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Abstract

In this thesis, we propose the data-adaptive kernel Support Vector Machine (SVM),

a new method with a data-driven scaling kernel function based on real data sets. This

two-stage approach of kernel function scaling can enhance the accuracy of a support

vector machine, especially when the data are imbalanced. Followed by the standard

SVM procedure in the �rst stage, the proposed method locally adapts the kernel

function to data locations based on the skewness of the class outcomes. In the second

stage, the decision rule is constructed with the data-adaptive kernel function and is

used as the classi�er. This process enlarges the magni�cation e�ect directly on the

Riemannian manifold within the feature space rather than the input space. The pro-

posed data-adaptive kernel SVM technique is applied in the binary classi�cation, and

is extended to the multi-class situations when imbalance is a main concern. We con-

duct extensive simulation studies to assess the performance of the proposed methods,

and the prostate cancer image study is employed as an illustration.

The data-adaptive kernel is further applied in feature selection process. We pro-

pose the data-adaptive kernel-penalized SVM, a new method of simultaneous feature

selection and classi�cation by penalizing data-adaptive kernels in SVMs. Instead of

penalizing the standard cost function of SVMs in the usual way, the penalty will be

directly added to the dual objective function that contains the data-adaptive kernel.

Classi�cation results with sparse features selected can be obtained simultaneously.

Di�erent penalty terms in the data-adaptive kernel-penalized SVM will be compared.

The oracle property of the estimator is examined. We conduct extensive simulation

studies to assess the performance of all the proposed methods, and employ the method

on a breast cancer data set as an illustration.
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Chapter 1

Introduction

1.1 Prediction and Classi�cation

A prediction is a statement about an uncertain event. When decisions are to be made,

the best action to achieve goals and avoid potential problems depends on a good pre-

diction. In science, a prediction forecasts quantitatively on what will happen under

speci�c circumstances, or connects possible causes and e�ects. Thus, how to make

predictions accurately is of great importance in almost every discipline in science.

Speci�cally, the statistical learning theory provides a framework that deals with

the problem of �nding an optimal prediction based on data. As part of statistical

inference, prediction is at the heart of almost every scienti�c discipline, and is one

of the central topics in statistical science. Statistically, statistical learning methods

aim to construct a way to describe an unknown dependency or association among

measurements of objects and some characteristics from them, so that prediction of

unknown information can be given based on the known information. The measure-

ments are generally assumably easy to observe in almost all objects in which we are

interested. Contrarily, characteristics of the objects may be only observable for a

small part of the objects. Thus, estimating the potential association between the
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input and output is of real use when the properties of the objects are invisible by

observation. In other words, we try to decide the numerical characteristics of the

output for any object, which is the purpose of statistical learning. Correspondingly,

the estimated dependency is often referred to as a predictive model. Classi�cation is

an important constituent either for analysis of data or for prediction. In statistics,

classi�cation identi�es which category a new object may belong to, based on a data

set for training that contain observed objects. In other words, the goal of statistical

classi�cation is to use objects' features to identify which class they belong to, respec-

tively. This corresponds to estimating a function which can assign correct labels to

new objects based on previous observations. The basic classi�cation problem is a

binary classi�cation issue, involving creating a decision rule so as to classify objects

into one of two classes. More complicated applications have been found in multi-class

categorization problem, where more than two classes are available.

Illustrative examples of classi�cation problems can be found in di�erent subjects.

Take a real problem in medical science as an instance. Doctors need to predict whether

a patient has already got a prostate cancer or not, based on data from medical im-

ages such as magnetic resonance imaging (MRI). When measurements of MRI from a

patient are available on each voxel, doctors can contour the boundary of the cancered

cells, by telling whether cancer has been found on each voxel, and correspondingly

classify the patient as a prostate-cancer carrier or not. Or doctors can class how

severe the cancer is by how much in percentage the cancered area in some organ such

as a prostate takes possession of.

1.2 Motivation of the Research

Our research is partially motivated by an ongoing prostate cancer imaging study,

but our method has a broad scope of application. Traditionally, areas of cancer are

determined visually by examining the images of the suspected cancer areas, therefore
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is not completely reliable. It is thereby desirable to develop a diagnosis process using

imaging data where real correspondence between imaging and cancer is known. In

this study, the images of the prostate gland are taken when the gland is in the body

(in-vivo imaging data), and then the gland is surgically removed out of the body

and the images of the gland are taken when it is outside the body (ex-vivo imag-

ing data). Pathologists examine the sliced gland using high resolution microscope

to identify the exact position of the cancer in the gland and a co-registration pro-

cess is employed to build the correspondence between histological and imaging data

in each voxel. A prediction model is expected to be constructed to predict cancer

status using the in-vivo imaging data for the de�ned voxels, and to be utilized for

diagnosis, targeted biopsy and targeted treatment in the future. In this study, the

raw intensity measurements are obtained using imaging techniques such as Magnetic

Resonance (MR) or Computed Tomography (CT). Usually there are around 170,000

to 200,000 voxels for each patient, with only 5% to 10% cancer voxels, which makes

the cancerous and non-cancerous classes to be extremely imbalanced. A classi�er that

can perform well for extremely imbalanced data is then urgently needed, which pro-

motes our consideration of support vector machines for dealing with imbalanced data.

During the �rst phase of the study, the binary classi�cation for cancer at a speci�c

voxel is expected, no matter what type of cancer or how severe the cancer is. Thus,

all di�erent labels that indicate cancer will be �rst classi�ed into the cancer class, and

other diseases and non-cancerous voxels are all labeled as non-cancer. The second

stage is the multi-class classi�cation based on the imaging data. During the second

phase, 9 common classes are provided and listed as follows, indicating di�erent dis-

eases and di�erent levels of severity of cancers.

• Atrophy: As means literally (non-cancer);

• EPE: Prostatic intraepithelial neoplasia (non-cancer);

• PIN: Prostatic intraepithelial neoplasia (non-cancer);

3



• G3: Tumour focus that is all gleason 3 (cancer);

• G4: Tumour focus that is all gleason 4 (cancer);

• G3+4: Tumour focus all predominately G3 with intermingled G4 (cancer);

• G4+3: Tumour focus all predominately G4 with intermingled G3 (cancer);

• G4+5: Tumour focus all predominately G4 with intermingled G5 (cancer);

• OtherProstate: Prostate tissue that does not fall into the above categories (non-

cancer).

The labels of the classes are given on each voxel, indicating that there is only

one label from di�erent types of cancer on each voxel, even if it is likely to have

voxels (indicating di�erent areas of the prostate tissue) with di�erent classes for a

speci�c patient. A patient that has G3 + 4 type cancer in some areas is likely to have

G3 type cancer in other areas as well as OtherProstate type voxels that indicate

healthy tissues. Thus, the main goal is to predict categories voxel-wisely. There are

several labels that are associated with G5. However, the whole date set contains

only one patient with very tiny area of G5 and associated type of cancer, without

any other type of cancer. Thus, these voxels are not included in the training pro-

cess, and only the sharing types of the cancer labels are to be predicted and classi�ed.

1.3 Some Classi�cation Methods

Many e�orts have been devoted to the development of classi�ers. In general, the

classi�ers can be sorted in two categories, namely linear and non-linear classi�ers, by

linear separability, i.e. separable by a linear function.

4



1.3.1 Linear Classi�ers

Linear classi�ers give labels to objects by making a decision on the basis of the value

of a linear combination of di�erent input features (Fig 1.1). The linear discriminant

analysis (LDA) proposed by Fisher is the �rst attempt to handle the classi�cation

problems, and has been widely used to separate two or more classers of objects.

Closely related to analysis of variance (ANOVA) and regression analysis, LDA works

when the measurements from predictors for each observation are continuous, with the

assumption of a normal distribution of error terms in the model and independence

between predictors.

Figure 1.1: An example of a linear classi�er.

Another popular method, the logistic regression or the logit model is derived from

the linear discriminant analysis. It has been used to give an estimate of the proba-

bility of success to binary responses based on one or more predictors, and label the

objects according to the probability estimated. When the regression model is built,

a logistic function, or the cumulative logistic distribution function is used. Similar

5



techniques have been applied in the probit regression, where a cumulative normal

distribution function is used instead. An illustrating example can be the relation

between the chance of passing an exam and hours of studying on it (Fig 1.2).

Figure 1.2: Probability of passing an exam vs hours of studying.

1.3.2 Non-Linear Classi�ers

Due to restriction of linear separability, which is in general not available, non-linear

classi�ers are developed. For example, the K-nearest neighbours (KNN) is a simple

but useful approach, popularly used for classi�cation. The estimated class for an ob-

ject is decided by the majority votes from its neighbouring objects, with the class of

the most commonly voted ones within its K nearest neighbours, where K is a positive

integer. Weights can be assigned to the neighbours to ensure that the closer neigh-

bours have more contribution to estimation. This idea can be extended to multi-class

6



classi�cation easily. K is the tuning parameter that controls the misclassi�cation rate

(Fig 1.3).

Figure 1.3: A KNN classi�er, where k = 5.(Hastie et al. (2001))

Another one is the classi�cation tree, a predictive model that introduces decision

tree into classi�cation problem. Leaves in the tree structure represent class labels and

branches represent conjunctions of features leading to the corresponding labels. Sim-

ply understood and interpreted, the classi�cation tree performs robustly with large

data sets, while the computational cost it brings and over-complex trees under opti-

mality may be a concern when the data are big (Fig 1.4).

Figure 1.4: A classi�cation tree with 2 input variables.
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Arti�cial Neural Networks (ANNs) are a set of models to estimate functions with

many input features. Inspired by the biological neural network, the ANN method is

applied as a system of interconnected nodes, delivering messages to each other with

numeric weights that are tunable by training. However, the "black-box" classi�cation

process is di�cult to be interpreted (Fig 1.5).

Figure 1.5: Arti�cial Neural Networks.

Although there are quite a few classi�ers available either linear or non-linear, most

of them bear limitations. For example, linear classi�ers tend to perform unsatisfacto-

rily when there is lack of linear separability, while non-linear ones can �x the issue in

some sense. In addition, for the linear discriminant analysis and logistic regression,

parametric assumptions have to be made, which may not be reasonable sometimes.

Arti�cial neural networks are hard to be interpreted due to the "black box" e�ect,

while the classi�cation tree can be over-complex even though it is relatively easy to

read. For the K−nearest neighbours method, the computational cost can be huge

when the sample size is too big. Thus, how to construct an accurate and robust

classi�er is of great importance, particulary for imbalanced data sets.
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1.4 The Support Vector Machine and Kernel Ma-

chines

The Support Vector Machine (SVM) may be the most popularly used algorithms on

classi�cation, well renowned for its strong foundations in theory, performance of gen-

eralization and the capability in high-dimensional setting. It solves the classi�cation

problem by either a linear or nonlinear separating surface. Initially proposed by Vap-

nik and co-authors (Vapnik and Vapnik (1998)), the SVM has been improved during

the last decades a great deal, and has been increasingly important for making predic-

tions as an essential statistical learning method. By implicitly mapping the training

data into a high-dimensional 'feature space', an SVM can construct a hyperplane (a

linear decision surface) within the feature space, and maximize the margins of sepa-

ration between itself and the points locating closest to it. Then, this hyperplane is

used as the rule to classify new objects. The idea can be easily implemented in the

binary class case and extended into the multi-class case.

As an SVM allows misclassi�cation, the trained model can map the observed ob-

jects (points in perspective of high dimension) into another space so that the objects

are separated by a (probably curved) gap as wide as possible. Then unknown objects

will be projected into the space created by the SVM and assigned to a speci�c cat-

egory by which side of the gap they are located on (Fig 1.6). More recently, SVMs

have been successfully applied in multi-label issues as well, where an object is possible

to have more than one labels simultaneously rather than exclusively.

Mathematically, the optimization problem during training an SVM is actually

controlled by a function called kernel, as will be explained in Chapter 2. Theoret-

ically, it can be proved that the accuracy of an SVM relies on the selection of the

kernel function. Thus, how to choose an appropriate kernel can be critical to the per-

formance of an SVM, and the performance of an SVM may be improved by modifying

the kernels.
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Figure 1.6: A support vector machine classi�er.

1.5 Objectives and Main Contributions

In our research, we aim to achieve three fundamental goals. To enhance the accuracy

of a support vector machine for binary classi�cation in imbalanced data, we create a

data-adaptive kernel function so that the kernel is more robust to the data especially

when the data set is imbalanced, and compare the performance of the data-adaptive

kernel SVM with existing classi�ers in the literate. The idea of the modi�ed SVM

classi�er for binary case is further extended into multi-class classi�cation. When there

are multiple classes where the imbalance problem is a main concern, the kernel func-

tions should be made in a data-adaptive fashion so that the classi�er can gain better

accuracy. We investigate a simultaneous feature selection and create data-adaptive

kernel-penalized SVMs to simultaneously select features that are critical in construct-

ing the decision boundary, and classify the objects with the classi�er that achieves

sparseness with oracle properties in a moderate high dimensional space, especially

when high level of imbalance exists.

The main contributions are as follows. To enhance an SVM's accuracy, we propose

a new two-stage method of kernel function scaling. Followed by the primary SVM

procedure in the �rst stage, the proposed method locally adapts the kernel to the

locations of the data on the basis of the skewness of the class boundary, and hence,
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enlarges the magni�cation e�ect directly on the Riemannian manifold within the fea-

ture space rather than the input space. By the distance measured in the feature

space, the conformal transformation can make full use of the updated information

in the second stage. Extensive empirical studies demonstrate that our method has

excellent performance.

We extend our data-adaptive SVM construction technique to the multi-class sit-

uation when the imbalance is a main concern, based on the idea from the binary

data-adaptive SVM with data-adaptive kernels. The algorithm still consists of two

stages. In the �rst stage, a standard multi-class SVM with the indirect method is

constructed so that the spatial locations of all support vectors can be found. In the

second stage, the data-adaptive kernels are constructed for each SVM in the multi-

class case, combining the location information of the support vectors from the �rst

stage and the information from class sizes. By enhancing the local magni�cation ef-

fect, the separation of the SVMs with the data-adaptive kernels constructed is more

e�ective and robust, with the magni�cation e�ect varying along with the density of

the size of neighbours, especially for imbalanced data. Numerical studies have shown

supports to the proposed method.

For the simultaneous feature selection and classi�cation by penalizing data-adaptive

kernels in SVMs, instead of penalizing the standard cost function of SVMs, the penalty

will be directly added to the data-adaptive kernel function that controls the perfor-

mance of an SVM, by �rst transforming the kernel function of the SVM and then

re-conducting the SVM formulation optimization and getting the classi�cation result

with sparse features selected. Di�erent penalty terms will be compared. The oracle

property of the estimating process is examined. Iterative optimization procedure will

be applied as no analytic form of the estimated coe�cients can be obtained. Nu-

merical comparisons show that the proposed model outperforms with the imbalanced

data and performs as well as others when the data are balanced.
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1.6 Organizations of the Work

The rest of the thesis organizes as follows. Chapter 2 will introduce the framework of

the support vector machine, and the relation between an SVM and a kernel function

will be described. Speci�c formulation settings will be described as the mathematical

basis for further extension in later chapters, both for binary and multi-class problems.

Based on this, the SVM classi�er with a data-adaptive kernel function for the binary

case will be constructed in Chapter 3, along with numerical performance comparing

with other competitive classi�ers in the literature. Followed the idea of the binary

SVM with data-adaptive kernels, in Chapter 4, the data-adaptive SVM construction

technique is extended to multi-class situation when the imbalance is a main concern.

Chapter 5 introduces a new method of simultaneous feature selection and binary

classi�cation by penalizing a data-adaptive kernel in SVMs. Instead of penalizing the

standard cost function of SVM, the penalty will be added to the data-adaptive kernel

function directly that controls the performance of SVMs. Final conclusions will be

drawn and future work will be discussed in Chapter 6.
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Chapter 2

Preliminary Results of Support

Vector Machines

2.1 Support Vector Machine for Binary Cases

The Support Vector Machine (SVM), an essential statistical learning method pro-

posed by Vapnik and co-authors (Vapnik and Vapnik (1998)), has shown its excel-

lent performance in predictive applications including handwriting pattern recognition

(Cortes and Vapnik (1995)), text classi�cation (Joachims (1998)) and image retrieval

(Tong and Chang (2001)). The SVM's core idea is to map the current input space

into another feature space with high dimensions on the basis of a kernel function,

so that the two linearly separable classes become as far as possible (Schölkopf and

Smola (2002)). It is a generalized method from the maximal margin classi�er, an

intuitive classi�er, which only applies for the linearly separable classes. The devel-

opment of the SVM system for binary cases is the maximal margin classi�er (MMC)

for linearly separable case, then support vector classi�er (SVC) for linear separation

with allowance of some misclassi�ed objects, and �nally the support vector machine

(SVM) for non-linear separation.
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2.1.1 The Maximal Margin Classi�er

In a space of dimension p, a hyperplane is de�ned as a p − 1 dimensional �at a�ne

subspace. Thus, the p-dimensional setting

β0 + β1x1 + β2x2 + . . .+ βpxp = 0

de�nes a p−dimensional hyperplane. When a point x = (x1, x2, . . . , xp)
T satis�es this

equation, this point x lies on the hyperplane. If the left hand side (LHS) is positive,

then x is located on one side of the hyperplane, while if it is negative, then on the

other side of the hyperplane. Therefore the hyperplane separates the p-dimensional

space to two parts. Thus, this hyperplane is used as a linear separating surface.

Figure 2.1: Two possible separating hyperplanes divide two classes of observations

within a 2-dimensional space.

Suppose that a training data set contains n observations from two classes in a

p−dimensional space, and the observations can be separated into two classes by a

hyperplane perfectly based on their class labels, denoted as y, each of which takes the

value of 1 or −1. For the i-th object, yi = 1 when β0 +β1xi1 +β2xi2 + . . .+βpxip > 0,

and −1 when β0 + β1xi1 + β2xi2 + . . . + βpxip < 0 when yi = −1. Then a separating

hyperplane β0 + β1x1 + β2x2 + . . .+ βpxp = 0 has the property that

yi(β0 + β1xi1 + β2xi2 + . . .+ βpxip) > 0

for all the observations. When such a separating hyperplane does exist, a classi�er can

be naturally constructed, that is, a test object is assigned to the class based on which
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side of the separating hyperplane it lies. A test object x∗ will be classi�ed based on

the sign of f(x∗) = β0 + β1x
∗
1 + . . .+ x∗p. If f(x∗) is positive, then the test object will

be assigned to Class '1', and otherwise to Class '-1'. Besides, one may make use of

the absolute value of f(x∗), which indicates how far the test object locates from the

hyperplane. If it is much greater than zero, then the test object is located faraway

from the hyperplane, and it will be con�dently claimed that the classi�cation may

be accurate. Otherwise, if it is close to zero, then it might be less certain about the

assignment of the class for the test object.

If such a separating hyperplane really exists, there might be in�nite of them. Thus,

a best one has to be decided. A natural choice is the hyperplane which is furthest from

the training data so that it will be the most con�dent to classify the observations.

As a result, the optimal separating hyperplane is the one with the maximum margin,

the smallest perpendicular distance from each training observation to a speci�c hy-

perplane. This separating hyperplane is called the maximal margin hyperplane, and

those training observations with equal distance from the maximal margin hyperplane

are de�ned as the support vectors in the p-dimensional space. When these points

are located di�erently, then the location of this maximal margin hyperplane will be

changed (James et al. (2013)), in other words, the separating hyperplane is supported

by these points, which are called the support vectors. However, the maximal margin

hyperplane does not depend on other training observations. Even a small movement

happens to any other observation, the location of the separating hyperplane will not

be a�ected as long as it does not move across the margin boundary. This is an im-

portant property of the maximal margin hyperplane, which is the reason why the

classi�er is robust to some noise. Consequently, a test object can be classi�ed on the

basis of which side of the maximal margin hyperplane it is located, which is accord-

ingly known as the Maximal Margin Classi�er (MMC). The larger the margin is, the

more certain it is that we are con�dent about which class the observation belongs to.

Denote the margin, the smallest distance between all points to the separating
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Figure 2.2: A maximal margin classi�er on two classes of observations. The solid

line is the maximal margin hyperplane, with the margin as the distance from the solid

line to either of the dashed lines.

hyperplane, as G. It is straightforward that an optimal hyperplane should have

the margin G as large as possible, indicating the two classes are as far as possible.

Mathematically, the maximal margin hyperplane turns out to be the solution to the

following optimization problem that Maximize G subject to

G ≥ 0,

yi(β0 + β1xi1 + β2xi2 + . . .+ βpxip) ≥ G, and

p∑
j=1

β2
j = 1, ∀ i = 1, 2, . . . , n

with respect to β0, β1, . . . , βp. The process ensures that each training data point lies

on the correct side of the separating surface with some cushion value G. It is not a

constraint that the sum of squares equals to one when βi is reformed appropriately.

So G can be used to represent the margin of the hyperplane and the optimization

problem chooses values of β0 to βp to ensure that the margin G is maximized. As

long as the solution to this optimization problem can be found, the maximal margin

hyperplane can be obtained, and then the maximal margin classi�er can do the clas-

si�cation.
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2.1.2 Support Vector Classi�ers

However, the big concern is that the maximal margin hyperplane does not always

exist. Thus, it is of interest to consider a classi�er which allows a slightly imperfect

separating e�ect of the two classes, in return for more robustness to some individuals

in training data and better classi�cation of most of others. This means it is worth to

give some misclassi�cation to a few training data while the remaining data are better

classi�ed.

As a result, the Support Vector Classi�er is created. Instead of �nding the biggest

possible margin to make every observation located on the correct side of the margin

and the hyperplane, some observations are allowed to lie on the wrong side of the

margin or even the hyperplane. Then, a support vector classi�er will assign a test

object to the class depending on which side of the hyperplane it is located. Using a

support vector classi�er, misclassi�cation is allowed.

Figure 2.3: Two classes of observations cannot be separated by any hyperplane.

Mathematically, a support vector classi�er is obtained by solving the optimization
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problem: Find β0, . . . , βp, ξi, . . . , ξn so that the margin G is maximized subject to

yi(β0 + β1xi1 + β2xi2 + . . .+ βpxip) ≥ G(1− ξi),
p∑
j=1

β2
j = 1,

n∑
i=1

ξi ≤ B,

ξi ≥ 0, ∀i = 1, . . . , n

where ξ1, . . . , ξn are known as the slack variables, allowing some individuals in train-

ing data set to locate on the incorrect side of the hyperplane, and B controls the

overall tolerance of misclassi�cation. Thus, a test object x∗ will be classi�ed based

on the sign of f(x∗) = β0 + β1x
∗
1 + . . .+ βpx

∗
p.

To solve the support vector classi�er, we need to

max
β0,β,ξ

G

subject to yi(x
T
i β + β0) ≥ G(1− ξi),

‖β‖ = 1,
n∑
i=1

ξi ≤ B, ξi ≥ 0, ∀i = 1, . . . , n

Note that the norm constraint on β can be dropped by replacing the conditions with

1

‖β‖
· yi(xTi β + β0) ≥ G(1− ξi),

(which rede�nes β0) or equivalently

yi(x
T
i β + β0) ≥ ‖β‖ ·G(1− ξi),

Further, de�ne G = 1/‖β‖, and the maximization problem turns into

max
β0,β,ξ

1

‖β‖

subject to yi(x
T
i β + β0) ≥ 1− ξi,

n∑
i=1

ξi ≤ B, ξi ≥ 0, ∀i = 1, . . . , n
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Or equivalently, solve the following minimization problem

min
β0,β,ξ

‖β‖

subject to yi(x
T
i β + β0) ≥ 1− ξi,

n∑
i=1

ξi ≤ B, ξi ≥ 0, ∀i = 1, . . . , n

The intercept β0 has been re-parameterized by the multiplication. Computationally,

it is easier to solve the following optimization problem with penalty term, which has

the equivalent solutions with the above,

min
β0,β,ξ

1

2
‖β‖2 +B

n∑
i=1

ξi

subject to yi(x
T
i β + β0) ≥ 1− ξi, ξi ≥ 0, ∀i = 1, . . . , n

where the cost parameter B can replace the budget constraint on ξ (when B → ∞,

it corresponds to separable case). More details can be found in Hastie et al. (2001)

and Tibshirani (1996). With linear inequality constraints, it is a convex optimization

problem, and Lagrange multipliers method can be applied to solve the problem.

The primal Lagrange function is

Lp =
1

2
‖β‖2 +B

n∑
i=1

ξi −
n∑
i=1

αi[yi(x
T
i β + β0)− (1− ξi)]−

n∑
i=1

µiξi, (2.1)

where αi and µi are Lagrange multipliers. Taking derivatives w.r.t β0,β, ξ and set to

0, we have

β =
n∑
i=1

αiyixi,

0 =
n∑
i=1

αiyi,

αi = B − µi, ∀i,

with the positivity constraints αi, µi, ξi ≥ 0 for ∀i. Hence, by substituting the

above back into the primal objective function and re-organizing the result, we get the
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Wolfe Lagrangian dual objective function

LD =
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj.

Now, LD needs to be maximized with the constraint 0 ≤ αi ≤ B and
∑n

i=1 αiyi = 0.

Additionally, the Karush-Kuhn-Tucker conditions include the following restrictions

αi[yi(x
T
i β + β0)− (1− ξi)] = 0,

µiξi = 0,

yi(x
T
i β + β0)− (1− ξi) ≥ 0, ∀ i.

Together, these equations can give a unique solution to both of the primal and the

dual problems. The solution for β is

β̂ =
n∑
i=1

α̂iyixi,

with nonzero αi only for those points where the constraints are exactly met, and these

points are de�ned as the support vectors due to the fact that β̂ will be represented

by them only. The decision function, or the labeling rule can be written as

D̂(x) = sign(xT β̂ + β̂0)

Details of the optimizing the primal and dual objective functions can be found in

Izmailov and Solodov (2003).

During the optimization process above, ξi contains the information where the

i−th individual is located relative to the hyperplane. When ξi is zero, then the i−th

individual lies on the correct side of the margin. When it is positive, then it is on

the wrong side of the margin, and further when larger than 1, the wrong side of the

hyperplane (Fig. 2.4).

B is a nonnegative tuning parameter, the upper bound of the sum of the ξ, de-

termining how severely the violations can be tolerated relative to the margin and
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the hyperplane. When B equals to zero, which indicates no crossing to the margin,

ξ1 = . . . = ξn equals to zero and it goes back to the maximal margin hyperplane

optimization problem. (However, there might be no solution, since a maximal margin

hyperplane may not exist if the two classes are not linearly separable.) For a positive

B, it is more tolerant of violations to the margin, and hence the margin may go wider

and more misclassi�cation may occur. On the contrary, when B decreases, it will be

less tolerant and the margin becomes thinner. Practically, B is treated as a tuning

parameter which will be selected by cross validation process.

Figure 2.4: Support Vector Classi�er with Separable and Non-separable Cases. Par-

ticularly in the right panel, the points labeled ξ∗j are on the wrong side of the margin

by the amount ξ∗j = Gξj (Hastie et al. (2001)).

It can be proved that only those observations locating on the wrong side of the

margin may a�ect the location of the hyperplane (Hastie et al. (2001)). This means,

those observations lying strictly on the correct side will not a�ect the performance of a

support vector classi�er, and any small movement on the location of these observations

will not lead to the change of the classi�er when they still stay on the correct side

of the margin. Those individuals that are located on the wrong side of the margin

or exactly on the margin are known as the support vectors, and they will a�ect the

location of the hyperplane and hence the performance of a support vector classi�er.
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Since the support vectors are only a small part of the whole training data, the support

vector classi�er is very robust to those points far from the separating boundary. This

is an important property di�erent from other classi�cation approaches such as the

linear discriminant analysis or logistic regression.

2.1.3 Support Vector Machines

To make the support vector classi�er with a linear boundary more attractive, it is

natural to think of a non-linear surface that can be used for classi�cation in the two-

class setting. This can be achieved with more features using quadratic, cubic and

higher-order polynomial transformations of the input predictors. For example, we

can using 2p features

x1, x
2
1, . . . , xp, x

2
p

where the optimization problem becomes

maximize G

subject to

p∑
j=1

β2
j = 1,

yi(β0 +

p∑
j=1

βj1xij +

p∑
j=1

βj2x
2
ij) ≥ G(1− ξi),

ξi ≥ 0,
n∑
i=1

ξi ≤ B,

p∑
j=1

2∑
k=1

β2
jk = 1

However, with too many features as predictors, the classi�er will become extremely

complex and computationally infeasible, especially when the training observations

are of limited quantity. Vapnik (2006) have shown that it is of crucial importance to

make restrictions on the class of functions that can be implemented with a suitable

level of complexity. In general, one can use the basis functions si(x), i = 1, . . . , l,

instead of xi itself, to gain the non-linearity. Thus, if we replace xi with s(xi) =

(s1(xi), s2(xi), . . . , sl(xi)), the classi�er now will be non-linear.
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Speci�cally, the support vector machine is an extension of the support vector

classi�er based on the idea by using kernel functions. The Lagrange dual function

of the support vector machine has the form as

LD =
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyj < s(xi), s(xj) >,

according to that for the support vector classi�er in (2.1), where <,> denotes the

inner product. Then the solution is written as

D(x) =
n∑
i=1

αiyi < s(xi), s(xj) > +b,

and b will be solved by solving yiD(xi) = 1 for any xi with 0 < αi < B. It is clear

that are we only need all pairs of the inner products for training data points. Hence

we represent the inner product with a general form of function as

K(xi,xj) = < s(xi), s(xj) >

where K(·, ·) is the so-called kernel function, quantifying the similarity of two indi-

viduals in the training data. In support vector classi�er, it becomes a linear kernel

function due to the linearity of the support vector classi�er. When to use di�erent

forms of kernel functions in a support vector classi�er, more �exible decision bound-

aries, which are usually non-linear, can be obtained, and the corresponding classi�ers

are known as the support vector machines.

2.1.4 Important Binary SVMs

One popular support vector machine model for binary cases is the least square sup-

port vector machine proposed by Suykens and Vandewalle (1999a), having discussed

a version of least squares for the support vector machine classi�ers. The solution pro-

posed follows from solving a linear equation system because of the equality type of

constraints in the formulae rather than the quadratic programming for the traditional

support vector machines, and the entire approach is demonstrated on a benchmark

classi�cation problem with two spirals, showing a least square SVM with the radial
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basis function kernel is readily found with an excellent performance of generalization

and relatively low cost on computation.

Another one is proximal SVM proposed by Mangasarian and Wild (2001), known

as the PSVM. Rather than assigning test objects to one of the two disjoint half hyper-

planes as a standard support vector machine, the method assigns the observations to

two nearest parallel hyperplanes in either input or feature space, pushing apart from

each other as far as possible. The structure of the formulation can be interpreted

as a regularized least squares SVM that is considered in a more general context,

resulting in a extremely simple and fast algorithm that can generate a linear or non-

linear classi�er based merely on the solution of a single system of linear equations,

much faster and more computationally economic compared with a quadratic program

problem. Besides, the linear proximal SVM are proved to easily handle large data sets.

The L1−norm SVM, proposed by Zhu et al. (2003), has the advantage over the

standard L2−norm SVM on binary-class classi�cation, especially when the redundant

noise features exist. An e�cient algorithm is proposed to compute the solution path

of the L1−norm SVM, adaptively selecting the tuning parameters. The idea is further

extended to multi-class classi�cation problem.

2.2 SVMs for More than Two Classes

Originally created to separate the binary case (k = 2) based on the criteria of maxi-

mization on the margin, a support vector machine has been modi�ed to discriminate

more than two categories, with a wide range usage in machine learning areas such

as character recognition, speech recognition, intrusion detection and bio-informatics

science (Chawla et al. (2004)). Much e�ort has been taken to extend the binary SVM

approach to the multi-class case, and a number of classi�ers were proposed. There are

two main methodologies to apply the SVM in the multi-class categorization problem,
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namely indirect and direct methods.

2.2.1 Indirect Methods

A natural thinking of multi-category classi�cation problem is to decompose the prob-

lem into a series of binary classi�cations so that the traditional SVM can be ap-

plied, which is called the indirect methods (Weston and Watkins (1999)). As two

standard ensemble schemes, one-versus-one and one-versus-all are two popular tech-

niques. Thus, to solve a k−class problem, at least k support vector machines have to

be created, with at least k times of optimization each of which deals with a binary

classi�cation. A potential issue of the indirect methods is that each of the binary

classi�cation processes tends to become highly imbalanced along with the increasing

number of categories, where the imbalanced problem during classi�cation will occur

if more sample points of a speci�c class than others exist. Thus, the standard SVM

will be a�ected dramatically by the class with larger sample sizes and ignore that

with smaller sizes. Consequently, the standard support vector machines will become

quite sensitive to highly imbalanced classi�cation problem due to its mechanism of

construction, and will be prone to constructing classi�ers which potentially have large

bias to majority classes over the minority ones.

One-versus-one technique, proposed by Weston and Watkins (1998), decomposes

and evaluates all potential classi�ers based on the sample with k classes and hence

creates k(k−1)/2 binary classi�ers. Thus, each pairwise classi�er will be applied to a

test object, giving one single vote to the winning category within the two, and further

the test object will be labeled to the category winning the most votes. Note that the

one-versus-one approach creates many more classi�ers than the number of the cate-

gories, while the size of this quadratic programming issue is smaller compared with

the one-versus-all technique, making it possibly faster during the training process,

and the one-versus-one method turns out to be more symmetric. Platt et al. (1999)

has improved the one-versus-one technique, and further proposed a new approach
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called the Directed Acyclic Graph SVM, forming a structure similar to trees so as to

implement the testing process. For a k−class problem, the method creates k(k−1)/2

classi�ers for every pair of classes and the bound on the test error derived relies on

k as well as the margin achieved near the boundary, but not on the dimension of

the input or feature space induced from the kernel, much faster and more precise

compared with the traditional support vector machine.

Unlike the one-versus-one technique, the one-versus-all technique creates k in-

dividual classi�ers of binary cases for a k−category classi�cation problem (Weston

and Watkins (1999)). Similar to an ordinary SVM process, the j-th classi�er will be

trained based on the observations from the j−th class with positive labels while the

remaining k − 1 classes as negative ones. During each process, the class of an obser-

vation will be decided by the binary classi�er which o�ers the maximal output value,

rather than the number of votes in one-versus-one technique. Thus, if all classes are

supposed to have somewhat balanced sizes in training samples, the ratio of positive

to negative ones for each of the k individual classi�ers should be around 1/(k − 1),

indicating that the symmetry of the original classi�cation problem is ignored.

Quite a few attempts in multi-class with indirect methods have been found in lit-

erature. For example, inspired by the idea of the least square support vector machine

(LS-SVM) in binary cases, Suykens and Vandewalle (1999b) extended the method

into the multi-class. A potential problem may be that the solution is created by

most training sample points, referred to as the non-sparse solution. Suykens et al.

(2002) further discussed an approach that overcomes the di�culties by obtaining ro-

bust estimates for predictive models leading to a weighted version of LS-SVM. The

whole process is a pruning approach that can conduct pruning through physical ex-

planation of the sorted support vectors, based on computing a Hessian matrix or

its inverse. Xia and Li (2008) updated the binary LS-SVM into multi-class prob-

lem and demonstrated a sparse multi-class least square SVM where the separating

boundary is determined by an optimal training data set. They proposed a variant of
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binary-class least square SVM, where the solution is sparse based on the weighted co-

e�cients of the support vectors. During the process, an adaptive regression algorithm

with two stages is used to implement the training of the least square SVM, reducing

the number of the parameters based on which the optimal hyperplane will be spanned.

Fung and Mangasarian (2005) followed the idea from the proximal SVM and ap-

plied the method to the multi-class classi�cation problems. The authors proposed to

balance the k classes with a novel Newton re�nement modi�cation to the proximal

SVM so that the imbalanced problem associated with the one-versus-all approach

can be handled. For each decomposed binary problem, the solution turns out to be

similar to its corresponding binary classi�er, labeling a test object to the closer class

of two parallel hyperplanes torn as far as possible from each other .

Followed by the mechanism of L1−norm SVM, Wang and Shen (2007) proposed

an extended version of L1−norm SVM on multi-class problems under the one-versus-

all framework, especially when imbalanced data sets exist. The method trains the

binary classi�ers sequentially and treats a predictor as a relevant one for all classes

if it is selected in one arbitrary binary classi�cation process. However, when the

number of the classes gets larger, each binary classi�cation will become highly imbal-

anced, leading to the class with smaller fractions of sample points being ignored in

non-separable cases and degrading the generalization performance. Wang and Shen

(2007) has proposed L1−norm SVM for multi-class case that can circumvent the dif-

�culty of the one-versus-all method by treating the multiple classes in a joint way,

and performs classi�cation and variable selection process simultaneously through the

sparse representation of L1−norm.

2.2.2 Direct Methods

Another idea is proposed to straightforwardly handle the multi-class classi�cation

with a single process of optimization. These methods try to combine many binary-case
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optimization processes as a single objective function, achieving category outcomes

for multi-classes simultaneously (Weston and Watkins (1999) and Bredensteiner and

Bennett (1999)). The main problem that comes up with the direct method is the

Quadratic Programming (QP) problem, which is computationally costly due to the

enormous size derived from the mechanism.

The formulation of solving the multi-class SVM problems only needs one step,

and the process has variables proportional to the number of class k. Like the one-

versus-all approach, it constructs k binary decision rules Dm(x),m = 1, 2, . . . , k, and

uses the largest values of the Dm(x) to label an test point x. The only di�erence is

that all the k separating boundaries are obtained by solving one single optimization

problem.

Weston and Watkins (1999) have proposed a framework of the support vector ma-

chine that can enable a multi-category classi�cation problem to be dealt with in one

optimization process as well as a similar generalization of linear programming (LP)

machines. Bredensteiner and Bennett (1999) have proposed a single quadratic pro-

gram that can be applied in creating a non-linear classi�cation function piecewisely,

where each of the pieces can has the form of radial basis functions. Given a well-

labeled training data set by {(x1, y1), . . . , (xl, yl)}, where xi ∈ Rp and yi ∈ {1, . . . , k},

the objective proposed is given as follows:

Min
w,b,ξ

1

2

k∑
m=1

(wm)Twm + B

l∑
i=1

∑
m6=yi

ξmi (2.2)

subject to (wyi)T s(xi) + byi ≥ (wm)T s(xi) + bm + 2− ξmi ,

ξmi ≥ 0, i = 1, . . . , l, m ∈ {1, . . . , k}

Correspondingly, the decision boundary is described by

argmaxm Dm(x) = argmaxm((wm)T s(x) + bm).

This method has the main disadvantage of the great cost in computation from the
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large size of this quadratic programming issue.

A well-known direct method in the SVM is the Crammer and Singer's multi-

class kernel-based support vector machines proposed by Crammer and Singer (2001),

which describes a multi-class support vector machine that can be implemented based

on kernels. The start point is to generalize the notion of the margin of the multi-

class problems, with which the multi-class classi�cation problem can be casted as a

restricted quadratic optimization process. Di�erent from previous indirect methods

decomposing the multiple classes problem to a sequence of independent binary classes

problem, this method uses the dual of the optimization problem so that the kernels

can be incorporated with a compact set of constraints and hence the dual problem

can be decomposed into multiple optimization problems with reduced sizes. They

described an e�cient algorithm with �xed points to solve the problem.

Guermeur (2002) introduced a set of multi-class SVMs and assessed them as an

ensemble of methods. The methods combine binary-case optimization problems to a

single process, achieving multi-class classi�cation simultaneously. However, the com-

putation process is even more complex resulting from the quadratic programming

issue.

Lee et al. (2004) proposed the multi-category support vector machine (MSVM)

with solid theoretical properties. The proposed method shows a unifying framework

with either equal or unequal classi�cation costs. A tuning criterion for the MSVM

called generalized approximate cross validation has been derived, and the e�ective-

ness of the MSVM has been supported through applications to cancer classi�cation

with microarray data.

More recent research contributes to much more powerful modi�cation based on

the one-versus-one and one-versus-all ideas. Farquhar et al. (2006) have proposed a

multi-class classi�er for L1−norm support vector machine, based on one-versus-all
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idea, while a likely issue turns out to be when there are more classes, each of the bi-

nary classi�cation problems becomes extremely imbalanced, especially when the size

of a speci�c class is larger than that of other classes. In this scenario, the separating

boundary by standard SVMs will become overwhelmed by those classes with larger

scales and tend to ignore those with smaller classes. The standard SVM can perform

accurately on moderate imbalanced data due to its mechanism that it is the support

vectors that are used to construct the separating rules, and that the majority sample

points faraway may be ignored. However, the standard SVM is quite vulnerable to

highly imbalanced data case.

Followed the idea by Crammer and Singer, He et al. (2012) proposed a simple

multi-class SVM with a simpli�ed dual optimization, based on the direct classi�ca-

tion methods. The original number of predictors in Crammer and Singer's setting,

which is the product of the sample size and the number of classes, can be quite large

when the sample is big. The method deals with the computation cost arising from

the Crammer and Singer's method and presents the simpli�ed multi-class support

vector machine, reducing the size of the corresponding dual optimization process by

introducing a relaxed bound for error during the classi�cation process, and hence

speeds up the training process without sacri�cing classi�cation accuracy.

2.2.3 Kernel Machine Methods on SVM

Quite a few kernels are created to boost the accuracy performance of an SVM. How-

ever, the optimization process is limited by the speci�c kernel function used, par-

ticularly when the training data set is small. When di�erent kernel functions are

employed, the performance of the classi�cation is a�ected. In addition, for many

other applications, such as image analysis and cancer detection (Fawcett and Provost

(1997)), where the size of the training set of the target class becomes dramatically

overwhelmed on the other, the separating boundary by the SVM will be skewed to the

targeting class severely. Consequently, the misclassi�cation rate can be signi�cantly
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high when the target objects are being identi�ed (Wu and Chang (2003)).

Sánchez A (2003) illustrated the use of the kernel methods in the tasks of regres-

sion and classi�cation and presents some latest techniques and core applications. The

authors address the issues including the process of the numerical optimization, im-

proved generalization, selection of the training set and the model, and tuning process

for parameters. The application of SVMs in machine learning areas is discussed.

Tsochantaridis et al. (2004) reviewed predictive models on kernels that are posi-

tively de�nite. The paper describes some kernels' fundamental properties with much

attention to positive de�nite kernel functions and their characteristics. The authors

show that the kernels which are able to be written in the form of inner products

agree with the class of the positive de�nite kernels. Sums and products of these posi-

tive de�nite kernels are still positive de�nite. Concrete examples for such kernels are

given, including polynomial kernels, spline kernels, convolution kernels (speci�cally

Gaussian and ANOVA kernels), string kernels (bag of words, n-grams, su�x trees,

and mismatch kernels), locality improved kernels, tree kernels, graph kernels, kernels

on sets and subspaces, and Fisher kernels. Reproducing kernel Hilbert spaces (RKHS)

are discussed in the context of regularization.

Zhu and Hastie (2005) have proposed the Import Vector Machine (IVM), a new

method for classi�cation built on the Kernel Logistic Regression. The authors present

that the import vector machine performs as well as the standard SVM in both binary-

class and multi-class classi�cation problems. The import vector machine gives an

estimate of the probability p(x) = P (Y = 1|X = x), whereas a standard SVM only

predicts the sign of [p(x) − 1/2]. The import vector machine model uses a much

smaller subset of the training data (called import points) to label kernel basis func-

tions, which may bene�t the import vector machine from a possible advantage over

the SVM in computation. The import vector machine model seeks a sub-model to

estimate the full model created from the kernel logistic regression.
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Cawley and Talbot (2007) introduced the generalized kernel machine (GKM),

which is a non-linear derivations of the generalized linear model through using the

trick of kernel functions. In the generalized kernel machine, a regularized generalized

linear model is created within a �xed input space by a kernel, and a procedure of

iteratively re-weighted least-squares is used. The regularization parameter λ and all

kernel parameters are decided by minimizing an estimate of the negative log-likelihood

from an e�cient leave-one-out cross-validation process, and the model is selected cor-

respondingly. Examples are presented to show the �exibility and implementation of

the generalized kernel machine.

Xiang-min et al. (2007) increased separability of the training data, by proposing

an adaptive similarity metric for microarray data and optimizing a re-scaled kernel

function based on the kernel function. The authors demonstrate the e�ectiveness of

the metric related to the k-nearest-neighbor classi�er. A re-sampling process based

on bootstrap is applied to decrease the sampling bias.

van Stiphout et al. (2011) proposed an approach of retrieving and visualizing the

size of the contributions of the predictors to regression models and the way how they

contribute, on the basis of visualizing trajectories with the so-called pseudo samples

that represent the original predictors from the training data. Since the kernel function

maps the original input space into another feature space with di�erent dimensions,

information from the predictors in the input space is not preserved. Thus, the pseudo

samples are explained under the framework of the kernel partial least square regres-

sion to determine and visualize the contributions of the predictors from the input

space into regression models.

Christmann and Hable (2012) address the problem of how to construct speci�c

SVMs based on the settings of additive models, which is called additive support vec-

tor machines, and have shown that the SVMs created in such a way are consistent in
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the sense of weaker assumptions compared with the standard nonparametric SVMs.

Thus, the support vector machines can be applied to �t the additive models as of

the form of traditional additive models. It is shown that a combination of bounded

additive kernels with a Lipschitz continuous loss function can provide statistically

robust support vector machines for additive models. The authors demonstrate that

additive support vector machines can perform better than the standard ones when the

additive model's assumptions are valid. Applications with SVMs in additive models

are shown, such as quartile regression on the basis of the pinball loss function and for

classi�cation on the hinge loss function.

2.2.4 Kernel-Scaled SVM

The core idea of the SVM is to project the current input space into a feature space so

that the linear separability of the classes becomes as large as possible in this feature

space (Schölkopf and Smola (2002)) when in the input space the data are not linearly

separable. The feature space usually has a higher dimension than the input space

and it is formed based on kernel functions (Hastie et al. (2001)). Hence, it is the

kernel that is crucial to determine the performance of the SVM classi�er. Often, the

optimal kernel function is driven by the prior knowledge of the data, and the opti-

mization process during training the SVM is typically limited by the speci�c form of

the kernel function that is being used, especially when the size of the training data

set is small. In applications such as image analysis and cancer detection (Fawcett and

Provost (1997)), the size of the training instances of the targeting class is dramatically

smaller than other classes, therefore the separating boundary by the standard SVM

will be skewed to the target class. In such instances, the false-negative rate will be-

come signi�cantly high in order to identify the target objects (Wu and Chang (2003)).

To deal with imbalanced classes in the classi�cation problem, Amari and Wu

(1999) proposed a two-stage learning procedure for choosing an optimal kernel in the

support vector machine. Their idea is that the Riemannian metric will be introduced
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in the feature space with a good kernel, while an ideal kernel function should have

the property of enlarging the metric, consequently broadening the spatial separation

between two classes. Speci�cally, the �rst stage of their method is to roughly �nd

a separating boundary with a primary kernel function, and the kernel function is

then re-scaled in the second stage using a transformation that can amplify the Rie-

mannian metric near the separating surface found in the �rst stage. In other words,

their algorithm �nds the locations of the support vectors �rst by taking the fact into

consideration that support vectors may be in the vicinity of the boundary. Although

the performance of their classi�er improves over the usual one-stage classi�er in many

cases, this two-stage method is vulnerable to the choice of the location of the support

vectors. The location of the support vectors depends on the density region of the

sample points. However, the data-dependent kernel function is constructed based on

all the data in the input space, which could be ine�cient and costly in computation.

Although a modi�cation of the method was proposed by Wu and Amari (2002), the al-

gorithm still has some susceptibility, and cannot be applied in high dimensional cases.

Following Amari and Wu's idea, Williams et al. (2005) proposed a kernel scaling

technique, describing a more straightforward way to achieve the useful magnifying

e�ect. In their proposed method, the initial kernel function is transformed in a way

that magni�cation e�ect will decay along with the squared distance to the separat-

ing boundary. This ensures the magni�cation e�ect to be maximized around the

boundary surface and then decay smoothly to a positive constant at the margins of

the region. However, their method does not take into account the imbalanced data

feature, and the magni�cation e�ect decays too fast for those data not far away from

the boundary according to the constant power at a speci�c location in the input space

when the construction of the data-dependent kernel is built. Besides, the magni�ca-

tion e�ect is globally �xed, regardless of neighbors' in�uence, therefore can not deal

with imbalanced case well.

Zhou et al. (2007) has proposed a similar idea of modifying the kernel in a data-
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dependent way, by constructing the adaptive scaling function with support vectors

only from the minority class, and found that the updated mapping is only associated

with the adaptive scaling function and the bandwidth parameter when the primary

kernel function is chosen as the Gaussian kernel function.

Maratea and Petrosino (2011) applied asymmetric kernel scaling method to imbal-

anced binary classi�cation. Their basic idea is to di�erently enlarge areas on each side

of the boundary surface so that the skewness toward minority will be compensated,by

setting two free parameters in the data-dependent kernel functions in allowance for

di�erent scale levels. However, the performance does not seem to be improved much.

2.3 Simultaneous Classi�cation and Feature Selec-

tion

An SVM o�ers a way of classi�cation that has su�cient generalizing ability, fewer

local minima as well as limited dependence on only a few parameters (Vapnik and

Vapnik (1998)), and has achieved success in applications as a powerful classi�er of

high accuracy as well as �exibility. However, the method described in standard for-

mulation settings cannot decide the importance from di�erence features (Maldonado

and Weber (2009)), while its performance turns out to be severely a�ected when re-

dundant predictors are used in deciding the separating rule, even so poor as a naive

guess due to the random noises accumulated, especially in a space with higher dimen-

sions (Hastie et al. (2001); Zhang et al. (2016)). Consequently, the development of

several approaches for selecting features with SVM has been motivated, e.g. in Guyon

et al. (2002); Zou (2007); Maldonado et al. (2011); Zhang et al. (2016), which provide

various ways of feature ranking or selection. One of the directions, known as �lter

methods, �lters out features with poor information based on statistical properties of

features, usually done before applying any classi�cation models. A second method,
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the wrapper method, scores the whole set of features based on their predictive powers,

and selects a subset of variables with the highest scores. The wrapper method shows

more accuracy compared with the �lter method. The most popular wrapper method

for SVMs can be Recursive Feature Elimination (SVM-RFE), proposed in Guyon and

Elissee� (2003), which attempted to obtain a best subset of r features among m pre-

dictors (r < m), on the basis of a sequential backward selection technique. However,

they all have the limitations of not taking into consideration the combination of fea-

tures which optimize the performance of the classi�er simultaneously.

Correspondingly, the embedded methods are created so that the selection of fea-

tures can be performed during the model construction. A typical way of achieving

this goal is to add some extra term which can penalize the cardinality of the chosen

subset of features to the standard cost function, named as hinge loss, of the support

vector machines, generally with an appropriate sparsity penalty proposed by Fan and

Li (2001), a method that achieves simultaneous variable selection and output predic-

tion. Since the standard SVM is well known to �t within the regular 'loss + penalty '

framework with hinge loss and L2−norm penalty, quite a few attempts have been

seen to select features for the SVM by using other forms of penalty. For example,

L1−norm penalty is applied in Bradley and Mangasarian (1998); Fumera and Roli

(2002); Zhu et al. (2003); Wang et al. (2006) and Wang et al. (2008) proposed the

elastic net penalty for the SVM, and the adaptive lasso penalty form was proposed to

penalize the SVM; Zou and Yuan (2008) suggested a F∞−norm SVM so that groups

of predictors could be selected simultaneously. In recent research, Park et al. (2012)

studied the smoothly clipped absolute deviation (SCAD) proposed by Fan and Li

(2001) and proved an SVM's oracle property when the number of predictors penal-

ized by SCAD is �xed.

The aforementioned penalized feature selection methods for SVMs are all based

on the original input space. However, there are possibilities that those features which

have been penalized and eliminated in the input space with the above methods might
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be useful in the projected feature space, and hence the classi�er will lose some useful

information accordingly. Actually, since the SVM projects the original input space to

another feature space with higher dimensions, the performance of SVM depends di-

rectly on the kernel function, as is pointed out in, for example, Wu and Chang (2003);

Williams et al. (2005); Maratea et al. (2014); thus, a natural idea is to penalize the

kernel function directly, so that the features that are useful in the feature space can

be selected and the classi�cation can be achieved simultaneously.
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Chapter 3

Data-Adaptive Kernel SVM in

Binary-Class Case

3.1 Introduction

In this chapter, to enhance the accuracy of the SVM we propose a new two-stage

method of kernel function scaling. Followed by the primary SVM procedure in the

�rst stage, the proposed method locally adapts the kernel to the location of the data

on the basis of the skewness of the class boundary, and hence, enlarges the magni-

�cation e�ect directly on the Riemannian manifold within the feature space rather

than the input space. With the distance measured in the feature space, the confor-

mal transformation can make full use of the updated information in the second stage.

Extensive empirical studies demonstrate that our method has excellent performance.

3.2 Notation and Framework

Consider a binary classi�cation problem where a hyperplane is expected to separate

the two lasses of the response y, given sample data {xi, yi} for i = 1, . . . , n. Here for
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i = 1, . . . , n, xi is a vector in the input space Rp, denoted as I, and yi represents

the index of the class which takes values +1 or −1. However, in many cases, a

hyperplane does not exist in the input space to separate completely the two classes

(Hastie et al. (2001)). To get around this, an SVM method projects the input data x

into a higher dimensional feature space Rl, denoted as F , using a nonlinear mapping

function s : Rp → Rl (Figure 3.1), and then searches a linear discriminant function

or a hyperplane in the feature space F

D(x) = wT s(x) + b (3.1)

where w is an l−dimensional vector of parameters, s(x) = (s1(x), . . . , sl(x))T is the

l−dimension vector in the feature space, and b is a scalar intercept term. Hence, an

individual point with observation x can be classi�ed by the sign of D(x) as long as

the parameters w and b are determined. The boundary of the nonlinear classi�er

is determined by D(x) = 0 in the input space I. Theoretically, the solution to the

SVM can be obtained by maximizing the aggregated margin between the separating

boundaries (Boser et al. (1992)).

Figure 3.1: An illustration of Riemannian manifold. By di�erent mappings, the input

space is transferred into di�erent feature spaces (Wu and Chang (2003)).

Mathematically, an SVM is the solution of minimizing

Q(w, b, ξ) =
1

2
‖w‖2 +B

n∑
i=1

ξi (3.2)

with respect to w and b, which are subject to the constraints
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yi(w
T s(xi)+ b) ≥ 1− ξi for i = 1, . . . , n,

where B is the cost parameter, which determines the trade-o� between the optimal

combinatorial choice of the margin and the misclassi�cation error, ξ = (ξ1, . . . , ξn)T is

the vector of nonnegative slack variables, and ‖ · ‖ represents the norm. Equivalently,

this optimization problem can be represented in the Lagrangian dual function with

the form as

Max
α

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyj < s(xi), s(xj) > .

subject to the constraints

n∑
i=1

αiyi = 0,

0 ≤ αi ≤ B

for i = 1, 2, . . . , n, where αi's are the dual variables (the Lagrange Multipliers) by

Lagrange Multiple Methods when solving the minimization problem in 3.2, and <

· , · > is the inner product operator. Generally a scalar function K(·, ·), which is

called a kernel function, is adopted to replace the inner product of the two vectors

s(xi) and s(xj) in the dual function,

Max
α

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi,xj). (3.3)

Let SV be the set {j | αj > 0 for j = 1, 2, . . . , n}. Then the corresponding xi's

where i is in set set SV are called support vectors, where the cardinality of SV is

l, the dimension of the feature space F . Thus, to determine the hyperplane (3.1) in

the feature space, we may not need to �nd s(x) explicitly. We need only to �nd the

inner products of s(xi) and s(xj), which is available from using the kernel function

K(xi,xj). Then the kernel form of SVM can be written as

D(x) =
∑
i∈SV

αiyiK(xi,x) + b (3.4)
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and the estimated intercept bj obtained by using the jth support vector xj is de�ned

as

bj = yj −
∑
i∈SV

αiyiK(xi,xj).

Hastie et al. (2001) have proved that for di�erent j in the support vectors set SV ,

the bjs are the same. In practice, we can take the average of all the estimated bj as

the estimate of the bias term b.

Typical kernels in the literature include the following forms (Hastie et al. (2001)).

The radial kernel has the form

K(x, z) = f(−‖x− z‖2)

with f(·) being a scalar function. A popularly used radial kernel is the Gaussian

Radial Basis kernel

K(x, z) = exp(−‖x− z‖2/2σ2),

where σ is the bandwidth parameter. Another popularly used kernel has the form of

a polynomial function of the inner product of two vectors,

K(x, z) = f(xT · z),

where f(·) is the polynomial function and (·)T is the transpose operator. A popular

polynomial kernel with degree d has the form

K(x, z) = (1 + xT · z)d.

3.3 Methodology

3.3.1 Geometric Interpretation of SVM Kernels

From the geometrical point of view, when the input space I is the Euclidean space,

the Riemannian metric is then induced in the feature space F (Figure 3.2) (Wu and

Amari (2002)). Denote by f the mapped result of x ∈ Rp in F , i.e., f = s(x) ∈ Rl.
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Then a small change in x in the input space, dx, will be mapped into the vector df

in the feature space so that

df = ∇s · dx =
∑
j

∂

∂xj
s(x) dxj,

where

∇s =

(
∂ s(x)

∂ x

)
=


∂ s1(x)
∂ x1

. . . ∂ s1(x)
∂ xp

...
...

...

∂ sl(x)
∂ x1

. . . ∂ sl(x)
∂ xp

 .

Thus, the squared length of df can be written in the quadratic form as

‖df‖2 = (df)T · df = (
∑
i

∂

∂xi
s(x) dxi)

T · (
∑
j

∂

∂xj
s(x) dxj) =

∑
ij

sij(x)dxidxj,

where

sij(x) =
(

∂
∂xi
s(x)

)T
·
(

∂
∂xj

s(x)
)

=
(
∂s1(x)
∂xi

, . . . , ∂sl(x)
∂xi

)
·
(
∂s1(x)
∂xj

, . . . , ∂sl(x)
∂xj

)T
=
∑

k ∂sk(x)/∂xi∂sk(x)/∂xj.

Consequently, the n× n matrix S(x) = [sij(x)] is de�ned on the Riemannian metric

which can be derived from the kernel K, and S(x) is positive de�nite (Amari and Wu

(1999)). More straightforwardly, the following lemma demonstrates the connection

between a kernel function K and a mapping s:

Result 3.3.1. Suppose K(x, z) is a kernel function, and s(x) is the corresponding

mapping in the support vector machine. Then (3.5) holds that

sij(x) =
∂

∂xi

∂

∂zj
K(x, z)|z=x. (3.5)

Let v(x) = det|S(x)|. The factor
√
v(x) indicates the magni�cation level on the

local area in F under the mapping s, thus, is de�ned as the magni�cation factor.

To enlarge the margin of separability between two classes, the resolution near the
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boundary surface in the feature space F needs to be enlarged. This motivates us to

increase the factor
√
v(x) near the boundary of D(x) = 0. Therefore, the mapping s,

or equivalently, the related kernel K, is to be examined so that v(x) can be enlarged

around the boundary.

For the radial kernel with the form in (3.2), it is easy to check that

v(x) = det|S(x)| = [K ′(x,x)]n = [f ′(0)]n

However, it is not easy to control the magni�cation factor
√
v(x) by simply increasing

sij(x), the entries of S(x). Take the Gaussian kernel as an example. As pointed in

later part, when K is a Gaussian kernel,

sij(x) =
1

σ2
I(i = j) (3.6)

and det|S(x)| = 1/σ2n. To increase the spatial resolution at a support vector x, it

is not suggested to change σ directly. On one hand, we need to accommodate the

location information around the neighbourhood of the support vector x, thus we can-

not use a universal parameter σ for all these points. On the other hand, if we use

di�erent σ's for every single support vector, the parameters are too many to be tuned.

Furthermore, it is not a universal way to change local resolution by only change σ,

since not all radial kernel has the σ parameter; only Gaussian has. Also, the locations

of the support vectors, which determine the separating boundary, need to be found.

Thus, to increase the spatial resolution locally, we attempt to use the adaptive scale

on the kernel function in the following part.

3.3.2 Adaptive Scale on the Kernel

To increase the spatial separability around the boundary, we propose a new two-stage

adaptive scale on the kernel with two goals. One is that the spatial resolution near the

margin area needs to be increased so that the separability is enhanced, while keeping

the decision boundary unchanged. The other one is that the scaling process should
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Figure 3.2: Euclidean and Riemannian distance measures in a 3-D input space (Wu

and Chang (2003)).

only depend on the local support vectors instead of those far apart, and the scaling ef-

fect should decrease robustly and slowly with the distance approaching the boundary.

To be speci�c, a two-stage classi�cation process is described as follows. We �rst

construct a standard SVM with a primary kernel K, then we update the kernel as

follows. Let C(x,x′) be a positive scalar function such that

C(x,x′) = c(x)c(x′), (3.7)

where x and x′ are vectors from the input space, and c(x) is a positive univariate

scalar function. Then the kernel function K is updated as

K̃(x,x′) = C(x,x′)K(x,x′) = c(x)K(x,x′)c(x′),

where K̃(x,x′) corresponds to the mapping s̃ that satis�es the transformation

s̃ij(x) = cij(x)sij(x),

where cij(x) = ∂
∂xi

∂
∂zj
C(x, z)|z=x. The above process is referred to as the adaptive

scaling, and K̃ can be easily shown to satisfy the Mercer positivity condition, which

is the su�cient condition for a real function to be a real kernel function (Wu and

Amari (2002)). Thus, the metric s̃ij(x), introduced from K̃, is related to the original

sij(x) by the following theorem:
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Result 3.3.2. Given a primary kernel function K(x, z) and a scalar function c(x)

as in (3.7), the modi�ed mapping function s̃ij(x) is linked with the adaptive kernel

function K̃(x, z) by

s̃ij(x) = c2(x) · sij(x) + ci(x) ·K(x, x) · cj(x) (3.8)

+ c(x) · {Ki·(x, x) · cj(x) +K·j(x, x) · ci(x)}

where ci(x) = ∂c(x)/∂xi is the ith element of the gradient of c(x), sij is determined

by (3.5), Ki·(x, x) = ∂K(x, z)/∂xi|z=x and K·j(x, x) = ∂K(x, z)/∂zj|z=x. Particularly

when i = j,

s̃ii(x) = c2(x) · sii(x) + 2 · c(x) · ci(x) ·Ki(x, x) + c2
i (x) ·K(x, x),

where Ki(x, x) = Ki·(x, x) = K·j(x, x) = ∂K(x, z)/∂xi|z=x.

Detailed proof is provided in the Appendix. When s̃ij(x) has larger values at

the support vectors than other data points, the updated mapping s̃ can increase the

separation when a positive function c(x) is properly chosen. This modi�cation of

the kernel function can keep the spatial resolution stable within the feature space so

that the spatial relationship between the sample points would not be changed, with

c(x) properly chosen. Also, the computational cost turns out to be quite reasonable.

Inspired by the above idea, we propose to adaptively scale the primary kernel function

K by constructing c(x) with the L1−norm radial basis function

c(x) = e−|D(x)|·kM (x) (3.9)

and

kM(x) = AV Gi∈{j:‖s(xj)−s(x)‖2<M, yj 6=y}(‖s(xi)− s(x)‖2), (3.10)

where D(x) is given by (3.1), AV G denotes the average operator, y is the class label

associated with x, and M can be regarded as the distance between the nearest and

the farthest support vectors from s(x).
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The proposed form of c(x) in (3.9) has many bene�ts. kM(x) re�ects the spatial

information of the local support vectors in the feature space F rather than the in-

put space I. Geometrically, kM(x) in (3.10) is the average distance between x and

other support vectors within a radius of M . In this way, the average value on the

right hand side can comprise all the support vectors with di�erent labels within the

neighbourhood of s(x) within the radius of M . This is important when the data are

imbalanced, since the globally minority class can have higher density in a small neigh-

bourhood, making data more balanced locally. As a result, the local separability will

be enhanced. By incorporating kM(x) into c(x), the adaptive scaling process updates

the spatial information with larger separability even when the data are imbalanced.

The magni�cation e�ect is the roughly the largest near the separating boundary. It is

easy to check that c(x) gets its peak value on the separating hyperplane of D(x) = 0,

and decreases slowly to e−kM at the margins where D(x) = ±1. Thus, the resolu-

tion is ampli�ed most greatly along the boundary surface. Besides, the rate of decay

from the L1−norm is moderate compared with the standard choice such as L2−norm,

which is more robust. Thus, magni�cation e�ect still holds for the areas a bit far from

the boundary surface, where the data are imbalanced locally. Additionally, if we make

use of the local range tuning parameter M , the number of the support vectors to be

included will be determined directly in the kernel scaling process, which adapts the

classi�er without too much complexity.

Our method generalizes several existing algorithms with more �exibility. For

example, Amari and Wu (1999) consider the function

c(x) =
∑
i∈SV

e−k‖x−xi‖2 ,

where k is a positive scalar. Using this function, the support vectors need to locate

normally near the boundary, so that the magnifying e�ect can be large near the sup-

port vectors and further near the boundary, as the margins are supported by the

support vectors. This function can be quite sensitive to the spatial locations of the

support vectors found in the �rst step, and thus the magni�cation becomes larger
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at higher density regions of support vectors but drops dramatically at lower density

regions. A modi�ed function was proposed by Wu and Amari (2002), who set dif-

ferent ki for di�erent support vectors, so that the local density of support vectors

can be accommodated. Though improvement of the performance is achieved by using

this modi�ed function, the computational cost becomes huge and the performance in

high-dimensional data is uncertain.

On the other hand, Williams et al. (2005) uses a di�erent c(x) to achieve the

magnifying e�ect. They suggested

c(x) = e−kD(x)2

where D(x) is the decision boundary and k is a positive constant for all support

vectors. This function c(x) peaks on the boundary surface D(x) = 0 and decays to

e−k to the margin areas where D(x) = ±1. However, the tuning parameter k is �xed

throughout the whole region. This in�exibility ignores the local information. When

the density of local support vectors is quite high, the separation can be inaccurate and

ine�cient. Furthermore, the L2−norm decays the resolution too fast to the constant

e−k, which makes the separation performance unstable in high dimensional cases.

The aforementioned methods can be viewed as special cases of our proposed

method. When M in (3.10) is large enough, all of the support vectors will be in-

cluded in calculating c(x), which goes back to the case of Wu and Amari (2002), and

when M is su�ciently small, kM will only depend on the local data point, without

any in�uence from faraway support vectors, yielding the performance from method of

Williams et al. (2005). By controlling the parameter M , the in�uence of the spatial

location of the support vectors can be controlled e�ectively.
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3.3.3 Adaptively Scaled Gaussian RBF kernel

In real applications, the primary kernel K is usually as the Gaussian radial basis

function kernel

K(x, z) = e−‖x−z‖
2/2σ2

.

Zhou et al. (2007) has shown the following results whose proofs are outlined in the

Appendix.

Result 3.3.3. If a Gaussian radial basis kernel function is adopted and a scalar

function takes an arbitrary form, the modi�ed magni�cation factor is

s̃ij(x) = ci(x)cj(x) + c2(x)sij(x),

= ci(x)cj(x) +
c2(x)

σ2
I(i = j),

where ci(x) = ∂c(x)/∂xi, and I(·) is the indicator function.

The result is quite neat in the sense that, when the primary kernel function takes

the form the Gaussian RBF kernel the updated magni�cation factor depends only on

the information from the adaptive scaling function c(x). Thus, to make s̃ bigger, we

need to make the positive scalar c(x) and its �rst order derivative, and our proposed

method ful�lls the purpose. When the Euclidean metric

sij(x) =
1

σ2
I(i = j)

from (3.6) is used, the magni�cation factor is the constant√
v(x) =

1

σn
.

By Theorem 3.3.3 and our proposed c(x) in (3.9), the updated magni�cation factor

can be calculated, and the ratio of the magni�cation factors between the new and the

old is √
ṽ(x)

v(x)
= cn(x)

√
1 + σ2‖∇log c(x)‖2,

= e−nkM |D(x)|
√

1 + 4σ2k2
M |D(x)|‖∇|D(x)|‖. (3.11)
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The ratio from (3.11) indicates that the magni�cation e�ect is almost �xed along the

separating hyperplane D(x) = 0. We can adaptively tune kM according to the local

allocation of support vectors.

3.4 Numerical Studies

To access the performance of our proposed method, we conduct extensive simulations.

Also, the proposed method is compared to other methods in the literature, such as

one-stage SVM, the two-stage SVM of Wu and Amari (2002) and the two-stage SVM

of Williams et al. (2005). The numerical investigations made use of the software R

packages. The package has mature algorithms for binary SVMs with possible argu-

ments to provide controls of the SVM (Dimitriadou et al. (2006)).

3.4.1 Simulation Studies

We evaluate the proposed method under situations with balanced and imbalanced

data. To assess the accuracy of the methods, we predict the separating boundary

with the simulated sample. For all these two-stage algorithms, a Gaussian RBF

kernel K is adopted in the �rst-stage standard SVM procedure to �nd approxi-

mate locations of the support vectors. Based on these, the kernel function is adap-

tively re-scaled to K̃ with corresponding c(x) from each method, and second-stage

SVM is conducted with K̃. Thus, we estimate a separating boundary D(x), where

D(x) =
∑

i∈SV αiyiK̃(xi,x) + b. Then each sample point is assigned with a predicted

label, either 1 or −1. We will assess the performance of di�erent methods by com-

paring the misclassi�cation rate.

The whole process is repeated 1000 times. In each run, the misclassi�cation rates

and their standard deviations for all methods are recorded, and the maximal margin
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of error, which is de�ned as the largest values of the half length of the con�dence inter-

val of the misclassi�cation rate for all compared methods, is reported as the maximal

margin of error in tables. For values of the tuning parameter M , we choose the opti-

mal value as minimizing the generalization errors by 5-fold cross validation. For the

cost parameter B and the Gaussian kernel bandwidth parameter σ in the kernel func-

tion, we consider the setting of Williams et al. (2005), where the cost parameter B in

(3.2) takes values 0.1, 0.2, 0.5, 1, 5, 8, 40, 100, 500 and σ takes values 0.01, 0.05, 0.1,

0.5, 1, 5, 10, 100. We compare the classi�cation performance by considering several

sets of combinations of B and σ and report the results in the tables at the end of this

chapter. During this procedure, we do not apply the cross validation procedure to �nd

the the values of B and σ due to the computational cost. However, one can de�nitely

apply the cross validation process to choose an optimal combination of all the param-

eters. The maximum test error of the naive classi�er which is a random guess, is 50%.

Scenario 1: Balanced Data. In this case, the proportion of the two di�erent classes

is around 50%. Two-dimensional input data are considered as xi = (xi1, xi2) which

are independently from the uniform distribution in the area of [−1, 1]× [−1, 1], where

i = 1, 2, . . . , n. Two classes of data are truly separated by a nonlinear curve x2 =

cos(πx1) (see Figure 3.3). In other words, we let

yi =


1, if xi2 ≥ cos(πxi1)

−1, if xi2 < cos(πxi1)

for all i from 1 to n in the sample.

It is evident that the proposed method outperforms the considered competitors.

When σ gets larger with a �xed B, the misclassi�cation rates yielded from all the

methods tend to decrease. When σ is relatively small, the proposed method performs

better than the methods of Wu and Amari (2002) and Williams et al. (2005); if σ

is relatively large, all the methods produce nearly the same results. This is because

when σ is large, the feasible solution set is large, and all the methods are capable of
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Figure 3.3: Scenario 1: Balanced data. Label 1 is assigned to the data above the solid

curve x2 = cos(πx1) and otherwise label -1. The red dots are support vectors by the

standard SVM. In this case, the proportions of the two classes are almost the same.

�nding the optimal solution. Correspondingly, when B is increasing, the budget for

misclassi�cation is getting bigger, which means more tolerance is permitted so that

the two classes can be separated.

Scenario 2: Imbalanced Data.

For the case of imbalanced data, we consider that the proportions of two di�erent

labels are signi�cantly di�erent. Firstly, we take the proportions of the two classes as

25% versus 75%. We still choose a two-dimensional input as xi = (xi1, xi2) uniformly

distributed in the area [−1, 1]× [−1, 1]. The two classes are labeled by the standard

normal boundary described by the function x2 = exp(−x2
1) (see Figure 3.4), or

yi =


1, if xi2 ≥ exp(−x2

i1)

−1, if xi2 < exp(−x2
i1)

.

It is seen that the proportion of the hollow dot class is way much smaller than that

of the solid dot class with only about 25%. The distribution of the support vectors is
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Figure 3.4: Scenario 2: Imbalanced data with 25% and 75%. Data above the solid

curve x2 = exp(−x2
1) are with label 1 and below -1. The red are support vectors by

the standard SVM.

shown as the square points. B and σ are still chosen from the corresponding sets in

Scenario 1. We compare the prediction performance for the combination of the cost

parameter B and the Gaussian RBF kernel parameter, σ. We also apply the same

procedure to a more extreme case with proportions of 10% versus 90%.

Same as in Scenario 1, we classify the data with the primary kernel K to �nd the

locations of the support vectors of the standard SVM process, and then repeat the

classi�cation process with the proposed adaptively transformed kernel K̃. Di�erent

combinations of the cost B and σ are applied with 1000 times of 5-fold cross valida-

tion. The outcomes are summarised in Table 3.2 and Table 3.3.

It is seen that the performance of all the methods decays for imbalanced data due

to non-uniformly distributed support vectors. The trends of misclassi�cation rates

changing with B and σ in all scenarios are similar to those in the balanced data case.
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The proposed method still works the best compared to all other methods. kM tends

to change in an opposite way along with the density of the support vectors around a

speci�c point. When the ratio of proportions become more extreme, kM changes in

a sharper way. The spatial location of the support vectors in the feature space F is

therefore seen to be taken into consideration by our method.

3.4.2 Ontario Prostate Cancer MRI Data

The proposed method is also applied to a prostate cancer MRI data set arising from

a cancer program of London, Ontario, Canada. This is an ongoing study conducted

by the research group of Canadian Institutes of Health Research. The objective here

is to classify (non)cancer areas by examining the imaging data of 21 subjects from

the imaging producing equipments, such as MR, CT and ultra sound images. For

each patient, 3 speci�c intensity measures on a voxel, namely T2W, ADC and C-

Grade, coming from di�erent platforms including MR and CT, are obtained and used

as input variables. These measures range from 0 to thousands. All the 3 intensity

measures are standardized, as is a usual step before further analysis, and all of them

are included in the model as predictors.

We classify the data using the proposed data-adaptive scaling procedure. Specif-

ically, two-stage SVMs are required: a �rst round of the standard SVM with the

selected kernel is conducted, and the support vectors are obtained. The confor-

mal transformation scalar function is then applied to update the kernel function. A

second-stage SVM is then conducted based on the updated kernel and the estimated

boundary is employed as the rule for classi�cation. To choose suitable tuning param-

eters M , B and σ for each method, we employ the 7-fold cross validation method,

where the 21 patients are randomly grouped into 7 groups with equal sizes; 6 groups

of patients are used as training data, and the remaining group is used to test the

error. The whole process is repeated in 1000 times.

We also analyze the data with the scaling methods of Wu and Amari (2002) and
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Williams et al. (2005), the traditional SVM, and other methods including random

forest and logistic regression. Training and testing error rates are reported. For

adaptive scaling SVMs, the number of the support vectors is reported, while for other

classi�ers, the receiver operating characteristic (ROC) curves are included, and the

areas under the curve are reported. They are generated on the test group of patients

during the 7-fold cross validation, and the reported �gures are typical ones for a spe-

ci�c patient.

Outcomes of classi�ers with di�erent adaptive scales are displayed in Table 3.4.

By comparing the training and testing performance of the proposed method and oth-

ers, we �nd that the proposed method generally works better than others. Support

vectors obtained from the proposed method are fewer than those yielded from other

methods. This can reduce the complexity in higher dimensional feature space, since

the estimated decision boundary is the summation of a linear combination of the

values of the kernel functions K over all the support vectors found in the �rst stage;

when the support vectors are fewer, the values of the kernel that need to be calcu-

lated are much fewer, and hence. With other conformal transformation methods that

accommodate the location of support vectors, the introduction of the tuning kM for

the location of local support vectors can greatly reduce the number of parameters

that are needed to be tuned in the validation procedure.

When comparing the proposed method to other classi�cation methods, includ-

ing Logistic Regression, Random Forest, and one-stage SVM, ROC curves are given

in Figure 3.5 - Figure 3.8. It is evident that the proposed method performs much

better than other classi�ers. For this data set, the (non)cancer labels are extremely

unbalanced, and the traditional methods perform poorly, but our method performs

satisfactorily.
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Figure 3.5: ROC curves produced from Logistic Regression. AUC=0.692

Figure 3.6: ROC curves produced from Random Forest. AUC=0.809
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Figure 3.7: ROC curves produced from One-stage SVM. AUC=0.733

Figure 3.8: ROC curves produced from Data-Adaptive SVM. AUC=0.914
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3.5 Concluding Remarks

In this chapter, we propose a new method of data-adaptive scaling on the kernel

function in the SVM process. Our method picks the information of the local position

of the support vectors to obtain a more robust solution. The model adopts the idea

that the Riemannian metric in the feature space introduced by mapping with a kernel

can enlarge the spatial separation between two classes, and that the locally adaptive

kernel function based on the skewness of the class boundary can enhance the kernel,

and hence, increase the accuracy of the classi�cation. Simulation studies and the real

data application demonstrate that our method outperform other classi�cation meth-

ods in terms of both accuracy and robustness. Our method can be readily extended

to the case with multiple classes.

To make our method more attractive, we may further pursue research in several

aspects. The adaptive kernel involves two stages of the SVM procedure which are

time-consuming with large data. If the spatial location of the support vectors can be

approximately found and drawn with prior information, then the �rst round of SVM

may be avoided, and those support vector candidates can be all used in the conformal

transformation directly. It would be interesting to develop a more e�cient algorithm.

Another problem worth exploration is pertinent to the variable selection. Choosing

fewer variables simultaneously in our adaptive scaling transformation can signi�cantly

reduce the model complexity, thus reducing the computational cost. Finally, when

the input variables are contaminated with measurement error, which is quite common

in studies such as the cancer image study, the performance of the classi�er is likely to

be a�ected. It would be interesting to investigate the measurement error e�ects on

our method and to develop more �exible classi�cation methods for error-prone data.
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Table 3.1: Misclassi�cation rates for balanced data. Maximal margin of error is

0.50%.

One-stage SVM Wu and Amari (2002) Williams et al. (2005) Proposed Method

B=8, σ = 0.1 16.30% 13.20% 12.50% 11.10%

σ = 0.5 9.60% 7.70% 6.90% 5.70%

σ = 5 7.20% 5.30% 4.70% 4.90%

B=40, σ = 0.1 18.70% 15.60% 14.10% 11.90%

σ = 0.5 15.50% 12.30% 11.10% 10.60%

σ = 5 9.30% 7.10% 6.20% 5.90%

B=100, σ = 0.1 21.10% 17.20% 15.60% 13.20%

σ = 0.5 14.00% 9.90% 8.30% 7.00%

σ = 5 12.20% 7.10% 7.80% 6.00%

Table 3.2: Misclassi�cation rates for imbalanced data with proportions 25% and 75%.

Maximal margin of error is 0.8%.

One-stage SVM Wu and Amari (2002) Williams et al. (2005) Proposed Methods

B=8, σ = 0.1 19.30% 15.40% 12.10% 10.50%

σ = 0.5 14.20% 12.30% 10.00% 9.50%

σ = 5 12.30% 9.60% 9.10% 7.60%

B=40, σ = 0.1 21.20% 17.70% 15.80% 13.1%

σ = 0.5 16.60% 14.60% 12.70% 11.9%

σ = 5 14.50% 11.20% 10.10% 8.20%

B=100, σ = 0.1 23.00% 18.60% 16.30% 13.90%

σ = 0.5 18.00% 16.10% 13.30% 12.10%

σ = 5 17.20% 13.60% 12.80% 8.90%
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Table 3.3: Misclassi�cation rates for imbalanced data with proportions 10% and 90%.

Maximal margin of error is 1.1%.

One-stage SVM Wu and Amari (2002) Williams et al. (2005) Proposed Method

B=8, σ = 0.1 22.30% 18.60% 16.20% 13.30%

σ = 0.5 19.20% 15.70% 11.20% 10.90%

σ = 5 16.70% 13.20% 10.30% 8.20%

B=40, σ = 0.1 23.90% 19.60% 17.10% 14.00%

σ = 0.5 18.50% 16.50% 13.90% 12.30%

σ = 5 15.40% 12.90% 11.80% 10.10%

B=100, σ = 0.1 25.70% 19.90% 18.60% 15.10%

σ = 0.5 21.20% 17.80% 16.30% 13.50%

σ = 5 18.20% 15.20% 14.20% 11.20%

Table 3.4: Analysis of the prostate cancer data with di�erent methods.

Methods # of support vectors Training Error Testing Error

one-stage SVM 212 15.20% 19.20%

Wu and Amari (2002) 76 7.80% 9.50%

Williams et al. (2005) 69 7.20% 8.70%

Proposed Method 63 6.80% 7.30%
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Chapter 4

Data-Adaptive Kernel SVM in

Multi-Class Case

4.1 Introduction

Statistical learning from the imbalanced data turns out to be a remarkably challeng-

ing problem in multi-class cases (Menardi and Torelli (2014)). At present, many �elds

have seen the importance and desiring need of an accurate classi�er for imbalanced

data (Mazurowski et al. (2008)), including the detection of rare but serious diseases

such as cancers in medical science and fraudulence issues in accounting (Chawla et al.

(2004)). However, many classi�ers have rather poor predictive power for the minority

class and hence very likely classify most test subjects to the majority class (Maratea

et al. (2014)). The main concern is the imbalance problem, which seems inevitable

in the standard formulation of the SVM.

In this chapter, we extend our data-adaptive SVM construction technique to multi-

class situation when the imbalance is a main concern, based on the idea from the

binary data-adaptive SVM with data-adaptive kernels. The algorithm still consists

of two stages. In the �rst stage, a standard multi-class SVM is constructed so that
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the spatial locations of all the support vectors can be found. Based on this, in the

second stage, the data-dependent kernels are constructed for each SVM in multi-class

case, combing the spatial location of the support vectors from the �rst stage and the

information from sample sizes. By enhancing the local magni�cation e�ect, the sep-

aration of the SVMs with the data-adaptive kernels constructed in this way is more

e�ective and robust, with the magni�cation e�ect varying along with the density of

the size of neighbours, especially for imbalanced data. Numerical studies have shown

support to our proposed method.

This chapter organizes as follows. In Section 2, a brief framework of the multi-

class labelling working on imbalanced statistical learning is reviewed. In Section 3,

the proposed methodology is described in details that deals with the imbalanced spa-

tial distribution of di�erent classes. Adaptively scaling kernel function for multi-class

case is proposed, involving the weights and location information for di�erent classes,

following the idea of data-adaptive kernel functions for binary case in Chapter 3. Nu-

merical results is presented in Section 4, with comparisons to other approaches. In

Section 4, concluding remarks are drawn.

4.2 Notation and Framework

4.2.1 Framework of an SVM

As a popular method for classi�cation problem proposed by Vapnik and Vapnik

(1998), the support vector machine essentially uses a kernel function that maps the

original input space into a high-dimensional feature space to separate the observa-

tions with two classes as faraway as possible, preferably with a linear boundary. In a

binary setting with some sample {xi, yi} for i = 1, . . . , n, where xi is a vector in the

input space I = Rp and yi represents the class index which takes values +1 or −1, a

nonlinear support vector machine maps the input data x into another high-dimension
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feature space, F = Rl, using a nonlinear mapping functions : Rp → Rl. Then a linear

discriminant function

D(x) = wT s(x) + b (4.1)

will be searched for in the feature space F , where w is an `−dimensional vec-

tor, s(x) = (s1(x), . . . , sl(x))T is the corresponding vector by using the nonlinear

`−dimension vector function s(x) and b is an intercept. Hence an individual point x

is classi�ed by the sign of D(x) as long as the parameters w and b are determined. It

is obvious that the boundary of the nonlinear classi�er is D(x) = 0 in the input space

I. Then, with mathematical transformation shown in Chapter 3, the kernel form of

SVM can be written as

D(x) =
∑
i∈SV

αiyiK(xi,x) + b (4.2)

where αi is the positive numeric derived as the dual variables by Lagrange Multiple

Methods, and SV is the set of support vector indices. The intercept b can be obtained

with any support vector xj as

bj = yj −
∑
i∈SV

αiyiK(xi,xj),

Instead of �nding the mapping pattern s(x) explicitly, which is not necessary, only

the inner product is required, directly available from the kernel K. Still, we mainly

consider the radial basis kernel of the form

K(x, z) = f(−‖x− z‖2).

4.2.2 Popular Multi-class SVM Algorithms

Consider we classify a sample k categories. Basically, two methods, the indirect and

the direct methods, can be applied, depending on whether the classi�cation process

can be achieved by one or more optimization problem. The indirect method is to

construct and combine several binary classi�ers, while the direct method is to di-

rectly consider all the data in one single optimization formulation. In our method,

we mainly base on the one-versus-all approach due to less computational cost, and
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�exibility with the data-adaptive kernel transformation.

The one-versus-all approach creates k binary SVM classi�ers. The i−th SVM is

trained with all points in the i−th class with positive sign '+1' while all other point

labeled as negative sign '-1'. After solving the k optimization problem, there will be

k decision functions constructed, and a test object x will be assigned to the class with

the largest value of the decision function Dm(x), m = 1, . . . , k. This indicates that

the test object is labeled as the class that is farthest.

However, the principal concern for multi-category classi�cation is the imbalance

issue for both indirect and direct methods. When the size of one speci�c category

is quite small, the proportion of each binary classi�cation problem that contains

this class is imbalanced, and the classi�cation accuracy will be a�ected, as has been

pointed out in Chapter 3. This issue is particularly common for the one-versus-all and

direct approaches, since the training data from a particular class will be separated

from those from all the other classes. Another issue is the computational cost, espe-

cially for the one-versus-one approach. A k−class problem needs k(k − 1)/2 kernel

functions, so there will be too many kernel functions to be trained when k is large,

compared with the one-versus-all and direct approach. Besides, if there is a tie in the

voting process in the one-versus-one approach, the random guess may deteriorate the

performance of the classi�cation, while the other two methods can hardly see a tie

issue.

As has discussed in Chapter 3, the imbalance in the binary classi�cation can be

dealt with by magnifying the resolution locally with the data-adaptive scaling on the

kernel function. Thus, we can apply the method on the one-versus-all approach on

each of the k binary classi�cation processes, and update the kernel function so that

the magni�cation e�ect around the separating boundary can be enhanced.
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4.3 Methodology

4.3.1 Data-Adaptive Kernel SVM for the Multi-class Case

Motivated by the binary data-adaptive kernel SVM, we propose multi-class data-

adaptive kernel SVM algorithm, a new way of multi-category classi�cation problem.

The main idea is to enhance the magni�cation e�ect around the multiple separating

boundaries in the feature space, by adaptively scaling the primary kernel functions.

The algorithm consists of two stages. During the �rst stage, the standard one-versus-

all approach is applied and the support vectors are found based on the primarily

assumed kernel functions, so that the decision functions are estimated. Based on

this, the kernel functions will be updated with the spatial location information. In

the second stage, the multi-class SVMs are solved with the updated kernel function,

and the estimated decision functions from the second stage are used to make predic-

tions for test objects in future.

Consider a size n training data {(xi, yi)}ni=1 where xi is a vector from the input

space I = Rp, and yi ∈ {1, 2, . . . , k}, the m−th SVM solves the following problem:

Min
w

m,bm,ξm

1

2
(wm)Twm + B

n∑
i=1

ξmi

subject to (wm)T s(xi) + bm ≥ 1− ξmi , if yi = m,

(wm)T s(xi) + bm ≤ −1 + ξmi , if yi 6= m,

ξmi ≥ 0, i = 1, . . . , l,

where B is the cost parameter, ξ = (ξ1, . . . , ξn)T is the slack variable, and s is the

mapping from the original input space to the feature space F = Rl. Similar to

the binary case, the minimization problem has the corresponding Lagrangian dual

formulation as

Max
αm

n∑
i=1

αmi −
1

2

n∑
i=1

n∑
j=1

αmi α
m
j yiyj < s(xi), s(xj) > . (4.3)
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subject to the constraints

n∑
i=1

αmi yi = 0,

0 ≤ αmi ≤ B

for i = 1, 2, . . . , n and m = 1, 2, . . . , k. αmi 's are the dual variables (the Lagrange

Multipliers) by Lagrange Multiple Methods when solving the minimization problem

corresponding to the m−th SVM classi�er, and < · , · > is the inner product op-

erator. By replacing the inner product in (4.3) with the kernel function K(·, ·), the

maximization problem becomes

Max
αm

n∑
i=1

αmi −
1

2

n∑
i=1

n∑
j=1

αmi α
m
j yiyjK(xi,xj). (4.4)

subject to the constraints

n∑
i=1

αmi yi = 0,

0 ≤ αmi ≤ B.

Let SV m be the set {j | αmj > 0 for j = 1, 2, . . . , n}, containing the index of the

support vectors for the m−th SVM. After solving the whole (4.4), there are k decision

boundary functions:

Dm(x) =
∑
i∈SVm

αmi yiK(xi,x) + b (4.5)

and the estimated intercept bj obtained with the jth support vector xj is de�ned as

bmj = yj −
∑
i∈SVm

αmi yiK(xi,xj), (4.6)

From the geometrical point of view, when the input space I is the Euclidean space,

the Riemannian metric is induced in the feature space F (Wu and Amari (2002)). As

has been proved in Lemma 3.3.1, the mapping s is actually controlled by the chosen

kernel function, and the magni�cation e�ect in a neighbourhood of a sample point

x is determined correspondingly. Thus, to increase the magni�cation e�ect, in our

65



previous chapter, we have proposed the data-adaptive kernel SVM, by updating the

kernel function with the scaling transformation function

K̃(x,x′) = c(x)K(x,x′)c(x′),

where c(·) is a positive scalar function,

c(x) = e−|D(x)|·kM (x)

and

kM(x) = AV Gi∈{j:‖s(xj)−s(x)‖2<M, yj 6=y}(‖s(xi)− s(x)‖2),

In this way, the average value on the right-hand side can comprise all the support

vectors within the neighborhood of s(x) with the radius of M but with a di�erent

label of class. This takes the spatial location of the support vectors in the feature

space F into account. The method turns out to be more robust and e�cient, and we

adopt the similar idea to the multi-class case.

We split the sample into k categories, each of which is represented by C1, C2, . . . , Ck

respectively, by their predicted labels of classes from the �rst round SVM. Then, the

multi-class adaptive data-dependent kernel transformation function is proposed as

c(x) =



exp(−kM,1(x)|D1(x)|), if x ∈ C1

exp(−kM,2(x)|D2(x)|), if x ∈ C2

. . .

exp(−kM,k(x)|Dk(x)|), if x ∈ Ck

(4.7)

where Dm(x), m = 1, 2, . . . , k is given by (4.9), kM,i(x), i = 1, . . . , k are parameters

that will be calculated to control the decay rates, similar to kM(x) in (4.3.1). In terms

of imbalanced data set, selection of an appropriate transformation function for each

category is important so that the problem can be transferred back to the balanced

one. Thus, we propose kM,i(x) is constructed as

kM,i(x) = AV Gi∈{j:‖s(xj)−s(x)‖2<M ·wi, yi 6=y}(‖s(xi)− s(x)‖2)

66



where AV G denotes the average operator, y is the class label associated with x, and

M can be regarded as the distance between the nearest and the farthest support

vectors from s(x). The weighting factor wi is de�ned as

wi =
1/n2

i∑k
i=1 1/n2

i

.

where ni is the size of the class from the training sample size. In this way, wi's show

the sparse location nature of each category, and it is obvious that all weighting factors

are summed to 1.

Here are some remarks. Controlling parameter M in binary case is replaced by

M · wi, instead of a direct setting of Mi for i = 1, 2, . . . , k. The reason is that in this

way, the local spatial information and the imbalance from the sample proportions can

be separated. An universal control on the Riemannian distance is adopted, instead

of di�erent Mis for di�erent categories, while taking the weight factors into account.

In this way, the classi�cation can be more robust to extreme points in spatial loca-

tions, which will drag the classi�ers towards the majority classes, while the weights

are considered to somewhat balance the training sample. Beside, this choice can sim-

plify the estimation process by signi�cantly reducing the number of parameters to be

tuned in real application. The only parameter to be tuned is M , since the weights

factors can be obtained from the class sizes. This can avoid over-parameterized and

over-�tted situation. Further, the weight factor has the form of the reciprocal of the

squared sample size. This gives the bene�ts that the minority class can be updated

with a larger magni�cation e�ect, and that the squared form can even enlarge this

magni�cation.

Other scaling transformation for multi-class SVMs has been seen in literature. In

terms of choice of c(·), there are other choices available, though they all bear some

drawbacks. More details can be found in Chapter 3. There are some di�erent types

of kM,i parameters. For example, Zhang et al. (2014) has proposed

kM,i(x) = wi · ki(x)
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where the weight factor is de�ned as

wi =
1/ni∑k
i=1 1/ni

and ki is chosen according to a chi-square distribution. The problem is that, on one

hand, the weight factor is not strong enough so that the magni�cation e�ect may not

be su�cient; on the other hand, the chi-square adopted has limited connection during

the process. Maratea et al. (2014) has the similar idea of construction of c(·) but still

too many parameters are involved with limited improvement.

4.3.2 Data-adaptive SVM algorithm for Multi-class Case

With c(x) constructed (4.7), we conformally transfer the kernel obtained from the

�rst around multi-class SVM in the following

K̃(x, z) = c(x) ·K(x, z) · c(z).

Note that the kernels in the �rst stage are all Gaussian RBF kernels. We now use

the data dependent kernels K̃(·, ·) to conduct the second round SVM as

Max
αm

n∑
i=1

αmi −
1

2

n∑
i=1

n∑
j=1

αmi α
m
j yiyjK̃(xi,xj). (4.8)

subject to the constraints

n∑
i=1

αmi yi = 0,

0 ≤ αmi ≤ B.

The k decision boundary functions can be constructed

D̃m(x) =
∑
i∈SVm

αmi yiK̃(xi,x) + b, (4.9)

and we can use these decision functions to predict the labels of the test objects x by

assigning it to the class with the largest absolute values of D̃m(x) for m = 1, 2, . . . , k.

In this way, it has all the bene�ts from the adaptive scaling for the binary case. Thus,
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as long as the controlling parameter M and the Gaussian kernel parameters B and

σ are tuned adaptively with data, the classi�er can be estimated, and hence the sub-

jects' labels can be predicted with the trained classi�er.

To conclude the section, the algorithm of the whole procedure of the multi-label

classi�cation problem is described as follows. A regular SVM classi�er is trained

with an ordinary Gaussian RBF kernel function, and the support vectors can be

found, so that the separating boundaries can be approximately found. Based on the

spatial information of these support vectors, the conformal transformation will be

constructed, and the original kernel function is updated. A second round of SVM

optimization problem is conducted with the updated kernel function, so that the

boundaries for di�erent classes can be found. Accordingly, the predicted labels for

subjects can be estimated. Performance of the method will be given in experiment

results section.

4.4 Numerical Investigation

In this section, the details of how to conduct our proposed approach in real situation

is described in order to assess the classi�cation capabilities and compare with other

classi�ers. The whole study will be divided into two parts on two data sets, namely

an arti�cial data set and a real data set with prostate cancer. We will compare with

4 methods from the traditional SVM, Wu and Amari (2002); Williams et al. (2005);

Maratea et al. (2014) and our proposed method.

In terms of classi�ers' performance, the classi�cation results can provide quanti-

tative measures. Generally speaking, one of the main indices is the overall accuracy.

Basically, there will be four possible categories, TP (true positive), FN (false nega-

tive), FP (false positive) and TN (true negative). Hence, the overall accuracy rate

can be evaluated as

Poverall =
TP + TN

TP + FP + TN + FN
.
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However, for imbalanced data, the overall accuracy rate is not su�cient and useful

in some cases (Maratea et al. (2014)). Consequently, another two measurements on

classi�ers' performance that are critical for imbalanced data are adopted, F−measure

and G−mean (geometric mean), derived from the four possible outcomes as well.

Normally for classi�cation problems, the sensitivity Psen and speci�city Pspe, which

show the performance of the positive class and that of the negative class, respectively,

de�ned as

Psen =
TP

TP + FN

Pspe =
TN

TN + FP

Precision is useful, de�ned as the proportion of relevant cases that is de�ned as

Ppre =
TP

TP + FP
.

F −measure considers both precision and sensitivity, which can be further inter-

preted as a weighted average of the two as

F −measure =
2× Ppre × Pspe
Ppre + Psen

.

G − mean is constructed as the product of the sensitivity and the speci�city,

giving a more fair comparison between the positive and negative classes, regardless

of its size.

Gmean =
√
Psen × Pspe.

Both the simulation study and the real data analysis will be based on these measures.

4.4.1 Simulation Studies

To start with, we consider an arti�cial data set. The whole process will be intensive.

There will be three scenarios, each of which considers the balanced, moderately im-

balanced and extremely imbalanced cases, respectively. The whole process is based
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on the Gaussian RBF kernel during the �rst round of classi�cation, if not mentioned

elsewhere.

For convenient reasons, the input space will be 2-dimensional, and all training data

will come from only 3 classes, all of which are bivariate Gaussian distributions with

di�erent but �xed means vectors as (2, 2), (4, 3) and (3, 2), and equal co-variance

matrix Σ2×2, set as γ · Σ, where γ is a controlling parameter that can control the

overlapping proportion and hence misclassi�cation will occur. Moderate covariance

is allowed for all pairs as well, set as correlation e�cient ρ = 0.3. It is worth noted

that the misclassi�cation rate will be de�nitely a�ected by the distance of the mean

vectors, as it is not di�cult to imagine, for instance, that the misclassi�cation will not

occur if the centres are su�ciently far from each when the covariance matrix is set as I.

The whole process is repeated 1000 times. During each time, the corresponding

measures and their standard deviations for all methods will be recorded, and the max-

imal margin of error, which is the largest values of the half length of the con�dence

interval of the measures for all compared methods, is reported as the maximal margin

in tables. The overall sample size for the training data will be set as 600, and will be

separated into 3 class by di�erent weights in 3 di�erent scenarios, with the class size

as (200, 200, 200) in Scenario 1, (100, 200, 300) in Scenario 2 and (20, 100, 480) in Sce-

nario 3. In each scenario, di�erent combinations of the budget and width parameters

B and σ need to be determined for the Gaussian kernel function. The cost parameter

B in (3.2) takes values 0.1, 0.2, 0.5, 1, 5, 8, 40, 100, 500 and σ takes values 0.01, 0.05,

0.1, 0.5, 1, 5, 10, 100. For values of the tuning parameter M , we choose the optimal

value as minimizing the generalization errors by 5-fold cross validation.

The classi�cation procedure will be as follows. We train the classi�er with the tra-

ditional SVM, and the support vectors can be found approximately. Then, the kernel

functions for all the methods will be updated adaptively by conformal transformation

with di�erent scalar function c(x). A second round of SVM will be conducted, and
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the estimated class for each observations in the sample will be given and compared

with the true label. With the accuracy measures mentioned above, the performance

of di�erent classi�ers will be obtained in Table 4.1, 4.2, and 4.3.

Improvement can be found in almost all situations with di�erent combinations of

the cost B and σ in the ordinary SVM. In general, the proposed method outperforms

among all the classi�ers, especially in the imbalanced data. When σ gets larger with

�xed B, the misclassi�cation rate tends to decrease in all of the methods compared.

When σ is relatively small, the proposed methods beat Wu and Williams' methods

both, while if σ is relatively larger, all of the methods are nearly the same. This is

because when σ is getting larger, the feasible solution set is getting larger, and all of

the methods tend to �nd the optimal solution. Correspondingly, when B is increas-

ing, the budget for misclassi�cation is getting bigger, which means more tolerance is

permitted so that the two classes can be separated.

For imbalanced data the performances of all methods are a bit worse without

surprise due to the non-uniformly distributed support vectors. The trends how mis-

classi�cation rates change with B and σ in both cases are similar as that in balanced

data case. Our way of conformal transformation still works best throughout all the

methods. What is di�erent is that this time kM tends to change in an opposite

way along with the density of the support vectors around a speci�c point. When

the ratio of proportions are more extreme, kM changes in a sharper way. The spatial

location of the support vectors in the feature space F is thus taken into consideration.

4.4.2 Ontario Prostate Caner MRI Data

In this section, the proposed method is applied on a prostate cancer MRI data set,

continuing as the second phase of study. Still, the study is aiming at �nding some sta-

tistical methods to classify non-/cancer areas by the imaging data induced by imaging

equipments, mainly MR, CT and ultra sound. During the second phase, 9 common
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classes are provided and listed in the introduction.

Other situations are similar to those in Chapter 3. No more patients are added

into the study. Predictors on each voxels are still the 3 intensity measures from MRI,

CT and ultra sound platforms , T2W intensity, ADC intensity and C-Grade intensity.

Other measures such as DCE and DWI are only available to part of the patients, and

hence are not included in the training process as predictors.

To adopt the proposed data-adaptive scaling in this multi-class case, two-stage

SVMs are still required: during the �rst round, a standard SVM with the selected ker-

nel is conducted, so that the support vectors from the original data set can be found.

Based on them, the conformal transformation scalar function can be constructed and

the kernel function can be updated. Next, a second-stage SVM is conducted and

the resulting estimated boundary will be used as the rule for classi�cation. In terms

of choosing appropriate tuning parameters for each method, cross validation is con-

ducted in patient-wise 7-fold for 500 times.

To test the performance, we will compare our proposed method with both tradi-

tional and data-adaptive multi-class classi�cation methods. In terms of the traditional

methods, one-versus-one (1vs1) and one-versus-all (1vsA) from indirect methods, and

the Crammer and Singer's (CS) and He's Simpli�ed SVM (simSVP) direct methods

will be included, while for the data-adaptive methods, Amari's and William's adap-

tively scaling will be included. In terms of the criterion of the classi�cation perfor-

mance, misclassi�cation rate, percentage of support vectors in the whole data set,

F-measure and G-means along with their margins are reported.

The outcome is listed in Table 4.4. Obviously, our proposed method performs

almost the best among all the compared methods. A highlight point is that our

proposed method has the smallest margins in all performance measures, resulting

from the property of the robust decay of the magni�cation e�ect from our proposed
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data-adaptive kernel. In terms of the accuracy, our proposed method has similar mis-

classi�cation rate with indirect methods, signi�cantly smaller than the rest methods.

F-measure and G-means both have seen the largest values in our proposed method,

much larger than other data-adaptive kernel methods. The percentage of support

vectors that are used for constructing the classi�ers is the smallest in our proposed

method as well, much smaller than 1vs1 and 1vsA which have slightly better accuracy

than ours and other methods.

It is worth pointing out that among those wrong predicted labels, G4 + 4 is the

dominant, in other words, the misclassi�cation always happens in G4+4 type cancer.

This is because the percentage of this type of cancer is really rare in the training

sample, taking only 1-2% among all the labels. This extremely imbalanced data have

made it very di�cult to detect with a high accuracy. Our proposed method can de-

tect around 60% among this type, while other data adaptive (Amari' s and William's)

methods can only �nd less than 20%, and almost none in other methods.

4.5 Concluding Remarks

In this chapter, we extend our data-dependent SVM construction technique to multi-

class situation. Based on the idea of the data-adaptive kernel SVM for binary case,

we proposed a new way to construct the data-dependent kernel for the multi-class

setting especially when the data are imbalanced, in a way that the decay rates are

more robust, and can vary along with the density of the size of neighbours. Thus,

the kernel can be adapted optimally for a speci�c data set. Numerical results have

shown the out-performance with our methods.
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Table 4.4: Outcomes of multi-class prediction on London Cancer Program.

Methods Error(%) SV(%) F-measure G-means

Proposed 8.60± 0.58 17.46± 0.57 0.84± 0.05 0.81± 0.04

Wu and Amari (2002) 11.88± 1.12 21.33± 1.27 0.70± 0.09 0.66± 0.10

Williams et al. (2005) 10.21± 0.97 18.93± 1.65 0.74± 0.12 0.71± 0.08

Crammer and Singer (2001) 9.20± 1.22 17.57± 1.12 0.77± 0.06 0.73± 0.06

He et al. (2012) 9.33± 1.20 18.29± 1.07 0.78± 0.10 0.74± 0.09

1vs1 8.20± 1.26 25.41± 2.87 0.81± 0.06 0.77± 0.07

1vsA 8.25± 1.57 24.16± 2.62 0.82± 0.06 0.76± 0.06
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Chapter 5

Dada-adaptive Kernel-penalized SVM

5.1 Introduction

An support vector machine o�ers the advantages including lower risk of over-�tting,

less model complexity (and hence the improvement of the generalization capability)

and less computational cost (Blum and Langley (1997)). The performance of an SVM

model relies on selecting the most relevant predictors while removing irrelevant ones

when there are many potential predictors. Penalized SVMs o�er a way of eliminating

redundant predictors, however, the penalized feature selection methods for SVMs in

the literature are mostly based on the input space. However, there are possibilities

that those predictors which have been eliminated in the input space are useful in the

projected feature space, and hence the classi�er will lose some useful information.

In this chapter, we propose a novel method of simultaneous feature selection and

classi�cation by penalizing data-adaptive kernels in SVMs. Instead of penalizing the

standard cost function of an SVM, we will directly penalize an objective function

with the data-adaptive kernel function that controls the performance of an SVM.

The predictors that are useful in the feature space are selected, and the decision rule

can be constructed simultaneously with the predictors. Di�erent penalty terms such
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as SCAD, MCP and L1-norm penalties will be compared. The oracle property of the

estimator is proposed. Iterative optimization process will be applied as no analytic

form of the estimated coe�cients can be obtained. Numerical comparisons show that

our model outperforms especially with the imbalanced data.

The rest of the paper organizes as follows. In Section 2, the framework of SVMs

and the penalized SVM is introduced. In Section 3, a data-adaptive kernel-penalized

SVM is constructed. Not only the oracle property of the coe�cients' estimates is pro-

posed, but an algorithm to achieve the goal is introduced for implementation purpose

as well. Extensive empirical studies are conducted in Section 4.

5.2 Notation and Framework

Consider a binary classi�cation problem. Given a random sample {(xi, yi)}ni=1, where

xi is a vector in the input space I = Rp, yi represents the class index which takes values

+1 or −1, and p, the dimension of the input space, indicates the number of predictors

available in the sample. The goal is to determine a rule such that observations can be

labeled into the corresponding class accurately with only limited number of predictors.

An SVM can classify the observations by mapping the input data x into another high-

dimensional feature space F = Rl, using a nonlinear mapping function s : Rp → Rl,

and searches a linear discriminant function

D(x) = wT s(x) + b (5.1)

wherew = (w1,w2, . . . ,wl) is an l−dimensional vector of parameters, s(x) = (s1(x), . . . , sl(x))T

is the l−dimensional column vector, and b is a scalar intercept. D(x) = 0 represents

the separating hyperplane in the input space. An individual point x can be classi�ed

by the sign of D(x) as long as the parameters w and b are determined.
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In mathematics, an SVM is the solution to minimizing

Q(w, b, ξ) =
1

2
‖w‖2 +B

n∑
i=1

ξi (5.2)

with respect to w, and b, subject to the constraints

yi(w
T s(xi)+ b) ≥ 1− ξi for i = 1, . . . , n,

where B is the so-called soft margin parameter that determines the trade-o� be-

tween the optimal combinatorial choice of the margin and the classi�cation error,

and ξ = (ξ1, . . . , ξn)T are nonnegative slack predictors. Equivalently, this optimiza-

tion problem can be represented in the Lagrangian dual function with the form as

Max
α

LD = Max
α

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyj < s(xi), s(xj) > . (5.3)

subject to the constraints

n∑
i=1

αiyi = 0,

0 ≤ αi ≤ B

for i = 1, 2, . . . , n, where αi's are the dual predictors (the Lagrange Multipliers) by

Lagrange Multiple Methods when solving the minimization problem in (5.2), and

< · , · > is the inner product operator. More details can be found in Chapter 2 and

3. Generally a scalar function K(·, ·), which is called a kernel function, is adopted to

replace the inner product of the two vectors xi and xj in the dual function in (5.3),

Max
α

LD = Max
α

 n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi,xj)

 .

Let SV be the set {j | αj > 0 for j = 1, 2, . . . , n}. Then the corresponding xi's where

i is in SV are called support vectors, where the cardinality of SV , denoted by l, is

the dimension of the feature space F . As pointed out in Chapter 2 and 3, αi's are

representing the contribution of the corresponding support vectors, and the kernel

form of SVM can be written as

D(x) =
∑
i∈SV

αiyiK(xi,x) + b
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The estimated intercept bj obtained by using the jth support vector xj is de�ned as

bj = yj −
∑
i∈SV

αiyiK(xi,xj).

Hastie et al. (2001) have proved that for di�erent j in the support vectors set SV ,

the bj is the same. In practice, we can take the average of all the bj's as the estimate

of the intercept b. Quite a few typical kernels are available, such as the radial form

K(x, z) = f(−‖x− z‖2),

among which the most popular one is the Gaussian RBF kernel with the bandwidth

parameter σ

K(x, z) = exp(−‖x− z‖2/2σ2). (5.4)

5.2.1 Data-Adaptive Kernel SVM

In Chapter 3, we have proposed the data-adaptive kernel SVM to increase the separa-

bility between two categories, and the spatial resolution around the boundary surface

is enhanced and so is the separability. This is especially important when the data are

imbalanced, since we have demonstrated that the imbalance in the data can severely

a�ect the performance of an SVM in Chapter 3. Geometrically speaking, when the

input space I is the Euclidean space, the Riemannian metric is induced in the feature

space F by the mapping s. In Chapter 3, Result 3.3.1 demonstrates the connection

between a kernel function K and a mapping s, and a data-adaptive kernel function is

constructed to enhance the accuracy of an SVM based on the Gaussian RBF kernel

function. Let C(x,x′) be a positive scalar function such that

C(x,x′) = c(x)c(x′),

where x and x′ are vectors from the input space, and c(x) is a positive univariate

scalar function. The kernel function K is updated as

K̃(x,x′) = C(x,x′)K(x,x′) = c(x)K(x,x′)c(x′), (5.5)
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where K̃(x,x′) corresponds to the mapping s̃ that satis�es the transformation

s̃ij(x) = cij(x)sij(x),

where cij(x) = ∂
∂xi

∂
∂zj
C(x, z)|z=x. The above process is known as the adaptive scal-

ing. In Chapter 3, we propose to adaptively scale the primary kernel function K by

constructing c(x) with the L1−norm radial basis function

c(x) = e−|D(x)|·kM (x) (5.6)

and

kM(x) = AV Gi∈{j:‖s(xj)−s(x)‖2<M, yj 6=y}(‖s(xi)− s(x)‖2),

where D(x) is given by (5.1), AV G denotes the average operator, y is the class label

associated with x, andM can be regarded as the distance between the nearest and the

farthest support vectors from s(x). Theorem 3.3.2 and 3.3.3 give numerical results of

the updated mapping s̃ by the data-adaptive kernel function, and the magni�cation

e�ect of the spatial resolution by the updated mapping s̃ can be calculated accord-

ingly. The magni�cation e�ect is roughly the largest near the separating boundary,

and it decreases robustly with a slow and steady rate from near the separating bound-

ary to faraway locations. This process is important when the data are imbalanced,

since by incorporating kM(x) into c(x), the adaptive scaling process updates the spa-

tial information, and is proved to have greater separability even when the data are

imbalanced in Chapter 3 and 4.

5.2.2 Penalized SVM

Another issue that needs to be considered during the classi�cation process is the com-

plexity of the model. More straightforwardly, the number of the predictors that are

used to construct the classi�er needs to be limited. When redundant predictors are

involved, extra noisy information will be introduced and hence deteriorate the accu-

racy of the classi�er (Zhang et al. (2016)). Fortunately, the number of the predictors
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can be controlled in the SVM framework. Under the standard prediction risk frame-

work of loss plus penalty form (Hastie et al. (2001)), the potential misclassi�cation

cost can be speci�ed by a universal weight q for each of the sample point from the

two classes, namely, Qi = q if yi = 1 and Qi = 1 − q if yi = −1 for some 0 < q < 1.

The classi�cation boundary can be estimated by a linear weighted SVM (Lin (2002)),

by solving

min
w, w0

Loss(w) = min
w, w0

n−1

n∑
i=1

Qi(1− yi(xTi w+ w0))+ + λwTw,

where (1 − t)+ = max{1 − t, 0} denotes the hinge loss, w are the coe�cients of the

predictors, w0 is the intercept and λ is a positive regularization parameter. When the

weight q = 0.5, the linear weighted SVM reduces to the standard SVM (Lin (2002)).

With the hinge loss of the form E(Q(1 − (yXTw + w0))+, a clear analytic form of

estimators of the coe�cients in the decision boundary 5.1 is given in the following

ŵ = arg min
w0,w

n−1

n∑
i=1

Qi(1− yi(ZTi w+ w0))+.

Furthermore, when selecting predictors from the input space, it is often assumed

that the true model has sparse predictors, or equivalently, wT = (wT
true,0

T ), where

wT
true = (w1,w2, . . . ,wh). Denote xTi = (zTi ,u

T
i ), where the h × 1 vector zi is the

nonzero-coe�cient part and the (p − h) × 1 vector ui corresponds to the redundant

information. To obtain the sparse estimator of the coe�cients, Zhang et al. (2016)

proposed that the penalty terms should be added directly to the loss function in the

way that

Loss(w) = n−1

n∑
i=1

Qi(1− yi(xTi w+ w0))+ +

p∑
j=1

pλn(‖wj‖), (5.7)

where pλn(·) is a symmetric, non-convex penalizing function with some tuning param-

eter λn. The oracle properties of the estimators obtained by minimizing (5.7) were

proved under some regulatory conditions. Some popular penalty functions were taken

as examples in their study, such as the smoothly clipped absolute deviance (SCAD)

penalty (Fan and Li (2001)) and the minimax concave penalty (MCP, Zhang (2010)).
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However, such a feature selection process cannot guarantee the classi�cation ac-

curacy of the SVM. As has pointed in Lemma 3.3.1, it is the kernel function that

actually controls the classi�er's performance. When the original input space is pro-

jected into the feature space, the kernel presents a critical part, and those predictors

with very little or no information in the feature space F should be eliminated. Thus,

a straightforward idea to select predictors during the training of the SVM is to di-

rectly penalize the objective function that contains the kernel. Thus, we propose a

new method of simultaneous classi�cation and feature selection process by penaliz-

ing data-adaptive kernels in SVM, which is called the data-adaptive kernel-penalized

SVM.

5.3 Methodology

In this section, a data-adaptive kernel-penalized SVM is proposed. The method

can simultaneously select predictors and conduct classi�cation with an data-adaptive

kernel function. Instead of adding penalty to the standard hinge loss function, we

propose to add the penalty term directly to the SVM of the kernel formulation, so

that the number of the predictors that are truly useful in the feature space can be

controlled. To put the issue of imbalance data into consideration, the data-adaptive

kernel will be used. The oracle properties of the estimates of the true parameters

under our proposed setting is proved.

5.3.1 Kernel-Based Parameters

We �rst introduce the parameters derived from the kernel function in our methodol-

ogy. In the following sections, we focus on the Gaussian RBF kernel as (5.4), where

the parameter σ is universal for all components of the input vectors x and z. When

there are more than one predictors available in the input space, each component of the

parameter vector σ in the Gaussian RBF kernel can take di�erent values for di�erent
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predictors

K(x, z) = exp(−
p∑
j=1

(xj − zj)2/2σ2
j ),

where p is the dimension of the input space I (Maldonado and Weber (2009)). Con-

sequently, the contributions of the corresponding predictors can be determined by the

parameters σ = (σ1, σ2, . . . , σp). For instance, if σj is very large, the j−th predictor

tends to contribute very little to the kernel function as the corresponding component

in the exponent will be close to zero. Contrarily, if σj is small, the contribution of

the j−th predictor will be large and its importance increases consequently. Thus, by

controlling the j−th component in the parameter vector σ, the importance of the

j−th predictor can be determined. This provides a way of selecting predictors by

directly estimating the parameters in the kernel function. Accordingly, the following

change of the kernel function is proposed as

K(x, z;w) = exp{−w⊗ ‖(x− z)‖2}, (5.8)

where w = (w1,w2, . . . ,wp) = 1/σ2 = (1/σ1, 1/σ2, . . . , 1/σp)
2 and ⊗ represents the

component-wise product. When wj is large, the contribution of the j−th predictor

will be large and hence its importance increases. Contrarily, when wj is very small,

the j−th predictor tends to contribute very little to the kernel function, and should

not be included during the training of an SVM. However, even if the absolute value

of wj is really small but is not zero, its in�uence in the kernel function still exists.

Including too many active predictors in the classi�er will dramatically complicate the

model, which may result in extra noisy information. The best way may be to force

some of these predictors to be exactly zero. This can be achieved by adding the

penalty item, and the number of active predictors can be sparse.

5.3.2 Data-adaptive Kernel-penalized SVM

To control the number of predictors in the classi�er, the penalty term for each com-

ponent of the parameters pλn(|wj|), j = 1, 2, . . . , p, will be included. Since the per-

formance of an SVM depends on the kernel function, we propose to add the penalty
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terms directly to the dual maximization problem that contains the kernel function.

Accordingly, the data-adaptive kernel-penalized SVM is initially proposed as the so-

lution to

Max
α, w

LD =

Max
α, w

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjK̃(xi,xj;w)−
p∑
j=1

pλn(|wj|)

 ,

(5.9)

such that

l∑
i=1

αiyi = 0,

0 ≤ αi ≤ B, i = 1, 2, . . . , l

wj ≥ 0, j = 1, 2, . . . , p,

where K̃(x, z) is the data-adaptive kernel function from (5.5), c(x) in K̃(x, z) is

from (5.6) and the primary kernel function is from (5.8). When the estimate of ŵ is

obtained, the predictors with non-zero coe�cients are considered to be the truly active

predictors that will a�ect the decision boundary. The boundary will be estimated by

D̂(x) =
∑
i∈SV

αiyiK̃(xi,xj; ŵ) + b̂ (5.10)

and the intercept b can be replaced by using any support vector xj as

b̂ = yj −
∑
i∈SV

αiyiK̃(xi,xj; ŵ).

With the decision rule in (5.10), a test observation x can be assigned to the class by

the sign of D̂(x).

There are several options for the speci�c forms of the penalties. In general, we

consider the non-convex penalty which satis�es Assumptions 1 and 2 in the appendix.

Such a non-convex penalty term is motivated by the fact that the L1−penalty, gen-

erally known as the least absolute shrinkage and selection operator, or LASSO, does

not have the oracle property due to the over-penalization on large coe�cients, and

hence L1−penalty is not a proper choice when the relevant predictors are to be se-

lected among the space with higher dimensions in classi�cation (Zhang et al. (2016)).
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Note that the tuning parameter λ can depend on the sample size n. Several popular

non-convex penalty terms satisfying Assumptions 1 and 2 are:

1. SCAD: Smoothly Clipped Absolute Deviation (Fan and Li (2001))

pλ(|w|) = λ|w|I(0 ≤ |w| < λ)

+
aλ|w| − (w2 + λ2)/2

a− 1
I(λ ≤ |w| ≤ aλ) +

(a+ 1)λ2

2
I(|w| > aλ)

for some a > 2.

2. MCP: Mini-max Concave Penalty (Zhang (2010))

pλ(|w|) = λ(|w| − w2

2aλ
)I(0 ≤ |w| < aλ) +

aλ2

2
I(|w| ≥ aλ) for some a > 1.

3. L0−norm smooth approximation: ‖w‖0 = |{i : wi 6= 0}| by (Maldonado et al.

(2011)). Unlike Lp-norm with p > 0, L0−norm is not precisely a norm because

the triangle inequality does not hold and consequently it is not smooth. Thus

the approximation by a concave function is applied on the L0−norm so that a

penalty function is

pλ(|w|) = 1T (1− exp(λ|w|)) ≈ ‖w‖0,

where λ is an approximation parameter.

Remarks : 1. Penalty terms are directly added to the loss function in literature.

However, the standard loss function does not contain the kernel function. When the

data are imbalanced, the performance of a standard SVM will be a�ected. Conse-

quently, the predictors selected without consideration of the imbalanced data may be

unreliable. Contrarily, the data-adaptive kernel-penalized SVM can ful�ll the feature

selection process while taking the imbalance of data into account. 2. The speci�c

form of the kernel function is not limited to the radial kernels. Other types of ker-

nels such as the polynomial kernel K(x, z) = (1 +
∑p

j=1 xjzj)
d are also available to

describe the mapping by kernels. However, not all the kernels are feasible for simul-

taneous classi�cation and feature selection process because of technical di�culty. For
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example, polynomial kernels are determined only by the order parameter d, while it

is not obvious how feature selection can be conducted during the classi�cation pro-

cess. However, our method is still very attractive in applications, since the Gaussian

RBF kernel we adopted in our method may be the most popular kernel. 3. The

constraints in the dual function contain the nonnegativity of the parameters w, be-

cause originally in the Gaussian kernels, the parameter σ is naturally considered as

a nonnegative standard deviation. However, we should notice that, in our setting,

we can remove nonnegativity by simply using a quadratic form of the parameters in

the penalized kernels so that whether the parameters are positive or negative will not

a�ect the decision boundary.

5.3.3 An Algorithm to Solve Data-Adaptive Kernel-penalized

SVM

To solve the data-adaptive kernel-penalized SVM in (5.9), a two-stage algorithm is

proposed. The whole process is similar to the algorithm for data-adaptive kernel

SVM in Chapter 3. In the �rst stage, a standard SVM is solved so that the location

information of the support vectors can be found. Based on the location information,

the primary kernel function is updated adaptively by (5.5). In the second stage, a

optimization problem with the updated kernel and the penalty item is solved.

Since no analytic form of the estimates can be found, an iterative procedure is

adopted to solve the optimization problem (Maldonado et al. (2011)). To be speci�c,

in the t−th round iteration, t = 1, 2, . . . , T , a standard dual optimization problem

for an SVM with the (t − 1)−th estimated kernel parameter vector ŵ(t−1), is to be

solved as

Max
α

L1(α) = Max
α

 n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi,xj; ŵ
(t−1))

 (5.11)
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such that

n∑
i=1

αiyi = 0,

0 ≤ αi ≤ B, i = 1, 2, . . . , n,

and the result is denoted as α(t). During this stage, the support vectors are obtained

by those non-zero αi's, and the dimension of the feature space l(t), which is the

cardinality of the set of active αi's in the t−th iteration, is found. Correspondingly,

c(x) can be constructed as (5.6) so that the data-adaptive kernel function K(x, z)

can be updated as K̃(x, z) by (5.5). In the second stage of the t−th iteration, a

non-linear formulation with the �xed α(t) is solved in the following

Min
w

L2(w) = Min
w

1

2

l(t)∑
i=1

l(t)∑
j=1

α
(t)
i α

(t)
j yiyjK̃(xi,xj;w) +

p∑
j=1

pλn(|wj|)

 (5.12)

such that

wj ≥ 0, j = 1, 2, . . . , p.

where the result is denoted as ŵ(t). The optimization in the second stage aims at

eliminating as many components in w as possible so that the solution can be sparse.

The whole process will stop when ‖w(t) − w(t−1)‖ is su�ciently small. The penalty

function can be arbitrarily any form as long as Assumptions 1 and 2 in the appendix

are satis�ed.

5.3.4 The Oracle Property

In this subsection, we will study the oracle property of the estimator. We will show

that, given some regularity conditions, the distance between the estimates and the

true values of the parameters goes to 0 when the sample size is su�cient large. Here

we only need to consider the optimization process in the second stage in (5.12), since

all the unknown information regarding the parameters w is included in this stage

(Note that α is considered as a �xed constant vector in the second stage). De�ne the
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estimator

ŵ = arg min L2(w) = arg min

 l∑
i=1

l∑
j=1

αiαjyiyjK(xi,xj;w) +

p∑
j=1

pλn(|wj|)

 .

Then under some regularity conditions in the appendix, the local oracle property is

proposed.

Theorem 5.3.1. Assume that Conditions 1-5 and Assumptions 1-2 for penalty terms

are all satis�ed. If max{|p′′λn(wj)| : wj 6= 0} → 0, then there exists a local minimizer

ŵ of L2(w) such that ‖ŵ − wtrue‖ = Op{
√
q/n}, where wtrue is the true parameters

of the predictors.

The detailed proof is provided in the appendix. Theorem 5.3.1 guarantees that

the estimate of the parameter in our proposed method acts as if the true values of

the parameters were known. When the sample size is su�ciently large, the distance

between the estimates and the true values of the parameters is so small that it can

be ignored. Consequently, the estimated decision rule in (5.10) can be obtained as if

the true one were already known, and we can use it to classify new observations.

Though various approaches for SVM-based feature selection procedures are avail-

able, our proposed method is di�erent from most of what currently exists in litera-

ture. As previously introduced in Chapter 2, the wrapper methods have a di�erent

methodological motivation of selecting predictors. The wrapper methods �nd a subset

of predictors by ranking them according to some criteria until some speci�c stopping

rule is met, and then construct the decision boundary on the basis of selected predic-

tors and classify new objects. This process separates the processes of classi�cation

and feature selection, and the ranking system is di�cult to unify for di�erent sce-

narios. Our proposed method can directly obtain an minimal subset of predictors

and simultaneously classify objects, by penalizing the kernel function and eliminating

noisy predictors, without ranking the importance of the predictors. The process of

the proposed method is more time-e�cient compared to the wrapper methods, and

the method improves the classi�cation performance especially when the data are im-
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balanced.

Our proposed method is di�erent from those methods that penalize the weight

vectors of SVMs or the original loss objective function, which shows little relation

to the kernel function. These methods apply only for linear or polynomial kernels,

which limits the use of the SVM and its capability of generalization. Instead of

putting penalty terms on the standard loss function, our method directly puts the

penalized term on the Lagrangian dual function which contains the explicit form of

a kernel function. This enables us to apply the data-adaptive scaling process on the

primary kernel functions. Hence, even if the data are imbalanced, the performance

of classi�cation with the SVM is still excellent. This enhances the robustness and

reliability of the classi�cation process with an SVM.

5.4 Experiment Results

In this section, a set of simulation studies are carried out to assess the accuracy of

the data-adaptive kernel-penalized SVM. We will compare the performance of our

proposed data-adaptive kernel-penalized SVMs to the performance of other penalized

SVMs with penalties directly on the loss function. For our data-adaptive kernel-

penalized SVM, we use penalties of SCAD (DA-SCAD-SVM) and MCP (DA-MCP-

SVM). For other penalized SVM, we use penalties of SCAD (SCAD-SVM, Zhang et al.

(2016)), MCP (MCP-SVM, Zhang et al. (2016)), L1−norm (L1−SVM, Zhu et al.

(2003)), adaptively weighted L1−norm with a weight parameter w = 0.5 (Adapt

L1−SVM, Zou (2007)) and L0−norm approximation (L0−SVM, Maldonado et al.

(2011)). The comparisons are made under various levels of imbalance in data. The

main target is to test the ability of identifying the relevant predictors and controlling

the test error when the data are both balanced and imbalanced.
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5.4.1 Simulation Study

We consider the data generation process of a standard discriminant analysis, which

follows the setting from Park et al. (2012) and Zhang et al. (2016). The model is

described as Pr(Y = 1) = w while Pr(Y = −1) = 1 − w, where w will control the

imbalance level. The input predictors X|(Y = 1) ∼MVN(µ,Σ) and X|(Y = −1) ∼

MVN(−µ,Σ), µ = (0.1, 0.2, 0.3, 0.4, 0.5, 0, . . . , 0)T ∈ Rp, Σ = (σij) with diagonal

elements σii = 1 for i = 1, 2, . . . , p and σij = ρ = −0.2 for 1 ≤ i 6= j ≤ q, and q is set

as 5. The label is determined by sgn(1.5X1 + 2.3X2 + 2.8X3 + 3.3X4 + 3.8X5).

In terms of tuning regularization parameters for any approach mentioned above,

we adopt the procedure similar to Mazumder et al. (2011). The prediction error is

calculated by 5-fold method. That is, 4/5 of all the sample points will be randomly

selected and used as the training set, while the left 1/5 of the sample points will be

used as the test set to calculate the prediction error. An initial guess of w is set

as 1T . During the second stage of solving the data-adaptive kernel-penalized SVM,

the gradient descent procedure is adopted for this non-linear optimization problem.

The iterative algorithm will stop if the change in the estimates of the predictors w

in two consecutive rounds, namely ‖w(t+1)−w(t)‖, is smaller than a given threshold ε.

For the tuning parameter λ in the penalty term, we use the SVM-extended

Bayesian information criterion (SVMIC) proposed in Zhang et al. (2016) as

SVMICγ(S) =
n∑
i=1

2wξi + log n|S|+ 2γ

(
p

|S|

)
, (5.13)

where ξi, i = 1, 2, . . . , n, are the optimal slack predictors correspondingly, S is a subset

of {1, 2, . . . , p}, |S| is the cardinality or the size of S, and
(·
·

)
represents the combina-

tion operator. The idea is motivated by the standard Bayesian information criterion

and is extended by Chen and Chen (2008). The range of λ is set as {2−6, 2−5, . . . , 23},

and γ is set as 0.5 in the tuning procedure without loss of generality (Chen and Chen

(2008)). The value of λ will be set as the one that maximizes (5.13). Note that the

values of the slack variables ξi in (5.13) are not available directly, but they can be
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calculated by ξi = [1− yiD̂(xi)]+ for i = 1, . . . , n, where [t]+ = max{0, t}, and D̂(xi)

can be obtained by (5.10) (Claeskens et al. (2008)). Due to computational considera-

tion, the cost parameter B takes values 0.1, 0.5, 1, 5, 10, 20, 50, 80, 100, 200, 500.

The bandwidth parameter M in the data-adaptive kernel function is determined by

minimizing the test error in the 5-fold cross validation process.

Further, we use w to represent the proportion of the class labeled as '1' in di�erent

scenarios, where w shows the imbalance level. As suggested in Zhang et al. (2016),

for SCAD and MCP penalties, the constant a will be set as 3.7 and 3, respectively.

Table 5.1, 5.2, 5.3 and 5.4 summarize the performances with di�erent combinations

of imbalance level and the number of predictors, based on a replication of 100 times.

The sample sizes n are �xed as 100 and 400, respectively. Columns of 'Relevant' and

'Irrelevant' show the information of the mean values of the truly active and inactive

predictors selected by the model, respectively. Column 'True' gives the percentage

that the true model containing exactly those 5 active predictors is correctly selected

during the 100 replications. Values in parentheses are the corresponding empirical

standard errors.

In general, the SVMs with the penalized data-adaptive kernels show a much

greater probability of correctly selecting the true model as n increases, which is con-

sistent with the asymptotic oracle property. According to the numbers in Column

Relevant, the SVMs with penalties of SCAD and MCP �nd the most relevant pre-

dictors compared with other methods. The SVM with L0−norm approximation can

�nd some relevant predictors, while the SVMs with L1−norm penalty tend to fail

in selecting the correct predictors, with or without adaptive weights. According to

Column Irrelevant, the two data-adaptive kernel-penalized methods exclude most

irrelevant predictors and hence eliminate the noisy predictors. The missing relevant

predictor, if there is any, is mostly from X1 due to the setting that X1 has the weakest

e�ect.
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On the other hand, when the imbalance level of data is increasing, the prediction

error tends to increase, which is consistent with the �ndings in Chapter 3. However,

given a speci�c level of imbalance in data, test prediction errors from data-adaptive

kernel-penalized SVMs are universally smaller than those obtained from other ap-

proaches, because these two methods give the fewest noisy predictors so that the pre-

diction error is minimized. More importantly, when the imbalance level increases, our

data-adaptive kernel-penalized SVMs outperform among all methods, which agrees

with the �nding in Chapter 3 that the data-adaptive kernel can improve the classi-

�cation performance. This adaptive scaling process on the kernel is only applicable

to our setting and not to any other method due to lack of kernel functions in the

model structures (penalized SVMs have penalty terms directly on the loss function,

which is not described in the kernel form). At the mean time, the feature selection

performance tends to be changed little, especially in the non-convex penalized data-

adaptive kernel SVMs.

It is worth noting that the combination (n, p) shows that, even when the number

of potential predictors is proportional to the sample size or larger, our methods still

performs well. This gives us some clue that the method may still work in big data or

ultrahigh dimensional settings. Indeed, the oracle property in our proposed method

indicates that, the true predictors can still be selected even when the dimension of

the input space is larger than the sample size, which is exactly the ultra-dimensional

setting.

5.4.2 A Real Data Example

In this study, we use an open-to-public Wisconsin Breast Cancer (WBC) data set

from the UCI repository (Blake and Merz (1998)), which contains 569 observations

(212 malignant and 357 benign tumors) that are described by 30 continuous predic-

tors. These predictors are measured by a digitized image of a Fine Needle Aspirate
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(FNA) of a breast mass, which can describe predictors of the cell nuclei shown in the

images. As a pre-process step, the predictors were �rst standardized.

Di�erent methods will be compared, both with and without penalties. For clas-

si�ers without penalties, the Gaussian kernel will be adopted, and all of the input

predictors will be used to estimate the decision boundary. For those with penalties,

we will use data-adaptive kernel-penalized SVMs with SCAD and MCP penalties,

as well as the penalized SVMs with SCAD and MCP penalties, which gave the best

performances in the simulation study. The number of predictors selected and test er-

rors will be reported. For those approaches that require 2-stage optimization process,

the solutions for the 1st stage optimization process are used as the initial values for

the 2nd stage optimization if needed (such as our proposed method). For SCAD and

MCP penalties, the constant a is still �xed as 3.7 and 3 respectively, the same as the

values used in the simulation process. A 5−fold cross validation will be conducted to

obtain the budget parameter B, the local bandwidth parameter M and the penalty

parameter λ.

Table 5.5 summarizes the classi�cation outcome of the mean and the standard

deviation (in parentheses) of the prediction error and the number of predictors se-

lected with di�erent approaches. It is clear that the data-adaptive kernel-penalized

SVMs perform the best among all approaches, with a signi�cantly lower prediction

error and number of predictors selected than any other method. Compared with pe-

nalized SVM with SCAD and MCP penalties, data-adaptive kernel-penalized SVMs

with the corresponding penalties still outperform, even though the penalties are the

same. MCP seems to be a better choice for the penalty term, since the number of the

predictor is the smallest, and the standard deviation is smaller. Adaptively weighted

L1−norm SVM and L1−norm SVM are fair. Clearly, the numerical results have con-

�rmed that data-adaptive kernel-penalized SVMs with SCAD or MCP penalty are

both promising classi�ers with low prediction error and excellent feature selection

ability.

96



5.5 Concluding Remarks

In this chapter, we propose the data-adaptive kernel-penalized SVM, a new method

that simultaneously achieves classi�cation and feature selection, especially when the

data are imbalanced. Instead of penalizing the loss function of SVMs, an non-convex

penalty is proposed to be added directly to the SVM formulation with the kernel

function. The bene�t is that the truly active predictors are more likely to be selected

in the feature space instead of the input space, because it is the kernel function that

mainly determines the classi�cation process. The data-adaptive kernel is adopted to

the SVM so that even when the data are imbalanced, the performance of the SVM is

still excellent. Along with the oracle properties as if the true sparsity in the feature

space is already known, our proposed method works well in both simulation study

and the real data example, possibly even when the ultra-dimensional setting exists.

The method proposed in this chapter is actually an embedded approach, as men-

tioned in the introduction part, and the forms of penalty terms are not limited to

those applied in the methodology above. The methodology may be extended to the

multi-category classi�cation problem, though the data-adaptive kernels need to be

modi�ed. Another issue is the choice of the primary kernel function. The methodol-

ogy proposed is based on the Gaussian RBF kernel because of its natural link with

the contribution of the predictors. Extensions will be considered in the future work.
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Table 5.1: Simulation outcomes for data-adaptive kernel-penalized SVMs and penal-

ized SVMs with sample size n = 100. Margins are in brackets.

Method Proportion p Relevant Irrelevant True% Test Error%

DA-SCAD-SVM

w=0.50
50 5.00(0.00) 0.88(0.16) 96 8.16(0.20)

100 5.00(0.00) 0.91(0.14) 96 8.72(0.20)

w=0.75
50 4.96(0.01) 0.92(0.23) 94 9.23(0.30)

100 4.95(0.01) 0.95(0.27) 94 9.85(0.30)

w=0.90
100 4.91(0.03) 1.10(0.39) 91 10.55(0.40)

100 4.90(0.03) 1.09(0.41) 91 10.93(0.40)

DA-MCP-SVM

w=0.50
50 5.00(0.00) 0.12(0.01) 98 7.20(0.20)

100 5.00(0.00) 0.13(0.01) 98 7.38(0.20)

w=0.75
50 4.98(0.01) 0.26(0.03) 96 8.44(0.20)

100 4.98(0.01) 0.28(0.03) 96 8.90(0.20)

w=0.90
100 4.95(0.02) 0.42(0.04) 92 9.20(0.30)

100 4.94(0.02) 0.45(0.04) 92 9.65(0.30)

SCAD-SVM

w=0.50
50 4.92(0.02) 1.92(0.18) 96 8.23(0.20)

100 4.91(0.02) 1.99(0.17) 96 8.66(0.20)

w=0.75
50 4.83(0.03) 2.01(0.31) 91 10.19(0.40)

100 4.78(0.04) 2.13(0.36) 91 10.87(0.40)

w=0.90
100 4.76(0.04) 3.35(0.41) 88 12.15(0.50)

100 4.74(0.04) 3.40(0.43) 87 12.36(0.50)

MCP-SVM

w=0.50
50 5.00(0.00) 0.27(0.02) 98 7.32(0.20)

100 5.00(0.00) 0.29(0.02) 98 7.41(0.20)

w=0.75
50 4.92(0.01) 0.43(0.03) 93 8.96(0.20)

100 4.91(0.01) 0.47(0.03) 93 9.29(0.30)

w=0.90
100 4.85(0.03) 0.88(0.05) 89 10.63(0.40)

100 4.84(0.03) 0.91(0.05) 89 11.79(0.40)
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Table 5.2: Simulation outcomes for non-penalized SVMs with sample size n = 100.

Margins are in brackets.

Method Proportion p Relevant Irrelevant True% Test Error%

Adapt L1−SVM

w=0.50
50 4.85(0.02) 2.87(0.66) 62 12.16(0.50)

100 4.78(0.04) 2.93(0.49) 54 14.16(0.40)

w=0.75
50 4.61(0.04) 4.11(0.23) 55 13.88(0.40)

100 4.37(0.08) 4.23(0.56) 43 15.73(0.40)

w=0.90
50 4.33(0.07) 6.28(0.77) 41 16.68(0.50)

100 4.03(0.10) 6.79(0.78) 25 17.02(0.50)

L1−SVM

w=0.50
50 4.38(0.07) 13.62(0.90) 23 16.28(0.50)

100 4.01(0.10) 13.10(0.86) 5 20.23(0.50)

w=0.75
50 4.13(0.09) 15.18(1.05) 8 18.71(0.50)

100 3.91(0.10) 14.92(1.03) 0 22.33(0.60)

w=0.90
50 3.87(0.10) 16.99(1.22) 2 20.02(0.60)

100 3.81(0.13) 16.87(1.21) 0 25.01(0.70)

L0−SVM

w=0.50
50 4.86(0.05) 31.08(1.52) 10 16.67(0.50)

100 4.71(0.06) 42.98(2.13) 4 19.33(0.60)

w=0.75
50 4.62(0.07) 35.71(1.67) 3 19.18(0.60)

100 4.45(0.08) 46.29(2.20) 0 22.00(0.80)

w=0.90
50 4.33(0.10) 39.53(2.02) 1 22.61(0.80)

100 4.02(0.10) 59.01(2.54) 0 25.98(1.00)
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Table 5.3: Simulation outcomes for data-adaptive kernel-penalized SVMs and penal-

ized SVMs with sample size n = 400. Margins are in brackets.

Method Proportion p Relevant Irrelevant True% Test Error%

DA-SCAD-SVM

w=0.50
200 5.00(0.00) 0.58(0.11) 98 7.76(0.20)

400 5.00(0.00) 0.72(0.13) 98 8.13(0.20)

w=0.75
200 4.98(0.01) 0.67(0.12) 96 8.76(0.30)

400 4.98(0.01) 0.71(0.13) 96 9.12(0.30)

w=0.90
200 4.95(0.02) 0.81(0.17) 93 9.14(0.30)

400 4.94(0.02) 0.77(0.16) 93 9.93(0.30)

DA-MCP-SVM

w=0.50
200 5.00(0.00) 0.05(0.01) 98 6.28(0.20)

400 5.00(0.00) 0.06(0.01) 98 6.91(0.20)

w=0.75
200 4.98(0.01) 0.12(0.04) 97 7.45(0.20)

400 4.98(0.01) 0.11(0.04) 97 7.93(0.20)

w=0.90
200 4.95(0.02) 0.18(0.05) 94 8.60(0.20)

400 4.94(0.02) 0.19(0.05) 94 9.11(0.30)

SCAD-SVM

w=0.50
200 4.96(0.01) 1.52(0.15) 96 8.01(0.20)

400 4.96(0.01) 1.76(0.16) 96 8.36(0.20)

w=0.75
200 4.88(0.03) 1.77(0.16) 92 9.59(0.30)

400 4.82(0.04) 1.98(0.18) 92 10.27(0.40)

w=0.90
200 4.82(0.04) 2.89(0.36) 90 11.32(0.50)

400 4.77(0.04) 3.11(0.40) 89 11.87(0.40)

MCP-SVM

w=0.50
200 5.00(0.00) 0.27(0.02) 98 7.32(0.20)

400 5.00(0.00) 0.29(0.02) 98 7.41(0.20)

w=0.75
200 4.92(0.01) 0.43(0.03) 93 8.96(0.20)

400 4.91(0.01) 0.47(0.03) 93 9.29(0.30)

w=0.90
200 4.85(0.03) 0.88(0.05) 89 10.63(0.40)

400 4.84(0.03) 0.91(0.050) 89 11.79(0.40)
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Table 5.4: Simulation outcomes for non-penalized SVMs with sample size n = 400.

Margins are in brackets.

Method Proportion p Relevant Irrelevant True% Test Error%

Adapt L1−SVM

w=0.50
200 4.88(0.02) 2.42(0.66) 77 11.42(0.50)

400 4.82(0.02) 2.65(0.23) 60 12.91(0.50)

w=0.75
200 4.73(0.04) 3.69(0.30) 65 12.51(0.50)

400 4.49(0.06) 3.82(0.23) 48 13.80(0.50)

w=0.90
200 4.46(0.06) 5.52(0.63) 47 15.23(0.50)

400 4.33(0.07) 6.18(0.76) 29 16.45(0.60)

L1−SVM

w=0.50
200 4.49(0.08) 11.28(0.90) 35 13.28(0.50)

400 4.25(0.9) 13.10(0.86) 16 16.55(0.60)

w=0.75
200 4.25(0.09) 13.65(1.05) 17 15.97(0.50)

400 4.12(0.09) 14.16(1.03) 6 18.46(0.60)

w=0.90
200 4.09(0.10) 14.85(1.22) 5 18.98(0.60)

400 4.01(0.10) 15.26(1.21) 1 21.98(0.70)

L0−SVM

w=0.50
200 4.88(0.04) 25.08(1.22) 15 14.91(0.40)

400 4.79(0.06) 28.66(1.56) 8 17.76(0.50)

w=0.75
200 4.65(0.07) 28.12(1.54) 5 16.53(0.50)

400 4.45(0.08) 31.67(1.53) 1 20.35(0.70)

w=0.90
200 4.43(0.09) 33.53(1.61) 0 19.53(0.60)

400 4.11(0.09) 40.27(2.08) 0 23.16(0.90)

Table 5.5: Classi�cation Outcome on the Wisconsin Breast Cancer Data Set. Margins

are provided in the brackets.

Methods # of Predictors Prediction Error(%)

DA-SCAD-SVM 6.05(0.80) 9.60(0.30)

DA-MCP-SVM 5.06(0.20) 9.40(0.20)

SCAD-SVM 7.10(0.80) 10.90(0.30)

MCP-SVM 6.04(0.20) 13.20(0.20)

L0−norm Approximation SVM 12.04(1.30) 15.20(0.20)

Adapt L1−norm SVM 14.50(2.40) 17.20(1.50)
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Chapter 6

Conclusions And Future Work

6.1 Conclusions and Discussions

The motivation of the thesis comes from a real projection in how to classify a pa-

tient whether he or she has a caner, some other disease or no disease in prostate in

Canada, based on various measures of medical imaging data that come from di�erent

platforms including MRI, ultrasound and CT. The predictive models that are derived

from statistical learning in this work can help automatically predict the healthiness

of a patient based on medical images only, much less time-consuming and more ac-

cessible to those patients with less medical resources.

Compared with the traditional classi�cation problem, data are always imbalanced

due to the fact that even a patient with a very severe cancer will only show 10% to

20% cancerous proportions, which lead to the poor performance in traditional clas-

si�cation methods. Another issue is that how to determine the true measures of the

medical images that can have real relation to the disease, instead of involving redun-

dant or even noisy features from the medical images, which might takes extra cost

both in time and money.

The Support Vector Machine (SVM) is one of the most popular used algorithms

on classi�cation, and are well renowned for their strong theoretical foundations, gen-
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eralization performance and ability to handle high dimensional data. By mapping the

training data into a higher-dimensional feature space implicitly, SVM can construct

a hyperplane (decision surface) in this feature space and maximize the margin of

separation between itself and those points locating nearest to it (called the Support

Vectors (SV)). Then, this decision surface can then be used as the rule and basis for

classifying vectors of unknown objects.

Considering all these factors, our main contributions are in the following. We

present a new method of scaling the kernel function to make it data-adaptive, con-

sisting of two steps. Followed by the primary SVM procedure in the �rst step, the

method locally adapts the kernel function to the data distribution based on the skew-

ness of the class boundary and hence enlarge the kernel directly on the Riemannian

manifold in the feature space, instead of the positions of support vectors in the input

space. With the distance measure in the feature space, the conformal transformation

can make full use of the updated information in the �rst step. Experimental results

on both simulation and MRI data show that this new way of constructing the kernel

is robust and performs well compared with the original method.

Furthermore, we extend our data-dependent SVM construction technique to multi-

class situation, especially for the imbalanced data set. The algorithm still consists of

two stages. Based on the idea of data-adaptive kernel SVM for binary case, In the

�rst stage, a standard multi-class SVM with direct method is constructed so that the

spatial location of all the support vectors can be found. Based on this, in the sec-

ond stages, the data-dependent kernels are constructed for each SVMs in multi-class,

combing the spatial location of the support vectors from the �rst stage and the infor-

mation from sample sizes. By enhancing the local magni�cation e�ect, the separation

of the SVMs with the data-adaptive kernels constructed in this way are more e�ec-

tive and robust, with the magni�cation e�ect varying along with the density of the

size of neighbours, especially for imbalanced data. Thus, the kernel can be adapted

optimally for a speci�c data set. Numerical results have shown the out-performance
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with our methods.

We propose the data-adaptive kernel-penalized SVM, a new method that simul-

taneously achieves classi�cation and feature selection, especially when the data is

imbalanced. Instead of penalizing the loss function of SVMs, as has been done in

literature, an non-convex penalty is proposed to be added directly to the kernel form

of the SVM. The bene�t that, the data-adaptive kernel is applicable to SVM so that

even when the data is imbalanced, the performance of the SVM is still excellent,

while in this setting other penalized SVM cannot work well due to lack of �exibility

in SVM. This is because it is the kernel function that mainly determines the classi�-

cation process. Along with the oracle properties as if the true sparsity in the feature

space is already known, our proposed method works well in both simulation study

and the real data example, possibly even when the ultra-dimensional setting exists.

6.2 Future Work

6.2.1 Measurement Error from Multiple Platforms

Measurement error is the di�erence between a measured value of some quantity and

its true value. Statistically, an error is not a mistake; instead, it results in additional

variability inherent in the measurement process. In particular, classi�cation error is a

type of measurement error by which the respondent does not provide a true response

to an examination item. When measurement error comes from multiple platforms,

the cumulative variability during each process can dramatically impact the perfor-

mance of the classi�er.

In imaging data process, there is measurement error from multiple platforms. For

example, when medical clinics collect imaging data from patients with cancer, data

come separately from di�erent sources, such as Magnetic resonance imaging (MRI),
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ultrasound or CT. When classifying di�erent tissues according to di�erent levels of

severity of cancer, co-registration of di�erent platforms and histology needs to be

done for the sake of pathological reasons, and the accuracy of the classi�cation is of

extreme signi�cance. However, when co-registering the In-Vivo MRI to Ex-Vivo MRI

and then to CT data, transformation needs to be applied, so that the images for the

same organs need to be overlapped, while during the process, additional variability is

introduced by di�erent operators. Besides, occasionally the measures of the predictors

in medical science has to be recalculated by some threshold from raw imaging data

due to real needs, the measurement error is further generated into the data. Thus,

the multi-platform measurement error has to be considered so that the performance

of the classi�er is reliable.

It is possible to take the measure error into consideration in our settings. When

the data is polluted by measure error, the performance of the classi�er can be dramat-

ically impacted and thus the prediction power. Intuitively, SVM should be robust and

resistant to measurement error from weak to moderate levels, as the decision bound-

ary relies only on the sample points near the boundary rather than the observations

far away. Thus, even if there is some measurement error in the data, the estimated

decision boundary will be less a�ected.

6.2.2 Feature Engineering with Multi-class Classi�cation

A potential application of our data-adaptive SVM is in feature engineering, especially

in image recognition. When to detect the pattern in images in engineering, such as the

edge of the prostate cancer, the spatial correlation needs to be considered due to the

possibly high correlation between neighbourhood in some areas, and the classi�cation

process should take into the spatial information into account. A typical way to detect

the patterns in images is to create some feature vectors from the predictors, such as

the gradients in di�erent directions (typically in horizontal and vertical directions)

in the colour system pixel-wisely, where the gradients are derived from some speci�c
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intensity measure. Thus, if these information can be used and incorporated into the

data-adaptive kernel, the spatial information can be further used to detect di�erent

classes of the pixels and hence accuracy can be increased.

Another issue during the feature detection process is that, if we would like to

detect labels of some area instead of pixel-wisely, more gradient features will be en-

gages. More straightforwardly, if we want to classify a k by k region of pixels in an

image with p intensity measure associated with each pixels, there will be k2 gradients

in horizontal and vertical directions, along with k ∗ p intensity measures. Thus, the

number of potential predictors might increase proportionally with the area of the in-

terested regions. When all these predictors are incorporated into the models, feature

selection in our proposed method will come in to select the real useful predictors and

eliminate the noisy ones.

6.2.3 Application to Multi-label Classi�cation

Another potential application of our proposed data-adaptive SVM and feature se-

lection method can is in multi-label classi�cation problem, where an object is not

exclusively belongs to a speci�c class, but rather might belong to more than one la-

bels. An active principled approach is the active learning, which aims to optimize the

performance of the classi�cation while minimizing the number of labels needed for

training. SVM has already been applied in this area, and the multi-class data-adaptive

kernel machine in our method might also increase the separability of labeling process,

especially when the data is highly imbalanced, which is quite common in active learn-

ing approach, though the data-adaptive kernel needs to be modi�ed to incorporate

with the setting. Real applications can be found in email documentation and library

management areas.
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6.2.4 Application to Unsupervised and Semi-supervised Learn-

ing

The technique of our proposed method might also be used in unsupervised and semi-

supervised learning. Though the SVM is originally designed for supervised learning,

it is also of help in un/semi-supervised learning. A typical way is to formulate convex

relaxations of the natural training criterion: �nd a labeling process that can obtain

an optimal SVM on the resulting training data, both in binary and multi-class prob-

lems, where the SVM gets involved. Thus, our proposed method, which considers

the imbalanced data situation, can provide help from this perspective. Areas in bio-

informatics such as gene selection have potentially its need in un/semi-supervised,

such as clustering genes with similar functions and grouping the genes that achieve

some speci�c function all together, where level of imbalance can be extremely high,

and hence our proposed work can provide some insight.
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Appendix A

Supplementary Materials

A.1 Mercer's Condition

In mathematics, a real-valued function K(x, y) is said to ful�ll Mercer's condition if

for all square integrable function g(x) one has∫ ∫
g(x)K(x, y)g(y)dxdy ≥ 0. (A.1)

which is a su�cient condition for every kernel function in SVM (Vapnik and Vapnik

(1998)). In terms of the SVMs with data-adaptive functions, it can be proved that

the updated "kernel" based on local data is indeed a kernel function that satis�es the

Mercer's Condition (Wu and Amari (2002)).

A.2 An Explanation on the Geometry of SVM Ker-

nels

Denote by f the mapped result of x in F, i.e., f = s(x). Then a small change in x,

dx, will be mapped to

df = ∇s · dx =
∑
j

∂

∂xj
s(x) dxj, (A.2)

where
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∇s =

(
∂

∂xj
s(x)

)
. (A.3)

Thus, the squared length of df can be written in the quadratic form as

|df|2 =
l∑

m=1

(dzm)2 =
∑
ij

sij(x)dxi dxj, (A.4)

where

sij(x) =

(
∂

∂xi
s(x)

)T
·

(
∂

∂xj
s(x)

)
(A.5)

Then the n × n positive-de�nite matrix S(x) = (sij(x)) is de�ned on the Rie-

mannian metric. It has been proved that the metric can be derived from the kernel

K.

A.3 Proof of Ampli�cation of Separability on Bound-

aries

Take the binary case as an example. With Theorem 3.3.2, it is easy to check the

Euclidean metric is

sij(x) =
1

σ2
ηij (A.6)

and the volume magni�cation is the constant√
s(x) =

1

σn
(A.7)

where ηij = I(i = j) and I(·) is the indicator function. Thus, the modi�ed mapping

s̃ij(x), corresponding to the conformally transformed kernel function K̃ when K is

Gaussian RBF kernel, is

s̃ij(x) =
|c(x)|
σ2

ηij + ci(x)cj(x) (A.8)

where ci(x) is the corresponding component of ∇c(x) = c(x)∇log c(x), thus the

ratio of the new to the old magni�cation factors turns out by√
s̃(x)

s(x)
= cn(x)

√
1 + σ2‖∇log c(x)‖2 (A.9)
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where log c(x) = −kM |D(x)|, and thus Eq.(A.9) is changed into√
s̃(x)

s(x)
= e−nkM |D(x)|

√
1 + 4σ2k2

M |D(x)|‖∇|D(x)|‖. (A.10)

Thus, the magni�cation will be at least e−nM
√

1 + 4M2σ2 at the separating region

where D(x) = ±1, since kM < M by its de�nition.
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Appendix B

Proofs of Theorems

B.1 Proof of Result 3.3.1

Proof. By the de�nition of a reproducing kernel function K(x, z) with its values λk

and the corresponding scalar eigenfunctions gk(x), we have∫
K(x, z) · gk(z) dz = λk · gk(x)

where k = 1, 2, . . . , l. Then the kernel is represented as

K(x, z) =
∑
k

λk · gk(x) · gk(z).

By rescaling the function gk(·) as sk(x) =
√
λkgk(x), the kernel function can be further

present as

K(x, z) =
∑
k

sk(x) · sk(z) = [s(x)]T · [s(z)]

where [s(x)]T =
(
s1(x), s2(x), . . . , sl(x)

)
and [·]T is the transpose operator. Thus, if

we further de�ne

∇s =

(
∂ s(x)

∂ x

)
=


∂ s1(x)
∂ x1

. . . ∂ s1(x)
∂ xp

...
...

...

∂ sl(x)
∂ x1

. . . ∂ sl(x)
∂ xp
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and

sij(x) =

(
∂

∂xi
s(x)

)T
·

(
∂

∂xj
s(x)

)

=

(
∂s1(x)

∂xi
, . . . ,

∂sl(x)

∂xi

)
·

(
∂s1(x)

∂xj
, . . . ,

∂sl(x)

∂xj

)T

,

as in Eq.(3.3.1) and (3.5), it follows that

∂

∂xi

∂

∂zj
K(x, z)|z=x = [∇s(x)]T · ∇s(z) =

(
∂

∂xi
s(x)

)T
·

(
∂

∂xj
s(x)

)
= sij(x). ]

The lemma gives how a mapping s is associated with the corresponding kernel function

K. Thus, given a speci�c form of a kernel function and an adaptive scaling function

c(x), we have the theorems 3.3.2 and 3.3.3.

B.2 Proof of Result 3.3.2

Proof. Assume the primary kernel function as K(x, z) and a scalar function c(x) as

in Eq.(3.7). If we de�ne

ci(x) =
∂c(x)

∂xi
,

Ki·(x,x) =
∂K(x, z)

∂xi
|z=x,

K·j(x,x) =
∂K(x, z)

∂zj
|z=x,

and sij(x) =
∂

∂xi

∂

∂zj
K(x, z)|z=x
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then by Lemma 3.3.1,

s̃ij(x) =
∂

∂xi

∂

∂zj
K̃(x, z)|z=x =

∂

∂xi

∂

∂zj

(
c(x) ·K(x, z) · c(z)

)
|z=x

=
∂

∂zj

[
c(z) ·

(
∂

∂xi

[
c(x) ·K(x, z)

])]∣∣∣∣∣
z=x

=
∂

∂zj

[
c(z) ·

(
ci(x) ·K(x, z) + c(x) · ∂

∂xi
K(x, z)

)]∣∣∣∣∣
z=x

= ci(x) · cj(z) ·K(x, z) + ci(x) · c(z) · ∂
∂zj

K(x, z) + ci(x) · cj(z)
∂

∂xi
K(x, z)

+ c(x) · c(z) · ∂
∂xi

∂

∂zj
K(x, z)

∣∣∣∣∣
z=x

= c2(x) · sij(x) + ci(x) ·K(x,x) · cj(x) + c(x) · {Ki·(x,x) · cj(x) +K·j(x,x) · ci(x)}.

In particularly when i = j, it is easy to check that

Ki·(x,x) = K·j(x,x),

and de�ne them in short as Ki(x,x), it follows that

s̃ii(x) = c2(x) · sii(x) + 2 · c(x) · ci(x) ·Ki(x,x) + c2
i (x) ·K(x,x). ]

Thus, given a speci�c form of the primary kernel function K, the adaptive scaling

mapping can be calculated. When the Gaussian RBF kernel is applied, we have

Theorem 3.3.3, as proved in the following.

B.3 Proof of Result 3.3.3

Proof. When we apply in Theorem 3.3.2 the Gaussian RBF kernel as in (3.3.3), it is

found that

Ki·(x,x) = K·j(x,x) = 0

and

K(x,x) = 1
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for any i and j, so the third term in the result of Theorem 3.3.2 is 0, and second term

is changed into ci(x) · cj(x). Further, when i 6= j,

sij(x) =
∂

∂xi

∂

∂zj
K(x, z)|z=x =

1

σ2
(xi − zi) ·K(x,x) · (xj − zj)

∣∣∣
z=x

= 0;

while when i = j,

sii(x) =
1

σ2

(
(xi − zi) ·K(x, z) · (xi − zi) +K(x, z)

)∣∣∣
z=x

=
1

σ2
;

thus, the �rst term becomes
c2(x)

σ2
· (i = j).

Combining all the above results, Theorem 3.3.3 is proved. ]

B.4 Assumptions for Penalty Terms

1. The penalty function pλn(x) is symmetric, non-decreasing and concave for x ∈

[0,∞), with a continuous �rst-order derivative p′λn(x) on R+ and p′λn(0) = 0.

2. There exists a > 1, such that lim
x→0+

p′λn(x) = λn, p
′
λn

(x) ≥ λn−x/a for 0 < x < aλ

and p′λn(x) = 0 for x ≥ aλ.

B.5 Proof of Theorem 5.3.1: the Oracle Property in

data-adaptive Kernel-penalized SVM

B.5.1 Regularity Conditions

1. The densities of Z given Y = 1 and Y = −1 are continuous with common

support in Rq. Here Z is the truly active predictors.

2. E(Z2
j ) <∞ for 1 ≤ j ≤ q, i.e., the second order moments of all active predictors

are �nite.
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3. The true parameter w0 is a non-zero and unique vector.

4. q = O(nc) for some 0 ≤ c < 1/2, namely, limn→∞ q/n
c <∞.

5. The largest eigenvalue of n−1[X�2]TX�2 is �nite, where X = (x1, . . . ,xl) is de-

sign matrix, and (·)�2 is the component-wise square.

Here condition 1-3 are the assumptions to ensure that the oracle estimator con-

structed in our proposed method is consistent and that the optimal classi�cation de-

cision rule is not constant. Condition 4 is a common requirement in high-dimensional

inference, indicating that the the number of the truly active predictors cannot diverge

with a rate faster than
√
n. Condition 5 gives the upper boundary of the largest eigen-

values of the squared design matrix, which is necessary in our proposed method due

to the quadratic form in the radial kernel functions. With these conditions, the oracle

property can be proved.

B.5.2 Proof of Theorem 5.3.1: the Oracle Property

Proof. De�ne

L(w) =
l∑

i=1

l∑
j=1

αiαjyiyjK(xi,xj;w) +

p∑
j=1

pλn(|wj|) = L1(w) +

p∑
j=1

pλn(|wj|) (B.1)

that comes from the second part of the optimization problem in Eq.(5.12). We shall

show that, for ∀ ε > 0, there is a constant ∆ such that, when n is su�ciently large,

Pr[inf‖u=∆‖L(wtrue +
√
q/n · u) > L(wtrue)] ≥ 1− ε. (B.2)

In the following proof, wtrue will be replaced by w for short without misleading the

proof. Note that
∑

i=1 αiyi = 0 from the constraints of Eq.(5.11).

l∑
i=1

l∑
j=1

αiαjyiyj =
l∑

i=1

αiyi ·
l∑

j=1

αjyj = 0, (B.3)

and further,
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0 =
l∑

i=1

l∑
j=1

αiαjyiyj =
∑

i, j, yiyj=1

αiαj −
∑

i, j, yiyj=1

αiαj. (B.4)

This immediately leads to

L1(w) =
∑

i, j, yiyj=1

αiαjK(xi,xj;w) −
∑

i, j, yiyj=1

αiαjK(xi,xj;w) (B.5)

Since yi ∈ {1,−1}, then yiyj ∈ {1,−1} for all (i, j), with a probability of π2
+ + π2

− for

1 and 2π+π1 for -1 assuming independence between yi and yj, where π+ = Pr(yi = 1)

and π− = Pr(yi = 1), and further, it is easy to check

0 ≤ E(yiyj) = π2
+ + π2

− − 2π+π1 = (π+ − π−)2 ≤ 1

and thus

E(L1(w)) = (π+ − π−)2
∑
i=1

∑
j=1

αiαjK(xi,xj;w) ≥ 0 (B.6)

Now, let

Λn(u) = nq−1 · [L1(w+
√
q/n · u)− L1(w)]

= nq−1

l∑
i=1

l∑
j=1

αiαjyiyjK(xi,xj;w) · exp{−1

2
q/n · [(xi − xj)�2]Tu− 1}

= nq−1 ·
l∑

i, j, yi·yj=1

αiαjK(xi,xj;w) · exp{−1

2
q/n · [(xi − xj)�2]Tu− 1}

− nq−1 ·
l∑

i, j, yi·yj=−1

αiαjK(xi,xj;w) · exp{−1

2

√
q/n · [(xi − xj)�2]Tu− 1}

(B.7)

where ()�2 is the component-wise square. Since exp(x) > x + 1 for all x and αi ≥ 0

for all i, then the �rst item in Eq.(B.7)

≥ nq−1

l∑
i, j, yi·yj=1

αiαjK(xi,xj;w) · [−1

2

√
q/n · [(xi − xj)�2]Tu− 1 + 1]

=
√
nq−1

l∑
i, j, yi·yj=1

αiαjK(xi,xj;w) · {−1

2
· [(xi − xj)�2]Tu};

(B.8)
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Take standard augment on the Taylor expansion w.r.t. u,

exp{−1

2
· [(xi − xj)�2]Tu− 1} = −1

2

√
q/n · [(xi − xj)�2]Tu

+
1

4
· q
n
· uT [(xi − xj)�2][(xi − xj)�2]Tu+ op(n

−1)

(B.9)

Then it is easy to �nd that the second item in Eq.(B.7) is

≤ nq−1 ·
l∑

i, j, yi·yj=−1

αiαjK(xi,xj;w) · (−1

2

√
q/n · [(xi − xj)�2]Tu

+
1

4
· q
n
· uT [(xi − xj)�2][(xi − xj)�2]Tu+ op(1)

(B.10)

Now, by combining Eq.(B.8) and Eq.(B.10), we have

Λn(u) ≥
√
nq−1 · [

l∑
i, j, yi·yj=1

αiαjK(xi,xj;w) · {−1

2
· [(xi − xj)�2]Tu

−
l∑

i, j, yi·yj=−1

αiαjK(xi,xj;w) · {−1

2
· [(xi − xj)�2]Tu}]

+
1

4
· uT [(xi − xj)�2][(xi − xj)�2]Tu+ op(1)

=
√
nq−1 ·

l∑
i,j

αiαjyiyjK(xi,xj;w) · {−1

2
· [(xi − xj)�2]T} · u

+
1

4

l∑
i, j, yi·yj=−1

αiαjK(xi,xj;w) · uT [(xi − xj)�2][(xi − xj)�2]Tu+ op(1)

(B.11)

Note that the �rst part in Eq.(B.11) is equivalent to ∂
∂w

= L′1(w) = 0 due to

necessary condition that w = arg minL1(w), and the second term, which is obviously

non-negative, will dominate Eq.(B.11). In terms of the penalty term, it is obvious

that
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Pn(w) = nq−1

p∑
j=1

[pλn(|wj +
√
q/n · uj| − pλn(|wj|)]; using pλn(0) = 0 and pλn(·) ≥ 0

≥
q∑
j=1

nq−1 · [pλn(|wj +
√
q/n · uj| − pλn(|wj|)]; using Taylor Expansion

=

q∑
j=1

·[q−1/2p′λn(|wj|) + p′′λn(|wj|)u2
j{1 + op(1)}],

(B.12)

which is bounded by q−1/2‖u‖ + max{|p′′λn(wj)| : wj 6= 0}‖u|. Thus, by choosing

a su�ciently large ∆, Pn(w) is dominated by the second item in Eq.(B.11) as well.

Thus, L(w) = Λn(u) + Pn(w) is dominated by a non-negative item with probability

1 within a ball. This indicates that with a probability at least 1 − ε, there exists a

local minimum in the ball {w+
√
q/n · u : ‖u‖ ≤ ∆}, and hence there exists a local

minimizer such that ‖ŵ−w‖ = Op{
√
q/n}. Note that when the kernel function K is

updated by K̃, nothing is changed except that there the kernel is multiplied by two

�nite constants constructed from the �rst stage of SVM, and hence the theorem still

holds. This completes the proof. ]
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