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Abstract

The purpose of this study was to compare shared frailty model, joint frailty model and joint

nested frailty model in terms of model fitting and prediction accuracy, as applied to Lynch Syn-

drome family data. The specific question we wanted to address was how the intervals between

screening visits affect the risk of developing colorectal cancer among Lynch Syndrome family

members. We also addressed questions on how the screening process has an effect on mortality

and risks of developing different stages of colorectal cancer. Results from the models show that

joint nested frailty model is preferable. This model improves the prediction accuracy by jointly

modeling recurrent screenings and terminal event at the same time accounts for both individual

and familial correlation.

Keywords: Joint modeling; frailty; cancer screening; dynamic prediction; recurrent data;

time-to-event data; family data.
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Chapter 1

Introduction

Lynch Syndrome (LS) is a hereditary cancer caused by mutations in DNA mismatch repair

(MMR) genes such as MLH1, MSH2 and MSH6, and predisposes carriers mainly to colorectal

cancer (CRC) and other extra-colonic cancers (Lynch et al., 2009). Patients with LS have a no-

ticeable increased chance (70%-80%) of developing CRC in their lifetime, often at a young age,

usually under age 50 (American Society of Clinical Oncology, 2017). Not all mutation carriers

will develop a cancer. Carriers have variable expressivity, leading to phenotypic heterogeneity.

In Canada, CRC is the second most commonly diagnosed cancer (excluding non-melanoma

skin cancers) and the second leading cause of death from cancer in men and the third leading

cause of death from cancer in women (Canadian Cancer Society, 2016). Although environment

factors are the dominant reasons that cause CRC, hereditary factors have been found to account

for 10%-15% of all cases (Vasen, Mslein, Alonso and et al., 2010). Three percent of CRC in-

cidence is estimated to account for by LS (Hampel et al., 2008). However, CRC is a highly

treatable cancer if it is detected early and it is up to 90 percent preventable with opportune and

thorough CRC screenings (Smith et al., 2001). Unfortunately, nearly half of those diagnoses

find out too late (Colon Cancer Canada, 2013). Colonoscopy screenings are recommended for

individuals in LS family every 1-2 years starting at 20-25 years of age (Stuckless, 2012; Vasen

et al., 2007; Lindor et al., 2006; Canadian Cancer Society, 2016). These recommendations are

mostly based on crude analyses, without considering the complexity of the screening visits and
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2 CHAPTER 1. INTRODUCTION

disease process, by comparing the incidence and the mortality of CRC in screening group and

non-screening group (Jrvinen et al., 2000; Stupart et al., 2009; Vasen, Abdirahman, Brohet and

et al., 2010). The screening visit process can have an effect on the disease risk and mortal-

ity; meanwhile, disease risk can also influence the visit process. In other words, those with

high risk of CRC tend to have more frequent screening visits. This motivates us to use joint

modeling of the screening visits and the disease occurence. In addition, some unmeasured but

influential factors induce correlations within individuals and within families. For example, a

positive screening test in an individual with LS may increase the number of further screening

visits for this individual and also encourage the screening visits for other individuals in the

same family (Thomas, 2017).

In this thesis, our primary interest was to evaluate the screening efficiency on the risk of

developing CRC using three modeling approaches – joint frailty, joint nested frailty and shared

frailty models – by taking the complexity of screening visits and the information (adenoma or

other polyp detection, visit age etc.) obtained from screening visits into account. We aimed to

evaluate the prediction abilities of the three models for detecting CRC depending on various

factors such as screening intervals, first visit age, gender, and adenoma detection and removal

status. Adenomas, also called adenomatous polyps, are found commonly at colonoscopy. They

are removed after detection because of their tendency to become malignant and lead to CRC.

We employed three approaches for modeling screening visits and times to CRC and com-

pared their prediction ability. The evaluations of the three models are applied based on LS fam-

ily data collected by the Familial Gastrointestinal Cancer Registry (FGICR) in the Zane Cohen

Centre at Mount Sinai hospital. The FGICR is a family study center located at Mount Sinai

Hospital in Toronto that focuses on families affected by rare familial gastrointestinal cancer

syndromes to provide a secondary prevention of cancer through early diagnosis and treatment.

Lynch Syndrome is one of their main focuses. They used the following criteria to identify

LS: three family members, two of whom must be first-degree relatives, in two successive gen-

erations, must have colorectal cancer or colorectal cancer and a combination of gynecologic,

genitourinary, or other gastrointestinal cancer (http://www.zanecohencentre.com/



1.1. OBJECTIVES 3

gi-cancers/fgicr/about-us). In addition, anyone diagnosed with CRC before age

35, or diagnosed with colon cancer and one other LS-related cancer, was included into the

study regardless of their family history.

From FGICR, 423 LS families with 1068 unique patients have been identified and offered

with DNA testing. The data consist of the following: demographic information including age

at study entry, and gender; familial information such as familiy relation, proband (the first af-

fected individual in a family) indicator, and type of mutation genes; and medical information

including cancer stage, surgery information of eligible individuals. We also obtained the data at

each screening visit, including ages at screening visit, detection of adenoma and other polyps,

detection of CRC, cancer stage, proportion of removed colon and so on. Screening intervals

vary within and between individuals. For modeling gap times between screening visits, we

included individuals with at least two screening visits in our analysis, which led to 242 LS

families with 422 individuals. Main variables we considered for data analysis were gender,

screening visit ages, age at death, type of mutation genes, site of detected cancer, cancer stage,

and polyp information.

1.1 Objectives

The objectives of our study were as follows:

1. Compare and evaluate the impact of screening visits (screening intervals) on the risk of

developing a first CRC for LS families, using three modeling approaches: a joint frailty

model considering individual dependence, a joint nested frailty model considering both

individual and familial dependences, and a shared frailty model for terminal event only,

taking time-dependent and time-independent covariates of interest into account.

2. Provide dynamic predictions of CRC risks for individuals in LS families based on in-

dividual’s visit history and the visit and disease histories of other family members. A

valid assessment of predictive accuracy for joint nested frailty model is provided with
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comparisons to the joint frailty model and the shared frailty model.

3. Assess mutation type specific risks of developing CRC and associated effects of covari-

ates.

4. Identify and examine prognostic factors for individuals with CRC using survival time

after the first CRC. Covariates are considered including detection of adenoma before

CRC, age at CRC, average gap time of screening visits, cumulative number of visits

after detection of CRC, cancer stage and proportion of colon removed, and gender.

5. Assess the effect of screening process on the risk to detect low stage cancer and high

stage cancer.

1.2 Organization of the thesis

The remainder of the thesis is structured as follow. Chapter 2 presents a literature review

on joint frailty model, joint nested frailty model, maximum penalized likelihood estimation,

and dynamic prediction. Chapter 3 describes the three statistical models and their dynamic

predictions formulations. Our models and dynamic predictions are applied to LS family data

in Chapter 4. Chapter 5 evaluates the performance of predictions under the three statistical

models. Future research and some discussion are presented in Chapter 6.



Chapter 2

Literature Review

2.1 Cancer Screening

Cancer screening, the routine testing of asymptomatic individuals without a history of the

disease of interest, is an important aspect of cancer prevention and control. By the time symp-

toms appear, cancer may have begun to spread and be harder to treat or cure. Early detection of

abnormal tissue or cancer can increase the chance of successful treatment. Regular screening

visits benefit individuals at high risk of cancer from early cancer detection and prevention.

Many authors have already reported evidence in support of surveillance colonoscopy on

cancer risks mostly based on observational studies (Jrvinen et al., 2000; Stupart et al., 2009;

Vasen, Abdirahman, Brohet and et al., 2010). Jrvinen et al. (2000) compared incidence of CRC

and survival rates in two cohorts of 22 families with LS (133 subjects with screening and 119

subjects without). Colonoscopy screening at 3-year intervals reduced the risk of CRC by 62%,

prevented CRC deaths, and decreased overall mortality by about 65% in LS families. Lad-

abaum and Song (2005) estimated that with screening uptake of 75%, the incidence of CRC

could decrease by 17% to 54% and CRC deaths could decrease by 28% to 60%. Based on

a 5-year prospective cohort study specific for 178 MLH1 gene carriers, Stupart et al. (2009)

showed that 11% in screening group developed CRC, comparing to 27% in non-screening

5
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group, and 2% in screening group died from CRC, comparing to 12% in non-screening group.

The average survival ages from birth for the two groups are 78 years for screening group and

55 years for non-screening group. Some randomized trails were also conducted to illustrate the

effect of cancer screening. With screening intervention, a noticeable decrease in the amount of

patients diagnosed with CRC was observed (Atkin et al., 2010; Segnan et al., 2011).

Mutation carriers of DNA mismatch repair (MMR) genes including MLH1, MSH2, MSH6

are at high risk of developing CRC, yet different kinds of mutated genes may have varying

effects on CRC risks and mortalities. Some researches were done specifically for several main

MMR genes. Mean onset ages of colorectal cancer were 44 and 46 years for MLH1 and MSH2,

respectively, comparing to 69 years in the general population (Lin et al., 1998). The estimated

cumulative risks of CRC by age 70 years were found significantly different: 41% for MLH1

mutation carriers, 48% for MSH2, and 12% for MSH6 (Bonadona et al., 2011). Further con-

sidering gender difference, average CRC cumulative risks at the age of 70 years for MLH1 and

MSH2 mutation carriers, respectively, were estimated to be 34% and 47% for male carriers

and 36% and 37% for female carriers (Dowty et al., 2013). The risk for CRC was significantly

lower in MSH6 than in MLH1 or MSH2 mutation carriers (Hendriks et al., 2004; Bonadona

et al., 2011), and age of CRC onset for MSH6 carriers was around ten years later than the ones

for MLH1 and MSH2 gene carriers (Plaschke et al., 2004).

Screening interval also matters; more frequent screening visits can reduce the risk of devel-

oping a CRC and the mortality from CRC. A 1-2 years screening interval of colonoscopy

screening is recommended starting at age 20-25 (Mandel et al., 1999; Vasen et al., 2007;

Jørgensen et al., 2002; Vasen, Abdirahman, Brohet and et al., 2010; Stuckless, 2012; Cana-

dian Cancer Society, 2016). Risk of developing CRC for members of LS families would be

reduced with screening intervals of 1-2 years than with screening intervals of 2-3 years; 6%

with intervals of 1-2 years, comparing to 10% with intervals of 2-3 years (Vasen, Abdirah-

man, Brohet and et al., 2010). Stuckless (2012) showed that colonoscopy screening at 1 to

2-year interval delayed the onset age of CRC by more than 10 years and lead to 4 to 15-year

improvement in life expectancy. Cumulative 18-year CRC mortality rate was 33% lower in
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the annual screening group and 21% lower in the biennial screening group, comparing to the

non-screening group (Mandel et al., 1999).

Several modeling strategies were considered in literature for evaluating screening effect on

risk of CRC. First, screening visit process was incorporated as a covariate in a Cox regression

model. Analysis using Cox regression was carried out to identify risk factors independently

associated with CRC risk during screenings, followed by stratified analyses. The median age

at start of follow-up was considered as one of the risk factors; carriers aged 40 years or older at

the start of the screenings had a higher risk than carriers younger than 40 years of age (Vasen,

Abdirahman, Brohet and et al., 2010).

Second, screening process was jointly modeled with a detection of disease through a joint

frailty model. Katki et al. (2015) fitted a joint frailty model for time to clearance of human papi-

loma virus (HPV) and time to a cervical cancer and provided suggestions on optimal screening

intervals in screening guidelines. Lee et al. (2013) investigated a pooled time lag to benefit

across trials by fitting a joint random effects (frailty) model and showed that CRC mortality

decreased steadily with longer follow-up.

Finally, screening process was evaluated by a simulation study. Gunsoy et al. (2014) demon-

strated that mortality reduction was highly dependent on screening frequency, age range, and

uptake, based on a 13-state Markov simulation model including 13 states from healthy to dif-

ferent status of in-situ and further to death. Different screening strategies were also considered,

including triennial screening in women aged 47-73 and annual screening in women aged 47-73

in their simulation study. The results showed that predicted breast cancer mortality reduction

due to screening ranged from 15.9% to 36.7% from age 40 to 85 years for different scenarios.

Thomas (2017) studied the effect of screening on cancer risk adjusting for screening behavior

variables using simulation study. A conceptual model was simulated accounting for the in-

terplay between screening behavior and the cancer process, with two measured covariates and

two unobserved frailties (one individual frailty and one frailty among members of the same sib-

ship). Ages at polyps were simulated from a Weibull distribution. Growth rate of polyps and
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age at the tumor diagnosis were also generated. In screening process, age at the first screening

was generated by a lognormal distribution. Following screening times were generated from a

lognormal distribution with different intercept from the previous one, as well more covariates

were considered including total number of polyps on the last screening, an indicator of whether

any of the individuals siblings had at least one screening by the then, an indicator of whether

any polyp had been found in siblings, and an indicator of whether any of siblings had a cancer

diagnosis.

2.2 Shared Frailty Models

A frailty model is an extension of the proportional hazard model by including a random

component, to account for the heterogeneity caused by unmeasured covariates (Rondeau et al.,

2012). The choice of frailty distribution is an important issue when using frailty models. Two

main frailty distributions are the gamma distribution (Clayton, 1978; Vaupel et al., 1979) and

the log-normal distribution (McGilchrist and Aisbett, 1991). Gamma frailty is commonly used

because of its straightforward interpretation of correlation parameter, robustness to misspecifi-

cation for both regression coefficients and hazard functions, and mathematically convenience

(Dixon et al., 2011). Frailty models are used for explaining heterogeneity in individuals or

within families, for example, correlated survival times for individuals, like twins or family

members, and repeated events for the same individual (Hougaard, 1995).

Shared frailty model is the simplest form of frailty model and usually used for clustered

data. Joint frailty model is in the joint modeling context, by adding an shared individual uncer-

tainty in the model to jointly model the hazard of recurrent events and the hazard of a terminal

event. Joint nested frailty model is a joint frailty model specifically for hierarchically clustered

data. Two frailties, which account for random effects within an individual and within a cluster,

are included in the joint nested frailty model when jointly models for recurrent events with a

terminal event.

The shared frailty model was introduced by Clayton (1978) and extensively studied in
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Hougaard (2000). A frailty term in the model represents an unobserved random effect that mod-

ifies the hazard function, multiplicatively (Hougaard, 1995). Shared frailty models are usually

applied to correlated cluster data for example, family data and recurrent events. In addition,

shared frailty model commonly uses recurrent events (cancer relapse or visiting process). The

survival times are conditionally independent with respect to the shared frailty (Wienke, 2014).

Hougaard (1995) used shared frailty model for multivariate failure times as the conditional of

independent times given the random effect.

2.3 Joint Frailty Models

Joint frailty models are usually used to account for the dependence between recurrent events

and time-to-event data by sharing a random effect. For modeling the recurrent events, we can

consider two time-scales; one focuses on the times between two successive events (i.e. gap

times) while the other focuses on the time to events (i.e. calendar times) (Duchateau et al.,

2003). Choice of time scale can change the interpretation of the time evolution entirely. In

our study, we chose gap time scale because our interest lies in screening intervals between two

successive screenings.

There are several choices for modeling the baseline hazard function, including cubic M-

splines, piecewise constant functions (PCF) or the Weibull distribution. PCF requires to choose

an appropriate number of the intervals to capture enough the flexibility of the true hazard func-

tion. For Weibull distribution, a small number of parameters are estimated but resulting esti-

mated functions are monotone, which might be too limiting in some cases (Król et al., 2017).

Cubic M-splines can be used for estimating baseline functions. They are non-negative and easy

to integrate (Belot et al., 2014).

2.3.1 Joint Nested Frailty Model

Nested frailties can be used for modeling the hierarchical clustering of the data by including

two nested random effects. It is appropriate and necessary when data are clustered at several
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hierarchical levels. Taking into account of these two kinds of random effects could lead to

more accurate estimates of parameters of interest (Rondeau et al., 2006). Sastry (1997) applied

a multivariate hazard model with family and community frailties, estimated the model using

the EM algorithm, to the survey data collected via a hierarchically clustered sampling scheme.

Manda (2001) fit a Cox proportional hazard model with two random frailties, family and com-

munity frailties, acting on the hazard rate, and examined the results by using Gibbs sampler

and the EM algorithm. Rondeau et al. (2006) applied a multilevel proportional hazards model

with two frailties, cluster-level random effect and sub-cluster random effect, multiplicatively

affecting the hazard function. A semi-parametric penalized likelihood approach was used for

estimations of parameters in the models. Results showed that if the hierarchical structures of

the data were ignored, the variances of the random effects were overestimated. Underesti-

mation of the regression coefficients in the shared frailty model was also found under a large

intra-subgroup correlation.

The nested frailties were applied to joint modeling to account for the hierarchical structure

of family data (Choi et al., 2017). This joint nested frailty model (JNFM) extends to a more

complete case which underlines two frailties, individual frailty and familial frailty, for studying

the impact of recurrent process on the terminal event. In this thesis, both individual and familial

frailties were included for modeling the recurrent screening visits and the time to a first CRC

as a function of screening history and covariates of interest.

2.3.2 Maximum Penalized Likelihood Estimation

In the construction of likelihood for frailty models, penalized likelihood is considered to

account for model complexity when estimating parameters in the models. In the general like-

lihood estimation, adding more parameters into models would increase the likelihood and pro-

vide a better fit to the data, since more aspects of data are taken into account. However, this

could lead to a more complex model. It is not practical to always choose a sophisticated

model. Penalized likelihood is developed by adding a penalty term in log-likelihood to balance
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the complexity of a model and the goodness of fit. A penalty can be viewed as a tolerable

degree of bias in exchange for reduction in the variability of parameter estimates (Rothman

et al., 2008). The smoothing parameter associated with the penalty controls the trade-off be-

tween data fit and smoothness of the baselines functions, thus determines how much the data

are smoothed to produce the estimates.

Leroux and Puterman (1992) implemented maximum penalized likelihood method when

estimating the parameters in independent and Markov-dependent mixture models, in a study

of breathing and body movements in fetal lambs. A potential saving in computation results

from the observation that whenever the addition of a component fails to produce an increase in

likelihood, the maximum value of the likelihood has been found. Rondeau et al. (2003) applied

maximum penalized likelihood to nonparametric estimation of a continuous hazard function in

a shared gamma-frailty model with right-censored and left-truncated data. Cole et al. (2014) il-

lustrated the mechanics of maximum penalized likelihood estimation and described extensions

which are better suited to observational health research. In epidemiological studies, data can

present different problems including small sample size or sparse data. Application of penaliza-

tion would reduce bias and further reduce mean square error (MSE).

2.3.3 Likelihood cross-validation criterion

The likelihood cross-validation (LCV) was proposed for choosing the smoothing parameter

in the penalized likelihood and also for choosing between different semi-parametric models

(Joly et al., 1998). Joly et al. (2002) applied LCV to interval censored data in an illness-death

model, in order to choose smoothing parameters in penalized likelihood simultaneously. Com-

menges and Gegout-Petit (2007) argued that LCV could be used for choosing between differ-

ent semi-parametric models, such as stratified and non-stratified proportional hazard survival

model. LCV is adopted to guide the choice of the model structures used in the analysis based

on penalized likelihoods. The LCV criteria is utilized by default in R package frailtypack

(Rondeau et al., 2017) and is defined as:

LCV =
1
n
(tr(Ĥ−1

pl Ĥl)− l(ψ̂)),
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where ψ̂ is the maximum penalized likelihood esetimator, Hpl is the converged hessian of the

penalized log-likelihood, Hl is the converged hessian of the log-likelihood, and l(·) is the full

log-likelihood at ψ̂ . Lower values of LCV indicate a better fitting model.

2.4 Dynamic Prediction

In longitudinal study, the prediction of risk of a terminal event is always of interest. One

would have access to all the available longitudinal information up to a certain time point in

order to predict the risk of event after that time point. By dynamic prediction one can up-

date the prediction using longitudinal measurements. A more reliable prediction risk would be

obtained when updating the prediction values conditioning on accumulated information up to

date. For patients’ disease prognosis, dynamic predictions are widely studied. It requires mak-

ing updated predictions as time goes by and more data are observed. There are two approaches

for dynamic prediction, which are joint modeling of longitudinal biomarkers and survival data,

and landmark analysis.

Dafni (2011) explained the concepts of landmark method and applied the method in ob-

servational study cases. In landmark analysis, a time point is selected as a landmark time.

Responders and non-responders are separated based on the landmark time; only individuals

who are alive at the landmark time are included in the analysis. The landmark method ignores

the responses after the fixed landmark time and the events before the same landmark time. van

Houwelingen (2007) first came up the idea of applying land-marking for dynamic prediction.

This approach would dynamically adjust predictive models during the follow-up time, by fit-

ting models for individuals who were still at risk at the landmark point. van Houwelingen and

Putter (2011) applied different models in different cases, such as dynamic prognostic models

for survival data using time-dependent information, and dynamic prediction based on genomic

data. Rizopoulos et al. (2013) presented and compared landmark analysis and joint models,

which provided dynamic estimates of survival probabilities, for longitudinal and time-to-event

data. van Houwelingen and Putter (2008) compared landmark model and multi-state model

on the dynamic prediction for 5-year failure free survival after bone marrow transplantation in
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acute lymphoid leukemia patients. The results from the two methods were similar; however,

landmark model had the advantage that had easy prediction rules due to the simplicity of the

model. However, it did not provide the insight in the biological process which could be ob-

tained from multi-state model. Longitudinal biomarkers are used for predictions of prognosis.

However, biomarkers usually have nonlinear or not monotone trajectories, which makes the fit-

ting of parametric models computationally difficult. Huang et al. (2016) proposed an approach

for dynamic prediction which assumed that the biomarker effects on the risk of disease recur-

rence are smooth functions over time, and compared this method to the other two traditional

methods, which are joint modeling and landmark method. Mauguen et al. (2013) proposed

dynamic prediction tools under three different prediction scenarios, which considers the exact

recurrence history, observed recurrence history and no recurrence history of an individual. The

proposed tools were tested by using observational invasive breast cancer data.

2.4.1 Prediction Accuracy

There are several indices to quantify the accuracy of prediction models. The well-known

indices are the area under Receiver Operating Characteristics (ROC) curve and Brier Score

(BS). The ROC curve is created by plotting the true positive rate (sensitivity) against the false

positive rate (1-specificity). It shows the ability of the forecast to discriminate between event of

interest and non-event. The corresponding Area Under the Curve (AUC) represents the prob-

ability that a person who experienced an event has a higher risk score than a person who did

not experience any event (Chambless et al., 2011). ROC AUC has a drawback that it treats

sensitivity and specificity of the same importance; however, they are probably not equivalent

(Halligan et al., 2015). In terms of CRC, poor sensitivity could mean missed cancer, delayed

treatment or even death, whereas poor specificity could just mean unnecessary colonoscopy.

ROC AUC ignores clinical differences in misclassification cost so that it is not sensitive to

bias, which means that a biased prediction can also provide a good resolution. The BS is de-

fined as mean squared probability difference between the predicted values and the true statuses

at the certain prediction time points. It measures the calibration of a set of probabilistic pre-

dictions or the magnitude of the prediction error. Choi et al. (2017) used BS as the criteria to
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compare the dynamic prediction accuracies of joint frailty model and joint nested frailty model.

Proust-Lima and Taylor (2009) validated their prediction based on joint modeling, by focus-

ing on the prediction error. They calculated the expectation of loss function of the difference

between actual values of prediction with the observed data. Rizopoulos (2011) assessed predic-

tion through how well their marker is capable of discriminating between subjects who have the

event within a medically meaningful time range from subjects who do not. They validated their

prediction based on joint model by ROC AUC. In the literature, there is no general agreement

about which measure should be preferred when validating and comparing predictive rules in a

survival case (Pencina et al., 2008). Ikeda et al. (2002) derived a theoretical functional relation-

ship between ROC and BS, assuming that the calibration in the observer’s probability estimate

is perfect. They noticed a theoretical monotone relationship between BS and the area under

the ROC curve. When the area under the ROC curve increases, the BS value monotonically

decreases.



Chapter 3

Statistical Models

This chapter describes the statistical models and methods used for the analysis of the LS

data set. Section 3.1 to 3.3 describe shared frailty model for terminal event with time-dependent

covariates, joint frailty model and joint nested frailty model, respectively. The maximum pe-

nalized likelihood estimation and the dynamic prediction with prediction accuracy are included

under sections of different models.

Notation used in this thesis are following by Choi et al. (2017). We use two superscript R

and D to distinguish two processes, where R represents for recurrent process and D for a ter-

minal event. The parameter estimation in our models are based on maximizing the penalized

marginal likelihood obtained from integrating the random variable(s) over its(their) distribu-

tion(s).

3.1 Shared frailty model for the terminal event

Shared frailty model for the terminal event is developed here to incorporate time-dependent

variables and the familial random variable. Let f indicate for family, f = 1, . . . ,n, where n

is the total number of families, i for individual, i = 1, . . . ,m f , where m f is the size of family

15
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f . For subject i in family f , T̃ D
f i is denoted by the true time to a terminal event, CD

f i by the

censoring time, T D
f i = min(T̃ D

f i ,C
D
f i) by the observed time to event. δ D

f i is denoted as an event

indicator, which takes value 1 if T D
f i = T̃ D

f i , 0 otherwise. Time-dependent covariates, which

are represented as XD
f i(t), indicate that the values of covariates of interest are not necessarily

constant over time. r(t) and λ (t) represent the hazard functions for the visit process and the

terminal event, respectively, with r0(t) and λ0(t) as their baseline hazard functions. Let the

family-specific random effect w f follow Γ(1/η ,1/η) with mean 1 and variance η and the den-

sity function denoted by gw(w). Let ψ = (λ0(t),γ,η) represent the vector of the parameters

involved in the shared frailty model with time-dependent covariates.

The hazard function for a terminal event for individual i in family f is,

λ f i(t f i;XD
f i(t f i),w f ) = λ0(t f i)w f exp(XD

f i(t f i)γ),

where t f i ∈ [0,T D
f i ] and T D

f i = min(T̃ D
f i ,C

D
f i), w f is the family-specific random effect.

The corresponding survival function for individual i in family f is,

S f i(t f i;XD
f i(t f i),w f ) = e−

∫ t f i
0 λ f i(s;XD

f i(s),w f )ds = e−
∫ t f i

0 λ0(s)w f exp(XD
f i(s)γ)ds.

By integrating over the familial frailty distribution,

S f i(t f i;XD
f i(t f i)) =

∫
w f

S f i(t f i;XD
f i(t f i),w f )gw(w f )dw f

=
∫

w f

e−
∫ t f i

0 λ0(s)w f exp(XD
f i(s)γ)dsgw(w f )dw f .

The conditional likelihood given the random effect w f can be expressed as

LC(ψ) =
n

∏
f=1

m f

∏
i=1

λ0(t f i)w f exp(XD
f i(t f i)γ).

However, the conditional likelihood cannot be used directly for statistical inference since the

frailty is unobservable. We will need to integrate over the frailty distribution in order to dis-

cover the observable consequences of the model. By integrating over the familial frailty distri-

bution, the marginal likelihood is obtained as:

L(ψ) =
n

∏
f=1

∫
w f

w f
m f gw(w f )dw f ×

n

∏
f=1

m f

∏
i=1

λ0(t f i)exp(XD
f i(t f i)γ).
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A predictive probability of event between t and horizon time t + s for individual i in family

f can be caluculated:

P(t,s) = P(T̃ D
f i < t + s|T̃ D

f i > t,XD
f i(t),ψ)

=
S f i(t;XD

f i(t))−S f i(t + s;XD
f i(t))

S f i(t;XD
f i(t))

.

3.2 Joint frailty model

Screening visit process is considered as recurrent events and the first CRC is considered

as a terminal event in our case. The screening visit process covers all the colonoscopy visits

for each individual up to the last follow-up time, which is the disease time if one had a CRC

during the study time. Joint frailty model jointly models the gap time between two successive

screening visits and the time to a first CRC, while taking into account the individual random

effects.

In terms of the recurrent process for subject i, let T R
i j be the gap time between visit j−1 and

j, and δ R
i j be a visit indicator, which takes value 1 if j = 1, . . . ,ni (visits), and 0 if j = ni + 1

(terminal event or the last follow-up). The gap time between the last screening visit and the

terminal event or last follow-up is treated as censored. The hazard function for the recurrent

event is noted as r(t) with the baseline hazard as r0(t). XR and β represent the covariates and

corresponding vector of coefficients in the reccurent event model. Joint frailty model by Ron-

deau et al. (2007) is employed in this section, and applied to model screening visits.

Individual i is redefined as i = 1, . . . ,m where m is the total number of individuals in the

study. Let j indicate for visit, j = 1, . . . ,ni +1, where ni is the total number of screening visits

until the last follow-up time for individual i and the (ni +1)th visit refers to the terminal event

or the last follow-up as cencored. We denote ui as an individual-specific random effect, fol-

lowing a gamma distribution Γ(1/θ ,1/θ) with mean 1 and variance θ and probability density

function denoted by gu(u).
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The hazard function for the recurrent events is written as:

ri j(ti j;XR
i j ,ui) = r0(ti j)ui exp(XR

i jβ ),

where XR
i j is the vector of covariates measured at visit j−1 in the visit process, β is the vector

of regression coefficients.

The corresponding survival function is,

Si j(ti j;XR
i j ,ui) = e−

∫ ti j
0 ri j(s;XR

i j ,ui)ds = e−
∫ ti j

0 r0(s)ui exp(XR
i jβ )ds.

In terms of the terminal event of disease for subject i, T̃ D
i is the true time to a terminal event,

δ D
i is an event indicator. The hazard function for the terminal event is noted as λ (t) with the

baseline hazard as λ0(t). XD and γ represent the covariates and corresponding vector of coef-

ficients in the terminal event model. Especially in Cox model with time-dependent covariates,

XD
f i(t) are used to represent the time dependent covariates in the model.

The hazard function for the terminal event is written as:

λi(t;XD
i ,ui) = λ0(t)uα

i exp(XD
i γ),

where XD
i is the vector of covariates considered in the terminal event, γ is the vector of regres-

sion coefficients in joint frailty model.

The corresponding survival function is:

Si(ti;XD
i ,ui) = e−

∫ ti
0 λi(s;XD

i ,ui)ds = e−
∫ ti

0 λ0(s)uα
i exp(XD

i γ)ds.

Let ψ = (r0(t),λ0(t),β ,γ,θ ,α) represent the vector of the parameters involved in the joint

frailty model. According to Rondeau et al. (2012), the marginal likelihood function of joint

frailty model can be expressed as:

L(ψ) =
m

∏
i=1

∫
ui

ui
ni+αδ D

i exp

{
−ui

ni+1

∑
j=1

R0(tR
i j;XR

i j)e
XR

i jβ −uα
i Λ0(tD

i ;XD
i )eXD

i γ

}
g(ui)dui×

m

∏
i=1

ni+1

∏
j=1
{r0(tR

i j;XR
i j)e

XR
i jβ}δ R

i j{λ0(tD
i ; tD

i )e
XD

i γ}δ D
i ,
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where Λ0(t) represents the cumulative baseline hazard function.

The baseline hazard functions are approximated on the basis of splines to allow flexible

functions, as we do not have any a priori on the shape of these risk functions. Cubic M-splines

(polynomial functions of 3rd order that are combined linearly to approximate a function in an

interval) are used. Five knots were used in our applications in order to get a close approxima-

tion to the true hazard function.

The penalized likelihood for joint modeling is defined by Rondeau et al. (2007):

pl(ψ) = logL(ψ)−κ1

∫
∞

0
r0
′′(t)2dt−κ2

∫
∞

0
λ0
′′(t)2dt, (3.1)

where κ1 and κ2 (κ1 for hazard function of recurrent events and κ2 for hazard function of ter-

minal event) are two positive smoothing parameters to control the trade-off between the data fit

and the smoothness of the baseline functions. The smoothing parameters can be fixed as some

certain values or evaluated by maximization of a likelihood cross-validation criterion. Values

can be obtained by separately fitting two models, one is a shared frailty model for only recur-

rent events with an individual frailty and the other is a shared frailty model for only terminal

event with a familial frailty. The two obtained smoothing parameters κ1 and κ2 are used in the

joint frailty model as two fixed values.

Dynamic prediction for joint frailty model is to predict the probability of disease in a specific

time window given the history of patient i before the time of prediction t. Individual’s visit

history of subject i in family f before time t is:

Y R
f i(t) =

{
T R

f i j,∀ j ∈ {1, . . . , j∗i }
}
,

which includes all visits and corresponding covariates information until the last visit of subject

i before time t, noted as visit j∗i .

A prediction of disease between t and t + s given that the individual had j recurrent events

before time t is written as follow. The prediction probability is obtained marginally by inte-
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grating over the individual frailty distribution (Rondeau et al., 2012):

P(t,s) = P(T̃ D
i ≤ t + s|T̃ D

i > t,XR
i j(t),X

D
i (t),Y R

i (t),ψ)

=
∫

ui

P(T̃ D
i < t + s|T̃ D

i > t,Y R
i (t),XR

i j(t),X
D
i (t),ui,ψ)gu(ui)dui,

where gu(ui) is used to represent gu(ui|T̃ D
i > t,XR

i j(t),X
D
i (t),Y R

i (t),ψ) for simplicity.

We note that alternatively the prediction probability can be obtained conditionally on the

estimated frailty values as proposed by Mauguen et al. (2013):

Pcond(t,s) = P(T̃ D
i ≤ t + s|T̃ D

i > t,XD
i , ûi, ψ̂)

=
SD

i (t|XD
i , ûi, ψ̂)−SD

i (t + s|XD
i , ûi, ψ̂)

SD
i (t|XD

i , ûi, ψ̂)

= 1−
(

SD
0 (t + s)
SD

0 (t)

)ûα̂
i exp(β̂ ′XD

i )

,

where ui is the individual frailty for the patient i and SD
0 (.) is the baseline survival function.

The ûi are obtained from the posterior distribution of the ui conditional on the observed data,

knowing the estimated values of the regression parameters. Thus conditional prediction is only

possible for the patients we already know what happened in the recurrent events. In practice,

estimating ûi each time for different t and s is not easy. Therefore, we used the marginal

approach for both joint frailty model and joint nested frailty model in our application.

3.3 Joint nested frailty model

We denote u f i as an individual-specific random effect, and w f is a family-specific random

effect; u f i follows a gamma distribution Γ(1/θ ,1/θ) with mean 1 and variance θ and density

function denoted by gu(u), and w f follows Γ(1/η ,1/η) with mean 1 and variance η and den-

sity function denoted by gw(w). In addition, α and ξ in joint nested frailty model represent the

associations between two processes at individual level and at familial level, respectively.

As proposed by Choi et al. (2017), the hazard function for the recurrent events is written as:

r f i j(t;XR
f i j,u f i,w f ) = r0(t)u f iw

ξ

f exp(XR
f i jβ ),
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where XR
f i j is the vector of covariates measured at visit j− 1, β is the vector of regression

coefficients in the recurrent event model.

The hazard function for the terminal event is written as:

λ f i(t;XD
f i,u f i,w f ) = λ0(t)uα

f iw f exp(XD
f iγ),

where XD
f i is the vector of covariates, γ is the vector of regression coefficients in the termianl

event model.

Two frailties shared by two processes, u f i and w f , represent the unobserved or unmeasured

random effects which are not explained by the observed covariates in the model. θ and η are

their variations, respectively. Especially, a larger η implies a greater heterogeneity in frailty

across families and a greater correlation of the survival times for individuals that belong to

the same family. In addition, α and ξ allow possible associations between the two processes;

α > 0 (or α < 0) represents the positive (or negative) association between the two processes

due to the individual random effects. A zero value of α means that u f i affects only on the

recurrent events and the dependence between two processes can be fully explained by the ob-

served covariates. Similarly, ξ > 0 (or ξ < 0) represents the positive (or negative) association

between two processes due to unknown familial effects. A zero value of ξ means that the

family-specific random variable w f affects only the terminal event.

Let ψ = (λ0(t),r0(t),β ,γ,θ ,η ,α,ξ ) represent the vector of the parameters involved in the

joint nested frailty model. The full marginal likelihood function is obtained by integrating the

likelihood over the frailty distributions,

L(ψ) =
n

∏
f=1

∫
w f

w
v f ξ+d f
f

[
m f

∏
i=1

∫
u f i

u
n f i+αδ D

f i
f i exp{−u f iw

ξ

f

n f i+1

∑
j=1

R0(t f i j)e
XR

f i jβ

−uα
f iw f Λ0(tD

f i)e
XD

f iγ}gu(u f i)du f i

]
gw(w f )dw f ×

n

∏
f=1

m f

∏
i=1

{
n f i

∏
j=1

r0(t f i j)e
XR

f i jβ

}
λ0(t f i)

δ D
f i eδ D

f iX
D
f iγ ,

where d f = ∑
m f
i=1 δ D

f i is the number of events in family f , v f = ∑
m f
i=1 n f i is the total number of

visits in family f and at (n f i + 1)th visit, tR
f i(n f i+1) = tD

f i−∑
n f i
j=1 tR

f i j. Ri j(t) is the cumulative
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hazard function for the recurrent event, and Λi(t) is the cumulative hazard function for the ter-

minal event.

The penalized likelihood (equation 3.1) is used for estimating the parameters. The two

smoothing parameters κ1 and κ2 are obtained by a shared frailty model for only recurrent

events with an individual frailty and a shared frailty model for only terminal event with a fa-

milial frailty, and used in the joint nested frailty model.

Following the dynamic prediction for the joint nested frailty model (Choi et al., 2017), we

obtain the probability of developing a first CRC event between time t and t+s for subject i who

survived by time t conditioning on this individual’s own visit history and the family histories

observed by time t.

Let T R
f i j be the gap time between visit j−1 and j, Y R

f i(t) be the individual’s visit history of

subject i in family f before time t. The individual’s visit history, denoted by Y R
f i(t), is defined

as:

Y R
f i(t) =

{
T R

f i j,∀ j ∈ {1, . . . , j∗i }
}
,

which includes all visits and corresponding covariates information until the last visit of subject

i before time t, noted as visit j∗i .

Let T D
f i (t) be the observed time to an event before t. δ D

f i(t) is the disease indicator by time t,

which takes value 1 if T D
f i (t) = T̃ D

f i , and 0 otherwise. Family history, including visit and disease

history, of all individuals but not individual i in family f is defined as:

H f (−i)(t) =
{

Y R
f l(t),T

D
f l (t),δ

D
f l(t),∀l ∈ {1, . . . , i−1, i+1, . . . ,m f }

}
.

The prediction probability is obtained by integrating over the two frailty distributions. The

probability of developing a first CRC between t and t + s for subject i is specified as:

P(t,s) = P(T̃ D
f i < t + s|T̃ D

f i > t,Y R
f i(t),H f (−i)(t),X

R
f i(t),X

D
f i(t),ψ)

=
∫

u f i

∫
w f

P(T̃ D
f i < t + s|T̃ D

f i > t,Y R
f i(t),H f (−i)(t),X

R
f i(t),X

D
f i(t),u f i,w f ,ψ)P(u f i,w f )du f idw f ,
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where P(u f i,w f ) is used to represent P(u f i,w f |T̃ D
f i > t,Y R

f i(t),H f (−i)(t),XR
f i(t),X

D
f i(t),ψ) for

simplicity.

This is developed by conditioning on 1) individual survived by time t, 2) individual’s visit

history, Y R
f i(t) up to time t, 3) other family members’ visit and disease history by time t,

H f (−i)(t), and 4) individual’s covariate information observed upto time t, XR
f i(t) = {XR

f i j,∀ j ∈

{1, . . . , j∗i }} for recurrent events and XD
f i(t) for the terminal event.

3.3.1 Evaluation of predictive accuracy

Dynamic prediction is an important feature of joint modeling and is increasingly popular in

applied bioscience and biostatistics field. Dynamic predictions for an individual of interest can

be computed after fitting joint models. We compare the predictive accuracies of the dynamic

predictions among the shared frailty model for terminal event, the joint frailty model and the

joint nested frailty model.

A 10-fold cross-validation is used to evaluate the prediction accuracy. The original data set

is randomly partitioned into ten equal sized subsets. One of the ten subsets is used for testing

the model while the remaining nine subsets are used as training data. By using each of the ten

subsets once for validation, the cross-validation process is repeated ten times. We divided data

based on families rather than individuals, since it is crucial to keep the family structure when

fitting joint nested frailty model and computing dynamic predictions.

The predictive accuracy of the proposed model is evaluated using Brier Score, a quadratic

prediction error. The difference between the predicted values of developing CRC at certain time

points from the model and the true observed individual’s status is measured with BS. Due to the

existence of censoring, the true status of CRC is unknown and cannot be computed. However,

we considered everyone in the model, treating the censored individuals as no cancer; this may

lead to bias in the prediction, since those censored individuals may develop cancer after the last



24 CHAPTER 3. STATISTICAL MODELS

follow-up time. To make the right censoring into account, a weighted BS is calculated. Inverse

probability of censoring weighted error (IPCWE) is applied to account for right censoring

(Blanche et al., 2015). Ĝn(t) represents Kaplan-Meier estimate of the population censoring

distribution. Let Wi(t,s, Ĝn) be the weight in IPCWE, which has the following form:

Wi(t,s, Ĝn) =
I(T D

i ≤ t + s)δ D
i

Ĝn(T D
i )/Ĝn(t)

+
I(T D

i >t + s)
Ĝn(t + s)/Ĝn(t)

.

The weighted BS is defined as:

B̂S(t,s) =
1

nŜT̃ (t)

n

∑
t=1

Ŵi(t,s)
(

D̃i(t,s)−Pi(t,s)
)2

,

where ŜT̃ (t) =
1
n ∑

n
i=1 I(T̃i>t) estimates the probability of observing a subject at risk (i.e. alive

and uncensored) at the prediction time point t. D̃i(t,s) = I(t<T̃i ≤ t + s, δ̃i = 1) is an indicator

which equals to 1 when an subject i developed a cancer in the time range (t, t + s] and equals

to 0 otherwise. Pi(t,s) represents the prediction probability.

3.4 Advantages and disadvantages of three models

One of our main goals is to incorporate the screening visits in prediction. Three models,

shared frailty model, joint frailty model and joint nested failty model, were compared in terms

of prediction. The shared frailty model is the easiest one to apply among the three models

due to its simplicity. It accounts for the hierarchical structure but only models the terminal

event by using time-dependent covariates to represent the recurrent event process; it ignores the

interplay between two processes. The joint nested frailty model extends to a more complex case

which underlines two frailties, individual frailty and familial frailty, for studying the impact of

recurrent process on the terminal event. However, sometimes it can be difficult to fit the joint

nested frailty model because of the complexity of the model. In terms of prediction, the joint

nested frailty model is supposed to have better prediction accuracy among three models, since

it reflects how the screening visits affect the risk of CRC in LS families. It is crucial to consider

the hierarchical structure in the analysis of family data. The joint frailty model does not reflect

the family structure so its prediction may be less accurate in the presence of strong familial

correlation as shown in our LS families. The shared frailty model only for terminal event
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can provide a decent prediction accuracy, since it accounts for the family structure and takes

screening process into account via time-dependent covariates.



Chapter 4

Application to Lynch Syndrome Family

This chapter presents the analysis of the Lynch Syndrome family data. Section 1 introduces

the data and provides descriptive statistics. Section 2 describes the specifications of the fitted

models. Section 3 evaluates the impact of screening on risk of CRC, including estimations of

coefficients and parameters from the models. The chapter finishes with Section 4, providing

dynamic predictions of the risk of CRC. Fitting the models and estimating the predictions were

based on the R package frailtypack (Rondeau et al., 2016). frailtypack fits several

classes of frailty models with gamma or normal random effects. Time-varying effect covariates

can be considered in Cox, shared and joint frailty models.

4.1 Lynch Syndrome Family data

The observational LS data set we are using in this study was provided by Familial Gastroin-

testinal Cancer Registry (FGICR) (http://www.zanecohencentre.com/gi-cancers/

fgicr/about-us). FGICR is a family study center at Mount Sinai Hospital with focus on

families affected with rare familial gastrointestinal cancer syndromes, in order to give a sec-

ondary prevention of cancer through early diagnosis and treatment. Medical and surgical cares

are maintained for patients and their family members. Genetic testing may be given through

their service and research molecular laboratory program, for those with specific forms of fa-

26
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milial colorectal, gastric and pancreatic cancer.

The FGICR includes 423 LS families with 1068 unique patients in total. The main aim of

our study is to evaluate the screening efficiency on the risk of developing CRC and provide

dynamic prediction based on screening and disease history. Since we are interested in associ-

ation between the intervals of screening visits and CRC occurrence, we included individuals

who had at least two screening visits with no detected CRC at the first visit. Thus, 242 LS fam-

ilies with 422 individuals (152 males and 270 females) were identified for analysis. Table 4.1

summarizes the distribution of different mutation types included in the data set. MLH1, MSH2

and MSH6 are three main mutation types commonly observed in the data, so that we include

analyses based on these three types in Section 4.3. Basic information and characteristics of the

LS family data are summarized in Tables 4.2, 4.3 and 4.4. Of 422 individuals, 103 developed

CRC at an average age of 50.69 (standard deviation (sd) = 14.75) years and the average gap

time between first screening and actual diagnosis of CRC was 8.18 (sd = 10.14) years for these

CRC patients. The remaining 319 individuals who did not develop any CRC during the study

time have been followed up with screenings on average every 8.46 (sd = 6.46) years. Addi-

tionally, 135 individuals in the data set had at least one adenoma detection and removal during

their screening visits. The average gap time between two successive screening visits was 3.39

(sd = 4.48) years. Individuals in the study had 3.90 (sd = 2.76) screening visits on average

before any CRC detected. Probands were kept in the data set in order to avoid losing too much

information. We used probands’ CRC ages as a covariate in the model in order to incorporate

ascertainment of families into study.

While exploring the differences among mutation types, some distinct patterns can be found

in Table 4.4. MLH1 patients start their screening visits at the earliest age, of age 38.5 (sd

= 12.97), among all the five mutation types patients, but also have a longer visiting interval.

Proband’s age of CRC is noticable older among MSH6 patients. MSH6 patients are the last to

start screening visits and have the oldest age of onset for CRC. For a better comparison, anal-

ysis of variance (ANOVA) was used to test differences among means of the main covariates of

five different mutation types. P-values are listed for explanation. The differences among the
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group means of gap year between visits, and the ones of age at the first CRC are not statistically

significant, with p-values equal to 0.151 and 0.742, respectively. For other variables, not all of

group means among five mutation types can be treated as equal.

Table 4.1: Distribution of mutation types

Number (%)

Total MLH1 MSH2 MSH6 PMS2 EPCAM

Number of individuals 422 (100%) 146 (34.60%) 194 (45.97%) 59 (13.98%) 18 (4.27%) 5 (1.18%)

Number of families 242 (100%) 83 (34.30%) 97 (40.08%) 40 (16.53%) 17 (7.02%) 5 (2.07%)

Table 4.2: Basic information of Lynch Syndrome family data

gender adenoma

Total Males Females yes no

Number of individuals 422 152 (36%) 270 (64%) 135 (32%) 287 (68%)

CRC 103 47 (45.6%) 56 (54.4%) 18 (17.5%) 85 (82.5%)

MLH1 146 63 (43.15%) 83 (56.85%) 47 (32.19%) 99 (67.81%)

MSH2 194 68 (35.05%) 126(46.29%) 67 (34.54%) 127 (65.46%)

MSH6 59 14 (23.73%) 45(76.27%) 24 (40.68%) 35 (59.32%)

PMS2 18 5 (27.78%) 13 (72.22%) 5 (27.78%) 13 (72.22%)

EPCAM 5 2 (40%) 3 (60%) 1 (20%) 4 (80%)
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Table 4.3: The characteristics of Lynch Syndrome family data

whole data set

(min,max) mean (sd) median

Number of visits per person (1,16) 3.898 (2.762) 3

Age(years) at the first visit (3,78) 40.470 (13.295) 40

Gap(years) between visits (0.2,34) 3.389 (4.476) 2

Proband’s age at CRC (12,81) 42.400 (13.154) 42

For those who had CRC

Age at the first CRC (20,88) 50.690 (14.746) 50

Gap year of CRC from the first visit (0,37) 8.175 (10.141) 5

For those who had no CRC

Follow-up time (0.2,38) 8.464 (6.456) 6

Table 4.4: The characteristics of Lynch Syndrome family data – comparing five mutation types;

p-values are for assessing the null hypothesis: the means of a certain variable for five mutation

types are all equal.

MLH1 MSH2 MSH6 PMS2 EPCAM ANOVA

mean (sd) mean (sd) mean (sd) mean (sd) mean (sd) p-value

Number of visits 3.77 (2.76) 4.36 (2.99) 3.29 (2.05) 2.33 (1.09) 2.80 (0.84) <0.001

Age at the first visit 38.55 (12.97) 39.77 (13.44) 46.78 (10.60) 42.28 (15.48) 42.60 (19.42) 0.001

Gap year between visits 4.09 (5.53) 3.02 (3.91) 3.00 (3.76) 3.33 (2.40) 2.13 (1.28) 0.151

Proband’s age at CRC 41.12 (13.82) 40.88 (12.06) 51.83 (10.69) 38.78 (15.52) 40.60 (7.09) <0.001

For those who had CRC

Age at the first CRC 49.38 (15.12) 51.24 (15.34) 55.50 (11.20) 50.38 (13.70) no CRC 0.742

Gap year of CRC from

the first visit 9.89 (11.02) 7.60 (10.16) 2.25 (4.10) 7.50 (7.21) no CRC 0.015

For those who had no CRC

Follow-up time 11.41 (9.42) 10.28 (8.25) 6.41 (5.19) 8.19 (5.62) 4.20 (3.03) <0.001
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4.2 Model Description

In the analysis of the LS data, screening visits were used as recurrent events and CRC was

used as a terminal event. Three models, including the shared frailty model for terminal event,

the joint frailty model and the joint nested frailty model, were fitted into the LS data. A gap

time scale was used to model the duration between two recurrent events.

While modeling the screening visits, the first visit age, the age at the previous visit, indica-

tor of any detection and removal of adenoma at the previous visit, indicator of any detection

and removal of other polyps at the previous visit, proband’s CRC age and gender (1 for male

and 0 for female) were included in the screening visit process. While modeling the terminal

event, the first visit age, indicator of detection and removal of adenoma before CRC, indicator

of detection and removal of other polyps before CRC, proband’s CRC age and gender (1 for

male and 0 for female) were included. Three age-related variables, the first visit age, age at

the previous visit and the proband’s CRC age, were centered at their median ages (40, 46 and

40, respectively) and divided by 10, for a more meaningful intercept. The corresponding pa-

rameter estimates represented the increase or decrease in the log hazard scale for every 10-year

increase in age.

Splines functions with 5 knots were used as baseline hazard functions in the three models.

For shared frailty model, the smoothing parameter κ was set as 10 as a starting point for cross

valiation, in order to add a penalty to the likelihood. For two joint models, the smoothing

parameters κ1 and κ2 in the penalized log-likelihood function were chosen using the cross-

validation from the two marginal models, i.e. shared frailty models for screening visit process

only, and for the terminal event only.

4.2.1 Shared frailty model for terminal event

For the terminal event (CRC) only, shared frailty model was fitted. The first visit age, detec-

tion and removal of adenoma before CRC, detection and removal of other polyps before CRC,

proband’s CRC age and gender (1 for male and 0 for female) were included in the model as
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covariates. We considered the cumulative number of visits as a time-dependent covariate to

reflect the nature pattern of screening visits. Starting time points and ending time points were

specified to incorporate the time-dependent covariate.

An example of R code for fitting the shared frailty model for terminal event are shown

as follow. Splines function using percentile intervals with 5 knots is used as baseline hazard

function. Positive smoothing parameter in the penalized likelihood estimation is chosen as 10

in this example to give a penalty on the likelihood. Cross validation procedure is used for

estimating smoothing parameter.

mod.cox.gap <- frailtyPenal(Surv(t.start,t.stop,CRC)˜

cluster(famid) + x1 + x2,

data = data, hazard = "Splines-per",

n.knots = 5, kappa = 10, cross.validation = TRUE)

4.2.2 Joint frailty model

The screening visits and the terminal event were jointly modeled by sharing an individual

random effect between the two processes. An example of R code for fitting the joint frailty

model are shown as follow. Splines function with 5 knots is used as baseline hazard function.

Positive smoothing parameters in the penalized likelihood estimation are obtained by fitting the

corresponding shared frailty models, for visiting process and terminal event separately, using

cross validation.

modJoint.gap <- frailtyPenal(Surv(gaptime,visit)˜

cluster(idnew) + x1 + x2 + terminal(CRC),

formula.terminalEvent = ˜ x1 + x3,

data = data, n.knots = 5, kappa = c(k1, k2))

4.2.3 Joint nested frailty model

We assumed the same familial frailty effect for both the recurrent and terminal events for

simplicity by fixing ξ = 1; the association between two processes mainly comes from individ-
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ual frailty. An example of R code for fitting the joint nested frailty model are shown as follow.

Splines function with 5 knots is used as baseline hazard function. Positive smoothing param-

eters in the penalized likelihood estimation are obtained by fitting the corresponding shared

frailty models using cross validation. initialize = TRUE indicates fitting an appropriate

joint frailty model without group effect to provide initial values for the joint nested model.

modJointnested.gap <- frailtyPenal(Surv(gaptime,visit)˜

subcluster(idnew)+ cluster(famid)+

x1 + x2 + terminal(CRC),

formula.terminalEvent = ˜ x1 + x3,

data = data, n.knots = 5, kappa = c(k1, k2), initialize = TRUE)

4.3 Analysis of CRC risks

Results from the three models are summarized in Table 4.5. Results for mutation-specific

models are included in Appendix A.

4.3.1 Impact of screening visits on the risk of CRC

Based on the joint nested frailty model, the effects of age at the first screening visit, detec-

tion and removal of adenoma and gender are significantly associated with the risk of develop-

ing CRC. Those individuals who ever been detected and removed adenoma before CRC have

exp(-0.915) = 0.4 (p = 0.001) times the risk of developing CRC than those who did not have

adenoma before CRC, and the 10-year increase in the first screening age increases the risk of

CRC by exp(0.335) = 1.4 (p = 0.001) times. Males have exp(0.711) = 2.04 (p = 0.004) times

the risk of getting CRC than females. The older the proband’s CRC age, the slightly higher in

the risk of developing CRC, and as well those individuals who ever detected and removed other

polyps have lower risk of developing CRC than those who did not have other polyps before,

but these effects were not significant.

Similar patterns were found with the joint frailty model taking only individual frailty into

account; the same variables, age at the first screening, detection and removal of adenoma before
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CRC and gender, were also significantly associated with the risk of developing CRC. For the

shared frailty model, the cumulative number of visits was considered as a time-dependent co-

variate only in the shared frailty model to account for the visit process in the model. The hazard

ratio (HR) of the cumulative number of visits (exp(0.206) = 1.23, p = 0.010) was significant,

indicating that every additional visit would increase the risk of developing CRC by 23%. Some

different patterns appeared in the shared frailty model; the effect of adenoma detection became

not significant. The coefficient for the proband’s CRC age was found negative in shared frailty

model for terminal event but not significant. Effects for other covariates remained similar as

the ones from the other two models.

The intervals between screening visits were modeling in joint models. We found several

variables associated with the screening gap times, i.e. visit frequency. In the joint nested frailty

model, first visit age, age at previous visit, detection and removal of adenoma at the previous

visit, detection of serrated polyps at the previous visit were marginally significantly associ-

ated with visiting frequency. Among them, for first visit age, the older the first visit age the

lesser the visit frequency, with HR exp(-0.68) = 0.505 (p < 0.001). With HR exp(0.65) = 1.91

(p < 0.001) for age at previous visit, a 10-year-increase on age at previous visit would increase

the frequency of visiting by around 91%. Detection and removal of adenoma at the previous

visit would lead to a exp(0.36) = 1.43-fold (p< 0.001) increase in frequency of visits compared

to the situation with no detection. Similarly, detection of a serrated polyp at the previous visit

would lead to a exp(0.78) = 2.19-fold (p = 0.005) increase in frequency of visits compared to

the situation with no detection. Proband’s CRC age and gender were not significantly related

to visit frequency according to our results. The joint frailty model provided consistent patterns

as the joint nested frailty models.

We have conducted analyses by three mutation types, MLH1, MSH2, and MSH6, using

the three models. The results of those mutation-specific models are summarized in Table A.1,

A.2 and A.3 in Appendix A. MLH1-specific model showed slightly different patterns from the

ones in general model for combined data. In terms of the CRC occurance in joint nested frailty

model, only the detection and removal of adenoma and gender were found to be significant,
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with the HRs of exp(-1.003) = 0.367 (p = 0.029) and exp(0.77) = 2.16 (p = 0.045), respec-

tively. Thus in families with MLH1 mutation, the individuals who had adenoma detected and

removed during the follow-up time would have 33% lower risk of developing CRC than those

who did not. Besides, males in MLH1 families had distinctly higher risk (116% higher risk)

to develop CRC than females. In visiting process, MLH1-specific joint nested frailty model,

the detection and removal of adenoma is not significant any more. In terms of MSH2-specific

model, age at the first screening visit is the only covariate found to be significant in disease

process, with the HR of exp(0.411) = 1.51 (p = 0.005). Thus in families with MSH2 mutation,

10-year increase in age at the first screening visit would lead to 51% higher risk of develop-

ing CRC. In visiting process, MSH2-specific joint nested frailty model showed a same pattern

as the general joint nested frailty model. In MSH6-specific model, only the age at the first

visit and gender were kept in the model to achieve convergence, due to the small number of

MSH6 families. Gender is found to be significant with regression coefficient estimate = 3.615

(se = 1.191, p = 0.002), which means that males in MSH6 families have significantly higher

risk to develop CRC than females.

However, limited amount of individuals in each group may lead to some unreliable model

results. Thus, mutation types are considered as covariates in the general models additionally,

with results shown in Table B.1 in Appendix B. MSH2 is chosen to be the reference category.

EPCAM patients are removed from the data set since there only a small number of patients with

the mutation. Estimates and significances are consistent with the ones in Table 4.5. MLH1 is

significantly diverse from MSH2 in visiting process, and PMS2 is significantly different from

MSH2 in both visiting process and terminal event. MSH2 patients have the most screening

visits among the four mutation types we considerd, but have relatively smaller chance to detect

CRC; only MSH6 patients have lower risk to detect cancer than MSH2 patients.
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Table 4.5: Comparisons of three models–joint nested frailty, joint frailty, and shared frailty

models–for analyzing LS family data
Visiting Process
Variables Joint nested frailty Joint frailty

estimate se p-value estimate se p-value
age at the first visit -0.683 0.081 <0.001 -0.629 0.079 <0.001
age at the previous visit 0.649 0.060 <0.001 0.645 0.060 <0.001
detection of adenoma
at the previous visit 0.361 0.097 <0.001 0.367 0.097 <0.001
detection of serrated
at the previous visit 0.782 0.280 0.005 0.782 0.280 0.005
proband’s CRC age 0.020 0.047 0.665 0.018 0.046 0.689
gender -0.053 0.125 0.672 -0.070 0.125 0.573

Terminal event (CRC)

Variables
Joint nested frailty Joint frailty Shared frailty

estimate se p-value estimate se p-value estimate se p-value

age at the first visit 0.335 0.102 0.001 0.288 0.086 0.001 0.416 0.125 0.001
detection of adenoma -0.915 0.276 0.001 -0.767 0.244 0.002 -0.563 0.316 0.075
detection of other polyps -0.128 0.278 0.645 0.031 0.245 0.899 0.212 0.346 0.540
cumulative number of visits † - - - - - - 0.206 0.080 0.010
proband’s CRC age 0.010 0.102 0.919 0.023 0.077 0.770 -0.091 0.149 0.541
gender 0.711 0.248 0.004 0.608 0.209 0.004 0.649 0.266 0.015
† time-dependent covariate

Frailty Parameters
Joint nested frailty Joint frailty Shared frailty

estimate se p-value estimate se p-value estimate se p-value
θ 0.649 0.064 - 0.657 0.065 - 0.488 0.161 -
α 0.731 0.105 <0.001 0.386 0.227 0.089
η 0.737 0.181 -
ξ - - -

penalized marginal
log-likelihood -2299.04 -2542.04 -315.72
LCV 1.754 1.937 0.249

θ denotes the variation of individual frailty,
α denotes the association between two processes at the individual level,
η denotes the variation of familial frailty,
ξ denotes the association between two processes at the familial level.
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4.3.2 Impact of frailties

The effects of the frailties in the joint nested frailty model were estimated via four parame-

ters (see Table 4.5); θ represents the variance of individual frailties, η represents the variance

of familial frailties, α represents the association between the screening visits and CRC caused

by individual random effects, and ξ represents the association between the screening visits and

CRC that are due to unknown familial effects.

The specification of frailty models typically requires the heterogeneity parameters to be

positive or, in case of homogeneity, to be zero. Therefore under the null hypothesis, the pa-

rameter is at the boundary of the parameter space which is [0,∞), and alternative hypothesis is

one-sided which contains an inequality constraint. Maller and Zhou (2003) focused on a case

of no covariates and obtained an asymptotic null distribution to the likelihood ratio statistic,

which is an equal mixture of a point mass at zero and a chi-square distribution with one degree

of freedom, denoted as 1
2 χ2

0 +
1
2 χ2

1 . Claeskens et al. (2008) further studied the asymptotic dis-

tribution of the likelihood ratio test for the one-sided testing problem with covariates. The null

distribution of the likelihood ratio statistic for testing the one-sided heterogeneity hypothesis

in the shared gamma frailty model with Weibull baseline hazard is 1
2 χ2

0 +
1
2 χ2

1 .

Followed the mixture method, we calculate p-values for likelihood ratio tests for hetero-

geneity manually. The test statistic is twice the log of the likelihoods ratio, 2× [log likelihood

for alternative model - log likelihood for null model]. For testing H0 : θ = 0 vs. H1 : θ>0 while

keeping the other parameters unrestricted in the joint nested frailty model, a new joint model

with only familial frailty was fit as null model. For η in the joint nested frailty model, joint

frailty model was used as null model. For θ in joint frailty model, two separate models for two

processes, without frailty, were fit. The log-likelihood for the null model was obtained as the

sum of the log-likelihoods from the two separate models. For the shared frailty model, a model

without familial frailty was considered as null model. Mixture distributions for likelihood ratio

tests for heterogeneity are shown in Table 4.6.
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Table 4.6: Mixture distributions for likelihood ratio tests for heterogeneity

Joint nested frailty Joint frailty Shared frailty

H0 H1 mixed distribution H0 H1 mixed distribution H0 H1 mixed distribution

θ θ = 0,η>0,ξ = 1 θ>0,η>0,ξ = 1 1
2 χ2

1 +
1
2 χ2

2 θ = 0 θ>0 1
2 χ2

1 +
1
2 χ2

2 θ = 0 θ>0 1
2 χ2

0 +
1
2 χ2

1

η η = 0,θ>0 η>0,θ>0,ξ = 1 1
2 χ2

0 +
1
2 χ2

1 - - - - - -

Results are shown in Table 4.7 and 4.8 as follow:

Table 4.7: P-values for likelihood ratio tests for heterogeneity by mixed method

Joint nested frailty

lalt lnull test statistic p-value

θ -2299.040 -2670.780 743.480 <0.001

η -2299.040 -2542.040 486 <0.001

Table 4.8: P-values for likelihood ratio tests for heterogeneity by mixed method

Joint frailty Shared frailty

lalt lnull test statistic p-value lalt lnull test statistic p-value

θ -2542.040 -2734.150 384.220 <0.001 -315.720 -331.730 32.020 7.63×10−9

At the individual level, we found that frailty variance (estimate and p-value) and the as-

sociated power term of the frailty (estimate and p-value) were significant in the joint nested

frailty model (significant frailty variance θ̂ = 0.65 (p < 0.001) and significant power of the

frailty α̂ = 0.731 (p < 0.001)). This indicates obvious and positive residual link between the

visiting process and the risk of CRC at the individual level. At the family level, the power (ξ )

of the familial frailty was fixed as one. The variance of the familial frailty was significantly

different from zero (η̂ = 0.74, p < 0.001) indicating positive residual intra-family correlation

appears between the visiting process and the risk of CRC. In joint frailty model, the variance

of individual frailty was significant (estimate, p-value) with its estimate θ̂ = 0.66 (p < 0.001).

However, α was not significant (α̂ = 0.39, p = 0.09), which indicates no obvious residual

link between the visiting process and the risk of CRC at the individual level based on joint
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frailty model. In shared frailty model only for the terminal event, the frailty parameter θ was

significant, indicating significant residual correlation among the times to CRC within families

(θ̂ = 0.49, p = 0.001).

We also compared the estimates of frailty parameters from mutation-specific models (Tables

A.1-A.3). The frailty parameters are all significant across mutation-specific models. MLH1

families showed stronger associations (θ̂ = 0.737, comparing to θ̂ = 0.649 in general model)

between the recurrent and disease processes caused by individual random frailty. Estimates

of frailty parameters in MSH2-specific model are very similar to the ones in general model.

MSH6 families show a stronger association between two processes at the individual level (α̂ =

1.483, comparing to α̂ = 0.731 in general model).

4.3.3 Comparison of model fitting

Comparison of joint nested frailty model and joint frailty model can be guided by the values

of likelihood cross-validation criterion (LCV) (Rondeau et al., 2017). Lower values of LCV

indicate a better fitting model. The gain of using a joint nested frailty model instead of a joint

frailty model can be evaluated by comparing the LCV (joint frailty model) = 1.94 to LCV (joint

nested frailty model) = 1.75. Since the LCV is 10% lower for the joint nested frailty model,

it would seem that the joint nested frailty model fits better than the joint frailty model as it

accounts for the familial dependence.

4.4 Dynamic prediction of CRC risk

Dynamic prediction can be provided based on joint modeling. The dynamic prediction

P(t,s) is estimated as the probability of developing a terminal event CRC for subjects who

survived to a certain time point, based on their visiting and disease histories and those of other

family members observed by that time point. When comparing different levels for a certain

covariate, controlling other covariates are necessary. In our data set, it is difficult to find sev-

eral individuals who have similar screening patterns but differ in the covariate of interest. To

better illustrate the effect of the specific covariate while controlling for the other covariates,
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we created a virtual individual for prediction whose covariates are controlled under different

situations. Then, this individual was plugged into a family whose proband had first CRC at

age 39. Several scenarios were under consideration. We evaluated the following covariates and

their effects on the dynamic predictions: gap time between visits, age at the first visit, detection

and removal of adenoma, gender, family history, and mutation types.

Starting prediction points were fixed at prediction time t = 0, 2, 5 and 10 years with predic-

tion window (s) increasing by one year until t + s = 15 years. At each prediction time point,

we predicted the risk every year until reaching 15 years from the first visit.

The 95% confidence intervals (CIs) of the prediction probability of developing a termi-

nal event between t and t + s were obtained from Monte Carlo simulations of the parame-

ter values. Calculation of the prediction probabilities is based on the parameter values ψ̂ =

(r̂0(t), λ̂0(t), β̂ , γ̂, θ̂ , α̂), drawn from the Multivariate Gaussian distribution MN(ψ̂, ∑̂ψ). The

CIs are the 2.5th and 97.5th percentiles of the prediction probabilities estimated from the n sim-

ulated values. Five hundreds sets of parameters were generated to obtain CIs of the predictions

in our application.

4.4.1 Effect of gap time between visits on CRC

For comparing the effects of different gap times between successive screening visits, this

person was defined as a male who started his first screening visit at age 25 and detected ade-

noma at the first screening visit. Three gap times were applied to this person which were one-,

two-, and three-year gap between two successive visits. Figure 4.1 displays the dynamic pre-

diction for this person of the cumulative risk of developing CRC. It shows that smaller the gap

time, higher the probability for this individual to detect a CRC. If this person had no cancer by

year 5 and has screening visits every year, then about 40% of chance to detect by year 10 but

every 2 years visit would decrease the chance of detecting CRC by 20%.
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4.4.2 Effect of age at the first visit on CRC

For comparing different ages at the first visit, this person was defined as a male who had

been screened every year, was detected of adenoma at the first visit. Three different ages at

the first visit were considered: 20, 25 and 40. These three ages were chosen grounded on the

clinical suggestions on the age when a LS individual should start a screening visit. Figure 4.2

displays the dynamic prediction for this person with different first visit ages. It is consistently

shown that starting screening visit at an older age would increase the risk of developing a CRC.

Figure C.1 includes two more ages at the first visit, 30 and 35, to make the comparison more

general, where consistant conclusion can be reached.

4.4.3 Effect of adenoma on CRC

For comparing the effect of detection and removal of adenoma among visits, this person was

defined as a male who started his first screening visit at age 25, had been screened every year.

Situation with detection of adenoma was compared to the one without detection of adenoma.

Figure 4.3 displays the dynamic prediction for this person depending on adenoma detection

status. If one who had adenoma detected and removed during screening visit, the risk of CRC

would be lower compared to the one with no adenoma detected. It is consistently shown that

no detection and removal of adenoma among screenings would lead to a higher the risk of

developing a CRC.

4.4.4 Effect of gender on CRC

Similarly, gender effect was compared while fixing the other covariates. Figure 4.4 shows

that males have higher risk of developing CRC than females. The results remain consistent as

the estimates from the joint nested frailty model.

4.4.5 Effect of family history on CRC

To demonstrate the effect of family history on the dynamic predictions, we chose two fam-

ilies whose family histories are different: high risk family and low risk family. The high risk
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family we chose contains six individuals with 22 visits including four CRCs in total, and the

low risk family contains only one individual with two visits but no CRC. The Figure 4.5 shows

that the high risk family with more visits and CRC history generally has a higher risk of de-

veloping a CRC than one with less visits without CRC history at all windows starting from

prediction time 2.

4.4.6 Effects of mutation types on CRC

We evaluated the effects of different gap times specific to mutation type on dynamic pre-

dictions. We chose MLH1 and MSH2 mutations for comparison. The mutation-specfic models

(Tables A.1 and A.2) were used for calculating dynamic predictions. Figure 4.6 shows that

individuals in MLH1 families have higher risk of CRC than those in MSH2 families.

Besides, based on the model with mutation types as covariates (Tables B.1), dynamic pre-

diction was conducted as well. Under each assigned visiting interval, MLH1, MSH2, MSH6

and PMS2 were compared. Other covariates were controlled at the same levels while compar-

ing different mutation types. Figure C.2 to Figure C.5 in Appendix C shows that individuals

in PMS2 families have much higher risk of CRC than those of any other mutation type; given

one-year gap time for example, PMS2 patients have approximately 30% higher risk than MLH1

patients after ten years since the first visit. However, the differences decrease with longer gap

time. In addition, more frequent screening visits would lead to higher risk to detect a CRC,

applied to all kinds of mutation types.
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Figure 4.1: Comparison of the effects of screening intervals on dynamic prediction of CRC,

P(t,s), at fixed prediction time t = 0,2,5 and 10 years with s increasing by one until t + s =

15 years, for comparing three different screening intervals. The grey vertical line represents

the time of prediction. The dashed lines represent 95% confidence intervals of the prediction

probabilities of developing a terminal event between t and t + s. A virtual individual was

defined as a male who started his first screening visit at age 25, was detected of adenoma and

presented CRC during the follow-up time. Situations of this person visited every one year,

every two years, and every three years were compared.
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Figure 4.2: Comparison of the effects of the first visit ages on dynamic prediction of CRC,

P(t,s), at fixed prediction time t = 0,2,5 and 10 years with s increasing by one until t + s = 15

years, for comparing different ages at the first visit. The grey vertical line represents the time of

prediction. The dashed lines represent 95% confidence intervals of the prediction probabilities

of developing a terminal event between t and t + s. A virtual individual was defined as a male

who had been screened every year, was detected of adenoma and presented CRC during the

follow-up time. Situations of this person first visited at age of 20, 25 and 40 were compared.
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Figure 4.3: Comparison of adenoma effects on dynamic prediction of CRC, P(t,s), at fixed

prediction time t = 0,2,5 and 10 years with s increasing by one until t + s = 15 years, for com-

paring effect of adenoma among visits. The grey vertical line represents the time of prediction.

The dashed lines represent 95% confidence intervals of the prediction probabilities of develop-

ing a terminal event between t and t+s. A virtual individual was defined as a male who started

his first screening visit at age 25, had been screened every year and presented CRC during the

follow-up time. Situations of when this person had adenomas before CRC and no adenomas

were compared.
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Figure 4.4: Comparison of gender effects on dynamic prediction of CRC, P(t,s), at fixed

prediction time t = 0,2,5 and 10 years with s increasing by one until t + s = 15 years, for

comparing effect of gender. The grey vertical line represents the time of prediction. The

dashed lines represent 95% confidence intervals of the prediction probabilities of developing

a terminal event between t and t + s. A virtual individual was defined as a person who started

his first screening visit at age 25, had been screened every year, was detected of adenoma, and

presented CRC during the follow-up time. Situations of when this person was a male and a

female were compared.
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Figure 4.5: Comparison of the effects of family histories on dynamic prediction of CRC, P(t,s),

at fixed prediction time t = 0,2,5 and 10 years with s increasing by one until t+s= 15 years, for

comparing different family histories. The grey vertical line represents the time of prediction.

The dashed lines represent 95% confidence intervals of the prediction probabilities of develop-

ing a terminal event between t and t+s. A virtual individual was defined as a male who started

his first screening visit at age 25, had been screened every year, was detected of adenoma, and

presented CRC during the follow-up time. This individual was assigned into two families with

different histories. High risk (family 106): six individuals with 22 visits including four CRCs

in total; low risk (family 121): one individual with two visits but no CRC.
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Figure 4.6: Comparison of the effects of gap times specific to mutation type on dynamic pre-

diction of CRC, P(t,s), at fixed prediction time t = 0,2,5 and 10 years with s increasing by one

until t+s =15 years. The grey vertical line represents the time of prediction. A virtual individ-

ual was defined as a male who started his first screening visit at age 25, had been screened every

year, was detected of adenoma, and presented CRC during the follow-up time. Two mutation

types, MLH1 and MSH2 were assigned to this individual.
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4.5 Comparison of prediction accuracies

Main purpose of our study was to compare the three models used in our analysis in terms

of their prediction accuracies. We evaluated the prediction accuracy of the dynamic predic-

tions by 10-fold cross-validated Brier Scores. For k-fold cross validation, while there is no

overlap between the test sets on which the models are evaluated, there is overlap between the

training sets for cross validation with k > 2. The overlap is the largest for leave-one-out cross

validation, which leads to the correlation among learned models and increase of the variance

with the amount of covariance. Therefore, leave-one-out cross validation has larger variance

in comparison to k-fold cross validation with smaller k. The general suggestion of Kohavi

(1995) to use 10-fold cross validation has been widely accepted. It is crucial to keep the family

structure intact with familial frailty models. We therefore divided data based on families for

cross-validation. Predictions were done for all the individuals in the first fold at prediction

times t = 0,2,5 and 10 up to 15 years based on the model fitted using training data. Brier Score

was calculated every time after prediction. This procedure was looped for all of the ten folds.

At given prediction time t and prediction window s, the weighted Brier Scores accounting for

right censoring was calculated and the results across all t and s are presented in Figure 4.7.

The joint nested frailty model consistently provided lower prediction error than the shared

frailty model. Figure 4.7 clearly shows that BS values of joint nested frailty model (indicated

as blue line) are the lowest compared to the ones from the other models at all windows at

prediction time 0 and 5. The shared frailty model (indicated in black) has lower BS values

than joint nested frailty model’s at the last two prediction windows at prediction time 2; before

prediction window of twelve years at prediction time point 2, the contrary is the case. At

prediction time point 10, the joint nested frailty model shows worse prediction accuracy than

the other two models. In general, joint nested frailty model appears to have better dynamic

prediction accuracy than the other models as it accounts for familial history and correlation.
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Figure 4.7: Brier Score using 10-folds cross validation from three models at different time

points (t = 0,2,5,10) and varying windows (s = 1, . . . ,15).

4.6 Analysis of the screening effect on mortality

Literature has shown that screening process not only affects the risk of developing CRC,

but also impacts the mortality from CRC. We therefore set out to evaluate the impact of the

screening on death after CRC using the same data set. We considered death as a terminal event

in the shared frailty model with familial frailty.
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For the analysis of death from CRC, we included 103 individuals who had CRC during the

follow-up time. Ten of 103 individuals were excluded from the analysis due to missing infor-

mation on proportion of removed colon or cancer stage. Out of the remaining 93 individuals

who detected CRC during the study time, only 65 followed up screening visits after the first

CRC; of 93, 16 died and 77 survived. The remaining 28 individuals did not have any screening

visit after CRC; of 28, five died and 23 survived, whom we treated as censored.

The time to death from CRC was analyzed using the shared frailty model with covariates of

interest. In terms of screening related covariates, we considered average gaptime before CRC,

the cumulative number of visits after CRC as a time-dependent covariate, adenomas detection

status before CRC, and the first visit age. Related to cancer, we considered age at the first CRC,

cancer stage (0 for low stage, and 1 for high stage) and the proportion of colon removed in the

model.

Results from the shared frailty model for death from CRC are summarized in Table 4.9.

P-value by mixed method is calculated and shown in Table 4.10. In this model, all covariates

are significant except for the cumulative number of visits after CRC; age at CRC, adenoma de-

tection and removal, average gap time, cancer stage, proportion of colon removed and gender

were all significantly associated with the mortality after CRC. Those who are one-year older to

develop a CRC are at a exp(0.064) = 1.066 (p < 0.001) times mortality. One-year increase in

gap time between two screening visits can lead to a exp(0.120) = 1.127-fold (p = 0.003) risk of

death. Patients with high cancer stage CRC have dramatically higher mortalities (exp(0.861)

= 2.365, p = 0.039) than those with low cancer stage CRC. Proportion of removal of colon is

also shown to play an vital role on risk of death; patients removed larger proportion of colon

have dramatically lower mortalities (83.7% lower, p = 0.019) than those removed smaller pro-

portion of colon. Detection and removal of adenoma before CRC would significantly lower

the mortality (exp(-3.108) = 0.045, p = 0.001). Estimates of two indicators of mutation types

show that MSH2 patients have the highest risk of death from CRC among the three types under

consideration. MLH1 patients have much lower risk of death than MSH2 patients; the differ-

ence is significant. Familial random effect is significant in this model (p = 0.038).



4.6. ANALYSIS OF THE SCREENING EFFECT ON MORTALITY 51

To better illustrate CRC mortality associated with cancer stage and average screening gap

time, Figure 4.8 and Figure 4.9 displays survival functions specific to cancer stage and mutation

type across different average gap times when other covariates are fixed. Two cancer stages are

shown in separate plots for comparison. Low stage cancer is more likely to survive from death

than high stage cancer. For low stage CRC patients, after 20 years from detection of CRC, the

survival probability decreases to around 90% to 95%, while it takes less than 10 years for high

stage CRC patients. Screening interval plays an important role in survival probability. More

frequent screenings significantly leads to a higher survival probability, working for both of the

two cancer stages. Consistently found in the figures, MLH1 patients have the highest survival

probability, followed by MSH6, and MSH2 patients have the lowest chance to survive from

CRC, applied to both cancer stages and all the four different gap times. Comparison focusing

on the effect of gap times can be found in the Figure C.6 to Figure C.8 in Appendix C. From

these plots, the effect of gap time on the survival probability is obvious; more frquent screening

visits can increase the survival probability, for all the three mutation types patients and also for

both two cancer stages. The results from this model is more persuasive for giving suggestions

to patients on frequent screening visits.

Results from the mutation type specific shared frailty models for death from CRC are sum-

marized in Table A.4, Table A.5 and Table A.6. Proportion of removed colon and gender are

no longer significant in MLH1- and MSH6-specific models, but remain significant in MSH2-

specific model. Cumulative number of visits after CRC is significant for MSH2-specific model,

meaning that for MSH2 patients, one more visit after detection of CRC would lead to 33.5%

(p = 0.004) higher risk of death. However, detection and removal of adenoma and age at CRC

have no significant impact on MSH2 patients’ mortality. For MSH6 patients, only age at the

first visit is significant to their risk of death. Results are just for reference due to limited amount

of individuals in each group.
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Table 4.9: Shared frailty model with Splines baseline hazard using death from CRC as the

terminal event with mutation type as covariates (indicators)
Variables estimate se p-value

detection of adenoma before crc -3.108 0.947 0.001

age at crc 0.064 0.017 <0.001

average gap time between visits before crc 0.120 0.041 0.003

cumulative number of visit after crc † 0.059 0.068 0.387

MLH1 compared to MSH2 -1.093 0.454 0.016

MSH6 compared to MSH2 -0.431 0.556 0.438

cancer stage 0.861 0.417 0.039

proportion of removed colon -1.813 0.770 0.019

gender 1.434 0.434 0.001

† time-dependent covariate

Frailty parameters

estimate se p-value

θ 0.002 0.002 -

penalized marginal log-likelihood -157.280

LCV 0.450

Table 4.10: P-value for likelihood ratio test for heterogeneity by mixed method – death from

CRC as the terminal event
Shared frailty

lalt lnull test statistic p-value

θ -157.280 -158.860 3.160 0.038
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Figure 4.8: Survival probabilities after the first CRC, specific to cancer stage, screening gap

times, and mutation types. Gap times are assigned as one year and two years. Under each

assigned visiting interval, MLH1, MSH2 and MSH6 patients are compared in two separate

plots of two different stage of CRC. The x-axis is the time in years since the detection of the

first CRC. The y-axis is the survival probability from CRC death.
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Figure 4.9: Survival probabilities after the first CRC, specific to cancer stage, screening gap

times, and mutation types. Gap times are assigned as three years and four years. Under each

assigned visiting interval, MLH1, MSH2 and MSH6 patients are compared in two separate

plots of two different stage of CRC. The x-axis is the time in years since the detection of the

first CRC. The y-axis is the survival probability from CRC death.

4.7 Analysis of screening effect on cancer stage

The cancer stage information is an important information for treatment plan and prognosis.

Generally, the higher the number, the more the cancer has spread. We considered cancer stage,
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0, 1 and 2 as low stage cancer and 3 and 4 as high stage cancer. Physicians may be more

interested in questions such as, what factors differentiate the two levels of stage. Among those

patients who had CRC, cancer stage was considered as a terminal event.

The gap times from the first visit to specific cancer stages were analyzed using the shared

frailty model with covariates of interest. For modeling the time to low stage cancer, individuals

with high stage cancer were removed from the data. Similarly, for modeling the time to a high

stage cancer, individuals with low stage cancer were removed. As a result, 47 patients were

considered as low stage cancer and 49 individuals were considered as high stage cancer.

Covariates considered for both models are: the first visit age, detection and removal of ade-

noma before CRC, detection and removal of other polyps before CRC, the screening frequency

or average gaptime before CRC, proband’s CRC age and gender (1 for male and 0 for female).

Some interactions between covariates were considered but found not significant so they were

not included in the final model. The parameter estimates are summarized in Table 4.11, sepa-

rately for the low stage cancer and the high stage cancer. P-values by mixed method are shown

in Table 4.12. Mutation specific estimates can be found in Appendix A in Table A.7, A.8 and

A.9.

In the model with low stage cancer, age at the first screening visit and average gap time

between visits were significant; ten year older at the first screening visit increases the risk of

developing a low stage cancer by 72.4% (p = 0.025), and one year increase in average gap time

between visit significantly (p = 0.033) decreases the risk of low stage cancer by 12.2%. MSH6

patients have much lower risk to develop a low stage CRC than MSH2 patients, while MLH1

and PMS2 have higher risks of low stage CRC. However, none of the comparisons in terms of

mutation types are statistically significant. Significant familial frailty parameter estimate (θ̂ =

4.508, p = 0.001) indicates positive familial correlation in the times to low stage cancer.

In the model with high stage cancer, detection and removal of adenoma was found sig-

nificant, meaning that thsoe individuals who were detected and removed adenoma during the
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screenings have exp(-1.103) = 0.332 times of risk to develop a high stage cancer than those

without any detection of adenoma. Gender is significant as well with p-value of 0.048, indi-

cating males have higher risks of developing a high stage CRC than females. MSH2 patients

have the lowest risks among all four mutation types under consideration. Compared to MSH2

patients, MLH1 patients have exp(0.712) = 2.038-fold risk of high stage CRC and PMS2 pa-

tients have exp(1.360) = 3.8977-fold risk of high stage CRC, with p-values 0.026 and 0.009,

respectively. Familial frailty becomes not significant in model with high stage cancer. How-

ever, due to the limited amount of data in both groups, significance is for reference only.

Cumulative hazard plots specific to two stages of CRC are shown in Figure 4.10 and Figure

4.11. It is more likely to develop a low stage CRC than a high stage CRC in general. Applied

to every assigned gap time, MLH1 and PMS2 patients have similar and the highest risk to de-

velop a low stage CRC; after five years since the first visit, they are under a 80% hazard of low

stage CRC, while MSH6 patients have less than 20% risk. For high stage CRC, PMS2 patients

are under the highest risk as well, while MSH2 patients have the lowest hazard. The pattern

remains the same across four visiting intervals.

Comparison focusing on the effect of gap times can be found in the Figure C.9 to Figure

C.12 in Appendix C. From these plots, more frquent screening visits can increase the prob-

ability of detecting either low stage CRC or high stage CRC, for all the four mutation types

patients. The differences among four gap times are more visible in detecting a low stage CRC

than the ones in high stage CRC, which is consistent with the model results shown in Table

4.11.
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Table 4.11: Shared frailty models with Weibull baseline hazard: cancer stages as the terminal

events with mutation type as covariates (indicators)

Low stage cancer High stage cancer

Variables estimate se p-value estimate se p-value

age at the first visit 0.544 0.243 0.025 0.099 0.114 0.388

detection of adenoma before crc 0.132 0.450 0.770 -1.103 0.408 0.007

detection of other polyps before crc 0.373 0.504 0.460 0.334 0.343 0.329

average gap time between visits -0.131 0.061 0.033 -0.029 0.025 0.237

proband’s crc age 0.089 0.214 0.678 0.025 0.119 0.831

gender 0.437 0.470 0.353 0.564 0.285 0.048

MLH1 compared to MSH2 0.676 0.582 0.245 0.712 0.320 0.026

MSH6 compared to MSH2 -1.759 1.041 0.091 0.433 0.483 0.371

PMS2 compared to MSH2 0.616 1.263 0.626 1.360 0.519 0.009

Frailty parameters

θ 4.508 2.319 - <0.001 0.010 -

marginal log-likelihood -181.530 -177.750

AIC 0.536 0.523

Table 4.12: P-values for likelihood ratio tests for heterogeneity by mixed method – cancer

stages as the terminal events

Low stage CRC High stage CRC

lalt lnull test statistic p-value lalt lnull test statistic p-value

θ -181.530 -186.460 9.860 0.001 -177.750 -177.760 0.020 >0.999
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Figure 4.10: Cumulative hazard for low stage cancer (left) and high stage cancer (right), spe-

cific to screening gap times of one year and two years. Four mutation types are under compar-

ison. The x-axis is the time in years since the first visit. The y-axis is the cumulative hazard of

developing cancers in two stages.
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Figure 4.11: Cumulative hazard for low stage cancer (left) and high stage cancer (right), spe-

cific to screening gap times of three years and four years. Four mutation types are under

comparison. The x-axis is the time in years since the first visit. The y-axis is the cumulative

hazard of developing cancers in two stages.



Chapter 5

Discussion

This thesis set out to evaluate and compare three statistical models for evaluating the screen-

ing efficiency on the risk of disease or mortality for clustered survival data. We applied shared

frailty model, joint frailty model and joint nested frailty model to LS family data to predict the

risk of CRC. The impact of screening visits on the risk of developing a first CRC for LS families

was assessed, based on the three models. Mutation type-specific CRC risks were estimated in

the analysis. We provided dynamic predictions and assessed their prediction accuracies across

the three models. To better understand the screening efficiency, we further analyzed the effects

of screening visits associated with CRC mortality and also with cancer stages.

We addressed the following challenges throughout the thesis: 1) A simplest way to incorpo-

rate the screening visits is as a time-dependent covariate in the disease model. We treated the

cumulative number of visits as a time-dependent covariate in the shared frailty model for CRC

occurrence. This modeling approach was comparable to complicated joint modeling as it still

captured important covariate effects while incorporating time-dependent screening visits in the

model. 2) For analysis of clustered data, we have incorporated familial correlation into our

modeling of screening visits with cancer occurrence and also with mortality. In addition, our

data include information from multiple screening visits for each individual, leading to a com-

plex nested structure; multiple visits observed within individuals and individuals are clustered

60
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in family. We employed the joint nested frailty model for better incorporating the complex

data structure. The familial frailty in our joint nested frailty model, which takes the unmea-

sured factors within a family into account, was considered as well in shared frailty model. 3)

One of the main objectives was to investigate mutation-specific risks of developing CRC and

associated effects of covariates. There exists a potential problem in terms of model fitting,

since sample size shrinks when separating the whole data set into subsets by mutation types.

Choice of covariates matters for model fitting.

This study analyzed LS family data from Mount Sinai Hospital. Among the 242 LS fami-

lies of 422 individuals included in the analysis, age at the first visit, age at the previous visit,

detection of adenoma at the previous visit and detection of serrated polyps at the previous visit

were all significantly related to the the frequency of screening visits (p < 0.001, p < 0.001,

p < 0.001 and p = 0.005, respectively). Several covariates were found to be associated with

the risk of developing CRC, which included age at the first visit, any detection of adenoma

before CRC and gender. Those individuals who had adenoma before CRC decreased the risk

of developing CRC compared to those who did not. A 10-year increase in the age at the first

visit age would increase the risk of developing CRC by 40%. Besides, males have a 2.04-fold

higher risk of getting CRC versus to females. The time-dependent covariate in proportional

hazard model, cumulative number of visits before CRC, is found significantly influential on

the risk of CRC, with exp(0.206) = 1.23-fold (23% higher) risk when cumulative number of

visits increase one at a certain visit. These results uniformly show that the screening process is

considerable when estimating the parameters in the terminal event.

Frailty parameters, θ and α , were found significant in joint nested frailty model. It is

worthwhile to consider inter-individual and inter-family variation. A significant positive famil-

ial correlation is observed in proportional hazard model as well. Joint nested frailty model was

revealed to be better than joint frailty model in terms of model fitting, according to LCV and

penalized marginal log-likelihood. Our observations are consistent with Choi et al. (2017), who

demonstrated the importance of screening process when estimating the parameters related to

the terminal event, and omitting residual familial correlations could have impact on the screen-
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ing effects.

In mutation type specific models, although magnitudes of estimates varied slightly, the di-

rections of the effect kept consistent. This is the first study, to our knowledge, to examine the

screening effect on risk of developing CRC in mutation-type-specific joint nested frailty model.

In addition, there are few results on how the screening visit intervals would affect the risk of

detecting low stage cancer and high stage cancer.

The study has a number of possible limitations:

1. Firstly, goodness of fit was only judged by the comparison of LCV and penalized marginal

log-likelihood between candidate models. Simulation evaluation is needed to provide a

thorough examination.

2. Secondly, the familial frailty is assumed to be shared over all family members. This

assumption may not be true in reality. Siblings could have a stronger correlation than

the correlation between kids and grandparents. The Kinship matrix may better accom-

modate familial relatedness. Kinship coefficient matrix is the matrix of probability that

randomly selected allele from two individuals are identical by decent (Lange, 2003),

which is widely used to measure the relatedness within a cluster. Instead of considering

the relationship of any two individuals in the family, we could consider different frailties

among different generations or any pairs of individuals within families.

3. Thirdly we only focused on the first CRC but successive CRCs may arise the problem

of competing risk. Individuals may experience several stages, such as death before any

CRC, developing a first CRC, death after CRC and survival upon the first CRC but getting

a second CRC. However, the successive CRCs after the first CRC were not allowed in

our model.

4. Finally, the occurrence of polyps over time could be added to our joint model as an

additional potential recurrent process. This recurrent polyps process could be correlated

with our screening visit process and terminal event and subject to the individual and

familial frailties as well.
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The above limitations are research avenue for future research. Kinship matrix can be con-

sidered to describe the relatedness among family members. Competing risk which appears

when there exists successive CRCs, can also be a great extension of joint frailty model and

joint nested frailty model.
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Table A.1: Comparisons of three models–joint nested frailty, joint frailty, and shared frailty

models–for analyzing MLH1 families
Visit Process
Variables Joint nested frailty Joint frailty

estimate se p-value estimate se p-value

age at the first visit -0.589 0.119 <0.001 -0.577 0.126 <0.001
age at the previous visit 0.662 0.097 <0.001 0.657 0.098 <0.001
detection of adenoma
at the previous visit 0.231 0.189 0.221 0.249 0.190 0.190
detection of serrated
at the previous visit 0.933 0.439 0.034 0.942 0.44 0.032

Terminal event (CRC)
Variables Joint nested frailty Joint frailty Shared frailty

estimate se p-value estimate se p-value estimate se p-value

age at the first visit 0.217 0.171 0.205 0.175 0.138 0.207 0.136 0.202 0.500
detection of adenoma -1.003 0.459 0.029 -0.839 0.396 0.034 -0.220 0.523 0.675
detection of others polyps − − − − − − 0.527 0.643 0.413
cumulative number of visits † 0.401 0.125 0.001
proband’s CRC age 0.086 0.157 0.582 0.087 0.110 0.427 -0.046 0.207 0.823
gender 0.770 0.383 0.045 0.637 0.330 0.054 0.327 0.415 0.431
† time-dependent covariate

Frailty Parameters
Joint nested frailty Joint frailty Shared frailty

estimate se p-value estimate se p-value estimate se p-value

θ 0.737 0.112 <0.001 0.740 0.112 <0.001 0.339 0.144 0.009
α 1.310 0.228 <0.001 0.825 0.368 0.025
η 0.663 0.370 0.037
ξ − − −
penalized marginal
log-likelihood

-834.160 -916.970 -126.940

LCV 1.913 2.096 0.314

θ denotes the variation of individual frailty,
α denotes the association between two processes at the individual level,
η denotes the variation of familial frailty,
ξ denotes the association between two processes at the familial level.
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Table A.2: Comparisons of three models–joint nested frailty, joint frailty, and shared frailty

models–for analyzing MSH2 families
Visit Process
Variables Joint nested frailty Joint frailty

estimate se p-value estimate se p-value

age at the first visit -0.723 0.101 <0.001 -0.719 0.106 <0.001
age at the previous visit 0.676 0.079 <0.001 0.673 0.080 <0.001
detection of adenoma
at the previous visit 0.387 0.129 0.003 0.388 0.13 0.003
detection of serrated
at the previous visit 0.819 0.418 0.050 0.819 0.418 0.050

Terminal event (CRC)
Variables Joint nested frailty Joint frailty Shared frailty

estimate se p-value estimate se p-value estimate se p-value

age at the first visit 0.411 0.148 0.005 0.376 0.132 0.004 0.556 0.171 0.001
detetction of adenoma -0.743 0.402 0.064 -0.565 0.362 0.119 -0.424 0.480 0.377
detetction of other polyps − − − − − − 0.385 0.442 0.383
cumulatove number of visits † 0.132 0.117 0.260
proband’s CRC age -0.028 0.165 0.866 -0.038 0.131 0.770 -0.054 0.248 0.828
gender 0.333 0.374 0.373 0.367 0.336 0.275 0.24 0.434 0.580
† time-dependent covariate

Frailty Parameters
Joint nested frailty Joint frailty Shared frailty

estimate se p-value estimate se p-value estimate se p-value

θ 0.636 0.087 <0.001 0.648 0.090 <0.001 0.518 0.262 0.024
α 0.626 0.146 <0.001 0.299 0.356 0.402
η 0.781 0.258 0.001
ξ − − −
penalized marginal
log-likelihood

-1135.930 -1234.710 -136.580

LCV 1.675 1.815 0.217

θ denotes the variation of individual frailty,
α denotes the association between two processes at the individual level,
η denotes the variation of familial frailty,
ξ denotes the association between two processes at the familial level.
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Table A.3: Comparisons of three models–joint nested frailty, joint frailty, and shared frailty

models–for analyzing MSH6 families
Visit Process
Variables Joint nested frailty Joint frailty

estimate se p-value estimate se p-value

age at the first visit -0.331 0.249 0.181 -0.318 0.249 0.201
age at the previous visit 0.483 0.200 0.016 0.472 0.198 0.017
detection of adenoma
at the previous visit 0.490 0.253 0.053 0.506 0.250 0.043

Terminal event (CRC)
Variables Joint nested frailty Joint frailty Shared frailty

estimate se p-value estimate se p-value estimate se p-value

age at the first visit 1.249 0.696 0.073 1.316 0.701 0.061 2.225 1.336 0.096
detetction of adenoma − − − − − − -1.896 1.783 0.288
detetction of other polyps − − − − − − -2.337 3.780 0.536
cumulative number of visits† 0.019 0.404 0.962
proband’s CRC age − − − − − − 0.022 1.404 0.987
gender 3.615 1.191 0.002 3.647 1.308 0.005 5.360 2.049 0.009
† time-dependent covariate

Frailty Parameters
Joint nested frailty Joint frailty Shared frailty

estimate se p-value estimate se p-value estimate se p-value

θ 0.351 0.118 0.001 0.344 0.115 0.001 3.085 2.551 0.113
α 1.483 0.246 <0.001 2.052 1.204 0.088
η 0.787 0.436 0.035
ξ − − −
penalized marginal
log-likelihood -217.630 -257.700 -19.500 (marginal log-likelihood)
LCV 1.674 1.947 0.1990 (AIC)

θ denotes the variation of individual frailty,
α denotes the association between two processes at the individual level,
η denotes the variation of familial frailty,
ξ denotes the association between two processes at the familial level.
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Table A.4: MLH1 families: Shared frailty model with Weibull baseline hazard using death

from CRC as the terminal event with cumulative number of visit after CRC as a time-dependent

covariate
MLH1

Variables estimate se p-value

detection of adenoma before CRC -4.425 2.160 0.041

age at CRC 0.086 0.019 <0.001

average gap time between visits before CRC 0.067 0.024 0.006

cumulative number of visit after CRC † -0.109 0.130 0.404

cancer stage 2.098 0.770 0.006

proportion of removed colon -2.180 1.926 0.258

gender 0.186 0.729 0.799
† time-dependent covariate

Frailty parameters

estimate se p-value

θ <0.001 <0.001 0.315

marginal log-likelihood -52.750

AIC 0.292
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Table A.5: MSH2 families: Shared frailty model with Weibull baseline hazard using death

from CRC as the terminal event with cumulative number of visit after CRC as a time-dependent

covariate
MSH2

Variables estimate se p-value

detection of adenoma before CRC -13.006 14.861 0.382

age at CRC 0.018 0.032 0.575

average gap time between visits before CRC 0.198 0.044 <0.001

cumulative number of visit after CRC † 0.289 0.100 0.004

cancer stage -1.442 0.882 0.102

proportion of removed colon -3.197 1.037 0.002

gender 3.757 0.711 <0.001
† time-dependent covariate

Frailty parameters

estimate se p-value

θ <0.001 <0.001 0.500

marginal log-likelihood -50.730

AIC 0.408
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Table A.6: MSH6 families: Shared frailty model with Weibull baseline hazard using death

from CRC as the terminal event with cumulative number of visit after CRC as a time-dependent

covariate
MSH6

Variables estimate se p-value

age at the first visit 3.357 1.134 0.003

detection of adenoma before CRC -2.969 1.764 0.092

cumulative number of visit after CRC † -0.469 0.413 0.256

cancer stage -1.127 0.756 0.136

proportion of removed colon 5.082 4.543 0.263

gender 0.510 2.324 0.826
† time-dependent covariate

Frailty parameters

estimate se p-value

θ <0.001 <0.001 0.500

marginal log-likelihood -21.370

AIC 1.320
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Table A.7: Shared frailty models for MLH1 families with Weibull baseline hazard: cancer

stages as the terminal events with average screening gap time and other polyp

MLH1 Low stage cancer High stage cancer

Variables estimate se p-value estimate se p-value

age at the first visit 0.111 0.312 0.721 0.063 0.170 0.710

detection of adenoma -0.114 0.724 0.875 -0.666 0.578 0.249

detection of other polyps 0.287 0.929 0.757 3.563 0.916 <0.001

average gap time between visits -0.061 0.070 0.385 -0.007 0.030 0.807

proband’s CRC age 0.384 0.299 0.199 -0.218 0.183 0.234

gender 0.974 0.812 0.230 -0.154 0.458 0.737

interaction between other polyps

and average gap time - - - -1.394 0.540 0.010

Frailty parameters

estimate se p-value estimate se p-value

θ 3.490 2.582 0.088 <0.001 <0.001 0.500

marginal log-likelihood -72.650 -70.570

AIC 0.675 0.655
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Table A.8: Shared frailty models for MSH2 families with Weibull baseline hazard: cancer

stages as the terminal events with average screening gap time and other polyp

MSH2 Low stage cancer High stage cancer

Variables estimate se p-value estimate se p-value

age at the first visit 1.353 0.637 0.034 0.031 0.217 0.888

detection of adenoma 0.432 0.712 0.544 -1.252 0.769 0.104

detection of other polyps 0.700 0.780 0.370 0.136 0.594 0.819

average gap time between visits -0.423 0.250 0.091 -0.003 0.041 0.939

proband’s CRC age -0.397 0.481 0.409 0.193 0.217 0.376

gender 0.329 0.869 0.705 0.596 0.506 0.239

Frailty parameters

estimate se p-value estimate se p-value

θ 8.636 6.019 0.076 <0.001 <0.001 0.500

marginal log-likelihood -82.770 -65.350

AIC 0.527 0.443
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Table A.9: Shared frailty models for MSH6 families with Weibull baseline hazard: cancer

stages as the terminal events with average screening gap time and other polyp

MSH6 Low stage cancer High stage cancer

Variables estimate se p-value estimate se p-value

age at the first visit 0.617 1.450 0.670 1.975 0.847 0.020

detection of adenoma - - - -4.352 1.913 0.023

detection of other polyps - - - 2.375 1.967 0.227

average gap time between visits -1.754 1.430 0.220 -1.704 0.909 0.061

proband’s CRC age - - - 0.105 0.564 0.852

gender - - - 2.589 1.558 0.097

Frailty parameters

estimate se p-value estimate se p-value

θ 0.250 7.012 0.486 <0.001 <0.001 0.500

marginal log-likelihood -6.340 -7.250

AIC 0.214 0.285
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Table B.1: Comparisons of joint nested frailty and joint frailty models, with mutation type as

covariates (indicators), for analyzing LS family data

Variables Joint nested frailty model Joint frailty model

estimate se p-value estimate se p-value

Visiting Process

age at the first visit -0.652 0.077 <0.001 -0.647 0.079 <0.001

age at the previous visit 0.658 0.059 <0.001 0.656 0.060 <0.001

detection of adenoma at the previous visit 0.359 0.097 <0.001 0.362 0.097 <0.001

detection of serrated polyp at the previous visit 0.800 0.277 0.004 0.805 0.277 0.004

MLH1 compared to MSH2 -0.300 0.116 0.010 -0.305 0.118 0.010

MSH6 compared to MSH2 -0.091 0.171 0.597 -0.100 0.171 0.559

PMS2 compared to MSH2 -0.863 0.335 0.010 -0.877 0.337 0.009

Disease Process

age at the first visit 0.336 0.099 0.001 0.297 0.084 <0.001

detection of adenoma -0.904 0.273 0.001 -0.763 0.244 0.002

MLH1 compared to MSH2 0.195 0.289 0.502 0.154 0.224 0.491

MSH6 compared to MSH2 -0.242 0.465 0.602 -0.224 0.399 0.574

PMS2 compared to MSH2 0.971 0.541 0.073 0.821 0.418 0.049

gender 0.721 0.241 0.003 0.636 0.210 0.002

Frailty Parameters

θ 0.645 0.061 <0.001 0.648 0.062 <0.001

α 0.839 0.113 <0.001 0.572 0.235 0.015

η 0.709 0.191 <0.001 - - -

ξ - - - - - -

penalized marginal log-likelihood -2278.170 -2515.930

LCV 1.752 1.932
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Figure C.1: Comparison of the effects of the first visit ages on dynamic prediction of CRC,

P(t,s), at fixed prediction time t = 0,2,5 and 10 years with s increasing by one until t + s = 15

years, for comparing different ages at the first visit. The grey vertical line represents the time of

prediction. A virtual individual was defined as a male who had been screened every year, was

detected of adenoma and presented CRC during the follow-up time. Situations of this person

first visited at age of 20, 25, 30, 35 and 40 were compared.
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Figure C.2: One-year visiting interval: comparison of the effects mutation type on dynamic

prediction of CRC, P(t, t + s), at fixed prediction time t = 0,2,5 and 10 years with s increasing

by one until t + s =15 years. The grey vertical line represents the time of prediction. A

virtual individual was defined as a male who started his first screening visit at age 25, had

been screened every year, was detected of adenoma, and presented CRC during the follow-up

time. Four mutation types, MLH1, MSH2, MSH6 and PMS2 were assigned to this individual

for comparisons.
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Figure C.3: Two-year visiting interval: comparison of the effects mutation type on dynamic

prediction of CRC, P(t, t + s), at fixed prediction time t = 0,2,5 and 10 years with s increasing

by one until t + s =15 years. The grey vertical line represents the time of prediction. A

virtual individual was defined as a male who started his first screening visit at age 25, had been

screened every two years, was detected of adenoma, and presented CRC during the follow-up

time. Four mutation types, MLH1, MSH2, MSH6 and PMS2 were assigned to this individual

for comparisons.
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Figure C.4: Three-year visiting interval: comparison of the effects mutation type on dynamic

prediction of CRC, P(t, t + s), at fixed prediction time t = 0,2,5 and 10 years with s increasing

by one until t + s =15 years. The grey vertical line represents the time of prediction. A

virtual individual was defined as a male who started his first screening visit at age 25, had

been screened every three years, was detected of adenoma, and presented CRC during the

follow-up time. Four mutation types, MLH1, MSH2, MSH6 and PMS2 were assigned to this

individual for comparisons.
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Figure C.5: Four-year visiting interval: comparison of the effects mutation type on dynamic

prediction of CRC, P(t, t + s), at fixed prediction time t = 0,2,5 and 10 years with s increasing

by one until t + s =15 years. The grey vertical line represents the time of prediction. A

virtual individual was defined as a male who started his first screening visit at age 25, had been

screened every four years, was detected of adenoma, and presented CRC during the follow-up

time. Four mutation types, MLH1, MSH2, MSH6 and PMS2 were assigned to this individual

for comparisons.
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Figure C.6: MLH1: survival probabilities after the first CRC, specific to cancer stage, screening

gap times. Gap times are assigned as one to four years. Under each cancer stage, four gap times

are compared. The x-axis is the time in years since the detection of the first CRC. The y-axis

is the survival probability from CRC death.
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Figure C.7: MSH2: Survival probabilities after the first CRC, specific to cancer stage, screen-

ing gap times. Gap times are assigned as one to four years. Under each cancer stage, four gap

times are compared. The x-axis is the time in years since the detection of the first CRC. The

y-axis is the survival probability from CRC death.
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Figure C.8: MSH6: survival probabilities after the first CRC, specific to cancer stage, screening

gap times. Gap times are assigned as one to four years. Under each cancer stage, four gap times

are compared. The x-axis is the time in years since the detection of the first CRC. The y-axis

is the survival probability from CRC death.
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Figure C.9: MLH1: cumulative hazard for low stage cancer (left) and high stage cancer (right),

specific to screening gap times. The x-axis is the time in years since the first visit. The y-axis

is the cumulative hazard of developing cancers in two stages.
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Figure C.10: MSH2: cumulative hazard for low stage cancer (left) and high stage cancer

(right), specific to screening gap times. The x-axis is the time in years since the first visit.

The y-axis is the cumulative hazard of developing cancers in two stages.
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Figure C.11: MSH6: cumulative hazard for low stage cancer (left) and high stage cancer

(right), specific to screening gap times. The x-axis is the time in years since the first visit.

The y-axis is the cumulative hazard of developing cancers in two stages.
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Figure C.12: PMS2: cumulative hazard for low stage cancer (left) and high stage cancer (right),

specific to screening gap times. The x-axis is the time in years since the first visit. The y-axis

is the cumulative hazard of developing cancers in two stages.



Curriculum Vitae

Name: Bing(Angie) Yu

Post-Secondary Southwestern Univerisity of Finance and Economics

Education and China

Degrees: 2011 - 2015 B.Sc. – Economics

University of Western Ontario

London, ON

2015 - 2017 M.Sc.

Honours and Schulich Graduate Scholarship

Awards: 2015 - 2017

Related Work Research Assistant, University of Western Ontario, 2015 - 2017

Experience: Summer Research Student, Lunenfeld-Tanenbaum Research Institute, 2016

Teaching Assistant for Sampling Methods, University of Western Ontario, 2016

Poster Presentation:

Bing Yu (2016). Comparison of Risks of Second Colorectal Cancers Between Lynch Syn-

drome Families and Familial Colorectal Cancer Type X Families. London Health Research

Day.

98


	A comparison of three prediction modelling approaches for clustered survival data with application to Lynch Syndrome Family
	Recommended Citation

	tmp.1515443371.pdf.uSxT_

