
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

10-6-2017 2:30 PM 

Metal Sulfides as Anode for Lithium Ion and Sodium Ion Battery Metal Sulfides as Anode for Lithium Ion and Sodium Ion Battery 

Ali Abdulla, The University of Western Ontario 

Supervisor: Andy (Xueliang)Sun, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Master of Engineering 

Science degree in Mechanical and Materials Engineering 

© Ali Abdulla 2017 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Mechanical Engineering Commons, and the Nanoscience and Nanotechnology Commons 

Recommended Citation Recommended Citation 
Abdulla, Ali, "Metal Sulfides as Anode for Lithium Ion and Sodium Ion Battery" (2017). Electronic Thesis 
and Dissertation Repository. 5019. 
https://ir.lib.uwo.ca/etd/5019 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F5019&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=ir.lib.uwo.ca%2Fetd%2F5019&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/313?utm_source=ir.lib.uwo.ca%2Fetd%2F5019&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/5019?utm_source=ir.lib.uwo.ca%2Fetd%2F5019&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


  
 

  

 

Abstract 

 

Nanomaterials have been studied intensively in the last decades due to their unique 

physical and chemical properties and their potential for applications in different domains.  Among 

these applications, energy storage has become the center of focus by many research groups and 

companies to develop high efficiency and reliable energy devices such as the commercial lithium-

ion batteries (LIBs). However, LIBs has not yet met the growing requirements of the high 

demand for increasing energy density. More efforts are requested to improve the performance of 

the batteries by designing better electrode materials and increasing the battery safety. Another 

type of batteries has emerged such as sodium ion batteries(SIBs) that tends to have bright future 

for large-scale energy applications due to its low cost.  

In this thesis, different types of Metal-Organic Frameworks (MOFs) including Zeolitic 

Imidazolate Framework-8 (ZIF-8) and (ZIF-67) and Materials from Institute Lavoisier (MIL-88) 

are synthesized. Meanwhile, the morphologies and structures of MIL-88 have been optimized and 

defined through adjusting the hydrothermal process and the effects of different parameters such 

as process time, and temperature, solvent type, reactant concentration, and additives on the 

physical and chemical characteristics are also investigated.  

Furthermore, carbon coated cobalt sulfides derived from MOFs is studied for the 

application of anode in lithium ion batteries (LIBs) and sodium ion batteries (SIBs). This high 

surface area, high porosity, and good electric conductivity material show high specific capacity 

results as an anode in LIBs and SIBs. Physical and chemical characterization is also conducted to 

investigate the materials’ properties. The material shows very high structural integrity during the 

synthesis process. 

Other metal sulfides such as are synthesized using MOFs templates and further studied 

for batteries applications. ZnS exhibited high performance as anode for LIBs and SIBs by 

delivering high specific capacity and stable cycling performance 

 

 

Keywords: Metal-Organic Framework, Metal Sulfides, Anode, Lithium-Ion and Sodium Ion 

Battery   
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Chapter 1 Introduction  

1. Introduction  

Today’s society need for energy is growing significantly in a way that alert the 

research to look at different sources of energy not only because of the limited 

conventional resources which is mainly fuel but also the considerable risk that our planet 

is going to in the long-term. Significant effort has been made to take advantage of many 

clean energy resources that are provided by nature such as solar, wind, and electrical 

vehicle which will reduce the negative impact of the greenhouse gas emissions. These 

different types of energy cannot be use unless a reliable storage device for clean energy 

storing is available. Lithium-ion battery (LIBs) has high capacity, high energy density 

and long recharging life, and this reliable battery has been commercialized by Sony in 

1991. LIBs mainly consists of four main parts which are positive electrode (cathode), 

negative electrode (Anode), liquid electrolyte as ions medium and separator. These parts 

have been intensively studied for development; unfortunately, none has met the 

requirements for large energy consumption applications and there is still massive room 

for more enhancement. Graphite as commercial LIBs anode has very stable potential and 

long cycling life, however, its low capacity and safety problems grew concerns of 

whether it can meet the development of LIBs and the new energy density targets. Other 

challenge regarding the lithium-ion battery supply in the future. Lithium element has a 

limited abundant on earth and with the rapid growth of energy consumption, it is 

expected that lithium-ion battery fabrication cost is going to significantly jump up in the 

near future. This problem has raised a question about looking for alternative battery and 

research have come with different new systems such as sodium ion battery, lithium 

sulfur, sodium sulfur, lithium air, and sodium-air. Sodium ion battery has drawn great 

attention due to the high sodium abundant. Also, sodium ion system is similar to lithium-

ion battery in terms of principle of work. However, it has its own problems. Sodium atom 

is very big in compare to lithium atom which need a material with excellent structural 

properties to host the sodium atoms during electrochemical process. Metal sulfides is 

among many materials have been studied for energy application as anode material 
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hosting charging lithium and sodium atoms. Metal sulfides has high capacity and unique 

structural characteristics that are desirable in energy applications.  

It is imperative to know properties such as high capacity, electric and electronic 

conductivity, high surface area, and chemical and physical stability that should be 

investigated when looking for a material as anode for battery applications. Hence, metal 

organic framework is one of these materials that have a unique properties and meet anode 

materials requirements. Metal-organic frame (MOF) work is a combination of metal ions 

linked by organic ligands owing crystal structure with high porosity. This material has 

very unique properties such as the nearly highest surface area material has been reported 

as well as the wide range of different structures and metals. These attractive properties 

render this material and their derivatives for many applications among them chemical 

separation, filtering, sensing, energy storage and conversion, and catalysis. One of the 

common applications of MOFs is the energy storage and conversion mainly for batteries. 

This field has become very hot area of research due to the urgent need to reliable storage 

device for clean energy storing. Lithium-ion, sodium ion, and lithium-sulfur batteries 

have employed the MOFs for their electrodes and it shewn very promising potential. 

However, poor conductivity of MOFs is one of the challenges in this area. Many 

strategies have been investigated in order to improve MOFs conductivity by doping 

techniques such as N or C doping. Another way is to synthesis nanocomposites of MOF 

and Carbon materials including nanotubes(CNTs), Graphene(G), or Reduced Graphene 

Oxides (RGO) etc.  

In this research, several kinds of MOFs materials are studied for better 

understanding of the properties and moving forward to exploit these characteristics for 

battery applications. Using MOFs materials as a template to design metal sulfide is the 

second step where the properties of both will be obtained in one material. Moreover, 

investigating the challenges after obtaining metal sulfide from MOFs template is also 

planned and will be stated in the thesis objectives in details.  

Thesis Objectives 

The challenges in the LIBs and SIBs applications were reviewed and highlighted 

where they could be overcome by designing better anode materials. MOFs was studied as 
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the promising materials with unique properties such as high specific area, tunable porosity, 

and controllable structures. The recent development and understanding of metal sulfides 

with the designed nanostructure, mainly derived from MOFs, were also reviewed and 

considered a strong candidate as anode material for LIBs and SIBs. However, the 

challenges remained in term of relatively large volume change and low conductivit ies. 

Among the potential approach, the carbon coating is beneficial to address the issues of low 

conductivity as anode applications for LIBs and SIBs. Another strategy is to design 

nanostructured materials facing one of the significant problems of volume expansion. The 

specific objectives are the following. 

(1) Different types of MOFs have been synthesized, and the physical and chemical 

properties of them have been further investigated. Moreover, the morphologies and 

structures of MIL-88 have been optimized through the hydrothermal process in detail.  

 (2) ZIF-67 was used as a template to fabricate the carbon coated cobalt sulfides with 

unique structures. Furthermore, the physical and chemical properties have been carried out. 

When used as anode materials for both LIBs and SIBs, as-prepared carbon coated cobalt 

sulfides show high capacity and stable cycling performances.  

(3) Other types of metal sulfides, including zinc sulfides, tin sulfides, and iron sulfides have 

been synthesized by the wet chemical method and CVD method using ZIF-8, Tin-MOFs, 

and MIL-88 as a template. The electrochemical properties including the cycling 

performances and rate performances of all these metal sulfides are also evaluated. 

Thesis Organization 

This thesis includes six chapters and satisfies the requirements for “Integrated-Article 

form” as outlined in the Thesis Regulation Guide by the School of Graduate and Postdoctoral 

Studies (SGPS) of the University of Western Ontario. Specifically, the thesis is organized as 

follows: 

Chapter 1 gave literature reviews of lithium-ion batteries and sodium ion batteries 

including the working principle, recent development, and challenges that currently render their 

developments and applications. Recent progress of metal sulfides as anode materials was 

summarized in detail. Different approaches to resolve the challenges facing metal sulfides in 
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batteries applications are highlighted. The conclusion and future perspective of the development of 

these materials are stated. 

Chapter 2 listed different synthesis method and characterization techniques used in this 

thesis. Electrochemical evaluation devices and techniques are presented as well.  

Chapter 3 presented the synthesis process of ZIF-8 and ZIF-67. Moreover, the 

hydrothermal process of MIL-88 is optimized, and the effect of different parameters on the structure 

are studied in detailed. Finally, a brief conclusion and the achievements and challenges are 

emphasized.  

Chapter 4 described an approach to developed cobalt sulfides with carbon coating derived 

from MOFs as anode materials for LIBs and SIBs. This approach delivered a material with unique 

properties and structure, which was investigated by using several characterization techniques. It 

was discovered that C@Co9S8 possess high surface area and porosity and stable thermal stability. 

Excellent electrochemical performances represented that the C@Co9S8 is a promising anode 

material for LIBs and SIBs. 

Chapter 5 studied three types of metal sulfides, including Zinc, Tin, and Iron sulfides, as 

anodes for LIBs and SIBs. Synthesis processes and physical characterization was performed to 

investigate the morphology and confirm the structure. It was found that ZnS delivered promising 

electrochemical performance as an anode in LIBs and SIBs.  

Chapter 6 summarized the results, draw a conclusion of the whole work and highlighted 

the potential future directions of the future work that required in this field. 
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Chapter 2  

2. Literature Review of Transition Metal Sulfides for Lithium-ion and Sodium-ion 

Battery Applications  

 

Abstract 

This chapter is a literature review of Transition metal sulfides (TMSs) and their applications in 

lithium-ion batteries (LIBs) and sodium ion batteries (SIBs). TMSs including CoSx, FeSx, MoS2, 

SnSx,  WS2, et al. have recently attracted significant attention in the applications of high-

performance LIBs and SIBs. Originating from their high theoretical capacity, various structures, 

and limited volume expansion compared to the conventional metal oxide and alloys, TMSs are 

believed to be an optimistic alternative to the traditional electrode materials. Recent developments 

in the tional design of novel micro/nanostructured TMSs for LIBs and SIBs are summarized in this 

chapter, and their energy storage mechanisms are compared to metal oxide anodes. In particular, 

the significant effects of the TMSs morphology, micro/nanostructure, and crystallinity on battery 

performance are highlighted. Furthermore, the future trends and prospects, as well as potential 

problems, are presented to further develop advanced TMSs anodes for promising and large-scale 

commercial LIBs and SIBs applications. 

 

 

 

 

 

 

 

 

 

Note:This chapter will be submitted as a review paper: Ali Abdulla, Yang Zhao, Xueliang 

Sun, entitled:  A Comprehensive Review of Transition Metal Sulfides for Lithium-ion and 

Sodium-ion Battery Applications                                                                                                                                                                                                                                                              
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2.1. Introduction 

The global energy shortage and environmental issues have led to rapidly increasing 

requirements for highly efficient sources of clean energy, such as solar, wind power and 

biomass [1]. Therefore, the development of novel energy storage and conversion systems is 

urgently required for efficient utilization of renewable energy [2]. Lithium-ion batteries (LIBs) 

are one of the best developed and commercialized battery technologies for portable electronic 

devices such as laptops, mobile phones, medical devices, and electric vehicles. They possess 

various outstanding features, including high energy density, no memory effect, low 

maintenance and low self-discharge [3, 4]. At present, the energy density of commercial LIBs 

is less than 200 Wh kg−1, which is insufficient for the growing energy demands of emerging 

technologies. One of the primary methods to achieve higher energy densities is to explore new 

electrodes materials with high reversible capacities and excellent stability. The typical cathode 

and anodes materials used in modern LIBs are lithium cobalt oxide (LiCoO2) and graphite, 

respectively, as shown in Figure 2.1a. In the case of anode materials, graphite has distinct 

advantages such as low cost, long lifetime and high stability. However, its low theoretical 

capacity of 372 mAh g-1 and low Li-ion transport rate limits its further applications [5]. 

Therefore, a great deal of research has been carried out to explore alternative materials to 

replace graphite as potential anodes for LIBs. Different types of materials have been 

investigated such as novel carbon nanomaterials (carbon nanotube, graphene, mesoporous 

carbon, et al.), alloy materials (Si, Sn, P, et al.), metal oxides (SnOx, transition metal oxide, et 

al.) and metal sulfides. 

Meanwhile, it has been claimed that alternative battery technologies should be explored due 

to the expected shortage and high cost of lithium shortly. Among these new systems, sodium-

ion batteries (SIBs) have received significant attention due to the abundance and low cost of 

sodium resources for large-scale energy storage applications. SIBs are very similar to LIBs 

regarding working principle and chemical reactivity, and even share similar electrode 

materials (Figure 2.1b). However, the relatively low energy density and large size of sodium 

ions (55% larger than Li+) contribute to the severe challenges to overcome to improve the 

electrochemical performances of anode and cathode materials in SIBs. Graphite serves as the 

typical anode material for LIBs. However, it is unsuitable for sodium ion intercalation due to 

the insufficient interlayer spacing [6]. Thus, the development of novel anode materials for 

SIBs is still an ongoing challenge, and more work is required before commercialization.  
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Figure 2-1 Schematic diagrams of (a) a lithium-ion battery and (b) a sodium-ion 

battery. 

2.2. Transition Metal Sulfides 

 

        As discussed above, one of the critical components of LIBs and SIBs is the choice of electrode 

materials. Various materials have been studied as anodes according to their electrochemical and 

physical properties (specific capacity, chemical, and thermal stability, electronic and ionic 

conductivity, et al.). Since graphite is insufficient for the advancement of high energy density  LIBs 

and incapable of employment in SIBs, other types of anode materials have been explored as an 

alternative such as novel carbon nanomaterials, metal oxides and alloys, phosphates and sulfides 

[7-12]. Among these candidates, transition metal sulfides (TMSs) have been widely studied for 

batteries applications due to their high capacity, several structures, and relatively low volume 

expansion compared to the traditionally used metal oxides and alloys [13]. Although TMS have 

higher reaction voltages compare to metal oxides as shown in Figure 2 (a, b), they can be matched 

to cathodes with high reaction voltage to maintain or improve the energy density of the battery [14]. 

However, TMSs suffer from issues such as poor cycling performance resulting from the volume 

expansion and low conductivity. Another problem is the dissolution of polysulfide in the electrolyte 

which can form passivating layers on the surface leading to low ion transfer kinetics[15]. In this 

case, various strategies have been developed to solve these problems including surface 

modifications, the design of novel nanostructures and development of new synthetic routes.  
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          Due to the promising properties of TMSs, significant efforts have been made to explore these 

hot materials. Figure 1.2 (c, d) shows the publication numbers (based on a web of science) of 

TMSs in the application of batteries (Figure 1.2c) and other areas (Figure 1.2d). It can be seen that 

the number of publications on TMS has experienced rapid growth over the last six years. Recently, 

there have been several review papers published on TMS focusing on specific aspects, such as 

hollow structures or LIBs and supercapacitors applications [16-18]. Unfortunately, few review 

papers make a comprehensive summary and comparison of TMSs for the application of both LIBs 

and SIBs in detail. Therefore, a comprehensive review of the recent achievements and development 

of TMSs as anodes for both LIBs and SIBs is urgently required to accelerate further improvement 

and application of these types of anode materials. Furthermore, the comprehensive comparison of 

TMSs for both LIBs and SIBs is an exciting topic for the future direction of different batteries 

systems, even for other applications. By this motivation, this review mainly focuses on the different 

kinds of TMSs employed as anode materials for both LIBs and SIBs. Particularly CoSx, FeSx, MoS2, 

SnSx, and WS2 and their Li/Na-storage mechanisms, synthesis methods, reasonable structure design, 

and strategies for addressing the issues that have arisen. 

 

Figure 2-2 Voltage vs. capacity for anode materials have been investigated for the next 

generation of rechargeable (a) Li-ion battery (b) Na-ion battery. Schematic charts show the 



9 
 

 

number of scientific reports published during the last six years on metal sulfides (c) in 

batteries applications (d) in different applications analyzed from the Web of Science. 

 

2.2.1. Lithium/Sodium Storage Mechanism of TMSs 

        TMSs can be classified into two groups according to their crystal structures and reaction 

mechanism with Li+ or Na+. One type of TMS is the typical conversion anode materials or non-

layered TMSs, such as the sulfides of Co, Fe, Ni, Zn, Cu, and Mn, which possess various 

morphologies and chemical structures. Another type is the layered transitional metal sulfides 

(LTMS), including MoS2, SnSx, ZrS, VSx, and WSx. These kinds of LTMSs are composed of two-

dimension (2D) layered structures in which the metal atoms are located in between two hexagonal 

chalcogenide layers occupying either octahedral or octahedral interstitial sites.  

       The reaction mechanisms of conversion anode materials for TMSs have been understood with 

their electrochemical behavior, in which the M corresponds to Co, Fe, Ni, Zn, Cu, and Mn. In the 

application of both LIBs and SIBs, at the initial charge cycle, LixMS2 will be formed resulting from 

the intercalation of Li+ ions into MS2 followed by further decomposition into 2Li2S and M. Then a 

reversible conversion reaction between M and Li2S is maintained in the following processes. 

Similar mechanism proceeds in SIBs in which sodium ions will react with MS2 to form NaxMS2, 

which further reacts with Na to produce 2Na2S and M, which will be carried out in the following 

charge/discharge process. The conversion reactions in LIBs/SIBs during charging/discharging can 

be generalized as follow[17]: 

MS2 + xLi (Na) → LixMS2 (NaxMS2)                                                                          (1) 

LixMS2 (NaxMS2) + (4 −x) Li (Na) → M + 2Li2S (Na2S)                                           (2)  

M + 2Li2S (Na2S) ↔ M + 2S + 4Li (Na)                                                                     (3) 

      However, LTMS have been considered as a favorable electrode material for batteries delivering 

excellent cycling performance. The structure of LTMSs has the unique advantage in which the 

layers are conjoined by weak Vander Waals force[19]. Therefore, guest ions (Li+ or Na+) can 

undergo reversible insertion in between the layered structure of LTMS [17]. However, the vast 

volume expansion of MSx during a complete charge transfer as a result of reducing M4+ to M3+, 

along with Li+/Na+ ion diffusion in the van der Waal's gap is the challenge needed to be solved. 

Table 2.1. Below show different metal sulfides reported in the literature and their theoretical 

capacities based on information from references and some were calculated. 
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Table 2-1 Calculation of the theoretical capacities of metal sulfides for LIBs and SIBs  

Element Theoretical 

capacity in 

LIB  

mAh g-1 

Number of 

transferring 

moles of 

electron Li+ 

Ref Theoretical 

capacity in 

SIBs  

mAh g-1 

Number of 

transferring 

moles of 

electron Na+ 

Ref 

Bi2S3 625.64 12e- [20] 625.64 12e- [21] 

CoS 589.08 2e- [22] 589.08 2e- [23] 

CoS2 871.21 4e- [24] 871.21 4e- [25] 

Co3S4 703. 8e- [26] - -  

Co9S8 544.96 16e- [27] 544.96 16e- [23] 

CuS 560.75 2e- [28] - -  

FeS 609.86 2e- [29] - -  

FeS2 893.76 4e- [30, 31] 893.76 4e- [32, 

33] 

Fe3S4 770.32 8.5e- [34] - -  

Fe7S8 662.47 16e- [34] - -  

GaS1.2    - -  

Ga2S3 1137.66 10e- [35] - -  

MnS 615.91 2e- [36, 37] 615.91 2e- [36] 

MoS2 669.88 4e- [38] 669.88 4e- [39] 

NiS1.03 584.56 2e- [40] - -  

NiS2 873.07 4e- [41] - -  

Ni3S2    446.40 4e- [42, 

43] 

Ni3S4 704.69 8e- [40] - -  

Ni7S6    533.27 12e- [42] 

Sb2S3 473.4 - 946 3-6e- [44] 946.97 12e- [45] 

SnS 782.3-1138 2-6.4e- [46] 728.51 

 

15e- [47] 

SnS2 

 

645.1-1231.7 4 - 8.4e- [48, 49] 846.91 

 

3.75e- [50, 

51] 

VS4 1196.8 8 e- [52] 299.2 2e- [53] 
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WS2 432.4 4e- [54] 108.1-432.4 1-4 e- [55, 

56] 

ZnS2 550.19- 2e- [57] 550.19 2e- [58] 

 

 

 

2.3. TMSs application in LIBs and SIBs 

2.3.1. Cobalt Sulfide CoxSy 

Cobalt sulfides are one of the most widely studied TMSs due to their high capacity, controllable 

structure, and rich variety of stoichiometric compositions such as CoS, CoS2, Co3S4, and Co9S8. 

They have been explored for use in many applications, including water splitting catalysis [59], 

electrocatalysis for oxygen reduction reaction [60], dye-sensitized solar cells [61, 62]. Also, these 

materials are widely studied as electrode materials for energy storage [13] in lithium-ion batteries 

[63-68], sodium-ion batteries [69, 70] and supercapacitors [71-73]. However, the primary 

challenges faced by cobalt sulfide-based electrodes can be divided into the categories of (1) 

significant volume expansion, (2) low conductivity and (3) dissolution of the polysulfide in organic 

electrolytes [27, 74, 75]. 

 Several approaches have been developed to solve these problems of TMSs, such as the 

design of hollow nanostructures, which has been applied for other types of anode materials like 

metal oxides and alloys. It is believed that the hollow inner can provide a void space which can 

accommodate the volume expansion of metal sulfides and improve the Li+ access by decreasing 

the ion diffusion path length [11, 76-78]. For example, Jin et al. reported hierarchical worm-like 

CoS2 assembled by ultrathin nanosheets with high conductivity synthesized through a solvothermal 

route. The as-prepared CoS2 delivers a high reversible capacity of 883 mAh g-1 at a current density 

of 100 mA g-1 after 100 cycles. It was also shown to yield a capacity of 501 mAh g-1 even at a high 

current density of 2000 mA g-1 [79]. Another unique mesoporous hollow Co9S8 nanospheres have 

been synthesized by similar solvothermal reaction followed by sintering process [80]. When 

applied for LIBs, the reversible capacity increased to as high as 1414 mAh g-1 after 100 cycles at 

100 mA g-1 after initial capacity fading during the first 15 cycles. This capacity recovery was 

attributed to the pseudo-capacitive behavior of a gel-like polymer layer that occurs during cycling 

at a voltage range of 0.01-1.4V. For the rate capability, this hollow spheres also show high 

reversible capacities of 904, 810, 751, 699, 635 and 426 mAh g-1 at a current density of 0.1, 0.2, 

0.5, 1, 2 and 5 A g-1 respectively. Furthermore, a thin layer of carbon coating has been applied on 



12 
 

 

the Co9S8 nanospheres which leads to an enhanced capacity of 896 mAh g-1 after 800 cycles at a 

current density of 2 A g-1, indicating that the carbon coating can accommodate the volume change 

effects on the structure and provide a highly reversible lithiation/delithiation process for long 

cycling life in addition to improving conductivity. Therefore, hollow structured materials are in 

favor for battery applications due to there high accessibility to the electrolyte and useful capability 

to mitigate volume expansion by providing more space while hosting the charging ions. 

Conductive coatings or nanocomposites with different nanocarbon can be utilized to 

increase the conductivity of cobalt sulfides, and enhance the electrochemical performance. Peng 

et al. reported the synthesis of hierarchical CoS2 hollow nanospheres (HSs) with a nitrogen-doped 

carbon coating (NC@CoS2) via a simple solution-based method [81]. The electrochemical 

performances demonstrate that the ultra-thin layer of NC favorably plays a crucial role in 

improving the electrochemical performance of the NC@CoS2 HSs. It provides short Li+ diffusion 

length and more structural stability by attributing to the particle protection against the volume 

expansion, enhancing the electric conductivity. Finally, NC layer can have a positive effect on 

reducing the polysulfide dissolution into the electrolyte. Three samples were used with the 

different amount of the additive for best results which were donated as NC@CoS2-1, NC@CoS2-

2, and NC@CoS2-3 based on 0.06, 0.03, and 0.09 g of PVP, respectively. As a result, after 100 

cycles, NC@CoS2-1 shows a high reversible capacity of 657.2 mAh g-1, while NC@CoS2-2 can 

deliver only a relatively low capacity of 537.2 and 467.5 mAh g-1, and NC@CoS2-3, 

respectively; see Figure 2.3.I and m. 
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Figure 2-3 (a)–(c) TEM and (d) HRTEM images of NC@CoS2-1 with the inset image 

displaying the SAED pattern of NC@CoS2-1; (e) TEM image of NC@CoS2-1; 

corresponding EDX elemental mappings of: (f) Co, (g) S, (h) C, and (i) N for NC@CoS2-

1.(j) Representative CV spectra of NC@CoS2-1 for the first three cycles at a scan rate of 

0.1 mV s-1 between 0.005 and 3 V; (k) discharge/charge voltage profiles of NC@CoS2-1 for 

the first three cycles; (l) comparative cycling performance of NC@CoS2-1, NC@CoS2-2, 

NC@CoS2-3, and CoS2 at a current density of 200 mA g-1; (m) cycling stabilities of 

NC@CoS2-1 and bare CoS2 at various current densities[81]. 
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In addition to carbon coatings, MWCNTs have been further introduced as a conductive 

matrix to fabricate MWCNTs@C@Co9S8 nanocomposites [65]. The rationally designed 

nanocomposites indicate high stability with a capacity of 662 mAh g-1 after 120 cycles at the high 

current density of 1 A g-1 and excellent rate performance while surprisingly the electrode performs 

exceptional long cycling life with a reversible capacity of ∼1065 mAh g-1 after 700 cycles at a 

current density of 2A g-1. The capacity restoration in the extended cycling is attributed to the 

structural reinforcement, and the reactivation of the active materials   Another outstanding 

performance was obtained from MOF derived hollow cobalt sulfide electrode synthesized through 

the wet chemical process[66]. This design has high structural stability due to the excellent 

interaction between the CNTs and hollow cobalt sulfide because of which the electrode maintained 

stable cycling performance was delivered a high discharge capacity of ~937 mAh g-1 after 160 

cycles and the structure architectures successfully contribute to accommodating the volume change 

during cycling.   

Graphene, as a novel 2D nanomaterial [82, 83], has been widely studied in various 

applications, such as water purification[84], biomedical[85, 86], solar cells, fuel cells, 

photoelectrochemical,  photocatalysis [87, 88], and energy storage and conversion devices  [89-92], 

due to its high electrical conductivity, thermal conductivity, high surface area, etc.  In this case, it 

has been considered as the promising candidates as conductive additives for metal sulfides. 

Typically, a cobalt sulfide/graphene nanosheets (GNS) composite containing several phases of CoS, 

CoS2, and Co9S8 are manufactured via a one-pot solvothermal route [93]. After 50 cycles, the as-

prepared nanocomposites retain a reversible capacity of 954 mAh g-1 at a current density of 100 

mA g-1, which is considerably improved over that of bare cobalt sulfide (359 mAh g-1). Another 

interesting 2D structure has been reported by Du et al., in which porous Co3S4 nanosheets were 

inserted into flexible layered graphene sheets via a simple freeze-drying process and subsequent 

treatment with hydrazine [64]. This rationally designed material demonstrates high performance 

with a capacity of 710 mAh g-1 at a current density of 0.5 A g-1 after 200 cycles and excellent rate 

capabilities as well. The significant functions of graphene or reduced graphene oxide have been 

widely proven to be performance enhancing additives for electrode materials in the applications of 

LIBs and SIBs. Our previous review has also summarized the crucial roles of graphene for tin-

based anode materials in LIBs [94]. As the similar concept for cobalt sulfides, the electron transfer 

rate, electronic conductivity and charge mobility of cobalt sulfides can be enhanced significantly. 

The high surface area of graphene leads to a greater extent of electrolyte access and shorten the 

lithium-ion diffusion path during cycling. Additionally, the volume expansion is expected to be 

accommodated by the high flexibility of graphene which aids in cycling stability and performance.  
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Metal-organic frameworks (MOFs) are considered as active templates for the fabrication 

of nanomaterials with controlled structure, high surface area, and high conductivity [8]. In our 

previous review, we pointed out the unique properties of MOFs, and it used as an excellent template 

to produce metal oxide or mix transition metal oxide. Among the many types of MOFs, Co-based 

structures such as ZIF-67 (Co) has also been used as the template for the synthesis of porous 

carbon/cobalt sulfide composites [95]. Figure  2.4 (a-c) shows the schematic diagram of the 

synthesis of MOF-derived cobalt sulfide and its morphology. Two different samples are 

synthesized based on the type of carbon matrix used in the composite where the first  C/CoS2 

composite with bulk carbon matrix is marked as BC/CoS2 -650, which is synthesized by replacing 

Nano ZIF-67 precursors with bulk crystals and the second C/CoS2 composite marked as NC/CoS2 

-1000 with larger CoS2 particles is prepared by increasing the carbonization temperature to 1000 °C. 

Electrochemical cycling and rate performance in comparison with other two cobalt sulfides 

composites are demonstrated in Figure  2.4 (d, e).  NC/CoS2-650can successfully deliver capacities 

of 560 mAh g-1 and 410 mAh g-1 after 50 cycles at current densities of 100 mA g-1 and 2500 mA g-

1, respectively which is attributed to the structure reliability of the inside CoS2 nanoparticle, 

presence of the carbon matrix that provide sufficient space to contain the volume expansion and 

finally is that the polysulfide effect is eliminated by the presence of abundant N in the material.  
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Figure 2-4  (a) Schematic illustration of the synthesis of ultra-small CoS2 nanoparticles in 

N-rich carbon. (b) SEM images of NanoZIF-67. (c) Transmission electron microscopy. (d) 

Cycle-life performances of NC/CoS2-650, NC/CoS2-1000, and BC/CoS2-650 at 500 mA g-1. 

(e) charge/discharge capacity at various current densities of NC/CoS2 -650[95]. 

 

Cobalt sulfide composites derived from MOFs have been further studied for application in 

SIBs. Recently, Zhang et al. reported the synthesis of a 3D core-shell cobalt sulfide/dodecahedral 

porous carbon (cs-CoxSy/DPC) using ZIF-67 as a template [23]. A high initial discharge capacity 

of 600 mAh g-1 can be achieved at a current density of 0.5 A g-1. However, it rapidly decays to 

around 380 mAh g-1 in the second cycle as a result of surface-electrolyte interphase (SEI) formation. 

Moreover, this material exhibits a reversible capacity of 300 mAh g-1 after 50 cycles and excellent 

rate performance which may be attributed to the high structure porosity which facilitates Na+ 

diffusion in addition to the high flexibility of the carbon to accommodate volume expansion. MOFs 
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are desirable materials for energy storage applications due to their intrinsic porosity, high surface 

area, and tunable structures. Well defined nanostructured materials can facilitate the Li+/Na+ 

diffusion kinetics and increase the electrolyte accessibility, thus leading to stable cycling 

performance and structural stability.    

As mentioned in the first section, the size of sodium ions is 55% larger than that of a lithium 

ion, which leads to more challenging in developing suitable anode materials capable of reversible 

sodiation.  Sufficient space for reversible intercalation and control over volume expansion is a 

required property for electrode candidates in SIBs. Therefore, the exploration of the proper material 

that can successfully avoid these problems is an ongoing process and has been carried out by many 

research groups. Emphasising and improving the chemical and mechanical stability, the 

conductivity of the anode material and more importantly the structural capability to contain sodium 

ions without losing the active material due to the volume change is currently the focus of research 

[96, 97]. The same materials of Co3S4 porous nanosheets that mentioned in the above LIBs 

application. It also shows promising results in SIBs, which delivered a capacity of 329 mAh g-1 

after 50 cycles at 0.5 A g-1 and rate performances of 423, 353, 307, 237, and 154 mAh g-1 at the 

current density of 0.5, 1, 2, 5, and 10 A g-1, respectively[64]. Another sandwich-like cobalt sulfide–

reduced graphene oxide (CoS/rGO) composite has been fabricated through hydrothermal method 

[98]. When applied as an anode in SIBs, it shows enhanced performance which retains a capacity 

of 230 mAh g-1 at a current density of 100 mA g-1 after 100 cycles while the bare CoS is fading 

from 601 mAh g-1 in the 1st cycle to 68 mAh g-1 in 40 cycles (See Figure 2.5). This shows the 

impact of the graphene oxide composition on the performance improvement and stability of CoS 

which offers structure flexibility to accommodate the volume change and further pulverization in 

the active material nanostructure. Another phase of Co9S8 based composites have been reported by 

Ko et al. via a one-pot spray pyrolysis process [99]. It was found that the as-prepared Co9S8-carbon 

composite obtains a capacity of 404 mAh g-1 after 50 cycles at a current density of 0.5 A g-1. 

Furthermore, when increasing the current into 1.5 A g-1, a capacity of 326 mAh g-1 is maintained. 

Another typical research reported the design of CoS2/multi-walled carbon nanotube (MWCNT) 

nanocomposite using hydrothermal method [69] by Shadike and colleagues. They demonstrate the 

improvement of the anode performance in SIBs in both ether-based electrolyte (NaCF3SO3-DGM 

electrolyte) and carbonate-based electrolyte (NaClO4-EC/PC electrolytes) [69]. The electrode 

exhibits a capacity of 568 mAh g-1 in the ether-based electrolyte while maintained a capacity of 

411 mAh g-1 in carbonate electrolytes at current density 100 mA g-1 after 100 cycles. Rate test 

results display that CoS2-MWCNT obtained better performance in the ether-based electrolyte than 

in the carbonate-based electrolytes indicating the advantage of using the ether-based electrolyte in 
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Na–FeS2 system. This work demonstrates the effective contribution of CNTs additives to the 

electrode materials for buffering volume change and increase the reversible capacity also states that 

ether based has lower potential to react with possible sodium polysulfide products which negatively 

could affect the cycling performance. 

 

Figure 2-5 SEM (a and b), TEM (c) and HRTEM (d) images of CoS/rGO, the insets of 

HRTEM (d) show the corresponding FFT pattern of CoS/rGO. (e) Schematic illustration of 

the formation of CoS/rGO composite. (f) Cycling performance of CoS, graphene and 

CoS/rGO electrodes at 0.1 A g-1 for 100 cycles, respectively; (g) rate performance of CoS 

and CoS/rGO electrodes[98]. 

 

         Briefly, cobalt sulfide in the application of LIBs and SIBs has been summarized in detail in 

this section. Its high specific capacity and stable structure have drawn high attention for LIBs and 

SIBs especially in the anode, but the low electrical conductivity and slow ionic diffusion in their 

bulk forms lead to poor lithium/sodium storage performance. In particular, different CoS, CoS2, 

Co3S4, and Co9S8 have been widely studied in the literature, and some average performances are 

listed in Table 2.2 a and b for both batteries[100]. Theoretically, CoS2 indicates the highest 

theoretical capacity of 871.21mAh g-1for LIBs and SIBs. Meanwhile, in the reported literature, 

Co9S8 shows the best excellent performances for LIBs and SIBs. The reasons can be explained as 
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tends to have larger surface area and pore size distribution that facilitate the electrolyte accessibility 

and Li+/Na+ ions insertion. Also in the hollow structure design, Co9S8 demonstrates better 

electrochemical performance than CoS2 that could be attributed to the conductive paths provided 

by the structure which eventually results into better Li+/Na insertion/ desertion. Co3S4 is barely 

reported for LIBs and SIBs while it is more reported in other application such as supercapacitors 

and oxygen reduction reaction (ORR) [101-104]. Therefore, three main strategies were mainly 

adopted to overcome the challenges that face the development of cobalt sulfides. Firstly, designing 

some unique TMS nanostructures (hollows, core shells, and polyhedral) with high porosity and 

small particle sizes could improve the Li+ or Na+ mobility during cycling and deliver better stability. 

Secondly, CoxSy derived from MOF are scarcely investigated although it has indicated interesting 

results due to the unique characteristics of MOFs such as the high surface area, porosity, and 

conductivity and because of which it is considered as a desirable candidate for energy storage 

applications. Finally, CoxSy/carbon composites and coatings have been widely reported for both 

batteries, and it is a useful treatment to buffering the volume change of cobalt sulfides by providing 

additional spaces and flexibility for expansion. 

 

2.3.2. Iron sulfide FeSx  

Compared with cobalt, iron (Fe) shows more advantages including low toxicity, low cost and 

high abundance in the earth’s crust. In battery applications,  Fe-based anodes exhibit promising 

properties, such as lower operating voltages and higher energy density [105]. Similarly, different 

stoichiometry and crystal structures are determined by the proportion of sulfur such as troilite-FeS, 

greigite-Fe3S4, and pyrite-FeS2.  Figure  2.6 shows the range of theoretical and practical capacities 

for different phases of iron sulfide based on previously reported literature. Amongst the iron 

sulfides, pyrite-FeS2 is one of the most widely studied phase owing to its high theoretical capacity 

of 893 mAh g-1. Like other metal sulfides, FeSx also suffers from substantial volume changes and 

low conductivity. The volume expansion has an adverse effect on the electrochemical performance, 

often leading to an irreversible structural collapse and detachment of active materials, which results 

in reduced cycling stability [106].  
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Figure 2-6 Schematic charts for iron sulfides theoretical and practical capacities.   

 

To increase the conductivity of FeSx, the most common strategy employed is a coating or 

combining the active material with carbon nanomaterials such as carbon nanotubes or 

graphene[107]. To show the benefits of this approach, Liu et al. reported a low-temperature 

approach to derive a carbon encapsulated spherical Fe7S8 nanocrystals with a core-shell structure 

(Fe7S8@C) composite [108].  The Fe7S8@C electrodes retain a capacity of 815 mAh g-1 after 50 

cycles at 200 mA g-1  and good stability at higher rates with capacities of 850, 735, 693, 629, 583 

mAh g-1 at current densities of 200, 813, 1425, 1967, 2284 mA g-1; respectively. This high 

performance could be contributed to the presence of carbon that acts as a supporting structure to 

accommodate the volume change and improve ionic conductivity. Wen et al. reported a 

hydrothermal approach to synthesize a composite of FeS2 microparticles with reduced graphene 

oxide (FeS2/RGO) in four simple synthetic procedures to improve the capacity and cycling 

performance of the iron sulfide (Seen in Figure  2.7a) [109]. It starts with the absorption of Fe+3 on 

GO surface in the first stage to the addition of the sulfur source in the second stage. Then from a 

hydrothermal reaction between (NH2)2CS and reacted with Fe+3 to produce small cubic FeS2 

crystals in the third stage to the final stage which is the reduction of GO to RGO and continues the 

growth of FeS2. Figure 2.7 b, c, d, and e show the superior performance of their rational design of 

FeS2/RGO composite in comparison with FeS2/RGO mixture, pure RGO, and pristine FeS2. The 

hybrid materials deliver a capacity of 1101.41 mAh g-1 after 60 cycles while capacities of 584.42 

(FeS2/RGO mixture), 417.25 (pure RGO) and 264.01 mAh g-1 (pristine FeS2) remaining for the 
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other materials, respectively. It is believed that the interconnected networks are retained in 

FeS2/RGO composite while the FeS2/RGO mixture is just physically mixed by grinding the FeS2 

with reduced graphene oxide. The correlation between FeS2 particles and RGO sheets as a result of 

the hydrothermal reaction is more functional for effectively improving the electrochemical 

performances. Another interesting design is reported by Xue’s group to synthesize RGO-wrapped 

FeS2 microspheres through a one-step solvothermal method [110].  The as-prepared FeS2/rGO 

exhibited a capacity of 970 mAh g-1 after 300 cycles at a current density of 890 mA g-1. Also, high 

capacity of 237 mAh g-1 at a high current of 20 A g-1 and impressive cycling performance with 380 

mAh g-1 capacity retention after 2000 cycles at 10 C was obtained. The excellent electrochemical 

performance of RGO (graphene) modified FeS2 composites refers to i) a thin layer of graphene can 

effectively prevent the dissolution of polysulfide in the electrolyte which results in poor cycling 

and rate capability; ii) RGO (graphene) plays a key role in offering high flexibility to the composite 

which can effectively enhance structural stability and prevent cell failure caused by extreme volume 

expansions. 

 

Figure 2-7  Scheme (a) the illustration of the formation of the FeS2/RGO composite. (b) 

charge and discharge curves of the FeS2/RGO composite at a current density of 100 mA g-1, 

(c) cycling performance and (d) coulombic efficiencies of pristine FeS2, pure RGO, 
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FeS2/RGO mixture and FeS2/RGO composite at a current density of 100 mA g-1, and (e) 

rate performance of the FeS2/RGO mixture and the FeS2/RGO composite at different 

current densities. (f and g) SEM images of the FeS2/RGO composite, (h) TEM image[111]. 

 

Exerting control over structural properties such as surface area, porosity and morphology 

have proven to be another favorite method to develop high-performance active materials. For 

instance, Xia and co-workers reported the synthesis of FeS2 nanocrystals with particle sizes of 10 

to 35 nm via a hydrothermal method [30]. After 40 cycles, the two FeS2 NC-based electrodes retain 

a reversible capacity of about 427 mAh g-1 whereas pyrite FeS2 microparticles FeS2 MPs electrode 

retain a reversible capacity of 154 mA h g-1.  The nanocrystals yielded better electrochemical 

performance compared with microparticles which highlight the effect of the structure-function by 

Liu et al. [112]. They used a solvothermal route to design pyrite FeS2 nanocubes, and this material 

was tested for LIBs anode where satisfaction results were obtained. This cubic structure owned a 

particle size of around 80-120 nm and exhibited a capacity of 540 mAh g-1 at a current density of 

1 A g-1 after 150 cycles. Even increasing current density into 5 A g-1, it still can maintain discharge 

capacity of 220 mAh g-1 which is claimed to be as a benefit to the high surface area of the pyrite 

FeS2, small particle size and the uniform distribution of particles in the structure. Pyrite FeS2 was 

also synthesized via a solvothermal method and used as the anode in LIBs system with ether-based 

electrolyte [113]. It is claimed that carbonate-based electrolytes have a negative impact on the 

performance of the pyrite. Therefore, an ether-based electrolyte was used for this investigation and 

yielded a high efficiency by providing more active sites for interaction between the electrolyte and 

the polysulfide. FeS2 microspheres exhibited a capacity of 680 mAh g-1 at 100 mA g-1 and even at 

a high current density of 1000 mA g-1, the electrode performs a columbic efficiency of 90% after 

100 cycles.    

Zheng et al. reported the synthesis of hollow Fe3S4 nanostructures with uniform structure 

and porosity through a simple approach (see Figure  2.8) [114]. Their work demonstrated the use 

of hollow nanostructured Fe3S4 for electrochemical energy storage and water treatment applications. 

The novel material delivered a capacity of 750 mAh g-1 after 100 cycles at a current density of 0.2 

A g-1 which can be attributed to the structure that offers short diffusion paths and facilitates the 

intercalation of Li+. Also, the rate capability of this material was tested and maintained capacities 

of 510, 390, 320 and 250 mAh g-1 at current densities of 0.2, 0.5, 1 and 2 A g-1, respectively. 
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Figure 2-8 (a) Synthesis schematic of Fe3S4 hollow spheres and SEM images of the Fe3S4. 

(b) the first three consecutive cyclic voltammograms at a scan rate of 0.05 mV s -1; (c) 

cycling performance and coulombic efficiency at a current density of 0.2 A g-1 at room 

temperature; (d) rate performance according to the cycling rate sequence: 0.1, 0.2, 0.5, 1, 2 

and 0.1 A g-1[114]. 

 

 Application of iron sulfides as anode materials in SIBs have been scarcely explored, 

although early results show great promise for the use of TMSs in these systems. Designing new 

nanostructured materials with unique physical and electrochemical properties is of the utmost 

importance for future energy storage applications. For example, Li and co-workers successfully 

reported a reversible self-assembly method to control the design of FeS2 nanocrystals. They indicate 

that the concentration of iron precursor is a critical factor in the final structure of the pyrite, where 

an increased concentration of precursor yields dendritic pyrite nanocrystals (nanodendrites), 

whereas decreasing the concentration leads to nanocubic structures [115]. Hu et al. used a 

hydrothermal method to synthesis pyrite microspheres to be applied as an anode material in sodium 

ion batteries [116]. Interestingly, this material proved very high stability for a long cycling lifetime 

which could maintain a capacity of around 200 mAh g-1 for 20 000 cycles at a high current density 

of 1000 mA g-1 and retain a columbic efficiency of 100%. The as-prepared FeS2 has a unique 

morphology with a high porosity which improves the electrochemical reaction kinetics and 
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contributes to high cycling stability. Walter et al., reported very high-performance pyrite 

nanocrystals (NCs) that were synthesized through a solution-phase chemical approach [33]. FeS2 

NCs delivered capacity of over 500 mAh g−1 for 400 cycles at a current density of 1000 mA g−1 

(see Figure  2.9). It is found that the addition of FEC to the electrolyte can contribute to an increase 

in the columbic efficiency from 83 to 95%.  Bulk FeS2 was tested for comparison which indicated 

poor cycling performance and quick capacity fading. However, it was obvious that FeS2 NCs with 

small particle size, optimized shape, and surface modification showed better performance as 

cathode material in LIBs and as anode material in SIBs applications.  

 

Figure 2-9 Synthesis and characterization of FeS2 NCs: (a) reaction scheme; (b) 

transmission electron microscopy (TEM) images; (c) X-ray diffraction (XRD) pattern 

indexed to pure-phase pyrite FeS2 (ICDD database, PDF no.: 00-071-2219; space group 

N205, Pa3, a = 5.4179 Å); (d) schematic representation of the unit cell of pyrite FeS2 

electrochemical performance of FeS2 NCs tested as anode material for SIBs. (e) Capacity 

retention for FeS2 NCs and bulk FeS2[33]. 
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To sum up, iron sulfides shows high capability for battery applications owing to its high 

theoretical capacity, low cost, and non-toxicity. However, the deterioration of active materials due 

to the volume change is a serious issue that leads to poor cycling performance, and the low 

conductivity of iron sulfide affect its practical application. To overcome these drawbacks, surface 

coating and nanocomposites of FeSx and nanocarbons can significantly enhance the ionic 

conductivity and accommodate the volume change of FeSx, especially for sodium, which has a 

large ion radius and has difficulty with reversible intercalation in tradition electrode materials. The 

fabrication of materials with high surface area and porosity has proven to be another effective 

strategy to improve the electrochemical performance in both LIBs and SIBs. 

2.3.3. Molybdenum sulfide (MoS2) 

 Molybdenum sulfide has a layered structure that is very similar to graphene in which 

sandwich-like Mo-S layers are adjacently connected via van der Waals interactions [117-124]. 

Meanwhile, it has been realized that MoS2 is a very promising electrode material for LIBs and SIBs 

because of its high capacity and low reaction voltage [125, 126]. Moreover, the layer spacing of 

2D MoS2  (0.615 nm) is much larger than that of graphite (0.335 nm), which should be favorable 

for Li+/Na+ insertion. Also, the geometric construction of the MoS2 active materials is capable of 

buffering the volume expansion in the intercalation processes [127]. However, poor cycling and 

imperfect rate capability due to the low conductivity are the most prominent obstacles that impede 

MoS2 applicability in batteries. Hence, researchers are attempting to solve these issues to improve 

the electrochemical performance of MoS2, and many of the most recent progress is discussed in 

detail the in following sections.  

Many groups have explored the utilization MoS2 in energy storage applications focusing 

on the design of novel nanostructured materials. Previously, template-assisted strategies for the 

synthesis of hierarchical MoS2 micro boxes constructed by ultrathin nanosheets has been reported 

[128]. As-prepared MoS2 micro boxes deliver an initial capacity of ~1100 mAh g-1 and a columbic 

efficiency of 98%, with capacity retention of 900 mAh g-1 maintained after 50 cycles at current 

density of 100 mA g-1 when cycled between 0.05 and 3.0 V. Moreover, the MoS2 micro boxes can 

obtain a high discharge capacity of 700 mAh g-1 at a rate of 1 A g-1 which can be attributed to the 

highly active sites between the electrode and the electrolyte as a result of the high surface area of 

this unique structure which assists lithium ions diffusion through the ultrathin nanosheets. Ma et al. 

successfully report a hydrothermal method and further annealing process with the assistance of 

various cationic surfactants to produce few-layer molybdenum disulfide/graphene composites (FL-

MoS2/GNS) [129].  The electrochemical performance is considerably improved over that of pure 
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MoS2, with the FL-MoS2/GNS exhibiting a high reversible capacity of 1183 mAh g-1 and capacity 

retention of 101% after 100 cycles at a current density of 100 mA g-1 while a capacity retention of 

37% and a charge capacity of 327 mAh g-1 is obtained by MoS2 after 100 cycles. Furthermore, FL-

MoS2/GNS still retains a capacity of 901 mAh g-1 at a high current density of 1000 mA g-1. Figure 

2.10a shows the synthesis of a 3D-structured MoS2/CNTs nanohybrid conducted by Li and co-

workers [130]. The MoS2/CNTs active material delivers an initial discharge and charge capacities 

of 1747 and 1460 mAh g-1, respectively. Very promisingly, the high discharge and charge capacities 

of 1679 mAh g-1 and 1655mAh g-1 with the columbic efficiency of 96% and 113% are perfectly 

retained after 425 cycles (see Figure  2.10j), respectively. The MoS2/CNTs is tested for rate 

capability as well and successfully maintained as high capacities as 1822, 791, 505 mAh g -1 at 

current densities of 1, 40, 70 A g-1, respectively, and even when the current density was increased 

to 100 A g-1, MoS2/CNTs still can deliver an unprecedented discharge capacity of 505 mAh g-1 

(Figure  2.10k). It is claimed that this superior performance is a result of two factors; first, the 

capacity and conductivity were significantly enhanced due to the presence of CNTs which is highly 

conductive material and structural stability is much better leading to stable cycling was obtained.  

Second, this material took advantage of the high surface to volume ratio which shortens the Li+ 

diffusion path and maintains long cycling performance.  

 

Figure 2-10 (a) Schematic illustration of synthesis process for MoS2/CNT nanohybrid. 

FESEM images of (b) surface functionalized CNTs, (c) MoS2, and (d–g) MoS2/CNT 
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nanohybrid. Arrows indicate CNTs in the final product. (h–j) cycle performance of 

MoS2/CNT nanohybrid in LIB in the same voltage range of 0.01–3.0 V at the current 

densities of 100mA g-1, 8 A g-1, and 1 A g-1, (k) rate capabilities of the nanohybrid[130].  

 

Another composite has been synthesized with flower-like molybdenum disulfide (f-MoS2) 

hierarchical structures on a reduced graphene oxide/oxidized multi-walled carbon nanotube 

backbone (f-MoS2/RGO/o-MWCNT), using a hydrothermal method[38]. The as-prepared 

composites are shown to possess excellent electrochemical characteristics with a capacity retention 

of 93% and reversible capacity of 1190 mAh g-1 after 100 cycles at a current density 100 mA g-1. 

When the current density was increased to 250, 500, 1000, and 2000 mA g-1, f-MoS2/RGO/o-

MWCNT exhibited specific capacities of 1095, 972 840 and 635 mAh g-1, which far surpasses that 

of  MoS2/RGO and MoS2/o-MWCNT. Although the active materials have some similarity in term 

of the composition, the vital role of the unique structure design is that it provides a short diffusion 

path for electrolyte ions. Hence it helps Li+ fast insertion/desertion during cycling. The 3D structure 

high surface area contributes to more active sites and contact between the electrolyte and active 

materials. Also, it was claimed that the space within the structure between MoS2 and MWNCTs 

enables more electrolyte access to the surface of the electrode which results into stable cycling.   

To further exploit the advantages of carbonaceous materials, doping techniques have 

emerged as an effective strategy to improve the performance of the composites using elements such 

as boron, nitrogen, and sulfur. Our group also designed ultrathin MoS2/N-doped graphene (MoS2 

/NG) nanosheets using this novel approach [131].  It is found that the structural stability of MoS2 

is improved when nitrogen-doped graphene is added which helps accommodate the volume change 

during the intercalation process. It is explained that MoS2/NG has a high surface area and which 

grants access to more active sites and improves electrolyte accessibility, thereby, a significant 

capacity increase was observed throughout the electrochemical testing. MoS2 /NG delivered a 

capacity of 1285.3 mAh g-1 after 50 at a current density of 100 mA g-1 and high capacity of 850 

mAh g-1 at a current density of 1 A g-1. 

For sodium storage, MoS2 has been the most widely investigated material amongst all metal 

sulfides. For example, Bang et al. reported a liquid-phase exfoliation method to prepare single-

layer MoS2 nanosheets with high exfoliation efficiency [132]. This synthetic method delivered 

stable structure with satisfactory electrochemical properties for sodium storage. When cycled at a 

current density of 20 mA g-1, the anode exhibited initial discharge and charge capacities of 254 and 

164 mAh g-1, respectively, followed by high coulombic efficiency over the next 100 cycles with 
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discharge/charge capacities of 165 and 161 mA h g-1. Furthermore, a graphene-like MoS2 

nanoflower structure (FG-MoS2) was synthesized through hydrothermal means was reported by Hu 

et al. [133]. Moreover, a well-crystallized MoS2 (CG-MoS2) was obtained after annealing the FG-

MoS2 at 700 oC for 3 hours, and a bulk MoS2 sample (B-MoS2) was prepared for comparison. The 

best cycling performance was achieved by FG-MoS2, which surprisingly experienced a capacity 

increasing from 220 to 295 mAh g-1 in 300 cycles at a current density of 0.2 A g-1 that might refer 

to the expansion and exfoliation of the interlayer in which more sodium active sites are provided. 

Rate performance was also evaluated, and FG-MoS2 showed high rate capability with capacities of 

350, 300, 195 mAh g-1 at current densities of 0.05, 1, 10 A g-1, respectively. Although this material 

showed better electrochemical performance when compared to CG-MoS2 and B-MoS2, it was 

noticeable that all samples demonstrated stable performance which means that MoS2 is an 

inherently a suitable host material for sodium. Choi and co-workers reported the design of 3D 

MoS2-graphene microspheres (3D MoS2-G) that consist of nanospheres agglomerations via a one-

pot spray pyrolysis process [134]. Figures  2.11 a-e  show the unique structure of the obtained 

materials with high surface area and controlled sphere size. It is hypothesized that the presence of 

graphene and carbon coating can reduce the volume expansion of the MoS2 nanospheres and further 

improve ionic conductivity. Figure  2.11 g showed the cycling performance at a current density of 

200 mA g-1 for the 1st, 2nd and 50th cycles for the 3D MoS2-G and crumpled MoS2-G. It is evident 

that 3D MoS2-G delivered a higher initial discharge and charge capacity of 797 and 573 mAh g-1, 

respectively, compared to that of 415 and 511 mAh g-1 for the crumpled MoS2-G, correspondingly. 

Also, 3D MoS2-G showed better rate performance and long cycling life at high current of 1.5 A g-

1 which delivered a capacity of 323 mAh g-1 after 600 cycles (see Figure  2.11 h-j). Later, Li et al. 

reported the use of poly(ethylene oxide) (PEO) as an intercalating agent, which acts as an additive 

to enhance the interlayer space of MoS2 layers and enhances sodiation kinetics during cycling. The 

composite (PEO2L–MoS2) was synthesized via an exfoliation–restacking method to enhance the 

intercalation properties of MoS2 and optimize the distance between the MoS2 layers [135]. PEO2L–

MoS2 demonstrated satisfiable performance for SIBs applications, delivering a capacity of 148 

mAh g-1 after 70 cycles at a current density of 50 mA g-1. Concerning the rate performance, PEO2L–

MoS2 shows high capability with capacities of 185, 162, 143, 127 and 112 mAh g-1 under current 

densities of 50, 100, 250, 500 and 1 A g-1, respectively.  
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Figure 2-11 Morphologies of the 3D MoS2 –graphene composite microspheres. (a,b) FE-

SEM images. (c) TEM image. (d) Elemental mapping images of Mo, S, and C components. 

(e) Schematic diagram of the formation mechanism of the 3D MoS2 –graphene composite 

microsphere by the one-pot spray pyrolysis and description of the Na+ insertion process. (f) 

CV curves of the 3D MoS2 –graphene composite microspheres; (g) charge/discharge curves 

at a current density of 0.2 A g-1. (h) Cycling performances at a current density of 0.2 A g-1; 

(i) high rate performances; and (j) long-term cycling properties and Coulombic efficiencies 

of the 3D MoS2 –graphene composite microspheres at a current density of 1.5 A g-1. 

 

In a brief conclusion, it has been shown that MoS2 is a very promising candidate for anode 

applications in LIBs and SIBs[136]. There has been a great deal of research has conducted for LIB 

applications. However, the use of MoS2 in SIBs technology is still in a state of infancy. Historically, 

two main strategies have been utilized in the development high-performance of MoS2; 1) 

Controlled fabrication of stable micro/nanostructures with high surface area and porosity, 2) Design 

of rational MoS2-carbon composites and coatings which are capable of accommodating the volume 

change and activate the reaction sites, especially with sodium ion insertion.   
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2.3.4. Tin sulfide SnS2 

Tin sulfide has received enormous attention for battery applications due to its layered 

structure with stacking via van der Waals forces and large interlayer spacing of 0.59 nm [51]. 

Amongst many phases of tin sulfides, SnS2 and SnS are suggested as the best candidates for 

batteries implementation due to their high theoretical capacity and structures that facilitate 

reversible charging/discharging reactions [137-139].  In LIBs and SIBs, SnS2 and SnS experience 

two stages of reaction: initially, an irreversible conversion reaction occurs in which SnSx forms 

Na2S/Li2S and Sn metal; the second stage is the reversible alloying reaction of Sn with lithium or 

sodium ions yielding high capacities shown in Table 2.1 [137, 140]. Unfortunately, the capacity 

fade of SnSx electrode materials is still a big challenge, due to the large volume expansion, e.g. 

(over 420% volume expansion upon the formation of Na15Sn4), the dissolution of sulfur in the 

electrolyte and poor electrical conductivity during the electrochemical alloy formation [141, 142]. 

In order to solve these challenges, one effective strategy is to design various SnSx nanostructures 

with different morphologies, such as hierarchitectures [138], nanowalls [143], nanoplates [144], 

nanobelts [145], nanowires [146], nanoflakes [147], nanospheres [148] and nanoflowers [149]. 

Other studies focus on the combination of SnSx with carbonaceous materials such as novel carbon 

[150] and graphene [137]. Different strategies and approaches will be discussed in details in the 

following sections. 

As mentioned above, SnSx, as important member Sn-based materials, has been widely 

studied as anode material for LIBs. For example, Wang et al. reported a hydrothermal method to 

synthesis 2D SnS2 nanoplates as high-performance anode material for LIBs [151]. During the 

synthesis process, the temperature and pH of the reaction have significant effects on the 

morphology and performance. It was indicated that the higher crystallinity and thicker structure has 

the best electrochemical storage. However, it did not excel with regards to rate performance 

because of the increase in path length for Li-ion diffusion. The results also showed that the pH 

affects the nucleation rate of SnS2, and the products with the slowest nucleation rate yielded the 

best electrochemical performance. Hence, SnS2 prepared at 200 ̊C and 10.5 pH was found to be 

optimal for high performance in LIBs.  In general, it could be observed that thin layered structures 

and high crystallinity are desired characteristics to obtain good rate capability. The 2D SnS2 is 

cycled at the potential range of 0.005–1.20 V at a current density of 100 mA g-1 and a high capacity 

of 521 mAh g-1 is obtained after 50 cycles, corresponding to a capacity retention of 90% of the 

initial capacity. Furthermore, 2D SnS2 demonstrates high rate capability exhibiting average 

discharge capacities of 564, 532, 510, 491, 472, and 397 mAh g-1 at current densities of 0.2, 0.4, 

0.6, 0.8, 1 and 2 A g-1, respectively. It is believed that the 2D nanostructure of SnSx has a significant 
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influence on the electrochemical performances. To compare the effects of nanostructures, SnS2 

nanosheets and nanoflowers are investigated by Bhaskar’s group, in which both materials is 

synthesized through one-pot solvothermal methods [139].  After 100 cycles, it is found that the 

SnS2 nanoflower structure exhibits a higher capacity of 542 mAh g-1 while SnS2 nanosheets delivers 

a capacity of 436.5 mAh g-1. For further evaluation, rate performance was explored for both 

nanostructured at current densities ranging from 100 to 3000 mA g-1. At current densities of 200, 

500, 1000, 2000 and 3000 mA g-1, SnS2 nanoflowers exhibit high capacities of 733.6, 668.6, 612.1, 

525.2 and 466.1 mAh g-1, respectively, whereas SnS2 nanosheets experience rapid capacity loss 

from 733.9 to 196 mAh g-1 between current densities of 200 to 3000 mA g-1. It is claimed that the 

better cycling and rate performance of the nanoflowers is a result of higher electrolyte accessibility 

with less charge transfer resistance. In another solvothermal process, 3D SnS2 hierarchitectures 

were synthesised with high specific capacity of 549.5 mAh g-1 after 100 cycles at current density 

of 0.1 mA g-1 in the potential range of 0.01–3 V. [138]. This structure also showed high rate 

capability with capacities of 706.7, 582.4, 432.8, 210.8 mAh g-1 at current densities of 100, 200, 

500 and 1000 mA g-1, respectively, which returned to 471 mAh g-1 when the current density was 

decreased to 100 mA g-1. Thus, it is believed that such 3D structure with high porosity could be 

better design than 2D because 3D porous structure provides sufficient inner sites for electrode 

electrolyte contact that guarantee continuous ions diffusion and help releasing the mechanical stress 

caused by the severe volume expansion during charging/discharging.      

 Metal sulfide in composites with high conductive materials has been widely studied for 

batteries applications to overcome the challenges of capacity fading and volume change[49, 152]. 

Mei et al. reported the synthesis of ultra-small SnS2 nanocrystals decorated on flexible reduced 

graphene oxide (SnS2 nanocrystals@RGO) via a simple reflux method [141]. The as-prepared 

composites deliver a high specific capacity of 1034 mAh g-1 after 200 cycles at a current density of 

0.1 A g-1, and it exhibits superior performance in comparison to other tin sulfides composites have 

been reported before [153, 154] (see Figure  2.12 d). Furthermore, the electrode achieved a 

reversible capacity of 570 mAh g-1 and 415 mAh g-1 at current densities of 3A g-1 and 5A g-1, 

respectively, even after 450 cycles (see Figure  2.12 e). Additionally, the rate capability of SnS2 

nanocrystals@RGO is tested and shows high capacities as shown in Figure  2.12 f. This high 

electrochemical performance may be attributed to the high surface area of SnS2 nanocrystals and 

functional properties of reduced graphene oxide regarding buffering the volume expansion and 

enhancing the electrochemical conductivity. 
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Figure 2-12 (a) XRD patterns of the ultra-small SnS2 nanocrystals@RGO and GO (the 

bottom of the image indicates the JCPDS data (JCPDS 23-0677) for SnS2); (b) the Raman 

spectra of the SnS2 nanocrystals@RGO and GO.(c) TGA of the as-prepared SnS2 

nanocrystals@RGO composite from room temperature to 800 C in air; (d) Discharge 

capacity vs. cycle number of the SnS2 nanocrystals@RGO, pristine SnS2, SnS2@C and 

MWCNT@SnS2 electrodes at a rate of 1 C. (e) Cycling behaviours of the SnS2 

nanocrystals@RGO electrode at high rates of 1, 3, and 5C. (f) Cycling performance of the 

SnS2 nanocrystals@RGO electrode at various current densities.  

 

Kong and co-workers also study the composite of SnS2@graphene nanocable structures 

which could successfully accommodate the volume expansion and enhance Li+ diffusion through 

the host material during cycling [155]. This composite exhibits outstanding cycling performance 

with a capacity retention of 93.5% and capacity as high as 720 mAh g-1 at a current density of 200 

mA g-1 after 350 cycles. Also, rate performance is evaluated with current densities of 1 A g-1 and 5 

A g-1, showing that the SnS2@GT electrode can still achieve charge capacities of 580 mAh g-1 and 

247 mAh g-1, respectively.  

Besides the use of carbon matrices, conductive polymers, like PANI, PPY or PEDOT, have 

also been introduced to improve the conductivities of SnSx anode materials. A typical two-

dimensional nanocomposite, polyaniline-coated SnS2 (SnS2@PANI) nanoplates, has been designed 

via an in situ oxidative polymerization of aniline on the surface of ultrasonic exfoliated SnS2 

nanoplates, which is shown in Figure  2.13 [156]. The electrochemical results show that the 
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SnS2@PANI indicates high stable charge capacity of 730.8 mAh g-1 after 80 cycles. On the other 

hand, pristine SnS2 exhibits a capacity retention of 32.8% with a charge capacity of 311.2 mAh g-1 

at the 80th cycle (see Figure  2.13 f, g). Figure  2.13 i shows the rate performances of SnS2@PANI 

and SnS2. It can be observed that SnS2@PANI exhibits better rate performance than pristine SnS2 

upon increasing the current density between 200 mA g-1 to 5000 mA g-1. It is shown that when 

current densities are set as at 200, 500, 1000, 2000, and 5000 mA g-1, reversible capacities of 821.8, 

726.8, 661.1, 559.2, and 356.1 mAh g-1, respectively, can be obtained by the SnS2@PANI which 

is apparently better than pristine SnS2. 

 

Figure 2-13  (a and b) SEM images of the as-synthesized SnS2@PANI nanoplates at 

different magnifications. (c) TEM image of the as-synthesized SnS2@PANI nanoplates. (d) 

HRTEM images of the SnS2@PANI nanoplates. (e) Schematic illustration of the formation 

of SnS2@PANI nanoplates. Galvanostatic discharge–charge curves of (f) SnS2 and (g) 

SnS2@PANI cycled at the 1st, 2nd, 20th, and 80th discharge and charge cycles between 

0.01 V and 3 V (vs. Li+/Li) at a current density of 100 mA g-1; (h) cycling stability of SnS2 

and SnS2@PANI at a current density of 100 mA g-1; (i) rate performance of SnS2 and 

SnS2@PANI at various current densities between 100 mA g-1 and 5000 mA g-1[156]. 

 

Similar to MoS2, tin sulfide has been recently reported in sodium ion batteries, but it is still 

in the early stage. To improve cycling stability and performance, many groups have adopted the 

approach of designing carbon nanocomposites with tin sulfide due to the enhanced electrochemical 

and physical properties. For instance, Wu et al. reported a precipitation synthesis of stannous 

sulfide@reduced graphene oxide (SnS@RGO) composite for SIBs applications [157]. As an anode 

material, SnS@RGO delivered a high reversible capacity of 386 mAh g-1 at 20 mA g-1 after 100 
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cycles in a potential range of 0.01 and 2.0 V. Moreover, when the current density was increased in 

order to evaluate the rate capability, SnS@RGO still can achieve high capacities of 240 mAh g-1 

even when cycled at 400 mA g-1. The high performance of SnS2 composites led to further 

investigations, such as the development of an ultrathin 2-D film of SnS2-coated graphene oxide 

platelets which was synthesized via a decomposition process followed by sulfidization treatment 

[158]. The GO-SnS2 delivered a charge capacity of 450 mAh g-1 for 100 cycles at a current density 

of 500 mA g-1 and excellent rate capability also was achieved which obtained a high capacity of 

340 mAh g-1 even at the high rate of 2000 mA g-1. This excellent performance of this material can 

be attributed to the advantage of the graphene coating of improving the conductivity and offer more 

flexibility to accommodate the volume change and reduce the consequence strain that occurred as 

result of the volume expansion. Liu et al. developed the hydrolysis of lithiated SnS2 followed by a 

hydrothermal method to obtain SnS2/graphene nanocomposite [50]. Three samples are prepared 

with different graphene mass which they were produced and labeled as follow, 10, 20 and 30 mg 

of graphene corresponding to SnS2/G-10, SnS2/G-20, and SnS2/G-30 (Figure  2.14 a-d). Cycling 

test was done at a current density of 200 mA g-1, and voltage window between 0.01 and 2.5 V. in 

whichSnS2/G-20 exhibited the best cycling performance with a capacity of 618.9 mAh g-1 after 100 

cycles (see Figure  2.14 f). In contrast, other samples show inferior performance and lower 

capacities under the same conditions. Moreover, SnS2/G-20 achieved excellent rate capability with 

99% columbic efficiency and when the current density was increased to 500, 1000, 2000, and 4000 

mA g-1, it still can maintain capacities of 532, 461, 381, and 326 mAh g-1, respectively.  
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Figure 2-14 SEM images of (a) bulk SnS2, (b) pure restacked SnS2, and (c, d) the SnS2/G-

20 nanocomposite. (e) Schematic illustration of the preparation of the SnS2/graphene 

nanocomposite. (f) Cycling behavior of the synthesized samples: bulk SnS2, restacked 

SnS2, SnS2/G-10, SnS2/G-20, and SnS2/G-30 at 200 mA g-1. (g) Rate capability and 

coulombic efficiency of the SnS2/G-20 electrode. 

         

  In conclusion, tin sulfide is a very promising candidate for anode applications in LIBs and SIBs 

due to their high capacity. However, volume change is a severe problem that eliminates its 

contribution to storage applications. Therefore, many research groups work on the development of 

tin sulfides and come up with some solutions such as designing better nanostructures and merge 

this material with conductive and flexible materials such as carbon to improve the conductivity and 

reduce the volume expansion. 

 

2.3.5. Tungsten sulfide (WS2) 

Among the TMSs that have been widely reported for energy storage is the 2D-layered WS2, 

which has gathered considerable interest owing to the high theoretical capacity and van der Waals 

forces that facilitate guest ions insertion [159, 160]. However, the small interlayer distance between 

WS2 layers and the low electrical conductivity are detrimental to its electrochemical performance. 
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Therefore, many groups have explored modification of the layered structure and conductivity by 

designing composites with carbon nanosheets or graphene.  

Working on designing unique structures has drawn great attention from different research 

groups. For example, Feng et al. reported the synthesis of tungsten disulfide (WS2) nanoflakes via 

a rheological phase reaction [161]. Regarding the structure effect, it is observed that the nanoflakes 

exhibited better electrochemical performance than nanotubes and nanoparticles. The high ability of 

nanoflake structure allows Li+ intercalate into the structure whether into the nanoflake clusters, 

defect sites in nanoflakes, or the hollow core which are the possibilities of lithium intercalation is 

stated by the author. This material delivers a capacity of 680 mAh g-1 after 20 cycles at a current 

density of 47.5 mA g-1. Hard-templating has proven to be another practical approach for the 

fabrication of high-performance LIB materials, as exemplified by the synthesis of mesoporous WS2 

derived from 2D hexagonal SBA-15 prepared by a vacuum assisted impregnation route [162]. It is 

indicated that the mesoporous WS2 exhibited significantly higher performance than bulk WS2, with 

a capacity of 805 mAh g-1 at a current of 0.1 A g-1 after 100 cycles. The mesoporous WS2 electrode 

is also able to deliver much higher capacities of 821, 774, 719, 661, 605, 556 and 504 mAh g-1 at 

current densities of 0.1, 0.2, 0.5, 1, 2, 5 and 10 A g-1. It is claimed that WS2 with a highly-ordered 

mesoporous network can show good electrochemical performance owing to the high surface area 

imposed by the hard template and the nanocrystalline structure which shortens the lithium ions 

diffusion path and improve the rate capability.   

            Surface coating and additive doping are also very effective strategies to elevate the 

performance of metal sulfides materials due to the abilities to alleviate volume change and 

improving the ionic conductivity. For instance, Chen et al. reported a nitrogen-doped graphene and 

few-layer WS2 composite (WS2–NGC) for application in LIBs [54]. They optimized the 

performance of the material by exploring the effect of different surfactant cetyltrim ethyl 

ammonium bromide (CTAB)) and precursor (WS2) concentration ratios in three samples 

corresponding to 1: 2 for WS2–NGC1, 2: 2 for WS2–NGC2 and 5: 2 for WS2–NGC5. Of the 

prepared active materials, the WS2–NGC2 was shown to yield the highest capacity and best rate 

performance. WS2–NGC1, WS2–NGC2, WS2–NGC5 and pristine WS2 was cycled and delivered 

capacities of 838, 905, 734, 519 mAh g-1 respectively. The author claims that the superior 

performance of WS2–NGC2 not only corresponds to the concentration ratio of the surfactant and 

precursor but its physical structure. The close integration of the composite elements facilitates the 

lithium-ion diffusion and improves the electrolyte accessibility to the inner surfaces of the 

composite, therefore providing more active sites for reversible reactions. Furthermore, control over 
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the interactions between WS2 and graphene layers was investigated when a uniform graphene-like 

few-layer WS2 supported on reduced graphene oxide (RGO) was obtained via a hydrothermal 

method by K. Shiva et al.[163]. In this work, three materials were prepared: bare WS2, WS2: 

RGO=80:20, and WS2: RGO=70:30 corresponding to the ratio between WS2 and RGO. The WS2–

RGO composite exhibited a capacity of 450 mAh g-1 after 50 cycles at a current density of 100 mA 

g-1. Rate performance was further investigated with WS2: RGO=80:20 found to be the better 

performance in general over WS2: RGO=70:30 which was ascribed that the RGO over 20% 

increases the electron movement resistance (see Figure  2.15).      

 

 

Figure 2-15 Transmission electron micrographs for (a) RGO, (b) bareWS2 and  (c–d)WS2–

RGO (80:20) composites; (e) The galvanostatic cycling performance of bare WS2, RGO, 

80:20 and 70:30 at a current density of 100mA g-1 and Coulombic efficiencies of bare WS2, 

80:20 and 70:30. (f) The specific capacities of bare WS2, 80:20 and 70:30 at various 

discharge currents of 0.1,0.3,0.5,0.7,1,2, and 4 A g-1 [163]. 

 

Carbon coating has also been reported by Du et al. in which they developed a double carbon 

coating layer on WS2 through a self-assembly process[164].  The carbon coating that consists of 

two layers of an oleylamine (OLA)-derived surface carbon layer and an external electronically 



38 
 

 

conductive and flexible RGO shell that can prevent direct contact between the electrolyte and the 

active materials. Moreover, as it is a well-known strategy, carbon coating can protect the volume 

change and structure collapse that is usual of metal-based materials. Upon testing the 

electrochemical performance of this material, a capacity of 486 mA h g−1 was obtained after 200 

cycles at a current density of 0.5 A g-1. Even when the current density was increased to 10 A g−1, a 

capacity of 126 mAh g−1 is still delivered successfully.  

WS2 has also been utilized as an anode material for sodium-ion batteries. Su et al. reported 

a hydrothermal synthesis of WS2@graphene nanocomposites[56]. The 3D structure exhibited a 

high capacity of 329 mAh g-1 after 500 cycles which is an order of magnitude better than the 32 

mAh g-1 delivered by bare WS2. This superior cycling performance could be attributed to the 

positive effect of the graphene sheets on the conductivity as well as its role in accommodating 

substantial changes in volume. In another report, Liu et al. studied WS2 Nanowires (NWs) designed 

for application as an anode material in SIBs [55]. Figure  2.16 shows that the WS2 NWs exhibit a 

capacity of 483.2 mAh g-1 after 50 cycles at a current rate of 100 mA g-1, and at current rates of 

1000, 2000, and 5000 mA g-1, this material could maintain capacities of 430.2, 368.2, and 236.1 

mAh g-1, respectively. The authors claim that when cycling in voltage window between 0.01-2.5 V, 

part of the sodiation reaction is irreversible, leading to the capacity fading and aggregation. Upon 

changing the cycling range to 0.5-3 V, the reaction mechanism changes from conversion to 

intercalation, and a definite improvement in the cycling stability is observed which maintains a 

specific capacity of 415 mAh g-1 without fading up to 500 cycles at a current density of 200mA g-

1. Furthermore, Zhu et al. reported the use of 3D porous interconnected WS2/C nanocomposites 

with excellent cycling performance[165]. WS2/C delivered specific capacities are 267 and 219 mAh 

g-1after 200 cycles and 300 cycles at a current density of 1C, respectively. This high rate capability 

could be attributed to the interconnection between the 3D porous WS2 nanostructures and the 

presence of the carbon matrix in the composite which is capable of accommodating the volume 

change of the active material during cycling. 

 



39 
 

 

 

Figure2-16 Synthesis and characterizations of WS2 NWs: a) Schematic formation process 

of WS2 NWs; b) Cyclic voltammetry curves of the WS2 NWs electrode scanned in the 

voltage range of 0.01–3.0 V versus Na/Na+ at a rate of 0.1 mV s-1; c) selected galvanostatic 

discharge/charge profiles of WS2 NWs at a current density of 100 mA g-1; d) cycling 

performance of the WS2 NWs, WS2 precursor, and bulk WS2 evaluated within a potential 

window of 0.01 and 2.5 V at 100 mA g-1; e) rate performance and coulombic efficiency of 

WS2 NWs tested between 0.01 and 2.5 V[55]. 

 

2.3.6. Other metal sulfides   

Besides the previously mentioned metal sulfides, many other metal sulfides also have been 

studied for energy storage applications with great promise for increasing the energy density of 

commercial LIBs. For example, Liu and co-workers reported aa two-step method to synthesis coral-

like a-MnS composites with nitrogen-doped carbon (NC)[37]. In this study, the effect of 

polyvinylpyrrolidone (PVP), as well as annealing temperature in determining the morphology of 

the final product, was investigated. PVP as an amphiphilic surfactant can assist the distribution of 
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several nanocrystals in water or organic solvents, and its pyrrolidone groups have high ability to 

organize with metal ions. It is also essential in the hydrothermal process that metal ions coordinate 

with the pyrrolidone groups of PVP so that they can distribute homogeneously along the PVP 

chains and attribute to the uniform structure. It is also approved that PVP plays as a source of carbon 

and a stabilizing agent.  When coral-like a-MnS composite was tested, A capacity of 699 mAh g-1 

even after 400 cycles was obtained by the optimized (annealed at the best conditions) material at a 

current density of 0.5A g-1. Another 3-D graphene cross-linked with mesoporous MnS clusters have 

been synthesized for LIB applications with high specific discharge and charge capacities of 987 

and 976 mAh g-1 are delivered after 30 cycles, which corresponds to a 97% capacity retention.[166]. 

The composite exhibited significantly improved performance when compared to pristine MnS that 

experienced a sharp capacity fading in which delivers low capacity of about ~100mAh g-1 at a 

current density of 50mA g-1. The better performance of the composite is attributed to the addition 

of graphene which offers high surface area, conductivity, and flexibility. Very recently, atomic 

layer deposition (ALD) was also applied to synthesis MnS thin films with a highly controlled 

structure and tested as a LIB anode material[167]. ALD technique is very advanced deposition 

method for designing thin films, coatings and protection layers that guarantee a uniform deposition 

thickness and controlled composition ratio.  As deposited MnS thin film delivers high discharge 

and charge capacities of 1205 and 1180 mAh g-1, respectively, achieved after 40 cycles which are 

apparently superior to the previous reports. The importance of a rationally designed structure was 

expressed by Xu and co-workers who synthesized MnS hollow microspheres on reduced graphene 

oxide sheets (MnS/RGO) through a hydrothermal method [36]. MnS/RGO exhibited a capacity of 

830 mAh g-1 at 0.5 A g−1 after 100 cycles when tested for application in LIBs. Furthermore, Xu et 

al. tested the MnS/RGO material as an anode for SIBs and observed a capacity of 308 mAh g-1 at 

a current density of 0.1 A g−1 after 125 cycles.  

 Nickel sulfide is another interesting material owing to its high theoretical capacity of 870 

mAh g-1 and has rarely been investigated for battery applications. However, its low conductivity 

would undesirably affect the cycling performance and still presents the issue of volume change. 

Mahmood et al. reported the phase-controlled synthesis of nickel sulfide/nitrogen-doped graphene 

composites for LIB applications[36]. Figure  2.17 a-c show the results of the electrochemical 

performance of this unique material and other optimized materials. Ni3S4 /NG-250 °C (250 °C 

refers to the annealing temperature) exhibited an incredible capacity of 1323.2 mAh g-1 after 100 

cycles which is the best compared to the other nickel sulfide materials tested. Figure  2.17d 

illustrates the superior rate performance of Ni3S4 /NG-250 °C at rates between 0.2C and 4C and 

exemplifies the cycling stability of the prepared nanocomposite.   
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Figure 2-17 (a) Charge-discharge curves of Ni3S4 /NG-250 °C composite at 0.2C in the 

range of 0–3 V. (b) Cyclic behavior and Coulombic efficiency of Ni3S4 /NG-250 ° C 

composite at 0.2C in the range of 0–3 V. (c) Comparison of discharge capacities of Ni3S4 , 

NG, Ni3S4 /NG, Ni3S4 /NG-250 °C and NiS 1.03 /NG-350 °C at 0.2C in the range of 0–3 V. 

(d) Comparison of discharge capacities of Ni3S4 /NG-250 °C composite at different C rates 

in the range of 0–3 V. (e) Schematic illustration of the preparation of the Ni3S4 /NG 

composite[168]. 

 

The reason behind the higher performance of Ni3S4 /NG-250 in compare to NiS1.03/NG-

350 is that Ni3S4 /NG-250 has lower electrolyte resistance that facilitates lithium ions diffusion; 

also it is claimed based on the chemical reaction equations that Ni3S4 /NG-250 inserts more Li+ 

ions than NiS1.03/NG-350.  The development of a nickel disulfide/graphene composite through 

hydrothermal reaction was also reported by Chen et al. [41]. This composite demonstrated very 
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high stability which could be attributed to the flexibility and enhanced conductivity of the graphene 

matrix. An initial reversible capacity of 720 mAh g-1 at 50 mA g-1 was recorded for the 1st cycle 

which subsequently increased to 809 mAh g-1 after 150 cycles. As for the rate and performance, 

Ni3S2/N-doped graphene composite exhibited capacity of 375 mAh g-1 at 1000 mA g-1. Park et al. 

reported a 3D graphene–Vulcan carbon–Bi2S3 nanocomposite was synthesized via an ultrasonic 

route [20]. The 3D-structured graphene and the attached Vulcan carbon have a direct impact on the 

cycling performance, leading to a high surface area composite that can provide additional active 

sites for electrochemical storage. This composite delivered a capacity of 702 mAh g-1 at a current 

density of 100 mA g-1 after 100 cycles. Another interesting material is Gallium Sulfide, which is 

not very well reported. In one case reported by Meng et al., they deposited gallium sulfide (GaSx, 

x = 1.2) thin films by atomic layer deposition (ALD) onto single-walled carbon nanotube (SWCNT) 

powders. The ALD GaSx maintained a capacity of 766 mAh g–1 at the 100th cycle with the columbic 

efficiency of 99.8% (see Figure  2.18). ALD is a unique technique to deposit thin films and coating 

with a controllable thickness which it can be used to design different nanostructures for electrode 

materials and applied in a surface modification to deliver more stable structures. 

Xu et al. reported a VS4–graphene nanocomposite anode for LIBs [52]. This composite 

showed promising performance with delivered capacities of 630 and 314 mAh g-1 at high rates of 

10 and 20 A g-1, and a reversible capacity of 727 mAh g-1 after 50 cycles corresponding to 89% of 

its first cycle capacity. 
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Figure 2-18 a–c) SEM and d–f) EDX mapping images of a) SWCNTs and b,c) 150-cycle 

ALD GaSx coated SWCNTs, and EDX mapping of d) carbon, e) gallium, and f) sulfur on 

150-cycle ALD GaSx coated SWCNTs. (g) Cycling performance and columbic efficiency of 

commercial Ga2S3 and SWCNT-GaSx composite at 600 mA g-1. 

 

 Sb2S3 and Sb2S3@C were developed and electrochemically tested and after 100 cycles[169]. 

Sb2S3@C still can deliver a reversible capacity of 699.1 mAh g−1, which corresponds to 95.7% of 

the initial reversible capacity while Sb2S3 maintained only 550.2 mAh g−1 after the same cycling 

period. For the rate, Sb2S3@C exhibited capacities of 724, 695, 680, 642, 578, and 429 mAh g−1, at 

current densities of 100, 200, 400, 800, 1600, and 3200 mA g−1 which was better than the pristine 

Sb2S3. These results emphasize the function of carbon coating in improving the conductivity and 

therefore, cycling performance. Vanadium Sulfide growth on reduced graphene oxide (VS4/rGO) 

was reported for sodium energy storage by Sun and co-workers[53]. VS4/rGO had a reversible 

capacity of 362 mAh g−1 at 100 mA g−1 and retained a capacity of 240.8 mAh g−1 after 50 cycles. 

Nickel sulfide hollow nanospheres/reduced graphene oxide composite prepared by a spray drying 

process was also successfully investigated[43]. The electrochemical performance was carried out 

and shown in Figure  2.19. This kind of structure (hollow amorphous) and composite with carbon 

matrices is an effective strategy to overcome the problems of volume change and irreversible 

structural damage.[170]. Moreover, ZnS nanospheres were prepared and tested in a SIB was 

reported by Su et al. [171]. ZnS nanospheres deliver reversible capacities of 515, 480, 465, and 423 
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mA h g−1 at current densities of 80, 160, 320, and 640 mA g−1, respectively after 100 cycles. An 

ether-based electrolyte performance was also investigated. 

           As illustrated by the previously mentioned materials, other metal sulfides such as MnS, 

NixSy, SbxSy, ZnS…etc; are strong candidates for LIBs and SIBs anode materials due to their high 

theoretical capacities and diverse structures[172-175]. However, poor cycling is standard issue in 

metal-based anode materials as observed in these reports. Many techniques were successfully 

improved electrochemical performance, such as the deposition of metal sulfides on carbon matrices 

or coating with carbon using techniques including CVD or ALD. Also, emphasizing the 

functionality of the structural properties such as surface area, orientation, and porosity is very 

important in determining the materials capability for energy storage applications.  

 

Figure 2-19 (a) and (b) TEM images, (c) HR-TEM image, and (d) elemental mapping 

images. Electrochemical properties of the nickel sulfide hollow and dense nanospheres/rGO 

composite powders:(e) initial charge-discharge curves, (f) cycling performances and 

Coulombic efficiencies, and (g) rate performances[43]. 

Table 2-2 Summary of nanostructured metal sulfide materials for LIBs 

Anode 

material 

Structure Synthesis method Capacity 

(mAh g-1) / 

cycles 

Rate 

(A g-1) 

Ref. 

CoS2 Nanoparticle novel strategy 250/20  0.1  [176] 

CoS2/RGO 

 

Nanocomposite novel strategy 640/50 0.1  [176] 
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Co3S4 

NTs/G 

Nanocomposite hydrothermal method 720/100 0.2  [26] 

Co3S4–

PNS/GS 

Porous 

nanosheets 

freeze-drying and 

subsequent hydrazine 

treatment 

710 /200 0.5  [64] 

Co9S8 Hollow 

nanospheres 

solvothermal method 1414/100 0.1  [80] 

Co9S8@C Hollow 

nanospheres 

solvothermal method 896/800 2  [80] 

CoS@PCP

/CNTs 

3D hollow 

cobalt sulfide 

des@porous 

carbon 

polyhedra/ 

carbon 

nanotubes 

hybrids 

simultaneous pyrolysis 

and sulfidation of ZIF-

67 

1668/100 0.2  [76] 

FeS Microsheet 

networks 

solution-based synthesis 677 /20 0.1  [177] 

C@FeS Nanosheets surfactant-assisted 

solution-based 

synthesis technique 

233 /100 10  [178] 

pyrite FeS2 Nanocubes solvothermal method 540 /150 

 

1  [112] 

FeS2/RGO Nanocomposite hydrothermal method 1101 /60 0.1  [109] 

FeS2/rGO FeS2 

microspheres 

wrapped with 

reduced 

GO sheets 

solvothermal method 970 /300 0.89 [110] 

Fe7S8@C Nanospheres simple solid–solid 

reaction 

695 /50 

397 /200 

0.1  [179] 
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MoS2/CNT 3D 

Interconnected 

carbon nanotube 

/layered MoS2 

nanohybrid 

network 

novel strategy 1893 /100 0.1  [130] 

MoS2 Nanoparticles 

and flakes 

an aqueous reduction 

route 

382 /100 0.1  [180] 

2D 

MoS2/grap

hene 

2D 

layered/composi

te 

an aqueous reduction 

route 

1063 /100 0.1  [180] 

C-MoS2 Highly uniform 

nanorods 

sulfidation + chemical 

vapor deposition (CVD) 

621 /80 0.2  [181] 

MoS2 Hierarchical 

MoS2 

microboxes 

template-assisted 

strategy 

900/50  0.1  [128] 

Ag/Fe 3O4–

MoS2 

Ag and Fe3O4 

nanoparticles on 

MoS2 

nanosheets 

liquid-phase 

exfoliation+ further 

coating process 

1026 /100 1  [182] 

SnS2 2D SnS2 

nanoplates 

hydrothermal method 521 /50 

340 /30 

1  

3  

[151] 

SnS2/ RGO SnS2 

nanocrystals on 

RGO nanosheets 

refluxing method 1034 /200 0.1 [141] 

SnS2@gra

phene 

Nanocable 

network 

novel strategy 720 /350 0.2  [155] 

SnS2@PA

NI 

Nanoplates ultrasonic exfoliation 

method 

730.8/80 

356.1 /80 

0.1  

5  

[156] 

C@SnS Carbon-Coated 

3D Porous 

Interconnected 

SnS 

electrostatic spray 

deposition technique 

607 /200 

535 /300 

1  [140] 



47 
 

 

WS2@C/R

GO 

composite self-assembly process 486 /200 0.5  [164] 

ZnS/ 

porous 

carbon 

(PC) 

ZnS 

nanoparticles 

embedded in PC 

matrices 

metal–organic 

frameworks 

(MOFs) strategy 

438 /300 0.1  [57] 

MnS/grap

hene 

3-D graphene 

cross-linked 

with 

mesoporous 

MnS 

solvothermal approach 980 /30 0.05 [166] 

α-MnS–

NC 

Coral composite 

+ nitrogen-

doped carbon 

In situ two-step method 699 /400 0.5  [37] 

MnS/RGO MnS hollow 

microspheres/R

GO composites 

Ostwald 

ripening process 

640 /400 1.0  [36] 

VS4–

graphene 

Nanocomposite hydrothermal method 727 /50 4  [52] 

Bi2S3+ 

graphene+

C 

(3D) graphene–

Vulcan carbon– 

Bi2S3 

nanocomposite 

sonochemical method 702 /100 0.1  [20] 

Bi2S3/GO/

PEDOT 

Bi2S3/graphene 

oxide (GO) 

composite 

enwrapped by 

a poly(3,4-

ethylenedioxythi

ophene) 

(PEDOT) 

coating 

hydrothermal method 220 /50 0.1  [21] 
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Ni3S4 NPs/ 

NG 

Composite of 

nickel sulfides, 

grown on 

nitrogen-doped 

graphene (NG) 

sheets 

hydrothermal 558.2 /100 4  [40] 

NiS2/graph

ene 

Composite hydrothermal reaction 810 /1000 0.5  [41] 

SWCNT-

GaSX 

x = 1.2 

core-shell, 

nanostructured 

SWCNT-GaSx 

composite 

atomic layer deposition 

(ALD) 

766 /100 0.12 [35] 

Sb2S3 Bulk crystalline Sigma 

Aldrich 

~800 /50 0.25 [44] 

MgS/AB 

Acetylene 

black 

 

Nanocrystalline solid state reaction of 

MgH2 of S via ball 

milling 

629 /80 0.05 [114] 

 

 

 

Table 2-3 Summary of nanostructured metal sulfide materials for SIBs 

Anode 

material 

Structure Synthesis method Capacity 

(mAh g-1) 

/cycles 

Rate 

(A g-1) 

Ref. 

CoS/rGO 

 

Sandwich-like 

composite 

hydrothermal method 230 /100 0.1  

 

[98] 

cobalt 

sulfides/dod

ecahedral 

porous 

carbon 

3-dimensional 

core-shell 

facile synthetic route 

in situ derived from 

ZIF-67 

300 /50 0.5  [183] 
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CoS2/ multi-

walled 

carbon 

nanotube 

(MWCNT) 

Nanocomposite hydrothermal method 568 /100 0.1  

 

[69] 

Co9S8-C Co9S8 

nanoparticles + 

amorphous 

Carbon 

composite 

one-pot spray 

pyrolysis process 

404 /50 0.5  [99] 

FeS2 Microspheres solvothermal 

route 

170 /12000 20  

 

[116] 

FeS2 Nanocrystals thermal reaction 500 /400 1  [33, 

115] 

MoS2 Nanosheets exfoliation technique 161 /100 0.1  

 

[132] 

MoS2/RGO Composites microwave assisted 

reduction 

305/50 0.1  

 

[184] 

3D MoS2-

graphene 

Microspheres 

composite 

 

one-pot spray 

pyrolysis process 

322 /600 1.5  [134] 

Graphene-

like MoS2 

Nanoflowers hydrothermal method 

and treated by freeze 

drying 

300 /1500 1  [133] 

SnS2@Grap

hene 

Nanosheet 

arrays 

solvothermal 

route 

378 /200 1.2 [185] 

SnS2/C Nanospheres solid-state 

reaction 

570 /100 0.05  [51] 

GO-SnS2 Nanocrystals set of sequential wet-

chemistry steps 

320 /150 2  [158] 

WS2@graph

ene 

Nanocomposite hydrothermal 148 /500 0.32  [56] 

WS2 NWs Nanowires solvothermal method 483.2/50 0.1  [55] 



50 
 

 

WS2/C 3D porous 

interconnected 

WS2/C 

nanocomposite 

electrostatic spray 

deposition (ESD) 

219 /300 1  [165] 

Ni/rGO Hollow 

nanospheres 

Spray-

drying+nanoscale 

Kirkendall diffusion 

process 

449 /150 0.3  [43] 

MnS/RGO Hollow 

microspheres 

hydrothermal 

method 

308 /125 0.1  [36] 

rGO/Sb2S3 Composite solution-based 

synthesis technique 

670 /50 0.05  [186] 

Sb2S3@C One-

Dimensional 

Rod 

solvothermal method 699.1/100 0.1  [169] 

ZnS Nanospheres thermal decomposition 423 /100 0.64 [58] 

VS4/rGO Composite hydrothermal synthesis 240.8 /50 0.1  [53, 

187] 

Ni3Co6S8–

RGO 

Composite spray pyrolysis + 

sulfidation process 

498/100 0.5  [188] 

 

 

2.4. Conclusion and outlook 

         Metal sulfides are considered as a unique class of materials in many aspects. Owing to their 

high theoretical capacity, unique structural properties, and practical synthesis, TMSs hold great 

potential for applications in energy storage and conversion. However, TMSs for batteries face some 

problems that need to be solved. For instance, capacity fading associated with the volume change 

and low conductivity is still a big challenge to overcome. In this case, we have reviewed the 

properties and applications of TMS for batteries (LIBs & SIBs), in which the detailed discussion 

was carried on through demonstrating different approaches and strategies. Firstly, one primary 

strategy has been applied for TMSs is the exploration of new rational structure designs. Different 

morphologies of TMSs have been successfully investigated to improve the performances and 

lifetime regarding relieving the volume expansion during electrochemical cycling. Secondly, due 
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to the low conductivity of TMSs, highly conductive materials including nanocarbon (graphene and 

carbon nanotubes) and conductive polymers have been introduced to form conductive composites. 

These functional additives can significantly enhance the conductivity of the composites, which 

further play an essential role in the electrochemical performances. Thirdly, surface modification is 

another useful approach to solve many of the problems. One of the most popular coatings in this 

area is carbon coated on the surface of TMSs, which has proven to be very cheap and successful 

approach to improving the electrochemical performance by increasing the conductivity, enhancing 

the surface chemistry of the active materials and accommodate the volume expansion effect. 

Interestingly, some studies emphasize the role of the electrolyte, including carbonate-based and 

ether-based, which also significantly affects the performances, particularly for SIBs. 

 Although many outstanding results have been achieved using TMS as anode materials for 

both LIBs and SIBs, there are still challenges to be overcome in the future. Further improvements 

are required to achieve higher specific capacities and longer lifetimes for TMSs. First, the active 

design and controllable fabrication of TMSs with unique structure and morphology are still 

undergoing, in which the relationship between structure and performances need to be further 

studied and emphasized. Meanwhile, the mass production of TMSs is still one of the challenges for 

making it into the practical application of batteries. Secondly, one of the most severe issues between 

the electrode and liquid electrolyte in LIBs and SIBs is the interfacial reactions, in which the SEI 

formation on anode materials will irreversibly consume electrolyte, leading to the fading of battery 

performances. In this case, surface modification and coating on TMSs is another approach to reduce 

the side reactions and enhance the performance of the materials. Besides usual carbon coating, 

surface coating by atomic layer deposition/molecular layer deposition (ALD/MLD) with tuned 

thickness and uniform coating layers is considered an ideal coating technique to ameliorate the 

surface, which is expected to improve the electrochemical performances significantly. Lastly, new 

approaches to synthesize TMSs need to be further explored. Recently, one of the novel approaches 

that has received increasing attention in this field is the use of MOFs as a template for TMSs with 

high surface area and porosity, even hierarchical nanostructure with the formation of carbon matrix. 

On the other hand, ALD can not only be used for surface modification, but also for the synthesis 

of thin film TMSs with controllable thickness and uniform distribution [35, 167, 189-191]. Almost 

any type of TMSs can be deposited on any substrate which open doors for different materials to be 

used in energy storage applications.  Also, it is well-known that the mixed transition metal oxides 

(MTMOs) are the derivative of a metal oxide for batteries application, which shows significant 

enhancement and has attracted increasing attention in the past years. Our previous review paper 

has summarised the detailed development and understanding of MTMOs as anode materials for 
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LIBs. Following a similar idea, a combination of two or more different metals with metal sulfides 

is going to resolve some electrochemical imperfections in these materials such as low conductivity, 

low capacity, and slow ion kinetics. The final product will collect the characteristics of every single 

metal and deliver it in one composite [20, 45, 192]. In this case, analogical methods to optimize the 

synthesis parameters, material properties and electrochemical mechanism of MTMSs can be 

switched over to mixed transition metal sulfides to gain a fundamental understanding, which will 

be another interesting topic and further expand the potential materials for high performances LIBs 

and SIBs.  

      It is believed that TMSs are promising candidates for both LIBs and SIBs and further research 

is required to improve the battery performances. With rational and careful design, it is expected 

that TMSs can be more practical as anode materials for both LIBs and SIBs in the future.  
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Chapter 3 

3. Experimental procedures 

3.1. Synthesis process  

In this chapter, different synthesis approaches, including wet chemical process, 

hydrothermal, method and chemical vapor deposition, were used to design different nanomaterials 

and nanostructures. These three methods will be defined and described in this chapter. Also, the 

appropriate techniques were used to study the physical and electrochemical performance. 

3.1.1. Wet chemical process  

The wet chemical process represents several methods including sol-gel process, 

hydrothermal synthesis, spray drying, aerosol spray pyrolysis, etc. to synthesize nanostructured 

materials. It is a liquid phase process where different powders are dissolved in a various solvent 

(e.g., nitrides, chlorides) at room temperature or relatively higher temperature to obtain a solid 

material. During the process, different parameters such as time, temperature, reactant 

concentration, and stirring speed, etc. can be precisely controlled to achieve the controllable 

nanostructure materials. The advantages of this approach can be list as: well-defined structures can 

be obtained, the controllable parameter could be maintained, safe at room temperature or relatively 

higher, cheap. 

3.1.2. Hydrothermal synthesis  

 

Figure 3-1 (a) hydrothermal oven (b) Teflon lined hydrothermal reactor [3]. 

Besides the general wet chemical process, it is considered that the extra pressure will also 

affect the final products during the reaction. In this case, hydrothermal/ solvothermal methods are 

developed to fabricate nanostructure materials. The specific reactor made of 

Polytetrafluoroethylene (PTFE) is placed inside Teflon Lined Stainless Steel Autoclave as shown 
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in Figure 3.1b   and the heating ovens will be used to obtain relatively high temperature and 

pressure (see Figure 3.1a). The advantages of this approach could be highlighted as the ability to 

synthesize high crystallinity materials with very uniform morphologies, highly controllable 

process.   

 

3.1.3. Chemical vapor decomposition (CVD) 

 

Figure 3-2 schematic illustration of chemical Vapor deposition process and the oven used 

for it 

 

CVD is a process that is suitable to synthesize the vast amount of different materials such 

as metal, carbon materials including nanotubes and nanowires, composite materials and ceramics. 

It is a process in which the substrate is exposed to one or more volatile precursors flowing within 

a carrier gas to be deposited on the surface at a high temperature of between 600 and 800˚C and 

using glass for example in an oven that is shown in Figure 3.2. The substrate is put in a small boat 

and heated up to specific temperature based on the different materials and reactions in the presence 

of precursor that is introduced into the flowing gas.  
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3.2.  Characterization Method 

 

Figure 3-3 Flowchart shows characteristic techniques in this work 

 

Characterization method, in general, is divided into two parts in this thesis: physical 

characterization and electrochemical characterization. Firstly, physical properties including 

morphologies, chemical composition, and structural properties, are investigated using several 

powerful techniques such as Scanning Electron Microscope (SEM), Energy Dispersive X-ray 

Spectrometry (EDS), Raman spectroscopy (Raman), X-ray diffraction (XRD), and 

Thermogravimetric Analysis (TGA). Secondly, the electrochemical characterization is the way to 

evaluating the batteries performance using cyclic voltammetry (CV), and full battery testing as all 

classification is shown in the flow chart below (see Figure 3.3). 
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3.2.1. Physical Characterization techniques 

3.2.1.1. Scanning electron microscopy (SEM) 

 

Figure 3-4 on the left, Digital photo of SEM (Hitachi, S-4800) machine; on the right, Types 

of interactions between electrons and a sample. 

 

SEM is a scanning device using an electron beam to image the surface of materials. The 

detectors receive signals with the surface information as a result of electrons interaction with 

sample’s atoms. As it is shown in Figure 2.4, On the right side, a narrow electron beam is released 

from the electron gun at a very high voltage to interact with the sample surface. When penetrating 

into the material, different electrons are produced and reflected in different directions which are X-

rays, Auger electrons, backscattered, secondary electrons, elastically scattered electrons, and 

inelastically scattered electrons. Mainly, the backscattered electrons are the one responsible for 

imaging SEM information. Detectors collect the information and convert it to TV scanner to 

produce the image. The morphological studies in this research are performed by Hitachi S-4800 

field-emission scanning electron microscope (SEM) ( see Figure 3.4). The produced electrons and 

characteristic x-ray can be detected using various detectors providing information about the 

morphology and composition of the samples. 

 

3.2.1.2. Energy Dispersive X-ray Spectrometry (EDX) 

Energy Dispersive X-ray Spectrometry (EDX) is an analytical technique that is used to 

obtain a localized chemical analysis and element distribution images or “maps” by scanning the 

beam in a television-like raster and displaying the intensity of a selected X-ray line. The scanning 
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electron microscope (SEM) is designed primarily for producing electron images, but can also be in 

conjunction with EDX and used for element mapping, and even point analysis if an X-ray 

spectrometer is added which is the case in the SEM (Hitachi, S-4800) machine shown in Figure 

3.4. 

 

3.2.1.3. Raman spectroscopy  

 

Figure 3-5 Digital photo of HORIBA Scientific LabRAM HR Raman spectrometer. 

 

Raman spectroscopy is a spectroscopic technique used to provide information about the 

chemical structure and physical forms by investigating the photon energy shift that is caused by the 

interaction between the laser light and the molecular vibrations to study the vibrational, rotational 

information of chemical bonds in materials. When light interacts with the molecule, a temporary 

state called “virtual state” is produced which is not a real state of the molecules, and it is not stable 

which photon is quickly re-radiated.  Raman scattering spectra were collected on a HORIBA 

Scientific LabRAM HR Raman spectrometer system equipped with a 532.4 nm laser, as shown in 

Figure 3.5. Raman spectrum is presented as an intensity versus wavelength shift, and its spectra 

could be recorded over a range of 4000–10 cm-1(10) and the ratio between peaks at ~ 1345 cm-1 (D 

band) and ~ 1570 cm-1 (G band) is used to evaluate the disorder in the carbon materials. 
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3.2.1.4. X-ray diffraction (XRD) 

 

Figure 3-6 Digital photo of Bruker D8 Advance XRD machine. 

 

X-ray diffraction (XRD) is a technique used to examine detailed information of crystal 

structure, chemical composition and physical properties of materials. These X-rays are produced 

by a cathode ray tube, filtered to generate concentrated monochromatic radiation and focused on 

the sample. The interaction of the monochromatic x-ray beam with the sample produces diffracted 

ray when it satisfies the relationship shown in Bragg's Law (nλ=2d sin θ). Where; λ is the 

wavelength, n is the diffraction angle, and d is the spacing of the lattice planes, and these diffracted 

x-rays are detected, counted, processed and converted to a count rate which is being sent to a device 

such as a printer or a computer monitor. The XRD patterns were obtained from a Bruker D8 

Discover diffractometer employing a Co- Kα source, as shown in Figure 3.6. 
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3.2.1.5. Thermogravimetric Analysis 

 

Figure 3-7 Digital photo of Thermogravimetric Analysis device taken at the lab. 

 

Thermogravimetric Analysis is a technique in which the mass of a substance is examined 

as a function of temperature or time in different environments to know the content of the material. 

Herein, the material is heated up to a specific temperature for a particular time under nitrogen or 

air stream to investigate the physical and chemical properties such as the carbon content of the 

material in the pristine materials contain carbon for example by monitoring the weight lost during 

the process (See Figure 3.7).  
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3.2.2. Electrochemical characterizations  

3.2.2.1. Battery assembly  

 

Figure 3-8 Digital photo of Lithium battery glove box. 

 

Coin-type half-cells consist of a prepared electrode as an anode, a polypropylene separator 

(Celgard 2400). The battery assembly was done using coin cells in a glove box in Vacuumed 

Atmospheres under a dry argon atmosphere (concentrations of moisture and oxygen are below 1 

ppm) (See Figure 3.8).  The electrode was prepared using a weight ratio of 7:2:1 of active electrode 

material, carbon black, and binder all mixed in Dimethylformamide (DMF) solvent. After the 

uniform slurry is obtained, it is painted on copper foil. Lithium foil as the cathode for LIB and the 

electrolyte used in LIB consists of 1M LiPF6 dissolved in ethylene carbonate (EC): diethyl 

carbonate (DEC): ethyl methyl carbonate (EMC) in a volume ratio of 1:1:1. 

 Sodium foil as a cathode for SIBs and the electrolyte used in SIBs consist of 1.0 m NaCF3 SO3 

in diethylene glycol dimethyl ether (DEGDME)[1].  
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3.2.2.2. Electrochemical cycling test 

 

Figure 3-9 Digital photo of Arbin BT-2000 battery test station. 

 

            Cycling performance was performed at the same parameter for both batteries at current 

density 100 mA g-1 in a voltage range between 0.0-3V. For rate tests, current densities of 100, 200, 

300, 500, and 1000mA g-1 are employed to all batteries rate performances. Cycling stability and 

rate capability of the anode materials are investigated in an Arbin BT-2000 battery test station (See 

Figure 3.9). 

 

3.2.2.3. Cyclic Voltammetry (CV) 

 

Figure 3-10 A picture of VMP3 Potentiostat/Galvanostat/EIS system. 
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        Cyclic Voltammetry (CV) is an electrochemical technique that measures the current that 

develops in an electrochemical cell under conditions where the voltage is fixed in a specific range 

[2]. CV is a technique rely on measuring the current by cycling the potential. CV performance of 

the anode materials of both LIBs and SIBs in this research is evaluated over a voltage range of 0.0-

3V in a VMP3 Potentiostat/Galvanostat/EIS system shown in Figure 2.10.  
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Chapter 4 

4. Fabrication of Different Types of Metal-Organic Frameworks 

 

 

Abstract 

This chapter emphasizes the experimental procedures to synthesize different types of metal-

organic frameworks (MOFs) such as zeolitic imidazolate framework-8 (ZIF-8) and (ZIF-67) and 

Materials from Institut Lavoisier(MIL-88). Primarily, the fabrication of MIL-88 has been discussed 

in detail with different effects and parameters such as temperature, time, solvent, reactant 

concentration, and additives on the material structures and morphology. A visual study using 

scanning electron microscopy (SEM) is performed to observe different changes of MIL-88 

morphology due to adjusting different parameters. Finally, the best condition and parameters of 

preparing MIL-88 with high crystallinity, uniform distribution and small particle size were given 

to conclude this work. 
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4.1. Introduction 

Metal-organic frameworks (MOFs) is a combination of metal ions linked by organic ligands 

owing crystal structures with high porosity. This material has unique properties such as the nearly 

highest surface areas reported in the literature, high thermal stability up to 500˚C because of their 

strong bonds, as well as the wide range of different structures and metals [1, 2]. These attractive 

properties render this material and their derivatives for many applications including chemical 

separation, filtering, sensing, energy storage and conversion, and catalysis.  

However, the controllable synthesis of MOFs with defined structures and morphologies are 

still significant challenges. Controlling the morphology features such as surface area, porosity, and 

crystallinity involves adjusting different parameters such as the solvent used in the reactions, the 

reactions temperature, time, and others which could have a considerable influence on the synthesis 

process. All these challenges show that this field needs more effort to be done to explore this class 

of materials and have a better understanding of their chemical and thermal stability during the 

preparation.  [3].  

 

One of the favorite applications of MOFs is for energy storage and conversion especially as 

electrodes for batteries. This field has become a very hot area for research due to the urgent need 

to the reliable storage device for clean energy storing. Recently, MOFs and MOFs derived materials 

have been employed as electrodes materials for lithium ion, sodium ion, and lithium-sulfur batteries, 

etc., showing very promising potential. [4-7]. 

In this chapter, synthesis of different types of MOFs (ZIF8, ZIF67, MIL88) is explained and 

synthetic parameter effect is studied. Also, some characterization investigation was carried out to 

evaluate the success of the preparation process and determine the chemical-physical and properties 

of the materials. 

 

 

4.2. Experimental procedures   

4.2.1.  Synthesis of Zeolitic imidazolate frameworks (ZIF-8) 

6.1467 g of zinc nitrate (Zn(NO3)2).6H2O was dissolved in 250ml of methanol, forming 

solution A. Then, 6.7873g of 2-methylimidazole was dissolved in another 250ml of methanol, 

forming solution B. After that, solution A was dropwisely added into solution B under stirring at 

room temperature. After stirring for 1h, the reaction was aged overnight at room temperature. The 

White resultant precipitate was collected using a centrifuge and washed many times with ethanol.  
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4.2.2. Synthesis of Zeolitic imidazolate frameworks (ZIF-67) 

6.0132g of zinc nitrate (Co(NO3)2).6H2O in 250ml of methanol, dropwise is added to 6.7873g 

of 2-methylimidazole in 250ml methanol under stirring at room temperature. After stirring for 1hr, 

the reaction is aged overnight at room temperature. The resultant purple precipitate is collected 

using a centrifuge and washed several times with ethanol. The particle size of ZIF67 obtained from 

this route was between 200-300nms. Smaller particle size is obtained from the slightly different 

route that is mixing 3.0066g of (Co(NO3)2).6H2O and 3.393g of 2-methylimidazole in 500ml of 

methanol that was put in an oil bath at 70˚C under stirring for 15mins. Then the reaction is aged at 

room temperature over the night, and the Purple precipitate is collected the same previous method. 

An average particle size of 150nm is successfully obtained through this method. As shown in  

 

4.2.3. Synthesis of Iron-based MOF (MIL-88) 

 0.2903g of FeCl3.6H2O 0.1661g of 1,4-benzene dicarboxylic acid (H2bdc) were dissolved 

in 10 ml of DMF in the reactor and stirred until the solution is obvious. The reactor was moved into 

the Teflon-lined autoclave and heated up to specified temperature and for a specified time. The 

detailed parameters including temperature, Time, Solvent type and concentration, and additives 

will be discussed in the following sections. 

 

4.3.  Results and discussion  

4.3.1. Characterization for ZIF-8 and ZIF-67 

Schematic illustration of ZIF-8 is shown in Figure 4.1, and the morphology of ZIF-8 was 

confirmed and demonstrated using the SEM images. As shown in Figure 4.1, SEM images of ZIF-

8 shows a uniform distribution of rhombic dodecahedral structure with an average size of 200nm 

is observed. As-prepared ZIF-8 will be further used as the template for ZnS in the following 

chapters. 
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Figure 4-1 Schematic diagram of Zeolitic imidazolate frameworks (ZIF-8) with SEM 
image. 

 

The SEM images of ZIF-67 was shown in Figure.3.2. From the SEM images, it can be observed 

that the ZIF-67 delivers the similar polyhedral morphology with ZIF-8 with a particle size range 

between 100-200nm and very smooth surface and uniform distribution. XRD tests were employed 

to confirm the structure and phase purity of ZIF-67. The XRD patterns of ZIF-67 matched the PDF 

card number in the index and previous publications. ZIF-67 is cobalt based MOF material that has 

been successfully used as a template to design nanostructures of cobalt oxides and cobalt sulfides 

with some inherited properties of MOFs such as high surface area, thermal stability, and 

morphology[8].  

 

   

Figure 4.1-2 SEM images of Zeolitic imidazolate frameworks (ZIF-67); (a) high resolution 
(b) low resolution. 
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4.3.2. The fabrication and detailed parameters for MIL-88 

Iron (Ⅲ) based MOFs is fascinating material that has been reported and applied in many 

application such as energy applications[9, 10], chemical adsorption and delivery [11], and dye 

degradation[12]. Iron-based MOFs consist of iron metal oxide cluster connected by organic linkers 

in three dimensions. MIL-88 is one of the critical type of iron-based MOFs with the diamond-like 

shape prepared using the hydrothermal method. Synthesis process and study of the synthetic 

parameter effect on the morphology is discussed in this section. As shown in Figure 4.3, schematic 

demonstration of the typical morphology of diamond-like MIL-88 and on the right side of the figure 

is SEM image of the prepared MIL-88 after synthesis optimization. 

 

  

Figure 4-3 (a) Schematic diagram of Iron-based MOFs (MIL-88); (b) high magnification 
SEM image of Iron-based MOFs (MIL-88). 

 

As discussed above, this section focuses on the study of the effects of changing the synthesis 

process of MIL-88 on the morphology of the material to optimize the procedure and obtain the 

typical morphology. Parameters such as process time, temperature, solvent type and concentration, 

and additives experimented, and the results are discussed in the following sections. The structural 

crystanality is as important as the morphology when synthesising this material and XRD test was 
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performed to confirm the structure obtained and chemical composition. Figure 4.4 shows XRD 

pattern of MIL88 which is consistent with the results reported in the literature.  

 

Figure 4-4 XRD pattern of MIL88 synthesized at 140˚C for 20hrs. 

  

 

 

4.3.2.1. Effect of different temperatures 

During the hydrothermal process, the temperature is one of the key factors to control the 

structures of the final products. Herein, the hydrothermal temperature from 100-140 oC is 

investigated as the first parameter of the effects on the growth and morphologies of MIL-88. 

Figure.4.5 shows the SEM images of MIL-88 synthesized for 20 hours at different temperatures. 

It can be seen from the SEM demonstration in Figure 4.5 going from the top to the bottom pictures 

that with the increase of the process temperature, the complete crystallinity is observed, and entirely 

shaped MIL-88 is obtained. This conclusion coincides with previous studies in which is confirmed 

that the overall dimensionality of MOFs entirely develops with the increase of the reaction 

temperature[13].   

As shown in Figure 4.5 a and b, the particles of as-synthesized MIL-88 at 100˚C are still in 

the growth stage towards developing the final morphology. This can be observed form the different 

sizes of the microparticles as well as the shape of the small particles is not defined that might be 
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evidence of the continues structure evolution process. When the temperature was elevated to 120 

˚C, more defined particles of MIL-88 are obtained with relatively rough surface indicating the low 

crystalline structure (see Figure 4.5 c and d). MIL-88 particles obtained at 120 ˚C are uniformly 

distributed with similar particle size. Finally, as shown in Figure 4.5 e and f when 140 ˚C was 

applied during hydrothermal, the most uniform structure was delivered with the well-defined 

morphology of MIL-88 owing average particle size of 1.3µm representing the effect of temperature 

on the growth of MIL-88 on its morphology, particle size, surface and distribution and accord the 

studies have been done before.  Thus, the optimized temperature for the hydrothermal process of 

the procedure of MIL-88 is 140 ˚C.  

 

  

Figure 4-5 SEM of MIL-88 synthesized for 20 hours at different temperatures; (a) 100˚C; 
(b) 120˚C; (c) 140˚C. 

 



84 
 

 

4.3.2.2. Effect of different reaction times  

Besides the hydrothermal temperatures, another critical parameter for the growth of MOFs 

structure and other materials is process time. The different samples with a different hydrothermal 

time of 6 h, 12 h, 20 h were synthesized at 120˚C with the same parameters used in the experiments 

sections. As shown in Figure 4.6 a and b, MIL-88 with 6 h has very rough surface and general 

morphology due to such short time for the different solvent to react and format the final product. 

However, with longer time of 12 h, the products show the improved structure features of MIL-88 

with a large particle size of several microns and irregular surface (see Figure 4.6 c and d). When 

the much longer time of 20 h was performed, the process exhibited the best reaction condition 

delivering the full growth of MIL-88 particle with uniform structure coherence, but the surface is 

relatively rough which could be related to the need of using surface modification additives ( see 

Figures 4.6 e and f).  

To sum up, in this part, the hydrothermal time for the fabrication of MIL-88 has been optimized 

with 20 h. It is believed that the most extended process time is the best for full growth of MIL-88 

where definite shape, uniform size, and distribution can be obtained. It is also found that the 

morphology and structure remains the same when process time exceed 16hrs indicating the 

optimization of the process time at 140˚C. 
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Figure 4-6 SEM images of MIL88 synthesized at 140C for (a&b) 6hours; (c&d) 12hours; 
(e&f) 20hours. 

 

4.3.2.3. Effect of different solvent 

In our first design, the solvent used in the process is high purity DMF. It is believed that the 

different solvent also has a noticeable influence on the morphologies of MIL-88. In this case, the 

different solvents have been applied in the hydrothermal process with the optimized parameters of 

the temperature of 140 oC and time of 20 h. In this part, another two solvents of ethanol of water 

are used as a comparison, in which the mixture of DMF and water used as for the first sample and 

the mixture of DFM, water, and ethanol used as the second samples. Figure. 4.7 show the SEM 

images of the MIL88 synthesis at 140C for 20hrs in (a, b) DMF and water (c, d) DMF, water, and 
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ethanol. As seen from the SEM results, it is found that the two samples have different morphologies 

compared to the products using pure DMF solvent. As is shown in Figure 4.7 a and b, the first 

sample (using DMF and water as solvent) exhibits the aggregated particles with the uniform shapes 

indicating imperfect or unfinished growth process. Also, the SEM images of the second sample 

(using DMF, ethanol, and water as solvent) are shown in Figure.4.7 (c, d). It is apparently seen 

that the morphologies are not homogenous which has some particles with the similar shape as the 

ideal MIL-88; on the other hand, it also has some particles with an entirely new form which 

interestingly is flower-like microparticles.  

Therefore, it was found that using a different solvent such as water and ethanol entirely 

change the result and influence the morphology by delivering new structures and imperfection to 

the process. From this experiment, high purity DMF is believed to be the suitable solvent to 

synthesis MIL-88 with the targeted characteristics.  

 

  

Figure 4.1-7 SEM images of MIL88 synthesis at 140C for 20hrs in (a, b) DMF and Water 
(c, d) DMF, Water, and Ethanol. 
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4.3.2.4. Effect of different weight concentration ratio of the precursor in the organic 

solvent 

The concentration of the reactants is also an essential factor besides the temperature, time, 

and other parameters can be adjusted for the best results and directly affect the morphology, surface 

degree, and porosity of materials[1]. Based on this theory, the concentration of the reactants to the 

solvent of MIL-88 was changed, and the impact of this adjustment was investigated. 50% and 75% 

of reactants were used with the regular amount of the DMF solvent used before to synthesis MIL-

88, and they were prepared at 140˚C for 20hrs. When SEM tests were accomplished, it was found 

from the results that MIL-88 sample with less reactant concentration of 50% has full-grown 

microparticles with very soft surface and distinct structure as shown in Figure 4.8 a and b. 

nevertheless, MIL-88 with higher reactant concentration confirmed less uniform structure with a 

rough surface ( See Figure 4.8 c and d) 

 

  

Figure 4-8 SEM images of different weight concentration ratio of the precursor in the 
organic solvent (a&b) 50% (c&d) 75% of the regular weight. 
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To conclude this part, reactant concentration is a significant parameter to optimize the 

synthesis process of MIL-88 which has a distinctly remarkable effect on the morphology of the 

MIL-88. However, studying other physical characteristics such as chemical composition using 

other techniques like XRD and Raman is vital to confirm the material composition after changing 

the reactants concentration. 

 

4.3.2.5. Surfactant effect 

Another effective strategy to control morphology and contain the synthesis process is using 

a surfactant that has effects on particle size and surface. In this part, one of the preferred surfactants 

of Pluronic F127 was used to control the structures and morphologies of MIL-88 further.  

The sample with the addition of F127 exhibited excellent particle shape and uniform particle 

size. Also, particle size considerably dropped from few micrometers to few hundreds nanometer 

which apparently due to using F127 which agree with the reports where it is believed that F127 

impact the particle size significantly. As shown in Figure 4.9 a and b, MIL-88 has very smooth 

surface and uniform particle size in a range of 800nm where it was synthesized at 140˚C for 20hrs. 

PVP also was applied as an additive since it was reported in the literature that PVP could work as 

stabilizer and particle size controller, but the results showed no improvement on the MIL-88 

morphology (see Figure 3.9 c and d). F127 can be easily removed by washing the sample with 

ethanol few times. 

Hence, MIL-88 synthesized with the addition of F127 showed a very uniform structure 

with much smaller particle size and surface properties in comparison to MIL-88 prepared without 

any additive shown in Figure 4.9 c and d. The conclusion is drawn that the synthesis process of 

MIL-88 is optimized and could be controlled referring to our work and the influence of each factor 

is investigated for further applications. 
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Figure 4-9 SEM images of MIL-88 synthesized at 140˚C for 20hrs (a and b) with F127; (c 
and d) with PVP. 

 

4.4. Summary and conclusion  

 

This chapter mainly focuses on the synthetic procedure of preparing different types of 

MOFs including ZIF-8, ZIF-67, and MIL-88. The particular study was done on the optimization of 

the preparation method of MIL-88, and the effect of different parameters was investigated in details.  

For the ZIF-8, the preparation process was not changed from what has been reported in the literature. 

On the other hand, the ZIF-67 process was modified to obtain smaller particle size, and it was 

successfully achieved by using very simple rout we mentioned in the section 1.2.2. In details. 

Finally, a comprehensive study was performed to understand the effect of different 

parameters such as time, temperature, reactant concentration, reaction medium, and additives on 

the morphology of MIL-88. It was found that the best condition to synthesis MIL-88 with very 

uniform structure, small particle size, and soft surface is performing the process at 140˚C for 20hr, 

in DMF as a solvent and the addition of Pluronic F127 to control the particle size and stabilize the 

reaction. Further investigation is needed to study the chemical and thermal stability of the product 

for further applications which will be mentioned in chapter 5 as well. 
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Chapter 5 

5. Carbon coated Cobalt Sulfides for LIBs and SIBs Anode Material 

 

Abstract 

In this chapter, Carbon coated cobalt sulfides derived from MOF (C@Co9S8) was 

synthesized via simple precipitation method, and the electrochemical performance of this material 

as an anode in sodium-ion and lithium-ion cells was investigated. Physical characterizations are 

carried out using scanning electron microscopy (SEM), Energy Dispersive X-ray Spectrometry 

(EDX), Raman spectroscopy, X-ray diffraction, Thermogravimetric Analysis, Structure 

characterization shows that the structure has high thermal stability, high surface area and high 

content of carbon. Electrochemical cyclic measurements indicate that this material has a high 

potential for batteries applications due to its stable performance and high reversible capacity for 

lithium and sodium storage. 

 

 

 

 

 

 

 

 

 

 

Note: This chapter will be submitted as a paper by Ali Abdulla, Yang Zhao, Xueliang Sun; 

entitled: Carbon coated Cobalt Sulfides for LIBs and SIBs Anode material 
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5.1. Introduction  

The development of advanced Lithium-ion battery has received significant attention for the 

last two decades due to the high energy density of lithium, high battery capacity which is 

successfully taken place for electric vehicle applications and portable devices[1, 2]. However, 

lithium abundance in the earth crust is alerting the fact that researchers have considered it which is 

going to rise the fabrication cost of this battery[3, 4]. Sodium ion battery is a promising alternative 

energy storage device that has been considerably studied because of the high sodium element 

availability on the earth, therefore low applicable cost of the element supply, low electrode 

fabrication cost and low redox potential[5, 6]. Sodium device is preferably considered for large-

scale energy applications such as stationary power generation. Although sodium ion battery has the 

similar principle of work and mechanism of a lithium-ion battery, different challenges face the 

advancement of this battery due to the large size of sodium ion which is the primary factor for many 

issues such as low capacity and poor cycling. As it is known that sodium ion battery has not been 

commercialized yet and one of the difficulties that prevent this achievement is finding suitable host 

anode material for sodium ions because of the large ion size of sodium which is about 55% larger 

than lithium ion. In this regards, many research groups hardly work in this area, and some promising 

accomplishments have been conducted but challenges to find host material with high capacity and 

long cycling reversibility still need more effort. Using carbon nanostructures, metal oxides, and 

sulfides, and alloys for anode material have been reported in sodium storage[7].  

Transitional metal sulfides have explicitly been studied due to their high theoretical 

capacity, sizeable gravimetric energy density, their volume change is less than that in metal oxides 

and also the product Na2S is reversible in compare to other chemical product that results from the 

electrochemical reaction during charge/ discharge process[8]. For example, metal sulfides with 

layered structures such as MoS2[9, 10] and SnSs[11] have been proven for anode materials in SIBs. 

It was suggested that such a layered structure could be used for SIBs anode due to the interlayers 

distance of about 0.615nm, which is almost twice the graphite interlayer space. Other metal sulfides 

have been studied such as iron sulfides[12], Tungsten sulfides[13], Zinc sulfides[14].  

Mainly, cobalt sulfides (CoS, CoS2, Co3S4, Co9S8, etc.) are among many metal sulfides that 

have attracted significant attention for their applications as an anode in LIBs and SIBs systems 

because of their chemical, physical and electrical properties. However, a material that contains such 

significant amount of sulfur has a very poor electrical conductivity which comes a challenging to 

obtain excellent rate capability. The second issue in this material is the volume change during 

cycling that leads to structural collapse and loss of the reaction reliability.  
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Many approaches have been studied to solve these problems such as using carbon materials 

as a matrix to improve the electrical conductivity, accommodate the volume extension and results 

to more structure and electrochemical performance reliability. For instance, Ko et al. fabricated a 

composite of Co9S8 nanoparticles and amorphous carbon and tested for SIBs anode where delivered 

high capacity of 404 mA h g-1 after 50 cycles. Wu and co-worker synthesized peapod-like carbon 

encapsulate cobalt chalcogenide nanowires (NWs) and investigated for SIBs’ anode. Zhou et al. 

also reported the fabrication of a sandwich-like cobalt sulfides–reduced graphene oxide (CoS/ rGO) 

composite using a hydrothermal method[15]. CoS/ rGO was tested for SIBs anode and maintained 

a discharge capacity of 230 mA h g-1 after 100 cycles. Cobalt sulfides (CoS) nanoplates on reduced 

graphene oxide (CoS@rGO) was successfully synthesized via hydrothermal method by Peng et 

al.[16]. CoS@rGO was evaluated for SIBs anode performance and could retain the high specific 

capacity of 420 mAh g-1 at 1 A g-1 after 1000 cycles and extraordinary rate capability with a specific 

capacity of 306 mAh g-1 at a high current density of 10 A g-1.  

In LIBs , cobalt sulfides have been widely investigated for Anode materials and have 

shown high capability. For instance, CoS2 is one of the most reported cobalt sulfides that has been 

reported in the literature for battery applications due to its high theoretical capacity of 871.21mAh 

g-1 and its significant electrical conductivity. Wang and co-workers investigated the 

electrochemical performance of LIBs anode made of Ultrasmall CoS2 Nanoparticles within thin N-

doped porous carbon shell, and fascinating results were conducted in their paper[17]. CoS2 was 

synthesized using MOF template, and it exhibited a capacity of 560mAh g-1 after 50. Co9S8 

synthesized using the hydrothermal method and supported on nickel foam and tested for battery 

performance[18]. Co9S8 delivered a capacity of 720mAhg-1 at a current density of 100mAg-1 over 

100cycles. Many reports about cobalt sulfides have been published representing different 

techniques to solve the reduced cycling performance and rate capability of the electrodes[19, 20]. 

Here in, we successfully fabricated a cobalt sulfides C@Co9S8 derived from MOF template 

and coated with carbon. The products’ characteristics are investigated to evaluate its physical and 

chemical properties and further tested as anode material in SIBs and LIBs where C@Co9S8 showed 

outstanding performance in comparison to pristine CoS and annealed Co9S8.  
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5.2. Experimental section: Preparation of hollow mesoporousCo9S8 

5.2.1. Synthesis of ZIF-67 template 

Cobalt nitrate (Co (NO3)2 ▪ 6H2O, 3.0066 g) and 2-methylimidazole (3.39365 g) were 

added at the same time to 500 ml of methanol. The entire reaction process was performed at 70 °C 

with agitated stirring. After stirring for 15-20 mins, the reaction was aged at room temperature 

without any interruption overnight. The resulting purple precipitate was centrifuged and washed 

several times with methanol before drying in an oven at 60 °C. 

5.2.2. Synthesis of hollow mesoporous cobalt sulfides Co9S8 

0.1 g of the as-prepared template was transferred into a round-bottomed flask containing 

0.22g thioacetamide and 100 mL ethanol and 100 μL water. Then the mixture was 

refluxed for 1h under stirring. At last, the product was collected by centrifugation, 

washed with anhydrous ethanol and dried at 60 °C 

5.2.3. Synthesis of Co9S8@Ar 

the as prepared hollow mesoporous cobalt sulfide was transferred to calcination boat 

for post annealing process under Ar at 650˚C for 5hr.   

5.2.4. Synthesis of carbon coated hollow mesoporous cobalt sulfide s C@Co9S8 

Co9S8 was treated at 650°C for 5h in Ar/H2/CH4, producing carbon coated hollow of 

mesoporous Co9S8. 

 

5.3. Characterization 

5.3.1. Physical Characterizations. 

The morphology was studied using Hitachi S-4800 field-emission scanning electron 

microscope (SEM) operated at 10 kV. N2 adsorption/desorption isotherms were obtained using a 

Folio Micromeritics TriStar II 3020 Surface Area and Pore Size Analyzer. The surface area of the 

product was calculated by the Brunauer, Emmett, and Teller (BET) model. Raman data were 

collected using a HORIBA Scientific LabRAM HR Raman spectrometer. For the X-ray diffraction 

(XRD) measurements, (Bruker, D8 Advance) was employed to characterize the structures of the 

prepared samples. 

5.3.2. Electrochemical measurements 

CR-2032 type coin cells were assembled in the argon-filled glove box. Li foil was used as 

the counter electrode and the reference electrode, a polypropylene separator (Celgard 2400), and 

as-prepared electrode as Anode. The electrolyte in LIBs was a solution of 1 M LiPF6 in a mixture 
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of ethylene carbonate (EC), dimethyl carbonate (DMC) and diethyl carbonate (DEC) (1: 1: 1, v/v/v). 

In SIBs the electrolyte consists of 1.0 m NaCF3 SO3 in diethylene glycol dimethyl ether 

(DEGDME). Each coin-cell we added 3-5 drops of electrolyte which are around 0.20 ml/cell. The 

Arbin BT-2000 Battery Tester was used to evaluate the electrochemical performance of the 

CR2032-type coin cells at room temperature. Charge/discharge tests were carried out on Arbin 

BT2000 with a voltage range of 0.0–3.0 V. Cyclic voltammetry (CV) experiments were studied 

using a Bio-logic multichannel potentiostat 3/Z (VMP3) with a scanning rate of 0.1 mV s -1 and at 

a potential range of 0.0–3.0 V (vs. Li+/Li) in LIBs and (vs. Na+/Na) in SIBs. Electrochemical 

impedance spectroscopy (EIS) tests were measured between the frequency range of 0.01 Hz to 100 

kHz by versatile multichannel potentiostat 3/Z (VMP3).  

5.4. Results and discussion  

Carbon-coated cobalt sulfides MOF derived was prepared through a novel approach and 

further calcination process where all are shown in the schematic Figure 5.1. ZIF-67 as a sacrificial 

template to deliver Co9S8 was synthesized following reported method[21]. To obtain the final 

product, chemical vapor deposition setup was used to perform a simple calcination process for 

Co9S8 at 650˚C for 5hr in Ar/H2/CH4 environment. The porous nanocages of C@Co9S8 formation 

could be referred to the Kirkendall effect reported in the references[22]. Figure 5.2 a. Shows the 

XRD results of which it can be confirmed that mesoporous C@Co9S8 and the Co9S8@Ar peaks are 

corresponding to the high crystallinity of Co9S8 that could be indexed as cubic-phase Co9S8 (JCPDS 

Card, No. 65-1765), while the as prepared CoxSy XRD pattern has no peaks owing amorphous 

structure. Raman spectra were conducted to study the carbonization state of the material in Figure 

2b. The ID/IG ratio in the Raman test was found to be low which might be attributed to higher 

percentage of graphitic carbon than non-graphitic (non-crystalline) carbon since it can be seen in 

the figure that the pristine cobalt sulfides have higher intensity graphitic D and G bands  Raman 

peaks than the final product [23]. 
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Figure 5-1 Schematic diagram of the synthesis of carbon-coated carbon sulfides. 

 

The surface area and pore size of C@Co9S8, Co9S8@Ar , and pristine CoS were measured 

using the Brunauer–Emmett–Teller (BET) method. As it is shown in Figure 5.2c, BET surface area 

of C@Co9S8, Co9S8@Ar , and pristine CoS are 82.2347 m²/g, 42.1138 m²/g, 346.3035 m²/g; 

respectively. The highest surface area of the pristine cobalt sulfides is inherited from the MOF ZIF-

67 template which is known for its high surface area that is also confirmed by the amorphous 

structure of CoS. The decrease of the surface area after the first annealing process could be 

attributed to the phase change after calcination process. BET surface area increased in in the 

C@Co9S8 which is ascribed to the collaboration of carbon coating in the structure. In Figure 5.2d. 

Pore size distribution also indicated that cobalt sulfides with carbon coating have the larger pore 
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volume of 0.175310 cm³/g while pristine CoS has a pore volume of 0.346955 cm³/g.  

 

Figure 5-2 XRD pattern of the products C@ Co9S8, Co9S8@A , and CoxSy; (b) Raman 

spectrum; (c) Nitrogen gas adsorption-desorption isotherm and (d) pore size distribution of 

the CoxSy Co9S8@Ar. 

 

The morphology of the materials starting from the ZIF-67 and ending up to the C@Co9S8 

was carried out with SEM images. Figure 5.3 a-f show that the structure remains the same as the 

template structure throughout the process except for when the utilization of Co9S8 which leads to 

creating holes in the nanoparticles and adds advantages to facilitating the lithiation process by 

increasing the electrolyte contact with the active materials. As shown in Figure 3a and b, high and 

low magnification SEM images of the as-prepared ZIF-67 with very uniform morphology owing 

polyhedral particle shape with an average size range between 100-200nm. In figure 3 c and d, it is 

evident that CoS retained the polyhedral morphology after the wet chemical process at 80˚C 

demonstrating excellent thermal stability. Interestingly, this structure has some holes in the 

particles due to Kirkendall effect which could attribute to easier lithium and sodium ions 
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penetration and more electrolyte accessibility to the active materials. The structure maintains its 

shape even after the calcination process as shown in Figure 3 e and f in which also the structure is 

very porous and consist of tiny particles connected with each other. From the EDS element mapping, 

uniform distribution of the elements can be observed indicating the successful material design and 

composition (see Figure 5.3 g-j). All elements including C, O2, Co, and S are homogeneously 

distributed within the material indicating well chemical composition.   

 

  

Figure 5-3 SEM images of (a-b) ZIF-67, (c-d) CoxSy, and (e-f) C@Co9S8, (g-j) EDS elemental 

mapping of the C@ Co9S8.  

The electrochemical performance of the as-prepared cobalt sulfides (CoS, Co9S8, and 

C@Co9S8) was evaluated as anode material in SIBs and LIBs. In a sodium ion cell, Figure 5.4 a, 

shows the first 5 cycles of the cyclic voltammetry (CV) for C@Co9S8 with a scan rate of 0.1 mV s-

1 in the potential range 0−3.0 V. The main cathodic peak at ≈ 0.6V is assigned to the 

electrochemical conversion reaction of C@Co9S8 which can be expressed by the following equation: 
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Co9S8 + 16Na+ + 16e ↔ 9Co + 8Na2S                                   (1)  

The main peak of the first discharge process consists of the reduction of the Co9S8 and the 

formation of the solid-electrolyte-interface (SEI) layers at the same time in which process the 

sodium starts to make their channels thro the Co9S8 structure at low potentials. after the first cycles, 

the main cathodic peak at 0.6V is positively shifted to 0.9V and overlapped in the last four cycles 

implying the repeated Na+ insertion and extraction processes. Moreover, the electrochemical 

reaction during cycling can be further observed from the selected galvanostatic charge/discharge 

curves of the C@Co9S8 material at a current density of 0.1A g-1 shown in the Figure 5.4b. The 

discharge plateau at around 0.6V in the first cycles inconsistent with the CV peaks as well as the 

following cycles in which the reduction peaks is positively shifted to the higher potential of around 

0.9V. The small cathodic peak at 0.65V started to constantly appear on the CV curve from the 2nd 

to the 5th cycles could be assigned to different phase reaction which contributes to more specific 

capacity. 

 

Figure 5-4 For sodium-ion battery (a) CV curves of the C@Co9S8 at a scan rate of 0.1 mV 

s-1; (b) Discharge and charge voltage profiles of the C@Co9S8; (c) Cycling performance of 
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the Co9S8@Ar and C@Co9S8 electrodes cycled at a current density of 100 mA g-1; (d) Rate 

capability performance of the C@ Co9S8 at various current densities. 

 

 The cycling performance was further investigated for C@Co9S8, Co9S8@Ar, and pristine 

CoS in which C@Co9S8 shows a very stable cycling performance after the first cycle at a current 

density of 100 mA g-1. C@Co9S8 maintained a discharge capacity of ≈ 400 mAh g-1 after 35 cycles 

whereas Co9S8@Ar experienced a continues capacity fading after the first discharge capacity. The 

stable cycling of C@Co9S8 is contributed to the structural integrity which retains opened Na+ ions 

pathways and guarantee and continues insertion and extraction for N+ in the structure during cycling. 

also 

Rate performance test was conducted to express the advantage of the carbon coating more. 

The product shows outstanding rate capability at different current densities. C@Co9S8 exhibited 

discharge capacities of 455.96, 416.21, 414.12, 387.54, and 351.14mAh g-1 at current densities of 

100, 200, 300, 500, 1000 mA g-1, respectively. Carbon coating and the unique structure of C@Co9S8 

played a critical role in the reliable electrochemical performance utilizing three important 

properties; first, the hollow structure of the cobalt sulfides derived from MOF is very stable, and 

its high porosity facilitates the Na+ insertion/extraction within the structure. Secondly, carbon 

coating improved the electrical conductivity of the cobalt sulfides that led to obtaining high rate 

capability. Finally, carbon coating also eliminates the negative impact of the volume extension by 

providing high flexibility and accommodating the strain caused by such phenomenon. 

 In the lithium-ion cell, the same three materials were electrochemically investigated as 

anode material in LIBs for comparison and showing the effectiveness of the carbon coated cobalt 

sulfides. The cyclic voltammetry (CV) for C@Co9S8 with a scan rate of 0.1 mV s-1 in the potential 

range 0−3.0 V is shown in Figure 5.5a. C@Co9S8 experienced two reduction peaks at 1.6V, and 

1.0V in the first cycle is assigned to the formation of the SEI layer and the reduction of Co9S8 to 

Li2S and Co metal; respectively. There was another reduction peak observed at 0.6V could be 

referred to the second phase of cobalt sulfides. In the charging process, one oxidation peak is 

observed at 2.1V assigned to the reformation of Co9S8 from reversible reaction of Co and Li2S. 

These results are also consistent with the charge, and discharge curves of C@Co9S8 cycled at 

100mA g-1.  
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Figure 5-5 (a) CV curves of the C@Co9S8 at a scan rate of 0.1 mV s-1; (b) Nyquist plots of 
C@ Co9S8 and CoxSy after 100 cycles; 

Moreover, To evaluate the electrochemical cycling, C@Co9S8, Co9S8@Ar, and pristine 

CoS were cycled at a current density of 0.1Ag-1 for 100 cycles and the significant improvement of 

cycling performance of C@Co9S8 can be noticed. C@Co9S8 retained a high discharge capacity of 

693.37mAh g-1 after 100 cycles owing high electrochemical reversibility while a severe capacity 

fade happened for the Co9S8@Ar, and pristine CoS and low capacities of 176.35 and 108.39mAh 

g-1 were delivered after 100cycles as are shown in Figure  5.6b. Pristine CoS and Co9S8@Ar 

experienced a sharp capacity drop that is attributed to the particles aggregation after cycling due to 

the volume change and structural damage. It has been reported that metal sulfides suffer from poor 

rate performance due to the low electronic conductivity. Carbon coating is one of the active 

strategies that has been applied to overcome this challenge in which carbon coating can improve 

structure flexibility and help accommodating volume expansion effects as well as increases the 

material electric conductivity.  

The enhancement of the electrochemical performance of C@Co9S8 due to the function of 

carbon coating is highlighted in the rate performance results at various current densities in Figure  

5.6c. C@Co9S8 can deliver specific capacity of 649.99, 585.98, 551.48, 509.32, and 435.85mAh g-

1 at current density of 100, 200, 300, 500, and 1000mA g-1; respectively, while Co9S8@Ar exhibited 

a specific capacity of 243.79, 165.78, 133.59, 94.50, and 45.25mAh g-1 at current density of 100, 

200, 300, 500, and 1000mA g-1. The pristine CoS exhibited almost the near the same poor rate 

performance of Co9S8@Ar where the advantage of the carbon coating can be highlighted for 

comparison. Moreover, to investigate the rule of the carbon coating, long cycling performance of 

C@Co9S8  at high current densities was tested and shown in Figure 5.6d where it can be seen that 
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C@Co9S8 retained a specific capacity of 332.77 and 184.24mAh g-1 after 1000 cycles at a current 

density of 1 and 2A g-1; respectively.   

 

Figure 5-6. For Lithium-ion battery; (a) Discharge and charge voltage profiles of the 

C@Co9S8; (b) Cycling performance of the Co9S8@Ar and C@Co9S8 electrodes cycled at a 

current density of 100 mA g-1; (c) Rate capability performance of the C@ Co9S8 at various 

current densities. (d) Long cycling performance of C@Co9S8 at 1000mAg-1 and 2000mAg-1  

for 1000 cycles;  

 

5.5. Conclusion 

In summary, MOF-derived Cobalt sulfides with carbon coating have been successfully 

synthesized using ZIF-8 as a template in one step reaction and subsequent calcination process. 

Benefiting from the porous structure and carbon coating, the product exhibited high capacity of 

400 after 30cycles in sodium ion cell and as high discharge capacity as 693.37mAh g-1 after 100 

cycles in the lithium-ion cell. Carbon coating is an effective strategy to resist the volume changes 

and keep its adverse effects at a minimum as well as improving the electrical conductivity which 
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can be observed from the high rate capability of the cobalt sulfides. In the future, another carbon 

matrix can be used to resolve the poor electrical conductivity and buffer the volume extension for 

the cobalt sulfides derived from MOF. Introducing MOF derived materials especially metal sulfides 

as anode material without any further treatment is still challenge and needs more investigation.   
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 Chapter 6 

6. Metal sulfides derived from MOFs: synthesis, characterization, electrochemical 

performances 

 

 

Abstract  

         Metal sulfides have been intensively studied in different applications due to their availability, 

different unique structures including 2-dimensional and 3-dimensional structures, and their ability 

to form folded structures. They have been used in many applications and energy storage is one of 

the hottest areas of the study of this class of materials. ZnS, SnS2, and FexSy are synthesized via 

calcination process using CVD method using MOFs as templates. The morphology and structures 

were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and 

thermogravimetric analysis (TGA). Electrochemical performances were studied by cyclic 

voltammograms (CV) and cycling performance and rate capability for lithium ion and sodium ion 

batteries. In this chapter, ZnS showed high performance as robust candidate anode in LIBs and 

SIBs by delivering high capacities and long cycling stability.  
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6.1. Introduction 

As discussed in the introduction, transition metal sulfides (TMSs) such as ZnS, SnS2, FeS2 have 

been in favor to use for energy storage and conversion due to their high energy density, high 

theoretical capacity, and affordability. However, metal sulfides suffer from irreversible capacity 

fading after the first cycle that caused by several reasons such as the phase change during the 

electrochemical process and the volume change. In addition, low electric conductivity is a challenge 

that renders their applications in LIBs and SIBs and affects their cycling performance. Volume 

change in metal sulfides could reach up to 250% in some metals which damage the structure and 

block the charging ions from penetrating into the material besides that fact that active material de-

attach from the current collector in the electrode leading to permanent loss of the capacity.  

Particularly, nanomaterials and their composites derived from MOFs have attracted increasing 

attention as electrodes for LIBs and SIBs due to the physical and chemical properties.  

Zinc sulfides are one of metal sulfides candidates that have been investigated for batteries 

applications due to its high theoretical capacity, affordability, natural abundance and 

environmentally friendly nature. There are not many reports about ZnS for sodium ion batteries 

though meaning more research is required in this area to explore more about its potential. Among 

other metal sulfides, FexSy is widely reported material for batteries and other applications. FxSy is a 

cheap material that is available in a tremendous amount in the crust beside that fact that this material 

is very friendly to the environment.  

 In this chapter, different MOFs including ZIF-8, Sn-MOFs and MIL-88 are used as a 

template to synthesize different metal sulfides (ZnS, SnSx, and FeSx) with unique structures and 

properties. Furthermore, the as-prepared metal sulfides are tested as anode materials for both LIBs 

and SIBs.  

6.2. Experimental procedures   

6.2.1. Zinc sulfides derived from ZIF-8 

       ZIF-8 is used as templates for the following experiment, in which the synthesis process 

of ZIF-8 has been shown in Chapter.3. Two different approaches have been used to prepare ZnS, 

one is CVD method, and another one is a wet chemical method. For the CVD method, Zinc sulfides 

were synthesized by mixing the as prepared ZIF8 with sulfur powder with a weight ratio of 1:1 and 

moved into calcination boat. The mixture was heated up to 155˚C for 5 hrs in the presence of Ar 

gas. For the wet chemical method, 0.1 g of the ZIF-8  was transferred into a round-bottomed flask 
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containing 0.22g thioacetamide and 100 mL ethanol and 100 μL water. Then the mixture was 

refluxed for 1 h under stirring. At last, the product was collected by centrifugation, washed with 

anhydrous ethanol and dried at 60 °C. 

 

6.2.2. Tin sulfides derived from Sn-MOFs 

      Our previous study has reported the synthesis of Sn-based MOFs. In a typical hydrothermal 

process, 0.8 mmol of SnCl2 and 1.6 mmol of 1,3,5 Benzenetricarboxylic acid were dissolved in 4.2 

ml water, 4.2 ml DMF, 4.2 ml ethanol. The solution was transferred to Teflon stainless steel reactor 

for hydrothermal reaction at 100˚C for 12hrs. For the preparing of tin sulfides, Following the 

previous method to synthesize ZnS by calcination process, Sn-MOF was mixed with sulfur powder 

with a weight ratio of 1:2. The mixed powder was moved to calcination boat and transferred to the 

oven to perform annealing process at 155˚C for 5hrs, and then the temperature was elevated to 

500˚C for another 5hrs before the sample was cooled down to room temperature. 

6.2.3. Iron sulfides derived from MIL-88 

        FexSy is synthesized via annealing process of the as-prepared MIL-88 using simple CVD 

method. 1g of MIL-88 was synthesized using a weight ratio of 1:2.5 and heated up to 155˚C which 

is the sulfur evaporation temperature. The MIL-88 and sulfur powder were put in separate boats to 

make the sulfur flow above the MIL-88 which showed useful results better than mixing the two 

materials in the same boat. By flowing the sulfur over the MIL-88, sulfur reaction was assured after 

the evaporation of sulfur at 155˚C 
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6.3. Results and discussion 

6.3.1. Zinc sulfides derived from ZIF-8 

 

Figure 6-1 (a) Schematic of the synthesis process of ZnS derived from ZIF-8; SEM images 

of (b) ZIF-8; (c) ZnS.  

            Two ZnS samples were prepared using different chemical routes, ZnS prepared via 

calcination process is marked as ZnS-1, and the other sample was prepared through the wet 

chemical approach is named ZnS-2.  The schematic diagram the fabrication process of ZnS derived 

from ZIF-8 are presented in Figure. 6.1 (a). During the CVD process, ZnS-1 maintained the same 

shape of ZIF-8 with some shrinkage in the sides, and small particles were padded on the surface. 

Figure 6.1b and c show the SEM images of ZIF-8 and ZnS-1 derived from ZIF-8 via the annealing 

process. It shows that the morphology of ZIF-8 with a range of particle size between 200 and 250 

nm and very uniform structure. SEM image in Figure 6.2c and d shows the ZnS-1 derived from 

ZIF-8 with the same particle size indicating the thermal stability of the product.  
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Figure 6-2  (a) XRD pattern of ZnS-1 derived from ZIF-8; (b) TGA test of ZnS-1 derived 

from ZIF-8. SEM images of ZnS-1 (c) low magnification; (d) high magnification. 

 

 

XRD test was performed to confirm the structure and chemical composition in which the 

results were indexed to ZnS-1 (JCPDS card No. 00-039-1363). As shown in Figure 6.2 a, the three 

main diffraction beaks that appear in the XRD pattern 2Ɵ = 28.58˚, 47.7˚ and 56.5˚ are well 

matched to the (008), (110) and (118); respectively, of the cubic structured ZnS-1 crystal face. All 

peaks are broad indicating that the ZnS-1 nanoparticles comprise of tiny nanoparticles. 

Thermogravimetric analysis TGA was carried out at a heating rate of 10˚C min-1 from room 

temperature to 900˚C in the air. As shown in TGA profile in Figure 6.2 b, the slight weight loss 

under 200˚C is attributed to the evaporation of the absorbed water. Then, there is about 40% weight 

loss between 400˚C and 600˚C which is ascribed to the burnout of carbon in the material [7]. TGA 

profile represents the carbon mount within the structure which is very important to know since 
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carbon is the essential matrix for supporting electrodes materials by improving the electric 

conductivity and accommodate volume change by improving the overall structure strain. 

  

Figure 6-3 (A) SEM images of ZnS-1 with different magnification (b, c) high; (b) low.  

 

 For comparison, another ZnS-2 sample was prepared using the wet chemical method to 

investigate the possibility of obtaining the same morphology of ZIF-8 and better electrochemical 

properties. ZnS-2 was synthesized by transferring 0.1 g of the as-prepared ZIF-8 into a round-

bottomed flask containing 0.22 g thioacetamide and 100 mL ethanol and 100 μL water; then, the 

mixture was refluxed for 1h under stirring. At last, the product was collected by centrifugation, 

washed with anhydrous ethanol and dried at 60°C. As shown in Figure 6.3a XRD test was 

conducted out to assure the successful design of ZnS-2. All the main peaks were well indexed to 

the PDF No. 00-012-0677, and the main peaks at 2Ɵ = 28.58˚, 47.72˚, and 56.55˚ were matched to 

(0010), (110), (1110) planes; respectively. SEM was used to take images of ZnS-2 morphology and 

confirm the structure.  As shown in Figure 6.3 b, c, and d, High and low magnification SEM 

images of the ZnS-2 were taken, and the morphology of the obtained ZnS-2 is nanosphere particles 

consist of small nanoparticles. It is different from the morphology was expected which is the ZIF-
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8 dodecahedral indicating chemical instability when using this synthesis method to prepare ZnS-2. 

XRD pattern was carried out confirming the cubic ZnS-2 structure indicating the successful 

synthesis of ZnS-2.  

 To sum up, synthesizing ZnS-1 using calcination process shows high thermal and structure 

stability by delivering similar morphology to the ZIF-8 template was used. Structure and chemical 

composition were confirmed by SEM imaging and XRD testing; however, when the wet chemical 

route is used to prepare the ZnS-2, different morphology was obtained indicating a deficiency of 

structure instability although XRD results successfully confirmed the same composite.   

The electrochemical properties of the ZnS-1 and ZnS-2 anodes were investigated in a 2032 

type Coin half-cells with Li metal as the counter electrode in LIBs and Na metal as the counter 

electrode in SIBs as mentioned in chapter 2. Both cells were cycled and tested on the Arbin BT-

2000 battery test station, and the working electrodes were prepared by mixing the weight ratio of 

70:20:10 a ZnS as electrode’s active material, carbon black as a conductive additive, and binder in 

Dimethylformamide as a slurry solvent.   

The electrochemical performance of lithium-ion storage based on the ZnS-1 was first 

evaluated by cyclic voltammograms (CV) and cycling performance shown in Figure 5.4 a and b.  

As shown in Figure 6.4 a, in the first CV cycle, the broad cathodic peak at 1.4 V could be assigned 

to the reduction of ZnS-1 to the metallic Zn and then the formation of Zn-Li. This peak attributed 

to the irreversible formation of the solid electrolyte interphase (SEI) layer generated on the 

electrode and decomposition of the electrolyte which contributes to the capacity drop in the first 

three cycles. The Subsequent the cathodic CV cycles were consistent with the first cycle indicating 

an excellent stability during cycles. In the anodic scan, there is one distinct oxidation peak at 0.6 V 

which could be ascribed to the oxidation of Zn. The faintness of the peaks in the following cycles 

indicates an irreversible capacity fading which could be attributed to the structural instability and 

irreversible phase change during lithiation and delithiation process. 

The cycling performances of ZnS-1 and ZnS-2 materials are investigated in the lithium-

ion battery as anodes. Both electrodes were cycled at a current density 100 mA g-1 for 100 cycles 

in the voltage range of (0.01-3)V. As shown in Figure 6.4 b, ZnS-1 exhibited initial discharge 

capacity of 991.8 mAh g-1 whereas ZnS-2 initial discharge capacity was as high as 1036 mAh g-1. 

However, both electrodes suffered from sharp capacity fading during 5 cycles before it starts to 

stabilize. The specific capacity of the ZnS-1 dropped by about 65% in the second cycle which is 

attributed to the decomposition of the electrolyte to form the solid electrolyte interphase (SEI). 
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After 100 cycles, ZnS-1 still can deliver a specific capacity as high as 280 mAh g-1 with a columbic 

efficiency of 98.6% demonstrating very high cycling stability. This stable performance attribute to 

the high structural integrity of ZnS-1 with high surface area and porosity that facilitate Li+ insertion 

and desertion as well as the presence of carbon within the material that enhance the electric 

conductivity and accommodate the volume expansion. However, ZnS-2 experienced as capacity 

fade by 62% after the first cycle which maintained a specific capacity of 145.2 mAh g-1 after 100 

cycles. Also, ZnS-2 has very stable cycling after the first 20 cycles which shows the structure 

reliability and high charging and discharging reversibility. It was found that ZnS-1 can perform 

better lithium storage than ZnS-2 which could refer to better structure design and integrity of ZnS-

1; yet, there is more space for performance improvement since the first reversible capacity of ZnS-

1 is 644.57 mAh g-1 which is higher than the theoretical capacity of ZnS (theoretical capacity 550 

mAh g-1 ). After 100 cycles the capacity retained is about 43% of the first reversible capacity. This 

capacity decreasing could be attributed to an irreversible phase change of ZnS-1 to other phases in 

addition to the large surface area of ZnS-1 which could contribute to more contact between the 

electrode material and the electrolyte. Hence, more side reactions could perform with the phase 

change that results finally to irreversible capacity fading.   

 

Figure 6-4 (a) Cyclic voltammetry curve at 0.1mV S-1 scan rate of ZnS-1 in LIBs half-cell; 

(b) Cycling performance of ZnS-1 and ZnS-2 at a current density of 100mA g-1. 

 

 The two samples were also tested as an anode in sodium ion battery for electrochemical 

evaluation. Cyclic voltammograms (CV) ZnS-1 was firstly recorded in half-cell sodium-ion battery 

at a potential range of (0.01-3.0)V.  As shown in Figure 6.5a, in the first cathodic cycle, one broad 

peak appears at 0.9V, which is assigned to first sodiation process and the formation of solid 
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electrolyte interphase (SEI) layer due to the decomposition of electrolyte; however, the intensity of 

this peak decreased in the subsequent cycles indicating a conversion reaction between sodium and 

ZnS-1 which is alloying reaction[12]. In the anodic cycling, several, one main anodic peak is 

observed at 0.1V in the first cycle which could be contributed to the first sodium desertion reaction. 

This sharp peak shifted to a higher voltage at 0.25V in the following cycles signifying high 

discharge reversibility.  

 To further verify the cycling performance of the ZnS-1 and ZnS-2 electrodes in for sodium 

storage, both were cycled for 70 cycles at 100 mAh g-1 in voltage rate 0-3V, as depicted in Figure 

6.5b. ZnS-1 exhibited superior performance which delivered a first discharge capacity of 590mAh 

g-1 and maintained a capacity of 202mAh g-1 after 60 cycles. The capacity dropped after the first 

cycles that could be referred to the formation of the solid electrolyte interphase (SEI) layer and the 

decomposition of the electrolyte. On the other hand, ZnS-2 delivered only a discharge capacity of 

24.77mAh g-1 after 60 cycles indicating a large capacity lost after the first discharge capacity of 

358mAh g-1. The better performance of ZnS in compare to ZnS-2 could be attributed to the stable 

structure was obtained for ZnS-1 using the calcination process. Also, ZnS-1 shows proper sodium 

intake indicating the ability to accommodate such large ion size with less volume expansion effect 

which is a prevalent issue for metal sulfides. The presence of high percentage of carbon in the 

structure improves the mechanical strength of the structure as well elevate the electrical 

conductivity since it has been a challenge for sulfides materials due to the low conductivity of 

sulfur.   
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Figure 6-5 (a) Cyclic voltammetry curve at 0.1mV S-1 scan rate of ZnS-1 in SIBs half-cell; 

(b) Cycling performance of ZnS-1 and ZnS-2 at a current density of 100mA g-1. 

  

 

 All in all, in this section, synthesis process of ZnS-1 derived form ZIF-8 was successfully 

performed, and proper characterization techniques were used to confirm the obtained material. In 

addition, the electrochemical performance of ZnS-1 prepared through calcination process, and ZnS-

2 prepared via wet chemical process was carried out for comparison. ZnS-1 showed superior 

performance in lithium ion and sodium ion storage owing more stable structure, higher reversible 

capacity and excellent cycling stability.   

 

6.3.2. Tin sulfides derived from Sn-based MOFs  

Tin sulfides amongst many metal sulfides that have drawn high attention in energy storage field 

due to their excellent electrochemical properties. As the focus of our study is metal sulfides 

derived material, SnS-MOFs derived is also synthesized and studies in this section. Morphology 

of Sn-MOFs was demonstrated by the SEM technique showing a unique pyramidal structure with 

a very soft surface and uniform particles distribution. As shown in Figure 6.6 a and b, high and 

low-resolution SEM images of Sn-MOF are obtained from our previous study representing the 

morphology and shape features. EDX elemental mapping was performed to study the chemical 

composition, and as shown in Figures 6.6 c, d and e that Sn-MOFs obtained a balanced 

combination of carbon, Oxygen, and Tin elements.  
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Figure 6-6 SEM images and EDX mapping for Sn-MOFs 

 

XRD pattern was obtained to confirm the successful preparation of Sn-MOFs (see Figure in 

Supporting information). SEM observation was performed to confirm the morphology of the 

obtained material. As shown in Figure 6.7a, XRD patterns for SnS was investigated to confirm the 

chemical composition and the structure. It was found that the obtained SnS own impure phase that 

was indexed to the PDF file (No 01-083-0047). The main peaks at 2Ɵ = 30.07˚, 31.08˚, 31.15˚, 

31.53˚, and 32˚ were assigned to the crystal planes (004), (200), (020), (113), and (201) respectively. 

Figure 6.7b shows the SnS was obtained after the calcination process which successfully the 

structure displayed high thermal stability by keeping the same structure.  

 

 

Figure 6-7 XRD pattern of SnS2 derived from MOF; (b) SEM image of SnS2 
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Electrochemical performance of the as-prepared SnS is investigated as an anode in lithium 

ion and sodium ion batteries. LIBs and SIBs were tested at the same condition under a current 

density of 100mA g-1 in the voltage range of 0-3V for 100cycles. For SnS electrode in LIBs, as 

shown in Figure 6.8 a high initial discharge capacity of 978mAh g-1 which is attributed to the first 

insertion of Li+ into the SnS structure and the decomposition of the electrolyte that leads to the 

formation of solid electrolyte interphase (SEI) layer. However, the capacity started to fade suddenly 

after the first cycle representing irreversible capacity lost which might be due to different reasons 

such as phase change during cycles that led to other side reactions and because of which some 

active materials could not contribute to the capacity anymore. Another valid reason is that volume 

change is severe that led to aggregation of materials. It also changed the structure and blocked Li+ 

diffusion paths, so Li+ cannot travel back in the reversible cycle as well as the active material could 

de-attached from the current collector after structure damage due to volume change and result in 

irreversible capacity fading. Moreover, SnS exhibited an initial reversible capacity as high as 716 

mAh g-1 showing very high potential for this material in batteries applications. More research is 

needed for this experiment to solve this capacity fading and achieve a better electrochemical 

capability. First of all, investigate the structure reliability of this material after cycling, and maybe 

some XRD or other characterization studies could be used after cycling to have better insight into 

the problem. Another direction is by measuring the electrical conductivity of the material which is 

very important for stable cycling, and this could be worked using some surface coating techniques 

or carbon compositions[15]. Finally, study the structures’ thermal stability more and see how to 

maintain the best out of the Sn-MOF properties of high surface area and porosity and obtained SnS2 

pure phase without any impurities   
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Figure 6-8 Cycling performance of SnS in LIBs half-cell at a current density of 100mA g-1 

 

 SnS was also cycled in half-cell SIBs anode at a current density of 100 mA g-1 between 0-

3V.  SnS delivered an initial discharge capacity of 552mAh g-1 in the very first cycles indicating 

successful Na+ insertion and SIE formation after the electrolyte decomposition. However, the 

capacity decreased in the first reversible cycle to 358mAh g-1, and the battery died after only 6 

cycles demonstrating irreversible charging and discharging process. It is believed that the same 

issue during lithium storage which could be the phase change of SnS leads to side reactions and 

lose of reversible capacity especially when Na+ is the moving ions since Na+ are much larger than 

Li+ and much complicated to be hosted.    

 In conclusion, this part needs more effort to optimise the electrochemical characteristics of 

SnS2 derived form MOF. What is worth to mention here is that SnS@MOF has not been reported 

in the literature in batteries applications and it should receive more attention because of the unique 

properties of this material and the high potential to be applied in energy storage devices. Intensive 

characterization study is required to better understand the limits of this material and its competency 

for different applications. 
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6.3.3. Iron sulfides derived from MIL-88 

FexSy was successfully synthesized through calcination process was explained in details in the 

experimental section, and characterization techniques were used to confirm the process with the 

XRD pattern and SEM observation. Figure 6.9a shows a schematic illustration of the 

morphology of MIL-88 before the calcination process and then on the right side is the FexSy was 

obtained which has the same frame of the MIL-88. However, it appears to consist of plates or 

sheets stocked together in a row to form the bigger particle. As shown in Figure 6,9b, high 

magnification SEM observation of MIL-88 before the calcination process which is what 

demonstrated before in chapter 3. Figure 6.9c displays high magnification SEM image of the 

final product of FexSy after the annealing process at the mention condition.  

 

Figure 6-6-9 (a) schematic of the synthesis process of FeS2 derived from MIL88; SEM 

images of (b) MIL88; (c) FeS2.  

 XRD test was carried out to confirm the successful synthesis of FexSy and the phase purity. 

As shown in Figure 6.10, FexSy has a combination of three phases that were located in XRD peaks 
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FexSy consist of FeS, Fe7S8, Fe9S11 phases at the same time indicating the need for more synthetic 

optimization of the process to design single phase iron sulfides.   

 

 

Figure 6-10 XRD pattern of FeS2 derived from MIL88 

  

     The electrochemical evaluation of FexSy was performed using half-cell type LIBs and SIBs 

performing rate capability. As shown in Figure 6.11, the rate performance of FexSy is investigated 

by cycling the electrode at different current densities and calculate the corresponding specific 

capacity. As displayed in figure 5.8b, FexSy delivered discharge capacities of 209.2, 129.5, 104.6, 

85.3 and 66.4mAh g-1 at current density of 100, 200, 300, 500, and 1000mA g-1; respectively. 

Although the electrode shows high cycling stability, the capacity is relatively low in comparison to 

the theoretically and practically reported results. After working on this material for a long time, 

structure configuration is still challenging to guarantee reversible charging and discharging process 

using this material. The stable performance of every step through the rate test indicates high 

electrical conductivity which is attributed to the amount of carbon that FexSy have according to the 

TGA results. 
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Figure 6-6-11 (a) Cyclic voltammetry curve at 0.1mV S-1 scan rate of FeS2 in LIBs half-cell; 

(b) Rate performance of FeS2 at different current densities.  

 

 

 

In a sodium-ion battery, FexSy cycling performance was measured firstly at a current 

density of 100 mAh g-1 in a potential range of 0-3V for 100 cycles. Initial capacity of 739.3mAh g-

1 is delivered in the first cycles due to the first reaction between Na and FexSy and the formation of 

formation of solid electrolyte interphase (SEI) as result of the electrolyte decomposition. Then, the 

electrode experienced a sharp capacity drop after the first cycle which only retained a capacity of 

21.84mAh g-1 after 100 cycles indicating substantial irreversible capacity fail as represented in 

Figure 6.12a. Rate performance was also investigated to determine the electrode rate capability in 

sodium storage. As shown in Figure 6.12b, FexSy exhibited discharge capacities of 61.45, 39.16, 

29.32, 21.15 and 13.81mAh g-1 at current density of 100, 200, 300, 500, and 1000mA g-1. This low 

performance shows the problem of this material which is in the structure stability since it suffers 

from serious volume change that affects its reliability during cycling. Another problem is the phase 

purity could attribute to undesirable reactions that lead to irreversible capacity fading. More 

characterization after electrochemical testing could help understanding this phenomenon.   
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Figure 6-12(a) Cycling performance of FexSy at a current density of 100mA g-1. (b) Rate 

performance of FexSy at Currents’ different densities 

 

 

 

 To sum up this section, FexSy as a desirable material for battery applications was 

synthesized via calcination process using MIL-88 MOF template, and the physical characterization 

was carried out to confirm the success of the process. Electrochemical measurement s was 

performed by testing the product as anode material in LIBs and SIBs. The as-prepared FexSy 

showed very stable cycling and rate performance with low capacities demonstrating large capacity 

fading after the first cycle in both LIBs and SIBs. It was found that this structure needs more study 

and work before using as anode materials n order to improve lithium and sodium capacity. This 

could be done with more in-depth characterization and understanding of the nature and status of 

the phase and structure before and after cycling. Also, supporting the structure against the negative 

impact of volume change after cycling by using some protection coating or carbon matrix and 

improve the conductivity as well.  

6.4. Conclusion 

In this chapter, other metal sulfides including ZnS, SnS, and FexSy are synthesized and 

electrochemically examined as anode materials in LIBs and SIBs. ZnS performed high performance 

in both batteries with high stability after 100cycles. SnS2 and FxSy tended to have some problems 

delivering high electrochemical performance due to the low capacity and severe volume change 

during cycling. Redetermining the structure ability to host Li+ and Na+ be urgently needed to be 
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studied before moving to electrochemical testing. Using some protection such as carbon coating 

could help accommodate the stress that results from volume expansion after the charging-

discharging process. Carbon coating or composites helps to improve the stability by enhancing the 

electrical conductivity and the flexibility of the structure, so it provides more space for hosting a 

more significant amount of transporting ions.   
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7. Chapter 6 Conclusion and Future work 

 

In this study, ZIF-8 and ZIF-67 MOFs were synthesized, physically characterized and used 

as templates to design zinc sulfides and cobalt sulfides; respectively. MIL-88 synthesis process was 

also studied and optimized by changing some parameter to obtain uniform morphology. Metal 

sulfides derived from MOFs were successfully synthesized and tested for LIBs and SIBs 

applications. Cobalt sulfides were prepared using a ZIF-67 template and showed outstanding 

performance when tested as LIBs and SIBs anode. Zinc sulfides were designed by using ZIF-8 as 

a template and also was tested for LIBs ad SIBs electrochemical performance. Also, Tin sulfides 

were derived from tin-based MOFs and tested for electrochemical performance. Finally, Iron 

sulfides were successfully obtained and investigated for battery application after the optimization 

of its preparation method.  

7.1. General conclusions 

7.1.1. General conclusion of MOFs 

ZIF-8 is successfully obtained with uniform rhombic dodecahedral structure and an average size of 

200 nm via wet chemical method at room temperature. Similarly, ZIF-67 was successfully prepared 

using wet chemical process, and polyhedral particles with a particle size range between 100-200 

nm were obtained. MIL-88 was studied, and its preparation process was optimized and emphasized 

due to the difficulty of the synthetic process to deliver pure phase and unique uniform structure. 

Different parameter including temperature, time, precursor weight ration or concentration in the 

solvent, different reaction mediums, and additives were investigated to achieve the uniform 

morphologies and structures. The optimized condition to obtain uniform MIL-88 with a soft surface 

and well defined geometric features are under the hydrothermal temperature of 140 ˚C for 20 hrs 

with the surfactant of F-127. The successful process was confirmed with XRD pattern and SEM 

study for physical and chemical characterization.  

7.1.2. General conclusion of carbon coated Co9S8 

Cobalt sulfides were synthesized via multi-stage rout using ZIF-67 as the template. Firstly, 

the wet chemical method was used to obtain CoxSy, and then an annealing process of the as-prepared 

cobalt sulfides was performed successfully using CVD approach. The product was confirmed by 

XRD test and SEM observation. Further characterization was carried out such as TGA, Raman, and 

BET to study the carbon content and its graphitization status as well as the surface area and the 
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material porosity. Unique properties of this material were discovered and then it was tested form 

electrochemical investigation for LIBs and SIBs electrode. This material showed very high capacity 

in LIBs and SIBs systems with very stable and high columbic efficiency cycling approving high 

capability of lithium and sodium storage and opening the door for its application in energy storage. 

Extended cycling up to 1000 cycles was performed, and high rate capability was observed via 

testing the anode at different current densities. Through this study, it was approved the 

affectedness’ of using carbon coating to overcome the challenge of volume change effect and low 

electrical conductivity that directly impact the cycling performance of the battery and by delivering 

low capacity and poor cycling ability. Also, structures with high porosity have the advantages of 

providing short diffusion paths for charging ions and electrolyte accessibility to the electrode to 

obtain very stable reversible charging and discharging. All in all, cobalt sulfides with carbon 

coating is a very promising candidate as anode material for battery applications. 

7.1.3. General conclusion of ZnS, SnS, and Fe xSy  

 Other metal sulfides including ZnS, SnS, and FexSy were synthesized and tested for 

batteries performances. ZnS-1 was prepared via calcination process using ZIF-8 as a template, and 

the similar structure was delivered and confirmed by XRD test and SEM images. ZnS-2 was also 

synthesized using the wet chemical method to compare the physical, chemical, and electrochemical 

properties of both materials.  ZnS-1 and ZnS-2 were tested for LIBs, and SIBs anode and ZnS-1 

show the best performance in comparison to ZnS-1 indicating better structure and chemical stability 

during the charging and discharging process. 

 SnS was synthesized using Sn-based MOF template was prepared in the previous study. 

XRD pattern showed that the obtained product is not pure phase SnS and peaks were indicated and 

indexed. For battery applications, SnS was employed as an anode in LIBs and SIBs and experiences 

low capacity and much capacity fading. These issues could be associated with the phase instability 

of the material that might lead to undesirable reactions that might prevent charging ions from 

maintaining the stable reversible reaction. Also, volume change is a severe problem that needs to 

be considered and solved by designing proper structures with high porosity and surface area or 

using some carbon composites to help to eliminate volume expansion effect.  

 FexSy was successfully obtained via calcination process of MIL-88 prepared before. XRD 

pattern showed multiphase material with FeS, Fe7S8, Fe9S11 phases together indicating undesirable 

reactions or inaccurate synthetic parameters. The material was further examined in LIBs and SIBs 

anode and show stable performance with low capacity and massive capacity drop. This capacity 

drop is attributed to the chemical stability of the materials due to the multiphase status of the 
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product. Different phased material leads to more complicated reactions and unpredictable 

electrochemical performance which could be hard to understand and monitored. 

7.2. Future work 

 MOFs are a new class of materials with unique characteristics such as high surface area 

and different structure orientations. This group of materials is a very strong candidate for energy 

storage applications by delivering other materials as using MOFs as templates for that. More effort 

is required for better understanding of the synthetic process and structure control of MOFs is 

urgently needed. Iron MOFs and Tin MOFs and their derived materials have not been very well 

understood and reported for battery applications.  

  For cobalt sulfides Co9S8, different carbon matrixes could be investigated such us a 

composite with graphene of carbon nanotubes could be studied which open the opportunity for 

more improvement. 

 Pristine ZnS-1 could be more studied and improved by using some coating techniques to 

upraise its capacity. SnS and FexSy need more investigation for better electrochemical capability. 

Several steps could be taken such as optimizing the structure by optimizing the synthesis process 

especially the reactant concentrations or weight ratio. Also, coating techniques and carbon 

composites with graphene, for instance, improve the electrical conductivity and rate capability.  

Using other coating techniques such as atomic layer deposition (ALD) molecular layer deposition 

(MLD) can be used to modify surface function and increase the mechanical strength against volume 

expansion consequences.   
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