment where the computing happens on the network. This

is an extension of the phrase, “Network is the computer” coined by John Gage from Sun

Microsystems back in the mid ‘90’s. This vision statement has become more accurate

over time. At the time of the vision, single computing nodes or clusters of computers

which make up distributed systems were not enough to solve the complex problems. The

statement recognized that computing needs to happen beyond the physical limitations of

the computing node or a centralized management layer of a distributed system. In a

similar way, grid computing needs to go beyond the boundaries of the computing nodes,

and bring computing to the network layer, where the computing nodes are a simple

resource with capabilities to participate in the execution.

The design and implementation of the proposed solution brings about a number of

challenges. Each of the challenges is outlined in the following section of this chapter.

Section 5.1 discusses the design requirements and choice of technologies used in the

implementation. Section 5.2 outlines the design and implementation of the resource-

broker. Section 5.3 and 5.4 contain design and implementation of the resource-provider

and resource-consumer respectively.

5.1 Computational Model

To model the computation as described in Chapter 4, I break it down into two main parts,

Capability Brokering and Resource Allocation. The system represents a grid-computing

environment that is an open environment, where entities have the ability to join and leave

the environment at will. Open environment characteristics require participating entities to

adapt to the changing environment, inhibit a level of autonomy and have the ability to

coordinate. The characteristics of an open environment require a different approach to

designing a system for the proposed solution. In the traditional OO paradigm, the system

41

functionality is described in terms of interoperating objects. The principles of this design

approach focus on abstraction, encapsulation and modularity. In such a case it does not

provide a way to directly address the characteristics of the open environment, where

adaptability, autonomy and interdependency are the key requirements that need to be

addressed.

• Adaptability – not all the participants of the system are known at design time;

this requires the known participants to be able to adapt to the environment.

• Autonomy – there is no centralized control; in an open environment each

entity has a self-interest and control over its resources.

• Interdependency – the fact that a large number of entities do exist in the

environment and entities are able to join and leave the environment, and

create a capability interdependency problem; the solution to such a problem is

coordination between the entities.

Considering that we are dealing with self-interested entities in an open environment; an

agent-based model is a better choice for the design approach. Agent-oriented is the next

generation for software engineering paradigms and computer modeling of open

environments and autonomous entities. Agent-oriented design provides the following

principles as part of the design principles: autonomy, adaptability and coordination.

Based on the requirements the choice for the implementation of the proposed solution is

an agent-oriented approach.

5.2 Brokering Architecture

The use of agent technology here is essential, as it not only maps directly to the

fundamental aspects of the existing Grid computing environment, it also addresses key

aspects of the requirements. In the agent-oriented design process, the focus is on the way

the agents in the system cooperate to accomplish system-level goals. The goal of the

process is to transform the high-level concepts from the analysis into sufficiently low-

level abstractions [71]. At which point traditional design techniques such as OO can be

42

applied and used to implement the software system. In the analysis stage we develop the

understanding of the system in the context of its organization. This process will focus on

identifying the roles of the entities in the system and the required interaction between

them. The outcome is expected to deliver autonomous self-interested aspects that are a

natural fit for the Grid environment. In the Grid environment, there is no centralized

entity to manage the overall dynamics and interaction. Further, we introduce another

layer of abstraction at the participant level. The Grid environment consists of resource

consumers and resource providers that utilize the Grid to share their capabilities. We

abstract both the resource consumer and providers with our agent technology in order to

bring computing to the network level and decouple the computing infrastructure from the

interaction of different components, see Figure 5-1.

Figure 5-1: Agent-oriented design

The approach to design of the system is focus on defining key interfaces between each

component. The first part looks at interfaces required in order to abstract the lower parts

from concrete implementation. Following that is the look at each known entity of the

environment and the role they play. This looks at the high-level view of the resource-

broker itself and provides a detailed look at the components making up the resource-

broker. Further, we examine the overall system and the complexity of the interaction

between the different entities, as well the similarities in the design of each entity as an

agent.

The design for the system takes into consideration the fact that different technologies and

some off-the-shelf solutions will be used in the implementation. This requires the use of

the following principles in the design of the system, where a layered design of the

solution will provide abstraction from the different technologies and we use separation of

concern design pattern to provide a clear interface to each of the concrete system

functions. Creating an interface for each layer and programming to that interface will

43

provide the ability to switch to a different implementation of a specific component at run-

time.

Figure 5-2: Resource-Broker Architecture

The known entities making up the system, as shown in Figure 5-1, are grouped into three

categories, resource-consumer, resource-provider, and resource-broker. Furthermore,

resource-broker is subdivided into four components, as shown in Figure 5-2, specific to

the required functionality provided by the brokering service.

5.2.1 Agent Model

CIR-Agent is the agent model used in the CDS group, and it has been chosen for the

implementation of the proposed solution as part of the work in this thesis.

5.2.2 CIR-Agent Interface

CIR-Agent interface has been created in order to decouple the application from the

technology used in the implementation. A CIRAgentJADE class has been created as a

separate project, which implements the CIRAgent interface and hides any platform

dependent code. The application layer then uses this interface and provides a well

decoupled design, where the underlying platform, JADE, can be removed and a new class

for the new platform which implements the CIRAgent interface is put into the classpath

and the software component will keep working without recompiling.

5.2.3 Action Interface

Action interface was created in order to have a functional implementation with the

highest level of autonomy. An Action interface provides a single action method for

execution of the given functionality. The Action interface is utilized in the CIRAgent

implementation to perform work on the environment with the highest level of autonomy.

44

The Action interface also provides a way to set pre-conditions and post-conditions which

are utilized by the problem solver within CIRAgent implementation. The problem-solver

is able to compute a solution for a particular agent’s goal, based on this relationship.

5.2.4 Agent Interaction

The third part of the implementation is the interaction between the different components.

The components which make up the system are the resource consumers and resource

providers, as well the components that make up the broker service itself. As mentioned

in the previous section of this chapter, the assumption that the broker service is a trusted

entity and provides the highest available PPL value for the consumer. The interaction

between broker service and external entities can be as follows. Resource consumer uses

the standard ControlNET protocol to submit a job request to the broker service using the

CFP message type. Within the message the job description is attached. The currently

supported job description language is JSDL (Job Specification and Description

Language), a standard proposed by the Open Grid Forum. JSDL is XML-based language,

and the extensible nature of XML allows for extending the base specification to include

additional parameters in order to support the privacy framework presented in this paper.

The decision was made to include the PPL value supplied by the consumer as an attribute

of the JobDefinition element; since the PPL value modifies the job and does not change

the job definition. The broker service collects the information and accepts the message

for processing. On the resource provider side the resource provider uses a GIS (Grid

Information System) to register itself with the Grid. In our case GIS is provided by DF.

The resource matching component of the broker service uses DF to look up its

capabilities with the broker service. The resource provider uses the registration service

provided by the JADE platform to communicate its computing and data capabilities

including the PPL value it can provide for job execution. The content of the registration

message is a JAVA Properties based structure, key/value pairs, which represent the

agents computing and data capabilities.

45

Figure 5-3: Resource-Broker with Privacy Management

The interaction between the different entities in the system is facilitated by a high-level

protocol, ContractNET. ContractNET is a task-sharing protocol, and it can serve as the

protocol for the base communication between the broker and the external entities. The

protocol was extended to use an additional layer to support internal communication

between the different agents within the broker service. This approach provides the

required flexibility for the system to adapt at runtime. Internal to the broker, the

communication component takes the received message from a resource consumer and

puts that in a JSON format. The received content then becomes a value for the name job.

The JSON structure adds flexibility in communication between internal component and

the broker where each component can add additional name-value pairs to the structure

and extract information from the structure which itself requires, leaving the rest of the

structure unmodified for the next component. This is part of the information processed by

the broker and creates new types of information, based on the information collection that

accumulated from accepting the job and performing matching of the capabilities.

Figure 5-4: Job definition and PPL value

5.3 Resource-Broker

The resource broker implementation is logically divided into two main parts. At the core

is the agent technology that provides the implementation of functionality for each

component of the resource broker, as well as the agent abstraction of the resource

<JobDefinition ... PPL=”8”>
...
</JobDefinition >

46

consumer and resource provider. Second, the interaction protocol used for

communication and interaction between the different agents within the system.

The second part of the implementation is with respect to the particular functionality of

each component as presented in the architecture. Each resource consumer and resource

provider are abstracted using the agent technology, and interact with each other through

the broker service. The abstraction here gives the ability to match resource consumers

with available resource providers at the capability level, as well as allow for the broker

service to appear as a black box to the grid participants. Here, we can treat the broker

service as an information system which collects information from the resource consumers

and resource providers, process the given information, and disseminate some information

to the resource consumers and resource providers where appropriate.

5.3.1 Job Handling

The Job-Handling is responsible for receiving the initial request for the resource-

consumer agent. A job-handling agent is the agent who responds to the CFP message to

the “broker” service, where the resource-consumer looks up all available “broker”

services on the Grid and sends a CFP message to initiate the job execution process. The

supported job definition language is the JSDL, but this is where the support for other

languages can be added such as RSL, etc. The job-handling agent can perform any job

parsing and formatting needed before sending it off to the resource-matching agent. Job-

handling agents interact with the resource-matching agent as part of the brokering process

and job execution lifecycle.

Figure 5-5: Job-Handling class diagram

47

5.3.2 Resource Matching

Resource-matching is responsible for matching the job requests to available resource

providers. Resource-matching agent uses the GIS (Grid Information System) in our case

provided through the JADE platform by DF (Directory Facilitator) to match the requested

jobs with available computing and data resources. The resource-matching agent interacts

with the job-handling agent where it receives the job definition. Upon receiving the job

definition, the matching of resources to the job definition is performed, and further a

required scheduling agent is selected to perform scheduling for the job. The proposed

architecture allows for multiple scheduling agents to exist at runtime. The resource-

matching agent selects the scheduling mechanism to be used based on the consumer

request that is part of the job definition sent from resource-consumer agent.

Figure 5-6: Resource-Matching class diagram

5.3.3 Scheduler

Simple-Scheduling is one of the scheduling components implemented for this project.

Other scheduling mechanisms such as iterative market auction and one-shot auction have

also been implemented. The scheduling agent receives the job definition coupled with a

list of resources that are capable of performing the job execution based on the resource

requirements in the job definition. The Simple-Scheduling agent performs the scheduling

of the job execution by choosing a random number in the list of resources, provided by

the matching step.

48

Figure 5-7: Simple-Scheduler class diagram

5.3.4 Job Execution

The role of the Job-Execution is to perform the job execution requests from the

scheduling agent. The Job-Execution agent sends the scheduled job to the selected

Resource-Provider at the scheduled time.

Figure 5-8: Job-Execution class diagram

5.4 Resource Provider

The resource-provider represents a computing or data resource participating in the grid. A

resource can be a single machine making its computing and data resource available or it

can be a cluster of machines. In the implementation, the Globus Toolkit has been utilized

to perform the execution of the tasks at the resource end. The resource-provider agent

uses GRAM (Globus Resource Allocation Manager) to submit jobs for execution at the

local level. GRAM does the local resource allocation to perform job execution. The

49

interaction between Globus and the resource-provider agent is done through java libraries

provided by the Globus project. GramJob is a java class used by the resource-provider

agent and provides the required functionality to execute, monitor and cancel job requests.

On the resource provider side, resource-provider agent abstracts the computing node

resource as computing and data capabilities. The resource-provider agent utilizes the

Globus Toolkit to gain access to the computing node resources for job execution. The

integration with Globus Toolkit and ability to integrate through other middleware

provides us with the advantage to manage the task execution lifecycle on different

platforms. Providers’ capabilities are registered in the Grid through the GIS in our case

the DF.

Figure 5-9: Resource-Provider class diagram

Although our implementation takes advantage of the JADE platform and its supporting

agents, such as the directory facilitator (DF), agent management service (AMS), and

agent communication center (ACC), the implementation and design of the application is

based on the CIR-Agent[36] architectures. The CIR-Agent architecture maps very well to

our agent based system architecture, where each agents’ preferences and behaviors are

captured in terms of knowledge and capabilities. The CIR-Agent architecture also adds

two other layers for the agent interaction itself, the interaction devices and a

communication layer. The interaction devices allow the separation of the interaction from

the capabilities and knowledge of the agent and the communication layer is responsible

for composing, sending and receiving messages. Each agent in our architecture uses the

CIR-Agent framework implemented in Java. The design of each agent is described in

50

terms of its knowledge and capabilities. The agent’s knowledge includes the agent’s self-

model, goals, and local history of the world. The agent’s knowledge also includes its

desires, commitments, and intentions as related to its goals. The architecture separates the

matching functionalities of the broker to match the job definition to available providers

into it’s own unit. This approach eliminates any providers that cannot provide enough

PPL for the consumer, therefore reducing the feasible solution space for the scheduling

component.

The flexibility of the resource broker architecture allows for multiple scheduling

mechanisms to exist at runtime. The implementation uses agent technology to represent

each component in the Grid environment. The agent technology provides the interaction

required for such entities to coordinate and therefore allows for the negotiation of the

scheduling mechanism used. The output of the matching component provides a reduced

solution space for the input for the scheduling component where the scheduling

component can be decided on at runtime, based on information supplied by the consumer,

or internal broker problem solving capability which can determine the best scheduling

algorithm given the particular job constraints or objective function.

The implementation is based on the CIR-Agent architecture. The implementation has

been structured around two interfaces. On the one side the CIRAgent interface to the

agent framework, in our case JADE, by implementing the CIRAgentJADE class, and on

the other side the Action interface which works on the environment and is used by the

agent platform to perform work. In addition, our project also depends on the Globus

middleware. The Globus Toolkit has been utilized for the job execution portion of the

project at each computing resource.

5.5 Resource-Consumer

The resource-consumer agent abstracts the consumers of the Grid. It captures users

preferences and interacts with the resource-broker to execute jobs on consumer behalf.

Resource-consumer agent extends CIRAgentJADE. CIRAgentJADE implements the

CIRAgent interface and captures the JADE platform specific implementation. The

implementation of the resource-consumer agent is simplified to the implementation of the

51

action required for achieving its goal. The consumer’s goal is to submit the job definition

to the resource broker for execution.

The class diagram of a resource-consumer is shown in Figure 5-10. There are minimal

external dependencies and all platform dependent code is captured in CIRAgentJADE

class.

Figure 5-10. Resource-Consumer class diagram

5.6 Computing as a Platform: Prototype Implementation

A computing platform is an environment where a software program can execute. The

implementation of the “Computing Platform” is composed of two parts. First part is the

JADE platform that provides the ability for software agents to exist in the environment.

JADE only provides a mechanism for communication and ability to build software

agents. The solution extends the JADE platform to enable a new way to perform “Grid

Computing”. The “Grid Computing” platform as presented in the thesis is realized

through the extension of the Grid Protocol Architecture, by providing a strict separation

between the Application space and the lower levels of the “Grid Computing” capabilities.

The implementation of the prototype consists of two parts. First, software programs run

on the platform and they are represented as software agents. Secondly, the flow of

information has been verified through the logs attached in Appendix B – Experiment

Logs. The scenarios performed show how during the job lifecycle there is no direct

knowledge of the computing resources making up the grid environment. The computing

has been transformed in term of abstracting the resources themselves and by extending

52

the Grid Protocol Architecture to be more strict about the access to each layer of the

protocol. Only the Resource-Provider is aware of the computing resources that provide

the required capability to execute the job and physical access to the computing nodes.

5.6.1 Programming Languages Used

The core of the solution is implemented using the Java programming language. Other

languages such as Bash scripting and Python are utilized in different parts of the solution.

Bash scripting is used to start and stop each software artifact on the deployed host. The

Python language is used for performance testing as well integration testing of each agent.

5.6.2 JADE Platform

JADE (JAVA Agent Development Framework) is an open source platform for an agent-

based development of applications. JADE implements FIPA (Foundation for Intelligent

Physical Agent) specifications for interoperable intelligent multi-agent systems. JADE is

considered a platform because it enables the building of agent-based applications [62].

Agent-based architecture is a computing paradigm, which is known to be the next

evolution of computing after OO (Object Oriented). Agent abstraction provides some key

characteristics to the system, such as adaptability, autonomy, and interoperability. Agent-

oriented is the next generation for software engineering paradigm, programming

methodologies and computational paradigms.

JADE is a FIPA-compliant agent framework. The JADE platform provides

communication facilities between agents using ACL. It also provides other agent

facilities for agent discovery and communication with specialized agents such as AMS,

DF and ACC. JADE is open source software and distributed by TiLab and the University

of Parma.

The choice of technology for the implementation was to select and use JADE as the agent

platform. JADE is the implementation of the FIPA (Foundation for Intelligent Physical

Agent) specification for a multi-agent system. JADE is an agent platform that allows for

the development of agent-based applications in compliance with FIPA; the platform

provides the minimum running environment where agents exist and interact, as well as

53

can be configured to run as a distributed platform with failover functionality. Other

management facilities with JADE, such as DF (Directory Facilitator), AMS (Agent

Management Service) and ACC (Agent Communication Center) are provided by

specialized agents deployed at platform start-up. DF is a directory facilitator agent that

provides yellow pages lookup services. AMS is an agent management system, which

provides white pages and life-cycle service; it maintains a directory of agent IDs and their

state. ACC is the software component orchestrating the exchange of messages between

agents, across the distributed network of JADE nodes. All this provides an abstraction

from the computing resources and each agent that runs on the platform is not directly tied

to a particular computing resource.

5.7 Prototype Validation and Verification

In order to assure that the solution was done correctly, the verification of the proposed

solution was done through automated unit tests and manual testing with console logs. The

console logs were verify against requirements and expected execution of each scenario

described bellow. Logs have been captured in Appendix B – Experiment Logs and are

explained in the subsection bellow. In addition the yWorks tool was used to produce the

class diagrams from code to verify the design, as described in Section 5.3, Section 5.4

and Section 5.5.

Prototype validation has been chosen as the tool to provide results from the implemented

solution. Validating the prototype through a working scenario provides the required data

to determine the feasibility and effectiveness of a new way to study Grid Computing.

Two scenarios have been prepared to validate each part of the implemented model by

looking at the information flow and interaction between the computing entities. In the

controlled part of the experiment, the resource-broker has been omitted from the job

submission flow. This required changes to the part of the system that deals with job

submissions. The jobs submitted for execution invoked a native call through GRAM, a

native interface part of the Globus Toolkit. The command line tool makes the job

submission directly to the local resource manager of the Globus middleware. In the job

submission process, the submitter that could be either an end user or a broker needs to

specify the computing resource that will be responsible for performing the computation.

54

Here the resource allocation happens at the Application level as discussed in Chapter 3.

Therefore, it shows that the network is used merely as a communication medium and the

job arrives at the computing node for execution.

In the second scenario, the job is submitted to the resource broker. It includes computing

resource capabilities required for job execution. The components of the resource broker

responsible for different parts of the job execution provided the computing capability to

allocate the necessary resources to execute the job. The computing in this scenario has

not been performed at the specific computing node, and it was the responsibility of the

Grid Platform to perform the computation that involved two parts, Computing Capability

and Resource Allocation.

The system has been deployed on five physical machines as shown in Figure 5-11, with a

sixth machine that extends the grid infrastructure through a private cloud implementation,

not shown in the diagram. The details about each deployed node are captured in Table

5-1. Four old desktop machines were used to construct a Globus computing cluster. One

of the newer desktops has been used as a grid portal, and then recently purchased dual-

socket Xeon machine with 16 virtual cores were used to create a private cloud

environment using OpenNebula software. The OpenNebula is an open source software

system that enables data centre virtualization as well as cloud management. The cloud

management module allows for a data centre to extend its infrastructure capabilities to

other public cloud providers such as AWS or Azure. Extending a private cloud

infrastructure allows an organization to support high peak workloads that stretch beyond

the capacity limits of the private cloud infrastructure. OpenNebula was used in this

environment to serve both of the features. It was used to virtualize the powerful 16-core

machine where a number of on-demand virtual machine instances were launched to

simulate different scenarios for the experiments; also, a connector was configured to the

external public cloud on AWS.

Table 5-1: List of computing nodes

Name Specification Notes
cds-
station1

Pentium
4/512MB/40GB Grid Node

cds- Pentium Grid Node

55

station2 4/512MB/40GB

cds-
station3

Pentium
4/512MB/40GB Grid Node

cds-
station4

Pentium
4/512MB/40GB Grid Node

cds-grid1 Core2
Duo/4GB/500GB grid portal

cds-server 2 Xeon/24GB/1T private cloud

The setup and configuration of each of the software technologies used in the environment

for the experiments have been outlined in the following subsections of this chapter. The

four desktop machines named cds-station1 through four have been configured with

running Globus Toolkit configured as an independent Globus computing cluster, with

multiple physical computing nodes, as described in Section 5.7.1. In Section 5.7.2 the

details about configuration for JADE platform is captured. Section 5.7.4 depicts the

deployment and configuration of the resource-broker service itself and its dependencies.

Figure 5-11. Deployment diagram

56

5.7.1 Globus Toolkit

Globus® Toolkit is an open source fundamental enabling technology for building grid-

computing infrastructure [37]. Globus Toolkit is often referred to as middleware, where it

provides access and is a layer of abstraction to the collection of heterogeneous and

geographically distributed computing resources. The project developed as part of the

work on the thesis uses version 5.0.4 of Globus. A collection of machines has been

selected and configured to be part of the Globus cluster to perform computing jobs for the

experiment. Globus has been configured with a self-signed certificate that enables a

secure connection between the computing nodes. It also creates a trusted environment.

Globus provides the ability to create a certificate authority. The certificate authority is

used to generate a security certificate. Each computing node participating in the grid-

computing environment uses a security certificate generated for that computing node.

Due to the nature of the technology used in providing the secure communication in

Globus, and the signing of the security certificates, the generated certificate is specific to

each computing node. The command line tools supplied and distributed with Globus

Toolkit also allows for creating and processing of certificate requests to generate a valid

security certificate. Each certificate has an expiry date and can be revoked at any time by

the middleware if access needs to be restricted.

The signed certificates are created as part of the Globus installation steps, and all tests

have been performed using the secure environment. In addition, each machine making up

the computing grid has been secured using IPTables firewall and configured to only

allow specific known ports from a specific IP addresses to be open and allow for a host to

host communication.

5.7.2 JADE

The configuration for the experiment has been set up in such a way it resamples a real

world realistic setup. JADE platform has been configured and deployed with multiple

main-containers. This type of configuration uses the Main Container Replication Service

to create redundancy and failover. Such a configuration creates high availability type

setup, where if any one or two hosts fail, the platform will still function and agents

57

running on the platform will be moved to the hosts that are still in operations. The agents

running on the platform are not aware of this setup, nor they are aware of the host they

are running on. There is no direct dependency of the physical computing host and agents

that exist and communicate on the JADE platform.

5.7.3 Entity Structure

The entity structure validation was done through examining the identified open issues as

discussed in Chapter 3. In the context of the “computing entity” there is one key open

issue that applies to the “computing entity” and can be used to validate the entity

structure for the new way of doing grid-computing. The structure of the "computing

entity" shall give a level of autonomy. Autonomy defines the ability to self-govern and

interact with other entities in the system through coordination. In the scenario, as

described in the previous section, the interaction between entities is shown to be done at

the capability level and not through access and control. Access and control approach is

part of the current Grid Protocol Architecture that provides protocols to access individual

computing resources. Capability level interaction allows for a more efficient approach to

resource allocation with gives the "computing entities" full control over their availability

and capacity to perform the computation.

5.7.4 Resource-Broker

The resource-broker service is divided into four key components, each compiled into a

separate JAR executable. Each component implemented as a software agent from the

resource-broker service runs inside the main-container, one agent per main-container

configuration. A container in this context is an instance of JADE main service running in

a single JVM. The system has been deployed with four main-containers in a failover

configuration as described in the JADE section above. Each main-container runs on a

separate physical machine in order to properly simulate real world environment where all

communication happens over the Internet and not within a single machine.

Resource-provider agents have been deployed in peripheral JADE container where the

main-container configuration endpoint is specified at the time of execution. The main-

container address provided is a fully qualified domain name or FQDN for short, although

58

the peripheral and main-container run on the same physical machine, due to the limited

physical machine resources in our lab, this is a well documented deployment model. This

forces the deployed configuration to use the external endpoints during agent

communication and therefore can be easily migrated to different physical machines. The

resource-provider is deployed on the computing node that it is representing, however the

configuration of the resource-provider specifies the FQDN as well and therefore again

forces the communication to occur using the publically accessible end-points. This

configuration allows the JADE platform to run on a set of dedicated machines that would

be separate from the available computing resource making up the grid infrastructure.

Resource-consumer agents are deployed on a separate JADE container and connected to

the JADE main-container over the Internet. A resource-consumer agent is created for

each user in the system. The jobs are submitted to the resource-consumer through the file

system, with a plan to make this available as an API. A specific directory on the local

files system is monitored for change. At the time directory change is detected, the most

recent file is read into memory and parsed into a java.lang.String object. The

java.lang.String representation of the job definition is then added to the content of the

ACL message as part of the CFP message to the resource broker service.

Running the experiment produced the following results where the process of job

submission, matching, scheduling, and execution is captured in the process log messages

and attached in Appendix B – Experiment Logs. The attached content of the files show

the logical steps each of the components of the Resource-Broker is performing as the

submitted job goes through its life-cycle. The captured logs are described in the

subsection below for each of the components of the implemented solution.

5.7.5 Resource-Consumer Agent

The resource-consumer agent is configured to read a job definition file from a local file

system for the purpose of this simulation. The module responsible for reading the job

definition can be easily swapped with a REST API interface as it implements an Action

interface and is fully autonomous. Once job definition is loaded and parsed, the agent

59

proceeds to the next state of execution and submits the job to the resource-broker for

processing.

During this process, the resource-consumer is not aware of the resource provider that

carries the execution. The interaction between the resource-consumer and resource-

broker is done at the capability level abstracting all resources connected to the grid. In

addition resource-consumer is not aware of any of the components/agents that make up

the resource-broker service. The communication is done at the resource-broker interface.

5.7.6 Job-Handling Agent

The job-handling agent is the component of the resource-broker that handles job when

first submitted. It is the agent that listens for the “rbroker” topic and handles the initial

jobs submission from the resource-consumer agent. This is based on the implementation

that the communication between agents is done through message routing based on

specific topic and not direct communication between resource IP address and port. Due to

the fact that the state of the communication topic “rbroker”, the job-handling agent picks

up the received message and sets its internal state to accomplish its goal of processing

this state of the job lifecycle. The job-handling agent is only responsible for part of the

job lifecycle and therefore once it reaches its internal goal of accepting and validating the

submitted job, it delegates other agents’ to take on the next state of the job lifecycle that

is beyond its capabilities. The next state of the job lifecycle is called “matching.

5.7.7 Resource-Matching Agent

The resource-matching agent is the agent that receives the job specification when the job

is in “matching” state. The resource-matching agent has two responsibilities; the first is to

perform matching of the resource definition, followed by matching of the scheduling

agent. Supporting multiple scheduling agents provides the flexibility of the solution to

have multiple scheduling techniques that are available and selectable at run-time.

5.7.8 Scheduling Agent(s)

The scheduling agent or agents, where multiple scheduling techniques are supported by

resource-broker ecosystem. Each scheduling agent implements a different scheduling

60

protocol. The job specification language allows extending the job definition with

additional fields that enable the system to adapt itself at runtime to the different

capabilities provided by the resource-broker. The prototype has used the

SimpleSchedulingAgent in this scenario, where the scheduling algorithm is based on a

first available resource in the list that is capable of performing the job based on the job

specifications and resource capabilities.

5.7.9 Job Execution Agent

The job-execution agent is responsible for performing the “execution” of the job. The

“execution” is a state in the job lifecycle that uses the computing node to perform

computation. The job-execution agent registers this capability with the resource-broker

platform and therefore receives job definitions for all jobs that read this state. The

performance can be improved by deploying multiple instances of the same agent,

however, this is not the focus of this thesis. The “execution”a state of the job lifecycle

performs the Resource Allocation, part of the computing platform. This is the only part of

the system that has the ability to communicate with resource-providers and submit the

requested job for execution to the specific computing resource. The communication with

each capable resource-provider is still done at the platform level without the direct

knowledge of the resource endpoints or network address. Once the commitment is

reached between the selected resource-provider and the resource-broker, the job

specification is sent to the selected resource-provider for execution. The job now moves

to the “executing” state.

5.7.10 Resource Provider Agent

The resource-provider agent is an agent representation of the physical computing

resource participating in the Grid. The resource-provider agent has the ability to execute

the job on that physical resource or a cluster/pool of resources. The resource-provider

agent is not part of the resource-broker, but it is an agent representation of the computing

resources that make up the grid-computing infrastructure. This type of representation

allows for a consistent design and simplifies the integration with physical computing

infrastructure.

61

5.8 Implementation Challenges

There were a number of challenges in implementing the proposed solution and

performing the experiment. The implementation has to take into account that the solution

cannot be a single executable service and has to be distributed. Also each distributed

component shall not be aware of direct endpoints of other components that it needs to

communicate. The communication and resource allocation during the job workflow

should be done without any direct awareness of computing resources that make up the

grid-computing infrastructure.

5.8.1 Architecture

The proposed architecture requires to implement different components for each logical

function of the resource broker and job workflow. The implemented solution could not be

deployed as a single monolithic executable or service running on a single computing

resource, as it would invalidate the experimental validation of the thesis. The solution has

been implemented into a minimum of four different, and separate executable components

that can run as a service with the ability to communicate through the network. The

deployed components could not have direct knowledge of each other physical computing

resource. Using JADE as the computing platform, where each of the functional

components has been abstracted using agent technology solved this challenge. This

allowed for agent-to-agent communication at a higher level, where the network was

simply used for exchange of message, without direct knowledge of physical endpoints

tied to computing infrastructure.

5.9 Dynamic Selection of Scheduler

During the implementation of the proposed solution it was evident that with minimal

changes, the proposed solution could provide a more flexible approach to scheduling. In

the reviewed literature, current implementations provide a specific type of scheduling

algorithm that was selected at design time. Such an approach is not adequate for the next

generation of computing needs.

62

Another experiment was constructed to show the flexibility of the design and

implementation of the proposed solution. Resource broker uses agent-based architecture,

where the key features of the resource-broker have been split up and wrapped with agent

technology to provide autonomy, interoperability, and capability-based interdependency

during run-time. This approach in the implementation allows the agents to work together

to perform the objectives of the resource broker as a whole. The agent uses a

communication protocol in order to coordinate their tasks in order to accomplish the

specific goal of job matching and job allocation. The communication protocol provides

the means for communication and exchange of messages, where the problem solver

component, allows for the logic related to accomplishing the specific goal of the agent.

In the case of the Scheduling Agent, the interaction of the Scheduling Agent and the Job

resource-matching agent allows for a dynamic selection of the Scheduling Agent type,

where a number of Scheduling Agent types can exist in the system at any point in time,

and coordination of the agents allows for the dynamic selection of the agent which is best

suited to perform the scheduling of the submitted job. The coordination of the different

Scheduling Agent types is done through job definition, where a specific scheduling

algorithm can be explicitly specified. This approach can be further extended with a

deterministic approach to determine the scheduling algorithm required. All this happens

during the job handling and matching process, which means the communication of the

different software artifacts are not known at design time, and only at run-time.

In the current implementation of the algorithm that is responsible for the negotiation and

selection of the Scheduling agent has been kept very simple; for the purpose of the thesis

and to provide the proof of concept solution. The implementation can be further extended

with additional logic as captured in Section 6.2. The selection algorithm is a simple string

matching, where the Scheduling Agent is selected by explicitly specifying the name of

the agent in the job definition structure. The chosen language for the job definition is

JSDL. The specification of the language allows for extending the definition through the

use of custom fields. The additional fields are added to the job definition, and as the job

is submitted to the resource-broker and passed among the different components of the

63

resource-broker service, each component extracts the parts of the job definition related to

it, where only the specific component understands the custom fields.

5.10 Summary

In the implementation of the proposed solution, it was not trivial to ensure that the

proposed architecture will be clearly preserved. The distributed deployment approach of

the software components simplified the experimental validation. The experimental

validation was used to validate the thesis and show how the challenges in the

implementation of the solution have been dealt with. The validation was done through

two different scenarios that illustrated how computing is done today on existing grid

infrastructure and how the computing should evolve to be true grid computing.

The added flexibility of the design also allowed the dynamic selection of the scheduler at

run-time, where scheduler was selected based on the specification of the submitted job.

64

Chapter 6

6 Summary and Conclusions

The thesis explored the concept of cooperative distributed systems and applied it to the

grid computing environment. It is focused on the functionality of resource brokering

aspect of grid computing. The objective was to view the grid as an open environment and

apply open environment characteristics to the grid-computing paradigm. Open

environment has a dynamically changing architecture where participants of the grid have

the ability to join and leave at will, yet are able to participate and coordinate their

execution with other participants of the environment. The proposed architecture for

resource brokering allows for a greater flexibility in all aspects of, job handling,

scheduling and monitoring. Additional support for different grid middleware solutions

can be added, and is further discussed in Section 6.2.

The core contribution is the extension of the Grid Protocol Architecture. The thesis does

a deep dive into the protocol architecture and analysis that have put Grid Computing on a

specific path, diverging from the grand vision of what grid computing aught to be. The

extension to the Grid Protocol Architecture allows for a new direction that can help bring

computing on the Grid closer to the vision of utility computing. The thesis showns how

the computing inside a single machine, where the computing resources are CPU, memory

and disk storage are the means and provide the required computational power to perform

any form of computation and extends the fundamental computing concepts to the

network. In traditional desktop computers the operating system layer exists as a

computing layer on top of the physical resources that provide the means to perform the

computation. In such view it is clearly visible that the computing happens at the operating

system level, not at the resources themselves; “Network is the computer”, was the phrase

put forward by John Gage of Sun Microsystems a few decades ago. This analogy is

extended here, where the mapping between the single node resources and resource

forming a grid; where now the pool of geographically distributed computing nodes,

connected in a grid-like fashion provide the means for computation to be performed, yet

the computation itself happens at the grid level, as shown in Figure 4-2.

65

6.1 Summary of Contributions

The main goal of the thesis was to extend grid-computing environment to support open

environment. An open environment extends the Grid with a set of characteristics that

make it current; today, with the evolution of the computing platforms, and introduction of

IoT (Internet of Things) platforms, there is an urgent need for computing entities to have

the ability to join and leave the platform as needed, to interact and cooperate.

In the design of the resource-broker, the fundamental requirement is the perspective of

open environment and its characteristics have been successfully applied and it has been

shown how entities have the ability to join and leave the environment at runtime without

affecting job execution. The architecture of the resource broker enabled autonomy of the

computing entities as well as the entities making up the resource broker itself. The issues

with the flexibility of the design and interoperability have been addressed, with the main

contribution of flexibility for the scheduling algorithm that can be selected at run-time.

This carries advantages over existing resource broker designs, where the scheduling

algorithm is part of the core implementation of the resource broker. Such an approach

makes the resource broker implementation very specific to the application domain, and

the architecture very rigid. The outlined design the scheduling algorithm can be chosen at

run-time based on the job specification and objective function. The supplied parameters

in the submitted job definition are used to correctly pick and inject the correct scheduler

with the required functionality at run-time, where the resource broker has the ability to

make the appropriate selection when scheduling the job for execution.

In collaborative work with the CDS group, scheduling with privacy concerns model has

been implemented by simply extending the proposed architecture. A co-authored paper

on that topic has been published, where the analysis and development of the scheduling

model that takes privacy concerns of entities has been expanded to the grid, with

architecture that enables privacy concerns in the scheduling decisions. The approach

taken in the design of the solution also helped reduce the complexity of the overall

problem; by splitting the problem into several parts. Applying brokering architecture,

adding autonomy to the resource consumers and resource producers, and applying open

system characteristics to grid computing.

66

The flexibility of the solution also allows extending the architecture and adopting the

solution for privacy. Working together with a colleague in the CDS-Group, we proposed

a privacy framework for open environments by extending the proposed solution with a

privacy-broker. The solution enabled the cooperation of computing resources under the

desired level of privacy protection. Privacy Protection Level also known as PPL is the

contribution put forward by my colleague, Samani, A., who is also the main author of the

paper. My contribution was focused on proposing the architecture for the solution in the

context of open environment. The work was published in conference proceedings at the

2013 PASSAT[57]. The proposed privacy model was able to reduce the risk of privacy

violations in entity interactions. The design of the resource-broker as proposed in this

thesis was extended to support the privacy model proposed in the co-authored paper and

applied to grid computing environment. Such implementation showed the flexibility of

the proposed architectural solution as described in this thesis. With a simple extension of

the proposed architecture, the resource broker was capable of brokering requests in the

context of privacy and the exchange of information at all three levels: information

collection, information processing and information dissemination. The goal of the

collaborative work was to use the provided and formal treatment of “privacy” as a

fundamental computational concept in CDS paradigm and implement the privacy-aware

CDS framework as a CDS platform with the ability to support interaction-based privacy

protection[57]. This work also allowed for validation of the proposed solution, and its

extensibility to support other computational frameworks.

In addition, the work here was directed to provide a fragment of work done under the

CDS group, where capability-based coordination in cooperative distributed systems is the

foundation of resource brokering as applied to grid computing. An agent-based approach

has been implemented for the solution, to enable brokering of capability-based resources

in a grid environment. All grid resources have been modeled as CIR-Agent, and with this

approach, a flexible solution was implemented which enabled seamless capability-based

brokering to all the participants within CDS. The proposed architecture minimized the

complexity encountered in the direct interaction architectures.

67

An important class of distributed systems is CDS, in which entities are able to exercise

some degree of authority in sharing their capabilities. Entities in this paradigm are

expected to cooperate to achieve individual or collective goals. Due to interdependency

problem among entities, they require the coordination of their activities using

interactions. In the message-based form of interactions, entities exchange information

through autonomous and self-interested entities, and thus their privacy becomes a

concern. In CDS, solutions are accomplished through the participation of several entities

where each has only part of the solution. This positions CDS as a computation platform

in which the computation occurs at entities’ interactions. This entails that privacy

challenges in CDS are the concerns associated with the computation happening at the

interaction level [46].

6.2 Future Work

One of the areas to expand the research is by evaluating solutions for a distributed

resource broker architecture, where a number of resource broker services are able to

coordinate in real time and provide access to their grid-connected resources. Based on the

research provided here, a solution that encompasses autonomy combined with peer-to-

peer or neural network properties would be a candidate for a good solution. Such

architecture shall apply to the brokering layer, enabling a cooperative distributed system

solution to a network of resource brokers.

Along similar lines another option would be to revisit computing as utility [7], where the

current form of cloud computing is an attempt to bring computing as utility to the masses,

however, it is not there yet. A user still needs to understand the needs and required

computing power for which it has to provision the cloud in order to effectively run

services. Resource brokering will play a key role here, where the evolution of cloud

computing towards true utility computing will form. Although the cloud-computing

paradigm has pushed forward a new approach towards service reliability and scalability

with on-demand infrastructure provisioning, it has further room to grow to be classified

as the true equivalent of utility as computing. Currently development and operations

combined still require manual or partially automated ways of scaling services and

infrastructure. In my view, the resource brokering will play a key role in automating and

68

providing the computing needs to the autonomous service running anywhere on any

device, that will have the ability to draw on demand computing needs, in a similar way

that dump devices currently draw power from power companies.

Further work related to the flexibility of the scheduling can be extended as well. The

extension of the current work could focus on the ability to best match for the scheduling

algorithm based on the job specification or the objective function. In the current

implementation, the selection is done through simple matching of the requested

scheduling algorithm as part of the job specification. However, in a real deployment, the

scheduling algorithm may be best selected by the other or multiple means. The system

can be configured to find best optimum-scheduling algorithm based on the supplied

parameters or objective function, as it currently does simple matching.

69

References

[1] Abramson, D., Buyya, R., and Giddy, J. (2002). Future Generation Computer
Systems, 18(8), 1061-1074. doi:10.1016/S0167-739X(02)00085-7

[2] Abramson, D., Giddy, J. and Kotler, L. (2000). "High performance parametric
modeling with Nimrod/G: killer application for the global grid?", pp. 520.

[3] Abramson, D., Sosic, R., Foster, I., Giddy, J., Lewis, A. and White, N. (1996). The
Nimrod computational workbench: A case study in desktop metacomputing (No.
ANL/MCS-P--594-0596; CONF-961104--9). Argonne National Lab., IL (United
States).

[4] Abramson, D., Sosic, R., Giddy, J. and Hall, B. (1995). August. Nimrod: a tool for
performing parametrised simulations using distributed workstations. In High
Performance Distributed Computing, 1995., Proceedings of the Fourth IEEE
International Symposium on (pp. 112-121). IEEE.

[5] Aburukba, R.O. (2013). Decentralized resource scheduling in Grid/Cloud computing,
School of Graduate and Postdoctoral Studies, University of Western Ontario.

[6] Allcock W., Bester J., Bresnahan, J., Chervenak, A., Liming, L., Meder, S., and S.
Tuecke, S. (2002). “GridFTP protocol specification”, Technical report, Global Grid
Forum GridFTP Working Group, September 2002.

[7] Andrzejak, A., Reinefeld, A., Schintke, F. & Schütt, T. (2006). "On Adaptability in
Grid Systems" in Springer US, Boston, MA, pp. 29-46.

[8] Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I. & Zaharia, M. (2010). A view of cloud computing,
ACM, New York.

[9] Berman, F., Fox, G.C. & Hey, A.J.G. (2003). "Grid computing: making the global
infrastructure a reality", J. Wiley, Hoboken, NJ;Chichester, England;.

[10] Berman, F., Wolski, R., Casanova, H., Cirne, W., Dail, H., Faerman, M., Figueira, S.,
Hayes, J., Obertelli, G., Schopf, J., Shao, G., Smallen, S., Spring, N., Su, A. &
Zagorodnov, D. (2003). "Adaptive computing on the Grid using AppLeS", IEEE
Transactions on Parallel and Distributed Systems, vol. 14, no. 4, pp. 369-382.

[11] Berman, F., Wolski, R., Figueira, S., Schopf, J. and Shao, G., (1996). Application-
level scheduling on distributed heterogeneous networks. In Supercomputing, 1996.
Proceedings of the 1996 ACM/IEEE Conference on (pp. 39-39). IEEE.

[12] Buyya, R., Abramson, D. & Giddy, J. (2000). "Nimrod/G: An architecture for a
resource management and scheduling system in a global computational grid", pp.
283.

[13] Buyya, R., Abramson, D. and Giddy, J., (2000). June. An Economy Driven Resource
Management Architecture for Global Computational Power Grids. In PDPTA (pp. 26-
29).

70

[14] Buyya, R., Stockinger, H., Giddy, J. & Abramson, D. (2001). "Economic models for
management of resources in peer-to-peer and grid computing", .

[15] Cao, J., Jarvis, S.A., Saini, S., Kerbyson, D.J. & Nudd, G.R. (2002). "ARMS: An
Agent-Based Resource Management System for Grid Computing", Scientific
Programming, vol. 10, no. 2, pp. 135-148.

[16] Ch, V., Laxmi, L. & Somasundaram, K. (2014). "Application Level Scheduling
(APPLeS) in Grid with Quality of Service (QoS)", International Journal of Grid
Computing & Applications, vol. 5, no. 2, pp. 1-10.

[17] Chapin, S.J., Katramatos, D., Karpovich, J. & Grimshaw, A. (1999). "Resource
management in Legion", Future Generation Computer Systems, vol. 15, no. 5, pp.
583-594.

[18] Clarens (2007). visited 6 July 2017, http://clarens.sourceforge.net/

[19] Clouds Lab (2017). visited 6 July 2017, http://cloudbus.org/678/Chap17.pdf
[20] Czajkowski, K., Foster, I. and Kesselman, C., (1999). Resource co-allocation in

computational grids. In High Performance Distributed Computing, 1999.
Proceedings. The Eighth International Symposium on (pp. 219-228). IEEE.

[21] Czajkowski, K., Foster, I., Karonis, N., Kesselman, C., Martin, S., Smith, W. &
Tuecke, S. (1998). "A resource management architecture for metacomputing
systems", , pp. 62.

[22] Czajkowski, K., Foster, I., Kesselman, C., Sander, V. & Tuecke, S. (2002). "SNAP: A
protocol for negotiating service level agreements and coordinating resource
management in distributed systems", , pp. 153.

[23] Dumitrescu, C., Raicu, I. & Foster, I. (2005). "DI-GRUBER: A Distributed Approach
to Grid Resource Brokering", IEEE Computer Society, , pp. 38.

[24] Dumitrescu, C.L., Raicu, I. & Foster, I. (2007). "The Design, Usage, and Performance
of GRUBER: A Grid Usage Service Level Agreement based BrokERing
Infrastructure", Journal of Grid Computing, vol. 5, no. 1, pp. 99-126.

[25] Eerola, P., Konya, B., Smirnova, O., Ekelof, T., Ellert, M., Hansen, J.R., Nielsen,
J.L., Waananen, A., Konstantinov, A., Herrala, J., Tuisku, M., Myklebust, T., Ould-
Saada, F., Vinter, B. (2003). “The Nordugrid production grid infrastructure, status
and plans”, Proceedings. First Latin American Web Congress, , pp. 158-165.

[26] Ellert, M., at el. (2007). "Advanced Resource Connector middleware for lightweight
computational Grids", Future Generation Computer Systems, vol. 23, no. 2, pp. 219-
240.

[27] Elmroth, E. & Tordsson, J. (2006). "A Grid Resource Broker Supporting Advance
Reservations and Benchmark-Based Resource Selection" in Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 1061-1070.

[28] Ferguson, D.F., Nikolaou, C., Sairamesh, J. and Yemini, Y., (1996). Economic
models for allocating resources in computer systems. Market-based control: a
paradigm for distributed resource allocation, pp.156-183.

71

[29] Forster I. (2002). “What is the Grid? A three point checklist”,
http://www.mcs.anl.gov/~itf/Articles/WhatIsTheGrid.pdf

[30] Foster I., Kesselman C., “Chapter 1: THE GRID IN A NUTSHELL”
[31] Foster, I. and Kesselman, C., (1997). Globus: A metacomputing infrastructure toolkit.

The International Journal of Supercomputer Applications and High Performance
Computing, 11(2), pp.115-128.

[32] Foster, I., Fidler, M., Roy, A., Sander, V. & Winkler, L. (2004). "End-to-end quality
of service for high-end applications", Computer Communications, vol. 27, no. 14, pp.
1375-1388.

[33] Foster, I., Kesselman, C. & Tuecke, S. (2001). "The Anatomy of the Grid: Enabling
Scalable Virtual Organizations", The International Journal of High Performance
Computing Applications, vol. 15, no. 3, pp. 200-222.

[34] Foster, I., Kesselman, C., Nick, J.M. and Tuecke, S., (2002). Grid services for
distributed system integration. Computer, 35(6), pp.37-46.

[35] Frey, J., Tannenbaum, T., Livny, M., Foster, I. & Tuecke, S. (2001). "Condor-G: a
computation management agent for multi-institutional grids", IEEE, , pp. 55.

[36] Ghenniwa, H.H. (1996). Coordination in cooperative distributed systems, ProQuest
Dissertations Publishing.

[37] Globus (2017). visited 6 July 2017, http://toolkit.globus.org/toolkit/about.html
[38] Humphrey, M., Wasson, G., Jackson, K., Boverhof, J., Rodriguez, M., Gawor, J.,

Bester, J., Lang, S., Foster, I., Meder, S., Pickles, S. & Mc Keown, M. (2005). "State
and events for Web services: a comparison of five WS-resource framework and WS-
notification implementations", IEEE, , pp. 3.

[39] Imamagic, E., Radic, B. & Dobrenic, D. (2006). "An Approach to Grid Scheduling by
Using Condor-G Matchmaking Mechanism", Journal of Computing and Information
Technology, vol. 14, no. 4, pp. 329.

[40] ISO/IEC 7498-2: (1989).
[41] J. Brooke and D. Fellows. Draft discussion document for GPA-WG – Abstraction of

functions for resource brokers. http://grid.lbl.gov/GPA/GGF7 rbdraft.pdf.
[42] Kumar N., Singh R., Arora V., Rohilla V. (2012). “Grid Computing”, International

Journal of Advanced Research in Computer Science and Electronics Engineering,
vol. 1 no. 6, pp. 99-103.

[43] Kurowski, K., Nabrzyski, J. & Pukacki, J. (2001). "User preference driven
multiobjective resource management in grid environments", IEEE, pp. 114.

[44] Lee, M., In, J. & Choi, E. (2006). "A scheduling middleware for data intensive
applications on a grid", , pp. 1058.

[45] Malone, T. & Crowston, K. (1994). "The interdisciplinary study of coordination",
ACM Computing Surveys (CSUR), vol. 26, no. 1, pp. 87-119.

72

[46] Masaud Wahaishi, A.M. (2007). Brokering services for cooperative distributed
systems: an agent privacy-based architecture, Faculty of Graduate Studies,
University of Western Ontario.

[47] Montagnat, J., Frohner, Á., Jouvenot, D., Pera, C., Kunszt, P., Koblitz, B., Santos, N.,
Loomis, C., Texier, R., Lingrand, D., Guio, P., Brito Da Rocha, R., Sobreira de
Almeida, A. & Farkas, Z. (2008). "A Secure Grid Medical Data Manager Interfaced
to the gLite Middleware", Journal of Grid Computing, vol. 6, no. 1, pp. 45-59.

[48] Nagariya, Sonal and Mishra, Mahindra, (2013). “Resource Scheduling in Grid
Computing: A Survey”, International Journal of Advanced Research in Computer
Science and Software Engineering, vol. 3, no. 10, pp. 735-739.

[49] NorduGrid (2017). Visited 6 July 2017, http://www.nordugrid.org
[50] OpenLDAP (2017). Visited 6 July 2017, http://www.openldap.org

[51] OpenSSL (2017). Visited 6 July 2017, http://www.openssl.org
[52] Plaszczak, P. & Wellner, R. (2006). Grid computing: the savvy manager's guide,

Elsevier/Morgan Kaufmann, Amsterdam;Boston;.
[53] Raman, R., Livny, M. & Solomon, M. (1998). "Matchmaking: distributed resource

management for high throughput computing", , pp. 140.
[54] Rani P. (2013). “Middleware and Toolkits in Grid Computing”, International Journal

of Computer Applications, vol. 65
[55] Resource Specification Language RSL v1.0., visited 6 July 2017,

http://toolkit.globus.org/toolkit/docs/2.4/gram/rsl_spec1.html
[56] Romanian GM. (2011). “Grid Computing Technology”, Database Systems Journal,

pp.13-22.
[57] Samani, A., Bienkowski, A.T., Aburukba, R. & Ghenniwa, H.H. (2013). "Privacy

Framework for Open Environments", IEEE, pp. 460.
[58] Schwiegelshohn, U., at el. (2010). "Perspectives on grid computing", Future

Generation Computer Systems, vol. 26, no. 8, pp. 1104-1115.
[59] Shen, W., Li, Y., Ghenniwa, H. and Wang, C., (2002). "Adaptive negotiation for

agent-based grid computing", Journal of the American Statistical Association, vol.
97, no. 457, pp. 210-214.

[60] Swedish National Infrastructure for Computing. (2017). visited 6 July 2017,
http://www.snic.vr.se/projects/swegrid

[61] Tedre, M. & Moisseinen, N. (2014). "Experiments in Computing: A Survey", The
Scientific World Journal, vol. 2014, pp. 1-11.

[62] Telecom Italia (2017). Visited 6 July 2017, http://jade.tilab.com/
[63] Tomás, L., Caminero, A.C., Rana, O., Carrión, C. & Caminero, B. (2012). "A

GridWay-based autonomic network-aware metascheduler", Future Generation
Computer Systems, vol. 28, no. 7, pp. 1058-1069.

73

[64] Weiser, M. (2002). "The computer for the 21st Century", IEEE Pervasive Computing,
vol. 1, no. 1, pp. 19-25.

[65] Wikipedia (2013). Visited 6 July 2017,
https://en.wikipedia.org/wiki/Contract_Net_Protocol

[66] Wikipedia (2017). Sphinx, viewed 06 July 2017, https://en.wikipedia.org/wiki/Sphinx
[67] Wikipedia (2017). Visited 6 July 2017, https://en.wikipedia.org/wiki/Interdependence

[68] Wieringa, R. (2014). "Empirical research methods for technology validation: Scaling
up to practice", Journal of systems and software, vol. 95, pp. 19.

[69] WISC (2017). Visited 6 July 2017, http://research.cs.wisc.edu/htcondor/
[70] Wolski, R., Plank, J.S., Brevik, J. & Bryan, T. (2001). "Analyzing Market-Based

Resource Allocation Strategies for the Computational Grid", The International
Journal of High Performance Computing Applications, vol. 15, no. 3, pp. 258-281.

[71] Wooldridge, M., Jennings, N. & Kinny, D. (1999). "A methodology for agent-
oriented analysis and design", ACM, , pp. 69.

[72] Xu, F., Pan, J. & Lu, W. (2009). "A Trust-Based Approach to Estimating the
Confidence of the Software System in Open Environments", Journal of Computer
Science and Technology, vol. 24, no. 2, pp. 373-385.

[73] Yousif, A., et al., (2015). “Job Scheduling Algorithms on Grid Computing: State-of-
the Art", International Journal of Grid and Distributed Computing, vol. 8, no. 6, pp.
125-140.

[74] Zelkowitz, M.V. & Wallace, D.R. (1998). "Experimental Models for Validating
Technology", Computer, vol. 31, no. 5, pp. 23-31.

74

Appendix A - yWorks

UML diagrams that represent the implementation classes for the software solution

described in Chapter 5, have been automatically generated from the source code using

community edition of the yWorks diagramming tool.

For more information regarding the diagramming technology please visit the following

link, https://www.yworks.com/products/ydoc.

75

Appendix B – Experiment Logs
------	ResourceConsumer	log	------	
INFO	CIRAgentJADE.nextState	null	->	InitialStateAction	
INFO	CIRAgentJADE.execute	InitialStateAction	->	SubmitJobAction	
INFO	ProblemSolverImpl.solve	InitialStateAction	->	SubmitJobAction	requires	true	
INFO	ProblemSolverImpl.solve							nextGoal:	InitialStateAction	->	SubmitJobAction	
INFO	ProblemSolverImpl.solve											action:	InitialStateAction	isPost:	false	
INFO	ProblemSolverImpl.solve											action:	AcceptJobActionLocalFile	isPost:	false	
INFO	ProblemSolverImpl.solve											action:	AppendAgentNameAction	isPost:	true	
INFO	ProblemSolverImpl.solve											action:	SubmitJobAction	isPost:	false	
INFO	ProblemSolverImpl.solve											action:	CancelJobAction	isPost:	false	
INFO	ProblemSolverImpl.solve							nextGoal:	InitialStateAction	->	AppendAgentNameAction	
INFO	ProblemSolverImpl.solve											action:	InitialStateAction	isPost:	false	
INFO	ProblemSolverImpl.solve											action:	AcceptJobActionLocalFile	isPost:	true	
INFO	ProblemSolverImpl.solve											action:	AppendAgentNameAction	isPost:	false	
INFO	ProblemSolverImpl.solve											action:	SubmitJobAction	isPost:	false	
INFO	ProblemSolverImpl.solve											action:	CancelJobAction	isPost:	false	
INFO	ProblemSolverImpl.solve							nextGoal:	InitialStateAction	->	AcceptJobActionLocalFile	
INFO	ProblemSolverImpl.solve											action:	InitialStateAction	isPost:	true	
INFO	ProblemSolverImpl.solve											action:	AcceptJobActionLocalFile	isPost:	false	
INFO	ProblemSolverImpl.solve											action:	AppendAgentNameAction	isPost:	false	
INFO	ProblemSolverImpl.solve											action:	SubmitJobAction	isPost:	false	
INFO	ProblemSolverImpl.solve											action:	CancelJobAction	isPost:	false	
INFO	ProblemSolverImpl.solve							loop	count:	3	found:	true	exhausted:	false	
INFO	CIRAgentJADE.execute	adding	required	actions	
INFO	CIRAgentJADE.execute							AcceptJobActionLocalFile	
INFO	CIRAgentJADE.execute							AppendAgentNameAction	
INFO	CIRAgentJADE.execute							SubmitJobAction	
INFO	AcceptJobActionLocalFile.action	checking	new	files	for	cdsuser1	
INFO	AcceptJobActionLocalFile.action				found	file:	hostname.job	
INFO	AppendAgentNameAction.action	adding	consumer	info	
INFO	SubmitJobAction.action	submitting	job	for	topic:	rbroker	
INFO	CIRAgentJADE.sendMsg	type:	ACLMessage.REQUEST	topic:	rbroker	
	
------	JobHandling.log	------	
INFO	CIRAgentJADE.nextState	null	->	InitialStateAction	
INFO	CIRAgentJADE.execute	InitialStateAction	->	SubmitMsgAction	
INFO	ProblemSolverImpl.solve	InitialStateAction	->	SubmitMsgAction	requires	true	
INFO	ProblemSolverImpl.solve							nextGoal:	InitialStateAction	->	SubmitMsgAction	
INFO	ProblemSolverImpl.solve											action:	InitialStateAction	isPost:	false	
INFO	ProblemSolverImpl.solve											action:	AcceptMsgAction	isPost:	true	
INFO	ProblemSolverImpl.solve											action:	SubmitMsgAction	isPost:	false	
INFO	ProblemSolverImpl.solve							nextGoal:	InitialStateAction	->	AcceptMsgAction	
INFO	ProblemSolverImpl.solve											action:	InitialStateAction	isPost:	true	
INFO	ProblemSolverImpl.solve											action:	AcceptMsgAction	isPost:	false	
INFO	ProblemSolverImpl.solve											action:	SubmitMsgAction	isPost:	false	
INFO	ProblemSolverImpl.solve							loop	count:	2	found:	true	exhausted:	false	
INFO	CIRAgentJADE.execute	adding	required	actions	
INFO	CIRAgentJADE.execute							AppendMsgAction	
INFO	CIRAgentJADE.execute							SubmitMsgAction	
INFO	AcceptMsgAction.action	received	null;	blocking	
INFO	AcceptMsgAction.action	received	msg	topic:	rbroker	
INFO	AcceptMsgAction.action					msg	validation:	ok	
INFO	SubmitMsgAction.action	submitting	job	for	topic:	matching	
INFO	CIRAgentJADE.sendMsg	type:	ACLMessage.REQUEST	topic:	matching	
	
	
	
	
	
	
	
	
	
	
	
	

76

------	ResourceMatching.log	------	
INFO	CIRAgentJADE.nextState	null	->	InitialStateAction	
INFO	CIRAgentJADE.execute	InitialStateAction	->	ScheduleJobAction	
INFO	ProblemSolverImpl.solve	InitialStateAction	->	ScheduleJobAction	requires	true	
INFO	ProblemSolverImpl.solve							nextGoal:	InitialStateAction	->	ScheduleJobAction	
INFO	ProblemSolverImpl.solve											action:	InitialStateAction	isPost:	false	
INFO	ProblemSolverImpl.solve											action:	AcceptMsgAction	isPost:	false	
INFO	ProblemSolverImpl.solve											action:	MatchResourcesAction	isPost:	false	
INFO	ProblemSolverImpl.solve											action:	MatchSchedulerAction	isPost:	true	
INFO	ProblemSolverImpl.solve											action:	ScheduleJobAction	isPost:	false	
INFO	ProblemSolverImpl.solve							nextGoal:	InitialStateAction	->	MatchSchedulerAction	
INFO	ProblemSolverImpl.solve											action:	InitialStateAction	isPost:	false	
INFO	ProblemSolverImpl.solve											action:	AcceptMsgAction	isPost:	false	
INFO	ProblemSolverImpl.solve											action:	MatchResourcesAction	isPost:	true	
INFO	ProblemSolverImpl.solve											action:	MatchSchedulerAction	isPost:	false	
INFO	ProblemSolverImpl.solve											action:	ScheduleJobAction	isPost:	false	
INFO	ProblemSolverImpl.solve							nextGoal:	InitialStateAction	->	MatchResourcesAction	
INFO	ProblemSolverImpl.solve											action:	InitialStateAction	isPost:	false	
INFO	ProblemSolverImpl.solve											action:	AcceptMsgAction	isPost:	true	
INFO	ProblemSolverImpl.solve											action:	MatchResourcesAction	isPost:	false	
INFO	ProblemSolverImpl.solve											action:	MatchSchedulerAction	isPost:	false	
INFO	ProblemSolverImpl.solve											action:	ScheduleJobAction	isPost:	false	
INFO	ProblemSolverImpl.solve							nextGoal:	InitialStateAction	->	AcceptMsgAction	
INFO	ProblemSolverImpl.solve											action:	InitialStateAction	isPost:	true	
INFO	ProblemSolverImpl.solve											action:	AcceptMsgAction	isPost:	false	
INFO	ProblemSolverImpl.solve											action:	MatchResourcesAction	isPost:	false	
INFO	ProblemSolverImpl.solve											action:	MatchSchedulerAction	isPost:	false	
INFO	ProblemSolverImpl.solve											action:	ScheduleJobAction	isPost:	false	
INFO	ProblemSolverImpl.solve							loop	count:	4	found:	true	exhausted:	false	
INFO	CIRAgentJADE.execute	adding	required	actions	
INFO	CIRAgentJADE.execute							AcceptMsgAction	
INFO	CIRAgentJADE.execute							MatchResourcesAction	
INFO	CIRAgentJADE.execute							MatchSchedulerAction	
INFO	CIRAgentJADE.execute							ScheduleJobAction	
INFO	AcceptMsgAction.action	received	null;	blocking	
INFO	AcceptMsgAction.action	received	msg	topic:	matching	
INFO	MatchResourcesAction.action	found	resource	provider:	e1605183-8e76-11e7-bb66-00e0817406be	
INFO	MatchSchedulerAction.action	found	scheduling	agent:	simpleschedule	
INFO	ScheduleJobAction.action	submitting	job	for	topic:	simpleschedule	
INFO	CIRAgentJADE.sendMsg	type:	ACLMessage.REQUEST	topic:	simpleschedule	
	
------	SimpleSchedulingAgent.log	------	
INFO	CIRAgentJADE.nextState	null	->	InitialStateAction	
INFO	CIRAgentJADE.execute	InitialStateAction	->	ExecuteJobAction	
INFO	ProblemSolverImpl.solve	InitialStateAction	->	ExecuteJobAction	requires	true	
INFO	ProblemSolverImpl.solve							nextGoal:	InitialStateAction	->	ExecuteJobAction	
INFO	ProblemSolverImpl.solve											action:	InitialStateAction	isPost:	false	
INFO	ProblemSolverImpl.solve											action:	AcceptMsgAction	isPost:	false	
INFO	ProblemSolverImpl.solve											action:	SimpleScheduleAction	isPost:	true	
INFO	ProblemSolverImpl.solve											action:	ExecuteJobAction	isPost:	false	
INFO	ProblemSolverImpl.solve							nextGoal:	InitialStateAction	->	SimpleScheduleAction	
INFO	ProblemSolverImpl.solve											action:	InitialStateAction	isPost:	false	
INFO	ProblemSolverImpl.solve											action:	AcceptMsgAction	isPost:	true	
INFO	ProblemSolverImpl.solve											action:	SimpleScheduleAction	isPost:	false	
INFO	ProblemSolverImpl.solve											action:	ExecuteJobAction	isPost:	false	
INFO	ProblemSolverImpl.solve							nextGoal:	InitialStateAction	->	AcceptMsgAction	
INFO	ProblemSolverImpl.solve											action:	InitialStateAction	isPost:	true	
INFO	ProblemSolverImpl.solve											action:	AcceptMsgAction	isPost:	false	
INFO	ProblemSolverImpl.solve											action:	SimpleScheduleAction	isPost:	false	
INFO	ProblemSolverImpl.solve											action:	ExecuteJobAction	isPost:	false	
INFO	ProblemSolverImpl.solve							loop	count:	3	found:	true	exhausted:	false	
INFO	CIRAgentJADE.execute	adding	required	actions	
INFO	CIRAgentJADE.execute							AcceptMsgAction	
INFO	CIRAgentJADE.execute							SimpleScheduleAction	
INFO	CIRAgentJADE.execute							ExecuteJobAction	
INFO	AcceptMsgAction.action	received	null;	blocking	
INFO	AcceptMsgAction.action	received	msg	topic:	simpleschedule	
INFO	SimpleScheduleAction.action	scheduled	resource:	e1605183-8e76-11e7-bb66-00e0817406be	
INFO	ExecuteJobAction.action	submitting	job	for	topic:	execute	

77

INFO	CIRAgentJADE.sendMsg	type:	ACLMessage.REQUEST	topic:	execute	
	
------	JobExecution.log	------	
INFO	CIRAgentJADE.nextState	null	->	InitialStateAction	
INFO	CIRAgentJADE.execute	InitialStateAction	->	SubmitMsgAction	
INFO	ProblemSolverImpl.solve	InitialStateAction	->	SubmitMsgAction	requires	true	
INFO	ProblemSolverImpl.solve							nextGoal:	InitialStateAction	->	SubmitMsgAction	
INFO	ProblemSolverImpl.solve											action:	InitialStateAction	isPost:	false	
INFO	ProblemSolverImpl.solve											action:	AcceptMsgAction	isPost:	true	
INFO	ProblemSolverImpl.solve											action:	SubmitMsgAction	isPost:	false	
INFO	ProblemSolverImpl.solve							nextGoal:	InitialStateAction	->	AcceptMsgAction	
INFO	ProblemSolverImpl.solve											action:	InitialStateAction	isPost:	true	
INFO	ProblemSolverImpl.solve											action:	AcceptMsgAction	isPost:	false	
INFO	ProblemSolverImpl.solve											action:	SubmitMsgAction	isPost:	false	
INFO	ProblemSolverImpl.solve							loop	count:	2	found:	true	exhausted:	false	
INFO	CIRAgentJADE.execute	adding	required	actions	
INFO	CIRAgentJADE.execute							AcceptMsgAction	
INFO	CIRAgentJADE.execute							SubmitMsgAction	
INFO	AcceptMsgAction.action	received	null;	blocking	
INFO	AcceptMsgAction.action	received	msg	topic:	execute	
INFO	SubmitMsgAction.action	submitting	job	for	topic:	e1605183-8e76-11e7-bb66-00e0817406be	
INFO	CIRAgentJADE.sendMsg	type:	ACLMessage.REQUEST	topic:	e1605183-8e76-11e7-bb66-00e0817406be	
	
------	ResourceProvider.log	------	
INFO	CIRAgentJADE.nextState	null	->	InitialStateAction	
INFO	CIRAgentJADE.execute	InitialStateAction	->	ExecuteJobAction	
INFO	ProblemSolverImpl.solve	InitialStateAction	->	ExecuteJobAction	requires	true	
INFO	ProblemSolverImpl.solve							nextGoal:	InitialStateAction	->	ExecuteJobAction	
INFO	ProblemSolverImpl.solve											action:	InitialStateAction	isPost:	false	
INFO	ProblemSolverImpl.solve											action:	AcceptMsgAction	isPost:	true	
INFO	ProblemSolverImpl.solve											action:	ExecuteJobAction	isPost:	false	
INFO	ProblemSolverImpl.solve							nextGoal:	InitialStateAction	->	AcceptMsgAction	
INFO	ProblemSolverImpl.solve											action:	InitialStateAction	isPost:	true	
INFO	ProblemSolverImpl.solve											action:	AcceptMsgAction	isPost:	false	
INFO	ProblemSolverImpl.solve											action:	ExecuteJobAction	isPost:	false	
INFO	ProblemSolverImpl.solve							loop	count:	2	found:	true	exhausted:	false	
INFO	CIRAgentJADE.execute	adding	required	actions	
INFO	CIRAgentJADE.execute							AcceptMsgAction	
INFO	CIRAgentJADE.execute							ExecuteJobAction	
INFO	AcceptMsgAction.action	received	null;	blocking	
INFO	AcceptMsgAction.action	received	msg	topic:	e1605183-8e76-11e7-bb66-00e0817406be	
INFO	ExecuteJobAction.action	sent	job	request	to	cds-station2.eng.uwo.ca	
	

78

Curriculum Vitae

Name: Adrian T. Bienkowski

Post-secondary The University of Western Ontario
Education and London, Ontario, Canada
Degrees: 1993-1998 B.Sc – Electrical Engineering.

The University of Western Ontario
London, Ontario, Canada
1993-1997 B.Sc. – Computer Science

Related Work Research Assistant
Experience The University of Western Ontario

2012-2017

Publications:

[1] Adrian Bienkowski, Hamada H. Ghenniwa (2017)
Extending Network with Resource Brokering for Grid Environments, (in-progress)

[2] Afshan Samani, Adrian Bienkowski, Raafat Aburukba, Hamada H. Ghenniwa (2014)
Privacy protection management in Open CDS Environments, (in-progress)

[3] Afshan Samani, Raafat Aburukba, Adrian Bienkowski and Hamada H.Ghenniwa
(2013) Privacy Framework for Open Environments, PASSAT 2013

	Resource Brokering in Grid Computing
	Recommended Citation

	ABienkowski_Thesis-20180831-final

